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Preface 

As we approached the revision of this text for the third edition, we realized that the 
prevailing paradigms of clinical research in rehabilitation and medicine had continued 
to evolve over the past 10 years, and that we had to address several important changes 
in the research landscape. Probably the most notable of these changes is the emphasis 
on evidence-based practice (EBP) that has become central to all of health care. The 
World Health Organization's adoption of the International Classification of Functioning 
and Disability (ICF) has created a new vocabulary that is being integrated into research 
and practice across disciplines. Questions related to diagnostic accuracy and clinical 
decision making are prominent in research literature, and phrases like "responsive­
ness," "minimally important change" and "number needed to treat" are becoming 
essential to EBP. Attitudes about clinical research have emphasized the responsibility 
of every clinician to better understand how to apply evidence to patient care, and the 
gaps in our research knowledge have become more evident as we often search for 
answers that are not there. 

This book has served a variety of audiences in research, professional education and 
clinical practice. It continues to be directed toward those in physical therapy, occupa­
tional therapy, speech therapy, nursing, medicine, exercise physiology, and public 
health, as well as other disciplines concerned with questions of health and health care. 
The book will remain a text for courses in research and critical inquiry, as well as a com­
prehensive reference for clinicians and researchers who are committed to evidence­
based practice. 

We have included varied levels of detail in design and statistics to meet the diverse 
needs of those who use this text. Instructors are urged to consider which portions of the 
text are relevant for their students, and not to expect to use it all in their courses. Stu­
dents will find it user-friendly as they learn concepts and principles of research, and 
will keep it is a reference as they grow in their professional role. Those who are engaged 
in research activities or advanced education will be able to utilize the more detailed 
portions as they explore research questions. And clinicians will be able to apply these 
principles to their clinical decision making. 

The application of evidence-based practice to health care requires an understand­
ing of design and analytic methods. Our text is not going to provide the answers to clin­
ical questions for practice-that must be left to journal articles and clinical textbooks, 
and to those who mentor students and clinicians, who will ask the right questions. Our 
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xvi PREFACE 

contribution is to provide the foundations that are necessary for finding and interpret­
ing research evidence. Clinicians must provide the experience and knowledge to apply 
the research to their practice. 

Although the general organization of the book has not changed, several additions 
have been incorporated into this edition to provide a contemporary framework for clin­
ical research. Part I covers the basic concepts of research, including a discussion of the­
ory and ethical principles. In this section we introduce important contexts for research 
related to models of health and evidence-based practice. Part II focuses on measure­
ment, including a comprehensive examination of reliability and validity. Part Ill pre­
sents the broaa scope of experimental, exploratory and descriptive research 
approaches, including a new chapter on systematic reviews and meta-analysis. 

Part IV of the text is devoted to the application of statistical procedures, from 
descriptive to multivariate approaches. This section now contains expanded content 
related to clinical decision making, including likelihood ratios, pretest and posttest prob­
abilities, minimally important change and number needed to treat. We continue to focus 
on the conceptual foundations of statistics, although calculations are provided for those 
who desire that level of detail. We use the format for SPSS in presenting output, but with 
explanations that we trust will allow integration with other statistical packages. 

Part V focuses on processes of research and communication, including an expanded 
chapter on searching the literature, development of proposals, presentation of research, 
and critical appraisal of published literature. Appendices provide tables of reference for 
statistical procedures, a newly designed algorithm for choosing statistical approaches 
for analysis, examples of power analysis for various designs, methods of transforming 
data, and a sample informed consent form. 

Prentice Hall has provided a wonderful opportunity to share information related 
to all sections of the book on their companion website, which can be accessed at 
www.prenhall.com/portney. We hope you will find this a helpful addition to the text, 
especially for those who use it for teaching purposes. 

As the health care environment evolves, we will always anticipate new directions 
and priorities for clinical research. Therefore, this work will always be in progress. We 
are proud to be part of the larger health care research and clinical communities that are 
clearly dedicated to the pursuit of new knowledge and the application of evidence to 
improve patient care. We look forward to the continued journey with all of you. 
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CHAPTER 1 

A Concept 
Clinical Research 

The ultimate purpose of a profession is to develop a knowledge base that will maximize 
the effectiveness of practice. To that end, health professionals have recognized the 
necessity for documenting and testing elements of clinical practice through rigorous 
and objective analysis and scientific inquiry. The concept of evidence-based practice 
represents the fundamental principle that the provision of quality care will depend on 
our ability to make choices that have been confirmed by sound scientific data, and that 
our decisions are based on the best evidence currently available. If we look at the foun­
dations of clinical practice, however, we are faced with the reality that often compels 
practitioners to make intelligent, logical, best-guess decisions when scientific evidence 
is either incomplete or unavailable. 

This situation is even more of an issue because of the economic challenges that con­
tinue to confront health care. Clinical research has, therefore, become an imperative, 
driving clinical judgments, the organization of practice, and rl:!imbursement. The task of 
addressing the needs of the present and future is one that falls on the shoulders of all 
clinicians-whether we function as consumers of professional literature or scientific 
investigators-to collect meaningful data, to analyze outcomes, and to critically apply 
research findings to promote optimal clinical care. Through collaborative and interdis­
ciplinary efforts, researchers and clinicians share a responsibility to explore the broad­
est implications of their work, to contribute to balanced scientific thought. The purpose 
of this text is to provide a frame of reference that will bring together the comprehensive 
skills needed to promote critical inquiry as part of the clinical decision making process. 

In this chapter we develop a concept of research that can be applied to clinical prac­
tice, as a method of generating new knowledge and providing evidence to justify treat­
ment choices. We will explore an historic perspective of clinical research, the framework 
of evidence-based practice, the different types of research that can be applied to clinical 
questions, and the process of clinical research. 

DEFINING CLINICAl RESEARCH 

The concept of research in health professions has evolved along with the development 
of techniques of practice and changes in the health care system. Traditionally, research 
has connoted controlled laboratory experiments, run by scientists in white lab coats 
using complex instrumentation; however, the maturation of a clinical profession brings 
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4 PART I • Foundations of Clinical Research 

with it the realization that research has a broader meaning as it is applied to the patients 
and situations encountered in practice. Clinical research is a structured process of 
investigating facts and theories and exploring connections. It proceeds in a systematic 
way to examine clinical conditions and outcomes, to establish relationships among clin­
ical phenomena, to generate evidence for decision making and to provide the impetus 
for improving methods of practice. 

Clinical research must be empirical and critical; that is, results must be observable, 
documented and examined for their validity.1 This objective process is, however, also a 
dynamic and creative activity, performed in many different settings, using a variety of 
quantitative and qualitative measurement tools and focusing on the application of clin­
ical theory and interventions. It is a way of satisfying one's curiosity about clinical phe­
nomena, stimulating the intellectual pursuit of truth to understand or explain clinical 
events, and generating new or different ways of viewing clinical problems. 

The context of clinical research is often seen within a prevailing paradigm. 
Scientific paradigms have been described as ways of looking at the world that define 
both the problems that can be addressed and the range of legitimate evidence that con­
tributes to solutions.2 We can appreciate changes in research standards and priorities in 
terms of three paradigm shifts that have emerged in rehabilitation and medicine through 
the latter half of the 20th century: the focus on outcomes research to document effective­
ness, the application of models of health and disability and most recently an attention 
to evidence-based practice. 

MEASUREMENT OF OUTCOMES 
The concept of looking at outcomes as the validation of quality care is not a new one. 
Historically, the triad of structure, process and outcomes has been used as the barometer 
of healthcare quality? Structure was assessed through organizational standards, and 
process through quality assurance programs examining details such as charges and 
record keeping. Outcomes of care were typically assessed in terms of morbidity, mor­
tality, length of stay and readmissions. 

In rehabilitation, outcomes were often related to improvements in impairments or 
pathologies, with the assumption that such changes would be linked to the ultimate 
outcomes of interest. Today, the concept of outcomes has been expanded to fit with the 
World Health Organization's definition of health, which includes physical, social and 
psychological well-being.4 Looking at the effects of intervention now includes con­
sideration of patient satisfaction, patient preferences, self-assessment of functional ca­
pacity and quality of life. Clinicians and especially patients have always considered 
functional outcome as the ultimate measure of the success of intervention. At this time, 
however, consumers and reimbursement policies have obligated health care practition­
ers to define and document outcomes, and to substantiate the efficiency and effective­
ness of treatment. 

To be meaningful the outcomes agenda must influence public policy, routine moni­
toring of medical care and standardized assessment of patient outcomes.5 Clinical prac­
tice databases must be developed to include functional outcome measures and other 
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relevant information to contribute to the evaluation of outcomes.6 Clinical managers 
now use these data to support practice and organizational structure. The objective of 
outcomes management has generated a renewed understanding of the link between 
clinical management decisions, treatment decisions and measured documentation of 
effectiveness.7-11 Outcomes management has emerged as an interdisciplinary process 
aimed at determining best practices and identifying opportunities for improvement of 
clinical quality through intermediate and long-term outcome analysis.12 

Outcomes research refers to the study of success of interventions in clinical prac­
tice, with a focus on the end results of patient care in terms of disability and survivalY 
Such studies often use large administrative databases that include information about 
insurance coverage and utilization of services in addition to functional outcomes. 
Patients are frequently followed over time after discharge. 

Outcome Measures 
Outcomes can be documented in many ways. Economic indicators are traditional out­
comes, interpreted within the context of cost effectiveness or cost-benefit ratio; that is, 
what is the relative cost in terms of success of outcomes? For example, Harp14 demon­
strated how revenue, patient outcomes, staff productivity, costs and patient satisfac­
tion could reflect the success of a rehabilitation program for patients with back and 
neck problems. Fakhry and associates15 looked at the effectiveness of using evidence­
based guidelines for treating patients with traumatic brain injury (TBI), a condition 
they described as costing billions of dollars annually. They used a protocol based on 
Brain Trauma Foundation guidelines, and demonstrated that adherence to this proto­
col resulted in a reduction of mortality, length of stay and disability as well as finan­
cial resources. 

The development of questionnaires to measure outcomes in terms of function and 
health status has become a major thrust of health research and has provided a mecha­
nism for understanding how functional outcomes relate to specific elements of health 
care. Generic instruments that assess quality of life, and more specifically health-related 
quality of life (HRQOL), have provided an overarching perspective for understanding 
the outcomes of health care in terms of physical, psychological and social function. 

Many health status scales have been developed to assess these constructs. Two of 
the more widely used instruments, the Medical Outcomes Study Short-Form 36 (SF-36) 
and the Sickness Impact Profile (SIP), have been validated in many languages16-22 and 
for many different patient populations.Z3-34 These scales have also been tested in abbre­
viated forms that demonstrate an efficiency of validity. These instruments allow for cal­
culation of a summary score or subscale scores that are theoretically related to different 
dimensions of function and health status. For example, the SF-36 provides eight sub­
scale scores that reflect physical function, physical role limitations, mental function, 
social function, vitality, general health, bodily pain, and emotional role limitations.35 

Those who study HRQOL have debated the usefulness of generic measures over 
disease-specific (or condition or region-specific) instruments that include items focused 
on issues relevant to a particular disorder. For example, the Western Ontario and 
McMaster Osteoarthritis Index (WOMAC) is specific to arthritis.36 The Minnesota 
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Living with Heart Failure Questionnaire targets individuals with heart disease.37 Stud­
ies that compare generic and specific tools generally lead to the conclusion that specific 
tools are more powerful for understanding impairments and function, but both are 
needed to get a full picture of the individual's quality of life.38-40 

Issues of validity for outcome measures remain paramount, as researchers and cli­
nicians must understand the conditions and situations for which these tests are appro­
priate. The interpretation of outcomes based on these tests must also be made with 
consideration of the constructs that are being measured. Clinical decisions based on 
such outcomes must account for the context of the scale used and its measurement 
properties. Chapter 6 will focus on these issues in greater detail. 

MODELS OF HEALTH AND DISABILITY 

A second concept in understanding the evolution of medical research is related to the 
overriding framework for the delivery of health care. This was historically based on the 
biomedical model, which focuses on a linear relationship between pathology and 
resulting impairments. Within this model, health is viewed as the absence of disease 
and the assumption is made that disease and injury can be treated and cured. The bio­
medical model confines attention to physical aspects of health, without consideration 
of how the patient is affected by illness.41 The primary outcomes of interest under this 
model are the traditional endpoints of cure, disease or death.42•43 However, as health 
care advances and people live longer, practitioners appreciate the inadequacies of the 
biomedical model for dealing with the common problems of aging, chronic disease and 
disability, which do not fall within the rubric of "treat and cure," and the consequent 
need to look differently at the assessment of "successful" interventions. 

An expansion of this model has been applied to a broader perspective in rehabili­
tation. The disablement model (see Figure l.lA) has provided a framework for assess­
ing the effect of acute and chronic conditions by emphasizing functional consequences 
and social role. This model demonstrates the relationships among pathology, impair­
ments, functional limitations and disability.44A5 Although variants of this model have 
been proposed with different terminology, they have all included the basic elements of 
pathology, organ system dysfunction, restrictions in activities of daily living (ADL) and 
limitations of role performance as a member of society.46 Accordingly, this model 
provides a conceptual basis for looking at outcomes within the broader context of 
health, including psychological and social domains, general health status and quality of 
life. 42,47-49 

The International Classification of Functioning, 
Disability and Health 
In 2001 the World Health Organization (WHO) published a revised model of the 
International Classification of Functioning, Disability and Health (ICF) (see 
Figure 1.1B).50 The ICF is the result of an international and multidisciplinary effort to 
provide a common language for the classification and consequences of health condi­
tions. Rather than focusing on disability, the intent of the ICF is to describe how people 
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FIGURE 1.1 A. The model of disablement, as described by Nagi,44 showing the relationship among 
pathology, impairments, functional limitations and disability. B. The World Health Organization Interna­
tional Classification of Functioning, Disability and Health (ICF)so Each component of the ICF can be 
expressed in positive or negative terms, as shown. Capacity and performance are two elements of the 
Activity and Participation domains. 

live with their health condition. It is a comprehensive representation of health and 
health-related domains based on the relationships among health conditions, body func­
tions and structures, activities and participation. The domains are classified from body, 
individual and societal perspectives. Since an individual's functioning and disability 
occur in a context, the ICF also includes specific reference to environmental and per­
sonal factors that can affect function. 51 

The ICF holds a parallel to the disablement model. Health conditions correspond to 
pathology; body functions/structures correspond to impairments; activity corresponds 
to functional limitation; and participation corresponds to disability. The ICF may be 
more useful, however, to understand and measure health outcomes, looking beyond 
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mortality and disease. It shifts the focus to "life," and describes how people live with 
their health condition. This context makes the model useful for health promotion as 
well as illness and disability. The ICF has been evaluated in a variety of patient popu­
lations, cultures, age groups and diagnoses.52-58 

Each of the components of the ICF can be described in positive or negative terms, as 
shown in Figure 1.1B.59 For example, body systems or anatomical structures will be intact 
or impaired. Individuals will be able to perform specific activities or they will demon­
strate difficulties in executing specific tasks, described as activity limitations. They will 
either be able to participate in life roles or they may experience participation restrictions. 
Environmental and personal factors will either facilitate function or create barriers. 

The activity and participation domains can be further conceptualized in terms of an 
individual's capacity to act versus actual performance; that is, what one is able to do ver­
sus what one actually does. These elements are defined with reference to the environ­
ment in which assessment is taking place. Performance relates to the "current" or actual 
environment in which the individual participates. Capacity relates to a "standardized" 
optimum environment, which may be real or assumed. According to the ICF, the gap 
between capacity and performance reflects the impact of the environment on an indi­
vidual's ability to perform.59 Therefore, an individual with rheumatoid arthritis may 
have joint deformities (impairments), have difficulty walking (activity limitation) and 
be unable to perform work activities because of inappropriate height of furniture (par­
ticipation restriction and environmental barrier). The individual may have the capacity 
to do the work, but cannot perform the activities in the current environment. However, 
if the office environment is modified, this individual may be able to perform activities 
without pain, and therefore, her performance and participation level will improve. 

Both the ICF and the disablement model provide a framework for identifying 
which outcome measures are relevant for specific clients or patients. Health status and 
functional questionnaires present one avenue for examining outcomes. We must also 
continue to look at changes in impairments and basic functional activities, such as gait 
or the performance of a particular functional or occupational task, to provide a com­
plete picture of improvement. Data on psychological and social aspects of health must 
also be collected, including the impact of the environment. As we become more 
involved in the documentation of outcomes it is imperative that we understand the 
measurement properties of the tools we use so they can be applied and interpreted 
properly (see Chapters 4-6). 

EVIDENCE-BASED PRACTICE 
Stressing the importance of objective documentation in clinical research does not mean 
that practice can be reduced to a finite science. There is no pure "scientific method" that 
can account for the influence of experience, intuition and creativity in clinical judgment. 
Making clinical decisions in the face of uncertainty and variability is part of the "art" of 
clinical practice. We cannot, however, dissociate the art from the science that supports 
it. The framework of evidence-based practice (EBP) helps to put this in perspective. 

Sackett and colleagues60 have provided a popular definition of evidence-based 
practice as the "conscientious, explicit and judicious use of current best evidence in 
making decisions about the care of individual patients." EBP is also described as the 
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"integration of best research evidence with our clinical expertise and our patient's 
unique values and circumstances. " 61 Embedded in this definition is an important con­
cept, that evidence is applied in a process of clinical decision making within the context 
of a patient or clinical scenario. It emphasizes that research literature provides one, but 
not the only, source of information for decision making. Perhaps more aptly called 
evidence-based decision making, this process requires considering all relevant information 
and then making choices that provide the best opportunity for a successful outcome 
given the patient-care environment and available resources. 

The process of EBP starts by asking a relevant clinical question. The question pro­
vides a direction for decision making related to a patient's diagnosis, prognosis or inter­
vention. Questions may also relate to etiology of the patient's problem, the validity of 
clinical guidelines, safety or cost-effectiveness of care. It should not be surprising that 
the ability to formulate a good question is essential to finding a relevant answer! It is 
not a general question, but one that focuses specifically on the characteristics of the 
patient and issues related to his or her management. The acronym PICO has been used 
to represent the components of a good clinical question: Patients, Intervention, 
Comparison, Outcome (see Box 1.1). 

The question leads to a search for the best evidence that can contribute to a decision 
about the patient's care. The terms defined within the PICO format can be used as key­
words in a search for literature. The concept of "best evidence " is important, as it refers 
to the availability of valid and relevant research information. Clinicians must be able to 
search and access literature (see Chapter 31), critically appraise studies to determine if 
they meet validity standards, and then determine if and how research results apply to a 
given clinical situation. A working knowledge of research design and statistics is impor­
tant for clinicians to use this information wisely. For instance, in describing the Hypothesis­
Oriented Algorithm for Clinicians II (HOAC II), Rothstein et al.62 have made the 
assessment of evidence a clearly identifiable part of the decision making process. 

This assessment, however, must be made by a clinician who then integrates his or 
her own clinical judgment and experience with the patient's needs and unique charac­
teristics to make a decision about the patient's care (see Figure 1.2). This decision will 
also take into account the current circumstances of care, including available equip­
ment, space, time, the patient's comorbidities and the clinical setting. Even Sackett 
acknowledges that 

. . .  without clinical experience, practice risks being tyrannized by evidence, for even 
excellent external advice may be inapplicable to or inappropriate for an individual 
patient. 63 (p.vi) 

There are many useful journal articles,* books 61 and websites�8 that describe the con­
cepts related to EBP, including interpretation of statistical outcomes. We will include 

"See the series of articles published by the Evidence-Based Medicine Working Group in the Journal of the Ameri­
can Medical Association from 1992 to 2001. These papers can also be found at <http: I /www.cche.net/ usersguides/ 
life.asp> Accessed January 15, 2006. See also articles in Evidence-Based Medicine Reviews, including the Cochrane 
Database of Systematic Reviews, the ACP Journal Club and the Database of Abstracts of Reviews and Effects 
(DARE). 
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BOX 1 .1 Background and Foreground Questions 
for Evidence-Based Practice 

Developing a good clinical question is the essential first step in evidence­
based practice. It is important to draw a distinction between this type of 
question and questions that are used to guide research endeavors. The pur­
pose of a research question is to identify and define variables that will be 
studied using specific design strategies, typically addressing issues of con­
cern for populations with certain disorders. For evidence-based practice, 
however, we develop a clinical question that focuses on the management of 
a particular patient. That question will guide the search for research to sup­
port clinical decision making. 

Consider the following case: Mrs. Jones is a 75-year old woman who suf­
fered a right CVA 2 months ago. She is being seen by physical, occupational, 
and speech therapists in an inpatient rehabilitation setting. She is able to 
walk short distances with a cane with moderate assistance, and exhibits poor 
balance. One of your colleagues suggests that you consider training the 
patient on a treadmill with partial body-weight support, but you have not 
tried this approach before. 

How one asks a question to guide practice will depend on what one needs 
to know. As obvious as that seems, it is useful to consider what Straus et al61 
have termed background and foreground questions. A background question 
refers to general knowledge about a disorder or intervention, often relating to 
etiology, pathophysiology, or prognosis. For example, in the case of Mrs. Jones 
we might be interested in learning more about the causes of balance disorders 
in stroke, or the prognosis of balance and gait in stroke survivors. 

A foreground question relates to specific information that will guide 
management of the patient, typically addressing diagnosis or intervention. 
Such questions will have four components. 

The acronym PICO helps us focus on the appropriate pieces of information. 

P What is the target population? What are the characteristics of the 
patient or problem that should be considered? 

I What is the intervention that is being considered? This component 
may also be a prognostic factor or diagnostic test. 

C What comparison or control condition is being considered? This 
component is most appropriate when comparing the effectiveness of 
two interventions or when comparing the accuracy of two or more 
diagnostic tests. It will not be relevant for a question of prognosis or 
when examining only one intervention or diagnostic test. 

0 What are the outcomes of interest? What measurements will be rele­
vant to understanding the effectiveness of an intervention, the impor­
tance of a prognostic factor, or the accuracy of a diagnostic test? 
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We may ask Mrs. Jones the following foreground question: 

In an elderly patient two-months post stroke (P), is partial body weight­
supported treadmill training (I) more effective than traditional gait 
training with full weight-bearing (C) for improving walking speed, 
endurance and balance (0)? 

Clinical 
Question 

Patient Management 

FIGURE 1 .2 The components of evidence-based practice as a framework for c l inical decision making. 

many of these concepts throughout this text as we discuss research designs, statistical 
analyses and the use of published material for clinical decision making. The success of 
evidence-based practice will continue to be assessed as we examine outcomes based on 
use of published guidelines and treatment effects. 

SOU RCES OF KNOWLEDGE 

The information that is used to make clinical decisions and to support clinical research 
can be acquired in many different ways. As one participates in the pursuit of knowl­
edge, it is interesting to reflect on the sources of information that guide our thinking 
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and decision making. How do we decide which test to perform, which intervention will 
be most successful, which patients have the best chance of responding positively to a 
given treatment? Oftentimes clinical problems can be solved on the basis of scientific 
evidence, but in many situations such evidence does not exist or is not directly applica­
ble. It is important, then, to consider how we come to "know" things, and how we can 
appropriately integrate what we know with available evidence as we are faced with 
clinical problems (see Figure 1.3). 

Tradition 
As members of  an organized culture, we accept certain truths as  givens. Something is 
thought to be true simply because people have always known it to be true. Within 
such a belief system, we inherit knowledge and accept precedent, without need for 
external validation. Rehabilitation science is steeped in tradition as a guide to practice 
and as a foundation for treatment. We have all been faced with clinical, administrative 
or educational practices that are continued just because "that is the way they have 
always been done." 

Tradition is useful in that it offers a common foundation for communication and 
interaction within a society or profession. Therefore, each generation is not respon­
sible for reformulating an understanding of the world through the development of 
new concepts. Nevertheless, tradition as a source of knowledge poses a serious prob­
lem in clinical science because many traditions have not been evaluated for their 
validity, nor have they been tested against potentially better alternatives. Sole 
reliance on precedent as a reason for making clinical choices generally stifles the 
search for new information, and may perpetuate an idea even when contrary evi­
dence is available. 

FIGURE 1 .3 Ways of knowing. 

Scientific Method 



Authority 

CHAPTER 1 • A Concept of Clinical Research 13 

We frequently find ourselves turning to specialized sources of authority for answers to 
questions. If we have a problem with finances, we seek the services of an accountant. If 
we need legal advice for purchasing a home, we hire a real estate lawyer. In the med­
ical profession we regularly pursue the expertise of specialists for specific medical prob­
lems. Given the rapid accumulation of knowledge and technical advances and the need 
to make decisions in situations where we are not expert, it is most reasonable and nat­
ural to place our trust in those who are authoritative on an issue by virtue of special­
ized training or experience. 

Authorities often become known as expert sources of information based on their suc­
cess, experience or reputation. When an authority states that something is true, we accept 
it. As new techniques are developed, we often jump to use them without demanding evi­
dence of their scientific merit, ignoring potential limitations, even when the underly­
ing theoretical rationale is unclear.69'70 Too often we find ourselves committed to one 
approach over others, perhaps based on what we were taught, because the technique is 
empirically useful. This is a necessary approach in situations where scientific evidence is 
unavailable; however, we jeopardize our professional responsibility if these techniques 
are not critically analyzed and if their effects are not scientifically documented. 

The danger of uncritical reliance on authoritative canon is well illustrated by the 
unyielding belief in the medical tenets of Galen (A.D. 138-201), whose teachings were 
accepted without challenge in the Western world for 16 centuries. When physicians in 
the 16th and 17th centuries began dissecting human organs, they were not always able 
to validate Galen's statements. His defenders, in strict loyalty and unwilling to doubt 
the authority, wrote that if the new findings did not agree with Galen's teachings, the 
discrepancy should be attributed to the fact that nature had changed!71 

Trial and Error 
The trial and error method of data gathering was probably the earliest approach to 
solving a problem. The individual faced with a problem attempts one solution and eval­
uates its effects. If the effects are reasonably satisfactory, the solution is generally 
adopted. If not, another solution is tried. We use this method when we have no other 
basis for making a decision. We have all used trial and error at one time or another in 
our personal lives and in professional practice. Trial and error incorporates the use of 
intuition and creativity in selecting alternatives when one approach does not work. 

The major disadvantage of trial and error is its haphazard and unsystematic nature 
and the fact that knowledge obtained in this way is usually not shared, making it inac­
cessible to others facing similar problems. In situations where a good response is not 
obtained, a continuous stream of different solutions may be tried, with no basis for sort­
ing out why they are not working. 

Trial and error is by nature extremely time consuming and limiting in scope, for 
although several possible solutions may be proposed for a single problem, the process 
generally ends once a "satisfactory" response is obtained. Experience is often based on 
these solutions, and when similar situations arise, a better solution, as yet untried, may 
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never be tested. Therefore, a clinician using this method should never conclude that the 
''best" solution has been found. 

Logical Reasoning 
Many clinical problems are solved through the use of logical thought processes. Logi­
cal reasoning as a method of knowing combines personal experience, intellectual facul­
ties, and formal systems of thought. It is a systematic process that has been used 
throughout history as a way of answering questions and acquiring new knowledge. 
Two distinctive types of reasoning are used as a means of understanding and organiz­
ing phenomena: deductive and inductive reasoning (see Figure 1.4). 

Deductive Reasoning 
Deductive reasoning is characterized by the acceptance of a general proposition, or 
premise, and the subsequent inferences that can be drawn in specific cases. The 
ancient Greek philosophers introduced this systematic method for drawing conclu­
sions by using a series of three interrelated statements, called a syllogism, containing 
(1) a major premise, (2) a minor premise and (3) a conclusion. A classic syllogism will 
serve as an example: 

1. All living things must die. 
2. Man is a living thing. 
3. Therefore, all men must die. 

[major premise] 
[minor premise] 
[conclusion] 

In deductive reasoning, if the premises are true, then it follows that the conclusion 
must be truy Scientists use deductive logic by beginning with known scientific prin­
ciples or generalizations, and deducing specific assertions that are relevant to a spe­
cific question. The observed facts will cause the scientist to confirm, to reject or to 
modify the conclusion. The greater the accuracy of the premise, the greater the accu­
racy of the conclusion. 

/J � I I � 
,lJ � � ./ General Conclusion 

FIGURE 1 .4 The relationship between deductive and inductive reasoning. 
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For example, we might reason that exercise will be an effective intervention to pre-
vent falls in the elderly in the following way: 

1. Impaired postural stability results in falls. 
2. Exercise improves postural stability. 
3. Therefore, exercise will decrease the risk of falls. 

This system of deductive reasoning produces a testable hypothesis: If we develop an 
exercise program for individuals who have impaired stability, we should see a decrease 
in the number of falls. This has been the basis for a number of studies. For example, 
Wolf and colleagues72 used this logic as the theoretical premise for their study compar­
ing balance training and tai chi exercise to improve postural stability in a sample of 
older, inactive adults. Carter and coworkers73 designed an exercise program aimed at 
modifying risk factors for falls in elderly women with osteoporosis. Similarly, Barnett 
et al.74 studied the effect of participation in a weekly group exercise program over one 
year on the rate of falling in community dwelling older people. All three studies found 
that the exercise groups either had a lower incidence of falls or delayed onset of falls, 
supporting the premise from which the treatment was deduced. 

Of course, deductive reasoning does have limitations. Its usefulness is totally 
dependent on the truth of its premises. In many situations, the theoretical assumptions 
on which a study is based may be faulty or unsubstantiated, so that the study and its 
conclusions have questionable validity. In addition, we must recognize that deductive 
conclusions are only elaborations on previously existing knowledge. Deductive reason­
ing can organize what is already known and can suggest new relationships, but it can­
not be a source of new knowledge. Scientific inquiry cannot be conducted on the basis 
of deductive reasoning alone because of the difficulty involved in establishing the uni­
versal truth of many statements dealing with scientific phenomena. 

Inductive Reasoning 
Inductive reasoning reflects the reverse type of logic, developing generalizations from 
specific observations. It begins with experience and results in conclusions or generaliza­
tions that are probably true. This approach to knowing was advanced in the late 16th 
century by Francis Bacon, who called for an end to reliance on authority as absolute 
truth. He proposed that the discovery of new knowledge required direct observation of 
nature, without prejudice or preconceived notions.75 Facts gathered on a sample of 
events could lead to inferences about the whole. This reasoning gave birth to the scien­
tific approach to problem solving, and often acts as the basis for common sense. For 
example, we might observe that those patients who exercise do not fall, and that those 
who do not exercise fall more often. We might then conclude, through induction, that 
exercise will improve postural stability. 

Inductive reasoning has its limitations as well. The quality of the knowledge 
derived from inductive reasoning is dependent on the representativeness of the specific 
observations used as the basis for generalizations. To be absolutely certain of an induc­
tive conclusion, the researcher would have to observe all possible examples of the 
event. This is feasible only in the rare situations where the set of events in question is 
very small, and we therefore find ourselves relying mostly on imperfect induction 
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based on incomplete observations. In the preceding example, if we observe the effects 
of exercise on a sample of elderly persons, and if balance and exercise responses are 
related to aging, our conclusion may not be a valid one for younger individuals. 

Even with these limitations, the process of logical reasoning, both deductive and 
inductive, is an essential component of scientific inquiry and clinical problem solving. 
Both forms of reasoning are used to design research studies and interpret research data. 
Introductory statements in research articles often illustrate deductive logic, as the 
author explains how a research hypothesis was developed from an existing theory of 
general body of knowledge. Inductive reasoning is used in the discussion $ection of a 
research report, where generalizations or conclusions are proposed from the data 
obtained in the study. Even though imperfect induction does not allow us to reach infal­
lible conclusions, it is the clinical scientist's responsibility to evaluate critically the 
validity of the information and to draw reasonable conclusions (see Box 1 .2). These con­
clusions must then be verified through further empirical testing. 

The following statement, attributed to Galen, illustrates the potential for the 
abuse of logic: 

All who drink of this remedy recover in a short time, except those whom it does not 
help, who all die. Therefore, it is obvious that it fails only in incurable cases.71 

The Scientific Method 

The scientific method is the most rigorous process for acquiring new knowledge, 
incorporating elements of deduction and induction in a systematic and controlled 
analysis of phenomena. The scientific approach to inquiry is based on two assumptions 
related to the nature of reality. First, we assume that nature is orderly and regular and 
that events are, to some extent, consistent and predictable. Second, we assume that 
events or conditions are not random or accidental and, therefore, have one or more 
causes that can be discovered. These assumptions allow us to direct clinical thinking 
toward establishing cause-and-effect relationships so that we can develop rational solu­
tions to clinical problems. 

The scientific approach has been defined as a systematic, empirical, controlled and 
critical examination of hypothetical propositions about the associations among natural phenom­
ena.1 The systematic nature of research implies a sense of order and discipline that will 
ensure an acceptable level of reliability. It suggests a logical sequence that leads from 
identification of a problem, through the organized collection and objective analysis of 
data, to the interpretation of findings. The empirical component of scientific research 
refers to the necessity for documenting objective data through direct observation. Find­
ings are thereby grounded in reality rather than in personal bias or subjective belief of 
the researcher. 

The element of control, however, is the most important characteristic that sets the 
scientific method apart from the other sources of knowledge. To understand how one 
phenomenon relates to another, the scientist practitioner must attempt to control factors 
that are not directly related to the variables in question. Clinical problems such as pain, 
functional disability, cognitive dysfunction, deformity, cardiopulmonary insufficiency 
or motor control concern highly complex phenomena and often involve the effects of 
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BOX 1 .2 The Logic of the Frog 

The hypothesis . . .  

Testing the hypothesis . . .  

Now I'll remove 
the hind legs. 
Froggy, Jump! 

Impairments are 
related to function 

With all four legs removed 
the frog becomes deaf! 

. . .  s functions/ change 

Hmm . . .  Why 
doesn't he move? 
"Froggy, Jump!" 
"Froggy, Jump!" 

No animals were harmed in the making of this picture! 
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many interacting factors. Investigators must be able to control extraneous influences to 
have critical confidence in research outcomes. This important concept is explored in 
greater detail in Chapter 9. 

A commitment to critical examination means that the researcher must subject find­
ings to empirical testing and to the scrutiny of other scientists. Scientific investiga­
tion is thereby characterized by a capacity for self-correction based on objective 
validation of data from primary sources of information. This minimizes the influence 
of bias, and makes the researcher responsible for logical and defensible interpreta­
tion of outcomes. 

Limitations of the Scientific Method 
Although scientific research is considered the highest form of acquiring knowledge, it 
is by no means perfect, especially when it is applied to the study of human behavior 
and performance. The complexity and variability within nature and the environment 
and the unique psychosocial and physiological capacities of individuals will always 
introduce some uncertainty into the interpretation and generalization of data. These 
issues differentiate clinical research from laboratory research in physical and biological 
sciences, where environment and even heredity are often under complete control. This 
does not mean that the scientific method cannot be applied to human studies, but it 
does mean that clinical researchers must be acutely aware of extraneous influences to 
interpret findings in a meaningful way. Some clinical findings may actually be strength­
ened by the knowledge that patients generally improve with certain treatments despite 
physiological and environmental differences. 

TYPES OF RESEARCH 
The research process delineates a general strategy for gathering, analyzing, and inter­
preting data to answer a question. A variety of schema have been used to classify 
research strategies according to their purpose and objectives. 

Quantitative and Qualitative Research 

In categorizing clinical research, researchers often describe studies by distinguishing 
between quantitative and qualitative methods. Quantitative methods may be used all 
along the continuum of research approaches, whereas qualitative data are generally 
applied to descriptive or exploratory research. Quantitative research involves meas­
urement of outcomes using numerical data under standardized conditions. The advan­
tage of the quantitative approach is the ability to summarize scales and to subject data 
to statistical analysis. Quantitative information may be obtained using formal instru­
ments which address physical or physiological parameters, or by putting subjective 
information into an objective numerical scale. 

Qualitative research is more concerned with a deep understanding of a phenom­
enon through narrative description, which typically is obtained under less structured 
conditions. In qualitative methodology, "measurement" is based on open-ended ques­
tions, interviews and observations, as the researcher attempts to capture the context of 
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the data, to better understand how phenomena are experienced by individuals. The 
purpose of the research may be to simply describe the state of conditions, or it may be 
to explore associations, formulate theory, or generate hypotheses. 

Basic and Appl ied Research 
One system of classification is based on the objective of the research, or the degree of 
utility of the findings. Basic research is done to obtain empirical data that can be used 
to develop, refine, or test theory. Basic research is directed toward the acquisition of 
new knowledge for its own sake, motivated by intellectual curiosity, without reference 
to the potential practical use of results. Typically done in a laboratory, basic research is 
often called "bench research." Researchers who study how blood cells function or who 
examine the structure and function of parts of the brain are doing basic research. Of 
course, basic studies may eventually lead to numerous practical applications, such as 
developing a treatment for leukemia or grafting brain cells to treat Parkinson's disease. 
But these are not the direct goals of the basic scientist. 

In contrast, applied research is directed toward solving immediate practical prob­
lems with functional applications and testing the theories that direct practice. It is usu­
ally carried out under actual practice conditions on subjects who represent the group to 
which the results will be applied. Most clinical research falls into this category. When 
therapists study the effect of electrical stimulation for reducing muscle spasm or corn­
pare the effectiveness of eccentric and concentric exercises for increasing strength, they 
are doing applied research. 

Although the distinction between basic and applied research appears to create a 
dichotomy, in reality a continuum exists between the two extremes. We recognize that 
rehabilitation and health care are applied sciences, but that many of the theories that 
guide practice are founded on basic science principles. Today, clinical research is often 
a hybrid, combining elements of both basic and applied science. Many studies provide 
clinical application as well as new knowledge that contributes to a theoretical under­
standing of behavior. 

Translational Research 
The term translational research refers to the application of basic scientific findings to 
clinically relevant issues, and simultaneously, the generation of scientific questions 
based on clinical dilernrnas?6 It is often described as taking knowledge from "bench to 
bedside," or more practically from "bedside to bench and back to bedside."77 Although 
certainly not a new concept, the medical community has experienced a renewed 
emphasis on the application of laboratory-based findings to clinically important prob­
lems. The NIH Roadmap, proposed in 2002, has called for a new paradigm of research to 
assure that "basic research discoveries are quickly transformed into drugs, treatments, 
or methods for prevention."78 Questions related to understanding the mechanisms of 
disease or therapies, molecular changes or different responses of normal or abnormal 
tissues are examples of how fundamental work at the bench can eventually benefit 
patients directly?9 

All too often, the successes of scientific breakthroughs in the laboratory or in ani­
mal models have not translated into major changes in medical care for humans. The 
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success of the Human Genome Project is an example of where important scientific dis­
coveries have not yet realized their full potential.80 Although markers for specific 
genetic defects can be identified, these do not exist in isolation from other physical and 
physiological conditions, and so the complexity of the human organism creates a chal­
lenge to apply these discoveries to patient outcomes. Other examples of promising 
translational research include the study of regeneration in spinal cord injury,81 and new 
interventions to optimize treatment of diabetes.82 Research aimed at developing thera­
pies for inhibiting angiogenesis in tumors has also sparked questions related to their 
use in nononcological diseases, such as rheumatoid arthritis, psoriasis and diabetic 
retinopathy.83 As these examples illustrate, the success of translational research will lie 
in the close collaboration among laboratory researchers who understand the basic sci­
ence, clinicians who understand human behavior and response to disease, and patient 
communities?8,84 It will include reflection on challenging clinical problems, rigorous 
investigation with basic science techniques, insights into clinical innovations, and con­
sideration of new directions for future research.77 

Experimental and Nonexperimental Research 
Another common classification defines research as either experimental or nonexperi­
mental. Experimental research refers to investigations where the researcher manipu­
lates and controls one or more variables and observes the resultant variation in other 
variables. The major purpose of an experiment is to compare conditions or intervention 
groups, to suggest cause-and-effect relationships. Nonexperimental research refers to 
investigations that are generally more descriptive or exploratory in nature and that do 
not exhibit direct control over the studied variables. This latter type of research is often 
referred to as observational research, to reflect the idea that phenomena are observed 
rather than manipulated. 

A Continuum of Research 
In a more practical scheme, research can be viewed along a continuum that reflects the 
type of question the research is intended to answer. Within this continuum, illustrated 
in Figure 1 .5, research methods can be classified as descriptive, exploratory, or experi­
mental. These classifications reflect different purposes of research, and within each one 
various types of research can be used. As a continuum suggests, however, different 
types of research can overlap in their purpose and may incorporate elements of more 
than one classification. 

While many view this continuum as a hierarchy, with experimental designs at the 
top (suggesting a relative value for these research approaches), each type of research 
fulfills a particular purpose and need. Each brings specific strengths to an investigation 
of clinical phenomena. The appropriate use of various designs will depend on the 
research question and the available data, with questions related to intervention, diag­
nosis and prognosis requiring different approaches. 
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FIGURE 1 .5 A continuum of research across descriptive, exploratory and experimental categories, 
showing types of research, relevant data sources and synthesis of l iterature. 
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Experimental Research 
Experimental designs provide a basis for comparing two or more conditions for the 
purpose of determining cause and effect relationships. They control or account for the 
effects of extraneous factors, providing the greatest degree of confidence in the validity 
of outcomes, and allowing . the researcher to draw meaningful conclusions about 
observed differences. The randomized controlled bial (RCT) is considered the "gold 
standard" of experimental designs, typically involving the controlled comparison of an 
experimental intervention and a placebo. There are, however, many alternative models, 
some simple and others more complex, that provide opportunities to examine the cause 
of outcomes, including the systematic study of one or several individuals using single­
subject designs within the clinical environment. 

In quasi-experimeatal studies the degree of control is limited by a variety of fac­
tors, but interpretable results can still be obtained. When true experimental conditions 
cannot be achieved, these designs permit comparisons, but they also acknowledge the 
limitations placed on conclusions. 

Exploratory Research 
In exploratory research a researcher examines a phenomenon of interest and explores 
its dimensions, including how it relates to other factors. In epidemiology health 
researchers examine associations to describe and predict risks for certain conditions 
using cohort and case-control studies. Using correlatioaal methods, the researcher 
is able to search for these relationships and may generate predictions that these rela­
tionships suggest. Predictive models can then be used as a basis for decision making, 
setting expectations and prognosis. By establishing associations, researchers can also 
test or model theoretical propositions. Many efforts in outcomes research use this 
approach to study relationships among pathologies, impairments, functional limita­
tions and disability. 

Methodological studies will use correlational methods to demonstrate reliability 
and validity of measuring instruments. Wstorical research reconstructs the past, on 
the basis of archives or other records, to generate questions or suggest relationships of 
historical interest to a discipline. 

Descriptive Research 
In descriptive research the researcher attempts to describe a group of individuals on 
a set of variables, to document their characteristics. Descriptive research may involve 
the use of questionnaires, interviews or direct observation. Descriptive data allow 
researchers to classify and understand the scope of clinical phenomena, often provid­
ing the basis for further investigation. Several designs can be used within this approach. 

Developmeatal research is intended to investigate patterns of growth and change 
over time within selected segments of a population, or it may chronicle the natural his­
tory of a disease or disability. Normative studies focus on establishing normal values 
for specific variables, to serve as guidelines for diagnosis and treatment planning. 
Qualitative research involves collection of data through interview and observation, in 
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an effort to characterize human experience as it occurs naturally, and to generate 
hypotheses about human behavior. A case study or case series may consist of a 
description of one or several patients, to document unusual conditions or the effect of 
innovative interventions. 

Sources of Data 
In designing research studies, investigators will describe the methods used for collect­
ing data. Most research involves direct data collection based on the performance of sub­
jects, according to the investigator's defined protocol. Surveys or questionnaires are 
often used to collect data on subject characteristics or opinions, as part of descriptive, 
exploratory or experimental studies. As large databases begin to develop, researchers 
often use secondary analysis as a mechanism for exploring relationships. 1his approach 
typically involves the use of data that were collected for another purpose, or it may be 
based on data from ongoing surveys. 

Synthesis of Literature 
As bodies of evidence continue to grow through publication of research, clinicians face 
the challenge of aggregating information to adequately answer a clinical question. 
Systematic reviews present a comprehensive analysis of the full range of literature on 
a particular topic, typically an intervention, diagnostic test or prognostic factors. Meta­
analysis is a process of statistically combining the findings from several studies to 
obtain a summary analysis. These forms of review, when done well, provide the clini­
cian with a critical analysis of current research that can be used for clinical decision mak­
ing. They also allow the clinician to recognize the scope of research and knowledge in a 
particular content area, and to appreciate a balance in the interpretation of information. 

THE RESEARCH PROCESS 
Clinical research involves a systematic process of sequential steps that guide thinking, 
planning and analysis. Whether one is collecting quantitative or qualitative data, the 
research process assures that there is a reasonable and logical framework for a study's 
design and conclusions. We conceptualize research as a series of nine sequential steps 
shown in Figure 1.6, recognizing that the order may vary and the steps may overlap in 
different research models. These steps can be grouped into five major categories. 

Step 1: ldentifj the Research Question 
The first step of the research process involves delimiting the area of research and formu­
lating a specific research question that provides an opportunity for scientific testing (see 
Chapter 7). During this stage, the researcher must define the type of individual to whom 
the results will be generalized. Through a review of scientific literature, the researcher 
should be able to provide a rationale for the study, a justification of the need to investi­
gate the problem, and a theoretical framework for interpreting results. Research 
hypotheses are proposed to predict how response variables and treatment variables will 
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FIGURE 1 .6 A model of the research process. 

STEP 2 
Design the Study 

Design the protocol 
Choose a sample 

be related and to predict clinically relevant outcomes. In descriptive or qualitative stud­
ies, guiding questions may be proposed that form the framework for the study. 

Step 2: Des1gn the Study 
In step 2, the researcher designs the study and plans methods of subject selection, test­
ing, and measurement so that all procedures are clearly mapped out (see Chapters 5-16). 
The choice of research method reflects how the researcher conceptualizes the research 
question. Many alternative approaches are available, depending on the nature of the 
data and the type of subjects. The researcher must carefully define all measurements and 
interventions so that the methods for data analysis are clear. The completion of the first 
two steps of planning results in the formulation of a research proposal (see Chapter 32). 

Step 3. Methods 
During the third step of the research process, the researcher implements the plans 
designed in steps 1 and 2. Data collection is typically the most time consuming part of 
the research process. After data are collected and recorded, the researcher must reduce 
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and collate the information into a useful form for analysis. Forms or tables are created 
for compiling the "raw data." Just as much attention to precision must be given during 
data reduction as during data collection (see Chapter 30). 

Step 4: Data Analysis 
The fourth step of the research process involves analyzing, interpreting, and drawing 
valid conclusions about the obtained data. It is the pulling together of all the materials 
relevant to the study, to apply them to a generalized or theoretical framework. Statisti­
cal procedures are applied to summarize quantitative information in a meaningful way, 
usually with the assistance of a computer (see Chapters 17-29). It is at this stage that the 
research hypothesis will be either supported or rejected. In qualitative studies, the 
researcher will look for themes that characterize the data. Through the analysis of 
results, the study should also lead to new questions that will stimulate further study. 

Step 5: Communication 
Research done in a vacuum is of little use to anyone. Researchers have a responsibility 
to share their findings with the appropriate audience so that others can apply the infor­
mation either to clinical practice or to further research. Research reports can take many 
forms including journal articles, abstracts, oral presentations, and poster presentations. 
Students may be required to report their work in the lengthier form of a thesis or dis­
sertation (see Chapter 33). 

Finally, no research project is a dead end. Results of one study always lead to new 
questions. Researchers contribute to the advancement of their own work by offering sug­
gestions for further study and recommending what kinds of additional studies would be 
useful for contributing to the theoretical foundations addressed in the current study. 

UNDERSTANDING METHOD, CONTENT AND PHILOSOPHY 
The focus of a text such as this one is naturally on the methods and procedures of con­
ducting research, on the mechanisms of how research is done: how phenomena are 
observed and measured; how different types of research fit varied research questions; 
how to design conditions so that relationships can be examined; and how to control and 
manipulate variables to demonstrate cause-and-effect relationships. By understanding 
the processes, definitions and analytic procedures of research, the clinician has the 
building blocks to structure an investigation or interpret the work of others. 

Methodology is only part of research, however. Research designs and statistical 
techniques cannot lead us to a research question, nor can they specify the technical pro­
cedures needed for studying that question. Designs cannot tell us what to investigate, 
nor do they assign meaning to the way clinical phenomena behave. Two other aspects 
are equally important to the concept of research: knowledge of the subject matter that 
will be studied and the research philosophy of the clinical discipline. 

A thorough knowledge of content related to a research question is necessary to 
determine relevant applications of the methods for answering the question. The 
researcher must be able both to determine which instruments are appropriate for meas­
uring different variables and to apply measurement tools properly. The scientific bases 
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for observed responses must be thoroughly understood to design a study and interpret 
results. Without a complete background in the relevant content, the researcher may 
make serious errors in data collection and analysis. 

The philosophy of a discipline concerns itself with the way the subject matter is con­
ceptualized, the overall significance of the knowledge generated by research, and what 
scientific approaches will contribute to an understanding of practice. How one conceives 
of a discipline's objectives and the scope of practice will influence the kinds of questions 
one will ask. We must recognize the influence of professional values on these applica­
tions. These values reflect the researcher's inclinations to consider treatment alterna­
tives, to search for new knowledge to substantiate certain types of clinical decisions, or 
to investigate particular types of questions with particular methods. For instance, differ­
ent paradigms will direct some clinical investigators to study behavior at the level of 
impairments versus outcomes, or to use qualitative versus quantitative methods. 

There is no right or wrong in these contrasts. As we explore the variety of research 
approaches and the context of evidence-based practice, we urge the reader to continu­
ally apply his or her own framework for applying these methods. Our emphasis on 
clinical examples throughout the book is a limited attempt to demonstrate these con­
nections. It is also relevant to consider the interdisciplinary clinical associations inher­
ent in health care, the team approach to patient care, and the shared research agendas 
that might emerge from such associations. The framework that supports a research 
question will likely be broader than any one discipline's objectives and might be well 
served by a team of professionals. 

COMM ENTARY 

Research and Evidence-Based Practice: 
Investigation vs. Clinical Decision Making 

As we discuss the c l inical research process and its contribution to evidence-based 
practice, it is useful to recognize the analogy that can be drawn between research 
and cl inical decision making. Decisions usual ly begin with the definition of specific 
c l inical problems, which are understood withi n  the context of a theoretical frame­
work. The c l inician then applies l iterature, professional judgment and patient consid­
erations to generate a l ist of alternative solutions and selects one reasonable course 
of action. The process continues with the design of a plan of care, i mplementation of 
that plan and the evaluation of change. It is easy to see the commonal ities of this 
process to the design and analysis of a research question, as presented in Figure 1 .6. 

Two major differences distinguish c l inical decision making from cl inical 
research, however. One is the purpose for which each process is used. Decision mak­
i ng is used to determine solutions to particular c l inical problems. Research concerns 
broader questions about recurrent phenomena, and is used to obtain knowledge that 
is general izable beyond individual situations. I n  c l inical decision making, the 
process usual ly ends with a solution. In research, outcomes generate more questions. 
The outcomes of c l inical decisions may be shared with col leagues, but as a rule, the 
decisions are not i ntended to contribute to an overal l  understanding of the c l inical 



CHAPTER 1 • A Concept of Clinical Research 27 

problem beyond the immediate situation. I n  contrast, the goal of c l i n ical research is  
to contribute to a scientific understand ing of c l in ical  phenomena, to pred ict out­
comes and strengthen the theoretical foundations of treatment and evaluation. 

The other d ifference between these processes concerns the degree of control 
that is  requ i red. C l i n ical dec is ion making is  a process used with i n  the c l i n ical envi­
ronment, and dea ls  with events and variations with i n  that env i ronment as they occur 
natura l ly. I n  contrast, the researcher attempts to control or at  least account for the 
envi ronment. When asking questions about i ntervention, the researcher wants to 
have confidence that observed differences are due to the i mposed i ntervention and 
not due to extraneous environmental i nfl uences. 

The experienced c l in ician w i l l  a lso recognize that i nformation is  not a lways 
ava i lable to j ustify c l in ical decis ions. Therefore, research questions often develop out 
of c l in ical practice. In this way, decis ion making and c l i n ical research become inter­
dependent. Research provides i nformation on wh ich to base c l i n ica l dec is ions, and 
problem solving contri butes to the development of research questions. Both 
processes i nvolve the appl ication of orderly and systematic procedures to gu ide the 
i nterpretation of outcomes. 

In th is  text, we emphasize the elements of and approaches to c l i n ical  research 
and the development of c l in ical theory. We also focus on the idea that research and 
practice are inseparab le components of c l i n ical science, recogn iz ing that c l i n ic ians 
are un iquely qual ified to study, ana lyze and integrate evidence into c l in ica l  practice. 

REFERENCES 

1. Kerlinger FN. Foundations of Behavioral Research. New York: Holt, Rinehart & Winston, 1973. 
2. Kuhn TS. The Structure of Scientific Revolutions. Chicago: University of Chicago Press, 1970. 
3. Donabedian A. Explorations in Quality Assessment and Monitoring. Ann Arbor, MI: Health 

Administration Press, 1980. 
4. World Health Organization. Constitution. WHO Chronicle 1947;1 :29. 
5. Ware JE. Conceptualizing and measuring generic health outcomes. Cancer 

1991;67:774-779. 
6. Shields RK, Leo KC, Miller B, Dostal WF, Barr R. An acute care physical therapy clinical 

practice data base for outcomes research. Phys Ther 1994;74:463-470. 
7. Urden LD. Decision support systems to manage outcomes. Outcomes Manag 2003; 

7:141-143. 
8. Urden LD. Leading and succeeding in outcomes management. Outcomes Manag 2004;8:2-4. 
9. Ellwood PM. Outcomes management: A technology of patient experience. N Engl J Med 

1988;318:549-556. 
10. Hart DL, Geril AC, Pfohl RL. Outcomes process in daily practice. PT Magazine 1997; 

5(9):68-77. 
11. Nemeth LS. Implementing change for effective outcomes. Outcomes Manag 2003; 

7:134-139. 
12. Wojner AW. Outcomes management: An interdisciplinary search for best practice. 

AACN Clin Issues 1996;7:133-145. 
13. Geyman JP, Deyo RA, Ramsey SD. Evidence-Based Clinical Practice: Concepts and 

Approaches. Boston: Butterworth Heinemann, 2000. 



28 PART I • Foundations of C l in ical Research 

14. Harp SS. The measurement of performance in a physical therapy clinical program: A 
ROI approach. Health Care Manag 2004;23:110-119. 

15. Fakhry SM, Trask AL, Waller MA, Watts DD. Management of brain-injured patients by 
an evidence-based medicine protocol improves outcomes and decreases hospital 
charges. J Trauma 2004;56:492-499; discussion 499-500. 

16. Li L, Wang HM, Shen Y. Chinese SF-36 Health Survey: Translation, cultural adaptation, 
validation, and normalisation. J Epidemiol Community Health 2003;57:259-263. 

17. Micciolo R, Valagussa P, Marubini E. The use of historical controls in breast cancer. An 
assessment in three consecutive trials. Control Clin Trials 1985;6:259-270. 

18. Aaronson NK, Muller M, Cohen PD, Essink-Bot ML, Fekkes M, Sanderman R, et al. 
Translation, validation, and norming of the Dutch language version of the SF-36 Health 
Survey in community and chronic disease populations. J Clin Epidemiol 1998; 
51:1055-1068. 

19. Fukuhara S, Bito S, Green J, Hsiao A, Kurokawa K. Translation, adaptation, and valida­
tion of the SF-36 Health Survey for use in Japan. J Clin Epidemiol 1998;51:1037-1044. 

20. Apolone G, Mosconi P. The Italian SF-36 Health Survey: Translation, validation and 
norming. J Clin Epidemiol 1998;51:1025-1036. 

21. Arocho R, McMillan CA, Sutton-Wallace P. Construct validation of the USA-Spanish 
version of the SF-36 health survey in a Cuban-American population with benign pros­
tatic hyperplasia. Qual Life Res 1998;7:121-126. 

22. Perneger TV, Leplege A, Etter JF, Rougemont A. Validation of a French-language version 
of the MOS 36-ltem Short Form Health Survey (SF-36) in young healthy adults. J Clin 
Epidemiol 1995;48:1051-1060. 

23. Hunskaar S, Vinsnes A. The quality of life in women with urinary incontinence as meas­
ured by the sickness impact profile. J Am Geriatr Soc 1991;39:378-382. 

24. Davis GL, Balart LA, Schiff ER, Lindsay K, Bodenheimer HC, Jr., Perrillo RP, et al. 
Assessing health-related quality of life in chronic hepatitis C using the Sickness Impact 
Profile. Clin Ther 1994;16:334-343. 

25. Jensen MP, Strom SE, Turner JA, Romano JM. Validity of the Sickness Impact Profile 
Roland scale as a measure of dysfunction in chronic pain patients. Pain 1992;50:157-162. 

26. Gerety MB, Cornell JE, Mulrow CD, Tuley M, Hazuda HP, Lichtenstein M, et al. The 
Sickness Impact Profile for nursing homes (SIP-NH). J Gerontol 1994;49:M2-8. 

27. Post MW, Gerritsen J, Diederikst JP, DeWittet LP. Measuring health status of people who 
are wheelchair-dependent: Validity of the Sickness Impact Profile 68 and the Notting­
ham Health Profile. Disabil Rehabil 2001;23:245-253. 

28. Streppel KR, de Vries J, van Harten WH. Functional status and prosthesis use in 
amputees, measured with the Prosthetic Profile of the Amputee (PPA) and the short ver­
sion of the Sickness Impact Profile (SIP68). Int J Rehabil Res 2001;24:251-256. 

29. Van de Port IG, Ketelaar M, Schepers VP, Van den Bos GA, Lindeman E. Monitoring the 
functional health status of stroke patients: The value of the Stroke-Adapted Sickness 
Impact Profile-30. Disabil Rehabil 2004;26:635-640. 

30. Gee L, Abbott J, Conway SP, Etherington C, Webb AK. Validation of the SF-36 for the 
assessment of quality of life in adolescents and adults with cystic fibrosis. J Cyst Fibros 
2002;1 :137-145. 

31. Bourke SC, McColl E, Shaw PJ, Gibson GJ. Validation of quality of life instruments in 
ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 2004;5:55-60. 

32. Thumboo J, Feng PH, Boey ML, Soh CH, Thio S, Fong KY. Validation of the Chinese 
SF-36 for quality of life assessment in patients with systemic lupus erythematosus. 
Lupus 2000;9:708-712. 



CHAPTER 1 • A Concept of Clinical Research 29 

33. Bensoussan A, Chang SW, Menzies RG, Talley NJ. Application of the general health sta­
tus questionnaire SF36 to patients with gastrointestinal dysfunction: Initial validation 
and validation as a measure of change. Aust N Z J Public Health 2001;25:71-77. 

34. Anderson C, Laubscher S, Burns R. Validation of the Short Form 36 (SF-36) health sur­
vey questionnaire among stroke patients. Stroke 1996;27:1812-1816. 

35. Ware JE, Sherbourne CD. The MOS 36-item Short Form Health Survey (SF-36). I .  Con­
ceptual framework and item selection. Med Care 1992;30:473-483. 

36. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of 
WOMAC: A health status instrument for measuring clinically important patient rele­
vant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip 
or knee. J Rheumatol 1988;15:1833-1840. 

37. Rector TS, Kubo SH, Cohn JN. Validity of the Minnesota Living with Heart Failure ques­
tionnaire as a measure of therapeutic response to enalapril or placebo. Am J Cardia[ 
1993;71:1106-1107. 

38. Bombardier C, Melfi CA, Paul J, Green R, Hawker G, Wright J, et al. Comparison of a 
generic and a disease-specific measure of pain and physical function after knee replace­
ment surgery. Med Care 1995;33:AS131-144. 

39. Davies GM, Watson DJ, Bellamy N. Comparison of the responsiveness and relative 
effect size of the western Ontario and McMaster Universities Osteoarthritis Index and 
the short-form Medical Outcomes Study Survey in a randomized, clinical trial of 
osteoarthritis patients. Arthritis Care Res 1999;12:172-179. 

40. Ni H, Toy W, Burgess D, Wise K, Nauman DJ, Crispell K, et al. Comparative responsive­
ness of Short-Form 12 and Minnesota Living with Heart Failure Questionnaire in 
patients with heart failure. J Card Fail 2000;6:83-91 .  

41. Minaire P. Disease, illness and health: Theoretical models of  the disablement process. 
Bull World Health Org 1992;70:373-379. 

42. Bergner M. Quality of life, health status and clinical research. Med Care 1989;27: 
S148-S156. 

43. Wilkins EG, Lowery JC, Smith Jr DJ. Outcomes research: A primer for plastic surgeons. 
Ann Plast Surg 1996;37:1-11. 

44. Nagi SZ. Disability concepts revisited: Implications for prevention. In AM Pope, AR 
Tarlov (Eds.), Disability in America: Toward a National Agenda for Prevention. Washington, 
DC: Division of Health Promotion and Disease Prevention, Institute of Medicine, 
National Academy Press, 1991. 

45. Verbrugge LM, Jette AM. The disablement process. Soc Sci Med 1994;38:1-14. 
46. Whiteneck GG, Fongeyrollas P, Gerhart KA. Elaborating the model of disablement. In 

MJ Fuhrer (Ed.), Assessing Medical Rehabilitation Practices: The Promise of Outcomes 
Research. Baltimore: Brookes Publishing, 1997. 

47. Jette AM. Physical disablement concepts for physical therapy research and practice. 
Phys Ther 1994;74:380-386. 

48. Patrick DL, Bergner M. Measurement of health status in the 1990s. Ann Rev Public Health 
1990;11:165-183. 

49. Pope AM, Tarlov AR (Eds.). Disability in America: Toward a National Agenda for Prevention. 
Washington, DC: Division of Health Promotion and Disease Prevention, Institute of 
Medicine, National Academy Press, 1991. 

50. World Health Organization. International classification of functioning, disability and health. 
Available at: <http:/ /www3.who.int/icf/icftemplate.cfm> Accessed November 7, 2004. 

51. Reed GM, Brandt DE, Harwood KJ. ICF clinical manual. Presentation at Physical Ther­
apy 2004 Annual Conference and Exposition. Chicago, July 1, 2004. 



30 PART I • Foundations of Cl in ical Research 

52. Bilbao A, Kennedy C, Chatterji S, Ustun B, Barquero JL, Barth JT. The ICF: Applications 
of the WHO model of functioning, disability and health to brain injury rehabilitation. 
NeuroRehabilitation 2003;18:239-250. 

53. Worral L, McCooey R, Davidson B, Larkins B, Hickson L. The validity of functional 
assessments of communication and the Activity /Participation components of the 
ICIDH-2: Do they reflect what really happens in real life? J Commun Disord 
2002;35:107-137. 

54. Kennedy C. Functioning and disability associated with mental disorders: The evolution 
since ICIDH. Disabil Rehabil 2003;25:6ll-619. 

55. Geyh S, Kurt T, Brockow T, Cieza A, Ewert T, Omar Z, et al. Identifying the concepts con­
tained in outcome measures of clinical trials on stroke using the International Classifi­
cation of Functioning, Disability and Health as a reference. J Rehabil Med 2004:56-62. 

56. Stucki G, Ewert T. How to assess the impact of arthritis on the individual patient: The 
WHO ICF. Ann Rheum Dis 2005;64:664-668. 

57. Brockow T, Duddeck K, Geyh S, Schwarzkopf S, Weigl M, Franke T, et al. Identifying the 
concepts contained in outcome measures of clinical trials on breast cancer using the 
International Classification of Functioning, Disability and Health as a reference. J Reha­
bil Med 2004:43-48. 

58. Crews JE, Campbell VA. Vision impairment and hearing loss among community­
dwelling older Americans: Implications for health and functioning. Am J Public Health 
2004;94:823-829. 

59. World Health Organization. International Classification of Functioning, Disability and 
Health. Geneva: World Health Organization, 2001. 

60. Sackett DL, Rosenberg WM, Gray JA, Haynes RB, Richardson WS. Evidence based med­
icine: What it is and what it isn't. BMJ 1996;312:71-72. 

61. Straus SE, Richardson WS, Glasziou P, Haynes RB. Evidence-based Medicine: How to Prac­
tice and Teach EBM (3rd ed.). Edinburgh: Churchill Livingstone, 2005. 

62. Rothstein JM, Echternach JL, Riddle DL. The Hypothesis-Oriented Algorithm for Clini­
cians II (HOAC II): A guide for patient management. Phys Ther 2003;83:455-470. 

63. Sackett DL. Foreword. In RA Dixon, JF Muno, PB Silcocks (Eds.). The Evidence Based Med­
icine Workbook: Critical Appraisal for Evaluating Clinical Problem Solving. Oxford: Butter­
worth Heinemann, 1997:vii-viii. 

64. Center for Evidence-based Physiotherapy. Physiotherapy Evidence Database. Available 
at: <http:/  /www.pedro.fhs.usyd.edu.au/index.html> Accessed October 17, 2004. 

65. American Physical Therapy Association. Hooked on Evidence. Available at: <http:/  I 
www.apta.org/hookedonevidence/index.cfm> Accessed October 17, 2004. 

66. Center for Evidence-Based Medicine. Available at: <http:/  /www.cebm.utoronto.ca/ 
practise/formulate/eduprescript.htm> Accessed October 17, 2004. 

67. University of Michigan Department of Pediatrics. Available at: <http:/  /www.med 
.umich.edu/pediatrics/ebm/Cat.htm> Accessed October 17, 2004. 

68. University of North Carolina. Available at: <http:/ /www.med.unc.edu/medicine/ 
edursrc/ !catlist.htm> Accessed October 17, 2004. 

69. Harris SR. How should treatments be critiqued for scientific merit? Phys Ther 1996; 
76:175-181. 

70. Rothstein JM. Editors note: Say it ain't so. Phys Ther 1994;74:175-181. 
71. Silverman WA. Human Experimentation: A Guided Step into the Unknown. New York: 

Oxford University Press, 1985. 
72. Wolf SL, Barnhart HX, Ellison GL, Coogler CE. The effect of Tai Chi Quan and comput­

erized balance training on postural stability in older subjects. Phys Ther 1997;77:371-381. 



CHAPTER 1 • A Concept of Clinical Research 31 

73. Carter NO, Khan KM, McKay HA, Petit MA, Waterman C, Heinonen A, et al. Community­
based exercise program reduces risk factors for falls in 65- to 75-year-old women with 
osteoporosis: Randomized controlled trial. CMAJ 2002;167:997-1004. 

74. Barnett A, Smith B, Lord SR, Williams M, Baumand A. Community-based group exer­
cise improves balance and reduces falls in at-risk older people: A randomised controlled 
trial. Age Ageing 2003;32:407-414. 

75. Gould SJ. Bacon, brought home-Philosophy of Francis Bacon about natural world. 
Natural History June, 1999. 

76. Rustgi AK. Translational research: What is it? Gastroenterology 1999;116:1285. 
77. Fontanarosa PB, DeAngelis CD. Translational medical research. JAMA 2003;289:2133. 
78. National Institutes of Health. Overview of the NIH roadmap. Available at: <http: / I 

nihroadmap.nih.gov I overview.asp> Accessed January 30, 2005. 
79. Dische S, Saunders M. Translational Research-A new entity? Acta Oneal 2001;40: 

995-999. 
80. Mayer L. The real meaning of translational research. Gastroenterology 2002;123:665. 
81. Kleitman N. Keeping promises: Translating basic research into new spinal cord injury 

therapies. J Spinal Cord Med 2004;27:311-318. 
82. Narayan KM, Benjamin E, Gregg EW, Norris SL, Engelgau MM. Diabetes translation 

research: Where are we and where do we want to be? Ann Intern Med 2004;140:958-963. 
83. Augustin HG. Translating angiogenesis research into the clinic: The challenges ahead. 

Br J Radiol 2003;76 Spec No 1:53-10. 
84. Marincola FM. Translational Medicine: A two-way road. J Transl Med 2003;1:1 .  





CHAPTER 2 

The Role of Theory 
in Clinical Research 

Clinical research is a systematic method for evaluating the effectiveness of treatment 
and for establishing a basis for inductive generalizations about intervention. The ulti­
mate goal is to further intellectual progress by contributing to the scientific base of prac­
tice through the development of theory. Theories are created out of a need to organize 
and give meaning to a complex collection of individual facts and observations. 

Methods are the means by which we conduct investigations in a reliable and valid 
way so that we can understand clinical phenomena. But it is theory that lets us specu­
late on the questions of why and how treatment works, accounting for what we 
observe. Theories provide the explanations for findings within the context of what is 
already known from the successes and failures of previous investigations. As we con­
tinue to examine observations, we try to create theoretical generalizations to form a 
basis for predicting future outcomes. Without such explanations we risk having to rein­
vent the wheel each time we are faced with a clinical problem. 

A theory is a set of interrelated concepts, definitions, or propositions that specifies 
relationships among variables and represents a systematic view of specific phenomena.1 

Theories have always been a part of human cultures, although not all theories have been 
scientific. Philosophy and religion historically have played a significant part in the accept­
ance of theory. The medieval view that the world was flat was born out of the theory that 
angels held up the four comers of the earth. Naturally, the men of the day were justified 
in believing that if one sailed toward the horizon, eventually one would fall off the edge 
of the earth. Such theories went untested because of a lack of instrumentation and 
because it was not considered necessary to test that which was already known to be true. 

In contrast, scientific theory deals with the empirical world of observation and 
experience, and requires constant verification. We use theory to generalize beyond a 
specific situation and to make predictions about what should happen in other similar sit­
uations. The validity of these predictions can be tested through research. The purpose 
of this chapter is to define the elements of theory and to describe mechanisms for devel­
oping and testing clinical theories. 

PU RPOSES OF TH EORI ES 
Theories can serve several purposes in science and clinical practice, depending on how 
we choose to use them. Theories summarize existing knowledge, giving meaning to iso­
lated empirical findings. They provide a framework for interpretation of observations. 

33 
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For example, theories of motor learning bring together the results of many separate 
studies that have examined schedules of practice, types of skills, psychomotor com­
ponents of performance, and other elements of the learning process. Theories are 
also used to explain observable events by showing how variables are related. For 
instance, a theory of motor learning would explain the relationship between feed­
back and feedforward mechanisms in the learning, performance, and refinement of 
a motor skill. 

Theories allow us to predict what should occur, given a set of specific circum­
stances. For example, one theory of motor learning states that greater changes take 
place during stages of initial learning than during later stages, as illustrated by a decel­
erating learning curve. On the basis of this theory, we could anticipate that a patient 
using an exercise device for the first time will experience a spurt of improvement in 
force output during early trials as a result of practice that will not necessarily be related 
to strength increases.2 

Theories can also provide a basis for predicting phenomena that cannot be empir­
ically verified. For instance, through deductions from mathematical theories, Newton 
was able to predict the motion of planets around the sun long before technology was 
available to confirm their orbits. The element of prediction also affords us a measure 
of control. This is illustrated by analysis of the germ theory of disease, which explains 
how organisms in the environment cause disease states. The theory allows us to pre­
dict how changes in the environment will affect the incidence of disease. This, in turn, 
suggests mechanisms to control disease, such as the use of drugs, vaccines, or atten­
tion to hygiene. 

Theories also help to stimulate the development of new knowledge by providing 
motivation and guidance for asking significant clinical questions. On the basis of a 
theoretical premise, a clinician can use the process of deduction to formulate a 
hypothesis which can then be tested, providing evidence to support, reject, or modify 
the theory. For instance, based on the theory that reinforcement will facilitate learn­
ing, a clinician might deduce that verbal encouragement will decrease the time 
required for a patient to learn a program of home exercises. This hypothesis can be 
tested by comparing patients who do and do not receive reinforcement, and, if sup­
ported, the hypothesis will lend credence to the original theory. A wide variety of 
hypotheses can be deduced from this same theory. For instance, a clinician may 
hypothesize that reinforcement will improve learning for spinal cord injured patients 
working to master the use of a hand splint. The results of testing each hypothesis will 
provide additional affirmation of the theory or demonstrate specific situations where 
the theory is not substantiated. 

Theory provides the basis for asking a question in applied research. Sometimes 
there will be sufficient background in the literature to build this framework; other times 
the researcher must build an argument based on what is known from basic science. In 
descriptive or exploratory research, the study's findings may contribute to the develop­
ment of theory. The researcher uses a theoretical premise to project how the variables 
being studied should be related and what outcomes are expected. The theoretical 
framework is usually discussed within the introduction or discussion section of a paper. 
Without a theoretical framework a researcher will be unable to understand the implica­
tions of his findings, and observations will not have a context. 
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COM PON ENTS OF TH EORI ES 

Concepts and Constructs 
The role that theory plays in clinical practice and research is best described by examin­
ing the structure of a theory. Figure 2.1 shows the basic organization of scientific 
thought, building from observation of facts to laws of nature. 

The essential building blocks of a theory are concepts. Concepts are abstractions 
that allow us to classify natural phenomena and empirical observations. From birth we 
begin to structure empirical impressions of the world around us in the form of concepts, 
such as "mother," "father," "play," or "food," each of which implies a complex set of 
recognitions and expectations. We develop these concepts within the context of experi­
ence and feelings, so that they meet with our perception of reality. We supply labels to 
sets of behaviors, objects, or processes that allow us to identify them and discuss them. 

We use concepts in professional communication in the same way. Even something 
as basic as a "wheelchair" is a concept from which we distinguish chairs of different 
types, styles, and functions. Almost every term we incorporate into our understanding 
of human and environmental characteristics and behaviors is a conceptual entity. When 
concepts can be assigned values, they can be manipulated as variables, so that their 
relationships can be examined. In this context, variables become the concepts used for 
building theories and planning research. Variables must be operationally defined, that 
is, the methods for measuring or evaluating them must be clearly delineated. 

Some concepts are observable and easily distinguishable from others. For instance, 
a wheelchair will not be confused with an office chair. But other concepts are less tan­
gible, and can be defined only by inference. Concepts that represent nonobservable 
behaviors or events are called constructs. Constructs are invented names for abstract 
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FIGURE 2.1 A model of scientific thought, showing the circular relationship between facts and theory 
and the integration of inductive and deductive reasoning. 
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variables that cannot be seen directly, but are inferred by measuring relevant or corre­
lated behaviors that are observable. The construct of intelligence, for example, is one 
that we cannot see, and yet we give it very clear meaning. We evaluate a person's intel­
ligence by observing his behavior, the things he says, what he "knows." We can also 
measure a person's intelligence using standardized tests and use a number to signify 
intelligence. An IQ score of 125 tells us something about that individual, but the num­
ber by itself has no empirical value. We cannot observe 125 intelligence "points" like we 
can 125 degrees of shoulder joint motion. Constructs are often manipulated as variables 
in psychosocial and behavioral research. 

Propositions 
Once the concepts that relate to a theory are delineated, they are formed into a general­
ization, or proposition. Propositions state the relationship between variables, which 
can be described in several ways. For example, a hierarchical proposition shows a verti­
cal relationship, establishing ordered levels of concepts. Maslow's theory of the rela­
tionship of human needs to motivation demonstrates this principle.3 He described five 
levels, beginning at the bottom with basic physiological needs, moving up to safety, 
social needs, esteem, and finally ending at the top with self-actualization, or the fulfill­
ment of one's self (see Figure 2.2). 

A quantitative proposition is based on the frequency or duration of a specific behav­
ior. For example, theories of fatigue are based partly on the concept of repetitions of 
exercise and how that relates to muscular endurance.4 A temporal proposition orders 
concepts in time and states a sequence of events. For instance, the transtheoretical 
model explains behavior change as a process along a continuum of motivational readi­
ness, with five stages: precontemplation, contemplation, preparation, action, and main­
tenance.5 Rather than seeing change as a unidimensional act, such as simply quitting 
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FIGU RE 2 . 2  Maslow's hierarchy of human needs; example of a hierarchical proposition.3 
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FIG URE 2.3 The transtheoretical model of behavior change; example of a temporal proposition.5 

smoking or starting to exercise, this model suggests that individuals progress through 
a series of stages in recognizing the need to change and finally engaging in a new 
behavior (see Figure 2.3). The model also clarifies the importance of identifying the 
stage an individual is in before a successful intervention can be implemented. 

Models 
Many of the concepts we deal with in professional practice are so infinitely complex 
that we cannot truly comprehend their real nature. In an effort to understand them we 
try to simplify them within the context of a model that serves as an analogy for the real 
phenomenon. To understand the concept of an "atom," for example, it was helpful for 
scientists to delineate a conceptual model that is likened to a solar system. The intrica­
cies of genetic processes were clarified by the development of a helical model of DNA. 
Function of the neuromuscular system is often taught using a model of the muscle spin­
dle. These models are considered simplified approximations of reality. The model 
leaves out much of the detail, but describes the conceptual structure closely enough to 
give us a better understanding of the phenomenon. Models are symbolic representa­
tions of the elements within a system. Where a theory is an explanation of phenomena, 
a model is a structural representation of the concepts that comprise the theory. 

Some physical models are used to demonstrate how the real behavior might occur. 
For example, engineers study models of bridges to examine the stresses on cables and 
the effects of different loading conditions. The benefit of such models is that they obey 
the same laws as the original, but can be controlled and manipulated to examine the 
effects of various conditions in ways that would not otherwise be possible. Rehabilita­
tion engineers develop prototypes of prostheses or motor-driven wheelchairs, to eval­
uate their performance and to perfect their design. Scientists also use animal models to 
mimic specific anatomical or physiological deficits in the human to examine the effects 
of pathology, trauma and intervention. 

Sometimes a model is a schematic representation, such as an architect's plans or a 
map. Therapists might use this type of model when evaluating a client's home for archi­
tectural barriers, by drawing a diagram of rooms and doorways and plotting out the 
spatial requirements for use of a wheelchair. Such a model provides opportunities for 
considering the implications of different approaches without physically carrying them 
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out, and facilitates making appropriate changes when necessary. Computer simulations 
are the most recent contributions to the development of physical models. Scientists can 
experiment with an infinite number of variations in design and can analyze the impli­
cations of each without risk or major expense. 

A model can also represent a process rather than a real object. For example, decision­
making models can be used to suggest the most effective progression of intervention 
with specific disorders.6 The transtheoretical model provides a framework for under­
standing the process of behavior change (see Figure 2.3).5 The International Classifi­
cation of Functioning and Disability (ICF) model (shown in Figure 1 .1  in Chapter 1) 
creates a structure to understand the theoretical relationship between impairments and 
functional activities, and can be used to offer explanations as to why specific impair­
ments might lead to certain types of disability? 

Quantitative models are used to describe the relationship among variables by using 
symbols to represent them. Models in physical science allow for accurate prediction of 
quantities, such as the summary of the relationship between force, mass, and accelera­
tion (F = m x a). In the behavioral sciences, however, quantitative models are less pre­
cise, usually containing some degree of error resulting from the variability of human 
behavior and physical characteristics. For instance, a clinician might want to determine 
the level of strength a patient could be expected to achieve following a period of train­
ing. A model that demonstrates the influence of a person's height, weight, and age on 
muscle strength would be useful in making this determination.s-1° This type of quanti­
tative model can serve as a guide for setting long-term goals and for predicting func­
tional outcomes. Research studies provide the basis for testing these models and 
estimating their degree of accuracy for making such predictions. 

DEVELOPM ENT OF TH EORI ES 
As the previous examples illustrate, theories are not discovered, they are created. A set 
of observable facts may exist, but they do not become a theory unless someone has the 
insight to understand the relevance of the observed information and pulls the facts 
together to make sense of them. Certainly, many people observed apples falling from 
trees before Newton was stimulated to consider the force of gravity. Theories can be 
developed using inductive or deductive processes. 

I nductive Theories 
Inductive theories are data based and evolve through a process of inductive reason­
ing, beginning with empirically verifiable observations. Through multiple investiga­
tions and observations, researchers determine those variables that are related to a 
specific phenomenon and those that are not. The patterns that emerge from these stud­
ies are developed into a systematic conceptual framework, which forms the basis for 
generalizations. This process involves a degree of abstraction and imagination, as ideas 
are manipulated and concepts reorganized, until some structural pattern is evident in 
their relationship. 

For instance, this process was used by Skinner in the formulation of his theories of 
learning and behavior, based on previous work and his own observations of human 
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behavior.U Through the examination and clarification of the interrelationships between 
stimuli and responses, he formulated a systematic explanation for the observed behav­
iors. Glaser and Strauss12 used the term "grounded theory" to describe the development 
of theory by reflecting on individual experiences in qualitative research. As an example, 
Resnik and Jensen13 used this method to describe characteristics of therapists who were 
classified as "expert" or "average" based on the outcomes of their patients. Building on 
their observations, they theorized that the meaning of "expert" was not based on years 
of experience, but on academic and work experience, utilization of colleagues, use of 
reflection, a patient-centered approach to care, and collaborative clinical reasoning. 

Deductive Theories 
The alternative approach to theory building is the intuitive approach, whereby a theory 
is developed on the basis of great insight and intuitive understanding of an event 
and the variables most likely to impact on that event. This type of theory, called a 
hypothetical-deductive theory, is developed with few or no prior observations, and 
often requires the generation of new concepts to provide adequate explanation. Freud's 
theory of personality fits this definition.14 It required that he create concepts such as 
"id," "ego" and "superego" to explain psychological interactions and motivations. 
Because they are not developed from existing facts, hypothetical-deductive theories 
must be continually tested in the "real world" to develop a database that will support 
them. Einstein's theory of relativity is an excellent example of this type of theory; it was 
first advanced in 1905 and is still being tested and refined through research today. 

Most theories are formulated using a combination of both inductive and hypothetical­
deductive processes. Observations initiate the theoretical premise, and then hypotheses 
derived from the theory are tested. As researchers go back and forth in the process of 
building and testing the theory, concepts are redefined and restructured. This process 
occurs along a circular continuum between fact and theory, whereby a theory can be 
built on facts, but must also be tested by them (see Figure 2.1) . 

CHARACTERISTICS OF TH EORI ES 
As we explore the many uses of theories in clinical research, we should also consider 
criteria that can be used to evaluate the utility of a theory. First and foremost, a theory 
should provide a thorough and rational explanation of observed facts. It should provide 
a basis for classifying relevant variables and predicting their relationships. A theory 
should also provide a means for its own verification; that is, it should be sufficiently 
developed and clear enough to permit deductions that form testable hypotheses. 

A Good Theory Is Economical. It should be the most efficient explanation of the phe­
nomenon, using only those concepts that are truly relevant and necessary to the expla­
nation offered by the theory. Complex theories are difficult to interpret and less likely to 
provide meaningful direction to practice or research. Theories are also most useful when 
they apply to a broad range of situations, not one specific segment of a discipline. 

A Theory Should Be Important. It should reflect that which is judged significant by 
those who will use it. In this sense, theories become the mirror of a profession's values 
and identity. When we examine the theories that are adopted by clinicians in the course 
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of their practice, their intellectual investments become clear. For example, many thera­
pists rely on neurophysiological theory as a basis for choosing therapeutic exercise tech­
niques that use diagonal and rotational patterns of motion, as opposed to the traditional 
use of anatomical theory as a basis for exercises in straight planes. This suggests that 
research is needed to test hypotheses that predict the superiority of multiple-plane 
movement over single-plane exercise for given purposes. 

Acceptance ofTheory Can Change. Theories must be consistent with observed facts 
and the already established body of knowledge. Therefore, our acceptance of a particular 
theory will reflect the present state of knowledge and must adapt to changes in that knowl­
edge as technology and scientific evidence improve. Therefore, a theory is only a tentative 
explanation of phenomena. It should be reasonable according to what has been observed, 
but may not be the only explanation. Many theories that are accepted today will be dis­
carded tomorrow (see Box 2.1 ). Some will be "disproved" by new evidence, and others may 
be superseded by new theories that integrate the older ones. For example, Gardner's the­
ory of multiple intelligences challenged long-held assumptions about general intelligence 
and the ability to measure it with a single score, such as an IQ test.15 He proposes eight dis­
tinct intelligences and suggests that different cultures will perceive these differently. 

Theory recognition also evolves with social change. For instance, the disengagement 
theory of aging was originally proposed to account for observations of age-related 
decreases in social interaction.16 The explanation this theory offered was that older indi­
viduals withdrew from social involvements in anticipation of death. As sociological 
theory progressed, however, new perspectives emerged, such as exchange theory, which 
suggested that interactions in old age become limited because the old have fewer 
resources to offer, therefore bringing less to a relationship.17 In a further generation of 
exchange theory, socioemotional selectivity theory tried to explain reduced social exchange 
of older persons as a function of increasing selectivity in interactions.18 This theory sug­
gests that older persons decide to reduce emotional closeness with some people while 
they increase closeness with others; that is, interactions reflect the rewards of specific 
emotional support with a selective group of individuals. The most recent progression 
of this theory is gerotranscendence, which looks at human development as a process that 
extends into old age. The theory proposes that aging, from childhood through old age, 
is a process that can be obstructed or accelerated by life crises, culture and support sys­
tems. Old age is yet another phase in development. When optimized, the process ends 
in a new and qualitatively different perspective on life.19 

This evolution of theory illustrates how the explanations of an observed psychoso­
cial phenomenon have continued to change as our understanding and perceptions of 
social interaction have grown. It also demonstrates how caregivers and health profes­
sionals may change their perspective on how to support and interact with aging indi­
viduals, depending on how they view the psychological focus of the aging process. 

TH EORY AN D RESEARCH 
Every theory serves, in part, as a research directive. The empirical outcomes of research 
can be organized and ordered to build theories using inductive reasoning. Conversely, 
theories must be tested by subjecting deductive hypotheses to scientific scrutiny. The 
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BOX 2.1 Ancient Medical Theory: The Four Humours 

Originating in the work of Aristotle and Hippocrates, traditional medical 
theory from Greco-Roman times through the Middle Ages was based on the 
belief that the body was made up of four elemental liquids: blood, yellow 
bile, black bile and phlegm. Physical and mental health depended on a bal­
ance of these humours, called eucrasia. An imbalance of humours, or 
dyscrasia, was believed to be the cause of all diseases. 

Image of a woodcut from an 1 8th­
century text by johann Kaspar 
Lavater. 

Each humour corresponded to one of the 
four elements, specific seasons, qualities and 
personalities. Blood was associated with air, 
spring, hot and moist, and a sanguine tem­
perament-amorous, happy, generous, and 
optimistic. Black bile was associated with 
earth, autumn, cold and dry, and a melan­
cholic personality-introspective, sentimen­
tal and lazy. Yellow bile was paired with fire, 
summer, hot and dry, and a choleric disposi­
tion-vengeful, violent and easily angered. 
And phlegm was linked to water, winter, 
cold and moist, and a phlegmatic tempera­
ment--calm, unemotional and dull. 

This theoretical context was used as the 
basis for diagnosis and treatment, geared 
toward identifying and pushing out a harm­
ful surplus of a humour. For example, if 

someone had a fever, they were thought to have too much blood in their 
body, which was therefore treated by blood letting. Sweating from a fever 
was considered hot and wet, and foods were given that were associated with 
cold and dry. The baby with "cholic" was thought to be constantly angry. 
Epilepsy was believed to be due to phlegm blocking the airways that caused 
the body to thrash about to free itself. Manic behavior was due to bile boiling 
in the brain. Black bile was associated with melancholy. 

In every era, our theories grow to meet the state of knowledge and sci­
ence. The humours replaced the theory that health could be explained by 
divine intervention. Many of the practices associated with the four humours 
were still part of mainstream medicine in the late 1800s. You can undoubt­
edly see the connections between the four personalities and many words we 
use today to describe physical and mental states. 

Sources: Four humours. Wikipedia. <http:/ /en.widipedia.org/wiki/Four_ 
bodily_humours>; The Four Humours. Kheper website. <http:/ /www.kheper.net/ 
topics/ typology I four_humours.htrnl>; Warren P. The Roots of Scientific Medicine. 
Hippocrates on the Web. http:/ /www.umanitoba.ca/faculties/medicine/units/ 
history /notes/roots/index.htrnl> Accessed May 15, 2007. 
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processes of theory development and theory testing are represented in the model 
shown in Figure 2.1. It integrates the concepts of inductive and deductive reasoning as 
they relate to the elements of theory design. 

Theory Testing 
When we speak of testing a theory, we should realize that a theory itself is not testable. 
The validity of a theory is derived through the empirical testing of hypotheses that are 
deduced from it and from observation of the phenomenon the theory describes. The 
hypotheses predict the relationships of variables included in the theory. The results of 
research will demonstrate certain facts, which will either support or not support the 
hypothesis. If the hypothesis is supported, then the theory from which it was deduced 
is also supported. 

When we compare the outcomes of individual research studies with predicted out­
comes, we are always aware of the potential for disconfirmation of the underlying the­
ory. In essence, the more that research does not disconfirm a theory, the more the theory 
is supported. This may sound backwards, but in actuality we can never "prove" or 
"confirm" a theory. We can only demonstrate that a theoretical premise does not hold 
true in a specific situation. When a research hypothesis is tested and it is not rejected, that 
is, the study turns out the way we expected, we cannot state that the underlying theory 
is definitely true. To make such a statement, we would have to verify every possible 
application of the theory and demonstrate that the outcomes were absolutely consis­
tent. As this is not feasible, we can only interpret individual hypotheses and conclude 
that a theory has not been disproved. 

Util ization ofTheory in  Research and Practice 
Clinicians are actually engaged in theory testing on a regular basis in practice. Theories 
guide us in making clinical decisions. Specific therapeutic modalities are chosen for 
treatment because of expected outcomes that are based on theoretical assumptions. 
Treatments are modified according to the presence of risk factors, based on theoretical 
relationships. Therefore, the theory is tested each time the clinician evaluates treatment 
outcomes. When a theory is used as the basis for a treatment, the clinician is, in effect, 
hypothesizing that the treatment will be successful. If results are as expected, the the­
ory has been supported. When evidence is obtained that does not support a theory, or 
that cannot be explained by the theory, alternative explanations must be considered. 
There may be reason to question how measurements were taken and how concepts 
were defined, to determine if these were truly consistent with the theory's intent. The 
validity of the theory may be questioned, or the application of the theory to the specific 
problem being studied may need to be re-evaluated. It may also be necessary to re­
examine the theory and modify it, so that it does explain the observed outcome. If this 
is not practical, a new theory may need to be considered that will encompass this and 
all previous observations. 

As an example of the application of theory to clinical decision making, Mueller and 
Maluf0 have described physical stress theory, which states that changes in levels of phys­
ical stress cause a predictable adaptive response in all biological tissue. According to 
this premise, stresses less than normal will result in decreased tolerance of tissues to 
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subsequent stresses, and stresses greater than normal will result in increased tolerance. 
If we accept this premise, we can assume that when muscle is not sufficiently stressed 
(not exercised), we would predict decreased tension and power (weakness), which 
would limit the muscle's future tolerance to outside forces. When muscle is challenged 
at high stresses (as through exercise), we will see increases in contractile strength. 
Stresses at either extreme will cause the tissue to fail. When stresses are absent, the mus­
cle will atrophy; when stresses are excessive, the muscle will be strained. 

We can use this theory to help with decision making when an individual's muscle 
performance does not fall within normal limits. As shown in Figure 2.4, for a condition 
of weakness, due to prolonged low stress levels, the threshold for adaptation will 
decrease. Therefore, a patient who has a weakened muscle is likely to suffer an injury 
at a lower force threshold than someone who is stronger. Similarly, a weakened muscle 
will increase in strength with a lower level of exercise than a stronger muscle would 
require. This theory goes beyond this specific example, to demonstrate how intrinsic 
and extrinsic factors can modify the adaptive responses of various tissues. The authors 
clearly illustrate how continued testing of the theory and its relationships is needed to 
contribute to the foundations of practice.20 
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FIGURE 2.4 Representation of the physical stress theory, i l lustrating the effect of prolonged low stress 
on biological tissue. Low stress results in a lower threshold for subsequent adaptation and injury. Although 
relative thresholds remain  the same, the absolute magnitude of physical stress is lower for each threshold. 
Injury (and al l  other adaptations) occurs at a lower level of physical stress than requ i red previously. (From 
Mueller MJ, Maluf KS. Tissue adaptation to physical stress: A proposed "Physical Stress Theory" to guide 
physical therapist practice, education, and research. Phys Ther 2002;82 :383---403, Figure 2,  p. 387. 
Reprinted with permission of the American Physical Therapy Association.) 
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Theory as a Foundation for U nderstand ing Research 
Understanding clinical phenomena cannot be achieved in a single study. It is a process 
within a community of researchers involving discussion, criticism and intellectual 
exchange to analyze the connection between new and previous findings and explana­
tions. This type of exchange allows the inconsistencies to surface, to identify findings 
that cannot be explained by current theories. This process can serve as a catalyst for a 
paradigm shift, or a change in the basic framework that governs the way knowledge is 
pursued. 21 For instance, the focus on outcomes in research represents a paradigm shift 
in rehabilitation science, as constructs such as disability and quality of life become a 
major focus, rather than the traditional emphasis on changes in physical impairments?2 
The ICF is another example, allowing interactions with theories of self-efficacy and 
health behaviors, and incorporating environmental factors as influences on perform­
ance.23 By looking at outcomes in this way, researchers recognize that questions and 
their underlying theories will take a different direction than in the past. 

The importance of theory for understanding research findings is often misunder­
stood. Whenever a research question is formulated, there is an implicit theory base that 
suggests how the variables of interest are related. Unfortunately, many authors do not 
make this foundation explicit. Empirical results are often described with only a gen­
eral explanation, or an admission that the author can find no explanation. It is the 
author's responsibility, however, to consider what is known, to examine potential rela­
tionships, and help the reader understand the context within which the results can be 
understood. It is incumbent upon all researchers to project their expectations into the 
realm of theory, to offer an interpretation of findings, and thereby contribute to the 
growth of knowledge.24 

TH EORY AN D LAW 
When a theory does reach the level of absolute consistency in outcomes, it is called a 
law. Laws generally have a wider scope than theories, and allow precise predictions. 
For example, Newton made many mathematical observations that were used to 
describe the motion of the planets around the sun. These motions can be described with 
great precision, allowing great accuracy of prediction. What started as a theoretical 
observation eventually came to be accepted as a universal law. Generally, laws are not 
established in the applied sciences as they are in the physical sciences. The nature of 
human beings and their interactions with the environment does not allow our theories 
to become so precise in their prediction. We are left, therefore, with the necessity of con­
tinuing the quest for affirmation of our theories. 

COM MENTARY 

Applying Theory 

History documents many dramatic changes i n  society's acceptance of theories, such 
as the bel ief that the world was round not flat and that the sun was the center of our 
solar system. In medicine we are aware of s ign ificant modifications to our under-
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standing of the human body, as evidenced in the sh ift from Galen's view of "pores" 
in the heart to Harvey's theory of circulation. We have also witnessed major changes 
in cu ltural values that have i nfluenced the acceptance of some theories, such as the 
effect of the femin ist movement on theories of social i nteraction and management. 

The concept of metatheory has been used to reflect theories that attempt to 
reconcile several theoretical perspectives in  the explanation of sociological ,  psycho­
logical and physiological phenomena. A metatheory places specific research ques­
tions with in a broader framework and encourages the i ntegration of theoriz ing for a 
range of potentia l ly disparate ideas.25 For example, metatheories have been pro­
posed to explain the complex nature of depression,26 adaptation to chron ic i l l ness27 
and compensatory phenomena observed in studies of early bra in  damage.28 Open­
ness to synthesizing various concepts provides the impetus for continual ly posing 
new research questions. 

The fact that scientists are constantly adapting or developing theories to accom­
modate new information is, of course, healthy and of critical importance to c l in ical sci­
ence if we expect our treatments to reflect the most up-to-date scientific i nformation 
avai lable. Evidence-based practice requires that we consider the latest research in the 
context of our own c l inical judgment and experience. We cannot ignore the possibi l­
ity that any theory wil l  need to be modified or discarded. At any given t ime a particu­
lar theory wi l l  be accepted by some scientists for some purposes, and not by others. 
Theories need to be tested in different ways in a variety of contexts. Research is, there­
fore, essential to the continued refinement of the theoretical basis for treatment. 

Much of c l i n ical practice is based on empirical successes which c l i n icians have 
attempted to explain using theories that are currently accepted. As new knowledge 
is advanced, these theories may be dismissed or changed. This does not mean that 
the treatment does not work. It just suggests that the theory was i ncorrectly appl ied 
to that situation and that we do not yet fu l ly  understand why the treatment is suc­
cessfu l .  We must continue to test theories i n  an effort to refine them i n  the context 
of human behavior, and eventual ly reformulate them to reflect more precisely what 
we actual ly  observe in practice. 
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CHAPTER 3 

Ethical Issues 
in Clinical Research 

We will complete our conceptual framework of clinical research by discussing ethical 
issues related to the conduct of human studies. We ask people to participate as subjects 
in studies for the purpose of gaining new knowledge that may or may not have an 
impact on their lives. Clinical research is conducted because we have questions and do 
not have the answers; therefore, participation in research may come with some risk to 
the health and well-being of the subjects. In this society, we recognize a responsibility 
to research subjects for assuring their rights as individuals. Since the middle of the 20th 
century, the rules of conducting research have been and continue to be discussed, leg­
islated and codified. 

The purpose of this chapter is to present the principles and practices that have 
become standards in the planning and implementation of research involving human 
subjects. These principles elucidate the ethical obligation of researchers to engage in 
meaningful research and to acknowledge the participation of not only the subjects 
under study but also professional colleagues who contribute substantially to a research 
project. We will cite the major documents that define public policy. 

I NTEG RITY OF TH E RESEARCH ER 
Researchers have a responsibility for honesty and integrity in all phases of the research 
process, beginning with choice of a research question. Researchers who are health pro­
fessionals must set priorities and pursue questions that are relevant to important health 
care issues. Today, for example, we see an emphasis on research to examine the out­
comes of emerging health care strategies. Changes in the population profile, public 
health problems and scientific or technological advances have stimulated research in 
specific areas, such as geriatrics, acquired immune deficiency syndrome (AIDS) and 
stem cell research. External forces such as the priorities of private and governmental 
funding agencies affect the research direction of most clinical scientists. These complex 
factors influence the selection of ongoing research efforts. 

Researchers also have an ethical responsibility to do clinical research that is mean­
ingful. We should be able to justify a project based on the potential scientific value of 
its results. This implies an obligation to base our research on rational theoretical prin­
ciples and to carry it out according to a sound research design with an appropriate 
sample. It also suggests that research should be conducted by competent investigators 
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who have the expertise to do reliable and valid work. It is not ethical to involve patients 
in a study, with potential risks to them, when the study has little chance of making a 
scientific contribution. 

During data collection researchers must be careful to minimize the effect of per­
sonal bias in measurement. Rosenthal1 has described several types of experimenter bias 
that can have significant effects on experimental outcomes. These include unconscious 
or purposeful inaccuracies in measurement that will tend to support the research 
hypothesis and influential interactions between researcher and subject that alter the 
subject's behavior. Bias cannot be eliminated entirely simply because of human nature, 
but it should be recognized and controlled as much as possible. 

Unfortunately, there have been several instances of misconduct in the medical 
research community such as falsification or misrepresentation of data that serve only to 
hinder the pursuit of truth and progress.2 Statistical procedures should be appropriate, 
and should not be used to manipulate data for the sole purpose of obtaining a signifi­
cant result. All data should be included in an analysis, and true differences or the lack 
of true differences should be reported. Researchers should be aware of potential con­
flicts of interest that may lead to misconduct. It is not unusual today to find research 
funded by government or private agencies or equipment manufacturers. The researcher 
should know who would control the dissemination of information. That agent may 
want to suppress results that do not conform to expectations. The researcher should be 
clear on who owns the data and who has access to it once the project is completed. 

A researcher has an obligation to publish findings and to be thorough and honest 
in reporting results. In the 2004 update of the Uniform Requirements for Manuscripts 
Submitted to Biomedical Journals, the International Committee of Medical Journal Edi­
tors has included a section on the obligation to publish negative results.3 The Uniform 
Requirements are accepted by over 500 journal editorial boards. 

Credit of authorship is an issue for research publications. Authors should have 
made major contributions to a project,3 although many research directors are routinely 
listed as a formality. Some journals now require a description of the role of each contrib­
utor. The order in which authors are listed in the byline is usually determined accord­
ing to each individual's contribution. Agreements about authorship should be made 
early in the course of a project to avoid later conflicts. Most research involves the input 
of many contributors, and researchers should not hesitate to give authorship credit 
where it is due. Authors should also give credit to those who helped during the project, 
but who might not merit authorship, through an acknowledgment. 

THE PROTECTION OF HUMAN RIGHTS 
I N  CLI N ICAL RESEARCH 
Our primary professional purpose in conducting clinical research is to document the 
effectiveness and efficiency of treatment intervention. Our patients or normal subjects 
are, therefore, the sine qua non of our research activities. Commitment to the protection 
of their rights and dignity must be inherent in the design and conduct of any clinical 
research project. 
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Research with human subjects requires adherence to three basic principles: auton­
omy of each individual, beneficence, and justice. Personal autonomy refers to self­
determination and the capacity of individuals to make decisions affecting their lives 
and to act on those decisions. Beauchamp and Childress4 describe autonomous action 
as intentional, carried out with understanding and without controlling influence. It is 
essential that researchers demonstrate all due respect for the elements of autonomy. 
Some individuals who may be appropriate subjects for research, such as children or 
patients with cognitive problems, may be unable to understand adequately. In these 
cases, the researcher is obliged to assure that an authorized surrogate decision maker is 
available, has the ability to make a reasoned decision and is committed to the well­
being of the compromised individual. 

Beneficence refers to the obligation to attend to the well-being of individuals. All 
who engage in clinical research are bound to "maximize possible benefits and minimize 
possible harm."5 The balance between risks and benefits must be weighed as a part of 
the decision to go forward with a specific project. Risks may be physical, economic, 
social or psychological. Potential benefits may include new knowledge that can be 
applied to future subjects or patients, or that may have a direct impact on study partic­
ipants, such as improved health status. The point is that the "risks to the subjects [must 
be] reasonable in relation to anticipated benefits."6 The analysis of the risk-benefit rela­
tionship measures the probability and magnitude of benefit against the probability of 
anticipated harm or discomfort. For example, if a new powerful chemotherapeutic 
agent with known serious side effects requires testing, the selection of normal subjects 
would be unacceptable; whereas testing on subjects who are terminally ill, and for 
whom the drug has the potential to effect a positive change, might be acceptable. 

Justice refers to fairness in the research process, or the equitable distribution of the 
benefits and burdens.4 This principle speaks to the fair selection of subjects who are 
appropriate for a given study, drawn from a defined population that is most likely to 
benefit from the research findings. The selection of subjects should not be discrimina­
tory on some irrelevant criterion, but based on reasons directly related to the problem 
being studied.5 The principle of justice also has meaning in multigroup studies where 
subjects have an equal chance of being assigned to an experimental or control (or alter­
native) group. Current practices are followed to ensure consideration of and adherence 
to these three basic principles. 

Use of Control Groups 
A historical dilemma for medical researchers has been the need for a control group, or 
placebo group, as a basis for experimental comparison. Randomized controlled trials 
(RCTs) have become an accepted way to determine whether an intervention has a sig­
nificant effect on subjects who receive the treatment compared to those who receive no 
treatment or a sham treatment. The RCT is preferred for this purpose over observation 
or retrospective analysis of data. Through the process of random assignment of subjects 
to the treatment or control group, researchers are best able to control confounding vari­
ables that could affect the outcome of the study. 
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A dilemma may arise when the researcher is also the clinician responsible for the 
care of the patient who might be a research subject. Rothman and Michels7 reported 
several examples of this problem in drug studies where a placebo condition was 
employed when, in fact, effective therapeutic methods existed. The current Declaration 
of Helsinki addresses this issue, stating that: "The benefits, risks, burdens and effective­
ness of a new method should be tested against those of the best current prophylactic, 
diagnostic, and therapeutic methods" (principle 29).8 In this case, the research goal is to 
determine which of the alternative treatments is more effective. This allows us to say 
that one treatment is different from another, but it does not establish if treatment con­
ditions are more effective than no intervention at all (see Chapter 10). 

The researcher can support the concept of a placebo control group from several per­
spectives. First, there may be some clinical conditions for which no treatments have 
been effective.8 In that case it is necessary to compare a new treatment with a no­
treatment condition. It is also necessary to make such a comparison when the purpose 
of the research is to determine whether a particular treatment approach is not effective. 
In situations where the efficacy of a treatment is being questioned because current 
knowledge is inadequate, it may actually be more ethical to take the time to make 
appropriate controlled comparisons than to continue clinical practice using potentially 
ineffective techniques. The researcher is obliged to inform the potential participants 
when a study is planned that includes a control group. Subjects should know that there 
is a chance that they will receive the treatment being studied and a chance that they will 
not receive the treatment. According to the 2002 edition of the Declaration of Helsinki, as 
a form of compensation, the experimental treatment may be offered to the control group 
patients after data collection is complete, if results indicate that treatment is beneficial 
(principle 30).8 As clinician-researchers, we are obliged to discuss alternative treatments 
that would be appropriate for each patient-subject if such alternatives are employed in 
clinical practice. This is an important element of the informed consent process that will 
be discussed later in this chapter. 

Evolution of Regu lations for the Conduct of Research 
I nvolving H uman Subjects 
Establishment of formal guidelines delineating rights of research subjects and obliga­
tions of professional investigators became a societal necessity as clear abuses of exper­
imentation came to light. In the United States, many unconscionable studies have been 
identified over the years.9 In one case, elderly patients were injected with live malignant 
cancer cells without their knowledge.10 Another much publicized study, begun in the 
1930s, withheld treatment from men with syphilis to observe the natural course of the 
disease.11 This study continued until the early 1970s, long after penicillin had been iden­
tified as an effective cure. 

The first formal guidelines document defining ethical human research practices was 
the Nuremberg Code of 1949. This document was developed in concert with the Nurem­
berg trials of Nazi physicians who conducted criminal experimentation on captive vic­
tims during World War II. The code clearly emphasized that every individual should 
voluntarily consent to participate as a research subject. Consent should be given only 
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after the subject has sufficient knowledge of the purposes, procedures, inconveniences, 
and potential hazards of the experiment. This principle underlies the current practice of 
obtaining informed consent prior to initiation of clinical research or therapeutic inter­
vention. The Nuremberg Code also addresses the competence of the investigator, stat­
ing that research "should be conducted only by scientifically qualified persons." 

The World Medical Association originally adopted the Declaration of Helsinki in 
1964. This document addressed for the first time the concept of independent review of 
research protocols by a committee of individuals who are not associated with the pro­
posed project (Principle 13 in the current edition of the Declaration).8 These and other 
essential principles set forth in this document have been incorporated into the U.S. 
Department of Health and Human Services (DHHS) Rules and Regulations.6 The 
Declaration of Helsinki also declares that reports of research that has not been conducted 
according to stated principles should not be accepted for publication (Principle 27).8 
This principle has led to an editorial challenge to professional journals to obtain assur­
ance that submitted reports of human studies do indeed reflect proper attention to eth­
ical conduct. DeBakey12 suggests that all reports should contain information on the 
procedures used for obtaining informed consent and ethical review. Most journals now 
require acknowledgment that informed consent was obtained from subjects used in any 
research project. 

Based on the ethical principles guiding biomedical research and the rules and reg­
ulations promulgated pursuant to the 1974 National Research Act (PL-93-348), proce­
dures to ensure protection of human subjects in research have been delineated and are 
now considered "standard" throughout the United States. There must be a fully devel­
oped research proposal that identifies the problem or question to be studied and pro­
vides the rationale of, need for, and importance of the study. The research design must 
be clearly stated and deemed appropriate to answer the question. Informed consent 
must be obtained from individuals or their legally authorized representatives. This is 
usually accomplished by signature affixed to a written informed consent document. 
Both the written proposal and the informed consent form are submitted to an Institu­
tional Review Board for approval. 

The National Research Act (1976) established the National Commission for the Pro­
tection of Human Subjects of Biomedical and Behavioral Research. The deliberations 
and recommendations of this commission resulted in the Belmont Report (1979) that 
delineates the guiding principles discussed previously in this chapter and the manner 
in which these principles apply to human research studies.5 Based on that report, both 
the Department of Health and Human Services (DHHS) and the Food and Drug 
Administration (FDA) established the rules and regulations that govern the conduct of 
research in the United States today. The Office for Human Research Protection (OHPR) 
is the administrative arm of the DHHS that is responsible for implementing the regula­
tions and providing guidance to those who conduct human studies. 

The Health Insurance Portability and Accountability Act of 1996 (HIPAA) and the 
resultant regulations (the Privacy Rule) issued by the DHHS, Office of Civil Rights have 
added a new dimension to the process of protecting research subjects13,14 The DHHS 
regulations (45 CFR 46),6 known as the Common Rule, and the FDA regulations (21 CFR, 
parts 50 and 56)15 have always included rules for protecting individual confidentiality. 
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THE INSTITUTIONAL REVI EW BOARD 
According to federal regulations, an Institutional Review Board (IRB) must review 
research proposals prior to implementation to ensure that the rights of research subjects 
are protected.6 The IRB must be composed of at least five members. It may not consist 
of all males, or all females or all members of one professional group, although the IRB 
must be able to competently review the scientific details of proposed research. At least 
one member must be concerned primarily with nonscientific issues and may be a 
lawyer, clergyman or ethicist. One member, a "public" member, must not be otherwise 
affiliated with the institution where the research is to be conducted. One of the respon­
sibilities of the OHRP is to approve IRB documents that assure compliance with ethical 
principles and regulations. 

Review of Proposals 
The responsibility of the IRB is to review research proposals at convened meetings. The 
decision to approve, require modifications in, defer or deny approval of a proposal 
must be that of a majority. In arriving at a decision, the IRB considers the scientific merit 
of the project, the competence of the investigators, the risk to subjects, and the feasibil­
ity based on identified resources. If the project is not scientifically sound or practical, 
there can be no benefit; therefore, no risk to subjects is justified. Reviewers will consider 
the evidence that the risks and discomforts to the subject have been minimized and are 
sufficiently outweighed by the potential benefits of the proposed study. This is the risk­
benefit ratio. The Board also studies the procedures for selecting subjects, ensuring 
voluntary informed consent based on complete and understandable descriptions and 
conforming to the applicable elements of the Privacy Rule. The majority of proposals 
submitted to an IRB are reviewed in this detailed manner. 

Expedited or Exempt Review 
Some categories of research activity, however, may qualify for an expedited review or 
may be exempted from the review process. A project may qualify for expedited review 
in circumstances such as "recording data from subjects 18 years of age or older using 
noninvasive procedures routinely employed in clinical practice" and "moderate exer­
cise by healthy volunteers."6 In the case of an expedited review, the chairman and at 
least one designated member of the IRB conduct the review. The advantage of expe­
dited review is that it is usually completed in less time than that required for a full 
Board review. 

Projects may be exempted from committee review if they are surveys, interviews, 
or studies of existing records, provided that the data are collected in such a way that 
subjects cannot be identified. Surveys or interviews will only be given exempt status if 
they do not deal with sensitive issues, such as drug abuse, sexual behavior or criminal 
activity. Secondary analysis of existing data from databases ("limited data sets") where 
subject information is appropriately de-identified may be exempt. On the other hand, 
when actual patient clinic records are used, IRB approval is required.l6 Researchers 
must describe methods of coding data to assure patient confidentiality. Given the 
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advent of the HIPAA Privacy Rule, some institutions have eliminated the exempt 
review category. 

All proposals for studies involving human subjects must be submitted to the IRB, 
which then determines whether a project qualifies for full review, expedited review 
or is exempt. 

Institutional Guidelines 
Each institution establishes its own guidelines for review in accordance with federal 
and state regulations. Clinicians should, therefore, become familiar with the require­
ments in their own institutions. Clinicians should also be aware that the process could 
take several weeks, depending on the IRB's schedule and whether or not the proposal 
needs revision. This review process should be included in the timetable for any research 
project. No research on human subjects should be done without prior review and 
approval of a designated review committee. 

ELEM ENTS OF INFORMED CONSENT 
Perhaps the most important ethical tenet in human studies is the individual's ability to 
agree to participate with full understanding of what will happen to him. The informed 
consent process and all of its elements address the basic principles of autonomy, benef­
icence and justice. The components of the process consist of information elements, 
including disclosure of information and the subject's comprehension of that informa­
tion, consent elements, ensuring the voluntary nature of participation and the sub­
ject's competence to consent and authorization to use data in a manner specified in the 
protoco1.15'17 

I nformation Elements 

Subjects Must Be Fully Informed 
The informed consent process begins with an invitation to participate. A statement of 
the purpose of the study permits potential subjects to decide whether they believe in or 
agree with the worth and importance of the research. The process then requires that the 
researcher provide, in writing, a fair explanation of the procedures to be used and how 
they will be applied. This explanation must be complete, with no deception by virtue 
of commission or omission. Subjects should know what will be done to them, how long 
it will take, what they will feel, what side effects can be expected, and what types of 
questions they may be asked. If subjects cannot read the informed consent document, 
it should be read to them. Children should be informed to whatever extent is reason­
able for their age. Subjects should also know why they have been selected to participate 
in terms of inclusion criteria for the study, such as clinical condition or age. If the sub­
jects are patients, they should understand the distinction between procedures that are 
experimental and procedures, if any, that are proposed to serve their personal needs. 

An ethical dilemma occurs when complete disclosure of procedures might hinder 
the outcomes of a study by biasing the subjects so that they do not respond in a typical 
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way. When the risks are not great, review boards may allow researchers to pursue a 
deceptive course, but subjects must be told that information is being withheld and that 
they will be informed of all procedures after completion of data collection. For exam­
ple, when the research design includes a control or placebo group, subjects will not 
know what treatment they are receiving. They should know that they will be told their 
group assignment at the completion of the study. 

An important aspect of informed consent is the description of all reasonable fore­
seeable risks or discomforts to which the patient will be subjected, directly or indirectly, 
as part of the study. Risk refers to physical, psychological or social harm that goes 
beyond expected experiences in daily life. The researcher should detail the steps that 
will be taken to protect against these risks and the treatments that are available for 
potential side effects. For example, if a patient is likely to become fatigued as a result of 
performing maximal physical exercise, the researcher may include rest periods during 
the experimental trial. If a patient were receiving electrical stimulation, the researcher 
would explain the risk of shock and how that risk is minimized by proper grounding 
and by regular inspection of the equipment. The subject should be advised against such 
behaviors as taking certain medications or driving a car, which could be hazardous dur­
ing or after the experimental period. A statement should be included whereby subjects 
agree to exercise appropriate caution. They are not bound by this, but they should 
understand the potential harm of not honoring the agreement. If the research involves 
more than a minimal risk, a statement should be included concerning the availability of 
medical care and whether compensation will be provided. Subjects should also be 
informed of new information, such as the identification of previously unknown risks 
that becomes available during the course of the study. This may affect their willingness 
to continue participation. 

The researcher also delineates the potential benefits of participation. Some studies 
may result in a beneficial reduction of symptoms. For example, subjects who participate 
in a study to test the effectiveness of treatment for migraine headache may find their 
pain relieved by the experimental treatment. The subject should be advised that such a 
benefit is possible but is not guaranteed. Studies that are geared more toward theory 
testing may provide no direct benefits. The researcher should explain the potential 
application of theoretical findings and how the findings will contribute to future 
research or future patient care. 

When a study involves a form of therapeutic intervention, subjects must be 
informed that alternative treatments are available and that they have the right to choose 
among them instead of accepting the experimental intervention. Patients must also be 
told if "standard" treatments to which they are entitled are being withheld as part of 
the study. This information is essential if a patient is to make an informed decision 
about accepting the experimental conditions. 

Subject Information Should Be Confidential and Anonymous 
Research subjects should be told what steps are being taken to ensure confidentiality of 
all information, including descriptive and experimental data. Whenever possible, a 
subject's anonymity should be protected. This becomes an issue with surveys, for exam­
ple, when respondents wish to remain unidentified. In experimental situations 
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anonymity is often not feasible, but the researcher can code the data without using 
names. Identifying codes can be kept separate from the rest of the data. Researchers 
should also be aware of this responsibility when disseminating results. Researchers also 
have a responsibility to know the requirements of the Privacy Rule15•17 and the proce­
dures established by their Institutional Review Boards. 

If the subject is to be videotaped or photographed during the study, this should be 
disclosed in the consent form. The subject should know who will have access to tapes or 
photographs, who will keep them, and how they will be used. Subjects retain the right to 
review such material and to withdraw permission for its use at any time. Subjects should 
also be informed if one-way windows will be used and who the observers will be. 

The Informed Consent Form Must Be Written in Lay Language 
Informed consent is more than telling subjects about the research; the process implies 
that they understand what they are being told and what they are reading. The language 
must be clear and basic so that the average reasonable individual can follow it. Profes­
sional jargon is unacceptable. Instead of "perform a maximal isometric contraction," the 
subject should be told to "pull up as hard as you can without moving." This is the lan­
guage that clinicians use routinely in patient education. As a rule of thumb, language 
should be written for the lowest educational level that would be expected for subjects. 

The Researcher Must Offer to Answer Questions at Any Time 
The researcher is responsible for ensuring that the subject understands all relevant 
information. A verbal description is almost always a part of the process, so that the 
researcher can "personalize" the information for each subject. The subjects should have 
sufficient time to assimilate the details of the proposed project, prior to making their 
decision to participate. They should feel free to question the procedures at any time 
during the course of the study, and should be provided with the name and telephone 
number of an appropriate contact person. 

Consent Elements 
Consent Must Be Voluntary 
Subjects should participate in a research project of their own free will. Patients are usu­
ally quite motivated to help, but they must be informed that there is no penalty to them 
if they refuse. Some studies may involve monetary compensation for participation. It 
should be clear if such compensation will be received whether or not the subject com­
pletes the study. 

Special Consideration Must Be Given to Subjects 
Who Are Particularly "Vulnerable" 
Some individuals cannot give informed consent because they may not be able to under­
stand the information. In cases of mental illness, developmental disability, or dimin­
ished mental capacity, the ability of the subject to consent must be evaluated by the 
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researcher and others who know the subject well. If the subject is not competent, con­
sent must be provided by a legal guardian or advocate.6 

The regulations regarding children as research subjects require that parents or 
guardians give permission for participation. Furthermore, if a child is considered com­
petent to understand, regardless of age, his or her assent, that is, his or her affirmative 
agreement to participate must be obtained and documented. Researchers should be 
particularly cautious about influencing subjects who are considered "captive."7 For 
example, there are specific regulations regarding research involving prisoners.9 More 
subtle circumstances exist with the use of students or nursing home residents. In both 
cases, the sense of pleasing those in authority may affect the subjects' decisions. 

Subjects Must Be Free to Withdraw Consent at Any Time 
The informed consent document must indicate that the subject is free to discontinue 
participation for any reason at any time without prejudice; that is, the subject should be 
assured that no steps will be taken against him, and, if he is a patient, that the quality 
of his care will not diminish. This can occur before or during an experiment, or even 
after data collection when a subject might request that his data be discarded. It should 
also be clear that the researcher would discontinue the experiment at any time if neces­
sary for the subject's safety or comfort. 

The I nformed Consent Form 
All subjects must give informed consent prior to participating in a project. This is done 
by providing a written informed consent form that is signed and dated by the subject, 
researcher and a witness. Subjects should receive a copy of this form and the researcher 
must retain a signed copy. Although it is a general contractual agreement, the informed 
consent form is not binding on subjects. Subjects never waive their rights to redress if 
their participation should cause them harm. The form should not contain language that 
appears to release the researcher from liability. The required elements of an informed 
consent form are listed in Table 3.1. A sample informed consent form can be found in 
Appendix E. The format of this sample informed consent form is used in many institu­
tions. It specifically identifies and acknowledges all of the elements of informed con­
sent. Of special note, the signature page should not stand alone, but must contain some 
of the text of the document to show that the signatures are applied in the context of the 
larger document. 

Although written consent is preferable, some agencies allow oral consent in 
selected circumstances. In this case, a written "short form" can be used that describes 
the information presented orally to the subject or his or her legally authorized represen­
tative.6 This short form is submitted to the review committee for approval. 

Informed Consent and Usual Care 
Clinical research projects are often designed to test specific treatment protocols that are 
accepted as standard care, and subjects are recruited from those who would receive 
such treatments. Therapists often ask if informed consent is necessary for a research 
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TABLE 3.1 ELEMENTS OF INFORMED CONSENT 

1. Purpose of the research project 
• A clear explanation of the reason for doing the study and why it is important 
• Reason for selecting this particular individual 

2. Procedures 
• A clear detailed explanation of what will be done to or by the individual 

3. Risks and discomforts 
• Truthful and inclusive statements of risks that may result and discomforts that can be 

expected 
4. Benefits 

• A description of potential benefits of the individual participant, to the general knowledge, or 
to future administration of health care 

5. Alternatives to participation 
• A description of reasonable alternative procedures that might be used in the treatment of this 

individual when a treatment intervention is being studied 
6. Confidentiality 

• Statements of the procedures used to ensure the anonymity of the individual in collecting, 
storing, and reporting information and who (persons or agencies) will have access to the 
information 

• Specific authorization 
• What information may be used? 
• Who may use the information? 
• For what purpose? (May be referred to the description of the study) 
• Is there an expiration date? Is so, what is it? 
• This authorization must be signed as part of the informed consent document or as a sepa­

rate document. 
7. Request for more information 

• A statement that the individual may ask questions about or discuss participation in the study 
at any time, naming an individual to contact 

8. Refusal or withdrawal 
• A statement that the individual may refuse to participate or discontinue participation at any 

time without prejudice 
9. Injury statement 

• A description of measures to be taken if injury occurs as a direct result of the research 
activity 

10. Consent statement 
• A confirmation that the individual consents to participate in the research project 

11. Signatures 
• Participant 
• Parent or guardian (for the care of minors) 
• Assent of minors over age 7 

• Witness 

project when the procedures would have been used anyway. The answer is yes! Even 
where treatment is viewed as usual care, patients are entitled to understand alternatives 
that are available to them. Patients must always be informed of the use of the data that 
are collected during their treatments, and they should have sufficient information to 
decide to participate or not, regardless of whether treatment is viewed as experimental 
or accepted clinical practice. 
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COMM ENTARY 

A Patient Care Perspective 

The concepts of i nformed consent for human research have also been appl ied to 
medical practice. 1 8• 1 9  Patients entering hospitals are asked to sign standard consent 
forms that i ndicate agreement to routine medical care and tests. Additional forms are 
signed for surgery or special tests. Th is practice has not been appl ied as readi ly  to 
c l in ical situations i n  a l l ied health, a lthough the concepts of disclosure and vol untary 
participation are becoming more important to the protection of patients' rights. 
Although the idea of explain ing treatments to patients is by no means unusual, the 
structure and formal requ i rements of informed consent have important impl ications 
for the patient-provider relationsh ip. The c l i n ic ian can give the patient a description 
of the planned treatment and avai lable alternatives and explain i nherent risks, con­
sequences, advantages and disadvantages. C l i n icians recognize the poss ib i l ities of 
infl icting harm on patients through thermal modal ities, resistive exercise, or mobi­
l ization and should identify these potential effects prior to treatment. It is not neces­
sary for the average patient to understand the physiological rationale for treatment, 
but c l i n icians shou ld be able to explain things in reasonable deta i l  and with i n  the 
scope of the patient's understanding. With sufficient i nformation, the patient can par­
ticipate in the setting of treatment goals, consider whether or not he or she wants to 
be treated, and express a preference for particu lar types of treatment. In th is manner, 
patients, l i ke research subjects, can assume an appropriate role i n  making decisions 
about the activities that affect their l ives. 
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C HAPTER 4 

Principles 
Me asurement 

Scientists and clinicians use measurement as a way of understanding, evaluating and 
differentiating characteristics of people and objects. Measurement provides a mecha­
nism for achieving a degree of precision in this understanding, so that we can describe 
physical or behavioral characteristics according to their quantity, degree, capacity or 
quality.1 We can document that a patient's shoulder can flex to 75 degrees, rather than 
say motion is "limited," or indicate that the air temperature is 95° F, rather than just 
"hot." This ability helps us communicate information in objective terms, giving us a 
common sense of "how much" or "how little" without ambiguous interpretation. Prin­
ciples of measurement, therefore, are basic to our ability to describe phenomena, 
demonstrate change or relationship, and to communicate this information to others. 

Measurement is used as a basis for making decisions or drawing conclusions in sev­
eral ways. At its most basic, measurement is used to describe the quality or quantity of 
an existing variable, such as the measurement of intelligence, attitude, range of motion 
or muscle strength. We can also use measurement to make absolute decisions based on 
a criterion or standard of performance, such as the requirement that a student achieve 
at least a grade of C to pass a course or that a certain degree of spinal curvature be pres­
ent to indicate a diagnosis of scoliosis. We use measurement as a basis for choosing 
between two courses of action. In this sense a clinician might decide to implement one 
treatment approach over another based on the results of a comparative research study. 
Clinicians use measurement as a means of evaluating a patient's condition and response 
to treatment; that is, we measure change or progress. We also use measurements to com­
pare and discriminate between individuals or groups. For instance, a test can be used to 
distinguish between children who do and do not have learning disabilities or between 
different types of learning disabilities. Finally, measurement allows us to draw conclu­
sions about the predictive relationship between variables. We might use grades on a col­
lege entrance examination to predict a student's ability to succeed in an academic 
program. We can measure the functional status of an elderly patient to determine the 
level of assistance that will be required when the patient returns home. There are virtu­
ally no decisions or clinical actions that are independent of some type of measurement. 

Measurement has been defined as the process of assigning numerals to variables to 
represent quantities of characteristics according to certain rules.2 The purpose of this chapter 
is to explore this definition as it is applied to clinical research. In doing so, we consider 
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several aspects of measurement theory and discuss how these relate to measurement, 
analysis and interpretation of clinical variables. 

QUANTIFICATION AN D M EASUREMENT 
The first part of the definition of measurement emphasizes the process of assigning 
numerals to variables. A numeral is a symbol or label in the form of a number. A variable 
is a property that can differentiate individuals or objects. It represents an attribute that 
can have more than one value. Value can denote quantity, such as age or blood pressure, 
or quality, such as gender or geographic region. Numerals are used to represent quali­
tative values, with no quantitative meaning. Therefore, we can assign numerals to foot­
ball players, or code data on a questionnaire using a "0" to represent Male and a "1" to 
represent Female. A numeral becomes a mathematical number only when it represents 
a known quantity. 

A number reflects how much of an attribute or variable is present. A continuous 
variable can theoretically take on any value along a continuum within a defined range. 
Between any two values an indefinitely large number of fractional values can occur. In 
reality, continuous values can never be measured exactly, but are limited by the preci­
sion of the measuring instrument. For instance, joint range could be measured as 50 
degrees, 50.5 degrees or even 50.3 degrees, depending on the gradations on the 
goniometer and skill of the measurer. Strength, distance, weight, and chronological 
time are other examples of continuous variables. 

Other variables can be described only in whole units, and are considered discrete 
variables. Heart rate, for example, is measured in beats per minute, not in fractions of 
a beat. Variables such as the number of trials needed to learn a motor task or the num­
ber of children in a family are also examples of discrete variables. Qualitative variables 
represent discrete categories, such as male/female. When qualitative variables, such as 
gender, can take on only two values, they are called dichotomous variables. 

Precision refers to the exactness of a measure. For statistical purposes, this term is 
usually used to indicate the number of decimal places to which a number is taken. 
Therefore, 1.473826 is a number of greater precision than 1.47. The degree of precision 
in a measurement is a function of the sensitivity of the measuring instrument and data 
analysis system as well as the variable itself. It is not useful, for example, to record 
blood pressure in anything less than integer units (whole numbers with no decimal 
places). It may, however, be meaningful to record strength to a tenth or hundredth of a 
kilogram. Computer programs will often record values with four or more decimal 
places by default. It is generally not informative, however, to report results to so many 
places. How important is it to know that a mean age is 84.5 years as opposed to 84.5283 
years? Cohen3 suggests that such values create statistical "clutter" and are not meaning­
ful for understanding data. 

THE INDIRECT NATURE OF M EASUREMENT 
The definition of measurement also indicates that measured values represent quantities 
of characteristics. Most measurement is a form of abstraction or conceptualization; that 
is, very few variables are measured directly. Range of motion and length are among the 
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few examples of measures that involve direct observation of a physical property. We 
can actually see how far a limb rotates or how tall a person is, and we can compare 
angles and heights between people. Most characteristics are not directly observable, 
however, and we can measure only a correlate of the actual property. Therefore, most 
behavioral variables are actually indirect measures of these characteristics. For exam­
ple, we do not observe temperature, but only the height of a column of mercury in a 
thermometer; we are not capable of visualizing the electrical activity of a heartbeat or 
muscle contraction, although we can evaluate the associated recording of an electrocar­
diogram (EKG) or electromyogram (EMG); force is observable only as the reading on a 
dynamometer, not as movement of the contractile elements of muscle. For most vari­
ables, then, we use some form of direct observation to infer a value for a phenomenon. 

Constructs 
The ability to measure a variable, no matter how indirectly, is dependent on one's abil­
ity to define it. Unless we know what a term means we cannot show that it exists. This 
is not difficult for variables such as temperature, weight, and heart rate, which can be 
defined by direct physical or physiological methods, but is much harder for abstract 
terms such as intelligence, health, strength, or pain. Any explanation of what these vari­
ables mean will undoubtedly involve descriptions of behaviors or outcomes that indi­
cate if someone is "intelligent," "healthy," "strong," or "in pain"; however, there is no 
logical, unidimensional definition that will satisfy these terms. For instance, intelligence 
cannot be assessed as a single estimate of either verbal performance, memory, or quan­
titative skill, but is conceptualized as a complex, combined measure of IQ. Different 
aspects of strength may be assessed by dynamometry, strain gauges, lifting weights, or 
manual resistance, with specific reference to type of contraction, joint position, speed of 
movement, and type of resistance. No one measurement can be interpreted as an 
absolute measure of a person's "strength." 

These types of abstract variables are called constructs (see Chapter 2). Measure­
ment of a construct is based on expectations of how a person who possesses the speci­
fied trait would behave, look or feel in certain situations. Therefore, a construct is 
associated with some value or values that are assumed to represent the original vari­
able. Some constructs are derived from one or more quantities of other variables.4 For 
instance, velocity is calculated by first determining values for distance and time. Work 
is derived from the product of force and distance. These constructs have no inherent 
meaning except as a function of other constructs. 

Most constructs must be defined as a function of many interrelated concepts or 
multiple dimensions. For example, we each have a conceptual understanding of the 
clinical term "disability," but researchers still struggle to develop meaningful ways to 
measure it. How might a physical therapist look at disability as compared with an occu­
pational therapist, nurse, psychologist, neurologist, orthopedist, or social worker? Can 
we devise a scale so that one sum or average number is indicative of a patient's level of 
disability? Many such scales exist. But can we make the inferential leap from this num­
ber to an assessment of the psychological, social, physical, and physiological manifes­
tations of disability? To do so we must be able to define the construct of disability in 
terms of specific and limited properties of behavior that are relevant to our own frame 
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of reference. It is important to appreciate this difficulty in operationally defining con­
struct measures as a basis for interpretation of clinical variables. 

RULES OF M EASUREMENT 
The last element of the definition of measurement concerns the need for establishing 
purposeful and precise rules for assigning values to objects. These rules designate how 
numbers are to be assigned, reflecting both amount and units of measurement. In some 
cases the rules are obvious and easily learned, as in the use of a yardstick (inches), scale 
(pounds), goniometer (degrees), or dynamometer (pounds of force). This is not the case 
for many clinical variables, for which the rules of measurement must be invented. Con­
cepts such as sensation, quality of life, muscle tone, manual resistance, gait, function, 
and developmental age have been operationally defined by researchers who have 
developed instruments with complex rules of measurement that are by no means intu­
itive or obvious. Often, these rules require rigorous training and practice for the instru­
ments to be applied effectively. 

The criteria for assigning values and units to these types of variables must be sys­
tematically defined so that levels of the behavior can be objectively differentiated; that 
is, rules of assignment stipulate certain relationships among numbers or numerals. For 
example, we assume that relationships are consistent within a specific measurement 
system, so that objects or attributes can be equated or differentiated. For instance, we 
assume that either A equals B, or A does not equal B, but both cannot be true. We also 
assume that if A equals B, and B equals C, then A should also equal C (see Box 4.1). 

Numbers are also used to denote relative order among variables. If A is greater than 
B, and B is greater than C, it should also be true that A is greater than C. We can readily 
see how this rule can be applied to a direct variable such as height. Similarly, we might 
assume that if A is stronger than B, and B is stronger than C, then A is also stronger than 
C. As logical as this may seem, however, there are measurement scales that do not fit 
within this structure. For example, if patient A receives a 4+ grade on a manual muscle 
test, and patient B receives a 4 grade, we cannot assume that A is stronger than B. The 
"rules" for manual muscle testing define a system of order that is valid within an indi­
vidual, but not across individuals. A similar system is employed with a visual analogue 
scale for evaluating pain. Two patients may mark a point at 6.5 em, but there is no way 
to establish that their levels of pain are equal. If, after a period of treatment, each patient 
marks a point at 2.0 em, we know that their pain has decreased, but we still do not know 
if one patient has more pain than the other. Therefore, a researcher must understand the 
conceptual basis of a particular measurement to appreciate how the rules for that meas­
urement can logically be applied and interpreted. 

Rules of measurement also apply to the acceptable operations with which numer­
als can be manipulated. For instance, not all types of data can be subjected to arithmetic 
operations such as division and multiplication. Some values are more appropriately 
analyzed using proportions or frequency counts. The nature of the attribute being 
measured will determine the rules that can be applied to its measurement. To clarify 
this process, four scales or levels of measurement have been identified-nominal, 
ordinal, interval, and ratio--each with a special set of rules for manipulating and inter-
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BOX 4.1 When Does "A" Not Equal "B"? 

If you ever doubt the "far-reaching" consequences of not specifying well­
defined terms, consider this. On December 11, 1998, the National Aeronau­
tics and Space Administration (NASA) launched the Mars Climate Orbiter, 

designed to be the world's first 
complete weather satellite orbiting 
another planet, with a price tag of 
$125 million. 

On September 23, 1999, the 
orbiter crashed into the red planet, 
disintegrating on contact. After a 
415 million mile journey over nine 
months, the orbiter came within 36 
miles of the planet's surface, lower 
than the lowest orbit the craft was 
designed to survive. 

After several days of investiga­
tion, NASA officials admitted to an 

www.googleimages.com embarrassingly simple mistake. The 
project team of engineers at Lock­

heed Martin in Colorado, who had built the spacecraft, transmitted the 
orbiter's final course and velocity to Mission Control in Pasadena using 
units of pounds per second of force. The navigation team at Mission Control, 
however, used the metric system in their calculations, which is generally the 
accepted practice in science and engineering. Their computers sent final 
commands to the spacecraft in grams per second of force (a measure of new­
tons). As a result, the ship just flew too close to the planet's surface, and was 
destroyed by atmospheric stresses. 

Oops! 

Sources: http: I I www4.cnn.com/TECH/ space/9909 /24/ mars.folo.03 I index.html; 
http:/ /www.sfgate.com; http:/ /nssdc.gsfc.nasa.gov /nmc/tmp/1998-073A.html. 

preting numerical data.5 The characteristics of these four scales are summarized in 
Figure 4.1. 

Nominal Scale 
The lowest level of measurement is the nominal scale, also referred to as the 
classificatory scale. Objects or people are assigned to categories according to some crite­
rion. Categories may be coded by name, number, letter or symbol, although none of 
these have any quantitative value. They are used purely as labels for identification. 
Blood type, handedness, type of mental illness, side of hemiplegic involvement, and 
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FIGURE 4.1 Summary of characteristics of scales of measurement. 

area code are examples of nominal variables. Questionnaires often code nominal data 
as numerals for responses such as (0) no and (1) yes, (0) male and (1) female, or (0) dis­
agree and (1) agree. 

Based on the assumption that relationships are consistent within a measurement 
system, nominal categories are mutually exclusive, so that no object or person can logi­
cally be assigned to more than one. This means that the members within a category must 
be equivalent on the property being scaled, but different from those in other categories. 
We also assume that the rules for classifying a set of attributes are exhaustive; that is, 
every subject can be accurately assigned to one category. Classifying sex as male-female 
would follow these rules. Classifying hair color as only blonde or brunette would not. 

The numbers or symbols used to designate groups on a nominal scale can be altered 
without changing the values or characteristics they identify. The categories cannot, 
therefore, be ordered on the basis of their assigned numerals. The only permissible 
mathematical operation is counting the number of subjects within each category, such as 
35 males and 65 females. Statements can then be made concerning the frequency of 
occurrence of a particular characteristic or the proportions of a total group that fall 
within each category. 

Ord inal Scale 
Measurement on an ordinal scale requires that categories be rank ordered on the basis 
of an operationally defined characteristic or property. Data are organized into adjacent 
categories exhibiting a "greater than-less than" relationship. Many clinical measure-
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ments are based on this scale, such as sensation (normal > impaired > absent), spastic­
ity (none < minimal < moderate < severe), and balance (good > fair > poor). Most clin­
ical tests of constructs such as function, strength and development are also based on 
ranked scores. Surveys often create ordinal scales to describe attitudes or preferences 
(strongly agree > agree). 

The intervals between ranks on an ordinal scale may not be consistent and, indeed, 
may not be known. This means that although the objects assigned to one rank are con­
sidered equivalent on the rank criterion, they may not actually be of equal value along 
the continuum that underlies the scale. Therefore, ordinal scales often record ties even 
when true values are unequal. For example, manual muscle test grades are defined 
according to ranks of 5 > 4 > 3 > 2 > 1 > zero. Although 4 is always stronger than 3, this 
scale is not sensitive enough to tell us what this difference is. Therefore, the interval 
between grades 4 and 3 on one subject will not necessarily be the same as on another 
subject, and one 4 muscle may not be equal in strength to another 4 muscle. 

Ordinal scales can be distinguished on the basis of whether or not they contain a nat­
ural origin, or true zero point. For instance, military rank is ordinal, but has no zero rank. 
Manual muscle testing grades do have a true zero, which represents no palpable muscle 
contraction. In some cases, an ordinal scale can incorporate a natural origin within the 
series of categories, so that ranked scores can occur in either direction away from the ori­
gin (+ and -). This type of scale is often constructed to assess attitude or opinion, such as 
agree-neutral-disagree. For construct variables, it may be impossible to locate a true 
zero. For example, what is zero function? A category labeled "zero" may simply refer to 
performance below a certain criterion or at a theoretical level of dependence. 

Limitations for interpretation are evident when using an ordinal scale. Perhaps 
most important is the lack of arithmetic properties for ordinal "numbers." Because 
ranks are assigned according to discrete categories, ordinal scores are essentially labels, 
similar to nominal values; that is, an ordinal value does not represent quantity, but only 
relative position within a distribution. For example, manual muscle test grades have no 
arithmetic meaning. No matter how one chooses to label categories, the ranks do not 
change. Any scheme can be used to assign values, as long as the numbers get bigger 
with successive categories. Therefore, we know a manual muscle test grade of 4 is 
greater than 2, but it does not mean twice as much strength. We know that the distance 
from 2 to 3 is not equal to the distance from 3 to 4, even within one individual. This 
means that the difference between two ordinal scores will be difficult to interpret. 

This concern is relevant to the use of ordinal scales in clinical evaluation, especially 
those that incorporate a sum. For instance, the Functional Independence Measure (FIM) 
uses the sum of 18 items, each scored 1-7, to reflect the degree of assistance needed in 
functional tasks.6 The Oswestry Low Back Pain Disability Questionnaire is scored as the 
total of 10 items, each scored on 0-5 scale, with higher scores representing greater dis­
ability? The sums are used to describe a patient's functional level, but their interpreta­
tion for research purposes must acknowledge that these numbers are not true 
quantities, and therefore, have no coherent meaning.8 Therefore, ordinal scores are gen­
erally considered appropriate for descriptive analysis only. Although ordinal numbers 
can be subjected to arithmetic operations, such as calculating an average rank for a 
group of subjects or subtracting to document change over time, such scores are not 
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meaningful as true quantities. Issues related to interpreting ordinal scores are discussed 
further in Chapter 6 (see also the Commentary in this chapter). 

I nterval Scale 
An interval scale possesses the rank-order characteristics of an ordinal scale, but also 
demonstrates known and equal distances or intervals between the units of measure­
ment. Therefore, relative difference and equivalence within a scale can be determined. 
What is not supplied by an interval scale is the absolute magnitude of an attribute 
because interval measures are not related to a true zero (similar to an ordinal scale with­
out a natural origin). This means that negative values may represent lesser amounts of 
an attribute. Thus, the standard numbering of calendar years (B.C. and A.D.) is an inter­
val scale. The year 1 was an arbitrary historical designation, not the beginning of time. 
Measures of temperature using Fahrenheit and Celsius scales are also at the interval 
level. Both have artificial zero points that do not represent a total absence of heat and 
can indicate temperature in negative degrees. Within each temperature scale we can 
identify that the numerical difference between 10° and 20° is equal to the numerical dif­
ference between 70° and 80° (in each case 10°); however, these differences are based on 
the numerical values on the scale, not on the true nature of the variable itself. Therefore, 
the actual difference in amount of heat or molecular motion generated between 10° and 
20° is not necessarily the same as the difference between 70° and 80°. 

Because of the nature of the interval scale, we must consider the practical implica­
tions for interpreting measured differences. Interval values can be added and sub­
tracted, but these operations cannot be used to interpret actual quantities. The interval 
scale of temperature best illustrates this point, as shown in Figure 4.2. We know that the 
freezing point on the Celsius scale is 0°, while on the Fahrenheit scale it is 32°. This is 
so because the zero point on each scale is arbitrary. A temperature of 50° Fahrenheit cor­
responds to 10° Celsius. Therefore, while each scale maintains the integrity of its inter­
vals, measurement of the same quantities will yield different scores. Although the 
relative position of each quantity is the same, the actual values of each measurement are 
quite different. Therefore, it is not reasonable to develop a ratio based on interval data 
because the numbers cannot be logically measured against true zero. 

Because the actual values within any two interval scales are not equivalent, one 
interval scale cannot be directly transformed to another. For instance, the designation 

Celsius (C I I  I li IY I I I i J 
. 

0 32 50 86 
. 

Fahrenheit 

FIGURE 4.2 Temperature as an interval scale, showing quantities expressed with two different 
zero points on Celsius and Fahrenheit scales. 
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of 100 oc cannot be compared with 100 °F; however, because the actual values are irrel­
evant, it is the ordinal positions of points or the equality of intervals that must be main­
tained in any mathematical operation. Therefore, we can transform scales by 
multiplying or adding a constant, which will not change the relative position of any 
single value within the scale. After the transformation is made, intervals separating 
units will be in the same proportion as they were in the original scale. This is classically 
illustrated by the transformation of Fahrenheit to Celsius by subtracting 32 and multi­
plying by 5/9. 

Ratio Scale 
The highest level of measurement is achieved by the ratio scale, which is an interval 
scale with an absolute zero point that has empirical, rather than arbitrary, meaning. A 
score of zero at the ratio level represents a total absence of whatever property is being 
measured. Therefore, negative values are not possible. Range of motion, height, weight 
and force are all examples of ratio scales. Although a zero on such scales is actually the­
oretical (it could not be measured), it is nonetheless unambiguous. Numbers on this 
scale reflect actual amounts of the variable being measured. It makes sense, then, to say 
that one person is twice as heavy as another, or that one is half as tall as another. Ratio 
data can also be directly transformed from one scale to another, so that 1 in. = 2.54 em, 
and 1 pound = 2.2 kg. All mathematical and statistical operations are permissible with 
ratio level data. 

Identifying Measurement Scales 
As shown in Figure 4.1, the four scales of measurement constitute a hierarchy based on 
the relative precision of assigned values, with nominal measurement at the bottom and 
ratio measurement at the top. Although most variables will be optimally measured at 
one level of measurement, it is always possible to operationally define a variable at 
lower levels. Suppose we were interested in measuring step length in a sample of four 
children. We could use a tape measure with graduated centimeter markings to measure 
the distance from heelstrike to heelstrike. This would constitute a ratio scale because we 
have a true zero point on a centimeter scale and clearly equal intervals. Our measure­
ments would allow us to determine the actual length of each child's step, as well as 
which children took longer steps than others. Hypothetical data for such measures are 
presented in Table 4.1. 

TABLE 4.1 HYPOTHETICAL DATA FOR STEP LENGTH MEASURED 
ON DIFFERENT SCALES 

Interval Ordinal Nominal 
Subject Ratio Measure Measure Measure Measure 

A 23 4 2 Long 
8 24 5 3 Long 
c 1 9  0 1 Short 
D 28 9 4 Long 
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We could convert these ratio measures to an interval scale by arbitrarily assigning 
a score of zero to the lowest value and adjusting the intervals accordingly. We would 
still know which children took longer steps, and we would have a relative idea of how 
much longer they were, but we would no longer know what the actual step length was. 
We would also no longer be able to determine that Subject D takes a step 1 .5 times as 
great as Subject C. In fact, using interval data, it erroneously appears as if Subject D 
takes a step 9 times the length of Subject C. 

An ordinal measure can be achieved by simply ranking the children's step lengths. 
With this scale we no longer have any indication of the magnitude of the differences. 
On the basis of ordinal data we could not establish that Subjects A and B were more 
alike than any others. We can eventually reduce our measurement to a nominal scale by 
setting criteria for "long" versus "short" steps and classifying each child accordingly. 
With this measurement we have no way of distinguishing any differences in perform­
ance between Subjects A, B and D. 

Clearly, we have lost significant amounts of information with each successive 
reduction in scale. It will always be to the researcher's advantage, therefore, to achieve 
the highest possible level of measurement. Data can always be manipulated to use a 
lower scale, but not vice versa. In reality, clinical researchers usually have access to a 
limited variety of measurement tools, and the choice is often dictated by the instrumen­
tation available and the therapist's preference or skill. We have measured step length 
using four different scales, although the true nature of the variable remains unchanged. 
Therefore, we must distinguish between the underlying nature of a variable and the 
scale used to measure it. 

COMM ENTARY 

Do I Really Care about the Level of Measurement? 

Identify ing the level of measurement for a particular variable is not always as simple 
as it seems. The u nderlying properties of many behavioral variables do not fit neatly 
i nto one scale or another.9 Consider the use of a visual analog scale to eva luate the 
i ntensity of pain .  A patient makes a mark along a 1 0  em l ine to i ndicate his level of 
pai n, on a continuum from "no pai n" to "pa in  as bad as it cou ld be." The mark can 
be measured in precise m i l l imeters from the left anchor. When the patient makes a 
second mark, however, to show a change i n  pai n  level, can we i nterpret the distance 
on a ratio scale, or does it actual ly represent a ranked or ordinal  measurement? Is 
the patient able to equate the exact difference in m i l l imeters with h i s  change i n  pain?  
How different is th i s  from asking the patient to rate h is  level of pai n  on an ordinal  
scale of 1 -1 0? Researchers have shown that these questions are not s imple, and can 
be affected by many factors, such as instructions given to subjects, the length of the 
l i ne and the words used at the anchors. 10-1 2 These considerations bear out the mul­
tidimensional i nfluences on measurement properties. 

An understanding of the scales of measurement is more than an academic exer­
c ise. The importance of determin ing the measurement scale for a variable l ies in the 
determi nation of which mathematical operations are appropriate and which i nter-
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pretations are meaningful for the data. I n  the classical view, nominal and ord inal data 
can be described by frequency counts; interval data can be added or subtracted; and 
only ratio data can be subjected to multipl ication and d ivision.5 Accordi ng to these 
guidelines, tests of statistical i nference that require arithmetic manipulation of data (as 
opposed to just ranking scores) shou ld be applied only to variables on the interval or 
ratio scale; however, we find innumerable instances throughout the c l inical and behav­
ioral science l iterature where these statistical operations are used with ordinal data. 

The question is, How serious are the consequences of misassumptions about 
scale properties to the i nterpretation of statistical research resu lts? Some say qu ite 
serious,8· 1 3  whi le  others i ndicate that the answer is "not very."1 4· 1 5  Many researchers 
are comfortable constructing ordinal  scales using categories that are assumed to log­
ica l ly represent equal i nterva ls of the test variable and treating the scores as i nterval 
data, 14 · 16 especial ly when the scale i ncorporates some type of natural origin .  Vel le­
man and Wilki nson1 7  have proposed that the four  measurement scales may not be 
suffic ient for categorizing a l l  forms of measurement, and that the level of measure­
ment must be determined with in  the context of the instrument and the questions 
asked of the data. They suggest that statistical procedures be app l ied accord ing to 
what is meani ngful i n  the data, not strictly by the scale used. Transformations of data 
may change the measurem�nt attributes, or new i nformation about a measure may 
help to i nterpret the data differently. For i nstance, values such as percents and frac­
tions may need to be handled differently, depend ing on how they are derived and 
how they wi l l  be used. 

Because ord inal measures occur frequently in the behavioral and social sciences, 
this issue is of sign ificant import to the reasonable interpretation of c l in ical data. Ker­
l inger18 suggests that most psychological and educational scales approximate equal 
i ntervals fai rly wel l, and that the resu lts of statistical analyses using these measures 
provide satisfactory and useful i nformation. Measurement properties of many ord inal 
scales have been studied using Rasch analysis (see Chapter 1 5), providing a reason­
able model for handl i ng the data as i nterva l . 1 9-22 For i nstance, the Functional Inde­
pendence Measure has been shown to demonstrate interval properties.23 

Many scales used in c l i n ical practice have not, however, been subjected to suf­
ficient val idation for us to be tota l ly comfortable with th is assumption. It is by no 
means clear how we can i nterpret i ntervals between manual muscle testing grades. 
How can we judge interva ls with in  functional status measures? Is the difference i n  
disab i l ity level between independent function and min imal assistance the same as 
the difference between min imal assistance and moderate assistance? Are we able to 
distinguish sma l l  amounts of change, or is there a threshold of change that must 
occur before we see a change i n  grade?24 

We wi l l  not attempt to settle this ongoing statistical debate. Th is issue w i l l  take 
on varied importance dependi ng on the nature of the variables being measured and 
the prec ision needed for meani ngfu l i nterpretation. For the most part, it would seem 
appropriate to continue treating ord inal measurements as ranked rather than i nterval 
data; however, if the interval approach is defensible, the degree of error associated 
with this practice may be qu ite tolerable i n  the long run .9·25 
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Cl in ical researchers must scruti n i ze the underly ing theoretical construct that 
defines a scale. Any mathematical manipu lation can be performed on any set of 
numbers, but those manipulations may not contribute to an understandi ng of the 
data. In h i s  c lass ical paper on footba l l  jersey numbers, Lord26 cautions that numbers 
don't know where they came from and they wi l l  respond the same way every time! 
We can mu ltip ly 2 x 4 and get the same answer every time, whether the numbers 
represent footba l l  jerseys, manual muscle test grades or codes for items on a sur­
vey-but w i l l  the answer mean anyth i ng? The numbers may not know, but the 
researcher must understand their  origi n to make reasonable i nterpretations. 

Perhaps it i s  also prudent to caution against judging the worthiness of a meas­
urement based on its scale. Although ratio and i nterval data provide greater preci­
sion, they may not provide the best measurement under given c l i n i cal conditions. 
Moreover, c l i n i cians w i l l  often uti l i ze ratio measures to make ordinal  judgments 
about a patient's condition;27 that is, the exact va lue of range of motion (ratio) may 
not be as important as the determ ination that the patient has improved in functional 
level (ordi nal), or simply that she is ready to return to work (nominal) .  As we strive 
for evidence-based practice, we remai n  responsible for justify ing the appl ication of 
statistical procedures and the subsequent i nterpretations of the data. 
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CHAPTER 5 

Reliability 
Measurements 

The usefulness of measurement in clinical research and decision making depends on 
the extent to which clinicians can rely on data as accurate and meaningful indicators 
of a behavior or attribute. The first prerequisite, at the heart of measurement, is 
reliability, or the extent to which a measurement is consistent and free from error. Reli­
ability can be conceptualized as reproducibility or dependability. If a patient's behavior 
is reliable, we can expect consistent responses under given conditions. A reliable exam­
iner is one who will be able to measure repeated outcomes with consistent scores. Sim­
ilarly, a reliable instrument is one that will perform with predictable consistency under 
set conditions. Reliability is fundamental to all aspects of measurement, because with­
out it we cannot have confidence in the data we collect, nor can we draw rational con­
clusions from those data. 

The second prerequisite is validity, which assures that a test is measuring what it 
is intended to measure. Validity is necessary for drawing inferences from data, and 
determining how the results of a test can be used. Both reliability and validity are essen­
tial considerations as we explore ways in which measurement is used in both clinical 
practice and research. We will address issues of validity in depth in the next chapter. 

The purpose of this chapter is to present the conceptual basis of reliability and to 
describe different approaches for testing the reliability of clinical measurements. Statis­
tical procedures for reliability testing are presented in Chapter 26. 

M EASUREMENT ERROR 
The nature of reality is such that measurements are rarely perfectly reliable. All 
instruments are fallible to some extent, and all humans respond with some inconsis­
tency. Consider the simple process of measuring an individual's height with a tape 
measure. If measurements are taken on three separate occasions, either by one tester 
or three different testers, we can expect to find some differences in results from trial 
to trial, even when the individual's true height has not changed. If we assume all the 
measurements were made using the same exact procedures and with equal concern 
for accuracy, then we cannot determine which, if any, of these three values is a true 
representation of the subject's height, that is, we do not know how much error is 
included in these measurements. 

77 
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Theoretically, then, it is reasonable to look at any observed score (X) as a function of 
two components: a true score (T) and an error component (E). This relationship is summa­
rized by the equation 

X = T ± E (5.1) 

This expression suggests that for any given measurement (X), a hypothetically true or 
fixed value exists (T), from which the observed score will differ by some unknown 
amount (E). The true component is the score the subject would have gotten had the 
measurement been taken by a perfect measuring instrument under ideal conditions. 
The difference between the true value and the observed value is measurement error, 
or "noise" that gets in the way of our finding the true score. For example, if we meas­
ure a height of 65 in., when the true height is 65.5 in., our assessment will be too short; 
that is, our measurement error is -0.5 in. On a second assessment, if we measure 66 in., 
our measurement error will be +0.5 in. In reality, we cannot calculate these error com­
ponents because we do not know what the true score really is. Therefore, we must come 
up with some way of estimating how much of our measurement is attributable to error 
and how much represents an accurate reading. That estimate is reliability. 

Systematic and Random Error 
To understand reliability, we must distinguish between two types of measurement 
errors. Systematic errors are predictable errors of measurement. They occur in one 
direction, consistently overestimating or underestimating the true score. Such error is 
constant and biased. Therefore, if a systematic error is detected, it is usually a simple 
matter either to correct it by recalibrating the system or to adjust for it by adding or sub­
tracting the appropriate constant. For example, if the end of a tape measure is incor­
rectly marked, so that markings actually begin 0.25 in. from the end, measurements of 
height will consistently record values that are too long by 0.25 in. We can correct this 
error by cutting off the extra length at the end of the tape or by subtracting 0.25 in. from 
all measurements. By definition, systematic errors are constant and, therefore, do not 
present a problem for reliability. Systematic errors are primarily a concern of validity, 
because, although they are consistent, test values are not true representations of the 
quantity being measured. 

Random errors of measurement are due to chance and can affect a subject's score 
in an unpredictable way from trial to trial. They are as likely to increase the observed 
score as to decrease it. Random errors occur from unpredictable factors such as fatigue, 
inattention, mechanical inaccuracy or simple mistakes. If the patient moves slightly 
while his height is being measured or does not stand fully erect each time measure­
ments are taken, scores will be inconsistent. The tester might observe markings at an 
angle and read them incorrectly, or the tape measure might be stretched out more on 
one occasion than another. Reliability focuses on the degree of random error that is 
present within a measurement system. As random errors diminish, the observed score 
moves closer to the true score, and the measurement is more reliable. The assumption 
is made that random error is not related to the magnitude of the true score, and that if 
enough measurements were taken, random errors would eventually cancel each other 
out, making the average score a good estimate of the true score. 
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The development or testing of a measuring instrument typically involves specification 
of a protocol that maximizes the reliability of the instrument; that is, procedures are 
detailed to ensure consistent application and scoring. In developing such a protocol, 
researchers have to address known or expected sources of error that could limit the reli­
ability of the test. Once these errors are identified, they can often be controlled or elim­
inated to some extent. Generally, measurement errors can be attributed to three 
components of the measurement system: (1) the individual taking the measurements 
(often called the tester or rater), (2) the measuring instrument and (3) variability of the 
characteristic being measured. Many sources of error can be minimized through careful 
planning, training, clear operational definitions and inspection of equipment. There­
fore, a testing protocol should thoroughly describe the method of measurement, which 
must be uniformly performed across trials. Isolating and defining each element of the 
measure reduces the potential for error, thereby improving reliability. 

Even when the anticipated sources of error are controlled, a researcher is still faced 
with the unpredictability of the environment and the human response as a normal and 
inevitable part of measurement. Many instruments, especially mechanical ones, will 
always be subject to some level of background noise and random fluctuation of per­
formance. Responses of raters and subjects will be influenced by variable personal char­
acteristics, such as motivation, cooperation, or fatigue, and environmental factors such 
as noise and temperature. These contributions to error may not be controllable. We 
assume that these factors are random and, therefore, their effect will be canceled out in 
the long run. 

The most difficult challenge to reliability testing is faced when the response being 
measured is inherently unstable. For instance, if we measure blood pressure, we might 
expect a natural fluctuation from session to session. When a response is very unstable, no 
one measurement can be considered an accurate representation of it, and it is virtually 
impossible to estimate the reliability of the instrument used to measure it. It is important, 
therefore, for researchers to understand the theoretical and practical nature of response 
variables, so that sources of error in reliability testing can be interpreted properly. 

Regression toward the Mean 
When we examine the effect of measurement error on reliability, we must also consider 
the extremeness of observed scores; that is, very high scores may reflect substantial pos­
itive error, and very low scores may reflect substantial negative error. Cook and Camp­
bell1 use the example of students taking academic exams to illustrate this concept. 
Everyone has, at one time or another, done worse than they expected on a test, with any 
number of possible "excuses," such as getting a poor night's sleep, being distracted, or 
accidentally marking the wrong space on the answer sheet. If we think of these factors 
as random sources of error, then the low grade is not an accurate assessment of the stu­
dent's knowledge or ability; that is, the student's true score is confounded by negative 
error. On a subsequent test this student's grade is likely to be higher because, all things 
being equal, these negative "errors" would probably not be operating to the same 
extent. Conversely, if a student obtained an unusually high score on the first test, we 
might suspect that favorable conditions were operating (positive error), such as several 
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good guesses on questions for which the student did not really know the answer. On a 
second test, this student is just as likely to score lower, because these favorable condi­
tions would not necessarily exist. 

This phenomenon is called regression toward the mean. It means that extreme 
scores on a pretest are expected to move closer, or regress, toward the group average 
(the mean) on a second test; that is, the error component of an extreme pretest score 
is likely to be less extreme on a posttest (see Figure 5.1). Therefore, using our student 
example, higher test scores will decrease and lower test scores will increase, moving 
closer to the class average-even though the students' actual degree of knowledge does 
not change. The reliability of the test will have an impact on the extent to which this 
effect will be present. As a more reliable score contains less error, a reliable test should 
produce a score close to the true score. Therefore, there is less chance for regression to 
occur. If the tests are not reliable, the error component within each test will be large, and 
therefore, the chances of observing a regression effect are considerably higher. 

Regression toward the mean is potentially most serious in situations where subjects 
are specifically assigned to groups on the basis of their extreme scores (see Box 5.1). For 
instance, we might be interested in the differential effect of a particular teaching tech­
nique on different levels of students. Suppose we give a class a pretest to determine 
their initial ability and find that the average score is 80. Then we distinguish two exper­
imental groups on the basis of these pretest scores, one composed of those scoring 
above 90 and the other of those scoring below 70. According to regression theory, we 
would expect to see both groups respond with scores closer to 80 (the total group mean) 

PRETEST POSTTEST 

FIGURE 5.1 I l lustration of regression toward the mean. Each l i ne represents an i ndividual's score 
from pretest to posttest. Test scores have tended to decrease on the posttest for Group A, and 
increase for Group B, both coming closer to the original group mean. If we treated these groups dif­
ferently, and then compared their posttests, we could not be sure if the i ntervention made a differ­
ence, as we could expect to see these changes just by chance. 
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The impact of regression toward the mean can be illustrated by a practical 
example of standardized testing. The Commonwealth of Massachusetts has 
implemented a statewide mandatory student testing program, called the 

Massachusetts Comprehensive Assess­
ment System (MCAS). Students in the 4th, 
8th and lOth grades are tested and must 
eventually pass the exam to graduate high 
school. School districts are being evalu­
ated based on average student MCAS 
scores. In 1998 districts were ranked in 
one of six categories from very high to 
critically low, based on their MCAS rat­
ings. The next year, schools were given 
improvement targets based on these 1998 
scores. The schools in the highest cate­
gories were expected to increase scores by 
1 to 2 points, while schools in the lowest 

categories were expected to improve by 4 to 7 points. 
Results for 1999 and 2000 indicated that many lower ranked schools had 

indeed met or exceeded their goals. However, many higher ranking schools 
failed to meet their target scores, even those with higher SAT scores and one 
high school with 18 National Merit Scholars! The interpretation, of course, 
was that the weaker schools had improved while the stronger schools did 
not. As expected, some superintendents were boastful, and others were irate. 

These findings prompted much controversy among educators and stat­
isticians, given the extensive funding and efforts attached to the standard­
ized tests, and rewards for school districts based on their scores. Many have 
argued that these results are a case of regression toward the mean: Those 
who started at a higher point were likely to decrease their scores, and those 
who started at a lower point were likely to improve-just by chance! There­
fore, drawing conclusions about the success or failure of teachers and stu­
dents based on these numbers is likely an example of the "regression 
fallacy." 

Source: A Vaishnav. Some top-scoring schools faulted. Many question MCAS assess­
ment. Boston Globe, January 10, 2001. 
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on a second test, even if the teaching technique had no effect. The effect can be mini­
mized, however, if we can improve the reliability of the test as a measure of the stu­
dents' ability. 

RELIABILITY COEFFICIENTS 
Reliability can be conceptually defined as an estimate of the extent to which a test score 
is free from error; that is, to what extent observed scores vary from true scores. As it is 
not possible to know the true score, the true reliability of a test can never be calculated; 
however, we can estimate reliability based on the statistical concept of variance, which 
is a measure of the variability or differences among scores within a sample. The larger 
the variance, the greater the dispersion of scores; the smaller the variance, the more 
homogeneous the scores. If we were to measure a patient's blood pressure 10 times, we 
do not expect the scores to be identical; that is, they will exhibit a certain amount of 
variance. Some of this total variance in observed scores will be the result of true differ­
ences among the scores (the patient's blood pressure actually changed), and some can 
be attributed to random sources of error, such as position of the arm or skill of the tester. 
Reliability is a measure of how much of this total variance is attributable to true differ­
ences between scores. Therefore, reliability can be expressed as a ratio of the true score 
variance to the total variance, or 

True score variance T 

True score variance + Error variance T + E 
(5.2) 

This ratio yields a value called the reliability coefficient. From this ratio, we can see 
that reliability increases as the observed score approaches the true score (T + E =>T). 
With maximum reliability (zero error), this ratio will produce a coefficient of 1.00; that 
is, the observed score is the true score. As error increases (T + E => E), the ratio 
approaches zero. The reliability coefficient can range between 0.00 and 1.00, with 0.00 
indicating no reliability and 1.00 indicating perfect reliability. There are actually many 
reliability coefficients, each applied under different design conditions and with differ­
ent types of data. 

What Is Acceptable Rel iabi l ity? 
Reliability cannot be interpreted as an all-or-none condition. It is a property of a meas­
urement system that is attained to varying degrees. Because reliability is hardly ever 
perfect, reliability coefficients of 1.00 are rare. Most researchers establish limits that 
define "acceptable" levels of reliability. Although such limits are essentially arbitrary, as 
a general guideline coefficients below .50 represent poor reliability, coefficients from .50 
to .75 suggest moderate reliability, and values above .75 indicate good reliability. We 
hasten to add, however, that these limits must be based on the precision of the meas­
ured variable and how the results of the reliability test will be applied. 

We hesitate to even suggest these guidelines, as they are often inappropriately 
applied as standards. They are intended only as a starting point to judge acceptable 
standards for any specific measurement. The level of acceptable reliability must be put 
in context. How much error is tolerable depends on the criteria for the measurement. 
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For instance, we generally accept a 5 degree error for goniometric measurements. But 
does it matter if we are assessing range of motion of the shoulder or the distal phalanx 
of the finger? If we performed a 6 minute walk test, how precise must we be in meas­
uring distance walked? If we were off by 6 inches, would that change how we used that 
value? But what if we were measuring leg length? A difference of millimeters could 
change how we manage the patient. When is it okay to be "close enough"? Wainner2 

uses the examples of a baseball pitch in the strike zone, or a field goal in football pass­
ing through the uprights. A certain margin of error is built into the criteria for success. 
How this translates into acceptable clinical measurement is not so obvious. 

Researchers may be able to tolerate lower reliability for measurements that are used 
for description, whereas those used for decision making or diagnosis need to be higher, 
perhaps at least .90 to ensure valid interpretations of findings. When only one form of 
measurement exists for a particular variable, researchers are often faced with the choice 
of using a less reliable test or no test at all. The validity of the test will also make a dif­
ference (see Chapters 6 and 27), especially when using measurement for diagnosis. For 
some purposes, even a test with moderate reliability can add sufficient information to 
justify its use, especially when used in conjunction with other tests. "Acceptable relia­
bility" is a judgment call by the researcher or clinician who understands the nature of 
the measured variable and whether the measurements are precise enough to be used 
meaningfully. In a reliability study, it is the researcher's obligation to justify the level of 
acceptable reliability based on the purpose of the measurement. 

Correlation and Agreement 
Many reliability coefficients are based on measures of correlation. Although we discuss 
the concept of correlation in detail in Chapter 23, it is necessary to provide a brief in­
troduction here, to understand how reliability coefficients can be interpreted. 
Correlation reflects the degree of association between two sets of data, or the consis­
tency of position within the two distributions. For example, if we were to measure 
height and shoe size on a sample of adult men, we would probably find a correlation 
between the two variables; that is, those with bigger feet tend to be taller, and those 
with smaller feet tend to be shorter. 

Reliability can be interpreted in a similar way. For instance, if we measured height 
on two separate occasions, we would expect that the tallest man on Test 1 would also 
be the tallest on Test 2; the shortest man on Test 1 would also be measured as the short­
est on Test 2. If the relative position of each subject remains the same from test to test, 
we would obtain a high measure of correlation. We assume that any variations in 
observed measurements are due to random error. If systematic errors occur, the corre­
lation would be unaffected because each subject's relative position will not change. This 
means that systematic errors of measurement will not have any effect on the size of the 
reliability coefficient. 

Consider the two sets of scores shown in Figure 5.2. In both sets the scores are 
directly proportional for X and Y; hence, their relationship is depicted on a straight line. 
The relative positions of the scores are also consistent; that is, the highest score in X is 
paired with the highest score in Y, and so on. The scores in graph A also show direct 
agreement for each pair of scores. This is not the case in graph B, where all pairs 
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FIGURE 5.2 Examples of the association between X and Y in two sets of scores. In A the graph 
shows a line of identity, where each measure on X and Y is equal, resulting in perfect correlation 
as well as agreement, indicating excellent rel iabi l ity. In B there is sti l l  perfect correlation, but no 
agreement, i l lustrating poor rel iabil ity. 

disagree. But both graphs show perfect correlation. Therefore, while correlation tells us 
how the scores vary together, it cannot tell us the extent of agreement between the two 
sets of measurements. For most research and clinical applications, however, the essence 
of reliability is agreement between the two tests; that is, we want to know that the actual 
values obtained by two measurements are the same, not just proportional to each other. 
For example, range of motion measurements are used to evaluate joint dysfunction on 
the basis of actual, not relative, limitations. We need to know the true value of the lim­
itation, not just that one patient is more limited than another. It would not be enough to 
know that repeated measurements were proportionally consistent; it would be neces­
sary to establish that repeated tests resulted in the same angular measurements. There­
fore, the correlation coefficient is not effective as a measure of reliability. Because of this, 
statistical approaches to reliability testing should include estimates of agreement that 
can be used in conjunction with correlation. 

TYPES OF RELIABI LITY 
Estimates of reliability vary depending on the type of reliability being analyzed. We dis­
cuss four general approaches to reliability testing: test-retest reliability, rater reliability, 
alternate forms reliability, and internal consistency. For each approach we will identify 
the most commonly used reliability coefficients. These statistical indices are described 
in detail in Chapter 26. 
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One basic premise of reliability is the stability of the measuring instrument; that is, a 
reliable instrument will obtain the same results with repeated administrations of the 
test. Test-retest reliability assessment is used to establish that an instrument is capa­
ble of measuring a variable with consistency. In a test-retest study, one sample of indi­
viduals is subjected to the identical test on two separate occasions, keeping all testing 
conditions as constant as possible. The coefficient derived from this type of analysis is 
called a test-retest reliability coefficient. This estimate can be obtained for a variety of test­
ing tools, and is generally indicative of reliability in situations where raters are not 
involved, such as self-report survey instruments and physical and physiological meas­
ures with mechanical or digital readouts. If the test is reliable, the subject's score should 
be similar on multiple trials. In terms of reliability theory, the extent to which the scores 
vary is interpreted as measurement error. 

Because variation in measurement must be considered within the context of the 
total measurement system, errors may actually be attributed to many sources. There­
fore, to assess the reliability of an instrument, the researcher must be able to assume 
stability in the response variable. Unfortunately, many variables do change over time. 
For example, a patient's self-assessment of pain may change between two testing ses­
sions. We must also consider the inconsistency with which many clinical variables nat­
urally respond over time. When responses are labile, test-retest reliability may be 
impossible to assess. 

Test-Retest Intervals 
Because the stability of a response variable is such a significant factor, the time interval 
between tests must be considered carefully. Intervals should be far enough apart to 
avoid fatigue, learning, or memory effects, but close enough to avoid genuine changes 
in the measured variable. The primary criteria for choosing an appropriate interval are 
the stability of the response variable and the test's intended purpose. For example, if 
we were interested in the reproducibility of electromyographic measurements, it might 
be reasonable to test the patient on two occasions within one week. Range of motion 
measurements can often be repeated within one day or even within a single session. 
Measures of infant development might need to be taken over a short period, to avoid 
the natural changes that rapidly occur at early ages. If, however, we are interested in 
establishing the ability of an IQ test to provide a stable assessment of intelligence over 
time, it might be more meaningful to test a child using intervals of one year. The 
researcher must be able to justify the stability of the response variable to interpret 
test-retest comparisons. 

Carryover and Testing Effects 
With two or more measures, reliability can be influenced by the effect of the first test on 
the outcome of the second test. For example, practice or carryover effects can occur with 
repeated measurements, changing performance on subsequent trials. A test of dexterity 
may improve because of motor learning. Strength measurements can improve follow­
ing warm-up trials. Sometimes subjects are given a series of pretest trials to neutralize 
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this effect, and data are collected only after performance has stabilized. A retest score 
can also be influenced by a subject's effort to improve on the first score. This is espe­
cially relevant for variables such as strength, where motivation plays an important role. 
Researchers may not let subjects know their first score to control for this effect. 

It is also possible for the characteristic being measured to be changed by the first 
test. A strength test might cause pain in the involved joint and alter responses on the 
second trial. Range of motion testing can stretch soft tissue structures around a joint, 
increasing the arc of motion on subsequent testing. When the test itself is responsible 
for observed changes in a measured variable, the change is considered a testing effect. 
Oftentimes, such effects will be manifested as systematic error, creating consistent 
changes across all subjects. Such an effect will not necessarily affect reliability coeffi­
cients, for reasons we have already discussed. 

Reliability Coefficients for Test-Retest Reliability 
Test-retest reliability has traditionally been analyzed using the Pearson product­
moment coefficient of correlation (for interval-ratio data) or the Spearman rho (for 
ordinal data). As correlation coefficients, however, they are limited as estimates of reli­
ability. The intraclass correlation coefficient (ICC) has become the preferred index, as it 
reflects both correlation and agreement. With nominal data, percent agreement can be 
determined and the kappa statistic applied. In situations where the stability of a 
response is questioned, the standard error of measurement (SEM) can be applied. 

Rater Rel iabil ity 
Many clinical measurements require that a human observer, or rater, be part of the meas­
urement system. In some cases, the rater is the actual measuring instrument, such as in 
a manual muscle test or joint mobility assessment. In other situations, the rater must 
observe performance and apply operational criteria to subjective observations, as in a 
gait analysis or functional assessment. Sometimes a test necessitates the physical appli­
cation of a tool, and the rater becomes part of the instrument, as in the use of a goniome­
ter or taking of blood pressure. Raters may also be required simply to read or interpret 
the output from another instrument, such as an electromyogram, or force recordings on 
a dynamometer. However the measurements are taken, the individual performing the 
ratings must be consistent in the application of criteria for scoring responses. 

This aspect of reliability is of major importance to the validity of any research study 
involving testers, whether one individual does all the testing or several testers are 
involved. Data cannot be interpreted with confidence unless those who collect, record 
and reduce the data are reliable. In many studies, raters undergo a period of training, 
so that techniques are standardized. This is especially important when measuring 
devices are new or unfamiliar, or when subjective observations are used. Even when 
raters are experienced, however, rater reliability should be documented as part of the 
research protocol. 

To establish rater reliability the instrument and the response variable are consid­
ered stable, so that any differences between scores are attributed to rater error. In many 
situations, this may be a large assumption, and the researcher must understand the 
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nature of the test variables and the instrumentation to establish that the rater is the true 
source of observed error. 

lntrarater Reliability 
Intrarater reliability refers to the stability of data recorded by one individual across 
two or more trials. When carryover or practice effects are not an issue, intrarater relia­
bility is usually assessed using trials that follow each other with short intervals. Relia­
bility is best established with multiple trials (more than two), although the number of 
trials needed is dependent on the expected variability in the response. In a test-retest 
situation, when a rater 's skill is relevant to the accuracy of the test, intrarater reliability 
and test-retest reliability are essentially the same estimate. The effects of rater and the 
test cannot be separated out. 

Researchers may assume that intrarater reliability is achieved simply by having one 
experienced individual perform all measurements; however, the objective nature of sci­
entific inquiry demands that even under expert conditions, rater reliability should be 
evaluated. Expertise by clinical standards may not always match the level of precision 
needed for research documentation. By establishing statistical reliability, those who cri­
tique research cannot question the measurement accuracy of data, and research conclu­
sions will be strengthened. 

Rater Bias. We must also consider the possibility for bias when one rater takes two 
measurements. Raters can be influenced by their memory of the first score. This is most 
relevant in cases where human observers use subjective criteria to rate responses, but 
can operate in any situation where a tester must read a score from an instrument. The 
most effective way to control for this type of error is to blind the tester in some way, so 
that the first score remains unknown until after the second trial is completed; however, 
as most clinical measurements are observational, such a technique is often unreason­
able. For instance, we could not blind a clinician to measures of balance, function, mus­
cle testing or gait where the tester is an integral part of the measurement system. The 
major protections against tester bias are to develop grading criteria that are as objective 
as possible, to train the testers in the use of the instrument, and to document reliability 
across raters. 

lnterrater Reliability 
Interrater reliability concerns variation between two or more raters who measure the 
same group of subjects. Even with detailed operational definitions and equal skill, dif­
ferent raters are not always in agreement about the quality or quantity of the variable 
being assessed. Intrarater reliability should be established for each individual rater 
before comparing raters to each other. 

Interrater reliability is best assessed when all raters are able to measure a response 
during a single trial, where they can observe a subject simultaneously and independ­
ently. This eliminates true differences in scores as a source of measurement error when 
comparing raters' scores. Videotapes of patients performing activities have proved use­
ful for allowing multiple raters to observe the exact same performance.:l--5 Simultaneous 
scoring is not possible, however, for many variables that require interaction of the tester 
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and subject. For example, range of motion and manual muscle testing could not be 
tested simultaneously by two clinicians. With these types of measures, rater reliability 
may be affected if the true response changes from trial to trial. For instance, actual range 
of motion may change if the joint tissues are stretched from the first trial. Muscle force 
can decrease if the muscle is fatigued from the first trial. 

Researchers will often decide to use one rater in a study, to avoid the necessity of 
establishing interrater reliability. Although this is useful for attempting consistency 
within the study, it does not strengthen the generalizability of the research outcomes. If 
interrater reliability of measurement has not been established, we cannot assume that 
other raters would have obtained similar results. This, in turn, limits the application of 
the findings to other people and situations. Interrater reliability allows the researcher to 
assume that the measurements obtained by one rater are likely to be representative of 
the subject's true score, and therefore, the results can be interpreted and applied with 
greater confidence. 

Reliability Coefficients for Rater Reliability 
The intraclass correlation coefficient (ICC) should be used to evaluate rater reliability. 
For interrater reliability, ICC model 2 or 3 can be used, depending on whether the raters 
are representative of other similar raters (model 2) or no generalization is intended 
(model 3). For intrarater reliability, model 3 should be used (see Chapter 26). 

Alternate Forms 
Many measuring instruments exist in two or more versions, called equivalent, parallel 
or alternate forms. Interchange of these alternate forms can be supported only by estab­
lishing their parallel reliability. Alternate fonns reliability testing is often used as an 
alternative to test-retest reliability with paper-and-pencil tests, when the nature of the 
test is such that subjects are likely to recall their responses to test items. For example, 
we are all familiar with standardized tests such as the Scholastic Aptitude Test (SAT) 
and the Graduate Record Examination (GRE), professional licensing exams or intelli­
gence tests, which are given several times a year, each time in a different form. These 
different versions of the tests are considered reliable alternatives based on their statisti­
cal equivalence. This type of reliability is established by administering two alternate 
forms of a test to the same group, usually in one sitting, and correlating paired obser­
vations. Because the tests are ostensibly different, they can be given at relatively the 
same time without fear of bias from one to the other. Although the idea of alternate 
forms has been applied mostly to educational and psychological testing, there are many 
examples in clinical practice. For example, clinicians use parallel forms of gait evalua­
tions, tests of motor development, strength tests, functional evaluations, and range of 
motion tests. Many of these have not been tested for alternate forms reliability. 

The importance of testing alternate forms reliability has been illustrated in studies 
of hand dynamometers. Several models are available, each with slightly different 
design features. Because these tools are often used to take serial measurements, patients 
might appear to be stronger or weaker simply because of error if different instruments 
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were used. Studies comparing various models have shown that some instruments gen­
erate significantly different strength scores,6 while others have shown comparable val­
ues? Establishing this method comparison is necessary if absolute values are to be 
compared or equated across tests, and to generalize findings from one study to another 
or from research to practice. 

Reliability Coefficients for Alternate Forms Reliability 
Correlation coefficients have been used most often to examine alternative forms relia­
bility. The determination of limits of agreement has been proposed as a useful estimate of 
the range of error expected when using two different versions of an instrument. This 
estimate is based on the standard deviation of difference scores between the two instru­
ments (see Chapter 26). 

I nternal Consistency 
Software instruments, such as questionnaires, written examinations and interviews are 
ideally composed of a set of questions or items designed to measure particular knowl­
edge or attributes. Internal consistency, or homogeneity, reflects the extent to which 
items measure various aspects of the same characteristic and nothing else. For example, 
if a professor gives an exam to assess students' knowledge of research design, the items 
should reflect a summary of that knowledge; the test should not include items on 
anthropology or health policy. If we assess a patient's ability to perform daily tasks 
using a physical function scale, then the items on the scale should relate to aspects of 
physical function only. If some items evaluated psychological or social characteristics, 
then the items would not be considered homogeneous. The scale should, therefore, be 
grounded in theory that defines the dimension of physical function, thereby distin­
guishing it from other dimensions of function. 

The most common approach to testing internal consistency involves looking at the 
correlation among all items in a scale. For most instruments, it is desirable to see some 
relationship among items, to reflect measurement of the same attribute, especially if the 
scale score is summed. Therefore, for inventories that are intended to be multidimen­
sional, researchers generally establish subscales that are homogenous on a particular 
trait (even though items are often mixed when the test is administered). For example, 
the Short-Form 36-item (SF-36) health status measure is composed of eight subscales, 
including physical function, limitations in physical role, pain, social function, mental 
health, limitations in emotional role, vitality and general health perception.8 Each of 
these subscales has been evaluated separately for internal consistency.9 

Split-Half Reliability 
If we wanted to establish the reliability of a questionnaire, it would be necessary to 
administer the instrument on two separate occasions, essentially a test-retest situation. 
Oftentimes, the interval between testing is relatively brief, to avoid the possibility for 
true change. Recall of responses, then, becomes a potential threat, as it might influence 
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the second score, making it impossible to get a true assessment of reliability. One solu­
tion to this problem is the use of parallel forms, but this shifts the measure of reliability 
to a comparison of instruments, rather than reliability of a single instrument. 

A simpler approach combines the two sets of items into one longer instrument, with 
half the items being redundant of the other half. One group of subjects takes the test at 
a single session. The items are then divided into two comparable halves for scoring, cre­
ating two separate scores for each subject. Typically, questions are divided according to 
odd and even items. This is considered preferable to comparing the first half of the test 
with the second half, as motivation, fatigue and other psychological elements can influ­
ence performance over time, especially with a long test. Reliability is then assessed by 
correlating results of two halves of the test. If each subject's half-test scores are highly 
correlated, the whole test is considered reliable. This is called split-half reliability. This 
value will generally be an underestimate of the true reliability of the scale, since the reli­
ability is proportional to the total number of items in the scale. Therefore, because the 
subscales are each half the length of the full test, the reliability coefficient is too low. 

The obvious problem with the split-half approach is the need to determine that the 
two halves of the test are actually measuring the same thing. In essence, the two halves 
can be considered alternate forms of the same test; however, the split-half method is 
considered superior to test-retest and alternate forms procedures because there is no 
time lag between tests, and the same physical, mental and environmental influences 
will affect the subjects as they take both sections of the test. 

Reliability Coefficients for Internal Consistency 
The statistic most often used for internal consistency is Cronbach's coefficient alpha (a.).10 This statistic can be used with items that are dichotomous or that have multiple 
choices.* Conceptually, coefficient a. is the average of all possible split-half reliabilities 
for the scale. This statistic evaluates the items in a scale to determine if they are meas­
uring the same construct or if they are redundant, suggesting which items could be dis­
carded to improve the homogeneity of the scale. Cronbach's a. will be affected by the 
number of items in a scale. The longer the scale, the more homogeneous it will appear, 
simply because there are more items. 

For split-half reliability, the Spearman-Brown prophecy statistic is used as an estimate 
of the correlation of the two halves of the test. 

We can also assess internal consistency by conducting an item-to-total correla­
tion; that is, we can examine how each item on the test relates to the instrument as a 
whole. To perform an item-to-total correlation, each individual item is correlated with 
the total score, omitting that item from the total. If an instrument is homogeneous, we 
would expect these correlations to be high. With this approach it is not necessary to cre­
ate a doubly long test. The Pearson product-moment correlation coefficient is appropriate 
for this analysis (see Chapter 23). 

*When items are dichotomous, Cronbach's alpha is identical to a statistic called KR-20 (Kuder-Richardson 
formula 20). 



GENERALIZABILITY 

CHAPTER 5 • Reliability of Measurements 91 

Measurement in clinical research or practice is never used as an end unto itself. Meas­
urements are used as information for decision making, evaluation or prediction. The 
score we obtain from a test is given a meaning beyond the specific situation in which it 
was taken; that is, we make generalizations about performance or behavior based on 
measurements. In many ways, reliability provides the foundation for making such gen­
eralizations, as we must have confidence in the dependability of measurements if they 
are to be applied in different situations or used to make decisions for future action. 

On this basis, Cronbach and his colleagues11 introduced the idea that reliability the­
ory should be more accurately conceptualized in terms of generalizability theory. 
They suggested that every individual score can be thought of as a sample from a uni­
verse of possible scores that might have been obtained under the same testing condi­
tions. These specific testing conditions define the universe to which measures of 
reliability can be generalized. For example, we can test the grip strength of a patient 
with rheumatoid arthritis using a hand dynamometer. A single measured score of 15 
pounds would be one of a universe of possible scores that might have been obtained 
under the same testing conditions, using the same dynamometer, at the same time of 
day, and by the same examiner. Because most research involves taking small samples of 
measurements, we assume that our observations are representative of this infinite dis­
tribution of possible scores. A single measurement then becomes the best estimate of a 
true score under those testing conditions. Reliability is essentially a measure of how 
good an estimate that measurement is. 

According to classical reliability theory, an individual's observed score can be par­
titioned into a true component and an error component. The true score is assumed to 
be a fixed value that exists independently of any other conditions of measurement. 
Therefore, any differences between the observed score and the true score are due to ran­
dom error (see Figure 5.3A). This theory also assumes that the error component is 
undifferentiated; that is, it comes from many different sources in an unbiased form. If 
we accept this premise, then we should be comfortable applying a given reliability esti­
mate to any other situation where the same measurement is taken, because the error in 
each situation should be equally random. 

In generalizability theory, however, the conditions of testing are not considered 
independent factors; that is, the true score is a function of an underlying theoretical 
component only as it exists under specific conditions. This means that not all variations 
from trial to trial should be attributed solely to random error. If we can identify rele­
vant testing conditions that influence test scores, then we should be able to explain and 
predict more of the variance in a set of scores, effectively leaving less variance unex­
plained as error. 

Facets of Rel iabi l ity 
The concept of generalizability, therefore, forces us to interpret reliability within a mul­
tidimensional context, that is, in relation to a set of specific testing conditions. Each 
condition that defines this context is called a facet. A particular combination of facets char­
acterizes the universe to which reliability can be generalized. The researcher determines 
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FIGURE 5.3 A. Circle A i l lustrates classical rel iabi l ity theory, where the actual score is made up 
of the true score and unexplained random error. B. Circle B i l lustrates general izabil ity theory, which 
accounts for specific sources of error in addition to random error. These identified sources of error 
may be accounted for by evaluating their effects statistical ly. 

which facets are relevant to the measurement of a particular variable. By specifying 
those facets of greatest relevance, it is possible to statistically determine how much of 
the variance in observed scores can be attributed to each facet (see Figure 5.3B). 

For instance, suppose we set up a test-retest situation for goniometric measure­
ments of elbow flexion. In one scenario, we obtain two sets of ratings taken by one rater 
on a sample of 10 patients. By comparing these two sets of scores, we can establish the 
reliability of data across two occasions. Therefore, "occasion" becomes a facet of relia­
bility. These occasions may be trials within one session or over two separate days. How 
these occasions are defined determines how the results can be generalized. Similarly, if 
we collect data from four clinicians' ratings within a single session, we can establish the 
reliability of data across four raters. Therefore, "rater" becomes a facet of reliability. In 
this case, we would have to establish the criteria that would characterize these raters, 
such as their years of experience or special training. Then results can be generalized to 
other raters with similar training. 

The concept of generalizability is a clinically useful one, especially in terms of the 
development and standardization of measurement tools, because it provides a frame of 
reference for interpretation of reliability coefficients and suggests areas of improvement 
of protocols. Because we cannot expect to verify the reliability of every instrument on 
every patient for every rater, we must be able to document those characteristics that are 
relevant to generalizing measurement consistency. Generalizability theory also empha­
sizes that reliability is not an inherent quality of an instrument, but exists only within 
the context in which it was tested. Accordingly, we cannot automatically assume that 
estimates of reliability from one study can be applied to other raters, environments, 
testing conditions, or types of patients, unless we specifically address these factors in 
our analysis. Most reliability studies look at rater as the most important single facet. 
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The essence of generalizability theory suggests, however, that other facets must be 
examined before an instrument's reliability can be fully understood. 

In effect, then, there is no one coefficient that provides a complete estimate of reli­
ability for a given test or measurement. Separate coefficients that address different 
facets can be obtained and applied to relevant situations. Without such documentation, 
it is not possible to make reasonable claims of general reliability for any instrument. Sta­
tistical and design considerations that are appropriate for generalizability studies are 
discussed further in Chapter 26. 

Minimal Detectable Difference 
Measurement error is of special interest in the assessment of change. When we take two 
measurements of the same variable at different times, we are usually doing so to deter­
mine if there is a difference in value, perhaps due to a specific intervention or the pas­
sage of time. When we observe a difference in the measurement, we want to assume 
that it represents a change in the true score-the variable really did change. But because 
all measurements are subject to some degree of error, the accuracy of this assumption 
will depend on the reliability of the measurement. 

We can appreciate, then, that when we measure a difference between two scores, 
some portion of that change may be error, and some portion may be real. The concept 
of a minimal detectable difference (MDD) has been used to define that amount of 
change in a variable that must be achieved to reflect a true difference.+ This is the small­
est amount of difference that passes the threshold of error for a specific instrument and 
application.12 It is the smallest amount of change an instrument can accurately 
measure.t The greater the reliability of the measurement, the smaller the MDD. The pre­
cision and level of measurement will also affect this detectable difference. 

Methodological studies that focus on an instrument's ability to measure change will 
report the MDD as an important characteristic of the measurement tool. By knowing the 
MDD, clinicians can generalize the information from such a report to their specific clin­
ical situation. To illustrate this concept, van der Esch et al.13 studied measurement of 
knee joint laxity in healthy subjects using an instrumented system. Based on test-retest 
measures, they determined that the MDD was 3.73 degrees, with a 95% confidence 
interval of 2.66-6.37. This means that we can be 95% confident that measurements out­
side of this range would represent true change. They also found that the mean score for 
knee joint laxity was approximately 6 degrees. Therefore, the researchers concluded 
that it would be difficult to interpret measurement of change since the observed change 
and the expected error were in the same range. It would not be possible to distinguish 
error from true joint change using their instrument. Statistical application of the MDD 
is discussed in Chapters 26 and 27. 

tThe minimal detectable difference (MDD) may also be called the minimal detectable change (MDC). 
*The minimal detectable difference (MOD) is not the same as the minimal clinically important difference 
(MCID), which is an estimate of the amount of change that is meaningful. Depending on the nature of the 
variable being measured and the use of the measurement for decision making, the MOD will typically be 
smaller than the MCID. See Chapter 26 for further discussion of MOD and Chapters 6 and 27 for discussion 
of the MCID. 
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Population-Specific Rel iabil ity 
The concept of generalizability also emphasizes the need to consider characteristics of 
those involved in establishing reliability. This includes the patients or subjects being 
tested and the raters who do the testing. Reliability that is established on subjects from 
one population cannot automatically be attributed to other populations. This has been 
termed population-specific reliability. Clearly, factors such as pain, deformity, weak­
ness, anxiety, and spasticity can alter the way a patient responds to a measurement and 
the consistency with which a clinician can take those measurements. Doing a manual 
muscle test on a patient with shoulder pain may be a different experience from doing 
the test on someone with limited range of motion. Range of motion measurements may 
be difficult to standardize among patients with joint deformities, joint pain or tender­
ness, or severe limitations of movement. Similarly, rater reliability must take into 
account the skill, experience and training of the individual performing the test. There­
fore, reliability of measurement must be documented according to the characteristics of 
a specific group of individuals who will be part of the measurement. 

PILOT TESTING 
When choosing an instrument for clinical or  research measurement, it  would certainly 
make sense to use a tool for which reliability has already been demonstrated. Even 
then, however, there is no guarantee that the same degree of reliability will be 
achieved in every situation. Therefore, researchers often perform pilot studies to 
establish reliability prior to the start of actual data collection. This should be a routine 
part of the research process, especially when observational measurements are used. It 
allows the researcher to determine if raters are adequately trained to obtain valid 
measurements. It may be important to consider, however, that specific characteristics 
of the pilot test situation may be quite different from those that will be encountered 
during data collection. At the least, raters are often much more careful when they 
know the scores will be examined for reliability. Mitchell suggests that actual data col­
lection should include multiple trials of each measurement, and that these trials 
should be assessed for reliability as part of the study's data analysis.14 Although train­
ing and testing prior to data collection are essential for developing measurement 
accuracy, the validity of an experiment will be well served by documenting the error 
rate of measurement within the actual data used for analysis. For generalization of 
findings, it is probably more meaningful to report the reliability of these data than 
those obtained during pilot testing. 

COMM ENTARY 

What Is  the True Score? 

It is hard to imagine any measurement system that is free from error. The concept of 
rel iabi l ity is based on the premise that we can expect some deviation from the "true 
score" in every measurement we take. Th is presents an interesting d i lemma when 
quantitative performance data are collected. If we take measu res of range of motion 
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or strength, for example, how do we determine which scores are usefu l for analysis? 
What strategies can we apply in  data col lection procedures to ensure the most rel i­
able outcome? In  addition to test-retest and rater rel iabi l ity studies, most researchers 
recognize the need for taking more than one measurement of a behavior or charac­
teristic whenever possible. But then we must ask, Out of these several trials, wh ich 
val ue best represents the individual's true score? 

Most investigators wi l l  not use the first score alone as the test val ue. The i n itial 
trial is often confounded by a warm-up or learning effect that wi l l  be evident as per­
formance improves on subsequent trials. Some researchers use the final score i n  a 
series. They rational ize that the last repetition i n  a set of trials w i l l  be stabi l ized fol­
lowing warm-up or practice effects; however, dependi ng on the number of trials, the 
final score may also be i nfluenced by fatigue and, therefore, wi l l  not necessari ly rep­
resent the subject's true effort. 

A more common approach is to take the "best" score. Many researchers p re­
fer us ing the subject's best effort as a reflection of what the subject is maxima l ly 
capable of doing. If we consider rel iabi l ity theory, however, th is  is not necessar i ly 
the most accu rate representation because random error can contribute both pos i­
tive and negative components to an observed score. Therefore, any observed score 
may be an overestimate or an underestimate of the true score. I t  is possible that 
the subject's maximal  score in a set of two or three trials may actua l ly  be a func­
tion of positive error. Using the maximal score for data analysis may lend a pos i­
tive bias to the outcome that would not be seen if the study were repeated on 
another sample. 

Theoretica l ly, then, the most representational score should be achieved 
through the mean or average score, because the sum of the error components over 
an i nfin ite number of trials wou ld be zero. Thus, the true score can be thought of 
as the average of the observed scores for a large number of tria ls, with the error 
components canceled out. Of course, there is room for argument in this rationa le, 
because th is theory operates in the "long run"; that is, we can expect a cance l i ng 
of error components over an i nfin ite number of trials. With only a few tria ls, th is  
may be an unreal i st ic assumption; however, several studies have shown that tak­
i ng a mean va lue provides a more rel iable measurement than any si ngle va lue i n  
a series of tria l s . 1 5' 1 6  

Which score shou ld be used? There i s  no  easy answer to this question . 
Researchers grapple with this decision for every study, based on the types of vari­
ables bei ng measured and the precision those measurements achieve. It is often use­
fu l to take a series of measurements and estimate rel iabi l ity using both single scores 
and average scores, to determine which approach provides the most rel iable basis 
for data analysis. Genera l ly, rel iabil ity of measurements that are less stab le can be 
improved if averages are used. Rel iab i l ity is also an important issue in  statistical  
inference, as greater error ( low rel iabil ity) wi l l  reduce the chances of find ing statisti­
cal ly sign ificant differences between groups. Therefore, the researcher always tries to 
make measurements as rel iable as possible. Th is issue does reinforce, however, the 
constant need to confirm rel iabi l ity as part of every study. 
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C HAPTER 6 

Validity of Me asurements 

Measurement validity concerns the extent to which an instrument measures what it 
is intended to measure. Validity places an emphasis on the objectives of a test and the 
ability to make inferences from test scores or measurements. For instance, a goniometer 
is considered a valid instrument for testing range of motion because we can assess joint 
range from angular measurements. A ruler is considered a valid instrument for calibrat­
ing length, because we can judge how long an object is by measuring inches or centime­
ters. We would, however, question the validity of assessing low back pain by measuring 
leg length because we cannot make reasonable inferences about back pain based on that 
measurement. 

Therefore, validity addresses what we are able to do with test results. Tests are usu­
ally devised for purposes of discrimination, evaluation, or prediction. For instance, we 
may ask, Is the test capable of discriminating among individuals with and without cer­
tain traits? Can it evaluate change in the magnitude or quality of a variable from one 
time to another? Can we make useful and accurate predictions or diagnoses about a 
patient's potential function based on the outcome of the test? These are all questions of 
test validity. 

The determination of validity for any test instrument can be made in a variety of 
contexts, depending on how the instrument will be used, the type of data it will gener­
ate, and the precision of the response variables. The purpose of this chapter is to define 
different types of validity and to describe the application of validity testing for clinical 
measurements. Discussion of statistical procedures related to validity will be covered in 
Chapter 27. 

VALIDITY AND RELIABILITY 
Validity implies that a measurement is relatively free from error; that is, a valid test is 
also reliable. An instrument that is inconsistent cannot produce meaningful measure­
ments. If we use a goniometer with a loose axis that alters alignment, our results will 
no longer be valid indicators of joint range. Random measurement error will make it 
difficult to determine a true reading. 

An invalid test can be reliable, however. For instance, we could obtain reliable 
measures of leg length time after time, but those measurements would still not tell us 
anything about back pain. Similarly, we might be able to establish that the reliability of 
leg length measurements is greater than the reliability of scores on a less objective test, 
such as a graphic pain scale, but this fact could not be used to support the validity of 
leg length as a measure of back pain. In addition we must consider the effect of system­
atic error or bias in the recording of data. If a tape measure is incorrectly marked, so that 
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• • • •  
Not Valid 

Not Reliable 

A 

Some Validity 
Not Reliable 

B 

Not Valid 
Reliable 

c 

Valid and 
Reliable 

D 

FIGURE 6.1 I l lustration of the relationship between reliability and validity, using a target analogy. The 
center of the target represents the true score. A. Scores are neither reliable nor valid, demonstrating ran­
dom error. B. Scores are somewhat valid, demonstrating a useful average score, but not reliable C. Scores 
are quite rel iable, but not valid. D. Scores are both reliable and valid. 

readings are consistently one inch more than the actual length, we may see strong reli­
ability, but we will not have a valid measure of length. 

These examples illustrate the importance of separating out issues of reliability and 
validity when evaluating a test (see Fig. 6.1). Although reliability is a prerequisite to 
validity, this relationship is unidirectional; that is, reliability sets the limits of validity, 
but it is no guarantee of it. Low reliability is automatic evidence of low validity, whereas 
strong reliability does not automatically suggest strong validity. 

VALIDITY OF INFERENCES 
In Chapter 4 we discussed the indirect nature of clinical measurement. We explained 
that most clinical variables are assessed by taking a correlate of the actual property 
being measured; that is, we make inferences about the magnitude of a particular vari­
able based on a relevant observable behavior or response. Validity is basic to establish­
ing these inferences. We must be able to document that the values assigned to a 
variable are representative of that response. We can verify that a thermometer is a valid 
instrument for measuring temperature because mercury expands and contracts in pro­
portion to changes in heat. A dynamometer is valid for measuring strength because the 
transducer responds with a signal proportional to the exerted force. Similarly, it is log­
ical to assess the level of serum creatinine in the body as an indicator of renal disease, 
since the kidneys regulate the level of creatinine in the body. Unfortunately, for the 
measurement of more abstract variables, such as intelligence, function and perception, 
measurement scales are not so obviously related to the variable of interest, and valid­
ity is harder to verify. 

We also draw inferences from tests that go beyond the simple values assigned to a 
variable. When we measure a patient's muscle strength or range of motion, it is not the 
muscle grade or joint angle that is of interest for its own sake, but what those values 
mean in terms of the integrity of the patient's musculoskeletal system. We use those val­
ues to infer something about the cause of that person's symptoms, the degree of disabil­
ity, or the level of improvement following treatment. If we were told that the scores 
were not related to any other characteristics or future performance, we would wonder 
why anyone bothered to measure them. 
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Measurements are important, therefore, insofar as they allow us to make general­
izations beyond a specific score. For example, clinical trials in Duchenne muscular dys­
trophy have examined the effects of various drug interventions by documenting 
changes in manual muscle test grades, range of motion, pulmonary function, and func­
tional status.1 These assessments can be considered valid for the measurement of the 
effectiveness of drug intervention only if we can make inferences about the state of the 
disease or disease progression based on their values. 

Specificity of Val idity 
At issue here is the specificity of validity. Just like reliability, validity is not inherent to 
an instrument, but must be evaluated within the context of the test's intended use. The 
question of validity should not be: "Is an instrument valid?" It is more accurately: 
"How valid is it for a given purpose?" For instance, manual muscle testing, which was 
first developed to evaluate patterns of denervation in patients with poliomyelitis, may 
not be valid for use on patients who exhibit upper motor neuron involvement because 
grading criteria do not account for the interference of abnormal muscle tone. Similarly, 
an instrument designed to assess function in patients who have had a stroke may not 
be valid for patients with Alzheimer's disease. In another context, an instrument 
designed to describe the health status of a specific population may not be appropriate 
for assessing change in an individual's function. Therefore, validity is not a universal 
characteristic of an instrument. 

Because measurement inferences are difficult to verify, establishing validity is not 
as straightforward as establishing reliability. For many variables there are no obvious 
rules or formulas for judging that a test is indeed measuring the critical property of 
interest. Like reliability, we do not think of validity in an all-or-none sense, but rather 
as a characteristic that an instrument has to some degree or other. It is often a source of 
frustration to clinical scientists that, when dealing with abstract constructs, the docu­
mentation of test validity remains ongoing. 

Types of Measurement Val idity 
Validation procedures are based on the types of evidence that can be offered in support 
of a test's validity. We can think of validation as a process of hypothesis testing, deter­
mining if scores on a test are related to specific behaviors, characteristics or level of per­
formance. Evidence to support hypotheses is generally defined according to four types 
of measurement validity: face validity, content validity, criterion-related validity, and 
construct validity (see Table 6.1). 

FACE VALIDITY 
The least rigorous method for documenting a test's validity is face validation. Face 
validity indicates that an instrument appears to test what it is supposed to and that it is 
a plausible method for doing so. To establish face validity, one must be clear about the 
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TABLE 6.1 TYPES OF MEASUREMENT VALIDITY 

Face validity 

Content validity 

Criterion-related 
validity 

Concurrent validity 

Predictive validity 

Construct validity 

I ndicates that an instrument appears to test what it is supposed to; the 
weakest form of measurement validity. 

Indicates that the items that make up an instrument adequately sample 
the universe of content that defines the variable being measured. Most 
useful with questionnaires and inventories. 

Indicates that the outcomes of one instrument, the target test, can be 
used as a substitute measure for an established reference standard cri­
terion test. Can be tested as concurrent or predictive validity. 

Establishes validity when two measures are taken at relatively the 
same time. Most often used when the target test is considered more 
efficient than the gold standard and, therefore, can be used instead of 
the gold standard. 

Establishes that the outcome of the target test can be used to predict a 
future criterion score or outcome. 
Establishes the ability of an instrument to measure an abstract con­
struct and the degree to which the instrument reflects the theoretical 
components of the construct. 

definition of the concept that is being measured. For some instruments, face validity is 
easily established because the instrument measures the property of interest through 
some form of direct observation. Therefore, face validity is generally attributed to tests 
of range of motion, length, strength, tactile discrimination, sensation, gait, and balance. 
The separate items on a functional status scale, such as eating, dressing, and transfer­
ring, would have face validity. Some instruments do not have obvious face validity, and 
must be validated in some other way to document their usefulness. For instance, the 
measurement of temperature using a mercury thermometer does not have face validity; 
however, physicists can show how mercury reacts to changes in molecular motion and 
heat to provide validation. 

For scientific purposes, face validity should not be considered sufficient documen­
tation of a test's validity because there is no standard for judging it or determining 
"how much" of it an instrument has. Essentially, face validity is assessed as all or none. 
Therefore, assessments of face validity are considered subjective and scientifically 
weak. There will be times, however, when no other form of validation is possible, when 
an instrument is one of a kind, and no other instrument or test can be used for compar­
ison. In that case, the investigator may be forced to rely on face validity to support an 
instrument's use. The disadvantage of relying on face validation as the only justifica­
tion for a test is that it provides no clout against potential challenges because it is based 
solely on the opinion of the investigator. Goldsmith2 suggests that one way to evaluate 
face validity is to determine who the stakeholders are, such as patients, physicians, 
physical therapists, occupational therapists or social workers, and then to describe a 
simple percentage of how many consider the test credible. 

Face validity does serve an important purpose, however, in that an instrument lack­
ing in face validity may not be acceptable to those who administer it, those who are 
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tested by it, or those who will use the results. For example, respondents on a question­
naire may not answer questions with honesty or motivation if they do not see the rele­
vance of the questions. Patients may not be compliant with repeated testing if they do 
not understand how a test relates to their difficulty. Consumers of research reports may 
not accept results if they feel the test is irrelevant. Therefore, although face validity 
should not be considered sufficient, it is a useful property of a test. 

CONTENT VALIDITY 
Most behavioral and educational variables have a theoretical domain or universe of 
content that consists of all the behaviors, characteristics, or information that could pos­
sibly be observed about that variable. Content validity refers to the adequacy with 
which this universe is sampled by a test. Because the content universe is theoretical, it 
must be defined by representative parts of the whole. An instrument is said to have con­
tent validity if it covers all parts of the universe of content and reflects the relative 
importance of each part. Content validity is an especially important characteristic of 
questionnaires, examinations, inventories, and interviews that attempt to evaluate a 
range of information by selected test items or questions. 

Content validity demands that a test is free from the influence of factors that are 
irrelevant to the purpose of the measurement. For instance, a test of gross motor skills 
should not contain items that assess language skills, nor should it be influenced by the 
patient's anxiety level or ability to read. If these factors influence the patient's score, the 
test would be measuring something other than what it was intended to measure and 
would not be a valid reflection of gross motor skill. Perhaps more important, content 
validity means that the test does contain all the elements that reflect the variable being 
studied. For example, an evaluation of pain using a visual analogue scale (VAS) that 
assesses the intensity of an individual's pain reflects only one element of the experience 
of pain. A tool such as the McGill Pain Questionnaire may have greater content valid­
ity because it includes a comprehensive assessment of many elements of pain such as 
location, quality, duration and intensity.3 

The determination of content validity is essentially a subjective process. There are 
no statistical indices that can assess content validity. Claims for content validation are 
made by a panel of "experts" who review the instrument and determine if the questions 
satisfy the content domain. This process often requires several revisions of the test. 
When all agree that the content domain has been sampled adequately, content validity 
is supported. 

Content validity is specific to the content universe as it is defined by the researcher. 
For some content areas this will be fairly obvious. For instance, an instructor preparing 
a final examination can determine if the questions address each unit covered during the 
semester and if the requested information was included in course materials. Other con­
tent universes are less obvious. Consider the following: What range of activities are rep­
resentative of "function"? Should a functional status questionnaire include questions 
related to physical, cognitive, social and emotional function? How important are each 
of these domains to the assessment of function of a patient with a stroke, a patient with 
spinal cord injury, or a well elderly person? If we are interested in dressing skills, how 
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many different tasks must be sampled to make a valid judgment? Will physical thera­
pists define this universe differently from occupational therapists or nurses? 

These types of questions must be answered by the researcher before the validity of 
the test can be determined. The answers will depend on the rationale for the test, the 
operational definitions of the test variable, and the specific objectives of the test instru­
ment. The content universe should be described in sufficient detail so that the domain 
of interest is clearly identified for all who use the instrument. 

CRITERION-RELATED VALIDITY 
Criterion-related validity is the most practical and objective approach to validity test­
ing. It is based on the ability of one test to predict results obtained on an external crite­
rion. The test to be validated, called the target test, is compared with a gold standard, 
or criterion measure that is already established or assumed to be valid. When both tests 
are administered to one group of subjects, the scores on the target test are correlated 
with those achieved by the criterion measure. If the correlation is high (the correlation 
coefficient is close to 1.00), the target test is considered a valid predictor of the criterion 
score. For instance, we can investigate the validity of heart rate (the target test) as an 
indicator of energy cost during exercise by correlating it with values obtained in stan­
dardized oxygen consumption studies (the criterion measure). We could establish the 
validity of observational gait analysis (the target test) by comparing results with those 
obtained with computerized motion analysis systems (the criterion measure). In each 
case, the criterion measure is known or assumed to be a valid indicator of the variable 
of interest, and therefore, comparable results achieved with the target test are support­
ive of that test's validity. 

Val idity of the Criterion 
The most crucial element of criterion validation is the ability to demonstrate validity of 
the criterion measure. If the criterion is not valid, it is plainly useless as a standard. Sev­
eral characteristics can be used to judge the utility of a criterion measure. First, it is nec­
essary to demonstrate its reliability in a test-retest situation, so that the instrument's 
stability is confirmed. Second, the criterion and target ratings should be independent and 
free from bias. For instance, if we use a supervisor's ratings as the criterion to validate a 
new scale of clinical competence for evaluating staff performance, we want to be sure 
that the supervisor's relationship with the staff does not influence the rating. We also 
want to blind the supervisor to the staff person's scores on the clinical scale to avoid the 
temptation of giving higher ratings to those who achieved higher clinical scores. It is 
often helpful to have different raters perform the target and criterion tests. 

A third, and probably the most important, characteristic of a good criterion is its rel­
evance to the behavior being measured by the target test. We must be able to establish 
that the criterion is a valid measure of the variable being addressed by the target test; 
that is, the criterion and the target test must be measuring the same thing. For instance, some 
studies have used measures of range of motion to document changes in joint pain. One 
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might believe that active movement in a joint will be proportional to the amount of pain 
experienced during movement. Others might argue, however, that range of motion 
measures do not assess pain and would be inappropriate as a criterion for validation of 
other pain scales. This issue is of obvious importance to the interpretation of correla­
tions between tests. 

In many areas of physical and physiological science, standard criteria are readily 
available for validating clinical tools. For example, to validate methods of measuring 
physical activity levels, we can use oxygen consumption data;4 to validate methods of 
measuring finger range of motion, we can refer to radiographic images.5 Unfortunately, 
the choice of a gold standard for more abstract constructs is not always as obvious. If 
we want to establish the validity of a functional status questionnaire, with what refer­
ent should it be compared? What standard can be used to validate a scale designed to 
assess perceptions of quality of life in a nursing horne population? How can we estab­
lish an external criterion to judge a person's degree of pain? Sometimes the best one can 
do is use another instrument that has already achieved a degree of validation or accept­
ance. For abstract variables such as these, criterion validation may be based on a 
reference standard that may not be a true "gold standard," but is considered an 
acceptable criterion. A more complex approach, construct validation, is often necessary 
to validate the measurement of more abstract variables. This process is discussed in the 
next section. 

Criterion-related validity is often separated into two components: concurrent valid­
ity and predictive validity. These approaches are differentiated on the basis of the time 
frame within which predictions are made. 

Concurrent Val idity 
Concurrent validity is  studied when the measurement to be validated and the crite­
rion measure are taken at relatively the same time (concurrently), so that they both 
reflect the same incident of behavior. This approach is often used to establish the valid­
ity of diagnostic or screening tests for determining the presence or absence of diseases 
or conditions. For example, the Autism Screening Questionnaire was developed to dis­
tinguish children with autism and pervasive development disorders, based on parental 
interview as the reference standard.6 

Concurrent validity is also useful in situations where a new or untested tool is 
potentially more efficient, easier to administer, more practical, or safer than another 
more established method, and is being proposed as an alternative. For instance, the dis­
tinction between stress and urge incontinence requires an extensive and time consum­
ing clinical examination by a urologist. Brown et at? demonstrated the validity of a 
3-itern questionnaire to make this distinction, using the clinical evaluation as the refer­
ence standard. As another example, Perkins and associates8 studied the characteristics 
of four simple sensory screening maneuvers compared with standardized electrophysi­
ological tests in the diagnosis of diabetic polyneuropathy. They demonstrated that 
monofilament sensory examination, superficial pain sensation, and vibration testing, all 
requiring only minutes to administer, were able to identify those with likely neuropathy. 
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Predictive Val id ity 
Predictive validity attempts to establish that a measure will be a valid predictor of 
some future criterion score. A test with good predictive validity helps an investigator 
make successful decisions by providing a basis for predicting outcomes or future 
behaviors. To assess predictive validity, a target test is given at one session and is fol­
lowed by a period of time after which the criterion score is obtained. The interval 
between these two tests is dependent on the time needed to achieve the criterion, and 
may be as long as several years. The relationship between the target and criterion scores 
is examined to determine if the target test score is a valid predictor of the outcome on 
the criterion measure. A classic example is the use of college admissions criteria, such 
as the Scholastic Aptitude Test (SAT) or grade point average (GPA), based on their pre­
sumed ability to predict future academic success. 

Predictive validity is an essential concept in screening procedures to assess future 
risk (see Chapter 27). For instance, we may use an instrument like the Berg Balance 
Scale9 or the Timed Up and Go testl0 as a screen to predict risk for falls in elderly indi­
viduals. Salaffi11 developed an algorithm based on age, weight, history of previous low 
impact fracture, early menopause and corticosteroid therapy to identify women at 
increased risk of low bone mineral density. Prediction of cognitive impairment follow­
ing stroke has been shown to be related to side and type of stroke, gender, and the pres­
ence of aphasia.U The results of screening tests allow clinicians to initiate appropriate 
preventive strategies. 

Prediction is also used for prognosis and setting long-term goals. We engage in pre­
diction when we examine the relationship between impairments and activity limita­
tions or disability. For example, Cress and Meyer13 were able to show that maximal 
voluntary muscle force and performance in daily activities could predict the ability to 
live independently without self-reported functional limitation in elderly individuals. 
Lombardino et at.l4 tested 149 kindergarteners using the Early Reading Screening 
Instrument (ERSI) and followed the children for one year. They demonstrated a strong 
correlation between first grade reading skills and the ERSI score, with the strongest 
relationship for reading comprehension. By knowing the ERSI score, then, intervention 
can be started early to prevent or diminish future risk for reading failure. 

We also estimate the potential for rehabilitation or change on the basis of a patient's 
initial status. For instance, Katz and co-workers15 studied a sample of 105 patients who 
underwent arthroscopic partial meniscectomy, to identify factors that were predictive 
of poor outcomes. They examined demographic factors, medical history, preoperative 
impairments and functional status, and operative variables to determine their relation­
ship to postoperative function, as measured by the SF-36 physical activity scale. 
Through multivariate statistical analyses, they found that the extent of cartilage dam­
age, worker's compensation and preoperative functional status were most predictive of 
a poor outcome. The authors suggested that these findings should be routinely meas­
ured and incorporated into prognostic data, to provide a basis for discussing the advan­
tages and disadvantages of the procedure with patients. 

A practical limitation exists, however, when trying to assess the predictive validity 
of screening procedures. One must be able to follow subjects who do and do not have 
positive initial findings, so that follow-up measures can distinguish between them. For 
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instance, in setting academic admissions criteria, presumably, we only admit the most 
qualified students. Therefore, when examining the outcome of academic success we are 
not able to determine if those with lesser scores would have also succeeded. They were 
never given the chance. This makes it difficult to truly determine if the admissions cri­
teria have predictive validity. 

CONSTRUCT VALIDITY 
Construct validity reflects the ability of an instrument to measure an abstract concept, 
or construct. The process of construct validation presents a considerable challenge to 
the researcher because constructs are not "real"; that is, they are not directly observable, 
and exist only as concepts that are constructed to represent an abstract trait. Because 
constructs are typically multidimensional, it is not easy to determine if an instrument is 
actually measuring the variable of interest. 

For example, everyone agrees that "health" is an important clinical construct, but 
because of its complexity, clinicians are generally unable to agree on how it should be 
defined or measured. Therefore, the definition of a construct like "health status" can be 
determined only by the instrument used to measure it. A test that focuses on physical 
activity alone will suggest a very different definition than a more global test that also 
incorporates cognitive, social and psychological elements. Similarly, a scale that looks 
at activities of daily living (ADL) according to categories of self-care, transfers and 
dressing will provide a different perception of function than one that also evaluates 
locomotion, housekeeping and recreation skills. An instrument that evaluates ADL 
according to an individual's perception of the difficulty performing given tasks will pro­
duce a measurement that is interpreted differently than one which focuses on the time 
needed to perform, the assistance required, or another that assesses the level of pain 
associated with specific tasks. Each of these provides a different theoretical foundation 
for defining the construct of function. 

Part of construct validity, therefore, is based on content validity; that is, one must 
be able to define the content universe that represents that construct to develop a test to 
measure it. Beyond content, however, constructs must also be defined according to their 
underlying theoretical context. Thus, the "meaning" of a construct is based on assump­
tions about how an individual with that trait would behave under given conditions and 
how the various dimensions that form the construct interrelate. One can generate 
hypotheses regarding the overt behaviors of individuals with high and low scores on 
the test. An instrument is said to be a valid measure of a construct when its measure­
ments support these theoretical assumptions. 

For example, pain is a difficult construct to define, as it represents a subjective phe­
nomenon rather than a performance behavior. However, we may also question whether 
"pain" is a stimulus, a perception, a response or a behavior. Looking at the construct of 
pain, then, requires that we conceptualize what is actually being evaluated. For 
instance, Sim and Waterfield16 discuss the experience of pain as a subjective outcome that 
varies from individual to individual. They describe the pain experience as having sen­
sory, affective, evaluative, cognitive and behavioral dimensions, with sensory, emo­
tional and physiological outcomes (Figure 6.2). Further analysis suggests the need to 
look at memory, cultural factors, social networks, sex and age, personality and other 
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FIGURE 6.2 Theoretical model of the multidimensional nature of the experience of pain, i l lustrating 
how the construct of pain may be conceptualized. Several dimensions contribute to the individual nature 
of the experience, as well as how the outcomes of the pain experience are perceived. (Adapted from Sim 
J, Waterfield J. Validity, rel iabil ity and responsiveness in  the assessment of pain. Physiother Theory Pract 
1 997; 1 3 :23-37.) 

elements that contribute to the individual perception of pain. The differentiation 
between chronic and acute pain is more than just the time over which the pain occurs. 
Then there are characteristics of pain, such as intensity, quality, location, and duration. 

How one chooses to "measure" pain, therefore, will affect how the outcome will be 
interpreted. For instance, a study of patients in cancer trials looked at several outcome 
measures to evaluate pain treatmentP A visual analog scale (VAS) using the anchors of 
"no pain" to "pain as bad as it could be" focused solely on intensity. A Pain Relief Scale 
assessed complete relief to worsening of pain. A Patient Satisfaction Scale rated how 
satisfied patients were with their treatment, and pain management scales were based 
on medication use. The authors showed that the adequacy of treatment for pain varied 
from 16% to 91%, depending on the type of outcome measure used. The construct is 
defined, therefore, by the instrument used to measure it. Different elements may be 
important, depending on the clinical or research situation. 

Methods of Construct Val idation 
Construct validation provides evidence to support or refute the theoretical framework 
behind the construct. Construct validation is an ongoing process, wherein we are con­
tinually learning more about the construct and testing its predictions. This evidence can 
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be gathered by a variety of methods. Some of the more commonly used procedures 
include the known groups method, convergence and discrimination, factor analysis, 
hypothesis testing and criterion validation. 

Known Groups Method 
The most general type of evidence in support of construct validity is provided when a 
test can discriminate between individuals who are known to have the trait and those that 
do not. Using the known groups method, a criterion is chosen that can identify the 
presence or absence of a particular characteristic, and the theoretical context behind 
the construct is used to predict how different groups are expected to behave. Therefore, 
the validity of a particular test is supported if the test's results document these known 
differences. For example, Megens and associates18 examined the construct validity of 
the Harris Infant Neuromotor Test (HINT), a screening tool to identify neuromotor or 
cognitive/behavioral problems in infants who are healthy or at risk within the first year 
of life. They studied 412 low-risk infants and 54 infants who were identified as high risk 
based on preterm birth weight or exposure to drugs or alcohol in utero. The researchers 
found that the HINT distinguished between the two groups of infants in their mean 
scores, supporting the construct validity of the tool. 

Convergence and Discrimination 
Campbell and Fiske19 have suggested that the construct validity of a test can be evalu­
ated in terms of how its measures relate to other tests of the same and different con­
structs. In other words, it is important to determine what a test does measure as well as 
what it does not measure. This determination is based on the concepts of convergence 
and discrimination. 

Convergent validity indicates that two measures believed to reflect the same 
underlying phenomenon will yield similar results or will correlate highly. For instance, 
if two health status scales are valid methods for measuring quality of life, they should 
produce correlated scores. Convergence also implies that the theoretical context behind 
the construct will be supported when the test is administered to different groups in dif­
ferent places at different times. Convergence is not a sufficient criterion for construct 
validity, however. It is also necessary to show that a construct can be differentiated from 
other constructs. 

Discriminant validity indicates that different results, or low correlations, are 
expected from measures that are believed to assess different characteristics. Therefore, 
the results of an intelligence test should not be expected to correlate with results of a 
test of gross motor skill. To illustrate these concepts, the Sickness Impact Profile (SIP) 
has been compared to several other measures of function in an effort to establish its con­
struct validity. The SIP is a health status measure which indicates the changes in a per­
son's behavior due to sickness, scored on the total scale as well as on separate physical 
and psychosocial subscales.2° Convergent validity has been supported by a high corre­
lation between the physical dimensions of the SIP scale and the SF-36 health survey 
questionnaire.21 Discriminant validity is illustrated by a lower correlation between the 
physical SIP scale and the Carroll Rating Scale for Depression.22 
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Campbell and Fiske19 also suggest that validity of a test should be evaluated in 
terms of both the characteristic being measured and the method used to measure it. 
They call this a trait-method unit; that is, a trait cannot be assessed independently of 
some method. Therefore, the validity of the assessment must take both elements into 
account. On the basis of this concept, a validation process was proposed that incorpo­
rates an analysis of two or more traits measured by two or more methods. The intercor­
relations of variables within and between methods are arranged in a matrix called a 
multitrait-multimethod matrix (see Figure 6.3). By arranging scores in this way, we 
can verify that tests measuring the same trait produce high correlations, demonstrating 
convergent validity, and those that measure different traits produce low correlations, 
demonstrating discriminant validity. 

Factor Analysis 
Another common approach to construct validation is the use of a statistical procedure 
called factor analysis. The concept of factor analysis is based on the idea that a con­
struct contains one or more underlying dimensions, or different theoretical compo­
nents. For example, Wessel and associates23 used the Western Ontario Rotator Cuff 
(WORC) Index to study the quality of life of individuals with that disorder. The index 
is composed of 21 items that were originally designed to reflect five dimensions: 
(1) pain and physical symptoms, (2) sports and recreation, (3) work, (4) lifestyle, and 
(5) emotions. Using a factor analysis, the researchers were able to recombine these vari­
ables as three factors: Emotions and Symptoms, Disability-Strength Activities, and 
Disability-Daily Activities. These separate groupings of correlated variables represent 
subsets of test items or behaviors that are related to each other, but are not related to 
items in other factors; that is, each factor represents a unique combination of items that 
reflects a different theoretical component of the construct. The statistical basis for this 
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FIGURE 6.3 A multitrait-multimethod matrix, showing the relationship between rel iabi l ity and val id­
ity, and the concepts of convergent and discriminant val id ity. The physical scale of the Sickness Impact 
Profi le (SIP) shows high correlations (convergent val id ity) with the physical scale of the SF-36 Health Sta­
tus Questionnai re, but low correlations (discriminant val id ity) with different measures of depression. 
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process is quite complex and beyond our current discussion, but we will devote consid­
erable attention to it in Chapter 29. 

flypothes� lresting 
Because constructs have a theoretical basis, an instrument's validity can also be 
assessed by using it to test specific hypotheses that support the theory. For instance, the 
construct validity of the Functional Independence Measure (FIM) was assessed by 
Dodds et al./4 based on the assumption that the instrument should be able to distin­
guish functional differences between people with varied clinical conditions. The con­
struct of function that forms the foundation for the FIM relates to the burden of care, or 
the degree of assistance needed for a patient to fulfill activities in ADL, mobility and 
cognitive domains. Using this theoretical premise, the authors proposed three hypothe­
ses: (1) that FIM scores should decrease with increasing age and comorbidities, (2) that 
the score would be related to a patient's discharge destination according to the level of 
care provided in that setting (such as home or skilled nursing facility), and (3) that there 
would be a relationship between FIM scores and degree of severity for patients with 
amputations, spinal cord injury and stroke. Using data collected on more than 11,000 
patients, their results supported some hypotheses better than others, demonstrating a 
strong relationship between FIM scores and discharge destination, and severity of 
spinal cord injury and stroke. This type of analysis provides distinct evidence of con­
struct validity for the instrument, but it leaves unanswered many theoretical questions 
regarding its use over the broad range of rehabilitation situations. Therefore, it also 
points to the need for continued testing to determine how the FIM score relates to var­
ious diagnoses and clinical findings. 

Criterion Validation 
Construct validity can also be supported by comparison of test results with those of rel­
evant criterion tests. This approach is not used as often as other approaches, because it 
is typically difficult to find a suitable criterion. In most cases, when a new instrument is 
developed to measure a construct, it is because no other acceptable instruments are 
available. Therefore, no standard can be applied to test it; however, it is often possible to 
find criterion tests that can be applied to subparts of the overall instrument. For exam­
ple, Podsiadlo and Richardson10 used the Berg Balance Scale, gait speed and an ADL 
scale as criterion values to establish the construct validity of the timed "Up and Go" test. 
These individual criterion tests were assumed to represent components of the overall 
construct of functional mobility that the "Up and Go" test was intended to measure. 
Through a series of correlations the authors were able to demonstrate that each criterion 
test was related to the outcome variable, and although these were not perfect correla­
tions, taken together they supported the overall concept that was being evaluated. 

M EASURING CHANGE 
As clinicians and researchers, we could reasonably argue that a primary goal of treat­
ment is to effect a positive change in a patient's status. The difference between the out­
come and the initial score is called a change score or difference score. The use of 
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change scores as the basis for analysis of treatment outcomes is pervasive throughout 
clinical research. This practice is actually quite complex, however, in terms of statistical 
and practical interpretation. Perhaps the most important consideration is the purpose 
of measuring change. We measure change to determine if an individual's performance 
or condition has gotten better. The amount of change will indicate a strong versus weak 
response. We also look at differences between individuals in the amount of change, to 
distinguish those who changed a lot from those who changed a little and to draw infer­
ences about treatment effects. 

Issues Affecting Val id ity of Change 
Four measurement issues have the potential to influence the validity of change scores.25 

Level of Measurement 
The use of nominal, ordinal, interval or ratio data is an important consideration in the 
calculation of change scores. Nominal scores, of course, cannot be subtracted, and 
therefore, cannot demonstrate change. At the other end of the continuum, true change 
can only be measured using ratio scores, because all measures are known quantities. 
Interval level data present a problem for evaluating change (refer to Figure 4.2 in 
Chapter 4), because although we can determine the distance of change, we may not 
know the true amount of change. 

The risk of misinference is greatest, however, with ordinal measures because the 
distance between intervals is not known and may not be equal. For instance, Andres 
and co-workers26 examined changes in strength in patients with amyotrophic lateral 
sclerosis using manual muscle test grades (ordinal scale) and isometric force measures 
with a strain gauge (ratio scale). They found that early changes in strength were evident 
with the ratio scale measure, which were not evident using the ordinal measure. Signif­
icant declines in functional strength occurred within a single manual muscle test grade. 
During later stages, strength decrements were more dramatic and were clear with both 
measures. The choice of tool, therefore, could make a distinct difference in evaluative 
decisions early in the disease. 

This creates a potentially troublesome situation for clinicians and researchers, as so 
many tools used to measure impairments, function and quality of life are based on ordi­
nal scores. Assessment of change with such tools must take into account their limita­
tions for interpretation. To illustrate, consider again the Functional Independence 
Measure (FIM) which is used extensively in rehabilitation settingsP This instrument 
includes 18 items related to independence in physical and cognitive domains. Each item 
is scored on a 1-7 ordinal scale, with lower scores representing the need for more assis­
tance. We would have to question an assumption, however, that would equate a one­
point improvement from 1 to 2 with the same "amount" of improvement from 6 to 7. 
Similarly, a change from 1 to 2 on a manual muscle test could not be validly equated 
with a change from 3 to 4. Therefore, efforts to show improvement in individual 
patients or groups through change scores can be ambiguous. 

This measurement issue is a concern for interpretation of scores. For instance, most 
functional scales present a total score, derived by summing item scores. This process 
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could be considered meaningless if the "numbers" that are used to create the sum have 
no inherent mathematical relationship; that is, an ordinal number is nothing more than 
a categorical label, and has no arithmetic properties. Therefore, the sum and its derived 
change score may be uninterpretable. See the Commentary in Chapter 4 for further dis­
cussion of this question. 

Reliability 
A second important issue in evaluating the validity of change concerns the reliability of 
the factor being measured. This consideration refers back to the concepts of measure­
ment error and minimal detectable difference (see Chapter 5). Suppose we take a pretest 
measurement and a subsequent posttest, but the true value does not change. The score 
will probably be different on the posttest because of random measurement error. Now 
we subtract the pretest from the posttest to obtain a change score. Assuming that the 
true score has not changed, measurement theory suggests that the difference will cancel 
out the true score, essentially leaving nothing but error in the change score. Therefore, 
even with true change, reliability is a necessary precondition for the application of 
change scores. Streiner and Norman28 suggest that one should only use change scores 
when the reliability of a measure exceeds 0.50, although for many clinical variables reli­
ability should probably be higher. Perhaps more relevant, the minimal detectable 
change will provide a useful reference to determine how much change can be reason­
ably interpreted as real. It is important to remember that being reliable does not auto­
matically imply that a measure will be able to detect change. 

Stability 
In addition to the reliability of the measurement system, we must also consider the sta­
bility of the variable being measured. If we are working with a variable that is labile, it 
may be difficult to determine if change is a function of improvement in a therapeutic ele­
ment, or if it is a reflection of an unstable behavior. For instance, measurement of blood 
pressure may vary from trial to trial with no true change in physiological status, whereas 
measures of function should be fairly stable even though precise performance may vary 
from time to time. Establishing stability may require that several measurements be taken 
at both baseline and outcome to demonstrate that the performance is reliable. 

Baseline Scores 
A fourth concern in the interpretation of improvement or decline is the status of 
patients at baseline. Sometimes the extent to which a variable changes will depend on 
its starting point. For example, a patient with poor health status may not demonstrate 
deterioration if the baseline score on a quality of life scale is already at the lowest point 
(a floor effect). Conversely, a patient who is functioning well in basic activities of daily 
living (ADL) may show no improvement in function if a functional scale is not able to 
assess high level instrumental ADLs (a ceiling effect). 

Therefore, when describing the effectiveness of a therapeutic program, information 
should be included about gains as a function of initial scores. It would be useful to 
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know if the likelihood of improvement is similar across all levels of baseline scores. Pat­
terns may become evident when the starting point is examined. If some patients do not 
improve as much as others, it would be helpful to understand if their status upon admis­
sion was different. Those with greater impairments may need to be treated differently. 

Responsiveness to Change 
If we are interested in documenting change, one of the first choices we must make is 
which measuring instrument we will use. For some variables this decision is rather 
straightforward. When we want to measure ROM or strength, for instance, we have a 
fairly traditional set of tools to employ. For more abstract variables, however, 
researchers have generated a vast set of instruments that can be applied in different sit­
uations. Much of the research in the development of these tools has focused on con­
struct validity, determining if the instrument is able to reflect a person's status at a given 
point in time. However, if we intend to use an instrument for evaluation, we must 
extend our concern for validity beyond the construct itself to a discussion of the 
responsiveness of the instrument, or its ability to detect minimal change over time.29 

Responsiveness is an important quality if a test is to be used to assess the effectiveness 
of intervention; that is, the score must change in proportion to the patient's status 
change, and must remain stable when the patient is unchanged. This change must be 
large enough to be statistically significant for research purposes and precise enough to 
reflect increments of meaningful change in an external criterion for clinical application. 

Minimal Clinically Important Difference 
An important question, then, relates to just how much change can be considered clini­
cally meaningful. From a research standpoint, we often find ourselves referring to sta­
tistical significance as a way of defining important differences. But this may not reflect 
a difference that has clinical significance. Decisions about the effectiveness of interven­
tions must be made on the basis of clinical importance and relevant change. 

The concept of the minimal clinically important difference (MCID) has become 
central to assessing change. The MCID is the smallest difference in a measured variable 
that signifies an important rather than trivial difference in the patient's condition.30 It 
has also been defined as the smallest difference a patient would perceive as beneficial, 
and that would result in a change in the management of the patient, assuming an 
absence of excessive side effects or cost.31•32 The determination of the MCID is critical 
for judging the benefit of intervention.33 Only when we know if treatment has resulted 
in meaningful change can we truly compare the effectiveness of treatments. 

The MCID is usually based on an "anchor" or external criterion that indicates when 
change has occurred. This is typically associated with the patient's perception that he is 
"better," by the clinician's judgment of the patient's improvement, or an external health 
status measure. The minimal clinically important difference has been determined for 
several instruments. For example, Kocks et al.34 studied the Clinical COPD Question­
naire, and found that a change of 0.44 points on the 0-10 scale was related to the 
patient's perception that he was "somewhat better." A change of 0.39 points was estab­
lished as the MCID based on a criterion reference of hospital readmission. Iyer et al.35 
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FIGURE 6.4 Continuum of reliabil ity to valid ity, related to the measurement of important c l inical 
changes. 

studied the Pediatric Evaluation of Disability Inventory (PEDI) and found that an 11 
point change (0-100 scale) was meaningful based on ratings from physical therapists, 
occupational therapists and speech and language pathologists. Quintana et al.36 
showed that a change of 20-40 points on the Physical Function scale of the SF-36 was 
important to patients six months following hip replacement surgery. 

Interpretation of the MCID must be made within the context of a given study, with 
specific reference to the outcome measures used, the population and setting, and the 
design of the study. It must also be interpreted with reference to the minimal detectable 
difference (MOD) to determine how much change is potentially attributable to error 
(see Chapter 5). Although change may be observed beyond the MOD, clinicians must 
determine if the values reported will be useful in understanding when an individual 
patient has had an important improvement (see Figure 6.4). Further discussion of 
MCID and methods for calculating it are provided in Chapter 27. 

CRITERION REFERENCING AND NORM REFERENCING 
The validity of a measurement is also related to how one makes judgments from the test 
results. Tests may be developed to assess performance based on an absolute criterion. 
The results of a criterion-referenced test are interpreted relative to a fixed standard 
that represents an acceptable model or level of performance. If we know that a patient 
with a total knee replacement needs at least 90 degrees of knee flexion to negotiate 
stairs, then we will establish 90 degrees as an acceptable outcome. A functional test will 
establish how much assistance a patient needs to perform certain tasks using specific 
definitions of dependence and independence. In educational programs, a grade of 70 on 
a test might be used to specify competence for the material being tested. This absolute 
standard will indicate passing, and everyone could pass or everyone could fail. Each 
student's grade is independent of how the rest of the group performs. The validity of a 
criterion-referenced score, of course, depends on the validity of the criterion. So if we 
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set a passing score on an exam, that score should represent competence, and should dif­
ferentiate those who are competent from those who are not. 

Many tests are specifically designed to determine how an individual performs rel­
ative to a reference group, often based on an average range. Such a test is considered 
norm-referenced. The "normal" values are determined by testing a large group that 
meets a certain profile. The mean of the distribution of scores for the reference sample 
is used as the standard, and the variability (standard deviation) is used to determine 
how an individual performs relative to the sample. For example, standardized tests like 
the SAT or GRE are scored relative to the group taking the test at that administration. 
When we assess a patient's pulmonary function or muscle strength based on normal 
values that have been determined according to age and sex, we are using a norm­
referenced standard. If a professor decides to "curve" test scores, so that the grades of 
the majority of the class are considered "C," regardless of the absolute score, then the 
test would be norm referenced. Several developmental tests, such as the Bayley Scales 
of Infant Development37 or the Gesell development scales,38 are based on data collected 
on children within specified age groups. These standardized tests allow the clinician to 
determine if a child's developmental status falls within the range of the majority of chil­
dren in that age group. The validity of a norm-referenced test will depend on the valid­
ity of the sample that was used to provide the normal values. 

The distinction between criterion-referenced and norm-referenced scores is an 
important one, and should be understood by those who administer and interpret tests. 
The relative utility of these scores will depend on the purpose of the test and the action 
that will be taken based on the results. Norm-referenced tests are usually used to estab­
lish placement or for diagnosis, as in standardized college board exams or developmen­
tal tests. A criterion-referenced test is used to examine the proficiency of performance 
along a continuum of skill, and does not depend on the performance of others. Criterion­
based scores are generally more useful for establishing treatment goals and measuring 
change, as they tend to be based on an analysis of the tasks that are required for suc­
cessful performance. Both types of tests should demonstrate reliability and validity. 

CROSS-VALIDATION 
The purpose of validation studies is  to document that a test can be used effectively for 
a particular purpose. When we deal with predictive tests or screening procedures, we 
collect data on an experimental sample and use these data to create predictive equations 
or cutoff scores that will be applied to the larger population. For example, if we want to 
determine the appropriate criteria for screening scoliosis patients, we would look at 
results obtained on a particular sample and then apply the most effective cutoff score 
to other samples. 

Unfortunately, the data obtained on an experimental sample are often different 
from those that would be obtained on a sample of different subjects. Therefore, the error 
components within predictive equations or cutoff scores will usually be greater for sub­
sequent samples than they were for the original sample. This means that the test's accu­
racy will not necessarily be as great as it was on the original sample. 
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The predictive models or cutoff scores obtained from validation studies should, 
therefore, always be cross-validated on a second sample, to determine if the test crite­
ria can be generalized across samples. Cross-validation is accomplished by trying out 
a previously developed test on a new group with characteristics as close as possible to 
those of the original. Of course, we assume that the original and test groups are both 
good representatives of the population for which the test will be used. It is also possi­
ble to cross-validate the test on a sample with different characteristics that may be 
appropriate for the test. For instance, certain perceptual tests may be used for different 
age groups and could be validated across groups of children and adults. If cross­
validation is not documented, a substantial reduction in the validity of a test on subse­
quent applications can be anticipated. 

COMMENTARY 

The Ongoing Pursuit of Valid ity 

The process of developing a measuring instrument involves several stages of plan­
n ing, test construction, rel iabil ity testing, and val idation. I n  the plann ing stages, the 
purpose of the test must be stipulated, i nc lud ing specification of the relevant content 
un iverse or the theoretical construct and the target population for which the instru­
ment wi l l  be used. A l iterature review is usually necessary, to determ ine that an 
appropriate instrument does not al ready exist and to formulate operational defin i­
tions of the construct to be measured. For educational or physical tests, these oper­
ational defin itions wi l l  refer to specific content that the subject is expected to know 
or perform. For physiological or behavioral tests, operational defin itions must spec­
ify how the construct theory wi l l  be manifested in a person's actions or responses. 
The l iterature wi l l  often help identify the types of test items that are l i kely to best 
eval uate the construct of i nterest. 

When mechanical instruments are developed for measurement of physical or 
phys iological variables, the construction phase of development i nvolves the actual 
bu i ld ing of the device, usual ly  starting with the development of a prototype. The 
instrument is field tested on a variety of subjects to see if it reacts properly and if 
the resu lting scores represent the construct of i nterest. For educational and psycho­
logical tests, the construction phase is fac i l i tated by the l isti ng of behavioral objec­
tives that are relevant to the test's purpose and that define the content areas that 
shou ld be i nc l uded. Depending on the purpose of the test, these objectives may 
relate to the cognitive, affective, and psychomotor domains. The number of items 
that address each content area wi l l  reflect the relative importance of each objective 
to the test's u ltimate goal .  Writing test items is a long process, usual ly i ncorporat­
i ng contributions from many experts, and several stages of review to support con­
tent val id ity. 

Validation is almost never a complete process, nor is it ever accompl ished with 
only one study. Numerous research efforts are requ i red to substantiate a test's val id­
ity using different testing methods. The choice of which type of evidence is requ i red 
to document va l idity wi l l  depend on the test's purpose. For most instruments, more 
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than one method wi l l  be used. In many instances, construct val idity wi l l  subsume the 
other forms of evidence and requ i re that mu ltiple approaches to val idation be used. 

Choos ing a sample for val idation studies is an important part of the process, as 
the resu lts that are obtained must be general izable to the target population for which 
the test is bei ng developed. The characteristics of the target population shou ld be 
c learly defi ned. It is important that the test sample reflect some variance in the meas­
ured characteristics, and not just the population average. One criterion for establish­
i ng a test's val idity i s  its abil ity to d iscrimi nate among i ndividuals with different levels 
of the construct. If a sample is composed of a homogeneous group with s imi lar va l­
ues for the test trait, it w i l l  be impossible to determine if the test fu lfi l l s  this purpose. 

Concepts of val idity are of vital importance in the contemporary health care 
environment, where outcomes and qual ity of l ife constructs are seen as relevant end 
points for evaluating the success of treatment and j ustifying cont inued i ntervention. 
As c l i n icians become more fami l iar with the vast number of generic and condition­
specific health instruments that are bei ng used, they must also be able to determine 
which instrument is appropriate u nder which conditions and for which patient, and 
they must be able to i nterpret the scores on these i nstruments with meaningfu l ana ly­
ses. If an instrument is used to demonstrate change or improvement, but it is not sen­
sitive enough to pick up smal l  but c l i n ical ly important changes, then the treatment 
wi l l  appear unsuccessfu l .  As we attempt to use these tools to show effectiveness, we 
must understand the concepts of val idity to make reasonable judgments and more 
i nformed choices. We must be able to eva luate val idity, and we must critica l ly scru­
tin ize the l iterature to make these determinations. 

Perhaps the most sign ificant message, however, concerns how one goes about 
choosi ng an i nstrument. Many c l i n icians are ambitious in their attempt to design 
forms and tests for specific purposes. U nfortunately, many are unaware of the need 
to be accountable for the val idity of the i nstrument, and their measurements are 
often not meaningfu l .  Th is practice h inders communication and obstructs the abi l ity 
to examine patterns, compare findings or draw general izations regard i ng outcomes. 
It wou ld make more sense to try to find an existing instrument that might serve the 
purpose. Th is a lso presents the responsibi l ity, however, for confi rming rel iabi l ity and 
val idity. G iven the large number of i nstruments that are presently being tested, we 
can all contribute sign ificantly to our understand ing of their capabi l ities by using 
them with different populations i n  varied settings, to determine their useful measure­
ment properties. 
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C HAPTER 7 

Asking the Research 
Question 

The first step in any research effort is identification of the specific question that will be 
investigated. This is the most important and often most difficult part of the research 
process, because it controls the direction of all subsequent planning and analysis. The 
delineation of a precise question is an analytic and evolutionary process, requiring a 
thorough search through the literature to determine what information is already avail­
able on the topic. Throughout the search the researcher re-examines and redefines the 
purpose of the research, honing it and clarifying it until, finally, an important "research­
able" question is asked. 

The overall process for identifying a research question starts with the selection of a 
research topic that sparks some interest, and the subsequent exploration of that topic by 
examining issues in clinical practice and theory, and reading the professional literature. 
This information leads to the identification of a research problem, a broad statement that 
begins to focus the direction of study. The problem is then refined to a research question, 
which is specific and defined. The " question" may actually be in the form of a statement 
or an interrogatory; in either case, it delimits the purpose of the study. Several compo­
nents will shape the question, including an evaluation of its importance and feasibility, 
specification of the population to be studied, development of a research rationale to sup­
port the question, and a description of the specific variables to be studied. Throughout 
this process, the researcher relies on a comprehensive review of the literature to provide 
the background necessary for decision making. The research question is then translated 
into a statement that reflects the expected outcomes of the study, clarifying the research 
objectives in the form of hypotheses or a statement of purpose for the study. 

The development of a question as the basis for a research study must be distin­
guished from the process for development of a clinical question in evidence-based prac­
tice. In the latter instance, the clinician formulates a question to guide a literature search 
that will address a particular decision regarding a patient's intervention, diagnosis or 
prognosis (see Chapter 1) .  

The purpose of this chapter is to clarify the framework for developing and refining 
a feasible research question, to define the different types of variables that form the basis 
for the question, to describe how research objectives guide a study, and to discuss how 
the review of literature contributes to this process. 
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SELECTI NG A TOPIC 
The research process begins when a researcher identifies a specific topic of interest (see 
Figure 7 1). Many beginning researchers approach the initial phase of the research 
process by "looking for a question." Students may be required to generate a question 
for a project to meet academic requirements. Certainly, there is no paucity of clinical 
problems that need to be investigated, however, developing a research question should 
not be merely a fishing expedition. The intellectual and problem solving processes that 
are part of all clinical or academic endeavors will generate questions of interest. Ques­
tions grow out of these experiences because the clinician or researcher feels a need to 
know something that is not already known, to resolve a conflict, or to clarify some piece 
of information that is not sufficiently documented. Even in situations where the 
research task is an academic exercise, the investigator's intellectual curiosity is bound 
to uncover some uncertainty or special interest that can be translated into a research 
question. Researchers are usually able to identify that they are interested in studying a 
certain patient population, a specific type of intervention, a clinical theory, or a funda­
mental policy issue in the profession. 
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FIGURE 7 1 I l lustration of the process for developing a research question. 
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Once a topic is identified, the process of clarifying a research problem begins by sorting 
through ideas, facts and theories based on clinical experience and professional litera­
ture to determine what we know, what we don't know, and what we need to find out. 
The application of this information will lead to identification of a research problem 
that will provide the foundation for delineating a specific research question that can 
be answered within a single study (see Figure 7.1). Typically, research problems start 
out broad, concerned with general clinical problems or theoretical issues. They must be 
manipulated and modified several times before they become narrowed sufficiently to 
propose a specific question. Reading the literature and discussing ideas with colleagues 
are invaluable as one works toward crystallizing a research question. For instance, a 
researcher might be interested in exploring issues related to wound care. The topic then 
has to be made more explicit, perhaps specifically, "How can we effectively treat pres­
sure ulcers?" This problem could then be addressed in many ways, leading to several 
different types of studies. For example, a researcher might look at the effects of ultra­
sound, electrical stimulation, negative pressure therapy or surgical intervention to pro­
mote healing. Another might be concerned with the timing or duration of intervention. 
Another might address co-morbidities that affect healing. Questions may relate to loca­
tion or size of the ulcer, debridement techniques, influences of age or gender, or the best 
ways to measure healing. Many other approaches could be taken to address the same 
general problem. Each one will contribute to the overall knowledge base that helps us 
understand the problem. Beginning researchers are often unprepared for the amount of 
time and thought required to formulate a precise question that is testable. It is some­
times frustrating to accept that only one small facet of a problem can be addressed in a 
single study. 

Cl in ical Experience 
Research problems often emerge from some aspect of practice that presents a dilemma. 
A clinician's knowledge, experience and curiosity will influence the types of questions 
that are of interest. We often ask why a particular intervention is successful for some 
patients but not for others. Are new treatments more effective than established ones? 
What outcomes can be expected following a particular intervention? Would a particu­
lar treatment be more or less effective if we changed the technique of application or 
combined it with other treatments? 

For example, neuromuscular electrical stimulation (NMES) has been shown to be 
an effective adjunct treatment for quadriceps strengthening following anterior cruciate 
ligament (ACL) repair when performed against isometric resistance using a 
dynamometer with the knee positioned in flexion. Fitzgerald et aP had found that 
some patients had difficulty tolerating that protocol and many clinics did not have 
instrumented dynamometers. They developed a modified version of the published 
NMES procedures and then studied the effectiveness of their adapted protocol. 

Often, through trial and error, clinicians find interesting solutions to clinical prob­
lems. These present a challenge to objectively document effects of treatment on specific 
patient populations. Treatments that are based in tradition or authority should also be 
examined, to test their underlying assumptions in the effort to support evidence-based 



124 PART I l l  • Designing Clinical Research 

practice. For instance, research has been unable to substantiate the effects of cran­
iosacral therapy as a technique to assess pain and dysfunction.2-4 In many cases, our 
empirical observations suggest that a treatment works and we do not feel a need to pur­
sue documentation further; however, evidence-based practice requires systematic 
study of traditional treatment biases and a critical analysis of treatment alternatives. 

Research problems may reflect a need to describe patterns of normal behaviors or 
the natural history of clinical phenomena. What values can we use to judge the degree 
of dysfunction we find in our patients? Does one clinical problem consistently accom­
pany others? What is the natural progression of physical disability following a specific 
injury or onset of disease? 

Questions about methodology are also of interest. How can we measure change? 
What tools are needed to document and diagnose patient problems? Many new instru­
ments have been developed in recent years for measuring physical, physiological, and 
psychological performance. These need to be analyzed for reliability and validity under 
varied clinical conditions and on different patient groups. 

Clinical Theory 
Clinicians will often examine the theories that govern their practice as a source of 
research questions. Theories allow us to explain relationships and to predict outcomes 
based on given information (see Chapter 2); however, theories are applicable only to the 
extent that they can be empirically confirmed. For example, the validity and scope of 
theories that address motor control, motor learning, cognitive and physical develop­
ment, neuromuscular function, language acquisition, personal interaction or compli­
ance can be tested in clinical situations. To formulate a specific research question, a 
clinician must first examine the principles behind a theory and then determine what 
clinical outcomes would support or not support the theory. The answers will be the 
basis for a research question. 

The International Classification of Functioning and Disability (ICF) is an example 
of a model that lends itself to important research questions.5'6 Among the theoretical 
constructs that support the model, we can look at the relationship between positive 
(functioning) and negative (disability) aspects of activity and participation (see Chap­
ter 1). For instance, researchers have focused on the relationships between measures of 
personal characteristics, impairment and activity /participation levels in patients with 
ankylosing spondylitis? Results showed that impairment variables explained only a 
small portion of the activity and participation restrictions perceived by patients. There­
fore, the researchers concluded that further research should identify how social, struc­
tural and attitudinal barriers (contextual factors) influence activity and participation in 
these patients. 

Several researchers have begun to examine how specific instruments reflect the 
components of the ICF in the measurement of quality of life and function.7-12 These 
studies have examined the theoretical construct of function, and have found that many 
instruments reflect all the dimensions of the ICF, while others do so in only a limited 
way. As clinicians and researchers select measuring tools, they must be aware of the 
components that are addressed in these instruments, and the potential areas that are not 
covered at all.13 Once we understand the theoretical scope of our measurements, we can 
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begin to ask questions that will verify how changes in body functions and structure 
(impairments) will directly or indirectly impact functional activities. 

Professional Literature 
Reference to professional literature plays an essential role in the delineation of a research 
problem and ultimately in deriving the specific research question. In the initial phases, 
the literature will help the researcher determine the issues of importance. Using this 
information, an initially broad or vague problem can begin to take a more structured 
and concise form. This initial review of the literature is preliminary and not necessarily 
extensive. The researcher will explore a variety of references on a particular subject and 
examine a breadth of materials to become oriented to practical and theoretical issues, as 
well as the kinds of variables or clinical problems that others have addressed. 

Finding Gaps and Conflicts in the Literature 
Professional literature provides the basis for developing a research problem in several 
ways. First, it will clarify holes in professional knowledge, areas where we do not have 
sufficient information for making clinical decisions. For example, Ingham and co­
workers14 were interested in the possible association between stuttering and speech 
effort, but they were not able to find studies that addressed this relationship. They did 
find, however, several studies that showed successful treatment for stuttering through 
prolonged speech, such as chorus reading. This led them to an investigation of the effect 
of chorus reading on self-rated speech effort in adult stuttering speakers and normally 
fluent control participants. 

Another common source of ideas derives from conflicts in the literature, when stud­
ies present contradictory findings. For instance, many researchers have looked at the 
effect of patellar taping for reduction of pain associated with patellofemoral syndromes. 
However, studies have variously shown significant effects, short-lived effects, or no 
change in patellar alignment. Whittingham and colleagues15 addressed this inconsistent 
evidence by designing a randomized trial to investigate the effect of exercise and tap­
ing on pain and function in patients with knee pain. 

Professional literature may also identify disagreements due to differences or flaws 
in study design or measurement methods. For example, a systematic review of the effi­
cacy and safety of common interventions for tears of the rotator cuff in adults showed 
little evidence to support or refute the superiority of conservative or surgical interven­
tions.16 This supports the need for well designed clinical trials that incorporate consis­
tent methods for defining interventions and validated outcome measures. 

Research questions may also arise out of data from descriptive studies, which docu­
ment trends, patterns or characteristics that can subsequently be examined more thor­
oughly using alternative research approaches. For example, several descriptive studies 
have documented characteristics of individuals who have suffered spinal cord injuries. 
These studies have provided the foundation for testing new devices to improve 
function.17 
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Replication 
In many instances, replication of a study is a useful strategy to correct for design limi­
tations or to examine outcomes with different populations or in different settings. A 
study may be repeated using the same variables and methods or slight variations of 
them. Replication is an extremely important process in research, because one study is 
never sufficient to confirm a theory or to verify the success or failure of a treatment. We 
are often unable to generalize findings of one study to a larger population because of 
the limitations of small sample size in clinical studies. Therefore, the more studies we 
find that support a particular outcome, the more confidence we can have in the valid­
ity of those findings. As an example, Miltner and co-workers18 studied the effects of 
constraint-induced movement therapy in patients with chronic stroke. They cited pre­
vious research in American laboratories showing success of this intervention to 
improve use of the affected upper extremity. They were able to replicate these results in 
Germany, where the health care system and context of therapy is different than in the 
United States. 

Although many authors conclude research papers with a recommendation for fur­
ther study, researchers do not often take up that challenge.19 Because we recognize the 
uncertainty and variation that can be part of each study, it is necessary to demonstrate 
consistency of findings across settings and samples, to confirm an intervention's effec­
tiveness or a test's diagnostic validity. Replication is essential for adding strength to our 
efforts for evidence-based practice. 

That said, it is also important to consider the limits of replication as a useful strat­
egy. There will come a point when the question must move on, to further knowledge, 
not just repeat it. Fergusson and co-workers20 provide an illustration of this point in 
their discussion of the use of aprotinin to reduce perioperative blood loss. Through 
meta-analysis, they showed that 64 trials on the drug's effectiveness were published 
between 1987 and 2002, although the effectiveness had been thoroughly documented 
by 1992 after 12 trials. They suggested that the following 52 trials were unnecessary, 
wasteful and even unethical, and that authors "were not adequately citing previous 
research, resulting in a large number of RCTs being conducted to address efficacy ques­
tions that prior trials had already definitively answered." 20 Replication is a reasonable 
approach when prior research has not yet arrived at that threshold. 

IMPORTANCE AN D FEASIBI LITY 
OF TH E RESEARCH QUESTION 
Throughout the process o f  identifying and refining a research question, three general 
criteria should be considered to determine that it is worth pursuing: The question 
should be important, answerable and feasible for study. 

The Question Should Be Important: The "So What?" Test 
Clinical research should have potential impact on treatment, on theoretical foundations, 
or on policies related to practice. Basic research should address questions that con­
tribute to scientific knowledge and theory. Because of the commitment of time and 
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resources required for research, a researcher should believe that the effort is worthy of 
investigation, that is, it should generate new information that will further the profes­
sion's knowledge base. Although it is important to keep a project simple and direct, it 
should not be so trivial as to make no difference to anyone. Researchers should consider 
if the outcomes of the study will resolve inconsistencies in previous research, or if they 
will contribute to explanations of clinical theory. It may be relevant to ask how often 
this clinical problem occurs in practice. Will the findings provide useful information for 
clinical decision making or be generalizable to other clinical situations? 

Statements that support the importance of the research question are often considered 
the justification for a study. We often say that the research question must be able to pass 
the "so what?" test; that is, the results should be meaningful and useful. Researchers 
should look at trends in practice and health care to identify those problems that have clin­
ical or professional significance for contributing to evidence-based practice. 

The Question Should Be Answerable 
Not all questions can be studied scientifically. For instance, questions involving 
judgments or philosophical issues are often difficult to study. We should not consider 
asking, "Are all patients entitled to treatment regardless of their ability to pay for 
services?" If this issue is of interest, however, related questions can be investigated: 
"What is the extent of health insurance coverage for different age groups or socioeco­
nomic groups?" "What types of treatments are being denied reimbursement by various 
insurers?" These questions are not the same as the original question, but they would 
provide related information that can be used by clinicians in considering the ethical and 
moral consequences of the issue. 

Questions that begin with "why" are also difficult to answer using clinical research 
methods. Why does one treatment approach work better than another for reducing 
spasticity? The answer to such a question goes beyond the capability of clinical tools. 
Rather than asking why a patient responds a certain way to a treatment, we can docu­
ment that a treatment does or does not change the level of response and examine 
whether that response supports a particular theory of spasticity. Similarly, it is not the 
function of science to judge if one or another treatment is "preferable." Such judgments 
reflect personal values but are not based on research evidence. 

The research problem should also incorporate variables that can be defined and 
measured. Consider the question, "How can we improve a patient's motivation to exer­
cise?" How can we define the term "motivation"? What criteria can be established to 
assess that a person is motivated? How will those who are motivated be distinguished 
from those who are not? Motivation becomes a construct for which some relevant meas­
ure must be identified. If a variable cannot be adequately defined, it cannot be studied. 

The Study Shou ld  Be Feasible 
Many factors influence the feasibility of a research study. The researcher must have the 
necessary skill, background and resources to be able to complete the project properly. 
In many cases, consultants and advisors will be needed for technical and statistical 
assistance. Can a realistic timetable be developed? Pilot studies are helpful for estimat­
ing the time requirements of a study. Are sufficient numbers of subjects available, and 
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can they be counted on to participate? Problems often occur when patients are dis­
charged or develop medical complications that prevent their participation. What type 
of space is needed to carry out the project, and when will it be available? Can the nec­
essary equipment be obtained? Does the project have the necessary administrative or 
budgetary support? Lastly, are the rights of subjects being protected? The researcher 
must determine risks and benefits, and be able to justify the demands placed on the 
subject during data collection (see Chapter 3). These considerations must be addressed 
prior to continuing with plans for a study. Many questions will be refocused by the 
practicalities of the process. 

TARGET POPULATION 
As we proceed with the development of a research question, we must identify who we 
want to study. The target population refers to the group of individuals to which the 
results of the study will apply. It represents the totality of all members of this group 
who conform to a designated set of specifications. For example, suppose we are inter­
ested in studying the effectiveness of electrical stimulation for increasing muscle 
strength. We could designate a healthy population of "normal" subjects as our popula­
tion, or we could select patients with total knee replacements or ACL reconstruction. 
But further restriction may be necessary to make this designation clear. Once again, the 
literature is a consistent source of information for decision making. Should the subjects 
be within a certain age range? Will we include males and females? Should we specify a 
time since onset of pain or surgery? Is the cause of the knee surgery a relevant factor? 
Does it matter if symptoms are unilateral or bilateral? Other considerations may be 
based on availability of patients. For instance, the age range of the population may be 
dictated by the age range of patients at the researcher's facility. We might specify a gen­
eral target population of otherwise healthy males between 20 and 40 years of age with 
no prior history of orthopedic or neuromuscular dysfunction, who have had an ACL 
repair within the last 6 months. The definition of the target population should be suffi­
ciently clear and complete that it will be obvious who will and who will not be consid­
ered a member (see Chapter 8). 

TH E RESEARCH RATIONALE 
Once the research problem has been defined, a full review of literature will establish 
the background for the research question. This foundation will clarify the research 
rationale that will support the research question, guide decisions in designing the 
study, and most importantly, provide the basis for interpreting results. The rationale 
presents a logical argument that shows how and why the question was developed. It 
provides a theoretical framework by explaining the constructs and mechanisms 
behind the question. It helps us understand why the question makes sense. The 
research rationale includes references to previous research as well as logical assump­
tions that can be made from current theory. Without a strong rationale, the results of a 
study will be hard to interpret. 

For example, many researchers have looked at the effectiveness of electrical stimu­
lation for increasing muscle strength in healthy and patient populations. Some studies 
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have looked at the comparison of neuromuscular electrical stimulation (NMES) and 
voluntary exercise. The research rationale for these studies focuses on the suggested 
mechanisms for this effect.21 Why should electrical stimulation be expected to produce 
strength gains? One explanation proposes that training with NMES is similar to 
strengthening with voluntary exercise in terms of muscle physiology. If this is true, then 
we should be able to observe comparable strength gains with each technique, and the 
protocol for strengthening with NMES should follow currently accepted guidelines for 
voluntary exercise, including number of repetitions and load. Another mechanism sug­
gests that NMES selectively recruits high force muscle fibers, thereby increasing mus­
cle strength. Researchers have used this rationale as the basis for comparing the 
recruitment order of fast and slow twitch muscle fibers during NMES and voluntary 
exercise. The study rationale, therefore, incorporates current knowledge of muscle 
physiology, theories related to how muscle increases functional strength, the physiolog­
ical properties of neuromuscular electrical stimulation and an understanding of what 
other studies have been able to demonstrate. These concepts form a logical foundation 
for the research question. 

VARIABLES 
Now we must specify what we want to test. Variables are the building blocks of the 
research question. A variable is a property that can differentiate members of a group or 
set. It represents a concept, or factor, that can have more than one value. By definition, 
variables are characteristics that can vary. A factor becomes a variable by virtue of how 
it is used in a study. For instance, if we wanted to compare levels of back pain between 
men and women, then pain and gender are the variables of interest. Pain can take on a 
range of values, depending on how we measure it, and gender can take on two "val­
ues" (male and female). If, however, in another study, we compare the effects of two dif­
ferent treatments for decreasing back pain in men, then gender is no longer a variable. 
It has only one "value" (male) and is, therefore, a constant. In this latter example, type 
of treatment and pain are the variables of interest. 

Research is performed to examine the relationship among variables or describe 
how variables exist in nature. In descriptive and correlational studies, variables repre­
sent the phenomena being examined, and their measurement may take many forms. 
The investigator looks at these characteristics one at a time, describes their values and 
their interrelationships. In exploratory and experimental studies the investigator exam­
ines relationships among two or more variables to predict outcomes or to establish that 
one variable influences another. For these types of studies, research variables are gen­
erally classified as independent or dependent, according to how they are used. 

I ndependent and Dependent Variables 
A predictor variable is an independent variable. It is a condition, intervention or char­
acteristic that will predict or cause a given outcome. The outcome variable is called the 
dependent variable, which is a response or effect that is presumed to vary depending 
on the independent variable. 
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In exploratory studies, independent and dependent variables are usually measured 
together, to determine if they have a predictive relationship. For example, researchers 
have studied the relationship between back pain and age, gender, cognitive status, 
ambulatory status, analgesic use, osteoporosis and osteoarthritis in a long-term care 
population.22 The dependent variable (the outcome variable) was the presence of back 
pain and the independent variables (predictor variables) were the characteristics of age, 
gender, cognitive status and so on. These types of studies often involve several inde­
pendent variables, as the researcher tries to establish how different factors interrelate to 
explain the outcome variable. 

Experimental studies involve comparison of different conditions to investigate 
causal relationships, where the independent variable is controlled and the dependent 
variable is measured. For instance, researchers have compared the effect of a back class 
versus usual medical care to determine if the back class was an effective program for 
reducing pain in those with acute low back pain.23 Outcomes included changes in a dis­
ability score and a pain scale rating. In this example the independent variable is the 
back class (intervention), and the two dependent variables are the disability and pain 
scores (response). A change in the dependent variables is presumed to be caused by the 
"value" of the independent variable; that is, the dependent variable is a function of the 
condition of the independent variable. 

Comparative studies can be designed with more than one independent variable. 
We could look at the patients' gender in addition to intervention, for instance, to deter­
mine if effectiveness of a back class is different for males and females. We would then 
have two independent variables: type of intervention and gender. A study can also have 
more than one dependent variable. In the previously mentioned study, researchers 
measured both disability rating and pain. 

Levels of the Independent Variable 
In comparative studies, independent variables are given "values" called levels. The lev­
els represent groups or conditions that will be compared. Every independent variable 
will have at least two levels. Dependent variables are not described as having levels. 

For example, in the study comparing a back class and usual care, the independent 
variable of "intervention" has two levels: back class and usual care. If the study had 
included additional interventions, such as physical therapy or bed rest, it would have 
changed the number of levels of the intervention variable, not the number of variables. 

Operational Defin itions 
Once the variables of interest have been identified, the researcher still faces some major 
decisions. Exactly what procedures will be used? If we are interested in studying the 
effects of different interventions on back pain, exactly what will the interventions be? 
How will they be applied? How will we measure a change in back pain? Are we inter­
ested in pain at the time that treatment begins or when it ends? On the same day or later 
in the week? What aspect of pain should we measure? As the research question contin­
ues to be refined we continually refer to the literature and our clinical experience to 
make these judgments. How often will subjects be treated? In what position will the 
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subjects be tested? How often will they be tested? These questions must be answered 
before adequate definitions of variables are developed. 

Variables must be defined in terms that explain how they will be used in the study. 
For research purposes, we distinguish between conceptual definitions and operational 
definitions. A conceptual definition is the dictionary definition, one that describes the 
variable in general terms, without specific reference to its methodological use in a 
study. For instance, "back pain" can be defined as the degree of discomfort in the back. 
This definition is useless, however, for research purposes because it does not tell us 
what measure of discomfort is used or how we could interpret discomfort. 

In contrast, an operational definition defines a variable according to its unique 
meaning within a study (see Box 7.1). The operational definition should be sufficiently 
detailed that another researcher could replicate the procedure or condition. Indepen­
dent variables are operationalized according to how they are manipulated by the inves­
tigator. For example, in the study comparing a back class and usual care, an operational 

BOX 7.1 The Relevance of Operational Definitions 

"and this is Mort, my attorney, who will help 
us to accurately define naughty" 

Source: www.CartoonStock.corn 
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definition for the independent variable "back class" should include the number of ses­
sions, the type of training and materials, expectations of compliance, who will teach the 
class and so on. The subjects' activities and other treatment specifications should be 
included. We also need to describe the control group's activities of usual care. Opera­
tional definitions for independent variables must differentiate the various levels of the 
variable. 

Dependent variables are operationally defined by describing the method of meas­
urement, including delineation of tools and procedures used to obtain measurements. 
A variable like "low back pain" could be defined operationally as the score on a visual 
analog scale (VAS), reflecting the magnitude of pain at a particular time of day under 
specific activity conditions. An individual reading this definition should be able to 
know precisely how the variable "pain" could be interpreted in this study. 

Some variables do not require substantial operational definitions. The application of 
the term age, for example, is readily understood, as is the identification of male and 
female. It is usually sufficient to define variables such as height and weight simply by 
specifying units of measurement and the type of measuring instrument. Some variables 
can be defined according to standardized criteria, such as manual muscle tests and intel­
ligence; however, many variables whose definitions appear self-evident still present suf­
ficient possibilities for variation that they require explanation. Consider the concept of 
hand preference. We often take for granted the designation of right-handed or left­
handed. But when used in a study that concerns laterality, this may not be sufficient. 
Some researchers might accept the hand used for writing as the preferred hand. Others 
may want to include mixed handedness, and use a standardized test for dominance. 

There are many examples of concepts for which multiple measurements may be 
acceptable. For example, back pain can be measured using a VAS, the McGill Pain 
Questionnaire, or the Oswestry Disability Rating Scale. The results of studies using 
these different tools would be analyzed and interpreted quite differently because of the 
different information provided by each form. The measurement properties, feasibility 
of use and sensitivity of an instrument should be considered in choosing the most 
appropriate dependent variable. A comparison of measurement methods can also 
become the basis for a research question. 

There may be instances when the reader of a research report does not agree with 
the validity of an operational definition set forth by an investigator. For example, 
researchers have examined changes in pain as a function of decreased usage of medica­
tion;24 others have considered greater active joint range of motion a useful indicator.25 
These investigators have made certain assumptions about the relationship between 
pain and intake of medication or mobility. Some clinicians might argue, however, that 
these measures could be influenced by a subject's pain tolerance and that a more stoic 
individual might demonstrate changes in the measured variable that are not necessar­
ily representative of changes in pain. The importance of the operational definition is 
that it communicates exactly how the term is being used so that the reader understands 
the researcher's conceptualization of the variable and the implications of the findings. 
Whatever measure is chosen will reflect only certain characteristics of the construct, and 
thereby influence our interpretation of changes. It is the researcher's responsibility to 
justify the operational definition in terms of the purpose of the research. 
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The final step in delineating a researchable question is to clarify the objective of the 
study. This is the culmination of all the reasoning and reading that has gone before to 
determine the target population, describe the research rationale and define the research 
variables. The objectives may be presented as hypotheses, specific aims, the purpose 
of the research or the research objectives. The terms used will vary among 
researchers, journals and disciplines. Most important, however, this statement must 
specifically and concisely delineate what the study is expected to accomplish. 

There are four general types of research objectives: 

1. The intent of the study may be descriptive, in an effort to characterize clinical phe­
nomena or existing conditions in a particular population. 

2. Many research problems stem from the lack of appropriate measuring instruments 
to document outcomes. Studies may involve the investigation of reliability and validity 
in measuring tools to determine how different instruments can be used meaningfully 
for clinical decision making. Sometimes the problem will address different uses of a 
known tool, and other times it will suggest the need for a new instrument. 

3. A third type of research objective is the exploration of relationships to determine 
how clinical phenomena interact. By determining these relationships, studies can sug­
gest risk factors that contribute to impaired function and provide ideas for prevention 
and treatment options. 

4. The study may be based on a comparison, in an attempt to define a cause-and­
effect relationship using an experimental model. This type of study evaluates differ­
ences between groups or the effectiveness of interventions. 

The choice of one of these approaches will frame the research design, the types of 
data collection that will be appropriate, and the applicable data analysis procedures. 
Each of these approaches is examined in detail in subsequent chapters. 

Specific Aims 
Descriptive studies will usually b e  based on specific aims or guiding questions that 
describe the study's purpose. For instance, researchers may specify that they want to 
describe attitudes about a particular issue, the demographic profile of a given patient 
group, or the natural progression of a disease. Survey researchers will design a set of 
questions to organize a questionnaire. Because descriptive studies have no fixed design, 
it is important to put structure into place. Setting specific aims or guiding questions 
allows the researcher to organize data and discuss findings in a meaningful way. 

Hypotheses 
For experimental investigations and many exploratory studies involving the examina­
tion of relationships, the researcher must be more precise in setting expectations. This 
requires that the researcher propose an educated guess about the outcome of the study. 
This guess is presented as a statement called a hypothesis: a declarative statement that 
predicts the relationship between the independent and dependent variables, specifying 
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the population that will be studied. The purpose of the study is to test the hypothesis 
and, ultimately, to provide evidence so that the researcher can accept or reject it. The 
researcher generally formulates a research hypothesis following identification of the 
problem, a review of relevant literature and final conceptualization of the research vari­
ables. A research question might ask: Is knee range of motion improved by the addition 
of continuous passive motion (CPM) to a postoperative rehabilitation program follow­
ing total knee replacement?26 The clinical researcher may then hypothesize that "Knee 
range of motion in flexion and extension at time of discharge will be greater for patients 
who receive CPM following total knee replacement than for those who do not receive 
CPM." Hypotheses are developed at the outset to provide a definitive structure for the 
investigation by assisting the researcher in planning the design and methods and in 
determining the data analysis procedures. Hypotheses also provide the reader of a 
research report with an understanding of what the researcher was expecting to find. 

Characteristics of Hypotheses 
Useful hypotheses can be evaluated according to several criteria. Consider the statement: 

Patients with total knee replacements who receive CPM following surgery will have 
fewer postoperative complications. 

This statement includes a reference to a target population, but is not complete because 
it contains only one variable, the number of postoperative complications. CPM treat­
ment is not a variable in this statement because only one condition is presented. We 
can modify the statement to express a relationship and thereby make it a complete 
hypothesis: 

Patients with total knee replacements who receive CPM following surgery will have 
fewer postoperative complications than patients who do not receive CPM. 

Now CPM is an independent variable, with two levels. We will be able to distinguish the 
responses of those patients who receive CPM from those who do not. Hypotheses usu­
ally incorporate phrases such as "greater than," "less than," "different from" or "related 
to" as a way of indicating the type of relationship that is being examined. 

An acceptable hypothesis must be testable and should be based on a sound ration­
ale. This implies that a body of knowledge exists that will support the hypothesis. A 
researcher does not propose a hypothesis purely on the basis of speculation. Hypothe­
ses can be derived from theory or suggested from previous research, clinical experience, 
or observation. Deductive hypotheses are based on a theoretical premise, allowing the 
clinician to predict what outcomes would be expected under a given set of conditions. 
When contradictions exist in the literature researchers must examine these variances to 
draw relevant parallels with their own research questions. Inductive hypotheses are 
based on trends, regularities, patterns, or relationships that are observed in clinical 
practice. Clinicians can also use other sources of knowledge, such as authority, tradi­
tion, and trial and error, as a basis for formulating a hypothesis. When a new area is 
being addressed, the researcher's own experiences and logical reasoning may be the 
only foundation available. 
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A research hypothesis states the researcher's true expectation of results, guiding the 
interpretation of outcomes and conclusions. Analysis of data is based on testing a sta­
tistical hypothesis, which differs from the research hypothesis in that it will always 
express no difference or no relationship between the independent and dependent vari­
ables. The statistical hypothesis is called the null hypothesis (see Chapter 18). 

Researchers use a great deal of flexibility in the phrasing of research hypotheses. 
The same research problem can be translated into a hypothesis in different ways. Some 
research hypotheses predict no difference between variables: 

1. There is no difference in perceived learning between students enrolled in online 
classes and those enrolled in on-campus courses.27 

More often, research hypotheses propose a relationship in terms of a difference: 

2. There will be a difference in expressive language scores at 6 and 12 months in pre­
school children with language delay who receive routine speech and language therapy 
as compared to those who are managed with a strategy of watchful waiting.28 

Hypotheses 1 and 2 are considered nondirectional hypotheses because they do not 
predict a direction of change. In other cases, a researcher will have a definite idea about 
the expected direction of outcomes. Consider the following hypotheses: 

3. Children with cerebral palsy who receive botulinum toxin A injections in combina­
tion with serial casting will have significantly faster resolution of contracture, greater 
reduction of spasticity, and greater improvement in gross motor function when 
compared with children who receive casting alone.29 

4. Patients with chronic plantar fasciitis who are managed with a structure-specific 
plantar fascia-stretching program for eight weeks have a better functional outcome 
than do patients managed with a standard Achilles tendon-stretching protocol.30 

These are examples of directional hypotheses. They not only describe the relation­
ship between variables in terms of a difference, but they also assign a direction to that 
difference. 

Hypotheses can also be phrased to predict a relationship, between variables, rather 
than a difference, as illustrated by the following: 

5. There is an association between decreased length of stay and reduced functional sta­
tus at follow-up for patients receiving inpatient rehabilitation.31 

6. Improvements in exercise capacity following training programs for patients with 
chronic obstructive pulmonary disorders are related to changes in body composition.32 

Hypothesis 5 is considered directional because the authors predict the presence of a 
relationship between two variables and the direction of that relationship. We can expect 
that patients with a shorter length of stay will tend to have poorer function. Hypothe­
sis 6 does not tell us the expected direction of the proposed relationship. 

Research hypotheses can be phrased in simple or complex forms. A simple 
hypothesis includes one independent variable and one dependent variable. For exam-
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ple, Hypotheses 1, 4, 5 and 6 are simple hypotheses. A complex hypothesis contains 
more than one independent or dependent variable. Hypotheses 2 and 3 contain several 
dependent variables. Complex hypotheses are often nondirectional because of the 
potential difficulty in clarifying multiple relationships. Complex hypotheses are effi­
cient for expressing expected research outcomes in a research report, but they cannot be 
tested. Therefore, for analysis purposes, such statements must be broken down into sev­
eral simple hypotheses. Several hypotheses can be addressed within a single study. 

REVI EWING THE LITERATU RE 
Every research question can be considered an extension of all the thinking and investi­
gation that has gone before it. The results of each study contribute to that accumulated 
knowledge and thereby stimulate further research. For this process to work, researchers 
must be able to identify prior relevant research and theory. This is accomplished 
through the review of literature. The review of literature is usually conducted in two 
phases. The initial review is a preliminary one, intended to achieve a general under­
standing of the state of knowledge in the area of interest. Once the research problem has 
been clearly formulated, however, the researcher begins a full and extensive review. 
This will provide a detailed and complete understanding of the relevant background to 
assist in formulating the research question. 

A review of literature provides the foundation for a research study. It helps us 
understand what is already known, what has already been done (successfully or unsuc­
cessfully) and how we can contribute further to the current state of knowledge. Con­
ducting a thorough and successful search for relevant references is an essential first step 
in this process. Strategies for carrying out a literature search are described in Chapter 31. 

The review of literature is not the same as a systematic review, which is a critical 
analysis of a set of studies focused on a particular clinical issue for use in evidence­
based decision-making. Systematic reviews, however, may be part of a review of liter­
ature. Systematic reviews will be covered in detail in Chapter 16. 

Scope of the Review of Literature 
Clinicians and students are often faced with a dilemma in starting a review of literature 
in terms of how extensive a review is necessary. How does a researcher know when a 
sufficient amount of material has been read? There is no magic formula to determine 
that 20, 50 or 100 articles will provide the necessary background for a project. The num­
ber of references needed for a review depends first on the researcher's familiarity with 
the topic. A beginning researcher may have limited knowledge and experience, and 
might have to cover a wider range of materials to feel comfortable with the information. 

In addition, the scope of the review will depend on how much research has been 
done in the area, and how many relevant references are available. Obviously, when a 
topic is new and has been studied only minimally, fewer materials will exist. In that sit­
uation, it is necessary to look at studies that support the theoretical framework for a 
question. When a topic has been researched extensively, the researcher need only 
choose a representative sample of articles to provide sufficient background. The impor­
tant consideration is the relevancy of the literature, not the quantity. Researchers will 
always read more than they will finally report in the written review of literature. 
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The review of literature should focus on several aspects of the study. As we have 
already discussed, the researcher tries to establish a theoretical framework for the 
study based on generalizations from other studies. It is often necessary to review 
material on the patient population, to understand the underlying pathology that is 
being studied. Researchers should also look for information on methods, including 
equipment used and operational definitions of variables. Often it is helpful to repli­
cate procedures from previous studies so that results have a basis for comparison. It 
may be helpful to see what statistical techniques have been used by others for the 
same reason. 

Literature also provides the basis for validating assumptions. Assumptions are 
concepts or principles that are assumed to be true, based on documented evidence of 
accepted theoretical premises. Assumptions allow us to go on with our research with­
out having to document every aspect of our procedures. For instance, if a study 
involves strength testing over several trials, the research protocol might call for a 
2-minute rest between trials, based on the assumption that this time interval will be suf­
ficient to avoid fatigue effects. This assumption can be validated by reviewing the liter­
ature on fatigue and recovery rates, rather than testing it on every subject. 

The review of literature should be as up-to-date as possible, but should include 
some classical works as well. It is generally practical, however, to limit the review of 
older studies, so as not to review every historic document in the field. The review 
should cover all relevant studies, even if findings are contradictory to the study's objec­
tives. It is helpful to check the reference lists at the end of recent articles. As more and 
more is read, the researcher will begin to find the same references cited again and again, 
and will have an indication that most relevant sources have been obtained. 

Primary and Secondary Sources 
It is important to differentiate the roles of primary and secondary sources in a review 
of literature. A primary source is a report or document provided directly by the per­
son who authored it. Most research articles in professional journals are primary sources, 
as are oral presentations of direct research results, diaries, interviews and eyewitness 
accounts. A secondary source is a description or review of one or more studies pre­
sented by someone other than the original author. Review articles and most textbooks 
are secondary sources, as are newspaper accounts and biographies.* 

Both primary and secondary references are important to the literature review; 
however, secondary references should not be considered substitutes for primary 
sources. They are most useful for providing bibliographical information on relevant 
primary sources. Beginning researchers should try to avoid the temptation to rely 
solely on secondary sources just because they conveniently summarize many studies. 
Secondary references often provide insufficient, inaccurate or biased information about 
other studies. Researchers are often amazed when they go back to a primary source to 
discover how different their own interpretation of results can be from those that are 
provided in review articles. 

*Systematic reviews and meta-analyses, which include critical analyses of published works, are technically 
secondary references. They do become primary sources, however, as a form of research in generating new 
knowledge through the synthesis of previous research. 
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As another consideration in choosing references, researchers should know whether 
a journal is refereed. This means that articles are reviewed by content experts before 
being accepted for publication. Refereed journals generally require several levels of 
review and revision prior to publication, although this is no guarantee of validity. 
Papers in nonrefereed journals do not undergo this scrutiny. 

Organizing the Review of Literature 
Because the review of literature can be extensive, researchers usually find it helpful to 
establish a process for organizing and notating references as they read them. The first 
step is to identify the relevant information from each reference. The research question, 
key elements of the method, findings and conclusions should be summarized. If a ref­
erence is being used for a specific purpose, such as a description of a particular outcome 
instrument, this should be indicated. The researcher should critique each article for 
validity of design and measurement, and record critical comments. The summary 
should include how data were analyzed and a description of the pertinent results. 

The researcher should take note of how each article is related to the research study 
and to other articles. This information will be invaluable when writing a review of lit­
erature for an article or thesis. It will allow the researcher to look through reference 
summaries and find those studies that present similar or conflicting information (see 
Chapter 33). Some people keep these records on index cards for each article. More 
recently, researchers have begun to take advantage of bibliographic management pro­
grams such as RefWorks® or EndNote® that provide a structure for cataloging refer­
ences by author, title or keywords.t These tools allow the researcher to develop a 
personal database of references in one or more electronic libraries. They are designed to 
be compatible with most word processing programs. They store many types of infor­
mation, can insert citations and generate and format bibliographies or reference lists in 
a written report. Most of these programs allow the researcher to download and import 
full references, including abstracts, from electronic databases. 

COMM ENTARY 

Putting the Horse Before the Cart 

Research is about answeri ng questions. But  before we can get to the answers, we 
must be able to ask the right quest ion. What we ask wi l l  depend on our goa l .  If we 
are looki ng for i nformation to d i rect a c l i n ical decision for a particu lar  patient prob­
lem, we must ask a question that al lows us to focus a l i terature search on relevant 
evidence. If we are asking a question to structure a research study, we must deter­
mine appropriate var iables, designs and methods.  I n  either case, we wi l l  use our 
c l i n ical j udgment i n  concert with the l i terature to guide th is  process. We must be 
carefu l to d i st inguish these two types of questions, however. The research question, 
the focus of this chapter, creates a framework for a study based on a perceived gap 

tFor RefWorks® go to <http://www.refworks.com>; for information on Endnote® Thomson Corporation, go 
to http://www.endnote.com. 
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in knowledge, whereas an evidence-based quest ion concerns i nformation relevant 
to a spec ific c l i n ical s ituation or patient. Asking a good evidence-based question is 
essent ia l  to good c l i n ical  decis ion maki ng. 

From a research standpoi nt, i t  is no exaggeration to speak of the extreme impor­
tance of the development of the right quest ion.  Al bert E i nste in33  once wrote: 

The formation of a problem is far more often essent ia l  than i ts so lution . . .  to ra i se new 
q uest ions, new possi b i l i t ies, to regard old probl ems from a new angle, req u i res creative 
i maginat ion and marks real advance in science. 

Th is process is often arduous and pai nstaki ng; however, i t  forms the foundation 
for al l  that wi I I  fo l low and crysta l !  izes the researcher's expectations for resu lts. The 
research question is deve loped in deta i l  in a research proposa l ,  which provides a 
spec ific and comprehensive out l i ne of the ent i re research project, i nc lud ing the 
del i neation of var iables and operat ional defi n it ions, and a review of l i terature that 
forms the background for the study and the hypotheses (see Chapter 32 ) .  A strong 
research study addresses questions that are spel led out c learly and that lead to con­
c l usions with in  the l im its of the research design. If the question is too vague, it can­
not guide the development of data co l l ection or ana lyt ic methods. 

In the process of doing research, nov ice researchers w i l l  often jump to a method­
o logy and design, eager to col lect data and analyze it. I t  is an unfortunate situation, 
that has occurred all too often in  our experience, when a researcher has invested 
hours of work and has obta ined reams of data, and cannot figure out what to do with 
the i nformat ion.  There is noth ing more frustrat ing than a statist ical consultant try ing 
to figure out what analysis to perform, and asking the researcher, "What is the ques­
tion you are try ing to answer?" The frustrat ing part is when the researcher rea l i zes that 
the question cannot be answered with the data that were co l lected. Beg inn ing 
researchers often "s p i n the i r  wheels"  as they search for w h a t  t o  measu re, rather than 
start ing the i r  search with the del i neation of a spec ific and relevant quest ion.  I t 
doesn't matter how complex or s imple the des ign, it is not as important to know how 
to answer the question as it is to know how to ask the question . 34 
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In the process of defining a research question, the researcher must also decide who will 
be studied. The goal, of course, will be to make generalizations beyond the individuals 
studied to others with similar conditions or characteristics. Generalization is basic to all 
types of research, where scientists continually draw conclusions about human behavior 
and the environment based on limited experiences and measurements. The purpose of 
this chapter is to describe how the responses of a small representative group can be 
used with confidence to make predictions about the larger world. 

POPULATIONS AN D SAMPLES 
The larger group to which research results are generalized is called the population. A 
population is a defined aggregate of persons, objects or events that meet a specified set 
of criteria. For instance, if we were interested in studying the effects of various treat­
ments for osteoarthritis, the population of interest would be all people in the world who 
have osteoarthritis; however, it is not reasonable to test every person who has 
osteoarthritis. Working with smaller groups is generally more economical, more time 
efficient, and potentially more accurate than working with large groups because it 
affords better control of measurement. Therefore, through a process of sampling, a 
researcher chooses a subgroup of the population, called a sample. This sample serves 
as the reference group for estimating characteristics of or drawing conclusions about 
the population. 

Populations are not necessarily restricted to human subjects. Researchers may be 
interested in studying characteristics of institutions or geographical areas, and these 
may be the units that define the population. In test-retest reliability studies, the popu­
lation will consist of an infinite series of measurements. The sample would be the actual 
measurements taken. An epidemiological study may focus on blood samples. Industrial 
quality control studies use samples of items from the entire inventory of a particular 
manufacturing lot. Surveys often sample households from a population of housing 
units. A population can include people, places, organizations, objects, animals, days or 
any other unit of interest. 

Sampl i ng Bias 
To make generalizations, the researcher must be able to assume that the responses of 
sample members will be representative of how the population members would respond 
in similar circumstances. Human populations are, by nature, heterogeneous, and the 
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variations that exist in behavioral, psychological or physical attributes should also be 
present in a sample. Theoretically, a good sample reflects the relevant characteristics 
and variations of the population in the same proportions as they exist in the population. 

Although there is no way to guarantee that a sample will be representative of a pop­
ulation, sampling procedures can minimize the degree of bias or error in choosing a 
sample. It is not so much the size of a sample that is of concern. A small representative 
sample of 50 may be preferable to an unrepresentative sample of 1,000. For example, in 
1968 the Gallup and Harris polls predicted that Richard Nixon would receive 43% and 
41% of the popular vote, respectively, based on samples of only 2,000 voters. Nixon actu­
ally received 42.9%.1 In contrast, a 1936 Literary Digest poll predicted that Alf Landon 
would win the presidential election based on the preference of over 2 million voters, 
chosen from lists of automobile owners and telephone directories. Although 57% of the 
respondents indicated they would vote for Alf Landon, Franklin Roosevelt was elected 
by the largest margin in history up to that time. Roosevelt's support came primarily 
from lower income voters, most of whom did not own automobiles or telephones. This 
historical polling blunder has served as a classic example of a biased sample. 

Sampling bias occurs when the individuals selected for a sample overrepresent or 
underrepresent certain population attributes that are related to the phenomenon under 
study. Such biases can be conscious or unconscious. Conscious biases occur when a 
sample is selected purposefully. For example, a clinician might choose only patients 
with minimal dysfunction to demonstrate a treatment's effectiveness, eliminating those 
subjects who were not likely to improve. Unconscious biases might occur if an inter­
viewer interested in studying attitudes of the public toward the disabled, stands on a 
busy street comer in a downtown area and interviews people "at random," or hap­
hazardly. The interviewer may unconsciously choose to approach only those who look 
cooperative, on the basis of appearance, gender, or some other characteristics. Persons 
who do not work or shop in that area will not be represented. The conclusions drawn 
from such a sample cannot be useful for describing attitudes of the "general public." 
The validity of generalizations made from a sample to the population depend on the 
method of selecting subjects. Therefore, some impartial mechanism is needed to make 
unbiased selections. 

Target Populations and Accessib le  Popu lations 
The first step in planning a study is  to identify the overall group of  people to which the 
researcher intends to generalize findings. This universe of interest is the target popu­
lation, or reference population. The target population for a study of motor skills 
could be defined as all children with learning disabilities in the United States today. 
Because it is not possible to gain access to every child with a learning disability, some 
portion of the target population that has a chance to be selected must be identified. This 
is the accessible population. For example, an accessible population might include all 
children identified as having a learning disability in a given city's school system. The 
units within this population are the individual children. The study sample will be cho­
sen from this accessible population (see Figure 8.1) .  

Strictly speaking, a sample can only be representative of the accessible population, 
not necessarily the target population. For example, some school systems may be more 
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proficient at diagnosing children with learning disabilities; others may have more 
advanced programs that address motor skills. Such differences can complicate general­
izations to the target population. When the differences between the target and accessi­
ble populations are potentially too great, it is often appropriate to identify a more 
restricted target population. For example, we could designate a target population of 
children with learning disabilities who have participated in a comprehensive motor 
skills program for at least one year. The results of the study would then be applicable 
only to children meeting this criterion. Because the validity of the accessible population 
is not readily testable, researchers must exercise judgment in assessing the degree of 
similarity with the target population. 

Inclusion and Exclusion Criteria 
In defining the target population, an investigator must first specify selection criteria 
that will govern who will and will not be subjects. Inclusion criteria describe the pri­
mary traits of the target and accessible populations that will qualify someone as a 
subject. The researcher must consider the variety of characteristics present in the 
population in terms of clinical findings, demographics and geographic factors, and 
whether these factors are important to the question being studied. For example, con­
sider a study to look at the effect of physical activity on cognitive performance of stu­
dents with learning disabilities. The investigator may need to consider the specific type 
of learning disability, gender and age, or the state or city where subjects will be found. 
Therefore, a researcher might decide to include only students who have been identified 
as having dyslexia, only males, and only schools within one town in Massachusetts. The 
accessible population may be further defined by temporal factors, such as students who 
were in the school system between 1997 and 1999. It is vitally important to remember, 
however, that as the researcher restricts the population, and creates a more homo­
geneous sample, the ability to generalize research findings will also be restricted; that 
is, the findings will only be applicable to a population with those specific characteris­
tics. Such a scenario may be quite artificial in terms of the patients that are typically 
seen in the clinic. 

Exclusion criteria indicate those factors that would preclude someone from being 
a subject. These factors will generally be t:onsidered potentially confounding to the 
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results; that is, they are likely to interfere with interpretation of the findings. Perhaps 
students who also have other types of learning disabilities or attention deficit disorders 
will be excluded. If tests are only given in English, subjects may be excluded if they are 
not fluent in that language. The researcher may want to eliminate students who have 
physical disabilities or some other factors that would limit their ability to participate 
actively in physical exercise programs. Children with asthma may be eliminated, for 
example. The specification of inclusion and exclusion criteria is an important early step 
in the research process because it helps to narrow the possibilities for seeking an acces­
sible population. These criteria also define the population. 

Subject Selection 
Once an accessible population is identified, the researcher must devise a plan for sub­
ject selection, inviting members to participate. This process may involve written invita­
tions mailed to potential subjects' homes, telephone calls or personal contacts in the 
clinical setting. All members of the subpopulation may be approached, or a smaller 
group may be selected. Not all of these invited individuals will be interested or willing 
to participate, and so the sample becomes further reduced to those who agree to partic­
ipate. With survey questionnaires, many subjects will not respond. In an experimental 
study, where participants are further divided into groups, subjects may drop out before 
completion of data collection. In all types of studies, the researcher may have to discard 
the data of some subjects because of inaccuracies in procedure or missing responses. In 
the end, the sample used for data analysis may actually be a select subgroup of the pop­
ulation, and is likely to differ from nonparticipants in many ways that could affect the 
variables being studied.2-4 A flowchart that details how participants pass through vari­
ous stages of a study should be included in a research report.5 Figure 8.2 shows a 
generic flow chart for this purpose, showing expected information about how many 
subjects were included or excluded at the start of the study, how many left the study 
(and their reasons) and finally how many completed the study. 

SAMPLING TECHNIQUES 
Sampling techniques can be categorized as probability or nonprobability methods. 
Probability samples are created through a process of random selection. Random is 
not the same as haphazard. It means that every unit in the population has an equal 
chance, or "probability," of being chosen. This also means that every unit that is chosen 
has an equal chance of having some of the characteristics or exposures that are present 
throughout the population. Therefore, the sample should be free of any bias and is con­
sidered representative of the population from which it was drawn. Note that we say it 
is considered representative, not that it is representative. Because this process involves 
the operation of chance, there is always the possibility that a sample's characteristics 
will be different from those of its parent population. 

If we summarize sample responses using averaged data, this average will most 
likely be somewhat different from the total population's average responses, just by 
chance. The difference between sample averages (called statistics) and population 
averages (called parameters) is sampling error, or sampling variation. The essence of 
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Excluded (n = ) 

Not meeting inclusion criteria (n = ) 
Refused to participate (n = ) 
Other reasons (n = ) 

� 
Allocated to intervention (n = ) Allocated to intervention (n = ) 

Received allocated intervention (n = ) ( Allocation ) Received allocated intervention (n = ) 

Did not receive allocated intervention Did not receive allocated intervention 

(n = ) Give reasons (n = ) Give reasons 

Lost to follow-up (n = ) Give reasons Lost to follow-up (n = ) Give reasons 

Discontinued intervention ( Follow-Up ) Discontinued intervention 

(n = ) Give reasons (n = ) Give reasons 

Analyzed (n = ) Analyzed (n = ) 
Excluded from analysis (n = ) ( Analysis ) Excluded from analysis (n = ) 

Give reasons Give reasons 

FIGURE 8.2 Flowchart for subject progression in a randomized trial, including those who withdrew 
or were lost to follow-up. (From http:www.consort-statement.org <http:www.consort-statement.org> 
Accessed May 2 9, 2007.) 

random sampling is that these sampling differences are due to chance and are not a 
function of any human bias, conscious or unconscious. Because this process controls for 
the potential effect of bias, it provides a basis for statistically estimating the degree of 
sampling error (see Chapter 18). Although it is not perfect, random selection affords the 
greatest possible confidence in the sample's validity because, in the long run, it will pro­
duce samples that most accurately reflect the population's characteristics. 
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The selection of nonprobability samples is made by nonrandom methods. The 
probability of selection is not known, and therefore, the degree of sampling error can­
not be estimated. This limits the ability to generalize outcomes beyond the specific 
sample studied. Nonprobability techniques are probably used more often in clinical 
research out of necessity, but we recognize that their outcomes require some caution for 
generalization. 

PROBABILITY SAMPLING 
The most basic method of probability sampling is through simple random selection, 
giving every member of a population an equal opportunity, or probability, of being 
selected; however, this technique is rarely used in practice because of practical difficul­
ties in accessing total populations. For clinical experiments, researchers often use more 
efficient variations on this theme. 

Simple Random Sampl ing 
A random sample i s  unbiased in that each selection is independent, and no one member 
of the population has any more chance of being chosen than any other member. A ran­
dom sample is drawn from the accessible population, often taken from a listing of 
persons, such as membership directories, or institutions, such as lists of accredited 
hospitals. Often, the accessible population is actually defined according to the available 
listings. For example, if we use a professional membership directory to create a sample 
of therapists, the accessible population would be defined as therapists who were mem­
bers. Not all therapists belong to the association, however, and it may not be valid to 
generalize responses of such a sample to all practicing therapists. 

Once a listing is available, a random sampling procedure can be implemented. Sup­
pose we were interested in choosing a sample of 100 occupational therapy students to 
study their interest in working with the elderly after graduation. We could define the 
accessible population as the total number of students attending 25 programs in the 
Northeast. The simplest approach would be to place each student's name on a slip of 
paper, place these slips into a container, and blindly draw 100 slips. If the accessible 
population had 56 or fewer elements, we could number them 11 through 66 and choose 
them on the basis of the throw of two dice. 

A more convenient method involves the use of a table of random numbers, such as the 
one given in Table 8.1. Tables of random numbers can be found in most statistics texts. 
They are generated by computers and comprise thousands of digits (0 to 9) with no sys­
tematic order or relationship. The selections made using a table of random numbers are 
considered unbiased, as the order of digits is completely due to chance. To use this sys­
tem, the accessible population must be in numbered list form, so that every element has 
a unique number, or identifying code. In this example, if there were a total of 985 stu­
dents, they would be numbered 001 through 985. Each identification code has the same 
number of digits, in this case three. 

We enter Table 8.1 at random, choosing a starting point using an arbitrary method, 
such as blindly placing a pencil at a point on the page. For this example, we will start 
at the seventh digit in row 12. Note that the digits are grouped in twos, but this is just 
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for ease of reading. Some tables group numbers differently. As we are interested in 
three-digit numbers, we will use the first three digits from our starting point, number 
647. Therefore, the student numbered 647 is the first subject selected. We can then move 
up, down, or across to continue the process. If we choose to move across the row, the 
next student is number 750, then 119, then 564, and so on, until we choose 100 names. 
Note that the next number in the series will be 988, a value beyond the range of codes 
used. Any number that comes up out of range is simply ignored and the next three-digit 
number is used. Similarly, if a student's number should occur again in the list of ran­
dom numbers, it is also ignored and the next random number used. This process is 
called simple random sampling, or sampling without replacement, as once a unit is 
selected it has no further chance of being selected.* 

Random selections can be made by computer, using statistical packages, given a 
numbered list of subjects in a data set. The total data set usually will represent an acces­
sible population. The computer can then generate a random list of any specified size to 
select the sample. 

Systematic Sampl ing 
Random sampling can be a laborious technique, unless the accessible population is 
organized as a short, prenumbered list. When lists are arranged alphabetically or in 
some other ordered fashion, an alternative approach can be used that simplifies this 
procedure, called systematic sampling. To use this sampling technique, the researcher 
divides the total number of elements in the accessible population by the number of ele­
ments to be selected. Therefore, to select a sample of 100 from a list of 1,000 students, 
every tenth person on the list is selected. The interval between selected elements is 
called the sampling interval, in this case 10. The starting point on the list is determined 
at random, often using a table of random numbers. This approach is usually the least 
time consuming and most convenient way to obtain a sample from an available listing 
of potential subjects. Systematic sampling is generally considered equivalent to random 
sampling, as long as no recurring pattern or particular order exists in the listing. 

Stratified Random Sampl ing 
In random and systematic sampling, the distribution of characteristics of the sample 
can differ from that of the population from which it was drawn just by chance because 
each selection is made independently of all others. It is possible, however, to modify 
these methods to improve a sample's representativeness (and decrease sampling error) 
through a process known as stratification. 

Stratified random sampling involves identifying relevant population character­
istics, and partitioning members of a population into homogeneous, nonoverlapping 
subsets, or strata, based on these characteristics. For example, in our study of students' 

•Random sampling can also be performed using the technique of sampling with replacement, in which each unit 
that is selected is put back into the pool before the next selection is made. Therefore, each unit truly has an 
equal chance of being chosen throughout the selection procedure. This method is not used in clinical studies, 
because subjects cannot represent themselves more than once. Sampling with replacement is used primarily 
in probability and mathematical studies. 
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attitudes toward working with the elderly, we may be concerned about the differential 
effect of level of education. Those who have had more professional education may have 
different attitudes than those who have not yet been exposed to clinical education. Let 
us assume that our accessible population consists of 300 freshmen, 300 sophomores, 200 
juniors, and 200 seniors. In a simple random sample drawn from the list of 1,000 stu­
dents, it is possible, just by chance, that the distribution of subjects will not reflect the 
differential proportions of these classes in the population. To control for this, we can 
create a proportional stratified sample, by first separating the population into the 
four classes and then drawing random or systematic samples from each class in the pro­
portion that exists in the population (see Figure 8.3). Therefore, to obtain a sample of 
100, we would choose 30 freshmen, 30 sophomores, 20 juniors, and 20 seniors. The 
resulting sample would intuitively provide a better estimate of the population than 
simple random sampling. 

Stratification increases the precision of estimates only when the stratification vari­
able is closely related to the variables of experimental interest. It would not be of any 
benefit to stratify subjects on the basis of blood type, for example, in a study of attitudes 
toward the elderly. It might be important to use variables such as age, gender or race. 
National samples for surveys and polls are often stratified by geographic area so that 
the distribution of regional variables mirrors the population. Stratification can be done 
on more than one variable when this is appropriate. Sometimes, however, variables are 
correlated in such a way that only one variable needs to be the basis for stratification. 
For instance, age and college class are generally related, and therefore, stratification on 
class should also control for variations in age. 

Although stratified sampling takes additional time, it can actually provide a more 
representative sample than random sampling, with no sampling error on the stratified 

Sophomores 
n = 30 

FIGURE 8.3 Schematic representation of proportional stratified sampl ing, drawing a random sample of 
1 00 subjects from an accessible population of 1 ,000 people. 
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variable. Therefore, whenever relevant strata can be identified, this approach presents 
an opportunity to strengthen a research design. 

Disproportional Sampl ing 
The benefits of stratified sampling can be frustrated when the researcher knows in 
advance that strata are of greatly unequal size, creating a situation where one or more 
strata may provide insufficient samples for making comparisons. Suppose, for example, 
that we are interested in drawing a sample of 200 therapists from a professional organ­
ization with 2,000 members, including 1,700 females and 300 males. Using proportional 
selection, we would choose 10% of each group, 170 females and 30 males; however, 
such a small number of males would probably not provide adequate representation for 
drawing conclusions about that segment of the population. 

One way of dealing with this situation is to use a simple random sample and leave 
the proportional representation to chance; however, unless the sample is unusually 
large, the differential effect of gender will probably not be controlled. Alternatively, we 
can adopt a disproportional sampling design, in which we select random samples of 
adequate size from each category. For example, we might select 100 females and 100 
males. This sample of 200 cannot be considered random, because each male has a much 
greater chance (higher probability) of being chosen. This approach creates an adequate 
sample size, but it presents problems for data analysis, because the characteristics of 
one group, in this case males, will be overrepresented in the sample. We can control for 
this effect by weighting the data, so that females receive a proportionally larger mathe­
matical representation in the analysis of scores than males. 

To calculate proportional weights, we first determine the probability that any one 
female or male will be selected. For example, to choose 100 females, the probability of 
any one female being chosen is 100 of 1,700, or 1 of 17 (1/ 17). The probability of any one 
male being chosen is 100 of 300, or 1 of 3 (1/3). Therefore, each male has a probability 
of selection more than five times that of any female. 

Next, we determine the assigned weights by taking the inverse of these probabili­
ties.2 Therefore, the weight for female scores is 17/1 = 17, and that for males is 3/1 = 3. 
This means that when data are analyzed, each female's score will be multiplied by 17 
and each male's score will be multiplied by 3. In any mathematical manipulation of the 
data, the total of the females' scores would be larger than the total of the males' scores. 
Therefore, the proportional representation of each group is differentiated in the total 
data set. Because all subjects in a group will have the same weight, the average scores 
for that group will not be affected; however, the relative contribution of these scores to 
overall data interpretation will be controlled. This approach has been used, for exam­
ple, in large surveys such as the National Health Interview Survey, to assure adequate 
representation of minorities in the study sample. 

Cluster Sampl ing 
In many research situations, especially those involving large dispersed populations, it is 
impractical or impossible to obtain a complete listing of a population. For instance, if we 
wanted to sample therapists in rehabilitation hospitals across the country, it is unreason­
able to expect that we could easily compile such a list. We therefore need some strategy 
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that will allow us to link members of the population to some already established group­
ing that can be sampled. We could start by randomly choosing 10 states, then randomly 
choosing 5 hospitals in each state, then randomly choosing 10 therapists from each hos­
pital. This approach is called duster sampling, or multistage sampling. 

Cluster sampling involves successive random sampling of a series of units in the 
population. For example, Emery et al.6 used this approach in their study of balance 
training for reducing sports injuries in adolescents, illustrated in Figure 8.4. They ran­
domly selected 10 of 15 high schools in one city, then chose a specific physical educa­
tion class in each school, then randomly chose students from that class. Schools were 
randomly assigned to receive either home-based exercise or a control condition. 

The advantage of cluster sampling is its obvious convenience and efficiency when 
dealing with large populations; however, this comes at the price of increased sampling 
error. Because two or more samples are drawn, each is subject to sampling error, poten­
tially compounding the inaccuracy of the final sample. This disadvantage can be mini­
mized by choosing as large a sample as possible within each cluster and by stratifying 
within any stage of sampling. 

Survey researchers often use multistage sampling to generate random samples of 
households. One technique, called area probability sampling, allows a population to 

FIGURE 8.4 Multistage cluster sampling process to select a random sample of students in one city. In 
Stage 1 1 0  schools are randomly chosen from 1 5  schools in the city. In Stage 2, one physical education 
class is chosen randomly from each school. In Stage 3, four students are randomly chosen from each class. 
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be sampled geographically. The total target land area is divided into mutually exclusive 
sections. A list is then made of housing units in each section, and a sample is drawn 
from these lists. The final survey may be administered to all selected housing units, or 
the list may be subdivided further into individuals within households. 

Another survey sampling technique, called random-digit dialing, involves the 
random selection of phone numbers based on multistage sampling of area codes and 
telephone exchanges. Most of us have had experience with this type of survey. Many 
studies in marketing research use this approach. Obviously, this method presents prob­
lems in that only households with listed telephone numbers have a chance of being 
selected. In addition, bias may be introduced by timing. Calls made during working 
hours or weekdays versus weekends may alter the characteristics of sample respon­
dents. For certain research questions, however, random-digit dialing is most useful for 
generating a sizable sample over a large area. 

NONPROBABILITY SAMPLING 
In practice, it is sometimes difficult, if not impossible, to obtain a true random sample. 
Clinical researchers are often forced to use nonprobability samples, created when 
samples are chosen on some basis other than random selection. Because all the ele­
ments of the population do not have an equal chance of being selected under these 
circumstances, we cannot readily assume that the sample represents the target 
population. The probability exists that some segment of the population will be dispro­
portionately represented. 

Conven ience Sampl i ng 
The most common form of nonprobability sample is a convenience sample, or 
accidental sample. With this method, subjects are chosen on the basis of availability. 
Perhaps the most used and practical approach to convenience sampling is consecutive 
sampling, which involves recruiting all patients who meet the inclusion and exclusion 
criteria as they become available. Essentially, a consecutive sample includes the entire 
accessible population within the defined time period of the study. This can be problem­
atic if the study period is too short, and a sufficient number of qualified subjects cannot 
be obtained, or if the time period does not allow a representative group. For example, 
if we were studying causes of low back pain, and we only included patients who came 
to the clinic in the summer months, we might miss patients whose pain is caused by 
shoveling snow or slipping on ice. 

The use of volunteers is also a commonly used convenience sampling method 
because of its expedience. Researchers who put up signs in dormitories or hospitals to 
recruit subjects with specific characteristics are sampling by this method. Polls in mag­
azines or on street comers and most commercial advertisements are based on samples 
of convenience. The major limitation of this method, however, is the potential bias of 
self-selection. It is not possible to know what attributes are present in those who offer 
themselves as subjects, as compared with those who do not, and it is unclear how these 
attributes may affect the ability to generalize experimental outcomes. Those who volun­
teer may be quite atypical of the target population in terms of such characteristics as age, 
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motivation, activity level, and other correlates of health consciousness?'8 Although all 
samples, even random samples, are eventually composed of those who participate vol­
untarily, those who agree to be part of a random sample were not self-selected. There­
fore, characteristics of subjects in a random sample can be assumed to represent the 
target population. This is not necessarily a safe assumption with nonrandom samples. 

Quota Sampl ing 
Nonprobability sampling can also incorporate elements of stratification. Using quota 
sampling, a researcher can control for the potential confounding effect of known char­
acteristics of a population by guiding the sampling process so that an adequate number 
of subjects are obtained for each stratum. This approach requires that each stratum is 
represented in the same proportion as in the population. For example, using the previ­
ous example examining students' attitudes toward the elderly, we could call for volun­
teers to take the questionnaire and stop the call once we have achieved the proper 
number of subjects for each class. Although this system still faces the potential for non­
probability biases, it does improve on the process by proportionally representing each 
segment of the population in the sample. 

Purposive Sam pl ing 
A third nonprobability approach is purposive sampling, in which the researcher hand­
picks subjects on the basis of specific criteria. The researcher may locate subjects by 
chart review or interview patients to determine if they fit the study. A researcher must 
exercise fair judgment to make this process meaningful. For instance, in a study to test 
the effectiveness of an exercise program, the researcher may choose patients who are 
likely to be compliant from among the patients seen in his clinic. In studies to establish 
the validity of newly developed measuring instruments, researchers may want to test a 
variety of subjects with specifically different degrees of limitation in the variable being 
measured. Purposive sampling is similar to convenience sampling, but differs in that 
specific choices are made, rather than simple availability. This approach has the same 
limitations to generalization as a convenience sample, in that it can result in a biased 
sample. However, in many instances, purposive sampling can yield a sample that will 
be representative of the population if the investigator wisely chooses individuals who 
represent the spectrum of population characteristics.9 Purposive samples are commonly 
used in qualitative research to assure that subjects have the appropriate knowledge and 
will be a good informant for the study.10 

Snowbal l Sampl ing 
Snowball sampling is a method that is often used to study sensitive topics, rare traits, 
personal networks, and social relationships. This approach is carried out in stages. In 
the first stage, a few subjects who meet selection criteria are identified and tested or 
interviewed. In the second stage, these subjects are asked to identify others who have 
the requisite characteristics. This process of "chain referral" or "snowballing" is contin­
ued until an adequate sample is obtained. The researcher must be able to verify the eli­
gibility of each respondent to ensure a representative group.U,12 Snowball sampling is 
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used extensively, for example, in studies involving homeless persons and drug 
abusersY-15 In a study of postpartum depression, researchers used snowball sampling 
through a hospital network to identify appropriate subjects.16 As these examples illus­
trate, snowball sampling is most useful when the population of interest is rare, 
unevenly distributed, hidden, or hard to reach. 

RECRU ITM ENT 
The practicalities of clinical research demand that we consider feasibility issues in ini­
tial stages of planning a study. One of the most serious of these considerations is how 
to recruit the sample. Once the inclusion and exclusion criteria have been defined, the 
researcher begins the process of finding appropriate subjects in sufficient numbers. 

Where subjects come from will depend on the research question. Community stud­
ies will often involve the use of advertisements, newspapers or mailings. Large studies 
may be based on samples derived from telephone listings or membership directories. 
Health clubs, schools and day care centers may be helpful. For clinical studies, subjects 
are often recruited from the patient population in the researcher's facility. Investigators 
must be aware of the ethical concerns that arise when using their own patients as sub­
jects, including fair descriptions of the study in an effort to gain their trust and secure 
their participation (see Chapter 3). Subjects may also be recruited from other facilities 
or agencies, usually through the cooperation of colleagues at those institutions. In this 
case, the researcher should obtain written endorsements from the appropriate adminis­
trative officials to confirm their cooperation and to include with applications for fund­
ing. Researchers should be prepared to give administrative officials a copy of the study 
proposal, often in abbreviated form. When subjects are patients, researchers must con­
tact the physician in charge of the patient's care. Sometimes it is efficient to work with 
a particular physician or practice group to recruit patients on an ongoing basis through 
the practice. Once the physician's approval has been obtained, the researcher can then 
contact individual patients to secure their participation. This may be done in person or 
by letter, explaining the purpose of the study, and assurance that their treatment will 
not be affected whether or not they participate. The consent form will be given to the 
patients to read and to discuss with the researcher, with a contact number if they have 
further questions. 

Many of the individuals who are contacted will consent to participate in the study, 
and many others will not. To obtain a sample of sufficient size, it is often necessary to 
contact a large number of prospective individuals. The researcher should report the 
number of subjects who were screened for eligibility, the number who were determined 
to be eligible, and the number of those who finally enrolled in the study. It is also poten­
tially useful to understand the characteristics of those who refuse to participateP This 
information is important to the reader of a research report, to assess the extent to which 
the subjects represent the overall population or a select subgroup.18 

A question about the number of subjects needed is often the first to be raised. The 
issue of sample size is an essential one, as it directly affects the statistical power of the 
study. Power is the ability to find significant differences when they exist.t With a small 

tstatistical implications of sample size and power are discussed in Chapter 18 and Appendix C. 
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sample, power tends to be low, and a study may not succeed in demonstrating the 
desired effects. As the researcher explores the availability of subjects, we can generally 
be sure that fewer subjects will agree to enter the study than originally projected (see 
Figure 8.2). Every investigator should have a contingency plan in mind, such as recruit­
ing subjects from different sites or expanding inclusion criteria, when the sample size 
falls substantially short of expectations. For studies that involve the use of question­
naires, sample size is a function of response rate, and should be a factor in deciding how 
many questionnaires to send out. 

Once the study is completed, it is also appropriate to offer to send a summary of the 
findings to physicians, agencies and subjects. The results may have an impact on the 
patient's care or future clinical decisions. Maintaining such contact will often encourage 
colleagues to be part of future studies as well. 

COMM ENTARY 

Sampling, Like Life, Is a Comprom ise 

Nonprobabi l ity samples are used more often than probabi l ity samples in c l i n ical 
research because of the difficu lties in  obtai n ing true access to populations. We fre­
quently encounter statements such as "Subjects were selected from the patient pop­
u lation at Hospital X between 2 000 and 2 002," and "Subjects were volunteers from 
the sen ior class at Un iversity Y." Most c l i n ical situations require that samples of con­
venience be used. Patients are often recruited as they become avai lable, making true 
random selection impossible. Inc lusion and exc lusion criteria may be made suffi­
ciently broad so that a sample of sufficient size can be obtai ned with i n  a reasonable 
amount of time. Recruiting subjects from more than one site can also i ncrease gen­
eral izabi l ity of findings. 

General izations of data col lected from nonrandom samples must be made with 
caution; however, this is not to say that stud ies with nonrandom samples are 
i nva l id .  The data col lected are sti l l  meani ngfu l with i n  the confines of the defined 
group bei ng tested. The researcher must determine if the characteristics of the sam­
ple are an adequate representation of the target population. When us ing conven­
ience samples, the researcher has an added responsibi l ity to identify important 
extraneous variables that might i nfluence the dependent variable. It is important to 
decide if a restricted sample, with homogeneous subjects, wou ld be more usefu l, 
or if the fu l l  variation i n  the population shou ld be represented. The risk of i nterpre­
tative error can be reduced by compari ng sample characteri stics to other groups 
from the population that may be described in the l iterature, and by repl icati ng stud­
ies to show that subjects chosen nonrandomly from different sources respond in a 
s imi lar way. 1 7  Sample size is a lso an important consideration. I n  qual itative studies, 
samples may be qu ite smal l , as compared to quantitative stud ies that w i l l  requ i re 
statistical comparisons. Researchers must consider the effect of sample size on their  
analytic process. Sometimes the restrictions set for i nc lusion and exc l usion criteria 
must be modified to obtain a large enough sample, and the impl ications of this 
process must be considered. 
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Keppel suggests that researchers can d istinguish between statistical and nonsta­
tistical genera l izations. 19  Statistical i nferences theoretica l ly requ i re random sampl ing 
and are based on the val idity of representativeness. Strictly speaking, it is i nappro­
priate to apply many i nferential statistical  procedures to data that were obtai ned 
from nonprobabi l ity samples, a lthough most researchers are w i l l i ng to make 
assumptions about the representativeness of the i r  sample so that the statistical analy­
s is  can be carried out. Genera l izations from nonprobabi l ity samples can be justified 
on the basi s  of knowledge of the research topic, experience, the logic of the study, 
and consistency i n  repl icated outcomes. Often, one can conclude that a conven­
ience sample w i l l  provide data that, for a l l  practical purposes, are as "random" as 
those obtained with a probabi l ity sample, especia l ly with relatively smal l  samples.9 
It is  important, however, that th is determination is  critica l ly  assessed, not s imply 
assumed, based on the specific c i rcumstances of the study. Researchers must be 
aware of the l i mitations i nherent in any sampl i ng method and shou ld try to incorpo­
rate elements of random sampl i ng whenever possible. 

From an evidence-based practice perspective, we must decide if results obtai ned 
i n  a research study can be appl ied to an i nd ividual patient. The c l i n ic ian must deter­
m ine if the study subjects are suffic iently s im i lar to the patient to al low general­
i zations of fi nd ings .  When the study sample c learly matches the patient's 
characteristics, the decis ion may be s imple. However, quite often researchers have 
specified exclusion criteria i n  an effort to decrease variabi l ity, and th i s  may decrease 
general izabi l i ty. The age ranges may not be exactly the same as the patient. Perhaps 
the setting or geographic region is markedly different. We must be able to weigh the 
impact of these differences and use the study's results with as much relevance as pos­
sible. An exact match between a study sample and a patient is not l i kely, but are the 
s imi larities sufficient that the results cou ld be usefu l ?  If the study sample ranges i n  
age from 4 0  to  6 0  years old, and  my patient i s  70, can  I assume that physiological 
processes caus i ng the outcome m ight sti l l  apply? Or does my patient's age tota l ly 
prec lude the appl ication of the find ings? Th is i s  a cautionary remi nder that we must 
use our judgment to decide how we want to use the i nformation.  Evidence comes i n  
a l l  s izes and forms, and we must evaluate i t  with i n  the context of o u r  experience and 
our patients to determine how it can be best appl ied. 
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CHAPTER 9 

Validity 
in Experimental Design 

The most rigorous form of scientific investigation for testing hypotheses is the 
experiment. Experiments are based on a logical structure, or design, within which the 
investigator systematically introduces changes into natural phenomena and then 
observes the consequences of those changes. The purpose of an experiment is to sup­
port a cause-and-effect relationship between a particular action or condition (the 
independent variable) and an observed response (the dependent variable). 

The essence of an experiment lies in the researcher 's ability to manipulate and con­
trol variables and measurements, so that rival hypotheses are ruled out as possible 
explanations for the observed response. These rival hypotheses concern the potential 
influence of unrelated factors, called extraneous variables (also called nuisance vari­
ables or intervening variables). An extraneous variable is any factor that is not directly 
related to the purpose of the study, but that may affect the dependent variable. Extra­
neous variables can be extrinsic factors that emerge from the environment and the 
experimental situation or intrinsic factors that represent personal characteristics of the 
subjects of the study. 

When extraneous variables are not controlled, they exert a confounding influence 
on the independent variable, that is, they contaminate the independent variable in such 
a way that their separate effects are obscured. For example, if we wanted to examine the 
effect of cryotherapy for relieving shoulder pain, and our subjects were on pain med­
ication, the medication would be a confounding factor. If we observe a decrease in pain 
following treatment, we could not determine if the effect was due to the treatment, the 
medication, or some combination of the two. Other extraneous factors that could inter­
fere with conclusions could be spontaneous healing or other treatments the patient is 
receiving. Experiments are designed to control for this type of confounding. 

In reality, of course, clinical experiments seldom have the ability to completely 
eliminate confounding effects; however, even though causality can never be demon­
strated with complete certainty, the experimental method provides the most convincing 
evidence of the effect one variable has on another. The purpose of this chapter is to 
examine issues of experimental control that must be addressed if the researcher is to 
have confidence in the validity of experimental outcomes. 

161 
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CHARACTERISTICS OF EXPERIM ENTS 
To be considered a true experiment, a study must have three essential characteristics: 
The independent variable must be manipulated by the experimenter, the subjects must 
be randomly assigned to groups and a control or comparison group must be incorpo­
rated within the design. 

Manipu lation of Variables 
Manipulation of variables refers to a deliberate operation performed by the experi­
menter, imposing a set of predetermined experimental conditions (the independent 
variable) on at least one group of subjects. The experimenter manipulates the levels of 
the independent variable by assigning subjects to varied conditions, usually adminis­
tering the intervention to one group and withholding it from another. For example, we 
might be interested in the effect of medication to reduce hypertension. We can assign 
subjects to treatment and control groups and measure blood pressure changes that 
occur following a period of treatment or no treatment. It is possible to manipulate a sin­
gle variable or a number of variables simultaneously. 

Active and Attribute Variables 
Independent variables can be distinguished as either active or attribute factors. An 
active variable is one that is manipulated by the experimenter so that subjects are 
assigned to levels of the independent variable. For instance, in a study where subjects 
can be assigned to receive medication or a placebo, treatment is an active variable. With 
an attribute variable the researcher is not able to assign subjects to groups, but must 
observe them within natural groupings according to inherent characteristics. Age group 
would be an attribute factor, as subjects automatically belong to one group or another, 
with no possibility for assignment. Pre-existing characteristics such as gender, occupa­
tion and diagnosis are other examples of attribute variables. 

Attribute variables cannot be manipulated by the experimenter. Therefore, when 
the effect of one or more attribute variables is studied, the research cannot be consid­
ered a true experiment. For example, we could look at differences in strength and range 
of motion across various age groups or between males and females. Because age and 
gender are attributes in place before the study begins, we can consider relationships, 
but the design does not afford adequate opportunity for control, thereby limiting inter­
pretation of cause and effect. This can be an important consideration for choosing sta­
tistical analyses. 

It is possible to combine active variables and attribute variables in a single study. 
For instance, we could look at the effect of medication on hypertension combined with 
the influence of age. By dividing subjects into four age groups, the subjects within each 
age group could be assigned to one of the two treatment groups. Even though this study 
includes an attribute variable, it qualifies as an experiment because the researcher is able 
to manipulate the assignment of treatment levels for at least one independent variable. 



Random Assignment 

CHAPTER 9 • Validity in Experimental Design 163 

In Chapter 8 we discussed the importance of random selection for choosing subjects, to 
ensure that a sample was representative of the parent population and that it was not 
biased. Once a sample is selected, it is important to continue the process of randomiza­
tion in assigning subjects to groups. Random assignment means that each subject has 
an equal chance of being assigned to any group, that is, assignments will be independ­
ent of personal judgment or bias. Random assignment is an essential feature of experi­
mental research, providing the greatest confidence that no systematic bias exists with 
respect to a group's collective attributes that might differentially affect the dependent 
variable. If we can assume that groups are equivalent at the start of an experiment, then 
we can have confidence that differences observed at the end of the study are not due to 
intersubject variability that existed before the experiment began. 

The concept of random assignment refers to groups being considered equivalent. 
Equivalence does not mean that every subject in one group is exactly equal to another 
subject in the other group. It does mean that any differences between the groups have 
been distributed as a function of chance alone. We can think of subjects as composites of 
personal characteristics such as motivation, intellectual ability, attitude, medical history, 
and strength. With random assignment, subjects with high or low values of these vari­
ables are just as likely to be assigned to one group or another. Random assignment is 
also expected to control for random events that might affect subjects during the course 
of the study; that is, subjects in both groups should be equally likely to experience ill­
ness, personal tragedy, happy occasions, or any other nonsystematic event that might 
affect the dependent variable. Thus, overall, intersubject differences should balance out. 

Although random assignment is the preferred method for equalizing groups for 
scientific study, it does not guarantee equivalence. The concept of randomization is the­
oretical in that it applies to the probability of outcomes in the proverbial "long run." In 
other words, if we use random assignment to divide an infinitely large sample, the 
groups' average scores should not be different; however, because clinical samples tend 
to be limited in size, random assignment can result in groups that are quite disparate 
on certain important properties. Researchers often use statistical means of comparing 
groups on initial values that are considered relevant to the dependent variable, to deter­
mine if those extraneous factors did balance out. For example, it may be important to 
determine if relatively equal numbers of males and females were assigned to each 
group, or if groups are equivalent on age. When random assignment does not success­
fully balance the distribution of intersubject differences, there are several design varia­
tions that can be used. These will be discussed shortly. 

Process of Assigning Subjects 
The process of assigning subjects to groups can be carried out in several ways; however, 
the most effective method involves the use of a table of random numbers, like the one 
given in Table 8.1 .  The procedure for using a table of random numbers was introduced 
in Chapter 8 in relation to random selection. The reader is encouraged to review that 
process, as it is applicable for random assignment as well. 
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Suppose we are interested in comparing the effects of two exercises for strengthen­
ing knee extensors against a control group that receives no exercise. We assemble a list 
of 45 subjects, so that we can assign 15 subjects to each of the three groups. The names 
are numbered from 01 to 45. Because subjects are numbered with two-digit codes, we 
would use pairs of digits to identify them from the table. As subjects are chosen, they 
are assigned to Group 1, Group 2 or Group 3 on a rotating basis, until all subjects have 
been assigned. In the assignment process, we designate groups as 1, 2, or 3, not by treatment. A 
good experimental strategy involves continuing the process of random assignment to 
assign levels of the independent variable to groups. If each treatment level is given a 
number, we can use the table of random numbers to carry out this assignment. By 
employing randomization techniques at each step, we have enhanced the validity of the 
study and fulfilled an essential requirement of experimental research. 

Control Groups 
The most effective design strategy for ruling out extraneous effects is the use of a 
control group against which the experimental group is compared. Subjects in a control 
group may receive a standard treatment that will act as a basis of comparison for a new 
intervention, a placebo or no intervention at all. To draw valid comparisons, we must 
be able to assume a reasonable degree of equivalence between the control and experi­
mental groups at the start. Then, if we observe a change in the treatment group, but no 
change in the control group, we can reasonably attribute the change to treatment. 

The operational definition of a control condition is important to the interpretation 
of outcomes. The difference between the two groups should be the essential element 
that is the independent variable. For example, Mulrow and associates1 studied the 
effects of physical therapy intervention on mobility in frail elders in a nursing home. 
The control group did not receive therapy, but instead was assigned "friendly visitors" 
who visited with the same frequency as treatment was given. The visitors were 
intended to control for the effects of personal interaction and attention that were neces­
sary parts of the physical therapy treatment, but not the essential component of the 
intervention. 

The use of a control group may be unfeasible in some clinical situations, for practi­
cal or ethical reasons. Therefore, clinical researchers often evaluate a new experimental 
treatment against conventional methods of care. This does not diminish the validity or 
usefulness of the study, but it does change the question that can be asked of the data. 
Instead of assessing whether the new treatment works, this approach assesses whether 
the new treatment is more effective than standard methods. Unless the standard treat­
ment has previously been tested against an untreated control, this type of question does 
not allow us to determine if the interventions are actually responsible for observed 
change. If such a study results in improvement in both groups, it would not be possible 
to determine if both treatments were equally effective or if both groups would have 
improved spontaneously without any intervention. It is justifiable to design studies 
with comparative treatments as controls when previous research has clearly established 
their effectiveness against a true control group, or when it is considered unreasonable 
to leave patients untreated. 
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THE RESEARCH PROTOCOL 
To control for the effect of extraneous factors that occur within the experimental situa­
tion, the researcher must either eliminate them or provide assurance that they will affect 
all groups equally. In field settings, this type of control can be illusive. Clinical situa­
tions cannot always be altered to meet experimental requirements, and, indeed, it may 
be undesirable to do so. To consider a study a true experiment, however, the researcher 
must be able to exercise sufficient control over the experimental situation, so that the 
effect of confounding variables can be ruled out with confidence. Therefore, the clinical 
researcher must determine which factors are most likely to contaminate the independ­
ent variable and attempt to minimize their effects as much as possible. For instance, in 
studies of patients with rheumatoid arthritis, investigators have recommended that the 
time of day measurements are taken be kept constant because of circadian rhythms for 
pain and stiffness? 

Although it is impossible to make every subject's experience exactly alike, it is often 
possible to achieve a reasonable level of constancy for many relevant extraneous vari­
ables through delineation of a standardized research protocol. The protocol should 
specify the positioning of subjects, the timing of all treatments and measurements, the 
methods of calibrating equipment and any other specifications necessary to ensure the 
most consistent performance of experimental activities. Researchers often read instruc­
tions to subjects (or have subjects read them), so that each one receives exactly the same 
information. Criteria for assessing the dependent variable should be clear, and those 
performing data collection should be trained and tested for their reliability. 

The realities of the clinical environment suggest, however, that we should weigh 
the merits of control over experimental conditions versus relevance to practice. If we 
design protocols that are more restrictive than typical practice, we may find that results 
are not readily applicable to real world situations. This is most pertinent in studies 
where the essential nature of treatment cannot reasonably be uniform for all patients. 
Sometimes we must be able to develop specific treatment plans and progress a patient 
according to individualized goals, or set the dosage of medication for individual needs. 
In this case, protocols should be made as consistent as possible, providing a standard­
ized set of guidelines that would make it reproducible.3 For instance, in the study by 
Mulrow and associates1 examining the effect of physical therapy on mobility of nursing 
home residents, intervention plans were developed by setting specific treatment goals 
for each patient and organizing all treatments around range of motion, strength, bal­
ance and mobility techniques. This approach resulted in individualized treatment ses­
sions, but used the same decision making model for all patients, which should be 
reproducible. 

Hand l ing I ncomplete or Lost Data 
In addition to controlling for confounding variables, it is important to maximize adher­
ence to the research protocol to limit loss of data. Incomplete data compromise the effect 
of random assignment and decrease the power of a study (see Chapter 18 for a discus­
sion of power). Loss of data can occur for several reasons. 
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• Subjects may drop out of the study or terminate treatment before the study is 
complete. This is a problem because those who remain in a study often differ 
in an important way from those who drop out.4 For instance, researchers studied 
the drug diacerein to relieve symptoms of osteoarthritis (OA), specifically to 
slow progressive decrease in joint space width in patients with hip OA.5 In a ran­
domized trial over 3 years, 47% of the patients discontinued the study. Members 
of the diacerein group dropped out because of adverse events and those in the 
placebo group left because their clinical status did not improve. In this situation, 
the attrition was related to group membership, and therefore, those who 
remained in the study presented a biased view of the outcome. In a different example, Winters and co-workers6 studied the differential 
effects of active and passive stretching in patients with hip flexor muscle tight­
ness. They recruited 45 subjects for their study, randomly assigning them to two 
groups. In the end, job conflicts, moving away, and unrelated injuries caused 
8 drop-outs in the active stretching group and 4 in the passive stretching group. In this case, although attrition occurred in both groups, the reasons were not 
related to group assignment, thereby not biasing the outcome. 

• Subjects may cross over to another treatment during the course of the study. 
In this situation, subjects do not get the treatment to which they were originally 
assigned. This may be due to patient preference or a patient's condition may 
change and the assigned treatment is no longer appropriate. For instance, a 
study was done to compare use of single-chamber ventricular pacemakers and 
dual-chamber pacemakers for patients who required cardiac pacing.7 Patients 
were randomly assigned to receive one treatment or the other; however, 26% of 
those who were assigned ventricular pacing experienced symptoms that 
required changing to the dual-chamber pacemaker, and 2% of those initially 
assigned to dual-chamber pacing had their pacemakers reprogrammed to ven­
tricular pacing. 

• Subjects may refuse the assigned treatment after allocation. A patient may 
initially consent to join a study, knowing that she may be assigned to either 
group, but after assignment is complete, the patient decides she wants the other 
treatment. For example, patients were entered into a randomized trial to com­
pare the effects of epidural analgesia with intravenous analgesia on the outcome 
of labor.8 The study included 1,330 women, but only 65% of each group accepted 
the randomly allocated treatment. Ethically, these patients must be allowed to 
receive the treatment they want. 

• Subjects may not be compliant with assigned treatments. Although they may 
remain in a study, subjects may not fulfill requirements of their group assign­
ment, negating the treatment effect. For example, a study was done to improve 
walking and physical function in patients with multiple sclerosis through a pro­
gressive 6-month exercise program.9 Patients were randomly assigned to an 
exercise or control group. The researchers found, however, that adherence to the 
strengthening regimen was only 59% in the exercise group. 

• Subjects may be excluded after randomization because they don't meet eligi­
bility requirements. The issue of post-randomization exclusion is distin­
guished from patients dropping out because of noncompliance, withdrawal or 
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loss to follow-up.10 Some research protocols call for random assignment prior to 
the point where eligibility can be determined. If some subjects are later excluded 
from the study, the balance of random assignment will be distorted. For exam­
ple, Gagnon and associates11 compared the effects of an early postpartum dis­
charge program versus standard postpartum care on maternal competence, 
infant weight gain and breastfeeding. Women were randomly assigned to two 
groups during their pregnancy. However, the researchers specified that compli­
cations in childbirth would be cause for exclusion for reasons of safety. Based on 
intrapartum or postpartum complications, they ended up excluding 46% of 
those randomized to the early postpartum group and 42% of those assigned to 
the usual care group. This would clearly unbalance the effect of randomization. 

On-Protocol or Completer Analysis 
Each of these situations causes a problem for analysis, as the composition of the groups 
is biased from the initial random assignment, especially if the number of subjects 
involved is large. There is no clean way to account for this difficulty. At first glance, it 
might seem prudent to just eliminate any subjects who did not get or complete their 
assigned treatment, and include only those subjects who sufficiently complied with the 
trial's protocol. This is called on-protocol or on-treabnent analysis. Compliance 
refers to getting the assigned treatment, being evaluated according to the protocol, and 
adherence to protocol requirements.U Because this method includes only those who 
completed the study, it has also been called completer analysis. 

Generally, the on-protocol approach will tend to bias results in favor of a treatment 
effect, as those who succeed at treatment are most likely to stick with it.13•14 For exam­
ple, in the exercise study with multiple sclerosis, it is possible that those who complied 
with the strengthening regimen were those who tended to see positive results and those 
who stopped exercising were not seeing any benefits. Therefore, when analyzing the 
data using only those subjects who complied, the exercise program would look success­
ful compared to a control group. 

It might also seem logical to analyze all subjects according to the treatment that 
they actually did receive, regardless of their original group assignment. This has been 
called treabnent-received analysis.12 This approach also results in bias, however, 
because the effect of the random assignment has been compromised. The two groups 
can no longer be seen as equivalent prior to receiving treatment. 

I ntention to Treat Analysis 
A more conservative approach uses a principle called intention to treat (ITI), which 
means that data are analyzed according to the original random assignments, regardless 
of the treatment subjects actually received; that is, we analyze data according to the way 
we intended to treat the subjects. This analysis ideally includes all subjects. The ITT 
approach serves several purposes. It guards against the potential for bias if dropouts 
are related to outcomes or group assignment, and preserves the original balance of ran­
dom assignment. This approach is also considered reflective of routine clinical situa­
tions, in which some patients will be noncompliant. 
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Research has shown that many published randomized trials do not report an 
intention-to-treat analysis, or if they do, they don't explain how deviations from ran­
domization or missing outcomes are actually handled.13'15 Current guidelines for 
reporting randomized trials have been endorsed by an international community of 
medical journals, recommending use of intention to treat analysis whenever possible, 
with a flow diagram that documents how subjects were included or excluded through 
different phases of the study (see Figure 9.1)_16,17 

Fergusson et al10 suggest that subjects who are excluded from a study after random­
ization may be omitted from an intention to treat analysis when ineligible patients are 
mistakenly randomized into a group, or when random assignment was premature. 
They stress that this strategy is appropriate only when the group assignment did not 

Withdrawals (n = 7) 
n = 5 Work-related reasons 
n = 1 Progression of MS 
n = 1 Psychological factors 

Excluded (n = 2) 
n = 1 Not definite MS 
n = 1 Acute infection 

Drop-outs (n = 2) 
n = 1 Acute infection 
n = 1 Traffic accident 

I Eligible patients (n = 276) I 
Not randomized (n = 1 62) 
n = 69 Age out of range 
n = 27 EDSS out of range 
n = 24 Refusals I not interested 
n = 27 Other disease I 

medical condition 
n = 1 Not definite MS 

I Randomized ( n = 1 1 4) I n = 1 4  Could not contact 

I Exercise group I I Control group I (n = 56) (n = 58) 
Withdrawals (n = 8) 
n = 1 Work-related reasons 
n = 1 Progression of MS 
n = 1 Other disease I 

medical condition 
n = 5 No given reason 

�� Baseline evaluation� I Baseline evaluation� 
(n = 49) (n = 50) 

Excluded (n = 2) 
n = 2 Other disease I 

medical condition 

I Completed study I I Completed study I (n = 45) (n = 46) 

Drop-outs (n = 2) 
n = 1 Work-related reason 
n = 1 No given reason 

FIG URE 9.1 Sample flow chart showing subject progress through the phases of a randomized tria l .  
Note that the f inal analysis includes those who completed the study as wel l  as two subjects from each 
group that dropped out, using an i ntention to treat analysis. In this study, those who withdrew after a l lo­
cation were not analyzed. The flow chart provides information on the reasons for dropouts. This is a stan­
dard format recommended for reporting randomized trials. 1 7  Adapted from Romberg A et a l .  Effects of a 
6-month exercise program on patients with mu ltiple sclerosis: A randomized study. Neurology 2004; 
63:2034-2038. Figure, p. 2036. Used with permission. 
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influence the likelihood that a patient would or would not receive the intervention. In 
the previous example of early postpartum discharge, patients in both groups experi­
enced complications in similar proportions, and the researchers did not include them in 
their intention to treat analysis.U 

As might be expected, an intention-to-treat analysis may result in an underestimate 
of the treatment effect, making it harder to find significant differences. This is one of the 
primary objections to using this approach. However, to be safe, many researchers will 
analyze data using both intention to treat and on-protocol analyses. For example, in the 
study of active and passive stretching, described earlier, the authors got the same result 
with both types of analyses.6 When outcomes are the same, the researcher will have 
strong confidence in the results.18 In another study, Mazieres and colleagues19 assessed 
the efficacy of chondroitin sulfate for treating knee osteoarthritis. They found no signif­
icant difference in improvement between treatment and placebo groups using the 
intention to treat approach, but did see a difference with a completer analysis. If the two 
methods yield different results, the researcher is obliged to consider what factors may 
be operating to bias the outcome. 

Analysis Strategies for Hand l i ng Missing Data 
Strategies for handling missing data should be specified as part of the research plan, 
and different approaches may be justified in different situations. Sometimes carrying 
out more than one strategy is helpful to see if conclusions will differ. 

Completer Analysis. Probably the most common approach is completer analysis. 
This analysis will represent efficacy of an intervention for those who persist with it, but 
may be open to serious bias. Using only complete cases can be justified if the number 
of incomplete cases is small, and if data are missing at random; that is, missing data are 
independent of group assignment or outcome. Therefore, researchers should report all 
reasons for missing data. Otherwise, this approach violates the principle of intention to 
treat and will tend to overestimate the treatment effect.20 

Noncompleter Equals Fai lure. For an intention to treat analysis, when the out­
come is dichotomous (success/failure), those who drop out can be considered a "fail­
ure." Corcos et al.21 used this approach in their randomized trial comparing surgery 
and collagen injections for treatment of female stress urinary incontinence. Success as 
the primary outcome after 12 months was defined as a dry 24-hour pad test. Patients 
who refused their assigned intervention, those who received an additional intervention, 
and those with missing final measures were scored as a failure in the ITT analysis. This 
is the most conservative approach, so if the treatment group is better we can be confi­
dent that the results are not biased by dropouts.22 If the results show no difference, how­
ever, we would not know if the treatment was truly ineffective, or if the dropouts 
confounded the outcome because they were classified as failures. 

Last Observation Carried Forward . A preferred method for continuous data is 
called last observation carried forward (LOCF), which means that the subject's last 
data point before dropping out is used as the outcome score. With multiple test points, 
the assumption is that patients improve gradually from the start of the study until the 
end, so that carrying forward an intermediate value is a conservative estimate of how 
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well the person would have done had he or she remained in the study. If the subject 
drops out right after the pretest, however, this last score could be the baseline score. The 
LOCF approach allows the analysis to account for trends over time. It does not take into 
account that some dropouts may have shown no change up to their last assessment, but 
might have improved had they continued. Overall, however, the LOCF method is bet­
ter than eliminating large numbers of subjects from the analysis.22 Lachin23 suggests 
that this type of analysis is especially powerful when an effective treatment arrests the 
progression of a disease, since even after a patient becomes noncompliant, the treat­
ment may still have some long term effect. 

Fol low-up. It may be possible to contact subjects who have withdrawn from treat­
ment. Outcome measures can often be obtained from these subjects to make the analy­
sis more complete.22 Subjects are analyzed as part of the group to which they were 
originally assigned, even if they did not comply with the treatment. The rationale for 
this strategy is that it reflects patient behavior in real practice. For example, in the study 
of urinary incontinence just described, researchers collected additional information by 
telephone for women who did not have their final evaluation.21 These women were 
then included in the intention to treat analysis. 

Because missing data can be so disruptive to the interpretation of results of a clini­
cal trial, researchers should take steps to limit this problem in the design and conduct 
of a study.12 Efforts should be made to reduce noncompliance, dropouts, crossover of 
subjects, or loss to follow-up. Eligibility criteria should be as specific as possible to 
avoid exclusions. A thorough consent process, including adequate warning of potential 
side effects and expectations, may help to inform subjects sufficiently to avoid noncom­
pliance. Ongoing support for subjects during a trial may also foster continuous partic­
ipation. Although the true spirit of intention to treat analysis can only be achieved when 
complete outcome data are available for all subjects, current wisdom in the reporting of 
randomized trials supports the use of this approach as much as possibleY 

BLINDING 
The potential for observation bias is an important concern in experimental studies. The 
participants' knowledge of their treatment status or the investigator's expectations can, 
consciously or unconsciously, influence performance or the recording and reporting of 
outcomes. Protection against this form of bias is best achieved by using a double-blind 
study, where neither the subjects nor the investigators are aware of the identity of the 
treatment groups until after data are collected. In its most complete form, a blind design can involve hiding the identity of group 
assignments from subjects, from those who provide treatment, from those who measure 
outcome variables, and from those who will reduce and analyze the data. It is useful to 
insulate each of these components by having different personnel involved at each level. It 
is also advisable to blind those responsible for treatment and assessment from the research 
hypothesis, so that they do not approach their tasks with any preconceived expectations 
and so that such knowledge cannot influence their interactions with the subjects. 
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The necessity for and feasibility of blinding depends on the nature of the experi­
mental treatment and the response variables. To blind subjects, the experimental treat­
ment must be able to be offered as a placebo. For many rehabilitation procedures this is 
not possible. In that case, a single-blind study can be carried out, where only the 
investigator or measurement team is blinded. 

Some types of response variables are totally objective, so that blinding is not really 
necessary. For example, studies that examine survival rates look at death as an outcome 
variable, an assessment that is obviously not prone to bias; however, as assessments 
become more subjective, the need for blinding increases. To whatever extent is possible 
within an experiment, blinding will substantially strengthen the validity of conclusions. 

The technique of blinding requires that treatments be coded in some way, so that 
when data collection is complete, the code can be broken and group assignments 
revealed. Because the potential for biases in data collection is so strong, blindness 
should be preserved carefully during the course of the study. 

DESIGN STRATEGIES FOR CONTROLLING 
INTERSUBJECT DIFFERENCES 
Clinical research is often concerned with measuring changes in behavioral responses 
that are potentially influenced by personal traits of those being studied. Several design 
strategies can be incorporated into a study that will control for these intrinsic variables. 
The most fundamental of these is random assignment, which eliminates bias by creat­
ing a balanced distribution of characteristics across groups. As we have suggested, 
however, random assignment is not a perfect system, and may result in groups that are 
not balanced on important variables. When one or two extraneous factors are of special 
concern, the researcher may not want to depend on randomization. 

When a researcher suspects that specific subject traits may interfere with the 
dependent variable, the simplest way to control for them is to eliminate them by choos­
ing subjects who are homogeneous on those characteristics. In that case, the extrane­
ous variables are not allowed to vary, that is, they are eliminated as variables. For 
instance, if we think males and females will respond differently to the experimental 
treatment, we can choose only male subjects for our sample. If age is a potential con­
founder, male subjects can be restricted to a specific age range, such as between 20 and 
30 years of age. Once a homogeneous group of subjects is selected, those subjects can 
be randomly assigned to treatment conditions. In that way, the effects of gender and age 
are controlled, with all other characteristics equally distributed. The major disadvan­
tage of this approach is that the research findings can be generalized only to the type of 
subjects who participate in the study, in this case to men between 20 and 30 years of age. 
This often limits the application of results. 

Another means of controlling for extraneous effects is to systematically manipulate 
attribute variables by building them into the experimental design as an independent 
variable. For instance, if we are concerned with the effect of age, we could divide sub­
jects into three age groups: under 30, 30 to 40, and over 40. Then, in addition to treat­
ment, we would have a second independent variable, age, with three levels. Each 
category of age is called a block, and the attribute variable, age, is called a blocking 
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variable. This procedure lets us control for age effects by allowing us to analyze the dif­
ferential effect of age on treatment within the design. 

A third strategy for dealing with extraneous variables involves matching subjects 
on the basis of specific characteristics. For example, if we were concerned with the effect 
of gender and age on our dependent variable, we could use a matching procedure to 
guarantee an equivalent group of males and females within different age ranges in the 
experimental and control groups. Studies that use identical twins to compare outcomes 
are using the ultimate matching process. Matching limits interpretation of research 
findings because the differential effect of the matching variables cannot be analyzed. 
For example, if we match subjects on age and gender, then we cannot determine if the 
effect of treatment is different across age ranges or across males and females. For most 
clinical studies, matching is not recommended when other methods of controlling 
extraneous variables are appropriate and practical. 

Using Subjects as Their Own Control  
Research designs can be structured to facilitate comparisons between independent 
groups of subjects, or they may involve comparisons of responses across treatment con­
ditions within a subject. When the levels of the independent variable are assigned to 
different groups, with an active or attribute variable, the independent variable is con­
sidered an independent factor.* For example, if we compare the effect of two types of 
splints for reducing hand deformities in patients with rheumatoid arthritis, each type 
of splint would be worn by a different set of patients. Therefore, the variable of "splint" 
is an independent factor with two levels. If we compare the effect of splints between 
males and females, "gender" would also be an independent factor. 

When all levels of the independent variable are experienced by all subjects, the 
independent variable is considered a repeated factor or a repeated measure. For 
instance, if we look at the effect of splinting over time, measuring each subject at 1-week 
intervals for 3 weeks, the variable of "time" becomes a repeated factor with three lev­
els. If we were interested in functional abilities using each type of splint, we might 
allow each subject to use both splints and test specific hand tasks with each one to com­
pare their responses. In this case, type of splint would be a repeated factor because both 
splints would be worn by all subjects. The use of a repeated measure is often described 
as using subjects as their own control. 

A repeated measures design is one of the most efficient methods for controlling inter­
subject differences. It ensures the highest possible degree of equivalence across treat­
ment conditions because subjects are matched with themselves. We can assume that 
stable individual characteristics such as gender, intelligence, physical characteristics, 
and age remain constant for each treatment, so that any differences observed among the 
treatment conditions can be attributed solely to treatment. Although this assumption is 
not completely valid for all variables (subjects do differ in mood, hunger, fatigue, and 
so on, from time to time), the variability of subjects from trial to trial will certainly be 

*The term independent factor should not be confused with independent variable. An independent variable can be 
either an "independent factor," or a "repeated factor," depending on how its levels are defined. 
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minimal compared with differences between independent groups of subjects. Issues 
related to the design of repeated measures studies are explored further in Chapter 10. 

Analysis of Covariance 
The last method of controlling for confounding effects does not involve a design strat­
egy, but instead uses a statistical technique to equate groups on extraneous variables. 
The analysis of covariance (ANCOVA) is based on concepts of analysis of variance 
and regression, which will be described in Chapters 20 and 24. Without going into 
details of statistical procedure at this time, we describe the conceptual premise for 
analysis of covariance for a hypothetical study involving a measure of step length in 
patients wearing two types of lower extremity orthoses. 

Suppose we randomly assign 40 subjects to the two treatment groups, thereby 
assuming that extraneous factors are equally distributed between the groups. When we 
compare the subjects' step lengths, we find that the average step for those wearing 
Orthosis A is longer than the average step for those wearing Orthosis B. We would like 
to attribute this difference to the differential effects of the orthoses; however, step length 
is also related to characteristics such as height and leg length. Therefore, if the subjects 
in Group A happen to be taller than those in Group B, the observed difference in step 
length may be a function of height, not orthosis. 

The purpose of the analysis of covariance is to statistically eliminate the influence 
of extraneous factors, so that the effect of the independent variable can be seen more 
clearly. These identified extraneous variables are called covariates. Conceptually, the 
ANCOVA removes the confounding effect of covariates by making them artificially 
equivalent across groups, and by estimating what the dependent variable would have 
been under these equivalent conditions. For instance, if the patients wearing orthosis A 
are taller than those in the other group, the analysis figures out what the step lengths 
would most likely have been had the heights been equally distributed. The analysis of 
differences between the two groups will then be based on these adjusted scores. 

To be sure that certain variables are distributed equally across experimental condi­
tions, control can be increased by selecting homogeneous subjects, matching subjects, 
using subjects as their own control, blocking, or by statistical manipulation using 
analysis of covariance (see Table 9.1) .  Each of these strategies requires that the investi­
gator be able to predict which extraneous factors are relevant to the study in advance. 

TABLE 9.1 DESIGN STRATEGIES FOR CONTROLLING INTERSUBJECT 
DIFFERENCES 

1 .  Selection of homogeneous subjects: Choose only subjects who have the same characteristics 
of the extraneous variable. 

2. Blocking: Build extraneous attribute variables into the design by using them as independent vari­
ables, creating blocks of subjects that are homogeneous for the different levels of the variable. 

3. Matching: Match subjects on specific characteristics across groups. 
4. Using subjects as their own control: Expose subjects to all levels of the independent variable, 

creating a repeated measures design. 
5. Analysis of covariance: Select an extraneous variable as a covariate, adjusting scores statisti­

cally to control for differences on the extraneous variable. 
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Such predictions may be based on theory, past studies, or simply the researcher's intu­
ition. The extent of control offered by these methods depends on which extraneous fac­
tors are measured and how strong the relationship is between those factors and the 
dependent variable. 

TH REATS TO VALI DITY 
The goals of experimental research can be summarized by four major questions (see 
Figure 9.2): (1) Is there a relationship between the independent and dependent vari­
ables? (2) Given that a relationship does exist, is there evidence that one causes the 
other? (3) Given that a cause-and-effect relationship is probable, to what theoretical con­
structs can the results be generalized? (4) Can the results be generalized to persons, set­
tings, and times that are different from those employed in the experimental situation? 
These four questions correspond to four types of design validity that form a framework 
for evaluating experiments: statistical conclusion validity, internal validity, construct 
validity, and external validity (see Table 9.2).24 

Statistical Conclus ion Val id ity 
Is there a relationship between the independent and dependent variables? 

Statistical conclusion validity concerns the potential inappropriate use of statistical 
procedures for analyzing data, leading to invalid conclusions about the relationship 
between independent and dependent variables. Some specific threats to statistical con­
clusion validity are listed here. Because these threats involve concepts of statistical 
inference that will be covered later in the text, we provide only brief definitions here. 

Statistical 
Conclusion 

Validity 

Can the results be generalized 
to other persons, settings or times? 

To what theoretical constructs can 
results be generalized? 

Is there evidence of a causal relationship 
between independent and dependent variables? 

Is there a relationship between the 
independent and dependent variables? 

FIG U RE 9.2 Four types of design val id ity. Each form of val idity is cumulatively dependent on the com­
ponents below it. 
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TABLE 9.2 THREATS TO DESIGN VALIDITY 

1 .  Statistical conclusion validity: Refers to the appropriate use of statistical procedures for ana­
lyzing data. 
• Low statistical power • Reliabil ity 
• Violated assumptions of statistical tests • Variance 
• Error rate 

2. Internal validity: Refers to the potential for confounding factors to interfere with the relationship 
between the independent and dependent variables. 

Multiple Group Threats 
Single Group Threats (Selection Interactions) Social Threats 

• History 
• Maturation 
• Attrition 
• Testing 
• Instrumentation 
• Regression 

• Selection-history 
• Selection-maturation 
• Selection-attrition 
• Selection-testing 
• Selection-instrumentation 
• Selection-regression 

• Diffusion or imitation of treat­
ments 

• Compensatory equalization 
of treatment 

• Compensatory rivalry 
• Resentful demoralization 

3. Construct validity of causes and effects: Refers to the theoretical conceptualization of the 
independent and dependent variables. 
• Operational definitions of independent and dependent variables 
• Time frame within operational definitions 
• Multiple-treatment interactions 
• Experimental bias 
• Hawthorne effect 

4. External validity: Refers to the extent to which results of a study can be generalized outside the 
experimental situation. 
• I nteraction of treatment and selection 
• Interaction of treatment and sett ing 
• I nteraction of treatment and history 

Low Statistical Power. The power of a statistical test concerns its ability to reject the 
null hypothesis, that is, to document a real relationship between independent and 
dependent variables. Significant effects may be missed because of inadequate sample 
size or failure to control extraneous sources of variation. 

Violated Assumptions of Statistical Tests. Most statistical procedures are based 
on a variety of assumptions about the experimental data and the sample from which 
they are collected. If these assumptions are not met, statistical outcomes may lead to 
erroneous inferences. 

Error Rate. With certain tests, the probability of drawing incorrect conclusions 
increases as the number of repeated tests increases. Statistical procedures are generally 
available to control for this threat. 

Rel iabi l ity and Variance. Statistical conclusions are threatened by any extraneous 
factors that increase variability within the data, such as unreliable measurement, failure 
to standardize the protocol, environmental interferences, or heterogeneity of subjects. 
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These threats contribute to statistical error variance, which is a function of all variance in 
the data that cannot be explained by treatment effects. 

Fai lure to Use I ntention to Treat Analysis. Earlier in this chapter, we discussed 
the concept of intention to treat as a way to avoid bias in the analysis of data when orig­
inal random assignment is not maintained, for any number of reasons. Researchers who 
only use an on-treatment analysis risk overestimating a treatment effect. 

I nternal Val id ity 
Given a statistical relationship between the independent and dependent variables, is 
there evidence that one causes the other? 

Internal validity focuses on cause and effect relationships. The assumption of causal­
ity requires three components. 

Temporal Precedence. First, we must be able to document that the cause precedes 
the effect; that is, any change in outcome must be observed only after a treatment is 
applied. This is the age-old metaphor of the chicken and the egg, and is often an issue 
with cyclical variables. For example, a classic question from economics asks: Does 
unemployment cause inflation, or does inflation cause unemployment? Temporal rela­
tionships can be controlled in prospective studies when the order of treatment and out­
come are known. 

Covariation of Cause and Effect. Second, we must be able to document a relation­
ship between independent and dependent variables, showing that the outcome only 
occurs in the presence of the intervention, or that the degree of outcome is related to the 
magnitude of the intervention. This type of relationship is clear with an observed 
change in a treatment group and no change in a control group. 

No Plausible Alternative Explanations. Finally, we must be able to demonstrate 
that alternative explanations for observed change are not plausible. Confounding vari­
ables present threats to internal validity because they offer competing explanations for 
the observed relationship between the independent and dependent variables; that is, 
they interfere with cause-and-effect inferences. Several types of alternative explanations 
must be considered. These can be grouped in three categories: single group threats, 
multiple group threats, and social threats.25 

Single Group Threats 
Single group threats are those that may affect the relationship between the independent 
and dependent variables when only one group of subjects is tested. 

History. History refers to the confounding effect of specific events, other than the 
experimental treatment, that occur after the introduction of the independent variable or 
between a pretest and posttest. For example, if we study the effect of exercise on knee 
extensor strength, history effects may include some subjects' participation in other ath­
letic activities or other therapies that affect knee extensor strength. If the clinical staff 
involved in the study is replaced with new personnel during the course of the study, 
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responses may be affected. History can also refer to more global events. For instance, 
suppose we were interested in studying the effect of an educational program for 
increasing the use of seat belts by teenagers. If our state passes a law mandating seat 
belt use during the course of the study, that represents a history effect. 

History may not be as serious a concern in studies where data collection is com­
pleted within a short period, like a single session.26 For example, if range of motion of 
shoulder flexion is measured, followed by 10 minutes of mobilization exercises, and 
then immediately remeasured, there is little opportunity for confounding events to 
influence the dependent variable. Even in this type of situation, however, the effects of 
conversation, the subject's moving around, or other disturbances in the environment 
may introduce history effects. 

Maturation. A second threat to internal validity concerns processes that occur sim­
ply as a function of the passage of time and that are independent of external events. 
Maturation may cause subjects to respond differently on a second measurement 
because they have grown older, stronger, healthier, more experienced, tired, or bored 
since the first measurement. For example, if we want to examine the effects of therapy 
on communication disorders following a stroke, we would have to take into account the 
fact that spontaneous changes often occur without any intervention. 

Maturation is a relevant concern in many areas of clinical research, especially in 
studies where intervals between measurements are long. Those who study children 
often encounter physical and mental developmental changes, unrelated to therapeutic 
intervention, that may influence performance. Wound healing, remission of arthritic 
symptoms, regeneration in neurological injury, and postoperative recovery are all 
examples of potential maturation effects. 

Attrition. Clinical researchers are often faced with the fact that subjects drop out of 
a study before it is completed. Attrition, also called experimental mortality, is of con­
cern when it results in a differential loss of subjects, dropouts that occur for specific 
reasons related to the experimental situation. For example, suppose we studied a pro­
gram of breathing exercises for patients with emphysema. Subjects who find the exer­
cises more difficult or those who are less motivated may drop out, leaving a group that 
is no longer representative of the original sample. Researchers may be able to compare 
pretest scores for those who remain and those who drop out to determine if there is a 
biasing effect. 

Testing. Testing effects concern the potential effect of pretesting or repeated testing 
on the dependent variable. In other words, the mere act of collecting data changes the 
response that is being measured. Testing effects can refer to improved performance or 
increased skill that occurs because of familiarity with measurements. For example, in 
educational tests, subjects may actually learn information by taking a pretest, thereby 
changing their responses on a posttest, independent of any instructional intervention. 
If a coordination test is given before and after therapy, patients may get higher scores 
on the posttest because they were able to practice the activity during the pretest. Test­
ing effects also refer to situations where the measurement itself changes the dependent 
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variable. For instance, if we take repeated measurements of range of motion, the act of 
moving the joint through the range to evaluate it may actually stretch it enough to 
increase its range. 

Tests that have the potential for changing the response they are measuring are 
called reactive measurements. Reactive effects occur whenever the testing process 
stimulates change, rather than acting as a passive record of behavior. For instance, plac­
ing a video camera in a room to record patient-therapist interactions may alter the 
observed responses because the subjects know they are being watched. This type of 
testing effect can be minimized by practice sessions and warm-up trials, to make sub­
jects more comfortable in the testing environment. Unobtrusive or passive measures 
should be used whenever possible to avoid reactive effects.Z7 Techniques such as watch­
ing subjects through a two-way mirror qualify as unobtrusive. 

I nstrumentation .  Instrumentation effects are concerned with the reliability of 
measurement. Observers can become more experienced and skilled at measurement 
between a pretest and posttest. Changes that occur in calibration of hardware or shifts 
in criteria used by human observers can affect the magnitude of the dependent variable, 
independent of any treatment effect. Mechanical and bioelectronic instruments can 
threaten validity if linearity and sensitivity are not constant across the full range of 
responses and over time. For instance, a force gauge may be designed to register linear 
forces between 50 and 100 kg. Average scores for subjects who are very strong (near 100 
kg) or very weak (near 50 kg) will not be measured as accurately as for those whose 
average falls between 50 and 100 kg. This threat to internal validity can be addressed 
by calibration and documenting test-retest and rater reliability. 

Regression toward the Mean . Regression is also associated with reliability of a 
test. When measures are not reliable, there is a tendency for extreme scores on the 
pretest to regress toward the mean on the posttest. This effect occurs even in the absence 
of intervention. Extremely low scores tend to increase; extremely high scores tend to 
decrease; and scores that fall around the average tend to stay the same. Statistical 
regression is of greatest concern when individuals are selected on the basis of extreme 
scores. For instance, if we wanted to examine the effect of a specific exercise on weaker 
patients, we might choose a group of subjects with low strength scores on their pretest. 
The effect of regression will be to increase the group mean on the posttest due to chance 
variation. The amount of statistical regression is directly related to the degree of meas­
urement error in the dependent variable. Therefore, this effect is minimized when reli­
ability is strong. Examples of this concept were presented in Chapter 5. 

Multiple Group Threats 
The most effective strategy for ruling out single group threats to internal validity is 
through the research design, by including a control or comparison group. If the only 
difference between the intervention and control groups is the treatment, then observa­
tion of a difference between the groups following treatment may be attributed to the 
treatment. The essential point here is the need for groups to be equivalent on all other 
characteristics at the start of the study. If the groups are not equivalent, we would not 
be able to determine if the outcomes are due to treatment or to initial differences. 
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The threat of selection interaction refers to factors other than the experimental inter­
vention that can influence posttest differences between groups. When groups are not com­
parable, the single group threats to internal validity may affect the groups differentially. 

Selection-history effects result when experimental groups have different ex­
periences between the pretest and posttest. This is especially important in multicenter 
studies or where groups are chosen to represent different geographical areas. 
Selection-maturation effects occur when the experimental groups experience matu­
rational change at different speeds. For instance, if we compare changes in motor learn­
ing skills following a course of therapy in 3- and 10-year-olds, we can expect a different 
rate of developmental change that could confound treatment effects. Selection-testing 
effects occur when the pretest affects groups differently. Selection-instrumentation 
interaction occurs when the test is not consistent across groups, often due to variances 
in reliability. Selection-regression interaction is of concern if the groups are specifi­
cally divided based on higher and lower pretest scores. 

The potential effect of differential selection is obviously controlled when random 
assignment is used; however, it becomes an issue when intact groups are used, or when 
the independent variable is an attribute variable. Designs that do not allow random 
assignment are considered quasi-experimental, in that differences between groups can­
not be balanced out. There may be several reasons that subjects belong to one group 
over another, and these factors can contribute to differences in their performance. 
Researchers can exert some degree of control for this effect when specific extraneous 
variables can be identified that vary between the groups. The strategy of matched pairs 
or the analysis of covariance may be able to account for initial group differences. 

Social Threats 
Research results are often affected by the interaction of subjects and investigators. 
Social threats to internal validity refer to the pressures that can occur in research sit­
uations that may lead to differences between groups. Most of these threats occur 
because those involved are aware of the other groups' circumstances or are in contact 
with one another. 

Diffusion or I m itation of Treatments. Sometimes the independent variable 
involves information or activities that are not intended to be equally available to all 
groups. Because the nature of many interventions makes blinding impractical, control 
subjects are often aware of the interventions intended for another group, and may 
attempt to change their behaviors accordingly.28 For instance, we might want to com­
pare the effect of an exercise program on patients' back pain. The experimental group 
would attend classes and read packets of information related to exercise, while a con­
trol group is given a neutral experience involving no exercise information. If the two 
groups have an opportunity to communicate, subjects in one group may learn the infor­
mation intended for the others. Subjects in the control group may become aware of the 
need for exercise based on the experimental group's activities, and become motivated 
to begin their own exercise programs. This communication or knowledge will diffuse 
the treatment effect and make it impossible to distinguish the behaviors of the two 
groups (see Box 9.1). 
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BOX 9.1  The Context of a Clinical Trial: The Lesson of "Mr. Fit" 

Understanding validity in experimental design requires that we consider 
results within the social context of the intervention. This context includes not 
only the environment, but the interaction of clinician and patient. One of the 
most classic examples of this phenomenon is the Multiple Risk Factor Inter­
vention Trial, popularly known as MRFIT, which was conducted at 22 U.S. 
clinical centers from 1973 to 1982. The trial was designed to test whether 
lowering elevated serum cholesterol and diastolic blood pressure and ceas­
ing cigarette smoking would reduce coronary heart disease mortality. Over 
12,000 men were randomly assigned to either a special intervention (SI) pro­
gram consisting of drug treatment for hypertension, counseling for cigarette 
smoking, and dietary advice for lowering blood cholesterol levels, or to their 
usual sources of health care in the community (UC) . Over an average follow­
up period of 7 years, the mortality from CHD for SI men was 17.9 deaths/ 
1,000 men, and for UC men was 19.3 CHD deaths/1,000 men, a difference 
that was not significant (p > .10). The difference in mortality for all causes 
was only 2%, also not significant. Reductions in plasma cholesterol levels 
and smoking were also observed in both groups. 

In retrospect, researchers have attributed this lack of difference between 
the two groups to the fact that men in both groups were originally selected 
in part because they were willing to participate in a risk factor modification 
program, knowing they could be assigned to either an intervention or con­
trol group. This, along with widespread public efforts in the 1970s to educate 
people about the benefits of risk factor modification, could have contributed 
to the observed changes in the UC group. At a cost of well over $100 million 
for the original trial, this was an expensive lesson. 

Source: Multiple Risk Factor Intervention Trial. Risk factor changes and mortality 
results. JAMA 1982; 248:1465-1477. 

Compensatory Equal ization of Treatments. When an experimental treatment is 
considered a desirable service or condition, those who work with and care for the sub­
jects may try to even out experiences by providing compensatory services to the control 
group. For example, suppose we wanted to study the effect of continuous passive 
motion on knee range of motion following total knee replacement. Therapists who 
work with the control patients might work extra hard on range of motion exercises or 
joint mobilization to compensate for their patients' missing out on the "better" treat­
ment. The effect of such compensatory attention will be to make the groups look more 
alike, and obscure the experimental effects of treatment. 

Compensatory Rivalry and Resentful Demoral ization of Respondents Receiv­
ing Less Desirable Treatments. These two effects represent opposite reactions to the 
same situation. When one group's assigned treatment is perceived as more desirable 
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than the other's, subjects receiving the less desirable treatment may try to compensate 
by working extra hard to achieve similar results. This is similar to compensatory equal­
ization, described earlier, except that here the subject is responsible for equalizing effects. 

In an alternative reaction to this type of situation, subjects receiving less desirable 
treatments may be demoralized or resentful. Their reaction may be to respond at lower 
levels of performance. The effect of such responses will be to artificially inflate group 
differences, which may then be incorrectly attributed to a significantly greater treat­
ment effect. 

One way to control this effect is to be sure that there is no interaction among sub­
jects. Sometimes this is difficult, depending on the experimental environment. For 
instance, if a study were designed to compare the effect of early mother-newborn con­
tact and usual care on mother-child bonding, it might be difficult to prevent interaction 
if those assigned to different groups were on the same hospital floor or in the same room. 
Their interaction would tend to contaminate the treatment effect.29 When this effect is a 
potential threat, the researcher may choose to randomly assign treatments to different 
floors, rather than to individuals. The researcher would have to weigh the impact of this 
approach, as this en bloc randomization will control for the compensatory interactions, 
but may be less desirable in terms of truly balancing individual characteristics.Z8 

Ruling Out Threats to Internal Validity 
Threats to internal validity are likely to be present in every experiment to some degree. 
As this list suggests, the task of ruling out alternative explanations for observed 
changes and documenting the effect of the independent variable is not a small one. It 
can, however, be addressed as a logical process, one that requires insight, subject 
matter expertise, and the capacity for self-criticism.29 Many threats, such as history, 
maturation, selection, statistical regression, testing, instrumentation, and selection 
interactions, can be ruled out by the use of random assignment and control groups. 
These issues are canceled out when both groups are equivalent at the start and are 
equally likely to be affected by events occurring during the course of the study. Random 
assignment cannot rule out the effects of attrition, imitating treatments, or compensa­
tory reactions. Blinding subjects and investigators, however, will control many of these 
effects. The researcher must examine all possible threats and eliminate them or recog­
nize their influence when they are inevitable. When they cannot be eliminated, it may 
not be possible to demonstrate causal relationships. 

Construct Val id ity of Causes and Effects 
Given that a cause and effect relationship is probable, to what theoretical constructs can 
the results be generalized? 

Threats to validity can also be characterized in terms of the construct validity of the 
independent and dependent variables. As we have discussed before, constructs are 
abstract behaviors or events that cannot be directly observed, but that can be inferred 
from other relevant observable variables (see Chapters 2 and 6). Construct validity of 
causes and effects concerns the theoretical conceptualizations of the intervention and 
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response variables and whether these have been developed sufficiently to allow reason­
able interpretation and generalization of their relationship.24 

Most of the treatments and responses that are used in clinical research are based on 
constructs that must be conceptualized by the researcher in terms of their operational 
definitions. The levels of the independent variable and measurement methods for the 
dependent variable will delimit their relationship. If we study "exercises to improve 
gait," we must conceptualize these variables in terms of specific activities and measure­
ment tools. Outcomes will be interpreted differently, for example, if we study isometric 
knee exercises and measure gait speed, than if we study walking as an exercise and 
measure distance walked. Construct validity concerns the researcher's goals and how 
well experimental results can be generalized within the desired clinical context. Studies 
that are internally sound may have no practical application beyond the experimental 
situation if the researcher has not taken the time to explore conceptual questions and 
the theoretical basis for asking them. 

Threats to construct validity are related to how variables are operationally 
defined within a study and to potential biases introduced into a study by subjects or 
experimenters.t 

Operational Definitions 
Cook and Campbell suggest that full explication of most constructs requires use of mul­
tiple treatment methods and multiple measurement methods.24 When studies incorpo­
rate only one form of measurement or examine only one form of treatment, the results 
will apply only to a limited aspect of the construct. For example, the construct of pain 
is truly multidimensional. Therefore, if a study addresses only one form of treatment or 
one form of measurement, generalization of the results of that study is limited. This lim­
itation is increased when some levels of the independent variable interact differently 
with various types of dependent variables. For instance, if we treat pain using relax­
ation exercises or transcutaneous electrical nerve stimulation (TENS), measures of suc­
cess may vary depending on whether we assess pain by using a visual analog scale 
(VAS), by measuring range of motion of involved joints or by observing the efficiency 
of functional tasks. The VAS reflects the patient's subjective and relative feelings of pain 
intensity, the range of motion test reflects physiological concomitants of pain and func­
tional evaluation is influenced by personality, attitude, motivation, and lifestyle. There­
fore, each of these assessments measures a different aspect of pain that reflects 
components of the total construct. 

Generalization is also limited by the time frame within operational definitions. For 
instance, if we study the effect of TENS over a 2-week period, we cannot generalize out­
comes to events that might occur over a longer period of treatment. If treatment shows 
no effect within this time period, we would be inaccurate to conclude that TENS does 
not work. The duration of treatment cannot be ignored in defining the construct of 
intervention, and treatment may need to be carried out over various durations to deter­
mine the time necessary to achieve maximal effectiveness. 

tThese threats were originally defined by Campbell and Stanley under the category of external validity.26 Cook 
and Campbell have subdivided that original categorization into construct validity and external validity.24 



CHAPTER 9 • Validity in Experimental Design 183 

Construct validity is also affected when a study involves the administration of mul­
tiple treatments or multiple measurements. Generalization is limited by the possibility 
of multiple-treatment interaction, creating carryover or combined effects. Order 
effects can result when treatments or measurements are consistently given in the same 
order, creating possible influences on subsequent responses. The researcher cannot gen­
eralize these findings to the situation where only a single treatment or measurement is 
given; that is, the effect of one response cannot be interpreted out of the context of sev­
eral responses. 

Length of Follow-Up 
When a study addresses the response of subjects over time, the length of follow-up will 
be important to the interpretation of results. Basing decisions on short-term data can be 
misleading if the observed effects are not durable or if they are slow to develop. For 
example, studies of continuous passive motion (CPM) following total knee replacement 
have shown a greater increase in knee range of motion within the first few days after 
surgery with CPM compared to standard therapy, although this differentiation was no 
longer evident after 1-3 months.30•31 This is an important distinction is drawing conclu­
sions about the effect of the intervention. This knowledge would not have been 
obtained if data collection was not continued beyond the first week. Conclusions 
should be based on the available data, and not interpreted beyond the scope of the 
study. For instance, if data are collected over one month, and the treatment does not 
show a significant effect, there is no way to determine if improvement might have been 
observed if data were collected over a longer period of time. Similarly, if improvement 
is seen within the first month, we cannot determine if the trend would be maintained 
over a longer time period. The construct validity of the independent variable must 
include reference to the timeframe used for data collection. 

Experimental Bias 
A third aspect of construct validity concerns biases that are introduced into a study by 
expectations of either the subjects or the experimenter. Subjects often try their best to 
fulfill the researcher's expectations or to present themselves in the best way possible, so 
that responses are no longer representative of natural behavior. This effect was docu­
mented in classical studies performed from 1924 to 1927 at the Hawthorne plant of the 
Western Electric Company in Chicago.32•33 Researchers were interested in studying how 
various levels of illumination affected workers' output. What they found was that 
whether they lowered or raised lights, the workers increased production. Further stud­
ies involved introducing changes in work schedules, such as coffee breaks and a shorter 
work week, all resulting in better output, even when conditions were later returned to 
original schedules! No matter what the researchers did, productivity improved in reg­
ular and test groups. This phenomenon has become known as the Hawthorne effect, 
which is the tendency of persons who are singled out for special attention to perform 
better merely because they are being observed. 

For example, this effect was documented in a study of post-operative pain follow­
ing knee arthroscopy.34 Patients who were told pre-operatively that they were part of a 
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study scored significantly better on post-op measures of knee pain and psychological 
well-being compared to patients who were not given the same information. Researchers 
should acknowledge this effect when appropriate to the interpretation of results. 

The Hawthorne experiments have been criticized for flaws in research design, lack 
of control groups, small samples, noncompliance and attrition of subjects, and misinter­
pretation of results.35 Nonetheless, many researchers continue to explain their findings 
based on this effect.34'36'37 Gale38 provides a wonderful summary and description of the 
managerial lessons of the original Hawthorne studies, and their contributions to indus­
trial psychology and organizational behavior theory. 

Experimenters may also have certain expectancies that can influence how subjects 
respond. They may react more positively to subjects in the experimental group or give 
less attention to those in the control group, because of an emotional or intellectual 
investment in their hypothesis. Rosenthal described several types of experimenter 
effects in terms of the experimenter's active behavior and interaction with the subject, 
such as verbal cues and smiling, and passive behaviors, such as those related to appear­
ance.39 This threat to construct validity can be avoided by employing testers who are 
blinded to subject assignment and the research hypothesis. 

External Val id ity 
Can the results be generalized to persons, settings and times that are different from those 
employed in the experimental situation? 

External validity refers to the extent to which the results of a study can be generalized 
beyond the internal specifications of the study sample. Whereas internal validity is con­
cerned specifically with the relationship between the independent and dependent vari­
ables within a specific set of circumstances, external validity is concerned with the 
usefulness of that information outside the experimental situation. The generalizability 
of a study is primarily related to the specific patient context and conditions under 
investigation.40 

Threats to external validity involve the interaction of treatment with the specific 
type of subjects tested, the specific setting in which the experiment is carried out, or the 
time in history when the study is done. 

Interaction of Treatment and Selection 
One of the major goals of clinical research is to apply results to a target population, that 
is, to individuals who are not experimental subjects but who are represented by them. 
If subjects are sampled according to specific characteristics, those characteristics define 
the target population. For instance, subjects may be restricted to a limited age range, 
one gender, a specific diagnosis, or a defined level of function. When samples are con­
fined to certain types of subjects, it is not reasonable to generalize results to those who 
do not have these characteristics. Because patient characteristics and eligibility require-
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ments can vary, generalizability will depend on how closely the study sample repre­
sents the clinical situation. 

External validity is threatened when documented cause-and-effect relationships do 
not apply across subdivisions of the target population, that is, when specific interven­
tions result in differential treatment effects, depending on the subject's characteristics. 
For instance, suppose we want to demonstrate the benefits of a particular exercise pro­
gram for improving function following a stroke. The effect of the program may not be 
generalizable across groups that exhibit various levels of spasticity, those affected on 
the left or right, patients of different ages, or those with speech disorders. Studies are 
especially vulnerable to this threat when volunteers are used as subjects. Those who 
choose to volunteer may do so because of certain personal characteristics that ulti­
mately bias the sample. When studies demonstrate conflicting results, it is often 
because of the differences within the accessible populations. 

A related effect can occur if subjects do not comply with the experimental protocol. 
A study that is internally valid may still be compromised in relation to external valid­
ity under these circumstances. Researchers should examine adherence as they interpret 
findings, to determine if results are realistic and have clinical applicability.41 From a 
sampling perspective, some investigators screen potential subjects prior to randomiz­
ing them into groups, to eliminate those who are not adherent. For example, the Physi­
cians' Health Study, which investigated the effect of aspirin and beta carotene in the 
prevention of ischemic heart disease, used an 18-week "run-in period" and eliminated 
33% of the subjects from the final study based on noncompliance.42 This practice may 
help to build a compliant study sample, but it may also dilute external validity of the 
findings.43 It is the researcher's responsibility to evaluate its potential effect in demon­
strating the applicability of the findings.44 

Interaction of Treatment and Setting 
If we demonstrate a causal relationship between an exercise program and functional 
improvement using patients in a rehabilitation hospitat can we generalize these find­
ings to a nursing home or to home care? This question can only be answered by repli­
cating effects in different settings. 

Interaction of Treatment and History 
This threat to external validity concerns the ability to generalize results to different peri­
ods of time in the past or future. For instance, if we look at the results of nutritional 
studies for reducing cholesterol in the diet, results may be quite different today from 
results obtained 20 years ago, when knowledge about the effect of diet and exercise on 
cardiovascular fitness was less developed, and when society and the media were less 
involved in promoting fitness and health. This type of generalization is supported 
when results are replicated in subsequent studies and when previous research corrob­
orates the established causal relationship. 
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THE CONSORT STATEMENT 
Understanding randomized trials requires attention to how the elements of control and 
design are reported in published studies. Guidelines for reporting have been developed 
by an international community of researchers and statisticians. The Consolidated Stan­
dards for Reporting Trials, or the CONSORT statement, has been published on the 
web45 and in several joumals46-48 to help authors and readers determine why a study 
was undertaken, and how it was conducted and analyzed. 

The statement is composed of a checklist of 22 items pertaining to the content of the 
Title, Abstract, Introduction, Methods, Results and Discussion sections of an article (see 
Table 9.3). A flowchart is also included that details how participants are enrolled and car­
ried through the trial (refer to Figure 9.1). The adoption of the CONSORT statement has 
improved the reporting of RCTs, enabling readers to better assess the validity of results.49 

TABLE 9.3 THE CONSORT STATEMENT 

Checklist of items to include when reporting a ran domized trial. 

PAPER SECTION 
and topic Item Description 

TITLE & ABSTRACT 1 How participants were allocated to interventions (e.g . ,  "random 
allocation," "randomized," or "randomly assigned"). 

INTRODUCTION 2 Scientific background and explanation of rationale. 
Background 
METHODS 3 Eligibility criteria for participants and the settings and locations 
Participants where the data were collected. 

Interventions 4 Precise details of the interventions intended for each group and 
how and when they were actually administered. 

Objectives 5 Specific objectives and hypotheses. 
Outcomes 6 Clearly defined primary and secondary outcome measures and, 

when applicable, any methods used to enhance the quality of 
measurements (e.g. ,  multiple observations, training of assessors). 

Sample size 7 How sample size was determined and, when applicable, explana-
tion of any interim analyses and stopping rules. 

Randomization- 8 Method used to generate the random allocation sequence, 
Sequence generation including details of any restriction (e.g . ,  blocking, stratification). 

Randomization- 9 Method used to implement the random allocation sequence (e.g. ,  
Allocation concealment numbered containers or central telephone), clarifying whether the 

sequence was concealed unti l interventions were assigned. 

Randomization- 1 0  Who generated the allocation sequence, who enrolled partici-
Implementation pants, and who assigned participants to their groups. 

Blinding (masking) 1 1  Whether or not participants, those administering the interven-
lions, and those assessing the outcomes were blinded to group 
assignment. If done, how the success of bl inding was evaluated. 

Statistical methods 1 2  Statistical methods used to compare groups for primary out-
come(s); methods for additional analyses, such as subgroup 
analyses and adjusted analyses. 
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TABLE 9.3 THE CONSORT STATEMENT 

PAPER SECTION 
and topic Item Description 

RESULTS 1 3  Flow of participants through each stage (a diagram is strongly 
Participant flow recommended). Specifically, for each group report the numbers 

of participants randomly assigned, receiving intended treatment, 
completing the study protocol ,  and analyzed for the primary out-
come. Describe protocol deviations from study as planned, 
together with reasons. 

Recruitment 1 4  Dates defining the periods of recruitment and follow-up. 

Baseline data 1 5  Baseline demographic and cl inical characteristics of each group. 

Numbers analyzed 1 6  Number of participants (denominator) in each group included in 
each analysis and whether the analysis was by "intention-to-
treat." State the results in absolute numbers when feasible (e.g . ,  
1 0/20 ,  not 50%) . 

Outcomes and 1 7  For each primary and secondary outcome, a summary of results 
estimation for each group, and the estimated effect size and its precision 

(e.g. ,  95% confidence interval). 

Ancillary analyses 1 8  Address multipl icity by reporting any other analyses performed , 
including subgroup analyses and adjusted analyses, indicating 
those prespecified and those exploratory. 

Adverse events 1 9  All important adverse events or side effects i n  each intervention 
group. 

DISCUSSION 20 I nterpretation of the results, taking into account study hypothe-
I nterpretation ses, sources of potential bias or imprecision, and the dangers 

associated with multiplicity of analyses and outcomes. 

Generalizabil ity 21  Generalizability (external valid ity) o f  the trial findings. 
Overall evidence 22 General interpretation of the results in the context of current 

evidence. 

Available at <http://www.consort-statement.org/Statement/revisedstatement.htm#checklist> Accessed May 5, 
2007. 

COMM ENTARY 

The Relative Val idity of Evidence 

Design val idity is an important consideration i n  a l l  forms of research. Although the 
threats to val id ity described here have been presented in the context of experimental 
research, they are also relevant to exploratory and quasi-experimental designs, which 
are discussed i n  subsequent chapters. The only threat that is un ique to experiments is 
i nternal val idity, as it is specifical ly  concerned with cause-and-effect relationsh ips. 

Because there are so many potential threats to va l idity, researchers must exam­
ine priorities among them. Not a l l  threats to val idity are of equal concern in every 
study. When steps are taken to i ncrease one type of val id ity, it is l i kely that another 
type wi l l  be decreased. The specific research situation wi l l  d ictate how spec ific 
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extraneous factors impact on a given design.  For instance, if we attempt to control 
for extraneous factors by us ing a homogeneous sample, we wi l l  improve i nternal 
va l i d ity, but at the expense of externa l val id ity. If we i ncrease statist ical concl usion 
va l i d ity by l im it ing variabi l ity i n  our data, the sample wi l l  be less representative of a 
general population. Th i s  wi l l  probably reduce external and construct val i d ity. S imi­
lar ly, i f  we work toward i ncreasing construct val id ity by operationa l iz ing variab les in  
mu lt ip le d imensions, we run the r isk of  decreasing rel iab i l ity with an i ncreas ing 
number of measu rements. When theoretical issues are of specia l  importance, con­
struct val id i ty should be of great concern.  When cause-and-effect relationsh ips are 
sought, i nternal va l id ity is of pr imary importance. 

The context of the research question wi l l  gu ide priorities in research design. Is 
the question related to publ i c  health concerns, with the primary i ntention of gener­
a l iz ing to a large popu lation? Does the question target a new i ntervention and the 
need to document its effectiveness? Does the question focus  on differentia l  effects of 
a treatment in subgroups of a popu lation? The progress of a l i ne of research may d ic­
tate which e lements of design va l id ity are most important at a particu lar  poi nt. As 
stud ies are repl icated and modified, a l l types of val id ity wi l l  eventua l ly  be addressed 
i n  a particu lar  area of i nvestigation . 

After descr ib ing a l l  the above threats to experimental val i d i ty, the c l i n ica l  
researcher might wonder how it i s  ever poss ib le to design a complete ly va l id  study. 
In fact, there is no such th i ng in c l i n ical research .  Every study conta ins  some short­
comings. Cl i n ica l  researchers operate i n  an env i ronment that demands considera­
tion of eth ical and practical issues, as wel l  as the u npredictab le and often 
immeasurable  factors of human nature, error, emotion and thought. The c l i n ica l  
researcher can control neither the env i ronment nor  the consistency of  a subject's 
i nteraction with that env i ronment to the same extent that the laboratory researcher 
can control an an imal 's genetic makeup, d iet, or physiological characteristics. It i s  
v i rtua l ly imposs ib le to conduct a c l i n ical  experiment so  that every facet of behavior, 
environment and personal i nteraction is exactly the same for every subject. 

Does th i s  mean that we cannot create experimental s ituations with sufficient 
control to be able to make val id  j udgments about human responses? Not at a l l .  We 
can sti l l  conduct exper iments and draw meani ngfu l conc lusions from them by 
adheri ng to the elements of experimental control with as much r igor as poss ible, 
accounting for var iations in the experimental s ituation with every reasonable effort, 
and u ltimately recogniz ing those factors over which we have no contro l .  

C l i n ica l  stud ies cannot be  expected to produce resu lts that are perfectly  con­
tro l led or d i rectly relevant to a l l  patients and setti ngs.50 Therefore, authors shou ld 
provide suffic ient deta i l s  on the design of  the study that wi l l  a l low c l i n ic ians to j udge 
how and to whom evidence can be reasonably appl ied. Th i s  is of specia l  importance 
in externa l val id ity, to determi ne if i nterventions are safe. If study samples are too 
homogeneous ( inc l usion criteria are very narrow), findi ngs wi l l  not be relevant to 
many patients who fit the overa l l  d iagnostic category. L im itations of a study shou ld  
be  d i scussed i n  a research report so  that readers have a complete understanding of 
the c i rcumstances i n  which resu lts were obta ined. To have confidence i n  resu lts, 
however, the researcher must be able to justify the experimental condit ions as a fai r  
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test of the experimental treatment with in  the context of the research question. When 
the researcher can antic ipate that important extraneous factors cannot be control led, 
to the point that they wi l l  have a serious impact on the interpretation and val idity of 
outcomes, it is advisable to consider alternatives to experimental research, such as 
descriptive or correlational approaches. 
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CHAPTER 1 0  

erimental Designs 

DESCRIPTIVE 
Describe 

Populations 

EXPLORATORY 
Find 

Relationships 

The purpose of an experimental design is to provide a structure for evaluating the 
cause-and-effect relationship between a set of independent and dependent variables. 
Within the design, the researcher manipulates the levels of the independent variable 
and incorporates elements of control, so that the evidence supporting a causal relation­
ship can be interpreted with confidence. 

Although experimental designs can take on a wide variety of configurations, the 
important principles can be illustrated using a few basic structures. The purpose of this 
chapter is to present these basic designs and to illustrate the types of research situations 
for which they are most appropriate. For each design, we discuss strengths and weak­
nesses in terms of experimental control and internal and external validity. In addition, 
we include a short statement suggesting general statistical procedures for analysis. 
These suggestions do not represent all statistical options for a particular design, but 
they do represent the more commonly used techniques. This information demonstrates 
the intrinsic relationship between analysis and design. 

CLIN ICAL TRIALS 
The term clinical trial is often used to describe experimental studies that examine the 
effect of interventions on patient or community populations. Clinical trials are fre­
quently designed on a large scale, involving subjects from a range of geographic areas 
or from several treatment centers. Clinical trials can be classified as either therapeutic 
or preventive. Therapeutic trials examine the effect of a treatment or intervention on a 
particular disease. For example, 25 years of clinical trials, begun in the 1970s, have 
shown that radical mastectomy is not necessary for reducing the risk of recurrence or 
spread of breast cancer, and that limited resection can be equally effective in terms of 
recurrence and mortality.1 A preventive trial evaluates whether a procedure or agent 
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reduces the risk of developing a disease. One of the most famous preventive trials was 
the field study of poliomyelitis vaccine in 1954, which covered 11 states.2 The incidence 
of poliomyelitis in the vaccinated group was over 50 percent less than among those chil­
dren who received the placebo, establishing strong evidence of the vaccine's effective­
ness. In a more contemporary example, scientists continue to design trials in an effort 
to develop a vaccine to prevent HIV infection.3 

In the investigation of new therapies, including drugs, surgical procedures and 
electromechanical devices, distinct sequences of clinical trials are typically carried out. 
The phases of trials are intended to provide different types of information about the 
treatment in relation to dosage, safety and efficacy, with increasingly greater rigor in 
demonstrating the intervention's effectiveness and safety (see Box 10.1). 

DESIGN CLASSIFICATIONS 
Experimental designs can be described according to several types of  design character­
istics. A basic distinction among them is the degree of experimental control.4•5 In a true 
experimental design, subjects are randomly assigned to at least two comparison 
groups. An experiment is theoretically able to exert control over most threats to inter­
nal validity, providing the strongest evidence for causal relationships. The randomized 
controlled trial (RCT) is considered the gold standard of true experimental designs. 

A quasi-experimental design does not meet the requirements of a true experi­
ment, lacking random assignment or comparison groups, or both. Even though quasi­
experimental designs cannot rule out threats to internal validity with the same 
confidence as experimental designs, many such designs are appropriate when stronger 
designs are not feasible. Quasi-experimental designs represent an important contribu­
tion to clinical research, because they accommodate for the limitations of natural set­
tings, where scheduling treatment conditions and random assignment are often 
difficult, impractical or unethical. These designs will be covered in Chapter 11 .  

Experimental designs may be differentiated according to how subjects are assigned 
to groups. In completely randomized designs, also referred to as between-subjects 
designs, subjects are assigned to independent groups using a randomization proce­
dure. In a randomized block design subjects are first classified according to an attrib­
ute variable (a blocking variable) and then randomized to treatment groups. A design 
in which subjects act as their own control is called a within-subjects design or a 
repeated measures design. 

These designs can also be described according to the number of independent vari­
ables, or factors, within the design. Single1actor designs have one independent variable with 
any number of levels. Multi1actor designs contain two or more independent variables. 

SELECTING A DESIGN 
Once a research question is formulated, the researcher must decide on the most effec­
tive design for answering it. Although experimental designs represent the highest stan­
dard in scientific inquiry, they are not necessarily the best choice in every situation. 
When the independent variable cannot be manipulated by the experimenter, or when 
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BOX 1 0.1 Trial Phases in I nvestigational Studies 

Preclinical Research 
Before a new therapy is used on humans, it is tested under laboratory 
conditions, often using animal models. This may take many years, to screen 
different chemical compounds for drugs, or to refine interventions. When a new 
drug or device shows promise at this phase, researchers will then request 
permission to begin human trials from the Food and Drug Administration (FDA). 

Phase I Trial 
In  a phase I trial, researchers work to show that a new therapy is safe. Data are 
collected on dosage, timing and side effects. Typically done on small samples of 
2Q-80 subjects, phase I trials help us to understand the mechanisms of action of 
the therapy, and set the stage for controlled clinical trials . .-----------------� 

Phase II Trial 

Once a therapy has been shown to be safe in humans, it is studied in a phase I I  
trial to demonstrate that it is effective. Also done on relatively small samples, 
these trials may take up to 2 years. The response rate should be the same or 
better than standard treatment to warrant further te

,
s_ti_ng,_. ________ ___, 

Phase Il l  Trial 
A phase I l l  clin ical trial is a randomized, usually blinded, experiment that 
compares a new therapy with a standard treatment or placebo. These are large 
scale studies with hundreds or thousands of subjects. Successful outcomes will 
lead to seeking approval from the FDA. 

Phase IV Trial 
Once a drug or intervention has been approved, researchers may continue to 
investigate its effects in other populations, specifically to learn about risk factors, 
benefits and optimal use patterns. 
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important extraneous factors cannot be controlled, an observational or exploratory 
design may be more useful (see Chapter 13). 

When an experimental design is deemed appropriate, the choice of a specific 
design will depend on the answers to six critical questions about how the study is 
conceptualized: 

1. How many independent variables are being tested? 
2. How many levels does each independent variable have, and are these levels 

experimental or control conditions? 
3. How many groups of subjects are being tested? 
4. How will subjects be assigned to groups? 
5. How often will observations of responses be made? 
6. What is the temporal sequence of interventions and measurements? 

When each of these issues is considered, the range of potential designs will usually 
be narrowed to one or two appropriate choices. As specific designs are presented, these 
questions will be addressed within the context of research questions from the literature. 

DESIGNS FOR INDEPENDENT GROUPS 

Single-Factor Designs for I ndependent Groups 
A single-factor design, also called a one-way design, is used to structure the investigation 
of one independent variable. The study may include one or more dependent variables. 

Pretest-Posttest Control Group Design 
The pretest-posttest control group design is the basic structure of a randomized 
controlled trial. It is used to compare two or more groups that are formed by random 
assignment. One group receives the experimental variable and the other acts as a con­
trol. These independent, groups are also called treatment arms of the study. Both 
groups are tested prior to and following treatment. The groups differ solely on the basis 
of what occurs between measurements. Therefore, changes from pretest to posttest that 
appear in the experimental group but not the control group can be reasonably attrib­
uted to the intervention. This design is considered the scientific standard in clinical 
research for establishing a cause-and-effect relationship. 

The pretest-posttest control group design can be configured in several ways. Figure 
10.1 illustrates the simplest configuration, with one experimental group and one con­
trol group. 

Example of a Pretest-Posttest Control Group Design 
Researchers conducted a randomized controlled trial to study the effect of a super­
vised exercise program for improving venous hemodynamics in patients with chronic 
venous insufficiency.6 They randomly assigned 31 patients to two groups. The experi­
mental group received physical therapy with specific exercises for calf strengthening 
and joint mobility. The control group received no exercise intervention. Both groups 
received compression hosiery. Dynamic strength, calf pump function and quality of 
life were assessed at baseline and after 6 months of exercise. 
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or Observation 

FIG U RE 1 0.1 Pretest-posttest control group des ign; the bas ic  structu re of a randomized contro l led 
t r ia l  ( RCT) .  

Measurements for the control group are taken within intervals that match those of the 
experimental group. The independent variable has two levels, in this case exercise inter­
vention and control. The absence of an experimental intervention in the control group 
is considered a level of the independent variable. As this example illustrates, a study 
may have several dependent variables that are measured at pretest and posttest. 

The pretest-posttest design can also be used when the comparison group receives a 
second form of the intervention. The two-group pretest-posttest design (see Figure 1 0.2) 
incorporates two experimental groups formed by random assignment. 

Example of a Two-Group Pretest-Posttest Design 
Researchers conducted a randomized controlled trial to study the effect of semantic 
treatment on verbal communication in patients who experienced aphasia following a 
stroke? They randomly assigned 58 patients to two groups. Speech therapists pro­
vided semantic treatment to the experimental group. The control group received 
speech therapy focused on word sounds. Verbal communication was assessed using 
the Amsterdam Nijmegen Everyday Language Test. Both groups were assessed at the 
start of the study and following 7 months of treatment. 

Researchers use this approach when a control condition is not feasible or ethical, 
often comparing a "new" treatment with an "old" standard or alternative treatment. 
Even though there is no traditional control group, this design provides experimental 
control because we can establish initial equivalence between groups formed by random 
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FIG U RE 1 0.2 Two-group pretest-posttest des ign .  
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assignment. In this example, the word sound group acts as a control for the semantic 
treatment group and vice versa. If one group improves more than the other, we can 
attribute that difference to the fact that one treatment was more effective. This design is 
appropriate when the research question specifically addresses interest in a difference 
between two treatments, but it does not allow the researcher to show that treatment 
works better than no intervention. 

The multigroup pretest-posttest control group design (see Figure 10.3) allows re­
searchers to compare several treatment and control conditions. 

Example of a Multigroup Pretest-Posttest Design 
Researchers wanted to determine the effectiveness of aquatic and on-land exercise 
programs on functional fitness and activities of daily living (ADLs) in older adults 
with arthritis.8 Participants were 30 volunteers, randomly assigned to aquatic exercise, 
on-land exercise or a control group. The control group was asked to refrain from any 
new physical activity for the duration of the study. Outcomes included fitness and 
strength measures, and functional assessments before and after an 8-week exercise 
program. 

As these examples illustrate, the pretest-posttest control group design can be 
expanded to accommodate any number of levels of one independent variable, with or 
without a traditional control group. This design is strong in internal validity. Pretest 
scores provide a basis for establishing initial equivalence of groups, strengthening the 
evidence for causal factors. Selection bias is controlled because subjects are randomly 
assigned to groups. History, maturation, testing, and instrumentation effects should 
affect all groups equally in both the pretest and posttest. The only threat to internal 
validity that is not controlled by this design is attrition. 

The primary threat to external validity in the pretest-posttest control group design 
is the potential interaction of treatment and testing. Because subjects are given a pretest, 
there may be reactive effects, which would not be present in situations where a pretest 
is not given. 
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FIG U RE 1 0.3 Mu lti  group pretest-posttest design.  
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Analysis of Pretest-Posttest Des1gns.  Pretest-posttest designs are often analyzed 
using change scores, which represent the difference between the posttest and pretest.* 
With interval-ratio data, difference scores are usually compared using an unpaired 
t-test (with two groups or a one-way analysis of variance (with three or more groups). 
With ordinal data, the Mann-Whitney U-test can be used to compare two groups, and 
the Kruskal-Wallis analysis of variance by ranks is used to compare three or more 
groups. The analysis of covariance can be used to compare posttest scores, using the 
pretest score as the covariate. The design can be analyzed as a two-factor design, using 
a two-way analysis of variance with one repeated factor, with treatment as one inde­
pendent variable and time (pretest and posttest) as the second (repeated) factor. Dis­
criminant analysis can also be used to distinguish between groups with multiple 
outcome measures. 

Posttest-Only Control Group Des1gn 
The posHest-only control group design (see Figure 10.4) is identical to the pretest­
posttest control group design, with the obvious exception that a pretest is not adminis­
tered to either group. 

Example of Posttest-Only Control Group Design 
A study was designed to test the hypothesis that high-risk patients undergoing elec­
tive hip and knee arthroplasty would incur less total cost and shorter length of stay if 
inpatient rehabilitation began on postoperative day 3 rather than day 7.9 Eighty-six 
patients who were older than 70 years were randomly assigned to begin rehabilitation 
on day 3 or day 7 The main outcome measures were total length of stay and cost from 
orthopedic and rehabilitation admissions. 

In this study of hospital cost and length of stay, the dependent variables can only 
be assessed following the treatment condition. This design is a true experimental design 
which, like the pretest-posttest design, can be expanded to include multiple levels of the 
independent variable, with a control, placebo or alternative treatment group. 

Group 
Assignment 

FIG U RE 1 0.4 Posttest-on ly control group design. 
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Because this design involves random assignment and comparison groups, its inter­
nal validity is strong, even without a pretest; that is, we can assume groups are equiv­
alent prior to treatment. Because there is no pretest score to document the results of 
randomization, this design is most successful when the number of subjects is large, so 
that the probability of truly balancing interpersonal characteristics is increased. 

The posttest-only design can also be used when a pretest is either impractical or 
potentially reactive. For instance, to study the attitudes of health care personnel toward 
patients with AIDS, we might use a survey instrument that asked questions about atti­
tudes and experience with this population. By using this instrument as a pretest, sub­
jects might be sensitized in a way that would influence their scores on a subsequent 
posttest. The posttest-only design avoids this form of bias, increasing the external valid­
ity of the study. 

Analysis of Posttest-Only Designs. With two groups, an unpaired t-test is used 
with interval-ratio data, and a Mann-Whitney U-test with ordinal data. With more than 
two groups, a one-way analysis of variance or the Kruskal-Wallis analysis of variance 
by ranks should be used to compare posttest scores. An analysis of covariance can be 
used when covariate data on relevant extraneous variables are available. Regression or 
discriminant analysis procedures can also be applied. 

Multi -Factor Designs for I ndependent Groups 
The designs presented thus far have involved the testing of one independent variable, 
with two or more levels. Although easy to develop, these single-factor designs tend to 
impose an artificial simplicity on most clinical and behavioral phenomena; that is, they 
do not account for simultaneous and often complex interactions of several variables 
within clinical situations. Interactions are generally important for developing a theoret­
ical understanding of behavior and for establishing the construct validity of clinical 
variables. Interactions may reflect the combined influence of several treatments or the 
effect of several attribute variables on the success of a particular treatment. 

Factorial Design 
A factorial design incorporates two or more independent variables, with independent 
groups of subjects randomly assigned to various combinations of levels of the two vari­
ables. Although such designs can theoretically be expanded to include any number of 
variables, clinical studies usually involve two or three at most. As the number of inde­
pendent variables increases, so does the number of experimental groups, creating the 
need for larger and larger samples, which are typically impractical in clinical situations. 

Factorial designs are described according to their dimensions or number of factors, 
so that a two-way or two-factor design has two independent variables, a three-way or 
three-factor design has three independent variables, and so on. These designs can also 
be described by the number of levels within each factor, so that a 3 x 3 design includes 
two variables, each with three levels, and a 2 x 3 x 4 design includes three variables, 
with two, three and four levels, respectively. 

A factorial design is diagrammed using a matrix notation that indicates how groups 
are formed relative to levels of each independent variable. Uppercase letters, typically 
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A, B and C, are used to label the independent variables and their levels. For instance, 
with two independent variables, A and B, we can designate three levels for the first one 
(A11 A2 and A3) and two levels for the second (B11 B2). 

The number of groups is the product of the digits that define the design. For exam­
ple, 3 x 3 = 9 groups; 2 x 3 x 4 = 24 groups. Each cell of the matrix represents a unique 
combination of levels. In this type of diagram there is no indication if measurements 
within a cell include pretest-posttest scores or posttest scores only. This detail is gener­
ally described in words. 

Two-Way Factorial Design. A two-way factorial design (see Figure 10.5) incorporates 
two independent variables, A and B. 

Example of a Two-Way Factorial Design 
Researchers were interested in studying the effect of intensity and location of exercise 
programs on the self-efficacy of sedentary women.10 Using a 2 x 2 factorial design, sub­
jects were randomly assigned to one of four groups, receiving a combination of mod­
erate or vigorous exercise at home or a community center. The change in their exercise 
behavior and their self-efficacy in maintaining their exercise program was monitored 
over 18 months. 

In this example, the two independent variables are intensity of exercise (A) and 
location of exercise (B), each with two levels (2 x 2). One group (A1B1) will engage in 
moderate exercise at home. A second group (A2B1) will engage in vigorous exercise at 
home. The third group (A1B2) will engage in moderate exercise at a community center. 
And the fourth group (A2B2) will engage in vigorous exercise at a community center. 
The two independent variables are completely crossed in this design, which means that 
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FIGURE 1 0.5 A. Two-way factorial design. B. Main effects for two-way factorial design. 
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every level of one factor is represented at every level of the other factor. Each of the four 
groups represents a unique combination of the levels of these variables, as shown in the 
individual cells of the diagram in Figure 10.5A. For example, using random assignment 
with a sample of 60 patients, we would assign 15 subjects to each group. 

This design allows us to ask three questions of the data: (1) Is there a differential 
effect of moderate versus vigorous exercise? (2) Is there a differential effect of exercis­
ing at home or a community center? (3) What is the interaction between intensity and 
location of exercise? The answers to the first two questions are obtained by examining 
the main effect of each independent variable, with scores collapsed across the second 
independent variable, as shown in Figure 10.5B. This means that we can look at the 
overall effect of intensity of exercise without taking into account any differential effect 
of location. Therefore, we would have 30 subjects representing each intensity. The main 
effect of location is also analyzed without differentiating intensity. Each main effect is 
essentially a single-factor experiment. 

The third question addresses the interaction effect between the two independent 
variables. This question represents the essential difference between single-factor and 
multifactor experiments. Interaction occurs when the effect of one variable varies at dif­
ferent levels of the second variable. For example, we might find that moderate exercise 
intensity is more effective in changing exercise behavior, but only when performed at a 
community center. 

This example illustrates the major advantage of the factorial approach, which is that 
it gives the researcher important information that could not be obtained with any one 
single-factor experiment. The ability to examine interactions greatly enhances the gen­
eralizability of results. 

Three-Way Factorial Design . Factorial designs can be extended to include more 
than two independent variables. In a three-way factorial design (see Figure 10.6), the rela­
tionship among variables can be conceptualized in a three-dimensional format. We can 
also think of it as a two-way design crossed on a third factor. 

For example, we could expand the exercise study shown in Figure 10.5 to include a 
third variable such as frequency of exercise. We would then evaluate the simultaneous 
effect of intensity, location and frequency of exercise. We could assign subjects to exer­
cise 1 day or 3 days per week. Then we would have a 2 x 2 x 2 design, with subjects 
assigned to one of 8 independent groups (see Figure 10.6). 

A three-way design allows several types of comparisons. First, we can examine the 
main effect for each of the three independent variables, collapsing data across the other 
two. We can examine the difference between the two intensities, regardless of the effect 
of location or frequency. We can test the difference between the two locations, regard­
less of intensity or frequency. And we can evaluate the effect of frequency of exercise, 
regardless of intensity or location. Each of the three main effects essentially represents 
a single-factor study for that variable. 

Then we can examine three double interactions: intensity x location, intensity x fre­
quency, and location x frequency. For example, the interaction between intensity and 
location is obtained by collapsing data across the two levels of frequency of exercise. 
Each double interaction represents a two-way design. Finally, we can examine the triple 
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A t A2 
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FIGU RE 1 0.6 Three-way factorial design. 

interaction of intensity, location and frequency. This interaction involves analyzing the 
differences among all 8 cells. 

Many clinical questions have the potential for involving more than one independ­
ent variable, because response variables can be influenced by a multitude of factors. In 
this respect, the compelling advantage of multidimensional factorial designs is their 
closer approximation to the "real world." As more variables are added to the design, we 
can begin to understand responses, increasing construct validity of our arguments. The 
major disadvantages, however, are that the sample must be extremely large to create 
individual groups of sufficient size and that data analysis can become cumbersome. 

Analysis of Factorial Designs. A two-way or three-way analysis of variance is most 
commonly used to examine the main effects and interaction effects of a factorial design. 

Randomized Block Design 
When a researcher is concerned that an extraneous factor might influence differences 
between groups, one way to control for this effect is to build the variable into the design 
as an independent variable. The randomized block design (see Figure 10.7) is used 
when an attribute variable, or blocking variable, is crossed with an active independent 
variable; that is, homogeneous blocks of subjects are randomly assigned to levels of a 
manipulated treatment variable. In the following example, we have a 2 x 3 randomized 
block design, with a total of 6 groups. 

Example of a Randomized Block Design 
A study was performed to assess the action of an antiarrhythmic agent in healthy men 
and women after a single intravenous dose.11 Researchers wanted to determine if 
effects were related to dose and gender. Twenty-four subjects were recruited, 12 men 
and 12 women. Each gender group was randomly assigned to receive 0.5, 1 .5 or 3.0 
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FIGU RE 1 0.7 Randomized block design. 

mg/kg of the drug for 2 minutes. Therefore, 4 men and 4 women received each dose. 
Through blood tests, volume of distribution of the drug at steady state was assessed 
before and 72 hours after drug administration. The change in values was analyzed 
across the six study groups. 

In studying the drug's effect, the researchers were concerned that men and 
women would respond differently. We can account for this potential effect by using 
gender as an independent variable. We can then assume that responses will not be 
confounded by gender. 

We can think of this randomized block design as two single-factor randomized 
experiments, with each block representing a different subpopulation. Subjects are 
grouped by blocks (gender), and then random assignment is made within each block to 
the treatment conditions. When the design is analyzed, we will be able to examine pos­
sible interaction effects between the treatment conditions and blocks. When this inter­
action is significant, we will know that the effects of treatment do not generalize across 
the block classifications, in this case across genders. If the interaction is not significant, 
we have achieved a certain degree of generalizability of the results. 

For the randomized block design to be used effectively, the blocking factor must be 
related to the dependent variable; that is, it must be a factor that affects how subjects 
will respond to treatment. If the blocking factor is not related to the response, then 
using it as an independent variable provides no additional control to the design, and 
actually provides less control than had random assignment been used. Randomized 
block designs can involve more than two independent variables, with one or more 
blocking variables. 

Generalization of results from a randomized block design will be limited by the 
definition of blocks. For example, classification variables, such as gender or diagnosis, 
are often used as blocking variables. The number of levels of these variables will be 
inherent. When the blocking factor is a quantitative variable, however, such as age, two 
important decisions must be made. First, the researcher must determine the range of 
ages to be used. Second, the number and distribution of blocks must be determined. 
Generally, it is best to use equally spaced levels with a relatively equal number of sub­
jects at each level. If the researcher is interested in trends within a quantitative variable, 
three or more levels should be used to describe a pattern of change. For instance, if four 
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age groups are delineated, we would have a clearer picture of the trends that occur with 
age than if only two levels were used. 

Analysis of Randomized Block Designs. Data from a randomized block design 
can be analyzed using a two-way analysis of variance, multiple regression or discrimi­
nant analysis. 

Nested Design 
To this point, we have described multifactor designs in terms of two or three independ­
ent variables that are completely crossed; that is, all levels of variable A have occurred 
within all levels of variable B. This approach does not fit all multifactor analyses, how­
ever, when attribute variables are involved. Sometimes attribute variables cannot be 
crossed with all levels of other variables. Consider the following example. 

Example of a Nested Design 
An occupational therapist was interested in studying an intervention to facilitate moti­
vational behaviors in individuals with psychiatric illness who had motivational 
deficits.12 The intervention was based on strategies of autonomy support. Patients 
were randomly assigned to either an experimental or control group, and to one of two 
different groups of therapists who carried out the treatments. 

To study the effectiveness of the intervention, scores would be compared across 
10 "therapists," each providing either the experimental treatment or control condition. 
If we used a traditional two-way design (10 x 2), all 10 levels of therapists would be 
crossed with both levels of treatment. This would allow the researcher to look at the 
main effect of therapists, to determine if differences were due to their application of the 
treatment. If a significant interaction occurred between therapist and treatment, it 
would mean that the effectiveness of intervention was dependent on which therapist 
provided it. 

If we wanted to follow up on this interaction, we might suspect that less experi­
enced therapists provided a different quality of intervention than more experienced 
therapists. To test this, we could divide our sample of therapists into two groups based 
on their years of experience: "less experienced" and "more experienced." This intro­
duces a third independent variable, experience, with two levels. But these two levels 
cannot be crossed with the 10 levels of therapists; that is, the same therapist cannot 
appear in both experience groups. Therefore, "therapists" are nested within "experi­
ence." All levels of therapist and experience can be crossed with the two methods in this 
nested design (see Figure 10.8). Although this resembles a three-way randomized 
block design, it must be analyzed differently because the interactions of therapist x 
experience and therapist x experience x method cannot be assessed. 

Most variables in clinical studies can be completely crossed; however, with certain 
combinations of attribute variables, a nested arrangement is required. Nesting is com­
monly used in educational studies where classes are nested in schools or schools are 
nested in cities. For instance, Edmundson and associates studied an educational pro­
gram to reduce risk factors for cardiovascular disease.13 They evaluated the effect of the 
program on 6,000 students from 96 schools in four states. The schools were nested in 
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FIGURE 1 0.8 Nested design. 
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states. Within each state the schools were randomly assigned to receive the program or 
a control condition. 

Analysis of Nested Designs. An analysis of variance is used to test for main effects 
and relevant interactions. The dimensions of that analysis depend on how many vari­
ables are involved in the study. Nested designs require a complicated approach to 
analysis of variance, which goes beyond the scope of this book. See Keppel for discus­
sion of analysis of nested designs.14 (pp. 550-565> 

REPEATED M EASURES DESIGNS 
All of the experimental designs we have considered s o  far have involved a t  least two 
independent groups, created by random assignment or blocking. There are many 
research questions, however, for which control can be substantially increased by using 
a repeated measures design, where one group of subjects is tested under all condi­
tions and each subject acts as his own control. Conceptually, a repeated measures 
design can be considered a series of trials, each with a single subject. Therefore, such a 
design is also called a within-subjects design, because treatment effects are associated 
with differences observed within a subject across treatment conditions, rather than 
between subjects across randomized groups. 

The major advantage of the repeated measures design is the ability to control for 
the potential influence of individual differences. It is a fairly safe assumption that 
important subject characteristics, such as age, sex, motivation and intelligence, will 
remain constant throughout the course of an experiment. Therefore, differences 
observed among treatment conditions are more likely to reflect treatment effects, and 
not variability between subjects. Using subjects as their own control provides the most 
equivalent "comparison group" possible. 

One disadvantage of the repeated measures approach is the potential for practice 
effects, or the learning effect that can take place when one individual repeats a task over 
and over. Another disadvantage is the potential for carryover effects when one subject is 
exposed to multiple-treatment conditions. Carryover can be reduced by allotting suffi­
cient time between successive treatment conditions to allow for complete dissipation of 
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previous effects. For instance, if we study the effect of different forms of heat on intra­
muscular temperature to relieve pain, we may need to repeat testing on different days 
to be sure that tissues have returned to resting temperatures. We would also have to be 
assured that the patient's pain level was constant across these days. 

Therefore, repeated measures can only be used when the outcome measure will 
revert back to baseline between interventions, and the patient problem will remain rel­
atively stable throughout the study period. There are many treatments for which carry­
over cannot be eliminated. For example, if we evaluate the effects of different exercise 
programs for increasing strength over a 4-week period, the effects of each exercise reg­
imen will probably be long lasting, and rest periods will be ineffective for reversing the 
effect. With variables that produce permanent or long-term physiological or psycholog­
ical effects, repeated measures designs are not appropriate. 

Because repeated measures designs do not incorporate randomized comparison 
groups, they may not qualify as true experiments. However, they may be considered 
experiments when they incorporate randomization in the order of application of 
repeated conditions, and the comparison of one condition or intervention to another 
within one subject. 

S1 ngle-Factor Des1gns for Repeated Measures 

One-Way Repeated Measures Des1gn 
The simplest form of repeated measures design involves a single-factor experiment, 
where one group of subjects is exposed to all levels of one independent variable (see 
Figure 10.9). 

Example of a One-Way Repeated Measures Design 
Researchers were interested in the effect of using a cane on the intramuscular forces on 
prosthetic hip implants during walking.15 They studied 24 subjects with unilateral 
prosthetic hips under three conditions: walking with a cane on the side contralateral 
to the prosthesis, on the same side as the prosthesis, and on the contralateral side with 
instructions to push with "near maximal effort." They monitored electromyographic 
(EMG) activity of hip abductor muscles and cane force under each condition. The 
order of testing under the three test conditions was randomly assigned. 

For the study of cane use, the researchers wanted to examine EMG activity of the 
hip abductor muscles, with all subjects exposed to all three cane conditions. It would be 
possible to use a randomized design to investigate this question, by assigning different 
groups to each condition, but it doesn't make logical sense. By using a repeated meas­
ures format we can be assured that differences across conditions are a function of cane 

FIGU RE 1 0.9 One-way repeated measures design. 
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use, and not individual physiological differences. In this example, the independent 
variable does not present a problem of carryover that would preclude one subject par­
ticipating at all three levels. This design is commonly referred to as a one-way repeated 
measures design. 

Order Effects. Because subjects are exposed to multiple-treatment conditions in a 
repeated measures design, there must be some concern about the potentially biasing 
effect of test sequence; that is, the researcher must determine if responses might be 
dependent on which condition preceded which other condition. Effects such as fatigue, 
learning or carryover may influence responses if subjects are all tested in the same order. 

One solution to the problem of order effects is to randomize the order of presen­
tation for each subject, often by the flip of a coin, so that there is no bias involved in 
choosing the order of testing. In the study of cane use, the researchers were concerned 
that the subjects' responses could be affected if one condition was always tested first. 
This approach does theoretically control for order effects; however, there is still a chance 
that some sequences will be repeated more often than others, especially if the sample 
size is small. This design is sometimes considered a randomized block design, with the 
blocks being considered the specific sequences. 

A second solution utilizes a Latin Square, which is a matrix composed of equal 
numbers of rows and columns, designating random permutations of sequence combi­
nations.t For example, in the cane study, if we had 30 subjects, we could assign 10 sub­
jects to each of three sequences, as shown in Figure 10.10. Using random assignment, 
we would determine which group would get each sequence, and then assign each test­
ing condition to A, B or C. 

Block 1 

Block 2 

Block 3 

FIGURE 1 0.1 0 A 3 x 3 Latin Square. 

Testing Conditions 

1 2 3 

A B c 

B c A 

c A B 

+For examples of Latin Squares of different sizes, see Fisher RA, Yates F. Statistical Tables for Biological, Agricul­
tural and Medical Research. Longman Group UK, Ltd, 1974. 
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Analysis of One-Way Repeated Measures Designs. The one-way analysis of 
variance for repeated measures is used to test for differences across levels of one 
repeated factor. 

Crossover Design 
When only two levels of an independent variable are repeated, a preferred method to 
control for order effects is to counterbalance the treatment conditions so that their order is 
systematically varied. This creates a crossover design in which half the subjects receive 
Treatment A followed by B, and half receive B followed by A. Two subgroups are cre­
ated, one for each sequence, and subjects are randomly assigned to one of the sequences. 

Example of a Crossover Design 
Researchers were interested in comparing the effects of prone and supine positions on 
stress responses in mechanically ventilated preterm infants.16 They randomly assigned 
28 infants to a supine/prone or prone/supine position sequence. Infants were placed 
in each position for 2 hours. Stress signs were measured following each 2 hour period, 
including startle, tremor, and twitch responses. 

A crossover design should only be used in trials where the patient's condition or 
disease will not change appreciably over time. It is not a reasonable approach in situa­
tions where treatment effects are slow, as the treatment periods must be limited. It is 
similarly impractical where treatment effects are long term and a reversal is not likely. 
This design is especially useful, however, when treatment conditions are immediately 
reversible, as in the positioning of infants. When the treatment has some cumulative 
effect, however, a washout period is essential, allowing a common baseline for each 
treatment condition (see Figure 10.11) .  The washout period must be long enough to 
eliminate any prolonged effects of the treatment. 

Example of a Crossover Design with Washout Period 
Researchers were interested in the effectiveness of a cranberry supplement for prevent­
ing urinary tract infections in persons with neurogenic bladders secondary to spinal 
cord injury.17 They treated 21 individuals, evaluating responses based on urinary bac­
terial counts and white blood cell counts. Subjects were randomly assigned to standard­
ized 400-mg cranberry tablets or placebo 3 times a day for 4 weeks. After 4 weeks and 
an additional 1-week "washout period," participants were crossed over to the other 
group. 

In this example, one week was considered sufficient for removal of effects from the 
patient's system. 

Analysis of Crossover Designs. In the analysis of a crossover design, researchers 
will usually group scores by treatment condition, regardless of which order they were 
given. A paired t-test can then be used to compare change scores, or a two-way analy­
sis of variance with two repeated measures can be used to compare pretest and posttest 
measures across both treatment conditions. The Wilcoxon signed-ranks test should be 
used to look at change scores when ordinal data are used. In some situations, the 



Experimental 
Intervention 

No 
Intervention 
or Placebo 

FIG U RE 1 0.1 1 Crossover design with washout period .  

Experimental 
Intervention 

No 
Intervention 
or Placebo 



CHAPTER 1 0 • Experimental Designs 211 

researcher may want to see if order did have an effect on responses, and subjects can be 
separated into independent groups based on sequence of testing. This analysis may 
include a two-way analysis of variance with one repeated measure, with sequence as an 
independent factor and treatment condition as a repeated measure. 

Multi -Factor Designs for Repeated Measures 

Two-Way Design with Two Repeated Measures 
Repeated measures can also be applied to studies involving more than one independ­
ent variable (see Figure 10.12) .  

Example of a Two-Way Repeated Measures Design 
The use of back belts in industry is a subject of controversy. A study was designed to 
investigate the effect of back belts on oxygen consumption during lifting movements.18 
To study this question, researchers recruited 15 healthy subjects who were fitted with 
a semi-rigid lumbosacral orthosis. Oxygen consumption was measured while subjects 
participated in 6-minute submaximal lifting bouts of 10 kg. Each subject performed 
squat and stoop lifting, with and without the orthosis, for a total of four lifting bouts, 
in random order. 

In the study of back belts, researchers created a 2 x 2 design with two repeated meas­
ures: type of lift (squat or stoop) and wearing of the orthosis (yes or no). Each subject 
was exposed to four test conditions. This design can be expanded to include three inde­
pendent variables. 

Analysis of Two-Way Repeated Measures Designs. The two-way analysis of 
variance with two repeated measures is used to analyze differences across main effects 
and interaction effects. 
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FIG U RE 1 0.1 2 Two-way design with two repeated measures. 
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FIGURE 1 0.1 3 Mixed design, with one repeated measure and one independent measure. 

Mixed Design 
A mixed design (see Figure 10.13) is created when a study incorporates two independ­
ent variables, one repeated across all subjects, and the other randomized to independ­
ent groups. 

Example of a Mixed Design 
A study was designed to evaluate the effectiveness of a treatment program of stabiliz­
ing exercises for patients with pelvic girdle pain after pregnancy.19 The researchers 
based their design on the importance of activation of muscles for motor control and 
stability of the lumbopelvic region. Eighty women with pelvic girdle pain were 
assigned randomly to two treatment groups for 20 weeks. One group received physi­
cal therapy with a focus on specific stabilizing exercises. The other group received 
individualized physical therapy without specific stabilizing exercises. Assessments 
were administered by a blinded assessor at baseline, after intervention and at 1 year 
post partum. Main outcome measures were pain, functional status and quality of life. 

In the comparison of the two exercise programs, subjects were randomly assigned 
to treatment groups. Each subject was tested three times (pretest and two posttests). The 
variable of exercise program is considered an independent factor because its levels have 
been randomly assigned, creating independent groups. The variable of time is a repeated 
factor because all subjects are exposed to its three levels. Therefore, this design is also 
called a two-way design with one repeated measure, or a 3 x 3 mixed design. This example 
illustrates a commonly used approach, where researchers want to establish if the effects 
of intervention are long lasting, and not just present immediately following completion 
of the program. 

Mixed designs are often used with attribute variables. For instance, we could look 
at differences in pelvic girdle pain across three age groups. This would be a special case 
of a randomized block design, where subjects within a block act as their own controls. 
Mixed designs may incorporate more than two independent variables. 
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Analysis of Mixed Designs. A two-way analysis of variance with one repeated 
measure is used to analyze main effects and interaction effects with a two-way design 
with one repeated factor. 

SEQUENTIAL CLIN ICAL TRIALS 
The sequential clinical trial is a special approach to the randomized clinical trial, 
which allows for continuous analysis of data as they become available, instead of wait­
ing until the end of the experiment to compare groups. Results are accumulated as each 
subject is tested, so that the experiment can be stopped at any point as soon as the evi­
dence is strong enough to determine a significant difference between treatments. Con­
sequently, it is possible that a decision about treatment effectiveness can be made earlier 
than in a fixed sample study, leading to a substantial reduction in the total number of 
subjects needed to obtain valid statistical outcomes and avoiding unnecessary admin­
istration of inferior treatments. Sequential trials incorporate specially constructed 
charts that provide visual confirmation of statistical outcomes, without the use of for­
mal statistical calculations. 

The idea of sequential analysis was originally developed during World War II for 
military and industrial applications, and was for a time considered an official secret.20 
Soon after, it was recognized as a useful model for medical research, particularly in clin­
ical trials of pharmacological agents. Even though there are a few examples of its appli­
cation in rehabilitation literature/1-23 sequential analysis remains a relatively unused 
technique in rehabilitation research. This is unfortunate because the sequential clinical 
trial is a convenient design that is applicable to many clinical research questions. 

The specific purpose of a sequential trial is to compare two treatments, a "new" or 
experimental treatment (A) and an "old" or standard treatment (B). Treatment can also 
be compared with a control or placebo. The design is most often applied to independ­
ent samples, but may be used with repeated measures. 

The process begins by admitting the first eligible patient into the study. This patient 
is assigned to either Treatment A or B, using the flip of a coin or some other randomiza­
tion process. When the next eligible patient is admitted (and this may be days or 
months later), he or she is assigned to the alternate treatment. These two patients now 
form a pair, the results of which can be considered a "little experiment"; that is, we can 
determine for these two people whether Treatment A or B was better. The whole exper­
iment is a sequence of these "little experiments," with each pair representing a compar­
ison. The comparison between A and B is then assessed as preference for A or B. 
Preferences are based on subjective but clearly defined criteria for saying that one treat­
ment is clinically more effective than the other. 

Measuring Preferences 
Preference is defined on the basis of clinically meaningful differences between two 
treatments. The specific criteria for expressing preference for one treatment over 
another can vary in objectivity. At one extreme, the patient can merely express subjec­
tive feelings that one treatment seems to work better or is more comfortable than the 
other. At the other extreme, outcomes can be totally objective, such as death-survival or 
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Improvement Improvement None 

2 No improvement No improvement None 

3 Improvement No Improvement A 

4 No improvement Improvement B 

FIGURE 1 0.1 4 Four possible outcomes for evaluating preferences. 

cured-not cured. In between are many subjective and objective types of measurements. 
A clinician might express preference based on a subjective evaluation of function or on 
the patient's general reaction to treatment. It is necessary, of course, to develop reliable 
criteria for making such dichotomous judgments. 

It is also possible to reduce continuous data to a measure of preference. For 
instance, if we were measuring the effect of two treatments for increasing range of 
motion, we could specify that Treatment A would be preferred if it could produce at 
least 20 degrees more of an increase in range than Treatment B. In other words, any dif­
ference between treatments smaller than 20 degrees would not be clinically meaning­
ful, and both treatments would be considered equally effective. This is a convenient 
approach, but the researcher must be aware that it results in a loss of information by 
reducing the data to a dichotomous outcome. Any difference greater than 20 degrees 
would indicate preference, whether that difference was 25 or 100 degrees. If analysis 
was based on the magnitude of differences, the amount of difference would be taken 
into account. The researcher must determine if the magnitude of difference is important 
or if the comparison between treatments is adequately assessed simply by expressing 
preference. 

When two treatments are compared, there are four possible outcomes for classify­
ing preference, as shown in Figure 10.14. In outcome 1, both treatments are equally suc­
cessfut in which case we would not be able to specify a preference for A or B. In 
outcome 2, neither treatment is successful. In either of these two cases, we have no 
information as to which treatment is superior. These outcomes are considered ties and 
are dropped from the analysis. In outcomes 3 and 4, one treatment is preferred over the 
other, providing one piece of evidence in favor of either A or B. 

The Sequential Chart 
The result of each comparison within a pair of subjects is plotted on a sequential chart. 
Two types of charts have been used. The chart developed by Bross24 has strong appeal 
because it has a fixed format (see Figure 10.15). The plot begins in the lower left comer 
square (a free square). As each comparison is made within a pair, an "x" is placed in the 
square either above the last occupied square (if A is superior) or to the right (if B is supe­
rior). If neither treatment is preferred within a pair, nothing is entered. The path contin­
ues until one of the boundaries is crossed. If the path goes upward, Treatment A is 
superior; if it goes to the right, Treatment B is superior. The middle boundary represents 
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FIGURE 1 0.1 5 Sequential tria l  grid/4 showing preference for low-load prolonged stretch (LLPS) over 
h igh-load brief stretch (HLBS) for treatment of knee flexion contractures. (From Light KE, Nuzik S, Perso­
n ius W, et al .  Low-load prolonged stretch vs. h igh-load brief stretch i n  treating knee contractures. Phys 
Ther 1 984; 64:33 0-333, Figure 3, p. 332.  Reprinted with the permission of the American Physical Ther­
apy Association. )  

the null hypothesis; that is, if the path moves diagonally, the conclusion is that no dif­
ference exists. The longest possible path in this plan is 58 squares (116 patients).+ 

Example of a Sequential Clinical Trial 
Researchers studied the differential effect of low-load prolonged stretch (LLPS) versus 
the more traditional high-load brief stretch (HLBS) for treating knee flexion contrac­
tures in elderly patients.21 Subjects were admitted to the study based on the presence 

tnris plan is based on comparative success rates, indicating whether Treatment A has an "advantage" over 
Treatment B. Bross includes a table that statistically defines "important advantage."24 For instance, if Treat­
ment B is known to "cure" 25% of the patients, Treatment A would demonstrate an important advantage over 
B if it could cure 44%. If B cures 50%, treatment A would be important if it could cure 70%; if Treatment B 
cures 75%, Treatment A should cure 88%. The power of this analysis is approximately 86% when Treatment 
A offers an important advantage over B; that is, 86% of the time the upper boundary will be correctly crossed. 
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of bilateral knee flexion contractures of at least 3 months' duration, and at least 30 
degrees short of full extension. In addition, subjects had to be unable to walk or pivot 
transfer without maximal assistance. Subjects' limbs were randomly assigned to 
receive either LLPS or HLBS. Treatment was performed twice daily, 5 days a week, for 
4 weeks. Range of motion was measured before and after 4 weeks, and preference was 
defined as a difference of at least 10 degrees between limbs. 

In this example, the first patient tested demonstrated a preference for HLBS, and so 
the first "x" was placed just above the starting square. As shown in Figure 10.15, all fur­
ther testing showed a preference for LLPS. 

The second type of sequential chart was developed by Armitage,25 and allows for 
more flexibility in design. Different size charts are drawn, allowing for different expec­
tations of effects. The chart in Figure 10.16 shows results of one study to evaluate var­
ied supplementary doses of opioids in terminally ill cancer patients.26 The chart is 
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FIGURE 1 0.1 6 Sequential chart for analysis of treatment with an expected difference i n  85% of the 
pairs, based on the procedures of Armitage.25 Supplementary doses of opioids were given to termi nal ly i l l  
cancer patients a t  2 5 %  and 50% of their 4-hour standard dose. The outcome measure was reduction in  
dyspnea. The study showed no final preference for either dose, leadi ng the researchers to conclude that 
the lower 25% dose would be sufficient. (From Al lard P, Lamontagne C, Bernard P, et al .  How effective 
are supplementary doses of opioids for dyspnea in terminal ly i l l  cancer patients? A randomized continu­
ous sequential c l in ical trial . j Pain Symptom Manage 1 999;1 7:256-265. Used with permission). 
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drawn to detect a significant treatment difference if one drug regimen was better in at 
least 85% of the pairs.§ In this format, the boundaries are drawn above and below a cen­
ter baseline. Preferences for one treatment or the other are indicated by moving up or 
down from the last plotted point. The first four patients favored the 50% dose, the next 
three the 25% dose, the next two the 50% dose, and so on. This example shows an out­
come that moves towards the middle boundary, indicating no significant difference. 

Stopping Ru les 
After each successive "little experiment" is plotted, the researcher stops to consider the 
results of all the pairs completed thus far and makes one of three decisions: (1)  Stop and 
make a terminal decision to recommend A or B; (2) stop the experiment and make a ter­
minal decision that treatments A and B are not different; or (3) continue to collect data 
because the cumulated data are not yet sufficient to draw a conclusion. This process of 
considering cumulative results after each pair of subjects has been tested is called 
sequential analysis. The decision to stop or go on will depend on how strong the evidence 
is to that point in favor of one treatment. This is the primary benefit of a sequential 
analysis, in that a trial can be stopped as soon as it is evident that one treatment is supe­
rior to the other, or that no difference is going to be found.27 

These boundaries represent three stopping rules: (1) If the upper boundary is 
crossed, we can make a terminal decision to recommend A; (2) if the lower boundary is 
crossed, we can make a terminal decision to recommend B; (3) if the middle boundary 
is crossed (either above or below the origin), there is no preference. In the stretching 
study (Fig. 10.15), 11 subjects were required to cross the lower boundary, indicating a 
significantly greater effect for LLPS. Had the first subject also "preferred" LLPS, only 
8 subjects would have been needed to demonstrate significance. For the opioid study 
(Fig. 10.16), the first few subjects showed a preference for the 50% dose, but the final 
results showed a marked inconsistency, leading to the middle boundary. In this case, 
the line did not cross the boundary because of missing data in three of the pairs. The 
authors decided not to recruit additional subjects and concluded that the data did not 
support a difference between the two doses. 

Considerations in Sequential Trials 
A theoretical issue arises in the consideration of the effect of ties. When the difference 
between two treatments within a pair does not meet the criterion for demonstrating 
preference, that pair of subjects is discarded from the sequential analysis. If many ties 
occur, the final sample that is used for analysis is not a true random sample; that is, it 
is not a true representation of all tied and untied pairs that were originally chosen.28 It 

§See Armitage25 for tables and figures for different effect sizes. 
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is useful to keep a record of ties, as they do provide information about the similarity of 
treatments. If the researcher finds that too many pairs result in ties, it might be reason­
able to end the trial, as very little information will be gained by continuing to collect 
data. Such a decision is considered a conditional decision (as opposed to a terminal deci­
sion that occurs when a boundary is crossed). A conditional decision is rendered with­
out crossing a boundary, but is based on practical considerations and observation of the 
plotted path. 

Sequential trials are also somewhat limited by the time frame within which treat­
ment effects can be expected to occur. The response should be observable relatively 
soon after treatment is begun. The outcome should at least be available within an obser­
vation period that is short relative to the total time of the study.28 Otherwise, at any 
point in time, there will be a large number of subjects entered into the trial, but only a 
small proportion of results will be available. For instance, if a treatment effect is not 
expected for 1 year, within 6 months many subjects may have started treatment, but 
hardly any results would have been obtained. Consequently, the sequential rationale 
for economizing on time and subjects is subverted. 

A major advantage of sequential analysis is that it more readily fits a clinical 
research model, allowing for subjects to enter the study as they are admitted for treat­
ment and providing a structure for administering treatment within a clinical context; 
that is, the experimental treatments can be applied as they would be during normal 
practice, without having to create an artificial experimental environment. The sequen­
tial trial also provides a useful mechanism for studying qualitative outcomes, using the 
measure of preferences. In a practical sense, this approach can be quite effective as an 
adjunct to clinical decision making, because it allows the decision to be based on a vari­
ety of empirical criteria. 

EFFICACY VS. EFFECTIVEN ESS 
The randomized controlled trial is generally considered the gold standard for evaluat­
ing the effects of treatment. Researchers will often distinguish between efficacy and 
effectiveness in clinical studies. Efficacy is generally defined as the benefit of an inter­
vention as compared to a control or standard program. It provides information about 
the behavior of clinical variables under controlled, randomized conditions. This lets us 
examine theory and draw generalizations to large populations. Effectiveness refers to 
the benefits and use of the procedure under "real world" conditions. It is the expecta­
tion that when we apply treatments, we do so without being able to control all the cir­
cumstances around us, and our results may not be the same as those obtained with a 
randomized experiment. This distinction is often seen as one reason for the perceived 
gap between research and practice, based on the mistaken assumption that effective­
ness logically follows from a successful efficacy study.29 

Studies may be closer to one end of this continuum or the other, depending on 
many factors in the design of the trial.30 Gartlehner et al31 have proposed seven criteria 
to help researchers and clinicians to distinguish between efficacy and effectiveness 
studies, as shown in Table 10.1. Which patients are eligible, degree of control over the 
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TABLE 1 0.1 CRITERIA TO DISTINGUISH EFFICACY AND EFFECTIVENESS STUDIES 

Criterion 

Health care setting 

Eligibility criteria 

Outcome measures 

Study duration and clinically 
relevant treatment 

Assessment of adverse 
events 

Sample size 

Intention to treat (ITT) 
analysis 

Source: Gartlehner et ai.31 

Efficacy Study 

Frequently conducted in large 
tertiary care referral settings. 

Highly selective, stringent eli­
gibility criteria; sample may 
not be representative of the 
general population. 
Common use of objective and 
subjective outcomes, such as 
symptom scores, lab values, 
disease recurrence. 
Research protocol manipu­
lated. Study duration often 
based on time needed to 
demonstrate safety and 
demonstrate an effect. Com­
pliance must be assessed to 
determine if intervention 
works. 
Not typically reported. 

Large trials with few levels of 
analysis provide ideal design 
to detect small but clinically 
meaningful treatment effects. 
Research protocol will seek to 
limit factors that can alter 
treatment effects; may use 
completer analysis. 

Effectiveness Study 

Conducted in primary care set­
tings available to a diverse 
population with the condition of 
interest. 

Source population reflects the 
heterogeneity of external popu­
lations. Comorbidities are not 
exclusion criteria. 

Use of functional capacity, 
quality of life and other health 
outcome measures relevant to 
the condition of interest. 
Research protocol based on 
clinical reality. Duration based 
on minimum length of treat­
ment to allow assessment of 
health outcomes. Compliance 
may be unpredictable and 
should be defined as an out­
come measure. 

Objective scales used to define 
and measure adverse event 
rates. 

Sample size sufficient to detect 
at least a minimally important 
difference on a health outcome 
scale. 
Factors such as compliance, 
adverse events, drug regimens, 
comorbidities, other treatments 
and costs are taken into 
account using ITT. 

delivery of the intervention, what outcomes are assessed, which patients are included 
in the final analysis, how missing data are handled, and which statistical procedures are 
appropriate-all of these influence whether the results of a trial can be considered 
measures of efficacy or effectiveness. These two types of trials may yield very different 
results, but both are important to our understanding of patient responses to treatment. 

These concepts help us understand the situation where the findings of a controlled 
trial demonstrate that a treatment works, but clinicians find that it does not have the 
same effect when used on their individual patients in actual treatment conditions. The 
efficacious treatment was tested on a defined sample, with inclusion and exclusion cri­
teria, and was applied under controlled and defined conditions. It then becomes imper­
ative to determine if the same result can be obtained when personnel, patients and the 
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environment cannot be manipulated. Factors that potentially limit application across 
settings, populations, and intervention staff need to be addressed in both types of trials. 

COMM ENTARY 

Matchi ng the Research Question and Design 

The importance of understand ing concepts of experimental design cannot be 
overemphasized i n  the plann i ng stages of an experimental research project. There is  
a logic i n  these designs  that must be fitted to the research question and the scope of 
the project, so that meaningfu l conclusions can be drawn once data are analyzed. 
Alternative designs shou ld be considered on the basis of their relative val idity, and 
the strongest designs shou ld be chosen whenever possible. The design itself is  not a 
guarantee of the val id ity of research findings, however. Process must be control led 
withi n  the structure. Attention to measurement issues is especia l ly important to 
ensure that outcomes w i l l  be val id .  It is also important to note that the strongest 
design for a given question need not be the most compl icated design. I n  many cases, 
us ing the s impler designs can faci l itate answeri ng the research question, where a 
more complex design creates un i nterpretable i nteractions. The choice of a design 
shou ld u ltimately be based on the i ntent of the research question: 

. . .  the question being asked determines the appropriate research architecture, strategy, 
and tactics to be used-not tradition, authority, experts, paradigms, or schools of 
thought.32 

The underlying importance of choos ing an appropriate research design relates 
to consequent analysis issues that arise once data are col lected. Many beginn i ng 
researchers have had the unhappy experience of presenting their data to a statisti­
cian, only to find out that they d id not col lect the data appropriately to answer their 
research question . F isher33 expressed this idea in h i s  c lassical work, The Design of 
Experiments: 

Statistical procedure and experimental design are only two different aspects of the same 
whole, and that whole comprises a l l  the logical requirements of the complete process of 
adding to natural knowledge by experi mentation. 

The relevant point is the need to use a variety of research approaches to answer 
questions of c l i n ical importance. Although the c l i n ical  trial or experiment is consid­
ered a gold standard for establ i sh ing cause and effect, it is  by no means the best or 
most appropriate approach for many of the questions that are most important for 
improv ing practice. The real world does not operate with controls and schedules the 
way an experiment can . Quasi-experimental and observational studies, us ing i ntact 
groups or nonrandom samples, play an important role i n  demonstrating effectiveness 
of i nterventions.31 As we continue our emphas is  on evidence-based practice, we 
must consider many alternatives to the traditional c l i n ical  trial i n  order to d iscover 
the most "effective" courses of treatment.34 
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Quasi-Experiments 

I I 

Although the randomized trial is considered the optimal design for testing cause-and­
effect hypotheses, the necessary restrictions of a randomized trial are not always possi­
ble within the clinical environment.1 Depending on the nature of the treatment under 
study and the population of interest, use of randomization and control groups may not 
be feasible. The specification of inclusion and exclusion criteria will often reduce gen­
eralizability and limit the range of patients that can be included. 

Quasi-experimental designs utilize similar structures to experimental designs, 
but will lack either random assignment or comparison groups, or both. They often 
involve nonequivalent groups that may differ from each other in many ways in addi­
tion to differences between treatment conditions.2 Therefore, the degree of control is 
reduced. Many studies incorporate quasi-experimental elements because of the limita­
tions of clinical conditions. These designs present reasonable alternatives to the ran­
domized trial, as long as the researcher carefully documents subject characteristics, 
controls the research protocol, and uses blinding as much as possible. The conclusions 
drawn from these studies must take into account the potential biases of the sample, but 
may provide important information, nonetheless.3 

ONE-GROUP DESIGNS 

One-Group Pretest-Posttest Design 
The one-group pretest-posttest design is a quasi-experimental design that involves 
one set of repeated measurements taken before and after treatment on one group of sub­
jects (see Figure 11.1) .  The effect of treatment is determined by measuring the difference 
between pretest and posttest scores. In this design, the independent variable is time, 
with two levels (pretest and posttest). Treatment is not an independent variable because 
all subjects receive the intervention. 

223 
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Measurement 
or Observation 

Application of 
Intervention 

STUDY 
SAMPLE 

•••--..1 Intervention � 
Measurement 

or Observation 

FIGURE 1 1 .1 A one-group pretest-posttest design. Because only one group is tested and al l  subjects 
receive the i ntervention, time becomes the independent variable. 

Example of a One-Group Pretest-Posttest Design 
A study was designed to examine the effect of four-direction shoulder stretching exer­
cises for patients with idiopathic adhesive capsulitis.4 All subjects received the same 
exercise protocol. Researchers studied the effects of treatment on pain, range of 
motion, function and quality of life measures. Comparisons were made between 
pretest scores and final scores at follow-up, with a mean duration of 22 months. 

In this study, the researchers saw significant improvements in outcome variables, and 
concluded that the treatment was successful. We must hold conclusions drawn from 
this design as suspect, however. The design is weak because it has no comparison 
group, making it especially vulnerable to threats to internal validity. Although the 
researcher can demonstrate change in the dependent variable by comparing pretest and 
posttest scores, there is always the possibility that some events other than the experi­
mental treatment occurred within the time frame of the study that caused the observed 
change. Therefore, this design is particularly threatened by history and maturation 
effects. In addition, the influence of testing, instrumentation, statistical regression, and 
selection interaction effects cannot be ruled out. External validity is also limited by 
potential interactions with selection because there is no comparison group. 

The one-group pretest-posttest design may be defended, however, in cases where 
previous research has documented the behavior of a control group in similar circum­
stances. For instance, other studies may have shown that shoulder pain does not 
improve in this population over a 4-week period without intervention. On that basis, 
we could justify using a single experimental group to investigate just how much change 
can be expected with treatment. This documentation might also allow us to defend the 
lack of a control group on ethical grounds. The design is also reasonable when the 
experimental situation is sufficiently isolated so that extraneous environmental vari­
ables are effectively controlled, or where the time interval between measurements is 
short so that temporal effects are minimized? For instance, in studies where data col­
lection is completed within a single testing session, temporal threats to internal valid­
ity will be minimal, although testing effects remain uncontrolled. Under all 
circumstances, however, this design is not considered a true experiment, and should be 
expanded whenever possible to compare two groups. 

Analysis of One-Group Pretest-Posttest Designs. A t-test for paired compar­
isons is usually used to compare pretest and posttest mean scores. With ordinal data or 
small samples, the sign test or the Wilcoxon signed-ranks test can be used. 
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One-Way Repeated Measures Design Over Time 
Many research questions that deal with the effects of treatment on physiological or psy­
chological variables are concerned with how those effects are manifested over time. As 
an extension of the pretest-posttest design, the repeated measures design is naturally 
suited to assessing such trends.5 Multiple measurements of the dependent variable are 
taken within prescribed time intervals. The intervention may be applied once, or it may 
be repeated in between measurements (see Figure 11.2). 

Example of a One-Way Repeated Measures Design Over lime 
Researchers studied the effects of low-impact aerobic exercise on fatigue, aerobic fit­
ness, and disease activity in adults with rheumatoid arthritis.6 Measures were 
obtained preintervention, midtreatment (after 6 weeks of exercise), at the end of treat­
ment (after 12 weeks of exercise), and at a 15-week follow-up. 

Once again, in this example time is the independent variable. Every subject is eval­
uated at each time interval, making it a repeated measure. The design is quasi­
experimental because there is no randomization of the order of treatment and no 
comparison group. Without a control group internal validity is threatened, as it is not 
possible to discern if changes would have occurred over time without the intervention. 

This design may be appropriate, however, when the time course of a disease or con­
dition is predictable. For example, several studies have shown that strength declines in 
a linear fashion in patients with amyotrophic lateral sclerosis (ALS).7·8 Therefore, stud­
ies using this population for trials of drugs or other interventions may reasonably fol­
low patients over time without needing a control or placebo group.9 

Analysis of One-Way Repeated Measures Designs Over Time. When time is 
the independent variable, a one-way repeated measures analysis of variance can be per­
formed. Analysis may also include polynomial contrasts to describe trends over time. 

Time Series Design 
Time-series designs are based on the application of multiple measurements, before 
and after treatment, to document patterns or trends of behavior (see Figure 11.3). These 
designs are often used to study community interventions10 and policy changes.U They 
have also been adapted by behavioral analysts for the study of single subjects' 
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A 
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FIGURE 1 1 .2 One-way repeated measures design with time as the repeated measure. 
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FIGURE 1 1 .3 I nterrupted time-series design. 

responses over time (see Chapter 12). Basic time series designs have been defined by 
Cook and Campbell. 2 

Example of an Interrupted Time-Series Design 
Researchers evaluated an intervention to reduce inappropriate use of key antibiotics 
by hospital staff.U They initiated a policy for appropriate use of specific drugs through 
concurrent feedback by clinical pharmacists for individual patients. Drug use and 
costs were assessed monthly for 2 years before and after the policy was implemented. 

This is an example of an interrupted time-series design (see Figure 11 .4), so named because 
it involves a series of measurements over time that are "interrupted" by one or more 
treatment occasions. It is considered a quasi-experimental design because only one 
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RGURE 1 1 .4 Changes in hospital use of antibiotics 24 months before and after i nstituting a prescription 
policy. The two regression l ines, representing data before and after intervention, show changes in level (from 
end of pre-intervention to start of post-intervention) and trend (slope of l ine). (Adapted from Ansari F, Gray 
K, Nathwani D, et al. Outcomes of an intervention to improve hospital antibiotic prescribing: Interrupted 
time series with segmented regression analysis. j Antimicrobial Chemotherapy 2003; 52:842-848, Figure 2, 
p. 844. Reprinted with permission. Copyright 2003, British Society for Antimicrobial Chemotherapy.) 
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group is studied. The independent variable is time; that is, each measurement interval 
represents one level of time.* The research question concerns trends across these time 
intervals. The number of observations can vary, depending on the stability of the 
dependent variable. In some studies, researchers may extend pretest or posttest periods 
if the data are very variable, in an effort to stabilize responses before initiating treatment 
or ending the observations. 

This design may be considered an extension of the one-group pretest-posttest 
design. It offers more control, however, because the multiple pretests and posttests act 
as a pseudocontrol condition, demonstrating maturational trends that naturally occur 
in the data or the confounding effects of extraneous variables. It is most effective when 
serial data can be collected at evenly distributed intervals, avoiding confounding by 
extraneous temporal factors.12 To illustrate, consider several possible outcomes for an 
interrupted time-series design, shown in Figure 11.5. A series of observations are taken 
at times 1 through 8 (01-08), with the introduction of treatment at point X. In all three 
patterns, a similar increase in the dependent variable is seen from 04 to 05• In Pattern A 
we would be justified in assuming that treatment has an effect, as no change occurred 
prior to intervention. In Pattern B, however, it would be misleading to make this inter­
pretation, as the responses are continually increasing within the baseline measures. 
Although Pattern C also shows an increase in the dependent variable from 04 to 05, 
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FIGURE 1 1 .5 I l lustration of three possible outcome patterns in the interrupted time-series design. 

*Time series designs are distinguished from repeated measures designs by the large number of measurements 
that are taken continuously across baseline and intervention phases. See Chapter 12 for a description of time 
series experiments as they are constructed for single-subject research. 
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which would look like a treatment effect if these were the only two measurements 
taken, we can see from the erratic pattern changes before and after treatment that this 
conclusion is unwarranted. 

The greatest threat to internal validity in the time series design is history. There is 
no control over the possible coincidental occurrence of some extraneous event at the 
same time that treatment is initiated. The level and trend of the pre-intervention data, 
however, do present a form of control for the post-intervention segment11 (see Chapter 
12 for further discussion of level and trend). This is illustrated in the data in Figure 11.4. 

Most other threats to internal validity are fairly well controlled by the presence of 
multiple measurements; that is, their effects are not eliminated, but we can account for 
them. For instance, if instrumentation or testing effects are present, we should see 
changes across the pretest scores. External validity of a time-series design is limited to 
situations where repeated testing takes place. 

Several variations can be applied to this design. Comparisons may include two or 
more groups. Treatment may be administered one time only with follow-up measure­
ments, or intervention may be continued throughout the posttest period. In a third vari­
ation, treatment may be started after a series of pretest measurements, and then 
withdrawn after a specified time period, with measurements continuing into the with­
drawal period. The withdrawal design does help to account for history effects. If the 
behavior improves with treatment, and reverts back to baseline levels when treatment 
is withdrawn, a strong case can be made that extraneous factors were not operating. In 
a fourth model, called a multiple baseline design, each subject is tested under baseline 
conditions, and the introduction of treatment is staggered, again controlling for history 
and maturation effects. These models have been incorporated into single-subject 
designs (see Chapter 12). 

Analysis of Time Series Designs. Many researchers use graphic visual analysis as 
the primary means of interpreting time-series data. There is considerable disagreement 
as to the validity of visual analysis. Statistical techniques for time-series analysis 
involve multivariate methods. A model called the autoregressive integrated moving 
average (ARIMA) is often used to accommodate for serial scores and weighs heavily on 
the observations that fall closer to the point at which treatment is introduced (see 
Chapter 12 for a discussion of serial dependency and autocorrelation)P It analyzes the 
trends in the data and provides an estimate of the variability to be expected among 
future observations.14 To be effective, the ARIMA procedure requires at least 25 data 
points in each phase.15 For a more detailed description of this procedure, consult Cook 
and Campbell.2 A technique called segmented regression analysis (shown in Figure 11 .4) 
has also been used to look at patterns of change over time in the level and slope of 
regression lines for different segments of the data.16 

MULTIGROUP DESIGNS 

Nonequ ivalent Pretest-Posttest Control Group Design 
There are many research situations in the social, clinical, and behavioral sciences where 
groups are found intact or where subjects are self-selected. The former case is common 
in a clinic or school where patients or students belong to fixed groups or classes. The 
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FIGURE 1 1 .6 Nonequivalent pretest-posttest control group design. 
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latter case will apply when attribute variables are studied or when volunteers are 
recruited. The noneqaivalent pretest-posHest control group design (see Figure 
11.6) is similar to the pretest-posttest experimental design, except that subjects are not 
assigned to groups randomly. This design can be structured with one treatment group 
and one control group or with multiple treatment and control groups. 

Example of a Nonequivalent Pretest-Posttest Control Group Design 
Based on Intact Groups 
A study was done to determine the effectiveness of an individualized physical therapy 
intervention in treating neck pain.17 One treatment group of 30 patients with neck pain 
completed physical therapy treatment. The control group of convenience was formed 
by a cohort group of 27 subjects who also had neck pain but did not receive treatment 
for various reasons. There were no significant differences between groups in demo­
graphic data or the initial test scores of the outcome measures. A physical therapist 
rendered an intervention to the treatment group based on a clinical decision making 
algorithm. Treatment effectiveness was examined by assessing changes in range of 
motion, pain, endurance and function. Both the treatment and control groups com­
pleted the initial and follow-up examinations, with an average duration of 4 weeks 
between tests. 

Example of a Nonequivalent Pretest-Posttest Control Group Design 
Based on Subject Preferences 
A study was designed to examine the influence of regular participation in chair exer­
cises on postoperative deconditioning following hip fracture.18 Subjects were distin­
guished by their willingness to participate, and were not randomly assigned to groups. 
A control group received usual care following discharge. Physiological, psychological, 
and anthropometric variables were measured before and after intervention. 

In the study of therapy for neck pain, the patients are members of intact groups by 
virtue of their diagnosis. In the chair exercise study, subjects self-selected their group 
membership. 

Although the nonequivalent pretest-posttest control group design is limited by the 
lack of randomization, it still has several strengths. Because it includes a pretest and a 
control group, there is some control over history, testing and instrumentation effects. 
The pretest scores can be used to test the assumption of initial equivalence on the 
dependent variable, based on average scores and measures of variability. The major 
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threat to internal validity is the interaction of selection with history and maturation. For 
instance, if those who chose to participate in chair exercises were stronger or more moti­
vated patients, changes in outcomes may have been related to physiological or psycho­
logical characteristics of subjects. These characteristics could affect general activity level 
or rate of healing. Such interactions might be mistaken for the effect of the exercise pro­
gram. These types of interactions can occur even when the groups are identical on 
pretest scores. 

Analysis of Nonequ ivalent Pretest-Posttest Designs. Several statistical methods 
are suggested for use with nonequivalent groups, including the unpaired t-test (with 
two groups), analysis of variance, analysis of covariance, analysis of variance with 
matching, and analysis of variance with gain scores. Ordinal data can be analyzed using 
the Mann-Whitney U test. Nonparametric tests may be more appropriate with non­
equivalent groups, as variances are likely to be unequal. Preference for one approach 
will depend in large part on how groups were formed and what steps the researcher 
can take to ensure or document initial equivalence. Tests such as the t-test, analysis of 
variance and chi square are often used to test for differences in baseline measures. 
Regression analysis or discriminant analysis may be the most applicable approach to 
determine how the dependent variable differentiates the treatment groups, while 
adjusting for other variables. Statistical strategies must include mechanisms for control­
ling for group differences on potentially confounding variables. 

Historical Controls 
Another strategy for comparing treatments involves the use of  historical controls who 
received a different treatment during an earlier time period. 

Example of a Nonequivalent Design Based on Historical Controls 
Concern exists that prednisone-free maintenance immunosuppression in kidney trans­
plant recipients will increase acute and/ or chronic rejection. Over a 5-year period from 
1999 to 2004, researchers worked with 477 kidney transplant recipients who discontin­
ued prednisone on postoperative day 6, followed by a regimen of immunosuppressive 
therapy.19 The outcomes were compared with that of 388 historical controls from the 
same institution (1996 to 2000) who did not discontinue prednisone. Outcomes 
included changes in serum creatinine levels, weight and cholesterol, as well as patient 
and graft survival rates. 

As this example illustrates, a nonconcurrent control group may best serve the pur­
pose of comparison when ethical concerns may preclude a true control group. When the 
researcher truly believes that the experimental intervention is more effective than stan­
dard care, the use of historical controls provides a reasonable alternative.20 This 
approach has been used in cancer trials, for example, when protocols in one trial act as 
a control for subsequent studies.21 The major advantage of this approach is its efficiency. 
Because all subjects are assigned to the experimental condition, the total sample will be 
smaller and the results can be obtained in a shorter period of time. 

The disadvantages of using historical controls must be considered carefully, how­
ever. Studies that have compared outcomes based on historical controls versus ran­
domly allocated controls have found positive treatment effects with historical controls 
that randomized trials have not been able to replicate.22'23 The most obvious problem, 
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therefore, is the potential for confounding because of imbalances in characteristics of 
the experimental and historical control groups. For this approach to work, then, the 
researcher must be diligent in establishing a logical basis for group comparisons. This 
means that the historical controls should not simply be any patients described in the lit­
erature, or those treated at another time or another clinic.20•24 1t is reasonable, however, 
as in the kidney transplant example, to consider using groups that were treated within 
the same environment, under similar conditions, where records of protocols were kept 
and demographics of subjects can be obtained. This approach may prove useful as large 
clinical data bases are accumulated within a given treatment setting. 

Analysis of Designs with Historical Controls. Researchers often use the inde­
pendent samples t-test to compare current subjects with historical subjects, although 
there is an inherent flaw in this approach because there is no assumption of equivalence 
between the groups. The Mann-Whitney U test may be used with ordinal data. Chi 
square will allow the researcher to determine if there is an association among categori­
cal variables. Multiple regression, logistic regression or discriminant analysis can be 
done, using group membership as a variable, to analyze differences between the groups 
while accounting for other variables. 

Nonequivalent Posttest-Only Control Group Design 
Nonequivalent designs are less interpretable when only posttest measures are avail­
able. The nonequivalent posttest-only control group design (see Figure 11 .7), also 
called a static group comparison/5 is a quasi-experimental design that can be ex­
panded to include any number of treatment levels, with or without a control group. 
This design uses existing groups who have and have not received treatment. 

Example of a Nonequivalent Posttest-Only Control Group Design 
Researchers were interested in studying the effects of a cardiac rehabilitation pro­
gram on self-esteem and mobility skill in 152 patients who received cardiac surgery.26 

They studied 37 subjects who participated in a 2-month exercise program, and 
another 115 subjects who chose not to attend the program, forming the control group. 
Measurements were taken at the end of the 2-month study period. Outcomes were 
based on the Adult Source of Self-esteem Inventory and the New York Heart Associ­
ation Classification. 

Intact 
Groups 

Measurement 
or Observation 

FIGURE 1 1 .7 Nonequivalent posttest-on ly control group design. 
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To draw conclusions from this comparison, we would have to determine if variables 
other than the exercise program could be responsible for outcomes. Confounding 
factors should be identified and analyzed in relation to the dependent variable. For 
instance, in the cardiac rehabilitation example, researchers considered the subjects' 
age, years of education and occupational skill.26 Although the static group compari­
son affords some measure of control in that there is a control group, internal valid­
ity is severely threatened by selection biases and attrition. This design is inherently 
weak because it provides no evidence of equivalence of groups before treatment. 
Therefore, it should be used only in an exploratory capacity, where it may serve to 
generate hypotheses for future testing. It is essentially useless in the search for causal 
relationships. 

Analysis of Nonequivalent Posttest-Only Designs. Because this design does not 
allow interpretation of cause and effect, the most appropriate analysis is a regression 
approach, such as discriminant analysis. Essentially, this design allows the researcher to 
determine if there is a relationship between the presence of the group attribute and the 
measured response. An analysis of covariance may be used to account for the effect of 
confounding variables. 

COM M ENTARY 

General ization to the Real World 

In the pursu it of evidence-based practice, c l i n icians must be able to read research 
l i terature with a critical eye, assessing not only the va l idity of the study's design, but 
also the general izabi l ity of its findi ngs. Publ ished research must be app l icable to 
c l i n ical s ituations and ind ividual patients to be usefu l .  The extent to which any study 
can be appl ied to a given patient is always a matter of judgment. 

Purists w i l l  c la im that general ization of i ntervention studies requi res random 
selection and random assignment-in other words, a randomized contro l led trial 
(RCT). In this view, quasi-experimental studies are less general izable because they 
do not provide sufficient control of extraneous variables. I n  fact, such designs may 
be especia l ly vu lnerable to a l l  the factors that affect i nternal va l id ity. 

One might reasonably argue, however, that the rigid structure and ru les of the 
RCT do not represent real world situations, making it difficult for c l i n icians to apply 
or general ize research fi ndi ngs. The results of the RCT may not apply to a particular 
patient who does not meet inc lusion or exclusion criteria, or who cannot be ran­
dom ly assigned to a treatment protocol .  Many of the quasi-experimental models w i l l  
provide an  opportun ity to look a t  comparisons i n  a more natural context. I n  the hier­
archy of evidence that is often used to qual ify the rigor and weight of a study's fi nd­
ings, the RCT is considered the h ighest leve l .  But the quasi-experimental study 
should not be dismissed as a val uable source of i nformation.  As with any study, how­
ever, it is the c l i n ician's responsib i l ity to make the judgments about the appl icabi l ity 
of the fi ndi ngs to the ind ividual patient. 
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The demands of traditional experimental methods are often seen as barriers to clinical 
inquiry for several reasons. Because of their rigorous structure, experiments require 
control groups and large numbers of homogenous subjects, often unavailable in clinical 
settings. In addition, group studies typically take measurements at only two or three 
points in time, potentially missing variations in response that occur over time. Finally, 
the experimental model deals with group averages and generalizations across individ­
uals, which may not allow the researcher to differentiate characteristics of those 
patients who responded favorably to treatment from those who did not improve. 
Therefore, although generalizations are important for explaining behavioral phenom­
ena, clinicians understand that group performance is relevant only if it can be used to 
understand and predict individual performance. 

To illustrate this dilemma, consider a study that was done to determine if the occur­
rence of stuttering would be different if adults read aloud at "usual" or "fast as possi­
ble" rates.1 A group of 20 adults was tested, and no significant difference was seen 
between the two conditions based on a comparison of group means. However, a closer 
look at individual results showed that 8 subjects actually decreased their frequency of 
stuttering, one didn't change, and 11 demonstrated an increase during the faster speak­
ing condition. The group analysis obscured these individual variations.2 These results 
could mean that there is no consistent effect, but they may also point to specific subject 
characteristics that account for the differences. 

235 
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Single-subject designs* provide an alternative approach that allows us to draw 
conclusions about the effects of treatment based on the responses of a single patient 
under controlled conditions. Through a variety of strategies and structures, these 
designs provide a clinically viable, controlled experimental approach to the study of a 
single case or several subjects, and the flexibility to observe change under ongoing 
treatment conditions. Given the focus of evidence-based practice on clinical decision 
making for individual patients, these designs are especially useful. 

Single-subject designs require the same attention to logical design and control as 
other experimental designs, based on a research hypothesis that indicates the expected 
relationship between an independent and dependent variable and specific operational 
definitions that address reliability and validity. The independent variable is the inter­
vention. The dependent variable is the patient response, defined as a target behavior 
that is observable, quantifiable, and a valid indicator of treatment effectiveness. 

Single-subject designs can be used to study comparisons between several treat­
ments, between components of treatments, or between treatment and no-treatment con­
ditions. The purpose of this chapter is to describe a variety of single-subject designs and 
to explore issues associated with their structure, application and interpretation. 

STRUCTURE OF SINGLE-SUBJ ECT DESIGNS 
Single-subject designs are structured around two core elements that distinguish them 
from a case study or group studies: repeated measurement and design phases. 

Repeated Measurement 
Single-subject designs involve the systematic collection of repeated measurements of a 
behavioral response over time, usually at frequent and regular intervals, such as at each 
treatment session (which may be more than once a day), each day or once a week. These 
repeated assessments are required to observe trends and patterns in the data and to eval­
uate variability of the behavioral response over time. This type of variability is obscured 
in group studies when behavior is measured only before and after treatment. The advan­
tage of repeated assessment is that the researcher can observe response patterns and 
modify the design as the study progresses to obtain the most meaningful outcome. 

Design Phases 
The second core element of a single-subject design is the delineation of at least two test­
ing periods, or phases: a baseline phase, prior to treatment, and an intervention 
phase. The target behavior is measured repeatedly across both baseline and interven­
tion phases. The baseline phase provides information about responses during a period 

•These designs have also been called single system strategies/ N of 1 studies,4 and time series designs.5 Cook 
and Campbell6 describe time series designs as quasi-experimental designs with multiple measurements 
over time. They present several variations of these designs, which are analogous to the withdrawal and 
multiple baseline designs presented in this chapter. The subject or system used most often is a single indi­
vidual, but the sampling unit may be any unit of interest, such as a small group, a community, a depart­
ment or an institution. 
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of "no treatment," or a control condition. This initial observation period reflects the nat­
ural state of the target behavior over time in the absence of the independent variable. 
The assumption is that baseline data reflect the ongoing effects of background vari­
ables, such as daily activities, other treatments and personal characteristics on the tar­
get behavior. When treatment is initiated, changes from baseline to the intervention 
phase should be attributable to intervention. Therefore, baseline data provide a stan­
dard of comparison for evaluating the potential cause-and-effect relationship between 
the intervention and target behavior. 

Design phases are traditionally plotted on a line graph, as shown in Figure 12.1, 
with magnitude of the target behavior along the Y-axis and time (sessions, trials, days, 
weeks) along the X-axis. Using conventional notation, the baseline period is represented 
by the letter A and the intervention period by the letter B. To facilitate description, this 
design, with one baseline phase and one intervention phase, is called an A-B design. 

The collection of baseline data is the single feature of a single-subject design that 
particularly distinguishes it from clinical practice, case studies and traditional experi­
mental designs, where treatment is initiated immediately following assessment. From a 
research standpoint, the traditional approach makes it impossible to determine which 
components of treatment actually caused observed changes, or more important, if 
observed changes would have occurred without intervention. Just as we need a control 
group to validate group comparisons, we must have a control period to make these 
determinations for a single-subject experiment. 

Ethical objections often arise when the baseline concept is introduced, just as they 
do when a control group is proposed for a group comparison study. Two points must 
be made in this regard. First, we can argue that it is not unethical to withhold treatment 
for a relatively short period when we are unsure about the effectiveness of the interven­
tion in the first place. Indeed, it may actually be unethical to continue to provide an 

FIGURE 1 2.1 Example of a basic A-B design, showing basel ine and intervention phases. 
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inferior or ineffective treatment without testing it experimentally. It is, however, impor­
tant to realize that this approach is not appropriate for studying every type of interven­
tion, such as treatments for critical or life-threatening situations, where treatment effects 
are not questioned and withholding treatment would be harmful. Second, collecting 
baseline data does not mean that the clinician is denying all treatment to the patient. It 
only means that one portion of the patient's total treatment is being isolated for study 
while all other treatments and activities are continued as background. 

Basel ine Characteristics 
Two characteristics of baseline data are important for interpretation of clinical out­
comes: stability, which reflects the consistency of response over time, and trend, or 
slope, which shows the rate of change in the behavior. The most desirable baseline pat­
tern demonstrates a constant level of behavior with minimal variability, indicating that 
the target behavior is not changing (see Figure 12.2A). Therefore, changes that are 
observed after the intervention is introduced can be confidently attributed to a treat­
ment effect. If treatment has no effect, we would expect to see this baseline pattern con­
tinue into the intervention phase. 

A variable baseline (Figure 12.2B) can present a problem for interpretation. When 
this type of pattern emerges, it is generally advisable to continue to collect baseline data 
until some stability is achieved. With extreme variability, the researcher is obliged to 
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FIGURE 1 2.2 Types of basel ines that may be encountered in single-case designs: (A) stable, level base­
l i ne, (B) variable basel ine, (C) stable accelerating trend, (D) variable decelerating trend. 
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consider what factors might be influencing the target behavior to create such an erratic 
response. Sometimes cyclical patterns are evident, perhaps with variations correspon­
ding to days of the week, time of day, or regular events occurring in the subject's life. If 
these factors continue to operate during intervention, they could easily obscure treat­
ment effects. 

An accelerating baseline (Figure 12.2C) or a decelerating baseline (Figure 12.20) indi­
cates that a change in the target behavior is occurring without intervention. Either type 
of trend may represent improvement or deterioration, depending on the target behav­
ior. Trends can also be characterized as stable or unstable; that is, the rate of change may 
be constant (as in Figure 12.2C) or variable (as in Figure 12.20). Trends in baseline data 
must be identified to determine if responses that are observed following treatment rep­
resent true change. 

Length of Phases 
One of the first questions clinicians ask when planning single-subject experiments con­
cerns how long phases should be. Single-subject designs provide some flexibility in 
these choices, allowing for consideration of the type of patient, the type of treatment, 
and the expected rate of change in the target behavior. This flexibility differentiates the 
single-subject design from traditional designs where onset and duration of treatment 
are established and fixed prior to experimentation, regardless of how the patient 
responds. There are some guidelines that can be followed to assist in these decisions. 

It is generally desirable to use relatively equal phase length. It is not uncommon, 
for example, to find that researchers preset intervals of 1 week for each phase in a 
design when daily measurements are taken. This practice helps to control for potential 
time-related factors such as maturation or the motivational influence of continued 
attention over prolonged treatment periods. Despite these plans, however, it is usually 
advisable to extend baseline or intervention phases until stability is achieved, or at least 
until one is sure that responses are representative of the true condition under study. 
Most important, it is essential that the length of time within each phase is sufficient to 
capture any changes that will occur over time. 

Because trend is an important characteristic of repeated measurements, there must 
be a minimum of three to four data points in each phase. The application of some analy­
sis procedures is enhanced by having 12 or more points within each phase to establish 
stability.7 Clearly, the greater the number of data points, the more obvious trends will 
become. It is useful to remember that the intervals used for repeated measurements 
need not represent single days. When patient behaviors change rapidly in response to 
intervention, more than one session can be plotted within a day, so that a sufficient 
number of data points can be obtained in a short period. 

THE TARGET BEHAVIOR 
Target behaviors can reflect different response systems and may focus on impair­
ments, activity limitations or measures of disability. Measurements may deal with overt 
motor behaviors, such as functional performance, range of motion (ROM), strength or 
gait characteristics. We can also assess physiological reactions, such as blood pressure 
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or exercise responses, and verbal reactions, such as the number of correct responses to 
specific questions or subjective feelings of pain. Assessment techniques vary, depend­
ing on the types of variables designated as target behaviors. One benefit of the single­
subject approach is the ability to develop individualized measurement systems that 
reflect a patient's performance in a clinically relevant way. For instance, specific func­
tional tasks may be emphasized that indicate a patient's major limitations. The choice 
of a target behavior can be an important first step in making a single-subject study 
meaningful. 

Measuring the Target Behavior 
Although many clinical variables are typically assessed using qualitative values, they 
must be quantified in some way to be used as experimental data. One of the major 
advantages of the single-subject approach is that it provides a mechanism for quanti­
fying even the most subjective clinical behaviors. The most common techniques for 
measuring behaviors within single-subject designs are frequency, duration and magni­
tude measures. 

A frequency count indicates the number of occurrences of the behavior within a 
fixed time interval or number of trials. For example, we can count the number of times 
a particular gait deviation occurs, the number of times a patient can correctly name 
objects, or the number of times a patient loses her balance during a defined treatment 
session. Operational definitions for frequency counts must specify how the target 
behavior is distinguished from other responses and exactly what constitutes an occur­
rence and nonoccurrence of the behavior. For instance, if a patient attempts an exercise 
and achieves only partial range, is that counted as an occurrence? If a patient begins to 
fall over but catches herself by reaching for the wall, is that considered loss of balance? 

Frequency can be expressed as a percentage, by dividing the number of occurrences 
of the target behavior by the total number of opportunities for the behavior to occur. 
This method is often used in studies where accuracy of performance (percentage cor­
rect) is of primary interest. Frequency counts can also be translated into rates. Rate refers 
to the number of times a behavior occurs within a specified time period. It is calculated 
by dividing the total number of occurrences of the behavior by the total time (seconds, 
minutes or hours) during which the behavior was observed. For example, we can meas­
ure ambulation in steps per minute or endurance in repetitions per minute. 

A useful procedure for measuring repetitive behavior is called interval recording, 
which involves breaking down the full measurement period into preset time intervals, 
and determining if the behavior occurs or does not occur during each interval. For 
instance, Dave8 studied the effects of vestibular stimulation on stereotypic body­
rocking behaviors in three adults with profound mental retardation. He monitored the 
behavior for a total of 5 minutes, looking at the occurrence or nonoccurrence of rocking 
within consecutive 15-second intervals. 

Target behaviors can also be evaluated according to how long they last. Duration 
can be measured either as the cumulative total duration of a behavior during a treat­
ment session or as the duration of each individual occurrence of the behavior. Opera­
tional definitions for duration measures must specify criteria for determining when the 
behavior starts and when it ends. For example, we can measure how long a patient 
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stays in a balanced standing posture within a single trial or over a treatment session, or 
we can time how long it takes for a patient to complete a specific functional task, such 
as buttoning a shirt. 

Many clinical variables are measured using some form of instrumentation that pro­
vides a quantitative score, which may be a summary score, a subscale score or a sin­
gle test value. For example, Shumway-Cook and co-workers9 used a forceplate to assess 
the effect of balance training on movement of the center of pressure and time to stabi­
lization in six children with cerebral palsy. Bastille and Gill-Body10 used scores on the 
Berg Balance Scale and the Stroke Impact Scale as an indicators of the effectiveness of 
yoga-based exercise program for patients with chronic poststroke hemiparesis. These 
examples illustrate the potential for using single-subject designs to study changes in 
outcomes, including impairments, activity limitations and disability measures. 

Choosing a Target Behavior 
Because patients usually present several clinical problems, choosing one specific prob­
lem as the focus of an experiment can be difficult. To focus on one target behavior, it is 
often necessary to define complex behaviors and determine which component of the 
behavior is most problematic. It is useful to consider the relative stability with which a 
behavior is expected to respond. It is also important to establish that a specific interven­
tion is readily available to address the target behavior, that the behavior is a valid indi­
cator of that intervention's effectiveness, and that the treatment will cause an 
observable change in the behavior. Finally, choice of a target behavior may be influ­
enced by available instrumentation and clinical goals. Researchers can also look at sev­
eral target behaviors simultaneously, to examine their potential interaction or to 
document the relationship between impairments and functional measures. 

In addition, a measurement method must be chosen that will reflect the element of 
performance that is of primary concern. Is it how often a patient can perform a partic­
ular task, or how long a behavior can be maintained? Is the number of correct responses 
or incorrect responses of interest? Or is it simply whether or not the behavior occurred? 
Each measurement method will provide a different perspective of the target behavior, 
which will obviously influence how the data will be interpreted. 

RELIABILITY 
Reliability is important in single-subject research as it is in any form of clinical inquiry. 
Because the single-subject experiment focuses on observation of behaviors in a clinical 
setting, reliability is usually assessed concurrently with data collection, rather than in a 
separate pilot study. Researchers usually report interrater reliability using a measure of 
percentage agreement between observers (see Chapter 26). Reliability checks are per­
formed by having two testers simultaneously observe the target behavior at several ses­
sions across each phase of the study. An agreement score is obtained for each session, 
and results are then reported as a range of agreement scores or as an average.+ 

twith magnitude data, reliability can also be established using correlational methods, such as the intraclass 
correlation coefficient (see Chapter 26). 
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EXPERIMENTAL CONTROL: LIM ITATIONS 
OF THE A-B DESIGN 
The element that most clearly characterizes an experimental research design is its abil­
ity to control for threats to internal validity (see Chapter 9). Unfortunately, the basic 
A-B single-subject design is limited in this respect. Consider the following example: 

Researchers explored the relationship between language development and sensory 
integration using a single case experimental study of four aphasic children ranging in 
age from 4 years, 0 months to 5 years, 3 months.11 Other agencies had assessed all the 
children in the area of language development at least 6 months before the start of occu­
pational therapy. Three of the four children had received either speech therapy, special 
education specific to aphasia, or both, before starting occupational therapy. Additional 
baseline data on language expression and comprehension, as well as on sensory inte­
grative functioning, were gathered before beginning a year of occupational therapy 
that involved sensory integration procedures. 

Figure 12.3 shows the development of language comprehension for one child in this 
study. Stable responses were observed over a 9-week baseline phase. Immediately fol­
lowing the onset of occupational therapy, scores rise markedly, suggesting at first 
glance that the therapy was instrumental in achieving this change. But is this conclu­
sion definitive? Did other events or changes within the subject occur coincidentally at 
the same time treatment was initiated that could have accounted for the observed 
change? In other words, is this conclusion internally valid? 

Note that several other events may be associated with this change. Speech therapy 
was begun 1 week later (D), an aphasia class started at 16 weeks (E), and a developmen­
tal therapy program began at 25 weeks (F). With this design, it is impossible to conclude 
that the occupational therapy treatment was the causative factor in improving language 
comprehension scores. 

To strengthen the control in this design, we must include some other form of evi­
dence that the treatment was indeed responsible for observed changes, evidence that 
will discredit alternative hypotheses for explaining treatment outcomes. Within a 
single-subject strategy, this additional control is provided by replication of effects, 
which can be accomplished in several ways. Phases can be repeated by withdrawing 
and reinstating baseline and treatment conditions or by alternating two or more inter­
ventions. We can also replicate effects across more than one subject or within one sub­
ject across multiple conditions or behaviors. The more often an effect can be replicated 
within a design, the stronger the design controls against potential threats to internal 
validity. These strategies form the basis for structuring single-subject designs. 

WITHDRAWAL DESIGNS 
Experimental control within a single-subject design can be achieved through with­
drawal of intervention, to demonstrate that the target behavior occurs only in the pres­
ence of treatment. The withdrawal design includes a second baseline period, but may 
also include a second intervention period. 
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FIGURE 1 2.3 Example of an A-B design, i l lustrating potential threats to internal val idity: scores on a 
language comprehension test in an aphasic chi ld before and after the onset of occupational therapy. Rel­
evant events: (A) in itial testi ng, (B) fi rst basel i ne data gathered, (C) started occupational therapy, (D) started 
individual speech therapy, (E) entered public school aphasia class, (F) started developmental therapy. 
(Adapted from Ayres Aj, Mail loux Z. I nfluence of sensory i ntegration procedures on language develop­
ment. Am j Occup Ther 1 98 1 ;  35:383-90, Fig 3, p. 1 87.  Copyright 1 981 by the American Occupational 
Therapy Association. Reprinted with permission.) 

A-B-A Design 
The A-B-A design replicates one baseline phase following intervention. The premise 
of this design lies in its ability to show that behavioral changes are evident only in the 
presence of the intervention, during Phase B. If changes in the target behavior are not 
maintained during the second baseline period, one can logically conclude that the 
treatment was the factor causing the changes observed during the intervention phase. 
Internal validity is controlled because it is highly unlikely that confounding factors 
would coincidentally occur at both the onset and the cessation of treatment. If other 
variables were responsible for changes seen in the target behavior during the first two 
phases, the behavior would not be expected to revert to baseline levels during the with­
drawal phase. 

Researchers studied the effect of using visual cues during gait training in an individ­
ual with Parkinson disease.12 They assessed gait speed as the subject walked a distance 
of 10 meters as many times as she could in 30 minutes. The subject was seen three 
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times/week. The 4-week baseline phase included gait training without cues. During 
the intervention phase, visual cues were placed on the floor along the walkway. After 
4 weeks of intervention, cues were removed and gait parameters were measured to 
assess retention of gait training. 

The results for this study are shown in Figure 12.4. The subject's scores showed an ini­
tial improvement during baseline, but then leveled off. Clear improvement was seen 
during the intervention phase. The increase in gait speed was somewhat variable, but 
maintained an increasing trend. A decrement in performance was seen when the inter­
vention was removed, but improvement was seen again over time. The replication of 
effects over a second baseline period provide support for the intervention. 
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FIGURE 1 2.4 Example of an A-B-A design, showing gait speed during uncued and cued gait i n  a 
patient with Parkinson disease. The second basel i ne phase is considered a period of retention, to deter­
m ine if the patient's performance would be maintained when cues were withdrawn. (From Sidaway B, 
Anderson j, Danielson G. Effects of long-term gait train ing using visual cues in an individual with Parkin­
son disease. Phys Ther 2006; 86:1 86-1 94, Figure 2, p. 1 90. Reprinted with permission of the American 
Physical Therapy Association.) 

The obvious problem with the A-B-A design is that the behavior must be 
reversible. This is often not the case. Any response that is learned or that creates perma­
nent change will not show a decrement when treatment is withdrawn. Consider the fol­
lowing example: 

A study was done to determine if manual therapy, therapeutic exercise and patient 
education would be an effective strategy to reduce pain for a patient with disc dis­
placement without reduction of both temporomandibular joints.13 Pain was measured 
using a visual analog scale over 15 visits. 
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FIGURE 1 2.5 Pain data recorded in an A-B-A design using a 1 0-cm visual analog scale in a patient 
with temporomandibular joint pain .  Intervention inc luded manual therapy, exercise and patient educa­
tion. Data show a maintenance of pain relief during the withdrawal phase. (From Cleland J, Palmer j. Effec­
tiveness of manual physical therapy, therapeutic exercise, and patient education on bilateral disc 
displacement without reduction of the temporomandibular joint: A s ingle-case design. J Orthop Sports 
Phys Ther 2004; 34: 535-548, Figure 3,  p. 540. Reproduced with permission of the Orthopaedic and 
Sports Physical Therapy Sections of the American Physical Therapy Association.) 

As shown in Figure 12.5, pain was relatively stable during the first baseline, 
showed a linear decline during intervention, and continued to decline during the sec­
ond baseline phase. Pain level was clearly decreased starting at the point of interven­
tion, but because of the effectiveness of the treatment, continued to decrease during the 
second baseline phase. 

A-B-A-B Design 
Experimental control and clinical relevance can be strengthened through the use of an 
A-B-A-B design, which provides initial baseline data and ends on an intervention 
phase. The major advantage of this design is that it provides two opportunities to eval­
uate the effects of the intervention. If effects can be replicated during two separate inter­
vention phases, controlling for internal validity, the evidence is quite strong that 
behavioral change was directly related to the treatment. 

� posture during static stance has been identified as a common probleul 
in persons with hemiplegia. Researchers examined the effect of an activity-based ther­
apy regimen on symmetric weight bearing in three adult subjects with hemiplegia.1' 
An A-B-A-B design was used. The intervention program, including playing a bean 
bag game, was introduced for 30 minutes each day during each intervention phase. 
Quantitative measurements of weight distribution were taken with the Balance Mas­
ter System. 
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FIGURE 1 2.6 Example of an A-B-A-B design, showing the effect of an activity-based therapy on weight 
distribution over the affected leg (percent body weight) during static stance in a patient with hemiplegia. 
(From Wu S, H uang H, Lin C, and Chen M. Effects of a program on symmetrical posture in patients with 
hemiplegia: A single-subject design. Am j Occup Ther 1 996; 50:1 7-23, Figure 1 ,  p. 20. Reprinted with 
permission of the American Occupational Therapy Association.) 

Figure 12.6 shows results for one subject for this study. Weight distribution was 
plotted as a ratio of the percent weight on the affected limb over total body weight; 
therefore, the goal was to achieve higher ratios. Although performance is variable, there 
is clearly a declining ratio during both baseline phases, and an increasing ratio during 
both intervention phases. 

The A-B-A-B design faces the same limitations as the A-B-A design, in that behav­
iors must be reversible to see treatment effects. If, however, the target behavior does not 
revert to original baseline values, but stays level during the second baseline, the 
A-B-A-B strategy still makes it possible to demonstrate change if there is further 
improvement during the second intervention phase. 

MULTIPLE BASELINE DESIGNS 
The use of withdrawal is  limited in situations where ethical considerations of with­
drawal prevail and where behaviors are either nonreversible or prone to carryover 
effects. When practical replication cannot be achieved, a multiple baseline design can 
be used, where effects are replicated across subjects, across treatment conditions, or 
across multiple target behaviors. The multiple-baseline approach allows for use of the 
basic A-B format as well as withdrawal variations. 

The multiple baseline design demonstrates experimental control by first requiring 
the concurrent collection of baseline data across a minimum of three data series. When 
all baselines exhibit sufficient stability, the intervention is applied only to the first series, 
while the other baselines are continued. When the first series achieves stability during 
treatment, intervention is introduced into the second series. Stability can be achieved 
either as a constant trend (acceleration or deceleration) or as a level response. This 
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process is repeated on a staggered basis for all remaining baselines. By allowing each 
baseline to run for a different number of data points, systematic changes in the target 
behavior that are correlated with the onset of intervention can be reliably attributed to 
a treatment effect. Experimental control is strengthened by demonstrating that baselines 
are independent; that is, change is observed only when intervention is applied and does 
not occur during baseline periods. Some examples will help to illustrate this process. 

Sometimes it is of interest to study the effect of one intervention on several related 
clinical behaviors. In the multiple baseline design across behaviors, the researcher 
monitors a minimum of three similar yet functionally independent behaviors in the 
same subject that can be addressed using the same intervention. Each target behavior is 
measured concurrently and continuously, until a stable baseline is achieved. The inter­
vention is then introduced sequentially across the different behaviors. 

Warren and coworkers15 studied the effect of an interactive teaching approach on the 
acquisition of prelinguistic skills in a child with Down syndrome and language delay. 
They focused on three specific components of communication: prelinguistic request­
ing, vocal imitation and commenting. They tallied the number of appropriate 
responses observed during each session. After an initial baseline, training addressed 
requesting toys within the environment, while other behaviors were monitored. Train­
ing strategies were later introduced for imitation and commenting behaviors in a stag­
gered fashion. 

The results shown in Figure 12.7 demonstrate treatment effects most clearly for 
commenting behavior, with moderate gains in vocal imitation and dramatically vari­
able changes in requests. Obviously, the multiple baseline design across behaviors 
requires that the targeted behaviors are similar enough that they will all respond to one 
treatment approach, and that they are functionally independent of one another so that 
baselines will remain stable until treatment is introduced. With many social and phys­
ical variables, this assumption can be problematic. 

If we had used the A-B format for only one of these strategies, these results would 
not have been so definitive because of potential threats to internal validity; however, 
because the results have been replicated across three conditions at staggered times, it is 
highly unlikely that external factors could have coincidentally occurred at the time each 
treatment was initiated to cause the response change. One of the major advantages of 
the multiple-baseline approach is that replication and experimental control can be 
achieved without withdrawal of treatment. In a multiple baseline design across subjects, one intervention is applied to the 
same target behavior across three or more individuals who share common relevant 
characteristics. 

Researchers studied the effectiveness of an intermittent intensive physical therapy 
program for children with cerebral palsy.16 They wanted to demonstrate that rest peri­
ods within the schedule of treatment could be well tolerated. Using an A-B multiple 
baseline design, baseline phases were staggered from 8 to 20 weeks, during which 
time the children received treatment 2 times/week. During the intervention phase, 
they received four treatments/week for 4 weeks, alternated with an 8-week rest 
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FIGURE 1 2.7 Example of a mu ltiple basel ine design across behaviors, showing the effect of effect of 
an i nteractive teaching approach on the frequency of requests, vocal imitations and comments by a chi ld 
with Down Syndrome and language delay. (From Warren SF, Yoder PJ, Gazdag GE, Kim K, Jones HA. Faci l­
itating prelinguistic communication ski l l s  in  young chi ldren with developmental delay. J Speech Hear Res 
1 993; 36: 83-97, Fig. 1 ,  p. 88. Reprinted with permisison of the American Speech-Language-Hearing 
Association.) 
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period. Children were seen over a total of 24 weeks. Changes in motor performance 
were assessed using the Gross Motor Function Measure (GMFM). 

In this study, all subjects showed at least a consistent level of response, with no 
decrement in GMFM scores. The authors concluded that the intermittent intensive ther­
apy schedule was well tolerated and effective compared to the standard schedule of 
2 treatments/week. 

In the multiple baseline design across conditions, one behavior is monitored on 
one individual, with the same treatment applied sequentially across two more environ­
mental conditions. These may be different treatment settings, different instructional 
arrangements, or different clinicians. Experimental control in this design can be demon­
strated only if the target behavior is independent of the environment. Therefore, behav­
ioral change in one environment will not influence behavior in other settings. 

Researchers studied the effects of a computer-based intervention program on commu­
nication functions in children with autismY Software was developed based on daily 
life activities in three settings. Five children between 8 and 12 years old were evalu­
ated during play time, during food activities at breakfast or snack time, and during 
hygiene activities following snacks. Computer intervention was introduced on a stag­
gered basis in each setting. Frequency of appropriate or inappropriate responses was 
measured within an A-B multiple baseline design. 

In this study, the researchers saw that the frequency of relevant sentences clearly 
increased with the use of the software program during play. The level of response was 
minimal during hygiene activities, and the authors commented that this was not an 
activity the children enjoyed. 

Nonconcurrent Mu ltip le Base l ine Design 
A basic premise of the multiple baseline design across subjects is that baseline data are 
available for all subjects simultaneously so that temporal effects cannot contaminate 
results. A variation of this design, called a nonconcurrent multiple baseline design, 
can be used in the common clinical situation in which similar subjects are not available 
for concurrent monitoring.18 This approach requires that the researcher arbitrarily 
determines the length of several baselines, such as 5, 10 and 15 days. When a subject 
who matches the study criteria becomes available, he is randomly assigned to one of the 
predetermined baseline lengths. Baseline data are collected, and treatment is intro­
duced at the appropriate time, assuming baselines are sufficiently stable. If baseline 
data are too variable, the subject is dropped from the study. As other subjects become 
available, they are randomly assigned to the remaining baselines. 

Bailey and coworkers19 studied the treatment of visual neglect in elderly patients with 
stroke. They used a nonconcurrent A-B-A multiple baseline design to examine the effect 
of a scanning and cueing strategy on unilateral visual neglect as measured by a written 
inventory, the Star Cancellation Test (SCT). Seven patients, aged 60 to 85 years, were 
recruited from a stroke rehabilitation unit. Baselines were staggered between 3 and 4 
weeks. Intervention and second baseline (withdrawal) phases each lasted 3 weeks. 
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FIGURE 1 2.8 Example of a nonconcurrent multiple basel ine design across three subjects, showing the 
effects of a scanning and cueing strategy on visual neglect in patients with stroke. The study uses an A-B-A 
design, demonstrating the effect of withdrawing the intervention. Data represent scores on the Star Can­
cel lation Test (SCT), which measures accuracy of finding stars across a page. Baselines were staggered 
between 20 and 28 days. Data for a l l  subjects are quite variable, although retention does appear evident 
for subjects 1 and 3. (From Bai ley MJ, Riddoch MJ, Crome P. Treatment of visual neglect in elderly patients 
with stroke: A single-subject series using either a scanning and cueing strategy or a left-l imb activation 
strategy. Phys Ther 2002;82:782-797, Figures 1 ,  2 and 4, p. 793. Reprinted with permission of the Amer­
ican Physical Therapy Association.) 
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The results for three patients are shown in Figure 12.8. We can see that the 
responses in these subjects are quite variable, making it more difficult to understand the 
effect of intervention. The trend lines in each intervention phase, however, do suggest 
that higher scores (decreased neglect) were evident for each subject. We will discuss 
interpretation of these trend lines shortly. 

The benefit of the nonconcurrent baseline approach is obvious in terms of practical 
research requirements; however, it is a weaker design than the standard multiple base­
line approach because external factors related to the passage of time may be different 
for each baseline. For instance, patients may be tested during different seasons of the 
year, or the clinical environment may change over time. Therefore, the nonconcurrent 
multiple baseline design should be used only when a sufficient number of subjects are 
not available for concurrent study. Because of this potential weakness as an experimen­
tal design, the number of subject replications should be increased as an additional ele­
ment of control. 

DESIGNS WITH MULTIPLE TREATMENTS 
Withdrawal designs represent treatment-no treatment comparisons. Single-subject 
designs can also be used to compare the effects of two treatments. 

Alternating Treatment Design 
One strategy for studying multiple treatments involves the alternating treatment 
design. The essential feature of this design is the rapid alternation of two or more inter­
ventions or treatment conditions, each associated with a distinct stimulus. Treatment 
can be alternated within a treatment session, session by session, or day by day. This 
design can be used to compare treatment with a control or placebo or to compare two 
different interventions, to determine which one will be more effective. Data for each 
treatment condition are plotted on the same graph, allowing for comparison of data 
points and trends between conditions. 

Scheduling of alternated treatments will depend on the time needed to complete 
the treatment condition at each session and the potential for carryover from trial to trial. 
Because treatment conditions are continuously alternated, sequence effects are of pri­
mary concern. This concern must be addressed either by random ordering of the treat­
ment applications on each occasion or by systematic counterbalancing. In addition, 
other conditions that might affect the target behavior, such as the clinician, time of day, 
or setting should be counterbalanced. 

Yoo and Chun�0 investigated the effect of visual feedback and mental practice on 
symmetrical weight bearing in three individuals with hemiparetic stroke. They used a 
multiple baseline design across subjects to compare strategies of visual feedback alone 
or feedback with mental practice on the proportion of body weight borne by the 
affected limb. Interventions were applied using an alternating treatment approach, 
with treatments systematically alternated between morning and afternoon occupa­
tional therapy sessions. 
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Figure 12.9 illustrates the outcome for this study. With relatively stable baselines 
staggered from 4 to 10 sessions, we can see clear changes at the initiation of the inter­
ventions. The advantage of using the alternating treatment design over an A-B-A-B 
design for this type of question is that a prolonged withdrawal is unnecessary, and 
results can be obtained more quickly. 

The alternating treatment design is also called a between-series strategy, indicating 
that analysis is not specifically concerned with trends over time, but that the primary 
focus is comparison of data points between treatment conditions at each session. For 
instance, in Figure 12.9 we see that the visual feedback condition was generally lower 
than the combined condition on each day. This design will work even under conditions 
where responses are very variable or where treatment conditions exhibit similar trends. 

It is actually unnecessary to include a baseline phase in an alternating treatment 
design, just as a control group may not be included in group designs in which two treat­
ments are compared. Baseline data can, however, be useful in situations where both 
treatments turn out to be equally effective, to show that they are better than no treat­
ment at all. 

Because target behaviors are measured in rapid succession, the alternating treatment 
design is appropriate where treatment effects are immediate and where behavior is a 
clear consequence of one specific treatment. The target behavior must be capable of 
changing quickly, and the interventions must be able to trigger those changes as they are 
applied and withdrawn. The alternating treatment design is not useful in situations 
where behavior takes time to change, where learning effects or physiological changes are 
cumulative and long term or where multiple-treatment interference is likely. In those sit­
uations, it would be difficult to separate out the effects of each intervention in alternated 
trials. The major advantage of the alternating treatment design is that it will usually pro­
vide answers to questions of treatment comparison in a shorter time frame than designs 
that require introduction and withdrawal of multiple treatment phases over time. 

Multip le Treatment Designs 
Using a variation of the withdrawal design, a multiple treabnent design typically 
involves the application of one treatment (B) following baseline, the withdrawal of that 
treatment, and introduction of another treatment (C). These two interventions can rep­
resent two different treatments or one intervention and a placebo. In an A-B-C-A 
design, assuming the two treatments have independent and differential effects, we 
should be able to see differences in the target responses across the four phases of the 
study. By replicating the A phase, we provide the control needed to document differ­
ences between the two treatments. 

Clopton et al.21 studied the effect of axial weight loading on gait parameters in indi­
viduals with cerebellar ataxia. Five subjects with ataxic gait ambulated along a fixed 
walkway for five trials in each of four conditions: unweighted (baseline), with 10% 
body weight at the shoulders, with 10% body weight at the waist and a final 
unweighted phase, creating an A-B-C-A design. Several gait parameters were meas­
ured, including velocity, cadence, step length and double support time. 

Figure 12.10 shows the results for the first subject's double support time. Results 
show great variability, with some increase during the period of weight at the waist. This 
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FIGURE 1 2.9 Example of an alternating treatment design with multiple basel ines across three subjects. 
The intervention consisted of visual feedback or visual feedback with mental practice (MP). The propor­
tion of the patient's weight bearing by the affected l imb was measured. Data clearly show changes i n  
weight d istribution immediately fol lowing train ing. The visual feedback plus mental practice condition 
resulted in consistently higher scores for all three participants. (From Yoo E, Chung B. The effect of visual 
feedback plus mental practice on symmetrical weight-bearing training in people with hemiparesis. Clin 
Rehabi/ 2006;20:388-397, Figure 2, p. 394. Reprinted with permission.) 



254 PART I l l  • Designing Cl in ical Research 

Double Support Time 
60 

50 
A B c A 

Gl 40 u >-u 
= 30 Ill 
Cl 

-0 
� 0 20 

1 0  

0
0 5 1 0  1 5  20 

Trials 

FIGURE 1 2. 1 0  Example of an A-B-C-A multiple treatment design, showing the effect of axial weight 
loading on double support time in patients with cerebel lar ataxia. Fol lowing an i n itial basel ine, patients 
were exposed to sessions with 1 0% of their body weight at the shoulders, fol lowed by several sessions 
with 1 0% of their body weight at the waist. Carryover with no weight was monitored in the second base­
l i ne phase. The purpose of i ntervention was to decrease double support time; therefore, a h igher response 
is considered a poorer performance. (Adapted from Clopton N, Schultz D, Boren C. et al .  Effects of axial 
weight loading on gait for subjects with cerebellar ataxia: Prel iminary findings. Neurology Report 
2003;2 7 : 1 5-2 1 ,  Figure 1 ,  p. 1 8. Reprinted with permission.) 

was considered a deterioration in the response. It is important to note in multiple treat­
ment designs, that only adjacent phases can be compared. Therefore, the C phase can­
not be compared to the initial baseline, but only to the reversal in the final phase. 

Single-subject designs can also be used to examine the interactive or joint effect of 
two or more treatments as they are applied individually or as a treatment package. 
Interactive designs are based on variations of an A-B-BC strategy (sometimes writ­
ten A- B-B+C), where BC represents the combined application of interventions B and 
C. In this design, Treatment C is superimposed on Treatment B, so that combined and 
separate effects can be observed. When structuring this type of design, treatment effects 
should be replicated at least once to achieve internal validity. The study of interactions 
requires that only one variable be changed at a time from phase to phase, such as BC-B 
or B-BC, so that changes from isolated to combined conditions can be assessed across 
adjacent phases. 

DATA ANALYSIS IN SINGLE-SU BJ ECT RESEARCH 
Data analysis in single-subject research is based on evaluation of measurements within 
and across design phases, to determine if behaviors are changing and if observed 
changes during intervention are associated with the onset of treatment. Visual analysis 
of the graphic display of data is the most commonly used method. Many researchers 
prefer to use a form of statistical analysis to corroborate visual analysis of time-series 
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data, to determine whether differences between phases are meaningful, or if they could 
have occurred by chance alone. Several authors have described methods for analyzing 
these designs.3,22-24 Statistical analysis provides a more quantitative approach to deter­
mine whether observed changes are real or chance occurrences. In this section we exam­
ine both approaches and discuss some of the more commonly used methods for 
analyzing data from single-subject experiments. 

Visual Analysis 
Visual analysis is used most often to analyze single-subject data because it is intuitively 
meaningful. In contrast to statistical analysis in group designs, this approach focuses 
on the clinical significance of outcomes.25 Data collected in a single-subject experiment 
can be analyzed in terms of within-phase and between-phase characteristics. Data 
within a phase are described according to stability, or variability, and trend, or direc­
tion of change. An analysis of changes between phases is used to evaluate the research 
hypothesis. Phase comparisons can be made only across adjacent phases. These comparisons 
are based on changes in three characteristics of the data: level, trend and slope. Figure 
12.11 shows several common data patterns that reflect different combinations of these 
characteristics. 

Level 
Changes in level refer to the value of the dependent variable, or magnitude of perform­
ance, at the point of intervention. It is judged by comparing the value of the target 
behavior at the last data point of one phase with its value at the first data point of the 
next adjacent phase. For example, Figures 12.11A and B show a change in level from the 
baseline to the intervention phase. 

Level can also be described in terms of the mean or average value of the target behav­
ior within a phase. This value is computed by taking the sum of all data points within a 
phase and dividing by the number of points. Mean levels can be compared across 
phases, as a method of summarizing change. For instance, in Figure 12.11A, mean levels 
for each condition are shown by dotted lines. Means are useful for describing stable data 
that have no slope, as stable values will tend to cluster around the mean; however, when 
data are very variable or when they exhibit a sharp slope, means can be misleading. For 
example, in Figure 12.11C, the dotted lines represent the mean score within each phase. 
On the basis of these values, one might assume that performance did not change once 
intervention was introduced. Obviously, this is not the case. Mean values should always 
be shown on a graph of the raw data to reduce the chance of misinterpretation. 

Trend 
Trend refers to the direction of change within a phase. Trends can be described as accel­
erating or decelerating and may be characterized as stable (constant rate of change) or 
variable. Trends can be linear or curvilinear. Changes in linear trend across phases are 
displayed in Figures 12.11A and C. In Figure 12.11D, no trend is observed during base­
line, and a curvilinear trend is seen in the intervention phase; that is, the data change 
direction within the intervention phase. 
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FIGURE 1 2.1 1 Examples of data patterns across basel ine and intervention phases, showing changes in 
level and trend: (A) change in level and trend (dotted l ines represent means for each phase); (B) change 
in level, no change in trend; (C) change in trend (dotted l ines represent means for each phase); (D) change 
in trend, with a curvi l inear pattern during phase 8; (E) no change in level or trend, but a change in slope. 

A trend in baseline data does not present a serious problem when it reflects changes 
in a direction opposite to that expected during intervention. One would then anticipate 
a distinct change in direction once treatment is initiated; however, it is a problem when 
the baseline trend follows the direction of change expected during treatment. If the 
improving trend is continued into the intervention phase, it would be difficult to assess 
treatment effects, as the target behavior is already improving without treatment. It is 
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important to consider what other factors may be contributing to this improvement. Per­
haps changes reflect maturation, a placebo effect or the effect of other treatments. Insti­
tuting treatment under these conditions would make it difficult to draw definitive 
conclusions. When trends occur in the baseline, it is usually advisable to extend the 
baseline phase, in hopes of achieving a plateau or reversal in the trend, and to try to 
identify causative factors. Those factors may be useful interventions in their own right 
and may provide the basis for further study. 

The slope of a trend refers to its angle, or the rate of change within the data. Slope 
can only be determined for linear trends. In Figure 12.11B, trends in both phases have 
approximately the same slope (although their level has changed). In Figure 12.11E, both 
phases exhibit a decelerating trend; however, the slope within the intervention phase is 
much steeper than that in the baseline phase. This suggests that the rate of change in 
the target behavior increased once treatment was initiated. 

Data analysis in single-subject research has traditionally focused on visual interpre­
tation of these characteristics. Unfortunately, real data can be sufficiently variable that 
such subjective determinations are often tenuous and unreliable. For instance, look 
back at the data in Figure 12.8 for measures of unilateral neglect. Although it is rela­
tively easy to determine that the level of response changed between the baseline and 
the treatment phase, it would not be so easy to determine the trend or slope in these 
data based solely on visual judgment. 

Although interrater reliability of visual analysis is not necessarily strong, '22,26.27 the 
reliability of assessing trend is greatly enhanced by drawing a straight line that charac­
terizes rate of change.2s-31 Several procedures can be used. Lines drawn freehand are 
generally considered unacceptable for research purposes. The most popular method 
involves drawing a line that represents the linear trend and slope for a data series. This 
procedure results in a celeration line, which describes trends as accelerating or decel­
erating. Linear regression procedures can be used to draw a line of best fit, although this 
technique is used less often (see Chapter 24). 

Celeration Line 
A celeration line is used to estimate the trend within a data series. We will demonstrate 
the steps in drawing a celeration line using the hypothetical data shown in Figure 
12.12A. Although we will go through the process for the baseline phase only, in prac­
tice a separate celeration line can be computed for each phase in the design. Celeration 
lines are illustrated in Figures 12.4, 12.6 and 12.8. 

The first step is to count the number of data points in the phase and then to divide 
those points into two equal halves along the X-axis. A vertical line is drawn to separate 
the two halves, as shown by the dotted line in Figure 12.12B. In this example, there are 
10 data points in the baseline phase. Therefore, 5 points fall in each half of the phase. If 
an odd number of data points were plotted, the line would be drawn directly through 
the middle point. The second step is to divide these halves in half again, as shown by the 
broken vertical lines in Figure 12.12C. With 5 data points, the line is drawn through the 
third point in each half. If there were an even number of data points in each half, the line 
would be drawn directly between the two middle points. 
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FIGURE 1 2.1 2 Computation of the "split-middle l ine," or celeration l ine, for baseline data only: 
(A) original data, showing basel ine and intervention series; (8) basel ine points are divided in half along 
the X-axis; (C) baseline points in each half-phase are divided in half again (broken l ines); median values 
for each half-phase are marked with horizontal l i nes; (0) celeration l ine is drawn; (E) celeration l ine is 
shown with continuous basel ine data. 
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The next step is to determine the median score for each half of the phase (using the 
halves created by the dotted vertical line). The median score divides the data in half 
along the Y-axis. This point is obtained by counting from the bottom up toward the top 
data point within each half phase. The point that divides the series in half vertically is 
the median score. For instance, in Figure 12.12B, there are 5 data points in the first half 
of the phase. Therefore, the third score will divide the series in half vertically. If there 
were an even number of points, the median would be midway between the two middle 
points. For our example, counting from the bottom up, these scores are 3, 3, 4, 5 and 5. 
The median score is 4. For the second half of the phase, scores are 5, 6, 6, 6, and 7, with 
a median of 6. A horizontal line is then drawn through each median point until it inter­
sects the broken line, as shown in Figure 12.12C. Finally, a straight line is drawn con­
necting the two points of intersection. This is the celeration line, shown in Figure 12.12D. 

Calculating Slope 
The slope of the celeration line can be calculated to estimate the rate of change in the 
target behavior. Slope is computed by taking Y values on two points along the celera­
tion line, usually spaced 1 week apart (although any useful time period can be used). 
The numerically larger value is divided by the smaller value to determine the slope. For 
example, in Figure 12.12E, the line is at 4 on Day 3 and at 6 on Day 9. Therefore, the 
slope of the line is 6/4 = 1 .50. By looking at the direction of the trend line, we can deter­
mine that this target behavior is increasing at an average rate of 1.50 times per week. 
Slopes can be calculated for each phase in the design, and compared to determine if the 
rate of change in the target behavior is accelerating or decelerating. The difference 
between slopes of adjacent phases can be used to provide a numerical estimate of how 
intervention changes the rate of response. 

Split Middle Line 
The celeration line demonstrates trend in the data. The line can also be used to repre­
sent a measure of central tendency using the split-middle technique. The split middle 
line divides the data within a phase into two equal parts; therefore it represents a 
median point within the phase. To determine if the celeration line fits this model, the 
final step is to count the number of points on or above and on or below the line, and 
then to adjust the celeration line up or down if necessary so that the data are equally 
divided. The adjusted line must stay parallel to the original line; that is, the slope of the 
line does not change. In many cases, the line will not have to be adjusted. In Figure 
12.12, for example, there are four points below the celeration line, four points above it 
and two points directly on the line. Therefore, we do not have to make any adjustments. 

The split-middle line can be used to compare the trend of data across two adjacent 
phases.t To illustrate this method, we have taken the split-middle line that was drawn 
for baseline data in Figure 12.12, and recreated it in Figure 12.13. The line has been 

trhe celeration line can be limited as a means of analysis if the data within a phase are not linear. Ottenbacher 
recommends using an alternative approach to account for nonlinear trends in data called the running medians 
procedure.32 This procedure breaks the data within a phase into three segments, so that nonlinear trends can 
be observed. Refer to Ottenbacher's informative paper for a clear description of this method. 
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FIGURE 1 2.1 3 Celeration l ine for basel i ne and i ntervention phases. The split-middle l i ne for the base­
l ine data is extended into the i ntervention phase to test the nul l  hypothesis. One point in the intervention 
phase fal ls  below the l ine. 

extended from the baseline phase into the intervention phase. If there is no difference 
between the phases, then the split-middle line for baseline data should also be the split­
middle line for the intervention phase. Therefore, 50% of the data in the intervention 
phase should fall on or above that line, and 50% should fall on or below it. If there is a 
difference, and treatment has caused a real change in observed behavior, then the 
extended baseline trend should not fit this pattern. 

Statistically, we propose a null hypothesis (Ho) which states that there is no differ­
ence across phases; that is, any changes observed from baseline to the intervention 
phase are due to chance, not treatment. We also propose an alternative to Ho, which can 
be phrased as a nondirectional or directional hypothesis; that is, we can state that we 
expect a difference between phases (nondirectional) or that responses will increase (or 
decrease) from baseline (directional). For the example shown in Figure 12.13, let's 
assume we propose that there will be an increase in response with intervention. 

To test H0, we apply a procedure called the binomial test, which is used when out­
comes of a test are dichotomous; in this case data points are either above or below the 
split middle line. To do the test, we count the number of points in the intervention 
phase that fall above and below the extended line (ignoring points that fall directly on 
the line). In our example, one point falls below the line and nine points fall above the 
line. Clearly, this is not a 50-50 split. On the basis of these data, we would like to con­
clude that the treatment did effect a change in response; however, we must first pose a 
statistical question: Could this pattern, with one point below and nine points above the 
line, have occurred by chance? Or can we be confident that this pattern shows a true 
treatment effect? 

We answer this question by referring to Appendix Table A.ll, which lists probabil­
ities associated with the binomial test. Two values are needed to use this table. First, we 
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find the appropriate value of n (down the side), which is the total number of points in 
the intervention phase that fall above and below the line (not counting points on the 
line). In this case, there is a total of 10 points. We then determine if there are fewer points 
above or below the extended line. In our example, there are fewer points (one) below 
the line. The number of fewer points is given the value x; therefore, x = 1. The proba­
bility associated with n = 10 and x = 1 is .011, that is, p = .011 .  

The probabilities listed in Table All are one-tailed probabilities, which means they 
are used to evaluate directional alternative hypotheses, as we have proposed in this 
example. H a nondirectional hypothesis is proposed, a two-tailed test is performed, 
which requires doubling the probabilities listed in the table. 

The probability value obtained from the table is interpreted in terms of a conven­
tional upper limit of p = .05. Probabilities that exceed this value are considered not sig­
nificant; that is, the observed pattern could have occurred by chance. In this example, 
the probability associated with the test is less than .05 and, therefore, is considered sig­
nificant. The pattern of response in the intervention phase is significantly different from 
baseline. The concept of probability testing and statistical significance is covered in 
detail in Chapter 18. 

Two Standard Deviation Band Method 
Another useful method of analysis is the two standard deviation band method. This 
process involves assessing variability within the baseline phase by calculating the mean 
and standard deviation of data points within that phase (see Chapter 17 for calculation 
methods for these statistics). Use of the two standard deviation band method is shown 
in Figures 12.5 and 12.10. 

To illustrate this procedure, we have again used the hypothetical data reproduced 
in Figure 12.14. The solid line represents the mean level of performance for the baseline 
phase, and the shaded areas above and below this line represent two standard devia­
tions above and below the mean. As shown in the figure, these lines are extended into 
the intervention phase. If at least two consecutive data points in the intervention phase 
fall outside the two standard deviation band, changes from baseline to intervention are 
considered significant. In this example, the mean response for baseline is 5.0, with a 
standard deviation of 1.33. The shaded areas show two standard deviations above and 
below the baseline mean (±2.66). Eight consecutive points in the intervention phase fall 
above this band. Therefore, we would conclude that there was a significant change from 
the baseline to the intervention phase. 

Serial Dependency 
It is also possible to use conventional statistical tests, such as the t-test and analysis of 
variance (see Chapters 19 and 20), with time-series data; however, these applications 
are limited when large numbers of measurements are taken over time. Under these 
conditions, data points are often interdependent, as is often the case in single-subject 
research.32'33 This interdependence is called serial dependency, which means that suc­
cessive observations in a series of data points are related or correlated; that is, know­
ing the level of performance at one point in time allows the researcher to predict the 
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tive points in the intervention phase fal l  out of this band, the difference between phases is considered 
significant. 

value of subsequent points in the series. Serial dependency can interfere with several 
statistical procedures, and may also be a problem for making inferences based on 
visual analysis.34.35 

The degree of serial dependency is reflected by the autocorrelation in the data, or 
the correlation between data points separated by different intervals, or lags. For exam­
ple, a lag 1 autocorrelation is computed by pairing the first data point with the second, 
the second with the third, and so on for the entire series. Using lag 2, the first data point 
is paired with the third, the second with the fourth, and so on. The higher the value of 
autocorrelation, the greater the serial dependency in the data. Ottenbacheil presents a 
method for computing autocorrelation by hand, but the process is easily performed by 
computer, especially with large numbers of data points. For further discussion of this 
analysis, see the section on time series designs in Chapter 10. 

C Statistic 
The C statistic is a method of estimating trends in time-series data.36 This statistic can 
be computed with as few as eight observations in a phase, and is not affected by auto­
correlation in the data series.3 

Calculations begin with baseline data only, to determine if there is a significant 
trend in Phase A. If there is no significant trend, the baseline and intervention data are 
combined, and the C statistic is computed again to determine if there is a significant 
change in trend across both phases. If the baseline data do show a significant trend, the 
C statistic is less useful.3 
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The process for calculating the C statistic is illustrated in Tables 12.1A and 12.1B. In 
this case, the baseline data do not show a significant trend. The combined data, how­
ever, do show a significant trend. Therefore, we conclude that there is a difference in 
performance from baseline to intervention. 

Statistical Process Control 
Pfadt and colleagues37 introduced a unique application of a statistical model to evalu­
ate variability in single-subject data. This model, called statistical process control 
(SPC), was actually developed in the 1920s at Bell Laboratories as a means of quality 
control in the manufacturing process.38 The basis oft his process lies in the desire to 
reduce variation in outcome; that is, in manufacturing, consistency in production is 
desirable. One can always expect, however, some variation in quality. Cars come off the 
assembly line with some defects; clothing will have irregularities. A certain amount of 
variation is random, expected and tolerable. This variation is considered background 
"noise," or what has been termed common cause variation.23 Statistically, such varia­
tion is considered to be "in control"; that is, the variation is predictable. 

There will be a point, however, at which the variation will exceed acceptable limits, 
and the product will no longer be considered satisfactory for sale; that is, such variation 
identifies problems in production. Such deviation is considered "out of control," and is 
called special cause variation. This is variation that is unexpected, intermittent and 
not part of the normal process. Consider, for instance, the variation in your own signa­
ture. If you sign your name 10 times there will be a certain degree of expected or com­
mon cause variation, due to random effects of fatigue, distraction or shift in position. If, 
however, someone comes by and hits your elbow while you are writing, your signature 
will look markedly different-a special cause variation. We can think of this variation 
in the context of reliability. How much variation is random error, and how much is 
meaningful, due to true changes in response? 

Applying SPC to Single-Subject Data 
We can apply this model to single-subject designs in two ways. First, by looking at base­
line data, we can determine if responses are within the limits of common cause varia­
tion (expected variability).37 This would allow us to assess the degree to which the data 
represent a reasonable baseline. Sometimes extreme variability within a baseline can 
obscure treatment effects.39 We may also find that one point exceeds the limits of com­
mon cause, and can be accounted for by special circumstances, thereby discounting the 
variation as important. For instance, we may find that a patient's responses over the 
baseline period are consistent except for one day when he did not feel well, or a differ­
ent clinician took measurements. By analyzing the circumstances of special cause, we 
can often determine if the response is significant. Consider, for example, the data in 
Figure 12.5. A steadily decreasing trend is noted during the intervention phase, except 
for one point on day 9. The concept of special cause obliges the researcher to reflect on 
possible reasons for this variation. 

We can also look at the degree to which intervention responses vary from baseline, 
with the intent of assigning special cause to the intervention. In other words, we want 
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TABLE 12.1A STEPS IN CALCULATION OF THE C STATISTIC-BASELINE DATA 
{DATA FROM FIGURE 1 2.14) 

Baseline Difference Squared Difference PURPOSE: Test the hypothesis 
Scores Scores• Scores that there is no significant trend 

X O D  fil across phases. Start by determin-
ing if there is a significant trend in 

1 3 baseline data only. 
2 5 2 4 0 Calculate the difference (D) 3 4 1 1 
4 5 1 1 for each adjacent pair of baseline 

5 3 2 4 scores (n2 - n1 and n3 - n2 and 

6 6 3 9 so on). Signs are ignored. 

7 7 1 1 8 Square each of the range 
8 5 2 4 scores and calculate the sum of 
9 6 1 1 the squared values (�£)2}. 

1 0  6 0 0 
8 'l:.D2 = 25 

Mean Squared e Calculate the mean baseline 
Baseline Baseline Difference Mean score 
Scores Mean Score Difference 

X X {X - X) {X - X)2 X = 
'l:.

n

X 
= �� = 5.0 

1 3 8 5  8 -2 0 4  
2 5 5 0 0 8 Calculate the difference 
3 4 5 - 1  1 between each score and the base-
4 5 5 0 0 line mean (X - :X) 
5 3 5 -2 4 
6 6 5 1 1 4D Square these values (X - X)2 
7 7 5 2 4 tD Calculate the sum of the 
8 5 5 0 0 squared difference scores, 
9 6 5 1 1 �(X - X)2 

1 0  6 5 1 1 
'l:.X = 50 (t 'l:.(X - X)2 = 16  

0 Calculate the C statistic 

25 25 c = 1 - 2(16) = 1 - 32 = 1 - .78 = .22 

0 Calculate the standard error (SE) of the baseline scores, based on the number of baseline values � n - 2  ra-
SE = 

(n - 1 )(n + 1 )  = V (9)(11} = .284 
G) Calculate a z score to determine if the C statistic is significant 

c .� 
ed) z = SE = 

.284 = 
O.n If z ;?;  1 .645, there is a significant trend in baseline (one-tail . 

CONCLUSION: Because z < 1 .645, there is no significant trend in baseline scores. 

"There will be one fewer difference scores than baseline scores. 
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TABLE 12.1 B CALCULATION OF THE C STATISTIC-BASELINE AND INTERVENTION 
DATA COMBINED {DATA FROM FIGURE 1 2.14) 

Baseline and Squared Mean Squared 
Intervention Difference Difference Difference Mean 

Scores Scores Scores Mean Score Difference 
X D o2 X {X - X) {X - X)2 

1 3 9.2 6.2 38.44 
2 5 2 4 9.2 4.2 1 7.64 
3 4 1 1 9.2 5.2 27.04 
4 5 1 1 9.2 4.2 1 7.64 
5 3 2 4 9.2 6.2 38.44 
6 6 3 9 9.2 3.2 1 0.24 
7 7 1 1 9.2 2.2 4.84 
8 5 2 4 9.2 4.2 1 7.64 
9 6 1 1 9.2 3.2 1 0.24 

1 0  6 0 0 9.2 3.2 1 0.24 
1 1  1 0  4 1 6  9.2 -0.8 0.64 
12  1 2  2 4 9.2 -2.8 7.84 
1 3  1 9  7 49 9.2 -9.8 96.04 
14  1 5  4 1 6  9.2 -5.8 33.64 
1 5  12  3 9 9.2 -2.8 7.84 
1 6  1 4  2 4 9.2 -4.8 23.04 
1 7  1 3  1 1 9.2 -3.8 14.44 
1 8  1 5  2 4 9.2 -5.8 33.64 
1 9  9 6 36 9.2 0.2 0.04 
20 1 5  6 36 9.2 - 5.8 33.64 

�X = 1 84 �02 = 200 �(X - X)2 = 443.20 

Calculate the C statistic 

C = 1 -
�02 

2(�(X - X)2) 
200 200 

c = 1 - 2(443.20) = 1 - 886.40 = 1 - ·23 = .7? 

Calculate the standard error (SE) based on the total number of scores 

E - I n - 2 - /TB _  S - V (n - 1 )(n + 1 ) - V (19)(21) - ·2 1 2  

Calculate a z score to determine if the C statistic is significant 

c .77 
z = SE = 

_2 1 2  = 3.63 If z � 1 .645, there is a significant trend (one-tailed). 

CONCLUSION: There is a significant trend from baseline to intervention. 
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the treatment to cause a meaningful change in the subject's response. Statistical process 
control offers a mechanism to determine if variations in response are of sufficient mag­
nitude to warrant interpretation as special cause.23 

Upper and Lower Control Limits 
Statistical process control is based on analysis of graphs called control charts. These are 
the same as the graphs we have been using to show the results of single-subject data, 
although some differences exist depending on the type of data being measured. The 
"X-moving range chart" (X-mR)§ is used with continuous variables, and will be used 
most often with single-subject data. Other charts should be used when data are binary 
outcomes or counts.24 Statistical process control charts can be drawn using SPSS® soft­
ware under the Graph function. 

In SPC, the interpretation of data is based on variability around a mean value. A 
central line is plotted, representing the mean response for the phase. An �pper control 
limit (UCL) and lower control limit (LCL) are then plotted at 3 standard deviations 
above and below the mean.** Regardless of the underlying distribution, almost all data 
will fall within ±3 sd from the mean if the data are stable; that is, if the process is in sta­
tistical contro1.40 Therefore, these boundaries define the threshold for special cause.tt 

Although there is some variability in defining the criteria for special cause, the most 
common set of rules is:23•39•40 

1. Any one point that falls outside the upper or lower control limits (see Figure 
12.15A). 

2. Seven or more consecutive points all above or all below the center mean line, 
called a "run" (see Figure 12.15B). 

3. Six or more consecutive points moving up or down across the center mean line, 
called a "trend" (see Figure 12.15C). 

Consider once again the hypothetical data in Figure 12.16. Calculation of the UCL 
and LCL values are shown in Table 12.2. The baseline data all fall within the upper and 
lower control limits, demonstrating common cause or chance variation. This is what we 
would hope to see in a stable baseline. We then extend the control limits into the inter­
vention phase to determine if special cause is present once we have initiated treatment. 
We can see that 9 points fall outside the UCL, indicating that there is a significant dif­
ference in the response during the intervention phase. 

§'yhe moving range is analogous to the difference score used to calculate the C statistic. The difference 
between each pair of adjacent scores is calculated. The mean of the moving range scores is used to determine 
the standard deviation to determine the upper and lower control limits (see Table 12.2). 
**A 3--standard deviation band around the mean theoretically represents 99.74% of all the data around that 
mean. Note that the standard deviation used for this model is not the same as the standard deviation typi­
cally calculated for a distribution of scores (as illustrated in Chapter 17). See Table 12.2 for calculations. 
ti-Jhe upper and lower control limits set boundaries that are analogous to the level of significance in standard 
statistical testing. Using a band of 2 standard deviations, the limit of Type I error is held to less than 5%, which 
fits conventional significance tests. With a time series design, however, each plotted point is a basis of com­
parison, and therefore each one contributes to the overall probability of Type I error.40 To control for this 
potential inflation the 3--standard deviation band is used, keeping the potential for Type I error at 0.26%. For 
additional discussion of Type I error, see Chapters 18 and 21. 
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FIGURE 1 2.1 5 I l lustration of criteria for special cause in a statistical process control chart: (A) Any one 
point that fal ls outside the upper or lower control l imits; (B) Seven or more consecutive points a l l  above 
or below the center mean l ine; (C) Six or more consecutive points moving up or down across the center 
mean l ine. Broken l ines represent upper and lower control l imits. 



268 

20 
18 
16 

.... 14 0 ·s: cu 12 .s::. � 10 
� 8 as 1- 6 

4 
2 
0 

PART I l l  • Designing Clin ical Research 

UCL 

A 

Baseline 

- - - - - - - - - - - - - - - - - - - - - - - - -

LCL 

B 

Intervention 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3 5 7 9 1 1  1 3  1 5  1 7  19  
Treatment Sessions 

FIGURE 1 2.1 6 Statistical control chart (X-mR chart) showing upper and lower control l imits based on 
3 standard deviations above and below the basel ine mean. Al l  basel ine scores fal l  with in  the control l i m­
its, indicating common cause variation. N ine of ten points in the intervention phase fal l  outside the upper 
control l imit, indicating that there is  a significant difference in response during the intervention phase. 

As a process for total quality control, SPC can be used within healthcare settings to 
monitor variation in service delivery and health outcomes. The reader is encouraged to 
consult several excellent references that discuss this application.40-44 

GENERALIZATION OF FINDINGS 
The special appeal of single-subject research is that it focuses on clinical outcomes and 
can provide data for clinical decision making. With this intent, then, it is not sufficient to 
demonstrate these outcomes during an experimental period. It is also necessary to show 
that improvements or changes in behavior will occur with other individuals under con­
ditions that differ from experimental conditions, and will be sustained after the interven­
tion has ended. The term generalization is used in this sense to represent a limited form 
of external validity for the single case. Although significant effects on a single patient 
provide no "proof" that a treatment will work for others, it is not unreasonable to 
assume that the treatment will work for other patients with similar characteristics. 

The important contribution of single-subject research is that the specific character­
istics of the treatment and the circumstances in which the treatment is successful can be 
delineated, so that this assumption can be tested. Clinicians can begin to ask questions 
about which specific patient traits are relevant. In addition, visual inspection of individ­
ual performance allows the researcher to observe clinically strong effects that would not 
necessarily have been statistically significant (and would therefore have been ignored). 
Therefore, results from single case designs may actually provide more "real world" 
insight and understanding of individual responses than data from group studies. 
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TABLE 1 2.2 CALCULATION OF CONTROL LIMITS FOR THE X-MOVING RANGE 
CHART (X-Mr) FOR DATA IN FIGURE 12.14. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0 

Baseline 
Score 

X 

3 
5 
4 
5 
3 
6 
7 
5 
6 

_6 

0 Y.X = 50 

8 Moving Range 
Score 

R 

2 
1 
1 
2 
3 
1 
2 
1 

_o 

$ Y.R2 = 1 3  

0 Compute the mean baseline score, X 
X = Y.nX = �� = 5.0 

8 Compute the moving range (R) of each two 
adjacent data points. a Signs are ignored. 

$ Compute the mean moving range, Fi 
R = y_� = 

1 3  
= 1 .44 n - 1 9 

0 Compute the standard deviation of the moving range, sb 

R 1 .44 
s 

= 1 . 1 28 
= 

1 . 1 28 
= 1 "28 

0 Calculate the upper and lower control limits for baseline scores 

UCL = X + 3s 
= 

5.0 + 3(1 .28) = 8.84 

LCL = X - 3s = 5.0 - 3(1 .28) = 1 . 1 6  

•There will be one fewer R values than data points. This is the same process as described for the difference 
scores (D) in Table 12.1 A. 

1>-rhe denominator for calculation of the standard deviation based on the moving range is a constant, 1 . 128.24 

Direct Repl ication 
To demonstrate external validity, it is  necessary to replicate the results of single-subject 
experiments across several subjects or by repeating the study on the same subject. This 
is called direct replication. The setting, treatment conditions, and patient characteris­
tics should be kept as constant as possible. External validity becomes stronger as results 
accumulate across subjects, establishing what types of patients respond favorably to the 
treatment. One successful single-subject experiment and three successful replications 
are considered sufficient to demonstrate that findings are not a result of chance.45,46 
Multiple baseline designs provide direct replication. 

Systematic Repl ication 
Systematic replication is used to demonstrate that findings can be observed under 
conditions different from those encountered in the initial experiment. Systematic repli­
cation should occur after generalization across subjects has been established through 
direct replication. The purpose of systematic replication is to define the conditions 
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under which the intervention will be successful or fail. It is, in essence, a search for 
exceptions.45 It involves the variation of one or two variables from the original study in 
an attempt to generalize to other similar, but not identical, situations. For instance, the 
target behavior can be monitored in different settings than the original study; different 
clinicians, support personnel, or family members can perform the intervention; the 
treatment may be given at different times of day; or different types of equipment may 
be used. The continued success of intervention under these changed conditions pro­
vides strong evidence supporting application of the treatment under clinical conditions 
that typically cannot incorporate experimental controls. 

For example, in a study of children who suffered from asthma, the children were 
tested for their ability to use inhalation equipment.47 They were given specific rewards 
for proper use of the equipment within special training sessions, and demonstrated suc­
cessful learning. It was then of interest to establish that the children could maintain 
their performance when they were actually exhibiting asthmatic symptoms. To evalu­
ate this generalization, the investigators told the children that the "intervention," the 
reward strategies, would continue if they used the equipment properly whenever it was 
really needed. Follow-up data, provided by the nursing staff, supported the generaliza­
tion of the target behavior to actual treatment situations. 

We can also incorporate a follow-up or maintenance phase in a single-subject design, 
which involves monitoring the target behavior after the intervention is stopped, often 
weeks or months later. For example, in a study of naming deficits in patients with 
aphasia, accuracy was assessed at baseline, during intervention, and again at 6 and 10 
weeks following completion of the study.48 These single measures can be shown on the 
graphs, indicating the level of retention. Follow-up is important when the intent of 
treahnent is to effect a permanent change in behavior. 

Cli nical Repl ication 
Although we have attempted to define the process of single-subject research using a 
clinical model, in reality the fit is less than perfect. Treahnent plans are not developed 
around isolated patient problems, nor are they based on partitioned treatment compo­
nents. In the long run, then, the true applicability of research data will depend on our 
ability to demonstrate that treatment packages can be successfully applied to patients 
with multiple behaviors that tend to cluster together. Barlow and Hersen45 have called 
this process clinical replication. Such a procedure may be considered field testing; 
that is, clinical replication becomes one with actual practice. 

Clinical replication is an advanced replication procedure, which can occur only 
after direct replication and systematic replication have supplied the researcher with 
well defined relationships between treatment components and patient characteristics. 
After testing these relationships one at a time, the researcher can begin to build clinical 
strategies by combining and recombining successful treatments for coexisting prob­
lems. For example, consider the multitude of problems inherent in disorders such as 
stroke, cerebral palsy, autism, and low back dysfunction. Many of the "treatments" that 
are used to address these problems incorporate a variety of techniques, with expected 
overlapping and combined effects. In fact, these treahnent programs are not always 
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successful. A comprehensive process of clinical replication is really the only way to 
establish the conditions under which we can expect positive results. 

Social Val idation 
Beyond the question of external validity, which concerns generalization of findings to 
different subjects and settings, behavioral analysts are also interested in the importance 
of treatment effects within a social context. Social validity is based on the significance 
of the goals of interventions, the acceptability of procedures by target groups, and the 
importance of the treatment's effect.49 These determinations may be made by patients, 
families or caregivers, or they may be applied within a broader framework by epidemi­
ologists and clinicians. 50 Social validity is considered important especially with regard to 
behavior change strategies, to assure that interventions will be appreciated and adopted. 

This is a practical issue, based on whether interventions are satisfactory and per­
ceived as useful. Procedures that are intrusive or impractical are less likely to be used, 
and therefore, less important to study. For example, researchers used a single-subject 
withdrawal design to study the effect of using therapy balls as seating for young chil­
dren with autism spectrum disorder on their classroom behavior.51 The study showed 
improved behavior, and at the completion of the study, surveys of teachers, staff and 
parents working with participants showed that they were satisfied with the results and 
wanted to use the balls for classroom and home seating. 

Although social validation is not required for establishing treatment effectiveness, 
it has always been recognized as an important element of treatment planning and deci­
sion making. It serves a valuable function in the interpretation of clinical research find­
ings as evidence for practice. Measures of social validation should be encouraged as a 
critical link between single-subject research and the treatment planning process. 

COMM ENTARY 

Documenting Wisely 

The maturation of single-subject research methodology has been an important step 
i n  the development of c l i n ical research .  It provides an opportun ity for the practi­
tioner to evaluate treatment procedures with in  the context of c l in ical care, and to 
share ins ights about patient behavior and response that are typical ly ignored or 
ind iscern ible using traditional research approaches. The single-subject design offers 
a logical method for judging c l in ical sign ificance of data.52 The process of s ingle­
subject research should eventual ly d imin ish the role of trial and error in c l i n ical 
practice and provide useful guidel ines for making c l in ical choices. The underlying 
message in  a l l  of this is that the c l i n ician, working in  the practice setti ng, is un iquely 
qual ified to perform these studies. Th is is especial ly true in terms of the importance 
of c l i n ical repl ication. 

Statistical procedures can be a useful adjunct to visual analysis for interpret­
ing the resu l ts of single-subject experiments, although there is no agreement on 
one appropriate method for a l l  studies. Th is is especia l ly true in situations where 
data variabi l ity makes subjective assessments of change difficult and inconsistent. 
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Because many analysis procedures are avai lable, c l i n ical researchers must be able 
to decide what type of documentation i s  appropriate for a particular study. Thi s  deci­
sion must be based on the nature of the target behavior, the expected d i rection of 
change, variab i l ity in the data, the extent of treatment effects, and the way c l in ical 
outcomes wi l l  be i nterpreted. Us ing more than one method with i n  a study is often 
advisable to determine the degree of consistency i n  find ings. 

Of course, s ingle-subject designs are not a panacea for al l  c l in ical research 
woes. Many research questions cannot be answered adequately using these designs. 
S ingle-subject designs can be l im ited in that they requ i re time to document out­
comes. They are not readi ly  appl icable to acute situations where basel ine periods are 
less reasonable and treatment does not continue for long periods. I n  addition, 
researchers often find that patient responses are too unstable, making attempts at 
analysis very frustrating. Nonetheless, single-subject designs serve a d istinct purpose 
in the ongoing search for scientific documentation of therapeutic effectiveness. They 
offer a practical methodology for exploring cause-and-effect relationships i n  c l i n ical 
phenomena and for sorti ng out the effects of i ndividual patient characteristics on 
treatment outcomes. 

These designs are flexible enough to provide opportunities for examin ing the 
relationships among impai rments, activity l im itations and disabi l ity measures. As the 
emphasis on evidence-based practice continues in rehabi l itation research, the single­
subject strategy provides a un ique opportunity to explore these relationships and to 
ask questions about those factors that may impact i ndividual patients. Group designs 
wi l l  often h ide these factors or cancel their effect, giving us no i nformation with which 
to critica l ly examine the differences among our patients. Because of the emphasis on 
visual presentation and continuous description of responses over time, s ingle-subject 
experiments can be the source of empirical hypotheses that lead to new avenues of 
study and to the discovery of c l in ical impl ications that would not otherwise be seen 
or shared. This  process wi l l  force us to chal lenge c l in ical theories and to document 
the benefits of our i nterventions in a convincing scientific way, for ourselves and for 
others. Pooled results from several i ndividual single subject trials could extend the 
conc lusions beyond the i ndividual patient, and help to characterize a subset of 
responders to a specific treatment or clarify the heterogeneity of the disease. 53 
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The complexity of human behavior and clinical phenomena present a considerable 
challenge to the clinician and researcher. In many situations, the impetus for a research 
study is the need to understand how human attributes and environmental characteris­
tics interact to control behavioral responses. As clinical scientists continue to question 
how we can achieve optimal outcomes under defined clinical conditions, we must 
examine the multiple factors that influence our patients' and clients' lives. Studies that 
help us gather this information are considered observational because data are col­
lected as they naturally exist, rather than through manipulation of variables as in exper­
iments. Observational studies may be considered descriptive or exploratory. 
Descriptive studies will be described in the next chapter. 

Exploratory research is the systematic investigation of relationships among two 
or more variables. Researchers use this approach to predict the effect of one variable on 
another, or to test relationships that are supported by clinical theory. Diagnostic and 
prognostic factors are identified through exploration of their relationships with the 
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results of specific tests and patient outcomes. This type of research is usually guided by 
a set of hypotheses that help to structure measurements and interpretation of findings. 
For example, researchers have used this approach to study the relationship between 
long-term medical conditions and depression,1 and to demonstrate the association of 
decreased muscle mass and strength with loss of mobility and function in older men 
and women.2 Miles and colleagues3 used a predictive model to identify outcomes and 
risks associated with different subgroups of autism, to assist with prognostication and 
counseling. 

Observational studies may involve prospective data collection or retrospective 
analysis of existing data, and may be designed using longitudinal or cross-sectional 
methods. Correlational methods are generally used to develop predictive models, 
which may be used for diagnostic or prognostic purposes. Observational studies may 
be used to determine the risk of disease associated with specific exposures. Such 
designs may include an explicit comparison group, allowing the investigator to deter­
mine if the rate of disease or disability is different for those exposed or unexposed to 
the factor of interest. Case-control and cohort studies are observational analytic designs 
that are intended to study risk factors associated with disease or disability and specific 
exposures or conditions. Methodological research uses correlational methods to focus 
on reliability and validity of measurement tools. Historical research provides an oppor­
tunity to use data from the past to analyze current issues. The purpose of this chapter 
is to describe these research approaches and their various configurations. 

RETROSPECTIVE AND PROSPECTIVE RESEARCH 
Exploratory research can be carried out retrospectively or prospectively (see Figure 13.1) .  
In prospective research variables are measured through direct recording in the present. 
The researcher follows subjects as they progress through their treatment or evaluation. 
The researcher is thereby able to identify the factors that precede given outcomes. 

Retrospective research involves the examination of data that have been collected 
in the past, often obtained from medical records, databases or surveys. With retrospec­
tive studies the researcher does not have direct control of the variables under study 
because they have occurred in the past or they represent attribute variables that cannot 
be manipulated. The researcher cannot control operational definitions of variables or 
the reliability or completeness with which data were collected. Therefore, the accuracy 
and credibility of the data source are important considerations. Retrospective data, 
however, represent an important source of information because many research ques­
tions can only be answered using data that have already been collected. 

As an example, Sellers and co-workers4 were interested in developing criteria to 
predict prolonged ventilator dependence in patients who have experienced severe 
bums. They reviewed medical records of patients who had been admitted over a 4-year 
period who required ventilator support, and successfully documented a series of objec­
tive factors that were effective predictors. 

Prospective studies are more reliable than retrospective studies because of the 
potential for greater control of data collection methods and the ability to document a 
temporal sequence of events. 
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FIGURE 1 3.1 Graphic representation of the direction of inquiry for prospective and retrospective 
designs, and the relationship between longitudinal and cross-sectional research. 

LONGITUDINAL AN D CROSS-SECTIONAL RESEARCH 

Longitudinal Research 
In a longitudinal study the researcher follows a cohort of subjects over time, perform­
ing repeated measurements at prescribed intervals (see Figure 13.1). The advantage of 
the longitudinal method is its ability to accumulate data through intensive documenta­
tion of growth and change on the same individuals. Longitudinal data are collected in 
a time sequence that allows for documentation of the direction as well as the magnitude 
of change over time. This lets the researcher describe patterns of change and suggest 
causal relationships between variables.5 Some researchers argue that longitudinal 
designs must be prospective/ although others assert a broader view that both prospec­
tive and retrospective methodologies can be incorporated into longitudinal research.5 

Many longitudinal studies involve large databases that follow a cohort of subjects 
over an extended period. These include ongoing surveys such as those under the aegis 
of the National Center for Health Statistics,7 including the National Health Interview 
Survey,8 the National Survey of Early Childhood Health,9 and the National Health and 
Nutrition Examination Survey.10 Other examples of longitudinal databases include the 
Nurses Health Study/1 the National Spinal Cord Injury Database,l2.13 and the Medicare 
Current Beneficiary Survey.14•15 One of the most famous longitudinal studies is the con­
tinuing Framingham Heart Study, begun in 1948, now crossing two generations.16 
These surveys represent decades of data that have been used in the study of disease, 
physical function and health care. 

Researchers using a longitudinal approach face many practical difficulties, most 
notably the extended obligation to a single project, requiring long-term commitment of 
funds and resources. Once a longitudinal study is begun, changes can jeopardize the 
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validity of all previous data. Subjects cannot be replaced, and their compliance must be 
ensured. Internal validity of longitudinal studies can be threatened by testing effects 
because subjects are tested repeatedly, by attrition because of the long data collection 
time, and by confounding variables that may coincidentally affect the developmental 
sequence that is being evaluated. 

Cross-Sectional Research 
In a cross-sectional study, the researcher studies a stratified group of subjects at one 
point in time and draws conclusions about a population by comparing the characteris­
tics of those strata (see Figure 13.1). The cross-sectional approach has been used more 
often than the longitudinal study because of its obvious efficiency. In addition, cross­
sectional studies are not threatened by testing or history effects because subjects are 
tested only once, and all subjects are tested at relatively the same time. The major threat 
to validity in cross-sectional studies is selection; that is, it is difficult to know to what 
extent results reflect the effects of age or the passage of time versus the effects of extra­
neous sampling variables. 

Many of the extraneous variables that interfere in cross-sectional studies pertain to 
cohort effects, that is, effects that are not age specific but are due to a subject's gener­
ation or time of birth. Subjects can differ in quality, style or duration of education, expo­
sure to information about health, or historical events that influenced life choices and 
practices. For example, suppose we were interested in studying the development of car­
diovascular risk factors using a cross-sectional approach. We include present-day eld­
ers who were born at the beginning of the 20th century, adults who were born after 
World War II, and younger subjects born after 1960. We might observe significant vari­
ation in health variables across these three age groups; however, based on this evidence 
alone we cannot conclude that these factors normally change with age. The differences 
may have some age-related basis, but it is also likely that life experiences play an impor­
tant role. For instance, the elders did not have the benefits of growing up in a world of 
improved medical technology and media campaigns about physical fitness and diet. 
Therefore, conclusions about age effects may be threatened by the extraneous effects of 
cohort differences 

CORRELATION AND PREDICTION 
The foundation of exploratory study is the process of correlation, a measure of the 
degree of association among variables. Correlation is a function of covariation in data, 
that is, the extent to which one variable varies directly or indirectly with another vari­
able. We measure the strength of this relationship using a correlation statistic. The reader 
is referred to Chapters 23, 24 and 29 for descriptions of specific correlation methods. 

In exploratory studies, researchers do not attempt to control or manipulate the vari­
ables under study, only to measure how they vary with respect to each other. Therefore, 
exploratory studies are not used to test differences between groups or to establish the 
presence of cause-and-effect relationships between independent and dependent vari­
ables. This is an important distinction when interpreting correlational outcomes. There 
may appear to be a strong correlation between two variables, X and Y, because there is 



CHAPTER 1 3  • Exploratory Research: Observational Designs 281 

actually some third variable, Z, that causes both X and Y For instance, we might find 
that the inability to climb stairs is correlated with poor knee strength in patients with 
osteoarthritis; however, the cause of the functional limitation may actually be knee pain, 
which is also related to measurable weakness in knee muscles. Exploratory research will 
often provide evidence of a relationship that can then be tested using experimental tech­
niques to determine if one variable can be considered the cause of the other. 

Correlational and Predictive Stud ies 
The purpose of a correlational study is to describe the nature of existing relationships 
among variables. Data from this type of study often provide the rationale for clinical 
decisions or the generation of hypotheses. Researchers will often look at several vari­
ables at once to determine which ones are related. For instance, in a prospective study, 
Higgins17 examined the perception of fatigue in chronically ill patients who were 
undergoing long-term mechanical ventilation. She examined the effect of nutritional 
status, depression and sleep on fatigue, and found a strong relationship only between 
fatigue and depression. This relationship can be used to foster appropriate interven­
tions for this population. 

A predictive correlational study is designed to predict a behavior or response 
based on the observed relationship between that behavior and other variables. Predic­
tive designs can be used to develop models that can serve as a basis for clinical decision 
making, to understand factors that impact the success of interventions. This approach 
is especially useful for validation of diagnostic and prognostic information. A statistical 
technique called regression is used to establish the accuracy of prediction (see 
Chapters 24 and 29). 

Predictive studies are also often used in the process of diagnosis for validation of 
a measurement tool. For instance, Rutledge et al18 identified problems in using the 
Glasgow Coma Scale (GCS) in intubated patients, because the scale requires verbal 
responses that are blocked by intubation. The purpose of their study, therefore, was to 
develop a basis for predicting the verbal score using only the motor and eye responses 
of the scale. The authors designed a prospective study to assess patients in an intensive 
care unit who could provide verbal responses. They used a multiple regression proce­
dure to determine if the motor and eye variables were strong predictors of the verbal 
score, resulting in the following regression equation: 

Verbal score = 2.3976 + (0.9253 x GCS motor) + (-0.9214 x GCS eye) 

+ (0.2208 X GSCmotor2) + (0.2318 X esc eye2) 

To evaluate this equation, we could take a single patient's eye and motor responses 
and, by substituting them in the equation, predict the expected verbal score. The pre­
dicted value will not be totally accurate; that is, there is likely to be some degree of error 
in the equation. We can look at the actual verbal score for that patient and determine 
the difference between the observed and expected values. A strong model will demon­
strate little discrepancy between these values. In this study, the accuracy of the model 
was extremely high, predicting 83% of the variance in the verbal score. The ultimate 
purpose of developing the model is to extend its use to a different set of subjects. There­
fore, the model must be cross-validated by testing it on different groups. For example, 
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Meredith et al19 tested this equation using a retrospective sample of over 14,000 patients 
taken from a trauma registry by comparing their predicted and actual GCS scores. Their 
findings supported the predictive validity of the model, confirming the ability to deter­
mine an accurate GCS score in the absence of a verbal component. Based on these find­
ings, the equation could be used with some confidence with patients who are intubated 
to predict their verbal score. 

Prediction has become an important research goal in outcomes research as well, 
with a focus on determining those factors that contribute to or detract from successful 
clinical outcomes. As an example, Saposnik et al20 studied factors that were related to 
the degree of improvement within 24 hours following acute stroke in patients who 
received thrombolytic therapy. They found that elevated glucose level, time to throm­
bolytic therapy, and cortical involvement were predictors of lack of improvement at 
24 hours, and that this lack of improvement was also associated with poor outcome and 
death at 3 months. As clinicians continue to explore models of health and function, 
these types of studies will prove essential for testing assumptions about the relation­
ships among impairments, activity limitations and disability. 

Theory Testing 
Another purpose for correlational study is the testing of theory. With this approach, the 
researcher chooses specific variables for study, based on expected relationships derived 
from deductive hypotheses. This approach is illustrated in a study by Rauch et al,21 who 
used regression statistics to test the theory that developmental changes in bone strength 
are secondary to the increasing loads imposed by larger muscle forces. They hypothe­
sized, therefore, that increases in muscle strength should precede increases in bone 
strength. They investigated the relationship between lean body mass (as a surrogate 
measure of muscle strength) and bone mineral content (as a measure of bone strength) 
in 138 boys and girls who were longitudinally examined during pubertal development. 
They were able to demonstrate a consistent temporal pattern of peak body mass pre­
ceding peak bone mineral content. Their analysis was able to establish an association 
between body mass and bone strength, independent of gender and height. These 
authors also understood the limitation of correlational analysis for deriving cause and 
effect conclusions, and speculated that their findings do not exclude the hypothesis that 
the two processes are independently determined by genetic mechanisms. 

CASE-CONTROL STUDIES 
A case-control study is a method of epidemiologic investigation in which groups of 
individuals are selected on the basis of whether or not they have the disorder under 
study. Cases are those classified as having the disorder, and controls are chosen as a com­
parison group without the disorder. The investigator then looks backward in time, via 
direct interview, mail questionnaire or chart review of previously collected data, to 
determine if the groups differ with respect to their exposure histories or the presence of 
specific characteristics that may put a person at risk for developing the condition of 
interest (see Figure 13.2). The assumption is that differences in exposure histories 
should explain why more cases than controls developed the outcome. 
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Determine Identify cases and 
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FIGURE 1 3.2 I l l ustration of a case-control design. Note the d i rection of i nquiry is retrospective. Sub­
jects are chosen based on their status as a case or control, and then exposure status is determ ined. 

For example, a retrospective case-control design was used to investigate the 
hypothesis that the occurrence of knee osteoarthritis (OA) may be related to the dura­
tion of participation in some forms of sport and active recreation.22 The only strong 
association found was a greatly increased risk of knee OA with a previously sustained 
knee injury. The researchers found that subjects who had had a knee injury were 
8 times more likely to have knee OA than those who did not have an injury. The 
exercise/sports variables did not demonstrate such a significant relationship. There­
fore, the authors concluded that there was little evidence to suggest that increased lev­
els of regular physical activity throughout life lead to an increased risk of knee OA 
later in life. Procedures for calculating risk estimates for case control studies are 
described in Chapter 28. 

The advantage of the case-control design is that samples are relatively easy to 
gather. Therefore, case-control studies are useful for studying disorders that are rela­
tively rare, because they start by finding cases in a systematic manner. Case-control 
methods are especially applicable for analyzing disorders with long latency periods, 
where longitudinal studies would require years to identify those who developed the 
disease. A disadvantage of case-control studies is the potential for uncertainty in the 
temporal relationship between exposure and disease. In addition, the proportion of 
cases and controls in the study is not related to the proportion of cases in the popula­
tion. Therefore, findings must be subjected to scrutiny in terms of the potential for bias. 
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Results of case-control studies, however, do provide estimates that may support a causal 
relationship between risk factors and disease when combined with other evidence. 

Selection of Cases and Controls 
The validity of case-control studies is dependent on several design issues. Perhaps most 
obvious are the effects of case definition and case selection. Case definition refers to 
the diagnostic and clinical criteria that identify someone as a case. These criteria must 
be comprehensive and specific, so that cases are clearly distinguished from controls and 
so that the study sample is homogeneous. Case definitions for many diseases have been 
developed by the Centers for Disease Control and Prevention (CDC) and the World 
Health Organization (WHO). At times, these definitions are revised to reflect recent 
medical findings, as in the increasingly comprehensive definition of AIDS. Clinical 
diagnoses are sometimes more difficult to define or control. For instance, disorders such 
as birth defects, hemiplegia, cerebral palsy and low back pain can be manifested in 
many different forms. Therefore, the specific characteristics that qualify an individual 
as having the disease or disability must be spelled out in detail. The population to 
which results will be generalized is defined according to these characteristics. 

Selection of Cases 
Once the case definition is established, criteria for case selection must be developed. 
Cases may be identified from all those who have been treated for the disorder at a spe­
cific hospital or treatment center, or they may be chosen from the larger general popu­
lation of those with the disorder. A population-based study involves obtaining a 
sample of cases from the general population of those with the disorder. In a hospital­
based study, cases are obtained from patients in a medical institution. The latter 
approach is more common because samples are relatively easy to recruit and subjects 
are easy to contact. The population-based study affords greater generalizability, but is 
often too expensive and logistically unfeasible. 

The researcher must also determine whether the study should include new or exist­
ing cases. The difference, of course, is that with existing cases duration of illness is not 
accounted for. If the duration of a condition is not related to exposure, then a case-control 
study using existing cases is justifiable. If exposure affects duration of the condition, how­
ever, results from a case-control study is more difficult to interpret. In general, it is prefer­
able to use new cases or to restrict cases to those who were diagnosed within a specific 
period. 

Selection of Controls 
The most serious challenge to the researcher in designing a case-control study is the 
choice of a control group. The purpose of a case-control study is to determine if the fre­
quency of an exposure or certain personal characteristics is different for those who did 
and did not develop the disease. Therefore, for the comparison to be fair, the controls 
should be drawn from the population of individuals who would have been chosen as 
cases had the disease been present. Any restrictions or criteria used to select cases must 
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also be used to select controls. Often, researchers match cases and controls on a variety 
of relevant factors, such as age, race, gender or occupation. 

Controls can be obtained from several sources. They are often recruited from the 
same hospital or institution as the cases, from those who have been admitted for condi­
tions other than the disease of interest. For example, Altieri and associates23 explored 
the relationship between leisure physical activity and the experience of a first myocar­
dial infarction (MI). They studied individuals who were hospitalized for an MI during 
a specified period, and recruited controls from patients who had been admitted for 
other acute conditions. They found that individuals who engaged in leisure exercise 
were half as likely to experience an MI as those who did not exercise. The advantage of 
using hospital-based controls is that hospitalized patients are readily available and sim­
ilarly motivated. The disadvantage, of course, is that they are ill and, therefore, poten­
tially different from healthy subjects who might be exposed to the same risk factors. In 
addition, studies have shown that hospitalized patients are more likely to smoke ciga­
rettes, use oral contraceptives and drink more alcohol than nonhospitalized individu­
als.24.25 Therefore, if these risk factors are being studied or if they are related to the 
disease being studied, they could bias the results. It is also important to determine what 
disorders other than the case disorder are represented among controls. If the risk fac­
tors being studied are associated with these other disorders, the estimate of their effects 
on cases will be minimized. Despite the disadvantages, however, hospital controls are 
often used because of the convenience they offer. 

Controls can be obtained from the general population by a variety of sampling 
methods, such as random-digit dialing, or by using available lists such as voter regis­
tration and membership directories. Population-based controls may also be sampled 
from special lists. For instance, in a case-control study to establish the risk associated 
with limited physical activity and ovarian cancer, community controls were selected 
randomly from lists of licensed drivers and Medicare reicipients.26 Sometimes special 
groups can be contacted to provide controls, such as family members and friends of 
those with the disease. These controls provide some comparability in ethnic and 
lifestyle characteristics. 

Analysis Issues 
The analysis of results of case-control studies requires attention to bias in the selection 
and classification of subjects and in the assessment of exposure status. Because subjects 
are purposefully selected for case-control studies on the basis of their having or not 
having a disease, selection bias is of special concern. Cases and controls must be cho­
sen regardless of their exposure histories. If cases and controls are differentially selected 
on some variable that is related to the exposure of interest, it will not be possible to 
determine if the exposure is truly related to the disease. When samples are composed 
of subjects who have consented to participate, self-selection biases can also occur. 

An additional source of bias is introduced if subjects are misclassified, that is, if 
those who have the disease are mistakenly put in the control group or those who do not 
really have the disease are considered cases. If this misclassification is random, and 
equally present in both groups, it is considered nondifferential misclassification, which 
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will tend to minimize the relationship between the exposure and disease.* With 
differential misclassification, however, when groups are not affected equally, the results 
may overestimate or underestimate that relationship.27 For example, in a study evalu­
ating risk factors associated with falling in hospitalized elderly, cases were identified 
from incident reports of a geriatric rehabilitation hospital for a 1-year period, and con­
trols were selected at random from patients who were "nonfallers," that is, for whom 
incident reports had not been filed.28 There may, however, have been cases of falling 
that were not reported, or nurses may have filed incident reports even when the patient 
was carefully lowered to the ground by a staff member, if they felt weak while ambu­
lating. In either case, patients would have been misclassified, and in the former situa­
tion, some cases may have been chosen as controls. 

Observation bias occurs when there is a systematic difference in the way informa­
tion about disease or exposure is obtained from the study groups. Interviewer bias is 
introduced when the individual collecting data elicits, records, or interprets informa­
tion differentially from controls and cases. Recall bias occurs when subjects who have 
experienced a particular disorder remember their exposure history differently from 
those who are not affected. This bias may result in an underestimate or an overestimate 
of the risk of association with a particular exposure. It is not unusual for individuals 
who have a disease to analyze their habits or past experiences with greater depth or 
accuracy than those who are healthy. 

COHORT STUDIES 
In clinical research, a cohort is defined as a group of individuals who are followed 
together over time. The most common types of cohorts are geographic cohorts, such as 
residents of a particular community, or birth cohorts, such as baby boomers. A histori­
cal cohort includes individuals who experience specific common events, such as veter­
ans of a given war. Victims who are survivors of natural disasters would be considered 
members of environmental cohorts. Developmental cohorts are based on life changes, 
such as getting married or moving into a nursing home. 

In a cohort study (also called a follow-up study), the researcher selects a group of 
subjects who do not yet have the outcome of interest and follows them to see if they 
develop the disorder (see Figure 13.3). Subjects are interviewed or observed to deter­
mine the presence or absence of certain exposures, risks or characteristics. Cohort stud­
ies may be purely descriptive, with the intent of describing the natural history of a 
disease. More often, however, they are analytic, identifying the risk associated with 
these exposures by comparing the incidence of specific outcomes in those who were 
and were not exposed. 

One advantage of a cohort study over a case-control study is the ability to determine 
the onset of the condition. A temporal sequence can be established for the relationship 
between exposure to risk factors and development of a particular outcome. This 
sequence is necessary for drawing inferences about causative factors. The disadvantage 
of cohort studies is that they are not useful for studying disorders that are uncommon 

*This is also referred to as biasing toward the null. 
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FIGURE 1 3.3 I l lustration of a cohort design. Subjects are chosen based on their membership in a 
defined cohort. In a prospective cohort study, the investigator enters the study at the time of exposure, and 
fol lows subjects to determine who develops the disorder of i nterest. In a retrospective cohort study, the 
investigator enters the study after the outcomes have been determined, and tracks data from the past to 
determine exposure status. 

in the population. If the disorder is rare, a large number of subjects would have to be 
followed for a long time to document a sufficient number of cases for analysis. In this 
situation, case-control studies would be more appropriate; however, cohort studies are 
useful when exposures are rare because the cohort can be assembled and classified 
according to their exposure status (where case-control subjects were classified according 
to disease status). Cohort studies are also very effective for studying multiple disorders. 
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One of the more well known cohort studies is the Framingham Heart Study, begun 
in 1948 and still in progress, which involved an original cohort of over 5,200 adults from 
Framingham, Massachusetts. These individuals have been examined every 2 years to 
explore the relationships of a wide variety of risk factors with coronary heart disease.29 
This type of longitudinal study allows researchers to examine consistency of patterns 
and to evaluate predictive factors. This cohort has expanded as children of the original 
group have also been included.30 In addition to risks for cardiac disease, data have been 
used to evaluate many other risk factors, including those related to physical 
disability}1,32 stroke,33'34 low back pain,35 and bone mineral density,36 as outcomes 
related to a variety of exposures. 

Prospective and Retrospective Cohorts 
Cohort studies can be either prospective or retrospective, depending on the time 
sequencing of development of the disorder with respect to the start of the study. The 
basis for distinguishing between prospective and retrospective designs is where the 
investigator initiates entry into the exposure-disease cycle. If the investigator studies 
individuals who have already been exposed to risk factors and have already developed 
the disease, the study is considered retrospective. If the investigator contacts the sub­
jects after the exposure, but before the disorder has developed, it is considered prospec­
tive (see Figure 13.3). 

The main advantage of the prospective design is the ability to control and monitor 
data collection and to measure variables completely and accurately. This approach is 
most useful in situations where the disease of interest occurs frequently, and subjects 
can be readily obtained. The disadvantage of this approach is that it is expensive and 
time consuming, and subjects are often lost to follow-up. 

The retrospective cohort study uses a cohort that has already been assembled (usu­
ally for other reasons), and looks at how variables occurred over time in relation to spe­
cific outcomes. Retrospective designs tend to be cheaper and faster than prospective 
designs, and they are more efficient with diseases of long latency. If a disease takes 
years to manifest following exposure to a risk factor, a prospective study will have to 
go on for a long time to document it. The disadvantage of retrospective designs is that 
they may have to deal with incomplete or inadequate data from medical records, the 
subject's memory, or the memories and perspectives of family members or caregivers. 

Selection of Subjects 
The selection of subjects for a cohort study must be appropriate for the research ques­
tion. For purely descriptive studies, the sample must be representative of the target 
population to which results will be generalized. Probability samples would be ideal, 
but are rarely used because of expense and limited accessibility. For analytic studies, 
two groups must be identified, those who have been exposed and those who have not 
been exposed to the risk factors. The most important consideration is that the exposed 
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group be of sufficient numbers to obtain meaningful outcome measures; that is, there 
must be enough subjects who eventually develop the disease.t 

The group that has been exposed to the risk factors may come from several sources. 
For relatively common exposures, a large number of individuals may be available from 
the general population. Often, accessible groups, such as nurses in the previously men­
tioned Nurses' Health Study, residents of defined geographical areas, or employees of 
a specific company, are targeted as a cohort, not necessarily because of their exposure 
histories, but because they can be followed easily. The subjects in the Framingham 
Heart Study represent a classical example of this type of cohort, chosen because of the 
accessibility of a stable population. When exposures are rare in the population, special 
cohorts may be chosen because of their unique exposure histories. For example, in 
order to study the relationship of extremely vigorous physical activity and exercise to 
development of musculoskeletal injuries, a cohort was comprised of young men in 
Army infantry basic training.37 

The comparison cohort must be as similar as possible to the exposed cohort in all 
factors related to the disease except for the specific exposures under study. It is impor­
tant that all subjects who are chosen have a chance of developing the disorder. For 
instance, if one were studying risks associated with abnormal menstruation, women 
who have had hysterectomies or who have passed menopause would not be eligible. 

Analysis Issues 
The results of a cohort study will clearly be influenced by the misclassification of either 
exposure or disease, as described earlier. Bias is less of a concern in prospective cohort 
studies than in case-control or retrospective studies, because classification of exposure 
is made independently of knowledge about the subject's disease status. 

Because of the longitudinal nature of prospective cohort studies, they are especially 
prone to attrition. The researcher must determine the validity of the study based on 
whether the loss of subjects is related to either the exposure, the disease or both. 
Researchers generally take great pains to ensure good rapport with participants, and 
must be aggressive in maintaining contact with them. 

EVALUATING CAUSALITY IN OBSERVATIONAL STUDIES 
The epidemiologist is ultimately concerned with identifying those factors or exposures 
that cause disease or disability. Because case-control and cohort studies do not involve 
direct experimentation or manipulation of variables, the validity of statistical associa­
tion between exposure and disease with these observational designs must be made 
under conditions that are not strictly controlled. Therefore, the epidemiologist must 

tResearchers can perform a power analysis when planning a study, to determine how many subjects should 
be included. The sample size determinations are based on the expected outcome, that is, the degree of asso­
ciation expected between the exposure and the disease. This expected relationship is called the effect size. The 
larger the effect size (a stronger relationship), the fewer subjects would be needed. For a fuller discussion of 
the concept of effect size see Appendix C. 
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first rule out influences of bias, confounding and chance variation, and then must assess 
the strength of cause and effect criteria. 

Perhaps most important is the establishment of a time sequence that documents the 
exposure preceding the disease. In addition, the researcher can look at the strength of the 
association using a measure of relative risk. The stronger the association, the more likely 
a causative relationship exists. The relationship should also have biologic credibility. The 
researcher should be able to postulate some mechanism by which the exposure might 
reasonably alter the risk of developing the disease. This may not be possible, depend­
ing on the state of knowledge, but it will make the conclusion more plausible if a real­
istic explanation can be offered. It is also helpful to show consistency with other studies. 
The more times a relationship can be documented by different researchers using dif­
ferent samples and conditions, the more likely it is true. Lastly, the presence of a 
dose-response relationship provides evidence for causality. This means that the 
severity of the disease can be associated with varying levels of the exposures. If the risk 
of developing the disease does not vary with increases or decreases in exposure, it is 
unlikely that the exposure is the true risk factor. These five criteria, taken together, can 
be used to provide evidence for a cause-and-effect relationship. 

METHODOLOGICAL RESEARCH: RELIABILITY AND VALIDITY 
Methodological research involves the development and testing of measuring instru­
ments for use in research or clinical practice. This approach is used extensively in health 
care research, as clinicians work toward establishing the reliability and validity of clin­
ical measurement tools. In a research context, this approach does not involve the eval­
uation of treatment effectiveness, but rather, makes contributions to establishing the 
methods used to carry out research or support clinical assessment. 

The outcomes movement has provided the impetus for comprehensive method­
ological study of health status and functional assessment tools. These studies empha­
size the use of outcome instruments as a way of indicating quality of care and quality 
of life. Establishing reliability and validity of instruments requires multiple approaches 
and trials. The implications of the results of these studies are far reaching, as we decide 
which tools will serve us best to demonstrate the effectiveness of our services. It is 
essential, therefore, that we understand the designs and analyses of methodological 
study, so we can make the most appropriate choices and be able to defend them. 

Rel iabil ity Questions 
Issues of reliability are basic to the continued use of measurements for research or clin­
ical practice. Reliability questions generally focus on two aspects of measurement: the 
rater and the tool itself. See Chapter 5 for a thorough discussion of types of reliability 
and Chapter 26 for coverage of statistical approaches. 

Testing the Rater 
Rater reliability is of primary importance when repeated measurements are taken by 
one or more individuals. Intrarater and interrater reliability should be established to 
support the accuracy of measurements taken in a clinical study. Theoretically, the 
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demonstration of rater reliability is intended to generalize beyond the individuals in a 
methodological study; that is, the raters being tested are assumed to be representative 
of others who would perform the test. 

Miano and associates38 provide a useful example of this concern in their study of 
interrater reliability of a functional rating scale for amyotrophic lateral sclerosis (ALS). 
The scale is often applied by caregivers or patients when travel to a study site is not pos­
sible and final assessments may be performed by telephone. Therefore, it was impor­
tant to determine if different raters would obtain substantially different scores. They 
found that clinician ratings were often lower than those of patients or caregivers; how­
ever, the degree of error was less than one point in statistical analyses if 25% of the final 
visit assessments were performed by the patient in place of the provider. They con­
cluded that the ALS functional scale can be successfully used even if evaluators change. 

Val id ity Questions 
Perhaps the most comprehensive approach to methodological study is in the develop­
ment of a new tool. Although many clinicians have been motivated to find effective 
ways of measuring things within their practice environment, creating a new tool is truly 
an extensive process. It starts with a clear description of a problem for which a good 
measurement is not available. If the measurement is a physical property, it may be nec­
essary to build a prototype to test the feasibility of building an instrument that will 
serve the desired purpose. This can be both time consuming and expensive. If the vari­
able is a construct, such as pain or function, the researcher must be able to delineate the 
theoretical foundation for the phenomenon to be measured. 

For example, in the study of chronic obstructive pulmonary disease (COPD), Eisner 
and co-workers39 described the need for a disease-specific measure of severity that 
could be used to identify risk factors for adverse health outcomes. They found that 
existing pulmonary function measures and quality of life instruments were not able to 
adequately assess the severity of disease. Therefore, they designed a new measurement, 
a comprehensive disease-specific COPD severity score, which was based on disease sta­
tus, medication use, receipt of clinical treatments and recent hospitalization for COPD. 
They demonstrated the reliability, internal consistency, construct and concurrent valid­
ity of the instrument. 

Methodological studies make major contributions to research efforts, as it is virtu­
ally impossible to conduct meaningful research without adequate measurement tools. 
These types of studies are of special importance to scientific disciplines that are 
engaged in human behavior research, for which objective and direct measuring tools 
are often unavailable. Reliability and validity studies are reported with increasing fre­
quency in medical and rehabilitation journals, as clinicians continue to realize their 
importance for establishing measurement standards. We must stress, however, that 
methodological research is not intended as an end in and of itself; that is, the purpose 
of methodological study is to develop instruments that can be used in further testing, 
not to establish reliability or validity for its own sake. Therefore, it is important to exam­
ine reliability and validity within a context that will serve as a guide for interpretation 
of outcomes. Reliability or validity is a property that is achieved to some degree within 
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each context. Instruments are never absolutely reliable or valid, but must be tested 
under a given set of conditions on a specific population. The concept of reliability is dis­
cussed in detail in Chapters 5 and 26. Validity testing is covered in Chapters 6 and 27. 

HISTORICAL RESEARCH 
Historical research involves the critical review of events, documents, literature and 
other sources of data to reconstruct the past in an effort to understand how and why 
past events occurred. This approach has its foundations in the discipline of history, 
where past world events are examined and analyzed to determine how present condi­
tions evolved and, ultimately, to anticipate future events. In similar fashion, historical 
research can build a foundation for interpreting current clinical theory and practice, 
providing a context within which we can evaluate professional trends. Historical 
research has received little attention in rehabilitation literature, which is unfortunate, 
considering its potential for contributing to perspectives on professional issues, direc­
tions of professional growth and change, and effects of professional and societal trends 
on modes of practice. Historical research efforts in nursing are extensive. Lusk40 has 
presented a primer on historical research methodology that, although written in the 
context of nursing, provides comprehensive guidelines for all health professionals. 

The process of historical research starts with the determination of a research ques­
tion that addresses a topic of interest within a particular time periodY For example, 
Krisman-Scott42 was interested in reasons for the long-standing tradition in medicine of 
nondisclosure of terminal status to patients. She examined this concept within social, 
political and cultural contexts from 1930 to 1990, and discussed how societal changes 
have influenced individuals' perceptions of death and the right to make end-of-life 
decisions. In another example, Markel43 has discussed an historical account of the AIDS 
epidemic from 1980 to 2001, analyzing why it has been of intense interest to medical, 
social and political communities, and how AIDS is an example of both a global pan­
demic and a chronic disease. Galas and McCormack44 have questioned the impact of 
genomic technologies such as cloning and DNA sequencing on changes in the scientific 
community's view of biology through the latter quarter of the 20th century. These types 
of questions can only be answered retrospectively within the historical perspective of 
events that precipitated change. 

Once a problem area is identified, an organizing framework is formed to guide the 
search for data. It is this element that distinguishes historical research from a critical 
review of literature or a chronological presentation of a series of events (although these 
will be major components of the historical research process) .  Historical research is not 
a collection of facts or dates, but is meant to incorporate judgments, analyses, and infer­
ences in the search for relationships, by organizing and synthesizing data from the past, 
not just summarizing them.4° For instance, Paris45 described the development of joint 
manipulation as an accepted therapeutic technique in physical therapy in contrast to 
chiropractic philosophy and practice. In another example, Gutman46 studied the devel­
opment of occupational therapy and the influence of the relationship between orthope­
dists and reconstruction aides during the first World War, which marked an early 
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willingness by occupational therapists to accept the medical model as one guide for 
clinical practice. 

Sources of H istorical Data 
Historians use a variety of sources to accumulate data. The researcher must be critical 
in the acceptance of all that is read, recognizing that those who wrote in the past may 
have been selective in their presentation of facts or creative in their representation of the 
truth. For this reason especially, the historical researcher should distinguish between 
firsthand and secondhand sources of information. For the historian, primary sources 
include original documents, such as letters, videotapes, photographs, or minutes of a 
meeting, eyewitness accounts, and direct recordings of events. This does not guarantee 
the truth or accuracy of the report, only that no intervening account has colored the 
information. Secondary sources may include biographies, textbooks, encyclopedias, liter­
ature reviews, newspaper accounts and any summary of primary materials. As with all 
research, the historian should use primary sources whenever possible. The transmis­
sion of information from original to secondary accounts will invariably present some 
distortion or slant that could affect the validity of subsequent interpretations.47 

Rel iabi l ity and Val id ity 
Historical data must also be evaluated for reliability and validity. Because historical 
information is subject to contamination, researchers will find that not all sources are of 
equal value.48 The historian must be able to establish the authenticity of data, by sub­
jecting the material to external criticism. This may involve determination that papers 
were indeed written by the ascribed author (not ghost written) or that documents have 
not been altered. 

The data must also be subjected to internal criticism, which questions the truth or 
worth of the material's content within the context of the research question. Although it 
is not a scientifically rigorous procedure, to some extent internal validity of information 
can be examined on the basis of corroboration from other sources or by finding no sub­
stantial contrary evidence.48 It is also important to understand the relevant definitions 
and concepts used during the historical period and to recognize that standards and ter­
minology change over time. 

Synthesis of H istorical Data 
The historical researcher must determine how much information is needed to draw 
valid conclusions, being careful not to make assumptions about the past merely because 
no information can be found. Some elements of data will be given more weight than 
others in their interpretation and application to the hypothesis. The historian attempts 
to incorporate a scientific logic into this process, so that interpretations are made as 
objectively as possible. Historians must also be alert to their own biases, so that unin­
tended meanings are not ascribed to information. 

Because sources, measurements, and organization of data are not controlled, cause­
and-effect statements cannot be made in historical research. One can only synthesize 
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what is already known into systematized accounts of the past, and discuss potential 
relationships between variables based on sequencing of events and associated underly­
ing characteristics of variables. 

A wonderful example of historical research and its potential for influence on prac­
tice was presented by Brush and Capezuti,49 who analyzed the use of bed siderails in 
American hospitals through the 20th century. They examined social, economic and legal 
influences, and argued that the use of siderails was based on a gradual consensus 
between law and medicine, rather than empirical evidence in practice. Their study 
identified a continued use of siderails that contrasted sharply with documented patient 
accidents and contemporary ideas about the importance of mobility and functional 
independence, particularly in the elderly. They concluded that changes in this practice 
will have to be driven by data, and that alternative strategies will only become accepted 
once administrators, regulators, attorneys, patients and clinicians understand why 
siderails became common practice in the first place. This study illustrates the impor­
tance of understanding the past as professionals face current and future challenges. 

SECONDARY ANALYSIS 
Much of the research in health and social science involves the collection of large 
amounts of data, often more than the researcher actually analyzes. In secondary 
analysis a researcher uses an existing database to re-examine variables and answer 
questions other than those for which the data were collected. Investigators may analyze 
subsets of variables or subjects different from those analyzed in the initial study, or they 
may be interested in exploring new relationships among the variables. Sometimes the 
unit of analysis can be changed, so that one study might look at overall hospital char­
acteristics, whereas another might look at individual responses of health care person­
nel. Researchers can also explore outcomes using different statistical techniques, either 
because initial findings were based on inappropriate statistical procedures or to test dif­
ferent hypotheses. When two or more comparable data sets can be combined for sec­
ondary analysis, researchers can expand the generalizability of outcomes. In this way 
secondary analysis can be especially useful for supporting theoretical hypotheses. 

The major advantages of secondary analysis are the minimal expense involved, the 
ability to study large samples and the elimination of the most time-consuming part of 
the research process, data collection. Researchers can formulate hypotheses and pro­
ceed to test them immediately. For new researchers, secondary analysis may provide a 
useful way to start the research process, especially when funds are limited. For experi­
enced researchers, existing data sets may provide unexpected but important findings at 
little or no cost. 

The disadvantage of this approach relates to the researcher's lack of control over 
the data collection process. There is no way to ensure the quality of the data, how ques­
tions were asked, or which variables were tested. Data may be missing or incorrectly 
entered. The researcher interested in secondary analysis must consider possible sources 
of error and judge their effect according to the documentation available on the data and 
the necessary rigor of the research hypothesis. 
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Finding a Question to Fit the Data-or Finding Data 
to Fit the Question 
Secondary data analysis can proceed in two directions. Perhaps the more direct 
approach is to look carefully at existing data, to determine what types of questions 
would fit. This requires familiarity with the data and the variables that were measured. 
The researcher can then start to consider the possible relationships that might be of 
interest. Often the effect of demographic factors, such as age, gender, race, income level 
and so on can generate questions about their influence on physiological or performance 
variables. As a question begins to evolve, the researcher must proceed to the literature, 
so that a theoretical framework can be developed and hypotheses can be proposed. 

The alternative process involves searching for a database that will provide the 
needed information to answer a given research question. The researcher must first 
develop a list of variables that are germane to the question, so that the viability of a 
particular database can be determined. For this process to work, the researcher must 
have some familiarity with databases that are available. It may be necessary to contact 
other individuals who have access to data, such as people in industry or hospital 
administration, who would know what kinds of information was accessible. Comput­
erized databases from medical records may provide a rich source of information for 
clinical research. The researcher may also explore collaborative relationships with 
other investigators. 

Sources of Secondary Data 
Secondary analysis has become increasingly common in recent years because of the 
availability of large computer data sets. Information about these data sets may be 
obtained through journal articles or conference presentations. A variety of large data­
bases are supported by data libraries such as the International Data Library and Refer­
ence Service at the University of California at Berkeley, the Council of Social Science 
Data Archives in New York City, the Roper Public Opinion Research Center at Williams 
College and the Archive of the Inter-University Consortium for Political and Social 
Research at the University of Michigan. The U.S. government sponsors continued col­
lection of health-related data through the National Center for Health Statistics (NCHS) 
and the U.S. Bureau of the Census, among others. Access to these databases can usually 
be obtained at minimal or no cost, often with direct online connections. 

Databases such as the National Health Interview Survey, the National Hospital Dis­
charge Survey, and the National Nursing Home Survey, all through NCHS, are contin­
ually used by researchers in public health, allied health, medicine and social science to 
document health care utilization, health status of various age groups and related per­
sonal and lifestyle characteristics. Data collected since 1950 as part of the Framingham 
Heart Study were originally intended to study risk factors for coronary heart disease, 
and have been used to study longitudinal changes in other factors, such as physical 
function,31•50 stroke, 51 and cognition. 52 Started in 1973, the Multiple Risk Factor Interven­
tion Trial (MRFIT) was a randomized primary prevention trial to test the effect of a mul­
tifactor intervention program on mortality from coronary heart disease (CHD) in 12,866 
high-risk men.53 This data set has been used extensively, however, to answer other 
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questions, such as risk factors affecting of the wives of participants,54,55 mortality from 
pulmonary disease,56 risk associated with ethnicity,57'58 risk factors for stroke,59 and 
alcohol use.60 As these examples illustrate, with the availability of data through com­
puter access, secondary analysis is an important research option, providing a rich 
source of information for clinicians to investigate important clinical questions. 

COM M E NTARY 

Advantages and Disadvantages of Exploratory Research 

Even though exploratory studies are not able to establish cause-and-effect relation­
ships, they play an important role in c l in ical research, especial ly considering the 
lack of documented evidence that exists concern ing most c l in ica l  phenomena. 
Before one can begin to i nvestigate causal factors for behaviors and responses using 
experimental methods, one must first discover which variables are related and how 
they occur  in nature. For many phenomena, we wi l l  probably never be able to estab­
l ish causal ity and can move ahead in our critical i nqu i ry only if we can understand 
how those phenomena manifest themselves with regard to concurrent variables. 

Many correlational studies are based on variables that have been measured in  
the past or that represent attributes of individuals that are beyond the control of  the 
i nvestigator. Under these conditions, exploratory research is l imited in its interpreta­
tion because of the potentia l  bias that exists in the data. Many secondary ana lyses 
are performed on databases that offer a great deal of i nformation, but without the 
benefit of contro l l ing measurement and operational definitions. The researcher i s  
obl iged to consi der the impl ications of these potential biases when i nterpreting the 
outcomes of correlational analyses, 

F inal ly, the complex nature of c l in ical phenomena and the intricate interrela­
tionsh ips that exist among attitudes, behaviors, physical and psychological charac­
teristics and the environment present special  interpretive problems for correlational 
analysis. I t  is often difficu lt to establish that two variables are associated without con­
sidering the m ultitude of other variables that wou ld  have to enter i nto any predictive 
or theoretical relationship. Correlational studies compel us to contemplate the the­
ories that help explain observed relationships, and to approach analyses from a 
multivariate perspective. This means that ana lyses can become quite complex, but at 
the same time, this a l so presents exciting opportun ities for exploring alternative 
explanations for our c l in ical observations. 
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Descriptive research is designed to document the factors that describe characteristics, 
behaviors and conditions of individuals and groups. For example, researchers have 
used this approach to describe a sample of individuals with spinal cord injuries with 
respect to gender, age, and cause and severity of injury to see whether these properties 
were similar to those described in the past.1 Descriptive studies have documented the 
biomechanical parameters of wheelchair propulsion, 2 and the clinical characteristics of 
stroke.3 As our diagram of the continuum of research shows, descriptive and 
exploratory elements are commonly combined, depending on how the investigator con­
ceptualizes the research question. 

Descriptive studies document the nature of existing phenomena and describe how 
variables change over time. They will generally be structured around a set of guiding 
questions or research objectives to generate data or characterize a situation of interest. 
Often this information can be used as a basis for formulation of research hypotheses 
that can be tested using exploratory or experimental techniques. The descriptive data 
supply the foundation for classifying individuals, for identifying relevant variables, 
and for asking new research questions. 
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Descriptive studies may involve prospective or retrospective data collection, and 
may be designed using longitudinal or cross-sectional methods (see Chapter 13). Sur­
veys and secondary analysis of clinical databases are often used as sources of data for 
descriptive analysis. Several types of research can be categorized as descriptive, includ­
ing developmental research, normative research, qualitative research and case studies. 
The purpose of this chapter is to describe these approaches. 

DEVELOPMENTAL RESEARCH 
Concepts of human development, whether they are related to cognition, perceptual­
motor control, communication, physiological change, or psychological processes, are 
important elements of a clinical knowledge base. Valid interpretation of clinical out­
comes depends on our ability to develop a clear picture of those we treat, their charac­
teristics and performance expectations under different conditions. Developmental 
research involves the description of developmental change and the sequencing of 
behaviors in people over time. Developmental studies have contributed to the theoret­
ical foundations of clinical practice in many ways. For example, the classic descriptive 
studies of Gesell and Amatruda4 and McGraw5 provide the basis for much of the 
research on sequencing of motor development in infants and children. Erikson's stud­
ies of life span development have contributed to an understanding of psychological 
growth through old age. 6 

Developmental studies can be characterized by the method used to document 
change. The longitudinal method involves collecting data over an extended period, to 
document behaviors as they vary over time. Because the same individuals are tested 
throughout the study, personal characteristics remain relatively constant, and differ­
ences observed over time can be interpreted as developmental change. With the cross­
sectional method, the researcher studies various developmental levels (usually age 
levels) within a particular cohort of subjects and describes differences among those lev­
els as they exist at a single point in time. 

One of the earliest developmental studies was actually a longitudinal case report of 
data collected between 1759 and 1777, chronicling the physical growth of a child at 
6-month intervals, from birth to 18 years. These data still represent one of the most 
famous records of human growth.7 Intellectual growth has been the subject of many 
longitudinal studies, in children8 and adults.9 Changes that occur in psychological and 
physiological processes with aging are also best described using longitudinal methods. 
For example, research has documented the development of personality through late 
adulthood10 and cognitive effects of aging.U At the other end of the spectrum, 
researchers have described longitudinal patterns of development in infant heart trans­
plant recipients, demonstrating mild motor delays and age-dependent variability in 
cognitive skillsP 

Marsala and VanSant13 used the cross-sectional approach to study toddlers as they 
rose to a standing position from the floor in a sample of 60 children aged 15 to 47 months. 
They classified movement patterns of the upper and lower extremities and trunk across 
different age groups. In this study, the investigators chose to examine the characteristics 
of a broad sample at one time, rather than follow a group over several years. 
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Developmental research provides an invaluable source of information for the pro­
duction of correlational and experimental hypotheses. A foundation of descriptive data 
is needed for the generation of developmental theories and determination of which vari­
ables are most important for studying treatment effects. Cross-sectional data are most 
effective when the primary interest in a developmental study is the description of typi­
cal individuals at various stages of life or the description of existing groups in contem­
porary society. The cross-sectional method will provide a greater possibility of sampling 
large representative groups for such assessments. If, however, the primary interest is the 
study of patterns of change, the longitudinal method is preferred, as only this method 
can establish the validity of temporal sequencing of behaviors and characteristics. 

Natural H istory 
Longitudinal studies may focus on the natural history of disease states. This type of 
information is important in the future design of clinical trials and the generation of 
hypotheses about the etiology and progression of disease. For example, Godbolt and 
associates14 documented the 10-year progression of symptoms of Alzheimer's disease 
in a familial cohort of 23 individuals, demonstrating the challenge of recording subtle 
early deficits and the later deterioration of spelling and naming. Howieson and co­
workers11 prospectively examined the occurrence and outcome of cognitive decline in 
healthy, community-dwelling elders. Ninety-five elders (mean age 84 years) who at 
entry had no cognitive impairments were followed for up to 13 years. Outcomes of 
aging were characterized as intact cognition, persistent cognitive decline without pro­
gression to dementia, and dementia. 

In another example, Munsat and colleagues15 followed 50 patients with amy­
otrophic lateral sclerosis (ALS) over 6 years, to document the rate and pattern of motor 
deterioration. They described a linear and symmetric rate of motor neuron loss (see 
Figure 14.1). Understanding the developmental nature of disease states is an important 
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FIG U RE 1 4.1 Composite measure of deterioration in upper extremity muscle strength for a patient with 
ALS, i l l ustrating the natural h istory of the disease. (Adapted from Munsat TL, Andres PL, Finison L, et al .  
The natural history of motorneuron loss in  amlyotroph ic lateral sclerosis. Neuro/ 1 988; 38:409-4 1 3, Fig­
ure 4, p. 4 1 2 .  Used with permission of the American Academy of Neurology.) 
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part of moving toward study of their management. For instance, the natural history 
data on ALS was used to generate hypotheses about specific drug interventions to slow 
the progression of the disease.16-18 Without the natural history data, it would not have 
been possible to determine whether or not the drugs were effective. 

NORMATIVE STUDIES 
The utility of evaluative findings in the assessment of a patient's condition is based on 
the comparison of those findings with known standards of performance. For example, 
joint motion is compared with ranges "within normal limits,"19 and nerve conduction 
velocities are interpreted with reference to "normal values."2° Clinicians need these 
standards as a basis for documenting the existence and severity of weakness, limita­
tions and patient problems as a guide for setting goals. 

The purpose of nonnative research is to describe typical or standard values for 
characteristics of a given population. Normative studies are often directed toward a 
specific age group, gender, occupation, culture or disability. For example, researchers 
have established normative values for speech perception capacity in children aged 5 to 
10 years/1 the diagnosis of osteoporosis is based on "young normal" and "age­
matched" norms;22 age and sex-matched Constant scores have been developed as 
norms for shoulder function. 23,24 

Norms are usually expressed as an average, or mean, within a range of acceptable 
values. Therefore, the normal nerve conduction velocity of the ulnar nerve is expressed 
as 57.5 meters/sec, with a normal range of 49.5 to 63.6 m/s,25 with corrections needed 
for limb temperature,26 age and height.27 The normal cadence of women walking in 
high heels is given as 117 steps/minute, with a range from 100 to 133 steps/minute.28 
Average values are often given with a standard deviation (see Chapter 17). Therefore, 
we can describe normal knee ranges for healthy adults during free speed walking as 
60 ± 7 degrees.29 Norms can also represent standardized scores that allow interpreta­
tion of responses with reference to an arbitrary "normal" value. For example, the 
Wechsler Intelligence Scales scores are "normed" against a mean of 100 and a standard 
deviation of 15.30 

The importance of establishing the validity of normative values is obvious. The esti­
mation of "normal" behavior or performance is often used as a basis for prescribing cor­
rective intervention or for predicting future performance. If the interpretation of 
assessments and the consequent treatment plan are based on the extent of deviation 
from normal, the standard values must be valid reflections of this norm. Because no 
characteristics of a population can be adequately described by a single value, normal 
values are often established with reference to concomitant factors. For instance, several 
studies have established normative values for grip strength in children based on age 
and hand dominance.31-33 Hager-Ross and Rosblad34 studied 530 boys and girls aged 4 
through 16, and found that there was no difference in grip strength between the gen­
ders until age 10, after which the boys were significantly stronger than the girls 
(see Figure 14.2). Another study established norms for 5-15 year olds based on age, 
gender and body composition.35 Normative data for grip strength in adults36 and older 
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FIGURE 1 4.2 Box plots i l l ustrating peak grip strength for boys (shaded boxes) and girls (white boxes) 
from 4 to 1 6  years of age. Each box represents the 25th-75th percentile, and the horizontal l i ne across the 
box is the median (50th percenti le). Whisker l ines extending above and below each box i ndicate the total 
range. Small circles outside the whiskers indicate outl iers (one 1 6-year-old male had practiced heavy 
weight l ifti ng). (From Hager-Ross C, Rosblad B. Norms for grip strength in chi ldren aged 4-1 6 years. Acta 
Paediatr 2002; 91 :61 7-625, Figure 2, p. 61 9. Used with permission of the Foundation Acta Paediatrica 
and Blackwell Publishi ng). 

persons37 is also distinguished by gender and level of fitness activity. These data pro­
vide a reference for making clinical decisions about the management of hand problems 
and for setting goals after hand injury or surgery. 

There is still a substantial need for normative research in health-related sciences. As 
new measurement tools are developed, research is needed to establish standards for 
interpretation of their output. This is especially true in areas where a variety of instru­
ments is used to measure the same clinical variables, such as balance, function and 
health status assessments. For example, norms have been published for health status 
instruments such as the SF-36 that help health care providers and clients assess health 
in several domains38 and in different geographic populations.39-41 It is also essential that 
these norms be established for a variety of diagnostic and age groups, so that appropri­
ate standards can be applied in different clinical situations. For example, the functional 
reach test has been used extensively as a measure of stability in the elderly.42 It has 
also been tested as a balance assessment for patients with spinal cord injury43 and 
age-related normative values have been determined for children and adults without 
disabilities.44•45 

Researchers should be aware of the great potential for sampling bias when striving 
to establish standard values. Samples for normative studies must be large, random and 
representative of the population's heterogeneity. The specific population of interest 
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should be delineated as accurately as possible. Replication is essential to this form of 
research, to demonstrate consistency and, thereby, validate findings. 

QUALITATIVE RESEARCH 
Qualitative research paradigms offer a perspective to explore and understand human 
behavior that arises from a different philosophy than quantitative research designs. 
Quantitative methodology is linked to the philosophy of logical positivism, in which 
human experience is assumed to be limited to logical and controlled relationships 
between specific measurable variables. The rationale for studying these relationships 
can be defined in advance, based on hypotheses that guide the methods of inquiry. 
Accordingly, variables can be operationalized and assigned numerical values, inde­
pendent of historical, cultural or social contexts within which performance is 
observed.46 For example, many quality of life assessments, by virtue of their list of ques­
tions, are based on assumptions about measurable behaviors that reflect health status. 
By using a single rating scale for all subjects, investigators demonstrate the reduction­
ist premise of quantitative research: that experience and clinical phenomena can be 
reduced to a set of specific questions and variables predetermined by the researcher. 

The essence of the qualitative method, on the other hand, obliges the researcher to 
understand the person's perspective first. Qualitative research seeks to describe the 
complex nature of humans and how individuals perceive their own experiences within 
a specific social context. Qualitative methodology uses the subject's own words and 
narrative summaries of observable behavior to express data, rather than numerical data 
derived from predetermined rating systems. The qualitative approach emphasizes an 
understanding of human experience, exploring the nature of people's transactions with 
themselves, others and their surroundings. Qualitative designs and methods also allow 
the study of many simultaneous variables contained in a phenomenon. Questions that 
lend themselves to qualitative inquiry are generally broad, seeking to understand why 
something occurs, what certain experiences mean to a patient or client, or how the 
dynamics of an experience influence subsequent behaviors or decisions.47 

For example, Carpenter48 explored the experience of a spinal cord injury (SCI) with 
individuals who had sustained such an injury. This work demonstrated that the educa­
tion about living with SCI provided by health care professionals did not match the lived 
experience of those with the injury, suggesting the need to transform educational 
approaches. The qualitative investigation into this phenomenon helped to uncover the 
meaning of SCI to those who experience it, and how it affects their behavior, emotions, 
body image, self-esteem and interactions. The purpose of qualitative inquiry is to exam­
ine such experiences using a holistic approach that is concerned with the true nature of 
"reality" as the participants understand it. Qualitative methodology has been a comer­
stone of research in sociology and anthropology and has more recently received atten­
tion by clinical researchers.49•50 

The need to understand the patient's view of the world is particularly important 
with the widespread adoption of principles of evidence-based practice, which compel 
the practitioner to consider the patient's values and circumstances in combination with 
clinical judgment and evidence from the literature. Qualitative designs are well suited 
to explore patients' preferences, giving practitioners the opportunity to understand the 
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concepts of health, illness and disability from the direct perspective of the person who 
lives it.51-53 

Combin ing Qual itative and Quantitative Approaches 
Qualitative research is not just a description of a particular situation. To qualify as a 
research method, such inquiry must be tied to understanding, explaining, or develop­
ing theory about an observed phenomenon. From such insightful description, relevant 
variables can be uncovered, and questions can then be posed to study quantitative 
aspects of those variables in controlled settings. Qualitative and quantitative aspects 
can also be combined within one study to measure certain components of behavior and 
to see how such measurements relate to the nature of the actual experience.54 Use of 
both qualitative and quantitative methods in the same study can increase the validity 
of the findings. 55 

For example, Tallon and colleagues56 used a focus group of patients with 
osteoarthritis of the knee to design a questionnaire that exposed a mismatch between 
treatment priorities of patients and those of health care practitioners. Hayes et al57 used 
both a descriptive questionnaire and qualitative interviews to better understand clini­
cal instructors' perspectives of problematic student behaviors. Paterson et al58 used 
both semi-structured interviews and standardized outcome tools to measure the out­
comes of a program of massage in patients with Parkinson disease. The two approaches 
were used together to identify difficulties with the standardized tools and specific per­
ceptions of the participants not available in those tools. Because of the richness of the 
combined data, the authors were able to recommend several very specific features for 
future research. 

Perspectives in  Qualitative Research 
There are a number of different approaches one may take when using a qualitative 
research design. These include phenomenology, ethnography and grounded theory.59 
These methods are considered naturalistic inquiry because they require substantial 
observation and interaction with subjects in their own natural environment. 

Phenomenology 
The tradition known as phenomenology seeks to draw meaning from complex reali­
ties through careful analysis of first-person narrative materials.60 The researcher begins 
this type of inquiry by identifying the clinical phenomenon to be studied. Illness, phys­
ical disability and childbirth are examples of phenomena that have been explored by 
health professionals. Within the phenomenological perspective, experience is con­
structed within the individual's social context and is, therefore, intersubjective.61 As an 
example of this approach, DeGrace62 studied the meaning of a family's experience of 
daily life with a child with severe autism. Her results showed that the family had diffi­
culty engaging in daily activities that held positive meaning for them, and that they 
relied on stringent routines that revolved around the child to meet daily life demands. 

In a phenomenological study in the workplace, Blau and colleagues63 describe the 
responses of physical therapists to major changes in the healthcare system in which 
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they practiced. They identified four common themes related to stress and discontent­
ment, but also identified that participants were able to find positive affirmation in their 
work. In a similar study, Dale et al64 investigated the influences of cost containment con­
straints on occupational therapists in a hand therapy clinic. They found that the thera­
pists modified their skills, their professional settings, and implemented innovative 
interventions to function effectively. 

Ethnography 
A second common perspective, called ethnography, is the study of attitudes, beliefs 
and behaviors of a specific group of people within their own cultural milieu.65 In ethno­
graphic studies, the researcher becomes immersed in the subjects' way of life to under­
stand the cultural forces that shape behavior and feelings. Questions often emerge as 
data are collected. The ethnographer begins this type of inquiry by identifying the set­
ting or culture to be studied and may specify the types of phenomena that will be 
observed. Classic examples of ethnographic research are found in the well known 
anthropological works of Margaret Mead.66•67 

This approach has been used to study the traditional beliefs and practices related to 
pregnancy and childbirth among Native American women.68 Swigart and Kolb69 inter­
viewed sheltered and street-dwelling homeless persons to describe factors that influ­
ence their decisions to utilize or reject a public health disease-detection program. 
Wingate et af0 studied the perceptions of activity and vocational status in women with 
cardiac illness. As these examples illustrate, the concept of culture in ethnographic 
research is taken broadly. 

Qualitative research has also expanded to include the concept of research synthe­
sis through the use of meta-ethnography. This approach uses analysis of multiple 
sources to develop new insights into the phenomenon being studied. For example, 
Smith et af1 studied factors that delay a person's willingness to seek help for a poten­
tial cancer. Their synthesis of 32 papers was able to identify several factors that delay 
seeking help, including lack of recognition of the meaning of symptoms, fear, and gen­
der of the patient. 

Grounded Theory 
One of the unique features of qualitative methodology is that it allows the researcher to 
develop theory to explain what is observed. This approach is called grounded theory 
research, in which the researcher collects, codes, and analyzes data simultaneously. 
This facilitates identification of relevant variables, and using an inductive process, iden­
tification of theoretical concepts that are "grounded" in the observations.72 These con­
cepts are not based on preconceived hypotheses, but instead grow out of an ongoing 
constant comparative analysis of each set of data collected. As data are gathered and 
coded, each idea or theme is compared to others to determine where they agree or con­
flict. At any point in the study, if data do not support the theory, the data are not dis­
carded, but the theory is refined so that it fits the existing data; that is, the theory must 
come from the data. 
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As this process continues, interrelationships emerge that lead to the development 
of a theoretical framework. Data collection and analysis continues until data being col­
lected become repetitious, affirming what has already been identified and no new con­
cepts or relationships emerge. This method requires a sophisticated approach to coding 
and categorizing data. 

A wonderful example of grounded theory research is found in the work of Jensen 
and colleagues/3•74 who collected and analyzed data over a 10-year period to develop a 
theory of what constitutes expert practice in physical therapy. Working with recognized 
"experts" in a variety of specialty areas, they formulated a theoretical model with four 
dimensions, as shown in Figure 14.3. The theory suggests that these dimensions may 
exist in the novice practitioner, but not in an integrated manner. They propose that these 
elements become increasingly integrated as a therapist's competence and expertise 
grow, moving toward a well-developed philosophy of practice . 
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FIGURE 1 4.3 Model of core dimensions of expert practice in physical therapy. (From jensen GM, Hack 
LM, Shepard KF. Expertise in Physical Therapy Practice (2nd ed). Saunders, St. Louis, 2 007, Figure 8-4, 
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Methods of Qualitative Data Col lection 
Because qualitative data can come from a wide variety of  sources and can take many 
different forms, the methods of data collection are also quite varied. The most common 
forms of data collection are observation and interviews. 

Observation 
Field observation of the phenomenon being studied is often conducted prior to inter­
views. The purpose of this observation is to identify people, interactions, the influence 
of sociocultural context and even artifacts that might be studied in depth to acquire rel­
evant data to answer the research question. As a "nonparticipant" in the activities being 
monitored, the researcher quietly and as inconspicuously as possible simply observes. 
Immediately following the observation, the researcher records field notes about what 
was observed and uses memos to capture possible questions for follow-up interviews. 
Nonparticipant observation sessions can also be videotaped so that later the partici­
pants can discuss with the researcher what they were thinking while they observe their 
own behavior. This technique is used to capture the participant's reality while dimin­
ishing the sometimes distorting effects of recall. 

The essence of qualitative research is that the individual's experience should be 
described as it is lived by that individual. Therefore, the researcher can also become 
embedded within the group, using the technique of participant observation. With 
this method, the researcher actually becomes a participant in the activities of the group 
being studied, so that observation of behaviors can be appreciated from the standpoint 
of those who are being observed. While this technique, as with other research tech­
niques, is inherently biased by the researcher's own preconceptions, it does provide a 
mechanism to describe the interactions of individuals within a social context and to 
analyze behaviors as a function of the subjects' personal realities. The researcher is in a 
position to recognize feelings and thoughts that emerge from the subjects' frame of ref­
erence. For example, Hasselkus75 studied the meaning of daily routines and activities at 
a day-care center for persons with Alzheimer disease, as experienced by the staff. Data 
collection included interviews and participant-observation, by working directly with 
the staff. Through this experience, the researcher determined that the foremost guiding 
principle for all activities during the day was prevention, that is, to prevent participant 
behavior that would be harmful to self or others. She was also able to identify charac­
teristics of the staff's perception of a "good day" versus a "rough day." Participant­
observer is a complex role, but one that is believed to enhance the validity of qualitative 
observations?6 

Interviews 
Interviews involve a form of direct contact between the researcher and the subjects 
within their natural environment. Interviews are used to gather information, with the 
researcher asking questions that probe the subject's experiences and perceptions. For 
example, Monninkhof and colleagues77 interviewed patients with chronic obstructive 
pulmonary disease (COPD) in their homes. The data obtained was used to explain how 
and why standardized health related quality of life scales failed to capture accurately 
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the patient's experience. Potter et af8 used structured interviews and a nominal group 
technique to identify the kinds of patients perceived as difficult by physical therapists, 
as well as strategies for dealing with them. They identified behavioral problems and 
patient expectations as leading to the greatest difficulties, with improved communica­
tion as the primary strategy. Fogarty79 used focus group interviews to identify the ben­
efits of exercise for patients with schizophrenia who resided in a community care 
facility. In addition to reported gains in physical status, both staff and participants 
reported improvement in cohesion among residents and between residents and staff. 

Interviews should be approached with a broadly structured script that will guide 
the discussion and provide a basis for comparing responses; however, they must also 
be flexible enough to allow the interviewer to probe and ask follow-up questions that 
are relevant to the specific individual's circumstances. For example, an interviewer 
might simply ask, "Tell me what it has been like for you to have a spinal cord injury? 
Such a question is usually followed by additional probes, such as "Can you tell me 
more about that?" and "Can you give me an example of __ ?" to elicit the full rich­
ness and truth value of the data. This process requires that the interviewer have expert­
ise in the subject matter that will be discussed. This should include prior observations 
of the participant in his or her natural setting so that the appropriate and relevant 
follow-up questions will be asked. 

The quality of the data collected will depend on the knowledge and skill of the inter­
viewer. Therefore, interviewers should be trained in both interviewing and observation 
skills, and must be sensitive to the issues that will be raised by respondents.80 While 
interviews for qualitative research may seem similar to the clinical interview, it is impor­
tant to remember a fundamental difference. Clinical interviews have as their primary 
focus to arrive at a diagnostic decision; qualitative interviews are designed to bring 
about a better understanding of the phenomenon from the participant's perspective. 81 

Data Analysis and I nterpretation 
Qualitative data analysis is primarily an inductive process, with a constant interplay 
between data that represent the reality of the study participants and theoretical concep­
tualization of that reality. Therefore, the process of analysis is ongoing as data are col­
lected. Because observational and interview responses are recorded as narratives, 
qualitative data are typically voluminous. Data will usually be recorded through writ­
ten memos or transcribed from audio or videotapes. The specific techniques of data 
analysis can vary from purely narrative descriptions of observations to creating a cod­
ing system from which categories can be developed, and in a systematic way, patterns 
or themes develop from the mass of information.82 

Analysis of qualitative data by hand involves many hours of sifting through narra­
tives, coding and organizing. There are computer programs that help the qualitative 
researcher manage the large amounts of data that are typically gathered. The available 
programs are user friendly and highly interactive and are designed to assist the 
researcher to record, store, index, cross-index, code, sort and interconnect text-based 
material.83 There are also numerous programs available which are referred to as 
computer-assisted software. These are categorized into five main software families which 
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reflect their primary function: text base managers, code programs, retrieval programs, 
code-based theory builders, and conceptual network builders.84 

There is considerable debate in the field of qualitative research about the use of 
computer programs for data analysis. The debate focuses on the loss of intimacy with 
the data as well as issues of confidentiality and security of the participants. The key to 
researchers using these programs is to keep in mind that they are designed only to 
assist the researcher in managing the data, but not to analyze data, develop theory or 
draw conclusions about findings. It is of utmost importance that researchers not allow 
the computer program to direct the interpretive activity.84 

Rel iabi l ity and Val idity 
Reliability and validity are issues of concern in qualitative research just as they are in 
all types of research. For qualitative study, the concept of "measurement error" must be 
examined in terms of judgments rather than numerical equivalency.85 Because the data 
sources are words rather than numbers, different terms and techniques are used to 
describe and determine the trustworthiness of the data. Lincoln and Guba86 have sug­
gested the terms "credibility" and "truth" to refer to internal validity, "transferability" 
to refer to external validity, and "consistency" and "dependability" to refer to reliabil­
ity. They describe a number of techniques that can be used to increase credibility and 
consistency of qualitative data. Similar to techniques used in quantitative research, 
these approaches reflect a need to consider the rigor of data analysis and the potential 
for investigator bias. 

Techniques for Ensuring Trustworthiness of Qualitative Data 
Triangulation refers to a process whereby concepts are confirmed using more than one 
source of data, more than one data collection method, or more than one set of 
researchers. The concept actually originated as a technical term in surveying, to demon­
strate how two visible points could be used to locate a third point. In social sciences, the 
concept has been adopted to reflect multiple methods or data sources to substantiate an 
outcome. For instance, a researcher may identify a specific concept through an inter­
view, by direct observation of group performance, and by analysis of written materials. 
If comparable conclusions are drawn from each method, the internal validity or credi­
bility of the interpretation is considerably strengthened. For example, Galantino and 
colleagues87 demonstrated that use of exercise groups resulted in positive physical 
changes, enhanced coping and improved social interactions for a group of people liv­
ing with HIV I AIDS. They supported the validity of their findings by showing common 
themes using focus groups, nonparticipant observation and journals. 

The validity of findings can also be supported by a clear description and documen­
tation of the thought processes used to interpret data. This process is referred to as an 
audit trail, allowing those who read the research to follow the investigator's logic. This 
provides an opportunity for others to agree or disagree with conclusions, and to recon­
struct categorizations. In their study of therapists' reactions to changes in the health 
care system, Blau and colleagues63 transcribed initial and follow-up interviews, used 
process notes, and other documentation of data reconstruction to carefully document 
their process of analysis. 



CHAPTER 1 4  • Descriptive Research 313 

Other strategies for improving accuracy include the involvement of more than one 
investigator to confirm ideas, confirmation of conclusions with the subject of the study 
through member checks, and analysis until data saturation (no new themes identified) 
is reached. For example, Jensen et af3 used three non-physical therapist consultants to 
support their theoretical formulations. Blau et al63 summarized the themes they 
extracted from their data and mailed them to participants several months later, inter­
viewing them to validate their interpretations. These strategies are important to control 
for the potential bias in qualitative analysis. 

Sampl ing 
In qualitative research, subject selection proceeds in a purposeful way, as the investiga­
tor must locate subjects who will be effective informants, and who will provide a rich 
source of information.88 Depending on the research question, the researcher may select 
one of many types of sampling strategies including typical, maximum variation or 
extreme. Another type of sampling, termed theoretical sampling, is based on the need 
to collect data to examine emerging categories and their relationships, and not on iden­
tifying specific age, gender or other characteristics of subjects.89 In this type of sampling, 
a few subjects are initially chosen because they belong to a certain group, but further 
subjects are recruited based on their fit with theory that emerges from the initial data.90 

A common misconception about sampling in qualitative research is that all samples 
are small. Sample size remains an important consideration. Samples that are too small 
will not support claims of having reached a point of saturation in the data. Samples that 
are too large will not permit the in-depth analysis that is the essence of qualitative 
inquiry. Sandelowski91 suggests that determining adequate sample size in qualitative 
research is a matter of judgment and experience in evaluating the quality of the infor­
mation collected and the purpose of the research. 

We recognize that this brief introduction to qualitative analysis is by no means suf­
ficient to demonstrate the scope of data collection and analysis methods that have been 
developed. This approach has great promise for generating understanding of health 
and how it is evaluated. Those interested in pursuing qualitative research are urged to 
read the references cited in this chapter. We also suggest reading professional literature, 
such as the journal Qualitative Health Research, to gain an appreciation for the breadth of 
qualitative research and to develop familiarity with the techniques and terminology of 
qualitative methodology. 

DESCRIPTIVE SURVEYS 
Surveys are often used as a source of data to collect information about a specific group, 
to describe their characteristics or risk factors for disease or dysfunction. These types of 
studies are generally focused on a particular issue or aspect of the group's behaviors or 
attitudes. The purpose of this approach is to provide an overall picture of the group's 
characteristics, but may involve some correlational interpretations regarding associa­
tion among certain variables. As an example, Jensen and co-workers92 used a survey to 
examine the nature and scope of pain in persons with neuromuscular disorders. They 
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demonstrated that, while pain is a common problem in this population, there are some 
important differences between diagnostic groups in the nature and scope of pain and its 
impact. In another example, Miller et al93 described the most prevalent disorders of older 
adults that were seen by physical therapists, and compared these across several regions 
of the United States. Giesbrecht94 surveyed occupational therapists in 75 facilities across 
Canada to describe risk assessment tools, referral patterns and interventions related to 
management of pressure ulcers. We will discuss the design of surveys in Chapter 15. 

CASE STUDIES 
Clinicians and researchers have long recognized the importance of the case study or 
case report for developing a clinical knowledge base. A description of interesting, new 
and unique cases is necessary to build a foundation for clinical science and as a means 
of sharing special information among professional colleagues. Typically, case studies 
involve the in-depth description of an individual's condition or response to treatment; 
however, case studies can also focus on a group, institution, or other social unit, such as 
a particular school, healthcare setting, community or family. A case series is an expan­
sion of a case study involving observations in several similar cases. 

Purposes of Case Studies 
Perhaps the greatest advantage of the case study as a form of clinical investigation is 
that it provides an opportunity for understanding the totality of an individual's condi­
tion outcomes of care. Rather than simply recording behavior, the depth of the case 
study allows the researcher to explore the subject's condition, emotions, thoughts, and 
past and present activities as they relate to the focus of the study. The researcher tries to 
determine which variables might be important to the subject's development or behav­
ior, in an effort to understand why the subject responds or changes in a particular way, 
or why certain outcomes were achieved and others were not. The case study becomes 
a valuable source of information for evidence-based practice because it shares impor­
tant aspects of clinicians' experiences with different patients. Case studies can serve 
several purposes. 

Understanding Unusual Patient Conditions 
Clinical case studies often emphasize unusual patient problems or diagnoses that pres­
ent interesting clinical challenges. For instance, Gann and Nalty95 highlighted the 
unusual diagnosis of a patient with a vertical patellar dislocation. The case was remark­
able because the injury occurred without trauma. The authors documented their find­
ings as a contribution to understanding mechanisms of patellar injury. As another 
example, Herrera and Stubblefield96 reported on a case series of eight patients with 
rotator cuff tendonitis as an unusual complication of lymphedema, and discussed the 
possible etiology and treatment options. 

Sometimes unique situations offer perspectives to support the implementation of 
guidelines for patient care. Laursen et al97 report on a case of a 27-year-old male who 
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suffered from acute delusional psychotic disorder and severe physical agitation. Fol­
lowing a period of physical restraint, the patient was diagnosed with bilateral deep 
venous thrombosis (DVT). The case report suggests an association between the occur­
rence of DVT and the immobilization by physical restraint in the absence of pre-existing 
risk factors. The authors used this case report as a forum to recommend that medical 
guidelines for prevention of DVT be considered when physical restraint is necessary in 
this patient population. 

Providing Examples of Innovative or Creative Therapies 
Case studies may focus on innovative approaches to treatment. For example, Sullivan 
and Hedman98 reported on the use of a home program with electrical stimulation as an 
effective therapy for upper extremity tasks in the case of a patient 5 years after stroke. 
MacLachan et al99 described the first case of the successful use of "mirror treatment" in 
a person with a lower limb amputation to treat phantom limb pain. They demonstrated 
that this approach, which had been successful with upper extremity amputation, was 
equally effective for improving lower extremity phantom pain. 

Changes in technology provide an excellent opportunity to demonstrate resource­
ful approaches to patient care. For instance, Gillen100 described a combination of occu­
pational therapy interventions to improve mobility of a man with multiple sclerosis 
whose impairments included ataxia, and decreased strength and endurance. Through 
the use of assistive technology, positioning, orthotic prescription and adaptation of 
movement patterns, she observed improved postural stability and independent control 
of a power wheelchair. Case studies like this one allow clinicians to disseminate creative 
ideas that can contribute to successful patient outcomes. 

Schuman and Abrahm101 illustrate the use of the case study approach in describing 
implementation of educational and consensus-building strategies to engage hospital 
staff in providing palliative sedation for patients in intractable pain at the end of life. In 
this case, the unit of concern was not an individual patient, but a team of clinicians 
responsible for making decisions and administering pain management, including 
nurses, physicians and pharmacists, as well as family members. The focus of the case 
study was on the course of institutional change, using several patient histories to 
demonstrate the process. Descriptive case studies can be extremely useful for under­
standing institutional culture and change. 

Generating and Testing Theory 
Treatment and diagnostic decisions frequently require reference to theory in the 
absence of more direct evidence. Case studies are especially helpful for demonstrating 
how clinical theories can be applied. For example, Rosenbaum and co-workers102 
describe the case of a man who experienced widespread brain damage in a motor cycle 
accident 20 years earlier, and who has been followed because of his unusual memory 
impairment. The researchers have documented how this patient's experiences con­
tribute to several aspects of memory theory, including understanding episodic and 
semantic memory, and the distinction between implicit and explicit memory. 

Case studies can also offer insight into existing theories, providing opportunities to 
confirm or challenge specific hypotheses. For instance, Lott et al103 used the physical 
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stress theory (described in Chapter 2) to explain the effect of weight-bearing activities 
on healing of foot ulcers in a 66-year-old man with a history of diabetes. They 
accounted for the recurrence of ulcers based on cumulative plantar stresses that 
occurred with a rapid change in the patient's walking patterns after initial healing. 

Providing Future Research Directives 
Although case studies focus on the details of individual patients, the results can often 
highlight issues that require further inquiry, providing a rich source of research ques­
tions. One major contribution of the case study to research is its ability to provide infor­
mation that can be used to generate inductive hypotheses. Because the case study 
allows for a thorough analysis of a single situation, it often leads to the discovery of 
relationships that were not obvious before. As more and more cases are reported, a form 
of "case law" gradually develops, whereby empirical findings are considered reason­
able within the realm of accepted knowledge and professional experience.104 Eventu­
ally, with successive documented cases, a conceptual framework forms, providing a 
basis for categorizing patients and for generating hypotheses that can be tested using 
exploratory or experimental methods. 

As an example, Reinthal et al105 examined the effectiveness of a postural control pro­
gram in an adolescent who had problems walking and talking simultaneously follow­
ing traumatic brain injury. They hypothesized that her difficulty was due to excessive 
co-activation of trunk, extremity and oral musculature. Following 2 years of speech and 
physical therapy, the patient was able to significantly improve her ability to communi­
cate intelligibly while walking. The results of treatment suggested that improved pos­
tural control allowed less rigid compensation of oral musculature, allowing her to 
speak. This hypothesis can now be tested in other patients or under different conditions. 

Format of a Case Study 
A clinical case study is an intensive investigation designed to analyze and understand 
those factors important to the etiology, care and outcome of the subject's problems. It is 
a comprehensive description of the subject's background, present status, and responses 
to intervention. 

A case study may begin with an introduction that describes background literature 
on the patient problem. Theoretical or epidemiologic information is often helpful to 
understand the scope and context of the disorder. A full history of the patient is then 
provided, delineating problems, symptoms, and prior treatments, as well as demo­
graphic and social factors that are pertinent to the subject's care and prognosis. 
Authors sometimes include photographs (with the patient's permission) to illustrate a 
patient's condition. 

A section on methods presents elements of the treatment plan. Expectations should 
be presented as justification for the treatment approach chosen.104 Where relevant, liter­
ature should be cited to support the rationale for treatment and interpretation of out­
comes. If special assessments are used, they should be described in functional detail. 
Some case studies are actually geared to describing the applicability of new or unusual 
assessment instruments for diagnosing certain problems. 
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A results section will include the subject's responses and any follow-up data. When 
appropriate, tables or graphic presentation of data may be useful to explain the 
patient's progress. The discussion section of the report provides interpretation of out­
comes and conclusions, including reference to research and other clinical information 
that may support or challenge the current findings. This section should include discus­
sion of unique or special considerations in the patient's condition or responses that may 
explain unexpected outcomes, or that may distinguish the patient from others with the 
same condition. Finally, the author of a case study should present questions for further 
study, suggesting where the case study's findings may lead. 

General izabi l ity of Case Stud ies 
The case study is probably the most practical approach to research because of its direct 
applicability to patient care, but it is also the least rigorous approach because of its 
inherent lack of control and limited generalizability. The interaction of environmental 
and personal characteristics and the effect of multiple interventions make the case 
study weak in internal validity. Generalization from one case to a larger population is 
also limited because the responses of one individual or social unit may bear little resem­
blance to those of others in similar circumstances. In addition, case studies are often 
concerned with exceptional situations or rare disorders, and subjects are generally not 
representative of the "typical" patient seen in the clinic. Therefore, external validity is 
also limited. 

The validity of inferences from a case study can be enhanced, however, by taking 
steps to objectify treatment effects and to demonstrate them under different 
conditions.106•107 For instance, interpretations can be made stronger by direct quantified 
observation and by taking repeated measurements over the course of treatment. Treat­
ment effects can be further supported by using multiple dependent variables and by 
choosing outcome measures that show large and immediate changes. Generalization 
can be enhanced by documenting the subject's behavior in more than one setting and 
by including information from the follow-up visit to establish the long-range success of 
treatment. Literature should be used to demonstrate how results support a particular 
theoretical approach to treatment. When validity is an important issue to demonstrate 
the effect of intervention, a single-subject design should be considered. 

Case Reports in  Epidemiology 
An epidemiologic case report is a description of one or more individuals, document­
ing a unique or unusual occurrence or medical condition. The purpose of the case 
report is to present as complete a picture as possible about the characteristics of, and 
exposures faced by, that individual, often resulting in the presentation of a hypothesis 
about the causal factors that might account for the observed outcome. Many notable 
examples of this approach exist, such as the original report of a patient with unique 
dementia characteristics by Alzheimer in 1905;108 the single case report in 1961 of a 40-
year-old pre-menopausal woman who developed a pulmonary embolism 5 weeks after 
starting to use oral contraceptives}09 and a series of reports documenting the first cases 
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of AIDS in five young previously healthy homosexual males in Los Angeles.110 These 
cases led to the formulation of important analytic hypotheses that have since been 
tested and supported. In a more recent example, Jeong and coworkers111 documented the first report of a 
"floating total knee," which resulted from fractures of the distal femur and proximal 
tibia after a total knee arthroplasty. The patient was an 80-year-old man with rheuma­
toid arthritis who fell in his home 3 years after the original procedure. The report 
described surgical revision of the joint replacement and postoperative follow-up. Given 
that periprosthetic fractures are rare following knee replacement, the authors used this 
case to discuss risk factors related to the patient and surgical technique. They described 
their choice of treatment options and successful short-term outcomes. This type of case 
report provides important information that can be used to minimize future risks and to 
prompt further study. 

As is true with clinical case reports, case studies in epidemiology do not provide 
sufficient control to allow for generalizations or conclusions about causality. They can 
only act as a catalyst for further study; however, as the preceding examples illustrate, 
case reports can be vitally important for identifying new health hazards and facilitating 
further analytic research. 

COMM ENTARY 

Fi rst Things First 

The purpose of descriptive research is to characterize phenomena so that we know 
what exists. Without this fundamental knowledge, it wou ld be impossible to ask 
questions about behaviors or treatment effects or to propose theories to explain them. 
Th is approach is  c learly contrasted with traditional experimental research, which 
seeks to determine what will happen in a given set of control led c i rcumstances. 

Although descriptive studies do not strive for the degree of control found in  
experimental stud ies, descriptive research serves an important ro le with in  the spec­
trum of research designs. The state of knowledge in the rehabi l i tation professions i n  
relatively immature, and we sti l l  face the need to define c l i n ical behaviors so  that 
we can begin to explore them. just l i ke a ch i ld  must learn to crawl before it can 
wal k, c l i n ical scientists must fi rst discover how the world around them natura l ly 
behaves before they can manipulate and control those behaviors to test methods of 
changing them. 

Despite the fact that descriptive studies do not involve manipu lation of variables 
or randomization, descriptive research sti l l  requi res rigor in defi n ing and measuring 
variables of interest, whether they emerge as narrative descriptions or quantitative 
summaries. Unfortunately, there is a tendency to view conclusions from descriptive 
studies as weaker than conclusions from experimental studies, but this is on ly true i n  
the context of estab l i sh ing cause-and-effect relationsh ips. Descriptive findings can be 
strong and meaningfu l as a basis for exp lanation and characterization of variables 
when they are the result  of a wel l designed study and when they are i nterpreted 
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with i n  the context of an appropriate research quest ion.  The resu lts of descriptive stud­
ies may provide essential evidence for understanding the benefits of c l i n ica l  tr ia ls, 
and for describ ing or exp la in ing why some subjects respond d ifferently than others. 

Experimenta l des igns w i l l  not necessari ly be "better" if the research question 
focuses on the deve lopment of understanding of c l i n ica l  phenomena or if the study 
variables represent constructs that are poorly developed. With so many behavioral 
and c l i n ical  concepts not yet fu l ly understood, descr iptive research presents an 
extraordi nary and v i ta l  chal lenge to the c l i n ical researcher. 
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Surveys and Questionnaires 

One of the most popular methods for collecting descriptive or subjective data is the sur­
vey approach. A survey is composed of a series of questions that are posed to a group 
of subjects, and may be conducted as an oral interview or as a written or electronic 
questionnaire. Sometimes the data are intended for generalization to a larger popula­
tion; other times they may be intended as a description of a particular group. Surveys 
in clinical research are often concerned with describing current practices, attitudes and 
values, or characteristics of specific groups. For example, survey questionnaires have 
been used to compare the effectiveness of medication, acupuncture and spinal manip­
ulation for chronic low back pain/ to study physicians' attitudes and practices toward 
disclosure of prognosis for terminally ill patients/ and to describe the demographics 
and injury characteristics of patients with spinal cord injury.3 Standardized question­
naires are also used extensively as instruments for assessing outcomes related to func­
tion, health status and quality of life. As these examples illustrate, survey data can be 
used in experimental, exploratory or descriptive studies. 

The purpose of this chapter is to present an overview of the structure of survey 
instruments. We discuss essential elements of survey design, question writing, and 
some special assessment techniques associated with questionnaires, including several 
measurement scales. 

I NTERVI EWS AND QU ESTION NAI RES 

I ntervi ews 
In an interview the researcher asks respondents specific questions and records their 
answers for later analysis. Interviews can take a few minutes or several hours, depend­
ing on the nature of the questions and the respondent's willingness to share informa­
tion. Interviews can be conducted face to face or over the telephone, although 
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face-to-face interviews tend to be more effective for establishing rapport between the 
interviewer and the respondent. This interaction can be important for eliciting forth­
right responses to questions that are of a personal nature. The advantage of the inter­
view approach is the opportunity for in-depth analysis of respondents' behaviors and 
opinions because the researcher can probe responses and directly observe respondents' 
reactions. The major disadvantages of interviews include cost and time, the need for 
personnel to carry out the interviews, scheduling and the lack of anonymity of the 
respondents. 

Most interviews are structured in that they consist of a standardized set of questions 
that will be asked. In this way, all respondents are exposed to the same questions, in the 
same order, and are given the same choices for responses. In an unstructured interview, 
the interviewer does not have a fixed agenda, and can proceed informally to question 
and discuss issues of concern. This format is typically conversational and is often car­
ried out in the respondent's natural setting. Many qualitative studies use the unstruc­
tured interview approach to generate data. 

Questionnaires 
Questionnaires are structured surveys that are self-administered using pen and paper 
or electronic formats. The advantages of using questionnaires are many. They are gen­
erally more efficient than interviews because respondents complete them on their own 
time. Data can be gathered from a large sample in a wide geographical distribution in 
a relatively short period of time. Written forms are standardized, so that everyone is 
exposed to the same questions in the same way, reducing potential bias from interac­
tions with an interviewer. Respondents to questionnaires can take time to think about 
their answers and to consult records for specific information. Questionnaires also pro­
vide anonymity, encouraging honest and candid responses. Questionnaires are particu­
larly useful as a research method for examining phenomena that can be assessed 
through self-observation, such as attitudes and values. They are not as useful for study­
ing behaviors that require objective observation. The primary disadvantages of the 
written questionnaire are the potential for misunderstanding or misinterpreting ques­
tions or response choices, and unknown accuracy or motivation of the respondent. In 
interviews, the researcher can clarify such misinterpretations. 

The most common method of distributing questionnaires has traditionally been 
through the mail, although many research situations allow for in-person distribution. 
Electronic distribution of surveys is quickly becoming common practice. Survey soft­
ware is available through many vendors, allowing for anonymity and automatic tally­
ing of responses. Such questionnaires are economical and can reach a large population 
in a relatively short period. 

A major disadvantage of mail or email questionnaires is that the return rate is often 
quite low. Responses from 60% to 80% of a sample are usually considered excellent. 
Realistically, researchers can expect return rates between 30% and 60% for most stud­
ies. Actual response rates are lowered further by having to discard returns that are' 
incomplete or incorrectly filled out. Low returns can severely limit the external validity 
of survey results. Therefore, survey samples are usually quite large so that a sufficient 
percentage of usable responses will be obtained. 
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Survey data that are collected using either an oral interview or a written questionnaire are 
based on a form of seH-report; that is, the researcher does not directly observe the 
respondent's behavior or attitudes, but only records the respondent's report of them. 
There is always some potential for bias or inaccuracy in self-reports, particularly if the 
questions concern personal or controversial issues. The phenomenon of recall bias can 
be a problem when respondents are asked to remember past events, especially if these 
events were of a sensitive nature. Research has shown, however, that self-report measures 
are generally valid. For instance, variables such as injury,4 mobility function,5 hyperten­
sion,6 and smoking habits7•8 have been reported accurately, although a few studies have 
shown a poor correlation between performance and self-report measures.9•10 These differ­
ences point out the need to understand the target population and the respondents' abili­
ties to answer the questions posed. For many variables, however, such as perceptions, 
fears, motivations and attitudes, self-report is the only direct way to obtain information. 

DESIGN OF SU RVEYS 

The process of developing a survey instrument is perhaps more time consuming than 
most people realize. It involves several stages, within which the instrument is written 
and revised, until it is finally ready for use as a research tool. 

The Research Question 
The first consideration in every research effort is  delineation of  the overall research 
question (see Chapter 7). The research problem must be identified with reference to a 
target population. These decisions will form the structure for deciding the appropriate 
research design. A survey is appropriate when the question requires obtaining informa­
tion from subjects, rather than measuring performance. 

Guiding Questions 
As with any other research approach, validity is a major concern in the design of a sur­
vey instrument; that is, the questionnaire or interview must measure what it was 
intended to measure. Questions are not asked out of casual interest or curiosity, but 
because they reflect specific pieces of information that taken as a whole will address the 
proposed research question. Therefore, the first step in developing the survey is to define 
its purpose through a series of guiding questions, or objectives that delineate what the 
researcher is trying to find out. The guiding questions may reflect purely descriptive 
interest, or they may address expected relationships among variables. For example, 
Couch and colleagues11 examined the role that play occupies within occupational ther­
apy practice with preschoolers. They proposed three guiding questions for their study: 

1. How do occupational therapists incorporate play into their practice? 
2. Do occupational therapists assess play behaviors and what methods do they use? 
3. Are there differences between school-based and non-school-based settings that influence the 

role of play within pediatric occupational therapy? 

These types of questions focus the content of a questionnaire. 
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Hypotheses 
Survey instruments can also be designed to examine relationships. Some researchers 
will, therefore, specify hypotheses in addition to guiding questions. Hypotheses are 
important to direct statistical analyses and conclusions. To illustrate, Rozier and 
coworkers12 looked at the relationship between gender and career success factors in 
physical therapists. One of the several guiding questions they posed was, "Are percep­
tions of career success different for male versus female physical therapists?" They pro­
posed a series of hypotheses to answer this question, such as: 

Men and women will differ with respect to perceptions of career success. 
a. Men will rate themselves higher in career success compared with women. 
b. Men will report greater importance of salary and position compared with women. 

By delineating the specific variables and expected outcomes, the authors were able to 
clearly structure the analysis and discussion of their findings. 

Questionnaire Outline 
Once the guiding questions or hypotheses are formulated, the researcher must develop 
a detailed outline, listing each item of information that will be needed to answer the 
guiding questions. Each item should relate back to at least one of the study's objectives. 
Often, more than one item will be needed to address a single question or hypothesis. 

Stating useful guiding questions that support an overall research question requires 
that the researcher have a clear conceptualization of the phenomenon or characteristics 
being studied. In the study by Couch,11 it would not be possible to ask questions that 
allow the researchers to determine if play was truly part of a therapist's practice without 
a good concept of "play." In Rozier's study,U the elements of career success must be 
understood to compare opinions of male and female respondents. Each individual ques­
tion in a survey should add to a larger informational context that will answer the guid­
ing questions. 

Typically, researchers also include questions about important demographic infor­
mation in a survey. Couch et al11 asked occupational therapists about their academic 
degrees, years of experience and practice setting. Rozier et al12 asked their sample for 
information about age, employment setting, length of employment and family respon­
sibilities. Studies will also often include items related to income, race, marital status, liv­
ing situation and so on. This type of information is needed to describe the characteristics 
of the respondents, to compare the characteristics of the sample with those of the pop­
ulation to which the results will be generalized, and to interpret how personal charac­
teristics are related to the subject's responses. Guiding questions should be included to 
reflect how this information will be related to the overall research question. 

Review of Existing I nstruments 
The next step in questionnaire development should be to review existing instruments, 
to determine if they are applicable or adaptable for the study. Many investigators have 
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developed and validated instruments for a variety of purposes. For example, instru­
ments have been developed for exploring attitudes,13 health behaviors,14 and functional 
status.15'16 Often, these instruments can be borrowed directly or in part, or they can be 
modified to fit new research situations, saving a great deal of time. It is not wise to 
adopt previously used surveys blindly, without considering differences in populations 
being studied and the specific objectives of the instrument. It is, however, always pos­
sible to benefit from the review of literature and insights into development or valida­
tion issues that the creator of such an instrument can provide. 

Designing the I nstrument 
The researcher begins to design a survey by writing a series of questions that address 
each behavior, knowledge, skill or attitude reflected in the guiding questions. Ques­
tions should be grouped and organized to reflect each category or topic. The first 
draft of a questionnaire should include several questions for each topic, so that these 
can eventually be compared and weeded out. Content should flow so that the 
respondent's thought processes will follow a logical sequence. Questions should 
proceed from the general to the specific. The format of questions will vary, depend­
ing on how the survey will be administered, that is, by phone or personal interview, 
or questionnaire. The initial questions should pique the respondent's interest, or at 
least be "neutral."  Sensitive questions should come later. Some researchers put 
demographic questions at the beginning, but many prefer to keep these less interest­
ing questions for the end. 

The organization of the survey is extremely important to the success of its applica­
tion. Respondents can easily be turned off by a format that is complicated or confusing. 
The document should be presented in as "friendly" a format as possible. The page 
should be uncluttered, printed in laser-quality print, and aligned so that it is easy to 
find the next question. The font size should be at least 11 or 12  point. The font should 
be simple to read, not fancy or unusual. Some researchers like to use colored paper, 
rather than white, for written questionnaires to make the survey stand out. Colors used 
in email surveys should be subtle. 

Pre l iminary Drafts 
The preliminary draft of the survey should now be distributed to a panel of colleagues 
who can review the document, identify problems with questions, including wording 
and organization. Ask for criticism and suggestions for constructive change. No matter 
how carefully the survey has been designed, the researcher is usually too close to it to 
see its flaws. Provide the panel with the study's guiding questions. Based on the panel's 
comments, the survey should be revised, and then presented to the panel again for fur­
ther comment. The reviewers should try to answer the survey questions, and discuss 
how they interpreted each one. The revision process should continue, with additional 
feedback from evaluators, until the researcher is satisfied that the instrument is concise, 
clear and serves its intended purpose. This process is indeed time consuming, but nec­
essary, and helps to establish the content validity of the instrument. 
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Pi lot Testing and Revisions 
The revised questionnaire should then be pilot tested on a small representative sample, 
perhaps 5 to 10 individuals from the target population. The researcher should interview 
these respondents to determine where questions were unclear or misleading. If the 
researcher is unsure about the appropriateness of specific wording, several versions of 
a question can be asked to elicit the same information in different ways, and responses 
can be compared for their reliability. Look for missing answers and inconsistencies. It is 
also useful to monitor the time it takes for respondents to complete the questionnaire. 
It may be helpful to administer the survey to this group on two occasions, perhaps sep­
arated by several days, to see if the responses are consistent, as a way of estimating test­
retest reliability. Based on the results of pilot testing, the questionnaire may again be 
revised and retested until the final instrument attains an acceptable level of validity. 

A major concern during this process will be the length of the survey. More often 
than not, the initial versions will be too long. Long questionnaires are less likely to 
maintain the respondent's attention and motivation, resulting in potentially invalid or 
unreliable responses or, in the case of mail surveys, nonresponses. The importance of 
each item for the interpretation of the study should be examined, and only those ques­
tions that make direct and meaningful contributions should be retained. Researchers 
have shown that shorter questionnaires are often more valid than longer ones, as items 
generally have some redundancy built into them.17 

If the study involves the use of interviewers, a formal training process should be 
incorporated once the questions have been finalized. Interviewers must be consistent in 
how they present the survey, how questions are asked, and how probing follow-up 
questions are used (if they are to be allowed). They should be briefed on the purpose of 
the study, and their presentation should convey the proper attitude. The interviewers 
must understand the process of recording responses, an important skill when open­
ended questions are used. 

Selecting a Sample 
Before the survey can be administered, the researcher must choose a sample. An acces­
sible population must be identified. As much as possible, a probability sample should 
be selected. Stratified sampling is often used to control for variations within the sam­
ple, such as geographical area when national samples are used. Cluster sampling may 
be used to increase accessibility of respondents. 

For interview surveys, the respondents will typically be within a local geographic 
area, and may be recruited from agencies or clinics. Before an interview is administered, 
the potential respondents should be contacted to elicit their cooperation. For telephone 
interviews, it is appropriate to send advance notice in the mail that the phone call will 
be coming as a means of introduction and as a way of establishing the legitimacy of the 
phone call. For mail surveys, the accessible population may be quite dispersed, and 
may be limited only by the availability of mailing addresses. Mailings lists can be pur­
chased from professional associations or organizations. Published lists of schools or 
hospitals can usually be obtained from libraries or professional organizations. 
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Survey respondents should be given an introduction to the survey so that they under­
stand its purpose and how the data will be used. They should be given an idea of how 
long it will take to complete the survey. In a written questionnaire, this information will 
be included in the cover letter. In a mail survey, a self-addressed stamped envelope 
must be included. It is also appropriate to ask respondents if they would like a copy of 
the study results when it is completed. Because the survey will typically be anonymous, 
a separate form can be included for them to send back with their name and address for 
this purpose. 

Because of low response rates in surveys, the researcher should plan to follow up 
on those who do not respond. To maintain anonymity, in mail surveys, researchers will 
often code the back of the return envelope, so they can keep a record of who has 
returned the questionnaire. It is appropriate to send out reminders-postcards, emails, 
or phone calls-about 2 weeks after the initial mailing to encourage a reply. Because 
online survey responses are anonymous, email reminders can be sent to the entire sam­
ple, (with apologies to those who did respond). Although the majority of responses will 
be obtained within the first 2 weeks, a reasonable improvement can usually be obtained 
through follow-up. 

Cover Letter 
Questionnaires must include a cover letter that orients the respondents to the survey 
and politely requests their participation. Because a questionnaire can easily be ignored, 
the cover letter becomes vitally important to encourage a return. An example of a cover 
letter is shown in Figure 15.1 .  The letter should include the following elements: 

1. Start with the purpose of the study, including its importance. If the research is 
sponsored by an agency, this information should be included. If the project is a 
thesis or student project, the respondents should know this. 

2. Indicate why the respondent has been chosen for the survey. 
3. Assure the respondents that the survey will be anonymous. Encourage them to 

be honest in their answers, and assure them that they can refuse to answer any 
questions that make them uncomfortable. 

4. Suggest how long it will take to complete the questionnaire. 
5. Ask them to respond by sending back the survey in the enclosed self-address 

stamped envelope or by electronic submission. Provide a deadline date. It is 
reasonable to give 2 to 3 weeks for a response. A shorter time is an imposition, 
and longer may result in the questionnaire being put aside and forgotten. 

6. Thank respondents for their cooperation. Stress the importance of their 
response for your work. Provide an opportunity for them to receive a summary 
of the report. 

7. Sign the letter (or use an electronic signature), including your name, degrees 
and affiliation. If there are several investigators, it is appropriate to include all 
signatures. 
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Dear Dr. Jones: 

'2 State Unlve,.lty 
1000 University Avenue 
Boston, MA 02000 April 2, 2007 

We are conducting a study to examine models of clinical education in occupational 
therapy programs in the United States. The purpose of the study is to document the 
various models that are used, to describe how they are implemented and to explore 
preferences of academic faculty, clinical instructors and clinical managers. The results 
of this study will help occupational therapy educators understand the issues that impact 
on the provision of clinical education within today's health care delivery system, and 
provide a basis for considering mechanisms for making clinical education more effective 
and efficient. 

Your name was selected at random from a list of clinical faculty for accredited 
occupational therapy programs. We would appreciate your completing the enclosed 
questionnaire. The questionnaire is anonymous and will not identify respondents in any 
way. We are interested in your honest opinions. If you prefer not to answer a question, 
please leave it blank. 

The questionnaire should take approximately 1 5  minutes to complete. A stamped 
envelope is included for your convenience in returning the questionnaire. We would 
appreciate your returning the completed questionnaire by April 24. 

Thank you in advance for your cooperation with this important effort. Your answers will 
make a significant contribution to our understanding of contemporary issues that are 
affecting all of us involved in clinical education programs. If you would like a summary 
of our findings, please fill in your name and address on the enclosed request form, and 
we will be happy to forward our findings to you when the study is completed. 

Sincerely, 

Ann P. Smith, PhD, OTR 
Assistant Professor 

FIGURE 1 5.1 Sample cover letter for a mai led questionnaire. 

CONSTRUCTING SURVEY QU ESTIONS 
Two types of questions can be asked in a survey: open-ended and closed-ended ques­
tions. Open-ended questions ask respondents to answer in their own words. Closed­
ended questions provide multiple response choices. 

Open-Ended Questions 
Open-ended questions are useful for probing respondents' feelings and opinions, with­
out biases or limits imposed by the researcher. For example, "What aspects of your job 
are most satisfying to you?" would require the respondent to provide specific examples 



CHAPTER 1 5  • Surveys and Questionnaires 333 

of job characteristics. This format is useful when the researcher is not sure of all possi­
ble responses to a question. Therefore, respondents are given the opportunity to pro­
vide answers in their own words and from their own perspective. Sometimes 
researchers will use open-ended questions in a pilot study to determine a range of 
responses which can then be converted to a multiple choice item. 

Open-ended questions are, however, difficult to code and analyze because so many 
different responses can be obtained. If open-ended questions are misunderstood, they 
may elicit answers that are essentially irrelevant to the researcher's goal. Respondents 
may not want to take the time to write a full answer, or they may answer in a way that 
is clear to them but uninterpretable, vague, or incomplete to the researcher. For 
instance, a question like, "What types of exercise do you do regularly?" could elicit a 
long list of specific movements or a general description of an exercise routine. If the 
purpose of the question is to find out if the respondent engages in particular exercise 
activities, it would be better to list certain exercises and ask if they are done. Open­
ended questions can be effective in interviews because the interviewer can clarify the 
respondent's answers by follow-up questions. Open-ended questions are generally 
avoided in questionnaires, except where responses are fairly objective, such as asking 
for a person's yearly income, or where the researcher's purpose is to explore respon­
dents' motivations or behaviors without presenting a predefined list of choices. 

Closed-Ended Questions 
Closed-ended questions ask respondents to select an answer from among several 
choices that are provided by the researcher. 

Which of the fol lowing aspects of your job do you find most satisfying? 

[ ] Patient contact 
[ ] I ntel lectual chal lenge 
[ ] I nteraction with other medical personnel 
[ ] Opportun ities for educational growth 

This type of question is easily coded and provides greater uniformity across responses. 
Its disadvantage is that it does not allow respondents to express their own personal 
viewpoints and, therefore, may provide a biased response set. The list of choices may 
overlook some important responses, or they may bias answers by presenting a particu­
lar attitude. 

There are two basic considerations in constructing closed-ended questions. First, 
the responses should be exhaustive; that is, they should include all possible responses 
that can be expected. As a protection, it is often advisable to include a category for "not 
applicable" (NA), "don't know," or "other (please specify __ ) ." In the preceding 
example, for instance, it is likely that respondents will have other reasons for job satis­
faction that have not been listed. Second, the response categories should be mutually 
exclusive; that is, each choice should clearly represent a unique answer. The preceding 
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example is inadequate on this criterion. For example, a respondent may see "intellec­
tual challenge" and "opportunities for educational growth" as elements of the same 
concept. Where only one response is desired, it may be useful to add an instruction ask­
ing respondents to select the one best answer or the answer that is most important; how­
ever, this technique does not substitute for carefully worded questions and choices. 

There should also be a rationale for ordering response choices. Sometimes, there is an 
inherent hierarchy in the responses, so that choices can be given in order of increasing or 
decreasing intensity or agreement. When there is no purposeful order, the researcher must 
be careful to avoid "leading" the respondent to a particular choice by the order or phrasing. 

Sometimes the researcher is interested in more than one answer to a question. For 
instance, we might want to know all the reasons for a person's job satisfaction. Instruct­
ing the respondent to mark "all that apply" creates an interpretation problem in that the 
respondent may not choose a particular item because it does not apply, because it was 
not clear, or because it was missed. In addition, it is difficult to code multiple responses. 
When multiple choices are of interest, it is better to ask respondents to mark each choice 
separately, as in the following example: 

Which of the fol lowing aspects of you r job do you find satisfy ing? 

Yes 
Patient contact l l 
I ntel l ectual chal lenge I l 
I nteraction with other medica l  personnel I ] 
Opportun it ies for educational growth I 1 

Format of Closed-Ended Questions 

No 
[ 1 
[ l 
[ l 
[ 1 

U nsure 
[ l 
l l 
[ l 
[ l 

Two common formats are used to list choices to closed-ended questions: (1) using 
brackets, as just presented, where respondents are asked to check the appropriate 
response, or (2) asking respondents to circle the number or letter that appears before the 
answer, as shown next. 

The simplest form of closed-ended question is one that presents two choices, or 
dichotomous responses: 

Are you presently enro l l ed in a degree program? 

a .  Yes 
b .  No 

When questions address a characteristic that is on a continuum, such as attitudes or 
quality of performance, it is more useful to provide a range of responses, so that the 
respondent can find a choice that represents the appropriate intensity of response. Usu­
ally, three to five multiple-choice options are provided. An option for "Don't know" or 
"Unsure" should always be included. 
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How important do you th ink it is to inc l ude a research course in your 
professional program? 

a .  Very important 
b .  Important 
c. Somewhat important 
d. Not important 
e. Unsure 

When a series of questions use the same format, a grid or checklist can provide a 
more efficient presentation. With this approach, instructions for using the response 
choices need only be given once, and the respondent can quickly go through many 
questions without reading a new set of choices. For example, Figure 15.2 shows a check­
list for a question concerning patients' level of knee pain during different activities. 

For each of the following activities, please indicate the level of 
knee pain you have experienced during the past week: 

No pain Minimal Moderate Severe 
Walking a short distance 
Walking a long distance 
Ascending stairs 
Descending stairs 

FIGURE 1 5.2 Example of a grid for using one set of response choices for a series of questions. 

An alternative question format is the rank-order question, where the respondent 
is presented with a series of responses and is asked to rank the responses on an ordi­
nal scale. 

The fol l owing are some of the reasons appl icants choose to attend a partic­
u la r  school .  P lease order them in terms of importance, from 1 (most impor­
tant) to 5 ( least important). 

Location 
__ Facu lty reputation 
__ Length of program 

Affi l i at ion with a medical center 
__ Research opportun ities 

Some question sequences try to follow up on specific answers with more detailed ques­
tions, using a technique called branching. Depending on the response to an initial ques­
tion, the respondent will be directed to answer additional questions or to skip ahead to 
a later question. 
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1 .  Do you perform any c l i n ica l consulti ng activities? 

a. No ==> Skip to Question 3 
b. Yes 

2 .  Approximately how many hours per week do you work as a 
consultant? 

This process saves time by avoiding questions that are irrelevant to a specific respondent. 

Wording Questions 
Simplicity is a key to good questionnaires. Sentences should be succinct and grammat­
ically correct. Respondents will not be inclined to ponder the meaning of a long, 
involved question. The author of the questionnaire should assume that respondents 
will read and answer questions quickly and should provide choices that will be under­
stood at a glance. Questions should be written in common language for the lowest edu­
cational level that might be encountered. 

Language may be an issue if respondents do not speak English, or English is a sec­
ond language. The researcher must know the sample well enough to accommodate lan­
guage in the wording of questions. Idioms or subtle cultural expressions should be 
carefully avoided. The researcher may have the questionnaire translated into another 
language for specific sample groups. The translation must account for cultural biases. 

It goes without saying that survey questions must be clear and unambiguous. 
Questions that require subtle distinctions to interpret responses are more likely to be 
misunderstood. For example, consider the question: "How many different sports do 
you participate in?" There are two ambiguous terms here. First, there may be different 
ways to define sports. Some may include any form of physical activity, including riding 
a stationary bicycle; others may include only legitimate field sports. Second, what con­
stitutes participation? Does it have to be an organized schedule of play, or can it mean 
throwing a basketball in your yard on weekends or playing golf once a year? This type 
of ambiguity can be corrected by providing the respondent with appropriate defini­
tions, as in the following example: 

Do you partic ipate i n  any of the fol lowing team sports on a regular basis as 
part of amateur league play? 

Softbal l  
Basketbal l  
Footbal l  
Soccer 
Hockey 

Yes No 
[ l [ l 
[ l [ l 
[ l [ l 
[ l [ l 
[ l [ l 



Double-Barreled Questions 
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Each question should be confined to a single idea. Surveys should avoid the use of 
double-barreled questions, using "or" or "and" to assess two things within a single 
question. For instance, "How many times a week do you jog or ride a stationary bicy­
cle?" It is obviously possible to perform both of these activities at different rates, mak­
ing it impossible to answer the question. It is better to ask two questions to assess each 
activity separately. 

Frequency and Time Measures 
Researchers are often interested in quantifying behavior in terms of frequency and time. 
For example, it might be of interest to ask, "How many alcoholic drinks do you con­
sume each day?" or "How many patients do you treat per day?" These types of ques­
tions may be very difficult to answer because the frequency of the behavior may vary 
greatly from day to day, month to month, or even season to season. The researcher 
should determine exactly what aspect of the behavior is most relevant to the study and 
provide an appropriate time frame for interpreting the question. For instance, the ques­
tion could ask about a particular period, such as the maximum number of patients seen 
within the last week, or the respondent can be asked to calculate an average daily value. 
This assumes, of course, that this time period is adequately representative for purposes 
of the study. Alternatively, the question could ask for an estimate of "typical" or "usual" 
behaviors. This approach makes an assumption about the respondent's ability to form 
such an estimate. Some behaviors are much more erratic than others. For example, it 
may be relatively easy to estimate the number of patients treated in a day, but it may be 
more difficult to estimate typical behavior in consuming alcoholic beverages. Estimates 
of "typical" will also tend to ignore extremes, which may or may not be important to 
the purpose of the study. 

Questions related to time should also be specific. A question such as, "Has your 
back pain limited your ability to work?" may be difficult to answer if it is not a consis­
tent problem. It is better to provide a time frame for reference. For example, "Has your 
back pain limited your ability to work within the past month?" Many function, pain 
and health status questionnaires specify time periods within the last month, last week, 
or last 24 hours. 

Dealing with Sensitive Questions 
Questionnaires often deal with sensitive or personal issues that can cause some discom­
fort on the part of the respondent. Although some people are only too willing to express 
personal views, others are hesitant, even when they know their responses are anony­
mous. Some questions may address social behaviors that have negative associations, 
such as smoking, sexual practices and drinking alcohol; others may inquire about behav­
iors that respondents are not anxious to admit to, such as ignorance of facts they feel they 
should know and compliance with medications or exercise programs. Sensitive ques­
tions may also be subject to recall bias. For example, respondents may be selective in 
their memory of risk factors for disease or disability. Respondents should be reminded 
in the introduction to the survey that they may refuse to answer any questions. 
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Sensitive questions should be phrased to put the respondent at ease. It may be use­
ful to preface such questions with a statement as in these examples: "Many people for­
get to take their medications from time to time." "It is often very difficult for people to 
fit exercise sessions into their daily routines."  "Clinicians are faced with a tremendous 
task in keeping up with the variety of treatment approaches that are being developed 
for low back pain. Depending on experience and practice, some clinicians have had an 
opportunity to learn these techniques more than others."  These statements tell the 
respondent that it is okay if they fit into that category. 

Phillips18 suggests that questions that ask respondents to admit to socially unac­
ceptable behaviors should be phrased in a manner that assumes the respondent 
engages in the behavior. For instance, rather than asking, 

Do you ever forget to take your medication? 

[ I Yes [ I No 

I f  yes, how often? 

I Every day 
I Once a week 
I Once a month 

we could ask one question: 

How often do you forget to take your medication? 

SCALES 

I Every day 
I Once a week 
I Once a month 
l Never 

A scale is an ordered system based on a series of questions or items that provide an 
overall rating that represents the degree to which a respondent possesses a particular 
attitude, value or characteristic. The purpose of a scale is to distinguish among people 
who demonstrate different intensities of the characteristic that is being measured. 
Scales have been developed to measure attitudes, function, health and quality of life, 
pain, exertion and other physical, physiological and psychological variables. 

Categorical scales are based on nominal measurement. A question asks the 
respondent to assign himself according to one of several classifications. This type of 
scale is used with variables such as gender, diagnosis, religion or race. These data are 
expressed as frequency counts or percentages. 
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Most scales represent a characteristic that exists on a continuum. Continuous 
scales may be measured using interval or ratio values, such as age, blood pressure or 
years of experience. An ordinal scale requires that a continuous variable be collapsed 
into ranks. For instance, pain can be measured as "minimal, moderate, severe," or func­
tion as "independent, minimal assist, moderate assist, maximal assist, dependent." 
Scale items should represent the full range of values that represent the characteristic 
being measured. 

Scales are created so that a summary score can be obtained from a series of items, 
indicating the extent to which an individual possesses the characteristic of interest. 
Because item scores are combined to make this total, it is important that the scale is 
structured around only one dimension; that is, all items should reflect different ele­
ments of a single characteristic. A summative scale is one that presents a total score 
with all items contributing equal weight to the total. A cumulative scale demonstrates 
an accumulated characteristic, with each item representing an increasing amount of the 
attribute being measured. 

We will describe several scaling models used to summarize respondent character­
istics: Likert scales, the semantic differential, visual analogue scales, cumulative scales 
and Rasch models. 

Likert Scales 
A Likert scale is a summative scale, most often used to assess attitudes or values. A 
series of statements is presented expressing a viewpoint, and respondents are asked to 
select an appropriately ranked response that reflects their agreement or disagreement 
with each one. For example, Figure 15.3 shows a set of statements that evaluate stu­
dents' opinions about including a research course in an entry-level professional curricu­
lum. Likert's original scale included five categories: strongly agree (SA), agree (A), 
neutral (N), disagree (D), and strongly disagree (SD).19 Many modifications to this 
model have been used, sometimes extending it to seven categories (including "some­
what disagree" and "somewhat agree") or four categories (eliminating "neutral"). 

For each statement given below, please indicate whether you strongly agree (SA), agree 
(A), are neutral (N), disagree (D), or strongly disagree (SO): 

SA A N D so 

a. Knowledge of research D D D D D 
principles is important for 
the practicing clinician. 

b. Research and statistics should D D D D D 
be taught in entry-level 
professional programs. 

c. Participation in a research project D D D D D 
should be a requirement. 

FIGURE 1 5.3 A 5-point Li kert Scale. 
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There is no consensus regarding the number of response categories that should be used. 
Some researchers believe the "neutral" option should be omitted so that the respon­
dents are forced to make a choice, rather than allowing them an "out" so that they do 
not have to take sides on an issue. Others feel that respondents who do not have strong 
feelings should be given a viable option to express that attitude. When the forced choice 
method is used, responses that are left blank are generally interpreted as "neutral." 

Each choice along the scale is assigned a point value, based on the degree to which 
the item represents a favorable or unfavorable characteristic. For example, we could 
rate SA = 5, A = 4, N = 3, D = 2, SD = 1, or we could use codes such as SA = 2, A = 1, 
N = 0, D = -1, SD = -2. The actual values are unimportant, as long as the items are con­
sistently scored; that is, agreement with favorable items should always be scored higher 
than agreement with unfavorable items. Therefore, if positively phrased items are 
coded 5 through 1, then negatively phrased items must be coded 1 through 5. 

An overall score is computed for each respondent by adding points for each item. 
Creating such a total assumes that the items are measuring the same things and that 
each item reflects equal elements of the characteristic being studied; that is, one item 
should not carry any more weight than the others. 

Constructing a Likert scale requires more than just listing a group of statements. A 
large pool of items should be developed, usually 10 to 20, that reflect an equal number 
of both favorable and unfavorable attitudes. It is generally not necessary to include 
items that are intended to elicit neutral responses, because these will not help to distin­
guish respondents. The scale should be validated by performing item analyses that will 
indicate which items are truly discriminating between those with positive and those 
with negative attitudes. These items are then retained as the final version of the scale, 
and others are eliminated. If respondents are equally likely to agree with both favorable 
and unfavorable statements, then the scale is not providing a valid assessment of their 
feelings about a particular issue. The basis of the item analysis is that there should be 
correlation between an individual's total score and each item response. Those who 
score highest should also agree with positively worded statements, and those who 
obtain the lowest total scores should disagree. Those items that generate agreement 
from both those with high and low scores are probably irrelevant to the characteristic 
being studied, and should be omitted. 

Semantic Differential 
Attitudes have also been evaluated using a technique called the semantic 
differential.20 This method tries to measure the individual's feelings about a particular 
object or concept based on a continuum that extends between two extreme opposites. 
For example, we could ask respondents to rate their feelings about natural childbirth by 
checking the space that reflects their attitude on the following scale: 

Good 1- 1- 1- 1- 1- 1- 1- 1 Bad 

The semantic differential is composed of a set of these scales, using pairs of words 
that reflect opposite feelings. Typically a 7-point scale is used, as just shown, with the 
middle representing a neutral position. This scale is different from the Likert scale in 



Myself 
Useful 

Active 

Ugly 

Slow 

Important 

Delicate 

Warm 

Sharp 

Weak 

Good 
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Useless (P) 

Passive (A) 

Beautiful (E) 

Fast (A) 

Unimportant (E) 

Rugged (P) 

Cold (E) 

Dull (A) 

Strong (P) 

Bad (E) 

FIGURE 1 5.4 Example of a semantic differential for testing self-image. Dimensions of evaluation (E), 
potency (P), and activity (A) are indicated, although these designations would not appear in an actual test. 

two ways. First, only the two extremes are labeled. Second, the continuum is not based 
on agree/ disagree, but on opposite adjectives that should express the respondent's feel­
ings about the concept. Figure 15.4 illustrates a semantic differential to explore self­
image in a group of elderly women who reside in a nursing home. 

Research has demonstrated that the adjective pairs used in this scale tend to fall 
along three underlying dimensions, which have been labeled evaluation, potency and 
activity.20,21 Evaluation is associated with adjectives such as nice-awful, good-bad, 
clean-dirty, valuable-worthless and helpful-unhelpful. Some concepts that lie on the 
positive side of this dimension are doctor, family, peace, success and truth. Negative 
evaluation concepts include abortion, disease, war and failure. Potency ideas are 
big-little, powerful-powerless, strong-weak, large-small and deep-shallow. Strong 
potency concepts include bravery, duty, law, power and science. Negative concepts 
include baby, love and art. The activity dimension is characterized by fast-slow, 
alive-dead, noisy-quiet, young-old, active-passive and sharp-dull. Strong activity 
concepts are danger, anger, fire and child. Concepts that lie toward the negative activ­
ity side are calm, death, rest and sleep. The ratings shown in Figure 15.4 are labeled 
according to their respective dimensions. It is a good idea to mix up the order of pres­
entation of the dimensions in listing the scales. 

The semantic differential is scored by assigning values from 1 to 7 to each of the 
spaces within each adjective pair, with 1 representing the most negative response and 7 
indicating the positive extreme. To avoid biases or a tendency to just check the same col­
umn in each scale, the order of negative and positive responses should be randomly var­
ied. For instance, in Figure 15.4, ratings of weak-strong, slow-fast and ugly-beautiful 
place the negative value on the left; all other scales have the positive value on the left. A 
total score can be obtained by summing the scores for each rating. Lower total scores will 
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reflect generally negative feelings toward the concept being assessed, and higher scores 
represent generally positive feelings. Statistical procedures, such as factor analysis, can 
be applied to the scale ratings to determine if the evaluation, potency, and activity rat­
ings tend to go together (see Chapter 29 for a description of factor analysis). In this way, 
the instrument can be used to explore theoretical constructs. 

Visual Analogue Scales 
A visual analogue scale (VAS) is one of the simplest methods to assess the intensity 
of a subjective experience. A line is drawn, usually fixed at 100 mm in length, with word 
anchors on either end that represent extremes of the characteristic. The intermediate 
levels along the line are not defined. Respondents are asked to place a mark along the 
line corresponding to their perceived level for that characteristic. The VAS is scored by 
measuring the distance of the mark from the left-hand anchor in millimeters. This 
method has also been used to measure a variety of characteristics,22 most extensively for 
pain,23'24 as shown in Figure 15.5. The VAS can be used to evaluate a variable at a given 
point in time or its degree of change over time. 

Describe the level of your back pain at this moment: 

No pain 1---------..,,_------------------l Pain as bad 
as It can be 

FIGURE 1 5.5 A 1 00 mm visual analogue scale for pain, showing a mark at 27 mm. 

The scores obtained with a VAS have generally been treated as ratio level data, 
measured in millimeters?S-27 This assumption permits VAS scores to be added to obtain 
a mean and subjected to parametric statistical procedures. Some have argued that the 
scores are only psuedo ratio, and should be treated as ordinal, handled with nonpara­
metric statistics.28 They suggest that the individual marking the line is not truly able to 
appreciate the full continuum, evidenced by ceiling effects29 and a tendency to cluster 
marks at certain points.30 Therefore, even though the actual readings from the scale are 
obviously at the ratio level, the true measurement properties may be less precise. This 
dilemma will continue to emerge in studies using the VAS.31 

The simple format of the VAS continues to make it a popular method for assessing 
unidimensional characteristics. This points out one disadvantage of the technique, 
however, in that each VAS is only capable of evaluating one dimension of a trait. 
Researchers often incorporate several VAS lines, each with different anchors, to assess 
related aspects of the characteristic being measured.32,33 

Cumulative Scales 
In a summative scale, several item scores are added to create a total score. One of the 
limitations of this type of measure is that the total score can be interpreted in more than 
one way. Suppose we have a scale, scored from 0 to 100, that measures physical func­
tion, including elements related to locomotion, personal hygiene, dressing and feeding. 
Two individuals who achieve a score of 50 may have obtained this score for very differ­
ent reasons. One may be able to walk, but is unable to perform the necessary upper 
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extremity movements for self-care. Another may be in a wheelchair, but is able to take 
care of his personal needs. Therefore, a summed score can be ambiguous. This poten­
tial outcome reflects the fact that the items within the scale actually reflect different 
components or dimensions of the trait being measured, in this case physical function, 
which are not all equal. 

Cumulative scales (also called Guttman scales) provide an alternative approach, 
wherein a set of statements is presented that reflects increasing intensities of the char­
acteristic being measured. This technique is designed to ensure that there is only one 
dimension within a set of responses; that is, there is only one unique combination of 
responses that can achieve a particular score. For instance, in a cumulative scale a 
respondent who agrees with item 2 will also have had to agree with item 1; one who 
agrees with item 3 will have had to agree with items 1 and 2; and so on. Therefore, 
although there may be several combinations of responses that will result in a total score 
of 10 for a summative scale, there is only one way to achieve that score on a cumulative 
scale. Consider the following statements which were included in a self-assessment 
interview of elderly people concerning their functional health status.34 

1. I can go to the movies, church or visiting without help. 
2. I can walk up and down to the second floor without help. 
3. I can walk half a mile without help. 
4. I am not limited in any activities. 
5. I have no physical conditions or illnesses now. 
6. I am still healthy enough to do heavy work around the house without help. 

If these items represent a cumulative scale, then all those who can walk half a mile can 
also climb stairs to the second floor and go out visiting. Those who cannot walk half a 
mile should not be able to do heavy housework and probably have some limiting ill­
ness or physical condition. The development of this scale is, therefore, based on a theo­
retical premise that there is a hierarchy to this dimension of health. 

Each item in the cumulative scale is scored as 1 = agree or 0 = disagree. A total 
cumulative score is then computed for all items. The maximum score will be equal to 
the number of items in the scale. A respondent who achieves a score of 2 would have 
had to agree only with items 1 and 2. If he agreed with items 1 and 3 only, the scale 
would be faulty because the set of statements would not constitute a hierarchy in terms 
of the characteristic being assessed. In reality, such scales are not free of error, and some 
of the subjects can be expected to present inconsistent patterns of response. In the 
analysis of the response categories for functional health, researchers found that most of 
their subjects could participate in social activities (86%) and that the fewest could do 
heavy work around the house, like shoveling snow and washing walls (21 %).34 The fre­
quencies for other responses ranged between these two extremes, supporting the 
cumulative scale. 

Rasch Analysis 
The issues of hierarchical assessment extend to many of the questionnaire instruments 
that have been developed to assess functional and health outcomes. In most such scales, 
items are marked using ordinal values, and a total score is generated. For example, we 
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could ask elderly patients if their health limits their function based on several ADL 
items, as follows: 

(1 ) (2) (3) 
Limited a Lot Limited a Little Not Limited 

Eating D D D 
Walking indoors D D D 
Climbing stairs D D D 

Although this is an obviously abbreviated scale for the sake of example, a person 
who is independent in all three items would obtain a total score of 9. A person who 
is severely limited in all three tasks would receive a total score of 3. For this total 
score to be meaningful, however, three criteria must be met. First, the scale items 
must reflect a unidimensional construct. For instance, the ability to eat is not neces­
sarily related to the ability to walk indoors or climb stairs; that is, these items may 
be part of different dimensions of function.35 If so, the sum of scores on these items 
would not reflect a unified construct-sort of adding apples and oranges. There­
fore, two patients who obtain a score of 5 may not demonstrate the same functional 
profile. 

Second, the items must progress according to a hierarchical model from easy to dif­
ficult, so we can determine if someone has more or less of the trait. This would also 
mean that the order of difficulty for the items is consistent for all patients, and that the 
range of the scale incorporates the extremes.36 Therefore, if our sample functional scale 
was properly arranged, eating would be easier than walking indoors, and walking 
indoors would be easier than climbing stairs for everyone. 

Third, we need a scale that will allow us to measure change within or across 
patients. As we have noted before, ordinal values may present problems in this regard 
because they have limited sensitivity and precision. A patient might improve in his abil­
ity to climb stairs, but not enough to be scored at a higher level of independence. There­
fore, for a score to be meaningful, units of measurement must have equal intervals 
along the scale, to account for magnitude of change. These objectives can be achieved 
using a technique called Rasch analysis, which statistically manipulates ordinal data 
to create a linear measure on an interval scale.37-41 

We can describe this process using items from the Functional Independence Mea­
sure (FIM), a popular instrument for assessing function in rehabilitation settings. The 
FIM is an 18-item scale designed to evaluate the amount of assistance a patient needs 
to accomplish activities of daily living (ADLs).42 The items measure both motor and 
cognitive functions. Each item is scored on an ordinal scale from 1 (total assist) to 7 
(total independence). The larger the total score, the less assistance the patient requires. 
Theoretically, then, if the scale represents a singular construct of function, the total score 
should reflect an "amount" of independence; that is, we can think of individuals as 
being "more" or "less" independent. 



FIGURE 1 5.6 Example of a two-facet l i near functional scale for mob i l ity, showing the placement of 
scale items and patients according to a Rasch ana lysis. The increments represent item d ifficulty on the logit 
scale, with h igher values representing greater d ifficulty. 

The Rasch Model 
Now let us conceive of function as a line, representing the continuum of function, as 
shown in Figure 15.6. For this example we will use the five items in the cognitive sub­
scale, listed in Table 15.1 .* We construct the line using items in the scale, with easier 
items at the base, and harder items at the top. Using data from a patient sample and 
specialized computer programs,43 the Rasch analysis determines the order of difficulty 
of the items, and locates them along this continuum, to show how they fit a unidimen­
sional model of function. The analysis will also position patients along this line accord­
ing to "how much" or "how little" cognitive function they have. The arrangement of 
items in Figure 15.6 illustrates these concepts based on a study by Heinemann et al44 
who performed a Rasch analysis on the motor and cognitive portions of the FIM. The 
figure illustrates two facets of this scale: On the right, the items are ranked in relation 
to their difficulty; and on the left, the patients are positioned relative to their abilities.45 
The more difficult items have a higher score, and patients who have these abilities 

*Some researchers have distinguished the motor and cognitive portions of the FIM as separate scales based 
on Rasch analysis.44•46 For purposes of illustration, then, it is reasonable to consider the items on cognitive 
function as a separate scale. 
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TABLE 1 5.1 ITEMS FROM THE COGNITIVE 
SUBSCALE OF THE FUNCTIONAL 
INDEPENDENCE MEASURE 

Item 

1 .  Problem solving 

2. Memory 

3. Social interaction 

4. Auditory comprehension 

5. Verbal expression 

Log it 

0.53 

0.30 

0.00 

-0.40 

-0.45 

Source: Heinemann AW, Linacre JM, Wright BD, Hamil­
ton BB, Granger C. Relationships between impairment 
and physical disability as measured by the Functional 
Independence Measure. Arch Phys Med Rehabil 
1 993;74:566-573. 

(they are more independent) will also be placed near the top of the scale. Patients 
are less functional are placed toward the bottom of the scale, as they are only al 
complete the easier items. In Figure 15.6, patient 5 was only able to achieve the . 
tory comprehension and verbal expression items, while patients 1 and 2 were al 
achieve all five items. 

If the scale truly represents one functional construct, it should meet three mea 
ment principles.1u5 First, the total score on the scale should reflect level of fun 

implied by the items; second, the items will range in difficulty; and third, the rank 1 

of difficulty will not change from person to person. The results of the compute 
Rasch analysis will show where each individual respondent fits along the contin 
the level of difficulty achieved by each item on an interval scale; and goodness-of. 
the model, showing how well each item matches the cumulative scale.14 

Measurement Criteria 

Several criteria are used to judge the adequacy of a scale as part of a Rasch analy� 

1. Item difficulty refers to the position of items within the hierarchical scale 
expressed as a Iogit+, or log-odds unit, with a central zero point, allowing items 
scaled as positive or negative. The items are ordered so that the degree of fun 

becomes systematically greater as the items become harder; that is, patients who 
greater functional ability will " ass" the more difficult items. Therefore, it becomef 
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of difficulty. Ideally items are positioned equally across the scale, not leaving large gaps. 
As shown in Table 15.1 and Figure 15.6, the five items on the FIM range in difficulty 
from --D.45 to 0.53, with a reasonable spread of scores. The most difficult item is prob­
lem solving, and the easiest item is verbal expression. If gaps are identified, they sug­
gest where items need to be added better to reflect the continuum. 

2. Item fit is the extent to which the individual items conform to the unidimensional 
model. Person fit represents the extent to which individuals fit the model. The Rasch 
analysis develops a probability model that predicts what scores should be for each item 
and person. If we look at the continuum for the construct of cognitive function, for 
example, a good fit means that each item represents a level on the scale that will dis­
criminate between those who require less assistance and those who require more assis­
tance. Patients who are less functional will be placed toward the bottom, and those who 
are more functional will be placed toward the top; that is, the more functional individ­
ual will pass more of the items (and more of the difficult items), and the less functional 
individual will fail more of the items. 

When expected relationships are not found, the responses are considered a misfit.t 
For example, a Rasch analysis for the entire FIM scale has shown that combining all 18 
items resulted in a large proportion of misfitting items;44 that is, some of the more dif­
ficult items and more functional patients were not placed at the top (supporting the sep­
aration of motor and cognitive subscales).  

Fit statistics are calculated for each item to reflect how well the items conform to the 
hierarchical model. These statistics are expressed as a mean square residual (MNSQ), 
which is the difference between the observed scores and the scores expected by the 
model. If the observed and expected values are the same, the MNSQ will equal 1 .0.§ 
Higher MNSQ values indicate greater discrepancy from the model; that is, the item is 
not consistent in its level of difficulty across patients.** It would then be reasonable to 
consider revising the scale, either by eliminating the item or rewording it to remove 
ambiguity. If patients are misfit, the researcher must examine their characteristics, 
potentially identifying subgroups in the population. In the FIM study by Heinemann 
and colleagues,44 several patient groups were evaluated, demonstrating that differently 
ordered cognitive scales were needed to represent groups with and without brain dys­
function. For instance, patients with right- and left-sided strokes did not demonstrate 
similar difficulty with verbal expression. 

3. Item separation reflects the spread of items, and person separation represents the 
spread of individuals. Ideally, the analysis will show that items can be separated into at 
least three strata that represent low, medium and high difficulty,48 although a good scale 
may actually delineate many strata to clarify the construct. Statistically, this spread is 

tEach item in the scale should reflect a given level of function. For a good fitting item, 50% of the sample at 
that functional level should "pass" that item.39 
§The significance of item fit can be derived using the !-statistic, testing the difference of the mean square resid­
ual from LOY 
**Two indicators of fit may be reported.36 Infit is sensitive to erratic response patterns for items that are close 
to a patient's functional level. Therefore, a large infit would indicate a problem with the item's fit with the 
unidimensional model. Outfit reflects the occurrence of extremely unexpected or rare responses. A large out­
fit value would indicate that some patients have unique patterns of impairment and probably reflect a differ­
ent population. 
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related to measurement error or reliability; that is, the more reliable a scale, the more 
likely the item or person score represents the true score. Measurement error should be 
small so that segments of the scale are separated by distances greater than their meas­
urement error alone. Separation statistics may be expressed as a reliability coefficient, 
or the ratio of the sample standard deviation to the standard error of the test.39 Concep­
tually, this is a ratio of the true spread of scores divided by the measurement error. 

An understanding of measurement principles applied to questionnaires is essential 
if we want to use scores as part of our patient evaluations or to look at group perform­
ance over time. We must consider the potential for misinference when ordinal scales are 
used. Rasch Item Response Theory provides an important technique for testing our 
assumptions in clinical measurement. Several useful examples of Rasch analysis can be 
found in the literature.49-53 

Q-SORT 
The Q-sort is an analytic technique used to characterize attitudes, opinions or judg­
ments of individuals through a process of comparative rank ordering. 54 The technique 
involves presenting an individual with a set of cards containing a series of written items 
such as statements, ideas, phrases or pictures. The individual is asked to sort the cards 
into piles according to some scaled criterion. For example, cards may list areas of clini­
cal research in rehabilitation, and the subject may be asked to sort the cards according 
to high versus low priority. The criterion is defined on a discrete continuum, such as an 
11-point scale, with 0 representing no interest at all and 10 representing the highest pri­
ority. Scales of different widths may be appropriate for different variables; however, a 
wide enough continuum is necessary to see a clear distribution. 

The subject must sort through the cards and place them in piles representing each 
rank along the continuum; however, the researcher specifies how many cards are to go 
into each pile, so that the subject is faced with forced choices. For example, we could 
present a deck of 60 cards, each with a topic of clinical research, and ask a subject to 
form piles according to the distribution shown in Table 15.2. The subject would be 
instructed to read through the entire set of cards, and to place in Pile 0 the one card con­
taining the single least important topic and in Pile 10 the single topic of highest prior­
ity. Then, from the remaining 58 cards, the subject would place the two least important 
items in Pile 1 and the two most important in Pile 9. This process continues for Piles 2 
and 8, 3 and 7, and 4 and 6. The remaining 12 cards are placed in Pile 5, essentially 
a neutral pile. The subjects are free to replace or move any card to another pile at any 
time during the sorting procedure until they are satisfied with results. Although 
Q-distributions are essentially arbitrary, for statistical convenience the distribution is 

TABLE 1 5.2 DISTRIBUTION OF 60 CARDS FOR A Q SORT 

Number of cards 

Low Priority 

0 1 2 

2 4 

3 

7 

4 5 6 

1 0  1 2  1 0  

7 

7 

High Priority 

8 9 1 0  

4 2 
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usually arranged to resemble a normal distribution, with fewer and fewer items toward 
the extremes. Although the number of cards used will vary according to the research 
question, Q-sorts generally range from a low of 60 to a high of 100 to 120 items. Too 
large a deck is difficult to sort through, and too small a deck will not provide sufficient 
stability for statistical reliability. 

Q-methodology provides an empirical basis for exploring abstract ideas and theo­
ries, generally with good reliability. It can be applied to a variety of research questions 
and is quite flexible. It is possible to use the technique to answer questions that require 
the use of two or more related sets of items, or a single set of items can be sorted on 
more than one scale. For instance, Biddle et al55 used a Q-sort to establish key charac­
teristics of effective primary care training experiences for third-year medical students. 
The students completed a Q-sort using three sets of items: preceptor characteristics, site 
characteristics and a combination of the two. 

The approach to analysis of Q-sort data will depend on the research question. For 
some purposes, descriptive statistics, such as averages, percentages, and simple tallies 
of rank orderings, will be sufficient. For example, Q-sort has been used to rank appli­
cants to a physical therapy program.56 More complex statistical procedures can also be 
applied to the Q-methodology. Correlations are often used to determine if the sorts of 
several subjects are related, usually using a nonparametric procedure for correlating 
ranks. For instance, Kovach and associates57 studied employees in long-term care facil­
ities to describe factors that facilitate positive change in the care of patients with demen­
tia. The employees were asked to rank personal factors and facility factors. Using 
Spearman correlation coefficients, the researchers found little congruence between real 
and ideal facility characteristics, but a strong relationship between real and ideal per­
sonal characteristics. Factor analysis and content analysis are also used to uncover 
underlying themes in the Q-sort. For example, in the study of medical students' percep­
tions of clinical experiences, Biddle et al55 use content analysis to group responses into 
six categories, including patients, staff characteristics, preceptor's personal characteris­
tics, programmatic issues, educational opportunities, and the strongest theme around 
preceptor teaching characteristics. 

The Q-sort is limited in its generalizability because subjects are not randomly cho­
sen. Samples tend to be small because of the logistic difficulties administering the tech­
nique. Replication of Q-sorts over many samples is necessary to demonstrate validity 
of findings. Use of already established Q-sorts (sets of items) is helpful to validate find­
ings by replication. When Q-sorts do not exist, the researcher must establish the content 
validity of items used. 

DELPHI SURVEY 
Many questions of interest in medical and social sciences are related to practice, values 
or standards, and are best answered by developing consensus around a specific issue. 
In a Delphi survey, a panel of experts is asked to complete a series of questionnaires 
to identify their opinions.58·59 The Delphi technique differs from typical questionnaires 
in several ways. The most distinguishing difference is the use of several rounds of ques­
tionnaires, typically two or three. In each round, the researcher reviews and collates the 
results, and then distributes these findings to the panel for their response. This process 
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generally continues until the responses are consistent with the previous round, demon­
strating consensus. 

This technique was used, for example, in a study of opinions of physical therapist 
managers on the importance of specific knowledge and skills in leadership, administra­
tion, management and professionalism (LAMP).

60 
In a first round, the panel was asked 

to respond to a list of LAMP components, modifying or adding items. Data from round 
one were compiled by a research team, resulting in 178 items. In the second round, panel 
members were asked to rank the importance of each item on a Likert scale. The purpose 
of the third and final round was to reach consensus on the level of knowledge and skills 
needed by a new graduate. The panel agreed that 44% of the items were important at a 
high to moderate level of skill, and that no skill was needed in 29% of the items. These 
findings present useful information for the design of professional curricula. 

The Delphi survey has great potential for planning and problem solving for a vari­
ety of practice issues. Investigators have used this technique to establish consensus on 
indicators for assessing the severity of rheumatoid arthritis through medical records,

61 

quality indicators for care of general medical conditions in nursing horne residents,
62 

clinically important differences in the evaluation of change in health-related quality of 
life for patients with asthrna

63 
and effective smoking prevention strategies for female 

adolescents.
64

1t is an efficient method because the members of the panel do not need to 
come together, making large response groups feasible, including individuals at a dis­
tance. Consensus is developed without interaction among respondents, avoiding the 
potential for group biases, such as one dominant individual swaying others in the 
group. Responses are shared without any one individual being challenged by the group. 
The anonymity offered by this method will also encourage honest responses from the 
panel. The disadvantages include the cost of printing and mailing, and the need to 
maintain a commitment by the panel members over several rounds. Researchers will 
generally use follow-up reminders to encourage full participation. 

ANALYSIS OF SU RVEY DATA 
The first step in the analysis of data is to collate responses and enter them into a com­
puter. Each item on the survey is a data point, and must be given a variable name, often 
the item number. The researcher must sort through each questionnaire as it is returned, 
or through all responses from an interview, to determine if responses are valid. In many 
instances, the respondent will have incorrectly filled out the survey, and that respondent 
may have to be eliminated from the analysis. Some questions may have to be eliminated 
from individual questionnaires because they were answered incorrectly, such as putting 
two answers in for a question that asked for a single response. The researcher must keep 
track of all unusable questionnaires to report this percentage in the final report. 

Responses to closed-ended questions are coded; that is, responses are given numeric 
codes that provide labels for data entry and analysis. For instance, sex can be coded 
0 = male, 1 = female. We could code hospital size as 1 = less than 50 beds, 2 = 50 to 100 
beds, and 3 = over 100 beds. These codes are entered into the computer to identify 
responses. Using codes, the researcher can easily obtain frequency counts and percent­
ages for each question, to determine how many subjects checked each response. 
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The analysis of survey data may take many forms. Most often, descriptive statistics 
are used to summarize responses. When quantitative data such as age are collected, the 
researcher will usually present averages. With categorical data, the researcher reports 
the frequency of responses to specific questions. These frequencies are typically con­
verted to a percentage of the total sample. For example, a researcher might report that 
30% of the sample was male and 70% was female, or in a question about opinions, that 
31% strongly agree, 20% agree, 5% disagree, and so on. Percentages should always be 
accompanied by reference to the total sample size, so that the reader can determine the 
actual number of responses in each category. Percentages are usually more meaningful 
than actual frequencies because sample sizes may differ greatly among studies. 

Another common approach to data analysis involves the description of relation­
ships between two or more sets of responses. For instance, a survey might contain a 
question asking a person's gender, and other questions might ask about attitudes 
toward abortion. The researcher can then examine the frequency of responses to the 
attitude questions in relation to each respondent's sex. Cross-tabulations are usually 
presented, showing the number of males and females who answered positively or neg­
atively to each attitude question. The chi-square test (X2) can be used to examine this 
relationship statistically, to determine if there is a significant relationship between the 
two variables (see Chapter 25). 

When questionnaires include a scale, researchers may want to look at sums as a 
reflection of the respondents' answers. These sums may be presented for the entire 
scale, or subscales may be analyzed. Measurement properties of such scales must be 
considered, such as the potential need for weighting items differently within a scale, or 
the decision on which items belong to a subscale. 

Depending on the length and complexity of the questionnaire, researchers may 
present response percentages for all questions on the survey, or they may simply sum­
marize the more important relationships that were studied. Some reports present 
purely narrative descriptions of the results; others include tables showing the responses 
to each question. The author must determine which type of presentation will be most 
effective for the data. 

If a questionnaire is developed for the purpose of assessing a particular character­
istic, such as function or pain, the researcher should evaluate the reliability and val­
idity of the instrument. Different types of reliability and validity should be tested, 
depending on the type of questions and purpose of the assessment (see Chapters 5 and 
6). The examination of an instrument's measurement properties is essential if the instru­
ment will be used by others. 

I N FORMED CONSENT 
Even though interviews or questionnaires do not require physical interaction with sub­
jects, these studies must go through a formal process of review and approval by an 
Institutional Review Board (see Chapter 3). Researchers must be able to demonstrate 
the protection of subjects from psychological risk and the guarantee of confidentiality. 
The IRB will want assurances that all relevant individuals have been notified and are in 
support of the project. Surveys will often receive expedited reviews by a review board. 
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Individuals who participate in face-to-face interviews can be given an informed 
consent form to sign in the presence of the interviewer and a witness. Consent to par­
ticipate in telephone interviews is implied by the individual's participation. The 
researcher is obliged to give telephone respondents full information at the beginning of 
the call, so that they can decide whether they want to continue with the interview. Sim­
ilarly, consent for mail questionnaires is implied by the return of the questionnaire. The 
cover letter provides the information needed. 

COM M ENTARY 

They Have a Thousand and One U ses 

Su rvey research represents a technique of data col lection that can actu a l l y  be 
app l i ed across a wide range of research designs and approaches. Surveys m ay be 
purely descr i ptive, or  they may be focused on variables that are expected to demon­
strate spec ific rel ati onsh ips.  Su rveys and i ntervi ews can be the mai n form of data 
col l ecti on in quantitative or qua l itative stud i es .  They may be i n c l uded as part of the 
data col lection in an experi mental study, to gather demograph ic i nformation as part 
of the study, or they can be used as an outcome in strument. Su rveys can be used for 
retrospective or prospective stud ies as wel l .  Most often, surveys are based on a 
cross-sectional samp le, mean i n g  that a large group of respondents are tested at rel­
atively the same point in time. Su rveys can, however, be used in longitu d i n a l  stud­
i es by giving fo l l ow-up i nterviews or q uestionnaires to docu ment changes i n  
attitudes o r  behaviors.  

Although surveys seem rel atively easy to use as a research tool ,  th is  approach 
carries with it methodologic ch a l lenges. For descri ptive stud ies, the researcher m ust 
construct a new measur ing too l .  Th is  is  no sma l l  accom p l ish ment, and req u i res 
attention to pr inc ip les of rel iabi l ity and val i d ity. Item re l i abi l ity of questions, rater 
rel i ab i l ity for i nterviewers, and content and construct va l id ity are a l l  concerns for 
survey researchers. General izab i l ity issues are potenti a l ly of serious concern, espe­
c ia l ly  when response rates are low. The researcher usua l ly tr ies to determine if there 
is a d ifference between the characteristics of those who d i d  respond and the charac­
ter istics of those who d i d  not. For example, depend i ng on the type of i nformation 
ava i l ab le, i t  may be poss ib le  to determ i ne the ages, sex distri bution or occupational 
characteristics of nonrespondents. 

If a q uestionnaire is being used as an outcome instrument, the exami nation of 
its measurement properties m ust be extensive. We have descri bed the va l i d ity i ssues 
i nvolved in measur ing change (see Ch apter 6) and developing sca les. The profes­
sional  l i terature abounds with examples of the process of estab l i s h i n g  va l i d i ty for 

m any of the currently used health status and fu nctional  scales, demonstrating the 
comprehensive approach that is necessary. 

Those who are interested i n  pursu i ng the su rvey approach are encou raged to 
consult  researchers who have had experience with questionnai res, as we l l  as several 
i nformative texts l i sted at the end of this  chapter. 
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of Exploratory and Experimental Studies 

The processes of making clinical decisions are complex indeed. In seeking the evidence 
on which to base clinical practice, clinicians and researchers are faced with a myriad of 
published papers and web-based sites often offering unclear or conflicting information 
regarding the choice of intervention approaches, expectations of outcomes or use of 
measurement tools. 

Given these challenges, the emergence of the systematic review has been timely, 
providing a structured approach to analyzing available information to aid in making 
important clinical decisions. Although the term systematic review has been used for 
more than 30 years, its current use has become standardized through the efforts of an 
international organization called the Cochrane Collaboration (see Box 16.1). Systematic 
review refers to a rigorous process of searching, appraising and summarizing existing 
information on a selected topic. Reviews are most commonly focused on the effective­
ness of interventions, but may also address the accuracy of diagnostic tools or identifi­
cation of prognostic factors. 

The key word "systematic" differentiates this process from the classical "review" 
article. Traditional narrative literature reviews have been and continue to be a good 
source of information, particularly on the background of a specific topic. The traditional 
review, however, does not include a detailed description of the methods and criteria 
used to select and evaluate articles that are included. Authors may approach their top­
ics with a bias from their clinical perspective that may not represent the breadth of 
information. The procedures for conducting a systematic review, on the other hand, are 
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BOX 1 6.1 The Cochrane Collaboration 

The impetus for developing the current procedures for systematic review 
can be traced to a 1979 letter written by Archie Cochrane (1908-1988), a 
British physician, who suggested that a critical summary of randomized 
clinical trials was needed in medical specialties to provide a reliable source 
of evidence for medical care.1 In 1993, The Cochrane Collaboration was initi­
ated in his honor, creating an international not-for­
profit organization, dedicated to promotion of 
clinical trials evidence and development and dis­
semination of systematic reviews of healthcare in­
terventions? The principles of the Collaboration 
include ensuring quality of evidence by being open 
and responsive to criticism, applying advances in 
methodology, and developing systems for quality THE COCHRANE 
improvement.3 Twelve Cochrane Centres, located in COLLABORATION• 
countries around the world, take responsibility for 
supporting members through training and coordinating review activities. 

The primary product of the Collaboration is the Cochrane Database of 
Systematic Reviews (see Chapter 31), which is published electronically four 
times a year as part of The Cochrane Library. These systematic reviews are 
prepared and regularly updated by 51 Review Groups that are made up of 
individuals interested in particular topic areas.4 Examples of topics include 
movement disorders, wounds, stroke, neuromuscular disease, back prob­
lems, developmental and learning problems, bone and joint trauma, and 
HIV I AIDS. Rigorous standards have been developed to ensure that these 
reviews provide accurate and thorough appraisals of the literature. The 
Cochrane Handbook for Systematic Reviews of Interventions is a detailed refer­
ence for writing systematic reviews that can be accessed online.5 

formulated to be inclusive of the body of research evidence at the time the review is 
undertaken. 

When selected studies provide common estimates of the same variables, the sepa­
rate samples in each study can be viewed as part of one larger target population, allow­
ing for synthesis of results. This meta-analysis process combines the studies using a 
quantitative index to develop a single overall estimate of the intervention effect. This 
approach can provide important results when several smaller studies are not sufficient 
to demonstrate meaningful outcomes. 

Thorough systematic reviews and meta-analyses can provide evidence to inform 
practitioners in their decisions to maintain, alter or discard methods of clinical practice. 
With a well-done systematic review, the clinical and research communities can have con­
fidence that up to the time of publication, the information is current and comprehensive. 
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The terms systematic review and meta-analysis are often used interchangeably, but 
they do have different objectives. While both present a critical appraisal of studies, only 
the meta-analysis includes a statistical synthesis of data. The purpose of this chapter is 
to describe the process of conducting systematic reviews and meta-analyses, as shown 
in Figure 16.1 .  

State the Study Objective 
Define a specific question 

Identify and define variables 

Develop the Protocol 
Set inclusion/exclusion criteria 

Define evaluation method 

Develop a Search Strategy 
Select keywords 

Identify resources that include 
relevant information 

Conduct the Search 
Search databases 

Review other relevant resources 

Screen and Select Papers 
That Meet Established 

Criteria. 

Evaluate Methodologlc 
Quality of Selected 

Studies 

Analyze and 
synthesize findings 

Analyze Effect Size 
Estimates 

Report Resu lts of 

Meta-Analysis 

FIGURE 1 6.1 Summary of the systematic review process, showing the distinction in end products for 
systematic reviews and meta-analyses. 
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STUDY OBJ ECTIVE: ASKING THE QUESTION 
The protocol for a systematic review specifies all aspects of the review process and is 
analogous to the protocol written for a primary research study (see Chapter 32). As with 
any research endeavor, a systematic review begins with a well-defined, circumscribed 
question or purpose statement. The question will serve as the foundation for locating 
relevant references for the review. When asking a question about intervention, the 
researcher must delineate the treatment, outcome measures and population character­
istics. For example, Pang et al6 were interested in the effect of exercise training for 
improving aerobic capacity in individuals with stroke. They asked three specific ques­
tions for their review: 

1. Does aerobic exercise training improve aerobic capacity in individuals recover­
ing from stroke? 

2. How much improvement in aerobic capacity can be obtained? 
3. What are the specific exercise protocols used to induce an aerobic training effect? 

A question about diagnostic tools must specify the test, reference standard and out­
comes (see Chapter 27). For instance, Garcia Pefia et af conducted a systematic review 
to determine the accuracy of a protocol for diagnosing appendicitis in children and ado­
lescents using ultrasonography and computed tomography, using surgeons' estimated 
likelihood of appendicitis as the reference standard. 

Questions about prognosis include the prognostic factors and outcomes of interest. 
As an example, Langer-Gould et al8 reviewed studies to identify clinical and demo­
graphic factors associated with long-term physical or cognitive disability in patients with 
multiple sclerosis. Systematic reviews can also focus on risk assessment. For instance, 
Caldwell et al9 examined randomized controlled trials that compared celecoxib with a 
placebo, and analyzed the risk of serious cardiovascular events based on that data. 

Systematic reviews can also address qualitative research, to explore the experiences 
of patients outside of the standard quantitative outcome measures.10 There is at least 
one Cochrane Review Group dedicated to fostering the application of qualitative 
research in systematic reviews.U This group has worked to develop methods for critical 
analysis of qualitative studies as well as an appreciation for the role of qualitative stud­
ies in evidence-based practice. For example, Noyes and Popay12 studied the experiences 
of patients, care providers and policy makers in the treatment of tuberculosis. They 
asked two questions: 

1. What does qualitative research tell us about the facilitators and barriers to 
accessing and complying with tuberculosis treatment? 

2. What does qualitative research tell us about the diverse results and effect sizes 
of the randomized controlled trials included in the Cochrane review? 

They retrieved 58 studies and were able to identify themes related to socio-economic 
circumstances, material resources, the experience of stigma around tuberculosis, social 
supports and incentives that influenced the provision of care. 

For practicality, we will focus the remainder of this discussion on quantitative 
measures related to interventions, but the reader should be aware that systematic 
reviews serve important roles in understanding many types of research questions. 
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Background and Research Rationale 
Just like other research articles, a systematic review will include a review of literature 
to support the research question. The background or introductory section of the paper 
typically includes epidemiologic data to demonstrate the prevalence of the condition 
and its health impact. Variations in treatment options and outcomes of interest are 
described. Information on etiology, pathophysiology, effect of interventions, and con­
flicting ideas about patient management provides a rationale for the review question. 
The background may also include findings of previous systematic reviews, describing 
why an updated review is important. 

SELECTION CRITERIA 
In primary studies, researchers specify characteristics of subjects that will determine 
who will be chosen to participate in the study. For a systematic review, the "subjects" 
of the review are the studies themselves. Therefore, selection criteria specify inclusion 
and exclusion requirements for studies to be used for the review. These requirements 
are usually based on types of studies, participants, interventions and outcomes. The 
author of the review must specify definitions that will guide this selection process. 

Types of Studies 
By definition a systematic review is a critical summary of published papers and, when 
available, selected unpublished papers on a defined topic. Researchers must decide 
what types of studies to include in the review. Many authors restrict systematic reviews 
of interventions to the "gold standard" of randomized controlled studies (RCTs) pub­
lished in peer-reviewed journals. When the literature is replete with RCTs on a particu­
lar topic, this may be an effective strategy. When published work is less robust, 
however, the researcher may find that cohort and case-control studies and case series 
are valuable for understanding the scope of knowledge about an intervention. These 
designs are most relevant for reviews related to diagnosis and prognosis. 

When possible, reviews should include primary research studies as well as confer­
ence proceedings, abstracts, theses and dissertations. It is important to balance the 
desire for higher levels of evidence with the need to find the "best evidence available." 
Reviews that are done as part of the Cochrane Collaboration focus primarily on RCTs. 
Most of the systematic reviews conducted by the Agency for Healthcare Research and 
Quality (AHRQ) Evidence-based Practice Centers include nonrandomized studies.13,14 

Levels of Evidence 
A useful hierarchy has been developed to categorize studies by "levels of evidence,"15 
as shown in Table 16.1 .  Levels are described for studies of interventions, diagnosis and 
prognosis, defined according to the strength of the design used. Although the highest 
level of evidence for intervention is the RCT, the table shows that cohort studies and 
clinical prediction rules are the most effective designs for prognosis and diagnosis stud­
ies. The lowest level of evidence describes the contribution of expert opinion or basic 
research that does not have direct clinical application. 
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TABLE 1 6.1 LEVELS OF EVIDENCE 

I� Intervention Prognosis 

fil Systematic review of ran- Systematic review of cohort 
domized controlled trials studies; clinical prediction 
(RCT) rulea validated in different 

populations 

Dl Individual RCT (with narrow Individual cohort study with 
confidence interval) ;::: 80% follow-up; clinical pre-

diction rulea validated in a 
single population 

a 
m Systematic review of cohort Systematic review of retro-

studies spective cohort studies or 
untreated control groups in 
RCTs 

f] In Individual cohort study (or Retrospective cohort study 
low quality RCT, e.g. with or follow-up of untreated con-
<80% follow-up) trol patients in RCT; deriva-

tion of clinical prediction rulea 

m Systematic review of case-
control studies 

� G) Individual case-control study 

Case-series or poor quality Case-series and poor quality 
. cohort and case-control prognostic cohort studiesd 

studiesd 

Expert opinion or bench Expert opinion or bench 
research research 

•clinical prediction rules are described in Chapter 27. 

Diagnosis 

Systematic review of Level 1 
diagnostic studies; clinical 
prediction rulea validated at 
several clinical sites 

Validating cohort with good 
reference standards;b Clinical 
prediction rulea validated 
within one center 

Absolute SpPins and 
SnNouts0 

Systematic review of Level 2 
diagnostic studies 

Exploratory cohort study with 
good reference standards;b 
clinical prediction rulea after 
derivation 

Systematic review of Level 
3b studies 

Non-consecutive study or 
with inconsistent reference 
standard 

Case-control study, poor or 
non-independent reference 
standard 

Expert opinion or bench 
research 

bGood reference standards are independent of the test, and are applied blindly or objectively to all patients. 
Poor reference standards are haphazardly applied, but still independent of the test. 
<An "Absolute SpPin" is a diagnostic finding whose Specificity is so high that a Positive result rules in the diag­
nosis. An "Absolute SnNour is a diagnostic finding whose Sensitivity is so high that a Negative result rules out 
the diagnosis. See Chapter 27 for detailed definitions. 
dPoor quality cohort or case-control studies are those that fail to define comparison groups, measure exposures 
and outcomes in the same way for all subjects, identify known confounders, or incorporate sufficiently long 
follow-up of patients. 
Adapted from Oxford Centre for Evidence-based Medicine Levels of Evidence (May 2001).  Available at 
<http://www.cebm.net/levels_of_evidence.asp> Accessed April 15, 2007. 
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Subcategories at each level delineate systematic reviews versus individual studies. 
Because systematic reviews provide a composite and critical understanding of the liter­
ature on a particular topic, they are considered a higher form of evidence than individ­
ual studies. Each of the levels can also be given a minus sign (-) to denote studies where 
evidence is weaker, such as having wide confidence intervals, or systematic reviews 
with inconsistent findings.15 

An overall grade can be given to systematic reviews based on the types of studies 
included:15 

a. Consistent level 1 studies 
b. Consistent level 2 or 3 studies OR extrapolations from level l studies 
c. Level 4 studies OR extrapolations from level 2 or 3 studies 
d. Level S evidence OR troublingly inconsistent or inconclusive studies of any level 

Types of Participants 
The population of interest must be specified to identify the types of subjects or patients 
recruited in the chosen studies. Characteristics may include age range, gender, or spe­
cific diagnostic categories. These characteristics may be defined narrowly or within 
wide ranges. For example, in their study of aerobic capacity, Pang et al6 defined acuity 
and chronicity of stroke according to time since onset. Because study populations can be 
so variable, systematic reviews have to set reasonable ranges for subject characteristics. 

Types of I nterventions 
Selection criteria must indicate definitions of interventions and comparison treatment 
if relevant. Because studies are rarely consistent in the application of interventions, 
these definitions are generally broad enough to allow a reasonable match. For instance, 
in the study of aerobic capacity and stroke, the authors defined aerobic exercise as 

. . .  a structured exercise program that involves the use of large muscle groups for 
extended periods of time in activities that are rhythmic in nature, including but not 
limited to walking, stepping, running, swimming, cycling and rowing.6·P·99 

Therefore, they included studies that used cycle ergometers or treadmills, as well as 
water-based and land-based exercises with walking, functional strengthening and bal­
ance activities. Factors such as duration of treatment or length of follow-up may also be 
stipulated. 

Types of Outcome Measures 
The choice of outcome measures will also be essential in the specification of selection 
criteria. Outcomes include measurements or endpoints, including improvement in con­
dition or reduction of symptoms. Reviewers may specify particular instruments, such 
as a health status questionnaire or a diagnostic test. Included studies will often have a 
variety of outcomes that must involve at least one specified measure. For example, in 
the study of stroke and aerobic capacity, the authors specified interest in outcomes of 
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peak oxygen consumption and peak workload during a graded exercise test, as well as 
walking velocity and walking endurance.6 However, the actual tools used to measure 
these outcomes may be different across studies. Clear definitions will facilitate deci­
sions about how to search for the information that will be included in the project. 

SEARCH STRATEGY 
A major component of the review process is description of the search strategy. The 
goal is to find a comprehensive list of relevant documents that should be considered. 
The first task, of course, is to decide where to look and to develop a list of appropriate 
search terms. Chapter 31 provides a description of several search engines and databases 
as well as effective search strategies. Online tutorials have also been prepared to help 
researchers become more familiar with this process.16-18 The researcher must develop a 
thorough search strategy to be sure that all relevant materials have been found. In most 
cases more than one database should be used to provide the widest search possible. 
Many researchers will limit reviews to articles in a particular language as a matter of 
practicality, although this clearly reduces the scope of available studies. 

The report of a systematic review must indicate which databases were used and the 
specific search terms entered. Authors may provide a detailed list of the search strategy 
as a useful reference (see Chapter 31). In addition to online resources, hand searching 
through pertinent journals and reference lists of published papers can help to ensure 
that the search is complete. When the number of citations identified is large, the 
researcher should look through titles and abstracts as a first pass to identify papers that 
are clearly not germane to the review. 

Reviewing Systematic Reviews 
Reviews that were limited to RCTs can be replicated using broader selection criteria 
including case-control or case series studies. For this purpose, examination of the list of 
excluded studies in the published review may yield appropriate papers. For example, 
Green et al19 conducted a systematic review of physical therapy interventions for shoul­
der pain. Having set criteria that limited studies to randomized allocation to treatment 
groups, this review excluded 38 studies out of 64 potential references. Therefore, sev­
eral of the 38 excluded papers may be useful for a new study. 

The Grey Literature 
Because of the potential for bias when search strategies are limited to databases of peer­
reviewed scholarly journals, the systematic review process should also include exami­
nation of the "grey" literature. Grey literature refers to unpublished studies or studies 
that are available through sources other than the customary joumals.20 Examples 
include working papers, theses, and fact sheets disseminated by condition-specific 
associations, such as the Arthritis Foundation or the Muscular Dystrophy Association, 
or the government. Studies of systematic reviews have shown that a difference in con­
clusions could result from the inclusion or exclusion of grey literature,21 potentially 
affecting the estimate of intervention effectiveness.22 
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The challenge of conducting a search is to retrieve all of the relevant papers and exclude 
the irrelevant ones. The selection of papers, reports and reviews depends on the crite­
ria established in the protocol. Even with a careful search strategy, however, not all 
identified papers will meet the pre-established criteria. For example, for a systematic 
review of treatments for developmental stuttering, Bothe et al23 initially located 162 arti­
cles through a search, but having set robust criteria, they ended up including only 39 
papers in their final analysis! A systematic review should include a list of excluded 
studies with specific reasons for their exclusion. 

Publication Bias 
Systematic reviews are obviously influenced by the literature that is available. 
Publication bias is an issue that really "belongs" to the research community, specifi­
cally primary researchers and journal editors.24-26 Researchers may fail to submit the 
results of studies where the results are not statistically significant or editors may decline 
to publish such studies. In other words, there has been a bias against negative or incon­
clusive results; Because the value of systematic review is to broaden the evidence for or 
against a proposed outcome, evidence of no effect must be part of the picture. 

EVALUATING METHODOLOGIC QUALITY 
Once the selection process is complete, the studies are ready to be critically reviewed. 
As a rule, a minimum of two primary reviewers will independently assess content and 
rate the quality and applicability of each selected paper or information source. There­
fore, the reviewers will need to discuss the details of the process, including how the 
papers will be assessed. It is often useful for reviewers to evaluate a few sample papers 
in a training process. When disagreement occur, they should be resolved by consensus 
or by resolution from a third party. 

Reviewers will go through each study to describe its parameters, and record infor­
mation on a data extraction form. This process allows the reviewers to gather the same 
information on each study, so that comparisons can be readily made. These forms gen­
erally record elements that are important for assessing quality of design and data analy­
sis. A sample data extraction form is shown in Figure 16.2. 

Types of Study Bias 
Because studies typically differ in their design, quality and validity, results of some tri­
als may be more meaningful than others. Therefore, it is important to consider study 
quality.27 Four types of bias related to internal validity have been identified that can 
have an influence on the outcome of a systematic review.5 Selection bias is one of the 
most important factors that can distort treatment effects because of the way comparison 
groups are formed.28 Random allocation and concealment of allocation are essential ele­
ments of a clinical trial to assure that bias is not introduced. Performance bias refers 
to differences in the provision of care to experimental and control groups in a study. The 
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Data Extraction Form 

Study Title ________________________ _ 

Authors ________________________________________ ___ 

Journal --------- Year ______ Vol __ Pages ___ _ 

Study Type _______________________ _ 

Include D Exclude D 

Reason for exclusion: ------------------------------

METHODS/TRIAL QUALITY 

Participants 

• Age (Mean, range) 
• Other sample 

characteristics 
• Subject inclusion/exclusion 

criteria 

Method of subject selection 

Method of group assignment 
(randomization) 

Was allocation concealed? 

Study design 

Blinding 

• Participants 
• Investigators 
• Outcome assessors 
Type of Intervention 

• lntervention(s) 
• Control condition(s) 
• Duration and other protocol 

information 

Intention-to-treat analysis 

FIGURE 1 6.2 Sample data extraction form for systematic reviews. (Adapted from <http://www 
.cochrane-renal .orgldocs/data_extraction_form.doc> Accessed july 1 9, 2007.) 

most effective way to prevent this bias is through blinding of those who receive and 
give care. Attrition bias is related to the differential loss of subjects across comparison 
groups. This becomes especially relevant for studies with follow-up periods, and is 
addressed through intention to treat analysis. The fourth type is detection bias, which 
occurs if outcome assessment differs across comparison groups. 



Outcome assessments 

Compliance 

Match of intervention and 
controls 

Baseline similarly between 
groups 

RESULTS 

Observed n 

Excluded subjects 

Lost to follow-up 

Primary Outcome 

• Mean, standard deviation 
• Proportion 

• Other effect size index 

Secondary Outcomes 

Statistical analyses 

• Description of groups 
• Comparison of groups 

FIGURE 1 6.2 (cont.) 
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Experimental Group(s) Control Group(s) 

The use of quality assessment tools is an essential component of systematic reviews 
to determine if these forms of bias affect the value of included papers for answering the 
research question. Even with randomized trials, articles often neglect to provide impor­
tant information on specific elements of the trial. Assessment of study validity may be 
used first as a threshold for deciding which studies to include in the review. As part of 
the review, the quality assessment will provide possible explanations for differences in 
study results. 

Rating Scales 
Several rating scales have been developed. The criteria used and resultant ratings must 
be described in a systematic review so that readers can evaluate the validity of the 
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reviewer's conclusions. Published checklists have varied numbers of items, with some 
based on "yes/no" answers for each item, while others allow for "unclear" responses. 
Most scales result in a total score based on summing the "yes" responses for each study. 
There is no gold standard for this process, and most scoring systems have not been val­
idated. Nonetheless, these various scales generally focus on similar concepts as relevant 
to assessing the quality of a study. 

We will describe three commonly used scales, although several others can be found 
in the literature.29-34 The CONSORT statement34 and the STARD statement,35 which are 
checklists of items that should be included in the report of a randomized trial or diag­
nostic study, can also be used for this purpose (see Chapters 9 and 27). 

The jadad Scale 
One of the original tools for evaluating quality is the Jadad scale, the Instrument to Mea­
sure the Likelihood of Bias, which is composed of three questions (see Table 16.2).36 This 
scale focuses on randomization, blinding and attrition to determine quality of a study. 
The maximum total score is 5. While simple and quick, the Jadad scale is limited in its 
scope and does not consider many important design issues. 

The PEDro Scale 
The Physiotherapy Evidence Database (PEDro) scale has become widely used in 
rehabilitation and medical literature. Developed by physiotherapists at the University 
of Sydney, it is based on a description of the study's structure.37 In addition to items 
related to randomization, blinding and attrition, the scale also includes analysis of 
design and statistics (see Table 16.3). Each criterion is graded 1 for "yes" and 0 for "no" 
or "unclear," with a maximum total score of 10. The PEDro scale has reasonable relia­
bility}8·39 and has been shown to be a more comprehensive measure of methodological 
quality than the Jadad scale.40 

TABLE 1 6.2 JADAD SCALE: INSTRUMENT TO MEASURE THE LIKELIHOOD OF BIAS 

1 .  Was the study described as randomized? 
2. Was the study described as double blind? 
3. Was there a description of withdrawals and dropouts? 

Add 1 point: 

Yes (1 pt) 
Yes (1 pt) 
Yes (1 pt) 

For question 1 if the randomization method was described and it was appropriate. 
For question 2 if the method of double blinding was described and it was appropriate. 

Deduct 1 point: 
For question 1 if the method of randomization was not appropriate. 
For question 2 if the method of double blinding was not appropriate. 

No (0 pt) 
No (0 pt) 
No (0 pt) 

Reference: Jadad AR, et al. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? 
Control Clin Trials 1996;17: 1-12. 
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TABLE 1 6.3 PEDro SCALE8 

1 .  Eligibility criteria were specified.b 
2. Subjects were randomly allocated to groups (in a crossover study, subjects were ran-

domly allocated an order in which treatments were received). 
3. Allocation was concealed. 
4. The groups were similar at baseline regarding the most important prognostic indicators. 

5. There was blinding of all subjects. 
6. There was blinding of all therapists who administered the therapy. 
7. There was blinding of all assessors who measured at least one key outcome. 
8. Measures of at least one key outcome were obtained from more than 85 percent of the 

subjects initially allocated to groups. 
9. All subjects for whom outcome measures were available received the treatment or 

control condition as allocated or, where this was not the case, data for at least one key 
outcome was analyzed by "intention to treat." 

1 0. The results of between-group statistical comparisons are reported for at least one key 
outcome. 

1 1 .  The study provides both point measures and measures of variability for at least one 
key outcome. 

no/yesc 
no/yes 

no/yes 
no/yes 
no/yes 
no/yes 
no/yes 
no/yes 

no/yes 

no/yes 

no/yes 

"Available at <http://www.pedro.fhs.usyd.edu.au/scale> Accessed on April 16, 2007. This website includes 
detailed explanations for each criterion. 
"This first item refers to external validity, but is not included in the total PEDro score. 
cEach item is given 1 point for a yes answer. The maximum total score is 10. 

The QUADAS Scale 
Whiting et al41 have validated a scale to review studies of diagnostic test accuracy, shown 
in Table 16.4. The Quality Assessment of Diagnostic Accuracy Studies (QUAD AS) is a 
14-item scale, which has been shown to have good rater reliability.42 Items are rated 
"yes," "no," or "unclear," and the total score is expressed as a percentage of items that 
are given a "yes" rating. 

Presentation of Methodologic Quality 
Systematic reviews will usually include tabular results of the quality assessment as a 
consensus score between the two reviewers. Table 16.5 is an example of such a table 
using the PEDro score for a systematic review of hand splinting for adults following 
stroke.43 Each study in the review is identified and scores are shown for each criterion 
as well as a total score. Some reviewers choose a cutoff score to delineate a high versus 
low quality study. Others may include the level of evidence that each study achieves. 
This type of presentation allows the reader to quickly see the overall quality of the stud­
ies included in the review. 

Data Synthesis 
Once the articles of interest have been critically reviewed, the researcher must then 
determine if and how the results of the studies can be synthesized. The reviewers will 
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TABLE 1 6.4 QUALITY ASSESSMENT OF DIAGNOSTIC ACCURACY STUDIES: QUADAS 

1 .  Was the spectrum of patients representative of the patients who will receive the test in practice?8 
2. Were selection criteria clearly described? 
3. Is the reference standard likely to correctly classify the target condition? 
4. Is the time period between reference standard and index test short enough to be reasonably 

sure that the target condition did not change between the two tests? 
5. Did the whole sample or a random selection of the sample, receive verification using a refer­

ence standard of diagnosis? 
6. Did patients receive the same reference standard regardless of the index test result? 
7. Was the reference standard independent of the index test (i.e. the index test did not form part of 

the reference standard)? 
8. Was the execution of the index test described in sufficient detail to permit replication of the test? 
9. Was the execution of the reference standard described in sufficient detail to permit its 

replication? 
1 0. Were the index test results interpreted without knowledge of the results of the reference 

standard? 
1 1 .  Were the reference standard results interpreted without knowledge of the results of the index 

test? 
1 2. Were the same clinical data available when test results were interpreted as would be available 

when the test is used in practice? 
1 3. Were uninterpretable/ intermediate test results reported? 
1 4. Were withdrawals from the study explained? 

"Each item is graded as Yes, No or Unclear. 
Reference: Whiting R, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: A tool 
for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res 
Methodo/ 2003;3:25. 

TABLE 1 6.5 METHODOLOGICAL RATING OF RANDOMIZED CONTROLLED TRIALS 

PEDro Criterion Score• 

Study 1 2 3 4 5 6 7 8 9 10  1 1  Total Quality Levelb 

McPherson et al., 1 982 y y N N N N N y N y y 4 LOW 1 b  

Rose et al., 1 987 y y N N N N N N N y N 2 LOW 1 b  

Poole et al., 1 990 N y N y N N y y N y y 6 HIGH 2b 

Langlois et al., 1 991 y y N N N N N N N y y 3 LOW 1 b  

Lannin et al . ,  2003 y y y y N N y y y y y 8 HIGH 1 b  

"For this example, a score of 5 has been arbitrarily assigned as the cutoff for high versus low quality. The items 
for the PEDro scale are shown in Table 1 6.6. 

bLevels of evidence are defined in Table 1 6. 1 .  

Adapted from Lannin NA, Herbert RD. I s  hand splinting effective for adults following stroke? A systematic 
review and methodological critique of published research. Clin Rehabi/ 2003;1 7:807-81 6, Table 4, p. 813. Used 
with permission. 
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determine the degree of heterogeneity or homogeneity in the included studies. Hetero­
geneity refers to dissimilarity in specific aspects of the studies:44 

• Composition of treatment groups, including different inclusion and exclusion 
criteria, different baseline levels, or differences in timing or dose of intervention 

• Design of the study, including length of follow-up and proportion of subjects 
who dropped out 

• Management of patients, including how treatments are regulated and the pres­
ence of complications or co-morbid conditions 

If papers have published conflicting or inconclusive findings, it will be difficult to 
interpret the results of the systematic review. We know that studies with small sample 
sizes or small effect sizes may show no significant effect of the intervention, leaving the 
possibility of a Type II error (see Chapter 18). We also know that the choice of measure­
ment scale or tool may affect the sensitivity or responsiveness of measurement. Other 
study characteristics, such as criteria for subject selection or operational definitions, 
may have an impact on the ability to generalize findings. 

Once again, a tabular presentation is helpful to understand the variations across 
studies and their overall findings. Table 16.6 illustrates one possible format for a sys­
tematic review of outcomes of cardiovascular exercise programs for people with Down 
Syndrome.45 Notice that the table includes information on sample size and characteris­
tics of subjects, as well as a description of the intervention and outcome measures. This 
table also shows the PEDro score for each study, which allows the reader to analyze the 
findings of the study in relation to its quality. 

Discussion and Conclusions 
The final section of the systematic review will be a discussion of findings and the 
reviewer's overall conclusions based on the quality of evidence that was obtained. This can 
be a complex process if studies have varying methods and results, as is often the case. The 
reviewer has the responsibility to integrate the findings to clarify the state of knowledge in 
a clinical context. By comparing studies in terms of their quality and procedures, the dis­
cussion will put the results in context. Suggestions for future research should be proposed. 

META-ANALYSIS 
Meta-analysis is an extension of the systematic review that incorporates a statistical 
combination of several studies that have related research hypotheses. Meta-analysis can 
be done for systematic reviews of clinical trials, evaluation of diagnostic tests or epi­
demiologic studies. The first meta-analysis was actually done in 1904 by Karl Pearson, 
who combined data from several sources to compare infection and mortality rates 
among British soldiers who had and had not volunteered for typhoid fever inocula­
tions.46 He recognized that the sample size of any single study is likely to be too small 
to obtain a conclusive result. Gene Glass, an educational researcher, is credited with 
coining the term "meta-analysis" to mean 

. . .  the statistical analysis of a large collection of analysis results from individual stud­
ies for the purpose of integrating the findings.47, P·3 



TABLE 1 6.6 SUMMARY OF FINDINGS FROM FOUR STUDIES IN A SYSTEMATIC REVIEW 

Severity of Previous 
PEDro Mean Age Intellectual Exercise 

Author Score n :t so (y) Sex Disability Participation Program Details 

Rimmer 6 52 39.4 ± 6.4 29 W, Mild to Sedentary for 30min aerobic 
et al 23 M moderate at least 1 y  prior machine-based (eg, 

to the program treadmill , stationary 
bicycle) exercise 
program, 1 5min 
PRE; 3/wk for 
1 2wk 

Tsimaras 5 25 24.6 ± 3.3 25 M 10 45-60 Not reported 1 O-m in warm-up, 
et al 30min jog/walking 

program; 3/wk for 
1 2wk 

Varela 6 1 6  21 .4 ± 3.0 1 6 M Mean IQ 38.8 Not reported 1 0-min warm-up, 
et al 25-min rowing pro-

gram, 1 0-min cool 
down; 3/wk for 
1 6wk 

Millar 6 1 4  1 7.7 ± 2.9 3 W, IQ 3Q-70 Not reported 1 O-m in warm-up, 
et al 1 1 M 30-min brisk walk-

ing/jogging, 1 O-m in 
cool down program; 
3/wk for 1 Owk 

Training Body Structure/ 
Intensity Function Outcomes 

50%-70% Vo2peak; time to exhaus-
Vo2peak tion; bench press and leg 

press 1 -RM; grip strength; 
body weight and BMI 

65%-75% Vo2peak, Vepeak, time to 
max HR exhaustion 
assessed 
at start of 
program 

55%-70% Vo2peak, Vepeak, time to 
Vo2peak exhaustion, distance trav-

eled, work level reached; 
body weight, body fat 
percentage 

65%-75% Vo2peak, Vepeak, time to 
max HR exhaustion 

Abbreviations: 1 -RM, 1 repetition maximum; BMI, body mass index; HR. heart rate; IQ, intelligence quotient; max, maximum; M, men; NO, no data; PRE, progres­
sive resistance exercise; SD, standard deviation; Vepeak, peak ventilation; W. women. 

Adapted from Dodd KJ, Shields N. A systematic review of the outcomes of cardiovascular exercise programs for people with Down syndrome. Arch Phys Med 
Rehabi/ 2005;86:2051-2058. Table 1 ,  p. 2054. Used with permission. 
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Systematic Review or Meta-Analysis? 
As the researcher approaches the synthesis of data in a systematic review, the question 
of statistical analysis must be addressed. When studies meet criteria for homogeneity, 
the synthesis of results may go beyond the descriptive systematic analysis to include a 
meta-analysis. Meta-analysis can be a powerful tool for synthesizing information across 
multiple studies, but it can also be misleading if the studies are not appropriately com­
bined. When measurements are inconsistent or comparisons do not make sense, sys­
tematic review may have to be sufficient to qualitatively synthesize the information. 

The major advantages of meta-analysis are to (1) increase power by increasing sam­
ple size, (2) improve estimates of effect size, (3) resolve uncertainty when conflicting 
results occur, and (4) improve the generalizability of findings.48 Individual studies may 
have nonsignificant findings because of small sample size (see Chapter 18). Therefore, 
combining samples from several studies has the potential effect of increasing the abil­
ity to detect important differences. 

Because we are faced with massive amounts of information from primary studies, 
the ability to apply statistical methods to calculate combined estimates of effects can 
provide more confidence in the outcome. Meta-analytical methods increase the likeli­
hood of finding the true effects of a treatment or the strength of a relationship. Readers 
who are not familiar with statistical methods will find it helpful to review procedures 
in later chapters to better understand processes described here. 

Evaluating Heterogeneity 
The degree to which studies in a systematic review are similar is based on the heterogene­
ity of the treatment effect across the studies. This heterogeneity can be due to two main rea­
sons. Either it is a random effect due to chance differences between studies, or study 
samples may be drawn from truly different populations.49 The statistic used most often to 
test for heterogeneity is chi-square (see Chapter 25). A nonsignificant test indicates that 
there is a common treatment effect across studies, and therefore the observed differences are 
what would be expected by chance. A large chi-square value indicates that a common treat­
ment effect is unlikely. 

Effect Size 
The concept of effect size is central to meta-analysis. Effect size is an estimate of the 
magnitude of difference between groups or the effect of the intervention. Effect sizes 
can be obtained for continuous data such as means or correlations, or binary data such 
as relative risk and odds ratios. Estimates from individual studies are combined to 
reflect the overall size of the effect of the independent variable. The larger the differ­
ence, the greater the "effect" of the intervention (see Chapter 27). Meta-analysis does 
not pool subjects into a single sample; rather each study adds to the estimate of the pop­
ulation parameter (the measured variable) by contributing its sample effect size index. 
The result is usually a more precise overall estimate.50 

The statistical methods of analyzing and summarizing the outcome of studies 
depend on the kind of data used to document the outcome.51 An effect size index is 
created for the data in each study that allows comparison across studies, based on 



374 PART I l l  • Designi ng Cl inical Research 

means for quantitative variables, proportions or frequencies for categorical data, or cor­
relation values for measures of association. 

For the comparison of means in a two-group comparative study with continuous 
scale data, the effect size index is given the symbol d. Because measures in various stud­
ies can use different units, this index normalizes the data into a common metric. The 
index is based on the mean difference between groups divided by the pooled standard 
deviation of the two groups (see Appendix C). For a study based on proportions, such 
as relative risk or odds ratio, the effect size index is the ratio itself. 

Weighting Effect Size 
The process of meta-analysis requires that the individual effect sizes for each study be 
combined to form a common estimate of the effect. But because sample sizes vary across 
studies, the contribution to the overall effect is not equal. A study with a larger sample 
will contribute a more precise estimate of effect than one with fewer subjects. Therefore, 
adjustments in the calculation of the effect size are used to weight the contribution of 
each individual study. The methods for calculating weights are specific to the index 
used, and can be carried out using various software programs, several of which are in 
the public domain. The Cochrane Collaboration supports the use of RevMan software. 52 

Forest Plots 
The results of a meta-analysis are usually reported by presentjng data in a plot that 
illustrates results of individual studies and a cumulative summary. To illustrate this 
process, we will consider a meta-analysis by Panpanich et al53 to study the effect of the 
antibiotic azithromycin compared to other antibiotic agents for the treatment of acute 
lower respiratory tract infections. They found 14 trials that met their inclusion criteria. 
Through pooled analysis they showed a relative risk (RR) of 0.96 for clinical failure 
associated with the azithromycin. * 

The plot shown in Table 16.7 is called a forest plot, showing results of the review. The 
outcome of each study is shown by a small square icon, representing the relevant outcome 
for the study, in this case relative risk. Each horizontal line represents the confidence inter­
val around that estimate. The size of the square corresponds to the weight of the study, which 
is related to sample size. The confidence interval for the total combined value is indicated by 
a diamond shape at the bottom of the plot. The center line of the plot indicates no difference 
in risk between groups. For this example, relative risk values that are to the left of the center 
line represent a result in favor of the azithromycin. The plot allows us to visually understand 
the inconsistency in findings and large variance in several studies for this review. 

Sensitivity Analysis 
Because there are so many differences in study designs and methods of data synthesis, 
there is always a question regarding the sensitivity of results of a systematic review; 

*See Chapter 28 for a discussion of relative risk (RR). A relative risk of 1.0 indicates no excess risk associated with 
the treatment. In this example, an RR of 0.96 is close to 1.0, and indicates no substantial difference in clinical fail­
ure with either treatment. An RR of less than 1.0 indicates a reduction in risk associated with the intervention. 
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TABLE 16.7 EXAMPLE OF A FOREST PLOT 

Review: Azlthromycin for acute lower respiratory tract infections 

Comparison: 01 Azithromycin versus emoxillin or amoxycillin-clavulenate 

Outcome: 01 Clinical failure 

0 
Study 
Balmes 1991 

Beghi 1995 

f) Amoxy or 
Azlthromycln amoxy-clllv 

niN niN 

4/48 7/56 

22/60 2173 

• 
Relative Rlak 

95% CI 

Biebuyck 1996 531497 531257 -
Daniel 1991 51121 10/120 

Ferwerda 2001 5155 7/53 

Gris 1996 6134 2133 

Harris 1998 1 1/125 4/63 

Hoepelmen 1993 4/48 4/51 

Hoepelman 1998 3162 5161 

Mertens 1992 1/25 5125 

Sevleri 1993 5125 2125 

Whitlock 1995 0129 2127 

Wubbel 1999 1/39 2149 

Zachariah 1996 81173 7/173 

Total (95% Cl) 1350 1066 
Total events: 128 (Azlthromycin), 

1 12 (Amoxy or amoxy-clav) 

Test for heterogeneity chi-square = 30.82 ell = 13 
p = 0.004 12  = 57.8% 

Test for overall effect z = 0.18 p = 0.9 

0 List of studies by first author 

0 ..... � 

0.1 0.2 0.5 1 2 5 10 
Favours azithromycin Favours amoxy/amoxyc 

e • 
Weight Relative Rlak 

(%) 95% CI 

8. 0.67 (0.21 , 2.14] 

6. 7 1 1 .84 (2.84, 47.65) 

1 3.8 0.52 (0.36, 0.73) 

8. 

8. 

6. 

8. 

7. 

6. 

4. 

6. 

2. 

3. 

9. 

9 0.50 (0. 17, 1 .41) 

7 0.69 (0.23, 2.03) 

2.91 (0.63, 13.41) 

5 1 .39 (0.46, 4.18) 

2 1.06 (0.28, 4.01) 

8 0.59 (0.15, 2.36) 

0.20 (0.03, 1 .59) 

2.50 (0.53, 1 1 .70] 

3 0.19 (0.01 , 3.72] 

4 0.63 (0.06, 6.68] 

3 1 . 14 (0.42, 3.08) 

1 00.0 0.96 (0.58, 1 .57) 

• Number of subjects in experimental and control groups (n = number of adverse events, N = number of sub­
jects in group). For example, for the study by Balmes (1991 ), the total sample was 1 04  subjects; 1 1  subjects 
had adverse outcomes. 

e Relative risk (RR) of clinical failure associated with use of azithromycin. Square icon indicates RR, with 
larger squares representing larger sample sizes. Confidence intervals are shown by the horizontal line and 
in parentheses. An arrow at the end of the horizontal line indicates a value that goes beyond the scale on 
the plot. 

0 Weight for RR based on sample size. 

4D Overall RR measure for all studies combined. Larger icon representative of total for all sample sizes. 

From Panpanich R, Lerttrakarnnon P, L.aopaiboon M. Azithromycin for acute lower respiratory tract infections. 
Cochrane Database Syst Rev 2004; CD001 954. Used with permission. 
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that is, would the conclusion of the review be different if the method of analysis was 
changed?5 Sensitivity analysis is a technique that assesses if findings change when 
key assumptions or decisions differ. For systematic reviews these key assumptions 
include the criteria for inclusion and exclusion of studies. For meta-analysis this process 
also involves reanalyzing data using different statistical approaches or accounting for 
inconsistencies in reporting of results in individual studies. 

Panpanich et al53 performed a sensitivity analysis for their study of the use of 
azithromycin for acute respiratory infection. Their analysis included studies with vari­
able sample sizes, so they decided to do a sensitivity analysis by first omitting the sin­
gle largest study with 770 subjects to see if sample size made a difference in outcome. 
For the remaining studies, with samples between 50 and 350 subjects, they found an RR 
of 1.06, which supported the original finding. They continued their sensitivity analysis 
by focusing on three studies that had sufficient concealment of allocation. This analysis 
resulted in a RR of 0.52. For the remaining 11 studies with inadequate concealment the 
RR was 1.14. The authors suggested that the reduced RR with concealment indicated 
the azithromycin reduced the risk of clinical failure in patients with respiratory tract 
infection. The authors therefore concluded that the drug was effective based on the 
greater validity in the studies that showed a stronger effect. 

If the sensitivity analysis does not show substantially changed results, it strength­
ens findings of the meta-analysis. When the sensitivity analysis leads to a different con­
clusion, the interpretation should be more guarded. The authors should use these 
differences to clarify potential reasons for the discrepancy. In our example, the differ­
ence in design attributes is used as one potentially important factor in judging the effec­
tiveness of the intervention. 

APPRAISAL OF SYSTEMATIC REVIEWS AND META-ANALYSES 
Because systematic reviews and meta-analyses are being seen as the highest form of evi­
dence in a literature search, we must take responsibility for critical appraisal of reviews, 
to determine if they are valid in their presentation of findings. We have to assure our­
selves that the authors of the review have done an adequate job of locating, summariz­
ing, evaluating and synthesizing the information that we will use for our clinical 
decisions. A useful checklist has been developed to guide the reader in this process, 
based on three areas of concern: (1) Are the results of the study valid? (2) What are the 
results? and (3) Will the results help me in caring for my patients?54 This checklist is 
shown in Table 16.8. 

FIND OUT MORE 
The scope of this text naturally limits the detail we can provide on systematic reviews and 
meta-analysis. For those interested in further information we recommend three important 
references. We have already cited the Cochrane Handbook for Systematic Reviews of Interven­
tions,5 which is a comprehensive guide for writing systematic reviews and meta-analyses. 
This handbook is updated frequently and supports the Cochrane Review process. The 
Centres for Reviews and Dissemination55 and the EBM Toolbox provided by the Oxford 
Centre for Evidence Based Medicine56 provide valuable online resources as well. 
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TABLE 16.8 CRmCAL APPRAISAL OF SYSTEMATIC REVIEWS AND META-ANALYSES 

Yes No 

ARE THE RESULTS OF THE STUDY VALID? 

Was the review question clear? 
• Did the question specify the population studied? 
• Did the question specify the interventions used? 
• Did the question specify the outcomes that were measured? 

Were the Inclusion and exclusion criteria for selection of studies specl-
fled and appropriate? 

• Was a comprehensive search strategy explained? 
• Were bibliographic databases identified? 
• Does it appear that the retrieved references include the important, relevant 

studies? 
Did the reviewers appraise the validity of the Included studies? 

• Was the scale for measurement of methodological quality described 
adequately? 

• Were assessments reliable, i.e., did the reviewers explain the seriousness 
of disagreements and how they were handled? 

• Was there a wide variation in validity of the included studies? 
If results of studies were combined In a meta-analysis, was It reasonable 
to do so? 

• Were the studies measuring the same magnitude of effect? 
• Were results of all included studies adequately reported? 
• Were the results similar from study to study? 

WHAT ARE THE RESULTS? 
What are the overall results of the review? 

• Did the reviewers clearly express the "bottom line" conclusions? 
• Did the reviewers include specific effect size measures? 

How precise are the results? 
• Did the reviewers report point estimates and confidence intervals from 

included studies? 

WILL THE RESULTS HELP ME IN THE CARE OF MY PATIENT? 
Can the results be applied to my patient? 

• Are the patients in the included studies similar enough to my patient? 
• Were subgroup analyses included to help understand the influence of vari-

ous patient characteristics? 
• Are the settings of the included studies similar enough to mine? 

Were all Important outcome measures Included? 
Are the benefits of the Intervention worth the harm and costs? 

Adapted from Oxman AD, Cook OJ, Guyatt G. Users' guide to the medical literature: VI. How to use an 
overview. JAMA 1 994; 272:1367-1371 .  

Can't 
Tell 
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COMM ENTARY 

A Guide for the Future 

The value of conducting and reading systematic reviews or meta-analyses cannot be 
overestimated. Reviews that are conducted with a rigorously defined process, such 
as those described by contributors to the Cochrane Col laboration57 and the Centre 
for Evidence Based Medicine58 are essential to a c l inician's abil ity to sort through 
evidence in an efficient way. With a well-done systematic review, the cl in ical and 
research communities can have confidence that up to the time of publ ication, the 
i nformation is current and comprehensive. 

Another important application of systematic reviews is to avoid repeating studies 
of interventions that have already been clearly determi ned to be effective. Scientific 
and ethical j ustification for new cl inical trials, as wel l as interpretation of their find­
i ngs, should be based on defensible assessments of relevant previous research. 59 With 
evidence that there has been unnecessary replication of cl inical trials, the editorial 
pol icy of Lancet now requires that authors demonstrate that they have looked at exist­
ing systematic reviews of the topic of their present study or have conducted a system­
atic review themselves to j ustify what new information would be added by yet 
another study.60 There may always be questions about whether a l l  the avai lable i nfor­
mation has been included and whether bias has been total ly el iminated. It, then, 
becomes the reader's ("consumer's") responsibi l ity to evaluate those possibil ities (see 
Chapter 33) and to j udge the applicabil ity of findings to cl in ical practice. 

Systematic reviews wi l l  also clarify areas of practice that require further primary 
research. Most reviews identify continued uncertainty about the effectiveness of 
interventions, and therefore are a rich source of ideas for further research. In a 
review of 2,535 reviews from the Cochrane Library, Clarke et al61 found that 82 .0% 
of them made suggestions about specific i nterventions that needed further evalua­
tion. The majority of reviews also suggested outcome measures that were most 
appropriate for specific conditions. 

A final caution, however. Systematic reviews and meta-analyses are an impor­
tant tool to help us integrate information from many studies. But they are only tools. 
They help us u nderstand what the l iterature has to tell us, if anythi ng. It is most 
important to recognize that the results of a systematic review are only as good as the 
decisions that were made i n  developing the review-which studies were i ncluded, 
how they were analyzed, and the degree to which the information is up to date. To 
be useful as c l inical references for evidence-based practice, systematic reviews 
should be updated regularly as new data become avai lable. For i nstance, the review 
groups for the Cochrane Col laboration are responsible for updates on a regular two­
year schedule.5 Sometimes the update wi l l  include more recent studies, or it may 
indicate that no further research has been done since the original review was pub­
l ished. Both types of i nformation are important for c l inicians. 

Synthesis of data from individual studies requires rigorous quantitative methods, 
and also requires that the data from individual studies are reported wel l .49 System­
atic reviews and meta-analyses represent only one component of evidence-based 
practice and cannot replace sound cl in ical decision making. 
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CHAPTER 1 7  

Descriptive Statistics 

In the investigation of most clinical research questions, some form of quantitative data 
will be collected. Initially these data exist in raw form, which means that they are noth­
ing more than a compilation of numbers representing empirical observations from a 
group of individuals. For these data to be useful as measures of group performance, 
they must be organized, summarized, and analyzed, so that their meaning can be com­
municated. These are the functions of the branch of mathematics called statistics. 
Descriptive statistics are used to characterize the shape, central tendency, and vari­
ability within a set of data, often with the intent to describe a population. Measures of 
population characteristics are called parameters. A descriptive index computed from 
sample data is called a statistic. When researchers generalize sample data to popula­
tions, they use statistics to estimate population parameters. In this chapter we introduce 
the basic elements of statistical analysis for describing quantitative data. 

FREQUENCY DISTRI BUTIONS 
Because the numerical data collected during a study exist in unanalyzed, unsorted 
form, a structure is needed that allows us to recognize trends or averages. Table 17.1A 
presents a set of hypothetical scores of 48 therapists on a test of attitudes toward work­
ing with geriatric clients. For this example, a maximum score of 20 indicates an overall 
positive attitude; zero indicates a strong negative bias. The total set of scores for a par­
ticular variable is called a distribution. The total number of scores in the distribution 
is given the symbol n. In this sample, n = 48. 

Although visual inspection of a distribution allows us to see all the scores, this list 
is long and unwieldy, and inadequate for describing this group of therapists or compar­
ing them with any other group. We can begin to summarize the data by presenting 
them in a frequency distribution. A frequency distribution is a table of rank ordered 
scores that shows the number of times each value occurred, or its frequency (j). The first 
two columns in Table 1 7.1B show the frequency distribution for the attitude scores. 
Now we can tell more readily how the scores are distributed. We can see the lowest and 
highest scores, where the scores tend to cluster, and which scores occurred most often. 
The sum of the numbers in the frequency column (j) equals n, the number of subjects or 
scores in the distribution. 

Sometimes frequencies are more meaningfully expressed as percentages of the total 
distribution. We can look at the percentage represented by each score in the distribu­
tion, or at the cumulative percentage obtained by adding the percentage value for each 
score to all percentages that fall below that score. For example, it may be useful to know 

385 



386 PART IV • Data Analysis 

TABLE 1 7.1 DISTRIBUTION OF ATTITUDE SCORES (N = 48) 

A. RAW DATA 

Score Score Score 

1 9 1 7  1 6  33 19 
2 1 3  1 8  1 8  34 1 0  
3 1 5  1 9  1 5  35 1 2  
4 1 6  20 1 5  36 1 5  
5 20 21 1 1  37 1 7  
6 1 7  22 20 38 1 3  
7 1 5  23 1 9  39 1 6  
8 1 4  24 1 5  40 1 5  
9 1 0  25 1 1  41 1 4  

1 0  1 5  26 1 4  42 1 6  
1 1  1 7  27 1 8  43 1 2  
1 2  1 3  28 1 4  44 1 5  
1 3  1 9  29 1 7  45 1 6  
1 4  1 2  30 1 1  46 1 8  
1 5  1 6  31 1 6  47 1 9  
1 6  1 2  32 1 7  48 1 4  

B .  FREQUENCY DISTRIBUTION 

Attitude Score 

Cumulative 
Frequency Percent Percent 

9 1 2.1 2.1 
1 0  2 4.2 6.3 
1 1  3 6.3 1 2.5 
1 2  4 8.3 20.8 
1 3  3 6.3 27.1 
1 4  5 1 0.4 37.5 
1 5  9 1 8.8 56.3 
1 6  7 1 4.6 70.8 
1 7  5 1 0.4 81 .3 
1 8  3 6.3 87.5 
1 9  4 8.3 95.8 
20 2 4.2 1 00.0 

Total 48 1 00.0 

that 18.8% of the sample had a score of 15 or that 56.3% of the sample had scores of 15 
and below. Percentages are useful for describing distributions because they are inde­
pendent of sample size. For example, suppose we tested another sample with 150 ther­
apists, and found that 84 individuals obtained a score of 15. Although there are more 
people in this second sample with this score than in the first sample, they both repre­
sent the same percentage of the total sample (56%). Therefore, the samples may be more 
similar than frequencies would indicate. 

Grouped Freq uency Distributions 
When clinical data are collected, researchers will often find that very few subjects, if 
any, obtain the exact same score. Consider a hypothetical sample of 30 patients for 
whom we obtained measurements of shoulder abduction range of motion, shown in 
Table 17.2A. Obviously, creating a frequency distribution is a useless process if almost 
every score has a frequency of one. In this situation, a grouped frequency distribution can 
be constructed by grouping the scores into classes, or intervals, where each class repre­
sents a unique range of scores within the distribution. Frequencies are then assigned to 
each interval. 

Table 1 7.2B shows a grouped frequency distribution for the range of motion data. 
The classes represent ranges of 10 degrees. The classes are mutually exclusive (no over­
lap) and exhaustive within the range of scores obtained. The choice of the number of 
classes to be used and the range within each class is an arbitrary decision. It depends 
on the overall range of scores, the number of observations, and how much detail is rel­
evant for the intended audience. Although information is inherently lost in grouped 
data, this approach is often the only feasible way to present comprehensible data when 
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TABLE 1 7.2 SHOULDER ABDUCTION RANGE OF MOTION: GROUPED FREQUENCY 
DISTRIBUTION AND STEM-AND-LEAF PLOT 

A. RAW DATA B.  GROUPED FREQUENCY DISTRIBUTION 

Score Score Frequency Percent 

1 60 16 94 6Q-69 2 6.7 
2 68 17 95 70-79 3 1 0.0 
3 72 18  95 8Q-89 5 1 6.7 
4 77 19  9 6  90-99 1 0  33.3 
5 77 20 98 100-1 09 4 1 3.3 
6 80 21 1 00 1 1 0-1 1 9  3 1 0.0 
7 82 22 1 02 120-129 1 3.3 

8 84 23 1 05 1 30-139 2 6.7 
9 85 24 1 08 Total 30 1 00.0 

10 86 25 1 1 0 
1 1  90 26 1 1 2 C. STEM-AND-LEAF PLOT 
12  91  27 1 1 5 

13 92 
14  93 

28 1 25 
29 1 30 

Frequency Stem & Leaf 
1 5  94 30 1 32 2 . 0 0 6 0 8  

3 . 0 0 7 2 7 7  
5 . 0 0 8 0 2 4 5 6  

1 0 . 0 0 9 0 1 2 3 4 4 5 5 6 8  
4 . 0 0 1 0  0 2 5 8  
3 . 0 0 1 1  0 2 5  
1 .  0 0  1 2  5 
2 . 0 0 1 3  02  

large amounts of information are collected for continuous data. The groupings should 
be clustered to reveal the important features of the data. The researcher must recognize 
that the choice of the number of classes and the range within each class can influence 
the interpretation of how a variable is distributed. 

Graph ing Frequency Distributions 
Graphic representation of data often communicates information about trends and gen­
eral characteristics of distributions more clearly than a tabular frequency distribution. 
The most common methods of graphing frequency distributions are the stem-and-leaf 
plot, histogram, and frequency polygon. 

The stem-and-leaf plot is a refined grouped frequency distribution that is most 
useful for presenting the pattern of distribution of a continuous variable. The pattern is 
derived by separating each score into two parts. The leaf consists of the last or rightmost 
single digit of each score, and the stem consists of the remaining leftmost digits. Table 
17.2C illustrates a stem-and-leaf plot for the shoulder range of motion data. The scores 
have leftmost digits of 6 through 13. These values become the stem. The last digit in 
each score becomes the leaf. To read the stem-and-leaf plot, we look across each row, 
attaching each single leaf digit to the stem. Therefore, the first row represents the scores 
60 and 68; the second row, 72, 77 and 77; the third row, 80, 82, 84, 85 and 86; and so on. 
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This display provides a concise summary of the data, while maintaining the integrity of 
the original data. If we compare this plot with the grouped frequency distribution, it is 
clear how much more information is provided by the stem-and-leaf plot in a small 
space, and how it provides elements of both tabular and graphic displays. 

A histogram is a bar graph, composed of a series of columns, each representing 
one score or class interval. Figure 17.1A is a histogram showing the distribution of atti­
tude scores given in Table 17.1 .  The frequency for each score is plotted on the Y-axis 

A 

1 0  

8 

� 6 
c: (I) ::s C' � LL 4 

2 

0 

B 

8 1 0  1 2  1 4  1 6  1 8  20 22 
Attitude Score 

9 1 0  1 1  1 2  1 3  1 4  1 5  1 6  1 7  1 8  1 9  20 
Attitude Score 

FIGURE 1 7.1 Graphic plots of data from Table 1 7 . 1 . (A) Histogram, (B) Frequency polygon. 
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(vertical), and the measured variable, in this case attitude score, is on the X-axis (hori­
zontal). The bars are centered over the scores. 

A frequency polygon is a line plot, where each point on the line represents fre­
quency or percentage. Figure 17.1B illustrates a frequency polygon for the attitude data. 
When grouped data are used, the dots in the graph are located at the midpoint of each 
class interval to represent the frequency in that class. 

Shapes of Distributions 
When graphs of frequency distributions are drawn, the distributions can be character­
ized by their shape. Although real data seldom achieve smooth curves, minor discrep­
ancies are often ignored in an effort to describe overall the shape of a distribution. 

Some distributions are symmetrical; that is, each half is a mirror image of the other. 
Curves A and B in Figure 17.2 are symmetrical. When scores are equal throughout the 
distribution, the shape is described as uniform, or rectangular, as shown in Curve A. 
Curve B represents a special case of the symmetrical distribution called the normal dis­
tribution. In statistical terminology, "normal" refers to a specific type of bell-shaped 
distribution where most of the scores fall in the middle of the scale and progressively 
fewer fall at the extremes. The unique characteristics of this distribution curve are dis­
cussed in greater detail later in this chapter. 

A skewed distribution is asymmetrical. The degree to which the distribution devi­
ates from symmetry is its skewness. Curve C in Figure 17.2 is positively skewed, or skewed 
to the right, because most of the scores cluster at the low end and only a few scores at 
the high end have caused the tail of the curve to point toward the right. If we were to 
plot a distribution for annual family income in the United States, for example, it would 
be positively skewed, because most families have low to moderate incomes. When the 

A B 

c D 

FIGURE 1 7.2 Common shapes of frequency distributions: (A) Symmetrical rectangular, (B) Normal 
curve, (C) Skewed to the right, (D) Skewed to the left. 
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curve "tails off" to the left, the distribution is negatively skewed, or skewed to the left, as 
in Curve D. We might see a negatively skewed distribution if we plotted exam scores 
for an easy test, on which relatively few students achieved a low score. 

M EASURES OF CENTRAL TENDENCY 
Although frequency distributions enable us to order data and identify group patterns, 
they do not provide a practical quantitative summary of a group's characteristics. 
Numerical indices are needed to describe the "typical" nature of the data and to reflect 
different concepts of the "center" of a distribution. These indices are called measures of 
central tendency, or averages. The term average can denote three different measures of 
central tendency: the mode, the median, and the mean. 

The Mode 
The mode is the score that occurs most frequently in a distribution. I t  is most easily 
determined by inspection of a frequency distribution. The frequency distribution in 
Table 17.1 shows that the mode for the attitude data is 15 because it occurs nine times, 
more than any other score. When class intervals are used, the mode is taken as the mid­
point of the interval with the largest frequency. When more than one score occurs with 
the highest frequency, a distribution is considered bimodal (with two modes) or 
multimodal (with more than two modes). Many distributions of continuous variables do 
not have a mode. 

The mode has only limited application as a measure of central tendency for contin­
uous data, but can be useful in the assessment of categorical variables. For example, it 
may be of interest to determine the diagnostic category seen most often in a clinic. 

The Med ian 
The median of a series of observations is that value above which there are as many 
scores as below it; that is, it divides a rank-ordered distribution into two equal halves. 
When a distribution contains an odd number of scores, such as 4, 5, 6, 7, 8, the middle 
score, 6, is the median. With an even number of scores, the midpoint between the two 
middle scores is the median, so that for the series 4, 5, 6, 7, 8, 9, the median lies halfway 
between 6 and 7. Therefore, the median equals 6.5. For the distribution of attitude 
scores given in Table 17.2, with n = 48, the median will lie midway between the 24th 
and 25th scores. As both of these are 15, the median is 15. 

The advantage of the median as a measure of central tendency is that it is unaf­
fected by the value of extreme scores. It is an index of average position in a distribution, 
not amount. It is therefore a useful measure in describing skewed distributions. For 
instance, the average cost of a house is usually cited in terms of the median, because the 
distribution tends to be skewed to the right. 

The Mean 
The mean is the sum of a set of scores divided by the number of scores, n.  This is the 
value most people refer to as the "average." The symbol used to represent the mean of 
a population is the Greek letter mu, f..L, and the mean of a sample is represented by X. 
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The bar above the X indicates that the value is an average score. The formula for calcu­
lation of the sample mean from raw data is 

- �X X = -­
n 

(17.1) 

where the Greek letter L (sigma) stands for "the sum of." This is read, "the mean 
equals the sum of X divided by n,

" where X represents each individual score in the 
distribution. For example, we can apply this formula to the ROM scores shown in 
Table 17.2. In this distribution of thirty scores, the sum of scores is 2,848. Therefore, X = 2,848/30 = 94.9. 

Comparing Measures of Central Tendency 
Determining which measure of central tendency is most appropriate for describing a 
distribution depends on several factors. Foremost is the intended application of the 
data. The scale of measurement of the variable is another important consideration. All 
three measures of central tendency can be applied to variables on the interval or ratio 
scales, although the mean is most useful. For data on the nominal scale, only the mode 
is meaningful. If data are ordinal, both the median and mode can be applied. 

It is necessary to consider how the summary measure will be used statistically. Of 
the three measures of central tendency, the mean is considered the most stable; that is, 
if we were to repeatedly draw random samples from a population, the means of those 
samples would fluctuate less than the mode or median. Only the mean can be subjected 
to arithmetic manipulations, making it the most reasonable estimate of population char­
acteristics. For this reason, the mean is used more often than the median or mode for 
statistical analysis of ratio or interval data. 

We can also consider the utility of the three measures of central tendency for 
describing distributions of different shapes. With uniform and normal distributions, 
any of the three averages can be applied with validity. With skewed distributions, how­
ever, the mean is limited as a descriptive measure because, unlike the median and 
mode, it is affected by the quantitative value of every score in a distribution and can be 
biased by extreme scores. For instance, in the previous example of ROM scores (see 
Table 17.2), if the first subject obtained a score of 20 instead of 60, the mean would 
decrease from 94.9 to 93.6. The median and mode would be unaffected by this change. 

The curves in Figure 17.3 illustrate how measures of central tendency are affected 
by skewness. The median will typically fall between the mode and the mean in a 
skewed curve, and the mean will be pulled toward the tail. Because of these properties, 
the choice of which index to report with skewed distributions depends on what facet of 
information is appropriate to the analysis. It is often reasonable to report all three val­
ues, to present a complete picture of a distribution's characteristics. 

M EASURES OF VARIABILITY 
The shape and central tendency of a distribution are useful but incomplete descriptors 
of a sample. To illustrate this point, consider the following dilemma: You are responsi­
ble for planning the musical entertainment for a party of seven individuals, but you 
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FIGURE 1 7.3 Relationship of mean, median, and mode in unimodal symmetrical (A) and skewed (B, 
C) distributions. The mean is pul led toward the tai l  of skewed curves. 

don't know what kind of music to choose-so you decide to use their average age as a 
guide. The guests' ages are 3, 3, 13, 14, 59, 70, and 78 years. If you based your decision 
on the mode of 3 years, you would bring in characters from Sesame Street. Using the 
median of 14 years, you might hire a heavy metal band. And according to the mean age 
of 34.3 years, you might decide to play soft rock, although nobody in the group is actu­
ally in that age range. And the Tommy Dorsey fans are completely overlooked! What 
we are ignoring is the spread of ages within this group. 

Consider now a more serious example, using the hypothetical exam scores reported 
in Table 17.3, obtained from two different groups of students. If we were to describe 
these two distributions using measures of central tendency only, they would appear 

TABLE 1 7.3 TEST SCORES OBTAINED FROM TWO GROUPS OF STUDENTS 

GROUP A 

Score 

1 78 
2 80 
3 82 
4 85 
5 85 
6 85 
7 86 
8 88 

Statistics 

Group A 

N 8 
Mean 83.63 
Median 85.00 
Mode 85 

I 1 � 1 I 
60 70 80 90 1 00 

GROUP B 

Score Statistics 

1 65 Group B 
2 69 
3 78 N 8 

4 85 Mean 83.63 

5 85 Median 85.00 

6 93 Mode 85 

7 96 
8 98 � 

60 70 80 90 1 00 
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identical; however, a careful glance reveals that the scores for Group B are more widely 
scattered than those for Group A. This difference in variability, or dispersion of scores, 
is an essential element in data analysis. The description of a sample is not complete 
unless we can characterize the differences that exist among the scores as well as the cen­
tral tendency of the data. In this section we describe five commonly used statistical 
measures of variability: range, percentiles, variance, standard deviation and coefficient 
of variation. 

Range 
The simplest measure of variability is the range, which is the difference between the 
highest and lowest values in a distribution. For the test scores reported in Table 17.3, the 
range for Group A is 88 - 78 = 10, and for Group B, 98 - 65 = 33. * These values sug­
gest that the first group was more homogeneous. Although the range is a relatively sim­
ple statistical measure, its applicability is limited because it is determined using only 
the two extreme scores in the distribution. It reflects nothing about the dispersion of 
scores between the two extremes. One aberrant extreme score can greatly increase the 
range, even though the variability within the rest of the data set is unchanged. In addi­
tion, the range of scores tends to increase with larger samples, making it an ineffective 
value for comparing distributions with different numbers of scores. Therefore, although 
it is easily computed, the range is usually employed only as a rough descriptive meas­
ure, and is typically reported in conjunction with other indices of variability. 

Percenti les and Quarti les 
Percentiles are used to describe a score's position within a distribution. Percentiles 
divide data into 100 equal portions. A particular score is located in one of these portions, 
which represents its position relative to all other scores. For example, if a student taking 
a college entrance examination scores in the 92nd percentile (P92), that individual's score 
was higher than 92% of those who took the test. Percentiles are helpful for converting 
actual scores into comparative scores or for providing a reference point for interpreting 
a particular score. For instance, a child who scores in the 20th percentile for weight in his 
age group can be evaluated relative to his peer group, rather than considering only the 
absolute value of his weight. 

Quartiles divide a distribution into four equal parts, or quarters. Therefore, three 
quartiles exist for any data set. Quartiles Q1, Q2, and Q3 correspond to percentiles at 
25%, 50%, and 75% of the distribution (P25, P50, P75). The score at the 50th percentile or 
Q2 is the median. The distance between the first and third quartiles, Q3 - Q1, is called 
the interquartile range, which represents the boundaries of the middle 50% of the dis­
tribution. A box plot graph, also called a box-and-whisker plot, (Figure 17.4) is a use­
ful way to demonstrate visually the spread of scores in a distribution, including the 
median and interquartile range.1 Box plots may be drawn with the "whiskers" repre­
senting highest and lowest scores. The whiskers may also be drawn to represent the 

*Research reports will usually report range by providing the actual minimum and maximum scores, rather 
than their difference. 
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FIGURE 1 7.4 These box plots show four distributions of scores of functional level based on the Gross 
Motor Function Classification System (GMFCS). The distributions compare the ratio of medium to low 
activity levels (%) among chi ldren who were developing normally and chi ldren with cerebral palsy at 
functional levels I, I I  and I l l .  The upper and lower margins of the box indicate the interquarti le range 

(QrQ1), demarcating the 2 5th and 75th percentiles. The center l ine sits at the median score (50th per­
centi le). The outer bars (whiskers) indicate the range of scores at each end of the distribution, with circles 
indicating outliers beyond 3 standard deviations from the mean. (From Bjornson KF et al. Ambu latory 
physical activity performance in youth with cerebral palsy and youth who are developing typically. 
Phys Ther 2007;87:248-2 5 7, Figure 4, p. 255.  Used with perm ission of the American Physical Therapy 
Association.) 

90th and lOth percentiles, as shown in Figure 17.4, and outliers beyond those values 
may be indicated as circles outside the whiskers. 

Quartiles are often used in clinical research as a basis for differentiating subgroups 
within a sample. For example, researchers studied the relationship between bone den­
sity and walking habits in 239 postmenopausal women.2 The sample was grouped into 
quartiles based on year-round distance walked, and these four groups were compared 
on bone density and several anthropometric variables. Quartiles provided the structure 
for creating comparison groups where no obvious criteria were available. 

Variance 

Measures of range have limited application as indices of variability because they are not 
influenced by every score in a distribution and they are sensitive to extreme scores. To 
more completely describe a distribution we need an index that reflects the variation 
within a full set of scores. This value should be small if scores are close together and 
large if they are spread out. It should also be objective so that we can compare samples 
of different sizes and determine if one is more variable than another. 
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We can begin to examine variability by looking at the deviation of each score from 
the mean; that is, we subtract the mean from each score in the distribution to obtain a 
deviation score, X - X. Obviously, samples with larger deviation scores will be more 
variable around the mean. For instance, consider the distribution of test scores from 
Group B in Table 1 7.3. The deviation scores for this sample are shown in Table 1 7.4A. 
The mean of the distribution is 83.63. For the score X = 65, the deviation score will 
be 65 - 83.63 = - 18.63. Note that the first three deviation scores are negative values 
because these scores are smaller than the mean. 

TABLE 1 7.4 GROUP B TEST SCORES (FROM TABLE 1 7.3) AND DEVIATION SCORES 

USED TO COMPUTE VARIANCE (s2) AND STANDARD DEVIATION (s) 

A. DATA X 

65 
69 
78 
85 
85 
93 
96 
98 

(X - X) 

-1 8.63 
-1 4.63 

-5.63 
1 .38 
1 .38 
9.38 

1 2 .38 
1 4.38 

347.08 
21 4.04 

31 .69 
1 .90 
1 .90 

87.98 
153.26 
206.78 

4225 
4761 
6084 
7225 
7225 
8649 
921 6 
9604 

L:X = 669 
x = 83.63 

L: (X - X) = 0.00 L:(X - X)2 = 1 044.63 L:X2 = 56,989 

B. CALCULATIONS 

� (X X)2 
s2 = ..:... 

-
= 1 044.63 

= 1 49.23 
n - 1 8 - 1  

s = ��(X - X)2 = V1 49.23 = 1 2 .22 
n - 1 

C. COMPUTATIONAL FO RMULAE 

�x2 -
( � x)2 

s2 = -----n­
n - 1 

s = 
n - 1 

(669)2 
(56,989) - -

8
-

52 = ------ 1 04:.39 = 1 49. 1 3  

s = 

8 - 1 

(669)2 
(56,989) - -

8
-

------ = \.1'149.13 = 1 2.21  8 - 1 

The numerator in these formulae is the computational expression for sum of squares. 

D. OUTPUT (Data from Table 1 7.3) 

Descriptive Statistics 

N Minimum Maximum Mean Std. Deviation 

Group A 8 78 88 83.63 3.335 
Group B 8 65 98 83.63 1 2.2 12  
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As a measure of variability, the deviation score has intuitive appeal, as these scores 
will obviously be larger as scores become more heterogeneous and farther from the 
mean. It might seem reasonable, then, to take the average of these values, or the mean 
deviation, as an index of dispersion within the sample. This is a useless exercise, how­
ever, because the sum of the deviation scores will always equal zero, L(X - X) = 0, as 
illustrated in the second column in Table 17.4A. If we think of the mean as a central bal­
ance point for a distribution, then it makes sense that the scores will be equally dis­
persed above and below that central point. 

This dilemma is solved by squaring each deviation score to get rid of the minus 
signs, as shown in the third column of Table 17.4A. The sum of the squared deviation 
scores, L(X - X)2, is called the sum of squares (SS) . As variability increases, the sum 
of squares will be larger. 

We now have a number we can use to describe the sample's variability. In this case, 
L(X - X)2 = 1044.63. As an index of relative variability, however, the sum of squares 
is limited because it can be influenced by the sample size; that is, as n increases, the sum 
will also tend to increase simply because there are more scores. To eliminate this prob­
lem, the sum of squares is divided by n, to obtain the mean of the squared deviation 
scores (shortened to mean square, MS). This value is a true measure of variability and 
is called the variance. 

For population data, the variance is symbolized by u2 (lowercase Greek sigma 
squared) . When the population mean is known, deviation scores are obtained by 
X - 1-L· Therefore, the population variance is defined by 

2 ss L (X - /L)2 
u = 

N 
= 

N 
(17.2) 

With sample data, deviation scores are obtained using X, not 1-L· Because sample 
data do not include all the observations in a population, the sample mean is only an 
estimate of the population mean. This substitution results in a sample variance slightly 
smaller than the true population variance. To compensate for this bias, the sum of 
squares is divided by n - 1 to calculate the sample variance, given the symbol s2: 

2 ss L (X - X)2 
s = � = 

n _ 1 
(17.3) 

This corrected statistic is considered an unbiased estimate of the parameter u2. For the 
data in Table 17.4, SS = 1044.63 and n = 8. Therefore, 

52 = 
1044.63 

= 149.23 
8 - 1 

When means are not whole numbers, calculation of deviation scores can be biased by 
rounding. Computational formulae provide more accurate answers. See Table 1 7.4C for 
calculations using the computational formula for variance. 

Standard Devi atio n  

The limitation of variance as a descriptive measure of a sample's variability is that it 
was calculated using the squares of the deviation scores. It is generally not useful to 
describe sample variability in terms of squared units, such as degrees squared or 
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pounds squared. Therefore, to bring the index back into the original units of measure­
ment, we take the positive square root of the variance. This value is called the standard 
deviation, symbolized by s. The formula for standard deviation is 

For the preceding example, 

. �  s = = v 149.23 = 12.22 
1 

See Table 17.4C for the corresponding computational formula. 

(17.5) 

The standard deviation of sample data is usually reported along with the mean so 
that the data are characterized according to both central tendency and variability. A 
mean may be expressed as X = 83.63 ± 12.22, which tells us that the average of the 
deviations on either side of the mean is 12.22. An error bar graph shows these values for 
both groups, illustrating the difference in their variability to indicate the mean and stan­
dard deviation (see Figure 17.5). 

The standard deviation can be used as a basis for comparing samples. The results 
shown in Table 1 7.4D show the standard deviations for both Groups A and B (from 
Table 1 7.3). The error bar graph in Figure 1 7.5 illustrates the comparison of means and 
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FIG URE 1 7.5 Example of an error bar graph showing the mean and error bar ind icating one standard 
deviation above and below the mean. The error bars indicate that the Group A is less vari able than Group 
B, even though they have the same mean. 
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standard deviations for these two groups. Because the standard deviation for Group A 
is smaller, we know that the Group B scores were more spread out around the mean. In 
clinical studies it may be relevant to describe the degree of variability among subjects 
as a way of estimating the generalizability of responses. Variance and standard devia­
tion are fundamental components of any analysis of data. We explore the application of 
these concepts to many statistical procedures throughout the coming chapters. 

Coefficient of Variation 

The coefficient of variation (CV) is another measure of variability that can be used to 
describe data measured on the interval or ratio scale. It is the ratio of the standard devi­
ation to the mean, expressed as a percentage: 

s 
CV = = X  100 X (17.5) 

There are two major advantages to this index. First, it is independent of units of 
measurement because units will mathematically cancel out. Therefore, it is a practical 
statistic for comparing distributions recorded in different units. Second, the coefficient of 
variation expresses the standard deviation as a proportion of the mean, thereby account­
ing for differences in the magnitude of the mean. The coefficient of variation is, there­
fore, a measure of relative variation, most meaningful when comparing two distributions.+ 

These advantages can be illustrated using data from a study of normal values of 
lumbar spine range of motion, in which data were recorded in both degrees and inches 
of excursion.3 The mean ranges for 20- to 29-year-olds were X = 41 .2 ± 9.6 degrees, 
and X = 3.7 ± 0.72 inches, respectively. The absolute values of the standard devia­
tions for these two measurements suggest that the measure of inches, using a tape 
measure, was much less variable; however, because the means and units are substan­
tially different, we would expect the standard deviations to be different as well. By cal­
culating the coefficient of variation, we get a better idea of the relative variation of 
these two measurements: 

Degrees: 

Inches: 

CV = 
9

·
6 

X 100 = 23.3% 
41 .2 

CV = 
0

·
72 

X 100 = 19.5% 
3.7 

Now we can see that the variability within these two distributions is actually fairly 
comparable. As this example illustrates, the coefficient of variation is a useful measure 
for making comparisons among patient groups or different clinical assessments to 
determine if some are more stable than others. 

""The coefficient of variation cannot be used when a variable mean is a negative number. Because CV is 
expressed as a percentage, it cannot be interpreted as a negative value. 
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Earlier in this chapter we discussed the symmetrical distribution known as the normal 
distribution. This distribution represents an important statistical concept because so 
many biological, psychological and social phenomena manifest themselves in popula­
tions according to this shape. If we were to graph the population frequency distribution 
of variables such as height or intelligence, the graph would resemble the bell-shaped 
curve. Unfortunately, in the real world we can only estimate such data from samples 
and, therefore, cannot expect data to fit the normal curve exactly. For practical purposes, 
then, the normal curve represents a theoretical concept only, with well defined proper­
ties that allow us to make statistical estimates about populations using sample data. 

The fact that the normal curve is important to statistical theory should not imply, 
however, that data are not useful or valid if they are not normally distributed. Many 
sociological variables, such as socioeconomic class, income, ethnic background and age, 
are skewed. Such data can be handled using statistics appropriate to nonnormal distri­
butions (see Chapter 22). 

Proportions of the Normal Curve 

The statistical appeal of the normal distribution is that its characteristics are constant and, 
therefore, predictable. As shown in Figure 17.6, the curve is smooth, symmetrical and bell­
shaped, with most of the scores clustered around the mean. The mean, median and mode 
have the same value. The vertical axis of the curve represents the frequency of data. The 
frequency of scores decreases steadily as scores move in a negative or positive direction 
away from the mean, with relatively rare observations at the extremes. Theoretically, there 
are no boundaries to the curve; that is, scores potentially exist with infinite magnitude 

Standard deviations 
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FIG URE 1 7 .6 Areas under the normal curve, showing standard deviations and corresponding z-scores. 
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above and below the mean. Therefore, the tails of the curve approach but never quite touch 
the baseline. 

Because of these standard properties, we can also determine the proportional areas 
under the curve represented by the standard deviations in a normal distribution. Stat­
isticians have shown that 34.13% of the area under the normal curve is bounded by the 
mean and the score one standard deviation above or below the mean. Therefore, 
68.26% of the total distribution (the majority) will have scores within ± 1  standard devi­
ation (±1s) from the mean. Similarly, ±2s from the mean will encompass 95.45%, and 
±3s will cover 99.74% of the total area under the curve. At ±3s we have accounted for 
virtually the entire distribution. Because we can never discount extreme values at 
either end, we never account for the full 100%. This information can be used as a basis 
for interpreting standard deviations. For example, if we are given X = 65 ± 6.06, we 
can estimate that approximately 68% of the individuals in the sample have scores 
between 58.94 and 71.06. 

Standardized Scores 

Statistical data are meaningful only when they are applied in some quantitative context. 
For example, if a patient has a pulse rate of 58 beats/min, the implication of that value 
is evident only if we know where that score falls in relation to a distribution of normal 
pulse rates. If we know that X = 68 and s = 10 for a given sample, then we know that 
an individual score of 58 is one standard deviation below the mean. This gives us a 
clearer interpretation of the score. When we express scores in terms of standard devia­
tion units, we are using standardized scores, also called .z-scores. For this example, a 
score of 58 can be expressed as a z-score of - 1 .0, the minus sign indicating that it is one 
standard deviation unit below the mean. A score of 88 is similarly transformed to a 
z-score of + 2.0, or two standard deviations above the mean. 

A z-score is computed by dividing the deviation of an individual score from the 
mean by the standard deviation: 

z = 
X - X  

(17.6) 
s 

Using the example of pulse rates, for an individual score of 85 beats/minute, 
with X = 68 and s = 10, 

z = 
85 - 68 

= 
17 

= 1.7 
10 10 

Thus, 85 beats/minute is 1.7 standard deviations above the mean. 

The Standardized Normal Cu rve 

The normal distribution can also be described in terms of standardized scores. Theoret­
ically, there are an infinite number of normal distributions, corresponding to every com­
bination of means and standard deviations. The mean of a normal distribution of 
z-scores will always equal zero (no deviation from the mean), and the standard devia­
tion will always be 1.0. As shown in Figure 17.6, the area under the standardized nor­
mal curve between z = 0 and z = + 1 .0 is approximately 34%, the same as that defined 
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by the area between the mean (z = 0) and one standard deviation. The total area within 
z = ± 1 .00 is 68.26%. Similarly, the total area within z = ±2.00 is 95.45%. Using this 
model, we can determine the proportional area under the curve bounded by any two 
points in a normal distribution. These values are given in Appendix Table A.l.  

Determining Areas Under the Normal Curve 
We can illustrate this process using hypothetical values for pulse rates, with X = 68 
and s = 10. Suppose we want to determine what percentage of our sample has a pulse 
rate above 80 beats/minute. First, we determine the z-score for 80 beats/minute: 

z = 
80 - 68 

= 
12 

= 1 .2 
10 10 

Therefore, 80 beats/minute is slightly more than one standard deviation above the 
mean. 

We want to determine the proportion of our total sample that is represented by all 
scores above 80, or above z = 1 .2. This is the shaded area above 80 in Figure 17.7. We 
can now refer to Table A.l .  This table is arranged in three columns, one containing 
z-scores and the other two representing areas either from 0 to z or above z (in one tail of 
the curve).  For this example, we are interested in the area above z, or above 1 .2. If we 
look to the right of z = 1 .20 in Table A.1, we find that the area above z equals .1151.  
Therefore, scores above 80 beats/minute represent 11 .51% of the total distribution. 

We might also be interested in determining the area above 50 beats/minute. First 
we determine the z-score for 50 beats/minute: 

50 - 68 - 18 
z = = - = - 1 .8 

10 10 
Therefore, 50 beats /minute is slightly less than two standard deviations below the 
mean. 

Now we want to determine the proportion of our total sample that is represented 
by all scores above 50, or above z = - 1 .8. We already know that the scores above the 

z-score 

X 
0 1 .2 

68 80 
Pulse rate (beats/min) 

FIG URE 1 7.7 Distribution of pulse rates with X = 68 and s = 10 showing the area under the normal 
curve above 80 beats/m inute, or z = 1 .2. The shaded area in the tai l  of the curve represents 1 1  .5 1 %  of 
the curve (from Table A.l  ) .  
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Pulse rate (beats/min) 

FIG URE 1 7.8 Distribution of pulse rates with X =  68 and s = 1 0, showing the area under the normal 
curve above 50 beats/m in ute, or z = - 1 .8 .  The l ight green area represents z = 0 to - 1 .8 = .464 1 (from 
Table A.1  ) . Together, the green areas represent 96.4 1 %  of the total area under the cu rve. 

mean (above z = 0) represent 50% of the curve, as shown by the dark green area in 
Figure 17.8. Therefore, we are now concerned with the light green area between 68 and 
50, which is equal to the area from z = 0 to z = - 1 .8. Together these two shaded areas 
represent the total area above 50. Table A.1 uses only absolute values of z. Because it 
includes standardized units for a symmetrical curve, the proportional area from 0 to 
z = + 1 .8 is the same as the area from 0 to z = - 1 .8. The area between z = 0 and 
z = - 1 .8 is .4641.  Therefore, the total area under the curve for all scores above 80 
beats/minute will be .50 + .4641 = .9641, or 96.41%. 

Standardized scores are very useful for interpreting an individual's standing rela­
tive to a normalized group. For example, many standardized tests, such as psychologi­
cal, developmental and intelligence tests, use z-scores to demonstrate that an 
individual's score is above or below the "norm" (the standardized mean) or to show 
what proportion of the subjects in a distribution fall within a certain range of scores. 

Skewness 

The validity of estimates using the standard normal curve depends on the closeness 
with which a sample approximates the normal distribution. Many clinical samples are 
too small to provide an adequate approximation and are more accurately described as 
skewed. Most computer programs for descriptive statistics can compute measures of 
skewness. A value close to zero indicates a normal (or near-normal) distribution. As val­
ues become increasingly positive or negative, they indicate the extent to which the data 
are skewed. 

Because many statistical procedures are based on assumptions related to the nor­
mal distribution, researchers should evaluate the shape of the data as part of their ini­
tial analysis. Alternative statistical operations can be used with skewed data, or data 
may be transformed to better reflect the characteristics of a normal distribution (see 
Appendix D). Unfortunately, many researchers do not test for skewness as part of their 
initial analysis, running the risk of invalid statistical conclusions.4 Skewness should be 
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reported to help readers understand the shape of a distribution, and to evaluate the 
appropriate use of statistical procedures.5 

COM MENTARY 

Description Is an Essential Beginning 

Descriptive statistics are the bui ld ing blocks for data analysis. They serve an obvious 
function in that they summarize important features of quantitative data. Every study 
wi l l  include a description of subjects and responses using one or more measures of 
central tendency and variance, as a way of u nderstanding the study sample, and 
establ ishing the framework for further analysis. 

Descriptive measures are l i mited i n  their i nterpretation because they do not 
attempt to i nfer anything that goes beyond the data themselves. Therefore, if we col­
lect i nformation about the average performance of a group of patients, we are using 
a descriptive process; however, if we use this i nformation to predict future perform­
ance of these patients or to make genera l izations about the effectiveness of the treat­
ment they received, we are going beyond the scope of descriptive data. We must 
remai n  cognizant of the l i mitations of descriptive i nformation for general ization. 
Interpretations that go beyond sample data are based on i nferential statistics. It is 
a lso essentia l  to understand, however, the assumptions underlying most inferent ial  
procedures, which are based on descriptive characteristics of a distribution, includ­
ing central tendency, variance, and the degree to which the distribution approaches 
the normal curve. 

Although descriptive values cannot be used alone for genera l izations, they do 
provide essentia l i nformation about structure and patterns in data. Whi le most infer­
ential statistical analyses are used to test specific preset hypotheses (an approach 
cal led confirmatory data analysis), descriptive measures are also used to ga i n  i nsight 
into data as part of an approach ca l led exploratory data analysis (EDA) .6·7 Graphic 
representations of data, such as box plots, stem-and-leaf plots, and histograms, are 
used to scrutin ize the data, to reveal the shape of distributions, and to exam i ne the 
variabi l ity i n  different subgroups of a sample. The visual analysis of graphics pro­
vides the opportunity to i nspect and interpret data, often al lowing the researcher to 
see patterns that might not have otherwise been clear. Graphs are more powerfu l 
than summary statistics, for example, to find gaps i n  scores with in a certai n  range, 
or to identify a particular score that is "somewhere in left field," or to show that there 
is a "pi le-up" of scores at one point i n  the distribution.8 Th is type of analysis can be 
used to generate hypotheses, or to suggest alternative questions of the data. Other, 
more complex, statistical procedures can a lso be used to explore data structures, 
such as factor analysis and mul tivariate regression (see Chapter 29).  

The take-home message, however, is the importance of descriptive statistics as 
the basis for sound statistical reasoning. 5 Descriptive analyses are necessary to 
demonstrate that statistical tests are used appropriately, and that their interpretations 
are val id.4 
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CHAPTER 1 8  

Statistical Inference 

In the previous chapter we presented statistics that can be used to summarize and describe 
data. Descriptive procedures are not sufficient, however, for testing theories about the 
effects of treatments or for generalizing relationships from samples to populations. For 
these purposes, researchers use a process of statistical inference. The process of drawing 
inferences is familiar to everybody. When we decide to read a book by a certain author 
after having enjoyed other books by that same author, we are inferring something about 
the probable quality of the new book. When a specific treatment approach produces ben­
eficial effects for a particular patient, a clinician might decide to use that approach for other 
patients with similar conditions. The difference between these subjective inferences and 
statistical inference is that the researcher uses objective criteria to make such decisions. 

Inferential statistics involve a decision making process that allows us to estimate 
population characteristics from sample data. The success of this process requires that 
we make certain assumptions about how well the sample represents the larger popula­
tion. These assumptions are based on two important concepts of statistical reasoning: 
probability and sampling error. The purpose of this chapter is to introduce these fun­
damental concepts and to demonstrate the principles of their application for drawing 
valid conclusions from research data. 

PROBABI LITY 
Probability is a complex but essential concept for understanding inferential statistics. 
We all have some notion of what probability means, as evidenced by the use of terms 
such as "likely," "probably" or "a good chance." We use probability as a means of pre­
diction: "There is a 50% chance of rain tomorrow," or "This operation has a 75% chance 
of success." Statistically, we can view probability as a system of rules for analyzing a 
complete set of possible outcomes, or a sample space. For instance, a sample space could 
represent the two sides of a coin or the six faces on a die. An event is a single observ­
able happening or outcome, such as the appearance of tails on the flip of a coin or a 3 
on the toss of a die. A sample space could be a set of IQ scores for all students in a given 
school system. An event might be the random selection of one student's IQ score of 110. 
In other words, each score in the sample space is a potential event. 

Probability is the likelihood that any one event will occur, given all the possible outcomes. 
We use a lowercase p to signify probability, expressed as a ratio or decimal. For exam­
ple, given the two possible outcomes for the flip of a coin, the likelihood of getting tails 
on any single flip will be 1 of 2, or 1 /2, or .5. Therefore, we say that the probability of 
getting tails is 50%, or p = .50. Suppose we want to know the probability of getting a 

405 
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3 when a die is thrown. The sample space is the set of six faces of the die, or six possi­
ble outcomes. Therefore, the probability that we will roll a 3 is 1 of 6, or 1 /6, or p = . 167. 
Conversely, the probability that we will not roll a 3 is 5 of 6, or 5/6, or p = .833. What 
is the probability that we will roll a 3 or higher? There are now four possible events-
3, 4, 5 and 6---that meet this criterion. Therefore, the probability is 4 of 6, 2/3 or 
p = .667, that we will roll a 3 or higher on any single roll of one die. Now, if we were to 
throw two dice, what is the probability of rolling a 7? (see Box 18.1) 

BOX 1 8.1 The Rules of Chance 

If two dice are tossed, what is the probability of throw­
ing a seven? If we look at all the possible combinations 
(shown below), with six sides on each die, we will have 
6 X 6 = 36 possible outcomes. We can see from the chart 
that there are six possible ways to make a 7. Therefore, the 

probability of throwing a 7 on one toss of two dice is 6/36 = 1/6 or p = . 167. 
For those who are interested in games of chance, consider the following 

probabilities. 
What is the probability of throwing an 11 on one toss of two dice? There 

are two ways to make 11. Therefore, the probability of throwing an 11 is 
2/36 = 1 /18 or p = .055. 

Now, what is the probability that you would throw a 7 or 11 (a "natural" 
in craps) on one toss of two dice? There are nine possible outcomes that meet 
this criterion, or 9/36 = 1 /4 or p = .25. 

Try throwing two dice 36 times. How often should each of the sums from 
2 through 12 come up? According to the laws of chance, the probability of 
each sum appearing should follow the grid below, i.e., six 7s, five 6s, and so 
on. How close did you come? 

DIE #1 

2 3 4 5 6 7 

3 4 5 6 7 8 

C\1 '* 4 5 6 7 8 9 

w 
0 5 6 7 8 9 1 0  

6 7 8 9 1 0  1 1  

7 8 9 1 0  1 1  1 2  
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For an event that is certain to occur, p = 1.00. For instance, if we toss a die, the prob­
ability of rolling a 3 or not rolling a 3 is 1.00 (p = .167 + .833). These two events are 
mutually exclusive and complementary events because they cannot occur together and 
because they represent all possible outcomes. Therefore, the sum of their probabilities 
will always equal 1.00. We can also show that the probability of an impossible event is 
zero. For instance, the probability of rolling a 7 with one die is 0 out of 6, or p = 0.00. 
In the real world, the probability for most events falls somewhere between 0 and 1.  Sci­
entists will generally admit that nothing is a "sure bet" and nothing is impossible! 

Applying Probabi l ity to a Distribution of Scores 
This concept can now be applied to a distribution of scores. Suppose we had access to 
data for height of all adult men alive today. This distribution of millions of scores would 
approximate the normal curve. Suppose, too, that the mean height was 69 in., with a 
standard deviation of 3 in. Now, what if we select one man at random from this popu­
lation? What is the probability that the man will be between 66 and 72 in. tall, or within 
±1 standard deviation of the mean? We know this range represents 68.26% of the pop­
ulation as shown by the center blue area in Figure 18.1. This means that approximately 
68 of 100 men can be expected to be between 66 and 72 in. tall. Therefore, there is a 68% 
probability (p = .68) that any one man we select will fall within this range. Similarly, 
the probability of selecting a man 78 in. or taller (scores beyond +3 standard deviations) 
is .0013, as this area represents 0.13% of the total distribution, as shown by the gray area 
in the tail of Figure 18.1. 

It is important to understand that probability is predictive in that it reflects what 
should happen over the long run, not necessarily what will happen for any given trial 
or event. When a surgeon advises that an operation has a 75% probability of success, it 
means that in the long run, for all such cases, 75% can be expected to be successful. For 

60 63 66 69 72 75 78 

Height (inches) 

FIGURE 1 8.1 Hypothetical distribution of heights for adult males, with X = 69 and s = 3. Center area 
represents ±ls, or 68.26% of the population. Gray area to the right represents """3s, or 0. 1 3% of the 
population. 
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any single patient the surgery will not be 75% successful; it will either be a success or 
not. Therefore, once an event occurs, it is no longer "probable." It either happened as 
predicted or not. Probability applies to the proportion of time we can expect a given out-
come to occur in the idealized "long run." 

· 

We use probability in research as a guideline for making decisions about how well 
sample data estimate the characteristics of a population. We also use probabilities to 
determine if observed treatment differences are likely to be representative of population 
differences or if they could have occurred by chance. We try to estimate what would hap­
pen to others in the population on the basis of our limited sample. To understand these 
applications of probability, we must first understand the statistical relationship between 
samples and populations. 

SAMPLING ERROR 
The estimation of population characteristics from sample data is based on the assump­
tion that samples are random and valid representatives of the population. Even when 
truly random samples are used, however, we cannot be sure that one sample's charac­
teristics will be identical to those of the population, simply because fewer cases are 
included in the sample. For example, if we had access to birth records for all live births 
in the United States for the past year, we might find that the population parameters for 
birth weight were J.L = 120 ounces and a = 5. Now suppose we randomly select a sam­
ple of 10 babies, and find that X = 115 ounces and s = 30. Because selection was unbi­
ased, this sample should be a good representative of the population; however, the 
sample mean and standard deviation are somewhat different from the population val­
ues and, therefore, do not provide accurate estimates. 

What would account for this difference? Random selection implies that all mem­
bers of a population have an equal opportunity of being chosen but, obviously, this 
does not guarantee proportional representation of all parts of the population. We could 
obtain a sample with many lighter babies just by chance. It is highly unlikely that a sam­
ple of 10 would match the overall distribution of population characteristics. 

If we choose a second random sample of 10 babies, the odds are that we will obtain 
a different mean and standard deviation. The laws of chance tell us that through a 
process of infinitely repeated random sampling, we should expect to see such differ­
ences among the sample means. The tendency for sample values to differ from popula­
tion values is called sampling error. Sampling error of the mean for any single sample 
is equal to the difference between the sample mean and the population mean (X - J.L). 
The greater the sampling error, the less accurate X is as an estimate of J.L. In practice, 
sampling error is unpredictable because it occurs strictly by chance, by virtue of who 
happens to get picked for any one sample. 

Theoretically, if we were to randomly draw an infinite number of samples from a 
population, each with n = 10, the means of these samples would exhibit varying 
degrees of sampling error. We would expect, by chance, that most of the sample means 
would be close to the population mean. If we plotted the sample means, we would find 
that the distribution would take the shape of a normal curve, and that the mean of all 
the sample means would be equal to the population mean. This distribution of sample 
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means is called a sampling distribution of means. A sampling distribution will con­
sistently take the shape of the normal curve.* 

Obviously, a sampling distribution is a theoretical concept only, because one does 
not go through such a sampling process in practice. Clinical researchers work with only 
one sample from which inferences are made about a population; however, because of 
the predictable properties of the normal curve, we can use the concept of the sampling 
distribution to formulate a basis for drawing inferences from sample data. 

Standard Error of the Mean 
Because a sampling distribution is a normal curve, we can also establish its variability. 
The standard deviation of a theoretical sampling distribution of means is called the 
standard error of the mean (ux). This value is considered an estimate of the popula­
tion standard deviation, a. The curve in Figure 18.2A represents a hypothetical sam­
pling distribution formed by repeated sampling of birth weights, with samples of 
n = 10. The means of such small samples tend to vary, and in fact, we see a wide curve 
with great variability. The sampling distribution in the curve in Figure 18.2B was con­
structed from the same population, but with samples of n = 50. These sample means 
form a narrower distribution curve with less variability and, therefore, a smaller stan­
dard deviation. As sample size increases, samples become more representative of the 
population, and their means are more likely to be closer to the population mean; that is, 
their sampling error will be smaller. Therefore, the standard deviation of the sampling 
distribution is an indicator of the degree of sampling error, reflecting how accurately 
the various sample means estimate the population mean. 

Because we do not actually construct a sampling distribution, we need some useful 
way to estimate the standard error of the mean from sample data. This estimate, sx, is 
based on the standard deviation and size of the sample: 

s 
sx = --

Vn (18.1) 

Using our example of birth weights, for a single sample of 10 babies, we found a 
mean of 115 with a standard deviation of 30 (see Figure 18.2A) . Therefore, 
sx = 30/vlO = 9.5. With a sample of n = 50, sx = 30/ y'50 = 4.2. As illustrated in 
Figure 18.2, as n increases, the standard error of the mean decreases. With larger sam­
ples the sampling distribution is expected to be less variable, and therefore, a statistic 
based on a large sample is considered a better estimate of a population parameter than 
one based on a smaller sample. 

A sample mean, together with its standard error, helps us imagine what the sam­
pling distribution curve would look like. For example, for a sample of n = 50, with 
X = 115 and sx = 4.2, the theoretical sampling distribution might look like the curve 

*This phenomenon is explained by the central limit theorem, which demonstrates that even for skewed distri­
butions, the sampling distribution of means will approach the normal curve as n increases. Therefore, we can 
use sampling distributions and the probabilities associated with the normal curve to predict population char­
acteristics for any distribution. 
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FIGURE 1 8.2 Hypothetical sampling distributions for birth weight. Curve A is drawn for samples with 
n = 10. Curve B is drawn for samples with n = 50. 

shown in Figure 18.2B. If we use this curve as an estimate of the population distribu­
tion, we can determine the probability of drawing a single sample with a certain mean. 
Based on our knowledge of the normal curve, the chances are 95.45 out of 100 that any 
single random sample we might draw from this population would have a mean 
between 106.6 and 123.4 (±2s:x). Therefore, the probability is 95.45% that a sample mean 
will lie within this range. We can also say that there is less than a 5% chance that any 
sample mean drawn from this population will be less than 106.6 or above 123.4. We 
should note that the standard error cannot be a direct measure of variance in the pop­
ulation, because it is a function of sample size. 



CONFIDENCE INTERVALS 

CHAPTER 1 8  • Statistical Inference 411 

For many research applications, sample data are used to estimate unknown population 
parameters. For example, we can sample medical records to determine length of hospi­
tal stay for patients with certain diagnoses or we could study normative values for tests 
of motor function. The purpose of these types of analyses is to estimate how the popu­
lation behaves and to use this information for decision making or as a foundation for 
further research. 

We can use our knowledge of sampling distributions to estimate population param­
eters in two ways. A point estimate is a single value obtained by direct calculation 
from sample data, such as using X to estimate J-t. We know, however, that any single 
sample value will most likely contain some degree of error as a population estimate. 
Therefore, it is often more meaningful to use an interval estimate, by which we spec­
ify an interval within which we believe the population parameter will lie. �uch an esti­
mate takes into consideration not only the value of a single sample statistic, but the 
relative accuracy of that statistic as well. 

For example, Fitzgerald et al1 estimated the population mean for lumbar spinal 
extension for 30- to 39-year-olds. Based on a random sample of 42 individuals, they 
determined that X = 40.0 degrees and s = 8.8 degrees. Therefore, the point estimate of 
J-t is the sample mean, 40.0 degrees. How can we tell how accurate this estimate is? Per­
haps we would be more comfortable giving a range of values within which we are fairly 
sure the population mean will fall. For instance, we might guess that the population 
mean is likely to be within 5 degrees of the sample mean, to fall within the interval 35 
to 45 degrees. We must be more precise than guessing allows, however, in proposing 
such an interval, so that we can be "confident" that the interval is an accurate estimate. 

A confidence interval (CI) is a range of scores with specific boundaries, or 
confidence limits, that should contain the population mean. The boundaries of the confi­
dence interval are based on the sample mean and its standard error. The wider the inter­
val we propose, the more confident we will be that the true population mean will fall 
within it. This degree of confidence is expressed as a probability percentage, such as 
95% confidence. 

To illustrate the procedure for constructing a 95% confidence interval, consider 
the example of lumbar spine extension, with X = 40.0, s = 8.8, n = 42, and 
sx = 8.8/'\/42 = 1 .36. The sampling distribution estimated from this sample is shown 
in Figure 18.3. We know that 95.45% of the total distribution will fall within ±2s:x from 
the mean, or within the boundaries of z = ±2. Therefore, to determine the proportion 
of the curve within 95%, we need to determine points just slightly less than z = ±2. By 
referring to Table A.1 in the Appendix, we can determine that 0.95 of the total curve 
(0.475 on either side of the mean) is bounded by a z-score of ± 1 .96, just less than 2 stan­
dard error units above and below the mean. Therefore, as shown in Figure 18.3, 95% of 
the total sampling distribution will fall between - 1 .96sx and + 1 .96sx. We are 95% sure 
that the population mean will fall within this interval. This is called the 95% confidence 
interval. 

We obtain the boundaries of a confidence interval using the formula 

CI = X ±  (z)sx (18.2) 
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FIGURE 1 8.3 95% Confidence interval for sampling distribution of lumbar extension range of motion 
for 30-39 year olds. 

For 95% confidence intervals, z = ± 1.96. 
For our data, therefore, 

95% CI = 40.0 ± (1.96)(1.36) 

= 40.0 ± 2.67 

95% CI = 37.33, 42.67 

We are 95% confident that the population mean of lumbar extension for 30 to 39-year­
olds will fall between 37.33 and 42.67 degrees. 

How can we interpret this statement? Because of sampling error, one sample we 
select may have a mean of 50 degrees, with 95% confidence limits between 40 and 60 
degrees. Another sample could have a mean of 52 degrees, with 95% confidence limits 
between 42 and 62 degrees. The 95% confidence limits indicate that if we were to draw 
100 random samples, each with n = 42, we could construct 100 confidence intervals 
around the sample means, 95 of which could be expected to contain the true population 
mean, as illustrated in Figure 18.4. Five of the 100 intervals would not contain the pop­
ulation mean. This would occur just by chance, because the scores chosen for those five 
samples would be too extreme and not good representatives of the population. In real­
ity, however, we construct only one confidence interval based on the data from only one 
sample. Theoretically, then, we cannot know if that one sample would produce one of 
the 95 correct intervals or one of the 5 incorrect ones. Therefore, there is a 5% chance 
that the population mean is not included in the obtained interval, that is, a 5% chance 
the interval is one of the incorrect ones. 

To be more confident of the accuracy of an interval, we could construct a 99% con­
fidence interval, allowing only a 1% risk that the interval we propose will not contain 
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FIGURE 1 8.4 95% Confidence intervals for 1 00 random samples, showing how the intervals overlap 
with the true popu lation mean. In  5 of the 1 00 samples (highl ighted), the confidence interval does not 
contain the population mean. 
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the true population mean. Using Table A.1, we can determine that 99% of the area under 
the curve (0.495 on either side of the mean) is bounded by z = ±2.576. Therefore, 

For our data, 

99% CI = X ± (2.576)sx 

99% CI = 40 ± (2.576)(1 .36) 

= 40 ± 3.50 

99% CI = 36.5, 43.5 

We are 99% confident that the population mean falls between 36.5 and 43.5 degrees. 
Note that the confidence limits get wider as our confidence level increases. We 

reduce the risk of being wrong by sacrificing precision. The choice of confidence interval 
depends on the nature of the variables being studied and the researcher's desired level 
of accuracy. By convention, the 95% and 99% confidence intervals are used most often. 

Confidence Intervals with Small Samples 
The process we have just described is appropriate for calculating confidence intervals 
for large samples. With smaller samples, however, sampling distributions tend to be 
more spread out than the normal distribution, and, therefore, the standard normal 
curve is not considered an adequate representation with samples of n less than 30. Thus, 
an alternate theoretical sampling distribution, called the t-distribution, is used to eval­
uate smaller samples.t 

The major statistical contrast between the t-distribution and the standard normal 
distribution is the difference in their shape. The t-distribution is flatter and wider at the 
tails than the normal curve. This shape changes with different sample sizes, so that 
there are actually many t-distributions, one for each sample size. As sample size 
increases, the sampling distribution becomes narrower and approaches the shape of the 
normal curve. 

The spread of the t-distribution changes the proportions under the curve; that is, we 
cannot estimate the percentages within standard deviation units in the same propor­
tions as in the normal curve. For example, we know that 95% of the normal sampling 
distribution falls within z = ±1.96, slightly less than 2 standard deviation units. To find 
this area with smaller samples, we use values of t instead of z. These values are given 
in Table A.2 in the Appendix, and summarized here in Table 18.1 for 90%, 95%, and 99% 
confidence intervals. For reasons we will explain later in this chapter, statisticians use 
degrees of freedom (dft to identify the various t-distributions, rather than n. For the 
creation of confidence intervals, degrees of freedom will equal n - 1 .  Therefore, for a 
sample of n = 6, df = 5; with n = 10, df = 9; and so on. 

By referring to Table 18.1, we find that for n = 6 (df = 5), 95% of the total area falls 
within t = ±2.571 . With a sample of n = 10 (d f = 9), 95% of the area falls within 
t = ±2.262. With n = 30, this area is bounded by t = ±2.042. As n increases, the value 
of t approaches z = 1 .96. 

tBecause the t-distribution approaches z as the sample size increases, it can also be used with larger samples. 
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TABLE 1 8.1 VALUES OF t FOR 90%, 95% AND 99% CONFIDENCE INTERVALS 

df 90% 95% 99% 

5 2.01 5 2.571 4.032 
6 1 .943 2.447 3.707 
7 1 .895 2.365 3.499 
8 1 .860 2.306 3.355 
9 1 .833 2.262 3.250 

10 1 .812 2.228 3.169 
1 1  1 .796 2.201 3. 1 06 
12 1 .782 2 . 179 3.055 
1 3  1 .771 2 . 160 3.01 2 
14  1 .761 2 . 145 2.977 
15  1 .753 2.131 2.947 
16  1 .746 2.120 2.921 
17  1 .740 2.1 1 0  2.898 
18 1 .734 2.101 2.878 
19  1 .729 2.093 2.861 
20 1 .725 2.086 2.845 
30 1 .697 2.042 2.750 
40 1 .684 2.021 2.704 
60 1 .671 2.000 2.660 

120 1 .658 1 .980 2.617 
00 1 .645 1 .960 2.576 

We use these values to create confidence intervals using the formula 

CI = X ±  (t)sx (18.3) 

Therefore, to create a 95% confidence interval for a sample with n = 18, X = 5.0, and 
sx = 2.0, we locate t = 2.110 for 17 df Thus, 

95% CI = 5.0 ± (2.110)(2.0) 

= 5.0 ± 4.22 

95% CI = 0.78, 9.22 

This means that we are 95% confident that the population mean falls between 0.78 
and 9.22. If our sample size increases to n = 31 (df = 30, t = 2.042), our confidence 
interval changes: 

95% CI = 5.0 ± (2.042)(2.0) 

= 5.0 ± 4.084 

95% CI = .916, 9.084 

Note that the interval is narrower when more scores are used. We have become more 
precise in our estimate by using a larger sample. 
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HYPOTHESIS TESTING 
The estimation o f  population parameters is only one part o f  statistical inference. More 
often inference is used to answer questions concerning comparisons or relationships, 
such as, "Is one treatment more effective than another?" or "Is there a relationship 
between the length of time a treatment is applied and the degree of improvement 
observed?" These types of questions usually involve the comparison of means, propor­
tions, correlations or some other statistic. 

Consider a study in which a hypothesis was proposed that a single intervention 
session of soft tissue mobilization would be effective for increasing external rotation in 
patients with musculoskeletal shoulder problems.2 Experimental and control groups 
were formed through random assignment. Range of motion (ROM) measurements 
were taken and the improvement from pretest to posttest was calculated for each sub­
ject. The researchers found that the mean improvement in external rotation was 16.4 
degrees for the treatment group and 1 degree for the control group. On the basis of the 
difference between these means, should the researcher conclude that the research 
hypothesis has been supported? 

According to the concept of sampling error, we would expect to see some differ­
ences between groups even when a treatment is not at all effective, because of chance 
differences in subject characteristics. Therefore, we need some mechanism for deciding 
if an observed effect reflects chance only or if we can argue with confidence that the dif­
ferences represent "real" effects. We do this through a process of hypothesis testing. 

Statistical Hypotheses 
Before we can interpret observed differences, we must consider two possible explana­
tions for the observed outcome. The first possible explanation is that the difference 
between the groups occurred by chance, as a result of sampling error. This is the null 
hypothesis (H0), which states that the group means are not different. No matter 
how the research hypothesis is stated, the researcher's goal will always be to statisti­
cally test the null hypothesis. The second explanation is that there is a true difference 
between the groups, and the treatment was effective. This is expressed as the alterna­
tive hypothesis (H1). 

The Null Hypothesis 
Statistical hypotheses are formally stated in terms of the population parameter, f.L, even 
though the actual statistical tests will be based on sample data. Therefore, the null 
hypothesis can be stated formally as 

H0: f.LA = f.LB or H0: f.LA - f.LB = 0 
which predicts that the mean of Population A is not different from the mean of Popula­
tion B, or that there will be no treatment effect. For the example of joint mobilization 
and shoulder ROM, under H0 the mean change in external rotation would be the same 
for those who do (J.LA) and those who do not (J.Ls) receive mobilization. Because of the 
nature of chance differences, however, we must realize that even when there is no true 
treatment effect, groups will probably not have equal means. Therefore, the null 
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hypothesis really indicates that observed differences are sufficiently small to be consid­
ered functionally equivalent to zero.3 So rather than saying the means are equal, it is 
more accurate to say they are not significantly different; that is, any observed difference 
between groups would probably be the result of chance. 

"Disproving" the Null Hypothesis 
We can never actually "prove" or "accept" the null hypothesis. The purpose of an 
experiment is to give the data a chance of disproving it. In essence, we are using a deci­
sion making process based on the concept of negative inference. No one experiment can 
establish that a null hypothesis is true; that is, it would take an infinite number of 
unsuccessful experiments to prove that a treatment has no effect. We can, however, dis­
credit the null hypothesis by any one trial that shows that the treatment is effective. 
Therefore, the purpose of testing the statistical hypothesis is to decide whether or not 
Ho is false. 

There is often confusion about the appropriate way to express the outcome of a sta­
tistical decision. We can only legitimately say that we reject or do not reject the null 
hypothesis. When we do not reject H0, we mean that the null hypothesis is consistent 
with our findings. The word "retained" has also been used to denote this outcome.3 

This is analogous to the use of " guilty" and "not guilty" in a court of law. A jury can 
reach a guilty verdict if evidence is sufficient (beyond a reasonable doubt) that the 
defendant committed the crime. Otherwise, the verdict is not guilty. The jury cannot 
find the defendant "innocent." A "not guilty" verdict is expected if the evidence is not 
sufficient to establish guilt. But we know that doesn't necessarily mean the defendant 
is innocent! 

We start, therefore, with the assumption that there is no treatment effect in a 
research study (the null hypothesis). Then we ask if the data are consistent with this 
assumption. If the answer is yes, then we must acknowledge the possibility that no 
effect exists. If the answer is no, then we have discredited that assumption. Therefore, 
there probably is an effect. It is important to remember that finding no effect does not 
necessarily mean there is no effect. 

The Alternative Hypothesis 
The second explanation for the observed findings is that the treatment is effective; that 
is, the observed difference is too large to be considered a result of chance alone. This is 
the alternative hypothesis (H1), stated as 

H1: J.L A -=1- J.LB or H1: J.L A - J.LB -=1- 0 
These statements predict that the observed difference between the two population 
means is not due to chance. We say, then, that the observed difference is "real," or that 
the likelihood that the difference is due to chance is very small. When we reject the null 
we can accept the alternative hypothesis; that is, we say that the alternative hypothesis 
is consistent with our findings. 

In most cases, the researcher hopes that the data will support the alternative 
hypothesis, and that Ho will be rejected; that is, the alternative hypothesis represents the 
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research hypothesis. There may be situations, however, where the researcher does not 
expect a difference, such as trying to show that a new experimental treatment is as effec­
tive as a standard treatment. In such a case, the research hypothesis will be the same as 
the null hypothesis, and the researcher hopes to reject the alternative hypothesis. 

Directional and Nondirectional Hypotheses 
The preceding alternative hypotheses state that a difference will exist between Popula­
tions A and B. These are considered nondirectional hypotheses, because they do not 
specify which group mean is expected to be larger. Alternative hypotheses can also be 
expressed in directional form, indicating the expected direction of difference between 
sample means. We could state 

Hl: JLA > JLB (Hl:  JLA - JLB > 0) 
or 

Hl: JLA < JLB (Hl :  JLA - JLB < 0) 
These hypotheses predict that the mean of Population A is either greater or smaller 

than the mean of Population B. For instance, we might predict that the experimental 
group receiving mobilization will show a greater improvement than the control group. 

Errors i n  Hypothesis Testing 
Hypothesis testing will always result in one of two decisions: Either reject or do not 
reject the null hypothesis. By rejecting the null hypothesis, the researcher concludes that 
it is unlikely that chance alone is operating to produce observed differences. This is 
called a significant effect, that is, one that is probably not due to chance. When the null 
hypothesis is not rejected, the researcher concludes that the observed difference is prob­
ably due to chance and is not significant. 

The decision to reject or not reject the null hypothesis is based on the results of 
objective statistical procedures; however, this objectivity does not guarantee that a cor­
rect decision will be made. Because such decisions are based on sample data only, it is 
possible that the true relationship between experimental populations is not accurately 
reflected in the statistical outcome. 

Any one decision can be either correct or incorrect. Therefore, we can classify four 
possible decision outcomes, shown in Figure 18.5. If we do not reject Ho when it is in 

z 0 ii) 0 
Reject H0 

w c Do Not Reject H0 

H0 is true 

Type I Error 
a 

Correct 

FIGURE 1 8.5 Potential errors i n  hypothesis testing. 
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fact true (observed differences are really due to chance), we have made a correct deci­
sion. If we reject H0 when it is false (differences are real), we have also made a correct 
decision. If, however, we decide to reject H0 when it is true, we have made an error, 
called a Type I error. In this case, we have concluded that a real difference exists, when 
in fact, the differences are due to chance. Having committed this type of statistical error, 
we might decide to use a treatment that is not really effective. Conversely, if we do not 
reject H0 when it is false, we have committed a 'JYpe II error. Here we would conclude 
that differences are due to chance, when in fact, the samples represent different popu­
lations. In this situation, we might ignore an effective treatment or abandon a poten­
tially fruitful line of research. 

In any statistical analysis we may draw a correct conclusion, or we may commit one 
of these two types of errors. If we reject the null hypothesis, and decide that treatment 
groups are different, we may be correct or we may be making a Type I error (but not 
Type II). If we do not reject the null hypothesis, and decide that no differences exist, we 
may be correct or we may be making a Type II error (but not Type I). The seriousness 
of one type of error over the other is relative. Historically, statisticians and researchers 
have focused attention on Type I error as the primary basis of hypothesis testing; how­
ever, the consequences of failing to recognize an effective treatment may be equally 
important. Although we never know for sure if we are committing one or the other type 
of error, we can take steps to decrease the probability of committing one or both. 

TYPE I ERROR: LEVEL OF SIGNIFICANCE 
When looking at the results of an experiment, we know that observed differences may 
be due to treatment effects or due to chance. On one level then, how can we ever make 
a decision regarding the null hypothesis, if we can never be certain if it is true or false? 
Well, we must be willing to take some risk in making a mistake if we reject the null 
hypothesis when it is true. We must be able to set some criterion for this risk, a divid­
ing line that allows us to say that a mistake in rejecting H0 (a Type I error) is "unlikely." 

Therefore, we want to determine the probability of committing a Type I error, and 
must set a standard for rejecting the null hypothesis. This standard is called the level 
of significance, denoted as alpha (a). The level of significance represents a criterion 
for judging if an observed difference can be considered sampling error or real. The 
larger an observed difference is, the less likely it occurred by chance. 

The probability that an observed difference did occur by chance is determined by 
statistical tests (which are covered in the coming chapters). This probability is denoted 
as p. For example, we might find that an analysis comparing two means yields p = .18. 
This means that there is an 18% probability that the difference between the means 
occurred by chance alone. Therefore, if we decide to reject H0, and conclude that the 
tested groups are different from each other, we have an 18% chance of being wrong, that 
is, an 18% chance of committing a Type I error. 

The question facing the researcher is how to decide if this probability is acceptable. 
We know there is some chance that any observed difference will be the result of sam­
pling error. But how much of a chance is small enough that we would be willing to 
accept the risk of being wrong? Is an 18% chance of being wrong acceptable? Think of 
it this way: The weather report says that there is a 75% chance of rain today. Will you 
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take your umbrella? If you decide not to take it, and it rains, you were wrong in your 
decision. Now let's say that the report is for a 5% chance of rain. Are you more likely to 
leave your umbrella home? If you do, are you less likely to be wrong? What is the max­
imal risk you are willing to take that you will be wrong-that you will get wet? 

For research purposes, the selected alpha level defines the maximal acceptable risk of 
making a Type I error if we reject H0• Typically, researchers set this standard at 5%, 
which is considered a small risk. This means that we would be willing to accept a 5% 
chance of incorrectly rejecting H0, but no more. Therefore, for a given analysis, if p is 
equal to or less than .05, we would be willing to reject the null hypothesis; that is, the 
difference would be considered significant. If p is greater than .05, we would not reject 
the null hypothesis. For the earlier example with p = .18, if we set a = .05, we would 
not reject the null hypothesis. At p = . 18, the probability that the observed difference is 
due to chance is too great. If a statistical test demonstrates that two means are different 
at p = .04, we could reject flo, with only a small acceptable risk (4%) of committing a 
Type I error. 

Choosing a Level of Significance 
How does a researcher decide on a level of significance as the criterion for statistical 
testing? The conventional designation of .05 is really an arbitrary standard. A researcher 
may choose other criterion levels depending on how critical a Type I error would be. 
For example, suppose we were involved in the study of a drug to reduce spasticity, 
comparing control and experimental groups. This drug could be very beneficial to 
patients with upper motor neuron involvement; however, the drug has potentially seri­
ous side effects and is very expensive to produce. In such a situation we would want to 
be very confident that observed results were real, and not due to chance. If we reject the 
null hypothesis and recommend the drug, we would want the probability of our com­
mitting a Type I error to be very small. We do not want to encourage the use of the drug 
unless it is clearly and markedly beneficial. We can minimize the risk of statistical error 
by lowering the level of significance to .025 or .01. If we use a = .01 as our criterion for 
rejecting H0, we would have only 1 out of 100 chances of making a Type I error. This 
would mean that we could have greater confidence in our decision to reject the null 
hypothesis. 

Although researchers usually choose .05 as a convenient standard, there are situa­
tions, as just described, where lower levels of significance are appropriate. In the 
absence of compelling justification, however, it is not necessary to make the level of sig­
nificance more rigorous than a = .05. It is generally considered unacceptable to desig­
nate values of alpha higher than .05. 

Researchers should specify the minimal level of significance required for rejecting 
the null hypothesis prior to data collection. The decision to use .05 or .01, or any other 
value, should be based on the concern for Type I error, not on what the data look like. 
If a researcher chooses a = .01 as the criterion, and statistical testing shows significance 
at p = .04, the researcher would not reject H0. If a = .05 had been chosen as the crite­
rion, the opposite conclusion would be reached. It is not appropriate to decide on the 
criterion level after the statistical probabilities have been determined. That's like setting 
the rules of a game after it has been played so you can win! Because data are influenced 
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by sampling error, it is important that the determination of the level of significance 
remains an unbiased process. 

I nterpreting Probabi l ity Values 
Researchers must be aware of the appropriate interpretation of p values: The p value is 
the probability of finding an effect as big as the one observed when the null hypothesis 
is true. Therefore, with p = .02, even if there is no true difference, you would expect to 
observe this size effect 2% of the time. Said another way, if we performed 100 similar 
experiments, two of them would result in a difference this large, even though no true 
difference exists. 

It is tempting, then, to reverse this definition, to assume that there is a 98% proba­
bility that a real difference exists. This is not the case, however. The p value is based on 
the assumption that the null hypothesis is true, although it cannot be used to prove it. 
The p value will only tell us how rarely we would expect a difference this large in the 
population just by chance. It is the researcher's responsibility to determine if this result 
is sufficiently unlikely that the null hypothesis should be rejected. 

We must also be careful to avoid using the magnitude of p as an indication of the 
degree of validity of the research hypothesis. It is inadvisable to use terms such as 
"highly significant" or "more significant" because they imply that the value of p is a 
measure of treatment effect, which it is not. The level of significance can be considered 
a point along a continuum that demarcates the line between chance and reality. Once 
the level of significance is chosen, it represents a decision rule. The decision is dichoto­
mous: either yes or no, significant or not significant. Once the decision is made, the 
magnitude of p reflects only the relative degree of confidence that can be placed in that 
decision. That said, researchers will still caution that a nonsignificant p value is not nec­
essarily the end of the story, especially if it is close to a. A lack of statistical significance 
does not necessarily imply a lack of practical importance and vice versa (see Commen­
tary). The pragmatic difference in clinical effect with p = .04 or p = .06 may truly be 
negligible. We must, therefore, also consider the possibility of Type II error. 

TYPE I I  ERROR: STATISTICAL POWER 
We have thus far established the logic behind classical statistical inference, based on the 
probability associated with rejecting a true null hypothesis, or Type I error. But what 
happens when we find no significant difference between groups and we do not reject 
the null hypothesis? Does this necessarily mean that there is no real difference? 

If we do not reject the null hypothesis when it is indeed false, we have committed 
a Type II error; that is, we have found no significant difference when a difference really 
does exist. Unfortunately when results are not significant, researchers often assume that 
the experimental treatment was not effective. Researchers and journal editors are often 
unable or unwilling to publish reports that end in nonsignificant outcomes.4-7 A non­
significant outcome may, however, simply mean that the available evidence is not 
strong enough to reject the null hypothesis. The implications of this issue can be far 
reaching. For instance, the literature may demonstrate conflicting results, with some 
studies showing a treatment is effective and others failing to do so. Researchers may try 
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to explain these apparent discrepancies by unknowingly proposing flawed theoretical 
models, or important research directions may be abandoned prematurely. We may be 
losing a great deal of valuable information or moving critically off course by ignoring 
the possibilities of Type II error. 

The probability of making a Type II error is denoted by beta ({J), which is the 
probability of Jailing to reject a false null hypothesis. If {3 = .20, there is a 20% chance that 
we will make a Type II error, or that we will not reject H0 when it is really false. The fact 
that samples are really different does not guarantee that a statistically significant find­
ing will result. The value of {3 represents the likelihood that we will be unable to statis­
tically identify real differences. 

The complement of {3 error, 1 - {3, is the statistical power of a test. Power is the prob­
ability that a test will lead to rejection of the null hypothesis, or the probability of attaining 
statistical significance. If {3 = .20, power = .80. Therefore, for a statistical test at 80% 
power, the probability is 80% that we would correctly demonstrate a statistical differ­
ence and reject H0 if actual differences exist. The more powerful a test, the less likely 
one is to make a Type II error. Power can be thought of as sensitivity. The more sensi­
tive a test, the more likely it will detect important clinical differences that truly exist. 
Where a = .05 has become the conventional standard for Type I error, it has been sug­
gested that {3 = .20, with corresponding power of 80%, represents a reasonable protec­
tion against Type II error.8 

The Determinants of Statistical Power 
The statistical power of a test is a function of four factors: the significance criterion (a), 
the variance in the data (s2), sample size (n), and a factor that reflects the magnitude 
of the observed differences, called the effect size (ES). 

The Significance Criterion 
Although there is no direct mathematical relationship between a and {3, there is trade­
off between them. Lowering the level of significance reduces the chance of Type I error 
by requiring stronger evidence for a statistical test to demonstrate significant differ­
ences. This also means that the chance of missing a true effect is increased. As the prob­
ability of committing a Type I error decreases, the probability of committing a Type II 
error increases. By making the standard for rejecting H0 more rigorous (lowering a), we 
make it harder for sample results to meet this standard. 

Variance 
The power of a statistical test is increased as the variance within a set of data is reduced. 
The ability to detect differences between groups is enhanced when the groups are dis­
tinctly different. When the variability within groups is large, differences between groups 
will be less obvious. Variance can be reduced, and power increased, by experimental 
design, such as using repeated measures or homogeneous blocks of subjects, by control­
ling for sources of random measurement error, or by increasing the size of the sample. 
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The influence of sample size on power of a test is critical. The larger the sample, the 
greater the statistical power. Smaller samples are less likely to be good representations 
of population characteristics, and, therefore, true differences between groups are less 
likely to be recognized. When very small samples are used, as is often the case in clini­
cal research, power is substantially reduced. 

Effect Size 
Power is also influenced by the size of the "effect" of the experimental variable. When 
comparing groups, this effect will be the difference between sample means, or an esti­
mate of the effect of the independent variable. In studies where relationships are of 
interest, this effect will be the degree of correlation or association between variables. 
This is the essence of most research questions: "How large an effect will my treatment 
have?" or "How strong is the relationship between two variables?" Treatments that 
result in large changes or correlations are more likely to produce significant outcomes 
than those with small or negligible effects. 

Therefore, effect size is a measure of the degree to which the null hypothesis is false.8 
For instance, if we hypothesize that no difference exists between strength scores for two 
groups, we are hypothesizing that the effect size is zero. If we find an actual difference 
of 20 foot-pounds, the effect size is 20. The larger the effect size, the greater the effective 
difference between the groups. 

Power Analysis 
We can analyze power for two purposes. One is to estimate the sample size in recruit­
ing a sample during planning stages of a study. The second purpose is to determine the 
probability that a Type II error was committed when a study results in a nonsignificant 
finding. Procedures for power analysis are described in Appendix C for t-tests, analy­
sis of variance, correlation, regression and chi-square tests. Some computer programs 
include analyses of effect size and power for various tests. 

Determining Sample Size: A Priori Analysis 
One of the first questions researchers ask when planning a study is, "How many sub­
jects are needed?" An easy answer is as many subjects as possible; however, this is not 
helpful when one is trying to place realistic limits on time and resources for data collec­
tion. Researchers may arbitrarily suggest that a sample size of 30 or 50 is "reasonable." 
Unfortunately, these estimates may be inadequate for many research designs or for 
studies with small effect sizes. By specifying a level of significance and desired power 
in the planning stages of a study, a researcher can estimate how many subjects would 
be needed to detect a significant difference for an expected effect size. This is called a 
priori power analysis. 

The smaller the effect size, the larger the required sample. When the sample size 
estimate is beyond realistic limits, a researcher may try to redesign the study by control­
ling variability in the sample, choosing a different dependent variable or increasing 
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effect size, or the researcher may decide not to conduct the study given that significant 
results are so unlikely. Many clinical variables may produce small to medium effect 
sizes because of the inherent variability among patients and the lack of standardization 
and sensitivity in clinical measures. Therefore, sample size becomes extremely impor­
tant in designing a study that has a reasonable chance of success. 

The major challenge in a priori power analysis is obviously the unknown effect size. 
The researcher must make an educated guess, which may be based on previous 
research findings from the literature. Alternatively, the estimate may reflect an effect 
that would be considered clinically meaningful. 

Power analysis should be incorporated into the planning stages of every experi­
mental or correlational study. The lack of such planning often results in a high proba­
bility of Type II error and needlessly wasted efforts.9 

Measuring I)'pe II Error: Post Hoc Analysis 
When a study is completed and results are not significant, the researcher will want to 
determine the likelihood that a Type II error has been committed. By knowing the 
observed effect size, the level of significance used, and the sample size, the researcher 
can determine the degree of power that was achieved in the analysis. If power is low, 
the researcher might draw only tentative conclusions about the lack of significant treat­
ment effect, and consider replicating the study with a larger sample to increase the 
power of the test. 

For the consumer of research, it is often useful to evaluate the power of nonsignif­
icant tests reported in the literature. In some cases, the clinical significance of a study 
will be greater than suggested by the statistical outcome because of the lack of power. 
For example, many meta-analyses have demonstrated important treatment effects even 
when individual clinical trials did not produce significant outcomes because they used 
small samples.10 

CONCEPTS OF STATISTICAL TESTING 
Statistical procedures are used to test hypotheses through the calculation of a test statistic, 
or test ratio. Different statistics are used to test differences between means, correlations 
and proportions. The test statistic is used to determine if a significant effect is attained, by 
establishing the probability that such a difference would occur if H0 were true. 

We will illustrate this concept using a one-sample test. Let us assume we want to 
determine whether the mean IQ of 3-year-old children who were born prematurely is 
different from the mean IQ of the general population of 3-year-old children, which is 
known to be 100. The null hypothesis, H0: JL = 100, states that the mean of the popula­
tion of premature children is 100; that is, the premature children are from the general 
population. The alternative hypothesis, H1: JL =1- 100, states that the premature children 
come from a population with a mean IQ different from 100, that is, different from the 
overall population. This is a nondirectional hypothesis. We draw a random sample of 
n = 150 premature children, with mean X = 105 and standard deviation s = 33. The 
difference between this sample mean and the known population mean may be the 
result of chance, or it may indicate that premature children should not be considered 



CHAPTER 1 8  • Statistical inference 425 

part of the overall population. The researcher must determine the probability that one 
would observe a difference as large as 5 points by chance if the population mean for 
premature children is truly 100. 

We begin by assuming that the null hypothesis is true; that is, the observed differ­
ence of 5 points is due to chance. We then ask, How often would we expect to see a 
difference of 5 points or more if H0 were true? The answer to this question is based on 
the defined properties of the normal sampling distribution and our desired level of 
significance, a = .05. 

The z-Ratio 
Recall from Chapter 17 that we can determine the area beyond any point in a normal 
distribution using values of z, or standard deviation units. For an individual sample 
score, X, a z-score represents the distance between that score and the sample mean, X, 
divided by the standard deviation of the distribution (refer back to Equation 17.6). 
When z is applied to a sampling distribution of means, the ratio reflects the distance 
between an individual sample mean, X, and the population mean, J.L, divided by the 
standard error of the mean: 

X - J.L 
z = --­sx 

(18.5) 

For our example, with X = 105, s = 35, n = 150 and J.L = 100, we calculate 
sx = 35/ VlSO = 2.86. Therefore, 

z = 
105 - 100 = 5.0 

= 1.75 
2.86 2.86 

This tells us that the sample mean for premature children is 1.75 standard error units 
above the population mean of 100. We must now ask, Is this a significant difference? 
That is, is the difference large enough that we would consider the mean IQ of prema­
ture children to be different from 100? 

Let us assume we could plot the sampling distribution of means of IQ for the gen­
eral population, which takes the form of the normal curve. We know that 95% of the 
area under the curve is bounded by z = ±1.96, as shown in Figure 18.6. Therefore, there 
is a 95% chance that any one sample chosen from this population would have a mean 
within those boundaries. Said another way, it is highly likely that any one sample chosen 
from this general population would have a mean IQ within this range. Conversely, 
there is only a 5% chance that any chosen sample mean would fall above or below those 
points. This means that it is unlikely that a sample chosen from this general population 
would have a mean with a z-score greater than ±1.96. Any value that has only a 5% 
chance of occurring is considered "unlikely," based on a .05 level of significance. In 
other words, if our sample yields a mean with a z-ratio beyond ± 1 .96, it is unlikely that 
that sample is from the general population (H1) . If the sample mean of IQ for premature 
children falls within z = ±1 .96, then there is a 95% chance that the sample does come 
from a population with J.L = 100 (H0). 
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FIGURE 1 8.6 Standard normal distribution of z-scores showing critical values for a two-ta i led test 
(nondirectional) at a2 = .05 and the calculated z-score for IQ. 

The Critical Region 
The tails of the curve depicted in Figure 18.6, representing the area above and below 
z = ± 1 .96, encompass the critical region, or the region of rejection. The value of z that 
defines these areas is the critical value. When we calculate z for our study sample, it 
must be equal to or greater than the absolute critical value if H0 is to be rejected. If a cal­
culated z-ratio falls within the critical region (z � ±1 .96), the ratio is significant. If the 
ratio is less than the critical value (z < ± 1 .96), it represents a difference that is not sig­
nificant, or likely due to chance. 

In our example, z = 1 .75 for the mean IQ of premature children. This value is less 
than the critical value of 1 .96 and falls within the central noncritical region of the curve. 
Therefore, it is likely that this sample does come from a population with J.L = 100, or the 
general population. In other words, the observed difference between the means of the 
general population and the sample of premature children is not large enough to be con­
sidered significant at a = .05. The difference between the sample mean and population 
means is probably due to chance. We do not reject the null hypothesis. 

Directional versus Nondirectional Tests 
The process we have just described is considered nondirectional because we did not pre­
dict the direction of the difference between the sample means. Consequently, the criti­
cal region was established in both tails, so that a large enough positive or negative 
z-ratio would lead to rejection of the null hypothesis. This is considered a two-tailed 
test. For convenience, we can designate our level of significance as a2 = .05, to indicate 
a two-tailed probability with a/2 in each ta.il. 
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The critical value, against which the calculated z-ratio is compared, is determined 
according to the specified level of significance. If a2 = .05, then a total of 5% of the 
curve must be in the two tails of the curve. Therefore, using Appendix Table A.1, we see 
that for a2 = .01 (.005 in each tail), the critical value of z = ±2.576. Similarly, for 
a2 = .10 (.05 in each tail), z = ± 1 .645. 

In situations where a researcher has sufficient reason to propose an alternative 
hypothesis that specifies which mean will be larger, a directional test can be performed. 
For example, we could hypothesize that the mean IQ of premature children is greater 
than 100. This is a directional hypothesis. In this case, it is not necessary to locate the 
critical region in both tails, because we do not expect a negative ratio. We are only inter­
ested in the positive tail of the curve. Therefore, we would perform a one-tailed test. 
We can specify the level of significance as a1 = .05 because the full 5% will be located 
in one tail of the curve. The critical value will now represent that point at which the area 
in the positive tail equals 5% of the total curve. Using Table A.1, we find that this area 
starts at z = 1.645, as shown in Figure 18.7. We are hypothesizing that there is only a 
5% chance that any sample chosen from the general population would have a mean IQ 
above z = 1 .645. The value of the calculated z-ratio must be greater than or equal to 
1 .645 to be considered significant. Based on our example, z = 1 .75 would now fall in the 
critical region, and, therefore, be considered significant. With a one-tailed test, we 
would reject the null hypothesis. 

One-Tailed or Two-Tailed? 
You have undoubtedly noted that the z-ratio in this example is considered significant 
with a one-tailed test, but not with a two-tailed test. This happens because the critical 
region for the one-tailed test is larger. Therefore, the one-tailed test is more powerful; 
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FIGURE 1 8.7 Standard normal distribution of z-scores showing critical values for a one-tai led test 
(directional) at a1 = .05 and the calculated z-score for IQ. 
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that is, one is less likely to commit a Type II error using the one-tailed test. One would 
think, then, that researchers would routinely use one-tailed tests, making it easier to 
attain significance. This situation has sparked many debates about the appropriate use 
of directional and nondirectional alternative hypotheses. Some statisticians favor exclu­
sive use of two-tailed (nondirectional) tests, based on a conservative and traditional 
approach to data analysis.11 With this argument, one-tailed tests should only be used 
when it is impossible for the difference to go in the opposite direction. A test of IQ, for 
instance, would not fit this criterion. Others have argued that the rationale behind most 
research questions supports one-sided tests, especially in studies where a control or 
placebo group is involvedY These proponents argue that the ethics of research would 
demand that a study be based on a sound theoretical rationale that would identify an 
expected direction of difference. 

We think the middle ground on this issue is most reasonable: Researchers are 
obliged to justify whether the research hypothesis is directional or nondirectional, and 
use the appropriate statistical approach. This means that the decision to use a one- or 
two-tailed test is a reasoned, not an arbitrary, one and certainly not made after data are 
collected and analyzed. With sufficient manipulation of statistics, almost any result can 
be given statistical significance. The interpretation of statistical outcomes is, however, 
based on the search for truth about clinical phenomena, not contrived outcomes. There­
fore, if a researcher decides on the directionality of a test after the experimental results 
are known, the theoretical probabilities associated with the test cannot be considered an 
accurate representation of the data. It is also important to realize that if a directional 
hypothesis is proposed, and results go in the direction opposite to that expected, H0 
cannot be rejected because it is not possible to accept the alternative. Therefore, a one­
tailed test should be applied only when a sound rationale can be provided. The choice 
of a one- or two-tailed test should always be specified prior to data analysis and should 
be reported with published data. 

Degrees of Freedom 
The last concept we introduce here is  that of  degrees of freedom (df). We can think 
of degrees of freedom geometrically, indicating the available directions of movement 
within a given space. A point on a line is free to move in one dimension only, and has 
one degree of freedom. A point in a three-dimensional space, such as a cube, has three 
degrees of freedom. Therefore, degrees of freedom refer to those components that are 

free to vary within a defined system. 
In statistical terminology, degrees of freedom refer to the number of components 

that are free to vary within a set of data. For example, suppose we took five measure­
ments with a sum of 30 and a mean of 6. Theoretically, any set of five numbers could be 
specified to equal a sum of 30; however, once four of the scores are known, the fifth is 
automatically determined. If we measured 8, 9, 10 and 11, the fifth score would have to 
be -8 to get a total of 30. Therefore, this set of data has four degrees of freedom. Four 
values are free to vary, given the restrictions imposed on the data, in this case a sum of 
30 with a mean of 6. In this situation, the degrees of freedom will equal one less than 
the number of scores, or n - 1. As we present statistical tests in the corning chapters, 
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we will describe the rules for determining the degrees of freedom associated with spe­
cific procedures. 

PARAMETRIC VERSUS NONPARAMETRIC STATISTICS 
Statistics that are used to estimate population parameters are called parametric statis­
tics. The validity of parametric tests is dependent on certain assumptions about the 
nature of data. The primary assumption is that samples are randomly drawn from par­
ent populations with normal distributions. Therefore, the sample should be a useful 
representation of population "parameters." With small samples, or with distributions 
that have not been previously described, it may be unreasonable to accept this assump­
tion. Tests of "goodness of fit" can be performed to determine how well data match the 
normal distribution. A second assumption is that variances in the samples being com­
pared are roughly equal, or homogeneous. A test for homogeneity of variance can substan­
tiate this assumption. A third assumption is that data are measured on the interval or 
ratio scales. Therefore, scores can be subjected to arithmetic manipulations to calculate 
means and standard deviations. 

When statistical conditions do not meet these requirements, nonparametric tests 
can be used. Nonparametric tests make fewer assumptions about population data, and 
can be used when normality and homogeneity of variance criteria are not satisfied. 
They can be used effectively, therefore, with very small samples. In addition, they have 
been specifically developed to operate on data at the nominal and ordinal scales. Alter­
natively, data can be transformed to another scale of measurement, such as a logarith­
mic scale, to create distributions that more closely satisfy the necessary assumptions for 
parametric tests (see Appendix D). 

Statisticians do not agree on absolute rules for using parametric or nonparametric 
procedures. The classical school insists that if all the assumptions behind parametric 
tests are not met, nonparametric tests should be used; however, parametric tests are 
generally considered robust enough to withstand even major violations of these 
assumptions without seriously affecting the validity of statistical outcomes,13•14 includ­
ing their use with ordinal data.15•16 Many researchers prefer to use parametric proce­
dures because they are generally considered more powerful. As this is not the 
appropriate forum to settle this debate, we take a moderate position and suggest that 
nonparametric tests are most useful when ordinal or nominal data are collected and 
when samples are small and normality cannot be assumed. When their application is 
justified, parametric tests are preferred because they are more powerful and more ver­
satile with complex research designs. This issue is discussed further in Chapter 22. 

An algorithm for choosing parametric and nonparametric statistical tests for given 
research designs can be found in Appendix B. 

COMM ENTARY 

Statistical Sign ificance versus Cl in ical Significance 

The emphasis p laced on sign ificance test i ng in c l i n ical research must be tempered 
with an understanding that statistical tests are tool s  for analyz ing data and should 
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never be used as a substitute for knowledgeable i nterpretation of outcomes. A big 
difference exists between statistical significance and clinical significance. Statistical 
tests are not sensitive to un its of measurement, nor can they be responsive to the 
practical or c l i n ical impl ications of the data. Suppose we compared a mobi l ization 
procedure to no treatment and found a s ignificant difference between groups with 
means of 90 and 95 degrees shou lder range of motion. Knowing the i nherent error 
in range of motion testing, cou ld we reasonably conc lude that 5 degrees represents 
a c l i n ical ly important difference? A mean difference that is smal l  can be statistical ly 
sign ificant j ust because enough subjects were used i n  the experiment to make the 
test powerfu l .  But the d ifference may be very un important. Conversely, when a test 
does not result  in a statist ical ly significant outcome, but the effect size is c l i n ical ly 
meaningfu l ,  we should be aware of the possibi l ity of Type I I  error, and not automat­
ical ly assume that the treatment is not effective. The word significant shou ld not be 
used in research l i terature to mean important, conclusive, disti nctive, or marked. Its 
use should be reserved for the reporting of statistica l resu lts. 

Several considerations are important in i nterpreting the results of stat istical tests.3 

1 .  Think about what the numbers mean. Look at plots of the data and con­
sider measures of variabi l i ty. Use confidence i nterva ls to establ ish reasonable 
ranges for the treatment effect. The researcher must have a thorough knowl­
edge of the phenomenon bei ng studied and a reasonable understanding of 
the measurements used. 

2. Don't confuse significance level with size of treatment effect. Remember 
that the probabi l it ies associated with the nu l l  hypothesis only tel l  us how 
l ikely it is that the treatment caused the effect. Probabi l ity does not represent 
the size of the treatment effect. 

3. Is the effect meaningful? When the nu l l  hypothesis is rejected, look at the 
s ize of the treatment effect. Effect size ind ices can help to assess the magn i­
tude of the effect (see Chapter 27 and Appendix C). The effect size can be 
an important benchmark to understand responses obtai ned with various i n­
struments, such as hea lth status measures, and for i nterpreti ng change i n  
responses over t ime. 1 7  When the nu l l  hypothesis is not rejected, we must 
consider the effect size over statistical s ignificance to avoid d iscard ing poten­
t ia l ly important d iscoveries, especial ly with new treatment approaches.10 The 
researcher must determine when the observed difference is large enough to 
warrant corrective action or a change i n  practice, with or without a sign ifi­
cant test. Rosnow and Rosentha l 1 8  cautioned aga i nst the dogma of the yes­
no decision based on p = .05. They wrote, 

. . .  surely, God loves the . 06 nearly as much as the .OS . Can there be any doubt 
that God views the strength of evidence for or against the nu l l  as a fai rly contin ­
uous function of  the magn itude of  p? 

This concept is of great importance to c l in ical researchers, who should use sta­
tistics as a form of input to, but not the sole criterion for, c l i n ical decisions. 

4. Interpret results in the context of other studies. The development of a 
body of knowledge is an i ncremental process. Each study contributes to an 
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understanding of theory, expanding our th ink ing and i nterpretation . Some­
times studies w i l l  show s imi lar or confl ict ing resu l ts; sometimes outcomes 
w i l l  show differences, whi le  others show no differences. We must be able to 
reflect on the col lective impact of this information, and crit ica l ly  assess its 
meani ngfu l ness. Th is requ i res that researchers recogn ize the need for rep l ica­
tion and meta-analytic approaches (see Chapter 1 6).  

As we search for the answers to research questions, we are constantly aware of the 
need to consider the val id ity of our designs, measurements and theoretical con­
structs. In addition to these elements, however, we must also consider the val id i ty of 
ana lysis procedures, or statistical conclusion validity (see Chapter 9). We can start 
with a wel l designed study, but our outcomes w i l l  not be meani ngfu l unless we 
choose appropriate statistical tests and interpret them accurately. For example, we 
wou ld want to know that we had suffic ient power, that we have not violated the 
assumptions of the statistical procedure, and that our measurements are rel iable. 

Th is is an issue that must be addressed in the plann i ng stages of a study. All too 
often statistical consultants are handed the resu lts of a study and asked to help ana­
lyze the data. Th is requi res retrospective defin ition of assumptions, often a frustrat­
ing task. It is impossible to correct defic iencies in design or data col lection after the 
fact. A statist ician shou ld be consulted in the design phase of a study, to set the 
proper operational defi nit ions, to determine appropriate procedures and to assure 
that the research question can be answered. There is no greater disappointment than 
the real ization that months of hard work are fru itless because the data cannot be 
analyzed to generate the desi red interpretation. 

Because statistics are essential for interpreting c l in ical research, we must be edu­
cated consumers as we read reports of research and as participants in a study. We 
do not have to be statisticians to have a working knowledge that w i l l  al low us to be 
critical in the use of statistical information for c l i n ical decision making. Read on ! 
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CHAPTER 1 9  

Comparing Two Means: 
The t-Test 

The simplest experimental comparison involves the use of two independent groups cre­
ated by random assignment. This design allows the researcher to assume that all indi­
vidual differences are evenly distributed between the groups, so that the groups are 
equivalent at the start of the experiment. Statistically, the groups are considered random 
samples of the same population, and therefore, any observed differences among them 
should be the result of sampling error or chance. After the application of a treatment 
variable to one group, the researcher wants to determine if the groups are still from the 
same population, or if their means can be considered significantly different. 

Comparisons can also be made using a repeated measures design. A researcher may 
be interested in looking at the difference between two conditions or performances by 
the same group of subjects. In this case, the subjects serve as their own control, and the 
researcher wants to determine if the conditions are significantly different. 

The purpose of this chapter is to introduce procedures for evaluating the compari­
son between two means using the t-test and confidence intervals. These procedures can 
be applied to differences between two independent samples or between scores obtained 
with repeated measures. These procedures are based on parametric operations and, 
therefore, are subject to all assumptions underlying parametric statistics. 

THE CONCEPTUAL BASIS FOR COMPARING GROUP M EANS 
The concept of statistical significance for comparing means is based on the relationship 
between two sample characteristics: the mean and the variance. The difference between 
group means indicates the degree of separation between groups (the effect size). Vari­
ance measures tell us how variable the scores are within each group. Both of these char­
acteristics represent sources of variability that are used to describe the extent of 
treatment effects. 

Suppose we wanted to compare two randomly assigned groups, one experimental 
and one control, to determine if treatment made a difference in their performance. The­
oretically, if the experimental treatment was effective, and all other factors were equal 
and constant, all subjects within the treatment group would achieve the same score, and 
all subjects within the control group would also achieve the same score, but scores 
would be different between groups. As illustrated in Figure 19.1A, everyone in the 
treatment group performed better than everyone in the control group. Consider all the 
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/\No within-group! V variability ' 
Control Treatment 
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Control Treatment 

Control Treatment 

FIGURE 1 9.1 Four sets of hypothetical distributions with the same means, but different variances. I n  
(A) a l l  subjects in  each group received the same score, but the groups were different from each other. There 
is no variance within groups. I n  (B) the subjects' scores were more spread out, but the control and treat­
ment conditions are sti l l  clearly different. There is some variance with in  groups, but the variance between 
groups is greater. In (C) the subjects are much more variable. There is greater variance with in groups, and 
therefore, the groups are not distinctly different. In  (D) the variances of the two groups are not equal .  
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scores in this sample for both groups combined. If we were asked to explain why these 
scores were different, we would say that all differences were due to the effect of treat­
ment. There is a difference between the groups, but no variance within the groups. 

Error Variance 
Now let's consider the more realistic situation where subjects within a group do not all 
respond the same way. As shown in Figure 19.18, the scores in the treatment and con­
trol groups are variable, but we still tend to see higher scores among those who received 
treatment. If we look at the entire set of scores, and we were asked again to explain why 
scores are different, we would say that some of the differences can be explained by the 
treatment effect; that is, most of the higher scores were in the treatment group. How­
ever, the scores are also influenced by personal characteristics, inconsistencies in meas­
urement, and behavioral and environmental factors. These factors create variance 
within the groups, variance that is unexplained, due to all the other unknown factors 
influencing the response. 

This unexplained portion is called error variance. The concept of statistical "error" 
does not mean mistakes or miscalculation. It refers to all sources of variability within a 
set of data that cannot be explained by the independent variable. Any given score is a 
composite of the treatment effect and error variance. Random assignment allows us to 
assume that these error components are unsystematic chance variations, and therefore, 
are independent of the treatment effect.1 

The distribution in Figure 19.18 is represented by a pair of curves. This graphic 
shows means that are far apart, with few overlapping scores (the gray area) at one 
extreme of each curve. The curves show that the individuals in the treatment and control 
groups behaved very differently, whereas subjects within each group performed within 
a narrow range (error variance is small). In such a comparison, the null hypothesis would 
probably be rejected, as the treatment effect has clearly differentiated the groups. 

Contrast this with the distributions in Figure 19.1C, which show the same means, 
but greater variability within the groups, as evidenced by the wider spread of the 
curves. Factors other than the treatment variable are causing subjects to respond very 
differently from each other. Here we find a great deal of overlap, indicating that many 
subjects from both groups had the same score, regardless of whether or not they 
received the experimental treatment. These curves reflect a greater degree of error vari­
ance; that is, the treatment does not help to explain most of the differences among 
scores. In this case, it is less likely that the treatment is differentiating the groups, and 
the null hypothesis would probably not be rejected. Any group differences observed 
here are probably due to chance variation. 

The Statistical Ratio 
The subjective judgments we have made about the distributions in Figure 19.1 are not 
adequate, however, for making research decisions about the effectiveness of treatment. 
We know groups can look different just by chance. So how do we objectively determine 
if observed differences between groups are true population differences or only chance 
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differences? In other words, how do we decide if we should reject the null hypothesis? 
We make this decision on the basis of its probability of being true. This is what a test of 
statistical significance is designed to do. 

The significance of the difference between group means is judged by a ratio derived 
as follows: 

. Difference between group means 
Raho = 

V b 1 . h . aria i ity wzt m groups 

The numerator represents the separation between the groups, which is a function of all 
sources of variance, including treatment effects and error. The denominator reflects the 
variability within groups as a result of error alone. Therefore, when Ho is false, that is, 
when a treatment effect does exist (J.L1 of:. J.Lz), the ratio is conceptually represented as 

Treatment effect + error 
Error 

When H0 is true, that is, when no real treatment effect exists (J.L1 = J.Lz), the ratio reduces to 

Error 
Error 

As the treatment effect increases, the absolute value of this ratio gets larger. As the error 
variance increases, the ratio gets smaller, approaching 1 .0. If we want to demonstrate 
that two groups are significantly different, this ratio should be as large as possible. 
Thus, we would want the separation between the group means to be large and the vari­
ability within groups to be small. We emphasize the variance between and within groups 
as essential elements of significance testing which will be used repeatedly as we con­
tinue our discussion. Most statistical tests are based on this relationship. 

Statistical Hypotheses 
The null hypothesis for a two-level design states that the two population means are equal: 

Ho: J.L1 = J.L2 

The alternative hypothesis can be stated in a nondirectional format, 

or a directional format, 

or 

Nondirectional hypotheses are tested using a two-tailed test of significance. Directional 
hypotheses are tested using a one-tailed test. Even though we are actually comparing 
sample means, our hypotheses are written in terms of population parameters. 
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Equality of Variances 
Most parametric statistics require the assumption of equal variances among groups, or 
homogeneity of variance. While there is an expectation that error variance will exist 
within each group, the assumption is that the degree of variance will be roughly equiv­
alent. Look at the scenarios in Figure 19.1 B and C. In one case (B) the variances are 
small, and in the other (C) they are larger; however, in both cases they are similar across 
groups. If we consider the spread of scores in Figure 19.1D, we can see that the treatment 
group is much less variable than the control group. In this situation, the two groups 
have different variances, and the assumption of homogeneity of variance is not met. 

Most statistical procedures that compare means include a test that will determine if 
the difference in the variance components is significant. We can expect some difference 
in variances just by chance. With random assignment, larger samples will have a better 
chance of showing equal variances than small samples. Therefore, the test for homo­
geneity of variance will clarify if the observed difference in variances is large enough to 
be meaningful. When variances are significantly different (they are not equal), adjust­
ments can be made in the test for means that will account for these differences.* 

TH E t-TEST FOR IN DEPENDENT SAMPLES 
The t-test is the statistical procedure used to compare two means.t The independent or 
unpaired t-test is used when the means of two independent groups of subjects are 
compared. Such groups are usually created through random assignment, although 
samples of convenience or intact groups may be used.+ Groups are considered inde­
pendent because each is composed of an independent set of subjects, with no inherent 
relationship derived from repeated measures or matching. 

The t Statistic: Equal Variances 
The test statistic for the unpaired t-test is calculated using the formula 

x1 - x2 t = ---=--------= 

5x1-x2 (19.1) 

The numerator of this ratio represents the difference between the independent group 
means, or the effect size. The term in the denominator is called the standard error of 

*This can sometimes be confusing when the test of homogeneity of variance is performed in conjunction with 
a test for differences between means. Two different tests are actually being done. First the test for homogene­
ity of variance determines if the variances are significantly different. Then the test for means will determine 
if the means are significantly different. If the first test shows that variances are not equal, an adjustment will 
be made in the test for means. 
+Recall from the discussion in Chapter 18 that the t-distribution is an analog of the standard normal distribu­
tion, developed to represent smaller sampling distributions. The t-distribution was originally developed by 
W.S. Gossett in 1908, who wrote under the pseudonym of "Student." Therefore, the t-test is often referred to 
as Student's 1-test. 
tWhen intact groups are used, regression procedures may be the more appropriate form of analysis because 
groups cannot be randomly assigned to treatment conditions. See Chapters 24 and 29 for a discussion of 
regression procedures. 
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the difference between the means,§ representing the variability within the two sam­
ples. Equation (19.1) can be used in situations where n1 = n2, or when n1 =I= n2 if vari­
ances are equal. An alternative formula for t, to be described shortly, is used when the 
assumption of equality of variance is not met. 

We estimate sx1-x2 using a pooled variance estimate, given the symbol s�: 

2 sy(n1 - 1) + s�(n2 - 1) s = P n1 + n2 - 2 
(19.2) 

where st and s� are the group variances, and n1 and n2 are the respective sample sizes. 
This estimate provides a weighted average of s/ and s/. ** The pooled variance estimate 
is based on the assumption that both samples come from the same population and that 
they have equal variances (any difference between variances is due to chance) . There­
fore, the pooled variance should estimate the population variance. 

The standard error of the difference between the means is then given bytt 

Degrees of Freedom 

(19.3) 

The number of degrees of freedom associated with the independent t-test is the total 
of the degrees of freedom for both groups. Therefore, df = (n1 - 1) + (n2 - 1) = 
(n1 + n2 - 2). This can also be written d f = N - 2, where N is the combined sample size. 

Example 
Suppose we are interested in testing the hypothesis that a newly designed splint will 
improve hand function of patients with rheumatoid arthritis, as measured by pinch 
strength in pounds (Figure 19.2). We propose a directional alternative hypothesis 
because we are interested only in documenting an improvement in function with the 
splint. Results that show no change or a negative change would not be significant. 

We assemble a random sample of 20 subjects with rheumatoid arthritis, with similar 
degrees of deformity in the hand and wrist. The subjects are randomly assigned to an 
experimental group (n1 = 10) or a control group (n2 = 10). The experimental subjects 
wear the splint for 1 week, in addition to participating in their regularly scheduled activ­
ities. The control subjects engage in their regular activities with no splint. Pinch strength 

§In Chapter 18 we introduced the concept of standard error as an estimate of population variability based on 
a sampling distribution of means. In this case we are estimating the variability in a sampling distribution of 
differences between means. 52 + 52 
**With two samples of equal size, this equation is reduced to sf, = T· 

� ttwith equal sample sizes 5J<\-x2 = 'J --:!-' where n is the number of subjects in each group. 
n 



CHAPTER 1 9  • Comparing Two Means: The t-Test 439 

FIGURE 1 9.2 A pretest-posttest control group design, with two groups of patients with rheumatoid 
arthritis (RA) formed through random assignment. One group is treated with a hand spli nt; the other par­
ticipates in regu lar activities. The difference between the posttest and pretest pinch strength (change score) 
is used to compare the two groups with the unpaired t-test. 

is measured on day 1 and day 8 for both groups, and the change between the pretest and 
posttest measurements is used for analysis. Therefore, this study is structured as a 
pretest-posttest control group design, testing Ho: J.L1 = J.L2 against H1: J.L1 > J.L2· 

Hypothetical data are reported in Table 19.1A. The mean improvement in strength 
was 10.11 pounds for the splinted group and 5.45 pounds for the control group. 

To calculate the t-ratio for this comparison, we first determine the value of the 
denominator, SX1 -x2 = 1 .714, as shown in Table 19.18. We substitute this value in Equa­
tion (19.1), and arrive at a calculated t-ratio of 2.718. 

Critical Values oft 
Now we must determine if the calculated t-ratio is sufficiently large to be considered sig­
nificant. We do this by comparing the calculated t value with a critical value at a speci­
fied level of significance. The larger the ratio, the more likely the difference is not due to 
chance. Table A.2 in the Appendix is a table of critical values associated with 
t-distributions for samples of various sizes. At the top of the table, levels of significance 
are identified for one-tailed (a1) and two-tailed (a2) tests. Because we proposed a direc­
tional alternative hypothesis in this example, we will perform a one-tailed test at a1 = .05. 

The column along the left side of Table A.2, labeled df, identifies the degrees 
of freedom associated with different-size samples. In this study there are 
10 + 10 - 2 = 18 df. We look across the row for 18 df to the column labeled a1 = .05 
and find the critical value 1 .734. We use the summary form 

to indicate the critical value of t associated with a1 = .05 and 18 df 
Figure 19.3 illustrates the critical value of t for 18 df, demarcating .05 in the tail of 

the curve for a 1-tailed test. The null hypothesis states that the difference between 
means will be zero, and therefore, the t-ratio will also equal zero. The probability that a 
calculated t-ratio will be as large or larger than 1 .734 is 5% or less. 

For a t-ratio to represent a significant difference, the absolute value of the calculated 
ratio must be greater than or equal to the critical value. In this example, the calculated 



TABLE 1 9.1 COMPUTATION OF THE UNPAIRED t-TEST (EQUAL VARIANCES): 

A. DATA 

CHANGE IN PINCH STRENGTH FOLLOWING HAND SPLINTING 

Group 1 (splint) 

XI = 10. 1 1  
Ill = 10  

sr = 13.81 

Group 2 (Control) 

x2 = 5.45 
112 = 10 

s� = 15.58 

B. COMPUTATIONS 

2 sy(nl - 1)  + s�(n2 - 1) 13.81(10 - 1) + 15.58(10 - 1 )  s = = = 14.695 p nl + 112 - 2 10 + 10 - 2 

- - - � - /14.695) 14.695 
s x 1 - x ,  - \)-::- + -;:- - --- + -- = 1 .714 

- Il l 112 10 10 
x1 - x2 10. 1 1  - 5.45 

t = = = 2.718 
SX1 -x2 1.7143 

C. HYPOTHESIS TEST H0: f..LI = J.L2 H1 : f..LI > J.L2 
Reject H0 

D. OUTPUT 
Group Statistics 

Std. Std.  Error 
G ROUP N Mean Deviat ion Mean 

STRENGTH 1 1 0  1 0 . 1 1 00 3 . 7 1 59 1 . 1 75 1  

2 1 0  5 .4500 3 .9472 1 .2482 

Independent Samples Test 

t-test for Equal ity of Means 

Levene's Test 

for Equality 95% C onfidence 

of Variances I nterval of the 

Mean 
Sig. Mean Std. E rror 

F Sig.  t df (2-tai led) Differen ce Difference Lower Upper 
...,. 

Equal .685 0.41 9  2.71 8  1 8  8 .014 @) 4.6600 0 1 .7 143 1 .o5s=/ 8.2616 
variances 
assumed 

Equa l  2 . 7 1 8  1 7 .935 . 0 1 4  4 .6600 1 . 7 1 43 1 .0575 8 .2625 
variances 
not assumed 

0 Levene's test compares the variances of the two groups (see s2 in section A). This difference is not significant 
(p = .41 9) . Therefore, we will use the t-test for equal variances. 

f) The two-tailed significance is .014. Because this analysis was based on a one-tailed test (directional alterna­
tive hypothesis), we use half of the two-tailed value. Therefore, p = .007. This is a significant test, and we 
reject f-t. 

e The difference between the means of group 1 and 2 (the numerator of the 1-test). 

0 The standard error of the difference between the means (denominator of the t-test). 
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0 1 .734 2.71 8 

Critical value of t 
at a1 = .05 

FIGURE 1 9.3 Curve representing a t distribution for 1 8  df, showing the critical value of 1 .734 for a 
one-tailed test at .OS . The n u l l  hypothesis (H0) states that the t ratio w i l l  equal zero. The calculated val ue 
for this example is t = 2 . 7 1 8  (from Table 1 9. 1  ). Th is va lue demarcates an area in the ta i l  of the curve of 
.007. Because this probabi lity is less than .OS, we consider the test to be sign ificant. 

value t = 2.718 is greater than the critical value 1 .734. Therefore, the group means are 
considered significantly different at a1 = .05 (see Table 19.1C). We reject H0 and accept 
H1, and conclude that patients wearing the hand splint improved more than those in 
the control group. 

One- Versus Two-Tailed Tests 
Note that each column in Appendix Table A.2 represents both a one- and a two-tailed 
probability. Note, too, that each two-tailed probability is twice its corresponding one­
tailed probability. For instance, the critical value of t at a1 = .05 for 18 df is 1 .734. This 
is also the critical value for t at a2 = .10. The critical value for a1 = .01 is the same as 
that for a2 = .02. Some statistical tables and computer packages provide values for only 
a one- or two-tailed test. If this occurs, it is a simple matter to convert the probability 
values. The probability reported for a one-tailed test is doubled to get a two-tailed test. 
Conversely, the probability reported for a two-tailed test is halved to get a one-tailed 
test. Please be clear that it is the probabilities that are doubled or halved, not the criti­
cal values. 

The astute reader will also note that the same calculated value of t may be signifi­
cant for a one-tailed test but not for a two-tailed test; that is, critical values are lower for 
one-tailed tests at a given alpha level. In other words, the one-tailed test is more pow­
erful. This occurs because one-tailed tests require proof in only one direction, and the 
full 5% probability can fall in one tail of the curve rather than being split between both 
sides. This concept is clarified in Chapter 18 (see Figures 18.6 and 18.7). Because of the 
different critical values associated with one- or two-tailed tests at the same probability 
level, the type of t-test used should always be specified in advance of data analysis and 
should be stated in a research report. 
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The Sign oft 
Critical values of t are absolute values, so that negative or positive ratios are tested 
against the same criteria. The sign of t can be ignored when a nondirectional hypothe­
sis has been proposed. The critical region for a two-tailed test is located in both tails of 
the t-distribution, and therefore a positive or negative value can be considered signifi­
cant. The sign will be an artifact of which group happened to be designated Group 1 .  If 
the groups were arbitrarily reversed, the ratio would carry the opposite sign, with no 
change in outcome. 

The sign is of concern, however, when a directional alternative hypothesis is pro­
posed. In a one-tailed test, the researcher is predicting that one specific mean will be 
larger than the other, and the sign must be in the predicted direction for the alternative 
hypothesis to be accepted. For the current example, the ratio is positive, because the 
mean improvement for the experimental group (X1) was larger than the mean improve­
ment for the control group (X2), as predicted (H1: 11-1 > 11-2) .  

If  the difference is in the opposite direction to that predicted, the researcher cannot 
reverse the alternative hypothesis, and H0 cannot be rejected. It is important, therefore, 
to be sure of direction when performing a one-tailed test. 

Computer Output 
Table 19.10 shows the output for an unpaired t-test for the example of strength and 
hand splints. There are several pieces of information to consider. 

First, the output provides a summary of the descriptive statistics associated with 
each group. This information is useful as a first pass, to confirm that the correct num­
ber of subjects were included, and to see how far apart the means and variances 
are. Standard deviations are reported, and these can be squared to obtain variance 
values. 

Next, notice that there are actually two lines of output for the independent samples 
test, labeled according to the assumption of equal variances. We must determine which 
of these to use. Computer packages automatically run the t-test for equal and unequal 
variances, and the researcher must choose which one should be used for analysis. The 
columns labeled Levene's Test for Equality of Variances will tell us whether the vari­
ances are significantly different. Refer to the probability associated with Levene's test 
(Table 19.100), which is p = .419. This value is greater than .05, and we will conclude 
that the variances are not significantly different (they are equal). Therefore, we will use 
the first line of data for "Equal variances assumed." 

For the data in Table 19.1, we performed a one-tailed test. The computer output 
reports only a 2-tailed significance (Table 19.108). Therefore, to get the one-tailed prob­
ability we divide .014 by 2; therefore, p = .007 for this test. Because this value is less 
than .05, we reject the null hypothesis. 

Confidence Intervals 
Recall from Chapter 18 that a confidence interval specifies an interval or range of scores 
within which the population mean is likely to fall. We can also use this approach to set 
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a confidence interval to estimate the difference between group means that exists in the pop­
ulation as follows: 

(19_4) 

where SX1 -x2 is calculated using Equation (19-3). We will be 95% confident that the true 
difference between population means will fall within this intervaL 

Consider again the data shown in Table 19.1 for changes in pinch strength, with a 
difference between means of 4.66. The unpaired t-test is significant at a1 = .05, and Ho 
is rejected. Now let us examine how we can use a confidence interval to arrive at the 
same conclusion. 

We create the 95% confidence interval using (a2 = .05) t(18) = 2.101 (from Table 
A.2). Even though we had proposed a directional hypothesis for this study, by defini­
tion, confidence intervals only look at two-tailed test values. The standard error of the 
difference between means is 1 .714, calculated using the pooled variance estimate as 
shown in Table 19.1B. We substitute these values in Equation (19A) to determine the 
95% confidence limits: 

95% CI = (10.11  - 5.45) ± 2.101(1 .714) 

= 4.66 ± 3.60 

= 1 .06, 8.26 

We are 95% confident that the true mean difference, I-Ll - J.L2, lies between 1 .06 and 8.26. 

The Nul l  Value. The null hypothesis states that the difference between two means 
will be zero. If we look carefully at the 95% confidence interval for these data, we see 
that the null value, zero, is not contained within it. As we are 95% confident that the 
true mean difference lies somewhere within this interval, it is unlikely that the true 
mean difference is zero. Therefore, we can reasonably reject H0. This confirms the 
results of the t-test for these same data. Confidence intervals are reported in Table 
19.100. 

The t Statistic: Unequal Variances 
Studies have shown that the validity of the unpaired t-test is not seriously compro­
mised by violation of the assumption of equality of variance when n 1  = n2;2 however, 
when sample sizes are unequal, differences in variance can affect the accuracy of the 
t-ratio. If a test for equality of variance shows that variances are significantly different, 
the t-ratio must be adjusted. 

Consider the previous example, in which we examined the effect of a hand splint 
on pinch strength. Table 19.2 shows alternative data for this comparison, with unequal 
sample sizes (n1 = 15, n2 = 10). The variances in this analysis are significantly different 
(Levene's test, p = .038, Table 19.200). In this instance, we will use the second line of 
data in the output, "Equal variances not assumed." 



TABLE 1 9.2 COMPUTATION OF THE UNPAIRED t-TEST (UNEQUAL VARIANCES): 
CHANGE IN PINCH STRENGTH FOLLOWING HAND SPLINTING 

A. DATA Group 1 (splint) 

XI = 10.80 

ni = 15 

sy = 25.17 

B. COMPUTATIONS 

Group 2 (Control) 

X2 = 5.65 

nz = 10 

s� = 4.89 

10.80 - 5.65 5.15 
----;:::�:====::;:=""' = -- = 3.498 

25.17 4.89 1 .472 
-- + --

15 10 

(1 9.4) 

C. HYPOTHESIS TEST Ho: f.LI = f.L2 HI: f.LI > f.L2 (a1=.0s)t(20.6) = 1 .723 (Table A.2) 
Reject H0 

D. OUTPUT Group Statistics 

Std. Std. Error 
GROUP N Mean Deviation Mean 

STRENGTH 1 1 5  1 0.8000 5.0 1 71 1 .2954 
2 1 0  5 .6500 2.21 1 7  .6994 

Independent Samples Test 

Levene's Test 

for Equality 

of Variances t-test for Equality of Means 

95% 

Confidence 

Interval of 

the Mean 
Sig. Mean Std. Error 

F S ig. t df (2-tailed) Difference Difference Lower Upper 

Equal 4.866 .038 3.039 23 .006 5. 1 50 1 .6949 1 .6439 8.6561 
variances 
assumed 

0 
Equal 
variances f) 8 e 0 

2.0851
( � 8.2 149 not assumed 3.498 20.625 .002 5. 1 50 1 .4722 

0 Levene's test is significant (p = .038), indicating that the variance of group 1 is significantly different from the 
variance of group 2. Therefore, we will use the t-test for unequal variances. 

& With 25 subjects, the adjusted total degrees of freedom for the test of unequal variances is 20.625. 

e The two-tailed probability for the t-test is .002. This analysis was based on a one-tailed test (directional alter­
native hypothesis). The one-tailed probability level is half of the two-tailed value. Therefore, p = .001 . This is 
significant, and we reject 1-fo. 

e Difference between the means of group 1 and 2 (numerator of the t-test). 

eft St,.nr!,.rr! Arrnr nf thA r!iffArAnr.A lr!Annmin,.tnr nf thA 1-tA.:t\ 
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When the larger sample also has the larger variance, as in this example (n1 > n2 
and s12 > sl), the t-test becomes less powerful; that is, fewer significant differences 
will be found. Therefore, this issue is moot if significant differences are obtained, but is 
of concern in cases where H0 is not rejected. 

This problem is of a different import when the smaller sample has the larger vari­
ance (n1 < n2 and s12 > sl), especially when one variance is more than twice the other. 
In this case, the probability of a Type I error is increased. This discrepancy increases as 
the relative sample sizes and variance differences become more disparate.3 Obviously, 
this issue is of concern only when a significant difference is obtained. 

When sample size and variances are unequal, the t-ratio is modified so that it is no 
longer based on a pooled variance estimate, but instead uses the separate variances of the 
two groups (see Table 19.2B): 

19.5 

The degrees of freedom associated with the t-test for unequal variances are also 
adjusted downward, so that the critical value for t is also modified. In this example, 20.6 
degrees of freedom are used to determine the critical value of t (see Table 19.2D8).H The 
output shows that the test is significant at p = .001 (Table 19.2D8). 

THE t-TEST FOR PAIRED SAMPLES 
Researchers often use repeated measures or matched designs to improve the degree of 
control over extraneous variables in a study. In these designs subjects may be matched 
on relevant variables, such as age and intelligence, or any other variable that is poten­
tially correlated with the dependent variable. Sometimes twins or siblings are used as 
matched pairs. More commonly, however, clinical researchers will use subjects as their 
own controls, exposing each subject to both experimental conditions and then compar­
ing their responses across these conditions. 

In these types of studies, data are considered paired or correlated, because each 
measurement has a matched value for each subject. To determine if these values are sig­
nificantly different from each other, a paired t-test is performed. This test analyzes 
difference scores (d) within each pair, so that subjects are compared only with themselves 
or with their match. Statistically, this has the effect of reducing the total error variance 
in the data because most of the extraneous factors that influence data will be the same 
across both treatment conditions. Therefore, tests of significance involving paired com­
parisons tend to be more powerful than unpaired tests. 

++ The adjusted degrees of freedom are determined according to: 

(si/n1 + s�/n2)2 df = ___ __:___:__:::...._:::...._ __ _ 

(srI nl)z( nl � 1 ) + (s�/ nz)z( nz � 1 ) 
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The t Statistic: Paired Data 
The test statistic for paired data is based on the ratio 

d 
t = -

sa (19.6) 

where d is the mean of the difference scores, and sa represents the standard error of 
the difference scores. This ratio also reflects the relationship of between- and within­
group variance components. The numerator is a measure of the differences between 
pairs of scores, and the denominator is a measure of the variability within the differ­
ence scores. 

The paired t-test is based on the assumption that samples are randomly drawn 
from normally distributed populations with equal variances; however, because the 
number of scores in both treatment conditions must be the same, it is unnecessary to 
test this assumption with correlated samples. 

Degrees of Freedom 
The total df associated with a paired t-test are n - 1 ,  where n is the number of pairs of 
scores. 

Example 
Suppose we set up a study to test the effect of using a lumbar support pillow on angu­
lar position of the pelvis in relaxed sitting (Figure 19.4). We hypothesize that pelvic tilt 
will change with use of a support pillow (a nondirectional hypothesis) .  We test eight 
subjects, each one sitting relaxed in a straight-back chair with and without the pillow 
(in random order). The angle of the pelvic tilt is measured using a flexible ruler, with 
measurements transformed to degrees. 

Because each subject is measured under both experimental conditions, this is a 
repeated measures design, testing the hypothesis Ho: f-tl = fJ-2 against H1 : fJ-1 =F- fJ-2, 

STUDY 
SAMPLE 

n = 8  

Mean Difference 
Score, d 

FIGURE 1 9.4 A repeated measures design. Measurements of pelvic ti lt are taken under two conditions 
in each subject. The difference score for conditions with and without the support p i l low are used to cal­
culate the paired t-test. 
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where means represent repeated conditions. These hypotheses may also be expressed 
in terms of difference scores: Ho: d = 0 and Ho: d * 0. 

Hypothetical data are reported in Table 19.3A. A difference score, d, is calculated for 
each pair of scores. By substituting values in Equation (19.6), we obtain t = -1 .532 (see 
Table 19.3B and D). 

The absolute value of the calculated ratio is compared with a critical value, in this 
case for a two-tailed test with n - 1 = 7 df: Using Table A.2, we find 

(az= .05)t(7) = 2.365. 

Because the calculated value is less than the critical value, these conditions are not con­
sidered significantly different. The output in Table 19.300 shows that t is significant at 
p = .169. Because this is higher than .05, H0 is not rejected (see Table 19.3C). 

Confidence Intervals 
For the paired t-test, a confidence interval is obtained using the formula: 

Therefore, 

95% CI = d ± t(sa) 

95% CI = -3.375 ± 2.365(2.203) 

= -3.375 ± 5.210 

= -8.58, 1 .84 

We are 95% confident that the true difference in pelvic angle between the pillow 
and nonpillow conditions is between -8.58 and 1 .84 degrees (see Table 19.300). 
However, because zero is contained within this interval, these means are not signifi­
cantly different. 

INAPPROPRIATE USE OF MULTIPLE t-TESTS 
The t-test is one of the most commonly applied statistical tests. Unfortunately, it is also 
one of the most misused.4 The sole purpose of the t-test is to compare two means. 
Therefore, when more than two means are analyzed within a single sample, the t-test 
is inappropriate. For instance, if we wanted to compare three types of exercise, it would 
be incorrect to use the t-test because the analysis involves three comparisons within 
one sample. 

The problem with using multiple t-tests within one set of data is that the more com­
parisons one makes, the more likely one is to commit a Type I error, that is, to find a sig­
nificant difference when none exists. Remember that a is the probability of committing 
a Type I error for any single comparison. At a = .05, there is a 5% chance we will be in 
error if we say that group means are different. Although it is true that a = .05 for each 
individual comparison, the potential cumulative error in a set of comparisons is actually 
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TAB LE 1 9.3 COMPUTATION OF THE PAIRED t-TEST: ANGLE OF PELVIS 
WITH AND WITHOUT A LUMBAR SUPPORT PILLOW 

A. DATA 

x1 x2 
Subject (without pillow) (with pillow) 

1 1 08 1 1 2 
2 1 02 96 
3 98 1 05 
4 1 1 2 1 1 0 
5 1 00 1 06 

d 
-4 

6 
-7 

2 
-6 

6 85 98 - 1 3  
7 92 90 2 
8 95 1 02 -7 'LX1 = 8 1 9 'LX2 = 792 'Ld = -27 x1 = 1 02.375 x2 = 99.oo d = -3.375 

sd = 6.232 

B. COMPUTATIONS 

sd 6.232 
sa = vn = V8 = 2.2o3 

C. HYPOTHESIS TEST 

Ho: Jl.l = J1.2 
Do not reject H0 

D. OUTPUT 

d -3.375 
t = - = -- = -1 .532 

sa 2.203 

(a,= .05)1(7) = 2.365 (Table A.2) 

Paired Samples Statistics Paired Samples Correlations 

Std. Std. Error N Corr Sig. 
Mean N Deviation Mean Pair 1 

Pair 1 PILLOW 99.0000 8 8.63548 3.053 1 0  PI LLOW 8 0 .708 .049 

NONE 1 02.3750 8 7 .40536 2.61 8 1 9  & NONE 

Paired Samples Test 

Paired Differences 
95% Confidence 
Interval of the 
Difference 

Std. Std. Error Sig. 
Mean Deviation Mean Lower Upper t df (2-tailed) 

Pair 1 f) 8 0 0 
NONE-PILLOW -3.37500 6 .23212  2.20339 -8.58 1 8  1 .8351 8 - 1 .532 7 . 1 69 

0 The analysis includes the correlation of pillow and non-pillow scores and significance of that correlation .  
6 Mean of the difference scores, d (numerator of  the t-test). 
e Standard error of the difference scores, sa (denominator of the t-test) 
0 Because we proposed a non-directional alternative hypothesis, this two-tailed value is used. This test is not 

significant. 
0 95% confidence interval of the difference scores contains zero, indicating no significant difference. 
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greater than _os_ Consider the interpretation that, for a = _05, if we were to repeat a 
study 100 times when no difference really existed, we could expect to find a significant dif­
ference five times, as a random event, just by chance_ Five percent of our conclusions 
could be in error_ For any one comparison, however, we cannot know if a significant 
finding represents one of the potentially correct or incorrect decisions_ Theoretically, 
any one test could be in error. 

Consider a different random event, such as a strike of lightning.5 Suppose you had 
to cross a wide open field during a lightning storm. There may be only a small risk of 
getting struck (perhaps 5 percent?)-but would you prefer to cross the field just once, 
or several times? Would you consider the risk greater if you crossed the field several 
times? This same logic applies to repeated t-tests. The more we repeat comparisons 
within a sample, the greater are our chances that one or more of those comparisons will 
result in a random event, a significant difference even when one does not exist. 

This problem can be avoided by using the more appropriate analysis of variance 
(ANOVA), which is a logical extension of the t-test specifically designed to compare 
more than two means. As an adjunct to the analysis of variance, multiple comparison pro­
cedures have been developed that control the Type I error rate, allowing valid interpre­
tations of several comparisons at the desired a level. These procedures are discussed in 
Chapters 20 and 21. 

COMMENTARY 

The Significance of Significance 

Researchers in many d i sc i p l i nes, epidem io logists and b ios ta t i s t ic ians  foremost among 
them, have become d i senchanted with the  overemphas is  p l aced on report i ng p va l ­
ues i n  research l i tera t u re.-'  I n  a n  effort to make hypothes i s  tes t i ng more mea n i ngfu l ,  
i nvest igators i n  these d i sc i p l i nes have rel i ed on t h e  confi dence i n te rva l as a more 
pract i ca l  est i mate of a pop u l a t ion 's character is t ics 6 As we have shown,  t h e  ou tcomes 
of hypot hes is  tes t i n g  u s i ng ei t her confidence i n terva l s  or /-tests w i l l  be the  same; how­
ever, the confidence i n terva l gives the resea rcher i n forma t io n  not provided by the  
t-test.  Rather than  j ust i ndicat i ng i f  two mea ns a re s ign i fica nt ly  d i fferent ,  t h e  confi­
dence i n terva l essentia l l y  est i mates true effect s i ze; that i s ,  i t  est i ma tes how l a rge a 
d i fference can be expected i n  t h e  popu la t ion .  Th i s  i n format ion  can t hen be used for 
eva l uat i ng the  res u l ts of assessments and for fra m i n g  pract ice dec i s ions .  

Confidence i n terva l s  may be more c l i n i c a l l y  u sefu l than re l y i ng on probab i l i ty 
va l ues when t h e  magni tude of d i fferences i s  releva n t  to c l i n i ca l dec i s i o n  m a k i ng a n d  
pred ic t ion o f  normal  o r  ab norm a l  respon ses. L i ke p va l ues, however, conf idence 
i nterva l s  do not t e l l  u s  about the i mporta nce of the  observed effect . That rema i ns a 
mat ter  of c l i n i ca l  j u dgment .  
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CHAPTER 20 

Comparing More than Two 
Means: Analysis of Variance 

As knowledge and clinical theory have developed, clinical researchers have proposed 
more complex research questions, necessitating the use of elaborate multilevel and mul­
tifactor experimental designs. The analysis of variance (ANOVA) is a powerful ana­
lytic tool for analyzing such designs, where three or more conditions or groups are 
compared. The analysis of variance is used to determine if the observed differences 
among a set of means are greater than would be expected by chance alone. The ANOVA 
is based on the F statistic, which is similar to t in that it is a ratio of between-groups 
treatment effects to within-group variability. The test can be applied to independent 
groups or repeated measures designs.* 

The purpose of this chapter is to describe the application of the analysis of variance 
for a variety of experimental research designs. An introduction to the basic concepts 
underlying analysis of variance is most easily addressed in the context of a single­
factor experiment (one independent variable) with independent groups. We then follow 
with discussions of more complex models, including factorial designs and repeated 
measures designs. 

ANALYSIS OF VARIANCE FOR IN DEPENDENT SAMPLES: 
ONE-WAY CLASSIFICATION 
In a single-factor experiment, the one-way analysis of  variance is  applied when three or 
more independent group means are compared. The descriptor "one-way" indicates that 
the design involves one independent variable, or factor, with three or more levels. 

*As with all parametric tests, the AN OVA is based on the assumption that samples are drawn randomly from 
normally distributed populations with equal variances. Tests for homogeneity of variance can be performed 
to validate the latter assumption. With samples of equal size, the analysis of variance is considered "robust" 
in that reasonable departures from the assumptions of normality and homogeneity will not seriously affect 
the validity of inferences drawn from the data.1 With unequal sample sizes, gross violations of homogeneity 
of variance can increase the chance of Type I error. In such cases, a nonparametric analysis of variance can be 
applied (see Chapter 22), or data can be transformed to a different scale that improves homogeneity of vari­
ance within the sample distribution (see Appendix D). 

451 
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Although the ANOVA can be applied to two-group comparisons, the t-test is generally 
considered more efficient for that purpose.t 

Statistical Hypotheses 
The null hypothesis for a one-way multilevel study states that there is no significant dif­
ference among the group means, represented by 

Ho: ILl = IL2 = IL3 = · · · = ILk 

where k is the number of groups or levels of the independent variable. The alternative 
hypothesis (H1) states that at least two means will differ. 

Sums of Squares 
In the last chapter we established that mean differences can be evaluated using a statis­
tical ratio that relates the treatment effect to experimental error. The analysis of variance 
uses the same process, except that the ratio must now account for the relationships 
among several means. The F-test (named for Sir Ronald Fisher, who developed the test) 
is used to determine how much of the total observed variability in scores can be 
explained by differences among several treatment means and how much is attributable 
to unexplained differences among subjects. To analyze this variability with several 
groups, we must refer to the concept of sum of squares (SS), introduced in Chapter 
17. The sum of squares is calculated by subtracting the sample mean from each score 
(X - X), squaring those values, and taking their sum (55 = L(X - X)2). The larger the 
sum of squares, the greater the variability of scores within a sample. 

Example 
To illustrate how this concept is applied to analysis of variance, consider a hypothetical 
study of the effect of using different modalities for 10 days to gain pain-free range of 
motion (ROM) in patients with tendonitis. Through random assignment, we create four 
independent groups: one to get ultrasound (US), a second to get ice, a third to get mas­
sage, and a fourth group to serve as a control (see Figure 20.1) .  We use a lowercase n to 
indicate the number of subjects in each group (n = 11 )  and an uppercase N to represent 
the total number of subjects in the study (N = 44). The independent variable, type of 
modality, has four levels (k = 4). Therefore, this is a single-factor, multilevel design. The 
dependent variable is elbow ROM, measured in degrees. Hypothetical data for this 
study are reported in Table 20.1A. 

tThe results of a t-test and analysis of variance with two groups will be the same. The t-test is actually a spe­
cial case of the analysis of variance, with the relationship F = t2. 
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STUDY 
SAMPLE 

N = 44 

Patients 
with 

elbow 
tendonitis 

Random 
Assignment 

Ultrasound • 

Ice � 
L____----'� 

Massage • 

X Change 
Post - Pre 

X Change 
Post - Pre 

X Change 
Post - Pre 

No Modality ···: : . XChange 
1 .  1 Post - Pre 

FIGURE 20.1 One-way m ulti-group design to study change in el bow ROM following treatment with 
d ifferent modalities i n  patients with tendon itis. 

Total Sum of Squares 
To estimate the total variability in these data, consider the set of 44 scores as one total 
sample, ignoring group assignment. We can calculate a mean for this total sample, 
called the grand mean, Xc, around which all 44 scores will vary. For the data in Table 
20.1, the sum of all 44 scores is 1,638, and Xc = 37.23. The sum of squares for this total 
sample (L(X - Xc)2) represents the deviations of each individual score from the grand 
mean. This total sum of squares (SSt) reflects the total variability that exists within this set 
of 44 scores. This variability is illustrated in Figure 20.2A, showing the entire distribu­
tion of scores above and below the grand mean. 

Partitioning Sum of Squares 
As we have described before, total variability in a set of data can be attributed to two 
sources: a treatment effect (between the groups), and unexplained sources of variance, or 
error variance, among the subjects (within the groups). As its name implies, the analy­
sis of variance partitions the total variance within a set of data (SSt) into these two com­
ponents. The between-groups sum of squares (SSb) reflects the spread of group means 
around the grand mean. The larger this effect, the greater the separation between the 
groups. The within-groups or error sum of squares (SSe) reflects the spread of scores 
within each group around the group mean, or the differences among subjects. In Figure 
20.2B, we can see that the means for groups 1 and 2 are close together, and both appear 
separated from groups 3 and 4. The spread of scores in group 4 appears to be less than 
in the other groups. 

Because hand calculations are complex, computer programs will most often be 
used to obtain results for an AN OVA. For those who like to see the math, computational 
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TABLE 20.1 ONE-WAY ANALYSIS OF VARIANCE FOR INDEPENDENT SAMPLES: 

A. DATA 

Grp 

CHANGE IN ELBOW ROM (IN DEGREES) FOLLOWING TREATMENT 
FOR TENDONITIS (k = 4, N = 44) 

ROM Grp ROM G roup 1 Group 2 Group 3 Group 4 

1 1 23 23 3 47 
us Ice Massage Control Total 

2 1 54 
3 1 52 

24 3 49 

25 3 29 
LX 486.00 498.00 388.00 266.00 1 ,638.00 
n 1 1  1 1  1 1  1 1  44 

4 1 33 26 3 33 x 44. 1 8  45.27 35.27 24. 18  37.23 
5 1 48 27 3 45 

6 1 52 28 3 29 B. OUTPUT 
7 1 58 29 3 43 

8 1 31 30 3 1 9 Test of Homogeneity of Variances 
9 1 43 

10  1 47 
31 3 34 

32 3 27 Levene 0 
1 1  1 45 33 3 33 Statistic df1 df2 Sig. 

1 2  2 44 
1 3  2 52 

34 4 1 9  

35 4 1 4  
LENGTH .32 1 3 40 .8 1 0  

1 4  2 53 

1 5  2 52 
36 4 23 
37 4 1 4  

ANOVA 

16 2 33 38 4 36 Sum of Mean f) 
1 7  2 46 

1 8  2 56 
39 4 29 
40 4 37 

LENGTH Squares df Square F Sig. 

19 2 42 41 4 22 Between 31 58.09 3 1 052.70 1 1 .89 .000 
20 2 43 42 4 1 9  Groups 
21 2 29 
22 2 48 

43 4 1 8  
44 4 35 

Within 3541 .64 40 88.54 
Groups 

Total 6699.73 43 

0 As with the Hest, the Levene statistic indicates that there is no significant difference (p = .810) between the 
variances across the four groups. 

8 The probabilities associated with the F test do not distinguish between one and two-tailed tests. Because the 
probability is less than .05, we reject H0 and conclude that there is a significant difference among groups. 

� In different programs, the source of variance "Within Groups" may also be called "Error" or "Residual" 
variance. 

formulae for calculating total, between-groups and error sums of squares are shown in 
Table 20.2. 

The F Statistic 

Degrees of Freedom 
The total degrees of freedom (dft) within a set of data will always be one less than the 
total number of observations, in this case N - 1 .  In our example, N = 44 and dft = 43. 
The number of degrees of freedom associated with the between-groups variability (dfb) 
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70 

60 

<1 50 

:a;; 40 0 cr: 
s: 30 
0 
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1 0  
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<1 50 

:a;; 40 0 cr: 
s: 30 
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1 0  

0 
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Combined Sample 

N = 44 

. . . . .  8" . . . . . . . . . . . . .  �- . . . . . .  :..:. . :.:.:.;;:..::· . . . . . . . . . . • . .  XG 
';l • 

a v -1-

Group 1 
us 

n = 1 1  

Group 2 
Ice 

n = 1 1  

Group 3 
Massage 

n = 1 1  

• 
• 

Group 4 
Control 
n = 1 1  

FIG U RE 20.2 Scores from tendonitis study (Table 2 0 . 1  ) .  A. The total variance i n  the sample is reflected 
in the distribution of scores from a l l  four groups around the grand mean (Xc). B. The between-groups vari­
ance i s  determi ned by the distribution of the four group means. The error variance reflects the variabi l ity 
of scores with i n  each of the groups around the group mean. 

is one less than the number of groups (k - 1), in this case dfb = 3. There are 
n - 1 degrees of freedom within each group, so that the number of degrees of freedom 
for the within-groups error variance (dfe) for all groups combined will be 
(nl - 1) + (n2 - 1) + . . . + (nk - 1), or N - k. For the data in Table 20. 1 ,  
dfe = 44 - 4 = 40. The degrees of  freedom for the separate variance components are 
additive, so that (k - 1) + (N - k) = (N - 1). 

Mean Squares 
The concepts of between-groups and within-groups variability are once again used to 
define a statistical ratio. These sources of variability are defined as between-groups 
and error sums of squares. We convert the sums of squares to a variance estimate, or 



456 PART IV • Data Analysis 

TABLE 20.2 CALCULATION OF SUMS OF SQUARES AND F STATISTIC FOR ONE-WAY 
ANALYSIS OF VARIANCE (DATA FROM TABLE 20.1) 

A. DATA 

Group 1 Group 2 Group 3 Group 4 
us Ice Massage Control 

N =  1 1  N = 1 1  N =  1 1  N = 1 1  

�X 486 498 388 266 

�x2 22,654 23,252 1 4,590 7, 1 82 

x 44. 1 8  45.27 35.27 24. 1 8  

s 1 0.87 8.40 9.50 8.66 

B. COMPUTATION OF SUMS OF SQUARES 

};X = 486 + 498 + 388 + 266 = 1,638 };X2 = 22,654 + 23,252 + 14,590 + 7,182 = 67,678 

2 ( L X)2 (1638)2 SS1 = 2:X - -N- = 67,678 - � = 6,699.73 

55b = � < 2:X;)2 _ <2:X>2 = [ (486)2 + (498)2 + (388)2 + (266)2] _ (1,638)2 = 3 158_09 £.J n  N 11 11 11 11 44 '  

L 2 L
(LX;)2 [ (486)2 (498)2 (388)2 (266)2] SS = X - -- = 67 678 - -- + -- + -- + -- = 3 541 .64 e n ' 11 11 11 11 ' 

C. COMPUTATION OF F STATISTIC 

dfb = k - 1 = 4 - 1 = 3 MS = 
ssb 

= 
3158.09 = 1 052.70 b dfb 3 ' 

(20 . 1 )  

(20.2)8 

(20.3) 

F = MSb = 1052.70 = 11.89 MSe 88.54 

dfe = N - k = 44 - 4 = 40 

D. HYPOTHESIS TEST 

Reject H0 

MS = 
SSe = 3541 .64 = 88_54 e dfe 40 

(a=.osl(3,40) = 2.84 

{LX)2 
"The term _,_· in equation 20.2 represents the square of the sum of scores within each individual group divided 

n 
by the number of subjects in that group. 
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mean square (MS), by dividing each sum of squares by its respective degrees of free­
dom. A mean square can be calculated for the between- and error-variance compo­
nents as follows: 

(20.4a) 

(20.4b) 

The F-Ratio 
Mean square values are used to calculate the F statistic as a ratio of the between­
groups variance to the error variance: 

(20.5) 

When H0 is true and no treatment effect exists, the total variance in a sample is due 
to error, and MSe is equal to or larger than MSb, yielding an F-ratio of approximately 
1 .0 or less. When H0 is false and the treatment effect is significant, the between-groups 
variance is large, yielding an F-ratio greater than 1 .0. The larger the F-ratio, the greater 
the difference between the group means relative to the variability within the groups. In 
our example, F = 11 .89, as shown in Table 20.2C. 

Critical Values of F 
Like t, the calculated F-ratio is compared to a critical value to determine its significance. 
Table A.3 in the Appendix contains critical values of F at a = .05. Because mean squares 
are based on squared values, the F-ratio cannot be a negative number, and therefore, we 
do not distinguish tails for an F test. 

The critical value of F for the desired a is located in the table by the degrees of free­
dom associated with the between-groups and error variances, with dfb across the top of 
the table and dfe along the side. For our example, dfb = 3 and dfe = 40 (always given 
in that order). Therefore, from Table A.3, 

(.osl(3,40) = 2.84 

We compare this critical value with our calculated value, F = 11 .89. The calculated 
value must be greater than or equal to the critical value to achieve statistical significance. 
In this case, we can reject H0. 

A significant F-ratio does not indicate that each group is different from all other 
groups. Actually, it only tells us that there is a significant difference between at least two 
of the means (largest versus smallest). At this point, a separate test must be done to 
determine exactly where the significant differences lie. Various multiple comparison 
tests are described for this analysis in the next chapter. When the F-ratio is smaller than 
the critical value, Ho is not rejected and no further analyses are appropriate. 
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The AN OVA Summary Table 
Computer-generated output will present the results of  an analysis of  variance in a sum­
mary table that provides sums of squares and mean square data for determination of 
the F ratio. The table presents data for the between-groups and error sources of vari­
ance, as shown in Table 20.18. The probability level associated with the F-ratio is given 
in the last column of the summary table. This table may be included in the results sec­
tion of a research report. Terminology used in the table will vary among computer pro­
grams and research reports. Rather than listing "between groups" as a source of 
variance, some programs list the name of the independent variable. The error variance 
may be called the within-groups variance, residual or between-subjects variance. 

In reporting the results of an ANOVA, some researchers may simply indicate if the 
F ratio has achieved significance, indicating p < .05, although most reports will 
include the exact probability obtained by computer analysis. Some authors do not 
include summary tables in their research reports, choosing instead to report F-ratios in 
the body of the text. When this is done, the calculated value of F is given, along with 
the associated degrees of freedom and probability. For example, for the data in Table 
20.1, we would say: 

There was a significant difference among the four experimental groups (F = 1 1 .89, 
df = 3,40, p < .001) . 

ANALYSIS OF VARIANCE: TWO-WAY CLASSIFICATION 
Because of  the complexity of human behavior and physiological function, many clini­
cal investigations are designed to study the simultaneous effects of two or more inde­
pendent variables. This approach is often more economical than testing each variable 
separately and provides a stronger basis for generalization of results to clinical practice. 

Example 
As an example, let us assume we wanted to compare the effect of  prolonged versus 
quick stretch for improving ankle range of motion against a control (Factor A). At the 
same time we are interested in determining if the position of the knee during stretch 
(flexed or extended) will affect the outcome (Factor B). Instead of looking at each of 
these factors separately, we can examine their combined influence using a two-way fac­
torial design. This design involves two independent variables: type of stretch (with 
three levels) and knee position (with two levels). Within the 3 X 2 framework, there are 
six treatment combinations. As shown in Figure 20.3, we can arrange the design in a 
table with six cells, so that rows correspond to type of stretch and columns to positions. 
Each cell represents a unique combination of levels for A and B. We could allocate 10 
subjects per cell, for a total of 60 subjects. The design of factorial experiments was dis­
cussed in Chapter 10. 

The appropriate statistical analysis for this design is a two-way analysis of vari­
ance. The descriptor "two-way" indicates a two-dimensional analysis, involving two 
independent variables. In this example, each variable is an independent factor (not 
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FIGURE 20.3 Two-way (3 X 2) factorial design testing the effects of (A) stretch (k = 3) and (B) knee 
position (k = 2) on ankle range of motion. Sixty subjects are randomly assigned to each of six experimen­
tal conditions (n = 1 0). The marginal means for each independent variable are obtained by pool ing data 
across the second variable. 

repeated). The two-way ANOVA is an extension of the one-way analysis. It, too, parti­
tions the total variance in the set of scores into between-groups and error components. 
The between-groups variance explains the independent variable effects, and the error 
variance accounts for all sources of variation unexplained by treatment; however, 
because the design incorporates two independent variables, the between-groups com­
ponent must be further partitioned to account for the separate and combined effect of 
each independent variable. Therefore, we can ask three questions of these data: 

1. What is the effect of variable A, independent of variable B? 
2. What is the effect of variable B, independent of variable A? 
3. What is the joint effect or interaction of variables A and B? 

These components are called main effects and interaction effects, each explaining part 
of the total treatment effect. 
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Main  Effects 
In a two-way design, the effect of each independent variable can be examined sepa­
rately, essentially creating two single-factor experiments. These effects are called main 
effects, illustrated in Figure 20.4. For instance, using the preceding example, we can 
study the main effect of stretch (Factor A) by collapsing or pooling data for the two knee 
positions. With 10 subjects in each of the original cells, we would now obtain a mean 
for 20 scores at each level of stretch (XA1, XA2, and XA3 in Fig 20.4A). These three means 
represent the average between-groups effect of stretch, independent of the effect of knee 
position. The sum of squares associated with this main effect accounts for the separa­
tion among groups that received different forms of stretch. 

Similarly, we can collapse the levels of stretch to obtain two means for the main 
effect of knee position (Factor B). There will be 30 scores per cell (X81 and X82), as shown 
in Figure 20.4B. These two means reflect the average between-groups effect of knee 
position, independent of type of stretch. A second sum of squares will be calculated to 
account for the separation between these two groups. 

The means for levels of the main effects are called marginal means. They represent 
the average separate effect of each independent variable in the analysis. Comparison of 

STRETCH (A ) KNEE POSITION (8) 

s1 s1 s1 
� � � 
Sa -

. XA, Sa - Sa -X� X� 

. 

. 

S:!o � Sao 
s1 B 

� 
Sa -

. XAz 

. 
• 

S:!o 
s1 
� 
Sa -

. X A:! 

. 
• 

S:!o 
A 

FIGURE 20.4 Diagrams of main effects for stretch treatment and knee position in a two-way factorial 
design. 
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the marginal means within each factor indicates how much of the variability in all 60 
scores can be attributed to the overall effect of stretch alone or knee position alone. 

I nteraction Effects 
In addition to the analysis of main effects, the factorial experiment has the added 
advantage of being able to look at combinations of levels of each independent variable. 
Statistically, these are referred to as interaction effects. Interaction is present when the 
effects of one variable are not constant across different levels of the second variable, that 
is, when various combinations of levels cause differential effects. 

To illustrate this concept, consider the hypothetical means given for the six treat­
ment groups in Figure 20.5. Each mean represents a unique combination of stretch 
and knee position. We can plot these means to more clearly illustrate these relation­
ships. In Figure 20.5A, we have represented range of motion, the dependent variable, 
along the Y-axis. The three stretch groups are represented along the X-axis. The 
means for range of motion for each knee position are plotted at each level of stretch, 
with lines connecting the means. Note that in this example, the lines are parallel, 
which means that the pattern of response at each knee position is consistent across all 
levels of stretch. We can reverse the plot, as shown in Figure 20.5B, with knee position 
on the X-axis, demonstrating a constant pattern for each level of stretch across both 

Knee position (B) 

Flexion Extension 
Stretch (A) 8, 8? 

Prolonged � 20 25 

Quick � 10 15 

Control Aq 3 8 

ROM ROM � 20 20 
(/) (/) � � � fir fir 
0 10 0 10 

� 
A1 � Aq 81 82 

Prolonged Quick Control Flexion Extension 
A B 

FIGURE 20.5 Plots of data showing no i nteraction between stretch treatment and knee position. Par­
a l lel l i nes indicate that responses on one variable are constant across the second variable. 
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Knee position (B) 
Flexion Extension 

Stretch (A) 81 a, 
Prolonged � 10.3 1 9.6 

Quick � 9.1 3.1 

Control Aa 8.0 3.6 

ROM ROM 

20 20 -/ � � 
� 10  � 10  

Quick � 
Control 

� � Aa 81 82 
Prolonged Quick Control Flexion Extension 

A 8 

FIGURE 20.6 Plots of data showing interaction between stretch treatment and knee position. Lines that 
are not paral lel or that cross indicate that responses on one variable wil l  vary depending on the level of 
the second variable. In this example, prolonged stretch with knee extension consistently produces a 
greater response than other combinations of the two variables. 

knee positions. These graphs are called interaction plots, in this case demonstrating a 
situation where there is no interaction; that is, prolonged stretch (A1) will generate the 
highest response under both knee conditions and knee extension scores are higher 
across all levels of stretch. 

Now consider a different set of results for the same study, given in Figure 20.6. The 
interaction plots for these data show lines that are not parallel; that is, the pattern of the 
baseline variable across all levels of the second variable is not constant. For example, in 
Figure 20.6A, the plot for knee flexion indicates little difference across levels of stretch. 
On the other hand, the line for knee extension shows a distinct difference for prolonged 
stretch. In Figure 20.6B, we see that the three flexion measures are fairly close (between 
8 and 10 degrees), and two of the extension measures are also close (between 3 and 4 
degrees), but the effect of prolonged stretch with knee extension is quite different. 
When lines are not parallel or when they cross, interaction is present. In this example, 
it is not the use of prolonged stretch alone that makes the treatment more effective. It is 
the combination of prolonged stretch with knee extension. Therefore, there is an inter­
action between the two independent variables. The analysis of variance will account for 
this difference among the interaction means as a third component of the between­
groups sum of squares. 
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Statistical Hypotheses 
When two independent variables are examined in a single experiment, three statistical 
hypotheses are usually proposed, one for each main effect and one for the interaction 
effect. For example, for a 3 X 2 factorial design, the following null hypotheses would 
be proposed: 

1. Ho: J.LA1 = J.LA2 = J.LA3 
2. Ho: J.LB1 = J.LBz 
3. Ho: J.LA1B1 = J.LA1Bz = J.LAzB1 = J.LAzBz = J.LA3B1 = J.LA3Bz 

An alternative hypothesis can be proposed for each null hypothesis. These hypotheses 
may be general statements of difference, or they may specify differences between spe­
cific means. An F-ratio is calculated to test each null hypothesis. 

Presentation of Data for a Two-Way ANOVA 
We have chosen not to include a mathematical example for a two-way analysis of vari­
ance, as we expect that all such analyses will be done by a computer. Those interested 
in details of the computations should refer to advanced statistical texts. We will exam­
ine the format for presentation of results of a two-way ANOVA, as shown in Table 20.3. 

Note that there are three between-groups sources of variance listed, two main effects 
and the interaction effect. These are usually listed in the summary table according to the 
name of the independent variable. Thus, for our example, type of "stretch" and "knee 
position" are listed as main effects. The interaction between two variables is signified by 
x, such as Stretch X Knee Position, read "stretch by knee position." The error term rep­
resents the unexplained variability between subjects within all combinations of stretch 
and knee position. 

TABLE 20.3 SUMMARY TABLE FOR A TWO-WAY ANALYSIS OF VARIANCE: EFFECT 
OF STRETCH AND KNEE POSITION ON ANKLE RANGE OF MOTION 
(N = 60) (DATA TAKEN FROM FIGURE 20.6) 

Sum of Mean 
Squares df Square F Sig. 

STRETCH 1 080.729 2 540.364 41 .843 .0000 
POSITION 2.01 7 1 2.01 7 . 1 56 .694 

STRETCH x POSITION 707.722 2 353.861 27.401 .000 

Error 8 697.362 54 1 2.914 

Total 2487.830 59 42. 1 67 

0 Computer programs will generate p values with a specified level of precision, that is, to a set number of deci­
mal places. Therefore, a p value of .000 does not indicate zero probability. It simply means that the probabil­
ity is < .00 1 ,  but the precision of the output does not allow the exact value to be printed. 

8 Error variance may also be called residual variance. 
Note: Some elements of data generated by SPSS, which are not essential to understanding the output, are not 
included in this table. 
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Degrees of Freedom 
The number of degrees of freedom associated with each main effect is one less than the 
number of levels of that independent variable (k - 1) .  To clarify this notation, we use 
(A - 1)  degrees of freedom for Factor A, and (B - 1) for Factor B, where the letters A 
and B represent the number of levels of each factor. Therefore, for stretch with three lev­
els, df = 2. For knee position with two levels, df = 1 .  The number of degrees of free­
dom for the interaction between these variables is the product of their respective 
degrees of freedom, (A - 1)(B - 1).  Therefore, the interaction effect in this example has 
2 X 1 = 2 degrees of freedom. 

The total degrees of freedom associated with an experiment will always be one less 
than the total number of observations, N - 1. In this study, with n = 10 per group 
(N = 60), dft = 59. The error degrees of freedom can be determined by using 
(A)(B)(n - 1) with equal-size groups or by subtracting the combined between­
groups degrees of freedom from the total degrees of freedom. For this example, 
dfe = (3)(2)(9) = 59 - 2 - 1 - 2 = 54. 

The F Statistic and Critical Values 
Calculation of F is based on the ratio of between-groups to error mean squares. Mean 
square values are determined by dividing the sum of squares for each effect by its asso­
ciated degrees of freedom. Each between-groups effect generates an F-ratio, based on 
its own mean square divided by the mean square for the common error term, MSe. For 
example, for the data shown in Table 20.3, the F-ratios for the main effects of stretch (A) 
and knee position (B)§ are obtained by 

FA = MSA = 540.364 
= 41.843 MSe 12.914 

MSB 2.017 FB = MSe = 12.914 
= 0.156 

Similarly, the F-ratio for the interaction term, A X B, is calculated according to 

F = MS AXB = 353.861 = 27.401 AXB MSe 12.914 

Each F-ratio is compared with a critical value from Appendix Table A.3.The degrees 
of freedom associated with the specific between-groups effect (main effect or interac­
tion) are located across the top and the degrees of freedom associated with the error 
term are listed along the side. The critical values for each effect shown in Table 20.3 are: 

Stretch 

Knee Position 

Stretch X Knee Position 

(.osl(2,54) = 3.17 

(.osl(l,54) = 4.02 

(.osl(2,54) = 3.17 

liThe use of the subscript B to denote Factor B should not be confused with the use of subscript b to denote 
"between-groups" in previous examples. In this example, both A and B represent between-groups sources of 
variance for the two independent variables. 
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Therefore, this ANOVA demonstrates a significant main effect for type of stretch and a 
significant interaction effect between stretch and knee position. 

The ANOVA Summary Table 
The information contained in an ANOVA table provides a convenient summary of a 
study's design and results. For example, from Table 20.3 we can tell that there are two 
independent variables, stretch and knee position, with three and two levels, respec­
tively (by looking at degrees of freedom); that there are 60 subjects in the study 
(d ft = N - 1 = 59); and that the outcome was dependent on which type of stretch was 
used in a particular knee position. 

I nterpreting I nteraction and Main  Effects 

Simple Effects 
In most cases, researchers develop factorial designs with the expectation of specific pat­
terns of interaction between the independent variables; that is, they hypothesize that 
certain combinations of treatments will be most effective. If this were not the case, the 
researcher could just as easily design separate one-way studies. Clinical interpretation 
of interaction is often facilitated by dividing the factorial design into several smaller 
"single-factor" experiments, each represented by the rows and columns in the design, 
as shown in Figure 20.7. These separate effects are called simple effects. Interaction is 
defined as a significant difference between simple effects.2 Each line in an interaction 
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FIGURE 20.7 Simple effects for a 3 X 2 factorial design. 
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plot (see Figures 20.5 and 20.6) represents a simple effect. Simple effects are distin­
guished from main effects, which are based on averaged values across a second vari­
able. An analysis of simple effects will reveal differential patterns within each of the 
independent variables. Such an analysis can be carried out on row effects, column 
effects or both. With simple effects, the researcher can inspect the data to determine 
which levels of either variable contribute most to the observed differences. The analy­
sis of simple effects is similar to carrying out several single-factor analyses of variance, 
with between-groups effects extracted from the larger factorial design.** 

Main Effects 
When there is no interaction effect in an experiment, the main effects are easily inter­
preted by referring to the outcome of the F-test for each independent variable. In that 
case, the analysis is essentially reduced to a one-way design, and combinations of treat­
ments are ignored. If an interaction effect is present and main effects are not significant, 
interpretation is also straightforward; however, when an interaction effect is present, sig­
nificant main effects are more difficult to interpret. For example, look again at the inter­
action plots in Figure 20.5. With no interaction present, it is easy to see that range of 
motion was consistently higher with the knee in extension and with prolonged stretch. 

In Figure 20.6, where there is a significant interaction, the separate effects of knee 
position and type of stretch must be examined more carefully. In Figure 20.6A, with 
type of stretch (Factor A) along the baseline, we can see that the level of response at dif­
ferent knee positions changes at different levels of stretch. Therefore, we cannot draw 
any general conclusions about the main effect of knee position. This is called a disordinal 
interaction and the main effect of knee position is ignored in the interpretation of results. 
In Figure 20.6B, however, where knee position is plotted on the baseline, we can see that 
although prolonged stretch with knee extension shows the largest difference, it is also 
true that prolonged stretch is consistently above all other levels of stretch. This illus­
trates an ordinal interaction, where the relative ranking of the levels of Factor A does not 
change at different levels of Factor B. Therefore, it would be appropriate to conclude 
that, in general, treatment with prolonged stretch consistently results in greater range 
of motion than treatment with quick stretch or no stretch. 

Multiple Comparisons 
Multiple comparison tests are also used to compare means for each significant effect 
following an analysis of variance. For significant main effects, the marginal means are 
compared. For example, we would compare XA1, XA2 and XA3 (see Figure 20.4) to exam­
ine the main effect of stretch. When a main effect has only two levels, as with knee posi­
tion in this example, a multiple comparison is unnecessary. The F-test functions like a 
t-test. Therefore, if F is significant, one need only look at the two means to determine 
which is greater. 

*"See Keppel2 and Green3 for detailed discussion of statistical procedures for analyzing simple effects. 



CHAPTER 20 • Comparing More than Two Means: Analysis of Variance 467 

For significant interaction effects, the individual group means are compared. For 
example, we could determine which of the six combinations of stretch and knee posi­
tion would produce the greatest changes in ankle range of motion. Based on the data 
shown in Figure 20.6, we might expect to find that prolonged stretch with knee exten­
sion (A1B2) elicits a more effective response than the other five combinations.++ 

ANALYSIS OF VARIANCE: THREE-WAY CLASSIFICATION 
A multifactor analysis of variance can be performed with any number of independent 
variables, although we rarely see analyses beyond three dimensions. For example, we 
could expand the preceding study to look at the effects of stretch, knee position, and 
three forms of exercise for increasing ankle range of motion. 

The analysis of a three-way design is a direct extension of the two-way ANOVA. 
With three independent variables, A, B and C, the total variability in the data is divided 
into seven parts: three main effects (one for each independent variable), three double 
interactions testing each pair of independent variables in combination (A X B, A X C, 
and B x C) and a triple interaction (A X B X C) testing all possible combinations of the 
three variables.++ A sum of squares is calculated for each of these effects, to account for 
their contribution to the total variance in the sample. As in other analyses, each main 
effect has k - 1 degrees of freedom, and degrees of freedom for the interaction terms 
are the product of the degrees of freedom for each effect in the interaction. The total 
degrees of freedom will be N - 1, and the error term will have (A)(B)(C)(n - 1) 
degrees of freedom. An F-ratio is calculated for each main effect and each interaction 
effect, using the mean square for the error term in the denominator. 

The advantage of higher order factorial designs is the ability to examine how com­
binations of several variables influence behavior. Because treatment variables rarely 
exist in isolation, this approach can greatly enhance the construct validity and general­
ization of research results to practice. Unfortunately, such designs can also become 
overly complex, requiring large numbers of treatment groups and subjects. In addition, 
because the statistical analysis breaks down the total variance into so many compo­
nents, interaction tests for the ANOVA will generally have lower power. 

REPEATED MEASURES ANALYSIS OF VARIANCE 
Up to now we have discussed the analysis of variance only as it is applied to completely 
randomized designs. These designs, where subjects are randomly assigned to treatment 
groups, are also called between-subjects designs because all sources of variance represent 
differences between subjects (within a group and between groups). Clinical investiga­
tors, however, often use repeated factors to evaluate the performance of each subject 
under several experimental conditions. The repeated measures design is logically 
applied to study variables where practice or carryover effects are minimal and where 

tt5ee Tables 21.6 and 21.7 in the next chapter for results of multiple comparison tests for the two-way analy­
sis of variance shown in Table 20.3. 
l:tThese interactions are illustrated in Figure 10.6 in Chapter 10. 
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differences in an individual's performance across treatment levels are of interest. This 
type of study can involve one or more independent variables. 

In a repeated measures design, all subjects are tested under k treatment conditions. 
The analysis of variance is modified to account for the correlation among successive 
measurements on the same individual. For this reason, such designs are also called 
within-subjects designs. The statistical hypotheses proposed for repeated measures 
designs are the same as those for independent samples, except that the means represent 
treatment conditions rather than groups. 

The statistical advantage of using repeated measures is that individual differences 
are controlled. When independent groups are compared, it is likely that groups will dif­
fer on extraneous variables and that these differences will be superimposed on treat­
ment effects; that is, both treatment differences and error variance will account for 
observed differences between groups. With repeated measures designs, however, we 
have only one group, and differences between treatment conditions should primarily 
reflect treatment effects. Therefore, error variance in a repeated measures analysis will 
be smaller than in a randomized experiment. Statistically, this has the effect of reducing 
the size of the error term in the analysis of variance, which means that the F-ratio will 
be larger. Therefore, the test is more powerful than when independent samples are used. 

Single-Factor Repeated Measures Designs 

Example 
The simplest repeated measures design involves one independent variable, where all 
levels of treatment are administered to all subjects. To illustrate this approach, let us 
consider a single-factor experiment designed to look at differences in isometric elbow 
flexor strength with the forearm in three positions: pronation, neutral and supination. 
The independent variable, forearm position, has three levels (k = 3). Logically, this 
question warrants a repeated measures design, where each subject's strength is tested 
in each position (see Figure 20.8). 

In a repeated measures design, we are interested in a comparison across treatment 
conditions within each subject. It is not of interest to look at averaged group performance 
at each condition. Therefore, statistically, each subject is considered a unique block in 
the design. We can represent the design diagrammatically as shown in Figure 20.9, with 

Study 
Sample 
N = 9  

X Elbow 
Strength 

X Elbow 
Strength 

X Elbow 
Strength 

FIGURE 20.8 One-way repeated measures design for comparison of elbow flexor strength in three 
forearm positions. Although the diagram shows a consistent sequence, the order of elbow positions can 
be randomly or systematically varied. 
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FIGURE 20.9 Conceptual format of a one-way repeated measures design, showing how "subjects" 
becomes a factor in the analysis. 

rows corresponding to subjects (n = 9), and columns representing experimental condi­
tions. Note that this diagram resembles a two-way factorial design, with forearm posi­
tion as one independent variable and "subjects" as the other. Using this interpretation, 
each cell in the design has a sample size of n = 1 .  Each individual subject is considered 
a separate level of the independent variable subjects. 

Using the format of a two-way analysis, the repeated measures analysis of vari­
ance will look at the main effect of forearm position, the main effect of subjects, and the 
interaction between these two factors. Because each cell in the design has only one 
score, there can be no variability within a cell. Therefore, the error term for this analy­
sis is actually the interaction between subjects and treatment; that is, interaction reflects 
the inconsistency of subjects across the levels of treatment. This interaction represents 
the variance that is unexplained by the treatment variable and will serve as the denom­
inator for the F-ratio. 

Degrees of Freedom 
The total degrees of freedom associated with a repeated measures design will equal one 
less than the total number of observations made, or nk - 1. In our example, 
dft = (9)(3) - 1 = 26. 

As in other analyses, the number of degrees of freedom associated with the main 
effects will be k - 1 for the independent variable, and n - 1 for subjects. The degrees 
of freedom for the error term are determined as they are for an interaction, so that 
dfe = (k - 1)(n - 1). Table 20.4C shows these values in a summary table for the cur­
rent example. 
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TABLE 20.4 RESULTS OF A ONE-WAY REPEATED MEASURES ANALYSIS 
OF VARIANCE: ELBOW FLEXOR STRENGTH TESTED IN THREE 
FOREARM POSITIONS (N = 9) 

A. DATA 
Pronation Neutral Supination 

Mean Scores 1 7.3 27.56 29. 1 1  

B .  OUTPUT 
Mauchly's Test of Sphericity 

Epsilon f) 
Within 0 Greenhouse-
Subjects Effect Mauchly's W Chi-Square df Sig. Geisser H uynh-Feldt 

POSITION .664 2.861 2 .239 

Tests of Within-Subjects Effects 
Measure: STRENGTH 
Sphericity Assumed 

Sum of 
Source Squares df Mean Square F 

POSITION 736.889 2 368.444 50.338 

Error 1 1 7 . 1 1 1  1 6  7.31 9 

Tests of Between-Subjects Effects 

Measure: STR ENGTH 

Sum of 
Source Squares df Mean Square 

Error 2604.000 8 325.500 

F 

.749 .883 

Sig. 

.000 

Sig. 

NOTE: Portions of the output from this SPSS analysis, which do not influence interpretation of data, have been 
omitted for clarity. 

C. SUMMARY TABLE FOR RESEARCH REPORT 

Source ss df MS F p 
Subjects 0 2604.00 8 325.50 

Position 736.89 2 368.44 50.34 @) .000 

Error 1 1 7 . 1 1 1 6  7.32 

0 Mauchly's Test of Sphericity is used to determine if adjustments are needed to degrees of freedom for the 
repeated measure. Many statistics are converted to familiar values to determine their associated probabilities. 
In this case, Mauchly's W is converted to chi-square for this purpose. 

8 Two versions of epsilon are used for the adjustment of p. In this instance, they are not applied because the 
sphericity test is not significant. 

@ The repeated measure of Forearm Position is significant (p < .001 ) . 
0 The effect of "subjects" as a source of variance is presented as "Between-Subjects Effects." The error term in 

this analysis is the Subjects effect. No F value is generated for this effect, but could be calculated by dividing 
sum of squares by mean square (F = 8.00) .  



The F Statistic 

CHAPTER 20 • Comparing More than Two Means: Analysis of Variance 471 

The sums of squares for the treatment effect and the error effect are divided by their 
associated degrees of freedom to obtain the mean squares. These mean square values 
are then used to calculate the F-ratio for treatment according to 

MSA 
FA = _ __:_::_ MSAxS (20.6) 

where MSA is the mean square for the treatment variable, and MSAxs is the mean 
square for the interaction of treatment and subjects, or the error term. For the data in 
Table 20.4, 

F = 368.44 
= 50.34 

7.32 

We can calculate an F-ratio for the effect of subjects, using Fs = MSsl MSAxs; however, 
this is not a meaningful test. We expect subjects to differ from each other, and it is gen­
erally of no experimental interest to establish that they are different. The F-ratio for sub­
jects is not given in most computer printouts (Table 20.48), and this effect is generally 
ignored in the interpretation of data.§ §  

The critical value for the F-ratio for treatment is located in Appendix Table A.3, 
using the degrees of freedom for treatment (d fb) and the degrees of freedom for the 
error term (d fe). Therefore, the critical value for this effect will be (.osl A<2•16> = 3.63. The 
calculated F-ratio exceeds this critical value and, therefore, is significant. The null 
hypothesis for treatment effects is rejected. The summary table shows that this differ­
ence is significant at p < .001 (Table 20.4$). We conclude that elbow flexor strength 
does differ across forearm positions. It will be appropriate at this point to perform a 
multiple comparison test on the three means to determine which forearm positions are 
significantly different from the others.*** 

Variance Assumptions with Repeated Measures Designs 
We have previously discussed the fact that the analysis of variance is based on an 
assumption about the homogeneity of variances among treatment groups. This 
assumption is also made with repeated measures designs; however, with repeated 
measures we cannot examine variances of different groups because only one group is 
involved. Instead, the variances of interest reflect difference scores across treatment 
conditions within a subject. For example, with three repeated treatment conditions, 
A1, Az, A3, we will have three difference scores: A1 - A2, A1 - A3, and A2 - A3. When 
used in this way with repeated measures, the homogeneity of variance assumption is 

§ !i'fhe one-way repeated measures ANOVA is used to generate MS values for calculation of models 2 and 3 
of the ICC reliability coefficient (see Chapter 26). For interpretation of the ICC, it is useful to determine that 
the between-subjects effect is significant. These computations are easily done by hand if they are not gener­
ated in the computer analysis. 
***See Table 21.7 in the next chapter for the multiple comparison for the repeated measures analysis of vari­
ance shown in Table 20.4. 
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called the assumption of sphericity, which states that the variances within each of 
these sets of difference scores will be relatively equal and correlated with each other. 

We have also established that reasonable departures from the variance assumption 
would not seriously affect the validity of the analysis of variance, except in situations 
where sample sizes were grossly unequal. One might think, then, that violations of the 
variance assumption would be unimportant for repeated measures, where treatment 
conditions must have equal sample sizes. This is not the case, however. Because the 
repeated measures test examines correlated scores across treatment conditions, it is 
especially sensitive to variance differences, biasing the test in the direction of Type I 
error. In other words, the repeated measures test is considered too liberal when vari­
ances are not correlated, increasing the chances of finding significant differences above 
the selected a level. 

To address this concern, most computer programs will run a repeated measures 
ANOVA in two different ways, using multivariate and univariate statistics. Multivari­
ate tests are preferable in that they do not require the assumption of sphericity. Several 
multivariate tests are usually run simultaneously, with unfamiliar names such as 
Piallai's Trace, Wilks' Lambda, Hotelling's Trace and Roy's Largest Root. Because these tests 
are all based on different procedures, they are usually converted to a common reference, 
an F-ratio. These tests examine all possible sets of difference scores, and determine if 
there is a significant difference among them. If they are significant, multiple compari­
son tests should follow. Because researchers are generally less familiar with these mul­
tivariate tests, they do not tend to be reported, but they appear prominently in 
computer output 

The second approach, used more often in clinical research, involves the standard 
repeated measures F-test, but with an adjustment to the value of p to account for possi­
ble violations of sphericity. A test called Mauchly's Test of Sphericity (Table 20.4B) is 
performed first to determine if the adjustment is needed.+++ If the sphericity test is sig­
nificant, correction is achieved by decreasing the degrees of freedom used to determine 
the critical value of F, thereby making the critical value larger. If the critical value is 
larger, then the calculated value of F must be larger to achieve significance. This com­
pensates for bias toward Type I error by making it harder to demonstrate significant dif­
ferences. Note that there is no difference in how the ANOVA is run, and the generated 
F-ratio with its associated degrees of freedom for the AN OVA remains unchanged. Only 
the probability associated with that F will change. This adjustment is only relevant, 
however, when the F-ratio is significant 

The degrees of freedom for the F-ratio are adjusted by multiplying them by a cor­
rection factor given the symbol epsilon (Table 20.4$). Two different versions of epsilon 
are used: the Greenhouse-Geisser correction4 and the Huynh-Feldt correction.5 
The Greenhouse-Geisser correction is usually considered first If it results in a signifi­
cant F, agreeing with the original analysis, then the probability associated with the 
Greenhouse-Geisser correction is used. When it does not result in a significant outcome, 
disagreeing with the original analysis, then the Huynh-Feldt correction is applied. 

ttf.Jhe power of Mauchly's test will vary with sample size.3 With small samples it loses power. With large 
samples it may be significant even though the impact of violating the sphericity assumption is minor. 
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These correction factors are shown in Table 20.48 for the one-way repeated measures 
analysis for the comparison of elbow flexor strength across three forearm positions. 
Because the test for sphericity is not significant (p = .239), we are not concerned about 
this adjustment. If the test for sphericity had been significant, however, the probabili­
ties generated in the computer analysis for the ANOVA table would be the corrected 
ones. 

Multifactor Repeated Measures Designs 
The concepts of repeated measures analysis can also be applied to multifactor experi­
ments. Such designs can include all repeated factors or a combination of repeated and 
independent factors. When all factors are repeated, the design is referred to as a 
repeated measures or within-subjects design. When a single experiment involves at least 
one independent factor and one repeated factor, the design is called a mixed design. We 
present the general concepts behind these types of analyses and describe the format for 
presentation of results. We base our examples on a two-factor design, although these 
concepts can be easily expanded to accommodate more complicated designs. 

Within-Subjects Designs 
With two repeated factors, the design is an extension of the single-factor repeated 
measures design. Suppose we redesigned our previous example to study isometric 
elbow flexor strength with the forearm in three positions and with the elbow at two dif­
ferent angles. We would then be able to see if the position of the elbow had any influ­
ence on strength when combined with different forearm positions. In this 3 X 2 
repeated measures design, if n = 8, each subject would be tested six times, for a total 
of 48 measurements. 

With two repeated factors, variance is partitioned to include a main effect for 
subjects and for each treatment variable, as well as for subject by treatment interac­
tions (forearm X subjects, elbow X subjects, and forearm X elbow X subjects). These 
interactions represent the random or chance variations among subjects for each treat­
ment effect. The mean squares for these interaction terms are used to calculate an 
error term for each repeated main effect, as shown in Table 20.5. The assignment of 
degrees of freedom for each of these variance components follows the rules used for 
the regular two-way analysis of variance: for each main effect df = k - 1; for each 
interaction effect df = (A - 1)(B - 1). 

Each treatment effect in this study (forearm, elbow, and forearm X elbow) is tested 
by the ratio F = MS/ MSe, where the error term is the interaction of that particular 
treatment effect with subjects. As shown in Table 20.5, each repeated factor is essentially 
being tested as it would be in a single-factor experiment, with its own error term. By 
separating out an error component for each treatment effect, we have created a more 
powerful test than we would have with one common error term; that is, the error com­
ponent is smaller for each separate treatment effect than it would be with a combined 
error term. Therefore, F-ratios tend to be larger. In this example, only the main effect of 
forearm position is significant (p = .013). 

Once again, researchers will generally ignore ratios for the effect of subjects {Table 
20.58). The effect of subjects is only important insofar as it is used to determine the 
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TABLE 20.5 SUMMARY TABLE FOR A TWO-FACTOR REPEATED MEASURES 
ANALYSIS OF VARIANCE: ELBOW FLEXOR STRENGTH WITH 
VARIATIONS IN THREE FOREARM POSITIONS AND TWO ELBOW 
POSITIONS (N = 8) 

Tests of Within-Subjects Effects 

Measure: STRENGTH 
Sphericity Assumed 

Source 

ELBOW 

Error(ELBOW) 0 
FOREARM 

Error(FOREARM) 

ELBOW * FOREARM 

Error(ELBOW*FOREA R M) 

Sum of 
Squares 

368.521 

231 9.979 

1 1 45. 1 67 

1 31 9.833 

27. 1 67 

1 587.833 

Mean 
df Square 

1 368.521 

7 331 .426 

2 572.583 

1 4  94.274 

2 1 3.583 

1 4  1 1 3.417 

Tests of Between-Subjects Effects f) 

Measure: STRENGTH 

Sum of Mean 
Source Squares df Square 

F 

1 . 1 1 2  

6.074 

. 1 20 

F Sig. 

I ntercept 37688.021 1 37688.021 268.521 .000 
Error 982.479 7 1 40.354 

Sig. 

.327 

.013 

.888 

0 Each repeated measures effect is tested against its own error term, wh1cn is the interaction between that 
effect and the effect of subjects 

8 The between-subjects effect is often eliminated from the summary table in a research report. It does not pro­
vide important information to the interpretation of the main or interaction effects, but is used in the determi­
nation of the error term for each effect. 

Note: Some portions of the SPSS computer printout have been omitted for clarity. 

error terms for the treatment effects. This effect will often be omitted from the sum­
mary table. 

Mixed Designs 
In a two-factor analysis, where only one factor is repeated, the overall format for the 
analysis of variance is a combination of between-subjects (independent factors) and 
within-subjects (repeated factors) analyses. In a mixed design, the independent factor is 
analyzed as it would be in a regular one-way analysis of variance, pooling all data for 
the repeated factor. The repeated factor is analyzed using techniques for a repeated 
measures analysis (see Table 20.6). 
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TABLE 20.6 SUMMARY TABLE FOR TWO-WAY (3 x 3) ANALYSIS OF VARIANCE 

A. DATA 

Pronation 
Supination 
Neutral 

WITH ONE REPEATED FACTOR (MIXED DESIGN): ELBOW FLEXOR 
STRENGTH WITH VARIATIONS OF ICE AND FOREARM POSITION (N = 24) 

Mean Scores 

Ice Pack Placebo 
(n = 8) e (n = 8)• 

1 7 .38 20.00 
30.25 33.88 
28. 1 3  26.25 

Control 
(n = 8) l. 

23.63 
35.88 
45.38 

50.----------------------------, 

E, / , ..- � � � � ......__., c: 30 / .,L--;· ��'-� f-- lee Pack , " "  . . .  · · · · ''"''.:.·�:.:.� 0 
� <··· · � 20 r-- Placebo -wS�-------------------1 

� r-- Control __,,.'-. ---------------------1 
.c 
w 1 0 +---------------------------� 

0 +-------.---------.--------.� 
Pronation Supination Neutral 

B. OUTPUT 

0 

Tests of Within-Subjects Effects 
Measure: STRENGTH 
Sphericity Assumed 

Sum of 
Source Squares df Mean Square 

FOREARM 2686.778 2 1 343.389 
FOREARM * ICE 750.389 4 1 87.597 
Error(FOREARM) 1 720. 1 67 42 40.956 

Tests of Between-Subjects Effects 
Measure: STRENGTH 

Sum of 
Source Squares df Mean Square 

F Sig. 

32.801 .000 
4.580 .004 

F Sig. 

ICE 1 31 5.528 2 657.764 3.432 .051 
Error 4025.083 21  1 9 1 .671 

C. SUMMARY TABLE FOR RESEARCH REPORT 

Source of Variance df ss MS F p 
Between subjects f) 

Ice 2 1 3 1 5.53 657.76 3.432 .051 
Error 2 1  4025.08 1 9 1 .67 

Within subjects 0 
Forearm 2 2686.78 1 343.39 32.80 .000 
Ice x Forearm 4 750.39 1 87.60 4.58 .004 
Error 42 1 720. 1 7  40.96 

0 The within-subjects effects includes the repeated measure and the interaction of the repeated measure with 
the independent measure. 

f) The between-groups effect is computed for the independent measure, ice. This section is a equivalent to a 
one-way analysis of variance. 

Note: This analysis is run in SPSS using the General Linear Model (GLM). Portions of the printout have been 
omitted for clarity. 
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For example, suppose we wanted to look at the effect of ice applied to the biceps 
brachii on elbow flexor strength in three forearm positions. Ice is an independent fac­
tor, and forearm position is a repeated factor. Assume we have three levels of ice (ice 
pack, placebo and control), and three levels of forearm position, as before. We randomly 
assign eight subjects (n = 8) to each ice group, for a total of 24 subjects (N = 24), each 
tested in three forearm positions. 

The first part of the analysis for this study is the within-subjects analysis, or the 
analysis of all factors that include the repeated factor (Table 20.60). This section lists the 
main effect for forearm position, the interaction between forearm position and ice, and 
a common error term to test these two effects. In this example, the main effect of fore­
arm position is significant (p < .001), as is the interaction effect (p = .004). 

The second part of the analysis addresses the independent factor, ice. Each level of 
this factor is assigned to eight different subjects. Comparison across these groups is a 
between-subjects analysis, shown in Table 20.68. This is actually a one-way analysis of 
variance for the effect of ice, with two sources of variance: the between-groups effect 
(ice) and the within-groups variance, or error term. In this example, there is also signif­
icant difference among the three levels of ice (p = .051). 

COMM ENTARY 

Beyond Analysis of Variance 

The analysis of variance provides researchers with a statistical tool that can adapt to 
a wide variety of design situations. We have covered only the most common appl i ­
cations in th is  chapter. Many other designs, such as nested designs, randomized 
blocks and studies with unequal samples, require mathematical adjustments i n  the 
ana lysis that are too complex for us to cover here. Fortunately, computer packages 
are readi ly avai lable for perform ing analyses of variance, and are genera l ly  flexible 
enough to accommodate al l  the design variations that researchers m ight requi re in 
c l in ical research. The general l inear model (GLM) is usua l ly  used to accommodate 
the variety of design options for the ANOVA. 

The t-test and ana lysis of variance are based on several assumptions about the 
nature of data. We have reviewed these assumptions in several places in this and 
previous chapters. In general ,  these tests are robust to violations of these assump­
tions (with the exception of repeated measures designs), so that they can be used 
with confidence in most research situations; however, when c l i n ical experiments are 
performed with very smal l  samples, the data may violate these assumptions suffi­
c iently to warrant transforming the data to a different sca le of measurement that bet­
ter reflects the appropriate characteristics for statistical ana lysis (see Appendix D), or 
it may be appropriate to use nonparametric statistics that do not make the same 
demands on the data. In Chapter 22 we describe several nonparametric tests that can 
be used in place of the t-test and the single-factor ana lysis of variance. 

When the analysis of variance results in a sign ificant fi nding, researchers are 
usual ly i nterested i n  pursuing the ana lysis to determine which specific levels of the 
independent variables are different from each other. Multiple comparison tests, 
designed specifical ly for th is purpose, are described in the next chapter. At that time 
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we look at some of the data presented here, and show how those data can be ana­
lyzed further us ing mul ti ple  comparison techn iques. 

As we cont inue to discuss statistical tests in subsequent chapters, many readers 
wi l l  f ind it helpfu l to refer to the chart provided in Appendix B, which presents an 
overview of statist ical tests and criteria for choos ing a part icu lar  test for analyz ing 
d ifferent types of data and designs. 
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CHAPTER 2 1  

Multiple Comparison Tests 

When an analysis of variance results in a significant F-ratio, the researcher is justified in 
rejecting the null hypothesis and concluding that not all k population means are equal; 
however, this outcome tells us nothing about which means are significantly different 
from which other means. In this chapter we describe the most commonly used statisti­
cal procedures for deciding which means are significantly different. These procedures 
are called multiple comparison tests. 

Several multiple comparison procedures are available, most given names for the 
individuals who developed them. Each test involves the rank ordering of means and 
successive contrasts of pairs of means. The pairwise differences between means are 
tested against a critical value to determine if the difference is large enough to be signif­
icant. The major difference between the various tests lies in the degree of protection 
offered against Type I and Type II error. A conservative test will protect against Type I 
error, requiring that means be far apart to establish significance. A more liberal test will 
find a significant difference with means that are closer together, thereby offering greater 
protection against Type II error. 

Most multiple comparison procedures are classified as post hoc because specific com­
parisons of interest are decided after the analysis of variance is completed. These are con­
sidered unplanned comparisons, in that they are based on exploration of the outcome. 
Therefore, these tests are most useful when a general alternative hypothesis has been pro­
posed. We will describe the three most commonly reported post hoc multiple comparison 
procedures: Tukey's honestly significant difference method, the Newman-Keuls test, and 
the Scheffe comparison. Other post hoc tests used less often include Duncan's Multiple 
Range Testl and Fisher's Least Significant Difference.2 These tests are generally considered 
too liberal, resulting in too great a risk of Type I error (see Figure 21.1). 

Other multiple comparison tests are classified as a priori, or planned compar­
isons, because specific contrasts are planned prior to data collection based on the 
research rationale. Technically, these comparisons are appropriate even when an F-test 
is not significant, as they are planned before data are collected, and therefore, the over­
all null hypothesis is not of interest. Although several planned comparison tests are 
available, we will describe one commonly used method called the Bonferroni t-test.* 

*Other types of planned comparisons include orthogonal contrasts, which allow for comparison of specific 
combinations of means, and Dunnett's test/ which focuses on comparison of a control group with each of sev­
eral experimental groups. 

479 
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Duncan Multiple Range Test 

Newman-Keuls Method 

Tukey's Honestly Significant Difference 

Bonferronl t-test 

FIGURE 2 1 .1 List of multiple comparison procedures, sorted according to power. 

As some statistical computer packages do not include multiple comparison tests for 
the analysis of variance, it is useful to be able to perform these tests by hand. Fortu­
nately, most multiple comparison procedures are simple enough to be carried out effi­
ciently with a hand calculator once the analysis of variance data are obtained. 

THE TYPE I ERROR RATE: PER COMPARISON VERSUS FAMILY 
At the end of Chapter 19 we discussed the inappropriate use of multiple t-tests when 
more than two comparisons are made within a single set of data. This issue is based on 
the desired protection against Type I error in an experiment, which is specified by a. At 
a = .05, we limit ourselves to a 5% chance that we will experience the random event of 
finding a significant difference when none exists. We take a 5% risk that we will be in 
error if we say that group means are different for any single comparison. We must dif­
ferentiate this per comparison error rate (ape) from the situation where a is set at .05 
for each of several comparisons in one experiment. Although it is true that a = .05 for 
each individual comparison, the potential cumulative error for the set of comparisons 
is actually greater than .05. This cumulative probability has been called the familywise 
error rate (aFW) and represents the probability of making at least one Type I error in a 
set or "family" of statistical comparisons.t 

tSome statistical references use the term experimentwise error rate to indicate the error for all effects within an 
experiment, whereas familywise error rate is used to indicate specific sets of effects, such as main effects and 
interaction effects in an analysis of variance.4 
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The Type I error rate for a family of comparisons, where each individual compari­
son is tested at a = .05, is equal to 

apw = 1 - (1 - ar (21.1) 

where c represents the total number of comparisons. The maximum number of pairwise 
contrasts for any set of data will be k(k - 1)/2. If we want to compare three means, test­
ing each comparison at a = .05, we will perform c = 3(3 - 1)/2 = 3 comparisons. 
Therefore, 

ll'FW = 1 - (1 - .05)3 = 1 - (.95)3 
= . 143 

This means that if we perform three t-tests and find three significant differences, we risk 
a greater than 14% chance that at least one of these significant differences occurred by 
chance. This exceeds the generally accepted standard of 5% risk for Type I error. 

As the number of comparisons increases, so does the probability that at least one 
significant difference will occur by chance. For example, with ape set at .05, tests 
involving four, five and six means will result in the following familywise probabilities 
of Type I error: 

(Four means: 6 comparisons) 

(Five means: 10 comparisons) 

(Six means: 15 comparisons) 

ll'FW = 1 - (1 - .05)6 
= .26 

ll'FW = 1 - (1 - .05)10 
= .40 

ll'FW = 1 - (1 - .05)15 
= .54 

Clearly, the likelihood of finding significant differences among a set of means, even 
when Ho is true for all comparisons, will be extremely high as the number of compar­
isons increases. 

Several of the multiple comparison procedures we describe base their critical val­
ues on per comparison error rates; others base their Type I error rate on the entire fam­
ily of comparisons. There is no consensus about preferences for one approach over the 
other. Use of a per comparison error rate will result in greater statistical power, but with 
the potential for more Type I errors. Conversely, use of the familywise error rate will 
produce fewer Type I errors, but will result in fewer significant differences. Researchers 
must determine if Type I or Type II error is of greater concern in a particular study and 
apply statistical tests accordingly. In most cases, one hopes to strike a balance between 
the two types of statistical error. 

One-Tai led Versus Two-Tai led Tests 
Post hoc comparisons are usually tested using two-tailed probabilities. Where specific 
contrasts are not specified in advance, it follows that directions of difference cannot be 
predicted. One-tailed tests can be performed for planned comparisons; however, unless 
evidence in favor of directional hypotheses is quite strong, it is generally statistically 
safer to perform two-tailed tests. Contrasts involving two-tailed tests will always be 
based on the absolute difference between means. One-tailed tests must result in a sta­
tistical ratio that supports the directional hypothesis. 
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STATISTICAL RATIOS FOR MULTIPLE COMPARISON TESTS 
To illustrate the concept of multiple comparison tests, we will use a hypothetical study 
introduced in Chapter 20, comparing the effects of ultrasound (US), ice and friction 
massage for relieving pain in 44 patients with elbow tendonitis. The four group means, 
shown in Table 21 .1A, represent the change in pain-free range of motion for three treat­
ment groups and a control group. Eleven subjects were tested in each group. The plot 
of means shows how these group means are distributed. 

The null hypothesis for this study states that no differences exist among the four 
group means: 

Ho: ILl = /L2 = /L3 = IL4 

TABLE 21 .1 DATA FOR MULTIPLE COMPARISON TESTS: CHANGE IN PAINFREE 
ELBOW ROM FOLLOWING TREATMENT FOR TENDONITIS (N = 44) 

A. GROUP MEANS (in degrees) 

1 .  Ultrasound X1 = 44. 1 8  

2 .  Ice X2 = 45.27 
3. Massage X3 = 35.27 
4. Control � = 24. 1 8  

n1 = 1 1  

n2 = 1 1  

n3 = 1 1  

n4 = 1 1  

50 

::;,; 40 
0 
a: 

·� 30 
"' c "' 6 20 
c "' "' 
::;,; 1 0  

0 

.. ........... ........._ """"' '...... .... 

us Ice Massage Control 

B. ANALYSIS OF VARIANCE 

Sum of Mean 
Squares df Square F Sig. 

Between groups 31 58.09 3 1 052.70 1 1 .89 .000 

Within groups 3541 .64 40 88.54 
(Error) 

C. TABLE OF MEAN DIFFERENCES 

4 3 1 2 

Control Massage Ultrasound Ice 
Means 24. 18  35.27 44. 1 8  45.27 

4 24. 18 - 1 1 .09 20.00 21 .09 

3 35.27 - 8.91 1 0 .00 

1 44.18 - 1 .09 
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The analysis of variance for these data, shown in Table 21.1B, is significant (p < .001), 
and it is now of interest to examine individual differences among means. 

The process of testing differences among several means is fairly consistent for all 
multiple comparison procedures. In each test, means are first arranged in ascending 
order of size, and differences between pairs of means are obtained, as shown in Table 
21.1C. This table shows the absolute differences between all pairs of means, using a tri­
angular format. With k = 4, there will be a total of 4(4 - 1)/2 = 6 comparisons. The 
entries in the body of the table are the pairwise mean differences. Values are not entered 
below the diagonal to avoid redundancies. Each pairwise comparison, or contrast, is 
tested against a minimum significant difference (MSD). If the absolute difference 
between a pair of means is equal to or greater than the minimum significant difference, 
then the contrast is considered significant. 

IX1 - Xzl 2:: Minimum significant difference 

If the pairwise difference is smaller than the minimum significant difference, the means 
are not significantly different from each other. 

Calculation of the minimum significant difference is based on the error mean 
square, MSe, taken from the analysis of variance, and a critical value taken from a sta­
tistical table. The MSe reflects the degree of variance within groups (between subjects). 
Logically, the greater the variance within groups, the less likely we will see a signifi­
cant difference between means. Critical values for the MSD are used differently, 
depending on the number of means being compared and the type of error rate used 
(per comparison or familywise). The relevant critical values are located according to 
the degrees of freedom associated with the error term, dfe, in the analysis of variance.+ 
For the example we are using, the error mean square is 88.54, with 40 degrees of free­
dom (see Table 21.18). 

TUKEY'S HON ESTLY SIGNIFICANT DIFFERENCE (HSD) 
Tukey developed one of the simplest multiple comparison procedures, which he called 
the honestly significant difference (HSD) method.5 Tukey's procedure sets a family­
wise error rate, so that a identifies the probability that one or more of the pairwise com­
parisons will be falsely declared significant. Therefore, this test offers generous 
protection against Type I error. 

Tukey's HSD test is calculated using the studentized range statistic, given the 
symbol q. Critical values of q are found in Appendix Table A.6. The q statistic is influ­
enced by the overall number of means that are being compared. At the top of Table A.6, 
the number or "range" of means being compared is given the symbol r.§ Logically, as the 
number of sample means increases, the size of the difference between the largest and 

tit is not uncommon to find that the exact value for the error degrees of freedom is not listed in these tables. 
In that case, it is usually sufficient to refer to the closest value for degrees of freedom for an approximate crit­
ical value. To be conservative, the next lowest value for degrees of freedom should be used. 
§In this case, r stands for range. This symbol should not be confused with the use of the r for the correlation 
coefficient. 
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smallest means will also increase, even when H0 is true. The q statistic provides a mech­
anism for adjusting critical values to account for the effect of larger numbers of means. 

Minimum Significant Difference 
The minimum significant difference for Tukey's HSD procedure is given by 

{MSe MSD = q\j ---;;- (21.2) 

where MSe is the mean square error, n is the number of subjects in each group (assum­
ing equal sample sizes**), and q is taken from Appendix Table A.6, for the desired level 
of a, d fe, and the number of means, r. For the example we are using, q = 3.79 for 
a = .05, r = 4, and d fe = 40. Therefore, 

MSD = 3 79 (88.54 = 10 75 0 'J n- 0 

This minimum significant difference is compared with each pairwise mean difference 
in Table 21.2B. Absolute differences that are equal to or greater than this value are sig­
nificant. For example, the difference between the largest and smallest means (X2 - X4) 
is equal to 21 .09. This value exceeds the minimum significant difference and is, there­
fore, significant. To present these results in a clear format, an asterisk denotes those dif­
ferences that are significant in Table 21 .2B. According to these results, the three 
experimental groups are different from the control, but the treatment groups are not dif­
ferent from each other. 

A computer analysis of these data is presented in terms of homogeneous subsets of 
means (Table 21 .2C). In this output, each subset (listed in the same column) represents 
means that are not significantly different. Means that are listed in separate columns are 
significantly different from one another. These results show that the mean for the con­
trol group is significantly different from the three treatment means. 

N EWMAN-KEULS M ETHOD 
The Newman-Keuls (NK) test (sometimes called Student-Newman-Keuls test) is 
similar to the Tukey method, except that it uses a per comparison error rate.5 Therefore, 
a specifies the Type I error rate for each pairwise contrast, rather than for the entire set 
of comparisons. Overall, then, as the number of comparisons increases, the chances of 
committing a Type I error are greater using this procedure than using Tukey's test. 

••When samples are not of equal size, the harmonic mean of the sample size is used in calculations of the min­
k 

imum significant difference. The harmonic mean, n', is equal to---where k is the number of groups, and L(;) 
n is the sample size for each group. For example, if there are two groups, with n1 = 10 and n2 = 5, 
n'  = (_!_: !_) = 6.67. This procedure can be used with all multiple comparison tests. 

10 5 
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TABLE 21.2 SIGNIFICANT DIFFERENCES (*) FOR TUKEY'S HSD TEST (a = .05) 

A. MINIMUM SIGNIFICANT DIFFERENCE: 1 0.75 

B. TABLE OF MEAN DIFFERENCES 

Means 

4 24. 1 8  

3 35.27 

44. 1 8  

4 

Control 
24. 1 8  

3 

Massage 
35.27 

1 1 .09' 

C. OUTPUT: Homogeneous Subsets of Means 

2 

Ultrasound Ice 
44. 1 8  45.27 

20.00' 2 1 .09' 

8 .91  1 0.00 

1 .09 

Subset for alpha = .05 

GROUP N 1 2 

Tukey HSD Control 1 1  24. 1 8  

Massage 1 1  35.27 

us 1 1  44. 1 8  

Ice 1 1  45.27 

The Newman-Keuls method is also based on the studentized range q; however, val­
ues of q are used differently for each contrast, depending on the number of adjacent 
means, r, within an ordered comparison interval. To illustrate how this is applied, 
consider the four sample means for the tendonitis study, ranked in ascending size 
order: (4) Control, (3) Massage, (1) US, (2) Ice (see Figure 21 .2). If we compare the two 
smaller means, the comparison interval for Control - Massage includes two adjacent 
means. Therefore, r = 2 for that comparison. If we compare the largest and smallest 

r- 3 I r = 2  
f =  2 I 

4 3 1 2 
Control Massage Ultrasound Ice 
24. 1 8  35.27 44. 1 8  45.27 

I T r f =  3 
f =  2 

r= 4 

FIGURE 21.2 Comparison intervals for a set of four group means, arranged in size order. Based on data 
from Table 2 1 . 1 .  
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means, the interval for Control - Ice contains four adjacent means (4-3-1-2), and so 
r = 4. Similarly, if we compare means for Massage and Ice, the comparison interval 
contains three adjacent means (3-1-2), so r = 3. 

Therefore, a comparison interval represents the steps between ordered means for a 
given comparison. As shown in Figure 21.2, with four means we will have intervals of 
two, three, and four means. In contrast to Tukey's approach which uses one critical dif­
ference for all comparisons, the Newman-Keuls test will use a larger critical difference 
as r increases. This adjusts for the fact that larger differences are expected with a greater 
range of means, even when Ho is true. 

Minimum Significant Difference 
The minimum significant difference for the Newman-Keuls comparison is 

fMSe MSD = %J\j ----;;--- (21.3) 

where values of q(r) are obtained from Table A.6 for each comparison interval. For the 
example we are using, we find q for a = .05 and d fe = 40 for comparison intervals of 
r = 2, 3, and 4: 

%=2) = 2.86 

q(r=3) = 3.44 

q(r=4) = 3.79 

With MSe = 88.54 and n = 11, we find the corresponding minimum significant 
differences: 

{88.54 MSD (r = 2) = 2.86\j -----u--- = 8.11 

{88.54 MSD (r = 3) = 3.44\j -----u- = 9.76 

{88.54 MSD (r = 4) = 3.79\j -----u- = 10.75 

These minimum significant differences are compared with the appropriate mean differ­
ences in Table 21 .3B. Significant differences are noted with an asterisk. For example, the 
difference between means for Control and Ice is 21.09, which exceeds the critical differ­
ence 10.75 for r = 4. Therefore, these two means are significantly different. The differ­
ence between means for Massage and Ice is 10.00, which exceeds the critical difference 
9.76 for r = 3. These two means are also significantly different from each other. The dif­
ference between US and Ice is 1.09, which does not exceed the critical difference 8.11 for 
r = 2. These means are not significantly different. Of the six comparisons, five are sig­
nificant. This test demonstrates that the three experimental groups are different from 
the control, and US and Ice are different from massage. 
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TABLE 21 .3 SIGNIFICANT DIFFERENCES (*) FOR THE NEWMAN-KEULS TEST 
(a = .05) 

A. MINIMUM SIGNIFICANT DIFFERENCES: 

Comparison Intervals: r = 2 MSD = 8 . 1 1 

r = 3 MSD = 9.76 

r =  4 MSD = 1 0. 75 

B. TABLE OF MEAN DIFFERENCES 

4 3 

Control Massage 

Means 24. 1 8  35.27 

3 24. 18  - 1 1 .09" 
(r = 2) 

2 35.27 -

1 44. 1 8  

1 2 

U ltrasound Ice 

44. 1 8  45.27 

20.00" 21 .09" 
(r = 3) (r = 4) 

8.91 " 1 0.00" 

(r = 2) (r = 3) 

- 1 .09 

(r  = 2) 

C. OUTPUT: HOMOGENEOUS SUBSETS OF MEANS 

Subset for alpha = .05 

GROUP N 1 2 3 

Newman-Keuls Control 1 1  24. 1 8  

Massage 1 1  35.27 

us 1 1  44. 1 8  

Ice 1 1  45.27 

This result is also shown in Table 21.3C for subsets of means. Because the mean for 
the Control group is listed in a column by itself, it is different from all other means. The 
same is true for the mean for the Massage group. The means for US and Ice are listed in 
the same column, indicating that they are not different from each other. 

The reader may note that the minimum difference for the Newman-Keuls test with 
r = 4 is the same as the minimum difference used for Tukey's test (in this case 10.75). 
The Tukey procedure uses this one minimum difference for all comparisons, whereas 
the Newman-Keuls test adjusts the minimum differences for smaller comparison inter­
vals. Therefore, the minimum differences will be lower for some contrasts using the 
Newman-Keuls method. Consequently, the Newman-Keuls test can result in more sig­
nificant differences (as it did here), and is the more powerful of the two comparisons; 
however, because the Newman-Keuls procedure does not control for the familywise 
error rate, it will produce a greater number of Type I errors than the Tukey method over 
the long run. 
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SCH EFFE COMPARISON 
The Scheffe comparison is the most flexible and most rigorous of the post hoc multi­
ple comparison tests.6 It is based on the familiar F-distribution. It is a conservative 
test because it adopts a familywise error rate that applies to all contrasts. This pro­
vides strong protection against Type I error, but it also makes the procedure much 
less powerful than the other tests we have described. Scheffe has recommended that 
a less stringent level of significance be used, such as a = . 10, to avoid excess Type II 
error? 

Minimum Significant Difference 
The minimum significant difference for the Scheffe comparison is given by 

MSD = V(k - 1)F)2�5e (21.4) 

where k is the total number of means involved in the set of comparisons, and F is the 
critical value for dfb and dfe obtained from Appendix Table A.3 (not the calculated 
value of F from the ANOVA). For the example we are using, k = 4 and F = 2.84 for 
3 and 40 degrees of freedom at a = .05. Therefore, 

MSD = V(4 - 1)(2.84))2(8854) = 11.71 
1 1  

All differences between means must meet or exceed this value to be  significant. There­
fore, as denoted by asterisks in Table 21 .4B, this analysis results in two significant com­
parisons (fewer than with the Newman-Keuls or Tukey method), demonstrating the 
lower power associated with the Scheffe comparison. According to this test, the Control 
and Massage groups are not significantly different from each other, where they were 
considered significantly different with the other tests.tt 

BON FERRONI  t-TEST 
Researchers often designate specific contrasts of interest prior to data collection. These 
contrasts usually relate to theoretical expectations of the data. When comparisons are 
planned in advance and when they are relatively limited in number,:f::t a priori tests can 

�ote that the Control group is significantly different from US and Ice, but not from Massage. However, Mas­
sage is not different from US and Ice. This overlap may seem illogical. It occurs because of variance compo­
nents from the different variables that are not independent of each other. This result suggests that the Scheffe 
comparison is not the most useful approach to understand the relationships in these data. 
ttGlass defines a small number of comparisons as less than k(k - 1)/4.8 
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TABLE 21 .4 SIGNIFICANT DIFFERENCES (*) FOR THE SCHEFFE COMPARISON 
(a = .05) 

A. MINIMUM SIGNIFICANT DIFFERENCE: 1 1 .71 

B. TABLE OF MEAN DIFFERENCES 

4 3 2 

Control Massage Ultrasound Ice 
Means 24. 1 8  35.27 44.1 8 45.27 

4 24.1 8  1 1 .09 2o.oo· 21 .09" 

3 35.27 8.91 0.00 

44.18 1 .09 

C. OUTPUT: Homogeneous Subsets of Means 

Subset for alpha = .05 

GROUP N 1 2 

Scheffe Control 1 1  24. 1 8  

Massage 1 1  35.27 35.27 

us 1 1  44. 1 8  

Ice 1 1  45.27 

be used. The rationale for valid application of planned comparisons must be estab­
lished before data are collected, so that the choice of specific hypotheses cannot be influ­
enced by the data. Because the researcher is not necessarily interested in all possible 
contrasts, it is actually unnecessary to test the overall null hypothesis with the analysis 
of variance. Regardless of whether the ANOVA demonstrates a significant F-ratio, 
planned comparisons can be made. 

The Bonferroni comparison (also called Dunn's multiple comparison procedure) is 
a planned comparison, using a familywise error rate that is the sum of the per compar­
ison significance levels. Therefore, aFW is dependent on the number of planned com­
parisons, c: 

(21.5) 

For example, with four planned comparisons, each tested at a = .01, the probability of 
one or more Type I errors for the entire family of contrasts is not greater than a = .04. 
Essentially, the procedure splits a evenly among the set of planned contrasts, so that 
each contrast is tested at aFW I c. Therefore, if a researcher wants an overall probability 
of .05 for a set of four contrasts, each individual comparison will have to achieve signif­
icance at .05 I 4, or p = .013. This process of adjusting a, called Bonferroni's adjust­
ment (or correction), is used as a protection against Type I error. 
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The Bonferroni test is based on Student's t-distribution, with adjustments made for 
the number of contrasts being performed within a set of data. To facilitate these adjust­
ments, a special table of critical values has been developed for Bonferroni's t (given the 
symbol t(B)).9 

Minimum Significant Difference 
The minimum significant difference for the Bonferroni test can be computed using 

MSD = t(B)� (21.6) 

where t(B) is taken from Appendix Table A.7 for aFW, dfe, and c, where c is the total 
number of comparisons in the experiment. Continuing with the example we have 
been using, for six comparisons performed at aFW = .05, with dfe = 40, we find 
t(B) = 2.77. Therefore, 

MSD = 2.77�2(8854) 
= 11.11 

11 

All pairwise differences are compared with this one minimum significant difference, as 
shown in Table 21.5. In this case, three of the six comparisons are significant. According 
to these results, the three intervention groups are different from the control. 

TABLE 21 .5 SIGNIFICANT DIFFERENCES (*) FOR THE BONFERRONI t-TEST (a = .05) 

A. MINIMUM SIGNIFICANT DIFFERENCE: 1 1 .1 1 

B. TABLE OF MEAN DIFFERENCES 

4 2 1 2 

Control Massage U ltrasound Ice 
Means 24.1 8 35.27 44. 1 8  45.27 

4 24.1 8  - 1 1 .09' 2o.oo· 21 .09' 

3 35.27 - 8.91 1 0.00 

1 44.1 8  - 1 .09 

C. OUTPUT: Homogeneous Subsets of Means 

Subset for alpha = .05 

GROUP N 1 2 

Bonferroni Control 1 1  24. 1 8  
Massage 1 1  35.27 

u s  1 1  44. 1 8  
Ice 1 1  45.27 



CHAPTER 21 • Multiple Comparison Tests 491 

MULTIPLE COMPARISON PROCEDURES 
FOR FACTORIAL DESIGNS 
Multiple comparison procedures are applicable to all analysis of variance designs. So 
far, we have described their use following an analysis with only one independent vari­
able. When multifactor experiments are analyzed, the multiple comparison procedures 
can be used to compare means for main effects and interaction effects. 

To illustrate this application, let us refer back to a study presented in Chapter 20, 
involving the comparison of stretch and knee position for increasing ankle range of 
motion. Stretch (Factor A) had three levels: prolonged, quick and control. Knee position 
(Factor B) had two levels: flexion and extension. This design is shown in Figure 21 .3. 
Ten subjects were tested in each of the six treatment combinations. Recall that the mar­
ginal means, XA and X8, represent main effects for each independent variable sepa­
rately. The six cells of the design (A1B1 through A3B2) represent all combinations of the 
two independent variables, or the interaction means. 

The outcome of the analysis of variance for this study is shown in Table 21 .6A. The 
main effect of stretch is significant, as is the interaction effect. In practice, we would 
usually ignore the main effects because of the significant interaction, and proceed to 
analyze the six individual cell means. For purposes of illustration, however, we will 
look at the main effect of stretch using a multiple comparison procedure. If the variable 
of knee position had been significant, we would not have to perform a multiple com­
parison because it has only two levels. Therefore, a significant effect could be inter­
preted by simply looking at the marginal means, as with a t-test. 

Prolonged 
A1 

� 
J: Quick � � a: 1-en 

Control 

� 

KNEE POSITION (B) 
Extension Flexion 

81 82 

A1 81 
X= 1 0.30 
n = 1 0 

�81 
X= 9.10 
n = 1 0 

�81 
X= 8.oo 
n = 10 

Xs, = 9.13 
n = 30 

A182 
X= 1 9.60 
n =  1 0 

�82 
X= 3.07 
n = 1 0 

�82 
X= 3.63 
n = 1 0  

Xa-.= 8.77 
n = 30 

XA, = 14.95 
n =20 

XA.1= 6.09 
n = 20 

XAa= 5.82 
n = 20 

FIGURE 21 .3 Two-way design (3 X 2) for a study comparing effect of type of stretch (Factor A) and 
knee position (Factor B) on ankle range of motion (N = 60). Six individual cel l  means are shown, as are 
marginal means for each i ndependent variable. 
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TABLE 21 .6 SIGNIFICANT DIFFERENCES (*) AMONG MARGINAL MEANS FOR MAIN 
EFFECT OF STRETCH USING TUKEY'S HSD TEST (a = .05) 

A. ANOVA (from Table 20.3) 

Sum of Mean 
Squares df Square F 

Stretch 1 080.73 2 540.36 4 1 .84 

Position 2.02 1 2.02 . 1 6  

Stretch x Position 707.72 2 353.86 27.40 

Error 697.36 54 1 2 .91  

Total 2487.83 59 42. 1 7 

B. MINIMUM SIGNIFICANT DIFFERENCE: 2.73 

C. TABLE OF MEAN DIFFERENCES and PLOT OF MEANS 

A3 A2 A1 
Control Quick Prolonged 

Means 5.82 6 .09 1 4.95 

A3 5.82 - 0.27 9. 1 3' 

A2 6.09 - 8.86" 

D. OUTPUT: Homogeneous Subsets of Means 

GROUP N 

Tukey HSD Prolonged 20 

Quick 20 

Control 20 

Main Effects 

c: 0 

1 6  

''5 1 2  
::;; 
0 
Q) 0> 
@ 8 

a: 
-"' 
Q) 0> 
@ 4 

.c: 
0 

0 

/ ... 

Control Quick 

Subsets for alpha = .05 

1 2 

5.82 

6.09 
1 4.95 

Sig . 

.000 

.694 

.000 

� 
I 

I I 

Prolonged 

The analysis of a significant main effect requires examination of differences among mar­
ginal means. For the main effect of stretch, we compare XA1, XAz, and XA3· The appli­
cation of multiple comparison tests to marginal means is the same as in previous 
examples, except that n must reflect the total number of subjects contributing to each 
mean in a contrast. Therefore, if n = 10 for each cell in the design, then n = 20 for each 
marginal mean for stretch (see Fig 21.3). The values of MSe and d fe used for calculations 
are taken from the analysis of variance summary table. In this case, MSe = 12.91 and 
dfe = 54 (we will use dfe = 60 for locating tabled values). 

To apply Tukey's HSD to these data, we calculate the minimum significant difference: 
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with q taken from Table A.6 for a = .05, d fe = 60, and r = 3. Note that n = 20 repre­
sents the pooled sample size for each marginal mean. The pairwise differences between 
the marginal means are shown in Table 21 .6C. Differences that exceed 2.73 are signifi­
cant. Results in Table 21 .6C and D show that prolonged stretch (XAl) is significantly dif­
ferent from quick stretch (XA2) and the control (XA3), but that the latter two means are 
not different from each other. 

I nteraction Effects 
When an interaction effect is significant, multiple comparison tests are usually per­
formed on pairwise contrasts of individual cell means. Formulas are used exactly as 
they were for the one-way design. In this example, we would be comparing six means. 

For the means in Figure 21.3, if we choose to analyze all pairwise differences with k = 6, we will obtain 6(6 - 1)/2 = 15 comparisons. To use Tukey's HSD as an exam­
ple, we calculate the minimum significant difference: 

(Ms; (ff.9f MSD = q\j -;;- = 4.16\j w = 6.16 

with q obtained from Table A.6 for a = .05, dfe = 60, and r = 6. Note that n = 10 
reflects the sample size for each of the six individual cell means. 

The mean differences, shown in Table 21 .7, must exceed this minimum significant 
difference to be considered significant. Results demonstrate that range of motion 
achieved with prolonged stretch with knee extension (A1B2) is significantly greater than 
with all other treatment combinations. In addition, prolonged stretch with knee flexion 
(A1B1) is greater than quick stretch and control with knee extension. These effects are 
illustrated in Figure 20.6 in Chapter 20. 

Interpretation of pairwise differences for interactions will often be more meaningful 
by limiting contrasts to row or column effects, eliminating comparisons that move diag­
onally within the design. In other words, we would not be interested in the contrast of 
prolonged stretch in flexion with the other forms of stretch in extension, which are diag­
onal comparisons (see Figure 21.2). This type of comparison is actually confounded, 
because it involves different levels of both variables. We are more interested in the con­
trasts across A1, across A2, and across A3, and three contrasts within B1 and within B2. 
This would result in a total of 9 contrasts, rather than 15. When using tests such as Bon­
ferroni's t, where the number of comparisons is the basis for adjusting critical values, this 
process can significantly improve statistical power as well as clarify explanations. 

MULTIPLE COMPARISONS FOR REPEATED MEASURES 
The standard post hoc multiple comparisons procedures just described are not generally 
run for repeated measures analyses. Because repeated measures involve within-subject 
comparisons, the multiple comparison procedures do not fit logically, as they are based 
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TABLE 21 .7 SIGNIFICANT DIFFERENCES (*) AMONG INTERACTION MEANS 
FOR TYPE OF STRETCH AND KNEE POSITION USING TUKEV'S HSD 
TEST (a = .05) 

A. MINIMUM SIGNIFICANT DIFFERENCE: 6.1 6 

B. PLOT OF MEANS 

20 

1 0  

0 

Prolonged ...... 
_ ..

.. 
.... 

- auick •·· 

� Control 

C. TABLE OF MEAN DIFFERENCES 

.. 

A2B2 A3B2 A3B1 

.... 

Stretch Quick Control Control 
Knee Ext Ext Flex 

Means 3.07 3.63 8.00 

A282 3.07 - 0.56 4.93 

A382 3.63 - 4.37 

A381 8.00 -

A2B1 9.1 0 

A1 81 1 0.30 

...... 
.... Prolonged - - - - - -

Quick . .  . . . . . . . . . .  

Control 

� 

A2B1 A1 B1 A1 B2 

Quick Prolonged Prolonged 
Flex Flex Ext 

9.1 0 1 0.30 1 9.60 

6.03 7.23. 1 6.53. 
5.47 6.67. 1 5.97. 
1 . 1 0  2.30 1 1 .60. 
- 1 .20 1 o.so· 

- 9.3o· 

on overall group differences. Therefore, the paired t-test has been used as a reasonable 
approach for looking at differences between pairs of means within a repeated measures 
design.10•11 Each pairwise comparison is entered as a difference score, and the analysis 
will determine which means are significantly different. For example, let us reconsider 
the hypothetical study described in Chapter 20 that looked at elbow flexor strength in 
three forearm positions for nine subjects. The mean for pronation was 17.33, for neutral 
27.56, and for supination 29.11 pounds. The results of the repeated measures analysis of 
variance are shown in Table 21 .8A, indicating that a significant difference existed 
among the three forearm positions. Therefore, a post hoc multiple comparison test is 
warranted to compare the three means. 

Table 21.8 presents the results of the paired t-test for three pairwise comparisons in 
this example. The differences for neutral-pronation and pronation-supination are sig­
nificant (p = .000), but the difference for neutral-supination is not (p = . 127). This 
analysis presents a problem, however, in terms of familywise error rate. Because several 
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TABLE 21 .8 PAIRED t-TEST MULTIPLE COMPARISON OF THREE PAIRWISE 
CONTRASTS FOLLOWING REPEATED MEASURES ANOVA: 
ELBOW FLEXOR STRENGTH IN THREE FOREARM POSITIONS 

A ANOVA 
Sum of Mean 
Squares df Square F Sig. 

Subjects 2604.00 8 325.50 
Position 736.89 2 368.44 50.34 .000 
Error 1 1 7. 1 1  1 6  7.31 9 

B. PAIRED t-TESTS 
Paired Samples Test 

Paired Differences 

95% Confidence 
Interval of the 

Difference 

Std. 
Std. Error Sig. 

Mean Deviation Mean Lower Upper t df (2-tailed) 

Prone, Neutral - 1 0 .22 3.76 1 .25 - 1 3.1 1 -7.32 -8. 1 40 8 .000 
Neutral, Supine - 1 .55 2.74 .91 -3.66 .55 - 1 .701 8 . 1 27 
Prone, Supine - 1 1 .77 4.71 1 .57 - 1 5.39 -8.15  - 7.500 8 .000 

C. TABLE OF MEAN DIFFERENCES and PLOT OF MEANS 

Pronation Neutral Supination 
Means 1 7.33 27.56 29.1 1 

17.33 - 1 0.22" 1 1 .78' 
27.56 - 1 .56 

� 30 +-----------�==���--l � � / � 20 +--------::; /_.L----------1 � r 
u:: � 10 
w +---------------------� 

o +---�------�----------� 
Pronation Neutral Supination 

analyses are being run on the same sample, we risk inflating the value of a if each test 
is performed at the same .05 criterion. Therefore, this approach requires the use of the 
Bonferroni adjusbnent, whereby the overall value for a is divided by the number of 
comparisons. For instance, with three comparisons aFW = .05/3 = .017. This means 
that the p value for each individual comparison must be .017 or less to be considered 
significant. In our current example, with the two significant effects at p = .000, we have 
clearly achieved this criterion. However, if we had found a difference for any one com­
parison at .02, for example, where it would typically be considered significant at 
a = .05, we would not consider it different for this multiple comparison. 
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BOX 2 1 .1 What's the Difference? 

An investigator is interested in comparing three treatments: experimental 
treatment A, experimental treatment B, and control treatment C, using three 
independent groups. He performs a one-way analysis of variance on the 
data, and finds a significant F test at p = .05. He therefore concludes that 
there is a significant difference among the three means and proceeds to per­
form a multiple comparison test to determine where those differences lie. 
But when he gets the results of the multiple comparison test, he finds that 
none of the means are significantly different! How can this be? 

Now, in another laboratory, three different researchers are conducting 
three different experiments, each comparing two treatments using an 
unpaired t-test. One is comparing A with B, one is comparing B with C, and 
the third is comparing A with C. The first two of these researchers find no 
significant difference between their groups. The third researcher, however, 
does find a significant difference at p = .05. He is now able to report that his 
experimental treatment A worked. 

Why should the investigator who analyzed all three treatments at once 
be unable to find a significant difference when the investigator who ran a 
single experiment can claim a successful outcome? 

In the first case the investigator proposed a question that required the 
comparison of two treatments with respect to a control. His hypothesis is, 
"There will be a difference among these three groups." The comparison of 
the three groups is an important part of the rationale for this study, to 
account for the potential theoretical connections of these treatments. The 
ANOVA looks at the entire sample as part of this analysis, partitioning the 
variance across all three groups. In this case, the overall variance showed a 
significant effect, but this effect could not be attributed to any one specific 
comparison. Sometimes the variances of the individual groups are not suffi­
ciently independent to show a significant difference, even when the overall 
F test does. 

The investigator who studied the single comparison, on the other hand, 
is only concerned with the variance of two groups, and can narrow his sta­
tistical search for a difference. His hypothesis is, "There will be a difference 
between these two groups." And so there was! 

Adapted from Dallal GE. Multiple comparison procedures. Available at: http:/ I 
www.tufts.edu/ -gdallal/mc.htm Accessed October 29, 2007. 

TREND ANALYSIS 
Multiple comparison tests are most often used in studies where the independent vari­
able is qualitative or nominal, and where the researcher's interest focuses on determin­
ing which categories are significantly different from the others. When an independent 
variable is quantitative, the treatment levels no longer represent categories, but differ-



CHAPTER 2 1  • Multiple Comparison Tests 497 

ing amounts of something, such as age, duration or intensity of a modality, dosage of a 
drug, or time intervals for repeated testing. When the levels of an independent variable 
are ordered along a continuum, the researcher is often interested in examining the 
shape of the response rather than just differences between levels. This approach is 
called a trend analysis. 

The purpose of a trend analysis is to find the most reasonable description of contin­
uous data based on the number of turns, or "ups and downs" seen across the levels of 
the independent variable. For example, if we wanted to study the changes that occur in 
strength as one ages, we might study 10 blocks of subjects, each representing a differ­
ent age category from 8 to 80 years old. A hypothetical plot of such data is shown in 
Figure 21.4. A multiple comparison of means will not tell us about the directions of 
change across age, but a trend analysis will. 

Basically, trends are classified as either linear or nonlinear. In a linear trend, all 
data rise or fall at a constant rate as the value of the independent variable increases. This 
trend is characterized by a straight line, as shown in Figure 21 .5A. For example, we 
might use this function to represent the relationship between height and age in chil­
dren. As a child grows older, height tends to increase proportionally. 

A nonlinear trend demonstrates "bends" or changes in direction. A quadratic trend, 
shown in Figure 21 .5B, demonstrates a single tum upward or downward, creating a 
concave shape to the data. This means that following an initial increase or decrease in 
the dependent variable, scores vary in direction or rate of change. Learning curves can 
be characterized as quadratic. Performance generally increases at a sharp rate through 
early trials and then plateaus. 

Higher order nonlinear trends are more complex and are often difficult to interpret. 
As shown in Figure 21.5C and D, a cubic trend involves a second change of direction, 
and a quartic trend a third tum. As the number of levels of the independent variable 
increases, the number of potential trend components will also increase. There can be a 
maximum of k - 1 turns, or trend components, within any data set. 

The curves in Figure 21.5 are examples of pure trends. Real data seldom conform to 
these patterns exactly. Even with data that represent true trends, chance factors will pro­
duce dips and variations that may distort the observed relationship. The purpose of a 
trend analysis is to describe the overall tendency in the data using the least number of 
trend components possible. Some data can be characterized by a single trend; others 
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FIGURE 2 1 .4 Hypothetical data for strength changes over 1 0  age ranges. 
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FIGURE 21.5  Examples of  several types of  trends: (A) Linear trend, (B) quadratic trend, (C) cubic trend, 
(0) quartic trend. 

demonstrate more than one pattern within a single data set. The hypothetical data for 
strength and age illustrate this possibility (see Figure 21 .4). The portion of the data from 
8 to 20 years shows that individuals tend to get stronger as they grow within this age 
range. We can see the quadratic component within this curve after age 20. Strength 
appears to plateau at age 30, after which a gradual dropoff is evident. 

Sign ificance ofTrend Components 
Trends are tested for significance as part of an analysis of variance. The mathematical 
basis for analyzing trends is beyond the scope of the present discussion. Most statisti­
cal computer packages are able to run a trend analysis.§§ 

The results of trend analyses are listed as part of an ANOVA summary table. An 
example of this type of output for an independent samples test is given in Table 21 .9, 
based on the hypothetical age and strength data in Figure 21 .4. The top portion of the 
table shows how the standard analysis of variance is presented. In the bottom portion, 
the trend analysis is added. Note that the between-groups sum of squares for the effect 
of age has been partitioned into a linear trend and a quadratic trend. Because there are 
10 measurement intervals, we have the potential for 9 trend components; however, test­
ing beyond the quadratic component usually yields uninterpretable results. Therefore, 

§§Some computer packages will refer to trend analyses as orthogonal decomposition or orthogonal polynomial 
contrasts. 
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TABLE 21 .9 EXAM PLE OF AN ANOVA WITH A TREND ANALYSIS FOR INDEPENDENT 

SAMPLES: CHANGES I N  STRENGTH ACROSS 10 AGE G ROUPS (N = 1 00) 

A. ANALYSIS OF VARIANCE 

A NOVA 

Sum of Squares df Mean Square F Sig. 

Age 48887.89 9 543 1 .98 1 04.00 0 .000 

Error 4700.70 90 52.23 

Total 53588.59 99 

B. TREND ANALYSIS 

A NOVA 

Sum of 
Squares df Mean Square F Sig. 

Age 48887.89 9 543 1 .98 1 04.00 0 .000 

Linear Term Contrast 97.42 0 1  97.42 1 .87 6 . 1 75 

Deviation 48790.47 8 6098 . 8 1  1 1 6.77 e .000 

Quadratic Term Contrast 461 97.33 @ 1  461 97.33 884.49 0 .000 

Deviation 2593 . 1 3  7 370.45 7 09 .000 

Error 4700.70 90 52.23 

Total 53588.59 99 

0 The difference among age groups is significant. 

f) The linear trend component is not significant (p = . 1 75). 
0 After the l inear component is accounted for, there is still some residual variance (deviation) that is sign ificant; 

that is, there are other trend components that need to be accounted for in the data. 
0 Note that the total sum of squares and 9 degrees of freedom for the linear trend are based on the sum of 

squares and degrees of freedom associated with the between-groups effect of age. 
0 The quadratic trend is significant (p = .000). The analysis does not go beyond the quadratic effect. 
0 Note that the total sum of squares and 8 degrees of freedom for the quadratic trend are based on the resid­

ual sum of squares that remains after the linear trend is accounted for. 

variance attributable to all higher order trends is included in the error term (called devi­
ation here). 

Each specific trend component is tested by an F-ratio, calculated using the mean 
square for that trend and the error term. In this example, only the quadratic trend is sig­
nificant. When a trend component is statistically significant, subjective examination of 
graphic patterns of the data is usually sufficient for further interpretation. 

Lim itations ofTrend Analysis 
Two important limitations should be considered when interpreting trend analyses. 
First, the number and spacing of intervals between levels of the independent variable 
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can make a difference to the visual interpretation of the curve. Obviously, with only two 
levels of an independent variable no trend can be established. A linear trend requires a 
minimum of three points, a quadratic trend a minimum of four points, and so on. With 
larger spans in the quantitative variable, more intervals may be necessary. 

Most investigators try to use equally spaced intervals to achieve consistency in the 
interpretation. Others will purposefully create unequal intervals to best represent the 
samples of interest. For instance, trends that are established over time may involve 
some intervals of hours and others of days. Most computer packages that perform trend 
analyses will accommodate equal or unequal intervals, but distances between unequal 
intervals must be specified. 

The second caution for interpreting trend analysis is to avoid extrapolating beyond 
the upper and lower limits of the selected intervals. For example, based on Figure 21 .4, 
if we had tested only individuals between 20 and 80, we might conclude that strength 
declines linearly with age. Conversely, if we looked only at ages 8 through 20, we might 
conclude that strength increases linearly with age. By limiting the range of intervals we 
would have missed the quadratic function that more accurately describes the relation­
ship between strength and age across the lifespan. Therefore, the nature of the relation­
ship between the independent and dependent variables should be examined within 
and across the ranges that will allow the most complete interpretation. 

COMM ENTARY 

Choices, Choices, Choices 

There are no widely accepted criteria for choosing one mu ltiple comparison test 
over another, and the selection of a particu lar procedure is often made either arbi­
trar i ly  or on the basis of avai lable software; however, two basic  issues should gu ide 
the choice of a multip le comparison procedure. 

The fi rst issue relates to the dec is ion to conduct either p lanned or unp lanned 
contrasts. Th i s  dec is ion rests with the researcher dur ing the p lann ing stages of the 
study, in response to theoretical expectations.  With planned compari sons, the 
researcher asks, "Is this difference s ign ificant?" With post hoc tests the question 
sh ifts to, " Which differences are s ign ificant?" When the researcher is  in terested i n  
explor i ng a l l  poss ib le combinations of variables, unp lanned contrasts should 
be used . 

The second issue concerns the importance of Type I or Type I I  error. Each mu lti­
p le compari son test w i l l  control for these errors differently, depending on the use of 
per comparison or fami lywise error rates. Of the three post hoc comparisons 
described here, the Newman-Keuls test i s  the most powerfu l .  Scheffe's comparison 
gives the greatest control over Type I error, but at the expense of power. Researchers 
often prefer Tukey's HSD because it offers both reasonable power and protection 
agai nst Type I error. The power of the Newman-Keuls procedure is  increased by 
us ing different comparison intervals, but use of the per comparison error rate 
increases the risk of Type I error. 
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Researchers must examine the research question to determine wh ich mu lt ip le 
comparison test is  most appropriate i n  terms of the research des ign.  These dec is ions 
shou ld  be based on the research question, not on which test is  most l i kely to fi nd 
sign ificant differences. The decis ion to run p lanned or unplanned comparisons and 
simple or complex contrasts shou ld be made before the data are analyzed . Other 
than these rather stra ightforward criteria, when there is  no overr id ing concern for 
either Type I or Type I I  error, there may be no obvious choice for a spec ific test. The 
researcher is obl iged to consider the rat ionale for comparing treatment condit ions or 
groups and to justify the basis  for making these comparisons. 
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CHAPTER 22 

Non parametric Tests 
for Group Comparisons 

In previous chapters we have presented several statistical tests that are based on certain 
assumptions about the parameters of the population from which the samples were 
drawn. These parametric tests require that the assumptions of normality and homo­
geneity of variance are met to a reasonable degree for validity of analysis. In this chap­
ter, we present a set of statistical procedures classified as nonparametric, which test 
hypotheses for group comparisons without normality or variance assumptions. For this 
reason, these methods are sometimes referred to as distribution-free tests. 

Nonparametric methods are similar to parametric methods in that both test 
hypotheses and both involve the use of a statistical ratio or test statistic, with an asso­
ciated probability. Similarly, the outcomes of these tests are evaluated according to a 
predetermined alpha level of significance. In this chapter we describe five nonparamet­
ric procedures that are the most commonly used analogs of the parametric t-test and 
F-test: the Mann-Whitney U-test, sign test, Wilcoxon signed-ranks test, Kruskal-Wallis 
one-way analysis of variance by ranks, and the Friedman two-way analysis of variance 
by ranks (see Table 22.1). Although these tests are easily computed with a hand-held 
calculator, they are also included in most statistical packages for computer analysis. We 
will present both the hand calculations and sample computer output. 

TABLE 22.1 CORRESPONDING PARAMETRIC AND NONPARAMETRIC TESTS 
FOR GROUP COMPARISONS 

Comparison 

Two independent groups 

Two related scores 

Three or more independent 
groups 

Three or more related scores 

Parametric Test 

Unpaired t-test 

Paired t-test 

One-way analysis of variance 
(F) 

One-way repeated measures 
analysis of variance (F) 

Non parametric Test 

Mann-Whitney U test 

Sign test 
Wilcoxon signed-ranks test (T) 

Kruskai-Wallis analysis of vari­
ance by ranks (H or x2) 
Friedman two-way analysis of 
variance by ranks (x�) 

503 
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CRITERIA FOR CHOOSING NONPARAMETRIC TESTS 
Two major criteria are generally adopted for choosing a nonparametric test over a para­
metric procedure. The first is that assumptions of population normality and homogene­
ity of variance cannot be satisfied. Many clinical investigations involve variables that 
have not been studied sufficiently to support these assumptions. In all likelihood, most 
pathological conditions are represented by skewed distributions rather than symmetri­
cal ones. In addition, small clinical samples and samples of convenience cannot auto­
matically be considered representative of larger normal distributions. 

The second criterion for choosing a non parametric test is that data are measured on 
the nominal or ordinal scale. Many assessment tools have been developed around these 
scales. Nonparametric tests provide an objective mechanism for supporting statistical 
hypotheses when these levels of measurement are used. 

Although nonparametric tests require fewer statistical assumptions than para­
metric procedures, they still put some restrictions on data. Some type of randomiza­
tion procedure should be used in forming groups. This allows the researcher to make 
assumptions about the equality of groups before the independent variable is admin­
istered. In addition, the nonparametric tests described in this chapter apply to data 
that are at least at the ordinal level (see Chapter 25 for tests appropriate to nominal 
level data); that is, the variable of interest has an underlying continuous distribution 
that can be ranked, even if it cannot be measured quantitatively. For instance, strength 
can be measured using discrete manual muscle test grades on an ordinal scale, even 
though strength truly exists along a continuum. Ordinal scales are used often to meas­
ure relative changes in clinical variables such as sitting balance, function or sensation. 
Analysis of these types of variables represents the most appropriate use of nonpara­
metric statistics. 

The major disadvantage of nonparametric tests is that they do not accommodate 
complex clinical designs. There are many newer tests, however, that have been devel­
oped to allow the application of regression procedures or tests of interaction effects. 
These are beyond the scope of this book, but can be found in other recent texts.1'2 

Power-Efficiency i n  Non parametric Tests 
Many researchers prefer to use parametric tests because they are generally more pow­
erful. Nonparametric tests are less sensitive than parametric tests because most of them 
involve ranking scores rather than comparing precise metric changes. Nonparametric 
and parametric methods have been compared on the basis of their power-efficiency, 
which is a test's relative ability to identify significant differences for a given sample 
size. Generally, an increase in sample size is needed to make a nonparametric test as 
powerful as a parametric test. For instance, a nonparametric test may require a sample 
size of 50 to achieve the same degree of power as a parametric test with 30 subjects. This 
relationship can be expressed as a percentage that indicates the relative power­
efficiency of the nonparametric test. For example, if power-efficiency is 60%, then with 
equal sample sizes, the nonparametric test is 60% as powerful as the parametric test. In 
other words, to achieve equal power with the nonparametric test, we would need 10 
subjects for every 6 used with the parametric procedure. 



CHAPTER 22 • Nonpararnetric Tests for Group Comparisons 505 

With equal sample sizes, nonparametric tests will generally be less powerful than 
their parametric counterparts; however, with larger samples this discrepancy is mini­
mized. Most of the nonparametric tests described here can achieve approximately 65% 
to 95% power-efficiency in comparison to their most powerful parametric analogs.3 
These figures apply to calculations based on comparisons of normal populations. With 
very small samples, as with six subjects or less, many nonparametric tests will be as 
powerful as their parametric counterparts. With larger nonnormal populations, the 
nonparametric statistics may actually be more powerful.4 As power is an issue only 
when significant results are not obtained, a researcher need not be concerned with the 
relative power of nonparametric tests when the null hypothesis is rejected. 

PROCEDURE FOR RANKING SCORES 
Most nonparametric tests are based on rank ordering of scores. The procedure for rank­
ing will be illustrated using the two samples shown in Table 22.2. Scores are always 
ranked from smallest to largest, with the rank of 1 assigned to the smallest score. Alge­
braic values are taken into account, so that the lowest ranks are assigned to the largest 
negative values, if any. The highest rank will equal n. As shown in Sample A, the rank 
of 1 is assigned to the smallest score ( -3), the rank of 2 goes to the next smallest (0), and 
so on, until the rank of 8 is assigned to the highest score (16). 

When two or more scores in a distribution are tied, they are each given the same 
rank, which is the average of the ranks they occupy. For instance, in Sample B, there 
are two scores with the smallest value (3). They occupy ranks 1 and 2. Therefore, they 
are each assigned the average of their ranks: (1 + 2)/2 = 1 .5. The next highest value 
(8) receives the rank of 3, as the first two ranks are filled. The next highest value is 11, 
which appears three times. As we have already filled ranks 1, 2 and 3, we average the 
next three ranks: (4 + 5 + 6)/3 = 5. Each score of 11 is assigned the rank of 5. Having 
filled the first 6 rank positions, the last two values in the distribution are assigned 
ranks 7 and 8. 

TABLE 22.2 EXAMPLES OF RANKED SCORES WITHOUT TIES (A) AND WITH TIES (B) 

SAMPLE A SAM PLE B 
(n = 8) Rank (n = 8) Rank 

6 4 8 3 
2 3 1 1  5 
8 5 3 1 .5 
9 6 1 7  8 

-3 1 1 1  5 
0 2 3 1 .5 

1 6  8 1 1  5 
1 2  7 1 2  7 
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TEST FOR TWO INDEPEN DENT SAMPLES: 
MANN-WHITNEY U-TEST 
The Mann-Whitney U test is one of the more powerful nonparametric procedures, 
designed to test the null hypothesis that two independent samples come from the 
same population.* This test is analogous to the parametric t-test for independent sam­
ples. Like the unpaired t-test, the U test does not require that groups be of the same 
size. It is, therefore, an excellent alternative to the t-test when parametric assumptions 
are not met. 

Example 
A researcher is interested in the effect of body position on a person's ability to relax, as 
measured by EMG biofeedback from the frontalis muscle. To study this question, 11 
subjects are randomly assigned to two groups in a pretest-posttest design, with one 
group positioned supine, the other sitting. Results are recorded as changes in microvolt 
activity. The researcher hypothesizes that the positions will facilitate different levels of 
relaxation (a nondirectional hypothesis). 

Procedure 
Hypothetical data for this example are given in Table 22.3A. The first step is to combine 
both groups and rank all the scores in order of increasing size. The sum of the ranks 
assigned to each group is designated R1 or R2. Under the null hypothesis, we would 
expect the groups to be equally distributed with regard to high and low ranks, and the 
mean of the ranks would be equal for both groups. Any differences between the ranks 
should be the result of chance. The test will determine if the difference between the 
sums of ranks is sufficiently large to be considered significant. An alternative hypothe­
sis can be directional or nondirectional. 

The U Test Statistic 
The test statistic, U, is calculated using each group as a reference, as follows: 

(22.la) 

(22.lb) 

where n1 is the smaller sample size, n2 is the larger sample size, and R1 and Rz are the 
sums of the ranks for the groups. Designation of n1 or nz is arbitrary if groups are of 
equal size. Obviously, these formulas will yield different values of U. For example, 

*Some statisticians prefer to use the Wilcoxon rank sum test to test the difference between two independent 
samples. This test is equivalent to the Mann-Whitney U-test. 
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TABLE 22.3 MANN-WHITNEY UTEST: CHANGE IN MICROVOLT ACTIVITY FOLLOWING 
RELAXATION IN TWO POSITIONS 

A. DATA 

Supine 
(n1 = 5) Rank 

20 5 
30 7 
50 1 1  
45 1 0  
40 9 

R1 = 42 

B. COMPUTATIONS 

n1(n1 + 1) 5(5 + 1) 
U1 = R1 - 2 = 42 - 2 = 27 

Sitting 
(n2 = 6) Rank 

1 0  3 
5 2 

35 8 
25 6 

0 1 
1 5  4 

R2 = 24 

nz(nz + 1) 6(6 + 1) 
Uz = Rz - = 24 - = 3 2 2 U = 3, the smaller of the values of U1 or IJ;. 

C. TEST FOR LARGE SAMPLES 

D. HYPOTHESIS TEST 

Critical Value of U: 

For n1 = 5, n2 = 6, at a2 = .05, 

U = 3 (Table A.8) Reject f-lo. 

E. OUTPUT 
Ranks 

Mean 
GROUP N Rank 

ACTIVITY Supine 5 8.40 
Sitting 6 4.00 

Total 1 1  

3 - _(5)_(6) 
2 -12 

-,-;:;.(5;:::)(;:;6)�(5=+=6:;:+:::::::;:;::1) 
= 

-V30-30 
= -2.19 

-y 12 

z test: 

z = -2. 1 9  > 1 .96 

(two-tailed p = .0286) (Table A.1 ) Reject f-lo. 

Test Statistics 

Sum of ACTIVITY 
Ranks 

Mann-Whitney U 3.000 
42.00 z - 2.191  
24.00 Asymp. Sig. (2-tailed) .028 
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using calculations shown in Table 22.3B, we obtain U1 = 27, with Group 1 as the refer­
ence group. Using Group 2 as the reference group, we obtain U2 = 3. We can show that 
these values are mathematically related as 

(22.2) 

and vice versa. For example, for the data in Table 22.3, we can demonstrate this 
relationship: 

u1 = (5)(6) - 3 = 27 

u2 = (5)(6) - 27 = 3 

The smaller of these two values is assigned to the test statistic U. In this case, then, U = 3. 

Critical Values ofU 
Critical values of U are given in Appendix Table A.8 for one- and two-tailed tests at sev­
eral levels of significance. These values are compared with the smaller value of either U1 
or U2. The appropriate critical values are located in the table for n1 and n2. The calcu­
lated value of U must be equal to or less than the tabled value to be significant. (Note: This 
is opposite to the way we have used critical values with parametric tests.) 

For the current example, at a2 = .05, with n1 = 5 and n2 = 6, the critical value of U 
is 3. Because the calculated value, U = 3, is equal to this critical value, we can reject H0. 
Our conclusion is then based on visual examination of the mean ranks, which shows that 
greater relaxation (higher mean rank) is attained in the supine position (Table 22.3E). 

Large Samples 
When sample size exceeds 25, Table A.8 cannot be used. In this situation, the value of 
U is converted to z and tested against the standard normal distribution: 

22.3 

Even though the present example does not warrant it, we have used the data to illus­
trate this application in Table 22.3C. In this formula it does not matter if U1 or U2 is used. 
The absolute value of z will be the same either way. 

Critical values of z (in Appendix Table A.l) are used to determine if this ratio is sig­
nificant.+ For a two-tailed test at .05 (we proposed a nondirectional hypothesis), 
z = 1 .96. Our calculated value exceeds this critical value, and the null hypothesis is 
rejected. This outcome agrees with the results obtained using Table A.B. We can also 

tFor one-tailed tests at .05 and .01, the critical values are 1 .645 and 2.326, respectively. For two-tailed tests, 
these critical values are 1 .96 and 2.576, respectively. The calculated value of z must be greater than or equal to 
the critical value to be considered significant. 
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determine the exact probability associated with the test by finding the tail probability 
for z in Table A.l .  For z = 2.19, the one-tailed probability is .0143. Because we have pro­
posed a nondirectional hypothesis, we double this value for a two-tailed test. Therefore, 
p = .0286. These findings are shown in the computer output in Table 21 .3E. 

TEST FOR MORE THAN TWO IN DEPENDENT SAMPLES: 
KRUSKAL-WALLIS ONE-WAY ANALYSIS OF VARIANCE 
BY RANKS 
When three or more groups are compared (k ;::: 3), a nonparametric analysis of variance 
is appropriate for the same reasons that an F-test is used with parametric data. The 
Kruskal-Wallis one-way analysis of variance by ranks is a nonparametric analog 
of the one-way analysis of variance. It is a powerful alternative to the F-test when vari­
ance and normality assumptions for parametric tests are not met. It is also the most 
appropriate way to handle ordinal level data when more than two groups are com­
pared. With k = 2, this test is equivalent to the Mann-Whitney U-test. Multiple compar­
ison procedures can also be applied. 

Example 
We want to study the effect of three modalities for relieving chronic low back pain. We 
randomly assign 17 subjects (N = 17) to receive ice (n = 6), hot pack (n = 6), or ultra­
sound (n = 5). Pain is measured on a visual analog scale from 0 mm (pain-free) to 100 
mm (severe pain). Scores are recorded as the change in level of pain from pretreatment 
to posttreatment levels. 

Procedure 
Hypothetical data are reported in Table 22.4A. The procedures for the Kruskal-Wallis 
ANOVA are similar to those used for the Mann-Whitney U-test. The first step is to com­
bine data for all groups and rank scores from the smallest to the largest. The smallest 
score receives the rank of 1, and the largest score is assigned the rank of N. Ties are 
assigned average ranks. 

The ranks are then summed for each group separately, as shown in Table 22.4A. If 
the null hypothesis is true, we would expect an equal distribution of ranks under the 
three conditions. 

The H Statistic 
The test statistic for the Kruskal-Wallis test is H, calculated according to 

12 R2 
H = N(N + 1) �>;- - 3(N + 1) (22.4) 

where N is the number of cases in all samples combined, n is the number of cases in 
each individual sample, and R is the sum of ranks for each individual sample. This cal­
culation is illustrated in Table 22.4B. For this example, H = 7.243. 
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TABLE 22.4 KRUSKAL-WALLIS ONE-WAY ANALYSIS OF VARIANCE BY RANKS: 
CHANGES IN LEVEL OF PAIN (N = 1 4) 

A. DATA 

Group 1 :  Ice Group 2: Hot Packs Group 3: Ultrasound 

Change Change Change 
score Rank score Rank score Rank 

40 8 35 6 80 1 4  
60 1 1  25 2.5 50 1 0  
1 0  1 30 4.5 75 1 3  
25 2.5 40 8 70 1 2  
30 4.5 40 _8_ 

R 27 29 49 
n 5 5 4 
R 5.4 5.8 1 2.25 

B. COMPUTATIONS 

12 R2 
H = �- - 3(N + 1) N(N + 1) n 

C. HYPOTHESIS TEST 

D. OUTPUT 

12 [ (27)2 (29)2 ( 49)2 J = -- + -- + -- - 3(14 + 1) 14(14 + 1) 5 5 4 

= 2\20 [914.251 - 45 = 7.243 

For df = 2, :1 = 5.99 (Table A.5) Reject Ho 

Ranks Test Statistics 

GROUP N Mean Rank PAIN 

PAIN Ice 5 5.40 Chi-Square 7.340 
HP 5 5.80 df 2 
us 4 1 2 .25 Asymp. Sig. .025 

Total 1 4  

Note: Calculated values may vary due to rounding differences. 
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The H statistic is tested using the chi-square distribution with k - 1 degrees of freedom 
(Table A.5).+ With three groups we will have 2 df Therefore, we test H against the criti­
cal value of 5.99. Our calculated value of H = 7.243 is significant, and we can reject Ho. 
The output for this analysis is shown in Table 22.40. 

Some researchers will stop here, basing their final decision on a subjective compar­
ison of the mean ranks for each group. In this example, it is fairly clear that scores for 
the ultrasound group are higher than the other two groups. However, when such judg­
ments are not sufficient, a multiple comparison procedure can be used to determine 
which groups are different. This will be described shortly. 

Ties 
A substantial number of ties can have a conservative effect on the value of H, making 
the test less powerful. This may be a concern when the test result is not significant and 
when greater than 25% of the scores are tied. A correction factor can be applied to 
increase the value of H under these conditions. Unless the number of ties is substantial, 
however, the effect of the correction will be minimal. Obviously, if H is significant with­
out the correction, there is no point in making the adjustment. Procedures for this cor­
rection can be found in the text by Siegel and Castellan. 5 

Multiple Comparison for the Kruskai-Wal l is ANOVA 
When H is significant, it is usually of interest to determine which specific groups are 
different from each other. The Mann-Whitney U test is often used as a multiple compar­
ison procedure; however, a Bonferroni correction should be applied to control for the 
increased risk of Type I error, using the same rationale that applies to multiple t-tests. 
Siegel and Castellan5 present a multiple comparison procedure to protect against this 
increased error rate. 

A multiple comparison for the Kruskal-Wallis AN OVA tests the significance of pair­
wise differences between conditions, based on the mean of the ranks for each sample: 
R = R/n . For the data in Table 22.3, R1 = 5.4, R2 = 5.8, and R.3 = 12.25. The total num­
ber of pairwise comparisons associated with an analysis will be equal to k(k - 1)/2. 
With three mean rankings (k = 3), we will have 3(3 - 1)/2 = 3 comparisons. 

Minimum Significant Difference 
Each pairwise comparison is tested against a minimum significant difference (MSD) 
based on the formula 

(22.5) 

twhen samples are very small, with five subjects or fewer per group, alternative tables can be used to obtain 
critical values of H. See Siegel and Castellan.5 
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where N is the total number of subjects in all samples combined, and n1 and n2 are the 
respective sample sizes for the two groups involved in the specific pairwise compari­
son. Any absolute difference between mean ranks that is equal to or larger than the min­
imum significant difference is considered significant. 

The value of z in Equation (22.5) is based on the total number of comparisons to be 
made and the desired level of significance for the overall test. We obtain z from Table 
22.5. The a level selected in the table is based on the desiredfamilywise error rate (aFW), 
that is, the overall probability associated with the entire set of comparisons. Researchers 
may choose to keep aFW at .05, which is considered a conservative practice, or they may 
accept higher probability levels, such as .15 or .20, when the risk of Type I error is not 
of great concern.§ Typically, a larger a is chosen as k increases.6 

Example 
We can illustrate this procedure using the data in Table 22.4. To compare Groups 
1 (n1 = 5) and 2(n2 = 5), we first specify our desired familywise error rate, say 
aFW = .15. Next, we determine that there will be a total of three comparisons. Accord­
ing to Table 22.5, at aFW = .15, z = 1 .96 for three comparisons. We can now compute 
the minimum significant difference for this comparison using Equation (22.5): 

TABLE 22.5 CRITICAL VALUES OF z TO BE USED IN CALCULATING MULTIPLE 
COMPARISONS WITH H AND X� STATISTICS 

Number of 
aFW 

Comparisons .25 .20 .1 5 . 10  .05 

1 .1 50 1 .282 1 .440 1 .645 1 .960 
2 1 .534 1 .645 1 .780 1 .960 2.241 
3 1 .732 1 .834 1 .960 2.1 28 2.394 
4 1 .863 1 .960 2.080 2.241 2.498 
5 1 .960 2.054 2.1 70 2.326 2.576 

6 2.037 2.1 28 2.241 2.394 2.638 
7 2.1 00 2.1 89 2.300 2.450 2.690 
8 2.154 2.241 2.350 2.498 2.734 
9 2.200 2.287 2.394 2.539 2.773 

1 0  2.241 2.326 2.432 2.576 2.807 

liThe actual probability associated with each individual comparison is aFWik(k - 1). Therefore, with k = 3, 
and aFW = .05, the per comparison error rate is .05/3(3 - 1) = .008. At aFW = .20, the per comparison error 
rate would be .20/3(3 - 1)  = .03. 
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We compare this minimum difference with the absolute difference between the mean 
ranks for Groups 1 and 2: 

I:R1 - Rz l = 1 5.4 - 5.8 1  = 0.4 

Because this difference is less than the minimum significant difference, it is not consid­
ered significant. There is no significant difference between ice and hot packs for reliev­
ing pain. 

We compare Groups 1 and 3 (n1 = 5, n3 = 4) using 

The difference, IR1 - R3 1 = 1 5.4 - 12.25 1 = 6.85, is greater than this minimum signifi­
cant difference, and, therefore, this represents a significant effect. Ultrasound (R3) is 
more effective than ice (R1). 

Finally, we compare Groups 2 and 3 (n2 = 5, n3 = 4) using the minimum signifi­
cant difference of 5.50 (obtained earlier for the same sample sizes): 

IRz - R3 l = 1 5.8 - 12.25 1 = 6.45 

This comparison is also significant. We can now conclude that ultrasound (R3) is more 
effective for reducing low back pain than either ice (R1) or hot packs (R2). 

When all k samples are of equal size, one minimum significant difference can be 
used for all comparisons, using the formula 

TESTS FOR TWO CORRELATED SAMPLES: SIGN TEST 
AN D WILCOXON SIGN ED-RANKS TEST 

(22.6) 

Two procedures are commonly used for testing the difference between correlated sam­
ples: the sign test and the Wilcoxon signed-ranks test. These tests are used with two­
level repeated measures designs. They are analogous to the parametric t-test for 
correlated or paired samples. 

The Sign Test 
The sign test is one of the simplest nonparametric tests because it requires no mathe­
matical calculations. It is used with binomial data, and does not require that measure­
ments be quantitative. As its name implies, the data are analyzed using plus and minus 
signs rather than numerical values. Therefore, this test provides a mechanism for test­
ing relative differentiations such as more-less, higher-lower, or larger-smaller. It is par­
ticularly useful when quantification is impossible or unfeasible and when subjective 
ratings are necessary. 
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Example 
We are interested in the effect of knee angle on knee extensor strength. Using a manual 
muscle test (MMT}, we will study 10 patients, six months following a total knee replace­
ment. MMT grades are recorded from 0 (no muscle activity) to 12 (normal strength). We 
hypothesize that knee extensor strength will be different with the knee in 90° and 15° 
of flexion. 

Procedure 
Hypothetical data are shown in Table 22.6A. The sign test is applied to the differences 
between each pair of scores, based on whether the direction of difference is positive or 
negative. In this example, we will use the grades measured at 15 degrees as the refer­
ence and record whether the grade at 90 degrees is greater ( + ), the same (0}, or less (-) 
than the reference grade, always maintaining the same direction of comparison. It does 
not matter which value is used as the reference, as long as the order is consistent. In the 
fourth column in Table 22.6A, the signs of the differences are listed. When no difference 
is obtained, a zero is recorded. 

Under the null hypothesis, we would expect half the differences to be positive and 
the other half to be negative. We will reject Ho if one sign occurs sufficiently less often. 
If we propose a directional alternative hypothesis, we must be sure that the direction of 
comparison supports the predicted direction of change. For this illustration, we have 
proposed a nondirectional hypothesis. 

To proceed with the test, we count the number of plus signs and the number of 
minus signs. Ties, recorded as zeros, are discarded from the analysis, and n is reduced 
accordingly. In this example, 7 of the 10 subjects showed differences, with three ties. 
Therefore, n = 7. There are 6 plus signs and 1 minus sign (see Table 22.6A). We take the 
smaller of these two values, the number of fewer signs, and assign it the test statistic, x. In 
this case, x = 1, the number of minus signs. 

Test Probabilities 
To determine the probability of obtaining x under Ho, we refer to Appendix Table A.9. 
This table lists one-tailed probabilities associated with x for values up to n = 30, where 
n is the number of pairs whose differences showed direction. Two-tailed tests require 
doubling the probabilities given in the table. 

For x = 1 and n = 7, the table shows p = .062. Because we have proposed a nondi­
rectional hypothesis, we double this value for a two-tailed probability of p = .124. This 
is greater than the acceptable level of .05, and we cannot reject Ho. The probability that 
the difference in the number of plus and minus signs occurred by chance is too great. 
We conclude that there is no significant difference in knee extensor strength with the 
knee at 90 and 15 degrees. 

The determination of the probability associated with x is based on a theoretical dis­
tribution called the binomial probability distribution. A binomial outcome is one that can 
take only two forms, in this case either positive or negative. The binomial test deter­
mines the likelihood of getting the smaller number of plus or minus signs out of the 
total number of differences just by chance. 
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TABLE 22.6 SIGN TEST AND WILCOXON SIGNED-RANKS TEST: M MT GRADES 
FOR KNEE EXTENSION WITH KNEE AT TWO ANGLES 

A. DATA 
Angle 

Rank of Ranks with 

Subject goo 1 5° Sign d d less frequent sign 

1 8 8 0 0 
2 10  1 1  - 1  - 1  - 1  

3 7 7 0 0 
4 9 7 + +2 +3 
5 1 0  8 + +2 +3 
6 1 1  7 + +4 +7 
7 1 0  8 + +2 + 3  
8 1 0  7 + +3 +5.5 
9 8 8 0 0 

10  10  7 + +3 +5.5 
T =  - 1  

B. HYPOTHESIS TEST/OUTPUT FOR THE SIGN TEST 

6 plus signs, 1 minus sign, x = 1 
(number of fewer signs) 

Frequencies Test Statistics 

For x = 1, n = 7, p = .124 (Table A.9) 

ID I  - 1 l s i - 1 
z = --- = -- = 1 .51 vn V7 
Do not reject Ho. 

9Q-1 5 

Negative Differences (a) 
Positive Differences (b) 
Ties( c) 
Total 

(a) 90 < 1 5  (b) 90 > 1 5  
(c) 90 = 1 5  

N 

1 
6 
3 

1 0  

C .  HYPOTHESIS TEST/OUTPUT FOR THE SIGNED-RANKS TEST 

9Q-1 5 

Exact Sig. 
(2-tailed) . 1 25 

Sum ranks with less frequent sign = -1  For n = 7 at a2 = .05, T = 2 (Table A. 1 0) Reject Ho 

9Q-1 5 

Negative Ranks 
Positive Ranks 
Ties 
Total 

n(n + 1) T - ---4 
7(7 + 1) 1 - ---4 -13 

z = ---r:;===;:;::;:;;===;:;:: /n(n + 1)(2n + 1) -/r.::7::;;:(7;=+==;:;1 )::;:;(2:::;:;(7:;;:) =+=1;:::;::) 
= 

-v3s-3s 
= -2"20 

v 24 

Ranks 

Mean 
N Rank 

1 (a) 1 .00 
6(b) 4.50 
3(c) 

1 0  

v 24 

Test Statistics 

Sum of 9Q-1 5 
Ranks z -2.2 1 7  

1 .00 Asymp. Sig. .027 
27.00 (2-tailed) 

(a) 90 < 1 5; (b) 90 > 1 5; (c) 90 = 1 5. 

Note: Calculated values may differ due to rounding differences. 
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Large Samples 
With sample sizes greater than 30, x is converted to z and tested against the normal dis­
tribution according to the formula 

z = 
ID I - 1 

Vn (22.7) 

where ID I is the absolute difference between the number of plus and minus signs. 
This calculation is illustrated in Table 22.6B for data with six plus signs and one 

minus sign, resulting in z = 1 .51. Using the critical value of z = 1 .96 for a2 = .05, this 
outcome does not achieve significance. The output for this analysis is also shown. 

The Wilcoxon Signed-Ranks Test 
The sign test evaluates differences within paired scores based solely on whether one 
score is larger or smaller than the other. This is often the best approach with subjective 
clinical variables that offer no greater precision; however, if data are able to provide 
information on the relative magnitude of differences, the more powerful Wtlcoxon 
signed-ranks test can be used. This test examines both the direction of difference and 
the relative amount of difference. 

Example 
Consider the example presented in the previous section. In Table 22.6A, we have listed 
the manual muscle test grades as ordinal values, based on a scale of 0 to 12. We obtain 
a difference score for each subject, labeled d. When d = 0, the subject is dropped from 
the analysis, and n is reduced, as it was in the sign test. 

Procedure 
We proceed by ranking the difference scores, without regard to sign, and discarding any 
pairs with no difference. We then attach the sign of the difference to the obtained ranks. 
For instance, in our example, the rank of 1 is given to the smallest difference score (Sub­
ject 2), and then assigned -1 because it reflects a negative difference. Tied difference 
scores are given the mean of their ranks. Therefore, ranks 2, 3 and 4 are taken by Sub­
jects 4, 5 and 7, who all have a difference score of 2. These scores are each assigned the 
average rank of 3. Subjects 8 and 10 are tied with difference scores of 3, filling ranks 5 
and 6, which are averaged to rank 5.5. The final rank of 7 is assigned to Subject 6. 

If the null hypothesis is true, we would expect to find an equal representation of 
positive and negative signs among the larger and smaller ranks; that is, the sum of the 
positive ranks should be equal to the sum of the negative ranks. We reject Ho if either 
of these sums is too small. 
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We determine if there are fewer positive or negative ranks, and then sum the ranks for 
the less frequent sign. This sum is assigned the test statistic, T. In this example, there are 
fewer ranks with negative signs, with the sum of -1.  Therefore, T = -1.  Only the 
absolute value of T is used to determine significance. The sign of T is of concern only 
when performing a one-tailed test. 

Critical Values 
Critical values of T are given in Appendix Table A.12 for one- and two-tailed tests, 
where n is the number of pairs with nonzero differences. The absolute calculated value 
of T must be less than or equal to the critical value to achieve significance. Note once 
again that this is opposite to the way most critical values are used. For this analysis, at 
a2 = .05, with n = 7, the critical value of T is 2. Therefore, our calculated value of T = 1 
is significant (see Table 22.6C). We can reject H0 and conclude that knee extensor 
strength is different with the knee at 90 and 15 degrees. Visual examination of the data 
tells us that strength is greater with the knee at 90 degrees. 

It is interesting to note the difference between the outcome of this analysis and the 
outcome of the sign test on the same data. We were able to substantiate a significant dif­
ference using the Wilcoxon procedure, because it is sensitive to relative differences, not 
just direction. Therefore, if data achieve adequate precision, the Wilcoxon test is recom­
mended over the sign test. 

Large Samples 
With sample sizes over 25, the absolute value of T can be converted to z according to 

n(n + 1) 
T - ---

4 
z = --;:-=;==��=:::;:;:-/n(n + 1)(2n + 1) 

\j 24 

(22.8) 

where n is the number of paired observations. For this analysis, z = -2.20 (see Table 
22.6C). The absolute value of z is greater than the critical value 1 .96, which represents a 
significant difference at a2 = .OS. According to Appendix Table A.1, the two-tailed sig­
nificance associated with z = 2.20 is .0278. This is illustrated in the output for the z test. 

TEST FOR MORE THAN TWO CORRELATED SAMPLES: 
FRIEDMAN TWO-WAY ANALYSIS OF VARIANCE BY RAN KS 
In this section we present a nonparametric test to analyze data from a single-factor 
repeated measures design with three or more experimental conditions. The Friedman 
two-way analysis of variance by ranks is a powerful alternative to the parametric 
repeated measures AN OVA when ordinal data are used or when parametric assumptions 
are not tenable. The test is given the designation "two-way" based on the interpretation 
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that "subjects" is treated as an independent variable with n = 1 per cell of the design. 
It is assumed that the number of measurements in each experimental condition will be 
the same. 

Example 
We are interested in measuring the effect of changing body position on blood pressure 
in six patients with chronic pulmonary disease. Each patient will be placed in three 
positions-level, head down and head elevated-in random order. Blood pressure will 
be measured within 1 minute of assuming the position. We may choose to use a non­
parametric form of analysis for this study because the sample is small, and because we 
do not have sufficient reason to assume that blood pressure for a population of patients 
with this disease will be normally distributed. In addition, although blood pressure 
measurements can be considered ratio level data, we can rationalize that the lack of reli­
ability in the data warrants using a nonparametric test. 

Procedure 
Hypothetical data for this study are reported in Table 22.7 A. Data are arranged so that 
rows represent subjects (n) and columns represent experimental conditions (k). In this 
example, n = 6 and k = 3. We begin by converting all scores to ranks; however, the 
ranking process for this test is different from that used with the Kruskal-Wallis 
ANOVA. Here the ranks are assigned across each row (within a subject). Ties are 
assigned average ranks within a row. The highest rank within a row will equal k. 

The next step is to sum the ranks within each column. If the null hypothesis is true, 
we would expect the distribution of ranks to be a matter of chance, and high and low 
ranks should be evenly distributed across all treatment conditions. Therefore, the rank 
sums within each column should be equal. If the alternative hypothesis is true, at least 
one pair of conditions will show a difference. 

The X� Statistic 
The test statistic for the Friedman ANOVA is x� (read "chi square r"). It is computed 
using the formula 

12 
x2 = .LR2 - 3n(k + 1 )  r nk(k + 1 )  

(22.9) 

where n is the number of subjects (rows), k is the number of treatment conditions 
(columns) and LR2 is the sum of the squared ranks for each column. Calculation of x� 
is illustrated in Table 22.7B. For this analysis, rr = 9.25. 

Critical Values 
The distribution of x� follows the standard x2 distribution with k - 1 degrees of free­
dom, where k is the number of experimental conditions (Appendix Table A.5). With 
2 df, we measure our calculated value of 9.25 against 5.99 (at a = .05). The calculated 
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TABLE 22.7 FRIEDMAN TWO-WAY ANALYSIS OF VARIANCE BY RANKS: BLOOD 
PRESSURE IN THREE POSITIONS (n = 6) 

A. DATA 

(1 ) Level (2) Elevated 

Subject BP Rank BP Rank 

1 1 1 0 1 1 50 2 
2 1 00 1 .5 1 00 1 .5 
3 1 20 1 1 40 3 
4 1 1 0 1 1 30 2 
5 1 20 1 1 30 2 
6 1 30 _1 _  1 55 _2_ 

R 6.5 1 2.5 
R 1 .08 2.08 
Ff2 42.25 1 56.25 

B. COMPUTATIONS 

12 X� = 2: R2 - 3n(k + 1 )  nk(k + 1 )  

(3) Down 

BP Rank 

1 75 3 
1 1 0  3 
1 35 2 
1 55 3 
1 45 3 
1 70 ____a_ 

1 7  
2.83 

289.00 

12 
[42.25 + 156.25 + 289] - 3(6)(3 + 1 )  

(6)(3)(3 + 1 )  

= �� [487.5] - 72 = 9.25 

C. HYPOTHESIS TEST/OUTPUT 

For k = 3 (df = 2 )  

x2 = 5.99 at  a = .05 (Table A.S) 
Reject Ho. 

DOWN 
ELEV 
LEVEL 

Ranks 

Mean Rank 

2.83 
2.08 
1 .08 

Note: Calculated values may differ due to rounding differences. 

Test Statistics 

N 6 
Chi-Square 9.652 
df 2 
Asymp. Sig. .008 

value must be equal to or larger than the critical value to be significant. Therefore, our test 
is significant (see Table 22.7C). 

Multiple Comparison for the Friedman ANOVA 
When x� is significant, we can test all pairwise differences using a multiple comparison 
procedure. Although the Wilcoxon signed-ranks test is often used for this purpose, 
a specific multiple comparison has been developed for the Friedman ANOVA.5 We 
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propose a familywise error rate as an overall level of significance for the combined set 
of contrasts in the experiment. 

Minimum Significant Difference 
The expression used to determine the minimum significant difference (MSD) for all 
pairwise contrasts is 

(22.10) 

where R1 and R2 are the rank totals for each treatment condition, n is the number of sub­
jects, and k is the number of treatment conditions. The value of z is taken from Table 22.5 
for the appropriate number of comparisons (k(k - 1)/2) and the desired familywise a 
level for the combined set of comparisons. For the current example, we have a total of 
three comparisons, and we propose a familywise a level of .10. Therefore, z = 2.128. 

We compute the minimum significant difference: 

MSD = 2.128)6(3)(� + 1) = 2.128W = 7.37 

For this analysis, contrasts are made between rank totals for each treatment condi­
tion, not mean ranks. The absolute value of differences between rank sums for each pair 
of treatment conditions must be greater than or equal to the obtained critical value. 
Because we are dealing with repeated measures, and all subjects are represented under 
each treatment, there is only one critical value for all contrasts. The three pairwise com­
parisons for this study are 

IR1 - Rz l 

IRl - R31 

I Rz - R3 l 

1 6.5 - 12.5 1 = 6.0 

16.5 - 17.01 = 10.5 

1 12.5 - 17.0 1 = 4.5 

The only difference score that exceeds the critical value of 7.37 is obtained from the sec­
ond comparison between conditions 1 and 3. Therefore, there is a significant difference 
in blood pressure when an individual is positioned level versus head down, with 
higher pressures obtained in the head down position. No other contrasts are significant. 

COM M ENTARY 

The Debate 

Nonparametric procedures offer c l i n ical researchers a powerfu l and eas i ly  under­
stood statist ical mechan ism for analyzing changes measured with subjective tools .  
Because of the nature of many c l i n ical assessments, the ab i l ity to analyze ord ina l  
data i s  important. There is sti l l  some debate among statist icians and researchers con­
cern ing  the appropriate appl ication of parametric versus nonparametric stati st ics 
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with ord i na l  data . The c lassical v iew is that on ly nonparametr ic procedures shou ld 
be used with ord ina l  measurements; however, many researchers do app ly paramet­
r ic tests to ord i na l  data, presumably because parametric tests have greater stat ist ica l 
power. Th i s  pract ice has been j ustified by assuming that the ord i na l  in terva l s  are con­
s i stent, even though sensit iv i ty of measurement may be unable to document th is .  
Therefore, the analys is  wou ld not conceptua l ly v io late the assumptions of the para­
metric test.7·8 Although some assessment sca les can be constructed in such a way as 
to define i nterva l s  as prec i sely as poss ib le, i t is probably unreasonab le  to assume that 
constructs such as function, manual res i stance, sensation and so on, typ ica l ly  meas­
u red as ranks, can be measured with suffic ient re l i ab i l ity that i nterva ls can be con­
s idered equa l .  I t  is a l so l i kely that many of these sca les are non l i near, so that i nterva l s  
at  extremes of  the sca le wi l l  be d ifferent from those toward the center. Those who 
use th is  approach or who in terpret f indi ngs of others who have used i t  must consider 
the potentia l  for jeopard iz ing the va l id i ty of stat ist ical outcomes by treat ing ord i nal  
data as i nterva l dataY 

Nonparametr ic methods are a l so appropriate for use with in terval or rat io data 
when d i str ibutions are skewed or when sample s izes are too sma l l  to assume repre­
sentation of a norma l d istr ibut ion; however, nonparametr ic procedures can be 
wastefu l of i nformation when used with data on the in terval or rat io scales, because 
prec i se data are reduced to ranks. Therefore, when the cr iterion for us ing nonpara­
metric tests i s  based on v io lat ions of norma l i ty on ly, i t  may be usefu l to transform 
data us ing a logarithm ic transformation to ach ieve a normal d i str ibut ion (see Appen­
dix D) and to apply a parametr ic test. 

The tests that have been inc l uded in th i s  chapter are on ly a sampl i ng of ava i l ­
able nonparametric procedures. Stati st ic ians conti nue to deve lop and refine these 
tests and to expand the capab i l i ties of nonparametric methods i nto areas such as 
regression and factor ia l  designs. Many tests have been developed with very spec ific 
pu rposes, such as compar ing several treatment groups with a s i ngle contro l  or look­
ing at d i fferences in var iables that have an i nherent order. Nonparametric statist ics 
can a l so be used for corre lat ion procedures and for test i ng nom inal sca le data . These 
procedu res are presented in Chapters 23 and 2 5 .  
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CHAPTER 23 

Correlation 

The statistical procedures we have described thus far have all focused on the compari­
son of a measured dependent variable across categories of an independent variable. 
These procedures are generally applied to experimental and quasi-experimental 
designs for the purpose of group comparisons. We will now begin to examine proce­
dures for exploratory analyses, where the purpose of the research question is to evalu­
ate the relationship between two measured variables. Where statistical tests of group 
differences address the question "Is group A different from group B?" or "Does this 
treatment cause this outcome?", measures of correlation ask, "What is the relationship 
between A and B?" or "Does variable A increase with variable B?" 

The concept of correlation is, by and large, a familiar one. Pairs of observations, X 
and Y, are examined to see if they tend to "go together." For instance, we generally 
accept that taller people tend to weigh more than shorter people, that children resem­
ble their parents in intelligence, and that heart rate increases with physical exertion. 
These variables are correlated, in that the value of one variable (X) is associated with 
the value of the other variable (Y). With a strong correlation, we can infer something 
about the second value by knowing the first. Correlation can be applied to paired obser­
vations on two different variables, such as heart rate and level of exertion, or to one 
variable measured on two occasions, such as intelligence of a parent and child. 

Correlation coefficients are used to quantitatively describe the strength and direc­
tion of a relationship between two variables. The purpose of this chapter is to introduce 
several types of correlation coefficients that can be applied to a variety of exploratory 
research designs and types of data. The most commonly reported measure is the Pearson 
product-moment coefficient of correlation, for use when both X and Y are on the interval 
or ratio scales. We include procedures for correlating ranked data using the Spearman rho 
(rs) and several correlation methods for use with data in the form of dichotomies. 

SCATTER PLOTS 
It is often useful to examine a statistical relationship by first creating a scatter diagram 
or scatter plot, as shown in Figure 23.1 .  In a scatter plot each point (dot) represents the 
intersection of a pair of related observations. With a sufficient number of data points, a 
scatter plot can visually clarify the strength and shape of a relationship. For instance, the 
points in Figure 23.1A show a pattern in which the values of Y increase in exact propor­
tion to the values of X. This is considered a perfect positive relationship, with data points 
falling on a straight line. In Figure 23.1B, the data demonstrate a negative slope in a per­
fect negative relationship, with lower values of Y associated with higher values of X. 

523 



524 PART IV • Data Analysis 

A 

D 

• 
• • 

,. 
,., 

• • • 

r= 1 .00 

• • • . .. . . . ... :::!�\. • 

• • 
, 

. •). ·· . . . • • • • • • • • • • ·� ·::· . • 

·' 

• 

. -. .. • • • ••• • .. . '·· 
' ...... . 

• • • 

r= -.85 

B 

E 

•• • • 
' 

' • 

r= -1 .00 

• • • • • • • • • . . . . ·� • • • \! .1 .. . ,_,.. . . . :: . •: . • • • ••• • •  • •• • ·= • • •  ••• •• •• • . . �· . . : •I• .:-• . . 

r= .44 

c 

F 

• 
.:a • ·:;·· 

• • • • 
. ·�., . . 

. � ... . 
,.,;::: .. 

. -� ... · ·  , . . • • •  ··' 
• 

r= .94 

• • • • • • • • •• • • • • . . . ... .. . . . . .. , , .. •' . . • • .It •• � ., ... . • • • I •.,,. • • . . .... .. • . ·'s·• . . . ... :. , . . • • • • • • • • • • . =··· •. . 
• • • I • • • • • 

• 
• • • 

(= .00 

FIGURE 23.1 Scatter plots i l l ustrating various degrees of l inear correlation. 

Perfect relationships are truly rare, however. Generally the association between X 
and Y does not follow a perfect pattern, and values of X and Y will change in varying 
proportions. Figure 23.1C shows a strong positive correlation; this pattern might reflect 
the relationship between height and weight, for example. Figure 23.1D shows a strong 
negative correlation; this might represent the relationship between leg length and the 
number of steps needed to walk a given distance. These two patterns reveal data that are 
clustered in relatively linear patterns. Figure 23.1E shows a weaker positive relationship, 
one that is harder to interpret visually than the others. We might see such a pattern if we 
looked at lower extremity strength and overall physical function, where a relationship 
exists, but individuals respond differently for a variety of reasons. Scatter plots that 
occur in random or circular patterns, as in Figure 23.1F, reflect no linear relationship 
between X and Y, or near-zero correlation. This might be the case if we studied the rela­
tionship between students' exam grades and height, for example. In this case, the value 
of Y is not associated with the value of X; that is, all observed variability is random. 

CORRELATION COEFFICIENTS 
Inspection of data in a scatter plot provides some idea about a relationship, but is not 
adequate for summarizing that relationship. The correlation coefficient is used to pro­
vide an index that reflects a quantitative measure of the relationship between two vari-
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BOX 23.1 What Is a Strong Correlation? 

The value of the correlation coefficient is a measure of strength of association 
between two variables. There are no widely accepted criteria for defining a 
strong versus moderate versus weak association. As a general guideline we 
offer the following: 

0.00 to .25 
.25 to .50 
.50 to .75 

above .75 

Little or no relationship 
Fair relationship 
Moderate to good relationship 
Good to excellent relationship 

We hasten to emphasize, however, that these values should not be used as 
strict cutoff points, as they are affected by sample size, measurement error 
and the types of variables being studied. Please use them as a starting point 
only. We hesitate to even provide such criteria, because they are often quoted 
without regard to the context of the data. Sociological and behavioral sci­
entists often use lower correlations as evidence of functionally useful rela­
tionships for the interpretation of complex abstract phenomena. Such 
interpretations must be based on the nature of the data, the purpose of the 
research and the researcher's knowledge of the subject matter. 

abies. For most applications, a lowercase r is used to represent a sample correlation 
coefficient. Correlation coefficients can take values ranging from -1 .00 for a perfect 
negative relationship, to 0.00 for no correlation, to + 1 .00 for a perfect positive relation­
ship. The magnitude of the correlation coefficient indicates the strength of the association 
between X and Y. The closer the value is to ±1 .00, the stronger the association (see Box 
23.1 ) .  The sign of the correlation coefficient indicates the direction of the relationship. In 
a positive relationship, X increases as Y increases, and X decreases as Y decreases. In a 
negative relationship, X increases as Y decreases, and vice versa. 

In reality, because of random effects, we seldom see either perfect or zero correla­
tion. We will typically encounter values of r that fall between 0.00 and ± 1 .00. These val­
ues are expressed as decimals, usually to two places, such as r = .75 or r = - .62. The 
plots in Figure 23.1 represent a variety of potential outcomes for a correlation analysis 
between variables X and Y, showing different values of correlation coefficients. Data 
that cluster closer to a straight line have higher correlation coefficients. 

LIN EAR VERSUS CURVILIN EAR RELATIONSHIPS 
The pattern of a relationship between two variables is often classified as linear or non­
linear. The plots in Figures 23.1A and B are perfectly linear because the points fall on a 
single straight line. The plots in Figures 23.1C-E can also be considered linear, although 
as they begin to deviate from a straight line, their correlation decreases. The closer the 
points are to a straight line, the higher the value of r. 
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The coefficient r is a measure of linear relationship only. This means that the value 
of r reflects the true nature of a relationship only when scores vary in a linear fashion. 
When a curvilinear relationship is present, the linear correlation coefficient will not 
be able to describe it accurately.* For instance, a curvilinear shape typically character­
izes the relationship between strength and age. As age increases so does strength, until 
a plateau is reached in adulthood, followed by a decline in elderly years. This type of 
relationship is illustrated in Figure 23.2. 

Because r measures only linear functions, the correlation coefficient for a curvilin­
ear relationship can be close to zero, even when X and Y are indeed related. For exam­
ple, a systematic relationship is clearly evident between X and Y in Figure 23.2, 
although r = .18 suggests a very weak relationship. This should caution the researcher 
to be critical about the interpretation of correlation coefficients. By plotting a scatter dia­
gram, researchers can observe whether the association in a set of data is linear or curvi­
linear, and thereby decide if r is an appropriate statistic for analysis . 

• • • • • • . . . .... . . . . . . ·��- ·-· . . . . . . - �  .... . . .. �, . . . . . .. . .. . ...... . ···\  . . . . , .. . .. . . . '. •  . .. . . . . . ·. . . . . ....... . 
.. .. . . . ..... . • :•t •• . 

• •• • • .•z •: ·.·: . . : · . . 
� . 
• 

r= . 18 

FIGURE 23.2 I l l ustration of a strong curv i l inear relationship, yielding a poor l i near correlation. 

*The eta coefficient (71), also called the correlation ratio, is an index that does not assume a linear relationship 
between two variables. To establish nonlinear correlation using eta, one variable must be nominal, i.e. categor­
ical. If both variables are continuous, one must be converted to categories or groups. An AN OVA can be used 
to compare these groups on the continuous variable. The eta coefficient can then be computed as follows: 

11 = fSSb, where SSt, is the between-groups sum of squares, and SS1 is the total sum of squares from the ANOVA. 'Vss; 
The interpretation o f  11 is the same as r, although 11 can only range from 0.00 to + 1.00 (it cannot be negative). 
The square of eta (712) is interpreted as r2 (see Chapter 24). The value of 712 is also an effect size index for the 
t-test and ANOVA (see Appendix q.u 
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Studies using correlation analysis often examine several variables at one time, and may 
include a matrix of intercorrelations,+ which presents the correlation coefficients for all 
pairs of variables. Table 23.1 shows such an arrangement for data collected in a study 
of prognostic characteristics for independent ambulation in children with traumatic 
brain injury following inpatient rehabilitation.3 

Note that the table is triangular; that is, values below the diagonal would be redun­
dant of those above the diagonal and, therefore, are not included. The values on the 
diagonal will always be 1 .00, representing the perfect correlation of each variable with 
itself, which is why these values are often omitted. The values off the diagonal are the 
correlation coefficients for each pair of variables. For example, Table 23.1 shows that the 
absence of lower extremity hypertonicity is associated with the ability to ambulate 
(r = .49). Hypertonicity was also associated with the degree of injury severity (r = .44). 
This correlation matrix provides the reader with a useful overview of data in a complete 
and concise format. 

Significance of the Correlation Coefficient 
Just like other sample statistics, the correlation coefficient is subject to sampling error; 
that is, the observed correlation is considered one of an infinite number of possible cor­
relations that could be obtained from random samples of a population. We can subject 

TABLE 23.1 INTERCORRELATIONS OF VARIABLES RELATED TO INDEPENDENT 
AMBULATION IN CHILDREN WITH TRAUMATIC BRAIN INJURY (N = 53) 

Variable 1 2 3 4 5 6 7 

1 Ambulation .49'' 
.40" . 25' -.08 .33" .37 .. 

2 Absence of Lower .44" -.01 - . 13  .56 .. .59 .. 
Extremity Hypertonicity 

3 I njury Severity -.04 -.02 .sa" .38" 

4 Absence of LE Injury -.07 .02 .23' 

5 Type of Brain Injury - . 14  - .34 .. 

6 Cognitive Status .47 .. 

at Admission 
7 PEDI* Functional Skills 

Mobility Scale Score at 
Admission 

•p :s .03, df = 93; .. p :s .001 ' df = 93; 
*PEDI = Pediatric Evaluation of Disability Inventory. 
Adapted from: Dumas HM, Haley SM, Ludlow LH, Carey TM. Recovery of ambulation during inpatient rehabili­
tation: Physical therapist prognosis for children and adolescents with traumatic brain injury. Phys Ther. 2004; 
84:232-242. Table 2, p. 237. Reprinted with permission of the American Physical Therapy Association. 

tnlis terminology should not be confused with the intrac/ass correlation coefficient (ICC), which is used in reli­
ability studies (see Chapter 26). 
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the correlation coefficient to a test of significance to determine if the observed value is 
a random effect or if it is a good estimate of the population correlation. 

The null hypothesis states that there is no relationship between X and Y in the 
underlying population, and therefore, the value of the correlation coefficient is zero, 
Ho: r = 0. A test of significance will determine how likely it is that an observed correla­
tion value would have occurred by chance. Although a nondirectional alternative 
hypothesis can be proposed (H1: r * 0), it is often stated with direction, predicting 
either a positive or a negative relationship (H1: r > 0 or H1: r < 0). We present specific 
methods for testing the significance of various correlation coefficients in the sections 
that follow. 

The significance of a correlation coefficient does not mean that a correlation coeffi­
cient represents a strong relationship. Statistical significance only indicates that an 
observed value is unlikely to be the result of chance. Correlation coefficients are very 
sensitive to sample size, and statistical power can be relatively high even with smaller 
samples. Using the Pearson r, for example, with n ;::: 15, a moderate correlation of 
r = .45 will be significant (p < .05). With larger samples, such as n > 60, even values 
as small as r = .20 will be significant. Therefore, a correlation coefficient should always 
be interpreted in relation to the size of the sample from which it was obtained. With a 
sufficient increase in sample size almost any observed correlation value will be statisti­
cally significant, even if it is so small as to be a meaningless indicator of association. For 
example, the data shown in Table 23.1 were obtained from a sample of 53 subjects, 
resulting in relatively high power. Therefore, correlations as low as .25 and .33 are still 
significant. Consider the case of a study of intelligence tests reported in the New York 
Times in 1986, with the headline "Children's Height Linked to Test Scores."4 With nearly 
14,000 children tested, a significant correlation was cited, but the headline missed the 
fact that the correlation was only .11! Although many authors report p values associated 
with correlation coefficients, significance is not as useful to interpretation of r as it is 
with t-tests or F-tests. Low correlations should not be discussed as clinically important 
just because they have achieved statistical significance. Such interpretations should be 
made only on the basis of the magnitude of the correlation coefficient and its practical 
significance in the context of the variables being measured. 

PEARSON PRODUCT-MOMENT 
CORRELATION COEFFICIENT 
The most commonly reported measure of correlation is the Pearson product-moment 
coefficient of correlation, developed by the English statistician Karl Pearson. The sta­
tistic is given the symbol r for sample data and p (rho) for a population parameter. This 
statistic is appropriate for use when X and Y are continuous variables with underlying 
normal distributions on the interval or ratio scales. 

Product-moment correlation is based on the concept of covariance. With propor­
tional consistency in two sets of scores, we expect that a large X is associated with a 
large Y, a small X with a small Y, and so on. Therefore, X and Y are said to covary; that 
is, they vary in similar patterns. With a strong positive relationship, then, an X score 
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that is above the mean X should be associated with a Y score that is above the mean Y. 
With a strong negative relationship a low X score (below X) is associated with a high Y 
score (above Y). Therefore, if we take the deviation of each score from its mean, called 
a moment, the moments for X and Y scores should be related. The product of the 
moments for X and Y is a reflection of the degree of consistency within the distribu­
tions, hence the name of the statistic. 

Example 
To illustrate the calculation of r, we use the data in Table 23.2, representing develop­
mental scores on tests of proximal (reaching) and distal (prehensile skill) behaviors in 
12 normal infants, 30 weeks of age.5 The null hypothesis states that there is no rela­
tionship between these two behaviors and that the correlation coefficient will be equal 
to zero, H0: p = 0. The alternative hypothesis states that there will be a positive rela­
tionship, H1: p > 0. 

The r Statistic 
The computational formula for the Pearson r is 

(23.1) 

where n is the number of pairs of scores. 
To calculate r, we determine X2, Y2, and XY for each subject's scores and then sub­

stitute the sums of these terms into Equation (23.1) as shown in Table 23.2B. The calcula­
tions yield r = .365. This would be considered a relatively weak correlation, suggesting 
that there is little association between proximal and distal skills in this sample. 

Test of Significance 
The product-moment correlation coefficient can be subjected to a test of significance, to 
determine if the observed value could have occurred by chance (if it is significantly dif­
ferent from zero). Critical values of r are provided in Appendix Table A.4 for one- and 
two-tailed tests of significance with n - 2 degrees of freedom. The observed value of r 
must be greater than or equal to the tabled value to be significant. For this example, we 
locate the critical value (a1= .os)r(IO) = .497. The observed value, r = .365, is less than this 
critical value, and Ho is not rejected. Computer output shows that p = .121 (see Table 
12.2D). These data do not support a relationship between proximal and distal motor 
skills at 30 weeks of age.t 

�See Appendix C for a power analysis for these data. 
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TABLE 23.2 COMPUTATION OF THE PEARSON PRODUCT-MOMENT CORRELATION 
COEFFICIENT: PROXIMAL VERSUS DISTAL DEVELOPMENT SCORES 
(N = 1 2) 

A. DATA 
Proximal Distal 

Subject (X) ( Y)  x2 y2 XY 
1 7  1 1  289 1 21 1 87 

2 1 0  8 1 00 64 80 
3 1 4  1 3  1 96 1 69 1 82 
4 21 1 4  441 1 96 294 
5 1 6  2 1  256 441 336 
6 21 1 9  441 361 399 
7 22 1 4  484 1 96 308 
8 1 8  2 1  324 441 378 
9 1 8  1 6  324 256 288 

1 0  1 6  1 6  256 256 256 
1 1  1 8  1 0  324 1 00 1 80 
1 2  _____2Q_ _1_4_ 400 1 96 280 

�X  = 21 1 IY = 1 77 IX2 = 3835 LY2 = 2797 �XY = 31 68 

B. COMPUTATIONS 

II L XY - ( L X)(L Y) 1 2(3,168) - (21 1 )( 177) 
- = .365 r = 

v'[" L x2 - ( Lxl2] ["  Ly2 - (LYl2] V[12(3,s3s) - (21 1 )2] [12(2,797) - (177)21 

C. HYPOTHESIS TEST 

'"' = .OSl't lO) = .497 (Table A.4) H0: p = 0; H1: p > 0 Do not reject H0 

D. OUTPUT 
Correlations 

22.00 
• • 

20 00 
Proximal D istal 18.00 

Proximal Pearso n  Correlation 1 .365 ro 16.00 • • ;;; 
Sig. (1 -tailed) . 1 2 1 6 14.00 
N 1 ') 1 2  

• ,_ 12.00 
Distal Pearson Correlation . 365 1 • 

10.00 • 
Sig. (1 -tailed) . 1 2 "1 

8.00 • 
N 1 2  1 2  noo 12.00 14.00 16.00 1 8.00 

Prox1mal 

Source: Loria C. Relationship of proximal and distal function in motor development. Phys Ther 1 980; 
60:1 67-1 72. 

• 

• • • 

20.00 22.00 
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CORRELATION OF RANKS: SPEARMAN RAN K  
CORRELATION COEFFICIENT 
The Speannan rank correlation coefficient, given the symbol rs (sometimes called 
Spearman's rho), is a nonparametric analog of the Pearson r, to be used with ordinal data. 

Example 
To illustrate this procedure, we will examine the relationship between verbal and read­
ing comprehension for a sample of 10 children with learning disability. The hypotheti­
cal scores are based on an ordinal scale (1-100), as shown in Table 23.3A. The null 
hypothesis states that there is no association between one's verbal and reading compre­
hension ability, H0: r5 = 0. The alternative hypothesis states that a positive correlation 
is expected, H1 : rs > 0. 

Procedure 
To calculate r5 we must first rank the observations within the X and Y distributions sep­
arately, with the rank of 1 assigned to the smallest values. Ties are given the average of 
their ranks (the procedure for ranking scores was described at the beginning of Chapter 
22). These rankings are listed under Rx and Ry in Table 23.3A. If there is a strong posi­
tive relationship between X and Y, we would expect these rankings to be consistent; 
that is, low ranks in X will correspond to low ranks in Y, and vice versa. The Spearman 
procedure examines the disparity between the two sets of rankings by looking at the 
difference between the ranks of X and Y assigned to each subject, given the value d. We 
then square values of d to eliminate minus signs. The sum of the squared differences, 
L,d2, is an indicator of the strength of the observed relationship between X and Y, with 
higher sums reflecting greater disparity. 

The r5 Statistic 
The value of r5 is determined by the computational formula 

6 �d2 
r, = 1 - --=--

n(n2 - 1 )  (23.2) 

where L,d2 is the sum of the squared rank differences, and n is the number of pairs. As 
shown in Table 23.38, rs = .79 for this example. This would be considered a relatively 
strong relationship. 

Test of Significance 
We can test the significance of rs using critical values in Appendix Table A.13. This table 
uses n rather than degrees of freedom to locate critical values. The observed value of r5 
must be greater than or equal to the tabled value to achieve significance. For this exam­
ple, we find the critical value (a1 = .05)rs(lO) = .564. Therefore, our calculated value of 
rs = .79 is significant. Computer output in Table 23.3D shows that p = .003. 
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TABLE 23.3 COMPUTATION OF THE SPEARMAN RANK CORRELATION COEFFICIENT 
(r5): VERBAL AND READING COMPREHENSION SCORES (N = 1 0) 

A. DATA 
Verbal ---

Subject X 

1 73 
2 59 
3 86 
4 81  
5 76 
6 90 
7 55 
8 61 
9 41 

1 0  69 

B. COMPUTATIONS 

Reading 

y Rx Ry 

71 6 5 
63 3 3 
92 9 1 0  
64 8 4 
73 7 7 
80 1 0  9 
45 2 1 
72 4 6 
48 2 
75 5 8 

6 2:d2 6(34) 
r, = 1 - = 1 - = .79 · n(n2 - 1) 10(100 - 1) 

d 

0 
- 1  

4 
0 

-2 
- 1  
-3 

C. HYPOTHESIS TEST 
(a1 = .05)Ys(10) = .564 (Table A.13) Reject H0 

D. OUTPUT 

Correlations 100.00 

Spearman's rho Verbal Read i n g  90.00 

Verbal C orrelation 1 . 000 .794 (")  80.00 
Coefficient 

Sig. ( 1 -tai led) . 0 0 3  

g> • '5 70.00 � � a: • 
N 1 0  1 0  60.00 

Read ing Correlation . 794(") 1 . 000 50.00 • 
Coefficient • 

d2 
1 
0 

1 6  
0 

1 
4 
1 

_9_ 

34 = L. d2 

• 

• 
• • • 

• 

Sig .  ( 1 -tai led) . 003 
40.00 L-.-----r------.------,--,------.,J 

40.00 50.00 60.00 70.00 80.00 90.00 
N 1 0  1 0  Verbal 

•• Correlation is significant at the 0.01 level (Hailed). 

CORRELATION OF DICHOTOM IES 
Measures of association are also useful with dichotomous variables. A dichotomy 
is a nominal variable that can take only two values, such as male-female, diseased­
nondiseased, and yes-no responses on surveys. The integers 0 and 1 are usually 
assigned to represent the levels of a dichotomous variable. When either X or Y (or both) 
is a dichotomy, specialized correlation coefficients are used to test associations. 
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The phi coefficient, given the symbol <I>, is used when both X and Y are dichotomous 
variables. The phi coefficient is a special case of the product-moment correlation coef­
ficient, given only two values of X and Y. It can be calculated using the Pearson corre­
lation. For example, suppose we studied the relationship between motor and verbal 
skills in a group of 60 adults with traumatic brain injury. We devise a set of test items 
for which scores are graded as Pass or Fail. We assign 1 to Pass and 0 to Fail. We use the 
phi coefficient to test H0: <I> = 0 against H1 : <I> > 0. 

Point Biserial Correlation 
When one dichotomous variable (X) is correlated with one continuous variable (Y), the 
point biserial correlation coefficient, rpb' can be used. It, too, is a special case of the 
product-moment coefficient, and can be calculated using the Pearson correlation. In 
this case, continuous scores on Y are classified into two series: those who scored 0 and 
those who scored 1 on X. For example, we could take ratings of elbow flexor spasticity 
(resistive force in kilograms) for patients who have had a stroke on the right (1) or left 
(0) sides. We can use the point biserial correlation to test H0: rpb = 0 against H1: rpb * 0 
to determine if the degree of spasticiy is related to side of involvement. 

The point biserial coefficient can be used as a measure of the degree to which the 
continuous variable can be used to discriminate between the two categories of the 
dichotomous variable. If the two categories are perfectly divided so that all high scores 
on Y belong to one category and all low scores belong to the other, rpb would assume 
its maximum value. This maximum value will never reach 1 .00 or -1 .00 because of the 
inexact nature of dichotomized data. With a random distribution (no relationship), the 
coefficient would equal 0.00. Results for this analysis will be analogous to a t-test. 

INTERPRETING CORRELATION COEFFICIENTS 

Correlation Versus Comparison 
The interpretation of correlation is based on the concept of covariance. If two distribu­
tions vary directly, so that a change in X is proportional to a change in Y, then X and Y 
are said to covary. With great consistency in X and Y scores, covariance is high. This is 
reflected in a coefficient close to 1 .00. This concept must be distinguished, however, 
from the determination of differences between two distributions. To illustrate this point, 
suppose you were told that exam scores for courses in anatomy and physiology were 
highly correlated at r = .98. Would it be reasonable to infer, then, that a student with a 
90 in anatomy would be expected to attain a score close to 90 in physiology? 

Let us consider the paired distributions of exam grades listed in Table 23.4. Obvi­
ously, the scores are decidedly different. The anatomy scores range from 47 to 60 and 
the physiology scores from 79 to 90. The mean anatomy grade is 52.9, whereas the mean 
physiology grade is 82.7. But each student's scores have a proportional relationship, 
resulting in a high correlation coefficient. The scatterplot shows how these values result 
in a strong linear relationship. 
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TABLE 23.4 PAIRED EXAM GRADES 

Student X Anatomy Y Physiology 

50 80 
2 56 85 
3 52 83 
4 57 85 
5 47 77 
6 48 79 
7 60 90 

90.00 • 

>- 85.00 • • 
"' 0 0 • ·u; >-

.<:: o._ 
80.00 • 

• 

• 

50.00 55.00 60.00 
Anatomy 

Correlation, therefore, is not going to provide information relative to the difference 
between sets of data, only to the relative order of scores, whatever their magnitude. A 
test of statistical significance for differences, like the t-test, is required to examine dif­
ferences. It is inappropriate to make inferences about similarities or differences between 
distributions based on correlation coefficients. 

Causation and Correlation 
It is  also important to distinguish the concepts of causation and correlation in research. 
The presence of a statistical association between two variables does not necessarily 
imply the presence of a causal relationship; that is, it does not suggest that X causes Y 
or Y causes X. In many situations a strong relationship between variables X and Y may 
actually be a function of some third variable, or a set of variables, that is related to both 
X and Y. For example, researchers have shown that weak grip strength and slowed 
hand reaction time are associated with falling in elderly persons.6 Certainly, we could 
not infer that decreased hand function causes falls; however, weak hand musculature 
may be associated with general deconditioning, and slowed reaction time may be 
related to balance and motor recovery deficits. These associated factors are more likely 
to be the contributory factors to falls. Therefore, a study that examined the correlation 
between falls and hand function would not be able to make any valid assumptions 
about causative factors. 

Causal factors are best established under controlled experimental conditions, with 
randomization of subjects into groups. When this is not possible, researchers may use 
correlation as a reasonable alternative, but causality must be supported by biological 
credibility of the association, a logical time sequence (cause precedes outcome}, a 
dose-response relationship (the larger the causal factor, the larger the outcome) and 
consistency of findings across several studies. Perhaps the most notable example of this 
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approach is the long-term research on the connection between lung cancer and smok­
ing, following numerous studies that confirmed strong correlations, with a strong phys­
iologic foundation, a clear temporal sequence and a consistent dose-response 
relationship.7 

Willoughby offers a silly example to illustrate the temptation to infer cause-and­
effect from a correlation.8 In 1940 scholars observed a high positive correlation between 
vocabulary and college grades, and concluded, therefore, that an improvement in 
vocabulary would cause an improvement in grades. Willoughby argued that this would 
be the same as reasoning that a high positive correlation between a boy's height and the 
length of his trousers would mean that lengthening his trousers would produce taller 
boys! Clearly, the assumption that one variable causes another cannot be based solely 
on the magnitude of a correlation coefficient (see Box 23.2). 

Factors I nfluencing General ization of Correlation Coefficients 
In most situations, a researcher looks at the degree of correlation in sample data as an 
estimate of the correlation that exists in the larger population. It is important, then, to 
consider factors that limit the interpretation and consequent generalizability of correla­
tion values. 

Range ofTest Values 
Generalization of correlation values should be limited to the range of values used to 
obtain the correlation. For example, if age and strength were correlated for subjects 
between 2 and 15 years old, a strong positive relationship would probably be found. It 
would not, however, be legitimate to extrapolate this relationship to subjects older than 
15, as the sample data are not sufficient to know if the relationship holds beyond that age. 

Similarly, the finding of a weak or absent correlation within one age range does not 
mean that no relationship exists outside that range. Even if we find no relationship 
between muscle strength and age for subjects aged 30 to 50, we might find a negative 
relationship for subjects aged 70 to 90. The nature of a relationship may vary dramati­
cally as one varies the range of scores contributing to the correlation. Therefore, it is not 
safe to assume that correlation values for a total sample validly represent any subgroup 
of the sample, and vice versa. 

Restricting the Range of Scores 
The magnitude of the correlation coefficient is a function of how closely a cluster of 
scores resembles a straight line, based on data from a full range of X and Y values. 
When the range of X or Y scores is limited in the sample, the correlation coefficient will 
not adequately reflect the extent of their relationship. As shown in Figure 23.3, if we 
look only at the range of X values in the lower end of the scale, it is not possible to see 
the true linear relationship between the two variables. Such a correlation will be close 
to zero, even though the true correlation may be quite high. By limiting variation in the 
data, it is difficult to demonstrate covariance. Therefore, r is reduced. It is advisable to 
include as wide a range of values as possible for correlation analysis. 
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BOX 23.2 The Evils of Pickle Eating 

Although this classic piece may be a little dated, its point is timeless! 

Pickles will kill you! Every pickle you eat brings you closer to 
death. It is amazing that the modern thinking man has failed to 
grasp the significance of the term "in a pickle." 

Pickles are associated with all the major diseases of the body. Eating 
them breeds war and Communism. They can be related to most airline 
tragedies. Auto accidents are caused by pickles. There exists a positive rela­
tionship between crime waves and consumption of this fruit of the cucurbit 
family. 

For example, 

• Nearly all sick people have eaten pickles. The effects are obviously 
cumulative. 

• 99.9% of all people who die from cancer have eaten pickles. 
• 100.0% of all soldiers have eaten pickles. 
• 96.8% of all Communist sympathizers have eaten pickles. 
• 99.7% of the people involved in air and auto accidents ate pickles 

within 14 days preceding the accident. 
• 93.1% of juvenile delinquents come from homes where pickles are 

served frequently. Evidence points to the long-term effects of pickle 
eating. 

• Of the people born in 1839 who later dined on pickles, there has been 
a 100% mortality. 

All pickle eaters born between 1849 and 1859 have wrinkled skin, have 
lost most of their teeth, have brittle bones and failing eyesight-if the ills of 
pickle eating have not already caused their death. 

Even more convincing is the report of the noted team of medical special­
ists: rats force-fed with 20 pounds of pickles per day for 30 days developed 
bulging abdomens. Their appetites for WHOLESOME FOOD were destroyed. 

In spite of all evidence, pickle growers and packers con­
tinue to spread their evil. More than 120,000 acres of fertile 
U.S. soil are devoted to growing pickles. Our per capita con­
sumption is nearly four pounds. 

Eat orchid petal soup. Practically no one has as many 
problems from eating orchid petal soup as they do with eat­
ing pickles. 

Source: "Evils of Pickle Eating," by Everett D. Edington, originally printed in 
Cyanograms. 
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FIGURE 23.3 I l lustration of the effect of restricting the range of scores for correlation. By looking only 
at values of X at the lower end of the scale, the true l inear relationship between the variables is obscured. 

Assumption of Independence in Correlated Values 
Valid correlation also demands that correlated variables be independent of each other. 
For instance, it would make no statistical sense to correlate a measure of gait velocity 
with distance walked, as distance is a component of velocity (distance/time). Similarly, 
it is fruitless to correlate a subscale score on a functional assessment with the total score, 
as the first variable is included in the second. In each case, correlations will tend to be 
artificially high because part of the variance in each quantity is being correlated with 
itself. Researchers should always be familiar with the nature of the variables being stud­
ied to avoid spuriously high and misleading correlations. 

COMMENTARY 

The Stork Was Busy 

The appl ication of correlation statistics to c l in ical decision making must be considered 
carefu l ly. Al l  statistical analysis is l im ited by the c l inical significance of the data being 
analyzed. Researchers must be equal ly aware of the potential danger of using statisti­
cal correlation as evidence of a c l in ical association s imply on the basis of numbers. 
The uti l i ty of correlation is l imited because it cannot tel l us anyth ing about the actual 
nature of phenomena, and almost any two variables can be correlated numerical ly. 

For example, Snedecor and Cochran9 cite a correlation of -.98 between the 
annual b i rth rate in Great Brita in from 1 875 to 1 92 0  and the annual production of 
pig i ron in the Un ited States. We can view these variables as related to some gen­
eral socioeconomic trends, but surely, neither one could seriously be considered a 
function of the other. Another classic example from many decades ago involves the 
h igh positive correlation between the number of storks seen sitting on chimneys in  
European towns and the number of births in these towns. 1°  Further study of the "Theory 
of the Stork" has shown that there is correlation between del iveries outside of 
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hospitals and the stork population in Berl i n . 1 1  Can we infer that storks are responsi­
ble for an increased birth rate? These types of nonsense correlations help to i l l ustrate 
the importance of analyzing the c l in ica l  cred ib i l ity of any statistical association and 
understand ing the nature of the variables bei ng studied. 

In a more serious vei n, Gould describes the lamentable efforts of Sir Ronald 
Fisher (1 890-1 962), the father of modern statistics (he i nvented a l ittle th ing cal led 
the analysis of variance), who disputed the relationship between smoking and lung 
cancer. 1 2  As a smoker, Fisher's statistical argument was fi rst that we could not know 
if smoki ng caused cancer or cancer caused smoki ng. Their  unden iable mutual 
occurrence, he proposed, cou ld reflect a precancerous state that caused a chemical 
i rritation in the l ungs that was rel ieved by smoking, leadi ng to an i ncreased use of 
cigarettes. More plausibly, however, he later suggested that the association was most 
l i kely due to a th i rd factor, a genetic predisposition, which made people more sus­
ceptible to lung cancer, and at the same time created personal ity types that would 
lead to smoking. Fisher became a consu ltant for the tobacco compan ies i n  1 960, 
and was apparently i nstrumental i n  blocking law su its at that time. As th is regrettable 
story i l l ustrates, the often el usive nature of correlation must never a l low us to lose 
sight of logic, and the need to continue to question and examine relationsh ips to 
truthfu l ly  understand c l i n ical phenomena. The numbers in statistics are never the 
final say-they j ust suggest a relationship.  It is our job to identify the theoretical 
premise that supports our conc lusions. 
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CHAPTER 24 

Regression 

Correlation statistics are useful for describing the relative strength of a relationship 
between two variables; however, when a researcher wants to establish this relationship 
as a basis for prediction, a regression procedure is used (see Box 24.1 ). The ability to 
predict outcomes and characteristics is crucial to effective clinical decision making and 
goal setting. It also has important implications for efficiency and quality of patient care, 
especially in situations where resources are limited. Regression analysis provides a 
powerful statistical approach for explaining and predicting quantifiable clinical out­
comes. For example, clinicians have looked at functional assessments in patients with 
extensive bums to determine which factors are predictive of quality of life outcomes.1 
Early language and nonverbal skills have been shown to be important predictors of out­
come in adaptive behavior in communication and socialization for children with 
autism.2 Researchers have studied patients with stroke to determine the relative contri­
butions of specific impairments toward prediction of discharge function, rehabilitation 
length of stay, and discharge destination.3 Therapists have investigated factors predic­
tive of timely and sustained recovery following multidisciplinary rehabilitation in 
workmen's compensation claimants with low back pain.4 Such analyses help us explain 
our empirical clinical observations and provide information that can be used to set real­
istic goals for our patients. The purpose of this chapter is to describe the process of 
regression and how it can be used to interpret clinical data. 

LIN EAR REGRESSION 
In its simplest form, linear regression involves the examination of two variables, X and 
Y, that are linearly related or correlated. The variable designated X is the independent 
or predictor variable, and the variable designated Y is the dependent or criterion 
variable. For example, we could look at systolic blood pressure (Y) and age (X) in a 
sample of 10 women. Using regression analysis we can use these data as a basis for pre­
dicting a woman's blood pressure by knowing her age. If we plot hypothetical data for 
this example on a scatter plot, as shown in Figure 24.1, we can see that the data tend to 
fall in a linear pattern, with larger values of X associated with larger values of Y. The 
correlation coefficient for these data, r = .87, describes a fairly strong association. 

If the data were perfectly correlated, all data points would fall along a straight line. 
This line could then be used to predict values of Y by locating the intersection of points 
on the line for any given value of X. With correlations less than 1 .00, however, as in this 
example, a prediction line can only be estimated. If we look at the scatter diagram in 
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BOX 24.1 The History of Regression 

Sometimes we get so caught up in the application of statistics that we don't stop to 
think about where these measures came from. Someone had to think them up! Here's 
some interesting background on the origin of the concept of regression. 

Sir Francis Galton was born near Birmingham, 
England in 1822. He was a tropical explorer and 
geographer, meteorologist, psychologist, inventor 
of fingerprint identification-and pioneer of statis­
tical correlation and regression. He is best known 
for his study of human intelligence and his belief in 
eugenics. A cousin of Charles Darwin, Galton 
became interested in the concept of heredity, and 
was convinced that "genius" was almost entirely 
due to hereditary factors, in sharp contrast to the 
thinking of the day which basically held that 
everyone was born with equal abilities. 

In 1875 Galton began experimenting with sweet pea seeds, as this was a 
self-fertilizing plant, and he could look at simple hereditary characteristics. 
He found that the offspring peas of large seeds were usually smaller than 
the parent, and the offspring from small seeds were usually larger than the 
parent-but just a little. 

Galton later collected extensive data on the heights of parents and chil­
dren. Because it was known that taller parents had taller children and 
shorter parents had shorter children, he noted that it would seem logical that 
the variance in height should increase over time; that is, we should see peo­
ple getting taller and shorter based on their parents' heights. However, his 
data supported the same relationship he had found with the sweet peas. He 
coined the term regression in his report of this phenomenon, "Regression 
towards mediocrity in hereditary stature." As shown in the plate from that work, 
Galton reasoned that the height of the children depends on the average 
height of both the father and the mother, and that variance in the height of 
the population is reduced by "regression" towards the mean by just enough 
to keep it almost constant over time. 

Although we tend to think of regression as an outgrowth of correlation, 
interestingly, Galton's work on regression was the foundation for Karl Pear­
son's development of correlation statistics. 

See Chapter 5 for additional discussion of regression toward the mean as an issue in 
reliability. 
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FIGURE 24.1 Scatter plot of age (X) and systol ic blood pressure (Y) for 1 0  women. 

Figure 24.1 we might try to plot a line that goes through the middle of the data points­
but how do we objectively find the middle? We might try drawing a line through a 
point that represents the mean of X and Y, but how do we determine its slope? Clearly, 
we cannot make this determination without statistical help. The process of regression 
allows us to find the one line that best describes the orientation of all data points in the 
scatter plot. This line is called the linear regression line. 

The Regression Line 
The process of linear regression involves first determining an equation for the regres­
sion line and then using that equation to predict values of Y. The algebraic representa­
tion of the regression line is given by 

A 

Y = a + bX (24.1)  

The quantity Y (said "Y-hat") is the predicted value of Y.  The term a is the ¥-intercept, 
representing the value of Y when X = 0. Graphically, it is the point at which the line 
intersects the Y-axis (see Figure 24.2). This can be a positive or negative value, depend­
ing on whether the line crosses the Y-axis above or below the X-axis. In regression 
analysis, a is called a regression constant. The term b is the slope of the line, which is 
the rate of change in Y for each one-unit change in X. In regression analysis, this term 
is the regression coefficient. When b is positive, Y increases as X increases. When b is 
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FIGURE 24.2 Graphic presentation of a l i near equation. 

negative, Y decreases as X increases. If b = 0, the slope of the line is horizontal, indicat­
ing no relationship between X and Y (Y is constant for all values of X). The positive or 
negative direction of the slope will correspond to a positive or negative correlation 
between X and Y. 

We can illustrate these concepts by describing the linear equation Y = 1 + 2X . This 
equation represents a straight line that intersects the Y-axis at Y = 1 .  With a slope of 2, 
Y increases two units for every one-unit change in X. A line can be drawn from this 
equation by plotting any two points along the line and connecting them. We can arbi­
trarily choose any two values along the X-axis and solve for the corresponding values 
of Y. Thus, we can plot one point at X = 1, Y = 1 + 2(1) = 3. The second point, say at 
X = 3, is determined by Y = 1 + 2(3) = 7. This process is illustrated in Figure 24.2. 

The Regression Model 
Figure 24.3 shows the regression of  blood pressure (Y) on age (X), using the hypotheti­
cal data }rom Figure 24.1. The values that fall on the regression line are the predicted 
values, Y, for any given value of X; however, with r < 1 .00, we can see that this line is 
only partially useful for predicting Y. Some data points are above the line, some are 
below, and some fall close to the )ine. Therefore, if we substitute any X value in the 
regression equation and solve for Y, we will obtain a predicted value that will probably 
be somewhat different from the actual value of Y. We can visualize this error compo­
nent in Figure 24.4. The actual Y value for each data point is some positive or negative 
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FIGURE 24.3 Least-squares regression l i ne for the l inear regression of systol ic blood pressure on age. 

vertical distance from Y on the regression line. These distances (Y - Y) are called 
residuals. Residuals represent the degree of error in the regression line.* 

The regression line, or the line of best fit for a set of data points, is the unique line 
that will minimize this error component and yield the smallest residuals. Conceptually, 
this involves finding the squa1e of all the residuals (to eliminate minus signs) and sum­
ming these squares, L(Y - Y)2, for every possible line that could be drawn to these 
data. The one line that gives the smallest sum of squares is the line of best fit. Any other 
line, with any other values of a and b, would yield a larger sum of the squared residu­
als. This method of "fitting" the regression line is called the method of least squares. 
Of course, we do not actually go through the process of finding residuals for every pos­
sible line. Formulas have been developed that allow us to calculate the line of best fit 
based on the sample data. 

Calculation of the Regression Line and Residuals 
We can illustrate the process of regression using the study for predicting systolic 
blood pressure (SBP) as a function of age. Table 24.1A shows hypothetical data on SBP 
measurements for a sample of 10 women between 34 and 73 years of age. We calcu­
late the regression coefficient, b, and the regression constant, a, using the computa-

•we could more accurately represent the regression equation as Y = a + bX ± error. 
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FIGURE 24.4 Deviation of scores from the least-squares r�gression l ine for the l i near regression of sys­
tol ic blood pressure on age. Vertical distances represent Y - Y. 

tional formulas shown in Table 24.1B.+ These values identify a line that intersects the 
Y-axis at 64.30 with a change of 1 .39 units in Y for each unit change in X. Therefore, 
tjle line that best fits these data can be drawn from the regression equation 
Y = 64.30 + 1 .39X (also see Table 24.3C). This line is superimposed on the scatter plot 
for these data in Figure 24.3. 

� 

We can now calculate the predicted score (Y) for each subject using the regression 
equation, as shown in Table 24.2. For example, if we were presented with a woman who 
'Y'as 38 years old, we would predict that her systolic blood pressure would be 
Y = 64.30 + 1.39(38) = 1 17.1. The actual blood pressure value for the 38-year-old sub­
ject, hpwever, was 130. Therefore, the residual or error component of prediction is 
(Y - Y) = 130 - 117.1 = 12.9. Note that the data point for this subject falls above the 
regression line; therefore, the regression equation underestimates SBP for this subject, 
and we have a positive residual. � 

Residuals are shown under the column labeled (Y - Y) in Table 24.2. For a woman 
aged 63, we would predict a SBP of 152.9, where the actual score was 138. Therefore, the 
regression equation overestimates the SBP score for this subject, and we have a negative 
residual of -14.9. Most of the errors of prediction in this example are relatively small, 

tAn alternative formula for b can be used: where b = (5!_) where sy and s, are the standard deviations for the 
two variables. Sx 
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TABLE 24.1 COMPUTATION OF LINEAR REGRESSION: PREDICTION OF SYSTOLIC 
BLOOD PRESSURE (SBP) AS A FUNCTION OF AGE (N = 1 0) 

A. DATA 

Age SBP 
Subject X y x2 XY 

34 1 1 0 1 , 1 56 3,740 
2 38 1 30 1 ,1 44 4,940 
3 42 1 05 1 ,764 4,4 10  
4 45 1 24 2,025 5,580 
5 48 1 36 2,304 6,528 
6 57 1 45 3,249 8,265 
7 57 1 57 3,249 7,949 
8 63 1 38 3,969 8,694 
9 66 1 58 4,356 1 0,428 

1 0  73 1 67 5,329 1 2, 191  
LX = 523 L Y  = 1 ,370 LX2 = 28,845 LXY = 73,725 

X =  52.3 Y =  1 37 

B. COMPUTATIONS 

TABLE 24.2 

n �XY - ( �X)(�Y) 10(73,725) - (523)(1,370) 20,740 b =  = = -- = 1 .39 
n �X2 - (�X)2 10(28,845) - (523)2 14,921 

a = Y - bX = 137 - 1.39(52.3) = 64.30 
Y = 64.30 + 1.39X 

PREDICTED SYSTOLIC BLOOD PRESSURE;_ (SBP) SCORES 
BASED ON THE REGRESSION EQUATION Y = 64.30 + 1 .39X 

Age SBP Residu�ls 
Subject X y y Y - y ( Y - Y)2 

34 1 10 1 1 2.0 -2.0 4.0 

2 38 1 30 1 1 7.5 1 2.5 1 56.3 

3 42 1 05 1 23.1 - 1 8. 1  327.6 

4 45 1 24 1 27.3 -3.3 1 0.9 

5 48 1 36 13 1 .5 4.5 20.3 

6 57 1 45 1 43.5 1 .5 2.3 

7 57 1 57 1 43.9 1 3. 1  1 7 1 .6 

8 63 1 38 1 52.3 - 1 4.3 204.5 

9 66 1 58 1 56.4 1 .6 2.6 

1 0  73 1 67 1 66.2 0.8 0.6 

L( Y - Y)2 = 900.7 



CHAPTER 24 • Regression 547 

because the correlation for these data is high (r = .87), and the points cluster close to the 
regression line. Note that the points for subjects aged 34, 66 and 73 have almost negligi­
ble residuals, as these points rest very close to the regression line (Figure 24.4). 

The sum of the residuals will always be zero, as the regression line is an average for 
all dat}l points. Therefore, we take the sum of the squares of these error components, 
(Y - Y)Z, as an estimate of the usefulness of the regression line for prediction. The 
smaller the sum of squares, the closer the data points are to the regression line and the 
better the prediction accuracy. 

ASSUMPTIONS FOR REGRESSION ANALYSIS 
In any regression procedure, we recognize that the straight line we fit to sample data is 
only an approximation of the true regression line that exists for the underlying popula­
tion. To make inferences about population parameters from sample data, we must con­
sider the statistical assumptions that affect the validity of the regression equation. 

For any given value of X, we can assume that a random distribution of Y scores 
exists; that is, the observed value of Y in a sample for a given X is actually one random 
score from the larger distribution of possible Y scores for that X. In the example we 
have been using, the observed SBP for a given age is a random observation from the 
larger distribution of all possible blood pressure scores at that age. If we had studied 
several subjects at each age, we would see a range of blood pressure scores for the same 
value of X. Some of these Y values would be above the regression line, and some would 
be below it. For instance, subjects 6 and 7 were 57 years old in our sample, with differ­
ent blood pressure scores. As shown in Table 24.2, subject 6 has a predicted score very 
close to the true score, and subject 7 has a larger residual. If we took many measure­
ments for women at 57 years old, the mean of the distribution of Y scores would fall on 
the regression line. 

Theoretically, we could obtain such a distribution for every value of X, as shown in 
Figure 24.5. Each of these distributions would have a different mean, Y. If these means 
were connected, they would fall on a straight line that estimates the population regres­
sion line. We assume that each of these distributions is normal and that their standard 
deviations are equal. 

These assumptions help us to understand the relevance of residual error variance 
to regression analysis. Conceptually, it makes sense that the regression line will contain 
some degree of error, as it is unlikely that any one score randomly chosen from a distri­
bution will equal the mean. Therefore, we tend to see a scatter of points around the 
regression line. The least-squares lil)e that is fitted to the sample data is an estimate of 
the population regression line, and Y is an estimate of the population mean for Y at each 
value of X. 

Analysis of Residuals 
One way to determine if  the assumptions for regression analysis have been met is  to 
examine a plot of residuals, as shown in Figure 24.6. By plotting the residuals (on the 
Y-axis) against the predicted scores (on the X-axis), we can appreciate the magnitude 
and distribution of the residual scores. The central horizontal axis represents the mean 



548 PART IV • Data Analysis 

y 

X 

FIGURE 24.5 The l inear regression model, showing theoretical normal distributions of Y around the 
regre§_sion l ine at given values of X. The mean of each distribution l ies on the regression l i ne. Therefore, 
Y = Y at each value of X. 

of the residuals, or zero deviation from the regression line. When the linear regression 
model is a good fit, the residual scores will be randomly dispersed close to zero. The 
wider the distribution of residuals around the zero axis, the greater the error. 

Several types of patterns can emerge in the residual plot. If the data meet all the 
basic assumptions, the pattern should resemble a horizontal band of points, as illus­
trated in Figure 24.6A. The horizontal orientation suggests that the residuals are evenly, 
but randomly, distributed around the regression line. 

Figures 24.6B and C illustrate problematic residual distributions. The pattern in 
Figure 24.6B indicates that the variance of the residuals is not consistent, but depend­
ent on the value of the predicted variable. Residual error increases as the predicted 
value gets larger; that is, the degree of accuracy in the regression model varies with the 
size of the predicted value. Therefore, the assumptions of normality and equality of 
variance are not met. The curvilinear pattern, shown in Figure 24.6C, reflects a nonlin­
ear relationship, negating the validity of the linear model. Other deviant residual pat­
terns may be observed, such as diagonal patterns or a run of positive or negative 
residuals, all indicating some problem in the interpretation of the regression model. 

When data do not fall into the horizontal pattern, the researcher may choose to 
transform one or both sets of data to more closely satisfy the necessary assumptions. 
Such transformations may stabilize the variance in the data, normalize the distributions, 
or create a more linear relationship. Methods of data transformation are described in 
Appendix D. When curvilinear tendencies are observed, polynomial regression models 
may be used to better represent the data. This approach is discussed later in this chapter. 
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FIGURE 24.6 Patterns of residuals (Y-axis) plotted against predicted scores (X-axis). A. Horizontal band 
demonstrates that assumptions for l i near regression have been met. B. Residuals i ncrease as predicted val­
ues i ncrease. C. Curv i l i near pattern indicates non l inear relationship. 

Most computer programs for linear regression will provide options for calculating, 
printing and plotting residuals in a variety of formats. Standardized residuals, 
obtained by dividing each residual score by the standard deviation of the residual dis­
tribution, are often used instead of observed residuals to normalize the scale of meas­
urement. Standardized residuals are analogous to z-scores, allowing the residuals to be 
expressed in standard deviation units. This approach is especially useful when differ­
ent distributions are compared. 

OUTLIERS 
If  a set of data points represents a distribution of related scores, the points will tend to 
cluster around their regression line. Sometimes, one or two deviant scores are separated 
from the cluster, so that they distort the statistical association. For example, the data 
points in Figure 24.7 A show some variability, but most of the points fall within a defi­
nite linear pattern (r = .70). In Figure 24.7B, this distribution has one additional point, 
at X, Y = 1, 20, that does not seem to fit with the rest of the scores. Such a point is called 
an outlier, because it lies outside the obvious cluster of scores. The correlation for these 
data with the outlier included is quite low, r = .06. One extreme value has significantly 
altered the statistical description of the data. 

What accounts for the occurrence of outliers? Researchers must consider several 
possibilities. The score may, indeed, be a true score, but an extreme one, because the 
sample is too small to generate a full range of observations. If more subjects were tested, 
there might be less of a discrepancy between the outlier and the rest of the scores. There 
may be also be circumstances peculiar to this data point that are responsible for the 
large deviation. For example, the score may be a function of error in measurement or 
recording, equipment malfunction, or some miscalculation. It may be possible to go 
back to the original data to find and correct this type of error. Other extraneous factors 
may also contribute to the aberrant score, some of which are correctable, others that are 
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FIGURE 24.7 Regression l ines for a distribution of scores (A) without and (B) with an outlier 
(X, Y = 1 , 20). In th is case, the presence of the outlier causes the regression l i ne to underestimate the 
degree of association in the data. 
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not. For instance, the data for the point may have been collected by a different tester 
who is not reliable. Or the researcher may find that the subject was inappropriately 
included in the sample; that is, the subject may have characteristics very different from 
the rest of the sample, accounting for the deviant response. 

Outliers should be examined because they can have serious effects on the outcome 
of regression. Residual plots are often helpful for identifying outliers. Some researchers 
consider scores beyond three standard deviations from the mean to be outliers. The 
researcher must determine if the deviant score should be retained or discarded in the 
analysis. This decision should be made only after a thorough evaluation of the experi­
mental conditions, the data collection procedures, and the data themselves. As a gen­
eral rule, there is no statistical rationale for discarding an outlier; however, if a causal 
factor can be identified, the point should probably be omitted, provided that the causal 
factor is unique to the outlier.5 It may be helpful to perform the regression with and 
without the outlier, to demonstrate how inclusion of the outlier changes the conclusions 
drawn from the data. 

ACCURACY OF PREDICTION 
Once a regression line is derived, it can be used to predict Y scores based on values of 
X. It is important to remember that a regression line can be calculated for any set of 
data, even though it may not represent the data very well. The value of the correlation 
coefficient, r, is a rough indicator of the "goodness of fit" of the regression line. When r 
is close to ±1.00, the regression line provides a strong basis for prediction. As r gets 
smaller, the errors of prediction will increase; however, the value of r is limited in its 
interpretation because it represents only the strength of an association. It will not eval­
uate the accuracy of prediction from the regression line. Several statistical approaches 
can be used for this purpose. 

Coefficient of Determination (?) 
Statisticians have shown that the square of the correlation coefficient, r2, represents the 
percentage of the total variance in the Y scores that can be explained by the X scores. 
Therefore, r2 is a measure of proportion, indicating the accuracy of prediction based on 
X. This term is called the coefficient of determination. 

For the regression of blood pressure on age, r = .87 and r2 = .76 (see Table 24.3). 
Therefore, 76% of the variance in systolic blood pressure can be accounted for by know­
ing the variance in age. We have 76% of the information we would need to make an 
accurate prediction. Obviously, some other unknown or unidentified factors must 
account for the remaining variance. The complement of r2, or 1 - r2, reflects the pro­
portion of variance that is not explained by the relationship between X and Y, in this 
case 24%. Using age as a predictor will result in a reasonable, but not thoroughly accu­
rate, estimate of blood pressure. 

Values of r2 are more meaningful for conceptualizing the extent of an association 
between variables than values of r alone. For example, with a high correlation like 
r = .70, r2 = .49. This means that less than 50% of the variance in Y is accounted for by 
knowing X, less than one might think with a correlation coefficient that seems fairly 
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TABLE 24.3 OUTPUT FOR REGRESSION ANALYSIS: SYSTOLIC BLOOD PRESSURE 
AND AGE (N = 1 0) 

Model Summary ANOVA 

RO Std. Error of Sum of Mean 
R Square the Estimate Model Squares df Square F Sig. 

.869 .756 1 0.74 1  Regression 2854.959 1 2854.959 24.744 .001 
Residual 923.041 8 1 1 5.380 8 
Total 3778.000 9 

Coefficients 

Unstandardized Standardized 
Coefficients Coefficients 

Model B Std. Error Beta t Sig. 

(Constant) 64.582 14.949 
Age @) 1 .393 .280 0 .869 4.974 0 .001 

0 The values of A-square and SEE reflect the degree of accuracy in the regression equation. 
6 The analysis of variance of regression demonstrates that there is a significant relationship between the inde­
pendent and dependent variables. 

� The coefficients for the regression equation Y = 64.58 + 1 .39(Age). 
0 The stanqardized coefficient is similar to a z-score, in that it is based on standardized units. The equation can 
be written: Y = .869(Age). No constant is necessary because the value of X is expressed in standardized units. 

0 A t-test is used to test the significance of the regression coeffiCient for age. This significance value will equal 
the probability identified in the analysis of variance of regression, as it is essentially testing the same thing. 
Note: Portions of the output that are not relevant to the interpretation of results have been omitted for clarification. 

strong. When strength of association is of interest, r will be properly interpreted; how­
ever, when Y is predicted from X, r2 provides a more meaningful description of the rela­
tionship. Values of r2 will range between 0.00 and 1 .00. No negative ratios are possible 
as it is a squared value. 

Standard Error of the Estimate (SEE) 
Another way to establish the accuracy of prediction is to consider the variance of the 
errors on either side of the regression line, or the residuals. If the variance in the resid­
uals is high, then the scores are widely dispersed around the regression line, indicating 
a large error component. The standard deviation of the distribution of errors is called 
the standard error of the estimate (SEE). For the blood pressure data, SEE = 10.61 
(see Table 24.30).+ 

� A 2 (Y - Y) A 
tThe standard error of the estimate is defined by SEE = L 

where L(Y - Y)2 is the sum of the 
(n - 2) 

squared residuals, and n represents the number of pairs of scores. For the data in Table 24.2, 

{90D.7 SEE = \j (i:0=-2) = 10.61 
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The better the fit of the regression line, the less variability there will be around it 
and the smaller the standard error of the estimate. The SEE can be thought of as an indi­
cator of the average error of prediction for the regression equation. Therefore, the SEE 
is helpful for interpreting the usefulness of a regression equation where reliance on a 
correlation coefficient can be misleading. 

Researchers can reduce standard error, and thereby improve accuracy of prediction, 
by including more than one observation at each value of X within a single study. This 
improves the estimation of variability at each X, thereby making the regression line a 
better estimate of the population mean. 

ANALYSIS OF VARIANCE OF REGRESSION 
Up to this point, we have used regression analysis primarily as a descriptive technique. 
We can also draw statistical inferences about the regression equation, to document that 
the observed relationship between X and Y did not occur by chance. We do this by an 
analysis of variance of regression. In essence, this analysis tests the null hypothesis 
H0: b = 0 and is analogous to testing the significance of the correlation between X and 
Y. If H0 is true, the regression line is essentially horizontal, perhaps with some devia­
tion as a result of sampling error. If H0 is false, b is significantly different from zero.§ 

The variance components in a regression analysis are partitioned similarly to those 
in a regular analysis of variance. The total variance, represented by the total sum of 
squares (SSt), reflects the variance explained by the regression of Y on X and the unex­
plained error variance. These variance components are illustrated in Figure 24.8. For 
a given X we can locate the observed value of Y and the predicted score Y, which lies 
on the regression line. We can also establish the value for Y, the mean of all Y scores. 
Without the regression line, the best we can do to predict Y is the mean of the distribu­
tion, Y. For example, if we knew that the mean height for men was 5 ft 8 in., and we 
wanted to predict the height of any random man on the street, our best estimate would 
be 5 ft 8 in. But if a man's height is related to his parents' height, then we can improve 
this estimate if we also know the height of this man's mother and father. We know more 
about his height (Y) by knowing his parents' height (X). The�efore, by using the regres­
sion line we have improved our prediction by the amount Y - Y, which is the devia­
tion of the predicted score from the mean. This distance tells us how much better we 
can predict Y by knol"ing X. 

If we look at :L(Y - Y) for all the data points in a distribution, we will be able to 
determine how much of the total variation in the sample is accounted for by knowing 
the regression of Y on X. The sum of the squares of these differences, :L(Y - Y)2, is 
called the regression sum of squares (SSreg), or that part of Y that is explained by X. 

The rest of the varianfe is attributed to the deviation of each observed score from 
the regression line, (Y - Y), or the residual. It is that part of Y that is not explained by 
X. This value is an indication of how good or poor a fit the regression line is. When the 

b 
§The slope of the regression line can also be tested using the 1-test: I = _ � , where sx is the stan-

(SEE/sx v n - 1)  
dard deviation of the X scores. The statistical result of this test will be the same as for the analysis of vari­
ance of regression, based on the relationship F = 12 
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FIGURE 24.8 I l l ustration of the variance components in an analysis of variance for regression. 

fit is good, the observed scores will fall close to the line, and the residuals will be small. 
This means that X is a good predictor of Y. When the fit is poor, XA and Y are not 
strongly related, and these deviations will be large. The term L(Y - Yf is called the 
residual sum of squares (SSres), or the unexplained variance attributable to the resid­
uals. A linear regression analysis will generate an analysis of variance table that pro­
vides these values. 

The ANOVA summary table, shown in Table 24.3, represents the regression of sys­
tolic blood pressure (Y) on age (X) for a sample of 10 women (from Figure 24.3). This 
output follows the format of a standard analysis of variance, with a total of N - 1 
degrees of freedom. In the linear model, one degree of freedom is always associated 
with the regression; therefore, N - 2 degrees of freedom are attributed to the residuals 
(the error term). The value of F is equal to MSreg/MSres· 

In this example, the observed f-ratio for the regression is 24.74 with 1 and 8 degrees 
of freedom. As shown in Table 24.38, this test is significant at .001 .  This tells us that the 
relationship between X and Y is not likely to be the result of chance. It does not indicate 
how strong this relationship is. When the analysis of variance of regression results in a 
nonsignificant F-test, the researcher concludes that the observed relationship could 
have occurred by chance; that is, the regression line does not provide a reasonable basis 
for predicting values of Y. 

RESTRICTIONS ON THE INTERPRETATION OF LIN EAR 
REGRESSION ANALYSIS 
Regression equations are derived from a set of known scores, and the accuracy of the 
regression line for prediction for the individuals in the test sample is reflected in the 
size of the residuals. The ultimate purpose of regression analysis is not, however, to 



CHAPTER 24 • Regression 555 

predict scores we already know. The intent is to predict scores for a new sample of 
observations from the findings on the known data. Therefore, it is important that the 
reference population for the analysis be clearly specified, because predictions will not 
be applicable to those who do not meet population criteria. Most importantly, predic­
tions cannot be validly made for values of X that go beyond the range of scores that 
were used to generate the regression line. If we determine a regression line for predict­
ing blood pressure from age based on a sample of women 34 to 73 years, we cannot 
apply the equation to males or to younger subjects. We cannot know if the shape of the 
distribution would be altered with the addition of scores at lower age ranges. There­
fore, generalization of a regression procedure is inherently limited by the range of 
scores used to derive the equation. 

A second consideration in the interpretation of regression data is the adequacy of a 
linear fit. Just as with correlation, linear regression procedures are useful only if the dis­
tribution of scores demonstrates a linear association between X and Y. The lack of a sig­
nificant slope does not necessarily mean that X and Y are unrelated, but may indicate 
that the relationship does not follow a straight line. We discuss the application of regres­
sion to curvilinear relationships in the next section. 

NONLINEAR REGRESSION 
There are obvious limitations inherent in linear regression for describing curvilinear 
relationships. Because linear regression is the most commonly used regression model, 
researchers should be wary about interpreting outcomes that demonstrate no relation­
ship between X and Y. For example, look at the data plotted in Figure 24.9, showing the 
relationship between psychomotor ability and age for a hypothetical sample of 30 sub­
jects aged 10 to 50 years. Using linear techniques, the correlation coefficient is low 
(r = .32). Based on this information alone, one would assume that X and Y were not 
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FIGURE 24.9 Linear regression of psychomotor abil ity (scored 0-1 5) on age. The regression 
appears to be a poor fit. 

l i ne 
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strongly related; however, examination of the scatter plot reveals that the data form a 
distinctly curved pattern. The measured skill improves until age 30, when a slow 
decline begins. Therefore, it makes more sense to draw a curve that more accurately 
reflects the relationship between X and Y, as shown in Figure 24.10. We can express this 
curve statistically in the form of a quadratic equation: 

(24.2) 

Equation 24.2 defines a parabolic curve, that is, a curve with one tum. This curve is also 
called a quadratic curve.·· The process of deriving its equation is called polynomial 
regression. Clearly, this fitted curve is more representative of the data points than the 
linear regression line. 

The method of calculating the regression coefficients for this equation goes beyond 
this text. It is advisable to use a computer to perform these more complex mathemati­
cal manipulations; however, the application of this model is similar to that of linear 
regression. Polynomial regression is also based on the concept of least squares, so that 
the vertical distance of each point from the curve is minimized. Therefore, the curve can 
be used for predicting Y scores in the same way as a linear regression line. 

Researchers often have to decide whether a linear or polynomial regression model 
best fits their data. This decision is greatly facilitated by examining a scatter plot of the 
data. The analysis of variance for regression can be applied to determine if the linear or 
polynomial regression model provides a better fit for a given set of data.tt 
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FIGURE 24.1 0 Curvi l inear data for the hypothetical regression of psychomotor abi I ity on age, and the 
least-squares curve derived through a second-order polynomial regression. 

"A quadratic curve, with one tum, is considered a polynomial of the second order. A linear "curve," or straight 
line, is a polynomial of the first order. See discussion of trends in Chapter 21. 
tt:It is also possible to transform nonlinear data to achieve a linear fit by transforming one or both variables, 
often using iog values (see Appendix D). 
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Table 24.4 shows the analysis of variance for both a linear (A) and a quadratic (B) 
regression of psychomotor ability on age. The F-ratio for the linear regression is not sig­
nificant (p = .087), as we might expect from looking at the data in Figure 24.9. This tells 
us that the linear model is not adequate for describing this relationship. In the bottom 
panel of Table 24.4 we see that the quadratic regression is significant (p = .000), indicat­
ing that the quadratic curve is a good fit for these data. The equation for the curve is 

Y = -.202 + .684 (AGE) - .011 (AGE2) 

A closer look at the analysis of variance helps us see how differently these two 
approaches explain the data. Note that the total sum of squares for both analyses is the 
same; that is, the total variability in the sample is the same, regardless of which type of 
regression is performed. What is different is the amount of that variance that is 
explained by each of the regression models. The sum of squares attributable to the 
regression in the linear analysis is 14.404, whereas for the quadratic regression it is 
66.477. This demonstrates how a greater proportion of the total variability is explained 
by the curve. 

ANALYSIS OF COVARIANCE 
The function of experimental design is to explain the effect of an independent variable 
on a dependent variable while controlling for the confounding effect of extraneous fac­
tors. When extraneous factors are not controlled, the results of measurement cannot be 
attributed solely to the experimental treatment. Statistically, we speak of controlling the 
unexplained variance in the data, that is, the variance in scores that cannot be explained 
by the independent variable. All experiments will have some unexplained variance, 
sometimes because of the varied individual characteristics of the subjects and some­
times because of unknown or random factors that affect responses. When we cannot 
control these factors by purposefully eliminating them or manipulating them, we use 
principles of experimental design to decrease the error variance they cause. 

In Chapter 9 we described several design strategies that can reduce chance variabil­
ity in data, such as using homogeneous groups or matching. There are times, however, 
when design strategies are not capable of sufficient control. Even when random assign­
ment is used, there is no guarantee that potentially confounding characteristics will be 
equally distributed, especially when dealing with small samples. The issue of concern 
is the ability to equate groups at the outset, so that observed differences following treat­
ment can be attributed to the treatment and not to other unexplained factors. When the 
research design cannot provide adequate control, statistical control can be achieved by 
measuring one or more confounding variables in addition to the dependent variable, 
and accounting for the variability in the confounding factors in the analysis. This is the 
conceptual basis for analysis of covariance (ANCOVA). 

Adjusting Group Means 
The ANCOVA is actually a combination of analysis of variance and linear regression. It 
is used to compare groups on a dependent variable, where there is reason to suspect 
that groups differ on some relevant characteristic, called a covariate, before treatment. 
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TABLE 24.4 OUTPUT FOR LINEAR AND POLYNOMIAL REGRESSION 
OF PSYCHOMOTOR ABILITY ON AGE (N = 30) (SEE FIGURE 24.1 1 )  

A. LINEAR REGRESSION 

Model Summary ANOVA 

R Std. Error of Sum of Mean 
R Square the Estimate Squares df Square F 

.31 8 0 . 1 0 1  2. 1 42 Regression 14.404 1 1 4.404 3. 1 39 
Residual 1 28.463 28 4 .588 
Total 142.867 29 

Coefficients 

Unstandardlzed Standardized 
Coefficients Coefficients 

B Std. Error Beta t Sig. 

Age .051 .029 .31 8 1 .772 f) .087 
(Constant) 7 . 1 47 .892 

B. QUADRATIC REGRESSION 

Model Summary ANOVA 

R Std. Error of Sum of Mean 
R Square the Estimate Squares df Square F 

.682 e .465 1 .682 Regression 66.477 0 2  33.238 1 1 . 748 
Residual 76.390 27 2.829 
Total 1 42.867 29 

Coefficients 

Unstandardlzed Standardized 
Coefficients Coefficients 

B Std. Error Beta t Sig. 

Age .684 . 1 49 4.255 4.583 0 .000 
Age""20 0 - .01 1 .002 - 3.983 -4.290 .000 
(Constant) - .202 1 .851 

o The value of R-square shows that linear prediction is quite weak. 

Sig. 

.087 
f) 

Sig. 

.000 
0 

f) The analysis of variance of regression shows that the linear function is not significant. This is confirmed in the 
test of the regression coefficient for age. 

e The value of R·square is substantially increased with the quadratic curve, indicating that the curve is better fit 
to the data. 

o The variance attributable to the regression now uses 2 degrees of freedom because it involves a second-order 
curve. 

0 The analysis of variance of regression for the quadratic function is significant. 

0 The symbol for exponent is a double asterisk. This term is age squared. 

Q The polynomial equation for the quadratic curve is: Y = -.202 + .684(Age) - .01 1  (Age2). 

Note: Portions of the output that are not relevant to the interpretation of results have been omitted. 
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The variability that can be attributed to the covariate is partitioned out, and effectively 
removed from the analysis of variance, allowing for a more valid explanation of the 
relationship between the independent and dependent variables. 

Example 
We can clarify this process with a hypothetical example. Suppose we wanted to com­
pare the effect of two teaching strategies on the clinical performance of students in their 
first year of clinical training. We hypothesize that training with videotaped cases (Strat­
egy 1) will be more effective than discussion and reading groups (Strategy 2). We ran­
domly assign 12 students to two groups (n = 6 per group). We are concerned, however, 
that the students' academic performance would be a potential confounding factor in 
making this comparison, based on the assumption that there is a correlation between 
academic and clinical performance. Therefore, we would want to know if the grade 
point average (GPA) in the two groups had been evenly distributed. If one group hap­
pened to have a higher GPA than the other, our results could be misleading. In this 
example, teaching strategy is the independent variable, clinical performance is the 
dependent variable, and GPA is the covariate. By knowing the values of the covariate, 
we can determine if the groups are different on GPA, and we can use this information 
to adjust our interpretation of the dependent variable if necessary. 

To illustrate how the ANCOVA offers this control, let us first look at a hypothetical 
comparison between the two teaching groups, without considering GPA. Suppose we 
obtain the following means for clinical performance on a standardized test (scored 0-100): 

Mean clinical score 

Strategy 1 
Strategy 2 

43.8 (±24.5) 
48.5 (±21 .7) 

The analysis of variance comparing these two groups is shown in Table 24.5A, demon­
strating that these two means are not statistically different (p = .734).H Based on this 
result, is it reasonable to conclude that the teaching strategies are not different? Or 
might we suspect that GPA may be differentially distributed between the two groups, 
which has biased the results? To answer these questions, we must take a closer look at 
the data to see how these variables are related. 

Regression 
Figure 24.11 shows us the distribution of GPA and clinical performance scores for Strat­
egy 1 ( e ) and Strategy 2 ( 0 )  with their respective regression lines. The dependent 
variable, clinical performance score, is plotted along the Y-axis, and the covariate, GPA, 

:It An unpaired t-test could also have been performed with the same result (t = .349, df = 10, p = .734); how­
ever, to adjust scores with a covariate, an analysis of variance must be used. Therefore, we have used the 
AN OVA here to facilitate comparison of outcomes with the ANCOVA. 
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TABLE 24.5 ANALYSIS OF COVARIANCE FOR COMPARISON OF CLINICAL 
PERFORMANCE FOLLOWING TWO TEACHING STRATEGIES (N = 12) 

A. ANALYSIS OF VARIANCE 

ANOVA 

Sum of Mean 
Squares df Square F Sig. 

Between groups 65. 333 1 65.333 . 1 22 .734 
Within groups 5360.333 1 0  536.033 0 
Total 5425.667 1 1  

B. ANALYSIS OF COVARIANCE 

Tests of Between-Subjects Effects 

Sum of Mean 
Source Squares df Square F Sig. 

G PA 8 4977.261 1 4977.261 1 1 6.937 f) .000 
Strategy @) 2083.733 1 2083.733 48.956 @) .000 
Error 0 383.073 9 42.564 
Total 5425.667 1 1  

Estimated Marginal Means 

Dependent Variable: score 

95% Confidence Interval 

0 Std. Lower Upper 
Strategy Mean Error Bound Bound 

1 30. 370 2.940 23. 7 1 9  3 7  02 1 
2 6 1 .963 2.940 55.31 2 68.6 1 4  

0 Covariates appearing in the model are evaluated at the following 

values: GPA = 2.8417. 

e The analysis of variance shows no significant difference between the teaching strategy groups. 

• GPA is the covariate. This term is significant (p = .000), which indicates that the slope of the regression line for 
the covariate is significantly different from zero. This is a necessary condition lor validity of the ANCOVA. 

e The between-groups effect tests the difference between Strategy 1 and Strategy 2, based on the adjusted 
means, which is significant. 

e The error term here is smaller than the error term in the ANOVA (in panel A), as it does not include the variance 
accounted lor by the covariate. 

e These are the adjusted means. 
e The adjusted means are based on the regression of GPA on clinical performance (shown in Figure 24.1 3), using 

the combined mean GPA of 2.84. 

Note: Portions of the output that are not relevant to interpretation have been omitted. 
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Strategy 1 / Y = -89.4 + 53.? X/ 
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FIGURE 24.1 1 Regression l ines defin i ng the relationship between c l inical performance score and 
grade point average (GPA) for two teach ing strategies. G PA is the covariate for an analysis of covariance. 
The mean G PA for Strategy 2 is substantial ly lower than that for Strategy 1 .  

is plotted along the X-axis. We can see from this scatter plot that these variables are 
highly correlated for both groups (r = .93 and .99), and that the slopes of the two 
regression lines are fairly similar (b = 53.7 and 46.5). 

We can also see that the regression line for Strategy 1 is higher than that for Strat­
egy 2, indicating that Group 1 had higher values of clinical performance for any given 
CPA, even though the sample means for clinical score are not significantly different. 
There is, however, another important difference. If we look at the mean GPA for each 
group, we can see that the students using Strategy 1 have substantially lower GPAs 
than those using Strategy 2 (X1 = 2.55, X2 = 3.11). Knowing that GPA is a correlate of 
clinical performance, it is reasonable to believe that this difference could have con­
founded the statistical analysis. 
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Adjusted Means 
To eliminate this effect, we want to artificially equate the two groups on GPA, using the 
mean GPA for the total sample as the best estimate for both groups. The mean GPA for 
both groups combined is 2.84. 1£ we assign this value as the mean GPA for each group, we 
can use the regression lines to predict what the mean score for clinical performance (Y) 
would be at that value of X. That is, what average clinical score would we expect for Strat­
egy 1 and Strategy 2 if the groups were equivalent on GPA? As shown in Figure 24.12, we 
would expect Y} = 62.0 and Y2 = 30.4. These are the adjusted means for each group. 

Note that the adjusted mean for Strategy 1 (62.0) is higher than the observed mean 
for Strategy 1 (48.5), and the adjusted mean for Strategy 2 (30.4) is lower than the 
observed mean for Strategy 2 (43.8). These differences reflect variation in the covariate; 
that is, on average Strategy 2 students had a higher GPA than Strategy 1 students. By 
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FIGURE 24.1 2 Adjusted means for c l in ical score, based on grade point average (GPA) as a covariate. 
Predicted values of c l in ical score are based on a common mean GPA for both teaching strategies. 
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setting a common mean GPA, we moved the average GPA up for Strategy 1 (2.55 to 
2.84), increasing the corresponding clinical score; and we moved the average GPA down 
for Strategy 2 (3.11 to 2.84), decreasing the corresponding clinical score. Therefore, we 
have adjusted scores by removing the effect of GPA differences so we could compare 
clinical scores as if both groups had the same GPA. 

This example illustrates the situation where a covariate obscures the true nature of 
the difference between group means. This process may also work in the opposite direc­
tion, however; that is, group means may initially appear significantly different when in 
fact they are not. In that case, the analysis of covariance may result in no significant dif­
ference. For example, consider a comparison of strength between men and women. We 
would expect to see a difference between them, with men being stronger. But this dif­
ference could be due to the weight of men versus women, rather than just gender. If we 
were to use weight as a covariate, we might find that the groups no longer appear dif­
ferent in strength. 

Output 
After scores are adjusted according to the regression lines, an analysis of variance is run 
on the adjusted values. Table 24.5B shows the results of this analysis for the teaching 
strategy data from Figure 24.12. Recall that the original analysis of variance showed no 
significant difference between these strategies (see Table 24.5A). 

In the summary table for the ANCOVA, the first line of the table represents the vari­
ance attributable to the covariate, or the regression of GPA on clinical score (see Table 
24.58). This component tests the hypothesis that the slope of the regression line is sig­
nificantly different from zero. If it is not significant, the covariate is not linearly related 
to the dependent variable, and therefore, the adjusted mean scores will be meaningless. 
In this example, we can see that the covariate of GPA is significant (p = .000). The 
researcher should always examine the covariate effect first, to determine that the 
ANCOVA is an appropriate test. The degrees of freedom associated with this factor 
equal the number of covariates used in the analysis. In this case, with one covariate, we 
have used one degree of freedom. 

The between-groups effect for Strategy is based on a comparison of the adjusted 
group means (see Table 24.50). As in a standard analysis of variance, the degrees of 
freedom will equal k - 1. Now we find that the difference between the strategy groups 
is significant (p = .000), and we can reject the null hypothesis (see Table 24.58). We con­
clude that clinical performance does differ between those exposed to videotaped cases 
and discussion groups when adjusted for their grade point average. We have, therefore, 
increased the sensitivity of our test by decreasing the unexplained variance. We have 
accounted for more of the variance in clinical performance by knowing GPA and teach­
ing strategy than we did by knowing teaching strategy alone. 

The third line of the table shows the error variance (see Table 24.50), that is, all the 
variance that is left unexplained after the between-groups and covariate sources have 
been accounted for. When the covariate is a good linear fit, the error variance will be 
substantially reduced. This is evident if we compare the error sums of squares in Tables 
24.5A and B for the ANOVA and ANCOVA of the same data. In fact, if we look at the 
error (within groups) sum of squares for the ANOVA (SSe = 5360.33), we can see that it 
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is equal to the combined sums of squares for the covariate and the error component in 
the ANCOVA (4977.26 + 383.07 = 5360.33). By removing the effect of GPA from the 
unexplained variance, we have left less variance unexplained. Therefore, the ANCOVA 
allows us to demonstrate a statistical difference between the groups, where the ANOVA 
did not. 

Assumptions for Analysis of Covariance 
Before running an ANCOVA, several assumptions should be satisfied to assure valid­
ity of the analysis. 

Li nearity of the Covariate. The analysis of covariance model is appropriate only if 
there is a linear relationship between the covariate and the dependent variable. It is 
most effective when r > .60.6 For example, it would be unreasonable to use height or 
weight as a covariate for clinical performance. The researcher should check correlations 
before starting a study, to be sure that data are being collected on a useful covariate. 
Relationships that are curvilinear will invalidate the analysis of covariance, although 
the relationship may be made linear by mathematical transformation. 

Homogeneity of Slopes. The ANCOVA requires that the slopes of the regression 
lines for each group be parallel. Unequal slopes indicate that the relationship between 
the covariate and dependent variable is different for each group. Therefore, the adjusted 
means will be based on different proportional relationships, and their comparison will 
be meaningless. A test for homogeneity of slopes should be done before the ANCOVA 
is attempted, to be sure that the procedure is valid.6 The null hypothesis for this test 
states that the regression coefficients (slopes) for the two groups will not be signifi­
cantly different: Ho: {31 = {32. If GPA is a "good" covariate, then it will allow adjust­
ments based on proportional values that are the same in both strategy groups. 

I ndependence of the Covariate. The variable chosen as the covariate must be 
related to the dependent variable, but must also be independent of the treatment effect; 
that is, the independent variable cannot influence the value of the covariate. For exam­
ple, suppose we wanted to study the effect of a general exercise program on balance, 
using lower extremity strength as a covariate. If we were to measure the subjects' 
strength after the treatment was completed, we might find that the exercise program 
increased the strength of the lower extremities. Therefore, the strength value would not 
be independent of the treatment effect and would not be a valid covariate. To avoid this 
situation, covariates should always be measured prior to initiation of treatment. 

Rel iability of the Covariate. The validity of the ANCOVA is also founded on the 
assumption that the covariate is not contaminated by measurement error.6 Any error 
found in the covariate is compounded when the regression coefficients and adjusted 
means are calculated. Therefore, justification for using the adjusted scores is based on 
accuracy of the covariate. Although it may be impossible to obtain totally error-free meas­
urement, every effort should be made to ensure the greatest degree of reliability possible. 
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The analysis of covariance can be extended to accommodate any number of covariates. 
There may be several characteristics that are relevant to understanding the dependent 
variable. For example, if we wanted to compare strength at different age ranges, we 
might use a combination of height, weight, limb girth, or percentage body fat as covari­
ates. With multiple covariates, the analysis of covariance involves multiple regression 
procedures, where several X variables are correlated with one Y variable, and a pre­
dicted value for Y is determined, based on those covariates that are most highly corre­
lated. Multiple regression techniques are discussed further in Chapter 29. 

When several covariates are used, the precision of the analysis can be greatly 
enhanced, as long as the covariates are all highly correlated with the dependent vari­
able and not correlated with each other. If, however, the covariates are correlated with 
each other, they provide redundant information and no additional benefit is gained by 
including them. In fact, using a large number of interrelated covariates can be a disad­
vantage, because each covariate uses up one degree of freedom in the analysis. This 
decreases the degrees of freedom left for the error term, which increases the F needed 
for significance between groups. The analysis then loses statistical power. With smaller 
samples, this could have a biasing effect. 

It is important, therefore, to make educated choices about the use of covariates. Pre­
vious research and pilot studies may be able to document which variables are most 
highly correlated with the dependent variable and which are least likely to be related to 
each other. 

Pretest-Posttest Adjustments 
The ANCOVA is often used to control for initial differences between groups based on a 
pretest measure. When intact groups are tested or when randomization is used with 
small groups, the initial measurements on the dependent variable are often different 
enough to be of concern for further comparison. For example, suppose we were study­
ing the effect of two exercise programs on strength. We randomly assign subjects to two 
groups and would like to assume that their initial strength levels are similar; however, 
after the pretest we find that one group is much stronger on average than the other, a 
difference that occurred just by chance. We can use the ANCOVA to equate both groups 
on their pretest scores and adjust posttest scores accordingly. The analysis between 
groups is then done using the adjusted posttest scores, as if both groups had started out 
at the same level of strength. 

Researchers are often tempted to control for initial differences by using difference 
scores as the dependent variable in a pretest-posttest design. There are disadvantages 
to this approach, however, because the potential for measurement error is increased 
when using difference scores (see Chapter 6). In experimental studies, this situation can 
reduce the power of a statistical test; that is, the greater the amount of measurement 
error, the less likely we will find a significant difference between two difference scores, 
even when the treatment was really effective. Therefore, many researchers prefer the 
analysis of covariance for statistically controlling initial differences. This approach is 
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not, however, a remedy for a study with poor reliability. Although some research ques­
tions may be more readily answered by the use of change scores, the researcher should 
consider what type of data will best serve the analysis. 

I nterpreting the ANCOVA 
The analysis of covariance is a powerful statistical tool that has often been looked on as 
a cure-all for design imperfections. Although it does have the power to increase the sen­
sitivity of a test by removing many forms of bias, it does not provide a safeguard 
against problems in the design of a study. The ANCOVA cannot substitute for random­
ization. Quasi-experimental designs that use intact groups suffer from many interpre­
tive biases, some of which the ANCOVA is able to control better than others. Indeed, 
unless a covariate is totally reliable, it will introduce some biases of its own. Some 
researchers have used the ANCOVA to compensate for failures in their design, such as 
the discovery of uncontrolled variables after data collection has been started, but this is 
not its intent. The analysis of covariance is correctly used in situations where experi­
mental control of relevant variables is not possible and where these factors are identi­
fied and measured at the outset. 

The ANCOVA has some limitations that should be considered in this context. One 
major criticism is that the adjusted means are not real scores, and therefore, the gener­
alization of data from an analysis of covariance is compromised. It is also important to 
realize that one covariate may be insufficient for removing extraneous effects and that 
the outcome of an ANCOVA could be significantly altered if different combinations of 
covariates were used. In addition, researchers must decide which covariates will be 
most meaningful, and decide early so that data are collected on the proper variables. 
Covariates that are quantitative variables, such as height, weight and age, provide the 
most precision for adjusting scores; however, dichotomous variables such as sex and 
disability can be used as covariates. 

COMM ENTARY 

If Only I t  Were That Simple 

Two issues related to genera l ization of regression analysis shou ld be mentioned 
here. Fi rst, j ust as with correlation, it is important to refrain from interpreting pred ic­
tive relationships as causal .  Statistical associations by themselves do not provide suf­
fic ient evidence of causa l i ty. The researcher must be able to establ ish the 
methodological, logical and theoretical rationales beh ind such c la ims; that is, causal 
inference is a function of how the data were produced, not how they were 
analyzed.7 Second, it is important to restrict genera l ization of predictive relation­
ships to the population on which the data were obtained . The characteristics of sub­
jects chosen for a regression study define th is popu lation. 

Simple l inear regression ana lysis is  l im ited in  that it accounts for the effect of 
only one independent variable on one dependent variable. Most behavioral phe­
nomena cannot be explai ned so simply. For instance, when we examined the pre-
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dictive accuracy of the regression of blood pressure on age, we establ ished that 
? = .76. This ind icates that 76% of the variance in blood pressure cou ld be pre­
d icted by knowing a woman's age; however, 24% of the variance was unaccounted 
for. Some other variable or variables must be identified to improve the prediction 
equation. Multiple regression procedures have been developed that provide an effi­
cient mechanism for studying the combined effect of severa l independent variables 
on a dependent variable for purposes of improving predictive accuracy. We present 
these techniques in Chapter 29.  
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CHAPTER 2 5  

Measures of Association 
for Categorical Variables: 
Chi-Square 

Many research questions in clinical and behavioral science involve categorical variables 
that are measured on a nominal or ordinal scale. These questions usually deal with the 
analysis of proportions or frequencies within various categories. For instance, surveys 
often code responses that represent frequencies, such as the number of Yes-No 
responses to a series of items or the number of respondents who fall into certain age 
groups. We can then ask questions about the proportion of respondents that fall into 
each category. In descriptive studies we are often interested in how certain nominal 
variables are distributed. For example, we might want to determine the proportion of 
patients with right-sided or left-sided strokes who are functionally dependent or inde­
pendent at discharge or the proportion of therapists who work in private practice ver­
sus institutional settings. 

These types of categorical data are analyzed by determining if there is a difference 
between the proportions observed within a set of categories and the proportions that 
would be expected by chance. For example, if therapists are equally likely to work in pri­
vate or institutional settings, then theoretically we would expect an equal proportion, 
or 50%, to fall into each category. The null hypothesis states that no difference exists 
between the actual proportions measured in a sample and this theoretical distribution. 
If the observed data depart significantly from these expected null values, we reject the 
null hypothesis. 

The purpose of this chapter is to describe the use of several statistics that can be 
used to analyze frequencies or proportions. These statistics are based on chi-square, 
x2, which is a nonparametric statistic used to determine if a distribution of observed 
frequencies differs from theoretical expected frequencies. Chi-square has many applica­
tions in clinical research, in both experimental and descriptive analysis. We concentrate 
on two general uses of the test. A test of goodness of fit is used to determine if a set of 
observed frequencies differs from a given set of theoretical frequencies that define a 
specific distribution. A test that compares the proportion of therapists in private and 
institutional settings fits this model, based on a theoretical distribution of 50 : 50. Tests 
of independence are used to determine if two classification variables are independent 
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of each other, that is, to examine the degree of association between them. For example, 
we could study the frequency of left- and right-sided stroke in terms of functional level 
at discharge to determine if these variables are related or independent of each other. We 
also discuss the use of a related procedure called the McNemar test, for examining fre­
quencies of correlated samples. In addition, several other coefficients of association for 
categorical data will be described. 

THE CHI-SQUARE STATISTIC 
As we discuss the different applications of the x2 statistic, it is important to keep in 
mind two general assumptions: (1) Frequencies represent individual counts, not ranks or 
percentages. This means that data in each category represent the actual number of per­
sons, objects, or events in those categories, not a summary statistic. (2) Categories are 
exhaustive and mutually exclusive. Therefore, every subject can be assigned to an appro­
priate category, but only one. Repeated measurement or assignment is not appropriate; 
that is, no one individual should be represented in more than one category. The charac­
teristics being measured should be defined with enough specificity to avoid any over­
laps in group assignment. 

Chi-square is defined by* 

(25.1) 

where 0 represents the observed frequency and E represents the expected 
frequency. As the difference between observed and expected frequencies increases, the 
value of x2 will increase. H observed and expected frequencies are the same, � will 
equal zero. 

We illustrate the application of this statistic using a simple example. Suppose we 
tossed a coin 100 times. The null hypothesis states that no bias exists in the coin, and we 
would expect a theoretical outcome of 50 heads and 50 tails. We observe 47 heads and 
53 tails. Does this deviation from the null hypothesis occur because the coin is biased, 
or is it only a matter of chance? In other words, is the difference between the observed 
and expected frequencies sufficiently large to justify rejection of the null hypothesis? 

We calculate XZ by substituting values in the term (0 - E)2 IE for each category. 
For heads, 

(0 - E)2 (47 -:- 50)2 (-3)2 
= = -- = 0.18 

E 50 50 
For tails, 

(0 - E)2 (53 - 50)2 (3)2 
= = 

50 
= 0.18 

E 50 
The sum of these terms for all categories is the value of �. Therefore, 

*Although the definitional formula for J? (Eq. 25.1) is used most often, there is a computational formula that 
o2 

may be useful: r = L E - N. 
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(0 - E)2 x2 = L E = 0.18 + 0.18 = 0.36 

We analyze the significance of this value using critical values of x2 found in Appendix 
Table A.5. Along the top of the table we identify the desired a level, say .05. Along the 
side we locate the appropriate degrees of freedom. In this case, d f = 1. We will discuss 
rules for determining degrees of freedom for different statistical models shortly. Chi­
square tests do not distinguish between one- and two-tailed tests because no negative 
values are possible. 

The calculated value of x2 must be greater than or equal to the critical value to be sig­
nificant. In this example, the observed value is less than (.OS)X2(l) = 3.84. Therefore, H0 
is not rejected, and we would conclude that the coin toss was fair. 

GOODN ESS OF FIT 
In tests for goodness of fit, the researcher compares observed frequency counts with a 
known or theoretical distribution. The classical studies of heredity performed by 
Mendel illustrate this concept. He observed the color and shape of several generations 
of peas and compared the frequencies of specific color and shape combinations with a 
theoretical distribution based on his predictions about the role of dominant and reces­
sive genes. When the observed distributions matched the theoretical model, his genetic 
theory was supported. Similarly, the coin toss described earlier is essentially a test of 
goodness of fit to a probability distribution. Chi-square will test the null hypothesis that 
the proportion of outcomes within each category will not significantly differ from the 
expected distribution; that is, the observed proportions will fall within random fluctu­
ation of the expected proportions. 

There are many models for testing goodness of fit. The two most common applica­
tions involve testing observed data against a uniform distribution across all cate­
gories and a known distribution within the underlying population. 

Sample size for goodness of fit tests should be large enough that no expected fre­
quencies are less than 1 .0; that is, every category in the theoretical distribution of inter­
est should expect at least one count. When this criterion is not met, sample size should 
be increased or categories combined to create an appropriate distribution. Note that this 
criterion applies to the expected frequencies, not the observed counts. 

Un iform Distributions 
Consider a study designed to determine if the incidence of stroke is greater on the right 
or the left in people over 70 years of age. If we assume that the causative factors of 
stroke are not biased to one side, then theoretically we would expect to see a uniform 
distribution, 50% right-sided and 50% left-sided strokes, in the population. This is the 
null hypothesis, representing chance occurrence. Suppose we obtain data from a broad 
sample of 130 patients, and find that 71 were affected on the right and 59 on the left. Is 
this distribution significantly different from the 50% ratio we expect by chance? 

We use chi-square to determine if the observed frequencies fit the uniform distribu­
tion model by comparing the observed and expected frequencies using Equation (25.1). 
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First we must establish the expected frequencies. For a uniform distribution we do this 
simply by dividing the total sample equally among the categories. Therefore, if chance 
is operating, we would expect 50% of our sample, or 65 people, to have right-sided 
strokes, and 50%, or 65 people, to have left-sided strokes. We calculate (0 - Ef IE for 
each category, as shown in Table 25.1.  

In the uniform distribution goodness of fit model, degrees of freedom equal k - 1, 
where k is the number of categories. With two categories (right and left), d f = 1. There­
fore, we compare the calculated value, x2 = 1.10, with the critical value (.Os)X2(l) = 3.84, 
obtained from Appendix Table A.5. The calculated value is less than the critical value, 
and we do not reject the null hypothesis. The difference between the observed and 
expected frequencies can be attributed to chance, and our sample fits the expected uni­
form distribution. According to these hypothetical data, the incidence of right- and left­
sided strokes can be considered a random event. 

By definition, the expected frequencies for a uniform distribution will be evenly 
divided among the categories. Therefore, if we studied a sample with three or four cat­
egories, we would test the observed frequencies in each category against expected fre­
quencies of 33.3% and 25%, respectively. For example, if we assigned 130 cases to three 
different categories, we would expect 43.33 cases in each category. If we had four cate­
gories, we would expect 32.5 cases per category. It may seem strange to be dealing with 
fractions of a count in expected frequencies, as we obviously cannot have a fraction of 
an individual in a category; however, these values represent only theoretical values 

TABLE 25.1 CALCULATION OF x2 TO TEST GOODNESS OF FIT TO A UNIFORM 
DISTRIBUTION: FREQUENCY OF LEFT-SIDE AND RIGHT-SIDE STROKE 
(N = 1 30) 

A. DATA AND COMPUTATION 

Side 

Right 
Left 

0 

71 
� 
1 30 

E 

65 
..25._ 
1 30 

0 - E 

6 
-6 

B. HYPOTHESIS TEST 

df = (k - 1 )  = 1 (o.s)r(1l = 3.84 (Table A.5) 

C. OUTPUT 
Side 

Observed N Expected N Residual 

Right 71 65.0 6.0 
Left 59 65.0 -6.0 
Total 1 30 

36 
36 

(0 - E)2 
E 

.55 
� 

(0 - E)2 

x2 = � = 1 . 1 0  
E 

Do not reject H0 

Test Statistics 

Side 

Chi-Square 1 . 1 08 
df 1 
Sig. .293 
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based on an infinite number of possible scores, and cannot be interpreted as represent­
ing actual expected counts. 

Known Distributions 
The third goodness of fit model compares a sample distribution with a known distribu­
tion within an underlying population. This is one way to document how well a sample 
represents its parent population. In many cases, the variable of interest is normally dis­
tributed in the population and the goodness of fit test for normal distributions should 
be used. In other situations, the population shows a unique distribution that can be 
tested against observed frequencies. 

For example, suppose an investigator hypothesizes that thromboembolism is 
more common in individuals with certain blood types. If this is true, then we can 
expect to see those blood types represented among patients with thromboembolism 
in higher percentages than in the overall population. Suppose we study a sample of 
85 patients who have experienced thromboembolism. The null hypothesis states that 
the disorder is not associated with blood type and that the distribution of blood types 
in the sample will be similar to that in the overall population. Knowing that 39% of 
the population has Type A blood, 9% has Type B, 5% has Type AB, and 47% has Type 
0,1 we can determine what proportion of the patients should be expected to have 
each blood type under the null hypothesis. For example, 39% of the sample, or 
(0.39)(85) = 33.15 patients, should have Type A blood. Hypothetical observations and 
expected values for all four categories are shown in Table 25.2A. By looking at the col­
umn labeled (0 - E), we can see that there are marked differences between expected 
and observed frequencies, some showing less than expected and others greater than 
expected values. 

With a known distribution, we test x2 with k - 1 degrees of freedom. In this case, 
df = 4 - 1 = 3. The calculated value of x2 

= 19.94, as shown in Table 25.2A. This 
value exceeds the critical value (.OS)X2(3) = 7.82, and we can reject the null hypothesis. 
These hypothetical data do not follow the population distribution, and therefore, there 
is reason to believe that this disorder has some association with blood type. 

INTERPRETING SIGNIFICANT EFFECTS: 
STANDARDIZED RESIDUALS 
When the results of a chi-square test are significant, we can examine the results subjec­
tively, to determine which categories demonstrate the greatest discrepancy between 
observed and expected values. For this purpose we can look at a residual for each cell, 
which is the difference between the observed and expected frequencies, given in the 
column labeled 0 - E. For the blood type study, for instance, the residual for Type A is 
-5.15. This means that the observed proportion of Type A blood in this sample was less 
than expected by chance. These raw values may be difficult to interpret, however, as 
they are effected by the number of observed counts within each cell; that is, cells with 
larger counts are likely to have larger residuals. Therefore, standardized residuals, R, 
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TABLE 25.2 CALCULATION OF x2 FOR GOODNESS OF FIT TO A KNOWN 
DISTRIBUTION OF BLOOD TYPE (N = 85) 

A. DATA AND COMPUTATION 

Blood % In (0 - E� 
Type population 0 E 0 - E (0 - E� E 
A 39% 32 39.00 -7.00 49.00 1 .26 
B 9"k 23 9.00 1 4.00 1 96.00 21 .78 
AB 5% 1 0  5.00 5.00 25.00 5.00 
0 47% .JS._ � - 1 2.00 1 44.00 ...a...Q6_ 

1 00 100.00 � = 31 . 10  

B.  HYPOTHESIS TEST 

Std. 
Residual 

-1 . 12  
4.67 
2.24 
1 .75 

df = (k - 1 )  = (4 - 1 )  = 3 (0.5)X�3) = 7.82 (Table A.5) Reject ft. 

C. OUTPUT 

Type Test Statlatlcs 

Observed N Expected N Residual Type 

A 32 39.0 -7.0 Chi-square 31 .098 
8 23 9.0 1 4.0 df 3 
AB 1 0  5.0 5.0 Sig. .000 
0 35 47.0 - 1 2.0 
Tota l 1 00 

are often used to demonstrate the relative contribution of each cell to the overall value 
of chi-square: 

0 - E  R = --VE (25.2) 

For example, using the data for Type B blood in Table 25.3A, the standardized residual is 

R = 
1 1 .35 = 4.10 v7.6s 

Standardized residuals for blood types are listed in the rightmost column in Table 25.2. 
These residual values can be compared to determine which categories contributed 
most to the value of x2. Residuals that are close to or greater than 2.00 are generally 
considered important.2 The values for blood type demonstrate that the difference 
between observed and expected frequencies for patients with Type B blood shows the 
greatest discrepancy. The positive sign for the residual indicates that the proportion of 
individuals with thromboembolism who have Type B blood is greater than expected by 
chance. The small residuals for the other blood types suggest that they do not con­
tribute appreciably to the value of x2. The negative values for Types A and 0 indicate 
that those frequencies are actually represented in smaller numbers than would be 
expected by chance. 
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TESTS OF IN DEPENDENCE 
The most common application of chi-square in clinical research is in tests of independ­
ence. With this approach, researchers examine the association, or lack of association, 
between two categorical variables. This association is based on the proportion of indi­
viduals who fall into each category. These data may be obtained from randomized exper­
iments or from descriptive studies involving classification of subject characteristics. 

Many examples of these applications can be found in clinical literature. For exam­
ple, Frankel et al.3 examined outcomes of younger and older patients with traumatic 
brain injuries. They used x

2 to demonstrate an age-related difference in the proportion 
of patients who were discharged home versus an institutional setting. Yu et al.4 demon­
strated a higher proportion of school children with wheezing and shortness of breath in 
school districts with greater air pollution. Monset-Couchard et al.5 studied differences 
in frequency of speech problems in twins who were born at normal or small birth 
weight. Proctor and co-workers6 studied patients with work-related musculoskeletal 
disorders, and looked at the proportion of those who completed or did not complete a 
functional restoration program in relation to return to work and frequency of surgeries. 
Epidemiologic studies often use chi-square to evaluate the effect of different exposures 
among diseased and nondiseased individuals.t 

In each of the preceding studies, the research question asks if the proportions of 
subjects observed in each category are independent of each other. Two variables are 
considered independent if the distribution of one in no way depends on the distribu­
tion of the other. For example, if the presence of speech problems is independent of 
birth weight, then a child with a low birth weight is no more likely to have such prob­
lems than a child who was born at a normal birth weight. The null hypothesis for a test 
of independence states that two categorical variables are independent of each other. 
Therefore, when the null hypothesis is rejected following a significant x

2 
test, it indi­

cates that an association between the variables is present. 

Contingency Tables 
To test the relationship between two categorical variables, data are arranged in a two­
way matrix, called a contingency table, with R rows and C columns. To illustrate, con­
sider the data in Table 25.3A, taken from a study by Armstrong et al} who looked at 
the differential effect of a total contact cast (TCC) or removable cast walker (RCW) on 
healing of neuropathic diabetic foot ulcers. They studied 50 patients who were ran­
domly assigned to use either the TCC (n = 27) or the RCW (n = 23). The dependent 
variable was the assessment of healing over 12 weeks, scored as "healed" or 
"unhealed." This is a nominal level of measurement, and is appropriately analyzed 

tThe Mantel-Haenszel chi-square statistic is a variation of the chi-square test for independence, used in case­
control and cohort studies, when the association between two variables is considered confounded by a third 
variable. The data are stratified so that the effect of the confounder is partitioned out. The Mantel-Haenszel 
statistic essentially adjusts the value of chi-square to account for the differential contribution of each stratum. 
Formulas for Mantel-Haenszel statistics can be found in most epidemiologic tests. See Chapter 28 for a dis­
cussion of confounding in epidemiologic studies. 
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TABLE 25.3 CALCULATION OF x2 FOR A 2 x 2 CONTINGENCY TABLE SHOWING 
FREQUENCY OF DIABETIC WOUND HEAUNG WITH A TOTAL CONTACT 
CAST (TCC) AND A REMOVABLE CAST WALKER (RCW) (N = 50) 

A. CONTINGENCY TABLE 
Healed 

Yes No Total 

TCC 1 9  4 I 23 
Cast 

RCW 1 4  1 3  27 
Total 33 1 7  50 

B. COMPUTATION 

(0 - E)2 Std. 
Category 0 E 0 - E  (0 - E)2 E Residual 

Healed TCC 1 9  1 5. 1 8  3.82 1 4.59 0.96 0.98 
RCW 1 4  1 7.82 -3.82 1 4.59 0.82 -0.90 

Unhealed TCC 4 7.82 -3.82 1 4.59 1 .87 - 1 .37 
RCW 1 3  9. 1 8  3.82 1 4.59 __1& 1 .26 

x2 = 5.24 

C. HYPOTHESIS TEST 

df = (r - 1 )(c - 1 )  = (2 - 1 )(2 - 1 )  = 1 (0.5)X
2
(1 )  = 3.84 (Table A.5) Reject H0. 

D. OUTPUT 

Cast * Healed Crosstabulatlon 

Healed 

Cast Yes No Total 

Total Contact 
Count 19 4 23 

Expected Count 15.2 7.8 23.0 
% within Cast 0 82.6% 1 7.4% 1 00.0% 

% within Healed 57.6% 23.5% 46.0% 
Std. Residual 1 .0 - 1 .4 

Removable 
Count 14 13 27 

Expected Count 17.8 9.2 27.0 
% within Cast 0 51 .9% 48. 1 %  1 00.0% 

% within Healed 42.4% 76.5% 54.0% 
Std. Residual - .9  1 .3 

Total Count 33 1 7  50 

Chi-Square Tests 

Sig. 
Value df (2-sided) 

Pearson 5.236 1 f) .022 
Chi-Square 
Continuity @) 3.955 1 .047 
Correction (a) 
N of Valid 50 
Cases 

a Computed only for a 2 x 2 table; 0 cells (.0%) 
have expected count less than 5. The minimum 
expected count is 7 .82. 

o Percentages are given for each cell across 
each row (within Cast) and each column 
(within Healed). 

8 Chi-square is significant (p = .022). 

0 The Continuity Correction is automatically 
included, but is only used when there are cells 
with expected frequencies less than 5. It would 
not be applied here. 

Source: Armstrong DG, Lavery LA, Wu S, Boulton A. Evaluation of removable and irremovable cast walkers in 
the healing of diabetic foot wounds: A randomized controlled trial. Diabetes Care 2005; 28:551-554. 
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using x2. The 2 x 2 contingency table shows the observed frequencies as the first entry 
within each cell (labeled "count"). 

Expected Frequencies 
The null hypothesis states that there is no association between the type of cast and heal­
ing; that is, both casts will be equally effective. We begin our analysis by calculating the 
expected frequencies for each cell in the table. This process is somewhat more compli­
cated when working with a contingency table, because we cannot just evenly divide the 
total sample among the four cells. We must account for the observed proportions within 
each variable. First we ask, what proportion of the total sample (N = 50) had healed or 
unhealed ulcers? According to the observed data, these proportions are 

Healed: 

Unhealed: 

33/50 = 66% 

17/50 = 34% 

Therefore, if the null hypothesis is true, and no association exists between healing 
and type of cast worn, we would expect to see these same proportions in the TCC and 
RCW groups. This means that within each category of cast, 66% of the patients should 
have healed and 34% should be unhealed. Therefore, of the 23 patients who wore the 
TCC, 66% or [(.66)(23) = 15.18] should have healed, and 34% [(.34)(23) = 7.82] should 
be unhealed. Similarly, 66% of the 27 patients who wore the RCW [(.66)(27) = 17.82] 
should be healed, and 34% should be unhealed [(.34)(27) = 9.18]. These are the frequen­
cies that would be expected if type of cast and healing are not related. Table 25.3B shows 
the expected frequencies under the column labeled "E". 

We can simplify the process of calculating the expected frequency (E) for a given 
cell in the table using the formula 

(25.3) 

where fR and f c represent the frequency totals for the row and column associated with that 
cell, respectively. Therefore, for those who wore the TCC, expected frequencies are 

Healed: 

Unhealed: 

E = 
(23)(33) 

= 15.18 
50 

E = 
(23)(17) 

= 7.82 
50 

And for those who wore the RCW, 

Healed: 

Unhealed: 

E = 
(27)(33) 

= 17.82 
50 

(27)(17) 
E = 

50 
= 9.18 
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Interpreting Chi-Square 
Table 25.3B shows the calculation of x2 using these data. These calculations proceed as 
in previous examples, with all observed and expected frequencies listed in the table 
(order is unimportant). The test value, x2 

= 5.24, is compared with the critical value 
with (R - 1)(C - 1) degrees of freedom. In this case, we have two rows and two 
columns, with (2 - 1)(2 - 1) = 1 degree of freedom. From Appendix Table A.S we 
obtain the critical value (.Os)X2(l) = 3.84. Therefore, x2 is significant and the null hy­
pothesis of independence is rejected. These variables are not independent of each other. 
There is a significant association between the type of cast worn and healing of foot 
ulcers. 

We can examine the frequencies within each cell to interpret these findings. The 
output for this analysis allows us to see how each cell contributes to the overall chi­
square. As shown in Table 25.3D, the frequency within each cell is also given as a per­
centage of the column (% within Healed) and the row (% within Cast). For instance, 19 
patients in the TCC group were healed. This represents 82.6% of all those who wore the 
TCC (the row %) and 57.6% of all those who were healed (the column %). If we exam­
ine the standardized residuals for these data, shown as the last entry in each cell, we can 
see that the two cells representing patients who were unhealed contribute most to the 
significant outcome. With use of the TCC, the number of patients whose ulcers were 
unhealed was less than expected by chance (R = -1.4). For those who wore the RCW, 
the number of patients who were unhealed was greater than expected (R = 1 .3). It is 
reasonable, then, to conclude that the TCC was more effective. 

Random and Fixed Models for 2 X 2 Tables 
When data are arranged in a contingency table, the marginal frequencies can be gener­
ated in one of two ways. They may be fixed effects, in that the totals are predetermined by 
the experimenter. If the study were to be repeated, the same frequencies would proba­
bly be used. The levels of cast can be classified as fixed, in that the subjects were assigned 
to these groups. The numbers of subjects in each category of treatment were determined 
by the researchers. Conversely, the number of subjects appearing in each category of 
healing was not predetermined. This is considered a random effect, indicating that the 
numbers in these categories would probably change with repeated sampling. 

A fixed model contingency table is created when both variables of interest are 
assigned. This approach is rare in clinical studies. The more common random model 
is composed of two random variables. For example, we could analyze a class of 60 stu­
dents and classify them according to sex and age. The totals in each category would be 
different for every class that was tested. A mixed model is composed of one random 
and one fixed variable. The cast example, in which subjects were assigned to treatment 
groups and measured on healing, fits this model. Treatment is fixed and healing levels 
are random. Case-control studies use this approach, choosing a fixed number of cases 
and control subjects, and then examining how many in each group are exposed to a 
risk factor. If the study were to be repeated, the same numbers of cases and controls 
could be chosen, but the exposure data would vary. The significance of analyzing a 
fixed, random, or mixed model will be discussed shortly when we deal with issues of 
sample size. 
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TABLE 25.4 ALTERNATE COMPUTATION OF x2 FOR 2 x 2 CONTINGENCY TABLE 

Healed 

,.---'--'-=--.---'-=---, Total 
2 _ 

N(AD - BC)2 
X - (A + B)(C + D)(A + C)(B + D) 

TCC 

RCW 

Total 
'-----'-'---'----'--'---' 

23 

27 

50 

Calcu lations for 2 X 2 Tables 

50[(1 9)(1 3) - (4)(14)f 
(23)(27)(33)( 1 7} 

1 ,824,050 
= 5.24 348,381 

The 2 X 2 contingency table is a commonly used model in the analysis of frequencies. 
An alternative formula for calculating x2 can be applied, which eliminates the need for 
determining expected frequencies. This formula is illustrated in Table 25.4. 

Sample Size Considerations-Yates' Correction for Continu ity 
Assumptions related to sample size with contingency tables are based on the expected 
frequencies. In addition to the requirement that each cell contain an expected frequency 
of at least 1, no more than 20% of the cells should contain expected frequencies less than 
5.8 When this occurs, the researcher may choose to collapse the table (if it is larger than 
2 X 2) to combine adjacent categories and increase expected cell frequencies. 

A statistical correction, known as Yates' correction for continuity, is often recom­
mended to adjust x2 to account for small expected frequencies. This procedure reduces 
the size of x2 by subtracting 0.5 from the absolute value of 0 - E for each category 
before squaring: 

(25.5) 

With 2 X 2 tables, Yates' correction for continuity is given as 

N(AD - BC - N /2)2 
� = (A + B)(C + D)(A + C)(B + D) (25.6) 

A number of statistical sources suggest that Yates' correction for continuity is too con­
servative and unduly increases the chance of committing a Type II error.9•10 It has been 
suggested that x2 can provide a reasonable estimate of Type I error for 2 X 2 tables 
when random or mixed models are used with N 2:: 8.11 With expected frequencies less 
than 5, a related procedure called the Fisher Exact Test is recommended for use with 
2 X 2 tables.12 This test results in the exact probability of the occurrence of the observed 
frequencies, given the marginal totals. The calculation of Fisher's Exact Test is quite 
cumbersome and is best generated by computer analysis. 

McNEMAR TEST FOR CORRELATED SAMPLES 
One of the basic assumptions required for use of x2 is that variables are independent; 
that is, no one subject is represented in more than one cell. There are many research 
questions, however, for which this assumption will not hold. For instance, we could 
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look at a sample's responses to a question and see how many subjects answered cor­
rectly or incorrectly before and after exposure to specific information. Or we could 
examine the effects of a particular treatment program by looking at the presence or 
absence of an outcome variable, such as pain, before and after treatment. These studies 
use nominal variables, but in a repeated measures design. The x2 test is not valid under 
these conditions.13 

The McNemar test is a form of the x2 statistic used with 2 X 2 tables that involve 
correlated samples, where subjects act as their own controls or where they are matched. 
This test is especially useful with pretest-posttest designs when the dependent variable 
is measured as a dichotomy in an ordinal or nominal scale. To illustrate this approach, 
Evans et al.14 studied the effect of percutaneous vertebroplasty on pain and function in 
patients with vertebral fractures. Table 25.5A shows representative data for the use of 

TABLE 25.5 MCNEMAR TEST: USE OF PAIN MEDICATIONS BEFORE AND AFTER 
VETEBROPLASTY (N = 53) 

A. DATA 

B. COMPUTATION 

C. HYPOTHESIS TEST 

df =  (r - 1 )(c - 1 )  = 1 

D. OUTPUT 

AFTER 

Pain 
Meds 

None 

Total 

BEFORE 
Pain Total 
Meds None 

A 8 
24 4 

c D 

20 5 

44 9 

28 

25 

53 

2 = (B - C)2 = (4 - 20)2 = 1 0.67 X (B + C) (4 + 20) 

(O.s)X2(1 )  = 3.84 (Table A.5) 

After ,. Before Crosstabulation 

Reject H0 

Chi-Square Tests 

Before Total Exact Sig. 
Value (2-sided) 

Pain Meds None 
McNemar Test .002 

After Pain Meds 24 4 28 N of Valid Cases 53 
None 20 5 25 

Total 44 9 53 

Based on data from Evans AJ, et al. Vertebral compression fractures: Pain reduction and improvement in func­
tional mobility after percutaneous polymethylmethacrylate vertebroplasty retrospective report of 245 cases. 
Radiology 2003; 226:366-372. 
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pain medications before and after the procedure. In this situation, the cells are not inde­
pendent, and each subject is represented twice. 

The cells in the correlated design follow the standard notation for a 2 X 2 table. The 
number of patients who demonstrate a change in the use of pain medications following 
the vertebroplasty are reflected in shaded cells B and C. Patients in cell B did not use 
pain medications prior to the procedure, but did use them afterwards. Those in cell C 
did use pain medications prior to the procedure, but no longer used them afterwards. 
Patients in cells A and D did not change their use (or nonuse) of medications. 

As B and C represent the total number of patients who showed a change in their 
behavior, these are the only cells of interest for this analysis. Under the null hypothesis, 
half of those who changed should stop using medications after the procedure and half 
should begin using medications. We test this hypothesis using the formula 

2 - (B - qz X 
- B + C 

(25.7) 

which is tested against critical values of x2 with one degree of freedom (Appendix Table 
A.5). As shown in Table 25.5B, for the preceding example, x2 = 10.67. This value is sig­
nificant (Table 25.5C). We can see that the proportion of patients who stopped using 
medications after the vertebroplasty is substantially higher than for those who began 
using medications. 

COEFFICI ENTS OF ASSOCIATION 
Sometimes a measure of association, like a correlation coefficient, is  desired, as a way 
of expressing the degree of relationship in a set of categorical data. Chi-square tells us 
only if the association is significant, not if it is strong or weak. 

Phi Coefficient 
The phi coefficient, <I>, can be used to express the degree of association between two 
nominal variables in a 2 X 2 table.15 Its value can range from -1.00 to + 1.00, and can 
be interpreted as a correlation coefficient. It is based on the x2 statistic as follows: 

For the data in Table 25.5, 

<P = (5.24 = .32 '/50 

(25.8) 

This finding indicates a relatively weak association between type of cast worn and 
incidence of healing. The results of the x2 test on these data showed that the two vari­
ables were not independent. The contingency coefficient indicates the strength of their 
relationship. This statistic can also be obtained using the Pearson correlation (see 
Chapter 23). 
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Contingency Coefficient 
The contingency coefficient, C, is a measure of association that can be used with 
tables larger than 2 X 2, but with the restriction that the number of rows has to equal 
the number of columns. This value is given by 

C =  �N:2� (25.9) 

Once again, using the data in Table 25.5 

C =  
5.24 

= .31 
50 + 5.24 

As these results show, the phi coefficient and the contingency coefficient will yield sim­
ilar results with 2 X 2 tables. 

The contingency coefficient will range from 0 to a maximum of Y(q - 1)/q where 
q represents the number of rows or columns in a symmetrical table. For a 2 X 2 table 
the upper limit of C is Y(2 - 1)/2 = .707. For a 3 X 3 table, this maximum will be 
Y(3 - 1)/3 = .816. Because of these differences, contingency coefficients are not directly 
comparable unless they are obtained from tables of equal sizes. 

Cramer's V 
A third measure of association based on x2 is Cramer's V coefficient, which is an alterna­
tive to the contingency coefficient when contingency tables are asymmetrical. This coeffi­
cient is designed so that the attainable upper bound is always ± 1 .00. The formula is 

V - � N(q;_ 1) 
(25.10) 

where N is the total number of subjects, and q is the number of rows or columns, 
whichever is smaller. For example, suppose we were conducting a survey of 50 partici­
pants in a health promotion program. We ask respondents for their age (in 4 categories) 
and their level of satisfaction with the rrogram (in 3 categories), so that we create a 
4 X 3 contingency table. Assume that x = 24.00. Because we have 4 levels of age and 
3 levels of satisfaction, q = 3. Therefore, 

= 
1 24.oo = .49 v \j 50(3 - 1) 

which represents a moderate degree of relationship, indicating that there is some asso­
ciation between the participants' age and level of satisfaction with the program. 

Other Measures of Association 
Many computer packages generate a series of coefficients associated with contingency 
table analyses. These statistics are not based on chi-square. 

The lambda coefficient, A, is used to determine how well one can predict mem­
bership in one category based on knowledge of another category. Both sets of categories 
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should be at the nominal level. Lambda is reported in asymmetric and symmetric ver­
sions. The asymmetric lambda is interpreted as the improvement in predicting Y once val­
ues of X are known; that is, one nominal variable is designated as the dependent 
variable (Y), and the other as the independent variable (X). For instance, in the study of 
diabetic ulcers described ealier, we would designate the type of cast as the independent 
variable and level of healing as the dependent variable. In some analyses, however, the 
researcher is unable to specify which variable is dependent. For example, we might 
want to look at the relationship between side of stroke and sex, neither of which could 
necessarily be seen as a dependent variable. In this case, the symmetric version of 
lambda is used. Lambda ranges from 0, when there is no improvement in prediction, to 
1 .0, when predictions can be made without error. 

Kendall's tau-b and tau-c are measures of association for ordinal variables that are 
reported in categories. Tau-b is appropriate with square tables, such 2 X 2, and tau-c 
should be used with rectangular tables where the number of rows and columns differ. 

Gamma is based on the tau statistic, but ignores ties; that is, pairs that have the 
same classification for X and Y are eliminated from the analysis. When tables have three 
or more dimensions (three or more category variables, such as sex, age group and diag­
nosis), partial gammas can be calculated. 

COM MENTARY 

Uses of Chi-Square 

Cl in ical researchers can fi nd many uses for the chi-square statistic for data ana lysis 
and descriptive purposes. I t  is often useful as a way of establ ishing group equiva­
lence fol lowing random assignment. For instance, once two groups have been 
assigned, it may be of interest to compare the numbers of males and females in each 
group to see if they were assigned in equal proportions. Or it may be important to 
determine if certa in  age groups are equa l ly represented in  each experimental group. 
Ch i-square can be used to make these determ inations and confirm the va l id ity of the 
randomization process. 

Ch i -square shou ld not be used as an a l ternative to more precise tests, such as 
the t-test or analysis of variance, when data can be measured on a continuous scale. 
Any data can be reduced to the nom inal level, but this can resu l t  in  a serious loss of 
i nformation and is  not encouraged for cont inuous measures. For example, if a sur­
vey requestPd i nformation on an ind ividua l 's age, and the exact age is given, i t may 
not be useful to reduce the data to age i nterva ls. 

Issues of sample s ize are relevant to discussions of chi -square. The statistic is 
sensitive to increases in  sample size when there is  a true difference between 
observed and expected frequenc ies. With larger samples, the magn i tude of these dif­
ferences wi l l  usua l ly i ncrease, thereby increas ing the va lue of x2. When samples are 
very smal l ,  these differences can be h idden . I t  is often useful to consider col lapsing 
categories when this does not compromise the research question, and to re-examine 
data using larger cel l frequencies; however, th is should be done only when the com­
bi nations of categories are theoretica l ly reasonable and mean i ngfu l .  I t  may be help­
fu l to th ink about potential combinations of categories prior to data ana lysis. It is 
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never appropriate to make such combinations on the basis of the observed data to 
ach ieve sign ificant outcomes. See Appendix C for a discussion of power related to 
chi-square. 
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CHAPTER 2 6  

Statistical Measures 
of Reliability 

In Chapter 5 we introduced basic concepts of reliability and described how different 
forms of reliability can be addressed in the planning of research protocols. The purpose 
of this chapter is to expand on these concepts by presenting the statistical bases for esti­
mates of reliability, including measures of correlation, agreement, internal consistency, 
response stability and method comparison for alternate forms. We have waited until 
this point in the book to present these procedures because they require application of 
statistical concepts that have been covered in the preceding chapters. 

RELIABILITY THEORY AND MEASUREMENT ERROR 
Recall from Chapter 5 that classical reliability theory partitions an observed measure­
ment or score, X, into two components: a true component, T, which represents the real 
value under ideal and infallible conditions, and an error component, E, which includes 
all other sources of variance that influence the outcome of measurement. This theoreti­
cal relationship is expressed in the equation 

X = T ± E  (26.1) 

We can also examine the statistical nature of this relationship by restating it in terms of 
variance (s2). The total variance within a set of observed scores (sJc) is a function of both 
the true variance between scores (s}) and the variance in the errors of measurement, 
or error variance (s�) : 

(26.2) 

Although it is an unknown quantity, we assume that s} is fixed, because true scores will 
theoretically remain constant. Therefore, in a set of perfectly reliable scores, all observed 
differences between individual scores should be attributable to true differences between 
scores; that is, there is no error variance. Conversely, if we look at a set of repeated meas­
urements from one person, and assume that the true response has not changed, then all 
observed variance should be the result of error. The essence of reliability, then, is based 
on the amount of error that is present in a set of scores. A measurement is considered 

585 
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more reliable if a greater proportion of the total observed variance is represented by the 
true score variance. Thus, reliability is defined by the ratio: 

True variance 
True variance + error variance 

or 
True variance 
Total variance 

Total variance - error variance 
Total variance 

In statistical terminology, this relationship can be expressed as 

s1 sj. si - st 
rxx = = - = 

st + sl si si 
where rxx is the symbol for a reliability coefficient. 

or 

(26.3) 

The coefficient of reliability can take values from 0.00 to 1.00. Zero reliability indi­
cates that all measurement variation is attributed to error. Reliability of 1 .00 means that 
the measurement has no error, or sl = 0. As the coefficient nears 1 .00, we are more con­
fident that the observed score is representative of the true score. 

To illustrate this application, consider the set of hypothetical data presented in 
Table 26.1A. These values represent ratings for six patients on a subjective pain scale, 
rated from 0 to 20. The first column, labeled X, lists the observed scores and their vari­
ance, si = 5.60; the second column, T, shows the true scores (although in reality these 
are not known) and their variance, Sf = 2.40; the last column, labeled E, shows the error 
component (the difference between the observed and true scores) and the error vari­
ance, sl = 3.20. We can verify that the observed variance is composed of true variance 
and error variance: 5.60 = 2.40 + 3.20. These values can be used to calculate the relia­
bility coefficient as follows: 

Sf 2.40 rxx = 5� = 
5.60 

= 0.43 

Conceptually, this means that 43% of the variation in the observed scores can be attrib­
uted to variation in the true score, and the rest, 57%, is attributable to measurement 
error. 

Of course, this approach is completely theoretical, as we can never actually know 
the true score or error component within a set of data. Therefore, it is necessary to use 
observed scores to estimate reliability. Although the procedures for obtaining these esti­
mates will vary, the theory underlying the reliability coefficient is universally applica­
ble; that is, reliability is a function of the amount of error variance in a set of data. 

The Effect of Variance on Rel iabi l ity 
As reflected in the definition of reliability, statistical variance is the basis for reliability 
estimates. We can demonstrate that as the true variance in a set of scores decreases, the 
reliability coefficient will also decrease. If we look at the differences among the pain 
scores in Table 26.1A, we can see that the patients did not vary greatly from one another. 
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TABLE 26.1 PAIN MEASURES SHOWING OBSERVED SCORES (X), TRUE 
SCORES (1), AND ERROR COMPONENTS (f) FOR TWO 
HYPOTHETICAL DISTRIBUTIONS 

A. Distribution with Umlted Variability 

SubJect X T E 
12 1 0  2 

2 1 0  1 0  0 
3 8 1 0  -2 5t 2.40 
4 1 3  1 1  2 I)( = - = - =  43 
5 9 1 1  -2 

X 55� 5.60 . 

6 14 1 4  0 

};X 66 66 0 

x 1 1  1 1  0 

s2 5.60 2.40 3.20 

B. Distribution with Greater Variability 

SubJect X T E 
1 4 4 0 
2 4 4 0 
3 15  13  2 5t 16.00 
4 9 1 1  -2 rxx = 55Jc = 19.20 = .8 
5 1 2  1 0  2 
6 10 12 -2 

};X 54 54 0 

x 9 9 0 
52 1 9.20 16.00 3.20 

True scores were in a narrow range from 8 to 14. Consequently, the variance within the 
observed scores is small. We also find that the differences between the observed and 
true scores (errors) are minimal across the six patients. Based on these observations, we 
might reason that these measurements should be highly reliable; however, we obtain a 
reliability coefficient of only .43, much lower than might be expected. 

Now let us look at a similar set of hypothetical data for the same variable, shown 
in Table 26.1B. Note that the error components for these scores are identical to those in 
the first data set. This time, however, the true scores are much more variable (st = 16.00), with values ranginf from 4 to 15. Therefore, the observed scores also 
exhibit a much higher variance (sx = 19.20). Using these values, we can calculate a sec­
ond reliability coefficient: 

r = Sf = 16.00 
= 0.83 XX S� 19.20 
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These data demonstrate a much stronger degree of statistical reliability than the first 
data set, even though the degree of error in the scores is the same! Why does this occur? 
Recall that reliability is based on the proportion of the total observed variance that is attrib­
utable to error. Therefore, for a given amount of error variance, it follows that reliability 
will improve as the total variance increases; that is, as the total variance gets larger, the 
error component will account for a smaller proportion of it. 

This concept is crucial in the interpretation of reliability coefficients and in the 
design of reliability studies. Suppose we were interested in establishing the reliability 
of a new device for measuring range of back extension. We gather a large sample of 
"normal" individuals, all with measurements between 20 and 25 degrees of extension. 
Even if we are fairly consistent over successive trials, the reliability coefficient will prob­
ably be low because the total variance is so small. A low reliability coefficient can be 
misleading under such conditions. The solution to this problem, of course, is to include 
subjects that have a wider range of scores in a reliability study. We should be studying 
normal individuals as well as patients with hypermobility and hypomobility in back 
extension. Researchers should always consider the range of scores used for estimating 
reliability in the interpretation of reliability coefficients. 

I NTRACLASS CORRELATION COEFFICIENT ( ICC) 
The historical approach to testing reliability involved the use of correlation coefficients. 
In Chapter 5 we discussed the problems with this approach, in that it does not provide 
a measure of agreement, but only covariance (see Figure 5.1 in Chapter 5). Correlations 
are also limited as reliability coefficients because they are bivariate; that is, only two rat­
ings or raters can be correlated at one time. It is not possible to assess the simultaneous 
reliability of more than two raters or the relationships among different aspects of relia­
bility, such as raters, test forms, and testing occasions. As these are often important ele­
ments in reliability testing, correlation does not provide an efficient mechanism for 
evaluating the full scope of reliability. 

Another objection to the use of correlation as a measure of reliability is based on the 
statistical definition of reliability; that is, correlation cannot separate out variance com­
ponents due to error or true differences in a data set. Therefore, the correlation coefficient 
is not a true reliability coefficient. It is actually more accurate to use the square of the cor­
relation coefficient (the coefficient of determination) for this purpose, because r2 reflects 
how much variance in one measurement is accounted for by the variance in a second 
measurement (see Chapter 24). This is analogous to asking how much of the total vari­
ance in a set of data is shared by two measurements (the "true" variance) and how much 
is not shared (the error variance). If we could correlate true scores with observed scores 
in a set of data, the square of the correlation coefficient would be the reliability coeffi­
cient. We can confirm this interpretation using the data from Table 26.1A. For the corre­
lation between observed and true scores, r = .66. Therefore, r2 = .43. 

To overcome the limitations of correlation as a measure of reliability, some 
researchers have used more than one reliability index within a single study. For 
instance, in a test-retest situation or a rater reliability study, both correlation and a t-test 
can be performed to assess consistency and average agreement between the data sets. 
This strategy does address the interpretation of agreement, but it is not useful in that it 
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does not provide a single index to describe reliability. The scores may be correlated but 
significantly different (as in Table 26.1B), or they may be poorly correlated but not sig­
nificantly different. How should these results be interpreted? It is much more desirable 
to use one index that can answer this question. 

The intraclass correlation coefficient (ICC) is such an index. Like other reliabil­
ity coefficients, the ICC ranges from 0.00 to 1 .00. It is calculated using variance estimates 
obtained through an analysis of variance. Therefore, it reflects both degree of corre­
spondence and agreement among ratings. 

Statistically the ICC has several advantages. First, it can be used to assess reliabil­
ity among two or more ratings, giving it broad clinical applicability. Second, the ICC 
does not require the same number of raters for each subject, allowing for flexibility in 
clinical studies.1 Third, although it is designed primarily for use with interval/ratio 
data, the ICC can be applied without distortion to data on the ordinal scale when inter­
vals between such measurements are assumed to be equivalent? In addition, with data 
that are rated as a dichotomy (the presence or absence of a trait), the ICC has been 
shown to be equivalent to measures of nominal agreement, simplifying computation in 
cases where more than two raters are involved.1•3 Therefore, the ICC provides a useful 
index in a variety of analysis situations. 

Generalizabi l ity 
Another major advantage of the ICC is that it supports the generalizability model pro­
posed by Cronbach as a comprehensive estimate of reliability.4.s The concept of gener­
alizability theory, introduced in Chapter 5, is based on the idea that differences between 
observed scores are due to a variety of factors, not just true score variance and random 
error. Differences occur because of variations in the measurement system, such as the 
characteristics of raters or subjects, testing conditions, alternate forms of a test, admin­
istrations of a test on different occasions and so on. These factors are called facets of 
generalizability. 

The essence of generalizability theory is that facets contribute to measurement error 
as separate components of variance, distinguishable from random error. In classical reli­
ability theory, error variance is undifferentiated, incorporating all sources of measure­
ment error. In generalizability theory, however, the error variance is multivariate; that 
is, it is further partitioned to account for the influence of specific facets on measurement 
error. Therefore, the generalizability coefficient (the ICC) is an extension of the relia­
bility coefficient: 

ICC = 
st 

st + s� + s� (26.4) 

where Sf and s� are the variances in true scores and error components, and s� is the 
variance attributable to the facets of interest.6 The specific facets included in the denom­
inator will vary, depending on whether rater, occasions or some other facet is the vari­
able of interest in the reliability study. For example, if we include rater as a facet, then 
the total observed variance would be composed of the true variance between subjects, 
the variance between raters, and the remaining unexplained error variance. 
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Equation (26.4) represents a conceptual definition of generalizability. Actual calcu­
lations require the use of variance estimates that are obtained from an analysis of vari­
ance, which, of course, does not include direct estimates of true variance (as this is 
unknown). Theoretically, however, we can estimate true score variance by looking at 
the difference between observed variance among subjects and error variance 
(st = s� + s�). These estimates can be derived from an analysis of variance. 

Classification of the ICC 
There are actually six different equations for calculating the ICC, differentiated by pur­
pose of the reliability study, the design of the study, and the type of measurements 
taken. It is necessary to distinguish among these approaches, as under some conditions 
the results can be decidedly different. To facilitate explanations, we will proceed with 
this discussion in the context of a reliability study with rater as the facet of interest; 
however, we emphasize that these applications are equally valid to study other facets. 

Models of the ICC: Random and Fixed Effects 
Shrout and Fleiss describe three models of the ICC? They distinguish these models 
according to how the raters are chosen and assigned to subjects. 

Model 1 .  In model l, each subject is assessed by a different set of k raters. The raters 
are considered randomly chosen from a larger population of raters; that is, rater is a 
random effect. However, the raters for one subject are not necessarily the same raters 
that take measurements on another subject. Therefore, in this design there is no way to 
associate a particular rater with the variables being measured.8 The only variance that 
can actually be assessed is the difference among subjects. Other sources of error vari­
ance, including rater or measurement error, cannot be separated out. 

Model 2.  Model 2 is the most commonly applied model of the ICC for assessing 
inter-rater reliability. In this design, each subject is assessed by the same set of raters. 
The raters are randomly chosen; that is, they are expected to represent the population 
of raters from which they were drawn, and results can be generalized to other raters 
with similar characteristics. Subjects are also considered to be randomly chosen from 
the population of individuals who would receive the measurement. Therefore, subject 
and rater are both random effects. This randomness may be only theoretical in prac­
tice; that is, we choose subjects and raters who we believe represent the populations of 
interest, as we do not have access to the entire population. But the intent of the study is 
to demonstrate that the measurement reliability can be applied to others. 

Model 3.  In model 3, each subject is assessed by the same set of raters, but the raters 
represent the only raters of interest. In this case, there is no intention to generalize find­
ings beyond the raters involved. In this design, rater is considered a fixed effect 
because the raters have been purposely (not randomly) selected. Subjects are still con­
sidered a random effect. Therefore, model 3 is a mixed model. This model is used when 
a researcher wants to establish that specific investigators are reliable in their data col­
lection, but the reliability of others is not relevant. Model 3 is also the appropriate sta­
tistic to measure intrarater reliability, as the measurements of a single rater cannot be 
generalized to other raters? 
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Forms of the ICC: Single and Average Ratings 
Each of the ICC models can be expressed in two forms, depending on whether the scores 
are single ratings or mean ratings. Most often, reliability studies are based on compari­
son of scores from individual raters. There are times, however, when the mean of sev­
eral raters or ratings may be used as the unit of reliability. For instance, when 
measurements are unstable, it may be necessary to use the mean of several measure­
ments as the individual's score to obtain satisfactory reliability. Using mean scores has 
the effect of increasing reliability estimates, as means are considered better estimates of 
true scores, theoretically reducing error variance. 

The six types of ICC are classified using two numbers in parentheses. The first 
number designates the model (1, 2, or 3), and the second number signifies the form, using 
either a single measurement (1) or the mean of several measurements (k)* as the unit of 
analysis. For example, when using single measurements in a generalizability study, we 
would specify use of ICC(2,1). The type of ICC used should always be indicated. 

Analysis ofVariance 
The ICC is based on measures of variance obtained from an ANOVA. For an interrater 
reliability study, rater is the independent variable; for an intrarater study, trial is the 
independent variable. Table 26.2 shows the arrangement of hypothetical data with 
rater as columns, and subjects as rows. For an intrarater study, the columns would rep­
resent trials. 

Mode/ 1: One-Way ANOVA 
For model 1, a one-way analysis of variance is run, with "subjects" as the independent 
variable. This ANOVA partitions the total variance into two parts-the variation 
between-subjects and error, as shown in Table 26.3A. The between-subjects effect tells 
us if the subjects' scores are different from each other, which we expect. The error com­
ponent represents the variation within a subject across raters. Some of this error will be 
due to true scores changing from trial to trial, some from rater error, and some will be 

TABLE 26.2 DATA ENTERED TO TEST RELIABILITY FOR FOUR RATERS 
ACROSS SIX SUBJECTS 

Subject RMer1 Rdtr2 RaW3 Ratw4 
1 1 7 8 3 
2 2 2 4 4 
3 3 1 2 6 
4 4 5 5 7 
5 5 8 9 5 
8 6 9 1 0  6 

*The designation of k equals the number of scores used to obtain the mean. 

5 
1 
1 
2 
6 
7 
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TABLE 26.3 COMPUTATION AND SPSS OUTPUT FOR ICC MODEL 1 BASED 
ON A ONE-WAY ANALYSIS OF VARIANCE {k = 4 RATERS 
ACROSS N = 6 SUBJECTS) 

A. COMPUTATION 

Between People 
Within People 

Total 

ANOVA O 

Sum of 
Squares df 8 Mean Square 

99.375 5 BMS 1 9.875 
Between Items 21 .792 3 7.264 
Residual 49.458 1 5  3.297 
Total 71 .250 1 8  WMS 3.958 

1 70.625 23 7.41 8 

ICC (1 1) = BMS - WMS 
I BMS + (k - 1)WMS 

19.88 - 3.96 
19.88 + (4 - 1)3.96 

ICC (1 � = BMS - WMS = 19.88 - 3.96 = 
I "' 

BMS 19.88 
.so 

F 

• 
2.203 

.50 

Sig. 

e . 1 3o 

The values for BMS and WMS are taken from the ANOVA as shown above; k is the number of raters 
(or ratings), which will be the data in columns (see Table 26.2). 

B. OUTPUT 

lntraclass Correlation Coefficient 

95% Confidence Interval 0 F Test with True Value 0 

lntraclass Lower Upper 
Correlation Bound Bound Value df1 df2 Sig. 

Single Measures 1 ' 1  .501 . 1 08 .886 5.021 5 1 8  .005 
Average Measures 1 ,k .801 .326 .969 5.021 5 1 8  .005 

One-way random effects model where people effects are random. 

0 The ANOVA is automatically run as a repeated measures analysis of variance; only the between-subjects and 
total within-people variance components are used for model 1 .  

8 BMS = Between-subjects Mean Square (called "between-people" here). 
WMS = Within-groups Mean Square (called total "Within people" here). 

e The F-test for the between-subjects effect is not printed as part of the ANOVA. h is relevant to the ICC, however, 
as reliability testing depends on variance among subjects. This value can be calculated as BMS/WMS. The value 
of F will be reported as part of the ICC output (see 0). 

e This F-vaiue is ignored. 
0 This is the F-test for the between-subjects effect, which was not reported in the original ANOVA table. This effect 

is significant (p = .005), which tells us that the subjects are different from each other. This is a necessary con­
dition for reliability testing. The validity of the ICC will be suspect if this F-test is not significant. The value of F is 
equal to BMS/WMS. 
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unexplained. This ANOVA does not differentiate among these sources of error. Calcu­
lations for this model are shown in Table 26.3B using data from Table 26.2. 

Models 2 and 3: Repeated Measures ANOVA 
For model 2, the ANOVA is performed as a two-way random effects model, in which 
both subjects and raters are considered to be randomly chosen from a larger 
population.+ Therefore, the results of the study can be generalized to other raters and 
other subjects. For model 3, a two-way mixed model is run, with rater as a fixed effect 
(not randomly chosen) and subjects as a random effect. The numerical results of the 
analysis will actually be the same for both random and mixed types of ANOVA. The 
only difference will lie in the interpretation of the data. The results of a repeated meas­
ures analysis of variance are shown in Table 26.4. 

The repeated measures ANOVA partitions the variance into effects due to differ­
ences between subjects, differences between raters and error variance. The F-ratio asso­
ciated with the rater effect reflects the difference among raters, or the extent of 
agreement or disagreement among them. This effect is significant when the variance 
due to raters is large, indicating that the raters' scores are different from each other and 
not reliable. In this example, the rater effect is not significant (p = . 130). Table 26.4 
shows the calculation of both forms for models 2 and 3, using data from Table 26.2. 

Output for the ICC 
SPSS} a commonly used software package, will generate the various forms of the ICC as 
part of its Reliability Analysis (under SCALE).9•10 SAS,§ another commonly used pro­
gram, does not provide direct calculations, but a programming macro has been devel­
oped.11 Online calculators can also be found to provide ICC values based on raw data.12•13 
Calculations by hand are straightforward once the analysis of variance is performed. 

Table 26.3B shows the SPSS output** for model 1, and Table 26.5 shows the output 
for models 2 and 3. Each model is generated in two forms, for single measures and aver­
age measures. Confidence intervals are also provided. The researcher must decide 
which value to use, based on the design of the study. 

tRecall that in a repeated measures ANOVA, "subjects" is considered one of the variables, so that even with 
only one independent variable (in this case rater), the analysis is designated as "two-way." 
tstatistical Package for the Social Sciences, SPSS Inc., 233 S. Wacker Drive, Chicago, Illinois 60606. 
§SAS Institute Inc., 100 SAS Campus Drive, Cary, NC 27513. 
**To generate ICC values in SPSS, go to SCALE > RELIABILITY ANALYSIS. Include all levels of the inde­
pendent variable (raters or ratings) in the "Items" box. Click on "Statistics," and choose "Intraclass Correla­
tion Coefficient." Choose a model from the dropdown menu (One-Way Analysis of Variance for Model 1, 
Two-Way Random for Model 2, or Two-Way Mixed for Model 3). Choose a Type from the dropdown menu, 
Absolute Agreement for Model 2 or Consistency for Model 3. An analysis of variance can be generated by 
checking "F test" under ANOVA. These instructions are based on versions 10.0 to 14.2 of SPSS. 
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TABLE 26.4 COMPUTATION OF ICC FOR MODELS 2 AND 3 BASED 
ON REPEATED MEASURES ANALYSIS OF VARIANCE 
(k = 4 RATERS ACROSS N = 6 SUBJECTS) 

ANOVA O 

Sum of 
Squares df 8 Mean Square 

Between People 99.375 5 BMS 19.875 
Within People Between Items 21 .792 3 RMS 7.264 

Residual 49.458 1 5  EMS 3.297 
Total 71 .250 1 8  3.958 

Total 1 70.625 23 7.41 8 

F Sig. 

8 
2.203 0 .1 30 

ICC (2 1) = BMS - EMS 
I k(RMS - EMS) 

____ 
1.::..:9...:..:.8:...:8_-__:_3:.::..30.::..._ 

__
_ = .51 

BMS + (k - 1) + ____:_ ___ ____:_ 
n 

4(7.26 - 3.30) 
19.88 + (4 - 1 )3.30 + 

6 

ICC (2 k) = BMS - EMS 
I (RMS - EMS) 

BMS + ..:....__ ___ __:_ 
n 

_
_ 1.::..:9--=.88�-_3.::..:·.::..:30:.._____ 

= .81 
(7.26 - 3.30) 

19.88 + 
6 

ICC (3 1) = 
BMS - EMS = 19.88 - 3.30 = I BMS + (k - 1)EMS 19.88 + (4 - 1 )3.30 56 

ICC(3 k) = 
BMS - EMS 

= 
19.88 - 3.30 = 

. 

I BMS 19.88 83 

The values for BMS, RMS and EMS are taken from the ANOVA as shown above; k is the number of raters (or rat­

ings), which will be the data in columns; n is the number of subjects or rows (see Table 26.2). 
0 Model 2 uses a two-way random effects model; model 3 uses a two-way mixed model. Results of both types of 

ANOVA will be the same numerically. 

8 BMS = Between-subjects Mean Square (called "between people" here). 
RMS = Between Raters Mean Square (called "between items" here). 
EMS = Error Mean Square (caned "residual" here). 

e The F-Iest for the between-subjects effect is not printed as part of the ANOVA. It is relevant to the ICC, however, 
as reliability testing depends on variance among subjects. This value can be calculated as BMSIEMS. The value 
of F will be reported as part of the ICC output (see Table 26.5). 

e There is no significant difference between raters (p = . 130) (a good thing when you are looking for reliability!). 

I nterpretation of the ICC 

Magnitude of the ICC 
Like other forms of reliability, there are no standard values for acceptable reliability 
using the ICC. The ICC ranges between 0.00 and 1 .00, with values closer to 1 .00 repre­
senting stronger reliability. But because reliability is a characteristic of measurement 
obtained to varying degrees (although rarely to perfection), the researcher must deter­
mine "how much" reliability is needed to justify the use of a particular tool. The nature 
of the measured variable will be a factor, in terms of its stability and the precision 
required to make sound clinical judgments about it. As a general guideline, we suggest 
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TABLE 26.5 OUTPUT FOR ICC USING SPSS (SCALE > RELIABILITY ANALYSIS) 
(DATA FROM TABLE 26.4) 

A. MODEL 2 (TWo-Way Random Effects Modei)-Absolute Agreement 8 
lntraclass Correlation Coefficient 

95% Confidence Interval 0 F-Test with True Value 0 

lntraclass Lower Upper 
Correlation Bound Bound Value df1 

Single Measures 2 , 1  .51 1 . 1 36 .886 6.028 5 
Average Measures 2,k .807 .377 .969 6.028 5 

Two-way random effects model where both people effects and measures effects are random. 

B. MODEL 3 (TWo-Way Mixed Modei)-Conslstency @) 
lntraclass Correlation Coefficient 

df2 Sig. 

1 5  .003 
1 5  .003 

95% Confidence Interval F-Test with True Value 0 0 
lntraclass Lower Upper 

Correlation Bound Bound Value df1 df2 Sig. 

Single Measures 3,1  .557 . 1 46 .904 6.028 5.0 1 5  .003 
Average Measures 3,k .834 .407 .974 6.028 5.0 1 5  .003 

Two-way mixed effects model where people effects are random and measures effects are fixed. 

0 This is the F-test for the between-subjects effect, which was not reported in the original ANOVA table. This effect 
is significant (p = .003), which tells us that the subjects are different from each other. This is a necessary con­
dition for reliability testing. The validity of the ICC will be suspect if this F-Iest is not significant. The value of F is 
equal to BMS/EMS (see Table 26.4). 

8 SPSS uses the term "Absolute Agreement• as the definition for model 2. 
• SPSS uses the term "Consistency" as the definition for model 3. 

that values above .75 are indicative of good reliability, and those below .75 poor to mod­
erate reliability. For many clinical measurements, reliability should exceed .90 to ensure 
reasonable validity. These are only guidelines, however, and should not be used as 
absolute standards. Researchers and clinicians must defend their judgments within 
the context of the specific scores being assessed and the degree of acceptable preci­
sion in the measurement. 

Rater Error 
When the ICC is high, it is easy to say that reliability is good, and to express confidence 
in the obtained measurements. When reliability is less than satisfactory, however, the 
researcher is obliged to sort through alternative explanations to determine the con­
tributing sources of error. There are two major reasons for finding low ICC values. 

The first explanation is fairly obvious: The raters (or ratings) do not agree. This is 
not a straightforward interpretation, however, when more than two raters are analyzed. 
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Because the ICC is an average based on variance across all raters, nonagreement may 
involve all raters, some raters, or only one rater. The ICC can be considered an average 
correlation across raters and, therefore, does not represent the reliability of any individ­
ual rater. For instance, a critical look back at the data in Table 26.2 reveals that rater 3 
seems to be the most out of line with the other raters. In fact, if we obtain the product­
moment correlations for all possible pairs of ratings, we find that raters 1, 2 and 4 
demonstrate correlations between .96 and .98, whereas the correlations of rater 3 with 
the other three raters are all negative and small, between -.06 and -.19 (Figure 26.1). 
The ICC is brought down by the "unreliable" responses of rater 3. 

It is often useful, therefore, to examine the data, to determine if there is an interac­
tion between raters and subjects; that is, are the scores dependent on what "level" of 
rater is doing the measuring? This type of interaction is reflected in the error variance 
of the repeated measures ANOV A. 

When raters are reliable, there should be no interaction between raters and subjects; 
that is, the error variance should be small. It may be helpful to graph the results, as 
shown in Figure 26.1 .  The ratings obtained by raters 1, 2 and 4 are close and fairly par­
allel. The scores obtained by rater 3 are clearly incongruent. By examining both the 

1 0  

8 

2 

o +---�--��--�--�--��� 
2 3 4 5 6 

Subjects 

Correlation Matrix 

Rater 

2 3 4 
0.98 -o.06 0.96 

2 -o.19 0.97 

3 -o.1 4  

Rater 2 
Rater 1 

Rater 4 
Rater 3 

FIGURE 26.1 I nteraction among four raters. Rater 3 demonstrates inconsistent responses that are 
responsible for the interaction effect. Al l other raters show para l lel responses, as suggested by the corre­
spond ing correlation coefficients. 
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intercorrelations and graphic evidence, we can determine that there is an interaction 
between rater and subject. It would be important, then, to review the circumstances of 
the third rater's tests, to determine why that person's ratings were not consistent with 
the others. 

Variance 
A second reason for a low ICC is one that has been discussed before in relation to the 
reliability coefficient; that is, the variability among subjects' scores must be large to 
demonstrate reliability. A lack of variability can occur when samples are homogeneous, 
when raters are all very lenient or strict in their scoring, or when the rating system falls 
within a restricted range. This effect can be checked by looking for significance of the 
between-subjects variance in the analysis of variance (Table 26.50). If subjects' scores 
are homogeneous, this source of variance will not be significant. It has been shown that 
when the between-subjects variance is not significant, the actual limits of the ICC do not 
match the theoretical limits of 0.00 and 1 .00.14 In fact, it is possible for ratios to range 
from negative to positive infinity. When a negative ICC is obtained, the value cannot be 
considered valid. Therefore, it is imperative that researchers be aware of the extent to 
which scores will naturally vary, and try to obtain heterogeneous samples whenever 
possible. 

Choosing One Model 
Although we have presented multiple values of the ICC for our example, it should be 
clear that only one type will be appropriate for any one study. The selection of one ver­
sion should be made before data are collected, based on appropriate design considera­
tions. In most instances, model 2 or 3 will be the appropriate choice. In some research 
situations, the investigator is interested in establishing the intrarater or interrater relia­
bility of a group of clinicians for one specific data collection experience, fitting model 3. 
In that situation, it is of no interest if anyone else can perform the measurements with 
equal reliability. If, however, it is important to demonstrate that a particular measuring 
tool can be used with confidence by all equally trained clinicians, then model 2 should 
be used. This approach is appropriate for clinical studies and methodological research, 
to document that a measuring tool has broad application. 

Model 1 is applicable in only limited circumstances. For example, Maher et al15 
performed a study to determine the interrater reliability of 25 raters who assessed the 
quality of published randomized controlled trials (RCTs) using the PEDro scale (see 
Chapter 16). The study involved a total of 120 articles, but each of the 25 raters rated 
from 1 to 56 RCTs. This fits the design for model 1, where subjects (in these example 
studies) are not all assessed by the same raters. When all raters assess all subjects, 
model 1 is not appropriate. Some authors have expressed a preference for using model 
1 because it provides a more conservative estimate of reliability than the other models;16 
however, the conservative or liberal nature of a statistic is not an adequate rationale for 
its use if the model is unsuitable for the design?·17 

Generally, for the same set of data, model 1 will yield smaller values than model 2, 
and model 2 will yield smaller values than model 3. Likewise, within each model, the 
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ICC based on single ratings will yield a lower correlation than one based on mean rat­
ings (see Tables 26.3 and 26.5). Because of these potential differences, the type of ICC 
used in a particular study should always be reported.17 

AGREEMENT 
When the unit of measurement is on a categorical scale, reliability is appropriately 
assessed as a measure of agreement. The simplest index of agreement is percent agree­
ment. This is a measure of how often raters agree on scores given to individual subjects 
(or how often test-retest scores agree). The coefficient of agreement represents the total 
proportion of observations (Po) on which there is agreement, or 

number of exact agreements �fo Po = number of possible agreements = � (26.5) 

where � fo is the sum of the frequencies of observed agreements, and N is the number of 
pairs of scores that were obtained. 

For example, suppose two clinicians wanted to establish their interrater reliability 
for evaluating level of function for self-care on a 3-point scale. They evaluate 100 
patients to determine if they are independent (IND), need some assistance (ASST) or are 
dependent (DEP). We can summarize these data to show agreements by arranging them 
in an agreement matrix, or frequency table, as shown in Table 26.6A. The quantities along 
the diagonal represent the number of times both raters agreed on their ratings (j0). 
(Ignore values in parentheses for now.) All values off the diagonal represent disagree­
ments. For instance, both raters agreed on ratings of IND for 25 subjects, they agreed on 
ratings of ASST for 24 subjects, and they agreed on ratings of DEP for 17  subjects. They 
did not agree on 34 subjects. Of 100 possible agreements, 66 were achieved. Therefore, 
Po = 66/ 100 = .66. The two clinicians agreed on their ratings 66% of the time. This 
value is fair, relative to potential perfect agreement of 100%. 

There is a limitation to this interpretation, however. To determine the true reliabil­
ity of categorical assignment, we must consider the possibility that some portion of the 
results could have occurred by chance; that is, if two raters were to assign subjects to 
categories completely at random, some degree of agreement would still be expected. 
Because of this tendency, percent agreement will often be an overestimate of true relia­
bility. Therefore, a measure is needed that will discount the proportion of agreement 
that is potentially due to chance alone. 

Chance Agreement: The Kappa Statistic 
The kappa statistic, K, is a chance-corrected measure of agreement. In addition to looking 
at the proportion of observed agreements (P0), kappa also considers the proportion of 
agreements expected by chance (Pc): 

number of expected agreements �fc 
Pc = number of possible agreements = � (26.6) 

where � fc is the sum of the frequencies of agreement expected by chance. 
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TABLE 26.6 COMPUTATION OF PERCENT AGREEMENT AND KAPPA: 

A. DATA 

AGREEMENT MATRIX FOR RATINGS OF FUNCTIONAL 
ASSESSMENT FOR TWO RATERS 

IND 

IND 
25 

(15 .54) 

Rater 2 ASST 
6 

(14.28) 

DEP 
1 1  

(12.18) 

Total 42 

Rater 1 

ASST 

5 
(1 1 . 10) 

24 
(1 0.20) 

1 
(8.70) 

30 

DEP 

7 
(1 0.36) 

4 
(9.52) 

17  
(8. 12) 

28 

B. COMPUTATIONS 

2-fo = 25 + 24 + 17 = 66 

2-fc = 15.54 + 10.20 + 8.12 = 33.86 

Po = 
Lfo 

= � = .66 N 100 

Pc = 
Lfc 

= 
33.86 

= 34 N 100 . 

Po - Pc .66 - .34 
K = = = .49 

K =  

Chance frequencies in parentheses. 

1 - Pc 1 - .34 

"'2-fo - "'2-!c 
N - Lfc 

66 - 33.86 
= 49 100 - 33.86 

. 

Total 

37 

34 

29 

100 

We can illustrate this application using the frequency data for functional assess­
ment shown in Table 26.6. The number of expected chance agreements for each cell 
along the diagonal is calculated by multiplying the corresponding row and column 
margin totals, and dividing by the total number of possible agreements, or N.++ These 
values are shown in parentheses. For example, for agreements on IND, the row total is 
37, and the column total is 42. With N = 100, we determine that chance agreements on 
IND can be expected (37 X 42)/100 = 15.54 times. Similarly, we expect both raters to 
come up with ratings of ASST (34 X 30)/100 = 10.20 times by chance. The expected 
frequency for DEP is (29 X 28)/100 = 8.12 times. Therefore, the total number of 
expected chance frequencies, 2-fc, is 33.86. The proportion of agreement expected by 

�is procedure is identical to calculation of expected frequencies for the x2 test. See Chapter 25 for a fuller 
discussion of this procedure. 
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chance for the entire sample is 33.86/100 = 0.34. This tells us that even if these two 
raters had no common grading criteria, we could expect agreement between them 34% 
of the time. 

Thus, the proportion of observations that can be attributed to reliable measurement 
is defined by Po - Pc, the proportion of observed agreements less the contribution of 
chance. The maximum possible nonchance agreements would be 1 - Pc, or 100% less 
the contribution of chance. Kappa represents percent agreement based on these correc­
tion factors, 

Po - Pc K =  1 - Pc (26.7) 

which is a ratio of the proportion of observed nonchance agreements to the proportion 
of possible nonchance agreements. 

For the functional assessment data, we know the proportion of observed agree­
ment, Po = 66%. When we calculate chance observations we note that Pc = 34%. 
Therefore, to account for the fact that 34% of the agreement could have occurred by 
chance, we correct our original estimate using the formula for kappa: 

K = .66 - .34 = .49 
1 - .34 

This indicates a lower level of agreement than the 66% obtained using percent agree­
ment. With the effects of chance eliminated, agreement is rated at 49%. This corrected 
percentage is a more meaningful interpretation of reliability estimates for categorical 
assignments. 

As shown in Table 26.6B, kappa can also be expressed in terms of frequencies to 
facilitate computation: 

K =  �fo - �fc 
N - �!c (26.8) 

For all practical purposes, the lower and upper limits of kappa are 0.00 and + 1 .00.18 
Kappa will be zero if Po = Pc, where agreement equals chance, and positive if Po > Pc, 
where agreement is better than chance. With perfect agreement, all cells off the diago­
nal will equal zero; therefore, Po = 1 .00 and K = 1 .00. Kappa can be negative if agree­
ment is worse than chance (Po < Pc), although this is not a likely outcome in clinical 
reliability studies. 

Weighted Kappa 
For some applications, kappa is limited in that it does not differentiate among disagree­
ments. Because it is calculated using only the frequencies along the agreement diago­
nal, kappa assumes that all disagreements (off the diagonal) are of equal seriousness. 
There may be instances, however, when a researcher wants to assign greater weight to 
some disagreements than others, to account for differential risks. For example, Jarvik et 
al19 looked at the reliability of classifying disk herniations in patients with lumbar disk 
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disease. They hypothesized that some misclassifications would be more serious than 
others, if misjudgments were made for those with protruded or extruded disks. In 
another clinical study, Cooperman et af0 examined the reliability of a test for ligamen­
tous stability at the knee, graded 0, + 1, +2 or +3, with higher grades indicating less sta­
bility. They considered a disagreement between ratings of 0 and +3 to be more serious 
than a disagreement between 0 and + 1 for diagnostic purposes and subsequent treat­
ment decisions. When disagreements can be differentiated in this way, a modified ver­
sion of the kappa statistic, called weighted kappa, Kw, can be used to estimate 
reliability.21 

Weighted kappa allows the researcher to specify differential weights for disagree­
ment cells in the agreement matrix. Kappa is actually a special case of weighted kappa, 
where all cells along the agreement diagonal are given weights of 1 .0 and all disagree­
ments are weighted 0. By assigning different weights to the off-diagonal cells, weighted 
kappa essentially gives more credit for some disagreements than others. 

We can illustrate this procedure once again using the functional assessment data. 
These data showed 66% observed agreement. In terms of clinical implications, however, 
we might suggest that disagreements among these grades are not all of the same impor­
tance and that weighting them would provide a more practical estimate of reliability. 

Assigning Weights 
Cohen21 suggests that the assignment of weights is essentially a judgmental process. 
Therefore, there is no one set of weights that can be applied universally, and the value 
of Kw will be sensitive to the choice of weights.22 Weights should conform to a hypoth­
esis that defines the relative seriousness of the disagreements. 

I ncremental Weights. One approach is to look at a scale as an ordinal continuum 
with equal intervals, that is, an incremental scale? For example, using the functional eval­
uation scale described in Table 26.6, we might hypothesize that a disagreement between 
IND and DEP is twice as serious as a disagreement between ASST and DEP, with 
IND = 3, ASST = 2 and DEP = 1. If this hypothesis is reasonable, then weights for 
incremental disagreements can be determined using the formula 

(26.9) 

where w is the assigned weight, and r1 and r2 are the scores assigned by rater 1 and rater 
2 to that cell. Therefore, r1 - r2 represents the deviation from agreement for each cell in the 
agreement matrix. This type of weighting system is shown in Table 26.7 A. For instance, 
a disagreement between IND (3) and ASST (2) would receive a weight of (3 - 2)2 

= 1 .  
The same weight would be assigned to disagreements between ASST and DEP; how­
ever, a disagreement between IND (3) and DEP (1) would receive a weight of 
(3 - 1)2 = 4. Weights of zero would automatically be assigned to all the agreement 
cells on the diagonal, indicating no disagreement. 

Asymmetrical Weights. In many situations, the evaluation of disagreements does 
not fit a uniform pattern. For instance, we might hypothesize that a disagreement 
between IND and DEP is more severe than a disagreement between ASST and DEP. We 
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TABLE 26.7 TWO SCHEMES FOR WEIGHTING DISAGREEMENTS ON FUNCTIONAL 
ASSESSMENT DATA 

A. Incremental Weights 

Cell weights = (r1 - r2)2 

IND (3) 

Rater 2 ASST (2) 

DEP (1 ) 

B. Asymmetrical Weights 

IND 
(3) 

Rater 1 

ASST 
(2) 

DEP 
(1 ) 

I : I : I : I 
IND 
(3) 

Rater 1 

ASST 
(2) 

DEP 
(1) 

R&mr 2 �:sT ::: I :  I �  I :  I (Criterion) 
DEP (1 ) 

. 
. . . 

might also suggest that the direction of the disagreement is important; that is, assigning 
a grade of IND to a patient who needs assistance is a more serious error than assigning 
DEP to an independent patient. If a patient who i� dependent is graded IND, he might 
be unsafe, left alone without adequate supervision. This is more serious as an evalua­
tion error than unnecessarily supervising a strong patient. Suppose we test the validity 
of a clinician's assessment of function by comparing her ratings (rater 1) with those of 
an "expert" (rater 2), who acts as the criterion or reference standard. We would want to 
assign the highest weight to an error where rater 1 says IND and rater 2 says DEP. The 
next highest weight might go to the converse DEP-IND disagreement. Errors between 
IND and ASST might be the next most serious, followed by ASST -IND. Errors between 
ASST and DEP might be perceived as relatively unimportant, as with either rating the 
patient will receive some supervision. This creates an asymmetrical pattern of weights, 
varying with the direction of disagreement. 

For this type of subjective judgment, Cohen21 suggests first choosing a weight to 
represent maximum disagreement and then setting the other weights accordingly. For 
example, as shown in Table 26.7B, we might choose weights of 6 for IND-DEP, 4 for 
DEP-IND, 3 for IND-ASST and 2 for ASST -IND disagreements. DEP-ASST errors 
would be considered least important, with a weight of 1 .  For convenience, weights of 
zero are still assigned to all agreements. 

Symmetrical Weights. A third pattern of weights can be established when the direc­
tion of disagreement is unimportant. For instance, we might argue that any disagree-
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ment between IND and DEP is twice as serious as a disagreement between IND and 
ASST, and that a disagreement between ASST and DEP is only minimally important. To 
designate a set of weights that reflect this hypothesis, we might choose a weight of 6 to 
represent any disagreement between IND and DEP, a weight of 3 to represent a dis­
agreement between IND and ASST, and a weight of 1 to represent the less important 
disagreement between ASST and DEP. These symmetrical weights (w) are shown in the 
center of each cell in Table 26.8A. 

Calculation of Kw 
The weights that are assigned to each cell in the agreement matrix are used in the cal­
culation of weighted kappa. An obvious criticism of this procedure is based on the fact 
that the arbitrary assignment of weights can make the consequent value of Kw arbitrary 
as well.Z3 This points out the need for the researcher to operate on the basis of a hypoth­
esis that defines the relationship among the rating categories. For instance, each of the 

TABLE 26.8 COMPUTATION OF WEIGHTED KAPPA USING SYMMETRICAL WEIGHTS: 
TABLE OF AGREEMENTS AND DISAGREEMENTS ON FUNCTIONAL 
ASSESSMENT DATA8 

A. DATA 

IND 

Rater 2 ASST 

DEP 

Total 

IND 

25 

(15.54) 

W = O  

6 

(1 4.28) 

W = 3 

1 1  

( 12 . 18) 

w = 6  

42 

Rater 1 

ASST 

5 

( 1 1 . 1 0) 

W = 3  

24 

(1 0.20) 

w : O 

1 

(8.70) 

W : 1 

30 

DEP 

7 

( 1 0.36) 

W : 6  

4 

(9.52) 

w = 1 

17 

(8. 1 2) 

W = O  

28 

B. COMPUTATIONS (cells with weights of zero have been omitted) 

"'iwfo = 3(5) + 6(7) + 3(6) + 1(4) + 6(1 1 )  + 1(1)  = 146 

Total 

37 

34 

29 

1 00  

"Lwfc = 3(1 1 .10) + 6(10.36) + 3(14.28) + 1 (9.52) + 6(12.18) + 1 (8.70) = 229.60 

"2-wfo 146 Kw = 1 - -- = 1 - -- = .36 
2_wfc 229.69 

"Expected frequencies are in parentheses. 
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preceding weighting systems was based on a different theoretical rationale. The ration­
ale used to define these weights then becomes an integral part of the hypothesis being 
tested.2 For this reason, the weights used in calculating Kw and the rationale for choos­
ing them should be stated in a research report. 

We will demonstrate the calculation of Kw using the functional assessment data 
with symmetrical weights shown in Table 26.8A. Each cell in the table contains the 
observed frequency (fo), the expected chance frequency (fc, shown in parentheses), 
and the cell weight (w). The first step is to find the weighted frequencies of observed dis­
agreement (wfo) and chance disagreement (wfc) for each cell in the matrix by multiply­
ing the observed and chance frequencies by the cell weight. For example, for the first 
cell in the matrix, wfo = 0(25) and wfc = 0(15.54). Note that we are concerned with the 
frequencies of disagreements, not agreements as we were with kappa. Because the cells 
along the agreement diagonal all have weights of zero, they are effectively eliminated 
from the calculations. 

Next we determine the sum of these terms to find the total weighted observed fre­
quencies, 2-wfo, and the total weighted chance frequencies, 2-wfc· Weighted kappa 
is given by 

�wfo Kw = 1 - -:=--'--�wfc (26.10) 

As shown in Table 26.8B, Kw = .36. This value is somewhat lower than the value 
obtained for kappa (K = .41) .  

Let us consider the implications of weighting this data. According to the frequency 
data, we find exact agreement in 66 of 100 tests. Kappa reduces this estimate to 49% by 
correcting for chance, but does not account for any differentiation in the seriousness of 
the 34 disagreements. Five of these disagreements were between ASST and DEP, which 
we consider minimally important. Of the 29 more serious disagreements, 18 were 
between IND and DEP (the most serious) and 11 were between IND and ASST. These 
serious disagreements account for more than one-quarter of the tests and 85% of all the 
disagreements. By accounting for these serious discrepancies, weighted kappa brings 
down the level of agreement further to 36%. This gives us a more meaningful estimate 
of the degree of reliability between these raters than kappa alone, and suggests that 
these raters demonstrate serious discrepancies too often. 

I nterpretation of Kappa 
Landis and Koch24 have suggested that values of kappa above 80% represent excellent 
agreement; above 60% substantial levels of agreement; from 40% to 60% moderate 
agreement; and below 40% poor to fair agreement. For this example, then, we have 
achieved only a moderate degree of reliability. The interpretation of this outcome, like 
any other reliability coefficient, must depend on how the data will be used and the 
degree of precision required for making rational clinical decisions. 

Several factors must be considered in the application of kappa or weighted kappa. 
First, it is important to recognize that kappa represents an average rate of agreement for 
an entire set of scores. It will not indicate if most of the disagreement is accounted for 
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by one specific category or rater. Therefore, in an effort to improve reliability, it is use­
ful to subjectively examine the data when discussing results, to see where the major dis­
crepancies lie. 

A second issue, which we continue to stress for all reliability indices, is that of 
variance among subjects. In measures of agreement, variance is necessary to allow 
reasonable interpretation of reliability. In a group of subjects with homogeneous char­
acteristics, the percentage of agreements will be necessarily high. Therefore, the reliabil­
ity analysis is not really showing whether the measurement is capable of differentiating 
among subjects on that characteristic. 

Because kappa is based on proportions, the use of very small samples can provide 
misleading results. For example, if two raters agree on two observations, the reliability 
estimate will be 100%. If they disagree on one of those observations, the rating drops to 
50%. Such a variation does not accurately reflect reliability when compared with esti­
mates of the same behavior tested many more times. 

Kappa is also influenced by the number of categories used. As the number of cate­
gories increases, the extent of agreement will generally decrease. This is logical, as with 
more possibilities of assignment, there is room for greater discrepancy between raters. 
Therefore, if values of kappa are to be compared, the samples used should contain the 
same number of categories. 

Probably the strongest limitation of kappa is that it is an analysis of exact agree­
ment; that is, it treats agreement as an aU-or-none phenomenon with no room for 
"close" agreement. Therefore, it is appropriate for use with nominal or ordinal data, 
which require that each subject be placed in an exclusive category. By definition, there 
can be no doubt as to whether raters achieved the same "score" for each subject. Kappa 
is less useful for dealing with continuous data on the interval or ratio scales, as there is 
no credit given for scores that remain close over several trials. 

Kappa can be used with more than two raters,l-25 although the overall rating is less 
informative than if separate kappas are computed for pairs of raters.23 One advantage 
of using separate analyses is that it is then possible to use different rationales for setting 
weights for each comparison. A calculation has been derived for using kappa with mul­
tiple ratings per subject.26 It is also possible to use the intraclass correlation coefficient, 
ICC, as an equivalent of weighted kappa when incremental weights are scaled accord­
ing to squared disagreements (w = (r1 - r2?).3 
INTERNAL CONSISTENCY 
Measuring instruments are often designed as scales, composed of many items that in 
total should reflect the characteristic being measured. For instance, the quantitative por­
tion of the Graduate Record Examination (QGRE) includes many items to test a stu­
dent's mathematical ability. Functional scales are designed to include items related to 
different functional tasks. In both of these examples, the scales are actually only a sam­
ple of the possible items that could be included, although we want to draw a conclusion 
about an individual's performance based on the total score. If these scales are reliable, 
we would expect the subject to receive the same score even if we varied the items. 

One assumption that is inherent in the use of such scales is the homogeneity of the 
items or their internal consistency. A good scale is one that assesses different aspects 
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of the same attribute; that is, the items are homogeneous.27 Therefore, the QGRE will 
not include items to assess verbal ability. A scale of physical function will reflect phys­
ical performance but not emotional function. Statistically, if the items on the scale are 
truly measuring the same attribute, they should be moderately correlated with each 
other and with the total score.++ These correlations are measures of internal consistency 
(see Chapter 5 for further discussion of item-total correlations). 

Cronbach's Alpha (a) 
The most commonly applied statistical index for internal consistency is  Cronbach's 
alpha (a).28 It can be used for scales with items that are dichotomous (yes/no) or when 
there are more than two response choices (such as an ordinal scale). To illustrate the 
application of Cronbach's a, we will use hypothetical data from a sample of 14 patients 
in a rehabilitation hospital who have been assessed for function using six items: walk­
ing, climbing stairs, carrying 5 pounds, reaching for a phone, dressing (putting on a 
shirt), and getting in and out of a car. Each item is scored on an ordinal scale from 1 to 
5, with 5 reflecting complete independence. The maximum total score, then, is 30. 

Internal consistency is a reflection of the correlation among these six items and the 
correlation of each individual item with the total score. Cronbach's a for these data is 
.894, as shown in Table 26.9A. As with other correlation statistics, this index ranges from 
0.00 to 1 .00. Therefore, a value that approaches .90 is high, and the scale can be consid­
ered reliable. 

Alpha can also be used to examine individual items to determine how well they fit 
the overall scale. In Table 26.9A, the means and standard deviations for each item and 
the total score are displayed. We can see that walking had the highest mean functional 
score and car transfer the lowest. In Table 26.9B we find the inter-item correlations for 
all six items. All item-pairs have correlations above .60 except for car transfer, which has 
consistently low correlations with all other items (.354 and lower). Perhaps this one 
variable should not be part of the scale, representing a different component of function 
than the other items. 

To investigate this possibility, the advantage of a is that it can be computed repeat­
edly, each time eliminating one item from the analysis. In Table 26.9C, we see what 
happens to the total score when each item is deleted. In the first two columns, the 
mean and variance of the total score is higher when car transfer is deleted, whereas 
these values remain fairly stable for all other items. The third column in this panel 
shows the correlation of each item with the sum of the remaining items, or the item­
to-total correlation. Only car transfer has a low correlation of .19, suggesting that 
this variable is not related to the other items. Each of the other five items has a corre­
lation of approximately .80 or higher with the total. Finally, we find that alpha 
increases to .932 when car transfer is not included, indicating that the scale is more 
homogeneous when this item is omitted. These statistics suggest that car transfer 

tiThe concept of internal consistency should not be confused with content or construct validity. Internal con­
sistency is a measure of reliability, not validity. Even if the items in a scale are correlated (a reliability issue), 
the scale may not be measuring what it is intended to measure (a validity issue). Internal consistency is an 
important characteristic of a valid scale, however. 
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TABLE 26.9 OUTPUT FOR INTERNAL CONSISTENCY OF A FUNCTIONAL SCALE 
WITH 6 1TEMS USING CRONBACH'S ALPHA (N = 1 4) 

A. ITEM STATISTICS 

Reliability Statistics 
Item Statistics 

Std. 
Cronbach's Mean Deviation N 

Alpha N of Items 
Car 1 .86 .770 14  

.894 6 Carry 2.79 1 .251 14 
Dressing 2.57 1 .089 14 
Reach 3.00 1 .240 14 
Stairs 2.36 1 .336 14 
Walk 3.43 1 .089 14 

B. CORRELATIONS 

Inter-Item Correlation Matrix 

Car Carry Dressing Reach Stairs Walk 

Car 1 .000 . 1 25 . 1 96 - .081 .278 .354 
Carry . 1 25 1 .000 .830 .843 .739 .637 
Dressing . 196 .830 1 .000 .797 .694 .750 
Reach -.081 .843 .797 1 .000 .603 .740 
Stairs .278 .739 .694 .603 1 .000 .785 
Walk .354 .637 .750 .740 .785 1 .000 

C. ITEM-TOTAL STATISTICS 

Item-Total Statistics 

Scale Corrected Squared Cronbach's 
Scale Mean if Variance if Item-Total Multiple Alpha if Item 
Item Deleted Item Deleted Correlation Correlation Deleted 

Car 14. 1 4  28.593 . 1 92 .566 .932 
Carry 1 3.21 19.874 .836 .904 .854 
Dressing 1 3.43 21 .033 .856 .777 .854 
Reach 1 3.00 20.615 .765 .916 .867 
Stairs 1 3.64 1 9.632 .790 .817 .863 
Walk 1 2.57 2 1 . 1 87 .837 .893 .856 

should be removed from the scale, as it appears to reflect a different dimension of func­
tion than the other items. 

Interestingly, several sources suggest that a scale with strong internal consistency 
should only show a moderate correlation among the items, between .70 and .90.27•29-31 If 
items have too low a correlation, they are possibly measuring different traits. If the 
items have too high a correlation, they are probably redundant, and the content valid­
ity of the scale might be limited. 
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RESPONSE STABILITY 
In addition to measuring the reliability of instruments and raters, clinical scientists are 
often interested in assessing the consistency or stability of repeated responses over 
time. Response stability is basic to establishing all other types of reliability, because if 
the response variable varies from measurement to measurement, it will not be possible 
to separate out errors due to the rater or instrument. Three statistical methods are com­
monly used to express response stability: standard error of measurement, coefficient of 
variation and method error. 

Standard Error of Measurement 
Like other forms of reliability, the concept of response stability is related to measure­
ment error. If we were to administer a test under constant conditions to one individual 
an infinite number of times, we can assume that the responses would vary somewhat 
from trial to trial. These differences would be a function of random measurement error. 
Theoretically, if we could plot these responses, the distribution would resemble a nor­
mal curve, with the mean equal to the true score and errors falling above and below the 
mean. This distribution of measurement errors is a theoretical distribution that repre­
sents the population of all possible measurement errors that could occur for that vari­
able. With a more reliable measurement, errors will be smaller and this distribution will 
be less variable. Therefore, the standard deviation of the measurement errors reflects 
the reliability of the response. This value is called the standard error of measure­
ment (SEM). 

We can use our knowledge of the normal curve to estimate the variability within 
repeated measurements in one individual. For example, suppose we record a series 
of 25 measurements of grip strength for one subject using a hand dynamometer. Let 
us assume that fatigue does not occur, so that the true value does not change. We can 
expect that this individual will produce varied scores from trial to trial because of 
slightly different efforts or repositioning his hand on the dynamometer-random 
errors of measurement. Suppose the mean score for all trials is 23 pounds with a 
standard deviation of 6. We can estimate, then, that there is approximately a 68% 
chance that this individual's true score falls within ± 1  standard deviations (between 
17 and 29 pounds) or a 95% chance that it falls within ±2 standard deviations 
(between 11 and 35 pounds). In a subsequent test, if this subject's response is 28 
pounds, we would consider the score to be within the range of measurement error, 
that is no true difference. 

When the estimate of measurement error is based on repeated measurements from 
a single individual, as in this example, its value will obviously be different for each sub­
ject. Therefore, the amount of error, or reliability, associated with a particular measure­
ment will not be a constant estimate. Most often, however, it is not feasible to collect a 
large enough sample of repeated measurements on every subject. Therefore, we have to 
estimate the SEM for a set of scores obtained from a larger sample of subjects as follows: 

SEM = sxv'1 - rxx (26.11) 
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where sx is the standard deviation of the set of observed test scores on a group of sub­
jects, and rxx is the reliability coefficient for that measurement (typically obtained from 
previous research). For example, suppose we administer grip strength tests to a sample 
of 300 patients, each measured once. Assume the standard deviation of these scores is 
12, and the reliability coefficient for this measurement, established by previous test­
retest studies, is known to be .85. Therefore, 

SEM = 12V1 - .85 = 4.65 

This value can now be used as an estimate for the entire group, based on a confidence 
interval. 

95% CI = Observed score ± 1 .96 (SEM) 

= Observed score ± 1 .96 (4.65) (26.12) 

= Observed score ± 9.11 

Therefore, we can estimate that 95% of the time, the errors of measurement using this 
test will fall within this range. If the group mean is 30 pounds, then there is a 95% 
chance that the group's true mean score lies between 20.89 and 39.11. This will also pro­
vide a benchmark for evaluating individual patient performance over time. 

The interpretation of standard error of measurement is dependent on the type of 
reliability coefficient that is used in its computation. If the estimate is based on test­
retest reliability, then the SEM is indicative of the range of scores than can be 
expected on retesting. If the ICC is used as an indicator of rater reliability, the SEM 
reflects the extent of expected error in different raters' scores. The choice of reliabil­
ity coefficient for calculating the SEM must be based on the ultimate purpose of pre­
dicting reliability. 

Minimal Detectable Difference 
In Chapter 5 we introduced the concept of minimal detectable difference (MDD), 
which is used to define the amount of change in a variable that must be achieved to 
reflect a true difference. Statistics of response stability will provide estimates of this 
threshold. The SEM is used most often to determine if a patient's performance has truly 
changed from trial to trial. Values below this threshold will be considered measurement 
error. The more reliable an instrument, the more precise this smallest measure can be. 
The MOD will be discussed again in the next chapter, when we consider validity of 
measuring change. 

Coefficient of Variation 
We can also assess response stability across repeated trials by looking at the standard 
deviation of the responses (for one individual or a group). Variability within the 
responses should reflect the degree of measurement error. The standard deviation will 
obviously increase as the repeated scores become more disparate. 
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The limitation to this approach is that the standard deviation must be interpreted 
in relation to the size and units of the mean. For example, suppose a distribution of 
strength scores (in pounds) has a standard deviation of 40 lbs. If the mean of the distri­
bution is 110, reliability will be viewed differently than if the mean is 55. In the first 
instance the scores are actually less variable relative to the mean. Therefore, on the 
basis of standard deviation alone, we cannot accurately assess the extent of error in the 
measurements. 

To account for the relationship between the mean and standard deviation, the vari­
ability across distributions can be compared using the coefficient of variation, CV: 

s CV = = X  100 X (26.13) 

This ratio expresses the standard deviation§§ as a proportion of the mean. Because both the 
mean and standard deviation are in the same units, this statistic will be unit free, allow­
ing comparisons across different quantities or different studies. See Chapter 17 for a 
more complete discussion and sample calculations of the coefficient of variation. 

Method Error 
Response stability, or test-retest reliability, can also be expressed in terms of the percent­
age variation from trial to trial, by analyzing method error, ME. Method error is a 
measure of the discrepancy between two sets of repeated scores, or their difference 
scores. Larger difference scores reflect greater measurement error. 

Method error is calculated using the standard deviation of the difference scores (sa) 
between test and retest: 

sa ME = -y'2 (26.14) 

This value reflects the amount of variation in the difference scores; however, just like 
any other standard deviation, it must be interpreted relative to the size of the mean dif­
ferences. Therefore, it is converted to a percentage using the coefficient of variation: 

2ME 
CVME = X 100 

x1 + x2 
(26.15) 

Calculation of ME and its associated coefficient of variation is illustrated in Table 26.9B 
for hypothetical range of motion measurements. The variation in measurement from 
test 1 to test 2 was 6%. The interpretation of this value will depend on the amount of 
error deemed acceptable by those who must use the information. 

§§Because scores used for reliability testing are generally not intended as estimates of population parameters, 
the standard deviation can be calculated using N in the denominator, rather than N - 1.32 
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Method error is often used as an adjunct to test-retest correlation statistics, as it 
reflects the percentage of variation from trial to trial, which the correlation coefficient 
does not. In addition, unlike the correlation coefficient, method error is not affected by 
a lack of variation in raw scores. For instance, for the data in Table 26.10, r = .58. This 
is low, especially considering how close the two pairs of scores are. But we can also see 
that there is very little variability within these scores, which we know will tend to 
decrease the correlation coefficient or any reliability coefficient. Method error will not 
be affected by a restriction in range, because it looks only at the difference scores. There­
fore, in situations like this example, where reliability coefficients may be misleading, 
method error provides a useful alternative. 

Because method error is based on the variability within difference scores, it will not 
account for systematic variation between test 1 and test 2. Therefore, the researcher may 

TABLE 26.10 COMPUTATION OF METHOD ERROR AND COEFACIENT OF VARIATION 
FOR RELIABILITY TESTING 

A. DATA 

Subject 

2 
3 
4 
5 
6 
7 
8 

l: X  
X 
s 

B. COMPUTATIONS 

C. HYPOTHESIS TEST 

Test 1 Test 2 

20 1 7  
1 7  16  
21  17  
18  15  
1 7  16  
15  15  
12  15  

_M_ _A_ 
144 136 
18 17.0 

3.70 3.34 

sd 2.55 
ME = - = - = 1  v2 v2 0 

2ME 2(1.80) 
CVMc = X 100 = --- X 10 

x. + x2 18 + 17 

� 2.55 
Sjj = - = - = 0 Vn v8 

d .25 
t = - = - = 0  

SiJ .90 

Ho: d = 0 Do not reject Ho 

Difference (d) 

-3 

4 
3 
1 
0 

-3 
---=L 'Ld = 2 

a =  o.2s 
sd = 2.55 
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want to check for systematic bias by performing a paired t-test between the test and 
retest scores.33 The t-ratio can be obtained directly by dividing the mean of the differ­
ence scores, d, by the standard error of the difference scores, sa. This computation is 
illustrated in Table 26.10B. With n - 1 degrees of freedom, this value demonstrates no 
significant difference between test 1 and test 2. 

ALTERNATE FORMS: LIMITS OF AGREEMENT 
Reliability is an essential property when measurements are taken with alternate forms 
of an instrument. For example, clinical researchers have looked at outcomes of measur­
ing joint range of motion with different types of goniometers, inclinometers, electrogo­
niometers and radiographs. Even though each instrument is different, they are all 
intended to result in an accurate recording of joint angles in degrees. We might want to 
compare different designs of dynamometers for measuring strength, different types of 
spirometers for assessing pulmonary function or different types of thermometers for 
measuring temperature. In each of these examples, we would expect these methods to 
record similar values. The analysis of reliability in this situation focuses on the agree­
ment between alternative methods. We can consider two methods in agreement when 
the difference between measurements on one subject is small enough for the methods 
to be considered interchangeable.34 This property is an important practical concern as 
we strive for effective and efficient clinical measurement,35 as well as a concern for gen­
eralization of research findings. 

Two analysis procedures have traditionally been applied for method comparisons. 
The correlation coefficient, r, has been used to demonstrate covariance among methods; 
however, we know this is a poor estimate of reliability, as it does not necessarily reflect 
the extent of agreement in the data. The second procedure is the paired t-test, (or 
repeated measures ANOVA) which is used to show that mean scores for two (or more) 
methods are not significantly different. This approach is also problematic, however, as 
two distributions may show no statistical difference, but still be composed of pairs with 
no agreement. 

An interesting alternative for examining agreement across methods is an index 
called limits of agreement.34•35 To understand this approach, consider the hypotheti­
cal distribution of 10 measurements of range of motion of straight leg raising shown in 
Table 26.11 for two instruments, a regular goniometer and an inclinometer. The differ­
ence between each method for each subject is calculated by subtracting the inclinome­
ter score from the goniometer score (this direction is consistent but arbitrary). 
Therefore, positive difference scores reflect a higher reading for the goniometer. The 
mean of the difference scores is -0.1 degrees. On average, then, the differences between 
the methods is quite small, and certainly within acceptable clinical error range. We 
would be happy to find that the two instruments differed by less than one degree. On 
further examination, however, we can see that the amount of error varied across sub­
jects, from zero to as much as 10 degrees. Therefore, we would be more complete in our 
estimate of reliability to determine the range of error that would be expected for any 
individual subject. 
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TABLE 26.1 1 LIMITS OF AGREEMENT: MEASUREMENT OF STRAIGHT LEG RAISING 
(IN DEGREES) USING TWO METHODS 

A. DATA 

Subject Goniometer Inclinometer Difference• 

1 55 54 1 
2 58 61 -3 
3 70 80 - 1 0  
4 76 59 7 
5 85 85 0 
6 78 80 -2 
7 72 70 2 
8 80 75 5 
9 63 68 -5 
1 0  72 68 4 

Total - 1 .0 
x -0.1 
s 5.09 

B. 95% LIMITS OF AGREEMENT 

X ± 2s = -0.1 ± 10.18 = -10.28 to 10.08 

aGoniometer - Inclinometer 
b(Goniometer + lnclinometer)/2 

Meanb 

54.5 
59.5 
75.0 
62.5 
85.0 
79.0 
71 .0 
77.5 
65.5 
7Q.Q 

699.5 
69.9 

9.52 

A visual analysis can help to clarify this relationship. For example, the scatterplot 
of these scores is shown in Figure 26.2 (r = .86). If we draw a line of identity from the 
origin, representing agreement of scores, we can see that most of the scores are close, 
but not in perfect agreement. A further understanding of this relationship can be 
achieved by looking at the difference between methods plotted against the mean score 
for each subject, as shown in Figure 26.3. These plots are often called Bland-Albnan 
plots, recognizing those who developed this strategy.35 The spread of scores around the 
zero point helps us decide if the observed error is acceptable if we substitute one meas­
urement method for the other. In Figure 26.3A, for example, the error appears unbiased, 
as differences are spread evenly and randomly above and below the zero point. Other 
possible patterns are shown in Figures 26.3B, which shows a pattern with no error, 
where all differences are zero. In Figure 26.3C we see a biased pattern, where the 
goniometer has consistently resulted in higher scores, resulting in positive difference 
scores. Figure 26.3D shows another biased pattern where error is influenced by the size 
of the measurement; that is, smaller angles are measured higher by the inclinometer 
(resulting in a negative difference score) and larger angles are measured higher by the 
goniometer (resulting in a positive difference score). With a biased pattern, the instru­
ments could not be considered interchangeable. 
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FIGURE 26.2 Example of a method comparison plot, showing the relationsh ip between two different 
methods for measuring range of motion of straight leg raise. The l i ne of identity emerges from the origin, 
showing how closely the two methods agree. In  this example, only one score fal l s  d i rectly on this l i ne. 

We can examine the agreement between the two methods by looking at the spread 
of the difference scores. A larger variability would indicate larger errors. Statistically, 
this spread is reflected by the standard deviation. Assuming the errors are normally dis­
tributed,*** we would expect that approximately 95% of the difference scores would fall 
within two standard deviations above and below the mean of the difference scores.34 
This range is considered the 95% limits of agreement. As shown in Table 26.11B, for 
the straight leg raise data the mean difference score is -0.1 degrees with a standard 
deviation of 5.09 degrees. Two standard deviations equal 10.18 degrees. Therefore, the 
difference between these two methods of measurement of straight leg raise can be 
expected to vary between -0.1 ± 10.18, or between -10.28 degrees and 10.08 degrees, 
a range of approximately 20 degrees (see Figure 26.4). 

Our question, then, is would we be comfortable using either instrument, if we 
knew that their difference could be as much as 10 degrees higher or lower? This deci­
sion should be based on a clinical criterion and the application of the measurements. 
We might argue that a potential difference of 20 degrees does not suggest interchange­
able methods. We are, of course, assuming that each method is reliable. These consid­
erations have important implications for clinical analyses as well as comparison of 
research studies. 

***Because the difference scores represent measurement error, Bland and Altman35 suggest that they should 
follow a normal distribution, even if the actual measurements do not. This distribution can be checked by 
graphing a histogram of the difference scores.34 
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FIGURE 26.3 Plots of difference scores for stra ight leg raise measurements across mean scores for each 
subject. The center l i ne represents zero difference. (A) Data from Table 26. 1 1 ;  (B) perfect agreement 
between two methods; (C) pattern with systematic bias in measurement error, in this case with the 
goniometer consistently producing h igher scores than the incl inometer; (D) plot showing bias related to 
magnitude of the subjects' scores. 
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FIGURE 26.4 Difference scores between goniometer and incl inometer, plotted against mean scores for 
each subject (data from Table 26. 1 1 ). Dashed l ine shows the mean difference score ( -0.1 degrees) .  The 
95% upper and lower l imits of agreement represent 2 standard deviations above and below the mean dif­
ference score ( -0.1 ± 10.18). 

COMM ENTARY 

Which Rel iabi l ity Coefficient Do I Use-and When Is  It Enough? 

Because rel iabi l ity i ssues are so important to the va l id ity of c l in ical science, the sta­
tistical bases for interpret ing rel iabi l ity must be understood by those who do the 
research and those who read research reports. What we learn from looking through 
professional l i terature is that preferred methods for analyz ing rel iabi l ity seem to vary 
with different researchers and with in  different d isc ip l ines. Even though statisticians 
have been addressing rel iabi l i ty i ssues for a long t ime, there is no consensus on how 
rel iabi l ity data are handled. 

Choosing a part icular approach to rel iabi l i ty testing shou ld be based on an 
understand ing of the nature of the response variable, what types of interpretations 
are desi red, and what measurement i ssues are of greatest concern. Consideration 
should be given to the sca le of measurement, the amount of variabi l ity that can be 
expected with i n  sample scores, and what un its of measurement are used. We shou ld 
be aware of  the intended appl ication of  the data and the degree of  precision needed 
to make safe and meaningful c l in ica l decisions. These deta i l s  are often overlooked, 
and we al low ourselves to fa l l  i nto the trap of using specific standards for rel iabi l ity 
just because they have been used by others-or stated in a textbook l i ke this one! 
Guidel i nes are j ust that-not gold standards. Researchers and c l in ic ians are obl i ­
gated to justify thei r interpretation of acceptable rel iabi l i ty. 
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Researchers should address each of these relevant issues in their reports, so that 
others can i nterpret their work properly. Many articles are publ ished with no such 
d iscussion, leaving the reader to guess why a part icular statistic was used or standard 
appl ied. Because rel iab i l ity stat ist ics can be appl ied in so many ways, i t is important 
to maintai n  an exchange of ideas that promotes such accountabi l i ty. By having to 
justify our choices, we are forced to consider what a statistic can rea l ly tel l  us about 
a variable and what concl usions are warranted. 

I t is a lso important to justify a measure of rel iab i l i ty as a foundation for va l id ity 
of a test. Rel iabi l ity by itself is never enough to support the use of a part icular meas­
ure. Statistics such as sensitivity, specificity and l i ke l ihood ratios must be app l ied to 
determine the c l in ica l mean ingfu lness of a test (see Chapter 2 7). Rel iab i l i ty is nec­
essary but not sufficient to assure val i dity; however, sometimes a test w i l l  have only 
moderate rel iab i l i ty, but may st i l l  provide strong diagnostic i nformation because of 
the nature of the disorder bei ng eva luated. Al l  measurements wi l l  have some degree 
of error. Our concern with the consequences of th is error wi l l  depend on how we 
wi l l  use the measurement i n  our decision making. There are severa l examples of 
measurements that have only moderate kappa or ICC values, but have strong sensi ­
t ivity or l ikel i hood ratios, suggesti ng that the tests are useful for identify ing those who 
have a certa i n  disorder. 1& Rel iab i l ity is one measurement property that must be con­
sidered-an important one to be sure, but not the only one. 
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CHAPTER 27 

Statistical Measures 
of Validity 

Measurement validity is an essential component of evidence-based practice, to assure 
that our assessment tools provide us with accurate information for decision making. 
Although clinicians constantly face uncertainty in patient management, many decision 
making strategies can be applied to reduce this uncertainty. 

Concepts of measurement validity were introduced in Chapter 6. In this chapter we 
present statistical procedures related to the accuracy of diagnostic tools, choosing cut­
off scores, the application of clinical prediction rules, and methods for measuring clini­
cally meaningful change. 

VALIDITY OF DIAGNOSTIC TESTS 
Many measuring instruments are specifically designed as screening or diagnostic tools. 
In a traditional medical framework, a diagnostic test is used to determine the presence 
or absence of a disease or abnormal condition. A screening test is usually done on indi­
viduals who are asymptomatic, to identify those at risk for certain disorders, and to 
classify patients who are likely to benefit from specific intervention strategies. Because 
these procedures involve allocation of resources, present potential risks to patients and 
are used for clinical decision making, it is important to verify their validity. 

The results of a diagnostic or screening procedure may be dichotomous, categorical 
or continuous. The simplest tests will have only a dichotomous outcome: positive or 
negative, such as pregnancy or HIV status. A categorical test would involve ratings on 
an ordinal scale, such as + + +, + +, +, - to reflect degree of sensation or reflexes. A 
continuous scale provides the most information regarding the outcome, such as a test 
measuring degrees of range of motion or hearing decibel level. Ordinal and continuous 
scales are often converted to dichotomous outcomes using cutoff scores to indicate a 
"normal" or "abnormal" response. 

The Reference Standard 
The ideal diagnostic test, of course, would always be accurate in discriminating 
between those with and without the disease or condition; it would always have a pos­
itive result for someone with the condition, whether a mild or severe case, and a nega­
tive result in everyone else. But we know that such tests are not perfect. They may miss 
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abnormalities in those with a particular disorder, or they may identify abnormalities in 
those without the disorder. 

We determine how good a test is by comparing the test result with known diagnos­
tic findings obtained by a reference standard.* The reference standard will reflect the 
patient's true status, either the presence or absence of the condition. The assumption is 
made that the individual performing the test is blind to the true condition, eliminating 
possible bias. In some situations, the reference standard will be a concurrent test, such 
as an X-ray or blood test. In other situations, it will be obtained at a future time, as with 
a long-term outcome or autopsy. Sometimes there is no clear standard, and one must be 
defined or created.  For instance, studies related to falls often use the patient's report of 
a fall within the past 6 months or year as the standard for being a "faller" or 
"nonfaller."1 Studies of delirium in hospitalized patients have used expert opinion as 
the reference standard to validate measures of confusion.2 When objective definitive 
standards are not available, the reference must be adequately described so that others 
can determine its applicability. 

Sensitivity and Specificity 
The validity of a diagnostic test is evaluated in terms of its ability to accurately assess 
the presence and absence of the target condition. A diagnostic test can have four possi­
ble outcomes, summarized in the 2 X 2 arrangement shown in Table 27.1 .  Classification 
is assigned according to the true presence or absence of disease (Ox+ or Ox-) versus 
positive or negative test results. In Table 27.1 the cells labeled a and d represent true 
positives and true negatives, respectively, that is, individuals who are correctly classi­
fied by the test as having or not having the target condition. Cell b reflects those who are 
incorrectly identified as having the condition, or false positives, and cell c represents 
those who are incorrectly identified as not having the condition, or false negatives. 

Sensitivity is the test's ability to obtain a positive test when the target condition is 
really present, or the true positive rate. Using the notation presented in Table 27.1,  

a 
Sensitivity = -­a + c 

(27. 1)  

This value is the proportion of individuals who test positive for the condition out of all 
those who actually have it, or the probability of obtaining a correct positive test in 
patients who have the target condition. The sensitivity of a test increases as the number 
of persons with the condition who are correctly classified increases; that is, fewer per­
sons with the disorder are missed. 

*We use the designation reference standard in place of "gold standard," as many tests do not have a true gold 
standard. The reference standard is defined as the basis for determining the patient's true diagnostic status. 
This may or may not reflect a true gold standard measure. The researcher must operationalize the reference 
standard. 
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TABLE 27.1 SUMMARY OF ANALYSIS FOR DIAGNOSTIC TEST RESULTS 

Reference Standard 
True Diagnosis 

Dx+ 

- Positive a 
'3 Ill (True positive) 
Gl .. 

... Ill c � Negative (False negative) 

Diagnostic accuracy 

Sensitivity 

Specificity 

Total 

False positive rate (1 - specificity) 
False negative rate (1 - sensitivity) 
Positive predictive value (PV + )  

Negative predictive value (PV - )  

Prevalence 

Positive likelihood ratio (LR + )  

Negative l ikelihood ratio (LR - )  

B + C  

Ox-

b 
(False positive) 

d 
(True negative) 

b + d 

(a + d)/N 

a/(a + c) 
d/(b + d) 

b/(b + d) 

c/(a + c) 
a/(a + b) 
d/(c + d) 
(a + c)/N 

sensitivity/1 - specificity 

1 - sensitivity/specificity 

Total 

8 +  b 

C +  d 

N 

Specificity is the test's ability to obtain a negative test when the condition is really 
absent, or the true negative rate. As shown in Table 27.1, 

S ifi. . d 
pee c1ty = b + d 

(27.2) 

This value is the proportion of individuals who test negative for the condition out of all 
those who are truly normal, or the probability of a correct negative test in those who do 
not have the target condition. A highly specific instrument will rarely test positive when 
a person does not have the disease. 

The complement of sensitivity (1 - sensitivity) is the false negative rate, or the 
probability of obtaining an incorrect negative test in patients who do have the target 
disorder. The complement of specificity (1 - specificity) is the false positive rate, 
sometimes called the "false alarm" rate.3 This is the probability of an incorrect positive 
test in those who do not have the target condition. 

Example 
To illustrate the application of these measures, let's consider a study of the validity of 
the Functional Reach Test (FRT) to identify elders with Parkinson's disease who are at 
risk for falls.4 The FRT is designed to assess anterior-posterior stability by measuring 
the maximum distance an individual can reach while leaning forward over a fixed base 
of support.5 Based on previous research, a cutoff score of 10 in. (25.4 em) was used to 
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classify subjects as "at risk" or "not at risk." Screening results were compared with a 
known history of falls (the reference standard), as shown in Table 27.2A. 

The sensitivity of the test for this population was low, at 30%. Of the 30 patients 
identified as having a history of falls, only 9 tested positive using the FRT. The speci­
ficity of the test, however, was 92%. Of the 13 patients who did not have a history of 
falls, 12 tested negative. Therefore, although almost all of those not at risk were cor­
rectly identified (true negatives), a large percentage of patients who were at risk were 
missed (false negatives). The graphic in Table 27.2A illustrates these proportions. 

Predictive Value 
In addition to sensitivity and specificity, the usefulness of a clinical screening tool can 
be assessed by its feasibility. A test must demonstrate that it is an efficient use of time 
and resources and that it yields a sufficient number of accurate responses to be clinically 
useful. This characteristic is assessed by the test's predictive value. A positive predic­
tive value (PV + )  estimates the likelihood that a person who tests positive actually has 
the disease. Using the notation given in Table 27.1,  

a 
PV+ = -­

a + b 
(27.3) 

which represents the proportion of those who tested positive who were true positives. 
Therefore, a test with a high positive predictive value will provide a strong estimate of 
the actual number of patients who have the target condition. Similarly, a negative pre­
dictive value (PV - )  indicates the probability that a person who tests negative is actu­
ally disease free. Therefore, 

d 
PV- = -­c + d 

(27.4) 

which is the proportion of all those who tested negative who were true negatives. A test 
with a high negative predictive value will provide a strong estimate of the number of 
people who do not have the target condition. 

For the FRT study (see Table 27.2), the positive predictive (PV + )  value of 90% tells 
us that almost all of those who tested positive actually had a history of falls. Only one 
patient who tested positive was not at risk. The negative predictive value (PV-) was 
lower, at 36%. Therefore, only one-third of patients who tested negative were actually 
not at risk. 

Predictive value may be of greatest importance in deciding whether or not to imple­
ment a screening program. When the positive predictive value is low, only a small por­
tion of those who test positive actually have the target condition. Therefore, 
considerable resources will probably be needed to evaluate these people further to sep­
arate false positives, or unnecessary treatments will be applied. Policy decisions are 
often based on a balance between the use of available resources and the potential harm­
ful effects resulting from not identifying those with the target condition.6 
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TABLE 27.2 SUMMARY OF ANALYSIS OF SCREENING TEST RESULTS 
FOR FUNCTIONAL REACH TEST (FRT) IN PERSONS 
WITH PARKINSON'S DISEASE3 

A. DATAb 

Reference Standard 

Hx of No Hx of 
Falls Falls Total 

Reach <1 0 in. 10 
- (+ Fall Risk) 1- "S  O::: Ul (/) LL GI  Q) a: Reach �1 0 in. .::: 

21 1 2 33 iii 
(- Fall Risk) Ol Q) c 

Q) 
Total 30 13 43 :::l 

False negatives .= 

B. M EASURES OF DIAGNOSTIC ACCURACY 

Diagnostic accuracy 

Sensitivity 

Specificity 

False positive rate (1 - specificity) 

False negative rate (1 - sensitivity) 

Positive predictive value (PV + )  

Negative predictive value (PV - )  

Prevalence 

Positive likelihood ratio (LA + )  

Negative likelihood ratio (LA - )  

C. CONFIDENCE INTERVALSc 

(a + d)/N 

a/(a + c) 

d/(b + d) 

b/(b + d) 

c/(a + c) 

a/(a + b) 

d/(c + d) 

(a + c)/N 

sensitivity/1 - specificity 

1 - sensitivity/specificity 

Sensitivity = .30 (95% Cl: 0. 1 7 , 0.48) 

Specificity = .92 (95% Cl: 0.67, 0.99) 

LA+ = 3.75 (95% Cl: 0.55, 27.7) 

LA- = 0.76 (95% Cl: 0.57, 1 .005) 

(9 + 1 2)/43 = 49'X, 

9/30 = 30% 

1 2/13 = 92% 

1 / 1 3  = 8% 

21/30 = 70'Yu 

9/1 0 = 90% 

1 2/33 = 36% 

30/43 = 70'Yu 

.30/.08 = 3.75 

.70/.92 = .76 

3Data from Behrmann AL, Light KE, Flynn SM, Thigpen MT. Is the Functional Reach Test useful for identifying 
falls risk among individuals with Parkinson's disease? Arch Phys Med Rehabi/ 2002;83:538-42. 
bProportions obtained using interactive calculator at <http://www.cebm.net/dxtable.asp> Accessed April 1 2 ,  
2007. 

00btained using the confidence interval calculator available at: <http://www.pedro.fhs.usyd.edu.au/tutorial 
.html#part_one> Accessed October 1 ,  2006. 
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The Effect of Prevalence 
Sensitivity, specificity and predictive value are influenced by the prevalence of the tar­
get condition in the population. Prevalence refers to the number of cases of a condi­
tion existing in a given population at any one time. For a test with a given sensitivity 
and specificity, the likelihood of identifying cases with the condition is increased when 
prevalence is high (the condition is common). Therefore, when prevalence is high, a 
test will tend to have a higher positive predictive value. This is illustrated in Table 27.2 
for our example of fall risk. The prevalence of a history of falls is 30 out of 43 patients, 
or 70%. Therefore, a large proportion of patients in this sample had a history of falls, 
and we could expect a high PV +, which was 90%. When prevalence is low (the condi­
tion is rare), one can expect many more false positives, just by chance. A positive pre­
dictive value can be increased either by increasing the specificity of the test (changing 
the criterion) or by targeting a subgroup of the population that is at high risk for the 
target condition. 

Ru l ing I n  and Rul ing Out 
When we consider the diagnostic accuracy of a test, high values of sensitivity and speci­
ficity provide a certain level of confidence in interpretation. If a test has high sensitivity, 
it will properly identify most of those who have the disorder. If the test has high speci­
ficity, it will properly identify most of those without the condition. But how do these 
definitions relate to confidence in diagnostic decisions? Consider these two questions: 

• If a patient has a positive test, can we be confident in ruling IN the diagnosis? 
• If a patient has a negative test, can we be confident in ruling OUT the diagnosis? 

Sensitivity and specificity help us answer these questions, but probably not the way 
you would expect. When a test has high specificity, a positive test rules in the diagnosis. 
When a test has high sensitivity, a negative test rules out the diagnosis. Straus and col­
leagues7 offer two mnemonics to remember these relationships: 

With high Specificity, a Positive test rules in the diagnosis 

With high Sensitivity, a Negative test rules out the diagnosis 

Think of it this way: A highly specific test will properly identify most of the patients 
who do not have the disorder. If the test is so good at finding those who are normal, we 
can be pretty sure that someone with a positive test does have the disorder (ruling IN 
the diagnosis) because if he didn't have the disorder, the test would have correctly iden­
tified him as normal! Conversely, a highly sensitive test will find most of those who do 
have the disorder. Therefore, we can be pretty sure that someone with a negative test 
does not have the disorder (ruling OUT the diagnosis) because if he did have the disor­
der, the test would have correctly diagnosed him! 

These concepts are also related to predictive value. With a more specific test, nega­
tive cases are identified more readily. Therefore, it is less likely that an individual with 
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a positive test will actually be normal. This results in a high positive predictive value. 
With a more sensitive test, positive cases are identified more readily; that is, we will not 
miss many true cases. Therefore, it is less likely that an individual with a negative test 
will have the disease. This leads to a high negative predictive value. 

If we use the example of the Functional Reach Test (Table 27.2), with specificity of 
92% (and a PV- of 90%), we can be confident that someone with a positive test is at risk 
for falls. However, with sensitivity of only 30% (and a PV+ of 36%), if someone has a 
negative test, we cannot be sure that person is really not at risk. Because the test is not 
good at finding those who are at risk, having a negative test does not help us safely rule 
out this risk. 

Pretest and Posttest Probabil ities 
The ultimate purpose of a diagnostic test is to help the clinician make a decision about 
the presence or absence of a disorder for an individual patient. The validity of a test is 
based on how strongly it can support a decision to rule the disorder in or out. There­
fore, a test is considered a good one if it can help to increase our certainty about a 
patient's diagnosis. 

Pretest Probabilities 
When we begin to evaluate a patient by taking a history and using screening or other 
subjective procedures, we begin to rule in and rule out certain conditions and eventu­
ally generate a hypothesis about the likely diagnosis. This hypothesis can be translated 
into a measure of probability or confidence, indicating the clinician's estimate of how 
likely a particular disorder is present. This has been termed the pretest probability (or 
prior probability) of the disorder- or what we think might be the problem before we 
perform any formal testing.8 

Finding the Pretest Probabil ity. The process for determining a pretest probability is 
not an obvious one. Conceptually, it represents a "best guess" or clinical impression 
based on experience and clinical judgment. Clinicians may have sufficient experience 
with certain types of patients to estimate the probability of a diagnosis based on initial 
examination findings,9.1° although such estimates are not always reliableY'12 Using the 
functional reach scenario, a clinician might have sufficient experience with patients with 
Parkinson's disease to generate an initial hypothesis about the patient's likelihood to fall. 

Information from the literature can also be used to help with this estimate by refer­
ring to the prevalence of a disorder.13 For instance, studies have shown that the preva­
lence of idiopathic scoliosis in children aged 10-16 years is 2-4%/4 26% of patients with 
orthopedic trauma have been found to experience depression;15 34% of children who 
have been enrolled in special education classes have been diagnosed with asthma;16 the 
presence of postoperative delirium following hip fracture repair is estimated at 36%;2 
the prevalence of mortality 1-month following a stroke in patients with prestroke 
dementia is 44%? These values, reported in the literature, allow the clinician to esti­
mate the likelihood that any individual patient could have these disorders. 

Suppose you are working with a patient with Parkinson's disease, and you believe 
she may be at risk for falling. You think it may be useful to perform a test to determine 
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if such a risk is present. Consider the study of the Functional Reach Test once again (see 
Table 27.2) This study demonstrated a 70% prevalence of falls in its sample of patients 
with Parkinson's disease.4 Knowing this, before you have done any further testing, your 
best estimate is that the pretest probability of your patient being at risk for falls is 70%. 

Decision-Making Thresholds. Being able to estimate a pretest probability is central 
to deciding if a condition is present and if testing or treatment is warranted. Based on 
the initial hypothesis and pretest probability of a condition, the clinician must decide if 
a diagnostic test is necessary or useful to confirm the actual diagnosis. Straus et af sug­
gest that two thresholds should be considered, as shown in Figure 27.1A. With a very 
low pretest probability, the diagnosis is so unlikely that testing is not useful; that is, 
even with a positive test, results are likely to be false positives. Therefore, treatment is 
not initiated and other diagnoses need to be considered. 

With a very high pretest probability, the likelihood of the diagnosis is so strong that 
testing may be unnecessary, and treatment should just be initiated. Even with a negative 
test, results are likely to be false negatives. A strong pretest probability means that the 
results of a test are unlikely to offer any additional useful information. When the pretest 
probability is not definitive, however, with more intermediate values, testing is neces­
sary to pursue the diagnosis, and treatment decisions will then be based on those results. 

This approach must also take into consideration the relative severity of the disor­
der; the threshold for testing may vary for different conditions. For example, a patient 

A 

B 

PRETEST PROBABILITY -----+ 

Low I Intermediate I 
Threshold Threshold 

High 

� .--------+--------------------�--------. 'iil Test 

� Determine posttest probability 

� 
� 

---- POSTTEST PROBABILITY -----+ 

Low I Intermediate I High 

Threshold Threshold 

� .--------+---------------------r--------. c:: Test further if necessary 'iil to confirm dx � 
� 

FIGURE 27.1 Thresholds for deciding to test or treat. (A) Thresholds based on pretest probabi l ities; 
(B) thresholds based on posttest probabi l ities. (Adapted from Straus SE, Richardson WS, Glasziou P, et a l .  
Evidence-Based Medicine: How to Practice and Teach EBM (3rd ed.). Edinburgh, Churchi l l  Livingstone, 
2005, Figure 3 .3, p. 85.) 
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may exhibit symptoms that lead a clinician to suspect the presence of a deep venous 
thrombosis (DVT), which is potentially life threatening. Even if the symptoms are min­
imal and the pretest probability is low, the clinician may feel compelled to test for the 
condition to safely rule it out before continuing with other interventions. At the same 
time, the clinician must also be able to justify that the benefits of performing the test 
outweigh any potential risks. A test that includes potentially harmful procedures may 
not be worthwhile if the condition has little consequence. Effective treatment should 
also be available, should the test be positive. The effort of a test is not reasonable if the 
results have no chance of leading to successful intervention. 

Posttest Probabilities 
A diagnostic test allows a clinician to revise the pretest probability estimate of the dis­
order.18 Once we have the data from a test, we expect to be more confident in the diag­
nosis; that is, we hope to improve our certainty. The revised likelihood of the diagnosis 
based on the outcome of a test is the posttest probability (or posterior probability)­
what we think the problem is (or is not) now that we know the test result. A good test 
will allow us to have a very high posttest probability confirming the diagnosis, or a 
very low posttest probability causing us to abandon it (see Figure 27.1B). When the 
posttest probability is not definitive, further testing may be necessary. 

Like l ihood Ratios 
Once we have established a hypothesis that the patient may have a particular diagno­
sis, we want to determine if a test can make us more confident in that diagnosis. A 
measure called the likelihood ratio helps us in this effort. The likelihood ratio tells us 
how much more likely it is that a person has the diagnosis after the test is done; that is, 
it will help us determine the posttest probability. It indicates the value of the test for 
increasing certainty about a diagnosis}9 or its "confirming power."20 Likelihood ratios 
are being reported more often in the medical literature as an important standard for 
evidence-based practice. The likelihood ratio has an advantage over sensitivity, speci­
ficity and predictive values because it is independent of disease prevalence, and there­
fore can be applied across settings and patients. 

We can determine a likelihood ratio for a positive or negative test. To understand 
this statistic, let's assume that a patient tests positive on the FRT. If this were a perfect 
test, then we would be certain that the patient is at risk for falls (true positive). But we 
hesitate to draw this conclusion definitively because we know that some patients who 
are not at risk will also test positive (false positive). Therefore, to determine if this test 
improves our diagnostic conclusion we must correct the true positive rate by the false 
positive rate. This is our positive likelihood ratio (LR + ): 

true positive rate 
LR + = ----==------­

false positive rate 
sensitivity 

1 - specificity 
(27.5) 

The LR + will tell us how many times more likely a positive test will be seen in those 
with the disorder than in those without the disorder. A good test will have a high pos­
itive likelihood ratio. 
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Now let's assume the patient has a negative test. With a perfect test we would be 
sure this patient was not at risk for falls. But we are still concerned about the possibil­
ity of a false negative. Therefore, to determine if a negative test improves our diagnos­
tic conclusion, we look at the ratio of the false negative rate to the true negative rate. 
This is our negative likelihood ratio (LR - ): 

false negative rate 
LR- = __ _:::_ __ _ 

true negative rate 
1 - sensitivity 

specificity 
(27.6) 

The LR- will tell us how many times more likely a negative test will be seen in those 
with the disorder than in those without the disorder. A good test will have a very low 
negative likelihood ratio. 

It is important to note that likelihood ratios always refer to the likelihood of the 
disorder being present.21 That's why we would like to see a high LR+, to indicate that 
the disorder is likely to be present with a positive test. A very low LR- means that the 
disorder has a small probability of being present with a negative test. 

Interpreting Likelihood Ratios 
The value of the likelihood ratio is somewhat intuitive, in that a larger LR + indicates a 
greater likelihood of the disease, and a smaller LR- indicates a smaller likelihood of the 
disease. These values have been interpreted according to the following scale:18 

r=ito . 1  

LR-

.1 to .2 .2 to .5 

+--- Important 

.5 to 2 

Unimportant 

LR+ 

2 to 5 5 to 1 0  

Important -

A LR + over 5 and a LR- lower than 0.2 represent relatively important effects. Likeli­
hood ratios between 0.2 to 0.5 and between 2 to 5 may be important, depending on the 
nature of the diagnosis being studied. Values close to 1.0 represent unimportant effects. 
A likelihood ratio of 1.0 essentially means the test is useless; that is, the true positive 
and false positive (or true negative and false negative) rates are the same. 

Example 
Let's apply this measure to the functional reach data. As shown in Table 27.2B, the 
LR + = 3.75. Therefore, with a positive test, the likelihood of a patient being at risk for 
falls is increased by almost 4 times. This represents a potentially important value. The 
LR- = 0.76. This represents a small and unimportant value, close to 1 .0. Therefore, 
based on these data, the FRT may help to improve our confidence with a positive test, 
but does not add important information with a negative test. Going back to the con­
cepts of SpPin and SnNout, a large LR + tells us that a positive test is good at ruling the 
disorder IN. A very low LR- tells us that the negative test is good at ruling the disor­
der OUT. We can confirm this by looking at the posttest probabilities. 
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FIGURE 27-2 Nomogram to determine posttest probabi l ities using l i kel ihood ratios. 

Using a Nomogram to Determine Posttest Probabilities 
A nomogram, shown in Figure 27.2, has been developed to determine posttest proba­
bilities based on pretest probabilities and likelihood ratios.22 To use the nomogram, we 
begin on the left by marking the pretest probability. The center line identifies the likeli­
hood ratio. If we draw a line connecting these two points and extend it to the right mar­
gin, we find the posttest probability associated with the test. 

For our example, Figure 27.3 shows a mark for 70% pretest probability based on 
prevalence data. Therefore, if we obtain a positive test (LR + = 3.75), our posttest prob­
ability would approach 90%. With a positive test we have improved our confidence in 
this patient being at risk for falls by almost 20%. If we obtained a negative test 
(LR- = 0.76), our posttest probability would be approximately 60%. The patient still 
has a 60% chance of being at risk for falls-we have not improved our diagnostic cer­
tainty very much. Therefore, with a negative test other assessments may be necessary 
to accurately identify if the patient is truly not at risk. 
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FIGURE 27.3 Use of nomogram to show posttest probabil ity based on 70% pretest probabi l ity with 
LR+ = 3.75 and LR- = Oo76o 

It is important to realize that the posttest probability will be dependent on the sen­
sitivity and specificity of the diagnostic test (translated to a likelihood ratio) as well as 
the clinician's estimate of the pretest probability for an individual patient. For example, 
with a positive FRT, if we start with a pretest probability of 20%, we would get a 
posttest probability of 50% for a positive test. With a pretest probability of 5%, this test 
would increase our posttest certainty to only 15%. Where we start will influence the 
degree to which our certainty can l?e improved by the test. 

Calculating Posttest Probabilities 
When the nomogram is not handy, posttest probabilities can be obtained by converting 
the pretest probability to an odds value as follows: 

1. Convert the pretest probability (prevalence) to pretest odds: 

pretest probability 
Pretest odds = 0 0 1 - pretest probabll1ty 

070 
1 - .70 

= 203 (2707) 
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2. Multiply the pretest odds by the likelihood ratio to get the posttest odds: 

Posttest odds = pretest odds*LR = 2.3 .. 3.75 = 8.625 (27.8) 

3. Convert the posttest odds to the posttest probability: 

posttest odds 
Posttest probability = 

dd 1 posttest o s + 
8��25 1 = .896 or 89.6'Yc, (27.9) 

8.6 + 

Once again, we show that with a 70% pretest probability and a LR+ of 3.75, our posttest 
probability has risen to 90%. This form of calculation will usually be more precise than 
using the nomogram. Several Internet programs are also available for calculation of 
posttest probabilities. 23'24 

When Several Tests Are Needed 
Applying likelihood ratios to clinical practice will necessitate a strong understanding 
of diagnostic principles. The threshold for making a decision about a diagnosis may 
not be reached until several tests have been completed. When tests are performed 
serially, the posttest probability for one test can be used to estimate the pretest prob­
ability for the subsequent test. This is appropriate only when the tests are independ­
ent of each other. Straus et af recommend "chaining" likelihood ratios for this 
purpose, The posttest odds of the first test become the pretest odds for the second test. 
Therefore, by multiplying the new pretest odds by the likelihood ratio for the second 
test, we obtain the posttest odds for the second test. This can then be converted to 
posttest probability. 

Confidence I ntervals  
Sensitivity, specificity and likelihood ratios can also be expressed in terms of confidence 
intervals (see Table 27.2C). Although these values are often not reported, they are 
important to understanding the true nature of these estimates.25 Given a sample of 
scores, the confidence interval will indicate the range within which we can be sure the 
true population value will falL Although not interpreted in terms of significance test­
ing, confidence intervals for these measures of diagnostic accuracy will indicate the rel­
ative stability of the test's results; that is, with a wide confidence interval we would be 
less likely to consider the value a good estimate.26 Calculators for confidence intervals 
are available on the Internet.27,28 

Reporting Diagnostic Stud ies: The STARD Statement 
In 2000, a consensus meeting of international researchers and journal editors resulted 
in a recommendation for quality reporting of diagnostic studies. This group devel­
oped the Standards for Reporting of Diagnostic Accuracy (STARD) statement, consist­
ing of a checklist of 25 items that would allow authors to ensure they were including 
all relevant information in an article, including essential elements of the design and 
conduct of their study, the execution of tests, and their results.29 The checklist will also 
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allow readers to determine the potential for bias in a study, and to judge the general­
izability of the results. 

The STARD checklist is shown in Table 27.3. The statement has been published in 
several journals, and the reader is encouraged to refer to any one of these references for 
detailed descriptions of item criteria.30-33 A flow diagram is also recommended to illus­
trate the number of participants at each stage of the study and to communicate the key 
elements of the design (see Figure 27.4). 

TABLE 27.3 STARD CHECKLIST OF ITEMS TO IMPROVE THE REPORTING 
OF STUDIES ON DIAGNOSTIC ACCURACY 

Section and topic 

TITLE/ ABSTRACT I 
KEYWORDS 

INTRODUCTION 

METHODS 
Participants 

Test methods 

Item 

2 

3 

4 

Identify the article as a study on diagnostic accuracy 
(recommend MeSH heading 'sensitivity and 
specificity'). 

State the research questions or study aims, such as 
estimating diagnostic accuracy or comparing accuracy 
between tests or across participant groups. 

Describe the study population: the inclusion and exclu­
sion criteria, setting and location(s) where the data were 
collected. 

Describe participant recruitment: was recruitment based 
on presenting symptoms, results from previous tests, or 
the fact that the participants had received the index 
test(s) or the reference standard? 

5 Describe participant sampling: was the study population 
a consecutive series of participants defined by the 
selection criteria in items (3) and (4)? If not specify how 
patients were further selected. 

6 Describe data collection: was data collection planned 
before the index test and reference standards were per­
formed (prospective study) or after (retrospective study)? 

7 
8 

Describe the reference standard and its rationale. 
Describe technical specifications of material and meth­
ods involved including how and when measurements 
were taken, and/or cite references for index tests and 
reference standard. 

9 Describe definition of and rationale for the units, cutoffs 
and/or categories of the results of the index test(s) and 
the reference standard. 

1 0 Describe the number, training and expertise of the per­
sons executing and reading the index tests and the ref­
erence standard. 

1 1  Describe whether or not the readers of the index tests 
and reference standard were bl ind (masked) to the 
results of the other test and describe any other clinical 
information available to the readers. 

on page # 
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TABLE 27.3 STARD CHECKLIST OF ITEMS TO IMPROVE THE REPORTING 
OF STUDIES ON DIAGNOSTIC ACCURACY (continued) 

Section and topic Item 

Statistical 1 2  Describe methods for calculating o r  comparing measures 
methods of diagnostic accuracy, and the statistical methods used 

to quantify uncertainty (e.g. 95% confidence intervals). 

1 3  Describe methods for calculating test reproducibility, 
if done. 

RESULTS 
Participants 1 4  Report when study was done, including beginning and 

ending dates of recruitment. 
1 5  Report clin ical and demographic characteristics of the 

study population (e.g. age, sex, spectrum of presenting 
symptoms, comorbidity, current treatments, recruitment 
centers). 

1 6  Report the number of participants satisfying the criteria 
for inclusion that did or did not undergo the index tests 
and/or the reference standard; describe why participants 
failed to receive either test (a flow diagram is strongly 
recommended). 

Test results 1 7  Report time interval from the index tests to the reference 
standard and any treatment administered between. 

1 8  Report distribution of severity of disease (define criteria) 
in those with the target condition; describe other diag-
noses in participants without the target condition. 

1 9  Report a cross tabulation of the results of the index 
tests (including indeterminate and missing results) by 
the results of the reference standard; for continuous 
results, the distribution of the test results by the results 
of the reference standard. 

20 Report adverse events from performing the index tests 
or the reference standard. 

Estimates 21  Report estimates of diagnostic accuracy and  measures 
of statistical uncertainty (e.g. 95% confidence intervals). 

22 Report how indeterminate results, missing responses 
and outliers of the index tests were handled. 

23 Report estimates of variability of diagnostic accuracy 
between subgroups of participants, readers or centers, 
if done. 

24 Report measures of test reproducibility, if done. 
DISCUSSION 25 Discuss the cl inical applicability of the study findings. 

Available at: <http://www.stard-statement.org/website%20stard/> Accessed April 1 2, 2007. 

on page # 
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r----------1 Children With Suspected 1----------, 
Appendicitis, N = 1 77 

Evaluated With 
Ultrasonography, N = 1 39 

Evaluated With CTRC, 
n = 1 08 

No Appendicitis, n = 1 0 Appendicitis, n = 1 

FIGURE 27.4 Study profile flow diagram of patients with suspected appendicitis evaluated in an emer­
gency department during a 6-month study period. At each point, the accuracy of a positive or negative test 
is documented. (From Garcia Pena, BM et a l .  U ltrasonography and l imited computed tomography in the 
diagnosis and management of appendicitis in ch i ldren. }AMA 1 999;282 : 1  041 -1 046, Figure 2, p. 1 044. 
Used with permission of the American Medica l  Association.) 
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RECEIVER OPERATING CHARACTERISTIC (ROC) CURVES 

Cutoff Scores 
Although continuous scales are considered preferable for screening because they are more 
precise, they are often converted to a dichotomous outcome for diagnostic purposes; that 
is, a cutoff score is established to demarcate a positive or negative test. For example, a spe­
cific level of blood pressure (a continuous scale) is used to determine if a patient should or 
should not be placed on a therapeutic regimen for hypertension. In the previous example 
of functional reach, a test score of less than 10 in. was considered indicative of fall risk. 
However, if a cutoff score of 12 in. was used, the sensitivity and specificity would be dif­
ferent. The problem, then, is to determine what cutoff score should be used. This decision 
point must be based on the relative importance of sensitivity and specificity, or the cost of 
incorrect outcomes versus the benefits of correct outcomes. Consider this analogy: 
Although there may be costs associated with unnecessary preparations in predicting a 
storm that does not occur (false positive), these costs would probably be considered minor 
relative to the danger of failing to predict a storm that does occur (false negative). 

Suppose we use the Functional Reach Test to predict if an elderly individual is at risk 
for falling, and the individual with a low score is referred to a balance exercise program. If 
the individual is not truly at risk (false positive), the outcome may be considered low cost, 
compared to the situation where an individual who is at risk is not correctly diagnosed 
(false negative), not referred for treatment, and injures herself in a fall. Therefore, it might 
be reasonable to set the cutoff score low, to avoid false negatives, thereby increasing sensi­
tivity. Conversely, consider a scenario where a test is used to determine the presence of a 
condition that requires potentially life-threatening surgery. A physician would want to 
avoid the procedure for a patient who does not truly have the condition. For this situation, 
the threshold might be set high to avoid false positives, increasing specificity. We would 
not want to perform this procedure unless we knew for certain that it was warranted. 

Obviously, it is usually desirable for a screening test to be both sensitive and spe­
cific. Unfortunately, there is often a compromise between these two characteristics. One 
way to evaluate this decision point would be to look at several cutoff points, to deter­
mine the sensitivity and specificity at each point. We could then consider the relative 
trade-off to determine the most appropriate cutoff score. Those who use a screening tool 
must decide what levels of sensitivity and specificity are acceptable, based on the con­
sequences of false negatives versus false positives. It is often necessary to combine the 
results of several screening tests to minimize the trade-off between specificity and sen­
sitivity. We will discuss this approach shortly in relation to clinical prediction rules. 

The ROC Curve 
The balance between sensitivity and specificity can be examined using a graphic represen­
tation called a receiver operating characteristic (ROC) curve. This procedure actually 
evolved from radar and sonar detection strategies developed during World War II to 
improve signal-to-noise ratios. Suppose we were listening to a radio station that has a weak 
signal. We turn the volume up so we can hear better, but as we do so, we not only pick up 
the desired signal, but background noise as well. At lower volume settings, we will hear 
the signal more than the noise. But there will come a point, as we increase volume, that the 
noise will grow faster than the signal; that is, the signal has reached its full capacity, but the 
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noise continues to increase. If we set the volume to its maximum, we may claim that the 
signal is strong, but the noise will be so great that the signal will be indecipherable. There­
fore, the optimal setting will be where we detect the largest ratio of signal to noise. 

This is essentially what we are trying to do with a diagnostic test. We want to detect 
the "signal" (the presence or absence of the disease-the true positive and true nega­
tive) with the least amount of interference possible (incorrect diagnoses-false positive 
and false negative). The ROC curve diagrams this relationship. It allows us to answer 
the question: How well can a test discriminate between signal and noise-can it dis­
criminate between the presence or absence of disease?34 

Constructing the ROC Curve 
The process of constructing an ROC curve involves setting several cutoff points for a 
test and calculating sensitivity and specificity at each one. The curve is then created 
by plotting a point for each cutoff score that represents the proportion of patients cor­
rectly identified as having the condition (true positives) on the Y axis against the pro­
portion of patients incorrectly identified as having the condition (false positives) on 
the X axis. The Y axis represents sensitivity, and the X axis represents one minus 
specificity (1 - specificity).t 

To illustrate this process, consider again the example of Functional Reach in 
patients with Parkinson's disease. We have created a hypothetical dataset for the sam­
ple of 43 patients who, based on their 6-month history of falls, have been identified as 
"at risk" (they have fallen at least once, n = 30) or "not at risk" (they have not fallen, 
n = 13). Table 27.4A shows the distribution of scores for the patients in each risk group, 
converting the continuous scores to l-inch increments. 

Table 27.4B shows the distribution of scores at 5 cutoff points. It is generally recom­
mended that at least 5 to 6 points should be used to plot an ROC curve. We calculate the 
sensitivity and specificity of the test at each cutoff point. For this example, higher scores 
indicate better balance, and therefore, less likelihood to fall. Lower scores will result in a 
diagnosis of "at risk" for falls. Table 27.4B shows the number of true positive and false pos­
itive scores at each cutoff point, and the corresponding values for sensitivity and 
1 - specificity. For example, if we use a cutoff score of 10 in., then all those with a score 
of 10 inches or less will be diagnosed "at risk." Those who obtained a score greater than 10 
inches will be considered "not at risk." With this cutoff score, 9 individuals have been cor­
rectly identified "at risk," and 1 has been incorrectly diagnosed. This leads to a correspond­
ing sensitivity of .30 and specificity of .92, which results in 1 - specificity of .08. Similarly, 
with a cutoff score of 12 inches, all those who obtained a score of 12 inches or less will be 
considered "at risk." Those with scores above 12 inches will be diagnosed "not at risk." 
When this cutoff score is used, 25 individuals are correctly diagnosed and 7 are incorrectly 
diagnosed. This leads to a corresponding sensitivity of .83 and 1 - specificity of .54. These 
values are then plotted to create the ROC curve (see Figure 27.5). 

+If we take all those who are diagnosed negative [(b + d) in Table 27.4] out of this total (100%), those who 
tested negative (true negatives) equal l.OO-d (specificity). Therefore, the remainder, or those who tested pos­
itive (false positives), would be 1 .00-specificity. 
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TABLE 27.4 HYPOTHETICAL DATA FOR THE FUNCTIONAL REACH TEST 
WITH DIFFERENT CUTOFF POINTS 

A. DATA 

Reach Score 
(Inches) 

>13 
12.1 - 13 
11 .1  - 12 
10.1 - 1 1  

9.1 - 1 0  
�9 

Known Group 

At Risk 
( + Fall Hx) 

n = 30 

2 
3 
7 
9 

8 

Not at Risk 
( - Fall Hx) 

n = 13 

0 
6 
4 
2 
1 
0 

B. TRUE POSITIVE AND FALSE POSITIVE RATES 

Cutoff Point True False 
(Positive test if �) Positives Positives Sensitivity Specificity 1 - Specificity 

1 4  30 1 3  
1 3  28 1 1  
1 2  25 7 
1 1  21 3 
1 0  9 1 
9 8 0 
8 0 0 

C. OUTPUT: ROC CURVE 

Area Under the Curve 

95% Confidence 
Interval 

Lower Upper 
Area Std. Error Sig. Bound Bound 

.763 .077 .007 .61 3 . 9 1 3  

1 .00 
0.93 
0.83 
0.70 
0.30 
0.27 
0.00 

0.8 

� 0.6 
� ·u; c Q) 
[f) 0.4 

0.2 
/ 

/ 
/ 

/ 

0.00 
. 1 5  
.46 
.77 
.92 

1 .00 
1 .00 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

1 .00 
0.85 
0.54 
0.23 
0.08 
0.00 
0.00 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

/ 

/ 
/ 

/ 

0.0 -f----r------,--..,.-----.--� 
0.0 0.2 0.4 0.6 0.8 1 .0 

1 - Specificity 
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FIGURE 27.5 Receiver operating characteristics (ROC) curve for Functional Reach scores at different 
cutoff points ( indicated by circled numbers). A cutoff score of 1 1 ,  at the turn of the curve, appears to pro­
vide the best balance between true positives and false positives. 

The curve is completed at the origin and the upper right hand comers, reflecting 
cutoff points above and below the highest and lowest scores. For example, with a cut­
off score at 14, all subjects will be diagnosed "at risk." Therefore, all those truly "at risk" 
are correctly diagnosed (true positive rate is 100%), and all those "not at risk" are incor­
rectly diagnosed (false positive rate is 100%). Similarly, with a cutoff score of 8, all sub­
jects will be diagnosed "not at risk." Therefore, all those truly "at risk" will be 
incorrectly diagnosed (true positive rate is zero), and all those "not at risk" will be cor­
rectly diagnosed (false positive rate is zero). 

Interpreting the ROC Curve 
The ROC curve is plotted on a square with values of 1 .0 for sensitivity and 
1 - specificity at the upper left and lower right comers, respectively. A perfect test 
instrument will have a true positive rate of 1 .0 and a false positive rate of zero, result­
ing in a curve that essentially fills the square; that is, it will go from the origin to the 
upper left comer to the upper right hand comer. A noninformative curve occurs when 
the true positive and false positive rates are equal, which means that the test provides 
no better information than 50 : 50 chance. This curve starts at the origin and moves diag­
onally to the upper right hand comer (shown as the broken line in Figure 27.5). 
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If we wanted to compare two tests to determine which was a better diagnostic tool, we 
could compare ROC curves to see which curve more closely approximates the perfect 
curve. This provides only a visual basis of comparison, however, and a quantitative 
standard is more definitive. The best index for this purpose is a measure of the area 
under the curve (AUC). This value equals the probability of correctly choosing 
between normal and abnormal signals. This means that, given a test with an ROC curve 
area of .76, as in our current example, and presented with a randomly chosen pair of 
patients, one with the disorder and one without, the clinician would choose the correct 
diagnosis 76% of the time. Therefore, the area represents the ability of the test to dis­
criminate between those at risk and those not at risk. A perfect test has an area of 1.00; 
using such a test would allow one to always identify the patient with disease. 

Table 27.4C shows output for the area under the curve as well as a test of signifi­
cance and confidence intervals. We are 95% confident that the true area under the curve 
will fall between 61% and 91%. 

Choosing a Cutoff Point 
In addition to making comparisons or describing the relative effectiveness of a test for 
identifying a disorder, we can also use the ROC curve to decide which cutoff point 
would be most useful. Most ROC curves have a steep initial section, which reflects a 
large increase in sensitivity with little change in the false positive rate. A relatively flat 
region across the top is also typical. Neither of these sections of the curve make sense 
for choosing a cutoff point, as they represent little change in one component of the 
curve. Usually, the best cutoff point will be at the point where the curve turns.34 In 
Figure 27.5, a marked turn occurs at the cutoff point of 11 in., suggesting that this cut­
off would provide the best balance between sensitivity and specificity for this test. At 
that point we would miss diagnosing risk for 9 out of the 30 individuals who have 
fallen, and we would incorrectly target 3 out of the 13 nonfallers. The final choice of a 
cutoff, however, must be based on how the clinician and patient see the impact of an 
incorrect identification. The ROC curve should only act as a guide for that decision. 

CLINICAL PREDICTION RULES 
In the previous sections we have described how sensitivity, specificity and related con­
cepts can be used to support a diagnostic or prognostic classification based on a partic­
ular test score. In clinical practice, however, the complexity of patient conditions may 
require that a combination of predictors be used to support an outcome classification. 
Although clinical experience will often provide an intuitive sense of which findings 
from the history and physical examination are important for an accurate assessment, 
our focus on evidence-based practice demands that we strive for greater certainty in 
our diagnostic and prognostic assessments.35 
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Clinical prediction rules (CPR)* are tools that quantify the contributions of dif­
ferent variables to the diagnosis, prognosis or likely response to treatment for an indi­
vidual patient.36 The objective of CPRs is to reduce uncertainty by demonstrating how 
specific clusters of clinical findings can be used to predict outcomes.37 

Diagnosis 
Perhaps the most obvious application of a CPR is to assist in the diagnosis of a disorder 
based on clinical signs. An excellent example of this application is found in the work of 
Stiell et al38 who developed clinical prediction rules for the use of radiography with 
acute ankle injuries. They noted that many patients with ankle injuries did not have a 
fracture, and yet the typical response in emergency care was to order an X-ray. Esti­
mates had shown, however, that the prevalence of fractures with ankle injuries was less 
than 15%. So this became an interest in efficiency and cost-savings as well as a desire 
for diagnostic accuracy. The prediction rules that were developed through this process 
have come to be known as the Ottawa Ankle Rules (based on Stiell's affiliation with 
Ottawa Civic Hospital), which include rules for both ankle and midfoot injuries. The 
indicators for ruling out a fracture are based on a lack of tenderness in specific areas of 
the foot or ankle, and the patient's ability to bear weight on the affected limb, even with 
a limp. Table 27.5 shows these guidelines, which have been validated in different coun­
tries39 and in different populations.40 

Systematic review of the Ottawa Ankle Rules has shown that they are 95 - 100% 
sensitive, with a negative likelihood ratio of 0.08.41 If we apply this likelihood ratio to a 
pretest probability of 15% (based on prevalence estimates), we can see that there is less 
than 1 .5% probability of actual fracture in those with a negative test (see Figure 27.6). 
Using the logic of SnNout, with a test that is highly sensitive, a negative test will effec­
tively rule out the disorder. Therefore, a negative result using these guidelines will con­
sistently and accurately rule out fractures after ankle or foot injury, making an X-ray 
unnecessary. Specificity tends to be closer to 50%, so a positive test does not necessar­
ily mean a fracture is present, requiring an X-ray to rule out a fracture. Therefore, 
although there will still be some X-rays taken that do not show a fracture, the rules will 
effectively reduce the number of unnecessary radiographs taken.42 

Other examples of diagnostic prediction rules include guidelines for detecting deep 
venous thrombosis,43 pulmonary embolism/4 dementia,45 and to identify pre­
menopausal women with low peak bone mass.46 Guidelines have also been developed 
for ordering X-rays for knee injuries, called the Ottawa Knee Rules,47'48 and cervical 
spine injuries, called the Canadian C-Spine Rule.49 

Prognosis and Risk 
Clinical predication rules can also be established to determine the degree to which indi­
viduals are at risk for certain outcomes. For example, Kanaya and colleagues50 devel­
oped a CPR to identify older adults who were at risk for type 2 diabetes. They initially 

tyou may also see these referred to as clinical decision rules or clinical decision guidelines. 
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TAB LE 27.5 CRITERIA FOR THE OTTAWA ANKLE RULES 

For a patient with an ankle or foot injury: 

An ankle X-ray is required only if there is pain in the malleolar zone AND any one of the following: 
• Bone tenderness along the distal 6 em of the posterior edge of the fibula or tip of the lateral 

malleolus OR 
• Bone tenderness along the distal 6 em of the posterior edge of the tibia or tip of the medial malle­

olus OR 
• I nability to bear weight for four steps at the time of injury and when examined. 

A) Posterior 
edge or 
tip of lateral 
malleolus 

C) Base of 5th 
Metatarsal 

LATERAL V IEW 

MALLEOLAR 
ZONE 

MEDIAL V IEW 

A Foot X-ray is required if there is pain in the m idfoot AND 

• Bone tenderness at  the base of  the 51h metatarsal OR at the navicular OR 
• Inabil ity to  bear weight for four steps at  the time of  injury and when examined. 

B) Posterior edge 
or tip of medial 
malleolus 

D) Navicular 

From Stiell I .  Wells G ,  Laupacis A, Brison R,  Verbeek R, Vandemheen K, Naylor D. A multicentre trial to intro­
duce clinical decision rules for the use of radiography in acute ankle injuries. BMJ 1 995; 31 1 :594-597. (Figure 
from Google Images. <http://www. images.google.com> Accessed March 27, 2006. Reprinted with permission.) 

derived the rule on a cross-sectional cohort, and then validated it using a prospective 
cohort of community-dwelling men and women. Of the nine variables that were ini­
tially entered into their analysis, only two demographic and two laboratory variables 
were significantly associated with incident diabetes. These were age 2:::70 years, being 
female, having a fasting plasma glucose 2:::95 mg/dl and triglycerides 2:::150 mg/dl. 
They assigned points to these four risk factors and determined a total score for each 
participant, with scores ranging from 0 to 7 points. With a score of 4 or higher, the sen­
sitivity of the rule was 46%, specificity 82% and LR+ = 1 .9. Figure 27.7 shows the ROC 
curve for this analysis. Based on these results, the authors suggest that individuals who 
meet this threshold should receive appropriate lifestyle or pharmacologic therapies to 
prevent the onset of type 2 diabetes. 

Other examples of prognostic clinical prediction rules include identifying risk for 
functional decline in older community-dwelling women,51 identifying patients at risk 
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FIGURE 27.6 Nomogram showing determ ination of posttest probabi l i ty with use of the Ottawa ankle 
rules. Based on 1 5% prevalence of ankle fractures with ankle injury, we estimate the pretest probabi l ity 
at 1 5%. With a negative l i kel i hood ratio of .08, we obta in a posttest probabi l ity of less than 1 .5%. This 
indicates that with a negative test, the probabi l ity of an ankle fracture is almost n i l .  

of complications following cardiac surgery,S2 identifying factors that lead to hospitaliza­
tion with asthma,S3 and identifying workers with nonspecific back pain who are likely 
or not likely to return to work in good health. 54 

Response to Intervention 
Clinical prediction rules have also been developed to determine the likelihood that a 
patient will respond positively to a specific intervention. For example, Hicks et al55 
designed a prospective cohort study to predict whether patients with nonradicular low 
back pain are likely to benefit from a program of stabilization exercises. They examined 
patients before and after an 8-week program, and assessed success based on change in 
the Oswestry Disability Questionnaire score. The best rule for predicting success was 
the presence of at least 3 of 4 variables: positive prone instability test, aberrant move­
ments present, average straight leg raise greater than 91°, and age greater than 40 years 
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FIGURE 27.7 ROC curve for the val idation of a c l in ical prediction rule for type 2 diabetes. The curve 
represents results using 0 to 7 points, based on presence of one to four risk factors. The curve turns at the 
point representing 4 points (arrow), with sensitivity of 46% and 1 - specificity of 1 7%. (Adapted from 
Kanaya AM, Fyr CLW, de Rekeneire N, et a l .  Predicting the development of diabetes in older adults. 
Diabetes Care 2005; 28:404-408. Based on data from Table 3, p. 406.) 

old. This combination had a sensitivity of 56%, specificity of 86% and a LR + of 4.0. A 
separate model was developed to predict failure of treatment. 

Other examples of CPRs for intervention response include identifying patients who 
will benefit from cervical manipulation for neck pain,56 from spinal manipulation for 
low back painP from the use of compression bandages for treatment of venous leg 
ulcers,S8 from patellar taping for anterior knee pain,59 and those who are likely or not 
likely to benefit from nonarthroplasty knee surgery.60 

Val idating Cl in ical Prediction Rules 
The development of a clinical prediction rule is a three-step process. 35 First, the factors 
that potentially contribute to prediction of the outcome are identified in a cohort of 
patients. This allows for the derivation of the rule, establishing which variables are most 
predictive. The study by Hicks et al55 on the effectiveness of stabilization exercises is 
an example of this first step. Further study needs to be done to apply these results to 
other samples. 

The second step requires validation of the rule in several cohorts in different set­
tings. The study by Kanaya et al50 looking at variables related to onset of diabetes illus­
trates this step. They validated the prediction rule in a sample of over 2,000 white and 
African-American men and women in two major cities over 5 years. 

Finally, an impact analysis will demonstrate if the rule has changed clinician 
behavior and resulted in beneficial outcomes. The Ottawa Ankle Rules, for example, 
have been studied in many countries and settings,61 and have been reported to signifi­
cantly decrease the number of unnecessary ankle radiographs.62 Even with the wide­
spread acceptance of this CPR, however, researchers and clinicians continue to test its 
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TYPE OF EVIDENCE 

At least one prospective 
validation in a different 

..J w 
population AND 

> One impact analysis w demonstrating change In ..J 
clinician behavior with 
beneficial consequences. 

Demonstrated accuracy in 

= 
either one large 

..J prospective study including 
w a broad spectrum of 
> patients and clinicians, OR w ..J Validated In several smaller 

settings that differ from one 
another. 

-

..J Validation in only one w I 

APPLICATION 

Rules that can be used in 
a wide variety of settings 
with confidence that they 
can change clinician 
behavior and improve 
patient outcomes. 

Rules that can be used in 
various settings with 
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FIGURE 27.8 Levels of evidence for c l in ical prediction rules. (Adapted from McGinn TG, Guyatt GH, 
Wyer PC, et al . Users' guides to the medical l iterature: XXI I :  How to use articles about c l in ical decision 
rules. }AMA 2000; 284:79-84.) 

validity, with various degrees of success.63-65 An excellent review of this process is 
available.66 

A hierarchy of evidence has been proposed to judge the applicability of a clinical 
decision rule, based on its having gone through the full process of validation (Figure 
27.8).35 Widespread use of a CPR is not recommended until it has been validated in at 
least one prospective study in a variety of settings and an impact analysis has demon­
strated its clinical utility. 

MEASURING CHANGE 
So much of our clinical decision making rests on the intent to promote change or 
progress in a patient's or client's condition or behavior. We need to document change 
in a way that will be meaningful to the patient, the clinician and third-party payers. We 
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use words like "better," "improved," "worse" or "declined" to indicate when some­
one's condition has changed, but these descriptors are clearly not sufficient to make 
reliable and valid judgments. 

In Chapter 6 we introduced the concept of responsiveness, which is the ability of 
an instrument to measure true clinical change.67 Generally, we can think of responsive­
ness as a ratio of signal (true change) to noise (variability or error). At this time we will 
consider various statistical approaches for measuring change, and the implications of 
these statistics for interpreting clinical data. 

As we search for useful ways to evaluate change, the good news is that there is 
extensive literature on the concept. The bad news is that there is little agreement on the 
best way to express or measure change in statistical terms. We will present several alter­
native methods for evaluating responsiveness, but we are unable to address the full 
scope of this topic. The reader is urged to refer to the literature for informative debate 
and discussion. 

A Continuum of Change 
When we think about measuring a difference in response from one time to another, we 
can conceptualize the amount of change along a continuum, as shown in Figure 27.9. We 
start with the minimum potentially detectable difference, which will depend on the 
precision of the measurement tool being used. If we are using a goniometer, can we detect 
changes in range of motion (ROM) of less than one degree or a half degree? If we are 
using a survey tool, such as the Functional Independence Measure (FIM), we are 
restricted to differences of at least one point; that is, no fractions of a point can be counted. 

Minimal Detectable Difference 
Beyond the precision of the instrument, however, we are concerned with its reliability. 
When we address the issue of change, we must be confident that observed differences 
from before to after treatment reflect true change, and not simply random measurement 
error. The standard error of measurement (SEM), described in Chapter 26, is the most 

Minimal 
Detectable Difference 

(MDD) 

Minimum 
change detectable 
beyond threshold 
of error 

Minimal Clinically 
Important Difference 

(MCID) 

Difference in 
those who 
experience small but 
important change 

--------- Within-person change ----------

FIGURE 27.9 Reference for withi n-person change along a cont inuum. 
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common statistic used to determine the minimal detectable difference (MDD).§ This 
is the smallest amount of change that can be considered above the threshold of error 
expected in the measurement. Theoretically, this value can be interpreted as a property 
of a measurement, remaining constant across samples,68 although it can vary depend­
ing on the reliability estimate used in its calculation. Stratford et al69 have also shown 
that the SEM will vary when calculated across different ranges of initial and follow-up 
scores, with a smaller SEM resulting at both extremes of a scale. 

The MDD is calculated using the following formula:70 

MOD% = z * SEM * V2 (27.10) 

This estimate is most often based on the 90% (z = 1 .65) or 95% (z = 1 .96) confidence 
interval. MDD9s means that 95% of stable patients demonstrate a random variation of 
less than this amount when tested on multiple occasions.71 

For example, Kennedy et af2 studied patients with osteoarthritis to determine meas­
urement stability in outcomes following total hip and knee arthroplasty. For the 
6-minute walk test (6MWT), they calculated a SEM of 26.29 meters. They obtained MDD90: 

MDD90 = 1 .65 * 26.29 * V2 = 61.24 m 

This says we can expect 90% of stable patients (those who have not changed) in this 
population to demonstrate random variation of less than 61 meters in repeated trials of 
the 6MWT. Therefore, if we take measurements of the 6MWT before and after interven­
tion, a change of 61 meters or greater would be considered true change. 

Norman et af3 have offered the interpretation that minimal differences are consis­
tently close to 0.5 standard deviation for discriminating the threshold of change using 
quality of life instruments. They support their findings with psychophysiological evi­
dence that people have a limit to their ability to discriminate tasks (such as saltiness of 
taste, loudness of sounds)/4 and that this limit is almost always close to 0.5 standard 
deviation. Therefore, they suggest that this criterion is potentially appropriate to iden­
tify the minimal detectable difference. 

The MDD can be considered a conservative estimate of a patient's progress, identi­
fying the smallest amount of change that could be interpreted as any improvement or 
decline. Therefore, using the MDD as a criterion for improvement may be thought of as 
having high specificity (avoiding false positives) but low sensitivity (finding many false 
negatives)?5 

Minimal Clinically Important Difference (MCID) 
The MDD may be considered a starting point to define change, but it is typically too 
small to represent a meaningful difference in the patient's response. Along the contin­
uum of change, we are concerned with identifying how much of a change will be 

§This measure is also called the minimal detectable change (MDC), the smallest detectable change (SOC) or 
smallest real change (SRC); it has also been called the reliable change index. 
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important. For example, if we measure ROM of knee flexion following knee arthro­
plasty, is a so change important? Does it indicate a meaningful difference in the patient's 
condition? While this may be an obvious example, consider a change of 5 mm in a 
visual analog scale for pain. Or a change of 5 points on the SF-36 measure of quality of 
life. Or a change of 5 mm in the measurement of a leg length discrepancy. Do these rep­
resent meaningful change? Would our threshold for important change vary across dif­
ferent groups of patients, conditions, levels of severity or cultural groups?76 

The most common threshold for meaningful change has been called the minimal 
clinically important difference (MCID) (see Figure 27.9).** This has been defined as 
the smallest change in an outcome measure that is perceived as beneficial by the 
patient, and that would lead to a change in the patient's medical management, assum­
ing an absence of excessive side effects and costs?7 The criterion for just how much 
change is considered important is the crux of the dilemma in this process. 

So how is the definition of "meaningful change" to be decided? This definition inher­
ently reflects an element of judgment, and several perspectives must be considered?6 For the 
patient, it may mean change that results in noticeable improvement in function or a reduc­
tion in symptoms. We may find, however, that patients place different values on degrees of 
improvement. To what extent does quality of life impact this perception? What amount of 
change in a score will correspond to trivial, small but important, moderate or large improve­
ment or deterioration?78 From the perspective of the clinician, it may mean enough change 
to warrant a revision in treatment or the patient's prognosis. At the institutional level, 
change may be viewed as important when it is sufficient to influence health care policy?9 

Two approaches have been used to define important change. Distribution-based 
methods are related to a distribution of scores, with a focus on the differences in group 
means as well as the variance within the distribution. Anchor-based methods use an 
external criterion to define clinical importance. 

Distribution-Based Approach 
Researchers are often interested in assessing the degree of change in a group of patients, 
to determine the effectiveness of an intervention and to generalize results to others. For 
this purpose, meaningful change is determined using a distribution-based approach. 
Several indices have been used for this purpose (see Table 27.6). 

Measures of Statistical Significance 
One approach to evaluating an instrument's responsiveness has been to analyze change 
scores using a pretest-posttest design. Repeated measures t-tests or analyses of variance 
(ANOVA) are used to establish significant differences from time 1 to time 2.84 Measure­
ments may be taken once before and after intervention, or there may be multiple meas­
ures as individuals are followed over time.85 This approach may involve only one 
group of subjects, or it may incorporate two or more groups. The assumption is made 
that change will occur due to treatment. Therefore, the instrument should be able to 

**This measure is also called the minimal clinically important change (MCIC) and the minimally important 
change (MIC). 
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TABLE 27.6 DISTRIBUTION-BASED METHODS TO DETERMINE 
IMPORTANT DIFFERENCE 

Statistic 

Effect size80·81 

Standardized 
response mean82 

Guyatt's respon­
siveness index 
67.83 

Standard error of 
measurement 68 

Formula 

Xpost - Xpre ES = ----

spre 

Application and Considerations 

• Provides information on magnitude of change in stan­
dardized units relative to baseline standard deviation. 

• Difference between pretest and posttest means, 
divided by standard deviation of pretest scores. 

• Not affected by sample size, but may vary among 
samples with different baseline variability. 

Xpost - Xpre • Provides information on magnitude of change in 
SRM = standardized units relative to variability of change. 

5<hange • Will vary as a function of effectiveness of treatment.76 

GRI = MCID 
� 

SEM = s,� 

• Provides a measure of change relative to variability in 
scores among patients who are clinically stable. 

• The denominator includes the mean square error from 
an ANOVA, which may be obtained for test-retest relia­
bility scores, or repeated observations in clinically 
stable patients. 

• Assumes measurement error is relatively constant 
across the range of possible scores. 

• Based on standard deviation of change scores and 
test-retest reliability coefficient. 

• Considered by some to represent minimal detectable 
difference.96 

demonstrate such change from before to after treatment, or between groups that were 
treated and those that were not. A statistically significant difference, then, would 
demonstrate that the instrument was responsive to change. A confidence interval can 
provide an estimate of the range of change that can be expected. 

The interpretation of meaningful change can be quite different, however, if one is 
focused on what that change means to an individual, versus decisions based on group 
differences.86 We must distinguish between the clinical significance of a particular change 
score for an individual patient and the statistical significance of a mean change of the 
same magnitude for a group of patients.87 Guyatt et al88 offer the example of a mean 
change in blood pressure of 2 rnrn Hg in a clinical trial, which may translate into a reduc­
tion in the number of strokes in a population. But this amount of change in an individ­
ual would probably be considered trivial, within the range of error of measurement. 

Effect Size 
Looking at effect size is generally considered more appropriate to determine if mean­
ingful change has occurred, because it does take group variability into account. Effect 
size is a standardized measure of change from baseline to final measurement. Three 
forms of effect size have been used. 

Effect Size I ndex (ES) .  The effect size index is a ratio of the mean change score 
divided by the standard deviation of the baseline scores (see Table 27.6). Therefore, a 
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measure that has high variability in initial scores will have a smaller effect size. Cohen81 
has suggested that an effect size of .20 or less represents a small change; .50 represents 
moderate change; and .80 represents a large change. These values are interpreted rela­
tive to baseline variability. For instance, a moderate effect size reflects a change of at 
least one-half the baseline standard deviation. 

Standardized Response Mean (SRM) .  The standardized response mean is 
another form of effect size index,82 sometimes referred to as the efficiency index.89 The 
SRM is a ratio of change from pretest to posttest divided by the standard deviation of 
the change scores (see Table 27.6). Therefore, a distribution that has high variability in 
the degree of change will have a small SRM. Cohen's criteria for small, moderate and 
large effect sizes are used for this index as well. 

Guyatt's Responsiveness I ndex (GRI ) .  A third form of effect size was proposed by 
Guyatt et al,90 called the responsiveness index. The GRI uses an anchor-based MCID 
for a particular measure, or the smallest difference between baseline and posttest that 
would represent a meaningful benefit in a group of patients. We will discuss various 
methods to determine an anchor-based MCID shortly. When the MCID is not known, 
the difference between baseline and posttest can be used.67 The denominator for this 
index is obtained from an ANOVA of repeated observations in a group of subjects who 
are clinically stable, which is a measure of test-retest reliability (see Table 27.6). There­
fore, the denominator reflects the intrinsic variability of the instrument.67 A disadvan­
tage of this index is that data on stable subjects may not always be available. Once again, 
the values of .20, .50 and .80 are used to represent small, moderate and large effects.91 

To illustrate the application of these measures, Quintana et af1 studied the respon­
siveness of the Western Ontario and McMaster Universities Osteoarthritis Index 
(WOMAC) in a group of patients following total hip replacement. They calculated ES, 
SRM and GRI at 6 months and 2 years, as shown in Table 27.7. Of interest are the con­
sistently higher values derived from the ES index and lower values derived from 
the GRI. Recall that the denominators for each of these measures will result in a 

TABLE 27.7 EFFECT SIZE MEASURES OF RESPONSIVENESS FOR THE WOMAC 
IN PATIENTS FOLLOWING TOTAL HIP REPLACEMENT 

At 6 months At 2 years 

Subscale ES SRM GRI ES SRM GRI 

Pain 2.1 0  1 .86 1 . 1 0  2.24 1 .98 2. 1 8  
Function 2.34 1 .80 1 .45 2.58 1 .97 1 .79 
Stiffness 1 .61 1 .39 0.81 1 .8 1  1 .53 1 . 1 2  

Data from Quintana JM, Escobar A, Bilbao A ,  et al. Responsiveness and clinically important differences for the 
WOMAC and SF·36 after hip joint replacement. Osteoarthritis Cartilage 2005; 1 3:1 076-1 083, from Table I l l ,  
p .  1 080. 
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different estimate. All values are considered quite large, however, indicating that the 
WOMAC is a responsive instrument that is capable of reflecting important change over 
time. 

Receiver Operating Characteristic Curves 
Another way to look at responsiveness is to consider it a way of discriminating between 
those who have changed and those who have not. Therefore, we can look at change as 
a "diagnosis," or the determination of whether a clinically important change has 
occurred against an external standard.92 In this context, responsiveness is described in 
terms of sensitivity and specificity. Sensitivity reflects the probability that someone who 
has truly changed will be identified has having changed. Specificity is the probability 
that someone who has not changed will be correctly identified. These values are then 
used to plot an ROC curve, as described earlier in this chapter: 

For example, Stratford et al85 looked at four questionnaires for assessing pain and 
function in patients with low back pain. They set different cutoff scores to represent 
change for each test and constructed four ROC curves. They then compared the area 
under the curves to determine which would be preferred for detecting change over time 
in this population (see Figure 27.10). 
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FIGURE 27.1 0 Receiver operati ng characteristic (ROC) curves for four low back pai n  questionnaires: 
Roland-Morris (RM), jan van Breeman UVB) pai n  scale and function scale, and the Oswestry (OSW). Areas 
under the curve were as follows: RM = 0.79; JVB pain = 0.79; )VB function = 0.66; and OSW = 0.78. 
A significant difference was found between the area for the )VB function questionnaire and the other three 
questionnaires. (From Stratford PW, Binkley j, Solomon P, et a l .  Assessing change over time in  patients with 
low back pain .  Phys Ther 1 994;74:528-533, Figure p. 53 1 .  Reprinted with permission of the American 
Physical Therapy Association.) 



Anchor-Based Approaches 

CHAPTER 27 • statistical Measures ofValidity 651 

In an anchor-based approach the magnitude of a change score is interpreted accord­
ing to some clinical criterion or "anchor" that is assumed to have inherent meaning. A 
common anchor is the patient's ordinal rating of improvement or decline-"! feel a lit­
tle better," "a lot better," "a little worse," or "a lot worse." A clinician may apply an 
anchor that relates to a minimal change in function or passing a threshold of impair­
ment that points to a change in treatment or goals. The disadvantage of anchor-based 
methods is that they do not take into account the variability or potential measurement 
error in an instrument. Therefore, it is important to establish the reliability of an instru­
ment when using it to estimate important change. Recall bias may also affect a patient's 
accurate estimate of improvement or decline. 

Global Rating of Change 
The construct of important difference has most often been evaluated using an ordinal 
scale, based on the patient's or clinician's subjective rating of change. Scales generally 
range from "a great deal worse" to "a great deal better," with as few as 5 points71 and 
as many as 15 points,77'85'93 with zero indicating no change (see Table 27.8). 

For example, Beninato et al94 used this approach to assess clinical change in func­
tion following stroke for patients who were discharged from a rehabilitation hospital. 
They used physician ratings on a 15-point scale to determine the MCID for the Func­
tional Independence Measure (FIM). Based on a cutoff score of 3 (somewhat better) to 
distinguish those who had achieved a MCID from those who did not, they identified a 

TABLE 27.8 GLOBAL RATING SCALE TO ASSESS MAGNITUDE OF CHANGE8 

Rating Description of Change 

7 A very great deal better 
6 A great deal better 
5 Quite a bit better 
4 Moderately better 
3 Somewhat better 
2 A l ittle bit better 
1 Tiny bit better, almost the same 
0 No change 

- 1  Tiny bit worse, almost the same 
-2 A little bit worse 
-3 Somewhat worse 
-4 Moderately worse 
-5 Quite a bit worse 
-6 A great deal worse 
-7 A very great deal worse 

a Adapted from Stratford PW, et al. Assessing change over time in patients with low back pain. Phys Ther 1 994· 
��� . 
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change of 22 points in the total FIM score as a meaningful difference in function from 
admission to discharge. Using a cutoff of S (a good deal better) the MCID was 27 points, 
which they defined as a "moderate important clinical change." 

Wolfe et al95 have suggested that while MCID is an important minimum, a "really 
important difference" represents a clinically important goal. They used several outcome 
measures with patients with rheumatoid arthritis to reflect change at this level based on 
satisfaction with health, independence and disability level. 

When assessing change, anchor-based methods are generally preferred over 
distribution-based methods because they reflect a definition of what is considered 
important.96 A combined strategy, however, using both approaches, may provide a 
stronger foundation for understanding meaningful change.97-99 

MOD and MCID Proportion 
Group values must be interpreted with reference to their sample size and variability. We 
know that statistical significance is greatly influenced by the number of subjects in a 
sample. Therefore, with a large sample, small differences may tum out to be significant 
even when they are meaningless. We also recognize that a mean is a measure of central 
tendency, and that individuals in the sample do not all experience that amount of 
change-some will have achieved more and some less. Therefore, any conclusions 
about an individual patient's response based on a mean may be seriously flawed. 

Consider, for example, a randomized trial of 1,000 patients who receive physical 
therapy to increase knee ROM following knee arthroplasty. Assume results show a sig­
nificant mean difference of so ROM for patients with knee arthroplasty. While statisti­
cally significant because of high power, this is probably an unimportant difference. On 
the other hand, consider the same situation with a smaller sample, in which a mean dif­
ference of so ROM is not significant. In this case, the researcher would probably con­
clude that therapy is not effective. This conclusion, however, ignores the possibility that 
treatment could have had a heterogeneous effect, 100 and some patients may have had 
much larger changes in ROM. Let's assume that a minimum of 1S0 is considered impor­
tant. We would need to look at the data to determine how many subjects actually had 
this much of an increase or higher, to determine if the treatment really was effective (see 
discussion of Number Needed to Treat in Chapter 28). Therefore, without looking at vari­
ability within the sample, we may be missing important information. 

When studying a dichotomous variable, decisions about improvement or decline 
are straightforward-the patient has either gotten better or not. When dealing with a 
continuous measure, however, it is necessary to determine how much change is mean­
ingful. Therefore, the proportion of individuals in a group that achieve minimal change 
can be considered another important benchmark to evaluate an intervention's effective­
ness. MDD or MCID proportion is the percentage of patients who exceed the mini­
mal standard of change, based either on the detectable change or the clinically 
meaningful change. These values can be especially useful for examining group data for 
program evaluation and quality assurance.97 

In their study of responsiveness for the WOMAC, described earlier, Quintana et af1 
determined that the MDD proportion was greater than 80% for pain and function sub­
scales, and the MDIC proportion was between 70% and 80% after 2 years following hip 
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joint replacement. These values demonstrate that most patients in this population do 
consider themselves "better." In another example, in a study of the effectiveness of a fit­
ness intervention for children with disabilities, Fragala-Pinkham et al101 found that 59% 
of those with developmental disabilities exceeded the MDD, as compared to only 29% 
of those with neuromuscular disabilities. They suggest that these data are more inform­
ative for evaluating the effects of treatment than overall mean changes. 

COMM ENTARY 

How Much I s  Better? Finding Mean ing in the Numbers 

Understanding the statistical bases for measurement va l idity is essentia l  as we strive 
to make informed evidence-based decisions. Some va l idity estimates are readi ly  rec­
ognized as appropriate methods for assessing va l idity, such as those used to meas­
ure diagnostic accuracy. Others, such as methods for eval uating change, are sti l l  
evolvi ng, and w i l l  develop further a s  time goes on .  The variety o f  ind ices used to 
assess change can be daunti ng, but more importantly, there is often confusion in ter­
minology. Many authors have used "minimal detectable difference" and "min imal 
c l in ical l y  important difference" as synonymous terms, a lthough they have been 
c learly defined and distinguished. These two important benchmarks shou ld remain 
distinct i f  we are to tru ly understand our measurements. 

C l in ical judgments regarding val idity of measurements must be based on some 
criterion that is relevant for a particu lar patient. Any given study w i l l  present data 
from a sample that has specific properties and that has been studied in  a specific 
context over a given time period. C l in icians must appraise that i nformation to deter­
mine if it is appropriately applied to thei r patients. Pub l ished val ues a l low us to pre­
dict our own patients' responses and give us a foundation for decision maki ng. It is 
essentia l ,  however, that we remain cognizant of the l im its of statistics as we apply 
them to our own situations. 

As our understanding of va l id ity grows, we w i l l  continue to struggle with the 
defin itions of c l in ical significance. The evidence-based practitioner w i l l  benefit from 
more complete reporting of l i kel i hood ratios, effect sizes and minimal change val ­
ues in c l in ical studies. Whenever possible, confidence intervals should be used to 
reflect population va lues. Estimates are needed for different settings, age groups, dis­
ease durations and basel ine conditions. C l in icians, patients and health pol icy ana­
lysts a l l  want to appreciate just how much better is "better." 
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CHAPTER 28 

Epidemiology: 
Measuring Risk 

Throughout this text, we have addressed the importance of understanding basic ele­
ments of research design and statistics for Clinical decision making, especially within 
the context of evidence-based practice. In this chapter we will present an important per­
spective in health care research based on principles of epidemiology. The information 
from epidemiological research can have direct influence on practitioners' day-to-day 
choices related to diagnosis, prognosis or intervention. The purpose of this chapter is to 
present statistical methods for measures of disease frequency, estimates of health risks 
for cohort and case-control studies, and the evaluation of treatment effects in random­
ized trials. 

THE SCOPE OF EPIDEMIOLOGY 
Classically, the field of epidemiology is concerned with the study of the distribution 
and determinants of disease, injury, or dysfunction in human populations. Epidemiol­
ogy literally began as the study of "epidemics," concerned primarily with mortality and 
morbidity from acute infectious diseases. Many of the health standards we take for 
granted today, such as clean water supplies, treatment of sewage and food refrigeration, 
can be credited to discoveries made through epidemiological investigations. 

Epidemiologists try to identify those who have a specific disorder, when and where 
the disorder developed and what exposures are associated with its presence. Epidemi­
ological questions often arise out of clinical experience, laboratory findings or public 
health concerns about the relationship between societal practices and disease outcomes. 
Through the analysis of health status indicators and population characteristics, epi­
demiologists try to identify and explain the causal factors in disease patterns. 

As medical cures and treatments have been developed to control many of these 
problems, and as patterns of disease have changed, the scope of epidemiology has 
broadened. Today epidemiology includes the study of chronic disease, disability and 
health status. Because we are often concerned with functional problems as well as dis­
ease states, we will use the terms disease, disorder and disability interchangeably to rep­
resent health outcomes, including illness, injury and physical, psychological or social 
dysfunction. This approach fits with the World Health Organization's definition of 
health, which encompasses social, psychological and physical well-being.1 

659 
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Epidemiology is distinguished as a research approach because of its unique concern 
with the identification of risk factors for disability and disease. Epidemiologic studies 
are generally distinguished as observational or experimental (or quasi-experimental). In 
observational studies there is no artificial manipulation of any of the study factors (see 
Chapter 13). Observational studies are categorized as descriptive or analytic. Descriptive 
studies are concerned with the distribution and patterns of disease or disability in a 
population. These are carried out when there is little knowledge about the state of health 
or frequency of disease. Analytic studies test hypotheses to determine if specific expo­
sures are related to health status or disease occurrence. Case-control and cohort studies 
are observational analytic approaches (see Chapter 13). Randomized controlled trials 
(RCT) are experimental analytic studies that are designed to test the effect of interven­
tions on health outcomes (see Chapter 10). 

DESCRIPTIVE EPI DEMIOLOGY: M EASURES 
OF DISEASE FREQUENCY 
Descriptive epidemiologic studies are done when little is known about the occurrence 
or determinant of health conditions. They will often provide information that can be 
used to set priorities for health care planning, and will generate hypotheses that can be 
studied using analytic methods. Descriptive studies may be presented as case reports, 
correlational studies, or cross-sectional surveys (see Chapter 14). 

Person,  Place and Time 
The purpose of descriptive epidemiologic studies i s  to describe patterns of health, dis­
ease and disability in terms of person, place and time. 

Who experiences this disorder? Relevant characteristics might include age, gender, 
religion, race, cultural background, education, socioeconomic status, occupation and so 
on. This is the demography of the disorder. Epidemiologists try to determine if individ­
uals with certain characteristics are more at risk for a particular disorder than others. 
For example, researchers have studied the increasing prevalence of type 2 diabetes in 
adolescents/ and the incidence of incontinence in women over age 45? 

Where is the frequency of disorder h ighest or lowest? Epidemiologists may be 
concerned with identifying restricted areas within a city or large geographic areas in 
which disease or exposures are commonly found. They may look at environmental fac­
tors such as weather, local industry, water source and lifestyle as potential causative fac­
tors. For instance, the early studies in AIDS documented high incidence in San Francisco 
and New York.4 Legionnaire's disease5 and severe acute respiratory syndrome (SARS)6 
are other examples of diseases that had specific geographic origins (see Box 28.1). 

When does the disorder occur most or least frequently? The epidemiologist 
will compare the present frequency of a disorder with that of different time periods. 
When the frequency of occurrence varies significantly at one point in time, some spe­
cific time-related causative factor is sought. Seasonal variations may become obvious, 
or trends may be related to other historical factors. For example, researchers have found 
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a higher incidence of hip fractures in elderly individuals during winter months,U and 
an increased rate of hospitalization due to adult asthma symptoms in spring months.13 

Disease Frequency 
The statistical measures used to describe epidemiologic outcomes focus on quantifica­
tion of disease occurrence. The simplest measure of disease frequency would be a count 
of the number of affected individuals; however, meaningful interpretation and compar­
isons of such a measure would also require knowing how many people there were in 
the total population who could have gotten the disease and the length of time over 
which the occurrence of the disease was monitored. Therefore, measures of disease fre­
quency will always include reference to population size and time period of observation. 
For example, we might document 35 cases of a disease within 1 year in a population of 
3,200 people, or 35/3,200/year. Typically, population size is expressed in terms of thou­
sands, such as 1,000 (103), 10,000 (104), and 100,000 (105). For instance, the preceding 
values would be expressed as 10.94 cases per 1,000 per year. To make estimates more 
useful, such rates are usually calculated in whole numbers, such as 1,094/100,000/year. 

The number of cases of a disease that exist in a population reflects the risk of dis­
ease for that group. It describes the relative importance of the disease and can provide 
a basis for comparison with other groups who may have different exposure histories. 
The two most common measures of disease frequency are prevalence and incidence. 

Prevalence 
Prevalence is a proportion reflecting the number of existing cases of a disorder relative to 
the total population at a given point in time. It provides an estimate of the probability that 
an individual will have a particular disorder at that time. Prevalence (P) is calculated as 

number of existing cases of a disease at a given point in time p = ------------�--------------=---�--------
total population at risk 

(28.1) 

For example, we know that obesity has become a national concern. The National Health 
Interview Survey in 2000 found that the number of adults with self-reported obesity 
was 7,058 out of a sample of 32,375.14 The prevalence of obesity in this population is 
expressed as 

7,058 p = -
32 

= 21 .8% 
,375 

Therefore, there is a 22% probability that any randomly selected individual from this 
population would be obese. Because this value reflects the cross-sectional status of the 
population at a single point in time, it is also called point prevalence. 

Prevalence can also be established for a specified period in time. For example, data 
obtained from a random sample of 973 newspaper employees found that the number of 
individuals categorized as having upper limb musculoskeletal complaints after 1 year 
was 395.15 The estimate of the prevalence of upper limb musculoskeletal complaints in 
this population during a 1-year period is, therefore, 41%. This measure, combining 
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BOX 28.1 The London Cholera Epidemic of 1 854 

The pioneering work of john Snow, a London physician in the mid-1 8th cen­
tury, serves as the classic example of descriptive epidemiology. The era saw 
a cholera pandemic that caused many deaths in Europe, rivaling the plague. 
Following an epidemic in London in the late 1 840s, Snow argued that an 
infectious microbe was the causal factor, not an airborne gas as most 
believed. Because vom iting and diarrhea were the primary symptoms of the 
disease, he reasoned that cholera was a pathology of the gastrointestinal 
tract, suggesting that something had to be i ngested .7 His hypothesis was not 
well accepted, however, and it was actually not until 1 883 that the cholera 
organism was finally accepted as the causative agent.K 

Snow noted that between 1 849 and 1 853, the incidence of cholera had 
lessened, and that during this interval an important change had taken place 
in the water supply of several districts in south London, which was serviced 
by two companies. The Lambeth Company had noted that water from the 
Thames River had become polluted, and in 1 852 moved their waterworks 
upriver where the water was cleaner, thereby "obtaining a supply of water 
quite free from the sewage of London."Y These districts were also supplied 
by the Southwark and Vauxhall Company, which continued to draw its water 
from the London section of the river which was just downstream from a 
sewer outlet. 

A port ion of Snow's early map of Soho, 1 854 .  The green area> show the workhouse and 
brewery where few or no deaths occu rred. The B road Street pump is  ind icated by an X .  
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In the summer of 1854 cholera reappeared in London. Snow recognized 
the potential for a "Grand Experiment" that involved thousands of people "of 
both sexes, of every age and occupation, and of every rank and station . . .  " 
who were naturally divided into two groups, based on the origin of their 
water supply.9 Through meticulous investigation over 7 weeks, Snow's data 
showed that mortality was much higher for homes supplied by the contami­
nated Southwark and Vauxhall Company. 

Snow's most important investigation, however, occurred later in the 
summer in the Soho section of London, where a devastating outbreak of 
cholera killed almost 600 people within a few days at the end of August, 
1854. Through door-to-door interviews, he noted that many of the deaths 
occurred in homes near the intersection of Broad Street and Cambridge 
Street, which was the location of the Broad Street water pump-supplied by 
Southwark and Vauxhall. He also found that in a workhouse on an adjacent 
street, surrounded by houses in which deaths had occurred, only 5 cholera 
deaths were seen among 535 inmates. It turned out that the workhouse had 
its own well. Snow visited a brewery on Broad Street and found that no 
deaths had occurred. The owner said the men never drank water-only beer! 
Snow also found that individuals who had visited the Broad Street area, and 
others who had purposely obtained water from that pump, had died. 

In his detailed map, Snow indicated each death by a bar at each address, 
clearly demonstrating how the deaths clustered around the Broad Street 
pump. On September 7, 1854, Snow convinced the Board of Guardians of his 
hypothesis, and on the next day the pump handle was removed. The epi­
demic ended almost immediately (although it must also be noted that by 
then most of the residents had left the area). An investigation of the pump 
revealed that its well was about 28 feet deep, and that a sewer flowed within 
yards of the well at 22 feet down.10 

What is most noteworthy about this history is the manner in which John 
Snow mounted his investigations. Brody et af point out the significance of 
the fact that Snow did not use his map to generate his hypothesis. Rather, he 
developed his hypothesis from his observations and then gathered data and 
anecdotal information that provided cumulative evidence to support his the­
ory that the contaminated water was the problem. The map only illustrated 
his data. What is all the more remarkable is that Snow formed his conclu­
sions nearly 30 years before Louis Pasteur's work with germ theory. He 
called the agents that caused diseases like cholera "special animal poisons," 
and understood that even if scientists were unable to identify the "thing" 
that caused cholera, they could still have enough information to prevent fur­
ther spreading of the disease.11 These lessons were the foundation for con­
temporary geographic investigations into disease patterns. 

Map from <http: I I www.hhmi.org I biointeractive I museum I exhibi t99 I l_snow 
.html> Accessed September 28, 2006. 
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existing with new cases of musculoskeletal complaints during the period of one year, is 
referred to as period prevalence. 

Prevalence is most useful as an indicator for planning health services, because it 
reflects the impact of a disease on the population. Therefore, a measure of prevalence 
can be used to project requirements such as health care personnel, specialized medical 
equipment and number of hospital beds. Prevalence should not, however, be used as a 
basis for examining etiology of a disease because it is influenced by the length of sur­
vival of those with the disorder; that is, prevalence is a function of both the number of 
individuals who develop the disease and the duration or severity of the illness. Because 
this estimate looks at the total number of individuals who have the disease at a given 
time, that number will be large if the disease tends to be of long duration. 

Incidence 
The measure of incidence quantifies the number of new cases of a disorder or disease in 
the population during a specified time period and, therefore, represents an estimate 
of the risk of developing the disease during that time. Incidence discounts the effect of 
duration of illness that is present in prevalence measures. By examining incidence rates 
for subgroups of the population, such as age groups, ethnic groups and geographic 
locations, the researcher can identify those groups that demonstrate higher disease 
rates and target them to investigate specific exposures. Incidence can be expressed as 
cumulative incidence or incidence rate. 

Cumulative incidence (CI) quantifies the number of individuals who become dis­
eased during a specified time period: 

number of new cases during given time period 
CI = 

total population at risk 
(28.2) 

For example, in a study of low back pain 196 men who had recently taken up golf were 
followed over a 1-year period.16 During that time, 16 new cases of back pain were iden­
tified. The 1-year cumulative incidence of first-time back pain for this cohort was 8% 
(16/196). The specification of the time period of observation is essential to the interpre­
tation of this value. The number of cases would be perceived differently if subjects were 
followed for 1 or 10 years. Other issues that require consideration in interpreting a 
measure of cumulative incidence include the possibility that the number of individuals 
at risk in the cohort will vary over time, and the possibility that the condition under 
study is caused by other, competing risks. 

Person-time. Measuring the total population at risk for cumulative incidence 
assumes that all subjects were followed for the entire observation period; however, 
some individuals in the population may enter the study at different times, some may 
drop out, and others who acquire the disease are no longer at risk. Therefore, the length 
of the follow-up period is not uniform for all participants. To account for these differ­
ences, incidence rate (IR) can be calculated: 

number of new cases during given time period 
IR = 

total person-time 
(28.3) 
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As in cumulative incidence, the numerator for this estimate represents the number of 
new cases of the disorder; however, the denominator is the sum of the time periods of 
observation for all individuals in the population at risk during the study time frame, or 
person-time. For example, in the Nurses' Health Study, 121,700 female nurses were 
enrolled in 1976. During the period of 1976 to 1992, investigators identified 3,603 new 
cases of breast cancer.17 Of the women originally enrolled, some left the study as a result 
of death or loss to follow-up at various times during the period, and some developed 
breast cancer after different amounts of time, contributing different amounts of time to 
the denominator. In other words, a woman who died in 1977 in an automobile crash 
would have contributed 1 person-year to the denominator, whereas two women who 
developed breast cancer in 1990 would have contributed a total of 28 person-years to 
the denominator. 

Researchers totaled the amount of time each subject was known to be at risk between 
1976 and 1992, and obtained the total person-years observed, in this case there were 
1,794,565 person-years of observation. The incidence rate was, therefore, 

3,606 
IR = 

1,794,565 
= ·002 

or 2 cases per 1,000 person-years (2 X 10-3 years). Incidence rate is often a more effi­
cient measure than cumulative incidence, as it allows for inclusion of all subjects, 
regardless of the amount of time they were able to participate. Cumulative incidence 
would only account for those subjects who were available for the entire study period. 

The Relationship between Prevalence and Incidence 
The relationship between prevalence and incidence is a function of the average dura­
tion of the outcome of interest. If the incidence of the disorder is low (few new cases 
occur) but the duration of the disorder is long, then the prevalence, or proportion of the 
population that has the disease at a given point in time, may be large. If, however, inci­
dence is high (many new cases of the disease occur) but the disorder is manifest for a 
short duration (either by quick recovery or death), the prevalence may be low. For 
example, a chronic disease such as arthritis may have a low incidence but high preva­
lence. A short-duration curable condition like a common cold may have a high inci­
dence but low prevalence, because lots of people get colds but few actually have colds 
at any one point in time. 

Vital Statistics 
Epidemiologists often use incidence measures to describe the health status of populations 
in terms of birth and death rates that inform us about the consequences of disease. The 
birth rate is obtained by dividing the number of live births during the year by the total 
population at midyear. The mortality rate quantifies the incidence of death in a popula­
tion by dividing the number of deaths during a specific time period by the total popula­
tion at the midpoint of the time period. These data are generally available through records 
of state vital statistics reports, census data and birth and death certificates. 
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The mortality rate can reflect total mortality for the population from all causes of 
death in the crude mortality rate, in which the total number of deaths during the year is 
divided by the average midyear population. This value is usually expressed as the 
number of deaths per 100,000 population; however, when different categories within 
the population differentially contribute to this rate, it may be more meaningful to look 
at category-specific rates. A cause-specific rate looks only at the number of deaths 
from a particular disease or condition within a year divided by the average midyear 
population. For instance, rates may reflect mortality specifically resulting from diseases 
such as cancer and heart disease or from motor vehicle accidents. The case-fatality 
rate is the number of deaths from a disease relative to the number of individuals who 
had the disease during a given time period. 

Other commonly used categories are age, sex and race. Age-specific rates are 
probably most common because of the differential effect of many diseases across the life 
span. For example, if one looks at the death rate for cancer across age groups, we would 
find that mortality was higher for older age categories. Therefore, it may be more mean­
ingful to present age-specific mortality rates for each decade of life, rather than a crude 
mortality rate; however, this results in a long list of rates that may not be useful for cer­
tain comparisons. An overall rate would be more practical, but it would have to account 
for the variation in rates across age categories. For instance, if we compare the crude 
cancer mortality rate for today versus the crude rate from 50 years ago, we would have 
to account for the fact that a larger proportion of the total population now falls in the 
older age range. Therefore, epidemiologists will often report age-adjusted mortality rates 
that reflect different weightings for the uneven categories. Methods for calculating 
adjusted rates are described in most epidemiology texts. 

ANALYTIC EPI DEM IOLOGY: M EASU RES 
OF ASSOCIATION AN D RISK 
Analytic epidemiology is concerned with testing hypotheses. Measures of association 
are typically derived for case-control and cohort studies (see Chapter 13), to assess the 
relationship between specific exposures and disease. These tests will establish if an 
association exists and the strength of that association. If an association does exist, we 
say that the specific exposure represents a risk factor for the disease. 

The focus on exposures takes a broad view that reflects contemporary concerns 
including lifestyle practices such as smoking, substance abuse, drinking alcohol or cof­
fee and eating foods high in cholesterol or salt; occupational hazards, such as repetitive 
tasks or heavy lifting; environmental influences, such as second-hand smoke, toxic 
waste and sunlight; and specific interventions, such as exercise, medications or treat­
ment modalities. These exposures increase or decrease the likelihood of developing cer­
tain disorders or influence the ultimate outcome of a disorder. For example, smoking 
and sunlight are considered risk factors that increase the chance of developing 
cancer.18,19 Stroke patients with comprehension deficits have an increased risk of poor 
therapeutic outcomes.20 Exercise and higher fitness level in men with diabetes are asso­
ciated with reduced risk of mortality from cardiovascular disease?1 

This is a fundamental process in the determination of prognosis, as we attempt to 
predict outcomes based on patient characteristics. As with all measures of association, 
risk does not necessarily mean that the exposure causes the outcome. 
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Relative versus Absolute Effects 
Analyses of association are based on a measure of effect that looks at the frequency of 
disease among those who were and were not exposed to the risk factor. A relative effect 
is a ratio that describes the risks associated with the exposed group as compared with 
the unexposed. An absolute effect is the actual difference between the rate of disease in 
the exposed and unexposed groups, or the difference in the risk of developing the dis­
ease between these two groups. To illustrate the concepts of relative and absolute effect, 
suppose we purchased two books, one costing $3 and the other $6. The absolute differ­
ence is $3, whereas the relative difference is that the second book is twice as expensive 
as the first. Therefore, the relative effect is based on the absolute effect, but takes into 
account the baseline value. Analogously, we can use measures of incidence of disease 
in exposed and unexposed groups to determine both relative and absolute effects of 
particular exposures. 

Relative Risk 
The most common measure of relative effect is relative risk (RR), which indicates the 
likelihood that someone who has been exposed to a risk factor will develop the disease, 
as compared with one who has not been exposed. Relative risk is defined as the ratio of 
incidence of disease among the exposed subjects to the incidence of disease among the 
unexposed. Measures of relative risk are appropriate for use with cohort studies. 

To determine risk, data are typically organized in a 2 X 2 table, called a 
contingency table, as shown in Figure 28.1 .  The vertical columns in the table represent 
the classification of disease status (the outcome), and the horizontal rows represent 
exposure status. To facilitate consistency in presentation and calculation, the cells in the 
table are designated a, b, c, and d, as shown in the figure. Therefore, cell a represents 
those who have the disease and were exposed, cell b represents those who do not have 
the disease and were exposed, and so on. The marginal totals for each row and column 
represent the total numbers of individuals who were exposed (a + b) and were not 
exposed (c + d), and the total numbers who have the disease (a + c) and do not have 
the disease (b + d). The sum of all four cells is the total sample size (N). 

Disease 

Yes No 

Yes a b a+b 

Exposure 

No c d O+d 

a+c btd N 

FIGURE 28.1 General format for a 2 x 2 contingency table, showing frequencies for disease and 
exposure. 
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For a cohort study, we can obtain cumulative incidence estimates for the exposed 
(CIE) and unexposed (CI0) groups. The cumulative incidence for the exposed group is 
the number of cases of the disease among the total exposed sample, or a/(a + b). The 
cumulative incidence for the unexposed group is the number of cases of the disease 
among the total unexposed sample, or c/(c + d).* Therefore, 

CIE 
RR = ­

CI0 

a/(a + b) 
d/(c + d) (28.4) 

If the incidence rates of the outcome are the same for the exposed and unexposed groups, 
the relative risk is 1 .0, indicating that the exposure presents no excess risk for the out­
come. Therefore, a relative risk greater than 1 .0 indicates an increased risk, and a relative 
risk less than 1.0 means that the exposure decreases the risk of developing the disorder. 

Example 
To illustrate this application, consider the data shown in Table 28.1A for a cohort study 
of the risk of hip fracture associated with leisure time physical activity.22 Data were 
taken from longitudinal studies over six birth cohorts. For this example, we will look at 
a subsample of 130 women. The research question is: Does physical activity reduce the 
risk of hip fracture in elderly women? 

Our first step is to determine what proportion of patients who exercised sustained 
a hip fracture. This is the incidence of hip fracture among exercisers, 48 out of 98, or 
49%. Then we determine what proportion of sedentary patients sustained a hip frac­
ture. This is the incidence of hip fracture for those who did not exercise, 20 out of 32, or 
63%. Relative risk is the ratio of these two proportions: 

a(a + c) 48/98 .49 
RR = = -- = - = 0.78 

d(c + d) 20/32 .63 

This tells us that the risk of hip fracture was decreased among nonsedentary women; 
that is, those who were active at least 2 hours/week were 0.78 times as likely (less 
likely) to have a hip fracture as compared with those who were sedentary. 

Confidence lntetvals for Relative Risk 
An important assumption in any research study is that we can draw reasonable infer­
ences about population characteristics based on sample data. This assumption holds 
true for epidemiologic studies as well. When a risk estimate is derived from a particu­
lar set of subjects, the researcher will use that estimate to make generalizations about 
expected behaviors or outcomes in others who have similar exposure histories. There­
fore, it is important to determine a measure of true effect using a confidence interval 
(see Chapter 18). For example, as shown in Table 28.1B, with an observed relative risk 

*This calculation for relative risk is based on the assumption that all subjects in the cohort were followed for 
the same amount of time. When follow-up time differs, it is the person-time for exposed and nonexposed 
groups that should be used for marginal totals, rather than just the total number of subjects in each category. 
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TABLE 28.1 RELATIVE RISK: DATA FOR A COHORT STUDY SHOWING THE 
RELATIONSHIP BETWEEN PHYSICAL ACTIVITY AND RISK OF HIP 
FRACTURE IN WOMEN 

A. DATA and COMPUTATION 
Activity Level * H ip fx Crosstabulation 

Hip fx 

Yes No Total 

Activity :::=::2hrlwk 48 50 98 RR = 
a/(a + b) = 48/98 = 0.78 

level Sedentary 20 1 2  32 

Total 68 62 1 30 

B. OUTPUT 

Risk Estimate 

95% Confidence 
Interval 

Value Lower Upper 

For cohort hip fx = Yes .784 
N of Valid Cases 1 30 

.560 1 .097 

d/(c + d) 20/32 

Chi-Square Tests 

Sig . 
Value df (2-sided) 

Chi-Square 1 .768 1 . 1 84 
N of Valid 1 30 

Cases 

Note: Output has been edited to include only relevant data for this analysis. 

Data adapted from: Hoidrup S, Sorensen T, Stroger U, et al. Leisure-time physical activity levels and changes in 
relation to risk of hip fracture in men and women. Am J Epidemio/ 200 1 ; 1 54:60-68. 

of 0.78 for the association between hip fracture and physical activity, the 95% confi­
dence interval is 0.560 to 1.097. This interval represents a range of values within which 
the true population effect is expected to fall. 

Confidence intervals can also be used to provide information about statistical sig­
nificance by referring to the null value for relative risk, which is 1 .0. We look to see if 
the null value is included within the 95% confidence interval. If the null value is con­
tained within the confidence interval, and we are 95% confident that the interval con­
tains the true population value, then we cannot rule out 1.0 as the population value. 
Therefore, the estimate is not considered significant. If the null value is not contained 
within the interval, the estimate is considered significant; that is, we are 95% sure that 
the null value is not the true population value. In our example, the 95% confidence 
interval is 0.56 to 1.097. As this interval contains the null value of 1.0, we would state 
that the observed association is not statistically significant at the .05 level. Therefore, we 
must conclude that, although the RR value shows a reduced risk for hip fracture with 
physical activity, this value could have occurred by chance. 

Chi-square can also be used as a test of significance, to determine if the proportions 
differ across categories in a crosstabulation (see Chapter 25). In this example, the 
value of chi-square results in p = .184 (see Table 28.1B), which is not significant. This 
confirms the conclusion drawn from the confidence interval analysis, with a parallel 
interpretation. Chi-square tells us that the proportion of individuals with and without 
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hip fracture who were in the two physical activity groups was not different from what 
would be expected just by chance. 

Odds Ratio 
A case-control study differs from a cohort study in that subjects are purposefully cho­
sen based on the presence or absence of disease (cases or controls) and therefore, we 
cannot determine the rate of incidence of the disease (see Chapter 13). Relative risk is 
not an appropriate measure for case-control studies because we cannot calculate cumu­
lative incidence. The relative risk can, however, be estimated using an odds ratio (OR), 
which is calculated using the formula 

OR = 
ale = ad 
b/d be (28.5) 

The odds ratio is interpreted in the same way as relative risk, with a null value of 1 .0. 

Example 
Consider the data shown in Table 28.2A. These data are from a case-control study which 
examined the risk for developing plantar fasciitis associated with body mass index 

TABLE 28.2 ODDS RATIO:  CASE-CONTROL DATA SHOWING THE RELATIONSHIP 
BETWEEN BODY MASS INDEX (BMI) AND RISK OF PLANTAR FASCIITIS 

A. DATA and COMPUTATION 

BMI * Plantar Fasciitis Crosstabulation 

Plantar Fasciitis 

Yes No Total 

BMI > 30 29 1 7  46 
:5 30 21 83 1 04 
Total 50 1 00 1 50 

B. OUTPUT 

Risk Estimate 

95% Confidence 
Interval 

Value Lower Upper 

Odds Ratio for BMI 6.742 3. 1 32 1 4.51 2 
N of Valid Cases 1 50 

ad (29)(83) OR = - = --- = 6.74 
be (21)(17) 

Chi-Square Tests 

Value df 

Chi-Square 26.353 1 
N of Valid Cases 1 50 

Note: Output has been edited to include only relevant data for this analysis. 

Sig. 
(2-sided) 

.000 

Source: Riddle DL, Pulisic M. Pidcoe P, Johnson RE.  Risk factors for plantar fasciitis: A matched case-control 
study. J Bone Joint Surg Am 2003;85A:872-877. 
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(BMI).23 The researchers assembled a sample of 50 cases and 100 controls, with a 1 : 2 
match on age and gender. Among the cases, 29 individuals had a BMI over 30 (consid­
ered obese); among the controls, 17 subjects had a BMI over 30. The crude odds ratio for 
these data is 

ad (29)(83) 

OR = be = (21)(17) = 6·
74 

This means that the odds of developing plantar fasciitis are almost seven times greater 
for those who are obese than for those who are not. In other words, being obese appears 
to increase the risk of developing plantar fasciitis. 

Confidence Intervals for the Odds Ratio 
Confidence intervals can also be generated for the odds ratio to determine the signifi­
cance of the ratio as an estimate of population values. As shown in Table 28.2B, the con­
fidence interval for the relationship between plantar fasciitis and BMI is 3.13 to 14.51. 
This interval does not contain the null value of 1 .0, and therefore, this represents a sig­
nificant odds ratio. 

Chi-square can also be used to determine if the proportion of individuals varies 
across categories. This outcome is shown in Table 28.2B, confirming the significant out­
come of the confidence interval analysis. 

Confounding and Effect Mod ification 
Quite often, in the analysis of the association between a risk factor and disease, researchers 
seek to infer a potential causal relationship between the two. The researcher also recog­
nizes, however, that in a study of association, cause and effect cannot be readily established 
(as it can in an experimental study) because other factors may contribute to the observed 
relationship. Alternatively, we may see no association because other factors actually 
obscure the relationship between exposure and outcome. 

In some cases, these extraneous variables provide information important to under­
standing how the association varies across different subgroups, such as age or gender. 
In other situations, such variables create a bias in the interpretation, interfering with the 
true association being studied. These two complications of analysis are called con­
founding and effect modification. 

The simplest type of analyses are based on crude data. These are data concerning 
the exposure status and outcome status of all subjects regardless of any other risks or 
characteristics. Although analyses based on crude data are often reported in the litera­
ture, most studies also require more complicated analyses to evaluate the role of other 
factors in the relationship of exposure and outcome. These analyses ate accomplished 
through stratification or multivariate methods and provide adjusted measures of asso­
ciation. Researchers must consider the potential influence of confounding and effect 
modification in all analyses and account for them in the design or analysis of data as 
much as possible. 
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Confounding 
Confounding variables can be thought of as nuisance variables. Confounding is intro­
duced when extraneous variables interfere with the observed association between the 
exposure and outcome. A confounder is a variable that (1) is associated with the expo­
sure, (2) is a risk factor for the disease independent of the exposure, and (3) is not part 
of the causal link between the exposure and the disease (Figure 28.2A). In other words, 
a confounding variable is associated with the predictor variable, but may also be a risk 
factor for the outcome variable, and therefore must be ruled out. Confounding occurs 
when the exposure can become confused or distorted by the extraneous variable. 

Example. To illustrate this concept, Jackson and co-workers24 examined the associa­
tion between risk of mortality and receiving influenza vaccine in elders over 65 years. 
They studied 252 cases who died during an influenza season and 576 age-matched con­
trols. The crude odds ratio for this relationship was 0.76 (95% Cl 0.47, 1 .06), indicating 
that receiving the vaccine decreased the risk of death. The researchers were interested, 
however, in the potentially confounding effect of limited functional status, which 
(1) would be associated with not getting the vaccine, (2) would be a risk factor for mor­
tality, and (3) is not a causal link between the vaccine and mortality. When they adjusted 
for the effect of functional limitations, the odds ratio was lowered to 0.59 (95% Cl 0.41, 
0.83). Because older individuals who have functional limitations would be less likely to 
visit a clinic to get the vaccine, and mortality is also related to functional decline, the 
crude odds ratio was an underestimate of the protective nature of the vaccine on mor­
tality. When function is taken into account, the actual risk of death is lower. If there were 
no discrepancy between the crude and unconfounded estimates, there would be no con-

A 

8 

FIGU RE 28.2 A. Relationship between exposure and outcome, both related to a confounding variable. 
B. Relationsh ip between receiving i nfluenza vaccine and mortal ity in elders, confounded by functional 
status. 
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founding. The degree of discrepancy is indicative of the extent to which function con­
founded the original data. By eliminating the effect of functional status, a stronger (and 
significant) relationship was seen between getting the vaccine and decreased mortality. 

Adjusting for Confounders. Confounding variables may or may not be present in a 
study, depending on the source population and how subjects are chosen. When con­
founding is present, the statistical outcome may not be documenting the true causal fac­
tor. A method commonly used to adjust for a potential confounder is stratification, in 
which the comparison between exposure and disease is done at specific levels of the 
potential confounder. When a study mentions that researchers "controlled" or "adjusted" 
for a factor in the analysis, they have tried to remove the effect of that variable as a 
confounder. 

To evaluate the effect of confounding in an analysis, the researcher must collect 
information on the potentially confounding variable. If the investigator in the vaccine 
study did not collect data on the subjects' functional status, the analysis of the con­
founder would not have been possible. Therefore, the researcher must be able to predict 
what variables are possible confounders. It is conceivable that several confounding fac­
tors will be operating in one study. In addition to controlling for confounding in the 
analysis, researchers can use design strategies, such as matching or homogeneous sub­
jects, to control for these effects (see Chapter 9). For instance, in the study of influenza 
vaccine, if we were to restrict subjects to only those who were functionally independ­
ent, then function would not be a confounding factor. 

Age and gender are often considered potential confounders in epidemiologic stud­
ies because of their common association with disease and disability, as well as being 
related to the presence of many exposures. Other common confounders are socioeco­
nomic status, education level, marital status, weight, and cognitive status. 

Effect Modification 
In contrast to confounding, effect modification occurs when the presence of one vari­
able modifies the association between an exposure and outcome. Where a confounder 
is a nuisance that needs to be controlled to get an accurate estimate of an association, 
an effect modifier is a real effect that helps explain the biologic relationship between 
the exposure and outcome.25 Researchers attempt to cancel the effect of a confounding 
variable in the design or analysis of a study. Effect modifiers are studied so they can 
be reported. 

An effect modifier will interact with the exposure and disease variables in such a 
way as to present a constant effect. It is a natural phenomenon that exists independent 
of the study design and will always be a factor in interpretation of risk. Effect modifiers 
tend to be biologically related to the variables being studied. 

Example. Researchers have studied the association between diabetes and risk of 
endometrial cancer, with many conflicting results. Friberg et al26 hypothesized that this 
relationship could be misunderstood because of major modifiers such as physical activ­
ity. They studied a cohort of over 36,000 women over 7 years and found a relative risk 
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TABLE 28.3 ASSOCIATION OF DIABETES AND ENDOMETRIAL 
CANCER STRATIFIED BY PHYSICAL ACTIVITY: 
ILLUSTRATION OF EFFECT MODIFICATION 

Number of 
Cases RR (95% Cl) 

Total Sample No diabetes 203 
2.37 (1 .51-3.74) 

Diabetes 22 

High Physical Activity No d iabetes 1 03 
1 .06 (0.43-2.60) 

Diabetes 5 

Low Physical Activity No diabetes 1 00 
2.67 (1 .58-4.53) 

Diabetes 1 7  

Source: Friberg E ,  Mantzoros CS, Wolk A. Diabetes and risk of endometrial can­
cer: A population-based prospective cohort study. Cancer Epidemiol Biomarkers 
Prev 2007; 1 6:276-280. 

of endometrial cancer of 2.37, adjusted for age, for women diagnosed with diabetes as 
compared to women without diabetes. 

They then stratified the sample by physical activity (see Table 28.3). For diabetics 
with high physical activity, they found a RR for endometrial cancer of 1 .06 as compared 
to those without diabetes who were active. Therefore, physically active diabetics were 
essentially at no increased risk of cancer. For diabetics with low physical activity, how­
ever, they found a RR of 2.67. The risk associated with endometrial cancer increased by 
more than two times for those who did not exercise. The fact that the risk estimates are 
different for each stratum indicates that physical activity interacts with diabetes as an 
effect modifier; that is, the association between diabetes and endometrial cancer is sig­
nificantly modified by physical activity. 

Pooled Risk Estimates 
When data are stratified, separate risk estimates are calculated for each stratum; how­
ever, it is usually more useful to consider a single overall estimate that reflects the asso­
ciation between exposure and disease with the confounding factor taken into account. 
Several statistical techniques can be used to accomplish this, although the most com­
monly used procedures belong to a set of estimates proposed by Mantel and Haenszel.27 
The Mantel-Haenszel pooled risk estimate provides a weighted summary value that 
can be used to report the relative risk associated with a specific exposure adjusted for the 
confounding variable. When the Mantel-Haenszel estimate differs from the crude risk 
estimate, it is the Mantel-Haenszel estimate that should be reported. It is most appro­
priately used when the stratum-specific relative risks are uniform, that is, when there is 
no effect modification. Formulas used to calculate Mantel-Haenszel estimates of rela­
tive risk for case-control and cohort studies are given in Table 28.4. The numerators and 
denominators in these formulas represent the sum of the expressions for each stratum. 
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TABLE 28.4 MANTEL-HAENSZEL POOLED ESTIMATES 
FOR RELATIVE RISK FOR COHORT 
AND CASE-CONTROL STUDIES 

Cohort Study (with count denominators) 

Case-Control Study 

�a(c + d) 

N 
RRMH = ----� c(a + /1) 

N 

ANALYTIC EPIDEMIOLOGY: M EASURES OF RISK 
BASED ON TREATMENT EFFECT 
When making clinical decisions regarding the effectiveness of interventions, we gener­
ally want to know if a treatment will improve the patient's condition, or if it will pre­
vent or decrease the risk of an adverse event. Randomized controlled trials (RCT) are 
the most effective approach for answering these questions, and we typically use a sta­
tistical test to compare groups on means or proportions to determine if they are differ­
ent from each other after the treatment. Such a conclusion is limited, however, because 
it does not tell us if the difference is clinically important, nor does it help us estimate 
the likelihood that our own patient will respond favorably. We know that even with a 
well-established intervention, patients do not all respond the same way. Some will 
improve and others will not; some will experience an adverse outcome, and others will 
be fine. So how can we determine the likelihood that our particular patient will benefit 
from the intervention? 

In addition to specific measures of change, then, we may also consider the outcome 
of treatment in terms of an "event," which is classified as a success or failure. The success 
of a treatment is usually determined as a beneficial outcome based on a specific thresh­
old, which may be related to an impairment or functional activity. For instance, back 
pain is relieved or reduced by a certain percent; a child is able to utter a given number 
of sentences without stuttering; an obese patient loses a certain amount of weight; a 
patient with congestive heart failure is able to increase walking tolerance by a given dis­
tance. Success may also be indicated by whether an adverse outcome is prevented. For 
example, a patient may be given a drug to control hypertension to prevent stroke. If the 
patient subsequently suffers a stroke, he has experienced an adverse outcome. In a RCT, 
the success of the intervention is reflected by the difference in beneficial or adverse out­
comes between treatment and control groups. The concept of relative risk (RR) can be 
used here in reference to treatment effect, indicating if the risk of a particular outcome 
for the control group is higher or lower than for the treatment group. 
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Example 
Let's put this in the context of a rehabilitation example. A group of researchers studied 
the effect of exercise and manipulative therapy for reducing cervicogenic headaches.28 
They measured pain intensity and duration as well as the frequency of headaches over 
a 7-week treatment period. We can appreciate the effect of treatment by setting a thresh­
old that identifies a successful outcome, based on clinically important change. In this 
study, in addition to the typical comparisons between group means for pain and dura­
tion, the authors set a standard of 50% or better reduction in headache frequency as a 
benchmark for "success" of treatment. If the reduction in recurrence of headache was 
less than 50%, it was considered an adverse outcome. 

Table 28.5A shows the results of this study for the comparison of combined manip­
ulative therapy and therapeutic exercise with a control. We can see that of the 49 
patients who received the experimental intervention, 9 had recurring headaches. Of the 
48 patients in the control group, 34 had recurring headaches. 

Event Rates and Risk Reduction 
We can examine differences between group responses in terms of "event rates," or the 
proportion of subjects in the experimental and control groups that achieved an adverse 
or successful outcome. We calculate two values: an experimental event rate (EER) for 
those receiving the intervention and a control event rate (CER) for the control group, 
as shown in Table 28.5B. For this study, the EER is 18% and the CER is 71%. These val­
ues indicate the risk of headaches recurring for each group. But how do they compare? 

The ratio of these two values is the relative risk (RR) associated with the intervention: 

EER 
RR = 

CER 
(28.6) 

As shown in Table 28.5B, the RR associated with this intervention is .25. This means that 
the intervention group was only one-quarter as likely to experience a recurrence of 
headache as the control group. 

Risk Reduction 
This effect is better understood, however, as a relative value that reflects the decrease in 
risk associated with the intervention, called the relative risk reduction (RRR), which 
is equal to: 

CER - EER RRR = 
CER 

(28.7) 

As shown in Table 28.5B, RRR = .75 for the headache study. This tells us that there is a 
75% reduction in risk for recurring headaches associated with the intervention com­
pared to the control. 

As we have discussed before, the disadvantage of RRR is that a relative value does 
not tell us anything about the actual size of the effect. Figure 28.3 illustrates this limita­
tion. Consider alternative results for a hypothetical comparable study (Study B), where 
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TABLE 28.5 CALCULATION OF MEASURES OF TREATMENT EFFECT 
FOR A RANDOMIZED CONTROLLED TRIAL OF EXERCISE 

A. DATA 

AND MANIPULATIVE THERAPY FOR CERVICOGENIC HEADACHES 

Manipulation + 
Exercise 

Control 

Total 

Treatment Outcome 

FAILURE 
< 50% reduction in 

headaches 

9 

34 

43 

a + c 

a b 

c d 

SUCCESS 
2': 50% reduction in 

headaches 

40 

1 4  

54 

b + d  

Total 

49 
a + b  

48 
C +  d 

97 

B. RISK MEASURES 

Experimental event rate (EER) 

Control event rate (CER) 

Relative risk (RR) 

Relative risk reduction (RRR) 

Absolute risk reduction (ARR) 

Number needed to treat (NNT) 

EER = ala + b 

CER = c/ c + d 

RR = E E R/CE R  

R R R  = (CER - EER)/CER 

ARR = CER - EER 

NNT = 1 /ARR 

C. CONFIDENCE INTERVALS FOR ARR AND NNT 

95% CI = ARR ± 1.96 (SE) 

EER = 9/49 = . 1 8  

CER = 34/48 = . 7 1  

R R  = . 1 8/ .71 = .25 

RRR = .53/.7 1  = .75 

ARR = .71 - . 1 8  = .53 

NNT = 1 /.53 = 1 .9 

)EER(1 - EER) CER(1 - CER) ).18(1 - .18) .71(1 - .71) 
SE = + = + = .085 

11£xp 11colllro/ 49 48 

For ARR: 

For NNT: 

95% CI = .53 ± 1.96 (.085) = .53 ± .167 = .363, .697 

1 1 95% CI (NNT) = -, - = 1.43, 2.75 
.697 .363 

Source: Jull G, Trott P, Potter H et al. A randomized controlled trial of exercise and manipulative therapy for 
cervicogenic headache. Spine 2002;27: 1 835-1843. 
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FIGURE 28.3 Resu lts from two studies of treatment for cervicogenic headache, i l lustrating the impor­
tant difference in absolute and relative risk measures. Bars represent the event rates for the intervention 
and control groups, indicating the number of patients who did NOT benefit from treatment. Both studies 
show a reduced risk with i ntervention. Although the relative risk reduction (RRR) is the same for both stud­
ies, the absolute risk reduction (ARR) and number needed to treat (NNT) are substantial ly different. Source 
(for Study A): ju l l  G, Trott P, Potter H, et a l .  A randomized control led trial of exercise and manipulative 
therapy for cervicogenic headache. Spine 2002;27:1 835-1 843. 

the EER was 8% and the CER was 2%. These effects are certainly not clinically mean­
ingful, and yet their RRR would also be .75. 

A more clinically useful measure is the absolute risk reduction (ARR), which 
indicates the actual difference in risk between the groups, easily calculated by: 

ARR = CER - EER (28.8) 

For the headache example, then, ARR = .53. There is a 53% absolute reduction in risk 
of recurring headaches associated with the intervention. If we look at the hypothetical 
study (B) in Figure 28.3, we can see that the ARR = .06, only a 6% reduction in risk. 
Therefore, the absolute risk reduction is a better reflection of the true difference in the 
studies' outcomes. 

This example illustrates the importance of considering baseline risk when interpret­
ing risk reduction.29 The control event rate can be used as an estimate of the risk for all 
subjects at the start of the study, before intervention is applied. Although a RRR of 75% 
would be considered impressive, we can see that this value is not meaningful when the 
baseline risk is only 8%. This absolute risk reduction indicates that the treatment will be 
of minor benefit in Study B. Compare that to a baseline risk of 71% for study A, and we 
can see that treatment will be of greater benefit. 
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Number Needed to Treat 
The degree of risk reduction should help us decide whether a treatment is worth pur­
suing, based on the likelihood that the outcome will be successful (avoiding an adverse 
event). The ARR, however, does not provide the clinician with a clinical value that can 
be used to estimate the number of patients that would need to be treated before bene­
fit will be observed. The number needed to treat (NNT) was developed as a statistic 
that provides information about effectiveness in terms of patient numbers.30 The NNT 
is defined as the number of patients that would need to be treated to prevent one 
adverse outcome or to achieve one beneficial outcome in a given time period. It can be 
calculated for any trial that reports a binary outcome.31 

The NNT is easily calculated as the reciprocal of the ARR: 

NNT = -
1-

ARR 
(28.9) 

where ARR is expressed as a decimal. A large treatment effect will translate to a small 
number needed to treat. 

If the NNT is 1 .0, this means that we would need to treat 1 patient to avoid 1 
adverse outcome; that is, every patient will benefit from treatment. This is, of course, 
the ideal, although not often the case. The closer to 1 .0, the better the NNT. For the 
headache example, the NNT is 1.9 (shown in Table 28.4B), which is rounded up to 2.0. 
Therefore, we would need to treat 2 patients with manipulative therapy and exercise to 
prevent a recurrence of headaches in 1 patient; that is, 1 out of 2 patients will experience 
a successful outcome. If the absolute risk reduction is zero (no difference between CER 
and EER), the treatment has had no effect, and the NNT will be infinity. We would need 
to treat an infinite number of people to see any benefit. 

Confidence Intervals for NNT 
The NNT is a point estimate, and therefore, as with other estimates, it should be pre­
sented with a confidence interval for accurate interpretation.31 The confidence limits for 
NNT are the reciprocals of the confidence limits for ARR, in reverse order. See Table 
28.5C for formulas and sample calculations. The null value for ARR is zero, which con­
verts to infinity for the NNT.t For the headache study, we are 95% confident that the 
true population ARR is between 36% and 70%. We are 95% confident that the NNT falls 
between 1 .43 and 2.75. 

Number Needed to Harm (NNH) 
The NNT reflects the prevention of an adverse event, which is generally seen as a suc­
cessful outcome. For example, treatment for hypertension should prevent adverse 
events such as stroke, heart attack or death. We can also apply this concept to evaluate 
serious side effects, risks or complications that occur from treatment, outside of the 

tA confidence interval that contains infinity includes the possibility of no benefit.32 
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intended effects. When an intervention poses excess risk to the patient, we would want 
to assess the absolute risk increase (ARI) associated with it. The reciprocal of this 
value is called the number needed to harm (NNH), which indicates the number of 
patients who would need to be treated to cause 1 adverse outcome.t The larger the 
NNH, the less likely a patient is to experience an adverse outcome. An NNH of 100 
would mean that we would need to treat 100 patients to cause one adverse event. An 
NNH of 1 .0 would mean that every patient would experience an adverse event. 

The NNH should be considered along with the NNT to evaluate the benefit and 
harm of an intervention.32 For example, a systematic review of the effects of aspirin for 
treatment of acute pain analyzed the effectiveness of a 600 mg dose for at least 50% pain 
relief, with an NNT of 4.4 (95% CI 4.0, 4.9).33 They also reported an NNH of 38 (95% CI 
22,174) for the side effect of gastric irritation. According to this analysis, if 38 patients 
were treated, 9 would achieve a positive outcome, and 1 patient would be expected to 
experience gastric irritation. 

Cautions in Interpretation of NNT 
In terms of clinical decision making, NNT and NNH provide a useful number to help 
a clinician and patient decide if one or another treatment is worth pursuing, weighing 
their potential benefit or harm. The NNT is a particularly useful measure for express­
ing the relative effectiveness of different interventions. It quantifies the effort required 
to obtain a beneficial outcome. Several factors must be considered, however, when com­
paring values of NNT across different interventions or studies. 

1. The NNT must be interpreted in terms of a time period for treatment and 
follow-up. The duration of the treatment may make a difference in the fre­
quency of expected positive and negative outcomes. Generally, the NNT will be 
smaller for an intervention of longer duration.34 The comparison of NNT val­
ues for different treatments is only valid when the outcome is measured within 
the same time period. For instance, for the headache study the report should 
read: The NNT was 2 over 7 weeks. 

2. The interpretation of the NNT will depend on baseline risk. Because some 
patients will have a greater risk of an adverse outcome before treatment begins, 
the NNT must be adjusted to account for low and high baseline risks. It may 
not be reasonable to assume that the same relative risk applies to all patients.32 
The patient's age, gender or initial severity may alter the relative risk associated 
with the intervention. Therefore, when extrapolating NNT measures from the 
literature, the baseline risk must be taken into account. The control event rate 
can be used as an indicator of the baseline risk without treatment. 

3. To compare NNTs, the outcomes of interest must be the same. For example, 
in the evaluation of exercise programs, an NNT of 20 for preventing falls in the 
elderly may be interpreted differently from an NNT of 20 for preventing hip 

tThe ARI and NNH are calculated using the same equations as ARR and NNT, except that the experimental 
event rate should be smaller than the control event rate. 
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fracture. The NNT for a drug treatment to reduce hypertension will be differ­
ent if the outcome is stroke, heart attack or death. In the study of cervicogenic 
headache, the threshold for success was set at 50%. If this threshold were 
changed, the resulting NNTs would not be comparable. 

4. The validity of the clinical trial must also be taken into account. Because 
NNTs are used to make individual patient decisions and to support reimburse­
ment policies, the degree to which research studies represent actual clinical 
expectations will influence the application of effective treatments.35 Both inter­
nal and external validity must be considered. Replication is important to deter­
mine if results stand up to different samples. 

5. There are no standard limits for NNT (or NNH) that dictate a decision. Like 
all research results, NNT should be incorporated into decision making along 
with the clinician's experience and judgment, the patient's preferences and the 
nature of the disorder that is being treated.32 For some interventions an NNT of 
2 or 3 would be considered good, whereas for others an NNT of 20 or 40 may 
still be considered clinically effective. Similarly, an acceptable NNH will be 
determined by the severity of the risks, balanced with the probable benefit. 
Therefore, the value of NNT and NNH should always be interpreted within the 
context of a specific disorder, treatment, outcome, disease severity and time 
period. For example, a review of treatments for hypertension to prevent stroke 
reported a NNT for moderate hypertensive patients of 13, and a NNT for 
mildly hypertensive patients of 167.36 The recommendations for clinical man­
agement of these patients would obviously be quite different. 

COMM ENTARY 

A New View of Outcom es 

A tradit ional  biomed ical model defi nes health narrowly as the absence of disease. 
Based on th is  defi n it ion, epidemio logists col lect data to determ i ne frequency of 
occu rrence of d isease and r isk factors for d i sease. U nder th i s  model, we open our­
selves to look i ng at r isk factors which have an effect at the b io logical  level of the 
ind iv idua l .  Us ing a more complete model of health, epidem io logy is  able to focus 
on the occu rrence of health-related states and r isk factors related to phys ica l ,  soc ia l  
and psychological health status as wel l .  The International Classification of  Func­
tioning and Disability model, descri bed i n  Chapter 1 ,  provides an excel lent frame­
work for th is  approach. We can beg in  to look at the concept of r isk in terms of 
impai rments that lead to physical  d i sab i l i ty, and use measures of r isk to he lp us set 
prior ities and eva l uate outcomes. Th is chapter has provided a broad v iew of epi­
dem io logy and has used the terms condit ion, d i sorder, d i sease and outcome in ter­
changeab ly. 

Most c l i n ic ians do not learn about epidem iologic approaches i n  basic research 
courses, and are not fam i l iar  with the use of measures of d i sease frequency, odds 
ratio or rel at ive risk, number needed to treat, sensit ivity and specific i ty or l i ke l i hood 
ratios. Th is is  unfortunate, as there are many opportun it ies to answer important 
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c l i n ica l  questions us ing these techn iques. As the l iterature cont inues to expand its 
use of these procedures, we must understand the i r  appl ications to apply research 
fi ndi ngs to our  c l i n ical practice. 

Quest ions that are appropriate for c l i n ical epidemiologic study may deal with 
specif ic in terventions or screen i ng tests, perhaps in a random ized c l i n ical  tria l  for­
mat, but may a l so be concerned with larger dec is ion and pol icy issues that have 
d i rect appl ication to practice. They can often be effectively answered us ing case­
control methodology or ana lys is  of cohort data. Dec is ions regard ing  choice of i nter­
vention, who gets in tervention ( inc l ud ing prevention) and the i ntens i ty and 
frequency of i n tervention may be a ided by an understanding of the relative r i sks 
associated with specific patient characteristics, activit ies or treatments. We may 
understand the physio logical rat ionale for applyi ng specific exerc i ses for reduc ing 
pa in or improv ing  mob i l i ty, but do we know what factors may a l ter the success of 
our  treatments, or wh ich patients are more l i kely to improve? Such i nformation can 
provide new ins ight i nto the rationa les we use for making treatment decis ions.  

As health care profess ionals  strive to embrace evidence-based dec is ion mak­
i ng, the concepts covered i n  this chapter must become a more regu la r  part of the 
rehab i l i tation l i terature. The rel iance on statist ical s ign ificance as a bas is  for d iag­
nosis, prognosis or treatment must move to the consideration of l i ke l i hood rati os, 
c l i n ical  effect, r isk and number needed to treat. These statist ical tool s  wi l l  he lp c l i ­
n ic ians  make c l i n ica l  dec is ions under condit ions of uncerta inty, and  w i l l  improve 
the odds of those dec is ions being correct. In the end, the c l i n i c ian wi l l  i ntegrate 
i nformation from the l i teratu re, h i s  own knowledge, experience and j udgment and 
the patient's preferences to arr ive at a dec is ion that uses the evidence to i ts best 
advantage. 
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CHAPTE R 29 

Multivariate Analysis 

The technological progress of data management systems has provided clinical 
researchers with a sophisticated statistical framework within which to examine the 
multifaceted and complex relationships inherent in many clinical phenomena. 
Multivariate analysis refers to a set of statistical procedures that are distinguished by 
the ability to examine several response variables within a single study and to account 
for their potential interrelationships in the analysis of the data. These tests are distin­
guished from univariate analysis procedures, such as the t-test and analysis of vari­
ance, in that univariate methods accommodate only one dependent variable. 

Given the types of questions being asked today and the types of data being used to 
examine clinical procedures, multivariate statistics have become quite important for 
those who do research and those who read research reports. The purpose of this chapter 
is to introduce the basic concepts behind several of the most commonly used multivari­
ate methods: partial correlation, multiple regression, logistic regression, discriminant 
analysis, factor analysis, multivariate analysis of variance and survival analysis. 

The application of multivariate procedures necessitates the use of a computer, and 
may require the assistance of a statistician for more advanced operations. In a short 
introduction such as this, it is not possible to cover the full scope of these procedures. 
Therefore, this discussion focuses on a conceptual understanding of multivariate tests 
and interpretation of the output a computer analysis will generate. 

PARTIAL CORRELATION 
The product-moment correlation coefficient, r, offers the researcher a simple and easily 
understood measure of the association between two variables, X and Y. The interpreta­
tion of r is limited, however, because it cannot account for the possible influence of 
other variables on that relationship. For instance, in a study of the relationship between 
age and length of hospital stay, we might find a correlation of .70, suggesting that older 
patients tend to have longer hospital stays (as shown by the shaded overlapped portion 
in Figure 29.1A). If, however, older patients also tend to have greater functional limita­
tions, then the observed relationship between hospital stay and age may actually be the 
result of their mutual relationship with function; that is, the hospital stay may actually 
be explained by the patient's functional status. We can resolve this dilemma by looking 
at the relationship between hospital stay and age with the effect of functional status 
controlled, using a procedure called partial correlation. 

The partial correlation coefficient is the correlation between two variables, X 
and Y, with the effect of a third variable, Z, statistically removed. For instance, in the 

685 
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FIGURE 29.1 Representation of partial correlation between hospital stay ( Y)  and age (X), with the effect 
of function (Z) removed. In (A), (B) and (C), the simple correlations between each pair of variables are i l l us­
trated. In (D) the shaded area represents those parts of hospital stay and age that are explained by func­
tion. The black area shows the common variance in hospital stay and age that is not related to function, 
or their partial correlation. 

preceding example, assume X is age, Y is hospital stay, and Z is functional status. We 
would want to know how much of the observed relationship between age and hospital 
stay (rxy) can be attributed to the confounding influence of function, and how much is 
purely the relationship between age and hospital stay. The term rxy·z is used to repre­
sent the correlation of X and Y, with the effect of Z eliminated. 

For example, suppose we are given the following correlations for a sample of 50 
patients: 

rxy = .70 (hospital stay with age) 

rxz = - .82 (hospital stay with function) 

ryz = -.68 (function with age) 

We "remove" the effect of function from rxy by first determining how much of the vari­
ance in both hospital stay and age is explained by function, as shown in Figure 29.1B 
and C. The overlapped, shaded portions represent the correlation between the two vari­
ables. Figure 29.1D shows how these relationships intersect. Once we remove the effect 
of function, the remaining overlap between hospital stay and age is reduced (the black 
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area in Figure 29.1D). This area represents the relationship between hospital stay and 
age with the effect of function canceled out. This is the partial correlation.* 

For the data in our example, rxy·z = .34. When we compare this partial correlation 
to the original correlation of X and Y(rxy = .70), we can see that age and hospital stay 
no longer demonstrate as strong a relationship. A large part of the observed associa­
tion between them could be accounted for by their common relationship with func­
tional status. 

The term rxY·Z is called a first-order partial correlation, because it represents a 
correlation with the effect of one variable eliminated. The simple correlation between X 
and Y is called a zero-order correlation. The significance of a first-order partial corre­
lation can be determined by referring to critical values of r in Appendix Table A.4, using 
n - 3 degrees of freedom. Partial correlation can be expanded to control for more than 
one variable at a time. A second-order partial correlation is symbolized by rxy.z1z2• This 
value can be checked· for significance using Table A.4 with n - 4 degrees of freedom. 
This process can continue with higher order partial correlations. 

Partial correlation is a useful analytic tool for eliminating competing explanations 
for an association, thereby providing a clearer explanation of the true nature of an 
observed relationship and ruling out extraneous factors. 

MULTIPLE REGRESSION 
Multiple regression is an extension of simple linear regression analysis, described in 
<;hapter 24. The multiple regression equation allows the researcher to predict the value Y using a set of several independent variables. It can accommodate continuous and cat­
egorical independent variables, which may be naturally occurring or experimentally 
manipulated. The dependent variable, Y, must be a continuous measure. A common 
purpose of regression analysis is prognostic, predicting a given outcome based on iden­
tified factors. For instance, Stineman and Williams1 developed a model to predict reha­
bilitation length of stay based on the patient's admitting diagnosis, referral source and 
admission functional status. A second purpose of regression is to better understand a 
clinical phenomenon by identifying those factors associated with it. To illustrate this 
application, Walker and Sofaer2 studied sources of psychological distress in patients 
attending pain clinics. They identified that 60% of the variance associated with psycho­
logical distress was explained by a combination of fears about the future, regrets about 
the past, age, practical help, feeling unoccupied and personal relationship problems. 
This type of analysis will often present opportunities for the analysis of theoretical com­
ponents of constructs. 

The Regression Equation 
Recall that the regression equation, Y = a + bX, defines a line that can be used to make 
predictions, with an inherent degree of random error. This error, or residual variance, 
represents variance in Y that is not explained by the predictor variable, X. For example, 

*""- . I I . ffi . . 1 I d . h f uJ (rxy - rxzTyz) u•e partia corre ation coe c1ent IS ca cu ate usmg t e orm a rxy·z = -;==�c=======:=::;;:= vh - rhlll - rhl 
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suppose we were interested in predicting cholesterol level using body weight as the 
independent variable, with r = .48 and r2 = .23. Based on the limited strength of this 
relationship, we would expect that a regression equation would provide estimates of 
cholesterol that would be different from actual values, as body weight by itself does not 
adequately explain cholesterol level. Therefore, the remaining unexplained variance in 
cholesterol (77%) must be a function of other factors. For instance, cholesterol may also 
be related to variables such as blood pressure, gender, age, weight or diet. If we were to 
add these variables to the regression equation, the unexplained portion of variance 
would probably be decreased (although not necessarily completely). This expanded 
analysis results in a multiple regression equation. 

In multiple regression, the regression equation accommodates multiple predic­
tor variables: 

(29.1) 

where Y is the predicted value for the dependent variable, a is a regression constant, 
and bv b2, b3 through � are regression coefficients for each independent variable. The 
subscript, k, denotes the number of independent variables in the equation.t Like simple 
linear regression, multiple regression is A also based on the concept of least squares, so 
that the model minimizes deviations of Y from Y. 

Once regression coefficients and a constant are obtained, we can predict values of Y 
by substituting values for each independent variable in the equation. For instance, sup­
pose we wanted to evaluate the predictive relationship between serum blood choles­
terol (CHOL) and potential contributing factors including age (AGE), daily dietary fat 
intake in grams (DIET), gender (GENDER), systolic blood pressure (SBP), and weight 
(WT). Table 29.1A shows the intercorrelations among these variables. The coefficients 
for the regression equation are shown in Table 29.1BO, including the constant: 

Y = 19.116 + .012(AGE) + 3.094 (DIET) + .218 (SBP) + 4.158 (GENDER) + .511 (WT) 

Based on this equation, for a 34-year-old subject, with DIET = 20.0 g, GENDER = 1 
(coded for male), SBP = 100 mmHg and WT = 150 pounds, we can predict cholesterol 
value as follows: 

CHOL = 19.116 + .012(34) + 3.094(20.0) + .218(100) + 4.158(1) + .511(150) = 184.01 

If this person's true Acholesterol level was 175, the residual would be 
175 - 184.01 = -9.01 (Y - Y). Scatter plots can also be requested to analyze the resid­
uals, typically plotting the predicted values on the X-axis against the residuals on the 
Y-axis. Visual analysis of residuals can reveal if the assumption of linearity in the data 
is violated (see Chapter 24, Figure 24.6). 

+The number of independent variables included in the regression equation is effectively limited by the sam­
ple size. Power analysis can be done to estimate the number of subjects that would be needed to identify a 
significant effect, based on the number of independent variables in the equation. See Appendix C. 
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TABLE 29.1 OUTPUT FOR MULTIPLE REGRESSION ANALYSIS: PREDICTION OF 
CHOLESTEROL LEVEL FROM AGE, DIET, BLOOD PRESSURE, GENDER 
AND WEIGHT (N = 100) 

A. CORRELATIONS 

Chol Age Diet SBP Gender WT 
CHOL Pearson r 1 .000 .063 .634 . 1 09 .000 .481 

Sig (2-tailed) 0 .266 .000 . 1 40 .500 .000 
AGE Pearson r 1 .000 . 121  - . 1 25 . 1 25 .010 

Sig (2-tailed) . 1 1 6  . 1 08 . 1 08 .462 
DIET Pearson r 1 .000 .099 - .039 - .207 

Sig (2-tailed) . 1 64 .351 .019 
SBP Pearson r 1 .000 .01 1 - .005 

Sig (2-tailed) .455 .482 
GENDER Pearson r 1 .000 - .038 

Sig (2-tailed) .353 

B. REGRESSION OUTPUT 

Model Summary 

Adjusted Std. Error of 
Model R R Square R Square the Estimate 

1 .731 8 .534 @) .509 42.61 3 

ANOVA 

Sum of Mean 
Model Squares df Square F Sig. 

1 Regression 1 9531 4.30 5 39062.86 21 .512 .000 
Residual 1 70691 .00 94 1 81 5.86 
Total 366005.30 99 

Coefficients 

Unstandardized Standardized 
Model Coefficients Coefficients 0 0 8  Std. Error 0 Beta t Sig. 

1 (Constant) 1 9. 1 1 6  41 .81 7  .457 .649 
AGE 0 1 . 1 50E-02 .313 .003 .037 .971 
DIET 3.094 .41 0 .553 7.549 .000 
SBP .218 .276 .056 .788 .433 
GENDER 4. 1 58 8.61 2 .034 .483 .630 
WT .51 1 . 1 00 .368 5. 1 07 .000 

0 Two-tailed significance level for each correlation coefficient is shown as the second value in each cell. 
f.) R2 value for multiple regression equation. 
E» Adjusted R2 for multiple regression equation. 
0 Regression coefficients for each variable in the equation. 
0 Standardized regression coefficients (beta weights). 
0 Test of significance of regression coefficients for each independent variable. Values for the constant are ignored. 
f.) The designation E indicates an exponent. A positive exponent moves the decimal place to the right; a negative 

exponent moves the decimal place to the left. In this case, the decimal place will be moved two places to the 
left. Therefore, for AGE B = 0.01 1 5. 
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Regression coefficients are interpreted as weights that identify how much each vari­
able contributes to the explanation of Y. As part of the regression analysis, a test of sig­
nificance is performed on each regression coefficient, to test the null hypothesis, 
Ho: b = 0. Depending on the statistical package this will be done using either an F-test 
or a t-test, as shown in Table 29.1B0. In this example, the coefficients for AGE, GEN­
DER and SBP are not significant (p > .05). Therefore, these three variables are not mak­
ing a significant contribution to the prediction of cholesterol level. 

Standardized Regression Coefficients 
Researchers often want to establish the relative importance of specific variables within 
a regression equation. The regression coefficients cannot be directly compared for this 
purpose because they are based on different units of measurement. When it is of inter­
est to determine which variables are more heavily weighted, we must convert the 
weights to standardized regression coefficients, called beta weights. These standard­
ized values are interprett;_d as relative weights, indicating how much each variable con­
tributes to the value of Y. For example, the beta weights listed in Table 29.1B0 show 
that DIET and WT are the most important variables for predicting cholesterol. The sign 
of the beta weight indicates the positive or negative relationship between each variable 
and Y, but only the absolute value is considered in determining the relative weight. 
Some authors present beta weights in addition to regression coefficients in a research 
report, to provide the reader with a full and practical interpretation of the observed 
relationships. 

Multico l inearity 
A problem occurs in the interpretation of beta weights if the independent variables in 
the regression equation are correlated with each other. This situation is called 
multicolinearity. The coefficients assigned to variables within the equation are based 
on the assumption that each variable provides independent information, contributing a 
unique part of the total explanation of the variance in Y. If independent variables are 
related to each other, the information they provide to the model is partially redundant. 
In that case, one variable may be seen as contributing a lot of information, and the sec­
ond variable may be seen as contributing little; that is, one variable may have a larger 
beta weight. Each variable may be highly predictive of Y when used alone, but they are 
redundant when used together. This situation can be avoided by determining the inter­
correlations among predictor variables prior to running a regression analysis and 
selecting independent variables that are not highly correlated with each other. 

The interpretation of multicolinearity is based on the concept of partial correlation; 
that is, each regression coefficient represents the importance of a single variable after 
having accounted for the effect of all other variables in the equation. Therefore, the 
value of a regression coefficient is dependent on which other independent variables are 
in the equation. With different combinations of variables, it is likely that a particular 
regression coefficient will vary. It is important to remember, therefore, that the relation­
ships defined by a regression equation can be interpreted only within the context of the 
specific variables included in that equation. 
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The overall association between Y and the complete set of independent variables is 
defined by the multiple correlation coefficient, R. This value will range from 0.00 to 
1.00; however, because R represents the cumulative association of many variables, its 
interpretation is obscure. Therefore, its square (R2) is used more often as an explanation 
of the functional relationship between Y and a series of X values. 

As an analogue of r2, the value of R2 represents the proportion of the total variance 
in Y that is explained by the set of independent variables in the equation; that is, it is 
the variance attributable to the regression. R2 is the statistic most often reported in journal 
articles to indicate the accuracy of prediction of a regression analysis. Higher values of 
R2 reflect stronger prediction models. The complement, 1 - R2, is the proportion of 
the variance that is left unexplained, or the variance attributable to deviations from 
the regression. Table 29.1B8 shows that R2 

= .534 for the cholesterol analysis, indicat­
ing that this group of variables accounts for slightly more than half of the variance in 
cholesterol. 

An adjusted R2 is also generated for the regression (Table 29.1B8). This value repre­
sents a chance-corrected value for R2; that is, we can expect some percent of explained 
variance to be a function of chance. Some researchers prefer to report the adjusted value 
as a more accurate reflection of the strength of the regression, especially with a large 
number of variables in the equation. 

Many regression programs will also generate a value for the standard error of the 
estimate (SEE), as shown in Table 29.1B. This value represents the degree of variabil­
ity in the data around the multidimensional "regression line," reflecting the prediction 
accuracy of the equation (see Chapter 24 for discussion of the SEE). 

Analysis of Variance of Regression 
A multiple regression analysis generates an analysis of variance to test the linear fit of 
the equation. The ANOVA partitions the total variance in the data into the variance that 
is explained by the regression and that part that is left unexplained, or the residual error. 
The degrees of freedom associated with the regression will equal k, where k represents 
the number of independent variables in the equation. The probability of F associated 
with the regression will indicate if the equation provides an explanation of Y that is bet­
ter than chance. The ANOVA in Table 29.1B demonstrates a significant model for the 
cholesterol data (F = 21.512, p < .001). 

Stepwise Mu ltiple Regression 
Multiple regression can be run by "forcing" a set of variables into the equation, as we 
have done in the cholesterol example. With all five variables included, the equation 
accounted for 53% of the variance in cholesterol values, although the results demon­
strated that the four independent variables did not all make significant contributions to 
that estimate. We might ask, then, if the level of prediction accuracy achieved in this 
analysis could have been achieved with fewer variables. To answer this question, we 
can use a procedure called stepwise multiple regression, which uses specific statistical 
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criteria to retain or eliminate variables to maximize prediction accuracy with the small­
est number of predictors. It is not unusual to find that only a few independent variables 
will explain almost as much of the variation in the dependent variable as can be 
explained by a larger number of variables. This approach is useful for honing in on 
those variables that make the most valuable contribution to a given relationship, 
thereby creating an economical model. 

Stepwise regression is accomplished in "steps" by evaluating the contribution of 
each independent variable in sequential fashion.+ First, all proposed independent vari­
ables are correlated with the dependent variable, and the one variable with the highest 
correlation is entered into the equation at step 1 .  For our cholesterol example, Table 
29.1A shows us that DIET has the highest correlation with CHOL (r = .634). Therefore, 
DIET will be entered on the first step. With this variable alone, R2 = .401 (see Table 
29.2$). The regression coefficients for this first step are shown in Table 29.28: 

A 

Y = 121.65 + 3.55(DIET) 

At this point, the remaining variables (those "excluded" from the equation) are exam­
ined for their partial correlation with Y, that is, their correlation with CHOL with the 
effect of DIET removed (see Table 29.28). The variable with the highest significant par­
tial correlation coefficient is then added to the equation, in this case, WT (partial 
r = .462, p = .000). Therefore, WT is added in step 2 (see Table 29.20). With the 
addition of this variable, we have achieved an R2 of .529 (see Table 29.20), only slightly 
lower than the value obtained with the full model. The adjusted R2 is higher, however, 
because there are fewer variables in this model. 

Another criterion for entry of a variable is its tolerance level Tolerance refers to 
the degree of colinearity in the data. Tolerance ranges from 0.00, indicating that the vari­
able is perfectly correlated with the variables already entered, to 1 .00, which means that 
the other variables are not related (see Table 29.20). The higher the tolerance, the more 
new information a variable will contribute to the equation. Some computer programs 
will automatically generate tolerance levels for each variable. Others offer options that 
must be specifically requested to include tolerance values (colinearity statistics) in the 
printout. 

The stepwise regression continues, adding a new variable at each successive step of 
the analysis if it meets certain inclusion criteria; that is, its partial correlation is highest 

tstepwise procedures may be classified as stepwise, forward or backward inclusion. Forward inclusion means 
that the model starts with no variables, and adds variables one by one until the inclusion criterion is satisfied. 
This procedure is differentiated from stepwise regression in many statistical programs. While both proceed 
using a forward selection method, adding a new variable at each step, the stepwise procedure can also 
remove a variable at any step, if that variable no longer contributes significantly to the model, given the cur­
rent variables in the equation. The procedure will specify a significance criterion to enter variables as well as 
to remove them. In the backward inclusion method, the model starts with all variables in the equation, and 
partial correlations are calculated as if each one were the last variable to be entered. Using criteria for removal, 
the variable with the smallest partial correlation is taken out. Steps proceed until no remaining variables are 
qualified for removal. 



TABLE 29.2 OUTPUT FOR STEPWISE MULTIPLE REGRESSION ANALYSIS: 
PREDICTION OF CHOLESTEROL 

Variables Entered/Removed3 Model Summary 

Variables Variables R Adjusted Std. Error of 
Model Entered Removed Method Model R Square R Square the Estimate 

1 DIET O Stepwise 1 .634 • .401 .395 47.285 
2 DIET, WT 0 Stepwise 2 .728 CiJ .529 .520 42. 145 

• Dependent variable: CHOL 

ANOVA 

Sum of Mean 
Model Squares df Square F Sig. 

1 Regression 1 46890.940 1 1 46890.940 65.698 .000 
Residual 21 91 1 4.370 98 2235.861 
Total 366005.30 99 

2 Regression 1 9371 5.449 2 96857.724 54.531 .000 
Residual 1 72289.861 97 1 776. 1 84 
Total 366005.31 0 99 

Coefficients 

Unstandardized Standardized 
Coefficients Coefficients 

Model B Std. Error Beta t Sig. 

1 (Constant) 8 121 .654 1 2.378 9.829 .000 
DIET 3.547 .438 .634 8 . 105 .000 

2 (Constant) 0 48.21 0  1 8.064 2.669 .009 
DIET 3. 1 22 .399 .558 7.831 .000 
WT .508 .099 .366 5. 1 34 .000 

Excluded Variables 

Collinearlty 
Statistics 

Partial 
Model Beta In t Sig. Correlation O Tolerance 

1 AGE -.014 - . 1 73 .863 -.01 8 .985 
SBP .047 .599 .550 .061 .990 
GENDER .024 .31 1 .756 .032 .999 
WT .366 5 . 134 .000 e .462 .957 

2 AGE - .001 -0. 1 1  .991 0 -.001 .984 
SBP .057 .806 .422 .082 .990 
GENDER .036 .507 .61 3 .052 .998 

0 DIET is entered on the first step. 8 The R2 associated with DIET is .401 . 

C» The regression equation with only DIET entered is Y = 121 .854 + 3.547(DIET). 

0 Of the remaining variables, WT has the highest (and only significant) partial correlation with CHOL. 

0 WT are entered on the second step. CD The R2 with DIET and WT added is now .529. 
& Collinearilty statistics show that WT has the lowest tolerance, indicating it has the least redundancy with 

DIET of the remaining variables. 

fD In step 2 WT is added. The regression equation is now Y = 48.21 0  + 3.1 22(DIET) + 0.508(WT). 

0 After step 2, there are no additional significant partial correlations. The regression stops. 



694 PART IV • Data Analysis 

of all remaining variables, and the test of its regression coefficient is significant. This 
process continues until, at some point, either all variables have been entered or the 
addition of more variables will not significantly improve the prediction accuracy of the 
model. In the current example, Table 29.20 shows us that none of the partial correla­
tions of the remaining three variables is significant. Therefore, no further variables were 
entered after step 2. As shown in Table 29.20, the final model for the stepwise regres­
sion is 

Y = 48.21 + 3.12(DIET) + .508(WT) 

Note that the coefficients in the equation have changed with the addition of WT as a 
variable. There are times when no variables will be entered if none of them satisfy the 
minimal inclusion criteria. In that case, the researcher must search for a new set of inde­
pendent variables to explain the dependent variable. 

Dummy Variables 
One of the general assumptions for regression analysis is that variables are continuous; 
however, many of the variables that may be useful predictors for a regression analysis, 
such as gender, occupation, education and race, or behavioral characteristics such as 
smoker versus nonsmoker, are measured on a categorical scale. It is possible to include 
such qualitative variables in a regression equation, although the numbers assigned to 
categories cannot be treated as quantitative scores. One way to do this is to create a set 
of coded variables called dummy variables. 

In statistics, coding is the process of assigning numerals to represent categorical or 
group membership. For regression analysis we use 0 and 1 to code for the absence and 
presence of a dichotomous variable, respectively. All dummy variables are dichoto­
mous. For example, with a variable such as smoker-nonsmoker, we code 
0 = nonsmoker and 1 = smoker. For sex, we can code male = 0 and female = 1. In 
essence we are coding 1 for female and 0 for anyone who is not female. We can use these 
codes as scores in a regression equation and treat them as interval data. 

For instance, we could include gender as a predictor of cholesterol level, to deter­
mine if men or women can be expected to have higher cholesterol levels. Assume the 
following regression equation was obtained: 

A 

Y = 220 - 27.5X 

l!_sing the dummy code for females, Y = 220 - 27.5(1) = 194.5, and for males 
Y = 220 - 27.5(0) = 220. With only this one dummy variable, these predicted values 

are actually the means for cholesterol for females and males. The regression coefficient 
for X is the difference between the means for the groups coded 0 and 1. 

When a qualitative variable has more than two categories, more than one dummy 
variable is required to represent it. For example, consider the variable of college class, 
with four levels: freshman, sophomore, junior and senior. We could code these categories 
with the numbers 1 through 4 on an apparent ordinal scale; however, these numerical 
values would not make sense in a regression equation, because the numbers have no 
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quantitative meaning. A senior is not four times more of something than a freshman. 
Therefore, we must create a dichotomous dummy variable for each category, as follows: 

xl = 1 if a freshman 

0 if not a freshman 

Xz = 1 if a sophomore 

0 if not a sophomore 

x3 = 1 if a junior 

0 if not a junior 

Each variable codes for the presence or absence of a specific class membership. We 
do not need to create a fourth variable for seniors, because anyone who has zero for all 
three variables will be a senior. We can show how this works by defining each class with 
a unique combination of values for X1, Xz and X3: 

xl x2 x3 

Freshman 0 0 
Sophomore 0 1 0 
Junior 0 0 1 
Senior 0 0 0 

The number of dummy variables needed to define a categorical variable will always be 
one less than the number of categories. 

Suppose we wanted to predict a student's attitude toward the disabled, on a scale 
of 0 to 100, based on class membership. We might develop an equation such as 

Y = 85 - 55X1 - 25Xz - 15X3 

Therefore, the predicted values for each class would be 

Freshman: y = 85 - 55(1) - 25(0) - 15(0) = 30 

Sophomore: Y = 85 - 55(0) - 25(1) - 15(0) = 60 

Junior: 

Senior: 

y = 85 - 55(0) - 25(0) - 15(1) = 70 

y = 85 - 55(0) - 25(0) - 15(0) = 85 

Several dummy variables can be combined with quantitative variables in a 
regression equation. Because so many variables of interest are measured at the nomi­
nal level, the use of dummy variables provides an important mechanism for creating 
a fuller explanation of clinical phenomena. Some computer programs will automatically 
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generate dummy codes for nominal variables. For others, the researcher must de­
velop the coding scheme. 

LOGISTIC REGRESSION 
Many questions of prediction or explanation involve outcomes that are categorical. For 
example, we might ask why some individuals experience recurrent falls. VanSwearin­
gen et al3 identified mobility and functional characteristics that could predict whether 
a person did or did not have a history of falls. We might look for factors related to 
whether or not a patient returns to work following rehabilitation. Cifu et al4 examined 
several measures of physical and psychological function as predictors of successful 
return to work one year after traumatic brain injury. These examples illustrate the appli­
cation of logistic regression, where the dependent variable has only two values-the 
occurrence or nonoccurrence of a particular event, or the presence or absence of a con­
dition, typically coded 0 and 1 .§ We cannot use multiple regression for this purpose, as 
a categorical dependent variable cannot meet the assumption of a normal distribution 
(see Chapter 24, Figure 24.5). The independent variables in logistic regression may be 
continuous, ordinal or categorical. Logistic regression can be run using a full set of inde­
pendent variables, or it may be run using a stepwise procedure. 

The Logistic Regression Model 
In logistic regression, rather than predicting the value of an outcome variable, we are 
actually predicting the probability of an event occurring. Using the regression equation, 
we determine if the independent variables can predict whether an individual is likely 
to belong to the group coded 0 (the reference group) or the group coded 1 (the target 
group). Consider the following hypothetical example. Suppose we wanted to predict 
the discharge disposition for patients following rehabilitation, as either "return to 
home" (coded 0) or "long-term care" (coded 1). We would like to set appropriate goals 
and begin suitable discharge planning as soon as possible, and we would like to deter­
mine if characteristics upon admission will be useful predictors of discharge status. We 
will use the following variables, coded as present (1) or absent (0), exc�pt for age, which 
is continuous: 

Functional status 

Age 

Marital status 

Gender 

ADL 

AGE 

MAR 

GENDER 

0 = independent; 1 = l imited 

Continuous 

0 = married; 1 = not married 

0 = male; 1 = female 

We will examine data from 100 patients, 46 of whom went to long term care (LTC). 
The statistical question is: What is the likelihood that an individual will be discharged 
to LTC given this combination of factors? The results of a logistic regression for these 
variables are shown in Table 29.3. 

§Logistic regression can be used when the outcome variable has more than two categories, an approach that 
is beyond the scope of this text. 
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TABLE 29.3 OUTPUT FOR LOGISTIC REGRESSION ANALYSIS: RISK FACTORS 
ASSOCIATED WITH DISCHARGE DISPOSITION IN ELDERLY PATIENTS 
(N = 100) 

Classification Table3 0 
Predicted 

Discharge 
Percentage 

Observed Home LTC Correct 

Step 1 Discharge Home 46 8 85. 1 9  
LTC 9 37 80.43 

Overall Percentage 83.00 

a The cut value is .50 

Variables in the Equation 

0 
95% Cl for Exp(B) 

8 8 0 
B SE df Sig. Exp(B) Lower Upper 

ADL 2.384 .656 1 .0003 1 0.848 3.000 39. 1 92 
AGE . 1 04 .046 1 .0236 1 . 1 1 0  1 .0 14  1 .2 1 5  
MAR 2.935 .662 1 .0000 1 8.822 5. 1 47 68.808 
GENDER - .01 8 .642 1 .9778 .982 .279 3.459 
Constant - 1 1 . 1 67 3.984 1 .0051 

0 Classification results compare predicted outcomes using the logistic regression to actual observed results 
(see Figure 29.2). 

8 Regression coefficients for each variable in the logistic regression. 

e Significance levels (p) for each regression coefficient. 

e Odds ratios associated with each variable, based on the exponent of the regression coefficient. 

0 Confidence intervals for the odds ratios. If the null value of 1 .0 is contained within the interval, the odds ratio 
is not considered significant. Only GENDER is not significant. 

The Logistic Function 
We can think of  the logistic function as a linear combination of  these variables, simi­
lar to the linear regression equation. The likelihood of the predicted outcome is based 
on the odds of being discharged to LTC or more accurately, the logarithm of the odds: 

(29.2) 

where Z is the natural logarithm of the odds, called a logit, a is a regression constant, 
and b is the regression coefficient. Even though we are using a different mathematical 
base (logarithms), this equation is conceptually the same as the multiple regression 
equation-but with two major differences. First, the dependent variable (the logit) is a 
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dichotomous outcome, resulting in prediction of group membership. Second, where 
multiple regression uses the least squares criterion for finding the equation with the 
smallest residuals, logistic regression uses the concept of maximum likelihood, which 
means that the equation will present the "most likely" solution that demonstrates the 
best odds of achieving accurate prediction of group membership. 

Coefficients for the logistic regression for our discharge status question are shown 
in Table 29.38 This logistic regression equation would, therefore, be written: 

Z = -11.167 + 2.384(ADL) + .104(AGE) + 2.935(MAR) - .018(GENDER) 

Predicted Probabilities 
We can use the coefficients in the logistic regression equation to predict the probability 
that an individual belongs to the target group, as follows: 

P b bill. 
ez 1 

ro a ty = -
1

--z or 
1 -z + e  + e  

(29.3) 

where e is the base of the natural logarithm.** The probability associated with the out­
come will be 0 if the subject is discharged home, and 1 if long-term care. We can expect, 
however, that the logistic regression will yield probabilities between 0 and 1 .  A value 
closer to 1.0 (above .5) will suggest a probability in favor of discharge to long-term care, 
and a value closer to zero (below .5) would predict that this event is not likely to occur; 
that is, the subject is likely to be discharged home. A probability of .5 would mean that 
the individual has an equal likelihood of either outcome. 

When this model is applied to an individual's data, we obtain the probability of 
that individual being discharged to long-term care. Consider, for example, a subject 
who ultimately was discharged to LTC, who had the following scores: ADL = 1, 
AGE = 78, MAR = 1 and GENDER = 0, 

z = -11 .167 + 2.384(1) + .104(78) + 2.935(1) - .018(0) = 2.264 

Therefore, tt 

e2.264 1 
Probability (discharge to LTC) = 2 264 or _2 264 = .91 

1 + e - 1 + e · 

Using this model, we would have correctly predicted that this individual would be dis­
charged to LTC, as the probability is greater than .5. 

Let's look at another example for a subject who was also discharged to LTC, with 
the following data: ADL = 1, AGE = 80, MAR = 0, and GENDER = 0: 

z = -11.167 + 2.384(1) + 2.935(0) - .018(0) + .104(80) = -0.463 

**Find the key marked i' on your scientific calculator. 
t%e value ei·264 = 9.62 and e-2·264 = .104. 
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Therefore, 

e-0.463 1 
Probability (discharge to LTC) = 

1 + e-o.463 or 1 + e-(-o.463) = .39 
We would incorrectly predict that this individual would be discharged home because 
the probability is less than .5. 

A histogram helps us visually understand how these predictions are interpreted. In 
Figure 29.2 we see such a graph of the predictions for subjects in this example, where 
the symbol "0" represents those who were actually discharged home, and the symbol 
"1" represents those who went to long-term care. The X axis shows the predicted prob­
abilities associated with each individual's scores. In this instance, probabilities above .5 
are assigned to group 1, whereas probabilities of .5 or below are assigned to the group 
coded 0. Therefore, on the left half of the graph we can see that nine of those who actu­
ally went to long-term care (coded 1) were predicted to go home, whereas on the right 
half we find that eight of those who went home (coded 0) were predicted to go to long­
term care. These incorrect classifications are shaded on the graph. Classification results 
are also given in Table 29.30. A total of 83% of the sample was correctly classified using 
this logistic model. Over 80% of those who actually went to long-term care (1) were 
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FIGURE 29.2 H istogram (N = 1 00) of estimated probabi l ities of being discharged home (0) versus dis­
charged to long term care (1 ), derived from logistic regression. Each symbol represents one subject. 
Shaded symbols represent m isclassifications using a cutoff score of .50. (Histogram obtained using SPSS 
8.0 logistic regression procedure.) 
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correctly classified; approximately 85% of those who went home (0) were correctly 
assigned using the logistic regression model. 

The histogram also allows us to see the effect of using this model and the conse­
quences of misclassification. For instance, in this example we can see that most of the 
misclassifications occur in the region around .5. In setting discharge plans, we might 
want to reserve judgment for this group. We would be more confident, however, in set­
ting up home discharge plans for those with probabilities below .25, and similarly con­
fident in securing a bed in a skilled nursing facility for those with probabilities above .75. 

The Odds Ratio 
It is generally more useful to interpret regression coefficients in terms of odds rather 
than probability. Odds tell us how much more likely it is that an individual belongs to 
the target group than the reference group. If the odds are 1.00, then either outcome is 
equally likely. With odds greater than 1.00, the individual is more likely to belong to the 
target group; conversely, with odds less than 1.00, the individual is more likely to 
belong to the reference group. 

The odds ratio is used to estimate the odds of membership in the target group, 
given the presence of specific independent variables (see Chapter 28 for discussion of 
the odds ratio). The regression coefficient in the equation is the logarithm of the odds 
for each independent variable. Therefore, an odds ratio can be computed for each vari­
able by using the regression coefficient as the exponent of e (see Table 29.30). For a sub­
ject who is limited in ADL (ADL = 1), the odds of going to LTC are e2·384 

= 10.848. This 
number represents the odds of going to LTC with a one-unit change in the value of X. 
With a dichotomous variable, this means that an individual who is limited in ADL is 
almost 11 times more likely to go LTC as compared to one who is independent (a 
change from 0 to 1 for ADL). Confidence intervals can also be determined for each odds 
ratio (see Table 29.30). A significant odds ratio will not contain the null value, 1.0, 
within the confidence interval. We can see that this is true for the odds ratios associated 
with ADL and MARital status. 

Adjusted Odds Ratio 
When the logistic regression equation includes several independent variables, as in our 
example, each odds ratio is actually corrected for the influence of the other variables. Just 
as independent variables in multiple regression exhibit colinearity, independent vari­
ables with logistic regression will affect each other. This is an important consideration for 
prediction models. For instance, if we were to look at the simple association between dis­
charge status and ADL, we would find an odds ratio of 15.909 (see Table 29.4). This 
means that individuals who are limited in ADL are almost 16 times more likely to be dis­
charged to long-term care than those who are independent. However, if we look at the 
results of the logistic regression in Table 29.30, we find that the odds ratio associated 
with ADL is 10.848. This discrepancy is a function of the other variables in the equation; 
that is, the odds ratio for ADL is adjusted for the influence of the other factors. Therefore, 
the odds ratios shown in Table 29.30 are considered adjusted odds ratios. 
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TABLE 29.4 ODDS RATIO {OR) ASSOCIATED WITH DISCHARGE STATUS 
AND FUNCTIONAL INDEPENDENCE (ADL} 

Discharge 

ADL Long-Term Care (1) Home (O) 

Limited (1) 35 9 

Independent (0) 1 1  45 

TOTAL 54 46 

OR = ad = (35)(45) = 15.909 
be (9)(1 1 )  

Continuous Variables 

TOTAL 

44 
56 

1 00 

When an independent variable is continuous, the interpretation of logistic regression is 
more complex. Consider the effect of AGE on discharge status, with an odds ratio of 
1 .11. Remember that an odds ratio of 1 .0 indicates that either outcome is equally likely. 
Because the odds ratio relates to the relative increase in odds with a one-unit increase in 
X, we can interpret this value as the odds associated with a 1-year difference in age, such 
as from 87 to 88, or any other 1-year difference. Therefore, with a 1-year difference in 
age, the odds of going home or to long-term care are essentially even. As the unit differ­
ence increases, however, we must multiply the regression coefficient for age (B = .104, 
Table 29.38) to obtain the odds ratio. With a 2-year difference in age, then, we determine 
the odds ratio by e<2x·104) 

= 1.23. Not much of a change. To determine the odds related 
to a 10-year difference in age, we find e(lOx .l04) = 2.83. Now the odds of going to long­
term care are almost three times greater for someone who is 80 as compared to someone 
who is 70, or for someone who is 75 compared to someone who is 65. Many researchers 
choose to categorize continuous variables to simplify this interpretation. 

Presentation of Results 
The presentation of results from a logistic regression will depend on the research 
question. In many research situations, the investigator is actually interested in one 
particular variable, but wants to control for potential confounders. Using our dis­
charge study, we might be specifically interested in the effect of function on discharge 
status, but we would want to account for the influence of demographic factors. In that 
case we might report that the odds ratio for ADL was 10.848, adjusted for age, mari­
tal status and gender. 

Alternatively, we could approach this analysis using a broader question, asking 
which of these four factors is related to discharge status. For this approach, we would 
summarize results, suggesting that ADL and MARital status are most influential in pre­
dicting discharge status, adjusted for age and gender. In addition to the increased like­
lihood of going to LTC if the patient is functionally limited, those who are not married 
are almost 19 times more likely to be sent to LTC than those who are married. 
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Another consideration in presenting results is the significance associated with each 
independent variable. In the current example, only ADL and MARital status have sig­
nificant regression coefficients (Table 29.38). Some authors will present coefficients and 
odds ratios for all independent variables, regardless of their significance. Others will 
provide odds ratios only for significant variables. 

DISCRIMINANT ANALYSIS 
Discriminant analysis is another analogue of multiple regression, also used when the 
dependent variable is categorical. It is a technique for distinguishing between two or 
more groups based on a set of characteristics that are predictors of group membership. 
Based on the equation generated by the discriminant analysis, subjects are classified 
according to their scores, and the model is then examined to see if the classifications 
were correct. Discriminant analysis has an important distinction from logistic regres­
sion, in that the independent variables are assumed to be normally distributed, and 
variances are assumed to be equal across groups. Dichotomous independent variables 
can be used, but with a mixture of continuous and dichotomous variables, discriminant 
analysis may be less than optimal. 

The ability to classify individuals into distinct groups can be useful in many areas 
of clinical and behavioral science, for purposes of prevention, evaluation, screening, 
and diagnosis. For example, Ermer and Dunn5 studied three groups of children: with 
autism, attention deficit disorder and without disabilities. The researchers conducted a 
discriminant analysis to determine if these groups could be differentiated on the basis 
of their scores on nine factors of a Sensory Profile. Nearly 90 percent of the cases were 
correctly classified using the resulting model, supporting its validity. 

The discriminant analysis develops a statistical model, called a discriminant func­
tion, that will allow us to describe the existing groups and to assign new individuals to 
a group when it is not known to which group they belong. Discriminant analysis can be 
performed using a fixed set of variables or in a stepwise manner to reduce the discrim­
inant function to a minimum of relevant variables. 

To demonstrate this process, consider a hypothetical example in which we are inter­
ested in distinguishing between athletes who are likely to sustain an injury over the 
course of a season (designated group 1) versus those who will remain uninjured (des­
ignated group 0). Using a group of athletes from one school, we will consider overall 
strength, flexibility, balance and time in play as risk factors. To illustrate these relation­
ships, consider only the first two variables for a moment. In Figure 29.3 we have plot­
ted scores representing strength (Y) and flexibility (X) for injured and noninjured 
groups. In Figure 29.3A, the variables clearly discriminate between the groups, with 
those who were not injured demonstrating greater strength and flexibility; however, 
even with this degree of separation, we can see that discrimination will not be totally 
accurate because there is some overlap between the groups. Figure 29.3B represents a 
different situation, where there is much less differentiation between the groups, and it 
is likely that the independent variables would not be successful in distinguishing 
between them. When we incorporate many more variables into the analysis, we cannot 
visualize discrimination in a two-dimensional plot, but we can extend this illustration 
conceptually to visualize the discrimination between groups in multiple planes. 
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Flexibility 
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Injured 

Flexibility 
B 

FIGURE 29.3 Basis for discriminant analysis. In A, groups are different in levels of strength and flexi­
b i l ity. In B, the variables do not discriminate between the groups. 

The Discriminant Function 
Any number of predictor variables can be used to develop the discriminant 
function, which is analogous to the multiple regression prediction equation. The 
equation takes the form: 

(29.4) 

where D is the discriminant score, a is a constant, d is the discriminant function coefficient, 
and k is the number of predictor variables in the equation. The discriminant score for 
each subject is calculated by substituting scores for each predictor variable into the 
equation (see Table 29.50). The purpose of the discriminant function is to determine the 
linear combination of variables that makes the groups as statistically distinct as possi­
ble; that is, it provides maximum discrimination between the groups. Discriminant 
function coefficients are often expressed as standardized coefficients, without a constant 
in the equation, similar to a beta weight in linear regression. 

When more than two criterion groups are used, discriminant analysis becomes 
more complex, necessitating the development of more than one discriminant function. 
With k groups, we will require k - 1 discriminant functions. For example, in the study 
by Ermer and Dunn,5 where three groups were used, two discriminant functions were 
generated, one distinguishing normal children from the two disabled groups, and the 
second distinguishing the two disabled groups from each other. 

The ability of the discriminant function to distinguish between groups can be 
assessed in several ways. The statistics associated with the equation are shown in Table 
29.5. An eigenvalue (see Table 29.58) is a measure of variance, indicating how well the 
discriminant function discriminates between the groups; the higher the eigenvalue, the 
greater the discrimination.H This value is difficult to interpret, however, as it has no 

HAn eigenvalue is analagous to an F ratio, the ratio of the between-groups sum of squares to the within­
groups sum of squares that would be generated in an analysis of variance, with group as the independent 
variable and the discriminant function as the dependent variable (the discriminant function is interpreted as 
a weighted sum of the values on the predictor variables). 



TABLE 29.5 SELECTED OUTPUT FOR DISCRIMINANT ANALYSIS: RISK FACTORS 
ASSOCIATED WITH ATHLETIC INJURY (N = 1 09) 

Group Statistics 

0 Std. 
Injury Group Mean Deviation 

No injury BALANCE 33.37 1 0.25 
FLEXIBILITY 65.44 1 3.70 
STRENGTH 1 4.23 5.48 
TIMEINPLAY 1 9.03 8.26 

Injury BALANCE 21 .64 4.78 
FLEXIBILITY 40.38 1 6.32 
STRENGTH 22.94 8.56 
TIMEINPLAY 26.78 6.74 

Eigenvalues Wilks' Lambda 

@) Test of Wilks' Chi-
f) % of Canonical Function Lambda square df 

0 
Sig. 

Function Eigenvalue Variance Correlation 1 .345 1 1 1 .71 1 4 .000 
1 1 .898 1 00.00 .809 

Unstandardized Canonical Discriminant 
Function Coefficient 

Standardized Canonical Discriminant 
Function Coefficient 

Function Function 

0 1 0 1 

BALANCE .055 BALANCE .448 
FLEXIBILITY .040 FLEXIBILITY .592 
STRENGTH - .081 STRENGTH - .572 
TIMEINPLAY - .052 TIMEINPLAY - .395 
Constant - 1 .01 6 Constant 

Classification Resultsa 0 
Predicted Group 

Membership 

Injury Group No Injury Injury Total 

Count No injury 56 3 59 
Injury 7 43 50 

% No injury 94.9 5.1  
Injury 1 4.0 86.0 

"90.8% of original group patients correctly classified. 

0 Group means for each variable. 
0 The eigenvalue is a reflection of the proportion of variance that is accounted for by the discriminant function. 
e The canonical correlation is the correlation between the two sides of the equation, that is, between group 

membership and the discriminant function (the weighted sum of the independent variables). 
0 Chi-square tests the significance of the canonical correlation. In this case, p = .000, which is significant. If p is 

greater than .05, it would suggest that the discriminant function does not significantly account for differences 
between groups. 

e The unstandardized coefficients are used to create the discriminant function, including a constant: 
D = - 1 .016  + .055(BALANCE) + .04(FLEXIBILITY) - .081 (STRENGTH) - .052(TIME) 

CD The standardized coefficients are similar to beta weights in a multiple regression analysis, with no constant: 
D = .448(BALANCE) + .592(FLEXIBILITY) - .572(STRENGTH) - .395(TIME) 

where each variable is expressed as a standardized z-score. 
0 Classification results of the discriminant analysis. 
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upper limit. Therefore, it is usually preferable to use a measure of correlation that 
ranges from 0 to 1, similar to the interpretation of R2. The canonical correlation 
expresses this relationship, conceptually serving as a correlation of group membership 
with the discriminant function (see Table 29.58). The square of the canonical correlation 
reflects the extent to which the variance in scores in the discriminant function account 
for differences among the groups. In this example, with a canonical correlation of .809, 
approximately 66% of the variability in scores is accounted for by the differences 
between injured and noninjured athletes. A chi-square test is used to determine the sig­
nificance of this relationship (see Table 29.58). 

Classification 
Probably the most useful test of the discriminant function is the degree to which it  accu­
rately predicts group membership. Obviously, when we calculate 0 it will not be 
exactly equal to 1 or 0. Therefore, a cutoff score must be defined, below which subjects 
are assigned to group 0 and above which they are assigned to group 1. The discriminant 
analysis will establish the coefficients and cutoff score that will maximize accuracy of 
classification. Unless the predictor variables are completely different from each other, 
with no overlapping variance (correlation), we can anticipate that this classification will 
not be 100% correct. A summary of classification results is included as the final step in 
the discriminant analysis. Because we know the true group assignment for each subject, 
we can determine if the discriminant function has correctly classified each individual. 
For example, Table 29.50 shows the results of the discriminant analysis for classifying 
athletes who were and were not injured. This summary shows that of those who actu­
ally had no injury, 94.9% were correctly classified, and of those who were injured, 86.0% 
were correctly classified. In the entire sample of 109 subjects, 90.8% were placed in the 
correct group by the discriminant function. This would be considered excellent discrim­
ination. Therefore, based on these hypothetical data, measures of strength, flexibility, 
balance and time in play will be useful predictors of an athlete's risk of injury. In essence, analysis of variance and the t-test for independent samples are special 
forms of discriminant analysis. Questions that are analyzed using these tests would 
often be equally well suited to discriminant analysis, and results would be identical; 
that is, where groups are significantly different using an analysis of variance, the dis­
criminant analysis would show that the predictor variables are capable of discriminat­
ing among the groups. For instance, using the current example, we could have done 
five separate t-tests to determine if the injured and noninjured athletes were different 
from each other for each of the five identified risk factors. The discriminant analysis 
approach is more useful, however, when several measured variables are studied, 
accounting for their interdependence in the analysis, and controlling for potential Type 
I errors with multiple univariate analyses. 

FACTOR ANALYSIS 
The technique of factor analysis is quite different from any of the statistical proce­
dures we have examined thus far. Rather than using data for comparison or predic­
tion, factor analysis takes an exploratory approach to data analysis. Its purpose is to 
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examine the structure within a large number of variables, in an attempt to explain the 
nature of their interrelationships. This procedure is more controversial than other 
analytic methods because it leaves room for subjectivity and judgment; however, fac­
tor analysis makes an important contribution to multivariate methods because it can 
provide insights into the nature of abstract constructs and allows us to superimpose 
order on complex phenomena. 

The concept of factor analysis is illustrated in Figure 29.4. The larger set of variables 
at the top is composed of several overlapping circles with various degrees of "gray" or 
"green." We can assume that there is some relationship among circles that have similar 
shades. Through factor analysis, these variables are reorganized into two relatively 
independent circles, each one representing a set of related variables. Each set of green 
and gray variables represents a unique factor. A factor consists of a cluster of variables 
that are highly correlated among themselves, but poorly correlated with items on other 
factors. Therefore, we assume that circles with blue shades are related to other circles 
with green, but not to circles with gray, and vice versa. 

Developing Factors 
In real terms, we use factor analysis to examine a large set of variables that represents 
elements of an abstract construct, and to reduce it to a smaller, more manageable set of 
underlying concepts. For example, we could examine a large set of behaviors within an 

Several 
correlated 
variables 

Two 
independent 
factors 

FIGURE 29.4 Conceptual representation of factor analysis. 
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individual and categorize them as representing different conceptual elements of the 
person's psychological state. Loss of appetite, lack of motivation and withdrawal might 
reflect underlying "depression." Sleeplessness, inability to concentrate, and nail biting 
might be indicative of "anxiety." Depression and anxiety would each be composed of a 
set of related elements, with each set of elements unrelated to the other set. The inter­
correlation of variables within a factor suggests that those variables, taken together, rep­
resent a singular concept that can be distinguished from other factors. Therefore, 
depression can be distinguished from anxiety. 

We might also be interested in the relative strength of the association between each 
of the variables within a factor and the concept that the factor represents. For instance, 
what is the relationship between sleeplessness and the concept of anxiety? In addition 
to grouping variables into factors, factor analysis also weights each variable within a 
factor. These coefficients, called factor loadings, are measures of the correlation 
between the individual variable and the overall factor. 

The determination of what variables make up a factor is not determined a priori. 
The factor analysis approaches a set of data by looking at the intercorrelations among 
all the variables and arranging them into sets of statistically related variables. Through 
a complex series of manipulations that can only be envisioned by a computer, the analy­
sis derives the factors and shows which variables fit best into each factor. 

Example 
To demonstrate this application using a practical example, suppose we are interested in 
studying behaviors that are related to chronic pain in a sample of 150 patients with low 
back pain. For this hypothetical example, we will examine seven variables (although 
many more would probably be of interest in such a study). These variables have all 
been measured on a 5-point Likert scale, based on the frequency with which each 
behavior is observed, from 1 = "never observed" to 5 = "almost always observed."  
The seven variables are (1)  COMPLAINs about pain; (2) CHANGES position frequently 
while sitting; (3) GROANS, moans, or sighs; (4) RUBS painful body parts; (5) ISOLATEs 
herself or himself; (6) MOVES rigidly and stiffly; and (7) drags feet when WALKING. 
We will interpret a computer printout for a factor analysis on these seven variables. 

Extraction of Factors 
The first step in a factor analysis is the creation of a correlation matrix for all the test 
items. On the basis of these correlations, the factor analysis attempts to identify the 
principal components§§ of the data; that is, the analysis proceeds to identify sets of vari­
ables that are linearly correlated with each other. Conceptually, this method looks at the 
data in a multidimensional space and configures the variables in all possible combina­
tions to determine groupings that "go together" statistically; that is, they demonstrate 

§%ere are actually several different approaches to factor analysis, of which principal components analysis 
(PCA) is one. As this is the more common approach reported in the literature, we have chosen to present it 
here. Those interested in other approaches should consult manuals for different statistical packages, as well 
as references listed at the end of this chapter. 
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strong correlations. These clustered variables represent "components" of the total data 
set and are derived through a process called extraction. The process is as mathematically 
complex as it sounds. 

Principal components analysis "extracts" a factor from the overall data matrix by 
determining what combination of variables shows the strongest linear relationship and 
accounts for a large portion of the total variance in the data. The first factor that is 
"extracted" will account for as much of the variance in the data as possible. The second 
factor represents the extraction of the next highest possible amount of variance from the 
remaining variance. Each successive factor that is identified "uses up" another compo­
nent of the total variance, until all the variance within the test items has been accounted 
for. These factors are abstract statistical entities only. This process does not indicate 
which variables are related to which factors. 

As shown in the printout in Table 29.60, this analysis has extracted seven factors. 
The number of factors derived from a set of variables will always equal the number of 
variables, as it does here. These factors are statistical representations of variance and 
cannot be interpreted as any real concept yet. The computer is simply looking at pat­
terns within the data and manipulating numbers. It will not be until the end of the 
analysis that these "factors" will make sense. 

Even though seven factors have been identified, several of these factors account for 
small amounts of variance, and do not really contribute to an understanding of the struc­
ture of the data. We can usually characterize the data most efficiently using only the first 
few components. Therefore, we need to establish a cutoff point to limit the number of 
factors for further analysis. The statistic used to set this cutoff is called an eigenvalue 
(Table 29.68). Eigenvalues tell us how much of the total variance is explained by a fac­
tor. Factor 1 will always account for more variance than the other factors (in this exam­
ple 27.1 %). The most common approach restricts retaining factors to those with an 
eigenvalue of at least 1.00. Using this criterion, then, we limit further analysis to the first 
four factors, which taken together account for 72.5% of the variance in the data (see Table 
29.68). Alternatively, the researcher may specify the number of factors to be used. 

The result of a principal components analysis is a factor matrix (see Table 29.68), 
which contains the factor loadings for each variable on each factor. Loadings are inter­
preted like correlation coefficients, and range from 0.00 to ± 1.00. Ideally we want each 
variable to have a loading close to 1.00 on one factor and loadings close to 0.00 on all 
other factors.*** Factor loadings greater than .30 or .40 are generally considered indica­
tive of some degree of relationship. We consider only the absolute value of the loading 
in this interpretation. The sign indicates if the variable is positively or negatively corre­
lated with the factor. 

Unfortunately, this factor matrix is usually difficult to interpret because it does not 
provide the most unique structure possible; that is, several variables may be "loaded" 
on more than one factor. For instance, if we look across the row for COMPLAIN, we can 

***The ideal outcome of a factor analysis would be the generation of factors that are composed of variables 
with high loadings on only that one factor. These would be considered "pure" factors. This does not always 
happen, however. When one variable loads heavily on two factors, those factors do not represent unique con­
cepts, and there is some correlation between them. The researcher must then reconsider the nature of the vari­
ables included in the analysis and how they relate to the construct that is being studied. 
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TABLE 29.6 SELECTED OUTPUT FOR FACTOR ANALYSIS: SEVEN MEASURES 
RELATED TO CHRONIC PAIN BEHAVIOR (N = 1 00) 

Total Variance Explained 

Initial Eigenvalues 

0 @ % of 
Component Total Variance Cumulative % 

1 1 .89 27. 1 27. 1 

2 1 . 1 2  1 5.9 43.0 

3 1 .06 1 5. 1  58. 1 

4 @) 1 .01 1 4.4 72.5 

5 0.84 1 1 .9 84.4 

6 0.78 1 1 . 1 95.5 

7 0.30 4.5 1 00.0 

Extraction Method: Principal Component Analysis 

Factor Matrix 8 
Factor 

1 2 3 4 

COMPLAIN 0.55 -0.28 0.27 -0.42 

CHANGES 0. 1 9  -0.74 0.05 -0.32 

GROANS 0.31 -0.60 0.29 -0. 1 7  

RUBS 0.27 0.36 0.73 -0.01 

ISOLATE .028 0.01 0.34 0.80 
MOVES 0.87 0.04 -0.25 -0.06 

WALKING 0.75 0.08 -0.43 0.24 

Rotated Factor Matrix 0 
Factor 

1 2 3 4 

COMPLAIN 0.24 0.72 0. 1 9  -0. 1 1 

CHANGES 0. 1 9  -0.24 0.74 -0.24 

GROANS 0.01 0.73 -0. 1 7  0.08 
RUBS -0. 1 2  0.25 0.71 0.38 
ISOLATE 0. 1 4  -0.04 0.00 0.90 
MOVES 1- 0.86 0.27 0 . 14  -0.00 
WALKING 0.89 -0.02 -0.05 0. 1 4  

Rotation Method: Vanmax Rotat1on 
e Seven components are identified in the data, corresponding to the number of variables entered. 
• The eigenvalues reflect the amount of variance accounted for by each component. 
• Using the 1 .0 cutoff for the eigenvalue, we will stop at four factors, accounting for a cumulative 72.5% of the 

variance In the data. 
e Unrotated factors 
4D Rotated factors matrix shows largest loading for each variable (in gray). 
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see that factor loadings are moderately strong for both Factors 1 and 4. Therefore, the 
next step is to develop a unique statistical solution so that each variable relates highly 
to only one factor. This process is called factor rotation. 

Factor Rotation 
Factor rotation is also a complex, multidimensional concept. Envision multiple axes in 
space, all intersecting at a central point, each one representing one factor. In this exam­
ple, we would imagine four planes, or axes, one for each of the four factors we have 
identified. Each of the seven variables sits somewhere in this four-dimensional space, 
with factor loadings that identify its location relative to each of the four axes. The fac­
tor loadings can be considered multidimensional coordinates. In the ideal solution to 
this analysis, each of the variables would be located directly on one of the axes, which 
would indicate that the variable was "loaded" on that factor. We would then be able to 
identify which variables "belonged" to each factor. 

We can illustrate this concept more simply using a two-dimensional example. 
Assume we have identified only two factors, Factor 1 and Factor 2. We could plot 
each of the seven variables against these two axes, as shown in Figure 29.5A.ttt The 
vertical axis represents Factor 1 and the horizontal axis represents Factor 2. As we 
can see, none of the variables sits directly on either of the axes. Some variables are 
located close to the origin, indicating that they are not related to either factor (their 
factor loading is small). The other variables sit in space somewhere between the two 

Factor 1 

� � � o,.. ... @ (@ 
6 

® (j) (j) 
® 2 

® 
4 Factor 2 ) G) 

'--- �<:>: o,..� 
A B 

FIGURE 29.5 Orthogonal rotation of factor axes. 

1"ttfor this illustration, the factor loadings are hypothetical. We cannot use the factor loadings given in Table 
29.5, as these represent coordinates in a four-dimensional space. 
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factors. This plot does not present a clear "structure" in the data in terms of specific 
factor assignments. 

If, however, we could rearrange the orientation of axes and variables, we might be 
able to create a structure that will help us interpret these relationships. We do this by 
rotating the two axes in such a way as to maximize the orientation of variables near one 
of the axes. There are actually several ways that factor axes can be statistically rotated 
to arrive at this solution. In this example, we have used the most common approach, 
called varimax rotation, which tries to minimize the complexity of the loadings within 
each factor. :t::t:+ 

This rotation is shown in Figure 29.5B. The rotation improves the spatial structure 
of the variables so that distinct factors are now visible; that is, several of the variables 
lie directly on or close to one of the axes. We find that variables 2, 6 and 7 now have the 
closest orientation to Factor 1, and variables 1 and 5 have the closest orientation to Fac­
tor 2. Variables 3 and 4, still clustered around the origin, show little or no relationship 
to either factor. This type of two-dimensional plot can be requested as part of a com­
puter analysis for combinations of factors. 

This form of rotation is called orthogonal rotation because the axes stay perpen­
dicular to each other as they are rotated. This means that the two factors are independ­
ent of each other (orthogonal means independent); that is, they maintain maximal 
separation. Oblique rotation, used less often, allows the axes to change their orienta­
tion to each other. Therefore, some variables could be close to both factors, and the fac­
tors would be correlated. This might lead to a more realistic solution in some cases; 
however, the orthogonal solution will typically be easier to interpret, and in many cases 
will provide a comparable solution to oblique rotation. 

In the actual factor analysis, this rotation process is carried out for all four planes 
simultaneously. Clearly, it would be impossible to conceive of this type of analysis with­
out a computer. We must visualize a spatial solution that provides the one best linear 
combination for all variables. 

This process results in the creation of a rotated factor matrix shown in Table 29.60. 
This matrix provides new factor loadings that represent the spatial coordinates of each 
variable in the reoriented multiaxial rotated solution. This new configuration should 
provide a cleaner statistical picture. We interpret this information by looking across 
each row of the matrix to determine which factor has the highest loading for that vari­
able. We have highlighted the one loading for each variable that shows the strongest 
relationship to one of the factors. MOVES and WALKING load highest on Factor 1; 
COMPLAIN and GROAN load highest on Factor 2; CHANGES and RUBS load highest 
on Factor 3; and ISOLATE is loaded highest on Factor 4. 

tl:l()ther forms of rotation that are used less often are quartimax rotation, which is based on simplifying row 
loadings, and equimax rotation, which simplifies loadings on rows and columns. Each of these methods will 
result in a slightly different positioning of the axes. Varimax rotation is used most often because it generally 
presents the clearest factor structure. For some analyses it may be necessary to try different solutions to 
develop the one that best differentiates factors. Fortunately, these processes are easily requested in a computer 
analysis. It is important to recognize that different mathematical solutions can be generated, depending on 
the rotation approach used. 
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Naming Factors 
The final solution to a factor analysis is the naming of factors according to a common 
theme or theoretical construct that characterizes the important variables in the factor. 
This is a subjective and sometimes difficult task, especially in situations where the 
variables within a factor do not have obvious ties. The computer runs the analysis 
without any preconceived judgments on its part as to what "should" go together or 
what combinations "make sense." The researcher must look for commonalties and the­
oretical relationships that will explain the statistical outcome. When the factor labels 
are not so obvious, it may be necessary to re-examine the very nature of the construct 
being studied. 

Table 29.7 shows how we have assigned the seven variables to four factors, using 
the strongest factor loadings for each variable as the criterion. Factor 1 could be called 
"mobility." Factor 2 could be labeled "verbal complaints." Factor 3 is concerned with 
"nonverbal complaints," and Factor 4 is associated with "nonsocial behavior." We are 
able to specify the percentage of the total variance in the data that each factor explains, 
using the information given in Table 29.6. Together, these four factors account for 72.5% 
of the total variance. Table 29.7 illustrates the type of information that would be 
included in a published report of factor analysis. 

What we have, then, is a set of variables that contribute to a construct we are calling 
"chronic pain behavior." The variables demonstrate different components of this con­
struct. We can begin to understand the structure of pain behavior by focusing on four 
elements that we have called mobility, verbal complaints, nonverbal complaints, and 
nonsocial behavior. As we move forward in this research, we can explore how each of 
these elements contributes to a patient's reactions to treatment, interactions with family, 
participation in social activities, and so on. The factor analysis has provided a framework 
from which we can better understand these types of theoretical relationships. 

TABLE 29.7 FACTOR LOADINGS ON FOUR FACTORS RELATED TO CHRONIC 
PAIN BEHAVIOR 

Factor 1 : Mobility 

Variable Loading 

MOVES 
WALKING 

% Variance: 27.1% 

0.86 
0.89 

Factor 3: Nonverbal Complaints 

Variable 

CHANGES 
RUBS 

Loading 

0.74 
0.71 

% Variance: 15.1 % 

Factor 2: Verbal Complaints 

Variable 

COMPLAIN 
GROANS 

Loading 

0.72 
0.73 

% Variance: 15.9% 

Factor 4: Nonsocial Behavior 

Variable Loading 

ISOLATE 0.90 

% Variance: 14.4% 



Applications of Factor Analysis 

Exploratory Analysis 
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Factor analysis can be used to answer many types of research questions. As an 
exploratory approach, it can be used to sort through a large number of variables in an 
effort to reveal patterns of relationships that were not obvious before. This type of 
analysis may represent early stages of inquiry, when concepts and relationships are not 
yet sufficiently understood to propose relevant hypotheses. A classic example of this 
approach was presented by Thurstone and Thurstone6 in their studies of intelligence. 
They factor analyzed 60 tests and identified six primary abilities: verbal, number, spa­
tial, word fluency, memory, and reasoning. Through repeated testing, these have come 
to be accepted as some of the elements that underlie the construct of intelligence, and 
are used as the basis for many intelligence tests. 

Reduction of Data 
Factor analysis can also be used to simplify a test battery, by determining which ele­
ments of the test are evaluating the same concepts. This approach can result in reduc­
ing the number of items that are used, or it may provide the basis for creating composite 
summary scores for each concept. For example, Jette7 used factor analysis to look at a 
set of 45 items on a functional capacity evaluation, with the intent of reducing the num­
ber of items without sacrificing the comprehensiveness of the assessment. The test 
items were structured into factors that identified distinct functional constructs, such as 
physical mobility, personal care, home chores, transfers and kitchen chores. Jette sug­
gested that two or more items from each functional category should be assessed as part 
of the evaluation, substantially reducing the time needed to complete the test, while 
maintaining the validity of the information it produces. This method of sorting through 
a large number of items is preferable to the intuitive or empirical classification of func­
tional tasks into categories. 

Factor Scores 
One of the most interesting uses of factor analysis is the creation of a smaller set of com­
posite scores, to be used as evaluative data or to be used as data in a statistical analysis. 
Subscores are created for each factor by multiplying each variable value by a weighting, 
and then summing the weighted scores for all variables within the factor. This result is 
called a factor score. The advantage of using composite scores is that the total number 
of variables needed for further analysis is decreased. This, in tum, will improve variance 
estimates for analyses such as regression or discriminant analysis. For example, Warren 
and Davis8 used a discriminant analysis to differentiate patients with running-related 
injuries. They started with 72 anatomical variables and performed a factor analysis to 
reduce these data to nine factors. Factor scores for each factor were then used as predic­
tors in a discriminant analysis to predict membership in six pain groups. This simplified 
the analysis, which would have been quite cumbersome with 72 variables. Unfortunately, 
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their classification was successful for only 29.1% of their cases, and they concluded that 
the identified factors were not good predictors of type of pain. 

Construct Validity 
Many behavioral and clinical constructs, such as intelligence or motor development, 
cannot be measured directly. Therefore, they must be defined by relevant measurable 
variables that together form a conceptual package, indicative of the construct. Most 
tests of this sort contain many items that supposedly evaluate different components of 
the construct. These components can be considered factors, each one addressing a sep­
arate concept within the total construct. The construct validity of these tests must be 
established to document that they are indeed measuring the abstract behavior they sup­
posedly define. This approach is basically one of theory testing; that is, the results of 
testing should conform to the theoretical premise for the construct. For example, sup­
pose we developed a new intelligence test for use with learning-disabled children. If we 
accept the theoretical premise of intelligence defined by Thurstone and Thurstone,6 
then we could hypothesize, a priori, which variables or test items should go together to 
reflect each of the six primary abilities. After the test is administered to a large sample, 
the scores can be factor analyzed, and we should see factors emerge that fit with this 
theory. If the factors do not match the hypothesized variable groupings, the test items 
are probably not measuring what they were intended to measure. This approach to con­
struct validity testing is an important one that should be replicated on several samples 
before any conclusions are drawn about the appropriate or inappropriate inclusion of 
test items. 

Hypothesis Testing 
Factor analysis can also be used to support research hypotheses, when the focus of 
treatment or intervention is a set of behaviors that define a construct. For instance, edu­
cators could evaluate the effects of changes in professional curricula, such as moving 
from a fact-based to a problem solving approach, by examining differences in factor 
structure before and after program changes. One would expect to find different load­
ings and combinations of variables following this type of change.9 Because of the com­
plex and interactive nature of curriculum characteristics, it would be difficult to 
evaluate change using only individual variables that represent small pieces of overall 
performance. 

Limitations of Factor Analysis 
Although factor analysis has a unique statistical role in multivariate analysis, its subjec­
tivity is often the basis for serious criticism. Researchers must be cautious about how 
"factors" are interpreted, as they are not real measurement entities, but only hypothet­
ical statistical concepts. Giving a factor a name does not make it real. Similar analyses 
on different samples may organize data differently, as will other approaches to a single 
analysis, such as different methods of extraction or rotation. These differences can alter 
a factor's essential meaning. Indeed, factor analysis may generate factors that are totally 
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uninterpretable within the framework of the research question. Because of the subjec­
tive and judgmental nature of some decisions, we recommend consulting an experi­
enced statistician to document the rationale for using particular methods under specific 
research conditions. 

CLUSTER ANALYSIS 
Researchers are often interested in the underlying structures in a set of  data. We can 
look at such structures in two ways. Factor analysis is one approach to determine how 
clusters of correlated variables contribute to that structure. In an analogous process, 
cluster analysis looks for groupings of people that demonstrate similar characteristics. 
Rather than generating factors of variables, this analysis generates homogenous clus­
ters of subjects. 

To illustrate this approach, Michel et al10 studied the prognosis of functional recov­
ery in patients who had experienced a hip fracture. They looked at prefracture charac­
teristics as well as function and mobility measures 1 year postsurgery. Their analysis 
generated 4 clusters of patients with similar profiles in terms of 13 predictor variables 
and 7 outcome variables. 

Figure 29.6 shows the hierarchical structure, or cluster tree, that was generated for 
this study. The researchers started with 207 patients. Cluster analysis moves in a hier­
archical fashion, reorganizing the data in steps to determine how the patients' charac­
teristics relate to each other. In the first iteration, two groups were created, with 79 and 
128 subjects. These groupings were further reduced in successive steps. The authors 
noted that the first cluster (n = 79) was clearly homogeneous, as it stayed intact until 
the seventh step. The second cluster (n = 128) was sufficiently heterogenous to form 
two more smaller groupings of 89 and 39 subjects in the third step. The smaller of these 
two clusters stayed intact through the next step, whereas the larger cluster was further 
classified into groupings of 27 and 62 subjects. These two clusters stayed intact through 
one more step, indicating a reasonable level of homogeneity in these subjects. 

This pattern led the researchers to determine that the classification using four clus­
ters was the best organization to describe this sample. Beyond four clusters, the group­
ings became too small to allow meaningful descriptions. Just as with factor analysis, 
this statistical technique has room for judgment in exploring the data. 

Table 29.8A shows a small portion of the data that were generated to describe these 
clusters. We can see, for instance, that Cluster 1 was younger, had better mobility, and 
the shortest hospital stay; Cluster 2 had a longer hospital stay and low mobility; Clus­
ter 3 had a larger number of patients in a nursing home, but no one who was disori­
ented; and patients in Cluster 4 were most likely to live in a nursing home, be 
disoriented, and have poor mobility. 

The researcher is responsible for classifying the clusters by describing the character­
istics that distinguish them. For this example, the researchers looked specifically at meas­
ures of ambulation and function prior to fracture and 1 year following surgery, to show 
how the members of each cluster varied. In Table 29.8B we can see that the patients in 
Cluster 1 were high functioning before and after their hip fracture. Those in Cluster 2 
were functional prior to the fracture, but showed limitations 1 year later. Those in Clus­
ter 3 were already limited prior to their fracture, and declined even further in ambulation 
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Number of clusters 
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FIGURE 29.6 Number and size of clusters at successive steps in a study of functional recovery follow­
ing h ip fracture. (From Michel JP, Hoffmeyer P, Klopfenstein C, et a l .  Prognosis of functional recovery 1 
year after hip fracture: Typical patient profiles through cluster analysis. } Gerontal 2000;55:M508-5 1 5, 
Figure 1 ,  p. 5 1 1 .  Used with permission of the Gerontological Society of America.) 

1 year later. And those in Cluster 4 started with some limitations and declined in both 
function and ambulation 1 year later. By understanding how these profiles emerge, clini­
cians can develop specific management strategies that are appropriate to their patients. 

MULTIVARIATE ANALYSIS OF VARIANCE 
Many clinical research designs incorporate tests for more than one dependent variable. 
For example, if we were interested in the physiological effects of exercise, we might 
measure heart rate, blood pressure, respiration, oxygen consumption, and other related 
variables on each subject at the same time. Or if we wanted to document muscle activ-
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TABLE 29.8 PROFILE OF FOUR CLUSTERS OF PATIENTS FOLLOWING HIP 
FRACTURE (N = 207) 

A. CLUSTER CHARACTERISTICS 

CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4 
n =  79 n =  62 n = 27 n = 39 
(38%) (30%) (1 3%) (1 9%) 

Mean age (y) 78.2 83.8 84.0 85.9 
Living in nursing home (%) 5 . 1  4.8 37.0 64. 1  
Disoriented (%) 6.3 1 6. 1  0.0 38.5 
Self-reported mobility (%) 93.7 24.2 37.0 7.7 
Mean number of hospital days/yr 45.8 96. 1  60.3 78.2 

B. CLASSIFICATION OF CLUSTERS8 

Pre Post Pre Post Pre Post Pre Post 

2 3 4 

Ambulation High ! • • s Mobility 

Limited s s Poor 

Functional High ! • • s Independence 

Limited • • � Poor 

Adapted from Michel JP, Hoffmeyer P, Klopfenstein C, et al. Prognosis of functional recovery 1 year after hip 
fracture: Typical patient profiles through cluster analysis. J Geronto/ 2000; 55A: M508-M515 

8Pre = prior to fracture; Post = 1 year post surgery 

ity during a particular exercise, we might record electromyographic data from several 
muscles in the upper and lower extremities simultaneously. It makes sense to do this 
because it is efficient to collect data on as many relevant variables as possible at one 
time, and because it is useful to see how one person's responses vary on all these 
parameters concurrently. These types of data are usually analyzed using t-tests or 
analyses of variance, with each dependent variable being tested in a separate analysis. 

This approach to data analysis presents two major problems. First, the use of mul­
tiple tests of significance within a single study can increase the probability of a Type I 
error. This means that the more tests we perform, the more likely we are to find signif­
icant differences, just by chance. The second problem is related to the univariate basis 
of the t-test and analysis of variance. The validity of these tests is based on the assump­
tion that each test represents an independent event; however, if we measure heart rate, 
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blood pressure, and respiration on one person, we cannot assume that the responses are 
unrelated. Most likely, changes in one variable will influence the others. Therefore, 
these responses are not independent events and should not be analyzed as if they were. 

The purpose of a multivariate analysis of variance (MANOVA) is to account for 
the relationship among several dependent variables when comparing groups. This test 
can be applied to all types of experimental designs, including repeated measures, fac­
torial designs, and analyses of covariance. In many situations, a MAN OVA can be more 
powerful than multiple analyses of variance if the dependent variables are correlated. 

Statistical Hypotheses for Multivariate Analyses 
To illustrate the concept of multivariate analysis, suppose we wanted to measure sys­
tolic blood pressure (SBP) and diastolic blood pressure (DBP) to study the effects of 
three different medications for reducing hypertension. Hypothetical means for such a 
study are shown in Table 29.9. 1£ we were to use a standard analysis of variance for this 
study, we would perform two separate analyses, one for systolic and one for diastolic 
presssure. In each analysis, we would compare means across the three treatment 
groups. In a multivariate model, we no longer look at a single value for each treatment 
group, but rather we are concerned with the overall effect on both dependent variables. 
We conceptualize this effect as a multidimensional value, called a vector. The mean 
vector, V, for each group represents the means of all dependent variables for that group. 
In statistical terms, a vector can be thought of as a list of group means. In this exam­
ple, there would be two values in each of the three vectors, representing systolic and 
diastolic blood pressure measures for each medication group. Therefore, Vl = (50,120), 
Vi = (60,110) and � = (90,135). Figure 29.7 illustrates how these values would be ori­
ented in a two-dimensional framework. The center point in each group, called the 
group centroid, represents the intersection of the means for both dependent variables, 
or the spatial location of the mean vector. The purpose of the MANOVA is to determine 
if there is a significant difference among the group centroids. 

The multivariate null hypothesis states 

where V represents the mean vector for each group. The alternative multivariate hypothe­
sis states that at least one group has a population centroid that is different from the others. 
Just as with an ANOVA, follow-up tests are necessary to explain significant differences. 

TABLE 29.9 MEANS FOR SYSTOLIC AND DIASTOLIC BLOOD PRESSURE 
FOR THREE TREATMENT GROUPS 

Treatment Group 

1 2 3 

Systolic 120 1 1 0 1 35 
Diastolic 50 60 90 
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FIGURE 29.7 Representation of diastol ic and systol ic blood pressure for three groups in  a multivariate 
model. 

Multivariate Test Statistics 
The concept behind the multivariate analysis of variance is really the same as that for 
the analysis of variance. The total variance in the sample is partitioned into parts that 
represent between-groups and error effects, although in the multivariate case, variabil­
ity is measured against centroids rather than individual group means. 

The statistics associated with multivariate analysis of variance are not as clear cut 
as using F or t in univariate models. When two groups are compared, Hotelling's T2 can 
be used, which is a multivariate extension of Student's t-test. With more than two 
groups, four statistical procedures are usually reported in a computer analysis: Wilk's 
lambda, the Hotelling-Lawley trace, the Pillai-Bartlett trace, and Roy's maximum char­
acteristic root (MCR). Each of these tests is a variance ratio, although each has a slightly 
different interpretation. For the sake of consistency in generating critical values for 
these statistics, most programs convert these values to F-values. 

Unfortunately, statisticians are not in agreement as to which one of these proce­
dures should be used. In most cases, the tests yield similar results. The rationale for 
choosing one test over the others is based on a complex consideration of statistical 
power and how well the assumptions underlying each test are met. Rather than attempt 
to define these rationales, a task that goes beyond the scope of this text, we encourage 
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researchers to consult with a statistician to make these decisions based on the specific 
research situation. We advise that Wilks' lambda is used most often, and will probably 
be the most easily interpreted. 

When the MANOVA demonstrates a significant effect, follow-up analyses are usu­
ally based on univariate analyses of variance or a discriminant analysis. The latter pro­
cedure is considered preferable, because it maintains the integrity of the multivariate 
research question. Discriminant analysis will show if the values for the response vari­
ables, in this example SBP and DBP, can discriminate among the treatment groups. 
Some MANOVA programs will offer discriminant analysis or univariate analyses of 
variance as an optional part of the output. 

SURVIVAL ANALYSIS 
Many research questions focus on the effectiveness of intervention, generally in com­
parison to a placebo or standard treatment. Measurement of short-term effects may be 
important for assessing immediate benefit. Long-term outcomes, however, may be of 
greater interest in relation to survival or prevention because they better reflect the inter­
vention's true effectiveness. Long-term effects are typically evaluated with reference to 
survival time to an identified "event." The concept of survival analysis is important 
to understanding prognosis and treatment effectiveness. It answers questions relating 
to time: "How long will it be before I am better?" "How long am I going to live?" 
"When in the future will the risk of recurrence of my disorder decrease?" 

For many diseases, such as cancer or cardiovascular disease, the terminal event of 
interest is death. Life expectancy can also be examined in relation to functional condi­
tions. For example, Strauss et al11 looked at decline in function and life expectancy in 
older persons with cerebral palsy. They were able to demonstrate that survival rates of 
ambulatory older adults were only moderately worse than the general population, but 
were much poorer for those who had lost mobility. Survival time can also refer to other 
events, such as time to relapse, injury or loss of function. For instance, Ruland et al12 
used survival analysis to examine time to recurrence of stroke. Grossman and Moore13 
followed the longitudinal course of aphasia to determine how grammatical and work­
ing memory factors contribute to decline of sentence comprehension. Researchers have 
also looked at the prognosis of walking capacity in patients with rheumatoid arthritis 
who underwent multiple arthroplasty.14 They found that within the first 5 years after 
the first surgery, 92% of patients were still able to walk independently. This decreased 
to 79% in the lOth year, and 60% in the 15th year. 

Censored Observations 
Estimates of survival present a special dilemma for analysis because it  is not possible to 
follow all subjects to the event of interest. Even in long-term studies, there will be an 
end to data collection and some patients will not have reached the terminal event at that 
point. Therefore, we could not know how long these subjects will "survive." Subjects 
may drop out of a study, leaving their end point undocumented. There may also be a 
variation in the onset of disease or treatment, often resulting in patients entering a 
study at different times. 
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When individuals are followed for this type of analysis, those who have not yet 
reached the terminal event by the end of the study are considered censored observa­
tions. These censored survival times will underestimate the true (but unknown) time 
to the event because it will occur beyond the end of the study.15 Therefore, special meth­
ods of analysis are needed to account for censored data. 

Methods of Analysis for Survival Data 
Techniques such as analysis of variance and regression are often used to follow a sub­
ject's responses over time. Because of censored observations, however, they are not 
appropriate for survival analysis. Taking a mean survival time for a cohort of patients 
will be misleading because the mean will continually change as different individuals 
reach the terminal event. A mean survival time can actually only be accurate when all 
subjects in the cohort have reached that end point. 

Life Tables 
The oldest method of analyzing survival was developed in the 17th century using actu­
arial or life tables (see Box 29.1). In this approach, time intervals are created to provide 
estimates of an individual's probable survival, a technique still used by insurance com­
panies to establish premiums. Within each interval, several indices can be computed. 

• The number of cases at risk is the number of individuals who enter the time 
interval (those who have survived) minus half the number of cases lost to follow­
up within that interval. 

• The proportion failing is the ratio of the number of cases who did not survive 
into the interval, divided by the number of cases at risk. The proportion surviv­
ing is 1 minus the proportion failing. 

• The probability density is the probability of reaching the terminal event in the 
given time interval per unit of time. It is computed as the proportion surviving 
at the start of the interval minus the proportion surviving at the end of the inter­
val, divided by the width of the interval. 

• The hazard rate is the probability that an individual who has survived to the 
beginning of a time interval will reach the terminal event during that interval. It 
is the number of individuals who reach the event divided by the mean number 
of surviving cases at the midpoint of the interval. 

• The survival function is a cumulative proportion of cases surviving up to the 
given interval. It is computed by multiplying the probabilities of survival across 
all previous intervals. 

• The median survival time is the point at which the cumulative survival function 
is equal to 0.5, or the 50th percentile. Because of censored observations, this will 
not necessarily be the same as the time up to which 50% of the sample survived. 

Kaplan-Meier Estimates 
The most common method of determining survival time is the Kaplan-Meier product 
limit method, which does not depend on grouping data into specific time intervals. 
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BOX 29.1 Halley's Life Table 

Edmund Halley (1656-1742) was a 17th century mathematician and 
astronomer, who is famous for identifying the recurrence of a comet every 79 
years, now called Halley's Comet. But did you know that he was also respon­
sible for developing the process of estimating life insurance premiums? 

In 1693 Halley published the first life table that presented mortality data 
for the city of Breslau, Germany based on specific ages for the five years 
between 1687 and 1691. With a city population of 34,000, he documented 
6,193 births and 5,869 deaths per year. He showed that on average 348 died 
yearly in the first year of life, and another 198 died between 1 and 6 years of 
age. His table (below) showed mortality from ages 7 through 100, with the 
mortality figures listed below each age (11 people died at age 7; 11 people 
died at age 8, and so on). He noted how deaths in teen years decreased 
markedly, and that after age 70 the number increased, with a gradual decline 
in later years until "there be none left to die." 

7 . 8 9 .  • 14 
11 . 11 • 6 • Iii . 2 

18 • 21 • 27 . 28 35 
3! 5 6 4! 61 9 . 8 . 7 . 7 

36 . 42 • 45 49 54 55 . 56 63 
9 • 9 . 10 . 12 8 . 9i 8 . 9 . 7 . 7 . 10 1 1  . 

70 71 . 72 
!.1 !  1·:1: !) . 11 9! 
98 99 100 . 

0 • ! . i 

77 81 
G . 7 .  3 .  4 .  

84 . 90 
2 . 1 .  1 .  

91 . 
1 . . 

Halley cited several uses for his table. First, it could be used to determine 
the number of men in the city eligible to bear arms between the ages of 18 
and 56, with the assumption that those under 18 were "too weak to bear the 
Fatigues of War and the Weight of Arms, and [those over 56 were] too crasie 
[sic] and infirm from Age, notwithstanding particular Instances to the con­
trary" (italics from original text). 

Second, the table identified different mortality rates in specific age 
groups. And third, the data could be used to estimate of the price of life 
insurance and the valuation of annuities, based on the probability that the 
person would survive to collect the installment. Halley's work was consid­
ered the founding of actuarial science, and resulted in a profitable insurance 
practice for the British government. 

Source: Halley E. An estimate of the degrees of mortality of mankind, drawn from 
curious tables of the births and funerals at the city of Breslaw, with an attempt to 
ascertain the price of annuities on lives. Philosophical Transactions of the Royal Society 
of London 1693;17:596-610, 654-656. 



CHAPTER 29 • Multivariate Ana[ysis 723 

This approach generates a step function, changing the survival estimate each time a 
patient dies (or reaches the terminal event). Graphic displays of survival functions com­
puted with this technique provide a useful visual understanding of the survival func­
tion as a series of steps of decreasing magnitude. This method can account for censored 
observations over time. Confidence intervals can also be calculated. 

The Kaplan-Meier estimate can also be used to compare groups of patients. Figure 
29.8 shows survival curves over a 5-year period for a cohort of elderly men and women 
who participated in an aging study.16 Subjects were differentiated on the basis of their 
gait abnormalities. The graph shows that subjects had a greater risk of death or institu­
tionalization if they exhibited abnormal gait characteristics, than if they had a normal 
gait. The distinction between the groups became most evident after the first year of 
follow-up. By looking at the survival rate along the Y-axis, we can see that the median 
survival time for those with abnormal gait was approximately 3 years, and for those 
with normal gait approximately 4.5 years. 

Cox Proportional Hazards Model 
Survival time is often dependent on many interrelated factors that can contribute to 
increased or decreased probabilities of survival or failure. A regression model can be 
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FIGURE 29.8 Kaplan-Meier survival curve comparing risk of death and institutional ization over 5 years 
for subjects with abnormal gaits and those with normal gaits. The small vertical tick marks represent cen­
sored observations. The median survival time is determined by looking at the 50% cumulative survival rate 
along the Y-axis (horizontal l ine). (Adapted from Verghese J et al .  Epidemiology of gait disorders in 
community-residing older adults. 1 Am Geriatr Soc 2006; 54:255-261 , Figure 1 ,  p. 259. Used with per­
mission of Blackwel l Publ ishing.) 
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used to adjust survival estimates on the basis of several independent variables. Stan­
dard multiple regression methods cannot be used because survival times are typi­
cally not normally distributed-an important assumption in least squares regression. 
And of course, the presence of censored observations presents a serious problem. 
The most commonly used method is the Cox proportional hazards model, which 
is conceptually similar to multiple regression, but without assumptions about the 
shape of distributions. For this reason, this analysis is often considered a nonpara­
metric technique. 

The proportional hazards model is based on the hazard function, which is related 
to the survival curve. This function represents the risk of dying (or the terminal event) 
at a given point in time, assuming that one has survived up to that point. The depend­
ent variable is the hazard (risk), and the independent variables, or covariates, are those 
factors thought to explain or influence the outcome. Variables may be continuous, 
dichotomous or ordinal.17 Factors such as age, gender, occupation and so on, are typi­
cally used for this purpose. When treatment is used as an independent variable, the 
model allows for comparison of the hazard, and therefore survival time, associated 
with placebo compared to treatment. 

Like odds ratios generated from a logistic regression, a hazard ratio (HR) can 
be generated from coefficients in the hazard function. A HR of 1 .0 indicates that there 
is no excess risk associated with the covariates. A value greater than 1 .0 indicates 
that a covariate is positively associated with the probability of the terminal event­
thereby decreasing survival. A HR less than 1 .0 indicates that the covariate is protec­
tive, decreasing the probability of the terminal event, and thereby increasing 
survival time. Confidence intervals can be expressed for the hazard ratio to indicate 
significance, with a null value of 1 .0. Table 29.10 shows a portion of the data from the 
study of gait abnormalities. We can see that those who had moderate to severe gait 
abnormalities were 3.7 times more likely to die and 2.6 times more likely to become 
institutionalized than those with normal or mildly abnormal gaits. The confidence 
intervals for these hazard ratios do not contain 1 .0, and therefore are significant. 
These values were generated from a Cox regression that included age and sex as 
covariates. 

TABLE 29. 10  RISK OF DEATH, INSTITUTIONALIZATION OR BOTH OVER 5 YEARS 
BASED ON GAIT STATUS, ADJUSTED FOR AGE AND SEX 

Hazard Ratio (95% Cl} 

Institutionalization Death Institutionalization 
Galt N =  468 (n = 75) (n = 30) or Death (n = 99) 

Normal 300 1 .0 (reference) 1 .0 (reference) 1 .0 (reference) 

Mild Abnormality 1 1 8 1 .99 (1 . 18-3.36) 0.89 (0.32-2.51 ) 1 .76 (1 .01-2.84) 

Moderate-Severe 50 2.67 (1 .47-4.84) 3.66 (1 .62-8.29) 3.1 8  (1 .94-5.21)  

Source: Varghese J et al. Epidemiology of gait disorders i n  community-residing older adults. J Am Geriatr Soc 
2006;54:255-261 . 
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Multivariate analyses have become popular i n  behavioral research because of the 
i ncreased ava i lab i l ity of computer programs to implement them. Their appl ications 
are, however, not wel l  understood by many c l i n ical researchers, and many studies 
using multivariate designs are sti l l  analyzed using un ivariate methods. 

Multivariate techniques can accommodate a wide variety of data and are able 
to account for the complex i nteractions and associations that exist in  most c l i n ical 
phenomena. Many research questions cou ld be i nvestigated more thorough ly if 
i nvestigators considered multivariate models when planning thei r studies. We have 
l imited this chapter to a discussion of the conceptual elements of multivariate analy­
s is, but with enough of an i ntroduction to terminology and appl ication that the 
beginn ing researcher shou ld be able to communicate effectively with a statist ician 
and fol low the computer output. Th is i nformation wi l l  a lso faci l itate understand ing 
research reports that present the results of these analyses. 

Although we have emphasized the potential for improv ing explanations of c l i n­
ical data using multivariate methods, we must also inc lude the caveat that c l i n ical 
research need not be compl icated to be meaningfu l .  A problem is not necessari ly 
better solved by a complex analysis, nor should such an approach be taken j ust 
because computer programs are ava i lable. The i nd iscrimi nate use of multiple meas­
urements is not a usefu l substitute for a wel l defined study with a select number of 
variables. To be sure, the results of multivariate analyses are harder to i nterpret and 
involve some risk of j udgmental error, such as in factor analysis. In addition, multi­
variate tests require the use of larger samples. Many important and concise research 
questions can be answered using simpler methods and designs. Many c l i n ical vari­
ables can be studied effectively using a s ingle criterion measure. On the other hand, 
simple analysis is not necessari ly better j ust because the i nterpretation of resu lts w i l l  
be  easier and clearer. The choice of analytic method should be  based on the research 
question and the theoretical foundation beh i nd it. When dea l ing with constructs that 
reflect several abstract phenomena, multivariate methods offer the most powerfu l 
means for developing and expla in ing theory. The purpose of th is chapter was to pres­
ent alternatives that provide the researcher with usefu l choices for planning the most 
effective study possible. 
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CHAPTER 30 

Data Management 

An important part of the research planning process is the development of a data man­
agement plan that specifies how data will be recorded, organized, reduced and ana­
lyzed. This plan begins with the research proposal, specifying the research question, 
hypotheses and design. Before any data are collected, the researcher must be able to 
identify what variables will be measured, using what instruments and units of meas­
urement. Those who will collect data may need to be trained and reliability assessments 
done. Undoubtedly, some of these plans will change once the project has begun, but 
nothing should begin without a firm plan in place. This planning requires knowledge 
of data coding and format requirements, statistics and computers. The purpose of this 
chapter is to describe procedures for setting up data to be entered into a computer and 
analyzed with statistical programs. 

CONFIDENTIALITY AND SECURITY OF DATA 
The research proposal will include a plan for handling data, including maintaining con­
fidentiality of participant information. All subjects should be assigned a unique ID num­
ber that is not related to their name, medical unit number, Social Security number or other 
personal identifier. Documents for data collection should include the subject ID only. A 
list of subject names, addresses or phone numbers and corresponding ID codes can be 
kept separate and secured from other files in case participants need to be contacted. 

As part of informed consent, subjects should be assured that their personal infor­
mation, data from medical records and data collected as part of the project will only be 
accessed as necessary for research. The institutional review board (IRB) that approves 
the project will want to know the type of data to be collected, the purposes for which 
the data will be used, who will have access to records, and what safeguards have been 
put in place for security and confidentiality (see Chapter 3). Many countries have reg­
ulations in place that define these standards. In the United States, these are part of the 
Privacy Rule of the Health Insurance Portability and Accountability Act (HIPAA).1 In 
Canada, they are incorporated into the Tri-Council Policy Statement: Ethical Conduct 
for Research Involving Humans.2 

MONITORING SUBJECT PARTICIPATION 
Throughout the project, researchers should have procedures in place to keep accurate 
and complete records of subject involvement. Records should indicate how many sub­
jects were recruited and why some were not eligible, how many agreed to participate, 
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and how many eventually did participate. Attrition should be monitored, and reasons 
noted if possible. Changes to the research protocol must be described. Initial group 
assignments and deviations from these assignments should be documented. This infor­
mation is relevant to the validity of the project and will be important if the researcher 
wants to complete an intention to treat analysis (see Chapter 9). 

STATISTICAL PROGRAMS 
The number of statistical packages for use on a microcomputer has grown dramatically, 
many at reasonable prices. The two most commonly used programs are SPSS (Statisti­
cal Package for the Social Sciences)* and SAS (Statistical Analysis System).t SPSS has 
traditionally been used more for the social and behavioral sciences, although its use has 
increased in health care research. SAS is most useful in medicine and epidemiology as a 
biostatistics program. These packages, once available only on main frames, have been 
adapted for use on personal computers. Many other programs are also on the market, 
and it would be useless to name them here as we are sure more will be published by the 
time you read this. Even though these packages are all slightly different, they adhere to 
certain standards that are important for data management. Most programs provide a 
format for data entry similar to a spreadsheet. Data may also be imported into a statis­
tical program from a spreadsheet such as Microsoft Excel®. 

DATA COLLECTION FORMS 
A data recording system must be carefully developed. Typically, data are collected from 
each subject and recorded on a separate sheet or directly into a computer program. The 
subject's identification code is listed, as well other relevant information such as the 
date, the individual collecting the data (if there is more than one investigator), the sub­
ject's group assignment and demographic information such as age, gender and diagno­
sis. If possible, all data should be listed in the order they will be included in the data 
file, to facilitate data entry. Figure 30.1 illustrates a data collection form for a study of 
two diet regimens in patients with diabetes. 

The researcher must make decisions about how data will be recorded for each sub­
ject. Is there a level of precision in measurements that should be used, such as measur­
ing to the nearest millimeter or half inch? The format for recording open-ended 
responses or qualitative data should be specified. If data are missing, the reason should 
be included. The importance of a well organized data collection scheme becomes most 
evident when the researcher begins to enter data into a computer. If data are not clearly 
recorded and in a consistent format, data entry will be a difficult and potentially error­
ridden process. 

*SPSS Inc., 233 S. Wacker Drive, Chicago, IL 60606 <http:/ /www.spss.com> 
tsAS Institute Inc., 100 SAS Campus Drive, Cary, NC 27513 <http:/ /www.sas.com> 



Subject 10 #t __,_4 __ 

Group Assignment: 9 
Subject'� years) 

Gender � Female 

Year of Onset 1998 

58 

Date 11/04/04 

Diet 2 

BASELINE 

Blood Sugar Trial 1 152 
Weight 198 (lbs) 

FOLLOW-UP Date 10/18/05 
Blood Sugar Trial 1 120 
Weight 179 (lbs) 

Questions at Follow-up 
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Date of enrollment 9/23/04 

Trial 2 _1"""5'-"5<-------

Trial 2 _1.!£2.,.5'------

How many times per week (on average) do you exercise? 

0 Less than once a week G) Once a week 
2 2-3 times per week 
3 4 or more times per week 

-98 Refused to answer 
-99 Don't know 

Other ______ _ 

COMMENTS 

FIGURE 30.1 Sample data col lection form. 

DATA CODING 
An essential part of  the data collection plan is the development of  a scheme for 
recording data. Some measurements produce quantitative data, such as range of 
motion and blood pressure. Variables such as gender, group and race produce cate­
gorical data. Surveys and qualitative studies may produce open-ended responses 
that must be coded. 



730 PART IV • Data Analysis 

Types ofVariables 
Data can be entered as numerals or characters. Quantitative data are numeric, having 
values of single or multiple digits, sometimes including decimal points, and composed 
of only numbers. Numeric values can be preceded by a plus or minus sign, although 
plus signs are assumed and not entered. Character variables, called alphanumeric or 
string variables, are composed of letters or characters and may include digits. String 
variables may be letters or words that represent variable values, such as male/female 
or the names of states or cities. Money values can be coded for different monetary units, 
with or without decimals places. Variables can also be entered as dates, using one of 
many acceptable forms, such as MM-DD-YYYY. Date fields can be added or subtracted 
to determine length of time in days, weeks, months or years. 

Codes for Categorical Variables 
Data for categorical variables are entered as labels. For instance, if gender is a variable, 
we enter either male or female as the data value. Although we can enter the full label 
as the data, it is much easier to code these values. Using character codes, for instance, 
gender could be coded F for female and M for male. It is generally recommended, how­
ever, that codes be entered as numeric data to facilitate statistical analysis, such as cod­
ing 1 for female and 0 for male. For dichotomous variables it is conventional to use 1 
and 0 as codes, usually signifying the absence of a trait as zero. As a pure label it does 
not matter whether we code gender as 1 and 0, as 1 and 2, or any other number; how­
ever, many statistical procedures will only manipulate categorical data with 1 and 0 as 
the category codes (see discussion of dummy variables in Chapter 24). When the 
research design includes group comparisons, each subject's group assignment must be 
identified by a code for the grouping variable. Decisions about coding categorical 
variables should be made before data are collected. Codes should be used on data col­
lection forms to expedite transfer of data to the computer. 

Missi ng Data 
It is not unusual for some pieces of data to be missing from a subject's record because 
of errors in recording, unavailability of information, nonresponses on surveys, or 
problems in data collection. To identify missing values, blanks are used as the default 
in most computer programs. Others have specific rules for identifying missing values, 
such as the use of a period in place of a missing datum. It is not advisable to use zeros 
to represent missing values, as zeroes will be read as a number and there may be true 
zeroes in the data. It is often useful to assign specific codes for missing values, to iden­
tify the reason for the missing information. For instance, separate codes might be used 
to distinguish a refusal to answer a question, a response of "Don't know," a question 
that was not asked, investigator error and so on. Such distinctions can be helpful for 
interpretation of results, especially when there are many missing data points. Missing 
data should be coded using numeric values that are out of range of any actual data val­
ues. For example, the code of -99 is commonly used. 
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The standard structure for data entry requires that each variable is entered in a separate 
column, and each row represents an individual subject. Data may be typed directly into 
a statistical program, or it may be entered in a spreadsheet first and later imported into 
the statistical program. No matter how information is entered, the wise researcher will 
save the data often and back up the data file regularly. We have suffered with too many 
colleagues who have lost hours of work to take this advice lightly! 

When data originate as a spreadsheet, the first row in each column should contain 
the variable name, which will then be read by the statistical program. To facilitate this 
transfer, the variable names should conform to the restrictions of the statistical pro­
gram. Other than this first row, all other rows in the spreadsheet should contain only 
data. No embedded formulas or charts should be included. If formulas are used in spe­
cific cells, they should be converted to the actual data values before transferring to a sta­
tistical program. 

Variable Names 
Variable names identify each data point in a file. Every variable in the file must have a 
unique name. When variable names are long, abbreviations can be used. As much as 
possible, variable names should be readily identifiable. Certain rules apply to variable 
names, depending on the statistical package being used. 

Many programs require that a variable name be no more than eight characters 
(numbers or letters), although more recent versions of some packages allow for longer 
variable names. Variable names typically must begin with a letter and have no spaces. 
Some programs allow hyphens, underscores, dollar signs or number signs within a 
variable name. Generally special characters such as !, ? and I cannot be used in variable 
names. For example, a pretest and posttest value for pain could be coded PAINl for the 
pretest and PAIN2 for the posttest. Researchers should be familiar with the require­
ments for the statistical package they use. 

Variable Fields 
Each row of data, representing a single subject's scores, is  called a record or case. Each 
individual score, or variable value, is identified as a field. A case is composed of sev­
eral fields of data. Fields are described according to their width, that is, the number of 
digits or spaces needed for the maximum possible value. The field width is described 
according to the format Fw.d, where w is the total number of spaces (or field width), and 
d is the number of digits within the field that follow a decimal point (the F is for For­
mat). For example, the value 7.85 takes up four spaces (including the decimal point), for 
a field width of F4.2. The value 3560 also takes up four spaces with no decimal places, 
for a field width of F4.0. The value 136.45 takes up six spaces, described as a field width 
of F6.2. Many programs set a default field width that can be changed by the researcher. 
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Labels 
Because variable names must be kept short and categories are coded, it is sometimes 
confusing to read a printout of an analysis with many abbreviations. To facilitate read­
ing the output, most programs will allow the researcher to specify labels for variable 
names and for category value codes. These labels can usually extend to 40-60 charac­
ters or longer. They allow the researcher to customize the printout in a way that will be 
convenient for interpretation. To make this happen, however, the researcher must take 
the time to type in all the labels. But it is worth the effort when reams of paper are sit­
ting in front of you and you can't remember whether males are coded 1 or 0! Labels are 
not required, but with large data sets they are extremely useful. Labels may be listed in 
the data collection form. 

Code Books 
Code books are used to organize data and to catalog the order of entry of all variables. 
Variable names are listed with their abbreviations. Codes are listed to identify their val­
ues. Figure 30.2 shows a sample page from a code book for the study examining the 
effectiveness of two diet regimens on fasting blood sugar in patients with diabetes. Data 
were collected on the subjects' age, gender, and baseline and follow-up blood sugar lev­
els. Two trials were performed for each test. Codes were developed for gender and 
group assignment. Subjects were also asked how often they exercised and if they were 
compliant with their medications. The code book is a necessary reference for all those 
who are involved with the study, most especially those who will analyze the data. SPSS 
provides this information in the Variable View of the data file. 

DATA CLEANING 
Once data are entered into the computer, and before analyses are run, the data should 
be checked against the raw data to be sure there are no discrepancies or coding errors. 
This process is called data cleaning, and although it may be time consuming and 
tedious, it is essential to ensure validity of the data analysis. The data file can be printed 
out or displayed on a computer screen and visually checked for accuracy against the 
original data. 

Running descriptive statistics on the data will allow the researcher to see if there are 
obvious discrepancies. Frequency counts should be checked for all categorical vari­
ables. The output will list all the codes for each variable and the number of times that 
code appears in the data. It will also indicate how many subjects are counted, and if 
there are missing data for that variable. This allows the researcher to determine if there 
are mistakes in codes, or if the variable has too few entries to be useful. For continuous 
variables, descriptive statistics and graphs, such as histograms or plots, should be run 
to analyze means, minimums and maximums, to be sure that the range of scores is 
appropriate. In this way, the researcher can ascertain if values out of the possible range 
have been entered. For instance, if the maximum blood sugar score is printed as 560, the 
researcher knows there is an error and can go back and correct that entry. Sometimes it 
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V bl Variable V 1 Value Missing Scale Format ana e Label 
a ues 

Labels Values 

1 .  10 <non&> 

2. AGE <none> 

3. GENDER <none> 0 Male 
1 Female 

4. DIET <none> 0 Diet l 
1 Oiet 2 

5. BASE1 Baseline 
Trial 1 

6. BASE2 Baseline 
Trlal 2 

7. WEIGHT1 Baseline 
Weight 

8. FOUOW1 Follow-up 
Trial 1 

9. FOLLOW2 Follow-up 
Trial 2 

1 0. WEIGHT2 Follow-up 
Weight 

1 1 .  EX Exercise 0 Less than once a week 
frequency 1 Once a week 

2 2-3 Urnes a week 
3 4 or more times a week 

-99 Refused to answer 
·96 Don't know 

FIGURE 30.2 Sample page from a corle book. 

Nominal F8 

Ratio F8.2 

Nominal F8 

Nominal F8 

Ratio F8.2 

Ratio F8.2 

Ratio F8.2 

Ratio F8.2 

Ratio F8.2 

Ratio F8.2 

-98, -99 Ordinal F8 

is useful to sort data, reordering the subjects according to the value of a particular vari­
able, to determine if appropriate numbers have been entered. 

DATA MODIFICATION 
All statistical programs include processes for data modification or transformation to 
create new variables or to assign new codes to existing variables. For example, we 
might want to compute the mean of several trials to use for data analysis. Or we might 
have scores for several items on a scale and want to get the sum. Perhaps a continuous 
variable will be converted to categories. When these types of transformations are per­
formed, a new variable is created, and must be given a new and unique variable name. 
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Computing New Variables 
Computing a new variable requires that some arithmetic operation be performed on the 
existing data. All programs use the same symbols to represent logical operations. These 
symbols, known as operators, are used to create expressions that are instructions to the 
computer. The following symbols are used for arithmetic operations: 

+ add A + B  

subtract A - B  

I divide A/B 
• multiply A * B  
•• exponent A*"2 

These expressions are considered simple expressions because they contain one oper­
ator. When more than one operator is used, a compound expression is created, for 
instance, 

A**2*B/(C + 1.0) 

is a compound expression. This expression is equal to 

(A2)(B) 
c + 1.0 

When compound expressions are used, specific rules apply to the order in which oper­
ations take place. First, all expressions within parentheses are carried out. Second, adja­
cent operations are carried out in the following order: (1) exponentiation, (2) division 
and multiplication and (3) addition and subtraction. Within each of these levels, opera­
tions proceed from left to right. Therefore, in the preceding expression, the first opera­
tion will be to complete the addition (C + 1 .0) within the parentheses. Next, the value 
of A will be squared. This value will then be multiplied by B. Lastly, this product will 
be divided by the sum (C + 1.0). If the parentheses had been left out, the expression 
would be read differently. Using 

A**2*B!C + 1 .0 

the expression would read 

(A2)(B) 
c + 1 .0 

To illustrate the application of these arithmetic operators, we might want to compute a 
mean baseline and follow-up score to use for analysis for the data in Figure 30.3. To do 
this, we tell the computer we want to create two new variables called BASEMEAN and 
FOLLMEAN using the following expressions: 

BASEMEAN = (BASEl + BASE2)/2 

FOLLMEAN = (FOLLOWl + FOLLOW2)/2 
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Collected Data 

ID AGE GENDER DIET BASE1 BASE2 WEIGHT1 

1 001 54.00 1 1 175.00 1 80.00 1 85.00 
2 002 75.00 0 1 255.00 263.00 1 82.00 
3 003 51 .00 0 2 280.00 285.00 220.00 
4 004 58.00 0 2 1 52.00 1 55.00 198.00 
5 005 68.00 1 1 235.00 238.00 178.00 
6 006 62.00 0 2 1 64.00 165.00 203.00 

Collected Data Transformed Data 

FOLLOW1 FOLLOW2 WEIGHT2 EX BASEMEAN FOLLMEAN AGEGRP 

120.00 1 24.00 162.00 0 177.50 1 22.00 1 
180.00 1 92.00 175.00 1 259.00 1 86.00 2 
165.00 1 70.00 200.00 2 282.50 167.50 1 
120.00 1 25.00 179.00 1 1 53.50 122.50 1 
170.00 1 64.00 152.00 3 236.50 167.00 2 
1 20.00 1 1 8.00 185.00 2 164.50 1 1 9.00 2 

FIGURE 30.3 Data fi le for a pretest-posttest design, showing original data collected as part of the study 
and transformed data created through computing and recoding variables. Subjects are identified by ID 
number. All data for each subject appears on one row i n  the file. 

Note the importance of the parentheses, so that the sum of the two items is divided 
by 2, and not just the value for BASE2 or FOLLOW2. When these computations are 
done, the values for the new variables will appear as new columns in the data file, as 
shown in Figure 30.3. These new variables can now be used in statistical procedures. We 
could, for instance, get a difference score between BASEMEAN and FOLLMEAN, and 
subject these values to a t-test. This type of data modification can also be done within 
spreadsheet programs. 

Recoding Variables 
We can also use comparison operators to recode variables by specifying relationships 
between them. Comparison operators may be specified as symbols or letter combinations: 
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EQ equal to 1\= NE not equal to > GT greater than < LT less than >= GE greater than or equal to <= LE less than or equal to 

Comparison operators are usually used with an IF statement, which specifies a specific 
operation to be carried out if a given relationship exists. For instance, we have a vari­
able called AGE in our data set (see Figure 30.2). We can create two age groups for a 
comparison analysis, as follows: 

IF AGE < 30, AGEGRP = 1 

IF AGE > = 30, AGEGRP = 2 

These statements illustrate how we specify values for a new variable called AGEGRP 
(shown in the last column in Figure 30.3). The actual method for setting recode values 
will depend on the statistical program. 

When assigning values to a new variable, the researcher must be careful not to over­
lap any categories, or the computer will not be able to perform the desired functions. In 
addition, groupings should reflect the full range of values that is present in the data. 

Statistical Procedures 
Many statistical procedures also provide a mechanism for creating and saving new 
variables. For example, when running a factor analysis, factor scores are created for 
each subject on each factor. These values can be saved and used as variables in future 
analyses. When regression procedures are run, residual scores can be calculated and 
saved. Most programs require specific instructions for these options. 

DATA ANALYSIS 
Data collection is complete, all the data are entered and saved (and backed up!), and 
you are set to begin data analysis. If the research proposal was done well, you are ready 
to approach this phase of the research process in an organized way. It is a good idea to 
start by becoming familiar with the data by looking at descriptive statistics-frequen­
cies for categorical variables and means for continuous variables. Histograms, line 
plots, stem-and-leaf plots or box plots are helpful to visually assess the shape of a dis­
tribution, and to identify gaps or outliers. For correlational data, scatterplots should be 
created to get a sense of the linearity and degree of relationship in the data. These ini­
tial steps are necessary to understand the scope of the data, and may suggest alterna­
tive statistical approaches. For example, transformations may be needed for nonlinear 
variables (see Appendix D). 
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The next step is the culmination of all the research efforts-to apply statistical pro­
cedures to answer the research question. This is the fun part. Some helpful hints: 

To make this process efficient, prepare a list of specific hypotheses, variables and 
appropriate statistical procedures to guide your time at the computer. Be specific. For 
instance, if you intend to compare two groups, specify the t-test, paired or unpaired, 
and which variables will be used. If you run several regressions, list which are the inde­
pendent and dependent variables for each one. Then you won't have to sit at the com­
puter, faced with columns and columns of data, and wonder where to start. 

Look at the output as you generate it. Examine your findings. Often, additional 
questions emerge and you may choose to run further tests. For instance, you may find 
relationships among some variables that you did not anticipate. Groups may end up 
having different characteristics than planned. It may be of interest to perform certain 
analyses on subgroups within the data. Statistical programs provide different filtering 
options to select subjects according to a specified criterion. You might specify that an 
analysis be done only on those coded 1 for gender, or only those coded for group 1. 

Finally, most statistical programs include choices for creating tables or charts 
directly from the data. Many of these programs provide fairly sophisticated options, 
with a variety of fonts and colors to customize your presentation. These charts and 
tables can be imported into word processing or presentation programs. Many different 
types of charts are usually available, and it is often helpful to try out different formats 
to see which presents the data best. 

Be sure you save your data and output so you can play with options and prepare 
your project for the final phase of the process-dissemination as a journal article or 
presentation as a platform or poster. 

COM M ENTARY 

"Anyone can analyze data, but to really mess things up takes a computer! " 
Because of the seemingly overwhelming power of computers for statistical ana lysis, 
it may seem unnecessary to become proficient in statistics. The computer seems to 
be able to handle the job of runn ing statistica l procedures with infin ite ease, and can 
provide answers to statistical questions without the researcher ever havi ng to crack 
a formula. The days of writing out a program and searching for the misplaced semi­
colon are gone. Today you need a mouse and a keyboard, and once you have 
entered your data and variable names you have very l i ttle else to do. Most programs 
wi l l  guide you through analyses by c l icking on the appropriate button. 

Th is is an oversimpl ification of the situation, however, for two reasons. F i rst, the 
researcher must know the conceptual foundations for the statistical tests that wi l l  be 
used to make the appropriate choices in the fi rst place. The computer can only carry 
out the i nstructions it is given. Programs requ ire that the researcher sort through dif­
ferent options that wi l l  dictate how the procedures wi l l  be carried out. Most run at 
default settings, that is, parameters that are set at a certa in  level unless they are specif­
ica l ly changed. For i nstance, to run a stepwise regression procedure, variables wi l l  be 
i ncluded in the equation if partial correlations reach a specific level of sign ificance. 
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The default sett ing may be .05 or . 1 5 . The analysis wi l l  run at that level unless the 
researcher specifies a different level in  the program. In  addition, there are several 
approaches to stepwise ana lysis, and these may have to be specified. Some programs 
wi l l  print out certain  summary statistics by default, such as mean, standard deviation 
and range. These programs may require addit ional options to request different i nfor­
mation. The researcher must know how the data should be analyzed, and what sum­
mary va lues are of i nterest, and then must be able to instruct the computer to perform 
the desi red operations. 

Second, there is an enormous amount of i nformation generated by a computer 
ana lysis, and the interpretation of that output must be based on an understand i ng of 
the statistical procedures that were run .  If data are entered incorrectly, the output 
w i l l  be useless. If the data are inappropriate for a particular procedure, the computer 
may sti l l  be able to run an analysis, but the output won't be mean ingfu l .  This s i tua­
tion i s  summed up in an important computer principle: G IGO, which means 
"garbage i n, garbage out." The wise researcher w i l l  have sufficient knowledge of 
both computers and statistics to be able to make the appropriate choices and assure 
statist ical conclusion va l idity for the study. When this knowledge is not suffic ient, 
advice should be obta ined from a statistical consu ltant. 
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CHAPTER 3 1  

Searching the Literature 

Although most of us have had some experience obtaining references for term papers or 
assignments, technology has forever changed how we locate information. Our expecta­
tions have changed in terms of how quickly we want the information, the volume of 
data available, and virtual accessibility. These expectations have required us to become 
better skilled at locating and using resources. 

Clinicians may go to the literature to expand their knowledge or simply to stay on 
top of scientific advances as part of professional development and life-long learning. 
They may also gather information specifically for clinical decision making as part of the 
framework of evidence-based practice (see Chapter 1, Figure 1 .2). Using the "best 
research evidence" available allows the practitioner to balance that information with 
clinical judgment and patient values to determine the most appropriate course of 
action. This process, of course, assumes that the clinician is able to locate the relevant 
research literature. 

Researchers will review the literature in the development of a research question 
(see Chapter 7) and the interpretation of findings. The literature review is necessary to 
build the rationale for a study and to help make decisions on operational definitions 
and methods. Researchers who conduct systematic reviews require a comprehensive 
approach to searching for primary sources of data on a given topic (see Chapter 16). 

In other words, we all need to develop skills in searching the literature so that we 
can find what we want when we need it. The purpose of this chapter is to describe 
strategies for successful literature searches. 

LIBRARY RESOURCES 
There are many efficient strategies for locating research references. The library, of 
course, is where this process begins, whether this is an actual building or a virtual con­
nection. Clinicians may have access to a departmental or institutional library, but med­
ical and university libraries will usually be more complete. Most libraries today have 
online catalogues that allow searching by author, title or subject. Articles, books or the­
ses that are not available at a local facility can often be obtained electronically or 
through interlibrary loan. Many facilities also provide access to full text downloads of 
articles, sometimes for a fee. Technology has greatly enhanced everyone's access to lit­
erature searches through Internet resources. 

741 



742 PART IV • Data Analysis 

SEARCH ENGINES 
Many specialized library resources are available to assist the researcher in locating ref­
erences on specific topics. Search engines are information retrieval systems that search 
the Internet and electronic databases for websites, files or documents based on key­
words or phrases. Meta-search engines query several other search engines and/ or data­
bases simultaneously, allowing the user access to broader resources by entering search 
criteria only one time. 

Some search engines specialize in health and medical topics (see Table 31.1) .  The 
National Center for Biotechnology Information (NCBI), which is part of the National 
Library of Medicine, offers an integrated, text-based search and retrieval system called 
PubMed. Scirus focuses on scientific, scholarly, technical and medical information. 
Coogle Scholar searches scholarly literature in journals, theses, books, as well as material 
from professional societies, preprint repositories, universities and other scholarly 
organizations. The OVID search engine provides access to over 300 databases in medi­
cine and health. 

Many professional associations offer access to search engines with specific rele­
vance to their particular field. The Open Door portal is available to members of the 
American Physical Therapy Association (APTA), providing access to full text clinical 
and academic journals, conference proceedings and dissertations related to rehabilita­
tion. The American Occupational Therapy Association (AOTA) sponsors OT Search, 
available by subscription. The American Speech-Language-Hearing Association 
(ASHA) supports The Dome, a search engine for communication sciences disorders pro­
fessionals, also available through subscription. 

DATABASES 
Databases are organized systems that allow search access for specific content or infor­
mation. Bibliographic databases contain lists of citations of published and unpublished 
references. A computer search allows the researcher to view the full citation and 
abstract of a document, to determine if it is relevant. The citation can then be printed or 
downloaded for future reference. Citations may be displayed as the summary biblio­
graphic reference, reference with abstract, or full text of the article. 

Several databases are available for health science literature, providing listings of 
articles, books, theses and dissertations, and conference proceedings (see Table 31.1) .  
Many databases can be accessed free through the Internet, while others require a sub­
scription through an online service or CD-ROM. The list that follows is by no means 
exhaustive. 

• The Clinical Trials Registry provides a regularly updated information databank 
about federally and privately funded clinical research. The database provides 
information about a trial's purpose, eligible subjects and locations. The site is 
geared toward non-health professionals who want to learn more about ongoing 
human studies research. 

• The Cumulative Index to Nursing and Allied Health Literature (CINAHL) pro­
vides access to citations from all nursing journals as well as primary journals in 
more than a dozen other health disciplines, including occupational and physical 
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TABLE 31 .1 COMMONLY USED BIBLIOGRAPHIC DATABASES 

Database or Start of Full Text Subscription 
Search Engine Coverage Description Available" Required 

ACP Journal Club 1 991  Structured abstracts of  origi- v 
American College nal articles and systematic 
of Physicians rev1ews 
www.acpjc.org 

BMJ Clinical Evidence 1 999 Updated systematic reviews 
British Medical Journal on prevention and treatment 
www.clinicalevidence.com 

CINAHL 1 982 Abstracts and bibliographies 
Cumulative Index to Nursing in nursing and allied health 
and Allied Health Literature 
www.cinahl.com 

Clinical Trials Registry Ongoing Information about ongoing NA 
National Institutes of Health clinical trials 
www.clinicaltrials.gov 

Cochrane Central Ongoing Bibliographic database of 
Register of Controlled Trials definitive clinical trials 
(CCTR) 
The Cochrane Collaboration 
www.cochrane.org 

Cochrane Database 1 988 Abstracts and topic reviews 
of Systematic Reviews 
The Cochrane Collaboration 
www.cochrane.org 

Database of Abstracts of 2000 Abstracts of systematic 
Reviews of Effects (DARE) reviews of effectiveness 
Evidence Based Medicine 
Reviews 
www. york.ac.uk/inst/crd 

EM BASE 1 974 Citations and abstracts on Via links 
Excerpta Medica; medical and drug-related sub-
Elsevier jects 
www.embase.com 

ERIC 1 966 Citations and abstracts on 
Educational Resources lnfor- education-related subjects 
mation Center 
www.eric.ed.gov 

Evidence-based Practice NA Reports on specific topics 
Centers (EPC) Reports related to evidence-based 
Agency for Healthcare practice 
Research and Quality 
www.ahrq.gov/clinic/epc (continued) 
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TABLE 31 .1  COMMONLY USED BIBLIOGRAPHIC DATABASES (continued ) 

Database or Start of Full Text Subscription 
Search Engine Coverage Description Available a Required 

Google Scholar Varies by Search engine that refer-
www.googlescholar.com database ences several disciplines, cit-

ing theses, books, abstracts 
and articles 

Hooked on Evidence No limit Extractions of journal articles APTA 
American Physical Therapy related to physical therapy membership 
Association interventions 
www.hookedonevidence.com 

Index to Scientific and 1 980 Citations and abstracts of 
Technical Proceedings® presentations at conferences 
Thomson Scientific and conference proceedings 
scientific.thomson.com/ 
products/istp/ 

LILACS 1 982 Citations and abstracts of arti-
Latin American and cles, books, proceedings, the-
Caribbean Health Sciences ses in English, Spanish and 
Information System Portuguese. 
www3.bireme.br/abd/llililacs 
.htm 

MEDLINE 1 966 Citations and abstracts 
National Library of Medicine 
www.pubmed.gov 
www.pubmedcentral.gov 

National Rehabilitation 1 956 Citations and abstracts of arti-
Information Center (NARIC) cles, books and projects on 
National Institute on Disability all aspects of rehabilitation 
and Rehabilitation (NIDRR) 
www.naric.com 

NIOSHTIC-2 1 974 Database of occupational Via links 
National Institute for safety and health publica-
Occupational Safety and tions, grant reports, and other 
Health Technical products 
Information Center (CDC) supported by NIOSH 
www2.cdc.gov/nioshtic-2 

Open Door Varies by Search engine including Pro- APTA 
American Physical Therapy journal Quest Health & Medical Com- membership 
Association plete, and Nursing and Allied 
www.apta.org Health Source 

OT Search Varies by Citations and abstracts for lit-
American Occupational journal erature related to occupa-
Therapy Association tional therapy 
www.aota.org/otsearch 
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TABLE 31 .1 COMMONLY USED BIBLIOGRAPHIC DATABASES 

Database or 
Search Engine 

OTseeker 
Occupational Therapy 
Systematic Evaluation of 
Evidence University of 
Queensland, Australia 
www.otseeker.com 

OVID 
Ovid Technologies 
gateway.ovid.com 

PEDro 
Center for Evidence-based 
Physiotherapy University 
of Sydney 
www.pedro.fhs.usyd.edu.au 

Proquest Dissertations 
and Theses 
Proquest GSA 
www.proquest.com 

PSYCINFO 
American Psychological 
Association 
www.apa.org/psycinfo 

Public Library 
of Science (PloS) 
www.plos.org 

Science Citation Index 
Thomson Scientific 
scientific.thomson.com/ 
products/sci 

Scirus 
Elsevier 
www.scirus.com 

Scopus 
Elsevier 
www.scopus.com 

SportDiscus 
Sports Information Resource 
Centre, Canada 
www.sirc.ca 

Start of 
Coverage Description 

No limit Abstracts of systematic 
reviews and randomized clini­
cal trials 

Varies by Citations and abstracts from a 
database variety of databases 

1 929 Abstracts of randomized clini­
cal trials, systematic reviews 
and practice guidelines 

1 861  Citations and abstracts 

1 800 Citations and abstracts of lit­
erature in psychology 

2004 Open access journals in med­
icine, biology and clinical tri­
als 

1 97 4 Bibliographic information on 
cited references 

Varies by Searches scientific web 
database pages; link to Networked Digi­

tal Library of Theses and Dis­
sertations 

1 900 Citations and abstracts of sci­
entific, technical, medical and 
social science literature 

1 949 Citations and full text for 
sports-related references 

Full Text 
Available• 

Via links 

Subscription 
Required 

(continued) 
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TABLE 31.1  COMMONLY USED BIBLIOGRAPHIC DATABASES (continued ) 

Database or 
Search Engine 

The Dome 
American Speech-Language 
Hearing Association 
www.asha.org 

Web of Knowledge® 
Thomson Scientific 
isiwebofknowledge.com 

WorldCat 
Online Computer Library 
Center (OCLC) 
www.worldcat.org 

Start of 
Coverage Description 

Varies by Search engine for speech 
publication pathology, citing articles, 

books, and other web 
resources 

1 900 

No limit 

Citations from international 
journals, open access 
resources, books, patents, 
proceedings, or websites 

Network of l ibrary contents 
and services 

Full Text 
Available a 

Subscription 
Required 

8The availability of full text depends on the journal. Some journals only make full text available to subscribers; 
others allow full text access after a certain amount of time has passed following initial publication; others are 
available to the public. 

therapy, speech language pathology, cardiopulmonary technology, respiratory 
therapy, nutrition and social services. 

• The Educational Resources Information Center (ERIC) hosts a database of 
education-related resources, sponsored by the Institute of Education Sciences of 
the U.S. Department of Education. A newly designed digital library allows free 
access, including full text availability of many journal and nonjourna l materials. 

• EMBASE is the Excerpta Medica biomedical database, which includes over 7,000 
journals covering medicine, pharmacology and drug research, and health policy 
and management. EMBASE includes MEDLINE references from 1966, and addi­
tional references from 197 4 on. 

• The Index to Scientific & Technical Proceedings provides information on papers 
delivered at major conferences. It includes bibliographic information and 
abstracts from proceedings published in journals and books. This database cov­
ers topics included in the Science Citation Index. An Index to Social Science and 
Humanities Proceedings is also available. 

• Latin American and Caribbean Health Sciences Information System (LILACS) is 
a cooperative database published since 1982 that registers health-related litera­
ture published by authors in Latin American countries. The d atabase includes 
journal articles, conference proceedings, scientific-technical reports, theses, 
books and book chapters. LILACS indexes 670 journals published in the region, 
with abstracts in English, Por tuguese or Spanish; only 41 of these journals are 
also included in MEDLINE or EMBASE. Therefore, a literature search can be 
substantially enhanced by including this database.1 Subscription is required. 
LILACS is part of the WorldCAT network. 

• MEDLINE is the most commonly used database in health-related sciences, 
indexing almost 5,000 journal titles in biomedical sciences. It: is the electronic 
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platform for the formerly published Index Medicus. Full references are available 
back to 1966, although earlier citations from 1950-1965 can be obtained through 
Old MEDLINE. MEDLINE is part of MEDLARS (MEDical Literature Analysis and 
Retrieval System), the computerized system of databases offered through the 
National Library of Medicine (NLM). This database can be accessed free through 
the PubMed website. PubMed also allows the search to be limited to subsets of 
databases that focus on AIDS, bioethics, cancer, complementary medicine, and 
other topics. PubMed Central (PMC) provides free full-text access to articles in 
a growing number of journals. 

• National Rehabilitation Information Center (NARIC) houses the REHABDATA 
database, which contains approximately 69,000 abstracts of books, reports, arti­
cles, and audiovisual materials relating to disability and rehabilitation research, 
dating back to 1956. NARIC also includes the NIDRR Project Database with 
information on every project funded by NIDRR since 1993. Each record includes 
institutional and contact information, funding data, and an abstract of project 
goals and activities. 

• OTseeker was developed by occupational therapists at the University of Queens­
land and the University of Western Sydney. It contains abstracts of systematic 
reviews and clinical trials related to occupational therapy, and includes ratings 
based on the PEDro scale. In 2006, more than 4,300 articles had been reviewed. 

• PEDro is the Physiotherapy Evidence Database, which is an initiative of the Cen­
tre of Evidence-Based Physiotherapy out of the University of Sydney. This data­
base includes citations and abstracts of systematic reviews, clinical trials and 
clinical practice guidelines related to physical therapy. All clinical trials are rated 
for quality using the PEDro Scale, a standardized rating scale for assessing 
methodologic quality (see Chapter 16). 

• ProQuest Dissertations and Theses (PQDT) is a comprehensive collection of 
graduate scholarly works from universities, cataloguing more than 2 million dis­
sertations and theses from around the world. Citations date from the first 
accepted U.S. dissertation in 1861, although abstracts are available only since 
1980. Most are available in full text in microfilm or hard copy, and more recent 
titles may be obtained in electronic formats, depending on subscriptions. Pro­
quest includes the former University Microfilms (UMI) collections through Dis­
sertation Abstracts. 

• PsyciNFO is an abstract database sponsored by the American Pyschological 
Association. It covers topics in psychology, behavioral sciences and mental 
health, including over 2,000 journal titles, books and book chapters. Historic 
records are available dating back to 1802. Abstracts of dissertation titles are listed 
starting from 1995. 

• Public Library of Science (PLoS) is a nonprofit organization of scientists and 
physicians who are committed to making medical research literature a public 
resource. Open-access journals are published in biology, medicine, computa­
tional biology, genetics, pathogens, and clinical trials. The inaugural journal was 
published in 2004. 

• SCOPUS is available to research and academic institutions. It covers over 15,000 
titles including journals, conference proceedings, books and trade publications. 
It includes scientific, technical, medical, and social science literature, with 
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sources from the United States, Europe, Latin America and Asia. Scopus includes 
all of MEDLINE and more than 500 open access journals. 

• SportDiscus is a database supported by the Canadian Sports Information 
Resource Centre (SIRC). It covers sports, exercise physiology, sports medicine, 
physical fitness, and biomechanics. It indexes over 2,000 journals as well as 
books, theses, and nonprint resources. 

• Web of Knowledge is an integrated database that allows searching for citations, 
conference proceedings, websites and books in a multidiscliplinary platform. Its 
records cover scholarly information in the sciences, social sciences, and arts and 
humanities going back more than 100 years. 

• WorldCat is a library network that allows searching collections of more than 
57,000 libraries around the world. Books, theses and dissertations, as well as spe­
cial collections are catalogued through this service. WorldCat is part of the 
Online Computer Library Center (OCLC), which provides various services to an 
international consortium of libraries. Most academic libraries are members of 
OCLC. The database identifies libraries that hold the items of interest, and will 
usually link directly to that library's website. The availability of the item will 
depend on that library's policies. 

SEARCH STRATEGIES 
The most important part of a literature search is deciding what terms to enter as key­
words. All electronic databases will utilize some form of algorithm to generate a list of 
citations based on the keywords you choose. Citations will generally be brought up if 
the keyword is present in the title or abstract of the article. Journal articles may also 
have lists of keywords assigned to them by the author that are then used to index the 
document. Because so many words have synonyms or alternative terminology, this 
process can be daunting at times. It is useful to begin by brainstorming the various 
words that may be useful in finding articles related to your topic. Consider the pathol­
ogy or diagnosis, the population, the specific treatments or measurement tools, and the 
outcomes of interest. 

Suppose we were interested in studying physical endurance in patients who have 
experienced a stroke, with specific interest in the effectiveness of exercise programs. We 
would want to learn about the previous success of exercise programs for this population, 
and how endurance has been measured. Some possible keywords might include: 

• Stroke • Cerebrovascular accident (CVA) 
• Exercise • Therapy 
• Endurance 

Once we choose our keywords, we must consider how to combine them to generate 
citations that will relate to our question. 
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When performing a search, it is important to fine tune the choice of key words or refer­
ence terms to narrow the search. Most databases and search engines use a system called 
Boolean logic, named for George Boole, an English mathematician who invented it in 
the mid 1800s. Boolean logic utilizes three primary operators: AND, NOT and OR.* 

We will illustrate the use of these operators to develop a search strategy for our 
question related to endurance after stroke (see Figure 31.1). 

A 

c 

Stroke AND Exercise 

Stroke AND 
(Exercise OR Therapy) 

B 

Stroke AND Exercise 
NOT Diabetes 

D 
Stroke AND Exercise 

AND Endurance 

FIGURE 3 1 .1 Samples of Boolean Logic showing the use of AND, OR, and NOT as logical operators. 
(A) AND confines the search to only references that relate to both stroke and exercise. (B) NOT further 
l im its the search by excluding references related to diabetes. (C) OR broadens the search to include refer­
ences related to either exercise or rehabi l itation in addition to stroke. (D) AND further l imits the search to 
include references that include a l l  three terms. 

*When these operators are used together, they will be read in the order of AND, NOT and OR, unless paren­
theses are used to indicate specific combinations that should be considered first. 
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AND narrows the search, requiring that all requested terms to be present. We can 
begin by finding references that include both of our main terms: 

stroke AND exercise 

This search yields 6,423 citations.t 
OR broadens the search, usually when you want to include synonyms of the main 

search term. We may want to expand the search so that it includes studies that use the 
terms stroke or cerebrovascular accident: 

(stroke OR "cerebrovascular accident") AND exercise 

This has broadened the search to 6,448 citations. The term in quotes is read as a fixed 
string, not individual words. The terms that appear in parentheses are searched first 
and then paired with the second command. If more than one set of parentheses is pres­
ent, the search sequence goes from left to right. 

NOT excludes concepts from the search. Suppose, for example, we want to elimi­
nate studies that exclude patients with diabetes: 

stroke AND exercise NOT diabetes 

This brings the search down to 6,084 citations. 
We may finally want to limit our search to outcomes related to endurance: 

stroke AND exercise AND endurance 

The search is now limited to 439 references. Perhaps we can refine it a little more by 
making our terms more specific. For example, let's specify "physical endurance" to 
clarify the type of endurance we want to include: 

stroke AND exercise AND "physical endurance" 

Now our search is down to 278 citations. This is still too large a number of references, 
however. Let's examine how we can move through this process more effectively. 

MeSH Headings 
The National Library of Medicine has developed a sophisticated system of Medical 
Subject Headings (MeSH) that have been adopted by most databases that cite medical 
and health literature. Because authors will use different terminology for the same con­
cepts, MeSH terms provide a consistent search vocabulary. MeSH consists of sets of 
terms in a hierarchical structure or "tree" that permits searching at various levels of 
specificity.2 The tree starts with broad categories such as "Anatomy," "Disease" or 

t-rhis search was conducted using MEDLINE through PubMed on April 31, 2007. 
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TABLE 31 .2 PARTIAL HIERARCHY OF MESH TERMS 

Anatomy +a 
Diseases + 
Analytical, Diagnostic and Therapeutic Techniques and Equipment 

Anesthesia and Analgesia + 
Diagnosis + 
Equipment and Supplies + 
Surgical Procedures, Operative + 
Therapeutics 

Behavior Control + 
Electric Stimulation Therapy + 
Exercise Movement Techniques 

Breathing Exercises 
Dance Therapy 
Drainage, Postural 
Exercise 
Exercise Therapy 

Relaxation Techniques 
Hydrotherapy + 
Musculoskeletal Manipulations + 
Physical Therapy Modalities + 
Prescriptions, Non-Drug + 
Rehabil itation 

Activities of Daily Living 
Dance Therapy 
Early Ambulation 
Exercise Therapy 

Motion Therapy, Continuous Passive 
Occupational Therapy 
Rehabilitation of Hearing Impaired + 
Rehabilitation of Speech and Language Disorders + 
Rehabilitation, Vocational 

Respiratory Therapy + 
Biological Sciences + 
Anthropology, Education, Sociology and Social Phenomena + 
Health Care + 
Pharmacological Actions + 

•The symbol + indicates that the term can be further exploded. 

"Analytical, Diagnostic and Therapeutic Techniques and Equipment." More specific 
terms, close to 23,000 descriptors, are provided at various levels of the tree. Each head­
ing can be further detailed in a list of subheadings. Table 31.2 shows a partial list of 
terms to illustrate this hierarchy. 

Additional options include exploding the search, which means that the search will 
retrieve results using the selected term and all of the more specific terms in the tree. 
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Focusing or restricting the search means that it will be limited to documents where the 
subject heading is the major point of the article. 

OVID provides a "Map Term to Subject" feature that shows MeSH headings for 
entered keywords. PubMed provides a MeSH database that will serve the same purpose. 
These programs provide a useful tutorial for those who are not familiar with this process. 

For our current example, the term stroke is not a MeSH heading, but "cerebrovas­
cular accident" is. There are several terms that relate to exercise, including "exercise 
therapy," "exercise test," "exercise movement techniques," and "exercise tolerance." 
The definition of "exercise therapy" is closest to our intention: "Motion of the body or 
its parts to relieve symptoms or to improve function, leading to PHYSICAL FITNESS, 
but not PHYSICAL EDUCATION AND TRAINING." MeSH terms related to endurance 
include "physical endurance," "sports," and "muscle fatigue." The definition for "phys­
ical endurance" is most appropriate for our purpose: The time span between the begin­
ning of physical activity by an individual and the termination because of exhaustion. 

In our search we use a slash to define our terms as MeSH headings. By combining 
the three terms: 

cerebrovascular accident/ AND exercise therapy/ AND physical endurance/ 

We now obtain 9 references, substantially different from the 278 we had before! 
A comprehensive search strategy for this topic is illustrated in Box 31.1, showing the 

scope of this process. This search was used to generate references for a systematic review.3 

Limiting the Search 
Search strategies can be refined by setting specific limits or filters, including lan­
guage, dates of publication, or studies that are provided as full text. Searches can be 
restricted to studies of humans or animals, specific age groups or gender, or types of 
studies such as case studies, randomized trials, or systematic reviews. A specific author 
or journal can be searched. When a search yields large numbers of potential references, 
such limits will often provide a useful way to hone in on articles that are available and 
contemporary. 

PubMed has developed predesigned strategies to target a search for studies on 
therapy (interventions), diagnosis, etiology or prognosis. These search strategies can be 
accessed under Clinical Queries. 

Truncation and Wi ldcards 
Most databases will recognize truncation and wildcard symbols that can be used to 
allow a broad interpretation of a search term, finding plurals, spelling variations and 
alternate forms of words. Each database specifies the symbol to be used, such as a ques­
tion mark (?), an asterisk (*) or a dollar sign ($). For example, entering the term "sensi­
tiv$" in PubMed will retrieve articles that include "sensitive" or "sensitivity." The term 
"wom$n" will find "woman" or "women." 
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BOX 3 1 .1 Search Strategy for Studies Related to Stroke, Exercise 
and Endurance 

Sophisticated strategies that combine MeSH headings and keywords can 
provide a comprehensive search. Synonyms for keywords are incorporated 
to target the full scope of studies related to the topic. Special abbreviations 
can be used to clarify where terms are found: 

• exp = explode • tw = text words 
• ab = words in abstract • I = MeSH subject heading 
• hw = word in subject heading • $ = truncation symbol 
• pt = publication type • adj4 = adjacent (within four words) 
• ti = words in title • or I = apply OR to specified steps 

The following search illustrates this process related to the effect of exercise on 
endurance following stroke.3 The strategy illustrates how MeSH terms, key­
words and series of search groupings can be combined to retrieve references. 

1. exp Cerebrovascular accident/ 
2. (stroke or eva$ or cerebrovascular accident or cerebral vascular).tw 
3. exp Brain injuries/ 
4. exp Hemiplegia/ 
5. (hemipleg$ or hemipar$ or brain injur$).tw 
6. or/1-5 
7. exp Exercise Therapy I or exp Exercise/ 
8. exp Physical Fitness/ 
9. exp Physical Endurance/ 

10. treadmill.tw 
11. ((aerobic or endurance or cardio$ or fitness) adj5 

(train$ or program$ or protocol$ or intervention$)).tw. 
12. or/7-11 
13. exp Randomized Controlled Trials/ 
14. Clinical trial.pt 
15. exp Random Allocation/ 
16. Random$.tw. 
17. exp Cross-Over Studies/ 
18. Control$. tw. 
19. Experimental$.tw. 
20. exp Follow-Up Studies/ 
21. or/13-20 
22. 6 and 12 and 21 

Adapted from Pang MY, Eng JJ, Dawson AS, Gylfadottir S. The use of aerobic 
exercise training in improving aerobic capacity in individuals with stroke: A meta­
analysis. Clin Rehabil 2006;20(2):97-lll. 
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Broaden ing the Search 

Related References 
Several databases offer an option to search "related articles" or "similar pages," once a 
relevant citation has been found. By using this function, one relevant article becomes 
the key to a list of useful references. These references will usually be shown in order of 
their relevance to the original record. 

Science Citation Index 
Science Citation Index is a reference system that allows researchers to search based on 
citations (see Table 31.1), by tracking literature forward or backward, and across disci­
plinary boundaries. The index will identify articles, books or other sources that have 
cited a particular reference or author. This index is available through online subscrip­
tion or DVD, usually through a library. 

Other Articles' Reference Lists 
The reference list at the end of published articles will provide a handy inventory of 
sources that were used by other authors in their review of literature. The obvious dis­
advantage of this approach is that you will only identify references that are older than 
the original article. But it is often a good place to start, and to distinguish classic refer­
ences that are used repeatedly. 

Sensitivity and Specificity of Literature Searches 
Electronic searching can be considered a blessing or a curse by the researcher. It is cer­
tainly more efficient than the old-fashioned time-consuming hand searching through 
volumes of the Index Medicus, although at the same time it can generate substantial lists 
of citations that may not be relevant to the project. The incentive for developing com­
petence in searching is the ability to avoid retrieving too many citations or long lists of 
irrelevant ones. 

In this aspect of searching, the terms "sensitivity" and "specificity" have been 
applied, with meanings analogous to their use with diagnostic tests (see Chapter 27).4 
Sensitivity, also called recall, is the proportion of retrieved citations that are relevant, 
or the likelihood of finding relevant references. A sensitive search might include some 
irrelevant studies but is more likely to be comprehensive. Specificity, also called 
precision, is the proportion of citations that are relevant that the search is able to 
retrieve, or the likelihood of excluding irrelevant references. A specific search might 
exclude some relevant studies but is more likely to include the very relevant ones. 

When a search results in too many citations, you need to improve specificity by nar­
rowing the question, using more specific search terms, combining search terms, or set­
ting limits. Using the "focus" option can also restrict the search. When the number of 
references is too small, the search needs to improve its sensitivity by broadening the 
question, finding better search terms, using truncation or wildcards or trying varied 
combinations of terms. Using the "explode" option can improve the breadth of the 
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search. In PubMed, under Clinical Queries, choosing a "sensitive" search will explode 
the search to include a broad range of articles, some that may be less relevant. Choos­
ing a "specific" search will focus the search on the most relevant articles, but will elim­
inate some that have less obvious relevance. A useful guide to terms that can be used to 
increase sensitivity or specificity has been developed for use with MEDLINE.5 

FINDING REFERENCES FOR EVI DENCE-BASED PRACTICE 
In Chapter 1 we described the process of generating a question related to a patient case 
(see Box 1 .1)  to provide an evidence base for clinical decision making. When we search 
the literature as part of evidence-based practice, we are not "studying" a topic, as sug­
gested in the previous section. Instead, for this purpose we are asking a question that is 
spurred by a particular patient issue, and our literature search is intended to find refer­
ences that will help us make a good clinical decision for management of the patient. 

Using PICO 
The acronym PICO has been used to emphasize the importance of specifying the 
Population (or Patient characteristics), Interventions, Comparisons and Outcomes that 
are relevant to the clinical question.6 In going through this process, it is useful to gener­
ate a thorough list of terms that can then be used as keywords in a literature search. For 
example, consider the following case scenario: 

A 78 year-old male patient experienced a stroke 6 months ago. He is able to ambulate 
with the assistance of a regular cane, but does not participate in activities because of 
fatigue. He has been referred to physical therapy to increase his physical endurance. 
The patient has discussed the benefits of exercise with his physical therapist, but is 
concerned about risks associated with overexertion. He asks the therapist if exercise is 
really effective for people like him. 

The therapist wants to gather specific information that the patient will be able to use in 
setting his own goals for exercise. She asks the question, "Will exercise improve 
endurance in a patient following stroke? 

We might consider the following elements important for answering this clinical 
question: 

P stroke, "cerebrovascular accident," CVA 
I exercise, "aerobic exercise" 
C "no exercise" 
0 endurance 

These terms would become useful keywords for a search. Terms in quotes are intended 
to be searched as a string. 
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Searching for Systematic Reviews 
Identifying systematic reviews in a search strategy can be challenging because the 
phrases "systematic review" or "meta-analysis" will not always appear in the title or 
abstract of an article. Many search engines and databases have established specific 
search strategies to find these types of studies. For instance, in PubMed reviews on a 
given topic can be obtained by checking "systematic reviews" under Subsets on the 
"Limits" tab. OVID provides limits for "Reviews" or "EBM Reviews." CINAHL will 
allow for retrieval of systematic reviews under publication type. Systematic reviews are 
considered a higher level of evidence than single primary studies (see Chapter 16) 
because they provide a critical analysis of available literature. Clinicians will typically 
find systematic reviews to be a good place to start when asking a clinical question for 
evidence-based practice decisions. 

Reviews and Abstracts for Evidence-Based Practice 
Several specialized databases index reviews of published literature. Evidence Based 
Medicine Reviews (EBMR) is a collection of databases available through the Cochrane 
Library and OVID Technologies, containing the following resources (see Table 31.1): 

• ACP Journal Club is a collection of structured abstracts supported by the Amer­
ican College of Physicians. The abstracts describe the objectives, methods, 
results and evidence-based conclusions of original articles and systematic 
reviews published in over 100 clinical journals. The abstracts are written by cli­
nicians with specific expertise to summarize the literature and provide brief 
commentaries on the context, methods and clinical applications of the findings. 
Articles are graded for clinical relevance using star ratings from 1 (least inform­
ative) to 7 (highly relevant). 

• The Cochrane Database of Systematic Reviews is part of The Cochrane Library. 
This database indexes systematic reviews of healthcare interventions. Summaries 
of reviews can be accessed free online, but full text requires a subscription. 

• The Cochrane Central Register of Controlled Trials (CCTR) is an index of ran­
domized clinical trials that have been determined to be of sufficient quality for 
use in systematic reviews. CCTR can be accessed through the Cochrane Library. 

• The Database of Abstracts of Reviews of Effects (DARE) is a full text database 
containing critical assessments of systematic reviews from a variety of medical 
journals. DARE records cover topics such as diagnosis, prevention, rehabilita­
tion, screening, and treatment. 

Other review databases are also useful for research and clinical decision making (see 
Table 31.1): 

• BMJ Clinical Evidence is a journal of systematic reviews related to a broad range 
of clinical specialties. This publication continually updates already published 
systematic reviews by including recently published clinical trials as well as 
observational studies that might not have been cited in the original paper. The 
reviews are intended to summarize the current state of knowledge or uncer-
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tainty about the prevention and treatment of clinical conditions, and also strives 
to show when good evidence is not available. 

• Evidence-based Practice Centers (EPC) Reports are developed on topics relevant 
to clinical, social science/behavioral, economic, and other health care organiza­
tion and delivery issues-specifically those that are common, expensive, and/ or 
significant for the Medicare and Medicaid populations. In 1997 the Agency for 
Health Care Policy and Research (AHCPR), now known as the Agency for 
Healthcare Research and Quality (AHRQ), launched its initiative to promote 
evidence-based practice in everyday care through establishment of 12 Evidence­
based Practice Centers (EPCs). 

• Hooked on Evidence is available to members of the American Physical Therapy 
Association. This database includes extractions from clinical trials, case-control 
and cohort studies, case reports and single-subject design studies related to 
physical therapy interventions. Over 3,000 extractions were available as of 2006. 

KEEPING UP WITH THE LITERATURE: EMAIL ALERTS 
The volume of literature that is available in health care can be truly overwhelming, as 
one strives to stay up to date in an environment that is increasingly focused on evidence. 
Many of us subscribe to a variety of journals that concentrate on our areas of clinical 
interest, and just keeping up with that reading can be a daunting task. Scanning the table 
of contents of particular journals can be a useful habit for finding articles of interest. 

A convenient strategy to maintain a current library is to subscribe to email alert 
services, which provide regular automatic updates based on a search profile that you 
create. These services are usually free. They deliver current citations (with abstracts) or 
the table of contents of selected journals directly to your email. Services such as OVID, 
PubMed (through My NCBI), and ProQuest offer email alerts? Many journals, includ­
ing Physical Therapy, Archives of Physical Medicine and Rehabilitation, New England Journal 
of Medicine, and the Journal of Speech, Language and Hearing Research, allow individuals 
to register to receive free alerts for their table of contents each month. Some journals 
will also send out alerts for early release of certain articles. In this day of electronic com­
munication and information overload, it seems prudent to let technology help us sort 
through the many resources that are available to us! 

COM MENTARY 

Is the Evidence Not There-or Can't We Find I t? 

I n  the pursui t  of evidence for c l i n ical dec i s ion maki ng, it is important for us to rea l ­
ize that a lack of  evidence (or  perhaps more accu rately our i nabi l ity to locate the 
evidence) is  not the same as having evidence that an intervention or d iagnostic tool 
is ineffective. When looking for "best evi dence," the l i terature may be i nadequate, 
and experience and patient preferences may be the "best" guide ava i lable .  

Whatever the reason for your l i terature search, be it for research or c l i n ica l  pur­
poses, it can be a frustrat ing process if you are not knowledgeable and experienced 
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in the use of resources avai lable to you .  Various search strategies can be employed 
to find an appropriate reference l ist for a particular topic. We cannot begin to cover 
a l l  of the approaches or t ips that wi l l  make this process successfu l and effic ient. Few 
of us are experts i n  this process, and new resources are constantly becoming avai l ­
able. A reference l ibrarian can be an inval uable resource to assist with a search, 
avoid ing that terrible and futi le lament, " I 've spent 5 hours searching and haven't 
found anyth i ng!" Most search engines and databases provide tutorials and tips that 
can guide the researcher in using the appropriate strategies. Many l ibraries sponsor 
classes in the use of these programs as wel l .  It is worth the effort to learn to use these 
programs effectively. 

The number of databases that are avai lable through onl ine services is staggering, 
and new options are constantly being developed. Reference l i brarians and good 
search strategies are essential to the researcher and c l in ician to take advantage of 
these remarkable resources. 
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CHAPTER 3 2  

Writing a Research Proposal 

The initial stages of the research process include development of the research question 
and delineation of methods of data collection. The success of the project depends on 
how well these elements have been developed and defined in advance, so that the 
proper resources are gathered and methods proceed with reliability and validity. The 
plan that describes all these preparatory elements is the research proposal. The pro­
posal describes the purpose of the study, the importance of the research question, the 
research protocol and justifies the feasibility of the project. 

The proposal can serve several purposes. First, it represents the synthesis of the 
researcher's critical thinking and the scientific literature to ensure that the research 
question is refined enough to be studied, that the assumptions and theoretical rationale 
on which the study is based are logical and that the method is appropriate for answer­
ing the question. Second, the well prepared proposal may constitute the body of a grant 
application when external funding is required. Third, it is part of an application for 
review by peer or administrative committees. This is the document that will be care­
fully scrutinized by the Institutional Review Board (IRB) (see Chapter 3). Fourth, the 
proposal enhances communication among colleagues who may be co-investigators and 
with consultants whose advice may be needed. Finally, the careful, detailed account of 
the study procedures serves as a guide throughout the data collection phase to ensure 
that the researchers follow the outlined rules of conduct. The research proposal, there­
fore, is an indispensable instrument in initiating and implementing a project. 

When proposals are written as part of a grant application for funding from founda­
tions or government agencies, the researcher must obtain the guidelines of the agency 
to which the proposal will be submitted. Generally, requirements and components of a 
proposal will be the same for grant applications as they are for academic and clinical 
institutions; however, to write a successful grant application, the researcher must 
understand the interests of the funding agency, the extent of available funds, the dead­
lines for submitting proposals, and the proper format of the application.* 

The purpose of this chapter is to discuss the process of developing and writing a 
research proposal. The exact format of the proposal will depend on the requirements or 
instructions of the individuals, clinics, faculty or agencies that will review the project. 

• A reference, such as the Foundation Reporter, 1 can be used to aid in selecting an appropriate agency. This ref­
erence provides information about an agency's contact individual, foundation philosophy, typical recipients, 
application, review procedures and restrictions. Other resources may be found on the Internet, such as 
Science Careers, sponsored by the AAAS.2 
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760 PART V • Com m u nication 

TABLE 32.1 WORKING PLAN FOR DEVELOPING A RESEARCH PROPOSAL 

I .  THE RESEARCH PLAN 
A. Title 
B. Abstract 
C. Statement of the research problem 

1 .  Rationale and justification for the study 
2. Significance of the study 

D. Statement of the purpose of the study 
1 .  Specific aims or objectives 
2. Research hypotheses or guiding questions 

E. Background of the study 
1 .  Topics for the review of literature related to: 

a. Theory and supportive rationale 
b. Related studies 
c .  Methods 

2. Previous work by the investigator that supports the project 
F. Method 

1 .  Subjects: characteristics, sampling method and plans for recruitment 
2. Materials: instrumentation. plans to establish reliability and validity 
3. Procedures 

a.  Study design 
b. Details of test and treatment administration 
c. Data collection methods 
d. Timetable and organizational chart 

4. Data management and analysis 
G. Literature cited 
H. Documentation of informed consent 

II. PLAN FOR ADMINISTRATIVE SUPPORT 
A. Budget: personnel ,  equipment, faci lities and supplies 
B. Resources and environment 
C. Personnel: qualifications, time commitment, job descriptions, consultant 

The order of presentation of material may vary, as may the extent of the information 
required. The following guidelines are meant to reflect the most common elements of a 
proposal. A research proposal has two basic parts, as shown in Table 32.1 .  The first part 
provides details of the research plan, and the other describes the administrative and 
personnel support required to carry out the project. 

COM PON ENTS OF THE RESEARCH PLAN 
Before writing one word; the researcher spends considerable time thinking, gathering 
facts, and consulting with individuals who are knowledgeable in the content and 
methodology of interest. Students should also review guidelines for preparing their 
proposal with faculty advisors. Researchers who are seeking funding may find it help­
ful to read other proposals that were submitted to and funded by the agencies that are 
being considered. As one proceeds with the development of the project and considers 
its feasibility, it is helpful to follow an organized working plan that focuses the impor­
tant elements of the project. 
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The title of a research proposal will be the first thing seen by readers, although it is often 
easier for the researcher to develop an appropriate title after the study design has been 
formulated. The title will become the project's introduction to all potential readers. It is 
the first impression of what the reviewers should expect to read in the subsequent 
pages. It must be concise and informative. A title such as "Bronchopulmonary Dyspla­
sia" is certainly concise, but the reader is likely to say "what about it?" Expanded, this 
title could be "Cardiovascular Problems in Bronchopulmonary Dysplasia." This is bet­
ter, but does not yet suggest a research focus. With a few more words, this title will say 
much more: "Cardiovascular Effects of Physical Therapy Intervention in Infants with 
Bronchopulmonary Dysplasia." We now know that this proposed research has an 
independent variable and a dependent variable and that the sample will be infants. 

Abstract 
A summary or abstract of the project or program, often limited to one page, is required 
by most funding agencies and institutional review boards, and may be required for stu­
dent projects. When a proposed project is to be reviewed by faculty, administrative or 
foundation committees, all members of these committees will receive the summary, 
whereas only selected members of such committees may review the full proposal. The 
abstract should highlight the purpose and importance of the proposed project. A brief 
description of the method should identify the study subjects, procedures and methods 
for data analysis. The proposed duration of the study and overall projected costs may 
be stated. Because the summary is likely to be read before the detailed proposal is read, 
it must make a positive impression, conveying specifically what is to be done and why 
the study is important. 

Body of the Proposal 
The body of the research proposal is the narrative portion that will explain the purpose 
and importance of the study and describe the design and procedures in detail. 

Statement of the Problem 
The opening statement of the proposal identifies the subject area to be studied. As an 
introduction, this statement should convey a clear sense of the importance of the prob­
lem in terms of applicability of potential findings to clinical practice and patient care. It 
may begin as a broad definition but should lead the reader logically toward a definition 
of the specific delimited topic, which will become the focus of the present project. 

As an example, Rudd and co-workers3 compared a speCialist community rehabilita­
tion program with a standard hospital and homecare program for patients with stroke. 
The statement of the problem, as it might have been written in a proposal, would first 
establish why the study was needed by defining the problems related to costs of hospi­
talization and psychosocial aspects of managing these patients. By acknowledging these 
problems and alternative approaches to rehabilitation, the researchers justify the need 
to further examine the effectiveness of different treatment settings. 
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The problem statement, therefore, presents a rationale for the specific question 
being addressed by the project. In the preceding example, the authors have created a 
rationale for examining the difference between the structured specialist community 
program and standard care. No single project can be expected to solve a problem in its 
entirety. On the other hand, each project should clearly contribute to the solution. Each 
study expands the evidence that can be used to support the body of knowledge related 
to the research problem. The content of the opening section of the proposal should 
clearly demonstrate this contribution. 

Purpose, Hypotheses and Specific Aims 
In a brief statement, the researcher must state precisely what the project is  expected to 
accomplish. The purpose of the study should follow clearly from the justification pre­
sented earlier. If the research is to be experimental or correlational, the purpose is trans­
lated here into research hypotheses. Research hypotheses are stated in positive terms; 
they reflect the expectations of outcome. "Null" hypotheses that serve a statistical func­
tion do not belong in the text, unless the purpose of the research is specifically to show 
that no relationship exists between variables. If the research is descriptive in nature, the 
author will state the characteristics or behaviors that will be documented in this work 
and what questions the data will answer about the target population. 

Many granting agencies require a statement of specific aims or objectives for a 
project. For instance, a study's objectives might be to add to the body of knowledge in 
a certain content area, to test a theoretical proposition, to demonstrate differences 
between certain treatments to develop more effective and efficient intervention strate­
gies, to document the reliability of an instrument, or to establish the relationship 
between specific variables as a basis for making treatment planning decisions. These 
objectives are derived from the research hypotheses or descriptive questions. Objectives 
help reviewers focus the description of methods and will often help the researcher 
guide the discussion of results when the study is completed. 

Proposals for qualitative research may need to include explanations of the research 
approach, especially when those who will review the proposal are unfamiliar with nat­
uralistic inquiry. The researcher should include specific reference to the form of quali­
tative research (for example, ethnography or phenomenology), including assumptions 
about the nature of knowledge and reality that are relevant to the area of study.4 

Background 
The presentation of  background information includes the theoretical rationale for the 
study and pertinent facts, observations or claims that have led the investigator to the 
proposed research question. This information is derived from the literature review (see 
Chapter 7) and from previous or related work done by the investigator. Funding agen­
cies look favorably on projects that are built on previous work by the investigator. 

The literature review is difficult to present concisely, and much effort is usually 
required to integrate published material to make relevant points. While preparing for a 
project, the researcher will have read and catalogued many references, typically many 
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more than will or should be included in the written proposal. Authors must continually 
ask, "Is this reference or point of information directly related to this study?" "Does it 
contribute to the rationale or clarify the basic assumptions that underlie the research 
question?" If the answer is "No," then the reference should be set aside or discarded. 
When the references have been selected, they should be organized by topic areas to 
facilitate organization of the paper. 

The presentation of the review of literature includes the main points that serve as 
the background of the proposed study. A meaningful review of literature provides a 
clear representation of the author's thought processes in developing the proposed 
study. It is not simply a series of abstracts of papers on the topic. The author must con­
vey an integration of content that supports the need, importance and rationale for the 
proposed study. The need and importance of the proposed study are defined in rela­
tionship to existing clinical or scientific reports. The first elements of the review may 
include relevant epidemiological factors, demographics, the impact of the research 
issue on health care policy or practice and the potential impact on patients. For instance, 
for the example cited earlier, the investigators might focus on the rising costs of care 
resulting from the increased incidence of stroke, and the potential psychosocial advan­
tages of the patients' early return to community living. 

The major portion of the background focuses on prior research that has been done 
to address the same or related questions, reflecting current knowledge or lack of knowl­
edge. This includes a synthesis of consistencies and conflicts found in prior reports. The 
possible reasons for inconsistencies and identifiable limitations of previous studies 
should be elucidated to provide further evidence that more study is required. The con­
tent of this section should show the logic for selecting subjects, selecting the variables 
to be studied and the methods of measurement. This section should end with a sum­
mary of the facts, problems, or controversies found in the literature and the relevant 
perspectives of the researcher that lead directly back to the specific need and stated pur­
pose of the proposed study. 

Method 
The method section is probably the most important part of the proposal, and should 
be both concise and complete. The author should include enough detailed information 
so that reviewers can judge the soundness of the work, so that members of the institu­
tional review board can determine exactly what the subjects will be asked to do and so 
that the researcher can determine the feasibility of the study. The opening section iden­
tifies the overall study design that will be employed to test the research hypothesis or 
answer the research question. For example, 

This will be a randomjzed controlled trial to compare the effects of a specialized com­
munity rehabilitation program and a standard hospital-based program on motor abil­
ities, cognition, aphasia, activities of daily living, anxiety and depression in patients 
who have had a stroke. 

The details of the research methods are usually presented in four subsections: Subjects, 
Materials, Procedures, and Data Analysis. 
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Subjects. The description of subjects used in human studies is extremely important 
because of the inherent variability among them and the vast number of extraneous fac­
tors that may affect human behavior or performance. The author must describe who 
the subjects will be in terms of inclusion and exclusion criteria, how many and from 
where subjects will be recruited, how they are to be selected, and the method by which 
they will be assigned to groups for the study. Characteristics such as age, gender, dis­
ability, diagnosis and duration of hospitalization should be defined if they are relevant 
to the study. The author must include all, and only, those factors that could influence 
the results and the ability to generalize the findings to the target population or to com­
pare findings with other similar studies. Funding agencies and institutional review 
boards generally require a power analysis to demonstrate the appropriateness of the 
proposed sample size. 

Materials. Materials refer to the equipment, instruments or measuring tools that will 
be used in the study. Materials should be described according to important characteris­
tics such as brand name and model and should be documented for reliability and valid­
ity. If measurement tools are new, relatively unknown, or developed by the researcher, 
they should be described in sufficient detail and a figure should be included. If the 
measurement tool is a survey, the entire document may be presented as an appendix to 
the proposal or a set of sample questions may be included in the narrative. 

Procedures. The procedures section describes precisely what is to be done from begin­
ning to end of the investigation, in chronological sequence. Procedures also include 
how, and by whom data are to be collected. Operational definitions should be provided 
for independent and dependent variables. If these procedures are extensive and 
lengthy, they may be briefly described in the text with references to appendixes that will 
present the details in full. The researcher should include strategies for controlling extra­
neous variables. 

In qualitative study, the proposal should include how the researcher will interact 
with subjects, describing the kind of data that will be collected (for example, field notes, 
audio tapes, video tapes, or transcriptions).4 

A chart or flow sheet, presented in tabular form, will serve to summarize the pro­
cedural sequence. Figure 32.1 illustrates the timetable for a hypothetical 2-year study. 
The study is a pretest-posttest design with subjects randomly assigned to two treat­
ment groups. The intervention period for each subject lasts 6 months. Outcome data 
will be collected initially, each month for 6 months, and 9 months after the initial eval­
uation of each patient. The last patients will be admitted to the study in Month 15; their 
treatment period, lasting 6 months, will end in Month 21, and their follow-up assess­
ment will be made 3 months later, in Month 24. Such a display of the "work schedule" 
will assist reviewers in evaluating the feasibility of the investigation in terms of time 
and available funding. 

Data Analysis. The plan for data analysis should outline specific procedures for 
recording, storing, and reducing data and for statistical analysis. Reviewers will exam­
ine both descriptive and analytical methods to determine their appropriateness for the 
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FIGURE 32.1 Graphic display of a hypothetical study time l i ne. 

design of the study and the type of measurement. It is often helpful to obtain the serv­
ices of a statistician to be sure that this section is accurate and complete. The funding 
agency will probably have a statistician review it. 

Proposals for qualitative studies should include descriptions of how notes will be 
transcribed and reconstructed.4 The specifics of coding and sorting data may evolve as 
the project unfolds, but the researcher should discuss the intended format and how the 
process will be developed. Methods of establishing reliability and validity of data 
should be included (see Chapter 14). 

References. The final part of the narrative portion of the proposal should be a listing 
of literature cited in the paper. Some agencies require the use of a specific bibliographic 
style, but often this is left to the discretion of the researcher. 

Documentation of I nformed Consent 
A copy of the informed consent form must accompany the proposal when subjects will 
be directly involved in the study. The informed consent form may not be required for 
secondary analysis studies. Funding agencies and sponsoring institutions may require 
IRB approval before a proposal is submitted and reviewed. The time delays inherent in 
obtaining this approval must be built into the timetable for submitting the proposal. 
Documentation of IRB approval must accompany the proposal. The process and ele­
ments of obtaining informed consent are discussed in Chapter 3. 
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PLAN FOR ADMINISTRATIVE SUPPORT 

Budget 
Every proposal, even those written for student research, should include an estimate of 
projected expenses, to demonstrate the feasibility of the project. For a grant application, 
the budget is an extremely important part of the proposal, and must be complete and 
detailed according to the instructions of the funding agency. Students may need to 
show how resources will be made available to them if there are no funds available for 
the project. Many schools provide small grants that will assist students with their the­
sis projects. 

The format and content of the budget will vary depending on the type of research 
proposal. Generally, the budget is presented by category as a summary of totals and as 
an itemized budget. For grants that are expected to run more than one year, only the 
first year's budget is itemized, and summaries of projected expenses for additional 
years are provided. A narrative section, called the budget justification, should be 
included to explain the projected costs in each category. The typical budget categories 
are personnel, equipment, facilities, supplies and travel. 

The itemized personnel budget identifies the names of each individual who will par­
ticipate in the study, their proposed title (such as principal investigator, consultant, stat­
istician, research assistant, secretary), the salary for each individual and the percentage 
of full-time or number of hours that will be devoted to the project. Dollar amounts may 
be based on percentage of the individual's full-time salary or an hourly wage for a spec­
ified number of hours. Some personnel may be asked to participate in the project with 
no remuneration. These individuals should also be listed, showing no salary request. 
Associated fringe benefit amounts are listed separately based on the total amount of pro­
jected salaries and wages. Reviewers will scrutinize the personnel budget particularly to 
evaluate the appropriateness of the time commitment of each participant. The budget 
justification should explain the responsibilities of each participant and should show that 
the personnel will realistically be able to achieve the desired outcomes. 

Equipment costs are given for all equipment that will be purchased with grant funds. 
Costs should reflect current prices and any charges related to installation, calibration 
and maintenance. Most granting agencies define a threshold cost for "equipment" as 
having an extended life expectancy of at least 3 to 5 years. The narrative should provide 
details of equipment, such as manufacturer, model number and special accessories that 
are needed for the study. The researcher should indicate if some of the necessary equip­
ment is already available, to show the funding agency that the project can be completed 
with some contribution by the researcher's institution. 

The budget may include a request for funds for alteration or renovations to facilities. 
If space must be altered to accommodate equipment or to provide a work area, the con­
tractors' estimates should be confirmed before specifying those costs in the budget. 
Explanations of all construction costs should be provided in detail, justifying why they 
are necessary for the study. 

The category called supplies usually refers to consumable materials as opposed to 
capital equipment. Specific quantities of these supplies should be given with justifica­
tion. A category of "other expenses" may also be included to account for miscellaneous 
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items, such as telephone costs and photocopying. Depending on the nature of the proj­
ect and the regulations of the funding agency, travel expenses may be budgeted. Travel to 
and from the institutional "home base" to collect data is certainly part of conducting a 
project and is likely to be an acceptable expense. Travel to meetings where data may be 
presented is more indirectly related to the project, but can often be justified. Travel costs 
may also be applied to patients who must be transported for purposes of the research. 

All of the preceding budget categories are defined as direct costs. Indirect costs 
relate principally to the overhead charged by the sponsoring institution for administra­
tive activities, facility maintenance and any other support services. Funding agencies 
usually limit the amount of support that may be used for indirect costs based on some 
defined percentage of the total budget. In cases where the customary institutional 
charge exceeds the set limit, the budget narrative should specify the manner in which 
such a discrepancy will be handled. In some cases, granting agencies will negotiate this 
percentage. The total budget for the project is the sum of all direct and indirect costs. 

In every institution where research is conducted, there is an administrative officer 
responsible for grants and contracts. This individual will be able to assist researchers 
with the general "anatomy" of a proposal budget and will provide information about 
fringe benefits, indirect costs and institutional support. Consultation with this individ­
ual is essential and should begin early in the process of developing a research proposal 
budget. The administrative officer must sign off on the proposal before it is submitted, 
reflecting institutional approval of the proposed project. 

Resources and Envi ronment 
Many funding agencies and academic or clinical institutions will also ask for informa­
tion regarding existing resources for carrying out the proposed project. The investiga­
tor will be asked to describe available laboratory facilities, equipment, clinical sites, 
computer capability, office space and so on, to demonstrate that the project is feasible 
within the institution's environment. The areas in which data collection will take place 
should be described, as should the areas where equipment will be housed. In addition, 
administrative support services may need to be described. Documentation of secretar­
ial or technical assistance or the need to acquire such support will be evaluated by 
reviewers in regard to the feasibility and justification of the applicant's budget request. 

Personnel 
Identification of  the investigators and their qualifications is an important element of  a 
proposal, especially when external funding is being sought. This will probably not be a 
factor in student research, except where expert assistance is required for carrying out 
parts of the project. Funding agencies will examine investigators' education, experience, 
track record of research and prior publications to determine that they have appropriate 
qualifications. This information is most often provided in the form of biographical sum­
maries for each person working on the project. Some institutions offer a variety of fund­
ing programs and the eligibility requirements differ for each program. For example, the 
Arthritis Foundation offers several programs ranging from postdoctoral fellowships for 
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individuals with 3 to 6 years of research experience to traineeships for supporting the 
research of individual health professions.5 Grants through the National Institutes of 
Health usually require that someone with an MD or PhD and research experience act as 
primary investigator. Foundations that support new investigators often require that an 
experienced, competent researcher supervise the proposed work. Because of these kinds 
of criteria, the inclusion of information about the participants in a proposed study is 
essential to the process of evaluation by an agency or foundation. 

PRESENTATION OF TH E PROPOSAL 

Style 
The research proposal is a forward-looking document. The researcher's thinking begins 
with the present, acknowledges and draws from the past, but primarily leads to the 
future. Therefore, the statement of the problem is written in the present tense, the back­
ground is written in the past tense, and the method (which is the proposed research) is 
written in the future tense. 

The actual format required for the proposal varies among agencies and schools. The 
researcher must follow the specific instructions provided by the sponsoring agency. The 
method of citing references should be consistent throughout, and tables and appen­
dixes should be clearly labeled and cited in the text. 

The tone or mood of the document should be positive, persuasive and scholarly. 
The researcher must convince reviewers that the proposed research is important, that 
there is a need to conduct the proposed research, and that the research team has the 
knowledge and ability to accomplish the study objectives. Phrases such as "perhaps the 
results will contribute" and "we hope to demonstrate" convey hesitation and insecurity. 
Conversely, the use of superlatives, implying that this work will be the greatest of all, 
will detract from the substance. A proposal that is sensible, factual and realistic will 
receive the attention it deserves. 

Review, Revise, Edit, Revise, Review 

Even the most experienced researcher w i l l  find writ ing a proposal chal lenging. For 
those with less experience, the empty page may seem l i ke an i nsurmountable hur­
dle .  The best way to get started is to d ive in ,  with the c lear understanding that there 
w i l l  be severa l d rafts and revis ions before the proposal is ready for submiss ion.6 The 
proposa l wi l l  not necessari ly be written in the order that it w i l l  later be read; for 
example, the abstract is presented at the begi nn i ng, but may actua l ly  be written last. 

Before the "fi na l"  version is rea :ly, one fi nal step shou ld be taken :  en l isti ng oth­
ers to read the whole proposa l .  Graduate students have "bui lt- i n "  readers; this is one 
of the responsib i l it ies of thesis and d issertation advisory committees. Those who are 
not students shou ld seek three k ind�. of i ndiv iduals to review the proposa l .  One who 
is  knowledgeab le  about the topic and the relevance of the project should be asked 
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to eva luate the appropriateness, accuracy and thoroughness of the presentation. 
Another who understands research design and methodology wi l l  concentrate on the 
val idity of the research methods relative to the research question and specific a ims. 
The th i rd shou ld be someone who is unfami l iar with the subject matter and who wi l l  
react to the readabi l ity of the paper. A l l  three may notice i nconsistencies, i nstances 
of unnecessary professional jargon or redundancy. This kind of prel imi nary review 
by col leagues is va luable for i nspiring the researcher's confidence that the proposal 
is ready for formal review and subsequent successfu l implementation. 
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CHAPTER 3 3  

Reporting the Results 
of Clinical Research 

The culmination of the research process is the communication of results. This final stage 
may be the most important part of the process in that only shared information can clar­
ify, amplify and expand the professional body of knowledge. Research reports can be 
developed in a variety of ways. The written article published in a refereed journal pro­
vides a permanent record of research that will be available to a large audience. Oral 
reports and poster presentations at professional meetings serve to disseminate research 
information in a timely fashion, although the audience is limited and the record of 
research findings will be found only in abstract form. Students are usually required to 
document their work in the form of a thesis or dissertation, but may be given the option 
of writing the paper in the form of a journal article. The purpose of this chapter is to 
describe the process of preparing manuscripts for publication in scientific journals, 
poster presentations and oral reports. 

THE JOURNAL ARTICLE 
Selecting a journal 
The researcher should decide where the manuscript will be submitted before writing the 
final paper. The expansion of the scope of practice in the health professions has been 
accompanied by a proliferation of publications serving specialized areas of practice. The 
choices are numerous and selection of the appropriate one deserves careful thought. 

Some journals have a clearly defined focus with priorities explicitly stated. This 
focus is often stated in a journal's masthead or instructions to authors. For example, the 
Journal of Rehabilitation Research and Development (JRRD) has a complete statement that 
clarifies the kinds of papers that are appropriate, including the priorities: 

JRRD responsibly reports the results of rehabilitation research relevant to veterans. 
Our goal is to publish cutting�ge research that enhances the quality and relevance 
of Department of Veterans Affairs rehabilitation research and disseminate biomedical 
and engineering advances. Priority areas are prosthetics, amputations, orthotics, and 
orthopedics; spinal cord injury and other neurological disorders (with particular inter­
est in traumatic brain injury, multiple sclerosis, and restorative therapies); communi­
cation, sensory, and cognitive aids; geriatric rehabilitation; and functional outcome 
research. JRRD accepts national and international submissions.1 

771 
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When a journal's focus is not so obvious, the contents of several issues of that jour­
nal should be read to determine if a particular study is consistent with the subject mat­
ter and type of research that the journal tends to publish. It is an unfortunate waste of 
time, effort and perhaps money to make the wrong choice and to have a manuscript 
returned because it "is not suitable for publication" in a particular journal. This is 
almost verbatim what the rejection letter will say. 

Another consideration in selecting a journal is the readership. The product of 
research should reach the people who will best be able to use the information. If, for 
example, a study documents the functional outcome of an orthopedic surgical proce­
dure, the report should be in a journal that orthopedists read. If, on the other hand, the 
study focuses on the postoperative physical or occupational therapy intervention, jour­
nals devoted to these professions will be more appropriate. 

Submitting the Article 
Every journal publishes Instructions to Authors that must be followed in the prepa­
ration of a manuscript. Although the general format of a research report is fairly consis­
tent in medical and scientific writing/ each journal has its own particular rules about 
organization and length of a manuscript; preparation of tables, illustrations, or graphs; 
and method of reference citation. Look carefully at articles published in the journal to 
follow the format. Failure to follow the instructions may be a reason for rejection; or, at 
least, the manuscript will be returned for corrections. 

Authors must expect delays in responses when their article is being reviewed. Some 
journal editors are more rigorous about turnaround time than others. Standard policy 
for scientific journals states that authors should submit an article to only one journal at 
a time. This protects journals from conflicts in copyright. If an article is rejected, the 
author can then submit it to a different journal. 

The content of this chapter is in keeping with the CONSORT3 and STARD4 state­
ments that are designed to assure that papers related to intervention or analysis of diag­
nostic tools are complete. These statements were described more fully in Chapters 9 and 
27 (see Tables 9.3 and 27.3 and Figures 9.1 and 27.4). 

Structure and Content of the Written Research Report 
The sections of a research report are the abstract, introduction, methods, results, discus­
sion and conclusion, as shown in Table 33.1 .  The introduction and methods sections 
serve the same purpose as in the project proposal; that is, they describe the rationale for 
the study and the specific procedures used to collect the data (see Chapter 32). 
Although the content of these sections will be similar to the proposal, the author will 
have to do some serious editing to fit the journal article format. The "forward-looking" 
statements must be changed to past tense because the project is now completed. The 
last three sections of the article will be completely new. 

Abstract. Most journals require an abstract of the report that the author usually pre­
pares after the manuscript is complete. The abstract summarizes the content of the arti­
cle including the purpose of the study, the number and type of subjects, the basic 
procedures used, a summary of the results and the major conclusion. The abstract must 
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TABLE 33.1 STRUCTURE OF A JOURNAL ARTICLE FOR REPORTING RESEARCH 

Section Should contain 

Abstract • Overview and purpose of the study 
• General description of methods 
• Highlights of results 
• Statement of significance of results 
• General conclusions 

Introduction • Statement of the problem 
• Clinical relevance 
• Review of literature 
• Rationale and theoretical framework 
• Specific purpose and hypotheses (or guiding questions) 

Methods • Study design 
• Criteria for and methods of subject selection 
• Description and number of subjects 
• Measurement methods and data collection techniques 
• Data analysis procedures 

Results • Narrative description of statistical outcomes 
• Tables and figures that summarize findings 
• Statements to support or reject hypotheses 

Discussion • Interpretation of statistical outcomes 
(and Conclusions) • Discussion of clinical significance of outcomes 

• Importance of the work 
• Comparison of results with work of others 
• How results support or conflict with theory 
• Critique of the study limitations and strengths 
• Suggestions for further study 

References • List of all references cited in the article 

be concise. The prescribed limit may be 150 words, occasionally less. Readers will refer 
to the abstract first to decide whether to read the complete report. Computerized 
retrieval systems store author-written abstracts. Therefore, they must be able to stand 
alone, despite their brevity. 

I ntroduction. The introduction can be drawn from the statement of purpose, the 
background and specific aims included in the research proposal. As in the proposal, 
the introduction of an article should provide a description of the research question and 
the context within which the author intended to answer it. After reading the first one 
or two paragraphs of the introduction, the reader should have a clear understanding 
of the problem being studied and why it is important. The literature review should 
reflect the relevant background that is necessary to support the theoretical rationale for 
the study, and should provide sufficient information for the reader to understand how 
the research question will be answered. The introduction should end with a statement 
of the specific purpose of the study, delineating the variables that were studied and the 
research hypotheses or guiding questions that have been investigated in the study. 

Methods. The methods section should begin by describing the subjects, including 
how many were studied, what criteria were used to recruit them, how they were 
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selected and how they were assigned to groups. Relevant characteristics of subjects, 
especially age and sex, should be summarized using means, ranges and frequencies. 
Most journals require a statement documenting that subjects read and signed an 
informed consent form and that the appropriate committees approved the project. 

The methods section continues with a description of equipment and data collection 
procedures, presented in chronological order so that the reader can follow the proce­
dural flow of the project. If the measurement or treatment procedures are standardized 
and well known, they can be described briefly and the author can refer the reader to the 
original sources for a more detailed description. When manufactured instruments are 
used, the company name and address should be cited. Operational definitions should 
be provided for all variables, with the intent that someone could replicate the data col­
lection procedures. Many researchers develop a written protocol that they use as a 
guide during data collection to be sure that all procedures are followed properly. This 
protocol can easily serve as an outline for this section of the paper. Diagrams, photo­
graphs and tables can clarify and simplify the presentation of methods. For example, 
demographic information and special characteristics of subjects can be summarized in 
a table, and photographs of a unique procedural setup may make a lengthy verbal 
description unnecessary. 

The methods section ends with a full description of the procedures used to reduce 
and analyze the data, including specific statistical procedures. If unique or new statis­
tical methods are used, they should be referenced. 

Resu lts. The results section contains only a report of results, that is, a narrative 
description of exactly what happened in order of importance relative to the specific 
aims or hypotheses of the study. In the course of the study, the researchers may have 
gained considerable amounts of information, but unless it relates specifically to the 
stated purpose of the project, such information should not be included in this section. 
If one simple hypothesis has been proposed, the results section may be stated in a few 
succinct sentences. 

The outcomes of statistical tests must be included to demonstrate or support the 
statement of results. Although the inclusion of calculated values, degrees of freedom, 
and the significance level is important, the narrative portion of the results section 
should emphasize the variables of interest rather than just statistics. For example, in a 
study of gait comparing elderly and young women, the statement "The differences in 
step length were significant, t = -3.13 (p < .01)," is not as meaningful to the reader as 
"The elderly women demonstrated a significantly shorter step length than the younger 
group (t = -3.13, p < .01)." When detailed statistical or descriptive information 
related to the study variables is needed in the paper, it is usually easier and often clearer 
for the reader to refer to tables or graphs that summarize such information. 

Two major principles should guide the structure of the results section. One is that 
tables and figures should not duplicate the narrative; that is, if the author includes val­
ues for group means and standard deviations in the body of the text, there is no need 
to repeat them in a table. The author can refer the reader to the tables and figures for 
details and should only summarize these details in the text. The reader should be able 
to understand the results without referring to the tables and should be able to under­
stand the tables without referring to the text. Therefore, the tables and figures should 
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complement but be independent of the text. Second, the author should not discuss 
results in this section. Statements related to how this information could be applied to 
practice or interpretation of outcomes should be left to the discussion section. 

Discussion. The discussion section is the heart of a research report. It reflects the 
researcher's interpretation of the results in terms of the purpose of the study and the 
outside world. This is the part of the paper in which the author can express opinions. 
The author should comment on the importance of the results, limitations of the study, 
suggestions for future research and clinical implications. 

The commentary about the importance of results should not be a reiteration of the 
results section, but should focus on alternative explanations of the observed out­
comes, emphasizing how they either support or refute previous work or clinical theo­
ries. All results should be addressed, including those that were not statistically 
significant. The author should provide perspectives on the applicability of results to 
practice or further study. 

The limitations of the study, including possible extraneous variables that could 
have affected the outcomes, should be identified and explained. Some of these factors 
may have been identified before the study began and others will have become evident 
during the course of data collection or analysis. These may include small sample size, 
attrition of subjects or lack of subject adherence to the protocol. The author must con­
sider the relative importance of these limitations to the interpretations of results. It is 
essential that the author delineate all major extraneous factors so that the reader can 
examine the results realistically. 

Every research endeavor leads to further questions. Sometimes, these questions 
arise out of the expressed limitations of a study and the need to clarify extraneous fac­
tors. In clinical research, alternative methods exist for studying the same or similar 
research questions and these may need to be examined. Given the results of a study, the 
author may want to reconsider a particular theory and how it may be applied. Sugges­
tions for future research will develop from these ideas and should be expressed. 

Authors should acknowledge the immediate or potential applicability of results to 
clinical practice. Their perspectives on the clinical relevance of studies are important 
whether the research focus is primarily on theory, applied science or clinical effectiveness. 

Conclusion. The conclusion is a brief restatement of the purpose of the study and its 
principal findings. It is often written in such a way that the author states the deductions 
made from the results. Phrases like "the results of this study indicate" and "this study 
demonstrates" serve to link the summary of results and the meaning of those results. 

References. The style of citing references throughout the text and in the listing of 
references at the end of a manuscript must follow the Instructions to Authors. Many 
journals use the style suggested by the published "Uniform Requirements."2 Others 
may follow the American Psychological Association.5 

The Internet is an important new source of references. Journals may eventually 
include instructions for such citations. The Modern Language Association of America 
(MLA) has published a full array of methods for citing documents that have been 
obtained from websites.6 
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Tables and Graphs 
Tables and graphs should be used in the results section of an article to facilitate explana­
tion of statistical findings and to provide visual explanations. To be effective, the tables 
and graphs must follow guidelines for the specific journal and general considerations for 
developing visual materials. The narrative portion of the paper will often present gen­
eral descriptions of findings, and the tables and figures will present the details. 

Tables 
The customary table has five components: the title, column headings (horizontally dis­
played), row headings (vertically displayed), the "field" within which the data are 
arranged by columns and rows, and footnotes. Journals will format tables according to 
their style. The well constructed table of research results will present numeric or 
descriptive data demonstrating the relationships between independent and dependent 
variables. The title should identify those relationships. 

Whether data are oriented vertically or horizontally may depend on the size and 
format requirement of the journal; however, logically, related numeric data should be 
presented in the columns, particularly when they will be summarized with totals or 
means and standard deviations in the last row. The sequence of column headings 
should progress logically from left to right based on the order of events. In the display 
of pretest and posttest data, the pretest should come first. The column headings should 
specify what was measured and the units of measurement, such as "(degrees)." The 
source of column data must be identified by the row headings, such as subjects by num­
ber or code when individual data points are displayed, or with labels, such as "control" 
and "experimental" when the table represents grouped summaries. 

Footnotes may be used to present p-values, to explain abbreviations, or to cite ref­
erences. A journal's instructions to authors may specify the style for sequentially label­
ing footnotes. Some may use small italic Arabic letters (a,b,c). Others may use symbolic 
keys. For example, the Uniform Requirements for Manuscripts Submitted to Biomed­
ical Journals describes a common symbolic sequence: * (asterisk), t (dagger}, :f: (double 
dagger}, § (section mark), I I (parallels}, ')[ (paragraph symbol), and # (number sign}.2 

Specialized tables are constructed to present statistical test summaries. Many exam­
ples are presented in this text. A tabular presentation of a frequency distribution is 
shown in Table 17.1. A typical analysis of variance table, called a "source table," is 
shown in Table 20.1 .  

Graphs 
Graphs provide a visual demonstration of research results. Trends, relationships and 
comparisons may be presented more effectively and more concisely by constructing a 
graph than by writing a detailed text. Graphs can be drawn in a number of ways. Fre­
quency data are commonly represented using a histogram or a frequency polygon. 
Figure 17.1 in this text shows examples. In a histogram the bars are contiguous, and in a 
frequency polygon, the data points are connected by lines. A pie chart graphically can dis­
play the proportional distribution of selected characteristics of a whole sample where 
the percentage of each characteristic is drawn to scale as a piece of the whole pie. A bar 
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graph, which is a series of separate bars, may be used to show frequency or magnitude 
data derived from separate samples, such as control versus experimental group values, 
or experimental events, such as pretest and posttest values. 

In constructing graphs, the author must pay careful attention to the scaling of the 
units of measurement. Graphs are intended to represent meaningful trends, relation­
ships, or comparisons; therefore scales should be realistic and drawn to illustrate 
important, true differences in the data. They can, however, be drawn to present a false 
impression-either exaggerating or diminishing real differences. For example, Figure 
33.1 displays shoulder abduction range of motion before and after treatment interven­
tion. The data in both graphs are the same: a mean of 100 degrees for both groups before 
treatment, 110 degrees for the control group and 120 degrees for the experimental group 
following treatment. The magnitude of change appears to be greater in Figure 33.1A as 
compared with Figure 33.1B. Especially considering that normal shoulder abduction 
range is somewhere between 160 and 180 degrees, Figure 33.1A seems to be an exagger­
ation of the comparative effectiveness of the treatment intervention. 

In deciding what content to present in narrative form or in tables or graphs, the 
author should consider a general rule that each element of the results section must 
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stand alone and each must contribute to the complete and accurate presentation of the 
research findings. 

U nique Elements for Reporting Systematic Reviews 
The general principles and procedures for preparing papers for publication apply to 
reporting systematic reviews. The content of these reports, however, should include 
descriptions of the special methods that are part of the review process, as described in 
Chapter 16. The reader is encouraged to look for examples in the Cochrane Database of 
Systematic Reviews.7 

Converting Theses and Dissertations for Publ ication 
Most theses and dissertations are written on the basis of a six-chapter format: statement 
of the problem, review of the literature, methods, results, discussion and conclusion. 
Journal articles contain the same elements, but are honed carefully by authors to avoid 
all but the essential content presented succinctly. The full document that is prepared to 
meet degree requirements is usually too long and over-referenced to be acceptable as a 
journal article. The challenge for the student is to condense content considerably while 
retaining substance and meaning. 

This is not a simple undertaking; therefore, the student must consider seriously the 
decision and commitment to proceed. The student should consider whether the out­
come of the project will offer journal readers useful information or new insight and per­
spectives. Only if the answer is affirmative should the process of editing begin. 

The review of literature, presentation of methods and results, and discussion will 
require the most work. The review of the literature in the full document is usually 
extremely lengthy. The author who writes for publication is obliged to be much more 
selective, including in the manuscript only those references that provide necessary, con­
temporary information and explicitly relevant background for the work. 

The author of a research paper is also obliged to clearly and explicitly describe the 
method of study; however, a "blow-by-blow" description is usually unnecessary in a 
journal article, and can be very tedious for the reader. Often, minute details of the pro­
tocol are delineated in appendices of a thesis. For the journal article, the content of 
appendices must be explained in a few sentences. 

Writing Style 
The process of scientific writing "is not primarily a 'literary' effort, but is an exercise in 
organization and clarity of expression."8 The final written report should be strong, 
reflecting the objectivity and logic of the research project. We have reviewed the custom­
ary format and content of the research report to guide the author through the structural 
elements; however, the readability of the report depends on the author's skill in com­
municating with precision. Readers often complain that research reports are boring and 
difficult to follow. These complaints may have nothing to do with the subject but with 
sentence structure or the flow of ideas-the personal writing style of the author. 
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We will not present a "style manual" in this text, but will highlight a few common 
problems and current issues that interfere with clear writing. A selection of useful ref­
erences for developing and improving writing skills are cited at the end of this chapter. 
Even the most accomplished author may benefit from consulting such references, espe­
cially when the early drafts of a paper seem cumbersome. 

People First. Our patients or clients are indeed people first! It is incumbent on all of 
us to be sensitive to this basic human issue. We can easily reflect this in the description 
of subjects who have been studied. In choosing words about people with disabilities, 
the guiding principle is to refer to the person first, not the disability. In place of saying 
"the disabled," it is preferable to say "people with disabilities." This way, the emphasis 
is placed on the person, not the disability. As examples, "stroke patients" are patients 
who have had a stroke; "learning-disabled children" are children who have learning 
disabilities. Words like invalid, suffering, and victim should be avoided. Attention to 
people-first language demonstrates an underlying respect that should be reflected in 
our scientific publications.9 

Active versus Passive Voice. A sentence written in active voice is powerful and con­
crete. Passive voice tends to make sentences ponderous and dull. The writer must cre­
ate sentences that make the intended point most clearly. At times, the choice between 
active and passive voice is not so obvious. The following sentences illustrate the choices. 

Passive: One hour was spent by the raters to observe the patient's movement 
patterns so that the number of changes in static posture could be 
documented. 

Active: The raters spent one hour observing the patient's movement patterns 
to document the number of changes in static posture. 

The emphasis is different in these two sentences. The amount of time is emphasized in 
the passive example, whereas the raters and their activity are highlighted in the active 
example. In addition, the active example is shorter by six words! Consider the follow­
ing examples as well: 

Passive: Increased tension throughout the upper extremity and neck is pro­
duced by constant pain in the wrist. 

Active: Constant pain in the wrist increases tension throughout the upper 
extremity and neck. 

Note the difference in focus of these sentences. If the author is addressing the potential 
for dysfunction at sites remote from the pathology, then the first (passive) example may 
be best. If the author is developing a rationale for eliminating wrist pain, the active 
example is more appropriate. 

Passive voice may be appropriate when the subject of the sentence is unimpor­
tant or the object or action should be emphasized. For example, "Patients were ran­
domly assigned . . .  " conveys an important action, and the subject (who assigned) 
may not be important. 

Superfluous passive expressions, such as "it has been suggested . . .  " or "it is 
thought that . . .  " usually distract the reader because they dilute the strength of the mes­
sage. Who suggested? Who thought? In citing the work of others, authors should 
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acknowledge the "who," for example, "Jones and Brown suggested . . . .  " In discussing 
present work, the authors might write "Our preliminary results indicate . . . .  " Using 
active voice in such cases is direct and clear. 

One special case should be discussed-the use of first-person active voice. For 
many years, authors went out of their way to avoid using first-person active voice with 
the notion that to use it detracts from the "scientific," "objective" nature of research 
reports. Now, the use of first person is acceptable in selected instances. When authors 
(researchers) are emphasizing their own actions, experiences, assumptions or opinions, 
their writing may be more readable and indeed more accurate if they say "We think the 
logical interpretation of this finding is . . .  " or "We found that this technique is . . . .  " On 
the other hand, overuse of "I" and "we" can be intrusive, calling unnecessary attention 
to the authors, especially when purely scientific information is being conveyed. Presen­
tation of techniques, procedures, and results requires attention to what was done and 
how, not who. Therefore, it is stronger to say "The subjects were asked to complete the 
questionnaire," rather than "I asked the subjects to complete the questionnaire." 

Simpl icity of Language. In conversation, we tend to use expressions and phrases 
that are spontaneous, but often superfluous to the point we are making. Many such 
expressions will be found in the early drafts of written work because of the natural 
effort to "speak" the text. Authors must, however, remain cognizant of the need to be 
concise in scientific writing. Many of the elements of creative writing that we learned 
in school, designed to create metaphors and add color to our words, should be dis­
carded for scientific writing. Many authors try to use different words for the same con­
cept to avoid being repetitious; however, where one word will make the point best, it is 
better to be repetitious than to be unclear or ambiguous. Adjectives and adverbs are 
especially useless for describing scientific findings. There is no need to say that an out­
come is "very practical" or "extremely useful." It would be sufficient to be practical or 
useful for clinical care. 

The use of expressions should also be tempered for scientific reports. Although it is 
certainly more interesting to read a paper that is written with variations in sentence 
structure, the purpose of an article is to communicate findings, not to create poetry. 
Here are a few examples of complex phrases that can usually be avoided: 

in light of the fact that 
with the exception of 
in spite of the fact that 
is designed to improve 
due to the fact that 
was found to have 
immediately prior to 

= 

= 

because 
except 
although 
improves 
because 
had 
before 

In early drafts, there may be redundant phrases, such as "exactly identical" and 
"grouped together," and unnecessary qualifiers, such as "blue in color" and "end 
result." Correcting these kinds of errors is easy, if the author is looking for them. 
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TH E POSTER PRESENTATION 
A poster presentation is a report of research that is displayed on a large board so that 
it can be read and viewed by groups in an informal atmosphere. Posters afford a spe­
cial opportunity for researchers and their professional colleagues to exchange ideas in 
conference settings. Poster sessions are organized so that each poster is available for 
several hours. Sessions may be somewhat formalized by asking researchers to present 
a brief oral summary to an assembled group, with a moderator who guides a discus­
sion around each poster in a symposium format. In another format, the open session, 
posters are displayed in an exhibit hall where interested participants view the posters. 
In this case, the researcher is available to answer questions or engage in discussion. A 
major advantage of the poster presentation is that interested members of the audience 
can study the content and contemplate the implications of a study at a comfortable 
pace. The researcher has an opportunity to clarify or amplify details of the study. 
Observers' reactions or questions may be helpful in guiding future work and stimulat­
ing new ideas. 

Content and Layout 
The poster should contain the major elements of the study in a clear, brief series of state­
ments including title, purpose, hypothesis or specific aims, method, results and discus­
sion, and conclusions. The poster should be self-explanatory, but "telegraphic" in style; 
that is, content should include key words and phrases and not necessarily complete 
sentences. Tables, graphs or photographs should summarize and illustrate important 
findings or unique aspects of the method. The most effective posters do not contain so 
much written material that the observer gets lost, but should be complete enough to 
allow the observer to understand the full intent of the study. 

The conference sponsor will provide guidelines about the size and composition of 
the board that will be available. The customary size is 4 ft high and 4 to 8 ft wide. The 
composition is usually cork or particleboard, so that thumbtacks can be used to hang 
sections of the poster. 

In preparing a poster, a scaled template should be drawn, showing the arrangement 
of text and figures. The content elements can be moved about the template to find the 
best arrangement for the logical flow of information. Ordinarily, the eye follows from 
left to right, as in reading. The introductory materials should be placed at the top left 
and the conclusion at the bottom right. Methods and results should be displayed promi­
nently in the center. Figure 33.2 is an example of a poster with 4' X 6'  dimensions.10 

Materials 
Today's posters are typically created using software such as PowerPoint®, allowing the 
researcher to prepare a colorful and effective presentation. Where posters used to be 
composed of several mounted documents, they are now output on large printers with 
many varied formats available. 

The effective poster should be legible and uncluttered, with content and graphics 
presented in sharp contrast to its background. Letters for the title should be 2 inches 
high, headings should be at least 1 inch high, and text letters should be at least 0.5 inch 
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THE RELATIONSHIP BETWEEN LOWER EXTREMITY IMPAIRMENT MEASURES 
AND ITEMS ON THE BERG BALANCE SCALE 
!.Nio .. �!lf"t.JIN).� ....... ""· -..�Dn...tt�rtt� .. �Dn..��!!n 

BACKGROUND 

The Betg llldanc e Scal e (885 ) is vOOel y used as a 
tnHIUI'I o l b.l .. ncaand lallriskin elderly individual s. 
ThetHi ii'IYOivn iiVIIIua!Klgan ekle(s perlormanceon 
1 4 ballnce-o rienle d task s. Both slati c balanc eand 
fui'ICiiOnal tasks usociated wilh everydayactrvities are 
included 

The ees has e•cellenl inter·rater reliability (as high as 
ICC • .98). moderate sensitivity to identify fallers 
(53"1.), and strong specilicity !o i<Sentify thosenotat risk 
lotlalls (96"1o). 

ln addiloon to �ing the lotal score as a predictive 
value. - quest100ed it individual items have 
prescriplrve va�dily for planning intervenlion lor lj)e(:lllc lower e•Trermty (LE) impairments that 
intluencebal•nce. 

PURPOSE 

The purpose of !his sh.ody was 10 identify the 
rela!JOnslup between physical rmpairments ol!he lower 
exlremdies and individual ilem scores on !he BBS. 
These data would show if LE impairments could 
discnminate between indivtdualswho required dilterent 
•mounts ot auistai'IC8 to complete balance taslls. we 
hypothesized that specitic itnpai .. ,ents would be 
related to scores lor individual items on the Berg 
Balance Scale. 

METHOD 

SUBJECTS: This study is a secoodary al'lalysis of data 
collected previously in a study of 100 community 
dwellong elders. 25 mates and 75 1emales. between 
the ages of 65and97 (mean= Bt.t years) 

Subjects were essentially 
healthy with no other 
deficits. 

The number of totallalls 
over 12 months ranged 
from 0 to 6, with 
appr<»Cimately 50% of 
subjects reporting no 
falls. 

Our Universl1y; Boston, MA 
VARIABLES 

Tha folloWJngvafiableswere measured: 

1. BIIeteraiLE palllve ROM 
2. Bilateral LE muscle atrangfh (dynamometer) 
3.llghttouchlt anklaandteg 
4. Proprlocepllon 
5.VIaualaculty 
6.Totaf number ollalls over 12 months 

DATA ANALYSIS 

• Meanvalueslor right and lell sides were used lor 
all variables. based on correlatioo s ol .90 or 
grealar and no sigt�ilicant d�lerences between 
sides. 

• Frequencies were used to determine the number 
ol sul:ljects in each score category lor each item 
onthe BBS. 

• Stepwise discriminant analyses were used to 
determine which impairments ware related to 
balance parlofmanca. To clarify analyses. the 
liva·point scate used on thaBBS was converted to 
a 3 point ordinal scale, lrom 0 t o 2 . based on lavel 
offunclion: 

o .. unabla to per1orm; rtqulrta max asaist 

1 " requires some assist to complete task 
2 • requlret no asaistanca to complete task 

RESULTS 

Frequency analysis lor items 1·6 and item 9 oo the 
BBS showed that almosl all subjects scored in the 
highest categories. These items, which represent 
lower level tasks onthe BBS. weranot included 

in the discriminant 
analysas due to their 
lack of variance 

Older subjects 
consistently achieved 
lower scores lor all 
items. 

DISCRIMINANT ANALYSES 

7:Stand-Feetlogether 

"'"ElJ� ; "' 
• "' 
l :  " 

" ' ' 
BBSScor1 

IO:Tumandlook 

·:::Ed]� f · � ULO!.....,. ; 60  •• ,. 
f 0  . "' " 

" ' ' 
BBSSc-

Thl most 1•�..-n!ly ro.:urr;,g 
Onptllrments lao pre<fet.,g BBS 
ittm ICOJII$ Wfte •n"'- Sl,..-,g!h. � .!:r..";":;:� �= :� 
1>9"'1Unt prfdiclors ol l>llance 
pertormance lor mosl ol11'1e llogll 
lcrool�ema, 

FIGURE 33.2 A sample template for the arrangement of a poster presentation. 

DISCUSSION 

Our 
University 

• The lack of variance on the lower level tasks 
may reflect a ceiling e!lect tor these items lor 
communi1y·dwelling elders. 

• Ankle strength and sensation and age were 
important to both Items 7 (Stand Feet 
Together) and 10 (Turn and Look) . which 
showed thebest predictionaccuracy. 

• The number ol lalls was most predictiYG lor 
lunclional reach. turning 360 degreas, and 
tandem stance. These are all tasl<s that 
challenge tim�s o! stabili1y and movement of 
the centerol gravi1y. 

• Knee Hexion ROM was p1edoctive lor Tumong 
360• and Step-Tap. ClinicaMy it would be 
beneliciat to design intervention progrsms to 
address hip and knee ROM omp<�irments that 
altect lunctiona.l tasl<s requirll'lg llexobihty at 
thesejoonts. 

• Although we may be able to predict 
perlormance on BBS otems blised on 
impairments in a community dwelling ekilrly 
population. lurlher srudias 8fe needed 1o 
explore the releYaoce ot these lower exuernrty 
impairrnents in otherelderly poputationl. 

CONCLUSIONS 

• Lower �ramify impairments C8ll dilferenbl1e 
levels ol assistance required to .:comphlh 
ondividual items on the Berg Balance Scioli 
Th81efore. results ol testing may be uaefut lor 
designing specofoc therapeutrc iiiii!Wintlonl, 
allowing us to batter underatand the 
relatiooshi p between lower extr.mity 
impairments and balance tunctiOn. 

• The inlormation oblained from ..... dill w1l 
ba helplul in determining wltich '"'*rmenll 
are televant to specific llerrls ort ... Bttrg """"""""'" 

• Further study iS needed 10 dltertnine II 
lreatment locused ort ..... � dDea 
reduee lhe rilk oflalalfllhll pcpulelion. 

high. The size and type of the text should be readable from 4 feet away. The print should 
be bold with clear, sharp edges. The visual aspect of the poster should remain foremost 
in its preparation, providing an interesting and attractive presentation for those who 
will pass by. 

THE ORAL PRESENTATION 
Oral presentation of research findings in an open forum of colleagues is  a time­
honored tradition in medicine and science. This avenue of communication offers 
immediate, timely dissemination of new information. Like the poster presentation, it 
encourages direct interchange of ideas and stimulates consideration of new direc­
tions in research. 

The notion of oral reporting is particularly attractive to those who consider writing 
a difficult task and speaking a much more free, more comfortable, process; however, the 
oral report of research is not at all the same as conversational speaking. In conversation, 
ideas are conveyed spontaneously, with facial expressions or gestures for emphasis and 
opportunities to repeat or reconstruct a thought to clarify a point. In a formal presenta­
tion, which usually has a time limit of 15 minutes, language must be chosen carefully 
to convey the speaker's message correctly. The message is emphasized and illustrated 
visually with slides. Unlike conversational speaking, the oral presentation of research is 
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highly structured. Thorough planning and preparation including practice are required 
to ensure success. 

Plann ing and Preparation 
Most organizations select individuals to present oral papers on the basis of written 
abstracts submitted by the researchers. That written abstract can be the skeleton of the 
presentation because it contains the major elements of the research project. 

Because content must be well organized and the presentation will have customary 
time limits, we suggest that the talk be written. From an initial draft, the speaker can 
adapt and refine the talk. Key words and phrases can be manipulated to improve pre­
cision and emphasis. Logical sequencing and transitions from thought to thought can 
be refined. 

Most organizations require that speakers strictly adhere to the prescribed time 
limit. Therefore, even at this early stage, the text should be read aloud so the speaker 
begins to develop a sense of timing. Practice should include using visual materials. The 
experienced presenter may know that eight pages of double-spaced text including ref­
erences to slides will be about a 10-minute talk. Each individual must acquire this sense 
of timing, for which there is no common formula. If the talk is too lengthy, the presen­
ter must abbreviate the content. What can be eliminated? Is the background or intro­
ductory material too extensive? Have any extraneous, albeit interesting, sidelights been 
included? Is the talk complicated by falsely fancy words or jargon? 

Editing may continue until the final product is ready, but the major elements must 
be in place early, so that the slides can be planned and prepared. 

Visual Presentation 
Visual aids are essential to the success of  an oral presentation. Effective slides empha­
size and illustrate the content of the presentation and focus the audience's attention to 
important details. On the other hand, a presentation can be destroyed by poorly con­
structed, overwhelming, or confusing slides. In this section, we discuss a few important 
guidelines for planning and preparing slides. 

Types of Sl ides. The type and number of slides to use should be determined by iden­
tifying the key points of the written text. The most effective presentations use slides to 
accompany all parts of the paper, so that the listener is guided through each section of 
the presentation. Factors of production cost and the time allotted for the presentation 
may dictate how slides are used. Four types of slides may be presented: words or 
phrases (text), photographs, graphs and tables. Word slides are customarily used to 
present the title of the presentation, the statement of the purpose or objectives, impor­
tant background material, hypotheses, description of subjects and study protocol, sum­
mary of results, and conclusions. Photographs can illustrate aspects of the method such 
as the equipment setup or subject activity. Graphs and tables are used to demonstrate 
the results. 

Limiting Words. Word slides must be legible and should contain no more than six 
lines of text or 45 characters per line.U The choice of font is a matter of preference; how­
ever, ornate, italic, uppercase, and open typefaces are usually more difficult to read. 
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Effective Sl ides 

The purpose of slides in an oral presentation is to clarify 
the content. Words of the text should represent the main 
points of the commentary: highlighting the information. 

To be effective. the text of slides should be uncluttered. 
well spaced and in bold type. Words of the text should not 
present the verbatim talk. 

This slide is boring. tedious and difficult to read. It is so 
distracting that the audience will not concentrate on the 
subject matter. 

FIGURE 33.3 I l l ustration of sl ide content: (A) Overcrowded; (8) summarized. 

Figure 33.3A illustrates a slide that contains too many words to be an effective source 
of information to a large audience. Figure 33.3B shows how this information can be 
reduced to present major points, which would then be discussed by the presenter in 
greater detail. By highlighting each point, the listener can focus on each one as the pre­
senter addresses it. In addition, the text is larger and less cluttered so that the listener 
can read it quickly and easily without being drawn away from the spoken material. The 
border of each of these "slides" is based on a template drawn in proportion to a typical 
PowerPoint® slide. 

Content of Sl ides. The content of each slide and the accompanying verbal commen­
tary must be synchronized. The listening audience will find it difficult to focus on two 
separate points at one time. Because many of us are "visual learners," the presenter's 
remarks will be lost if the slide does not fit the talk. An uncoordinated presentation is 
distracting and difficult to follow. 

Bulleted lists are usually easier to follow than long sentences or descriptions. Pre­
senters should use the slides to essentially outline their talk, allowing the audience to 



CHAPTER 33 • Reporting the Results of Clinical Research 785 

connect the written and spoken word. The number of slides that will be used will 
depend on how long they stay in view. 

Graphics. Graphs and tables must be simple and easily understood. The amount of 
information included of course depends on how much is needed to present the results 
adequately. When a study has generated a lot of data, the presenter may have to be 
selective in what to include in the presentation because listeners cannot absorb mounds 
of data in such a short time span. Generally, three comparison lines, or six bars on a 
graph or four rows and columns in a table is a sensible limit. Legends, headings, and 
numbers should be large enough to be read easily. 

Backgrounds and Colors. Presentation programs provide an array of background 
colors and print styles, as well as designs and patterns that can make slides more 
attractive. Researchers should be wary of making slides too busy or "glitzy." The back­
ground of the slide should not detract from the information it is trying to convey. A 
variety of slide templates are available, although many are too busy or ornate for sci­
entific presentations. 

Rehearsal 
After the presentation is written and slides are keyed to the text, rehearsal can begin. 
First, the presenter should go through the talk incorporating the slide presentation to 
be sure that the slides are synchronized properly with the verbal commentary and to 
confirm the length of the talk. Then, presentation to the "home-town" audience is war­
ranted. Not only will staff members, fellow students, and faculty comment on or make 
suggestions for the presentation, they should be encouraged to ask questions, which 
may indicate the kind of questions that will come up in discussion following the formal 
conference presentation. Being well prepared for both the talk and the discussion will 
inspire confidence and ensure a professional performance. 

COMMENTARY 

Taking the Final Step 

A written report of research findings should provide information that is new, true, 
important and comprehensible. 1 1  These criteria can be appl ied to poster and oral 
presentations, as wel l .  New treatment or measurement techn iques may have been 
developed and tested. Effectiveness of i ntervention may have been demonstrated, 
reaffi rmed or refuted. The process of a study may have been val id and objective. The 
findings may have important impl ications for c l i nical practice. But who w i l l  know if 
the report is poorly prepared? Sheen 12 presented the poi nt this way: "As a scientific 
author, you must write so that you are understood or, perhaps more important, so 
that you are not misunderstood." 

The final step in the research process-to communicate the results-requi res time: 
time to plan, t ime to write, t ime to revise. Early drafts of reports and presentations 
shou ld be put away for a while and then later reread with the intention of editing. The 
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editorial board of a journal and sponsors of a conference establ ish rules and restric­
tions for the format and organization, but only the author can make a presentation 
clear, precise and al ive. 
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CHAPTER 34 

Evaluating Research Reports 

The link between research and clinical practice in health professions must be made by 
those who read reports of completed research. As consumers of research, we have a 
responsibility to evaluate research reports to determine whether the findings provide 
sufficient evidence to support the effectiveness of current practices or offer alterna­
tives that will improve patient care. The success of evidence-based practice will 
depend on how well we incorporate research findings into our clinical judgments and 
treatment decisions. 

For most of us, it is neither practical nor possible to read the plethora of material 
presented each month in professional journals. Therefore, the first step in effective read­
ing is to select publications and articles that offer the most useful information. When a 
particular topic is important to practice, readers should begin by searching for system­
atic reviews that present an analysis of current knowledge on diagnostic methods or 
treatment effectiveness (see Chapter 16). Readers may also consider textbooks or tradi­
tional narrative review articles that provide basic, often in-depth, information on a 
topic; however, we must realize that the information is second-hand, presented from 
the perspective of the textbook or review article author. The problem is one of interpre­
tation; the original research may be misrepresented or inadequately described. There­
fore, consumers of research must be able to access the first-hand reports of researchers 
to judge the merits of their work. 

Critical analysis of a research report is necessary to determine its validity and, 
thereby, its applicability for clinical decision making. The structure and content ele­
ments of research reports have been described in Chapter 33. The purpose of this chap­
ter is to present a practical approach for critically reading and evaluating published 
literature, describing the kinds of questions readers should ask. Authors may also use 
this approach to appraise their own manuscripts before submitting them for publica­
tion.* Although this chapter focuses on the written research report, these principles 

*Through a process of international consensus, specific guidelines have been developed to help authors 
assess the completeness of their reports of randomized trials and diagnostic accuracy. Known, respectively, 
as the CONSORT statement (Consolidated Standards of Reporting Tria/s)1 and the STARD statement (Standards 
for Reporting of Diagnostic Accuracy)/ these guidelines are composed of checklists and flow diagrams that out­
line a standard way for researchers to develop their reports. The intent of these statements is to standardize 
the information that is included in published studies. These standards will also serve to make the research 
process more transparent, so that readers can determine if flaws are present, and therefore decide if the data 
are useful for evidence-based decisions. The full checklists and flow diagrams have been presented in 
Chapters 9 and 27 for clinical trials and diagnostic studies. 

787 
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apply to the evaluation of oral and poster presentations as well. This evaluative process 
works for purposes of literature review, answering specific clinical questions for 
evidence-based practice, or just keeping up with progress in an area of interest. 

We will focus this discussion on three areas: trials that test the efficacy of interven­
tions, studies that measure the accuracy of diagnostic/screening tests, and studies that 
examine the predictive validity of variables for prognosis. Guidelines for evaluating 
systematic reviews were presented in Chapter 16. 

JOURNAL QUALITY 
One of the first considerations in evaluating the scientific merit of an article is the rep­
utation of the journal. Scientific journals are generally refereed, which means that the 
articles have been subjected to review by content experts and accepted for publication 
on the basis of reviewer evaluation. Instructions to Authors, provided in most journals, 
will describe this process. The editors and reviewers of refereed journals follow policies 
and procedures designed to ensure that published articles meet defined criteria, includ­
ing importance of the research, originality, appropriateness of design, adequacy of the 
method, soundness of conclusions and interpretation, relevance of the discussion, and 
clarity of writing. The manuscript review process is similar, in fact, to the way in which 
responsible readers will evaluate published articles. 

Authors are usually asked to make revisions to improve the quality and clarity of a 
manuscript before it is accepted for publication. This process does not guarantee, how­
ever, that a study is without flaws. It remains the reader's responsibility to evaluate a 
study's validity and applicability. Important information may be presented in non­
refereed journals; however, readers must realize that the contents of those publications 
have not been scrutinized in the same way as those in refereed journals. 

EVALUATING COMPON ENTS OF RESEARCH STUDIES 
Clinicians and researchers will evaluate literature from three perspectives. First, the 
assessment will help to determine if the study has validity in terms of design and analy­
sis. Second, the results of the study are examined to determine the importance of the 
effect of intervention, the accuracy of diagnostic tests, or the risks associated with prog­
nostic variables. Finally, the clinician may consider how effectively the results can be 
applied to a particular patient's management. 

Many useful references are available to guide the process of critical appraisal of 
published papers.2-9 Several of these guidelines are also used to assess methodological 
quality in systematic reviews (see Chapter 16). 

What Is the Study About? 
Before we can assess the validity of a study, we must first understand its intent. 
Researchers begin this process at the top, by reading the title and abstract. Titles should 
be informative, but are often so abbreviated that the reader is unable to learn much 
about content other than the general topic. If the reader is interested in the topic, then 
the next step is to read the abstract. Abstracts of research papers will include fairly spe-
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cific information about the purpose, subjects, method, results, and major conclusions of 
the presented work. When readers decide that the results and conclusions stated in the 
abstract could be applied to their practice, they should read the body of the paper. 

The introduction to an article tells us about the purpose of the study and how the 
authors developed the research question. It informs readers by providing a review of 
literature that frames the theoretical foundation for the study. The following questions 
help to focus the content of the introduction: 

• What is the problem being investigated? Has it been clearly stated? Why is it 
important? 

• How has the author used the literature to form a sound and logical rationale? 
• What is the theoretical context for the study? 
• Are references appropriate and comprehensive? 
• What type of research does the study represent? 
• What is the specific purpose of the study? 
• What are hypotheses or guiding questions that form the basis of the study? 

In the opening sentences of an article, the author should establish the problem being 
investigated. The background material should demonstrate that the researchers have 
thoughtfully and thoroughly synthesized the literature and related theoretical models. 
This synthesis should provide a rationale for pursuing this line of research. Readers 
should be convinced that the study was needed. 

By the end of the introduction, the specific purpose or aims of the study should 
have been clearly stated and the research question should be evident. The authors of an 
intervention study should have explicitly stated the hypotheses that were to be tested. 
If not, however, readers should be able to determine what the researchers expected to 
find. For a diagnostic accuracy study, it should be clear if the intent is to compare two 
tests, to estimate the accuracy of one test, or to examine a test's utility across participant 
groups. Studies of prognosis should document the relevance of predictive variables and 
validity of outcomes. 

Are the Results of the Study Val id? 
The foundation of a research report is the method section, providing the details of the 
study. This is where we learn enough to decide if the results and conclusions of the study 
are meaningful. Flaws or omissions detected in the methods section affect the usefulness 
of interpretations derived from the study. Table 34.1 shows the questions that should be 
asked to assess the validity of an intervention study. Questions relevant to diagnostic 
accuracy and prognosis are shown in Tables 34.2 and 34.3. 

Subjects 
Readers must know who the subjects were in order to interpret the validity of a study's 
conclusions and to understand the extent to which the findings can be generalized or 
applied to specific patients. We can ask questions to determine whether sampling bias 
might have existed and to identify potentially confounding factors. Age, gender, diag­
nosis, comorbidities and level of function of the subjects are among the many factors 
that may affect the validity of findings. Inclusion and exclusion criteria should be spec­
ified so that the target population for the study is clearly identified. 
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TABLE 34.1 QUESTIONS TO DETERMINE VALIDITY OF AN INTERVENTION STUDY 

Are the Results of the Study Valid? 
Subjects • How were subjects selected? 

• Can results be generalized based on the accessible population? 
• Was a power analysis done to determine sample size? 
• What were the specific inclusion and exclusion criteria used? 

Design • Was random assignment used to form study groups? 
• Were the intervention and control groups similar at the start of the trial? 
• Were data standardized and collected at specific intervals according to a pre­

planned protocol? 
• Were measurements taken at reasonable time intervals, and were subjects fol­

lowed for a sufficient time period? 
• Was the study internally valid? (Were other factors present that could have 

affected the outcome?) 
• Was everyone involved in the study (subjects, investigators, and testers) "blind" 

to treatment? 
Procedures • Did the authors provide a rationale for the interventions and measurements 

used? 
• Were the groups treated equally (aside from the intervention)? 
• Were measurements reliable and valid? 
• Were operational definitions provided for independent and dependent variables, 

such that they could be replicated? 
Data Analysis • Are all participants who entered the trial properly accounted for at its conclusion? 

• Were subjects analyzed in the groups to which they were initially assigned 
(intention-to-treat analysis)? 

• Were appropriate statistical analyses utilized? 
Are the Results Meaningful? 

• Are the results clinically as well as statistically significant? 
• Were outcomes addressed in terms of a minimally important clinical change? 
• Are the authors' conclusions valid based on findings? 
• If a negative outcome, was a power analysis done? 

Will the Results Help In Cering for My Patient? 
• Are the subjects similar to my patient? 
• Is the intervention feasible in my setting? 
• Is the intervention consistent with my patient's preferences? 
• Are the treatment benefits worth the potential harm or cost? 

The number of subjects in a study is a consideration when interpreting the results 
of the statistical analysis. Specifically, failure to demonstrate statistically significant 
effects should not be assumed to mean that no effect truly exists. The authors should 
present the results of a power analysis to determine the possibility of a Type II error 
resulting from an inadequate sample size. 

For intervention studies, the description of subjects should include information 
about the accessible population and whether a probability or nonprobability sampling 
process was used. This information provides a foundation for deciding how well the 
findings can be generalized. 

In diagnostic studies, the sample should reflect an appropriate spectrum of patients 
for whom the test would be applied. A diagnostic test is useful only to the extent it can 
identify those with varied degrees of the target disorder.10 
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TABLE 34.2 QUESTIONS TO DETERMINE VALIDITY OF A DIAGNOSTIC 
ACCURACY STUDY 

Are the Results of the Study Valid? 
Subjects • How were subjects selected? 

• What were the relevant inclusion and exclusion criteria? 
• Was the diagnostic test evaluated in an appropriate spectrum of patients (like 

those for whom we would use it in practice)? 
Design • Was there an independent comparison with a reference standard of diagnosis 

(i.e., how was the true diagnosis determined)? 
• Was the reference standard used regardless of the diagnostic test result? 
• Were those performing the test blind to the patients' true diagnosis? 

Procedures • Were the methods for performing the test described sufficiently to allow replication? 
• Did the investigators repeat the test on a second group of subjects? 

Data Analysis • Were measures of diagnostic accuracy performed, including sensitivity, speci­
ficity, and likelihood ratios? 

Are the Results Meaningful? 
• Were data provided to allow calculations of diagnostic accuracy? 
• What were the sensitivity, specificity and likelihood ratios? 

Will the Results Help In Caring for My Patient? 
• Are the subjects similar to my patient? 
• Can the test be reproduced in my setting? 
• Are the results applicable to my patient? 
• Will the results of the test change the management of my patient? 
• Will my patient benefit from the results of the test? 

TABLE 34.3 QUESTIONS TO DETERMINE VALIDITY OF A PROGNOSIS STUDY 

Are the Results of the Study Valid? 
Subjects • From what accessible population were subjects chosen? 

• Was the sample composed of a representative group of subjects at a similar 
point in their disease? 

Design • Was follow-up sufficiently long and complete? 
• Were the individuals collecting data blinded to the subjects' prognostic status? 
• Were objective and unbiased outcome measures used? 

Procedures • Were operational definitions provided for prognostic and outcome measures? 
Data Analysis • Were subgroups of subjects examined for differences in prognostic estimates? 

• Were appropriate prognostic estimates performed? 
Are the Results Meaningful? 

• How likely are the outcomes within a given period of time? 
• How precise are the prognostic estimates (based on confidence intervals)? 

Will the Results Help In Caring for My Patient? 
• Are the subjects similar to my patient? 
• Will results lead to selecting or avoiding certain intervention approaches? 
• Will results affect what I tell my patient? 
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For prognostic studies, authors should provide a complete description of the dura­
tion of the disease or disorder at the time patients entered the study.U Patients should 
be at a similar stage of disease to demonstrate consistency of outcomes. 

Design 
Based on the stated purpose of the project, readers should be able to judge the ap­
propriateness of the design choices that were made. For studies of interventions, 
randomized designs are important for the control of internal validity, although 
quasi-experimental studies may still provide useful findings with sufficient descrip­
tion and controls. In diagnostic and prognostic studies, cohort designs are most use­
ful for following subjects over time. Levels of evidence that are appropriate for these 
studies have been summarized in Chapter 16 (Table 16.1) .  It is important, however, 
to take these recommendations as guidelines only, understanding that the quality of 
the study must be examined to determine its applicability as evidence for clinical 
practice. 

Information on study design will allow the reader to determine if the study is free 
from bias. As much as possible, researchers should incorporate blinding of subjects, 
testers, and investigators to protect against such bias. For intervention studies with two 
or more comparison groups, blinding provides some assurance that responses are not 
distorted because of inconsistent application of procedures or measurements. For diag­
nostic studies, those who administer and score tests should be blinded to the subject's 
true diagnosis. In prognostic studies, those who measure outcomes should be blinded 
to the subject's prior status. 

The design will also provide a framework for understanding points of data collec­
tion, and the extent to which subjects are followed over time. For intervention studies, 
this has implications for understanding differences in trends and changes across 
groups. For prognosis studies, where the presence of a prognostic factor can precede 
outcomes by long periods, follow-up is most important to be sure that the study dura­
tion is long enough to detect the outcomes of interest. 

The balance between efficacy and effectiveness should also be considered. When 
true experimental designs are employed, with the strict control inherent in these 
designs, readers should consider how to relate the findings to their "real world. "  In the 
"experimental" setting, where confounding factors and internal validity are rigorously 
controlled, the effects of manipulating or imposing the independent variable can be 
accepted with a high degree of confidence. But have these controls created such an 
"artificial" situation that it would be unrealistic to expect the same outcome when 
methods or procedures are implemented in clinical practice? 

On the other hand, if quasi-experimental designs or descriptive methods are 
employed, readers must be alert to the possibility that extraneous variables have inter­
fered with the interpretation of the results. The validity of an experimental or quasi­
experimental study will depend in large part on how subjects are assigned to groups 
and whether or not a control group was included in the design. For example, when 
intact groups are used as in case-control designs, the author should specify the basis on 
which the subjects were selected. 
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Readers should know what specific instruments or tools were used for measurements. 
If these are standard and commercially available, the model numbers and names and 
addresses of manufacturers should be included. If standardized questionnaires or sur­
vey instruments are used, references must be cited. When appropriate, reliability of 
measurements should be documented. Such documentation may be referenced from 
previous studies, or the researcher may establish reliability within the context of the 
study being reported. 

The description of procedures should report the sequence of events from beginning 
to end. Description of data collection methods should include who performed the 
measurements, what the subjects were asked to do, what the data collectors did, and 
when and how often measurements were taken. All of these activities must be 
described in sufficient detail so that readers could, in a similar setting with similar sub­
jects, replicate the study procedures. Studies of interventions typically involve compar­
ison of groups or conditions, and the author should document the extent to which these 
groups were treated equally, except for the experimental treatment. 

Data Analysis 
Both descriptive and inferential statistical analyses should be identified. If inferential 
statistics were used, the acceptable significance level, such as a = .05, should have been 
established by the researchers and reported. The statistical tests should be described not 
merely by name, but by specifying to which data the analyses were applied. This infor­
mation is necessary for readers to evaluate the appropriateness of the analyses. The use 
or misuse of statistics should be judged on the basis of two major factors: the nature of 
measurements (scale, reliability, linearity, and so on) and the study design (the number 
of groups or variables and frequency of measurement). Discrepancies in the proper 
application of statistical tests interfere with the statistical conclusion validity of the 
study and detract from the interpretation of the data. 

Authors should report the degree of follow-up that was achieved and if attrition 
was present in the study sample. Reasons for attrition should be provided, to help 
determine if bias was present. In intervention studies, the author should specify if an 
intention to treat analysis was done, and how missing data were handled. The degree 
of follow-up is especially important for prognostic studies, to assure that outcomes are 
representative of the sample. 

Are the Results Mean ingfu l ?  
The results section of a research report should contain the findings of the study without 
interpretation or commentary. Readers should find a narrative description of results, 
typically including test statistic values, such as t or F, odds ratios, or likelihood ratios. 

It is rarely sufficient to simply determine that values are "significant," however. The 
usefulness of a study's results lies in the size of the effect that was demonstrated. Effect 
size tells us about the strength of the observed relationships. As we strive for greater 
application of evidence in clinical practice, we must understand just how much change 
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we should expect from an intervention, how accurate a diagnostic will be, or how likely 
prognostic outcomes will occur. Statistics such as risk ratios, likelihood ratios, and num­
ber needed to treat will help us understand these effects. The precision of these esti­
mates should be reflected in confidence intervals. 

The narrative description of findings may be illustrated with or complemented by 
figures and tables to clarify and summarize the characteristics of the data. Readers 
should study graphs and tables carefully. The effect size indices are often presented in 
tabular fashion, rather than in the text. It is a useful exercise to compare data from tables 
with information found in the text, to be sure that the discussion of results follows what 
was actually reported. 

What Does It  Al l Mean? 
A research report ends with the authors' discussion and conclusions, putting the results 
of the study in context. The discussion section of an article should address each of the 
research questions, and should show how relevant literature helps to support the 
author's conclusions. Some useful questions to focus this part of the review include: 

• How does the author interpret results? 
• Did the author clarify if hypotheses were rejected or accepted? 
• What alternative explanations does the author consider for the obtained findings? 
• How are the findings related to prior reports? 
• What limitations are described? Are there limitations that are not addressed? 
• If results are not significant, does the author consider the possibility of Type II error? 
• Regardless of the statistical outcome, are the results clinically important? 
• Does the author discuss how the results apply to practice? 
• Does the author present suggestions for further study? 
• Do the stated conclusions flow logically from the obtained results? 

Readers should find a clear statement of the authors' major conclusions based on their 
interpretation of the results and research hypotheses. The authors should compare and 
contrast results with other related work, to offer support for existing clinical theory or 
propose an alternative theory or explanation. The authors should acknowledge factors 
about the subjects, materials, or methods that could have complicated the interpretation 
of the results. As the authors discuss these limitations, they should share their ideas for 
approaching the research question differently. On the other hand, if the authors 
expressed confidence in the design and execution of the study and, therefore, have con­
fidence in the results, they should suggest a direction that future studies might take. 
Finally, and perhaps most importantly, the authors should discuss the impact of the 
results on clinical practice. Is their evidence strong enough to suggest a need to change 
some aspect of treatment intervention or practice models? As critical consumers of the 
products of clinical research, readers should study the discussion and conclusion sec­
tions of the research report to decide whether the authors' answers to these kinds of 
questions are true, appropriate, and justified. 
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CRITICALLY APPRAISED TOPICS (CATs) 
As we search for information to apply to our clinical decision making, we all benefit 
from applying literature to patient cases. A systematic review is one approach to criti­
cally understanding the quality of evidence on a topic (see Chapter 16). The systematic 
review, however, is based on an overview of the topic, not its application to a specific 
patient. An alternative format, called a critically appraised topic (CAT), has become 
popular to provide a brief summary of a search and critical appraisal of literature 
related to a focused clinical question.12-16 

A CAT provides a standardized format to present a critique of one or more articles 
and a statement of the clinical relevance of the results. A CAT is typically initiated by a 
patient encounter that reveals a knowledge gap.17 The author of a CAT searches for and 
appraises "current best evidence" from the literature, summarizes the evidence, inte­
grates it with clinical expertise, and finally suggests how the information can be applied 
to a patient scenario.18 The critique will address internal, external, and statistical con­
clusion validity. Table 34.4 shows a sample CAT of an intervention study. 

Format of a CAT 
The format of a CAT can vary, although the essential elements remain fairly constant. It 
is generally a brief document, typically one to two pages in length. Information is 
intended to be concise. Table 34.4 shows one common layout. At minimum, a CAT 
should contain the following information: 

• Title: A concise statement that will be used to catalogue the CAT. 
• Author and Date: The author of the CAT should be specified, as well as the 

date the search was executed. A revision date should be proposed. 
• Clinical Scenario: A concise description of the patient case that prompted 

the question. 
• Clinical Question: This is the question that was developed from the patient 

case. It includes the elements of PICO (see Chapter 1) :  The patient/population, 
the intervention that is being considered (diagnostic test or prognostic variables), 
a comparison (if relevant), and the outcome of interest. This structure helps to 
refine the question and identifies key elements of an efficient database search. 

• Clinical Bottom Line: A concise summary of how the results can be applied; a 
description of how results will affect clinical decisions or actions. 

• Search History: Description of the search strategy used to obtain the studies 
that are being appraised (see Chapter 31) .  This includes databases used and 
terms entered at each step. Relevant studies are selected, often based on achiev­
ing highest levels of evidence (see Chapter 16). 

• Citations: Full bibliographic citations of studies selected for review. 
• Summary of the Study: Is the evidence in this study valid? This section 

should provide a description of the study based on the questions shown in 
Tables 34. 1  through 34.3, including the type of study, subjects, procedures, and 
design elements. 
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TABLE 34.4 FORMAT FOR A CRITICALLY APPRAISED TOPIC (CAT) 
ON INTERVENTION 

Title: Community-based occupational therapy improves functioning in older adults with 
dementia. 

Appraiser: Leslie Portney 
Date of Appraisal: August 2007 
Review Date: August 2009 

Clinical Scenario: AR is an 85-year-old female who experiences mild Alzheimer's dementia. She 
lives with her daughter and her daughter's family (husband and two teen-age children). AR is able 
to function with supervision, but has exhibited increasing problems with activities of daily living. She 
has also exhibited some agitation in her interactions with the family. Her daughter works from home, 
and is able to supervise her mother around the house. Her daughter has expressed concern for her 
own ability to handle her mother's functional limitations. She has asked if community occupational 
therapy services would be beneficial for improving her mother's function. 
Clinical Question: 

Patient/Problem: Community-dwelling elders with mild to moderate dementia 
Intervention: Community-based occupational therapy 
Comparison: No treatment 
Outcomes: Functional performance 
In older patients with dementia, does community-based occupational therapy improve daily functioning? 
Clinical Bottom Line: Community-based occupational therapy improves daily functioning in older 
adults with dementia and increases caregivers' feelings of competence. 
Search History: 
Databases: CINAHL, MEDLINE 
Search Terms (MeSH): Occupational therapy/ 

Dementia/ 
Community.mpa 

Citation: Graff MJ, Vernooij-Dassen MJ, Thijssen M, et al. Community based occupational therapy 
for patients with dementia and their care givers: Randomized controlled trial. BMJ 
2006;333: 1 1 96-1 201 . 

Summary of Study: 

Design: Randomized controlled trial. 
Sample: Patients recruited from memory clinics and day clinics of a geriatrics department in one 
region of the Netherlands. 1 35 patients 2 65 years of age who had mild-to-moderate dementia 
were living in the community and were visited by caregivers at least once weekly. Exclusion criteria 
included depression, severe behavioral symptoms, severe illness and < 3 months of treatment with 
same dose of a cholinesterase inhibitor or memantine. 
Intervention: Patients randomly assigned to 1 0  one-hour sessions of OT at home over 5 weeks 
(n = 68) or no OT (n = 67), stratified by mild or moderate dementia. Assessors were blind to group 
allocation. First 4 sessions focused on evaluation of options and goal setting. In remaining sessions, 
patients were taught to optimize strategies to improve ADLs, and caregivers were trained in supervi­
sory, problem solving and coping strategies. OTs were experienced in the use of client-centered 
guidelines for patients with dementia. 
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Outcome Measures: Patients assessed for motor and process skills and deterioration of ADLs; 
caregivers assessed for sense of competence. All measurements utilized standardized tools. 
Assessments made at baseline, 6 weeks and 1 2  weeks. 

Data Analysis: Intention to treat analysis applied at 1 2  weeks (78% retention) ,  with last observation 
carried forward. Analysis of covariance applied with age, sex, and baseline scores as covariates. 

The Evidence 
At 6 and 1 2  weeks, patients in the OT group had better motor and process skills and less deteriora­
tion in ADL, and caregivers in the OT group had higher competence scores than the non-OT group. 

Process Performance Competence 
6 wks 1 2  wks 6 wks 1 2  wks 6 wks 1 2  wks 

% Improved 
OT Group 84% 75% 78% 82% 58% 48% 
Control Group 9% 9% 1 2% 1 0% 1 8% 24% 

NNT 1 .3 1 .5 1 .5 1 .4 2.5 4.2 
(95% Cl) (1 .2 to 1 .4) (1 .4 to 1 .6) (1 .4 to 1 .6) ( 1 .3 to 1 .5) ( 1 .3 to 2.7) (4.0 to 4.4) 

Comments 
• Randomized block design provided good control over bias, including assessor blinding. 
• Sample may have limited generalizability because of recruitment from specific outpatient clinics, 

eliminating general practice and other institutions. 
• Outcomes were based on selected tasks and goals developed with OT. We do not know if these 

tasks were similar to those in baseline measurements, which could have inflated the beneficial 
effects of intervention. However, targeting goals that are personalized and important to the patient 
and caregiver makes the difference in effect sizes more meaningful. 

• Inclusion of caregiver perceptions of confidence provide an important context for evaluating the 
success of the program. 

• Results can only be generalized to patients who are already stable on cholinesterase inhibitors at 
the outset. The benefits of intervention are, therefore, in addition to those of the medication. We 
don't know how these strategies will work in the absence of such medication. 

• NNTs are quite low with narrow confidence intervals. 
• OTs trained in providing community-based support can effectively improve function of those with 

dementia and confidence of their caregivers following a 1 0-week program. 

"MeSH abbreviation .mp = keyword search in title, abstract or MeSH heading 
References: 
Hirsch C. Community-based occupational therapy improved daily functioning in older patients with dementia. 
Comment in ACP Journal Club March/April 2007;1 46(2); Golden J., Lawlor B. Treatment of dementia in the 
community [Editorial]. BMJ 2006;333: 1 1 84-1 1 85. 
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• Summary of the Evidence: The results of the study should be summarized in 
narrative and/ or tabular format. Specific effect size estimates should be pro­
vided as appropriate, such as means and mean differences, confidence intervals, 
odds ratios, likelihood ratios, sensitivity and specificity, and number needed to 
treat. If these estimates are not included in the research report, the CAT author 
may be able to calculate them if sufficient data are provided in the study. 

• Additional Comments: Provide critical comments on the study, including 
issues related to the sampling, methods, data analysis, quality of discussion, and 
interpretation of results. This is where you should comment on the internal, 
external, and statistical validity of the study. Comment on positive and negative 
aspects of the study. 

A CAT has two important distinguishing features for evidence-based practice. First, 
it is based on a specific clinical question, prompted by a clinician's need to clarify an 
aspect of patient care related to intervention, diagnosis, prognosis, or harm.B This ques­
tion is developed using the PICO format, as shown in Table 34.4. The clinician searches 
the literature explicitly to provide an answer to this question, with the intent of influ­
encing management of the patient. 

The second unique feature of a CAT is the inclusion of a clinical bottom line, or con­
clusion by the CAT author as to the value of the findings. The usefulness of the bottom 
line depends on the ability of the CAT author to accurately assess the validity of the lit­
erature and to grasp the relevance of findings for a particular patient's management.18 
This information is then useful to others who may encounter similar patients, who can 
take advantage of the summary for efficient decision making. 

Using CATs for Cl in ical Decision Making 
The utility of CATs will depend on the clinician's ability to readily access the informa­
tion within the clinical setting. Wyer14 suggests that CATs may serve to make the results 
of journal clubs or case conferences available to clinical staff to improve the care of sub­
sequent patients. He offers the perspective that building such bridges and making them 
available at the point of care should be an essential part of evidence-based practice. 
Many institutions have established online "CAT Banks" that provide ready access to 
summaries of articles on specific topics.12,19-24 

CATs do have limitations as a source of clinical data. They have a short shelf life as 
new evidence becomes available, which is why revision dates are included. Clinicians 
must recognize that CATs do not represent a rigorous search of the literature, as in a 
systematic review. CATs are often based on only one or two references and may not 
represent the full scope of literature on a topic. Their usefulness is conditional on the 
critical appraisal skills and accuracy of the author. It is, therefore, the clinician's respon­
sibility to determine the relevance of the clinical question, the logic of the search strat­
egy, and the application of validity criteria in the review.25 It is also important to assess 
the strength of the CAT author's conclusions in relation to the evidence provided. 
Notwithstanding these limitations, however, in the hands of discerning clinicians, 
CATs provide a practical method for disseminating evidence from the literature to 
inform clinical decisions. 



COMM ENTARY 

The Reader's View 
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The final publ ished report of research does not end the story. Readers have an oppor­
tun ity to comment in the journal that publ ished the report by submitting a letter to 
the editor or by bei ng invited by the editor to present a formal commentary that w i l l  
accompany the report a t  the time of publ ication. The purpose of responding or  react­
i ng to reports through the journal is to offer points of view that may differ from those 
of the researchers or to raise questions about some aspect of the research design, 
methods, or interpretation of results. Comments should never be confrontational or 
degrad i ng, but should provide constructive criticisms or offer evidence to support 
the publ ished findings. Written d ialogue between researchers and respondents may 
stimulate new ideas for keeping the l i ne of research al ive. Readers shou ld look for 
and eva luate letters or commentaries with the same kind of scrutiny that they appl ied 
to the eva luation of the original report. 

Critical appraisal of research reports is a ski l l  that must be developed and prac­
ticed. We offer one caveat. As one develops this abi l ity, there is a tendency to be 
overly critical, f inding many flaws, major and minor, real and potential .  Because of 
the nature of c l i nical research, there wi l l  always be some aspects of the design that 
cou ld have been tighter or cleaner. The important element is whether the l im itations 
in the design are so great that the findings are useless. In refereed journals these 
flaws are not l i kely to be "fata l"; that is, the articles that make it to the publ ication 
stage have been screened. Regardless of the imperfections that exist in the c l i n ica l  
research process, we must remember to find the merits of  each project and accept 
them i n  the context of the entire endeavor. With careful attention to the deta i l s  of a l l  
research reports we choose to read, we should expect to learn someth ing va luable 
from each one. 
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TABLE A.1 AREAS UNDER THE NORMAL CURVE (z) 
Area Area 

between Area between Area 
z 0 and z above z z 0 and z above z 

0.00 .0000 .5000 0.40 . 1 554 .3446 
0.01 .0040 .4960 0.41 . 1 591 3409 
0.02 .0080 .4920 0.42 . 1 628 .3372 
0.03 .0120 .4880 0.43 . 1 664 .3336 
0.04 .0160 .4840 0.44 . 1 700 .3300 

0.05 .01 99 .4801 0.45 . 1 736 .3264 
0.06 .0239 .4761 0.46 . 1 772 .3228 
0.07 .0279 .4721 0.47 . 1 808 .31 92 
0.08 .031 9 .4681 0.48 . 1 844 31 56 
0.09 .0359 .4641 0.49 . 1 879 .3121  

0. 1 0  .0398 .4602 0.50 . 1 9 1 5  .3085 
0. 1 1  .0438 .4562 0.51 . 1 950 .3050 
0. 1 2  .0478 .4522 0.52 . 1 985 .30 1 5  
0. 1 3  .05 1 7  .4483 0.53 .20 1 9  .2981 
0. 1 4  .0557 .4443 0.54 .2054 .2946 

0 . 1 5  .0596 .4404 0.55 .2088 .29 1 2  
0 . 1 6 .0636 .4364 0.56 .2 1 23 .2877 
0 . 1 7  .0675 .4325 0.57 .2 1 57 .2843 
0. 1 8  .07 1 4  .4286 0.58 .2 1 90 .28 1 0  
0. 1 9  .0753 .4247 0.59 .2224 .2776 

0.20 .0793 .4207 0.60 .2257 .2743 
0.21 .0832 .41 68 0.61 .2291 .2709 
0.22 .0871 .41 29 0.62 .2324 .2676 
0.23 .09 1 0  .4090 0.63 .2357 .2643 
0.24 .0948 .4052 0.64 .2389 .261 1 

0.25 .0987 .401 3 0.65 .2422 .2578 
0.26 . 1 026 .3974 0.66 .2454 .2546 
0.27 . 1 064 .3936 0.67 .2486 .25 14  
0.28 . 1 1 03 .3897 0.68 .25 1 7  .2483 
0.29 . 1 1 41 .3859 0.69 .2549 .2451 

0.30 . 1 1 79 .3821 0.70 .2580 .2420 
0.31 . 1 2 1 7  .3783 0.71 .261 1 .2389 
0.32 . 1 255 .3745 0.72 .2642 .2358 
0.33 . 1 293 .3707 0.73 .2673 .2327 
0.34 . 1 331 .3669 0.74 .2704 .2296 

0.35 . 1 368 .3632 0.75 .2734 .2266 
0.36 . 1 406 .3594 0.76 .2764 .2236 
0.37 . 1 443 .3557 0.77 .2794 .2206 
0.38 . 1 480 .3520 0.78 .2823 .2 1 77 
0.39 . 1 5 1 7  .3483 0.79 .2852 .2 1 48 

Area 
between Area 

z 0 and z above z 

0.80 .2881 .21 1 9  
0.81 .29 10  .2090 
0.82 .2939 .2061 
0.83 .2967 .2033 
0.84 .2995 .2005 

0.85 .3023 . 1 977 
0.86 .3051 . 1 949 
0.87 .3078 . 1 922 
0.88 .3106 . 1 894 
0.89 .31 33 . 1 867 

0.90 .31 59 . 1 841 
0.91 .31 86 . 1 8 1 4  
0.92 .32 12  . 1 788 
0.93 .3238 . 1 762 
0.94 .3264 . 1 736 

0.95 .3289 . 1 71 1 
0.96 .33 1 5  . 1 685 
0.97 .3340 . 1 660 
0.98 .3365 . 1 635 
0.99 .3389 . 1 61 1 

1 .00 .34 1 3  . 1 587 
1 .01 .3438 . 1 562 
1 .02 .3461 . 1 539 
1 .03 .3485 . 1 5 1 5  
1 .04 .3508 . 1 492 

1 .05 .3531 . 1 469 
1 .06 .3554 . 1 446 
1 .07 .3577 . 1 423 
1 .08 .3599 . 1 401 
1 .09 .3621 . 1 379 

1 . 1 0  .3643 . 1 357 
1 . 1 1  .3665 . 1 335 
1 . 1 2  .3686 . 1 31 4  
1 . 1 3  .3708 . 1 292 
1 . 1 4  .3729 . 1 271 

1 . 1 5  .3749 . 1 251 
1 . 1 6  .3770 . 1 230 
1 . 1 7  .3790 . 1 2 1 0  
1 . 1 8  .38 1 0  . 1 1 90 
1 . 1 9  .3830 . 1 1 70 
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Area Area 
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Area 
between Area between Area between Area 

z 0 and z above z z 0 and z above z z 0 and z above z 

1 .20 .3849 . 1 1 51 1 . 55 .4394 .0606 1 .90 .47 1 3  .0287 
1 .2 1  .3869 . 1 1 31 1 .56 .4406 .0594 1 .91  .47 1 9  .0281 
1 .22 .3888 . 1 1 1 2 1 . 57 .44 1 8  .0582 1 .92 .4726 .0274 
1 .23 .3907 . 1  093 1 .58 .4429 .0571 1 .93 .4732 .0268 
1 .24 .3925 .1 075 1 .59 .4441 .0559 1 .94 .4738 .0262 

1 .25 .3944 . 1 056 1 .60 .4452 .0548 1 .95 .4744 .0256 

1 .26 .3962 . 1  038 1 .61 .4463 .0537 1 .96 .4750 .0250 
1 .27 .3980 . 1 020 1 .62 .4474 .0526 1 .97 .4756 .0244 
1 .28 .3997 .1 003 1 .63 .4484 .05 1 6  1 .98 .4761 .0239 
1 .29 .401 5 .0985 1 .64 .4495 .0505 1 .99 .4767 .0233 

1 .645 .4500 .0500 

1 .30 .4032 .0968 1 .65 .4505 .0495 2.00 .4772 .0228 
1 .31 .4049 .0951 1 .66 .451 5 .0485 2.01 .4778 .0222 
1 .32 .4066 .0934 1 .67 .4525 .0475 2.02 .4783 .021 7 
1 .33 .4082 .09 1 8  1 .68 .4535 .0465 2.03 .4788 .02 1 2  
1 .34 .4099 .0901 1 .69 .4545 .0455 2.04 .4793 .0207 

1 .35 .41 1 5  .0885 1 .70 .4554 .0446 2.05 .4798 .0202 
1 .36 .41 31 .0869 1 .7 1  .4564 .0436 2.054 .4800 .0200 
1 .37 .41 47 .0853 1 .72 .4573 .0427 2.06 .4803 .01 97 
1 .38 .41 62 .0838 1 .  73 .4582 .041 8 2.07 .4808 .01 92 
1 .39 .41 77 .0823 1 .74 .4591 .0409 2.08 .48 1 2  .01 88 

1 .40 
1 .41 
1 .42 
1 .43 
1 .44 

1 .45 
1 .46 
1 .47 
1 .48 
1 .49 

1 .50 
1 .5 1  
1 .52 
1 .53 
1 .54 

.41 92 

.4207 

.4222 

.4236 

.4251 

.4265 

.4279 

.4292 

.4306 

.43 1 9  

.4332 

.4345 

.4357 

.4370 

.4382 

.0808 

.0793 

.0778 

.0764 

.0749 

.0735 

.0721 
.0708 
.0694 
.0681 

.0668 

.0655 

.0643 

.0630 

.061 8 

1 .75 
1 .751 
1 .76 
1 .77 
1 .78 
1 .79 

1 .80 
1 .8 1  
1 .82 
1 .83 
1 .84 

1 .85 
1 .86 
1 .87 
1 .88 
1 .881 
1 .89 

.4599 

.4600 

.4608 

.461 6 

.4625 

.4633 

.4641 

.4649 

.4656 

.4664 

.4671 

.4678 

.4686 

.4693 

.4699 

.4700 

.4706 

.0401 
.0400 
.0392 
.0384 
.0375 
.0367 

.0359 

.0351 

.0344 

.0336 

.0329 

.0322 

.03 14  

.0307 

.0301 

.0300 

.0294 

2.09 

2 . 1 0  
2 . 1 1 
2 . 1 2  
2. 1 3  
2 . 14  

2 . 1 5  
2. 1 6  
2 . 1 7  
2. 1 8  
2. 1 9  

2.20 
2.21 
2 .22 
2.23 
2.24 

.48 1 7  

.4821 

.4826 

.4830 

.4834 

.4838 

.4842 

.4846 

.4850 

.4854 

.4857 

.4861 

.4864 

.4868 

.4871 

.4875 

.01 83 

.01 79 

.0 1 74 

.01 70 

.01 66 

.0 1 62 

.01 58 

.0 1 54 

.01 50 

.0146 

.0143 

.01 39 

.01 36 

.0 132 

.01 29 

.01 25 
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TABLE A.1 AREAS UNDER THE NORMAL CURVE (z) 

Area Area 
between Area between Area 

z 0 and z above z z 0 and z above z 

2.25 .4878 .01 22 2.60 .4953 .0047 
2.26 .4881 .01 1 9  2.61 .4955 .0045 
2.27 .4884 .01 1 6  2.62 .4956 .0044 
2.28 .4887 .01 1 3  2.63 .4957 .0043 
2.29 .4890 .01 1 0  2.64 .4959 .0041 

2.30 .4893 .01 07 2.65 .4960 .0040 
2.31 .4896 .01 04 2.66 .4961 .0039 
2.32 .4898 .01 02 2.67 .4962 .0038 
2.326 .4900 .01 00 2.68 .4963 .0037 
2.33 .4901 .0099 2.69 .4964 .0036 
2.34 .4904 .0096 

2.35 .4906 .0094 2.70 .4965 .0035 

2.36 .4909 .0091 2.71 .4966 .0034 
2.37 .49 1 1 .0089 2.72 .4967 .0033 
2.38 .49 1 3  .0087 2.73 .4968 .0032 
2.39 .49 1 6  .0084 2.74 .4969 .0031 

2.40 .49 1 8  .0082 2.75 .4970 .0030 
2.41 .4920 .0080 2.76 .4971 .0029 
2.42 .4922 .0078 2.77 .4972 .0028 
2.43 .4925 .0075 2.78 .4973 .0027 
2.44 .4927 .0073 2.79 .4974 .0026 

2.45 .4929 .0071 2.80 .4974 .0026 
2.46 .4931 .0069 2.81 .4975 .0025 
2.47 .4932 .0068 2.82 .4976 .0024 

2.48 .4934 .0066 2.83 .4977 .0023 

2.49 .4936 .0064 2.84 .4977 .0023 

2.50 .4938 .0062 2.85 .4978 .0022 

2.51 .4940 .0060 2.86 .4979 .0021 

2.52 .4941 .0059 2.87 .4979 .0021 

2.53 .4943 .0057 2.88 .4980 .0020 

2.54 .4945 .0055 2.89 .4981 .001 9 

2.55 .4946 .0054 2.90 .4981 .001 9 

2.56 .4948 .0052 2.91 .4982 .00 1 8  

2.57 .4949 .0051 2.92 .4982 .00 18  

2.576 .4950 .0050 2.93 .4983 .00 1 7  

2.58 .4951 .0049 2.94 .4984 .001 6 

2.59 .4952 .0048 

Area 
between Area 

z 0 and z above z 

2.95 .4984 .001 6 
2.96 .4985 .001 5 
2.97 .4985 .001 5 
2.98 .4986 .0014  
2.99 .4986 .0014  

3.00 .4987 .00 1 3  
3.01 .4987 .00 1 3  
3.02 .4987 .001 3 
3.03 .4988 .00 1 2  
3.04 .4998 .0012  

3.05 .49886 .001 1 4  

3.06 .49889 .001 1 1  
3.07 .49893 .001 07 
3.08 .49896 .001 04 
3.09 .49900 .00100 

3 . 1 0  .49903 .00097 
3 . 1 1 .49906 .00094 
3. 1 2  .4991 0 .00090 
3. 1 3  .499 1 3  .00087 
3 . 1 4  .4991 6 .00084 

3. 1 5  .4991 8 .00082 
3. 1 6  .49921 .00079 
3. 1 7  .49924 .00076 
3. 1 8  .49926 .00074 
3. 1 9  .49929 .00071 

3.20 .49931 .00069 
3.21 .49934 .00066 
3.22 .49936 .00064 
3.23 .49938 .00062 
3.24 .49940 .00060 

3.25 .49942 .00058 

3.26 .49944 .00056 
3.27 .49946 .00054 

3.28 .49948 .00052 

3.29 .49950 .00050 
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TABLE A.1 AREAS UNDER THE NORMAL CURVE (z) 

Area Area Area 
between Area between Area between Area 

z 0 and z above z z 0 and z above z z 0 and z above z 

3.30 .49951 .00048 3.35 .49960 .00040 3.40 .49966 .00034 
3.31 .49953 .00047 3.36 .49961 .00039 3.45 .49972 .00028 
3.32 .49955 .00045 3.37 .49962 .00038 3.50 .49977 .00023 
3.33 .49957 .00043 3.38 .49964 .00036 3.60 .49984 .0001 6 
3.34 .49958 .00042 3.39 .49965 .00035 3.70 .49989 .0001 1 

3.80 .49993 .00007 
3.90 .49995 .00005 

4.00 .49997 .00003 
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One-tailed test (a1 ) Two-tailed test (a2) 

TABLE A.2 CRITICAL VALUES OF t 

£1'1 . 10  .05 .025 .01 .005 .0005 

df £1'2 .20 . 10  .05 .02 .01 .001 

3.078 6.3 1 4  1 2.706 31 .821 63.657 636.61 9 
2 1 .886 2.920 4.303 6.965 9.925 31 .598 
3 1 .638 2.353 3. 1 82 4.541 5.841 1 2.924 
4 1 .533 2 . 1 32 2.776 3.747 4.604 8.61 0 
5 1 .476 2.01 5 2.571 3.365 4.032 6.859 

6 1 .440 1 .943 2.447 3 . 143 3.707 5.959 
7 1 .4 15  1 .895 2.365 2.998 3.499 5.405 

8 1 .397 1 .860 2.306 2.896 3.355 5.041 

9 1 .383 1 .833 2.262 2.821 3.250 4.781 
1 0  1 .372 1 .8 12  2.228 2.764 3. 1 69 4.587 

1 1  1 .363 1 .796 2.201 2.71 8 3 . 1 06 4.437 
1 2  1 .356 1 .782 2 . 1 79 2.681 3.055 4.3 1 8  

1 3  1 .350 1 .771 2 . 1 60 2.650 3.01 2 4.221 

1 4  1 .345 1 .761 2 . 145 2.624 2.977 4 . 1 40 
1 5  1 .341 1 .753 2 . 1 31 2.602 2.947 4.073 

1 6  1 .337 1 .746 2. 1 20 2.583 2.921 4.0 1 5  

1 7  1 .333 1 .740 2 . 1 1 0  2.457 2.898 3.965 

1 8  1 .330 1 .734 2 . 101 2.552 2.878 3.922 

1 9  1 .328 1 .729 2.093 2.539 2.861 3.883 

20 1 .325 1 .725 2.086 2.528 2.845 3.850 

21 1 .323 1 .721 2.080 2.5 18  2.831 3.81 9 

22 1 .321 1 .71 7 2.074 2.508 2.8 19  3.792 

23 1 .31 9 1 .7 14  2.069 2.500 2.807 3.767 

24 1 .3 1 8  1 .71 1 2.064 2.492 2.797 3.745 

25 1 .31 6 1 .708 2.060 2.485 2.787 3.725 

26 1 .3 1 5  1 .706 2.056 2.479 2.779 3.707 

27 1 .3 14  1 .703 2.052 2.473 2.771 3.690 

28 1 .3 1 3  1 .701 2.048 2.467 2.763 3.674 

29 1 .31 1 1 .699 2.045 2.462 2.756 3.659 

30 1 .3 10  1 .694 2.042 2.457 2.750 3.646 

40 1 .303 1 .684 2.021 2.423 2.704 3.551 

60 1 .296 1 .671 2.000 2.390 2.660 3.460 

1 20 1 .289 1 .658 1 .980 2.358 2.61 7 3.373 
CXJ 1 .282 1 .645 1 .960 2.326 2.576 3.291 

For unpaired I-test df = (n 1 - 1 )  + (n2 - 1 ) .  For paired I-test, df = n - 1 .  Test statistic must be greater than or 
equal to critical value to reject Hb. 
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TABLE A.3 CRITICAL VALUES OF F, a = .05 

dfe for 
denominator I 1 2 3 4 5 

1 61 .4 1 99.5 21 5.7 224.6 230.2 
2 1 8.51 1 9.00 19 . 16  1 9.25 1 9.30 
3 1 0. 1 3  9.55 9.28 9.12 9.01 
4 7.71 6.94 6.59 6.39 6.26 
5 6.61 5.79 5.41 5. 1 9  5.05 

6 5.99 5 . 14  4.76 4.53 4.39 
7 5.59 4.74 4.35 4.12 3.97 
8 5.32 4.46 4.07 3.84 3.69 
9 5 . 12  4.26 3.86 3.63 3.48 

1 0  4.96 4. 1 0  3.71 3.48 3.33 

1 1  4.84 3.98 3.59 3.36 3.20 
1 2  4.75 3.89 3.49 3.26 3. 1 1  
1 3  4.67 3.81 3.41 3.18 3.03 
1 4  4.60 3.74 3.34 3. 1 1  2.96 
1 5  4.54 3.68 3.29 3.06 2.90 

6 

234.0 
1 9.33 
8.64 
6. 1 6  
4.95 

4.28 
3.87 
3.58 
3.37 
3.22 

3.09 
3.00 
2.92 
2.85 
2.79 

dfbfor numerator 

7 8 9 1 0  1 2  1 5  20 30 60 00 

236.8 238.9 240.5 241 .9 243.9 245.9 248.0 250.1 252.2 254.3 
1 9.35 1 9.37 1 9.38 1 9.40 1 9.41 1 9.43 1 9.45 1 9.46 1 9.48 1 9.50 
8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.62 8.57 8.53 
6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.75 5.69 5.63 
4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.50 4.43 4.36 

4.21 4 . 15  4. 1 0  4.06 4.00 3.94 3.87 3.81 3.74 3.67 
3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.38 3.30 3.23 
3.50 3.44 3.39 3.35 3.28 3.22 3. 1 5  3.08 3.01 2.93 
3.29 3.23 3. 1 8  3 . 14  3.07 3.01 2.94 2.86 2.79 2.71 
3. 1 4  3.07 3.02 2.98 2.91 2.85 2.77 2.70 2.62 2.54 

3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.57 2.49 2.40 
2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.47 2.38 2.30 
2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.38 2.30 2.21 
2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.31 2.22 2. 1 3  
2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.25 2. 1 6  2.07 
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TABLE A.3 CRITICAL VALUES OF F, a = .05 

dfe for 
denominator I 1 

1 6  4.49 

1 7  4.45 

1 8  4.41 

1 9  4.38 

20 4.35 

2 1  4.32 

2 2  4.30 

23 4.28 

24 4.26 

25 4.24 

26 4.23 

27 4.21 

28 4.20 

29 4. 1 8  

30 4 . 1 7  

40 4.08 

60 4.00 

1 20 3.92 

00 3.84 

2 

3.63 

3.59 

3.55 

3.52 

3.49 

3.47 

3.44 

3.42 

3.40 

3.39 

3.� 

3.� 

3.� 

3.� 

3.� 

3.� 

3. 1 5  

3.� 

3.00 

3 

3.24 

3.20 

3 . 1 6  

3 . 1 3 

3. 1 0  

3.07 

3.05 

3.03 

3.01  

2.99 

2.� 

2.% 

2.� 

2.� 

2.� 

2.M 

2.m 

2.� 

2.W 

dfb = between-groups degrees of freedom. 

dfe = error (within-groups) degrees of freedom. 

4 5 6 7 

3.01 2.85 2.74 2 .66 

2.96 2.81 2.70 2.61  

2.93 2.77 2.66 2 . 58 

2.90 2.74 2.63 2 . 54 

2.87 2.71 2.60 2 .51  

2.84 2.68 2.57 2.49 

2.82 2.66 2.55 2.46 

2.80 2.64 2.53 2.44 

2.78 2.62 2.51 2.42 

2.76 2.60 2.49 2.40 

2.74 2.59 2.47 2.39 

2.73 2.57 2.46 2.37 

2.71  2.56 2.45 3.26 

2.79 2.55 2.43 2.35 

2.69 2.53 2.42 2.33 

2.61 2.45 2.34 2.25 

2.53 2.37 2.25 2. 1 7  

2.45 2.29 2 . 1 7  2.09 

2.37 2.21 2. 1 0  2.01 

Test statistic must be greater than or equal to critical value to reject H0. 

dfb for numerator 

8 9 

2.59 2 . 54 

2.55 2.49 

2.51 2.46 

2.48 2.42 

2.45 2 .39 

2.� 2 �  

2.� 2.� 

2.� 2.� 

2.� 2.� 

2.� 2.� 

2.32 2.27 

2.31 2.25 

2.29 2.24 

2.28 2 . 122 

2.27 2.21  

2 . 1 8  2 . 1 2  

2 . 1 0 2 .04 

2.02 1 .96 

1 .94 1 .88 

1 0  

2.49 

2.45 

2.41 

2 .38 

2.35 

2 .32 

2 .30 

2.27 

2.25 

2.24 

2.� 

2.� 

2 . 1 9  

2 . 1 8  

2 . 1 6  

2.00 

1 .W 

1 .9 1  

1 .� 

1 2  

2.42 

2.38 

2.34 

2.31 

2.28 

2.25 

2.23 

2.20 

2 . 1 8  

2 . 1 6  

2 . 1 5  

2 . 1 3  

2 . 1 2  

2 . 1 0  

2.W 

2.00 

1 .� 

1 .� 

1 .� 

1 5  

2.35 

2 . 3 1  

2.27 

2.23 

2.20 

2 . 1 8  

2 . 1 5  

2 . 1 3  

2. 1 1  

2.09 

2.� 

2.00 

2.M 

2.� 

2.01 

1 .� 

1 .M 

1 .� 

1 .� 

20 

2.28 

2.23 

2 . 1 9  

2 . 1 6  

2 . 1 2  

2 . 1 0  

2 .07 

2 .05 

2.03 

2.01  

1 .W 

1 .� 

1 .% 

1 .M 

1 .� 

1 .M 

1 .� 

1 .� 

1 .� 

30 

2 . 1 9  

2 . 1 5  

2 . 1 1  

2.07 

2.04 

2.01  

1 .98 

1 .96 

1 .94 

1 .92 

1 .00 

1 . � 

1 .� 

1 .� 

1 .M 

1 .� 

1 .� 

1 .� 

1 .� 

60 

2. 1 1  

2.06 

2.02 

1 .98 

1 . 95 

1 .92 

1 .89 

1 .86 

1 .84 

1 .82 

1 .00 

1 .� 

1 .n 

1 .� 

1 .� 

1 .M 

1 .� 

1 .� 

1 .� 

00 

2 . 0 1  

1 .96 

1 .92 

1 .88 

1 .84 

1 .8 1  

1 .78 

1 .76 

1 .73 

1 .7 1  

1 .� 

1 .� 

1 .� 

1 .M 

1 .� 

1 .5 1  

1 .� 

1 �  

1 .00 
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TABLE A.4 CRITICAL VALUES OF r 
a1 .05 .025 .01 .005 .0005 

df a2 . 10 .05 .02 .01 .001 

.988 .997 .9995 .9999 .9999 
2 .900 .950 .980 .990 .999 
3 .805 .878 .934 .959 .991 
4 .729 .81 1 .882 .91 7 .974 
5 .669 .755 .833 .875 .951 

6 .622 .707 .789 .834 .925 
7 .582 .666 .750 .798 .898 
8 .549 .632 .71 6 .765 .872 
9 .521 .602 .685 .735 .847 

1 0  .497 .576 .658 .708 .823 

1 1  .476 .553 .634 .684 .801 
1 2  .458 .532 .61 2 .661 .780 
1 3  .441 .5 14 .592 .641 .760 
1 4  .426 .497 .574 .623 .742 
1 5  .412 .482 .558 .606 .725 

1 6  .400 .468 .543 .590 .708 
1 7  .389 .456 .529 .575 .693 
1 8  .378 .444 .51 6  .561 .679 
1 9  .369 .433 .503 .549 .665 
20 .360 .423 .492 .537 .652 

25 .323 .381 .445 .487 .597 
30 .296 .349 .409 .449 .554 
35 .275 .325 .381 .41 8 .51 9 
40 .257 .304 .358 .393 .490 
45 .243 .288 .338 .372 .465 

50 .231 .273 .322 .354 .443 
60 .21 1 .250 .295 .325 .408 
70 . 1 95 .232 .274 .302 .380 
80 . 1 83 .21 7 .257 .283 .357 
90 . 1 73 .205 .242 .267 .338 

1 00 . 1 64 . 1 95 .230 .254 .321 

df = n - 2. 
Test statistic must be greater than or equal to critical value to reject H0. 



� 
x 2  

TABLE A.5 CRITICAL VALUES OF CHI-SQUARE, x2 
df a .05 .02 .01 .005 .001 

3.84 5.02 6.64 7.88 1 0.83 
2 5.99 7.38 9.21 1 0.60 1 3.82 
3 7.82 9.35 1 1 .35 1 2.84 1 6.27 
4 9.49 1 1 . 1 4  1 3.28 1 4.86 1 8.47 
5 1 1 .07 1 2.83 1 5.09 1 6.75 20.52 

6 1 2.59 1 4.45 1 6.81 1 8.55 22.46 
7 1 4.07 1 6.01 1 8.48 20.28 24.32 
8 1 5.51 1 7 .53 20.09 21 .96 26. 1 3  
9 1 6.92 1 9.03 21 .67 23.59 27.88 

1 0  1 8.31 20.48 23.21 25. 1 9  29.59 

1 1  1 9.68 21 .92 24.73 26.76 31 .26 
1 2  21 .03 23.34 26.22 28.30 32.91 
1 3  22.36 24.74 27.69 29.82 34.53 
1 4  23.69 26. 1 2  29. 1 4  31 .32 36. 1 2  
1 5  25.00 27.49 30.58 32.80 37.70 

1 6  26.30 28.85 32.00 34.27 39.25 
1 7  27.59 30. 1 9  33.41 35.72 40.79 
1 8  28.87 31 .53 34.81 37. 1 6  42.31 
1 9  30. 1 4  32.85 36. 1 9  38.58 43.82 
20 31 .41 34. 1 7  37.57 40.00 45.32 

21 32.67 35.48 38.93 41 .40 46.80 
22 33.92 36.78 40.29 42.80 48.27 
23 35. 1 7  38.06 41 .64 44. 1 8  49.73 
24 36.42 39.36 42.98 45.56 51 . 1 8  
25 37.65 40.65 44.31 46.93 52.62 

26 38.89 41 .92 45.64 48.29 54.05 

27 40. 1 1 43. 1 9  46.96 49.65 55.47 

28 41 .34 44.46 48.28 50.99 56.89 

29 42.56 45.72 49.59 52.34 58.30 

30 43.77 46.98 50.89 53.67 59.70 

40 55.76 59.34 63.69 66.77 73.40 

50 67.51 71 .42 76. 1 5  79.49 86.66 

60 79.08 83.30 88.38 91 .95 99.61 

70 90.53 95.02 1 00.43 1 04.22 1 1 2.32 

80 1 01 .88 1 06.63 1 1 2.33 1 1 6.32 1 24.84 

90 1 1 3. 1 5  1 1 8. 1 4  1 24. 1 2  1 28.30 1 37.21 

1 00 1 24.34 1 29.56 1 35.81 1 40.47 1 49.45 

For one-sample test, df = k - 1 .  For two-sample test, df = (R - 1 )(C - 1 ) . Test statistic must be greater than 
or equal to critical value to reject H0. 
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TABLE A.6 CRITICAL VALUES OF THE STUDENTIZED RANGE STATISTIC, q, 
FOR TUKEY'S HONESTLY SIGNIFICANT DIFFERENCE (HSD) 
AND NEWMAN-KEULS (NK) COMPARISONS 

r = number of means (HSD) or size of comparison interval (NK) 

2 3 4 5 6 7 8 9 1 0  1 1  1 2  

5 .05 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7. 1 7  7.32 

.01 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 1 0.24 1 0.48 1 0.70 

6 .05 3.46 4.34 4.90 5.30 5 .63 5.90 6. 1 2  6.32 6.49 6.65 6. 79 

.01 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9. 1 0  9 .30 9.48 

7 .05 3.34 4 . 1 6 4.68 5.06 5.36 5.61 5.82 6.00 6. 1 6  6.30 6.43 
.01 4.95 5 .92 6.54 7.01 7.37 7.68 7.94 8. 1 7  8.37 8 .55 8.71 

8 .05 3.26 4.04 4.53 4.89 5 . 1 7  5.40 5.60 5.77 5 .92 6.05 6. 1 8  
.01 4.75 5.64 6.20 6.62 6 .96 7.24 7.47 7.68 7.86 8.03 8 . 1 8  

9 .05 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5 .87 5.98 

.01 4.60 5.43 5.96 6.35 6.66 6.91 7. 1 3  7.33 7.49 7.65 7.78 

1 0  .05 3. 1 5  3.88 4.33 4.65 4.91 5 . 12  5.30 5.46 5.60 5.72 5.83 

.01 4.48 5.27 5 .77 6. 1 4  6.43 6.67 6.87 7.05 7.21 7.36 7.49 

1 1  .05 3 . 1 1 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71 

.01 4.39 5. 1 5  5.62 5 .97 6.25 6.48 6.67 6.84 6.99 7. 1 3  7.25 

12 .05 3.08 3.77 4.20 4.51 4.75 4.95 5 . 12  5.27 5.39 5.51 5.61 
.01 4.32 5.05 5.50 5.84 6. 1 0  6.32 6.51 6.67 6.81 6.94 7.06 

13 .05 3.06 3.73 4. 1 5  4.45 4.69 4.88 5.05 5 . 1 9  5.32 5.43 5 .53 
.01 4.26 4.96 5.40 5. 73 5 .98 6. 1 9  6.37 6.53 6.67 6. 79 6.90 

1 4  .05 3.03 3.70 4. 1 1  4.41 4.64 4.83 4.99 5. 1 3  5.25 5.36 5.46 
.01 4.21 4.89 5 .32 5.63 5.88 6.08 6.26 6.41 6.54 6.66 6.77 

1 5  .05 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31 5 .40 
.01 4. 1 7  4.84 5.25 5 .56 5.80 5.99 6. 1 6  6.31 6.44 6 .55 6.66 

1 6  .05 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5 . 1 5  5.26 5.35 
.01 4 . 1 3  4.79 5 . 1 9  5.49 5.72 5 .92 6.08 6.22 6.35 6.46 6.56 

1 7  .05 2 .98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5. 1 1  5 .21 5 .31 

.01 4 . 1 0  4. 7 4 5 . 1 4  5.43 5.66 5.85 6.01 6 . 1 5  6.27 6.38 6.48 

18 .05 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5 . 1 7  5.27 

.01 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31 6.41 

19 .05 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5 . 1 4  5.23 

.01 4.05 4.67 5.05 5 .33 5.55 5.  73 5.89 6.02 6 . 1 4  6.25 6.34 

20 .05 2.95 3.58 3 .96 4.23 4.45 4.62 4.77 4.90 5.01 5. 1 1  5 .20 

.01 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6 . 19  6.28 
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TABLE A.6 CRITICAL VALUES OF THE STUDENTIZED RANGE STATISTIC, q, 
FOR TUKEY'S HONESTLY SIGNIFICANT DIFFERENCE (HSD) 
AND NEWMAN·KEULS (NK) COMPARISONS 

24 .05 2.92 3.53 3.90 4. 1 7  4.37 4.54 4.68 4.81 4.92 5.01 5. 1 0  
.01 3.96 4.55 4.91 5. 1 7  5.37 5.54 5.69 5.81 5.92 6.02 6.1 1 

30 .05 2.89 3.49 3.85 4.1 0 4.30 4.46 4.60 4.72 4.82 4.92 5.00 
.01 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93 

40 .05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82 4.90 
.01 3.82 4.37 4.70 4.93 5. 1 1  5.26 5.39 5.50 5.60 5.69 5.76 

60 .05 2.83 3.40 3.74 3.98 4. 1 6  4.31 4.44 4.55 4.65 4.73 4.81 
.01 3.76 4.28 4.59 4.82 4.99 5. 1 3  5.25 5.36 5.45 5.53 5.60 

1 20 .05 2.80 3.36 3.68 3.92 4. 1 0  4.24 4.36 4.47 4.56 4.64 4.71 
.01 3.70 4.20 4.50 4.71 4.87 5.01 5. 1 2  5.21 5.30 5.37 5.44 

00 .05 2.77 3.31 3.63 3.86 4.03 4 . 17  4.29 4.39 4.47 4.55 4.62 
.01 3.64 4. 1 2  4.40 4.60 4.76 4.88 4.99 5.08 5. 1 6  5.23 5.29 



TABLE A.7 CRITICAL VALUES OF t(B) FOR BONFERRONI'S 
MULTIPLE COMPARISON TEST 

Number of comparisons (c) 
dfe az 2 3 4 5 6 7 

2 . 1 0  4.243 5.243 6.081 6.8 1 6  7.480 8.090 

.05 6 . 1 64 7.582 8.774 9.823 1 0.769 1 1 .639 

.01 1 4.071 1 7.248 1 9.925 22.282 24.4 1 3  26.372 

3 . 1 0  3 . 149 3.690 4.1 1 5  4.471 4.780 5.055 

.05 4 . 1 56 4.826 5.355 5.799 6 . 1 85 6.529 

.01 7.447 8.565 9.453 1 0.201 1 0.853 1 1 .436 

4 . 1 0  2.751 3. 1 50 3.452 3.669 3.909 4.093 

.05 3.481 3.941 4.290 4.577 4.822 5.036 

.01 5.594 6.248 6.751 7 . 1 66 7.520 7.832 

5 . 1 0  2.549 2.882 3 . 1 29 3.327 3.493 3.638 

.05 3 . 152 3.5 1 8  3.791 4 .012 4 . 197 4.358 

.01 4.771 5.243 5.599 5.888 6. 1 33 6.346 

6 . 1 0  2.428 2.723 2.939 3. 1 1 0 3.253 3.376 

.05 2.959 3.274 3.505 3.690 3.845 3.978 

.01 4.31 5 4.695 4.977 5.203 5.394 5.559 

7 . 1 0  2.347 2.61 8 2.8 1 4  2.969 3.097 3.206 

.05 2.832 3 . 1 1 5  3.321 3.484 3.620 3.736 

.01 4.027 4.353 4.591 4.782 4.941 5.078 

8 . 1 0  2.289 2.544 2.726 2.869 2.987 3.088 
.05 2.743 3.005 3. 1 93 3.342 3.464 3.569 
.01 3.831 4 . 120 4.331 4.498 4.637 4.756 

9 . 1 0  2.246 2.488 2.661 2.796 2.907 3.001 

.05 2.677 2.923 3.099 3.237 3.351 3.448 

.01 3.688 3.952 4. 1 43 4.294 4.4 1 9  4.526 

1 0  . 1 0  2.2 1 3  2.446 2.61 1 2 .739 2.845 2.934 

.05 2.626 2.860 3.027 3. 1 57 3.264 3.355 

.01 3.580 3.825 4.002 4. 14 1  2.256 4.354 

1 1  . 1 0  2. 1 86 2 .4 12  2.571 2.695 2.796 2.881 

.05 2.586 2.81 1 2.970 3.094 3. 1 96 3.283 

.01 3.495 3.726 3.892 4.022 4. 1 29 4.221 

1 2  . 1 0  2 . 164 2.384 2.539 2.658 2.756 2.838 
.05 2.553 2.770 2.924 3.044 3 . 1 41 3.224 
.01 3.427 3.647 3.804 3.927 4.029 4. 1 1 4 
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8 9 1 0  

8.656 9. 1 88 9.691 

1 2.449 1 3.208 1 3.927 

28. 1 96 29.908 31 .528 

5.304 5.532 5.744 

6.842 7 . 1 28 7.394 

1 1 .966 1 2.453 1 2.904 

4.257 4.406 4.542 

5.228 5.402 5.562 

8 . 1 1 2  8.367 8.600 

3.765 3.880 3.985 

4.501 4.630 4.747 

6.535 6.706 6.862 

3.484 3.580 3.668 

4.095 4.200 4.296 

5.704 5.835 5.954 

3.302 3.388 3.465 

3.838 3.929 4.0 1 1 

5 . 1 98 5.306 5.404 

3 . 1 76 3.254 3.324 
3.661 3.743 3.81 6 
4.860 4.953 5.038 

3.083 3. 1 55 3.221 
3.532 3.607 3.675 

4.61 9 4.703 4.778 

3.01 2 3.080 3 . 1 42 

3.434 3.505 3.568 
4.439 4.51 5 4.584 

2.955 3.021 3.079 

3.358 3.424 3.484 

4.300 4.371 4.434 

2.91 0 2.973 3.029 
3.296 3.359 3.41 6 
4 . 1 89 4.356 4.31 5 
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TABLE A.7 CRITICAL VALUES OF t(B) FOR BONFERRONI'S 
MULTIPLE COMPARISON TEST (continued) 

Number of comparisons (c) 
dfe az 2 3 4 5 6 7 

1 3  . 1 0  2 . 146 2.361 2.51 2  2.628 2.723 2.803 

.05 2.526 2.737 2.886 3.002 3.096 3.1 76 

.01 3.371 3.582 3.733 3.850 3.946 4.028 

1 4  . 1 0  2. 1 31 2.342 2.489 2.603 2.696 2.774 
.05 2.503 2.709 2.854 2.967 3.058 3. 1 35 

.01 3.324 3.528 3.673 3.785 3.878 3.956 

1 5  . 1 0  2 . 1 1 8  2.325 2.470 2.582 2.672 2.748 

.05 2.483 2.685 2.827 2.937 3.026 3. 1 01 

.01 3.285 3.482 3.622 3.731 3.820 3.895 

1 6  . 1 0  2. 1 06 2.31 1 2.453 2.563 2.652 2.726 

.05 2.467 2.665 2.804 2.91 1 2.998 3.072 

.01 3.251 3.443 3.579 3.684 3.771 3.844 

1 8  . 1 0  2.088 2.287 2.426 2.532 2.61 9  2.691 

.05 2.439 2.631  2.766 2.869 2.953 3.024 

.01 3 .1 95 3.379 3.508 3.609 3.691 3.760 

20 . 1 0  2.073 2.269 2.405 2.508 2.593 2.663 
.05 2.4 1 7  2.605 2.736 2.836 2.91 8 2.986 
.01 3. 1 52 3.329 3.454 3.550 3.629 3.695 

25 . 1 0  2.047 2.236 2.367 2.466 2.547 2.614 

.05 2.379 2.558 2.683 2.779 2.856 2.921 

.01 3.077 3.243 3.359 3.449 3.521 3.583 

30 . 1 0  2.030 2.2 1 5  2.342 2.439 2.51 7 2.582 

.05 2.354 2.528 2.649 2.742 2.81 6 2.878 

.01 3.029 3 . 1 88 3.298 3.384 3.453 3.51 1 

8 9 1 0  

2.872 2.933 2.988 

3.245 3.306 3.361 
4.099 4. 1 62 4.2 1 8  

2.841 2.900 2 .953 
3.202 3.261 3.31 4 
4.024 4.084 4. 1 38 

2.8 1 4  2.872 2.924 

3. 1 66 3.224 3.275 

3.961 4.0 1 9  4.071 

2.791 2.848 2.898 

3 . 1 35 3. 1 91 3.241 

3.907 3.963 4.01 3 

2.753 2.808 2.857 
3.085 3 . 1 38 3 . 1 86 

3.820 3.872 3.920 

2.724 2.777 2.824 
3.045 3.097 3 . 143 
3.752 3.802 3.848 

2.672 2.722 2.767 
2.976 3.025 3.069 
3.635 3.682 3.723 

2.638 2.687 2.731 

2.932 2.979 3.021 

2.561 3.605 3.644 



dfe G'z 2 3 4 5 

APPEN D IX A 815 

Number of comparisons (c) 
6 7 8 9 1 0  1 5  20 25 30 

40 . 1  0 2.009 2. 1 89 2.3 1 2  2.406 2.481 2.544 2.597 2.644 2.686 2.843 2.952 3.036 3 . 103 
.05 2.323 2.492 2.608 2.696 2.768 2.827 2.878 2.923 2.963 3. 1 1 3 3.2 1 8  3.298 3.363 

.01 2.970 3 . 12 1  3.225 3.305 3.370 3.425 3.472 3.51 3 3.549 3.689 3.787 3.862 3.923 

60 . 1 0  1 .989 2 . 1 63 2.283 2.373 2.446 2.506 2.558 2.603 2.643 2.793 2.897 2.976 3.040 
.05 2.294 2.456 2.568 2.653 2.721 2.777 2.826 2.869 2.906 3.049 3. 1 48 3.223 3.284 
.01 2.9 1 4  3.056 3. 1 55 3.230 3.291 3.342 3.386 3.425 3.459 3.589 3.679 3.749 3.805 

1 20 . 1  0 1 .968 2. 1 38 2.254 2.342 2.41 1 2.469 2.5 1 9  2.562 2.600 2. 7 44 2.843 2.91 8 2.978 

.05 2.265 2.422 2.529 2.6 1 0  2.675 2.729 2.776 2.81 6 2.852 2.987 3.081 3. 1 52 3.209 

.01 2.859 2.994 3.087 3 . 1 58 3.2 1 5  3.263 3.304 3.340 3.372 3.493 3.577 3.641 3.693 

00 . 1  0 1 .949 2 . 1 1 4  2.226 2.31 1 2.378 2.434 2.482 2.523 2.560 2.697 2.791 2.862 2 .920 

.05 2.237 2.388 2.491 2.569 2.631 2.683 2.727 2.766 2.300 2.928 3.0 1 6  3.083 3. 1 37 

.01 2.806 2.934 3.022 3.089 3 . 143 3. 1 86 3.226 3.260 3.289 3.402 3.480 3.539 3.587 



00 ...... 
a-

TABLE A.8 CRITICAL VALUES FOR THE MANN-WHITNEY U-TEST 

n2 (larger sample size) 

n1 0'1 0'2 3 4 5 6 7 8 9 1 0  1 1  1 2  1 3  1 4  1 5  1 6  

3 .005 .01 - - - - - - 0 0 0 1 1 1 2 2 

.01 .02 - - - - 0 0 1 1 1 2 2 2 3 3 

.025 .05 - - 0 1 1 2 2 3 3 4 4 5 5 6 

.05 . 1 0  0 0 1 2 2 3 4 4 5 5 6 7 7 8 

4 .005 .01 - - - 0 0 1 1 2 2 3 3 4 5 5 

.01  .02 - - 0 1 1 2 3 3 4 5 5 6 7 7 

.025 .05 - 0 1 2 3 4 4 5 6 7 8 9 1 0  1 1  

.05 . 1 0  - 1 2 3 4 5 6 7 8 9 1 0  1 1  1 2  1 4  

5 .005 .01 - - 0 1 1 2 3 4 5 6 7 7 8 9 

.01 .02 - - 1 2 3 4 5 6 7 8 9 1 0  1 1  1 2  

.025 .05 - - 2 3 5 6 7 8 9 1 1  1 2  1 3  1 4  1 5  

.05 . 1 0  - - 4 5 6 8 9 1 1  1 2  1 3  1 5  1 6  1 8  1 9  

6 .005 .01 - - - 2 3 4 5 6 7 9 1 0  1 1  1 2  1 3  

.01 .02 - - - 3 4 6 7 8 9 1 1  1 2  1 3  1 5  1 6  

.025 .05 - - - 5 6 8 1 0  1 1  1 3  1 4  1 6  1 7  1 9  21  

.05 .1 0 - - - 7 8 1 0  1 2  1 4  1 6  1 7  1 9  21 23 25 

7 .005 .01 - - - - 4 6 7 9 1 0  1 2  1 3  1 5  1 6  1 8  

.01  .02 - - - - 6 7 9 1 1  12 14 1 6  1 7  1 9  21 

.025 .05 - - - - 8 1 0  1 2  1 4  1 6  1 8  20 22 24 26 

.05 .1 0 - - - - 1 1  1 3  1 5  1 7  1 9  21 24 26 28 30 

8 .005 .01 - - - - - 7 9 1 1  1 3  1 5  1 7  1 8  20 22 

.01 .02 - - - - - 9 1 1  1 3  1 5  1 7  20 22 24 26 

.025 .05 - - - - - 1 3  1 5  1 7  1 9  22 24 26 29 31 

.05 . 1  0 - - - - - 1 5  1 8  20 23 26 28 31 33 36 

1 7  1 8  1 9  20 21 22 23 24 25 

2 2 3 3 3 4 4 4 5 
4 4 4 5 5 6 6 6 7 
6 7 7 8 8 9 9 1 0  1 0  
9 9 1 0  1 1  1 1  1 2  1 3  1 3  1 4  

6 6 7 8 8 9 9 1 0  1 0  
8 9 9 1 0  1 1  1 1  1 2  1 3  1 3  

1 1  1 2  1 3  1 4  1 5  1 6  1 7  1 7  1 8  
1 5  1 6  1 7  1 8  1 9  20 21  22 23 

1 0  1 1  1 2  1 3  1 4  1 4  1 5  1 6  1 7  
1 3  1 4  1 5  1 6  1 7  1 8  1 9  20 21  
1 7  1 8  1 9  20 22 23 24 25 27 
20 22 23 25 26 28 29 30 32 

1 5  1 6  1 7  1 8  1 9  21 22 23 24 
1 8  1 9  20 22 23 24 26 27 29 
22 24 25 27 29 30 32 33 35 
26 28 30 32 34 36 37 39 41  

1 9  21  22 24 25 27 29 30 32 
23 24 26 28 30 31 33 35 36 
28 30 32 34 36 38 40 42 44 
33 35 37 39 41  44 46 48 50 

24 26 28 30 32 34 35 37 39 
28 30 32 34 36 38 40 42 45 
34 36 38 41  43 45 48 50 53 
39 41  44 47 49 52 54 57 60 
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TABLE A.B CRITICAL VALUES FOR THE MANN-WHITNEY U-TEST 

n2 (larger sample size) 

n1 0'1 0'2 9 1 0  1 1  1 2  1 3  1 4  1 5  1 6  1 7  1 8  1 9  

9 .005 .01  1 1  1 3  1 6  1 8  20 22 24 27 29 31  33 

.01 .02 1 4  1 6  1 8  21  23 26 28 3 1  33 36 38 

.025 .05 1 7  20 23 26 28 3 1  34 37 39 42 45 

.05 .1 0 2 1  2 4  27 30 33 36 39 42 45 48 5 1  

1 0  .005 .01  - 1 6  1 8  2 1  24 26 29 31 34 37 39 

.01  .02 - 1 9  22 24 27 30 33 36 38 4 1  4 4  

.025 .05 - 23 26 29 33 36 39 42 45 48 52 

.05 . 1 0  - 27 31 34 37 4 1  44 48 5 1  55 58 

1 1  .005 . 0 1  - - 21 24 27 30 33 36 39 42 45 

.01  .02 - - 25 28 31 34 37 41  44 47 50 

025 .05 - - 30 33 37 40 44 47 51 55 58 

.05 . 1 0  - - 34 38 42 46 50 54 57 6 1  6 5  

1 2  .005 .01  - - - 27 31 34 37 41  44 47 5 1  

. 0 1  .02 - - - 31 35 38 42 46 49 53 56 

.025 .05 - - - 37 41  45 49 53 57 6 1  65 

.05 .1 0 - - - 42 47 5 1  5 5  60 64 68 72 

1 3  .005 .01  - - - - 34 38 42 45 49 53 57 

.01  .02 - - - - 39 43 47 5 1  55 59 63 

.025 .05 - - - - 45 50 54 59 63 67 72 

.05 . 1 0  - - - - 5 1  5 6  61  65 70 75 80 

1 4  .005 . 0 1  - - - - - 42 46 50 54 58 63 

.01  .02 - - - - - 47 5 1  5 6  60 65 69 

.025 .05 - - - - - 55 59 64 69 74 78 

.05 . 1 0  - - - - - 61 66 7 1  77 82 87 

1 5  .005 . 0 1  - - - - - - 5 1  55 60 64 69 

.01  . 02 - - - - - - 56 6 1  66 70 75 

.025 .05 - - - - - - 64 70 75 80 85 

.05 . 1 0  - - - - - - 72 77 83 88 94 

1 6  .005 .01  - - - - - - - 60 65 70 74 

.01 .02 - - - - - - - 66 7 1  7 6  82 

.025 .05 - - - - - - - 75 81  86 92 

.05 .1 0 - - - - - - - 83 89 95 1 01 

20 21 22 23 24 25 

36 38 40 43 45 47 

40 43 45 48 50 53 

48 50 53 56 59 62 

54 57 60 63 66 69 

42 44 47 50 52 55 

47 50 53 55 58 61 

55 58 61 64 67 71 

62 65 68 72 75 79 

48 5 1  54 57 60 63 

53 57 60 63 66 70 

62 65 69 73 76 80 

69 73 77 8 1  85 89 

54 58 61  64 68 7 1  

60 64 67 7 1  75 78 

69 73 77 81 85 89 

77 81  85 90 95 99 

60 64 68 72 75 79 

67 71 75 79 83 87 

76 80 85 89 94 98 

84 89 94 98 1 03 1 08 

67 7 1  7 5  7 9  83 87 

73 78 82 87 91 95 

83 88 93 98 1 02 1 07 

92 97 1 02 1 07 1 1 3 1 1 8  

73 78 82 87 9 1  9 6  

80 85 90 94 99 1 04 

90 96 1 01 1 06 1 1 1  1 1 7  

1 00 1 05 1 1 1  1 1 6 1 22 1 28 

79 84 89 94 99 1 04 

87 92 97 1 02 1 08 1 1 3  

98 1 03 1 09 1 1 5  1 20 1 26 

1 07 1 1 3  1 1 9  1 25 1 31 1 37 

(continued) 
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TABLE A.8 CRITICAL VALUES FOR THE MANN-WHITNEY U-TEST (continued) 

n2 (larger sample size) 

n1 a1 a2 1 7  1 8  1 9  20 21 22 23 24 25 

1 7  .005 .01 70 75 81 86 91 96 1 02 1 07 1 1 2 
.01 .02 77 82 88 93 99 1 05 1 20 1 26 1 32 
.025 .05 87 93 99 1 05 1 1 1  1 1 7 1 23 1 29 1 35 
.05 . 1 0  96 1 02 1 09 1 1 5  1 21 1 28 1 34 1 4 1  1 47 

1 8  .005 .01 81 87 92 98 1 04 1 09 1 1 5  1 2 1  
.01 .02 88 94 1 00 1 06 1 1 2  1 1 8  1 24 1 30 
.025 .05 99 1 06 1 1 2 1 1 9  1 25 1 32 1 38 1 45 
.05 . 1 0  1 09 1 1 6  1 23 1 30 1 36 1 43 1 50 1 57 

1 9  .005 .01 93 99 1 05 1 1 1  1 1 7 1 23 1 29 
.01 .02 1 01 1 07 1 1 3  1 20 1 26 1 33 1 39 
.025 .05 1 1 3  1 1 9  1 26 1 33 1 40 1 47 1 54 
.05 . 1 0  1 23 1 30 1 38 1 45 1 52 1 60 1 67 

20 .005 .01 1 05 1 1 2 1 1 8 1 25 1 31 1 38 
.01 .02 1 1 4 1 2 1 1 27 1 34 1 4 1  1 48 

.025 .05 1 27 1 34 1 4 1  1 49 1 56 1 63 

.05 . 1 0  1 38 1 46 1 54 1 6 1 1 69 1 77 
21 .005 .01 1 1 8 1 25 1 32 1 39 1 46 

.01 .02 1 28 1 35 1 42 1 50 1 57 

.025 .05 1 42 1 50 1 57 1 65 1 73 

.05 . 1 0  1 54 1 62 1 70 1 79 1 87 
22 .005 .01 1 33 1 40 1 47 1 55 

.01 .02 1 43 1 50 1 58 1 66 

.025 .05 1 58 1 66 1 74 1 82 

.05 . 1 0  1 7 1  1 79 1 88 1 97 

23 .005 .01 1 48 1 55 1 63 

.01 .02 1 58 1 67 1 75 

.025 .05 1 75 1 83 1 92 

.05 . 1 0  1 89 1 98 207 

24 .005 .01 1 67 1 72 

.01  .02 1 75 1 84 

.025 .05 1 92 201 

.05 . 1 0  207 21 7 

25 .005 .01 1 80 

.01 .02 1 92 

.025 .05 21 1 

.05 . 1 0  227 

The test statistic must be equal to or less than the critical value to reject H0. 

When groups are of unequal size, n1 is the smaller group. 
Adapted from Table 1 in Verdooren LR. Extended tables of critical values for Wilcoxon's test statistic. Biometrika 
1 963;50(1 and 2) : 1 77, with the permission of the Biometrika Trustees. 
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TABLE A.9 PROBABILITIES* ASSOCIATED WITH VALUES OF x IN THE BINOMIAL TEST 

n 

4 
5 
6 
7 
8 
9 

0 1 2 

.062 .31 2 .688 

.031 . 1 88 .500 

. 0 1 6  . 1 09 .344 

.008 .062 .227 
.004 .035 . 1 45 
.002 .020 .090 

3 4 

.938 

.81 2 .969 

5 

.656 .891 .984 

6 

.500 .773 .938 .992 

.363 .637 .855 .965 

.254 .500 .746 . 9 1 0  

7 

.996 

.980 

X 

8 

.998 

9 1 0  1 1  1 2  1 3  1 4  1 5  1 6  

1 0  I .001 .01 1 .055 . 1 72 .377 .623 .828 .945 .989 .999 

1 1  
1 2  
1 3  
1 4  
1 5  

1 6  
1 7  
1 8  
1 9  
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

.006 .033 . 1 1 3  .27 4 .500 . 726 .887 .967 .994 

.003 .01 9 .073 . 1 94 .387 .61 3 .806 .927 .981 .997 

.002 .01 1 .046 . 1 33 .291 .500 .709 .867 .954 .989 .998 

.001 .006 .029 .090 .21 2 .395 .605 .788 . 9 1 0  .971 .994 .999 
.004 .01 8 .059 . 1 51 .304 .500 .696 .849 .941 .982 .996 

.002 .01 1 .038 . 1 05 .227 .402 .598 .773 .895 .962 .989 .998 

.001 .006 .025 .072 . 1 66 .31 5 .500 .685 .834 .928 .975 .994 .999 

.001 .004 .01 5 .048 . 1 1 9  .240 .407 .593 .760 .881 .952 .985 .996 .999 
.002 .01 0 .032 .084 . 1 80 .324 .500 .676 .850 .91 6 .968 .990 .998 
.001 .006 .021 .058 . 1 32 .252 .41 2  .588 .748 .868 .942 .979 .994 .999 

.001 .004 .01 3 .039 .095 . 1 92 .332 .500 .668 .808 .902 . 961  .987 .996 
.002 .008 .026 .067 . 1 43 .262 .41 6  .584 .738 .857 .933 .974 .992 
.001 .005 .01 7 .047 . 1 05 .202 .339 .500 .661 .798 .895 .953 .983 
.001 .003 .01 1 .032 .076 . 1 54 .271 .41 9  .581 .729 .846 .924 .968 

.002 .007 .022 .054 . 1 1 5  .2 1 2  .345 .500 .655 .788 .885 .946 

.001 
.001 

.005 .01 4 .038 

.003 .01 0 .026 

.002 .006 .01 8 

.001 .004 .01 2 

.001 .003 .008 

.084 . 1 63 

.061 . 1 24 

.044 .092 

.031 .068 

.021 .049 

.279 .423 

.221 .351 

. 1 72 .286 

. 1 32 .229 

. 1 00 . 1 81 

.577 

.500 

.425 

.356 

.292 

.721 

.649 

.575 

.500 

.428 

.837 .9 1 6  

.779 .876 

.71 4 .828 

.644 .771 

.572 .708 

*Tabled probabilities are for one-tailed tests. Double values in table for a two-tailed test. 
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TABLE A.1 0  CRITICAL VALUES O F  T FOR THE WILCOXON SIGNED-RANKS TEST 

a1 .025 .01 .005 
N a2 .05 .02 .01 

6 0 
7 2 0 
8 4 2 0 
9 6 3 2 

1 0  8 5 3 

1 1  1 1  7 5 
1 2  1 4  1 0  7 
1 3  1 7  1 3  1 0  
1 4  2 1  16  1 3  
1 5  25 20 1 6  

1 6  30 24 20 
1 7  35 28 23 
1 8  40 33 28 
1 9  46 38 32 
20 52 43 38 

21  59 49 43 
22 66 56 49 
23 73 62 55 
24 81 69 61  
25 89 77 68 

The test statistic must be equal to or less than the critical value to reject H0. 

Adapted from Table 1 in Wilcoxon F. Some Rapid Approximate Statistical Procedures. Copyright © 1 949, 1 964, Led­
erie Laboratories, Division of American Cyanamid Company. All rights reserved and reprinted with permission. 
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TABLE A.1 1 CRITICAL VALUES OF SPEARMAN'S RANK CORRELATION 
COEFFICIENT, 's 

n 

4 
5 
6 
7 
8 
9 

1 0  

1 1  
1 2  
1 3  
1 4  
1 5  

1 6  
1 7  
1 8  
1 9  

20 

21  
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 

41 
42 
43 
44 
45 

0.1 0 
0.05 

1 .000 
0.900 
0.829 
0.7 1 4  

0.643 
0.600 
0.564 

0.536 
0.503 
0.484 
0.464 
0.443 

0.429 

0.41 4 

0.401 

0.391 

0.380 

0.370 
0.361 
0.353 
0.344 
0.337 

0.331 
0.324 
0 .317 
0.31 2 
0.306 

0.301 
0.296 
0.291 
0.287 
0.283 

0.279 
0.275 
0.271 
0.267 
0.264 

0.261 
0.257 
0.254 
0.251 
0.248 

0.05 
0.025 

1 .000 
0.886 
0.786 
0.738 
0.700 
0.648 

0.6 18  
0.587 
0.560 
0.538 
0.521 

0.503 
0.485 
0.472 
0.460 

0.447 

0.435 
0.425 
0.4 15  
0.406 
0.398 

0.390 
0.382 
0.375 
0.368 
0.362 

0.356 
0.350 
0.345 
0.340 
0.335 

0.330 
0.325 
0.321 
0.3 17  
0.3 13  

0.309 
0.305 

0.301 
0.298 
0.294 

0.02 
0.01 

1 .000 
0.943 
0.893 
0.833 

0.783 
0.745 

0.709 
0.671 
0.648 
0.622 
0.604 

0.582 

0.566 

0.550 

0.535 

0.520 

0.508 
0.496 
0.486 
0.476 
0.466 

0.457 
0.448 
0.440 
0.433 
0.425 

0.4 18  
0.4 1 2  
0.405 
0.399 
0.394 

0.388 
0.383 
0.378 
0.373 
0.368 

0.364 
0.359 
0.355 
0.351 
0.347 

0.01 
0.005 

1 .000 
0.929 
0.881 

0.833 
0.794 

0.755 
0.727 
0.703 
0.675 
0.654 

0.635 
0.61 5 
0.600 
0.584 
0.570 

0.556 
0.544 
0.532 
0.521 
0.51 1 

0.501 
0.491 
0.483 
0.475 
0.467 

0.459 
0.452 
0.446 
0.439 
0.433 

0.427 
0.421 
0.4 1 5  
0.410 
0.405 

0.400 
0.395 
0.391 
0.386 
0.382 

0.005 
0.0025 

1 .000 

0.964 

0.905 
0.867 
0.830 

0.800 
0.776 
0.747 

0.723 

0.700 

0.679 
0.662 
0.643 
0.628 
0.6 12  

0.599 
0.586 
0.573 
0.562 

0.551 

0.541 
0.531 
0.522 

0.51 3 
0.504 

0.496 
0.489 
0.482 

0.475 
0.468 

0.462 
0.456 
0.450 
0.444 
0.439 

0.433 
0.428 
0.423 
0.41 9 
0.4 1 4  

0.002 
0.001 

1 .000 
0.952 
0.9 17  

0.879 

0.845 
0.825 
0.802 
0.776 
0.754 

0.732 
0.7 1 3  
0.695 
0.677 
0.662 

0.648 
0.634 
0.622 
0.6 10  
0.598 

0.587 
0.577 
0.567 
0.558 
0.549 

0.541 
0.533 
0.525 

0.51 7 
0.510 

0.504 
0.497 
0.491 
0.485 
0.479 

0.473 
0.468 
0.463 
0.458 
() 4<;� 

0.001 
0.0005 

1 .000 
0.976 
0.933 
0.903 

0.873 
0.860 
0.835 
0.81 1 

0.786 

0.765 

0.748 

0.728 
0.7 1 2  

0.696 

0.681 
0.667 
0.654 
0.642 
0.630 

0.61 9 
0.608 
0.598 
0.589 
0.580 

0.571 
0.563 
0.554 
0.547 
0.539 

0.533 
0.526 
0.519 
0.5 1 3  
0.507 

0.501 
0.495 
0.490 
0.484 
n 47Q 
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TABLE A.1 1 CRITICAL VALUES OF SPEARMAN'S RANK CORRELATION 
COEFFICIENT, r5 (continued) 

a2 0.1 0  0.05 0.02 0.01 0.005 0.002 0.001 

n al 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

46 0.246 0.291 0.343 0.378 0.4 1 0  0.448 0.474 
47 0.243 0.288 0.340 0.374 0.405 0.443 0.469 
48 0.240 0.285 0.336 0.370 0.401 0.439 0.465 
49 0.238 0.282 0.333 0.366 0.397 0.434 0.460 
50 0.235 0.279 0.329 0.363 0.393 0.430 0.456 

60 0.2 1 4  0.255 0.300 0.331 0.360 0.394 0.4 1 8  
70 0 . 198 0.235 0.278 0.307 0.333 0.365 0.388 
80 0.1 85 0.220 0.260 0.287 0.3 12 0.342 0.363 
90 0. 1 74 0.207 0.245 0.271 0.294 0.323 0.343 

1 00 0 . 165 0 . 1 97 0.233 0.257 0.279 0.307 0.326 
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Relating the Research 
Question to the Choice 

Statistical Test 

Research Question Refer to Chart 

Is there a difference between means (or medians)? 

1 independent variable, 2 levels 81 

1 independent variable, � 3 levels 82 

2 or more independent variables 83 

Is there a difference in proportions? 84 

Is there an association between variables? 85 

Is there a predictive relationship between variables? 86 

Are measurements reliable? 87 

823 



00 
N 
"" 

1 Independent Variable 

2 Levels 

2 INDEPENDENT GROUPS 
Is there a difference between groups? 

Pretest-posttest design 
(compare change scores) 

or 
Posttest only design 

1 GROUP 
Is there a difference between 

conditions in the same person? 
Difference scores or pretest-posttest 

Repeated measures design 

B1 

Is there a difference between means (or medians)? 

Dependent variable 
Ratio/interval Assume normal distribution Unpaired t-test 

Chapter 1 9  

Cannot assume 
normal distribution 

Dependent variable t----------------� 
Ordinal 

Mann-Whitney U test 
(Rank Sum Test) 

Chapter 22 

Dependent variable 
Ratio/interval Assume normal distribution 1----------l� Paired t-test 

Chapter 1 9  

Cannot assume 
normal distribution 

Sign test Dependent variable Wilcoxon signed-ranks test Ordinal Chapter 22 



CX) 
N 
{.II 

1 Independent Variable 
3 or more levels 

2:3 INDEPENDENT GROUPS 

Pretest-posttest design 
(compare change scores) 

or 
Posttest only design 

1 GROUP 

Repeated measures 

82 
Is there a diffe rence between means (or  medians)? 

Dependent variable 
Ratio/interval 

Dependent variable 
Ordinal 

Dependent variable 
Ratio/interval 

Dependent variable 
Ordinal 

Assume normal distribution 

Cannot assume 
normal distribution 

Assume normal distribution 

Cannot assume 
normal distribution 

One-way ANOVA (f) 
Chapter 20 

Confounding variable: 1-----11>1 
covariate 

Confounding variable: 
covariate 

Kruskai-Wallis ANOVA (f) 
Chapter 22 

One-way repeated 
measures ANOVA (f) 

Chapter 2 0  

One-way repeated 
measures ANCOVA 

Chapter 24 

Friedman ANOVA (x2) 
Chapter 22 



� a-

2 (or more) 
Independent Variables 

2 (or more) 
INDEPENDENT FACTORS 

Factorial design 

1 GROUP 

Repeated measures 

1 INDEPENDENT FACTOR 
1 REPEATED FACTOR 

Mixed design 

83 
Is there a difference between means (or medians)? 

Confounding variable: 
Covariate 

2-way ANOVA 
Chapter 20 

2-way ANCOVA 
Chapter 24 

2-way repeated measures 
A NOVA 

Chapter 20 

Confounding variable: I I 2-way repeated measures ANCOVA 
Covariate 

' Chapter 24 

Two-way ANOVA with one 
repeated measure 

Chapter 20 

Confounding variable· f--------------+1 
Covariate Mixed ANCOVA 



00 
N 
" 

Two Continuous 
Variables 

One Dichotomous Variable 
One Continuous Variable 

Two Nominal 
Variables 

84 
Is there an association between variables? 

1 Hatio/interval I" • 1 Assume normal distribution 1 • 1 Pearson product-moment correlation (r) 
Chapter 23 

One variable ratio 
One variable nominal 

One variable ordinal 
One variable nominal 

Two dichotomous 
variables 

3 or more categories 

Cannot assume 
normal distribution 

Correlated data from 
one sample 

Spearman rank correlation (r5) 
Chapter 23 

Pearson correlation 
(Point biserial correlation) 

Chapter 23 

Spearman rank correlation 
(Rank biserial correlation) 

Chapter 23 

McNemar test 
Chapter 22 

Pearson correlation 
(Phi coefficient) 

Chapter 23 

Relative risk (RR) 
Odd ratio (OR) 

Chapter 28 

Small expected 1 • 1 frequenctes 
Fisher exact test 

Chapter 25 

Independent 1'--------------+J 
samples 

Chi square (X2) 
Chapter 25 



QD 
N 
QD 

85 
Do one (or more) i ndependent variables predict one (or more) dependent variables? 

Dependent Variable Is 
Rationnterval 

Dependent Variable Is 
Categorical 

(Nominal/Ordinal) 

One independent variable 

2 or more independent variables 1----------..-J 

Independent variables are 
primarily continuous 

Independent variables are primarily 
dichotomous 

Linear regression 
Chapter 24 

Multiple regression (W} 
Chapter 29 

Discriminant analysis 
Chapter 29 

Logistic regression 
Chapter 29 



00 
N 
\0 

Test-retest reliability 

Inter-rater reliability 
Intra-rater reliability 

86 
Are measurements reliable? 

Categorical variable 
Nominal or ordinal scale 

Kappa (K) 
Chapter 26 

Account for 
disagreements 

1--------� Weighted kappa 
Chapter 26 

Continuous variable I l lntraclass correlation coefficient (ICC) 
Ordinal/interval/ratio scale -==:::::::::::: • 

Chapter 26 

Categorical variable 
Nominal or ordinal scale 

Method error 
Chapter 26 

Kappa {K) 
Chapter 26 

Account for 
disagreements 

Weighted kappa (Kw) 1-------"'1 Chapter 26 

Continuous variable lntraclass correlation coefficient (ICC) 
Ordinal/interval/ratio scale Chapter 26 

1 Alternate forms 1 •J Limits of agreement Chapter 26 

Internal consistency 
Cronbach's alpha 

Chapter 26 

Response stability j�-==========================:·:��S�t�a�n�d�a���e��������� 
Chapter 26 '------

.J Coefficient of variation 
Chapter 26 



APPEN DIX C 

Power and Sample Size 

In Chapter 18 we introduced the concept of power as an important consideration in 
testing the null hypothesis. The purpose of this appendix is to describe statistical pro­
cedures for power analysis and estimation of sample size for studies using the t-test, 
analysis of variance, correlation, multiple regression, and chi-square for contingency 
tables. These procedures are based on the work of Cohen.1 For each procedure, formu­
las are provided, followed by specific examples of their use. 

THE EFFECT SIZE INDEX 
In power analysis we are concerned with five statistical elements: the significance cri­
terion (a), the sample size (n), sample variance (s2), effect size (ES), and power 
(1 - /3). These elements are related in such a way that given any four, the fifth is read­
ily determined. 

Effect size is a measure of the magnitude of difference or correlation. The larger 
the observed effect, the more likely it will result in a significant statistical test (given 
a specific alpha level). An effect size index is a statistic that represents effect size using 
a standardized value that is universally applicable for all units of data, just as t, F 
and r are unit free. A different form of effect size index is used for each statistical 
procedure. 

It is a simple process to calculate a sample effect size index following completion of 
a study. We know the sample size, and we can calculate the actual variance, means, cor­
relations, or proportions in the data. This information can then be used to determine the 
degree of power achieved. 

During planning stages of a study we use effect size to determine how many sub­
jects will be needed. But because data are not yet available, the researcher must make 
an educated guess as to the expected effect size. This hypothesis is often based on pre­
vious research or pilot data, where studies can provide reasonable estimates for mean 
differences, correlations and variances. When such data are not available, the effect 
size estimate may be based on the researcher's opinion of a clinically meaningful dif­
ference; that is, the researcher can determine how large an effect would be important. 
For example, suppose we were interested in studying two treatments for improving 
shoulder range of motion in patients with adhesive capsulitis. We might say that the 
results of the treatments should differ by at least 20 degrees, or we would not consider 
the difference to be meaningful. Therefore, if we observed a difference this large, we 
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would want it to be significant. This would be the effect size we would propose. Sim­
ilarly, for a correlational study we could propose that a correlation of at least .60 would 
be important. These types of clinical judgments can then be used to guide the estima­
tion of sample size. 

Conventional Effect Sizes 
When the researcher wants to establish the required sample size prior to data collection, 
and no clinical judgment or previous data provide a reasonable guide, Cohen proposes 
the use of conventional values, which are based on operational definitions for "small," 
"medium," and "large" effect sizes.1 Although these definitions are purely relative and 
somewhat intuitive, Cohen suggests that they represent reasonable estimates for plan­
ning purposes. Specific values for small, medium and large effects are proposed for 
each statistical procedure. Cohen emphasizes, however, that these descriptions are nec­
essarily relative, and must be operationalized for a given research situation. A small 
effect size for tests of movement may be quite different from a small effect for psycho­
logical phenomena. 

As a starting point then, a small effect size is considered small enough so that 
changes are not perceptible to the human eye, but not so small as to be minute. In new 
areas of inquiry, effect sizes are likely to be small because the phenomenon under study 
is typically not well understood and perhaps not under good experimental control. 
Many behavioral effects are likely to fall into this category, because of the influence of 
extraneous variables and the subtleties of human performance. 

A medium effect size is conceived as large enough to be visible to the naked eye, so 
that one would be aware of the change in the course of normal observation. 

A large effect size represents a great degree of separation, so that there is very little 
overlap between population distributions. Differences should be grossly observable. 
Large effect sizes are often seen in sociology, economics, and physiology, fields charac­
terized by studies with large samples and good experimental control. 

One way to conceptualize these definitions is to think of effect size in terms of vari­
ance. Using a simple framework involving two group means, the difference between 
means would be considered small if it is 20% of one standard deviation (assuming both 
groups have the same standard deviation). A medium effect would be equivalent to half 
a standard deviation, and a large effect would be 80% of a standard deviation. It is use­
ful to think of effect size, then, as a ratio of the variance between groups relative to the 
variance within groups. 

Estimating Sample Size 
So what happens if the estimate of effect size is incorrect? What happens if we predict 
a large effect size and choose the appropriate sample, but the actual scores reveal a 
small effect, which turns out to be nonsignificant? Well, then we go back and determine 
the probability of a Type II error, and what level of power was actually achieved. This 
information can then be used for interpreting the study's results and in planning future 



832 APPENDIX C 

studies. It is usually more prudent to be conservative in effect size estimates, so that a 
large enough sample will be recruited. If several analyses are planned for a given set of 
data (such as several regression equations or multiple analyses of variance), the sample 
size must be large enough to support the smallest hypothesized effect for the most com­
plex analysis? 

Tables 
Tables are provided for power and sample size estimates at the end of this appendix. 
Power can be determined by knowing effect size and sample size, and sample size can 
be determined by knowing the expected effect size and the desired level of power. 
Tables are included for a = .05, for one- and two-tailed test where appropriate. Each 
statistical procedure requires its own set of tables. We have limited these tables to basic 
configurations for the t-test, analysis of variance, correlation, regression, and chi­
square. The reader is referred to Cohen for additional tables.1 

POWER ANALYSIS FOR THE t-TEST 
Power analysis for the t-test is based on the effect size index, d, which expresses the dif­
ference between the two sample means in standard deviation units. 

Unpaired t-Test: Equal Variances 
For the unpaired t-test with equal variances, the effect size index is calculated ac­
cording to: 

(C.l)  

where X1 and X2 are the group means, and s is  their common standard deviation. 
Assuming equality of variance, s can be the standard deviation from either group, or 
it can be their arithmetic average, the square root of the pooled variance, � (see 
Equation 19.2). 

If used after data analysis, the d index can also be computed using the calculated 
value of t: 

(C.2) 

With a nondirectional alternative hypothesis, only the absolute value of d is considered. 
With a directional hypothesis, the sign of d must correspond to the predicted direction. 
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When the assumption of homogeneity of variance is not met, the calculation of d is 
based on the root mean square (s ' ) of s1 and s2 as follows: , Pz+ s2 s = 

2 

The value of s '  is used in the denominator of Equation C.l. 

Paired t-Test 

(C.3) 

When data are collected in a repeated measures design, calculation of d is based on 
paired scores. In this case, we first calculate d' using the means for the two test condi­
tions and a common standard deviation: 

(C.4) 

We account for the fact that these values are correlated by adjusting d as follows: 

d' d = ------� (C.S) 

where r is the correlation coefficient for the paired data. 
When no estimate of r can be made, we can substitute the formula 

(C.6) 

where d is the mean of the difference scores, and sd is the standard deviation of the dif­
ference scores. The value of d to be used in the power tables is then determined by 

d = d'v'2 (C.7) 

Conventional Effect Sizes 
When d cannot be computed directly, the following conventions can be used to assign 
value to the effect size index: small d = .20, medium d = .50, and large d = .80. 

Power and Sample Size Tables 
To determine the power achieved for a given sample size and effect size, we use Tables 
C.l.l and C.l.2, found at the end of this appendix, for estimates at a1 and a2 = .05. Along 
the top of the table we locate the appropriate value of d, and down the side, the known sam­
ple size, n. For the unpaired test, sample size refers to the number of subjects in each group 
(assuming equal groups), not both groups combined. For the paired t-test, this is the num­
ber of subjects in the study. Power levels, in percentages, are given in the body of the table. 
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Unequal Samples 
When sample sizes are different for the two groups being compared, the harmonic mean 
of the two sample sizes, n: is computed: 

' 2nln2 n = 
n1 + n2 

The value of n '  is then used to locate n in the power table. 

(C.8) 

Table C.2 is used to determine the sample size needed for the t-test to achieve a 
desired level of power for one- and two-tailed tests at a = .05 and .01 . For each sub­
table, the value of d is located across the top, and the desired power is given at the left. 
Power levels are listed for .70, .80, and .90. The sample sizes found in the body of the 
table represent the number of subjects required in each group, or the total number of sub­
jects for paired observations. 

When the exact value of d is not provided in the table, an adequate approximation 
of n can be given by 

- n.lO + 1 n - --

100d2 (C.9) 

where n.10 is the sample size given for d = .10 in Table C.2, and d is the exact calculated 
value of the effect size index.* 

Examples 

Unpaired t-Test: Equal Variances 
Consider the data from Table 19.1 in Chapter 19. In that hypothetical study, we meas­
ured change in pinch strength in two groups, with X1 = 10.11, X2 = 5.45, and 
s� = 14.695. A directional hypothesis was proposed. Therefore, using Equation C.1, 

s = � = V14.695 = 3.83 d = 
10.11 

-
5.45 

= 1 .22 
3.83 

Alternatively, t = 2.718, with n = 10 per group. Therefore, using Equation C.2, 

10 + 10 � � d = 2.718 
(10)(10} 

= 2.718 v .20 = 1.22 

To determine the power achieved with this test, we refer to Table C.l .1 for a1 = .05 
and n = 10. With d = 1 .2, we achieve 83% power. If we use these values to determine 
sample size for 80% power, we refer to Table C.2 for a1 = .05, where we find that we 
would need 9 subjects per group. 

*When using an average value for n the power estimates will be underestimates; that is, the power value in 
the table will be slightly lower than the true power. This underestimate will be trivial when n ' > 25. Note 
that when sample sizes and variances are both unequal, the estimates of power using these tables may be 
inaccurate.1 
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Now suppose we are planning this study. We state a nondirectional hypothesis and 
propose that a difference of 5 pounds would be important. We guess that a standard 
deviation of 8.0 would be expected. Therefore, we estimate that d = 5/8 = .625. Refer­
ring to Table C.2 for a1 = .05 and d = .60, we would estimate that we will need 35 sub­
jects per group (a total of 70) to achieve 80% power. If once the study is completed, we 
obtain an effect size index of 1 .2 with n = 35, we would then have achieved more than 
99% power (Table C.l .1) . 

Unpaired t-Test: Unequal Variances 
Consider the data in Table 19.2 in Chapter 19 for change in pinch strength, where 
X1 = 10.80, X2 = 5.65 and sy = 25.17, s� = 4.89. Therefore, using Equations C.3 and C.1, 

5 , 
= 
)25.17 + 4.89 = 3 88 

2 
. d = 10.80 - 5.65 

= 1 .33 
3.88 

Because the samples are of unequal size, we compute the harmonic mean to determine 
n '  using Equation C.8. With n1  = 10 and n2 = 15: 

2n1n2 2(10)(15) 300 
n '  = = = - = 12 

n 1  + n2 10 + 15 25 

Using n = 12 in Table C.l.1, we find for d = 1 .2 power is 89%, and for d = 1 .4 power is 
96%. We can, therefore, estimate that power is approximately 93% for d = 1 .3. 

To determine sample size requirements with d = 1 .3 we can use Table C.2. For 80% 
power with a1 = .05, we would need between 9 and 7 subjects (between d = 1 .2 and 
1 .4). To calculate the exact sample size for d = 1 .3, we use Equation C.9: 

n 10 1237 
n = -· - + 1 = + 1 = 7.32 + 1 = 8.32 

100d2 100(1 .3)2 

These results should always be rounded up to the nearest whole number. We would 
need 9 subjects per group to achieve 80% power with this effect size. 

Paired t-Test 
Consider the data in Table 19.3 in Chapter 19 for paired data. We examined the angle of 
the pelvis with and without a lumbar pillow in a sample of 8 subjects. For the paired 
t-test, we found that X1 = 102.38, X2 = 99.00 and s1 = 7.41, s2 = 8.64. A nondirectional 
hypothesis was proposed. The analysis also showed that r = .86 for the paired scores. 
Therefore, we use Equations C.4 and C.S: 

s = 
7.41 + 8.64 

= 8.025 
2 

d
' 

-
102.38 - 99.00 -- 8.025 - 0.42 d = 

0.42 
= 0.78 v1 - .71 

Alternatively, using d = -3.375 and sd = 6.232, with Equations C.6 and C.7: 

dl - 3.375 
0 - - 54 - 6.232 - . 

Note that the minus sign is ignored. 

d = 0.54 v2 = 0.76 
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To determine power at a2 = .05, we use Table C.l.2. For n = 8 and d = .80 (rounded) 
we can see that we achieve 31% power. This study had a good effect size, but the sam­
ple size was quite small, resulting in low power. Using Table C.2, we find we would 
have needed 26 subjects to achieve 80% power. 

POWER ANALYSIS FOR THE ANALYSIS OF VARIANCE 
For the analysis of variance (AN OVA) the effect size index, f, is  defined by 

_ /ftsb f - 55 e 
(C.lO) 

where SSe is the error sum of squares from the ANOVA summary table.t For a one-way 
ANOVA, 5� is the between-groups sum of squares. For a two-way ANOVA, 5� can 
represent either an individual main effect or the interaction effect; that is, a separate 
effect size index can be computed for each effect.+ This index can be applied to inde­
pendent samples and repeated measures designs. 

If we do not have access to the AN OVA summary, we can also calculate fusing the 
following formula: 

J = 
Srn 
s 

(C.ll) 

where srn is the standard deviation of the group means around the grand mean, and s 
is the common standard deviation for each group. For planning purposes, to estimate f, 
researchers may be able to hypothesize values for group means and their common stan­
dard deviation, based on theory and previous research. With equal sample sizes, sm is 
obtained by 

s 
= 

/Z:(Xi - Xc)2 
m \j 

k 
(C.12) 

where (Xi - Xc) represents the deviation of each individual group mean (Xi) from the 
grand mean (Xc) and k is the number of groups.§ Equation C.12 will work for the 
between-groups effect in a one-way AN OVA and for the main effects in a factorial design. 

+Some statistical programs report this effect size index as eta squared ( 172):3 172 = SSt, SSt, 55 

g /2 + e 
These indices are related:1 f = and 172 = --2 1 11 l + f  
�Alternatively, an effect size index can also be computed for the overall two-way AN OVA model, combining 
all between-groups effects. The term SSt, would then be the sum of all between-groups sums of squares (i.e., SSA, SSs, and SSAxB)· 
§If groups are not of equal size, the difference between each group mean and the grand mean must be 

h d b  h 1 . . 
5 / �ni(Xi - Xd 

h . th b f b' t . h weig te y t e samp e s1ze, usmg m = \j N w ere ni IS e num er o su JeC s m eac group 

and N is the total sample size for all groups combined. 
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For two-way interactions, the findex must account for the variability among the inter­
action means with reference to the main effects (A and B) and the grand mean as follows: 

5 . _ / 2:.(XAB - XA - XB + Xc)2 
m(AB) - \j 

dfAB + 1 
(C.13) 

where XAB is the individual cell mean, XA is the marginal mean for variable A and X8 
is the marginal mean for variable B for that cell, and Xc is the grand mean for the sam­
ple. The term d f AB represents the degrees of freedom associated with the interaction 
term (A - 1)(B - 1). 

Conventional Effect Sizes 
When effect sizes cannot be estimated from existing data, conventional values are as fol­
lows: small f = .10, medium f = .25, large f = .40. 1 1 

Power and Sample Size Tables 
Power tables for the analysis of variance are arranged according to the degrees of free­
dom associated with each F-test (dfb)· In a one-way ANOVA, this is the between­
groups effect. In a two-way ANOVA (or larger) these effects will include each main 
effect and an interaction effect. Tables C.3.1 through C.3.4 give power estimates for 
different values of the effect size index, f, at d fb = 1, 2, 3, and 4 at a = .05. See Cohen 
for additional tables.1 

Sample sizes can be found using Table C.4 for various levels of a and d fb· These 
tables are used in the same way as the tables for the t-test. 

To find n for a value off that is not tabled, we use 

(C.14) 

where n .05 is the sample size for f = .05 at the desired level of power and f is the exact 
value of the effect size index. 

Examples 

One-Way Analysis of Variance 
Consider the data for a one-way analysis of variance presented in Table 20.1 in Chapter 
20. In this study we examined the effect of different modalities on ROM in 44 patients 
with elbow tendinitis. Four groups were compared (k = 4). Using data from the 
AN OVA output summary table, we found that S� = 3158.09 and SSe = 3541 .64. There­
fore, using Equation C.10, 

3158.09 � � 
3541 .64 

= v 0.892 = 0.944 

1 1 Using 712 these conventional effect sizes are equivalent to smal1 712 = .01, medium 712 = .06, large 712 = .14. 
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Given conventional effect sizes for f, this is a large effect. 
To determine the power achieved with this test, we refer to Table C.3.3 for d /b = 3. The 

sample size used in the table refers to the number of subjects in each group, in this case 
n = 11 .  In this example, the f index is larger than .80, which is the highest value listed in 
the table. If we look across the row for n = 1 1, for f = .80 the power is 99%. Therefore, we 
can expect that power for f = 0.94 is 100%. Note that we actually would not do a power 
analysis for this study, as it resulted in a significant F-test. We use it here for illustration only. 

Suppose we did not know these results, but we wanted to plan this study to 
determine the needed sample size. We hypothesize that ROM change will be greatest 
for those using ice, slightly less for those using ultrasound, less for those using mas­
sage, and much less for those with no intervention. As an estimate, based on our expe­
rience, we guess that the means will be 50, 40, 30, and 20, respectively. Using the 
literature as a guide, we also estimate that the standard deviation will be 8.0. With 
these values, we estimate a grand mean of (50 + 40 + 30 + 20) I 4 = 35. Therefore, we 
can estimate f using Equations C.12 and C.ll as follows: ) }:(Xi - Xc) )(50 - 8)2 + (40 - 8)2 + (30 - 8)2 + (20 - 8)2 s = = = 58.45 m k 4 

f = 
s: = 

58�45 = 7.31 

We tum to Table C.4 (d /b = 3) to determine the sample size needed to achieve 80% 
power with this estimated effect size. Using f = .80 (the largest value), we find that we 
would need 5 subjects per group, or a total sample of 20 subjects. Based on conventional 
effect sizes, this is considered a large effect, achieving high power even with a relatively 
small sample. 

Two-Way Analysis ofVariance 
In a two-way ANOVA, power can be determined for each of the main effects and inter­
action effects. Consider the data presented in Table 20.3 in Chapter 20, for a study com­
paring the effect of three types of stretch (A) in two knee positions (B) for increasing 
ankle range of motion. A total of 60 subjects were assigned to six unique treatment 
groups. This analysis resulted in a significant interaction as well as a significant main 
effect for Stretch, but no significant effect for Position. 

Main Effect. To look at the main effect of Position (variable B), we estimate effect size 
using Equation C.10 as follows: 

!B = p5B = ) 2•
02 = Y.Oo3 = .0548 \j ss:; 697.36 

where 558 is the sum of squares associated with Position (variable B).# Based on con­
ventional values, this would be considered an extremely small effect. To determine the 

iiJlor these examples, please do not confuse subscripts A and B, which represent values associated with fac­
tors A and B, and subscript b which indicates the between-groups effect. 
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power of this test with two levels, we use Table C.3.1 for dfB = 1 .  Each level of Position 
includes 30 subjects. This test achieves 6% power. Therefore, we have a 94% chance that 
we committed a Type II error. However, we must also consider the fact that the differ­
ence between main effect means for the two positions was 0.36 degrees (see Figure 
20.6); that is, the observed effect size was extremely small. Given that we are measur­
ing range of motion, such an effect would not be considered important. Therefore, it is 
unlikely that we have truly committed a Type II error. It is more likely that these posi­
tions are not different. 

How many subjects would we have needed to achieve 80% power with this effect? 
We use Table C.4 for d /b = 1 .  For f = .05 at 80% power, we would need 1,571 subjects 
per group. As this is surely unreasonable, we might reconsider the inclusion of this vari­
able in our research hypothesis. 

I nteraction Effect. To determine power for the interaction effect (an illustration, as 
this effect was significant), we use Equation C.10 as follows: 

707.72 
= Vl.62 = 0 1 

697.36 
1 0  

We refer to Table C.3.2 for dfb = 2 (the degrees of freedom associated with the interac­
tion effect). The effect size values do not go as high as 1 .00, but for n = 10 at f = .80, 
power is 97%. Therefore, we know that we have achieved maximal power for this effect. 

In planning this study, suppose we hypothesized that prolonged stretch would be 
most effective, and that the control group would not change. We also believe that 
greater ankle range of motion will be achieved when stretch is given with the knee 
extended. We project the following means: 

Knee Position 

Marginal 
Stretch Flexion 81 Extension 82 Means 

Prolonged A1 1 5  20 XA, = 1 7.5 

Quick A2 1 0  1 0  XA2 = 1 0  

Control A3 0 0 XA3 = 0 

Marginal Means X8, = 8.3 X82 = 1 0  XG = 9 . 1 5  

From the literature we estimate that the standard deviation in our data will be 5.0. 
Using these values, we compute Sm(AB) using Equation C.13 as follows: 

(15 - 17.5 - 8.3 + 9.15)2 + (20 - 17.5 - 10 + 9.15)2 + . . .  + (0 - 0 - 10 - 9. 15)2 • ;;:-;:;;:. _:____ _____ _:________: ______ :___:__:__ ____ :_ = v 2.78 = 1.67 2 + 1 
Therefore, according to Equation C.10, 

1 .67 JAB = - = .33 
5.0 
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To determine sample size, we look at Table C.4 for d fb = 2, power = 80%, and f = .30. 
We would need 36 subjects per group, or a total of 72 subjects. If we were doing this type 
of planning for a two-way design, we would project sample sizes for each main effect 
and interaction, and use the largest sample size as our guideline. 

POWER ANALYSIS FOR CORRELATION 
Power analysis for correlations is based on the magnitude of association, or the correla­
tion coefficient. Because the correlation coefficient is a unit-free index, the effect size 
index does not need to be adjusted, and is simply the value of r. 

Conventional Effect Sizes 
Cohen addresses the dilemma that often surfaces when interpreting values of r; that is, 
even small correlations are often considered meaningful.1 This is especially common in 
the behavioral and clinical sciences, where significant correlations will often be less 
than .60. Therefore, how does one conceptualize a "large" or "small" effect? This must 
be a relative frame of reference, based on knowledge of the literature and clinical 
hypotheses; that is, how much of the variance in clinical phenomena can we truly 
expect to predict? 

Based on this understanding, Cohen hesitates to offer conventional effect sizes for 
r, but does suggest the following may be used when no other statistical rationale is obvi­
ous: small r = 1 .0, medium r = .30, large r = .50. 

Power and Sample Size Tables 
Tables C.5.1 and C.5.2 can be used to estimate power for the Pearson and Spearman cor­
relations for one- and two-tailed tests at a = .05. Table C.6 provides estimated sample 
sizes required to achieve various levels of power for the same significance levels. The 
values of n in the tables represent the number of paired observations. 

Example 
Refer to Table 23.2 in Chapter 23, showing the correlation of  proximal and distal behav­
iors in a sample of 12 normal infants, with a resulting correlation of r = .37, which was 
not significant at a1 = .05. To determine the level of power achieved, we refer to Table 
C.S.l. With r = .40 and 12 subjects, we attained 38% power; that is, there is a 62% 
chance we committed a Type II error. To find how many subjects we needed for 80% 
power, we use Table C.6 (a1 = .05). We should have recruited a sample of 37 subjects. 
In planning a study, we simply hypothesize a meaningful value for r and use this value 
in Table C.6. 

POWER ANALYSIS FOR REGRESSION 
In regression analysis, a quantitative dependent variable (Y) is correlated with a set of 
independent variables (X1, X2, through Xk). As with correlation, the degree of association 
within the regression equation represents the effect size, in this case R2. The independent 
variables may represent quantitative or categorical variables (see Chapters 24 and 27). 
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In determining power, however, we must convert R2 to another index that will 
account for both the number of subjects and the number of independent variables in the 
regression. This index, called lambda (A)** is calculated as follows: 

R2 
A =  --- (N) 

1 - R2 

Power and Sample Size Tables 

(C.15) 

Table C.7 is used to determine the power of the regression for a = .05. To use this table 
we must know three elements: (1) the number of independent variables, k, in the left­
most column, (2) the number of residual degrees of freedom, d fres, in the analysis of 
variance of regression (equal to N - k - 1), in the second column, and (3) the value for 
A, along the top. For values of A that fall between the values in the table, power can be 
determined by linear interpolation. Four values for dfres are given: 20, 60, 120, and oo .  
Although not strictly linear, for degrees of freedom that fall between these values, 
power can be estimated with reasonable accuracy. 

To determine sample size, we specify a level of power, the number of independent 
variables, and a projected R2. We then use Table C.8 to determine a value for lambda 
and substitute that value in the formula: 

(C.16) 

The obvious dilemma in this process is that finding a value for lambda requires 
estimating dfresr which is a function of sample size, which we are trying to determine! 
Therefore, the process becomes one of limited trial and error. We start with one value 
for lambda, determine the associated sample size, and then calculate d fres for that 
sample (dfres = N - k - 1) .  If the numbers do not correspond, we go back and choose 
a different value for d fres and try again. One choice in the table will provide a reason­
able estimate. 

Example 
To illustrate power analysis for multiple regression, consider a hypothetical study 
involving five independent variables (k = 5) as predictors of hospital length of stay 
(LOS). Suppose our sample consists of 30 patients, and results show that 
R2 

= .20 (p = . 176). Because this is not significant, we want to determine the power of 

**Lambda is the noncentrality parameter of the F-test. Some statistical programs, such as SPSS, will generate a 
value for the noncentrality parameter as part of a power analysis for an analysis of variance. This value by 
itself is not used to represent power, but is needed to obtain power estimates. 
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the test. First we calculate lambda for k = 5, R2 
= .20, dfres = 24, and N = 30, using 

Equation C.15: 

A = 
R2 

(N) = ��2
0 

(30) = 7.5 
1 - R2 1 

We refer to Table C.7. Using the closest values for dfres = 20, k = 5, and A = 8, we find 
that our test achieved approximately 44% power, indicating a 56% probability of com­
mitting a Type II error. 

Table C.7 also shows us how the number of independent variables included in the 
regression will influence the number of subjects needed. As k increases, we can see that 
power decreases for a given value of A. Just to illustrate, look at k = 3 for A = 14 at 
d fres = 20. Power is 82%. If we double the number of independent variables, k = 6, 
power decreases to 66%. With 10 independent variables, we are down to 51%. 
Researchers will often use stepwise regression or factor analysis to decrease the num­
ber of independent variables in a regression analysis, which clearly will have the effect 
of improving power. 

Now let us suppose we are planning this study and we want to determine how 
many subjects would be needed to achieve 80% power in the analysis with five inde­
pendent variables. A literature search suggests that the hypothesized effect will be 
R2 

= .40. We start by referring to Table C.8 to determine the value for lambda. Since we 
do not know how many subjects we need, we must first choose a trial value for d fres. 
Cohen suggests that, as the values of lambda do not vary greatly among the four 
choices for residual degrees of freedom, using a trial value for d fres = 120 will gener­
ally yield an N of sufficient accuracy.1 Starting there, for k = 5 at 80% power, we find 
A = 13.3. Using Equation C.16, we determine N as follows: 

A(l - R2) 13.3(1 - .40) 
N = = = 19.95 

R2 .40 

This projection tells us we would need 20 subjects to achieve 80% power.++ If we use this 
estimate, the residual degrees of freedom would then be N - k - 1 = 20 - 5 - 1 = 

14. Obviously, a great disparity exists between this value and dfres = 120, which we 
used to calculate N. This is the trial and error part. Now we return to Table C.8 and find 
A = 16.7 for k = 5 and 80% power at dfres = 20, which we guess will be closer to our 
required N. This time we find 

A(l - R2) 
N = --R-2=---

16.7(1 - .40) 
---- = 25 .05 

.40 

ttwe can demonstrate that using 120 degrees of freedom for the calculation will yield a value for N that is not 
much different from those that would be calculated using the other values. For instance, for 
dfres = 60, A = 11 .5, which would yield N = 36.42. For dfres = 20, A = 13.2, which would yield N = 41.8. 
We can generally expect these sample sizes to vary by no more than 10 subjects. Cohen does provide a for­
mula for obtaining a more exact value of N using an adjusted value for A.1 
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If we use a sample of 25 subjects, d !res will be 25 - 5 - 1 = 19, which corresponds with 
the tabled values, so we can be comfortable with the outcome. Note that in planning 
this study, we hypothesized a value for R2 that is much higher than the value we actu­
ally obtained, and therefore, the sample size estimate would not have been adequate for 
finding a significant effect. Projections of sample size are only as good as the projected 
effect size. 

POWER ANALYSIS FOR CHI-SQUARE 
We can establish power for the chi-square test for goodness of fit tests as well as contin­
gency tables. The effect size index is given the symbol w. 

For a 2 X 2 contingency table,H 

w = � (C.17) 

For a contingency table with more than two rows or columns,§§ 

(C.18) 

where q is the number of rows or columns, whichever is smaller. 

Conventional Effect Sizes 
Cohen offers values for conventional effect sizes: small w = .10, medium w = .30, large 
w = .50. He suggests, however, that these values be used with caution, as the value of 
w will vary with the number of rows, columns, and degrees of freedom in a set of data, 
even when the true degree of association is the same. 

Power and Sample Size Tables 
Tables C.9.1 through C.9.4 provide power estimates for a = .05 for degrees of 
freedom = 1, 2, 3, and 4 associated with chi-square [(R - 1)(C - 1)] .  To use the tables, 
we must specify the overall sample size (N) and the value of w. Table C.lO provides 
sample size estimates, based on a given a level and degrees of freedom. If the value for 
w is not given in the table, we can determine an exact N according to: 

N 
N = _._10_ 

100w2 

HNote that this value is identical to the phi coefficient, described in Chapters 23 and 25. 
§§Note that this value is related to Cramer's v; described in Chapter 25. 

(C.19) 
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where N.1o is the required sample size for w = .10 for the desired power and degrees of 
freedom. 

Example 
To illustrate this application for a 2 X 2 contingency table, refer to the study described 
in Chapter 25, Table 25.3. This study examined the frequency of diabetic wound heal­
ing with a total contact cast (TCC) and a removable cast walker (RCW) (a 2 X 2 design). 
For these data, x2 = 5.24 and N = 50. This study did result in a significant chi-square 
test, but we will illustrate the process using this data. We can apply these data to deter­
mine the probability of committing a Type II error using Equation C.17: 

Using Table C.9.1, for 1 degree of freedom, this study achieves 56% power (at w = .30). 
We can estimate an associated probability of Type II error of 44%. 

To determine how many subjects we would need to achieve 80% power, we refer to 
Table C.10. For w = .30, we need 87 subjects (substantially more than the original study 
used). 
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TABLE C.1 .1 POWER OF THE t-TEST FOR a1 = .05 

d 

n .10 .20 .30 .40 .50 .60 .70 .80 1 .00 1 .20 1 .40 

8 07 10  13  19  25 31 38 46 61 74 85 
9 07 1 1  1 5  20 27 34 41 50 66 79 88 

10 08 1 1  1 6  22 29 36 45 53 70 83 91 
1 1  08 1 2  17  23  3 1  39 48 57 74 86 94 
12  08 12  1 8  25 33 41 51 60 77 89 96 
13 08 1 3  1 8  26 34 44 54 63 80 91 97 
14 08 1 3  19  27 36 46 57 66 83 93 98 
15  08 13  20 28 38 48 59 69 85 94 98 
16 09 14  21 30 40 51 62 72 87 95 99 
1 7  09 1 4  22 31 42 53 64 74 89 96 99 
18  09 15  22 32 43 55 66 76 90 97 99 
19 09 15  23 33 45 57 68 78 92 98 
20 09 15  24 34 46 59 70 80 93 98 
30 10  19  3 1  46  6 1  74 85 92 99 
40 1 1  22 38 55 72 84 93 97 
50 1 2  26 44 63 80 91 97 99 

100 1 7  4 1  68 88 97 
200 26 64 91 99 

TABLE C.1 .2 POWER OF THE t-TEST FOR a2 = .05 

d 

n .10 .20 .30 .40 .50 .60 .70 .80 1 .00 1 .20 1 .40 

8 05 07 09 1 1  1 5  20 25 31 46 60 73 
9 05 07 09 12  1 6  22 28 35 51 65 79 

10 06 07 1 0  1 3  18  24 31 39 56 71 84 
1 1  06 07 1 0  1 4  20 26 34 43 61 76 87 
12 06 08 1 1  1 5  21 28 37 46 65 80 90 
13 06 08 1 1  1 6  23 31 40 50 69 83 93 
14 06 08 12  17  25 33 43 53 72 86 94 
15  06 08 12  18  26 35 45 56 75 88 96 
16 06 08 13  19  28 37 48 59 78 90 97 
17 06 09 13  20 29 39 51 62 80 92 98 
18 06 09 14  2 1  3 1  4 1  53 64 83 94 98 
1 9  06 09 15  22 32 43 55 67 85 95 99 
20 06 09 1 5  23 33 45 58 69 87 96 99 
30 07 12 21 33 47 63 76 86 97 
40 07 14  26 42 60 75 87 94 99 
50 08 17  32 50 70 84 93 98 

100 1 1  29 56 80 94 99 
200 1 7  5 1  85 98 

Adapted from Tables 2.3.2 and 2.3.5 in Cohen J. Statistical Power Analysis for the Behavioral Sciences. ed 2. Hillsdale, 

NJ: Lawrence Erlbaum Associates, 1 988. Used with permission of the publisher and author. 

TABLE C.2 SAMPLE SIZES NEEDED FOR THE t-TEST 

d 

Power . 10  .20 .30 .40 .50 .60 .70 .80 1 .00 1 .20 1 .40 

.. , = .05 
.70 942 236 1 05 60 38 27 20 15  1 0  7 6 
.80 1 237 310 1 38 78 50 35 26 20 13  9 7 
.90 1 7 13  429 191  108 69 48 36 27 18  13  10  

"'2 = .05 
.70 1235 310 1 38 78 50 35 26 20 13  10  7 
.80 1 571 393 175 99 64 45 33 26 17  12  9 
.90 2102 526 234 132 85 59 44 34 22 1 6  1 2  

Adapted from Table 2.4.1 in Cohen J .  Statistical Power Analysis for the Behavioral Sciences, ed 2. Hillsdale. NJ: 

Lawrence Erlbaum Associates, 1 988. Used with permission of the publisher and author. 



TABLE C.3.1 POWER OF THE �TEST IN ANALYSIS OF VARIANCE FOR a = .05 
AND dtb = 1 

f 
n .05 .10 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80 

5 05 06 07 08 1 1  13  16  20 38 29 50 61 
8 05 06 07 09 12 15  20 34 35 47 60 71 
7 05 06 08 1 0  14 18  23 28 41 55 68 79 
I 05 06 08 1 1  1 5  20 26 32 47 62 75 85 

e 05 07 09 12  17 22 29 36 52 68 80 89 
10 05 07 09 13  1 8  25 32 40 57 73 85 93 
1 1  05 07 10 14 20 27 35 44 62 n 88 95 
12 05 07 10 15 22 29 38 47 66 81 91 97 
13 05 07 1 1  16 23 32 41  51 70 84 93 98 
14 05 08 1 1  17 25 34 44 54 73 87 95 98 
15  06 08 12  18 26 36 47 57 76 89 96 99 

16 06 08 12 19 28 38 49 60 79 91 97 99 

17 06 08 13  20 30 40 52 63 82 93 98 

11 06 08 14 21 31 42 54 66 84 94 98 

11l 06 09 1 4  22 33 44 57 68 86 95 99 

20 06 09 1 5  23 34 46 59 70 88 96 99 
30 06 1 1  21 34 49 64 n 87 97 
40 07 14  27 43 61 n 88 95 99 

50 07 1 6  32 52 71 85 94 98 

60 08 1 9  38 60 79 94 97 99 

80 09 24 48 n 89 97 99 

100 10 29 57 81 94 99 
120 1 1  34 65 88 94 

140 13  39 72 92 99 

160 14  44 n 95 99 

180 15  48 82 97 
200 16  52 86 98 

TABLE C.3.2 POWER OF THE �TEST IN ANALYSIS OF VARIANCE FOR a =  .05 
AND dfb = 2 

f 
n .05 .10 .15 .20 .25 .30 .35 .40 .50 .80 .70 .80 

5 05 06 07 09 1 1  14  17  22 32 44 56 69 
8 05 06 07 1 0  13  16 21  26 39 53 67 79 
7 05 06 08 1 1  1 4  1 9  25 31 46 62 76 87 
8 05 06 08 12 16  22 28 36 53 69 83 92 
e 05 07 09 13  1 8  24 32 40 59 75 88 95 

10 05 07 1 0  1 4  20 27 35 45 64 81 91 97 
11 05 07 1 0  15  21  30 39 49 69 85 94 98 

12 06 07 1 1  1 6  23 32 42 53 74 88 96 99 

13 06 08 1 1  17  25 35 48 57 77 91 97 99 

14 06 08 12  18  27 38 49 61 81 93 98 

15 06 08 1 3  20 29 40 52 64 84 95 99 

18 06 08 1 3  2 1  31 43 55 94 86 96 99 

17 06 09 14  22 33 45 58 70 89 97 99 

11 06 09 14  23 34 48 61 73 90 98 
11l 06 09 15 24 38 50 64 76 92 99 

20 06 09 16  26 38 52 66 78 93 99 

30 06 12  22 37 55 71 85 93 99 

40 07 15  29 48 68 84 94 96 
50 08 18  36 58 79 92 98 99 

60 08 21 42 67 86 96 99 

80 09 27 54 80 94 99 

100 1 1  32 64 88 98 
120 12 38 73 94 99 

140 14  44 79 97 
160 15 49 85 98 
110 16  54 89 99 

200 1 8  59 92 
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TABLE C.3.3 POWER OF THE F-TEST IN ANALYSIS OF VARIANCE FOR a = .05 
AND dfb = 3 

f 

n .05 .10 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80 

5 05 06 07 09 1 2  1 5  1 9  24 36 50 64 76 
6 05 06 08 1 0  1 3  1 8  23 29 44 60 75 86 
7 05 06 08 1 1  1 5  21 27 35 52 69 83 92 
8 05 07 09 1 2  1 7  24 31 40 59 77 89 96 
9 05 07 09 1 4  1 9  27 36 46 66 82 93 98 

10 05 07 1 0  1 5  2 1  30 40 51 71 87 96 99 
1 1  06 07 1 1  1 6  24 33 44 55 76 91 97 99 
12 06 08 1 1  1 7  26 36 48 60 8 1  93 98 
13  06 08 1 2  1 9  28 39 52 64 84 95 99 
14  06 08 1 3  20 30 42 55 68 87 97 99 
15 06 08 1 3  21  32 45 59 71 90 98 
16  06 09 1 4  23 34 48 62 75 92 98 
17 06 09 1 5  24 37 51 65 78 94 99 
1 8  06 09 1 6  26 39 53 68 80 95 99 
19  06 09 1 6  27 41 56 71 83 96 99 
20 06 1 0  1 7  28 43 59 73 85 97 
30 07 1 3  25 42 61 79 90 96 99 
40 07 1 6  32 54 76 90 97 99 
50 08 1 9  40 65 85 96 99 
60 09 22 47 74 91 98 
80 10  29 61 86 97 

100 1 1  36 71 93 99 
120 1 3  43 80 97 
1 40  1 4  49 86 99 
160 1 6  55 94 99 
180 1 8  61 94 
200 1 9  66 96 
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TABLE C.3.4 POWER OF THE F-TEST IN ANALYSIS OF VARIANCE FOR a =  .05 
AND dfb = 4 

f 

n .05 .10 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80 

5 05 06 07 09 1 2  1 6  2 1  26 40 55 70 83 

6 05 06 08 1 0  1 4  1 9  25 32 49 66 81  91 
7 05 06 09 1 2  1 6  22 30 39 58 79 88 96 
8 05 07 09 1 3  1 9  26 35 45 65 83 93 98 
9 05 07 1 0  1 4  21  29 40 51  72 88 96 99 

1 0  06 07 1 0  1 6  23 33 44 56 78 92 98 
1 1  06 08 1 1  1 7  26 37 49 61  82 94 99 

12 06 08 1 2  1 9  28 40 53 66 86 96 99 

1 3  06 08 1 3  20 31 43 57 70 89 98 
14  06 08 1 3  22 33 47 61 74 92 98 
15  06 09 1 4  23 36 50 65 78 94 99 
16  06 09 1 5  25 38 53 68 81  95 99 
17 06 09 1 6  26 40 56 71  83 96 
18  06 09 1 7  28 43 59 74 86 97 
19  06 1 0  1 7  30 45 62 77 88 98 

20 06 1 0  1 8  31 47 65 79 90 99 

30 07 1 3  27 46 67 84 94 98 

40 07 1 7  36 60 81 94 99 

50 08 21  44 81 90 98 
60 09 24 52 80 95 99 
80 1 0  32 66 91 99 

1 00  1 2  40 77 96 

120 1 3  47 85 99 
140 1 5  54 91 99 
1 60 1 7  6 1  94 
180 1 8  67 97 
200 20 72 98 

Adapted from Tables 8.3. 12  to 8.3. 1 5  in Cohen, J. Statistical Power Analysis for the Behavioral Sciences, ed 2. Hillsdale, 

NJ: Lawrence Er1baum Associates, 1 988. Used with permission of the publisher and author. 
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TABLE C.4 SAMPLE SIZES NEEDED FOR THE ANALYSIS OF VARIANCE FOR a = .05 

f 

Power .05 .1 0 . 15 .20 .25 .30 .35 .40 .50 .60 . 70 .80 

dfb = 1 
.70 
.80 
.90 

dfb = 2 
.70 
.80 
.90 

dfb = 3 
.70 
.80 
.90 

dfb = 4 
.70 
.80 
.90 

dfb = 5 
.70 
.80 
.90 

dfb = 6 
.70 
.80 
.90 

dfb = 1 0  
.70 
.80 
.90 

1 235 310  
1 571 393 
2 102 526 

1 028 258 
1 286 322 
1 682 421 

881 221 
1 096 274 
1415  354 

776 1 95 
956 240 

1 231 309 

698 1 75 
856 2 15  

1 098 275 

638 1 60 
780 1 95 
995 250 

548 1 38 
669 1 68 
848 2 1 3  

488 1 23 
591 1 48 
747 1 87 

1 38 
1 75 
234 

1 1 5 
1 44 
1 88 

99 
1 23 
1 58 

87 

1 07 
1 38 

78 
96 

1 23 

72 

87 
1 1 2  

61 
75 
95 

55 
66 

84 

78 
99 

1 32 

65 
81  

1 06 

56 
69 
89 

49 
61 
78 

44 
54 
69 

41 
50 
63 

35 
42 
54 

31 
38 
48 

50 
64 
85 

42 
52 

68 

36 
45 
58 

32 
39 
50 

29 
35 
45 

26 

32 
41 

23 
27 
35 

20 
24 
31 

35 
45 
59 

29 

36 
48 

25 
31 
40 

22 
27 
35 

20 
25 
31 

1 8  
22 
29 

1 6  
1 9  
24 

1 4  
1 7  
22 

26 
33 
44 

22 
27 
35 

1 9  
23 
30 

1 7  
20 
26 

1 5  
1 8  
23 

1 4  
1 7  
2 1  

1 2  
1 4  
1 8  

1 1  
1 3  

1 6  

20 
26 

34 

1 7  
21  
27 

1 5  
1 8  
23 

1 3  
1 6  
20 

1 2  
1 4  
1 8  

1 1  
1 3  
1 6  

9 
1 1  
1 4  

8 
1 0  
1 3  

1 3  
1 7  
22 

1 1  
1 4  
1 8  

1 0  
1 2  
1 5  

9 
1 0  
1 3  

8 
9 

1 2  

7 
9 

1 1  

6 
8 
9 

6 
7 
8 

1 0  
1 2  

1 6  

8 
1 0  

1 3  

7 
9 

1 1  

6 
8 

1 0  

6 
7 
9 

5 
6 
8 

5 
6 
7 

4 
5 
6 

7 
9 

1 2  

6 
8 

1 0  

6 
7 
8 

5 
6 
7 

5 
5 
7 

4 

5 
6 

4 
4 
5 

3 
4 
5 

Adapted from Tables 8.4.4 and 8.4.5 in Cohen J. Statistical Power Analysis for the Behavioral Sciences, ed 2. 
Hillsdale, NJ: Lawrence Erlbaum Associates, 1988. Used with permission of the publisher and author. 

6 
7 
9 

5 
6 
8 

5 
5 
7 

4 
5 
6 

4 
4 
5 

4 
4 
5 

3 
4 
4 

3 
3 
4 



TABLE C.5.1 POWER OF THE CORRELATION COEFACIENT, r(a1 = .05) 

r 

n . 10 .20 .30 .40 .50 .so .70 .80 .IN) 
I 08 1 2  1 8  26 37 52 68 85 97 

t 08 1 3  20 29 42 57 74 90 99 
10 08 1 4  22 32 46 62 79 93 99 
1 1  09 1 5  23 35 50 67 83 95 

12 09 1 5  25 38 54 71 87 97 

13 09 1 6  26 40 57 74 89 98 
14 1 0  1 7  28 43 60 78 9 1  98 

1 5  1 0  1 8  30 45 63 81 93 99 
20 1 1  22 37 56 75 90 98 

30 1 3  28 50 72 90 98 
40 1 5  35 60 83 96 

50 1 7  41 69 90 98 

eo 1 9  45 76 94 99 
10 22 45 86 98 

100 26 64 82 99 
200 4 1  89 

500 72 

1000 94 

TABLE C.5.2 POWER OF THE CORRELATION COEFFICIENT, r(a2 = .05) 

r 

n .10 .20 .30 .40 .50 .60 .70 .80 .90 
I 08 07 1 1  1 6  25 37 54 75 94 

t 06 08 1 2  1 9  29 43 62 82 97 

10 06 08 1 3  21 33 49 68 87 98 

1 1  06 09 1 4  23 36 54 73 9 1  99 
1 2  06 09 1 6  26 40 58 78 93 99 
13 06 1 0  1 7  28 44 63 82 95 

14 06 1 0  1 8  30 47 66 85 96 

1 5  06 1 1  1 9  32 50 70 88 98 
20 07 1 4  25 43 64 83 96 

30 08 1 9  37 61 83 95 

40 09 24 48 74 92 99 

50 1 1  29 57 83 97 

eo 1 2  34 65 90 99 
10 1 4  43 78 96 

100 1 7  52 66 99 
200 29 81 99 
500 61 99 

1000 89 

Acillpted from Tables 3.3.2 and 3.3.5 In Cohen. J. Statls11Ca/ Power Analysis for the Behaviollll Sciences, ed 2. Hllildale, 

NJ: lawrence Er1baum Associates. 1 988. Used with permisston of the publisher and author. 

TABLE C.6 SAMPLE SIZES NEEDED FOR THE CORRELATION COEFFICIENT, r 
r 

Poww .10 .20 .30 .40 .50 .60 .70 .80 .90 
a1 • .05 

.70 470 1 1 7 52 28 1 8  1 2  8 6 4 

.ao 6 1 7  1 53  68 37 22 1 5  1 0  7 5 

.110 854 2 1 1 92 50 31 20 1 3  9 6 

az = .05 
.70 6 1 6  1 53 67 37 23 1 5  1 0  7 5 

.10 783 1 94  85 46 28 1 8  1 2  9 6 

.110 1047 259 1 1 3 62 37 24 16 1 1  7 

Adapted from Table 3.4 1 tn Cohen. J. Statistical Power Analysts for the Behavtoral Sciences. ed 2. Htllsdale, NJ: 
Lawrence Erlbaum Assoc•ates. 1 988. Used with permiss•on of the publ•sher and author. 



TABLE C.7 POWER OF THE FTEST FOR REGRESSION ANALYSIS AT a = .05 

A 
k dfres 2 4 6 8 1 0  1 2  1 4  1 6  1 8  20 24 28 32 36 40 

-

1 20 27 48 64 n 85 91 95 97 98 99 
60 29 50 67 79 88 92 96 98 99 99 

1 20 29 51 68 80 88 93 96 98 99 99 
00 29 52 69 81 89 93 96 98 99 99 

2 20 20 36 52 65 75 83 88 92 95 97 99 
60 22 40 56 69 79 87 91 95 97 98 

1 20 22 41 57 71 80 87 92 95 97 98 
00 23 42 58 72 82 88 93 96 97 99 
20 1 7  30 44 56 67 75 82 87 91 94 97 99 
60 1 9  34 49 62 73 81 87 92 95 97 98 

1 20 1 9  35 50 64 75 83 89 93 95 97 99 
00 1 9  36 52 65 76 84 90 93 96 98 99 

4 20 15  26 38 49 60 69 76 83 87 91 95 98 99 
60 1 7  30 44 57 68 77 83 89 92 95 98 99 

1 20 1 7  31 46 58 70 78 85 90 93 96 98 99 
00 1 7  32 47 60 72 80 87 91 94 96 99 

5 20 1 3  23 34 44 54 83 71 78 83 87 93 96 98 99 
60 1 5  27 40 52 63 72 80 86 90 93 97 99 

120 1 6  29 41 54 65 75 82 87 91 94 98 99 
00 1 6  29 43 56 68 n 84 89 93 95 98 99 

1 0  20 09 1 6  23 30 37 44 51 58 64 70 79 86 91 94 
60 10  20 30 39 48 56 65 72 78 83 90 95 97 99 

1 20 1 1  21 31 42 51 60 69 75 81 86 93 96 98 99 
00 1 2  21 32 43 54 64 72 79 85 89 94 98 99 

1 5  20 08 1 2  1 7  22 27 33 39 44 50 55 65 74 81 86 90 
60 09 1 5  22 30 38 46 54 61 67 73 83 89 94 96 98 

1 20 1 0  1 6  24 33 42 51 59 86 73 78 87 92 96 98 99 
00 1 0  1 8  27 37 47 56 64 72 78 83 91 95 97 99 99 

20 20 08 1 1  1 4  18  22 26 31 36 40 45 54 63 70 77 82 
60 08 1 3  1 9  25 31 38 45 52 58 64 75 83 89 93 96 

1 20 09 1 4  21 28 36 43 51 58 65 71 81 88 93 96 98 
00 00 09 1 6  24 32 41 50 58 65 72 78 87 92 96 98 99 
V1 1-' 

Adapted from Table 9.3.2 in Cohen, J. Statistical Power Analysis for the Behavioral Sciences, ed 2. Hillsdale, NJ: Lawrence Erlbaum Associates, 1 988. Used with 
the permission of the publisher and author. 



00 
VALUES OF LAMBDA (A) USED TO DETERMINE SAMPLE SIZE FOR THE F TEST FOR REGRESSION ANALYSIS V1 TABLE C.8 N (a = .05) 

Power 

k dfres .25 .50 .60 .67 .70 .75 .80 .85 .90 .95 .99 

1 20 1 .9 4.1 5.3 6.2 6.7 7.5 8.5 9.7 1 1 .4 1 4. 1 20.1 
60 1 .7 3.9 4.9 5.8 6.2 7.0 7.9 9.1 1 0.6 1 3.2 18.7 

120 1 .7 3.8 4.9 5.7 6.2 6.9 7.8 9.0 1 0.5 1 3.0 18.4 
CIO 1 .6 3.8 4.9 5.7 6.2 6.9 7.8 9.0 1 0.5 1 3.0 18.4 

2 
-

20 2.6 5.7 7.1 8.2 8.9 9.9 1 1 . 1  12.6 14.6 17.9 24.9 
60 2.3 5.1 6.4 7.4 8.0 8.9 1 0.0 1 1 .3 13.2 1 6. 1  22.4 

120 2.3 5.0 6.3 7.2 7.8 8.7 9.7 1 1 . 1  12.8 1 5.7 21 .8 
00 2.2 5.0 G.2 7.2 7.7 8.6 9.6 1 0.0 1 2.7 1 5.4 2 1 .4 

3 
-

20 3.2 6.9 8.6 9.9 1 0.6 1 1 .8 1 3.2 1 4.9 1 7.2 20.9 28.7 
60 2.8 6.0 7.5 8.6 9.3 1 0.3 1 1 .5 1 3.0 1 5.0 1 8.3 25.1 

1 20 2.7 5.8 7.3 8.4 9.0 10.0 1 1 . 1  12.6 1 4.5 1 7.7 24.3 
CIO 2.7 5.8 7.2 8.2 8.8 9.8 1 0.9 1 2.3 14.2 1 7.2 23.5 

4 
-

20 
. 3.8 . 8.0 9.9 1 1 .4 1 2.2 13.5 1 5.0 1 6.9 1 9.5 23.5 32.1 

60 3.3 6.8 8.5 9.7 1 0.4 1 1 .5 1 2.8 1 4.4 1 6.6 20.1 27.4 
120 3.1 6.6 8.1 9.3 1 0.0 1 1 .0 12.3 1 3.9 1 6.0 19.3 26.3 

00 3.1 6.4 7.9 9.1 9.7 10.7 1 1 .9 13.4 1 5.4 1 8.6 25.2 
5 20 4.4 . 9.0 1 1 . 1 12.7 1 3.6 1 5.0 1 6.7 1 8.8 21 .6 26.0 35.2 

60 3.7 7.5 9.3 1 0.6 1 1 .3 12.6 1 4.0 1 5.7 1 8.0 21 .7 29.4 
1 20 3.5 7.2 8.9 1 0. 1 1 0.8 12.0 1 3.3 1 5.0 1 7.2 20.7 28.1 

CIO 3.4 7.0 8.6 9.8 1 0.5 1 1 .6 12.8 1 4.4 1 6.5 1 9.8 26.7 
10  20 6.9 1 3.7 1 6.7 18.9 20. 1  22. 1 24.4 27.3 31 .0 37.0 49.2 

60 5.3 1 0.5 12.8 14.5 1 5.4 17.0 1 8.7 20.9 23.8 28.3 37.7 
120 5.0 9.8 1 1 .9 13.5 1 4.3 1 5.8 17.4 19.5 22.1 26.4 35.2 

00 4.4 9.2 1 1 .2 12.6 13.4 14.7 1 6.8 1 8. 1  20.5 24.4 32.4 
-

1 5  20 9.2 1 8.0 21 .8 24.6 26. 1  28.7 31.6 35.1 39.8 47.1 62.2 
60 6.7 1 3. 1 1 5.8 17.8 1 8.9 20.7 22.8 25.3 28.7 33.9 44.7 

1 20 6. 1 1 1 .9 14.3 1 6.2 1 7.2 18.8 20.7 23.1 26.1 30.9 40.8 
CIO 5.6 1 0.9 13. 1 14.7 1 5.6 17. 1 18.8 20.9 23.6 27.8 36.6 

-
20 20 1 1 .4 22.2 26.8 30.1 32.0 35.0 38.5 42.7 48.3 57.0 74.8 

60 8.1 1 5.4 18.5 20.8 22.1 24. 1  26.5 29.4 33.2 39.1 51 .2 
120 7.2 1 3.7 16.5 18.6 19.7 21 .6 23.7 26.3 29.6 34.9 45.8 

00 6.4 1 2.3 14.7 16.5 1 7.5 19. 1 2 1 .0 23.2 26. 1 30.7 40.1 

Adapted from Table 9.4.2 in Cohen, J. Statistical Power Analysis for the Behavioral Sciences, ed 2. Hillsdale, NJ: Lawrence Erlbaum Associates, 1988. Used with 
permission of the publisher and the author. 



TABLE C.9.1 

I N .10 

25 08 
30 08 
35 09 

� 
40 1 0  
45 1 0  
50 1 1  

.... 80 1 2  
70 1 3  
80 1 5  
90 1 6  

� 100 17 
120 1 9  

.... 140 22 
160 24 
1 80 27 

�
200 29 
300 41 
1500 61 

.. 1500 69 
700 75 
800 81 
900 85 

1 000 89 

TABLE C.9.2 

I N . 10  

25 07 
30 07 
35 08 

.......--
40 08 
45 09 
50 09 

� 80 1 0  
70 1 1  
80 1 2  
90 1 2  

....---1 00  1 3  
1 20 1 5  

� 140 1 7  
160 1 9  
1 80 21 
200 23 

.....---300 32 
1500 50 
800 58 � 
700 66 
800 72 
900 77 

1000 82 

POWER OF THE X
2 TEST AT a = .05 FOR df = 1 

w 

.20 .30 .40 .50 .60 

1 7  32 52 70 85 
1 9  38 59 78 91 
22 43 66 84 94 
24 47 71 89 97 
27 52 76 92 98 
29 56 81 94 99 

34 64 87 97 
39 71 92 99 
43 76 95 99 
47 81 97 
52 85 96 
59 91 99 
66 94 

71 97 
76 98 
81 99 
93 
99 

POWER OF THE X2 TEST AT a = .05 FOR df = 2 

w 

.20 .30 .40 .50 .60 

1 3  25 42 60 77 
1 5  29 49 69 85 
1 7  34 55 76 90 
1 9  38 61 82 93 
21 42 67 66 96 

23 46 72 90 97 
26 54 80 94 99 

30 61 86 97 
34 67 90 99 
38 72 93 99 
42 77 96 

49 85 98 
55 90 99 

61 93 
67 96 
72 97 
66 
99 
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.70 .80 .90 

94 98 99 
97 99 
99 
99 

.70 .80 .90 

89 96 99 
94 98 
97 99 
98 
99 
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TABLE C.9.3 

N . 10 

25 07 
30 07 
35 07 
40 07 
• 08 
• 08 
• 01 
70 09 
80 1 0  
90 1 1  

1 60 
1 80 
200 

700 59 
800 65 
900 71 

1 000 76 

TABLE C.9.4 

N 
25 
30 
35 
40 
• 
• 
• 

.1 0 

06 
07 
07 
07 
fl1 
08 
08 
09 
09 
1 0  
1 1  
1 2  
1 8  
1 4  
1 6  
1 7  

60 
66 
72 

POWER OF THE X2 TEST AT a = .05 FOR df = 3 

w 

.20 .30 .40 .50 .60 

1 2  21 36 54 71 
1 3  25 42 62 80 
1 5  29 49 70 86 
1 6  32 55 76 90 
1 8  • 10 81 1M 
1 1  40 • • • 
12 47 74 • • 
26 54 81 99 
29 60 86 
32 66 90 

90 
94 

65 96 

POWER OF THE X2 TEST AT a = .05 FOR df = 4 

w 

.20 .30 .40 .50 .60 

1 1  1 9  32 50 66 
1 2  22 38 57 75 
1 3  26 44 65 82 
1 4  29 50 72 88 
18 • Ill • 
17 • 10 • 1M 
ID 48 70 • • 
23 77 99 
26 
29 
• 
• 71 • 
44 • • 
50 88 9"9 
55 92 
60 94 

.70 .80 .90 

85 93 98 
90 97 99 
95 99 
97 99 
• 
• 

.70 .80 .90 

81 91 97 
88 96 99 
93 98 
96 99 
• 
• 

Adapted from Tables 7.3. 1 5  to 7.3. 1 8  in Cohen, J. Statistical Power Analysis for the Behavioral Sciences, ed 2. Hills­

dale, NJ: Lawrence Erlbaum Associates, 1 988. Used with permission of the publisher and author. 



TABLE C.1 0 

Power 

df = 1 
.70 
.80 
.90 

df =  2 
.70 
.80 
.90 

df =  3 
.70 
.80 
.90 

df =  4 
.70 
.80 
.90 

df =  6 
.70 
.80 
.90 

df =  8 
.70 
.80 
.90 

df =  9 
.70 
.80 
.90 

df =  12  
.70 
.80 
.90 

SAMPLE SIZES NEEDED FOR X2 FOR a = .05 

w 

.10 .20 .30 .40 .50 .60 

61 7 154 69 39 25 17  
785 196 87 49 31 22 

1 051 263 1 1 7  66 42 29 

770 1 93 86 48 31 21 
964 241 107 60 39 27 

1265 316 141 79 51 35 

879 220 98 55 35 24 
1 090 273 121 68 44 30 
1417 354 1 57 89 57 39 

968 242 1 08 61 39 27 
1 1 94 298 133 75 48 33 
1 540 385 171 96 62 43 

1 1 14 279 1 24 70 45 31 
1 362 341 151  85 54 38 
1 742 435 1 94 1 09 70 48 

1 235 309 137 n 49 34 
1 502 376 167 94 60 42 
1 908 477 212 1 1 9  76 53 

1 289 322 143 81 52 36 
1 565 391 1 74 98 63 43 
1 983 496 220 1 24 79 55 

1435 359 1 59 90 57 40 
1734 433 1 93 1 08 69 48 
2183 546 243 1 36 87 61 
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.70 .80 .90 

1 3  1 0  8 
16  1 2  1 0  
21 1 6  1 3  

16  12  1 0  
20 1 5  1 2  
26 20 1 6  

1 8  14  1 1  
22 1 7  1 3  
29 22 1 7  

20 1 5  1 2  
24 1 9  1 5  
31 24 1 9  

23 1 7  1 4  
28 21 1 7  
36 27 22 

25 1 9  15  
31 23 1 9  
39 30 24 

26 20 1 6  
32 24 1 9  
40 31 24 

29 22 1 8  
35 27 21 
45 34 27 

Adapted from Tables 7.4.6 to 7.4.9 1n Cohen, J. Statistical Power Analysis for the Behavioral Sciences, ed 2. 
Hillsdale, NJ, Lawrence Erlbaum Associates, 1988. Used with the permission of the publisher and author. 



APPEN DIX D 

Transformation of Data 

Many statistical procedures, like the t-test, analysis of variance and linear regression 
are based on assumptions about homogeneity of variance and normality that should be 
met to ensure the validity of the test. Although most parametric statistical procedures 
are considered robust to moderate violations of these assumptions, some modification 
to the analysis is usually necessary with striking departures. When this occurs, the 
researcher can choose one of two approaches to accommodate the analysis. The ana­
lytic procedure can be modified, by using nonparametric statistics or nonlinear regres­
sion, or the dependent variable, X, can be transformed to a new variable, X', which 
more closely satisfies the necessary assumptions. The new variable is created by chang­
ing the scale of measurement for X. In this appendix we introduce five approaches to 
data transformation. 

The three most common reasons for using data transformation are to satisfy the 
assumption of homogeneity of variance, to conform data to a normal distribution, and 
to create a more linear distribution that will fit the linear regression model. Fortunately, 
the same transformation will often accomplish more than one of these goals.1 

The most commonly used transformations are the square root transformation, the 
square transformation, the log transformation, the reciprocal transformation, and the arc 
sine transformation. The choice of which method to use will depend on characteristics 
of the data. Before we describe the guidelines for using each of these approaches, it may 
be helpful to illustrate the transformation erocess using the square root transformation. 

The square root transformation (X' = Vx) replaces each score in a distribution with 
its square root. This method is most ap:Fropriate when variances are roughly propor­
tional to group means, that is, when s /X is similar for all samples. The square root 
transformation will typically have the effect of equalizing variances. 

Suppose we were given two sam�le distributions shown on the left panel in Table 
D.l. These variances, s� = 8.5 and s8 = 26.5, are obviously quite different from one 
another. We determine the applicability of the square root transformation by demon­
strating that s2/X is similar for both distributions: s�XA = 2.15 and s�/XB = 2.65. 

Each score in both distributions is transformed to its square root on the right in 
Table D.l. As we can see, the effect of this transformation is a reduction in the discrep­
ancy between the two variances; now s� = .56 and s� = .61. These transformed values 
can now be used in a statistical analysis. 

When data contain many small numbers (equal or close to zero), the square root 
transformation is more valid using X' = yX + .5 as the converted score. 

The square transformation (X' = X2) is used primarily in regression analysis when the 
relationship between X and Y is curvilinear downward; that is, slope steadily decreases 
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TABLE 0.1 EFFECT OF SQUARE ROOT TRANSFORMATION 
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Original Data (X) Transformed Data rv'x) 
A 8 A 8 
1 8 1 .00 2.83 

3 7 1 .73 2.65 

8 12  2.83 3.46 

6 5 2.45 2.24 

2 � 1 .41 4.24 

� 20 50 9.42 15.42 

x 4 10 1 .88 3.08 

s2 8.5 26.5 .56 .61 

s2/X 2.125 2.65 

as the value of the independent variable increases.1 This transformation will cause the 
relationship to appear more linear. It will also have the effect of stabilizing variances and 
will normalize the dependent variable when the residuals are negatively skewed. 

The log transformation (X' = log X) is most appropriately used when the standard 
deviations of the original data are proportional to the mean; that is, the ratio sjX (the 
coefficient of variation) will be roughly constant across distributions. In addition to 
equalizing variances, the log transformation is used most often to normalize a skewed 
distribution. In regression analyses, the log transformation can also be used to create a 
more linear relationship between X and Y when the regression model shows a consis­
tently increasing slope.1 When data are numerically small, the transformation should be 
made on the basis of X' = log X + 1.2 The effect of log transformation can be easily 
demonstrated by plotting scores on logarithmic or semilogarithmic graph paper. 

The reciprocal transformation (X' = 1/X) is used when the standard deviations of the 
original data are proportional to the square of the mean s/X2.3 It is effective for attain­
ing homogeneity of variance or normality. Use of this approach will minimize the skewing 
effect of large values of X, which will be close to zero in their reciprocal form. With numeric 
data close to zero, this transformation should be obtained by using X' = 1/X + 1 .  

The arc sine transformation (X' = arcsin y/X) is also called angular transformation. 
It is used when data are collected in the form of proportions or percentages, such as the 
proportion of successful responses in a given number of trials. The relationship 
s2 = X(1 - X) should be constant for all samples. This transformation is based on an 
angular scale, whereby each proportion, p, is replaced by the angle whose sine is Vp. 
Angles are usually given in radians. Tables for arc sine transformations are provided in 
Fisher and Yates4 and Snedecor and Cochran.5 

CHOOSING THE BEST TRANSFORMATION 
Selecting the best transformation may be a less than obvious task. Many researchers use 
trial and error to determine the transformation that is most successful at reorienting the 
data. Kirk has suggested a method that may be helpful in facilitating this decision? He 
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uses each transformation to convert the largest and smallest scores in each distribution. 
The difference between the largest and smallest score, or the range of the distribution, 
is calculated using the transformed values. The ratio of the larger to the smaller range 
is then calculated for each transformation. The transformation that produces the small­
est ratio is selected. This process is illustrated in Table D.2. 

Data are obtained from two treatment groups. For this example, the largest and 
smallest raw scores in each distribution are transformed using the square root, log, and 
reciprocal transformations. The differences between the transformed values of the 
smallest and largest scores is calculated. For example, the difference between the square 
roots of 18 and 10 (the largest and smallest scores in Distribution 1) is 1 .08. The differ­
ence between the square roots of 40 and 20 (Distribution 2) is 1 .85. For the square root 
transformation, the ratio of the larger to the smaller range is 1.85/1.08 = 1 .71. A similar 
ratio is calculated for each of the other transformations, as shown in Table D.2. The log 
transformation would be selected because it results in the smallest ratio. 

When more than two distributions are compared, the ratio is calculated using the 
largest and smallest ranges for each transformation. For instance, suppose we added a 
third group to the data, and the differences between the square roots of the largest and 
smallest values were 1.08, 1 .85, and 1 .13. The ratio for this transformation would be 
formed using only 1 .85 and 1 .08, as these are the largest and smallest ranges for this 
transformation. 

Once data are analyzed using transformed data, all further interpretations of data 
must be made using the transformed values. For example, epidemiologists have shown 
that the distribution of incubation periods of communicable diseases tends to be nor­
mally distributed on a logarithmic scale.6 Therefore, further analyses of these data have 
used the log incubation period as the unit of measurement.7 

There are situations where data will be of sufficient variability that no transforma­
tion will be successful at smoothing the data. When this occurs, the researcher may con­
sider choosing a different response measure as the dependent variable, one that would 
be more evenly distributed. Alternatively, nonparametric statistics can be applied. 
These tests, discussed in Chapter 22, do not require normality or equal variances. 

Tables are provided in many statistics texts to facilitate log, square, and square root 
transformations.4•8 In addition, most computer programs provide a mechanism for data 
transformation prior to analysis. 

TABLE D.2 TRANSFORMATION BASED ON LARGEST AND SMALLEST SCORES 
IN TWO DISTRIBUTIONS 

Treatment group vx log X 1/X 

1 2 1 2 1 2 1 

Largest 1 8  40 4.24 6.32 1 .26 1 .60 .06 

Smallest 1 0  20 3. 1 6  4.47 1 .00 1 .30 . 1 0  

Range 8 20 1 .08 1 .85 .26 .30 .04 

2 

.02 

.05 

.03 

Ratio rangelargest 
rangesmallest 

1 .85 
= 1 71 

1 .08 
. :�� = 1 . 1 5  :�� = 1 .33 
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Sample Informed 
Consent Form 

860 

University Research Consent Form 

Title: The Effect of a Tai Chi Program on Fal l ing in the E lderly 
Principal Investigator: Joe Smith, Ph. D. 

About this form: 

This form gives you important information about a research study. Please 
read it carefu l ly. One of our staff members wi l l  be with you to answer 
any questions you may have about the study and what you wi l l  be asked 
to do. If you decide to be a participant (ca l led a "subject"), you wi l l  have 
to sign this form. We wi l l  give you a copy of it to keep. 

Why is this research being done? 

The purpose of this research is to find out if special exercises (Tai Chi) 
are helpfu l in  preventing fal l s  and helping people to be more confident 
in doi ng dai ly  activities. We are inviting you to join the study because 
you have told your  doctor that you have fal len down a few times th is 
year. We would l i ke about 1 00 people to take part in  this study. 

How long will I take part in this study? 

You wi l l  spend 1 0  weeks from the beginning to the end of the study. 
During this time, we wi l l  teach you activities that you wi l l  do at home 
every other day and you wi l l  come to this c l in ic for learn ing the activi­
ties and for testing. 

What will happen in this research study? 

If you agree to be i n  th is study, you wi l l  be assigned by chance ( l i ke fl ip­
ping a coin) to receive one of two activity programs. One of these is 
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cal led Tai Chi Chuan that includes gentle stretching, standing and bal­
anc ing. The other group wi l l  be instructed in  a dai ly activity program. 

Before your program begins, you wi l l  perform a wal king test. You 
wi l l  wal k  down the corridor as fast as you can. A tester w i l l  time how 
fast you go. You wi l l  also do a few balance tests, l i ke standing on one 
leg, standing with your feet one in front of the other, standing with eyes 
c losed and turn ing around. We wi l l  a lso ask you to complete a question­
naire about how confident you are about doing certain  dai ly activities 
l i ke reach ing overhead or going shopping. 

If you are in  the Tai Chi group, you wi l l  come to the c l in ic  and wi l l  
learn a series of special exercises. You wi l l  be given pictures and 
descriptions of what to do at home. Once a week, one of us wi l l  come 
to your home to review the exercises with you. 

If you are in the activity program group, you wi l l  come to the c l in ic  
and wi l l  review your dai ly  activities with one of us .  We wi l l  give you a 
l ist of activities that you should be sure to do every other day. 

We wi l l  give you a calendar chart for marking each time you do 
your planned exercise or activity program and to make a note if you 
have a fal l  at any time. 

You wi l l  return to the c l inic to repeat the tests and the questionnaire 
during the tenth week. 

What are the risks and possible discomforts from being in this 
research study? 

During the testing and during your activities program, it is possible that 
you cou ld fal l .  We wi l l  help you to figure out ways to keep this from 
happening at home and whi le you are in the c l in ic, someone wi l l  be 
right beside you .  You may feel ti red at the end of the testing or activities 
period. If this happens, a short rest period wou ld be a good idea. 

What are the possible benefits from being in this study? 

You may feel more active and may be more comfortable doing your  
da i ly  household and outdoor activities. 

Every institution that has an IRB will have several additional "boiler­
plate" sections. These will include: 
• Description of alternative treatments (if they exist) 
• Assurance that nonparticipation will not affect routine medical care 
• Financial compensation (if relevant) 
• Injury statement, indicating the patient's responsibility for cost of 

care if needed 
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• Contact individual including phone number 
• Privacy and HIPAA authorization, explaining what information will 

be taken and how it will be used 
• Right to withdraw from the study at any time without prejudice or 

bias 

Statement of Subject or Person Giving Consent/ Assent 
• I have read this consent form. 
• This research study has been explai ned to me, i nc lud ing risks and 

possible benefits ( i f  any), other options for treatments or procedures, 
and other important thi ngs about the study. 

• I have had the opportun ity to ask questions. 

If you understand the information we have given you, and wou ld  l i ke to 
take part i n  this research study, and also agree to a l low your  health infor­
mation to be used and shared as described above, then please sign 
below. 

Signature of Subject: 

Adults or m inors ages 1 4--1 7 Datem me 

Signature of Witness: 

Witness (when required) Datemme 

Statement of Individual Obtaining Consent: 
• I have explained the research to the study subject, and 
• I have answered a l l  questions about this research study to the best of 

my abi l ity. 

Investigator or Person Obtain ing Consent Datemme 

The question format of this s2 mple form is  taken from the standard I nformed Con­
sent Form of Partners Human Research Committee, Partners HealthCare System, 
Boston, 2007. 



Glossary 

Numbers in parentheses indicate the chapter in which the term is introduced. 

A-B design. A single-case design with two phases: A represents the baseline phase, and B rep­
resents the intervention phase. (12) 

A-B-A design. A single-case withdrawal design in which a second baseline phase is intro­
duced. (12) 

absolute risk increase (ARI). The increase in risk associated with an intervention as com­
pared to risk without the intervention (or control condition); the absolute difference between 
the control event rate (CER) and the experimental event rate (EER). (28) 

absolute risk reduction (ARR). The reduction in risk associated with an intervention as com­
pared to the risk without the intervention (or the control condition); the absolute difference 
between the experimental event rate (EER) and the control event rate (CER). (28) 

accessible population. The actual population of subjects available to be chosen for a study. 
This group is usually a nonrandom subset of the target population. (8) 

active variable. An independent variable with levels that can be manipulated and assigned by 
the researcher. (9) 

adjusted means. Means that have been adjusted based on the value of a covariate in an analy-
sis of covariance. (24) 

agreement. (See percent agreement.) 
alpha coefficient. (See Cronbach's alpha.) 
alpha level (a). Level of statistical significance, or risk of Type I error; maximum probability 

level that can be achieved in a statistical test to reject the null hypothesis. Symbols a1 and a2 
are used to denote level of significance for one- and two-tailed tests, respectively. (18) 

alphanumeric data. In data processing, the entry of values that contain symbols or letters. (30) 
alternate forms reliability. Reliability of two equivalent forms of a measuring instrument. (5, 26) 
alternating treatment design. A single-case design in which two (or more) treatments are 

compared by alternating them within a session (or in alternate sessions). (12) 
alternative hypothesis (H1). Hypothesis stating the expected relationship between independ­

ent and dependent variables; considered the negation of the null hypothesis. The alternative 
hypothesis is accepted when the null hypothesis is rejected. (18) 

analysis of covariance (ANCOVA). Statistical procedure used to compare two or more treat­
ment groups while controlling for the effect of one or more confounding variables (called 
covariates). (24) 

analysis of variance (ANOVA). Statistical procedure appropriate for comparison of three or 
more treatment groups or conditions, or the simultaneous manipulation of two or more inde­
pendent variables; based on the F statistic. (20) 

a priori comparisons. (See planned comparisons.) 
area probability sample. A form of cluster sampling in which geographic areas serve as the 

units of analysis. (8) 
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864 GLOSSARY 

ARIMA (autoregressive integrated moving average). Statistical technique for analysis of 
data from time-series studies. (11) 

attribute variable. An independent variable with levels that cannot be manipulated or 
assigned by the researcher, but that represent subject characteristics (such as age and sex). (9) 

attrition (experimental mortality). A threat to internal validity, referring to the differential 
loss of participants during the course of data collection, potentially introducing bias by chang­
ing the composition of the sample. (9) 

audit trail. Comprehensive process of documenting interpretation of qualitative data. (14) 
autocorrelation. Correlation of consecutive data points in a time series design. (12) 
backward selection. A process used in stepwise multiple regression that enters all independ-

ent variables into the equation, and then removes nonsignificant variables in successive steps, 
until all remaining variables are significant. (29) 

Bayes' theorem. The calculation of the probability of one event based on the probability of 
another event; used to estimate posterior (posttest) probabilities based on prior (pretest) prob­
abilities of a diagnostic outcome. (27) 

beta (/J). Probability of making a Type II error. (18) 
beta weight. In a multiple regression equation, the standardized weight for each independent 

variable. (29) 
between-groups variance. That portion of the total variance in a set of scores that is attributed 

to the difference between groups. (19, 20) 
between subjects design. An experimental design that is based on comparison between inde­

pendent groups. (10) 
between subjects factor. An independent variable for which levels are applied to independ-

ent groups. (20) 
bimodal distribution. A distribution having two modes. (17) 
binomial variable. (See dichotomy.) 
bivariate statistics. Statistics involving the analysis of two variables for the purpose of deter­

mining the relationship between them, for example, correlation. (23) 
blinding. Techniques to reduce experimental bias by keeping the subjects and/ or investigators 

ignorant of group assignments and research hypotheses. (9) 
block. Level of an attribute variable in which subjects are homogeneous on a particular charac­

teristic. (9, 10) 
Bonferroni's adjustment (correction). A correction often used when multiple t-tests are per­

formed, to reduce Type I error. The desired level of significance (a) is divided by the number 
of comparisons. The resulting value is then used as the level of signficance for each compari­
son to reject the null hypothesis. (21) 

Bonferroni t. A post hoc method to compare means following an analysis of variance; based 
on planned comparisons; also called the Dunn multiple comparison procedure. (21) 

Boolean logic. In literature searches, the terms AND, NOT and OR used to expand or narrow 
search terms. (31) 

box plot. Also called box and whisker plot. A graphic display of a distribution, showing the 
median, 25th and 75th percentiles, and highest and lowest scores. (17) 

canonical correlation. A multivariate correlation procedure, whereby two sets of variables are 
correlated. (29) 

case-control study. A design in analytic epidemiology in which the investigator selects sub­
jects on the basis of their having or not having a particular disease and then determines their 
previous exposure. (13) 

ceiling effect. A measurement limitation of an instrument whereby the scale cannot determine 
increased performance beyond a certain level. (6) 
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celeration line. In single-case research, a line that divides the data points within a phase into 
two equal halves, indicating the trend of the data within that phase. (12) 

censored observation. An observation whose value is unknown because the subject has not 
been in the study long enough for the outcome to have occurred; used to estimate survival 
curves. (29) 

central tendency. Descriptive statistics that represent "averages" or scores that are representa­
tive of a distribution; includes mean, median, and mode. (17) 

centroid. A point determined from the intersection of two means of two dependent variables 
(X, Y), used in multivariate analysis. (29) 

change score. Difference between two measurements taken at different times, typically 
between pretest and posttest or followup. Also called a gain score. (6, 27) 

chi square test (x2). A nonparametric test applied to nominal data, comparing observed fre­
quencies within categories to frequencies expected by chance. (25) 

clinical prediction rule. A statistical tool that quantifies the relative contribution of examina­
tion and history findings to determine a diagnosis, prognosis, or likely response to interven­
tion. (27) 

cluster analysis. A multivariate statistical procedure that classifies subjects into homogeneous 
subsets. (29) 

cluster sampling. A form of probability sampling in which large subgroups (clusters) are ran­
domly selected first, and then smaller units from these clusters are successively chosen; also 
called multistage sampling. (8) 

coefficient of determination (r2). Coefficient representing the amount of variance in one 
variable (Y) that can be explained (accounted for) by a second variable (X). (24) 

coefficient of variation (CV). A measure of relative variation; based on the standard devia­
tion divided by the mean, expressed as a percentage. (17, 26) 

cohort study. An observational study design in which a specific group is followed over time. 
Subjects are classified according to whether they do or do not have a particular risk factor or 
exposure and followed to determine disease outcomes. (13) 

common cause variation. Fluctuation in response resulting in random and expected variation 
in performance. (12) 

completer analysis. Analysis of data in a clinical trial only for those subjects who complete the 
study. (9) 

concurrent validity. A type of measurement validity; a form of criterion-related validity; the 
degree to which the outcomes of one test correlate with outcomes on a criterion test, when 
both tests are given at relatively the same time. (6) 

confidence interval (CI). The range of values within which a population parameter is esti­
mated to fall, with a specific level of confidence. (18, 19) 

confounding. The contaminating effect of extraneous variables on interpretation of the rela­
tionship between independent and dependent variables. (9, 28) 

confounding variable. A variable that is more likely to be present in one group of subjects 
than another, and that is related to the outcome of interest, thereby potentially "confounding" 
interpretation of the outcome. (28) 

consecutive sampling. A form of nonprobability sampling, where subjects are recruited as 
they become available. (8) 

constant comparative method. Inductive process in qualitative research that calls for contin­
ual testing of a theory as data are examined. (14) 

construct validity. 1. A type of measurement validity; the degree to which a theoretical con­
struct is measured by an instrument. (6) 2. Design validity related to operational definitions of 
independent and dependent variables. (9) 

content analysis. A procedure for analyzing and coding narrative data in a systematic way. (13) 
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content validity. A type of measurement validity; the degree to which the items in an instru­
ment adequately reflect the content domain being measured. (6) 

contingency table. A two-dimensional table displaying frequencies or counts, with rows (R) 
and columns (C) representing categories of nominal or ordinal variables; also referred to as 
cross-tabulation. (25) 

continuous variable. A quantitative variable that can theoretically take on values along a 
continuum. (4) 

control event rate (CER). The number of subjects in the control group who develop the out­
come of interest. (28) 

convenience sampling. A nonprobability sampling procedure, involving selection of the most 
available subjects for a study. (8) 

convergent validity. An approach in construct validation, assessing the degree to which two 
different instruments or methods are able to measure the same construct. (6) 

correlation. The tendency for variation in one variable to be related to variation in a second 
variable; those statistical procedures used to assess the degree of covariation between two 
variables. (23) 

correlational research. A descriptive research approach that explores the relationship among 
variables without active manipulation of variables by the researcher. (13) 

counterbalancing. Systematic alternation of the order of treatment conditions, to avoid order 
effects in a repeated measures design. (10) 

covariate. An extraneous variable that is statistically controlled in an analysis of covariance, so 
that the relationship between the independent and dependent variables is analyzed with the 
effect of the extraneous factor removed. (24) 

Cox's proportional hazards regression. A regression procedure used when the outcome has 
not yet occurred (a censored variable). Used in survival analysis. (29) 

criterion-related validity. A type of measurement validity; the degree to which the outcomes 
of one test correlate with outcomes on a criterion test; can be assessed as concurrent validity 
or predictive validity. (6) 

criterion-referencing. Interpretation of a score based on its actual value. (6) 
critical value. The value of a test statistic that must be exceeded for the null hypothesis to be 

rejected; the value of a statistic that separates the critical region; the value that defines a statis­
tically significant result at the set alpha level. (18) 

Cronbach's alpha. Reliability index of internal consistency, on a scale of 0.00 to 1.00. (5, 26) 
crossover design. A repeated measures design used to control order effects when comparing 

two treatments, where half of the sample receives treatment A first followed by treatment B, 
and the other half receives treatment B first followed by treatment A. (10) 

cross-sectional study. A study based on observations of different age or developmental 
groups at one point in time, providing the basis for inferring trends over time. (13) 

cross-tabulation. (See contingency table.) 
crude rate. A rate for a population that is not adjusted for any subset of the population. (28) 
cumulative incidence (CI). The number of new cases of a disease during a specified time 

period divided by the total number of people at risk; the proportion of new cases of a disease 
in a population. (28) 

cumulative scale. A scale designed so that agreement with higher-level responses assumes 
agreement with all lower-level responses. (15) 

curvilinear relationship. The relationship between two variables that does not follow a linear 
proportional relationship. (23) 

cut-off score. Score used as the demarcation of a positive or negative test outcome. (27) 
deductive reasoning. The logical process of developing specific hypotheses based on general 

principles. (1) 
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degrees of freedom (df). Statistical concept indicating the number of values within a distri­
bution that are free to vary, given restrictions on the data set; usually n - 1 .  (18) For analysis 
of variance, d fe = error degrees of freedom; d fh = between groups degrees of freedom; 
d f1 = total degrees of freedom. (20) 

Delphi survey. Survey method whereby decisions on items are based on consensus of a 
panel. (14) 

dependent variable. A response variable that is assumed to depend on or be caused by 
another (independent) variable. (7) 

developmental research. A descriptive research approach designed to document how certain 
groups change over time on specific variables. (14) 

deviation score (X - X). The distance of a single data point from the mean of the distribution. 
The sum of the deviation scores for a given distribution will always equal zero. (17) 

dichotomy (dichotomous variable). A nominal variable having only two categories, such as 
yes/no and male/female; a binomial variable. (7) 

difference score (d). The difference between two scores taken on the same individual. (19) 

directional hypothesis. A research hypothesis (or alternative hypothesis) that predicts the 
direction of a relationship between two variables. (7, 18) 

discrete variable. A variable that can only be measured in separate units and that cannot be 
measured in intervals of less than 1. (4) 

discriminant analysis. A multivariate statistical technique used to determine if a set of vari­
ables can predict group membership. (29) 

discriminant validity. An approach in construct validation assessing the degree to which an 
instrument yields different results when measuring two different constructs; that is, the abil­
ity to discriminate between the constructs. (6) 

double-blind study. An experiment in which both the investigator and the subject are kept 
ignorant of group assignment. (9) 

dummy variable (coding). In regression procedures, the assignment of codes to a nominal 
variable, reflecting the presence or absence of certain traits. (29) 

effect size. A statistical expression of the magnitude of the difference between two treatments 
or the magnitude of a relationship between two variables, based on the proportional relation­
ship of the difference to the variance. (18, 27, Appendix C) 

effectiveness. Benefits of an intervention as tested under "real world" conditions, often using 
quasi-experimental methods. (10) 

efficacy. Benefit of an intervention as tested under controlled experimental conditions, usually 
with a control group in a randomized controlled trial. (10) 

eigenvalue. A measure of the proportion of the total variance accounted for by a factor in a fac­
tor analysis. (29) 

epidemiology. Study of the distribution of disease in relation to person, place and time, and 
measures of risk associated with exposures to disease. (28) 

error variance. That portion of the total variance in a data set that cannot be attributed to treat­
ment effects, but that is due to differences between subjects. (19) 

ethnography. An approach to qualitative research in which the experiences of a specific cul­
tural group are studied. (14) 

event rate. The proportion of subjects in a group in whom a specific event or outcome is 
observed. (See control event rate [CER] and experimental event rate [EER].) (28) 

evidence-based practice. The application of clinical decision making for patient management 
based on research evidence, clinical expertise, patient values and preferences and clinical 
circumstances. (1) 
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exempt review. Exemption from review of a proposal by an Institutional Review Board for 
projects that do not involve direct contact with subjects, presenting no risk. (3) 

expedited review. Accelerated review of a proposal by an Institutional Review Board, based 
on minimal risk. (3) 

expected frequencies. In a contingency table, the frequencies that would be expected if the 
null hypothesis is true; frequencies that are expected just by chance. (25) 

experimental event rate (EER). The number of subjects in the experimental or treatment 
group who develop the outcome of interest. (28) 

experimenter effects (experimenter bias). Biases that are present in research data because of 
behaviors, expectations, or attitudes of those collecting the data. (9) 

explained variance. Between-groups variance; that portion of the total variance in a data set 
that can be attributed to the differences between groups or treatment conditions. (19) 

exploratory research. Research that has as its purpose the exploration of data to determine 
relationships among variables. (13) 

external validity. The degree to which results of a study can be generalized to persons or set­
tings outside the experimental situation. (9) 

extraneous variable. A variable that confounds the relationship between the independent and 
dependent variables. (9) 

facets. In generalizability theory, specific conditions under which reliability of a measurement 
can be generalized. (5, 26) 

face validity. The assumption of validity of a measuring instrument based on its appearance 
as a reasonable measure of a given variable. (6) 

factor. 1 .  A variable. (7) 2. A set of interrelated variables in a factor analysis. (29) 
factor analysis. An exploratory multivariate statistical technique used to examine the struc­

ture within a large set of variables and to determine the underlying dimensions that exist 
within that set of variables. (6, 29) 

factorial design. An experimental design involving two or more independent variables, 
allowing for the interpretation of main effects and interaction effects. (10) 

false negative. A test result that is negative in a person who has the disease or condition of 
interest. (27) 

false positive. A test result that is positive in a person who does not have the disease or con­
dition of interest. (27) 

Fisher's exact test. A nonparametric procedure applied to nominal data in a 2 X 2 contin­
gency table, comparing observed frequencies within categories to frequencies expected by 
chance. Used when samples are too small to use the chi-square test. (25) 

floor effect. A measurement limitation of an instrument whereby the scale cannot determine 
decreased performance beyond a certain level. (6) 

forward selection. A process used in stepwise multiple regression that enters variables one at 
a time into the equation based on the strength of their association with the outcome variable, 
until all statistically significant variables are included. (29) 

frequency distribution. A list of values that occur in a distribution, with a count of the num­
ber of times each value occurs. (17) 

Friedman two-way analysis of variance by ranks (x2r). A nonparametric statistical proce­
dure for repeated measures, comparing more than two treatment conditions of one independ­
ent variable; analogous to the one-way repeated measures analysis of variance. (22) 

gain score. (See change score.) 
Gaussian distribution. (See normal distribution.) 
generalizability. 1 .  The quality of research that justifies inference of outcomes to groups or sit­

uations other than those directly involved in the investigation. (9) 2. The concept of reliability 



GLOSSARY 869 

theory in which measurement error is viewed as multidimensional and must be interpreted 
under specific measurement conditions. (5, 26) 

gold standard. A measurement that defines the true value of a variable. In criterion-related 
validity, an instrument that is considered a valid measure and that can be used as the standard 
for assessing validity of other instruments. (6) In diagnostic testing, a procedure that accu­
rately identifies the true disease condition (negative or positive) of the subject. (27) 

goodness of fit test. Use of chi square to determine if an observed distribution of categorical 
variables fits a given theoretical distribution. (25) 

grand mean. The mean of all scores across groups in an analysis of variance. (20) 
grounded theory. An approach to collecting and analyzing data in qualitative research, with 

the goal of developing theories to explain observations and experience. (14) 
Guttman scale. (See cumulative scale.) 
Hawthorne effect. The effect of subjects' knowledge that they are part of a study on their 

performance. (9) 
hazard function. The probability that a subject will achieve a specific outcome in a certain time 

interval. (29) 
histogram. A bar graph of a frequency distribution. (17) 
historical controls. Subjects from previous research studies that serve as controls for experi­

mental subjects in a subsequent study. (11) 
historical research. Research that seeks to examine relationships and facts based on documen­

tation of past events. (13) 
history effect. A threat to internal validity, referring to the occurrence of extraneous events 

prior to a posttest that can affect the dependent variable. (9) 
homogeneity of variance. An underlying assumption in parametric statistics that variances of 

samples are not significantly different. (18, 19) 
hypothesis. A statement of the expected relationship between variables. (7) 
incidence. The proportion of people who develop a given disease or condition within a speci­

fied time period. (28) 
independent factor. An independent variable in which the levels represent independent 

groups of subjects. (7) 
independent variable. The variable that is presumed to cause, explain or influence a depend­

ent variable; a variable that is manipulated or controlled by the researcher, who sets its "val­
ues" or levels. (7) 

inductive reasoning. The logical process of developing generalizations based on specific 
observations or facts. (1) 

inferential statistics. That branch of statistics concerned with testing hypotheses and using 
sample data to make generalizations concerning populations. (18) 

informed consent. An ethical principle that requires obtaining the consent of the individual to 
participate in a study based on full prior disclosure of risks and benefits. (3) 

instrumentation effect. A threat to internal validity in which bias is introduced by an unreli­
able or inaccurate measurement system. (9) 

intention-to-treat. Principle whereby data are analyzed according to group assignments, 
regardless of how subjects actually completed the study. (9) 

interaction effect. The combined effect of two or more independent variables on a dependent 
variable. (10, 20) 

intercorrelations. A set of bivariate correlations for several variables within a sample. (23) 
internal consistency. A form of reliability, assessing the degree to which a set of items in an 

instrument all measure the same trait. Typically measured using Cronbach's alpha. (5, 26) 
internal validity. The degree to which the relationship between the independent and depend­

ent variables is free from the effects of extraneous factors. (9) 
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interquartile range. The difference between the first and third quartiles in a distribution, often 
expressed graphically in a boxplot. (17) 

interrater reliability. The degree to which two or more raters can obtain the same ratings for 
a given variable. (5, 26) 

interrupted time-series design. A design involving a series of measurements over time, 
interrupted by one or more treatment occasions. (10) 

interval scale. Level of measurement in which values have equal intervals, but no true 
zero point. (4) 

intraclass correlation coefficient (ICC). A reliability coefficient based on an analysis of vari­
ance; a generalizability coefficient. (26) 

intrarater reliability. The degree to which one rater can obtain the same rating on multiple 
occasions of measuring the same variable. (5, 26) 

item-to-total correlation. Correlation of individual items in a scale with the total scale score; 
an indication of internal consistency. (5, 26) 

Kaplan-Meier Estimate. A common method of determining survival time which generates a 
step function, changing the survival estimate each time a patient dies (or reaches the terminal 
event). (29) 

kappa (lc). A correction factor for percent agreement measures of reliability, accounting for the 
potential effect of chance agreements. (26) 

known groups method. A technique for construct validation, in which validity is determined 
by the degree to which an instrument can demonstrate different scores for groups known to 
vary on the variable being measured. (6) 

Kruskai-Wallis one-way analysis of variance by ranks (H). A nonparametric statistical 
procedure for comparing more than two independent groups representing levels of one inde­
pendent variable; analogous to the one-way analysis of variance. (22) 

Latin square. A matrix of columns and rows used to assign sequences of treatments to control 
for order effects. (10) 

Least squares method. A method of fitting a regression line to a set of bivariate data so as to 
minimize the sum of the squared vertical deviations of Y values around that line. (24) 

level. 1 .  The "value" or classification of an independent variable. (7) 2. In single-case research, 
the magnitude of the target behavior; changes in level are associated with differences in mag­
nitude between the end of one phase and the beginning of the following phase. (12) 

level of measurement. The precision of a scale based on how a characteristic is measured; 
nominal, ordinal, interval and ratio levels. (4) 

level of significance (a). The probability that an observed effect could be attributed to chance; 
the standard for rejecting the null hypothesis; traditionally set at a = .05. (18) 

Levene's test. A test of the equality of variances, used with the independent t test and the 
analysis of variance. (19) 

Likert scale. A surnrnative scale based on responses to a set of statements for which respon­
dents are asked to rate their degree of agreement or disagreement. (15) 

likelihood ratio. In diagnostic testing, the ratio indicating the usefulness of the test for ruling 
in or ruling out a condition. (See negative likelihood ratio and positive likelihood ratio.) (27) 

limits of agreement. Index of reliability between alternate forms of an instrument. (26) 
linear regression. The process of determining a regression equation to predict values of Y 

based on a linear relationship with values of X. (24) 
line of best fit. The regression line, representing the relationship between two variables, usu­

ally plotted on a scatter diagram. (24) 
logistic regression. Multiple regression procedure where the dependent variable is a dichoto­

mous outcome; predicts odds associated with presence or absence of the dependent variable 
based on the independent variables. (29) 
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logrank test. A statistical procedure for comparing two survival curves when censored obser­
vations are present. (29) 

longitudinal study. A study designed to collect data over time, usually for the purpose of 
describing developmental changes in a particular group. (13) 

main effect. The separate effect of one independent variable in a multifactor design. (10, 20) 
Mann-Whitney U test. A nonparametric statistical test for comparing two independent 

groups; analogous to the unpaired t-test. (22) 
MANOVA. (See multivariate analysis of variance.) 
maturation effect. A threat to internal validity, in which changes occur in the dependent vari­

able as a result of the passing of time. (9) 
McNemar test. A non parametric statistical test for nominal level measures, for correlated sam­

ples; a form of the chi square test. (25) 
mean (X). A measure of central tendency, computed by summing the values of several obser­

vations and dividing by the number of observations. (17) 
mean square (MS). In an analysis of variance, that value representing the variance; calculated 

by dividing the sum of squares for a particular effect by the degrees of freedom for that effect. 
The symbol MSe = error mean square; MSb = between groups mean square. (20) 

measurement error. The difference between an observed value for a measurement and the 
theoretical true score; may be the result of systematic or random effects. (5, 26) 

median. A measure of central tendency representing the 50th percentile in a ranked distribu­
tion of scores; that is, that point at which 50 percent of the scores fall below and 50 percent fall 
above. (17) 

meta-analysis. Use of statistical techniques in a systematic review to integrate the results of 
included studies to determine overall outcome, usually based on effect size. (16) 

method error (ME). A form of reliability testing for assessing response stability based on the 
discrepancy between two sets of repeated scores. (26) 

methodological research. Research designed to develop or refine procedures or instruments 
for measuring variables, generally focusing on reliability and validity. (13) 

minimal clinically important difference (MCID). The smallest difference in a measured 
variable that signifies an important rather than trivial difference in the patient's condition. The 
smallest difference a patient or clinician would perceive as beneficial, and that would result in 
a change in the management of the patient. Also called minimal clinically important change 
(MCIC) or minimally important change (MIC). (6, 27) 

minimal detectable difference (MOD). That amount of change in a variable that must be 
achieved to reflect a true difference; the smallest amount of change that passes the threshold 
of error. Also called minimal detectable change (MDC). (5, 26) 

mixed design. A design that incorporates independent variables that are independent 
(between-subjects) and repeated (within-subjects) factors. Also called a split-plot design. (10) 

mode. A measure of central tendency representing the most commonly occurring score. (17) 
p. (mu). Mean of a population. (17) 
multicolinearity. The correlation between independent variables in a multiple regression 

equation, causing them to provide redundant information. (29) 
multiple baseline design. In single-case research, a design for collecting data for more than one 

subject, behavior, or treatment condition. Baseline phases are staggered to provide control. (12) 
multiple comparison test. A test of differences between individual means following analysis 

of variance, used to control for Type I error. (21) 
multiple regression. A multivariate statistical technique for establishing the predictive relation­

ship between one dependent variable (Y) and a set of independent variables (X1, X2, . . .  ) . (29) 
multistage sampling. (See cluster sampling.) 
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multivariate analysis. A set of statistical procedures designed to analyze the relationship 
among three or more variables; includes techniques such as multiple regression, discriminant 
analysis, factor analysis and multivariate analysis of variance. (29) 

multivariate analysis of variance (MANOVA). An advanced multivariate procedure that 
provides a global test of significance for multiple dependent variables using an analysis of 
variance. (29) 

natural history. Longitudinal study of a disease or disorder, demonstrating the typical 
progress of the condition. (14) 

naturalistic inquiry. Qualitative observation and interaction with subjects in their own natu­
ral environment. (14) 

negative likelihood ratio (LR - ). A ratio that indicates how much the odds of a disease are 
decreased if a diagnostic test is negative. Equals specificity /1  - sensitivity. (27) 

negative predictive value (PV - ). In diagnostic testing, the proportion of subjects who are 
correctly identified as not having the condition of interest. (27) 

nested design. A multifactor design in which one variable is not crossed with other vari­
ables. (10) 

Newman-Keuls (NK) multiple comparison test. A multiple comparison procedure, used fol­
lowing a significant analysis of variance. Also called the Student-Newman-Keuls (SNK) test. (21) 

nominal scale. Level of measurement for classification variables; assignment of "values" 
based on mutually exclusive and exhaustive categories with no inherent rank order. (4) 

nondirectional hypothesis. A research hypothesis (or alternative hypothesis) that does not 
indicate the expected direction of the relationship between variables. (7,18) 

nonequivalent control group. A control group (or comparison group) that was not created by 
random assignment. (11) 

nonparametric statistics. A set of statistical procedures that are not based on assumptions 
about population parameters, or the shape of the underlying population distribution; most 
often used when data are measured on the nominal or ordinal scales. (22) 

nonprobability sample. A sample that was not selected using random selection. (8) 
normal distribution (curve). A symmetrical bell-shaped theoretical distribution that has 

defined properties; also called a Gaussian distribution. (17, 18) 
normative research. A descriptive research approach designed to determine normal values 

for specific variables within a population. (14) 
norm referencing. Interpretation of a score based on its value relative to a standard or "nor­

mal" score. (6) 
null hypothesis (H0). A statement of no difference or no relationship between variables; the 

statistical hypothesis. (7, 18) 
number needed to harm (NNH). The number of patients that need to be treated to observe 

one adverse outcome. (28) 
number needed to treat (NNT). The number of patients that need to be treated to prevent one 

adverse outcome or achieve one successful outcome; the reciprocal of absolute risk reduction 
(ARR). (28) 

observational study. A study that does not involve an intervention or manipulation of an 
independent variable. (13) 

odds ratio (OR). Estimate of relative risk in a case-control study. (28) 
one-tailed test. A statistical test based on a directional alternative hypothesis, in which critical 

values are obtained for only one tail of a distribution. (18) 
one-way analysis of variance. An analysis of variance with one independent variable. (20) 
one-way design. An experimental or quasi-experimental design that involves one independ­

ent variable. (10) 
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on-protocol analysis. Analysis of data in an experiment based only on subjects who com­
pleted the study according to assigned groups. Also called completer analysis or on-treatment 
analysis. (9) 

open-ended question. A question on a survey (interview or questionnaire) that does not 
restrict the respondent to specific choices, but allows for a free response. (15) 

operational definition. Definition of a variable based on how it will be used in a particular 
study; how a dependent variable will be measured, how an independent variable will be 
manipulated. (7) 

order effects. The sequential effect of one subject being exposed to several treatments in the 
same order; potentially manifested as carryover or practice effects. (10) 

ordinal scale. Level of measurement in which scores are ranks. (4) 
outlier. Numeric value that does not fall within the range of most scores in a distribution. (24) 
paired t-test. A parametric test for comparing two means for correlated samples or repeated 

measures; also called a correlated t-test. (19) 
paradigm. A set of assumptions, concepts or values that constitute a way of viewing reality 

within an intellectual community. (1) 
parameter. A measured characteristic of a population. (17) 
parametric statistics. Statistical procedures for estimating population parameters and for test­

ing hypotheses based on population parameters, with assumptions about the distribution of 
variables, and for use with interval or ratio measures. (18) 

partial correlation. A statistical technique for establishing the correlation between two vari­
ables, with the effect of a third variable removed; also called a first-order correlation. (29) 

participant observation. A method of data collection in qualitative research in which the 
researcher becomes a participant in the group that is being observed. (14) 

Pearson product-moment coefficient of correlation (r). A parametric statistical technique 
for determining the relationship between two variables. (23) 

percent agreement. A reliability test for categorical variables, estimating the ability of 
researchers to agree on category ratings. (26) 

percentile. The percentage of a distribution that is below a specified value. Data are divided 
into 99 equal ranks, or percentiles, with 1 percent of the scores in each rank. (17) 

person-years. The total number of years that a set of subjects have participated in a study, typ­
ically used when subjects begin and end their participation at different times. (28) 

phenomenology. An approach to qualitative research involving the study of complex human 
experience as it is actually lived. (14) 

phi coefficient (r<I>)· A nonparametric correlation statistic for estimating the relationship 
between two dichotomous variables. (23,25) 

point biserial correlation (r pb)· A correlation statistic for estimating the relationship between 
a dichotomy and a continuous variable on the interval or ratio scale. (23) 

point estimate. A single sample statistic that serves as an estimate of a population parameter. (18) 
polynomial regression. Regression procedure for nonlinear data. (24) 
pooled variance estimate (s/). Estimate of population variance based on the weighted aver­

age of sample variances; used in the unpaired t-test when group variances are not significantly 
different (under conditions of homogeneity of variance). (19) 

population. The entire set of individuals or units to which data will be generalized. (8) 
positive likelihood ratio (LR + ). A ratio that indicates how much the odds of a disease are 

increased if a diagnostic test is positive. Equals sensitivity /1 - specificity. (27) 
positive predictive value (PV + ). Estimate of the likelihood that a person who tests positive 

actually has the disease. (27) 
posterior probability. (See posttest probability.) 
post hoc comparisons. Multiple comparison tests that follow an analysis of variance. (21) 
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posttest-only design. An experimental design in which only one measurement is taken fol­
lowing treatment. (10) 

posttest probability. The probability of a condition existing after performing a diagnostic test; 
predictive value of a diagnostic test. Also called posterior probability. Depends on the pretest 
probability, and the test's sensitivity and specificity. (27) 

power (1 - p). The ability of a statistical test to find a significant difference that really does 
exist; the probability that a test will lead to rejection of the null hypothesis. (18, Appendix C) 

predictive validity. A form of measurement validity in which an instrument is used to predict 
some future performance. (6) 

predictive value (PV). (see negative predictive value and positive predictive value) 
preference. In sequential clinical trials, the expression of which treatment is considered better 

within a sequential pair. (10) 
pretest probability. The probability that a condition exists prior to performing a diagnostic 

test. Equal to the prevalence of the condition in a specified group of subjects. Also called prior 
probability. (27) 

pretest-posttest design. An experimental design involving a pretest prior to intervention and 
a posttest following intervention. (10) 

prevalence. The number of existing cases of a disease or condition at a given point in time, 
expressed as a proportion of the total population at risk. (27, 28) 

primary source. Reference source that represents the original document by the original 
author. (7) 

prior probability. (See pretest probability.) 
probability sample. A sample chosen using randomized methods. (8) 
proportional hazards model. (See Cox's regression.) 
prospective study. A study designed to collect data following development of the research 

question. (13) 
publication bias. Tendency for researchers and editors to treat positive experimental results 

(finding an effect) differently from negative or inconclusive results (finding no effect), often 
with a preference for publication of positive findings. (16) 

purposive sample. A non probability sample in which subjects are specifically selected by the 
researcher on the basis of subjective judgment that they will be the most representative. (8) 

q. Studentized range statistic, used in multiple comparison tests. (21) 
Q-sort. An analytic technique used to characterize attitudes, opinions, or judgments of indi­

viduals through a process of comparative rank ordering. (15) 

quadratic trend. A nonlinear trend, with one turn in direction. (21, 24) 
quartile (Q). Three quartiles divide a distribution of ranked data into four equal groups, each 

containing 25 percent of the scores. (17) 
quasi-experimental research. Comparative research approach in which subjects cannot be 

randomly assigned to groups or control groups are not used. (11) 

quota sampling. Nonprobability sampling method in which stratification is used to obtain 
representative proportions of specific subgroups. (8) R2 (R squared). Multiple correlation coefficient squared; represents the proportion of variance 
in Y explained by several independent variables in a multiple regression equation. (29) 

random assignment. Assignment of subjects to groups using probability methods, where 
every subject has an equal chance of being assigned to each group. (9) 

random sampling. Probability method of selecting subjects for a sample, where every subject 
in the population has an equal chance of being chosen. (8) 

random selection. (See random sampling.) 
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randomized block design. An experimental design in which one independent variable is an 
attribute variable, creating homogeneous blocks of subjects who are then randomly assigned 
to levels of the other independent variable. (10) 

randomized controlled trial (RCT). An experimental study in which a clinical treatment is 
compared with a control condition, where subjects are randomly assigned to groups. Also 
called a randomized clinical trial. (10) 

rank sum test. A nonparametric statistical procedure, used to compare two independent sam­
ples; equivalent to the Mann-Whitney U test. Analogous to the unpaired t-test. (22) 

Rasch analysis. Transformation of items on an ordinal scale to an interval scale, demonstrat­
ing the unidimensional nature of a scale. (15) 

ratio scale. The highest level of measurement, in which there are equal intervals between score 
units and a true zero point. (4) 

reactive measurement. A measurement that distorts the variable being measured, either by 
the subject's awareness of being measured or by influence of the measurement process. (9) 

recall bias. The possible inaccuracy of recalling medical history or previous exposures; of par­
ticular concern in retrospective studies. (28) 

receiver operating characteristic (ROC) curve. In diagnostic testing, a plot of the true pos­
itives (sensitivity) against false positives (1 - specificity) at several cutoff points for defining 
a positive test. (27) 

refereed journal. Journals that utilize a peer review process to evaluate manuscript submis­
sions as a basis for choosing which ones will be published. (33) 

reference standard. A value used as a standard against which to judge a criterion; may or may 
not be a gold standard. Used to judge criterion-related vaiidity or diagnostic accuracy. (6, 27) 

regression analysis. A statistical procedure for examining the predictive relationship between 
a dependent (criterion) variable and an independent (predictor) variable. (24, 29) 

regression coefficient. In a regression equation, the weight (b) assigned to the independent 
variable; the slope of the regression line. (24, 29) 

regression line. The straight line that is drawn on a scatter plot for bivariate data from the 
regression equation, summarizing the relationship between variables. (24) 

regression toward the mean. A statistical phenomenon in which scores on a pretest are likely 
to move toward the group mean on a posttest because of inherent positive or negative meas­
urement error; also called statistical regression. (5, 9) 

relative risk (RR). Estimate of the magnitude of the association between an exposure and dis­
ease, indicating the likelihood that the exposed group will develop the disease relative to those 
who are not exposed. (28) 

relative risk reduction (RRR). The reduction in risk associated with an intervention relative 
to the risk without the intervention (control); the absolute difference between the experimen­
tal event rate and the control event rate divided by the control event rate. (28) 

reliability. The degree of consistency with which an instrument or rater measures a vari­
able. (5, 26) 

repeated measure (repeated factor). An independent variable for which subjects act as their 
own control; that is, all subjects are exposed to all levels of the variable. Also called a within­
subjects factor. (7, 1 0) 

research hypothesis. A statement of the researcher's expectations about the relationship 
between vari�bles under study. (7) 

residual (Y - Y). In regression analysis, the difference between the value of the dependent 
variable predicted by the regression equation and the actual value. (24) 

responsiveness. The ability of a test to demonstrate change. (6, 27) 
retrospective study. A study that analyzes observations that were collected in the past. (13) 
p (rho). Correlation coefficient for a population. (23) 
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risk-benefit ratio. An ethical principle that is an element of informed consent, in which the 
risks of a research study to the participant are evaluated in relation to the potential benefits of 
the study's outcomes. (3) 

risk factor. A characteristic or exposure that potentially increases the likelihood of having a 
disease or condition. (28) 

ROC curve. (See receiver operating characteristic curve.) 
sampling bias. Bias that occurs when individuals who are selected for a sample overrepresent 

or underrepresent the underlying population characteristics. (8) 
sampling distribution. A theoretical frequency distribution of a statistic, based on the value of 

the statistic over an infinite number of samples. (18) 
sampling error. The difference between an observed statistic from a sample and the popula-

tion parameter. (18) 
scale of measurement. (See level of measurement.) 
scatter plot. A graphic representation of the relationship between two variables. (23) 
Scheffe's multiple comparison test. A multiple comparison procedure for comparing means 

following a significant analysis of variance. Considered the most conservative of the multiple 
comparison methods. (21) 

secondary analysis. An approach to research involving the use of data that were collected for 
another purpose, usually for the purpose of testing new hypotheses. (13) 

secondary source. Reference source that represents a review or report of another 's work. (7) 
selection bias. A threat to internal validity in which bias is introduced by initial differences 

between groups, when these differences are not random. (9) 
semantic differential. A technique used to measure attitudes by asking respondents to rate 

concepts on a 7-point scale which represents a continuum across two extremes. (15) 
sensitivity. A measure of validity of a screening procedure, based on the probability that some­

one with a disease will test positive. (27) 
sensitivity analysis. A procedure in decision making to determine how decisions change as 

values are systematically varied. (16) 
sequential clinical trial. Experimental research design that allows consecutive entrance to a 

clinical trial and continuous analysis of data, permitting stopping of the trial when data are 
sufficient to show a significant effect. (10) 

serial dependency. Correlation in a set of data collected over time, in which one observation 
can be predicted based on previous observations. (12) 

u (sigma). Standard deviation of a population. u2 is the population variance. (17) 
� (sigma, uppercase). Read as: "the sum of." (17) 
sign test. A nonparametric statistical procedure for comparing two correlated samples, based 

on comparison of positive or negative outcomes; analogous to the paired t-test. (22) 
significance level (a). (See alpha level.) 
single-blind study. An experiment in which either the investigator or the subject is kept igno­

rant of group assignment, but not both. (9) 
single-factor design. An experimental design involving one independent variable. (10) 
single-subject design. An experimental design based on time-series data from one or more 

subjects, with data compared across baseline and intervention phases. Also called single-case 
designs. (12) 

skewed distribution. A distribution of scores that is asymmetrical, with more scores to one 
extreme. (17) 

slope. 1. In regression analysis, the rate of change in values of Y for one unit of change in X. 
(24) 2. In single-case research, the rate of change in the magnitude of the target behavior 
over time. (12) 

SnNout. When a test has high sensitivity, a negative test rules out the diagnosis. (27) 
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snowball sampling. A nonprobability sampling method in which subjects are successively 
recruited by referrals from other subjects. (8) 

Spearman-Brown formula. The statistical procedure used to analyze split-half reliability; also 
called the Spearman-Brown prophecy formula. (5) 

Spearman's rank correlation coefficient (r.). A nonparametric correlation procedure for 
ordinal data. Also called Spearman's rho. (23) 

special cause variation. Fluctuation in response caused by known factors that results in non­
random and unexpected performance. 

specificity. A measure of validity of a screening procedure, based on the probability that some­
one who does not have a disease will test negative. (27) 

split-half reliability. A reliability measure of internal consistency based on dividing the items 
on an instrument into two halves and correlating the results. (5) 

split middle line. In single-case research, a line used to separate data points within one phase 
into two equal halves, reflecting the trend of the data within that phase. (See celeration line.) (12) 

split-plot design. (See mixed design.) 
SpPin. When a test has high specificity, a positive test rules in the diagnosis. (27) 
standard deviation (s). A descriptive statistic reflecting the variability or dispersion of scores 

around the mean. (17) 
standard error of measurement (SEM). A reliability measure of response stability, estimat­

ing the standard error in a set of repeated scores. (26) 
standard error of the estimate (SEE). In regression analysis, an estimate of prediction accu­

racy; a measure of the spread of scores around the regression line. (24) 
standard error of the mean (s:x). The standard deviation of a distribution of sample means; 

an estimate of the population standard deviation. (18) 
standardized residual. In a chi square test, the contribution of each cell to the overall 

statistic. (25) 
standardized response mean (SRM). One approach to evaluating effect size with change 

scores. Calculated as the difference between pretest and posttest scores, divided by the stan­
dard deviation of the change scores. (27) 

standardized score. (See z-score. ) 
statistic. A measured characteristic of a sample. (12) 
statistical conclusion validity. The validity of conclusions drawn from statistical analyses, 

based on the proper application of statistical tests and principles. (9) 
statistical hypothesis. (See null hypothesis.) 
statistical process control (SPC). A method of charting production outcomes over time to 

identify and monitor variances; can be used as a method of analysis for single-subject 
designs. (12) 

statistical regression. (See regression toward the mean.) 
statistical significance. The term indicating that the results of an analysis are unlikely to be 

the result of chance at a specified probability level; rejection of the null hypothesis. (18) 
stem-and-leaf plot. A graphic display for numerical data in a frequency distribution showing 

each value in the distribution. (17) 
stepwise regression. An approach to multiple regression that involves a sequential process of 

selecting variables for inclusion in the prediction equation. (29) 
stopping rule. In a sequential clinical trial, the threshold for stopping a study based on cross­

ing a boundary that indicates a difference or no difference betvveen treatments. (10) 
stratification. The grouping of individuals in a population into homogeneous groups on some 

characteristic prior to sampling. (8) 
sum of squares (SS). A measure of variability in a set of data, equal to the sum of squared 

deviation scores for a distribution (I. (X - X)l; the numerator in the formula for variance. (17) 
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Used in analysis of variance as the basis for partitioning between-groups (SSb) and within­
groups error (SSe) variance components. (20) 

survival analysis. Multivariate analysis to estimate survival time, or time to a defined out­
come, based on probabilities that an individual will achieve the outcome. (29) 

systematic error. A form of measurement error, where error is constant across trials. (5) 
systematic review. Review of a clearly formulated question that uses systematic and explicit 

methods to identify, select and critically appraise relevant research. (16) 
systematic sample. A probability sampling method where subjects are chosen from lists of 

population members using specified intervals, such as every lOth person. (8) 
t-test. A parametric test for comparing two means; also called Student's t-test. (See paired t-test 

and unpaired t-test.) (19) 
target population. The larger population to which results of a study will be generalized. (8) 
testing effect. The effect that occurs when a test itself is responsible for observed changes in 

the measured variable. (5, 9) 
test-retest reliability. The degree to which an instrument is stable, based on repeated admin­

istrations of the test to the same individuals over a specified time interval. (5) 
time-series design. A quasi-experimental design in which performance changes are assessed 

over time, prior to and following the administration of treatment. (11) 
transformation. Mathematical conversion of a distribution to a different scale by a constant 

(such as square root or log) to change the shape or variance characteristics of the distribution. 
(Appendix D) 

translational research. Clinical investigation with human subjects in which knowledge 
obtained from basic research is translated into diagnostic or therapeutic interventions that can 
be applied to treatment or prevention. (1) 

treatment arm. Another term for each independent group in a clinical trial. (10) 
treatment threshold. In clinical decision making, the point at which a decision is reached to 

treat the patient without first performing a diagnostic test. (27) 
treatment-received analysis. Analysis of subject data in an experiment according to the treat­

ment subjects actually did receive, regardless of their original group assignment. (9) 
trend. 1. The shape of a distribution of scores taken over time, reflecting the distribution's lin­

earity or lack of linearity. (21) 2. In single-case research, the direction of change in the target 
behavior within a phase or across phases. (12) 

trend analysis. Part of an analysis of variance, used to assess trend within data taken over 
ordered intervals; can express data as linear, quadratic, cubic, and so on, reflecting the num­
ber of changes in direction in the data over time. (21) 

triangulation. The use of multiple methods to document phenomena. (14) 
true negative. A test result that is negative for those who do not have the disease or condition 

of interest. (27) 
true positive. A test result that is positive for those who do have the disease or condition of 

interest. (27) 
Tuk.ey's honestly significant difference (HSD). A multiple comparison test for comparing 

multiple means following a significant analysis of variance. (21) 
1\vo standard deviation band method. A method of data analysis in single-subject 

research. (12) 
two-tailed test. A statistical test based on a nondirectional alternative hypothesis, in which 

critical values represent both positive and negative tails of a distribution. (18) 
two-way analysis of variance. An analysis of variance with two independent variables. (20) 
two-way design. An experimental or quasi-experimental study that involves two independent 

variables. (10) 
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Type I error. An incorrect decision to reject the null hypothesis, concluding that a relationship 
exists when in fact it does not. (18) 

Type II error. An incorrect decision to accept the null hypothesis, concluding that no relation­
ship exists when in fact it does. (18) 

univariate analysis. Statistical procedures for analyzing one dependent variable. (29) 
unpaired t-test. A parametric test for comparing two means for independent samples; also 

called an independent t-test. (19) 
validity. 1 .  The degree to which an instrument measures what it is intended to measure. (6) 

2. The degree to which a research design allows for reasonable interpretations from the data, 
based on controls (internal validity), appropriate definitions (construct validity), appropriate 
analysis procedures (statistical conclusion validity), and generalizability (external validity). (9) 

variable. A characteristic that can be manipulated or observed and that can take on different 
values, either quantitatively or qualitatively. (2, 7) 

variance (s2). A measure of variablity in a distribution, equal to the square of the standard 
deviation. (17) 

vital statistics. Mortality and morbidity rates. (28) 
washout period. In a crossover design, that period of time between administration of the two 

treatments, allowing effects of the experimental treatment to dissipate. (10) 
weighted kappa (Kw)• An estimate of percentage agreement, corrected for chance, based on 

weights reflecting levels of seriousness of disagreements. (26) 
Wilcoxon rank-sum test. (See Mann Whitney U test.) 
Wilcoxon signed-ranks test (T). A nonparametric statistical procedure, comparing two cor­

related samples (repeated measures); analogous to the paired t-test. (22) 
withdrawal design. In single-case research, a design that involves withdrawal of the inter-

vention. (12) 
within-groups variance. (See error variance.) 
within-subjects design. A research design that incorporates only repeated measures. (10) 
within-subjects factor. (See repeated measure.) 
X. Mean of a sample. (17) 
Yates' correction for continuity. In the chi square test, a correction factor applied when 

expected frequencies are too small, effectively reducing the chi square statistic. (25) 
z distribution. The standardized normal distribution, with a mean of 0 and a standard devi­

ation of 1. (17) 
z-score The number of standard deviations that a given value is above or below the mean of 

the distribution; also called a standardized score. (17) 
zero-order correlation. A bivariate correlation. (29) 
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ences, 171-74 
efficacy versus effectiveness, 

218-20 
for independent groups, 

196-206 
quasi-experimental, 194, 

223-32 
repeated measures, 206-13 
sequential clinical trials, 

213-18 
Experimental event rate (EER), 

676 
Experimental research, 20, 22 
Experimenter effects, 184 
Exploding, in literature search, 

749 
Exploratory analysis, 713 
Exploratory data analysis (EDA), 

403 
Exploratory research, 22, 277-96 

case-control studies, 282-86 
cohort studies, 286-89 
prediction and, 280-82 
secondary analysis, 294-96 
theory testing and, 282 

Exposures, 666 
External criticism, 293 
External validity, 184-85 
Extraneous variables, 161 

Facets of generalizability, 91-93, 
589 

Face validity, 99-101 
Factor analysis, 108-9, 

705-15 
construct validity, 714 
data reduction, 713 
developing factors, 706-7 
exploratory analysis, 713 
extraction of factors, 707-10 
factor loadings, 707 
factor rotation, 710-11 
factor scores, 713-14 
hypothesis testing, 714 

Factorial designs, 200-203 
analysis of, 203 
multiple comparison proce­

dures for, 491-93 
three-way, 202-3 
two-way, 201-2 
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Factors, 129 
independent, 1 72, 212 
repeated, 172, 212 

False negative, 620 
rate, 621 

False positive, 620 
rate, 621, 637 

Familywise error rate, 480 
Fields, variable, 731 
Filters, in literature search, 750 
First-order partial correlation, 687 
Fisher Exact test, 579 
Fixed effect, 590 
Fixed model, 578 
Floor effect, 111 
Focusing, in literature search, 

750 
Foreground question, in evidence­

based practice, 10 
Forest plots, 374, 376-77 
Frequency 

disease, 663--66 
expected, 570, 577 
observed, 570 
polygon, 389, 776 

Frequency distributions, 385-90 
graphing, 387-89 
grouped, 386-87 
shapes, 389-90 

Friedman two-way analysis of 
variance by ranks, 517-20 

F statistic, 454-57 
critical values of F, 457 
degrees of freedom, 454-55 
mean squares, 455-57 
power of, 847-50, 854 
repeated measures analysis of 

variance, 471 
two-way classification and, 

464--65 
Functional Independence 

Measure (FIM), 69, 109, 110, 
344, 651 

Functional Reach Test (FRT), 621 

Gamma, 583 
Generalizability, 91-94 

coefficient, 589 
of intraclass correlation coeffi­

cient, 589-90 
theory, 91 

General linear model (GLM), 475 
Glasgow Coma Scale (GCS), 281 
Gold standard, 102, 620 
Goodness of fit, 571-73 

known distribution, 571, 573 
uniform distribution, 571-73 

Grand mean, 453 
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Graphing 
box plot, 393 
frequency distributions, 387-89 
frequency polygon, 389 
histogram, 388 
in research reports, 776-78 
stem-and-leaf plot, 387 

Greenhouse-Geisser correction, 
472 

Grey literature, 364 
Grounded theory, 308-9 
Group centroid, 718 
Grouped frequency distributions, 

386-87 
Grouping variables, 730 
Guiding questions, 133, 327 
Guyatt's responsiveness index 

(GRI), 649-50 

Hawthorne effect, 183 
Hazard 

function, 724 
rate, 721 
ratio (HR), 724 

Health Insurance Portability and 
Accountability Act (HIPAA), 
51 

Heterogeneity, evaluating, 373 
Hierarchical proposition, 36 
HIPAA. See Health Insurance 

Portability and Accountabil­
ity Act 

Histograms, 388, 736 
Historical controls, 230-31 
Historical research, 22, 292-94 
History 

interaction of treatment and 
external validity and, 185 

internal validity and, 176-77 
natural, 303-4 

Homogeneity, 89, 605 
of slopes, 564 
of variance, 437 

Honestly significant difference 
(HSD). See Tukey's honestly 
significant difference (HSD) 

Hospital-based study, 284 
Hotelling-Lawley trace, 719 
Human rights, protection of, 

48-51 
control groups, 49-50 
guiding principles, 49 
regulations, 50-51 

Huynh-Feldt correction, 472 
Hypothesis, 133-36 

alternative, 436 
characteristics of, 134 
complex, 135 

deductive, 134 
directional, 135, 418 
inductive, 134 
nondirectional, 135, 418 
null, 135, 436 
research, 134, 135 
simple, 135 
statistical, 416-18, 436-37, 452 

Hypothesis testing, 109, 416-19 
alternative hypothesis, 417-18 
directional and non directional 

hypotheses, 418 
errors in, 418-19 
in factor analysis, 714 
null hypothesis, 416-17 
statistical hypotheses, 416-18 

Hypothetical-deductive theory, 
39 

ICF. See International Classifica­
tion of Functioning, Disabil­
ity, and Health 

Impact analysis, 643 
Incidence 

cumulative, 664 
disease frequency and, 

664-65 
prevalence and, 665-66 

Inclusion criteria, 145 
Incomplete data, 165-170 
Independence, tests of, 575-79 
Independent factor, 172, 212 
Independent groups, designs for, 

196-206 
Independent samples 

analysis of variance for, 451-58 
Kruskal-Wallis one-way 

analysis of variance and, 
509-13 

Mann-Whitney U test and, 
506-9 

Independent t-test, 437 
Independent variables, 539, 

824-29 
levels of, 130 

Indirect costs, 767 
Inductive hypothesis, 134 
Inductive reasoning, 15-16 
Inductive theories, 38-39 
Inferential statistics, 405 
Informed consent 

consent elements of, 55-56 
documentation of, 765 
elements of, 53-57 
form, 56-57, 865-67 
information elements of, 

53-55 
surveys and, 351-52 

Institutional Review Board (IRB), 
52-53, 351, 759 

Instrumentation, internal validity 
and, 178 

Intention to treat (m) analysis, 
167-70 

Interaction effects, 202, 461-62, 
493 

interpreting, 465-67 
Interclass correlation coefficient 

(ICC), 86 
Internal consistency, 89-90, 

605-607 
Cronbach's alpha, 606-607 
reliability coefficients for, 90 

Internal criticism, 293 
Internal validity, 176-81 

attrition, 177 
compensatory equalization of 

treatments, 180 
compensatory rivalry and 

resentful demoralization, 
180-81 

diffusion or imitation of treat-
ments, 179 

history, 176-77 
instrumentation effects, 178 
maturation, 177 
multiple group threats, 178-79 
regression toward the mean, 

178 
single group threats, 176-78 
social threats, 179-81 
testing effects, 177-78 

International Classification of 
Functioning, Disability and 
Health (ICF), 6-8, 38, 124 

Interquartile range, 393 
lnterrater reliability, 87-88, 590 
Interrupted time-series design, 

226-27 
Interval scale, 70-71 
Interviewer bias, 286 
Interviews, 325-26 

qualitative data collection and, 
310 

Intraclass correlation coefficient 
(ICC), 588-98 

analysis of variance, 591-93 
Intrarater reliability, 87, 590 
Item-to-total correlation, 90, 606 

Jadad scale, 368 
Journal articles, 771-80. See also 

Research reports 
selecting journal, 771-72 
submitting, 772 

Justice, 49 



Kaplan-Meier product limit 
method, 721-23 

Kappa, 598-605 
weighted, 600--604 

Kendall's tau-b, 583 
Kendall's tau-c, 583 
Known distribution, 571, 573 
Known groups method, 107 
Kruskal-Wallis one-way analysis 

of variance, 503, 509-13 

Labels, 732 
Lambda coefficient, 582, 855 
Language, simplicity in writing, 

780 
Last observation carried forward 

(LOCF), 169-70 
Latin square, 208 
Law, theory and, 44 
Least squares, method of, 

544 
Levels 

of evidence, 361-{;3, 644 
of independent variable, 130 
of measurement, 66, 72-74, 

110-11 
Level of significance, 419-21. See 

also Type I error 
choosing, 420-21 
interpreting probability values, 

421 
Life tables, 721, 722 
Likelihood ratios, 627-31 

negative, 628 
positive, 627 

Likert scales, 339-40 
Limits, in literature search, 750 
Limits of agreement, 612-14 
Linear regression, 539-47 
Linear relationship, 525-26 
Linear trend, 496 
Line of best fit, 544 
Literature, searching, 739-56. See 

also Search, for literature 
databases, 740-46 
sensitivity and specificity of 

searches, 752-53 
strategies, 746-53 

Logical positivism, 306 
Logical reasoning 

deductive, 14-15 
inductive, 15-16 

Logistic function, 697-700 
Logistic regression, 696-702 

logistic function, 697-700 
odds ratio, 700-702 

Logit, 697 
Log transformation, 862 

Longitudinal research, 279-80 
Lower control limit (LCL), 266 

Main effects, 202, 460, 492-93 
interpreting, 465-{i7 

Mann-Whitney U-test, 503, 506-9 
critical values for, table, 816-18 

MANOVA. See Multivariate 
analysis of variance 

Mantel-Haenszel pooled risk esti­
mate, 675 

Marginal means, 460 
Maslow's hierarchy of human 

needs, 36 
Matching subjects, 172 
Maturation, internal validity and, 

177 
Mauchly's Test of Sphericity, 472 
Maximum likelihood, 698 
MCID. See Minimal clinically 

important difference 
McNemar test for correlated 

samples, 579-81 
MDD. See Minimal detectable 

difference 
Means, 390-91 

adjusted, 562-{;3 
analysis of variance and, 

451-77 
comparing two, 433-49 
grand, 453 
regression toward, 79-80, 82 
standard error of, 409-10 
standard error of the difference 

between, 438 
standardized response, 649 

Mean square (MS), 396, 455-57 
Mean square residual, in Rasch 

analysis, 347 
Measurement 

of change, 109-13, 644-53 
defined, 63 
error, 77-82 
error and reliability theory, 

585-88 
indirect nature of, 64-{;6 
levels of, 66, 72-74, 110-11 
quantification and, 64 
rules of, 66-72 
scales, 66-72 
standard error of, 60�9 
validity (See Validity) 

Measures of central tendency, 
390-91 

comparing, 391 
mean, 390-91 
median, 390 
mode, 390 
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Median, 390 
survival time, 721 

Medical Outcomes Study Short­
Form 36 (SF-36), 5 

Medical Subject Heaings (MeSH), 
74�50 

MEDLINE, 746-49 
Meta-analysis, 23, 358, 371-75 

appraisal of, 375 
effect size, 373--74 
forest plots, 374, 376-77 
sensitivity analysis, 374-75 
systematic review versus, 371, 

373 
Metatheory, 45 
Method error (ME), 610-12 
Method of least squares, 544 
Methodological research, 22, 

290-92 
Minimal clinically important dif­

ference (MCID), 112-13, 
646-47 

proportion, 652-53 
Minimal detectable difference 

(MDD), 93, 609, 645-46 
proportion, 652-53 

Minimum potentially detectable 
difference, 645 

Minimum significant difference 
(MSD), 483 

for Bonferroni t-test, 490 
for Kruskal-Wallis AN OVA, 

511-13 
for Newman-Keuls test, 

486-87 
for Scheffe comparison, 488 
for Wilcoxan signed-ranks test, 

520 
Misclassification, 285 

differential, 285 
nondifferential, 285 

Missing data, 169-70, 730 
Mixed designs, 212-13 

in multifactor repeated meas­
ures designs, 473--74 

Mixed model 
with chi square, 578 
with ice, 590 

Mode, 390 
Models, 37-38 
Mortality rate, 666 
Multicolinearity, 690 
Multifactor designs, 194 

factorial, 200-203 
for independent groups, 

200-206 
mixed design, 212-13 
nested, 205-{i 
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Multifactor designs (cont.) 
randomized block, 203-5 
for repeated measures, 211-13 
two-way design with two 

repeated measures, 211 
Multifactor repeated measures 

designs, 473-75 
mixed, 474-75 
within-subjects, 473-74 

Multigroup designs, 228--32 
historical controls, 230-31 
nonequivalent posttest-only 

control group, 231-32 
nonequivalent pretest-posttest 

control group, 228--30 
pretest-posttest control group 

design, 198 
Multiple baseline designs, 228, 

246-51 
across behaviors, 247 
across conditions, 249 
nonconcurrent, 249 
across subjects, 247 

Multiple comparison tests, 457, 
466--67, 479-500 

Bonferroni t-test, 488--90, 
813-15 

comparison interval, 485 
Newman-Keuls (NK) test, 

484-87 
procedures for factorial 

designs, 491-93 
for repeated measures, 493-95 
Scheffe comparison, 488 
trend analysis, 496-500 
Tukey's honestly significant 

difference, 483-84 
Multiple correlation coefficient, 

691 
Multiple regression, 687-96 

accuracy of prediction, 691 
analysis of variance of, 691 
dummy variables, 694-96 
multicolinearity, 690 
standardized regression coeffi-

cients, 690 
stepwise, 691-94 

Multiple-treatment designs, 
single-subject, 251-54 

alternating treatment design, 
251-52 

interactive design, 254 
Multiple-treatment interaction, 

183 
Multistage sampling. See Cluster 

sampling 
Multitrait-multimethod matrix, 

108 

Multivariate analysis, 685-725, 
725 

cluster analysis, 715-16 
discriminant analysis, 702-705 
factor analysis, 705-15 
logistic regression, 696-702 
multiple regression, 687-96 
partial correlation, 685-87 
survival analysis, 720-24 
test statistics, 719-20 
of variance (MANOVA), 

716-20 

National Research Act, 51 
Natural history, 303-4 
Naturalistic inquiry, 307 
Negative likelihood ratio, 628 
Negative predictive value, 622 
Nested design, 205-6 
Newman-Keuls (NK) test, 

484-87, 500 
comparison interval, 485 
minimum significant differ­

ence, 486-87 
Nomogram, 629-30 
Nonconcurrent multiple baseline 

design, 249 
Nondifferential misclassification, 

285 
Nondirectional hypothesis, 135, 

418 
Nondirectional tests, 426-28 
Nonequivalent posttest-only 

control group design, 
231-32 

Nonequivalent pretest-posttest 
control group, 228--30 

Nonexperimental research, 20 
Nonlinear regression, 555-57 
Nonparametric tests, 429, 

503-522 
Friedman two-way analysis of 

variance, 517-20 
for group comparisons, 503-21 
Kruskal-Wallis one-way analy-

sis of variance, 509-13 
Mann-Whitney U-test, 506-9 
power-efficiency in, 504-5 
ranking scores procedure, 505 
selection criteria for, 504-5 
sign test, 513-16 
Wilcoxan signed-ranks test, 

516-17 
Nonprobability sampling, 148, 

154-56 
consecutive, 154 
convenience, 154-55 
purposive, 155 

quota, 155 
snowball, 155-56 

Normal distribution, 389, 
399-400 

proportions of, 399-402 
skewness, 402-3 
standardized scores and, 400 

Normative studies, 22, 304-6 
Norm-referenced tests, 114 
Null hypothesis, 135, 416-17, 436 
Number needed to harm (NNH), 

680 
Number needed to treat (NNT), 

679--81 
confidence intenlals for, 

679--80 
interpretation, cautions in, 

680--81 
Numeric data, 730 
Nuremberg Code of 1949, 50 

Objectives, of research proposal, 
762 

Oblique rotation, 711 
Observation 

bias, 286 
censored, 720-21 
participant, 310 
qualitative data collection and, 

310 
Observational research, 20, 277 

causality in, 289-90 
Observed frequency, 570 
Odds ratios (OR), 670-71 

adjusted, 700 
confidence intervals for, 671 
continuous variables, 701 
of logistic regression, 700-702 

One-group designs, 223-28 
one-group pretest-posttest, 

223-24 
one-way repeated measures 

design over time, 225 
time-series design, 225-28 

One-tailed tests, 427-28, 441 
type I errors and, 481 

One-way classification. See 
Analysis of variance 

One-way designs. See Single-
factor designs 

On-protocol analysis, 167--{;9 
On-treatment analysis, 167 
Open-ended questions, 332-33 
Operational definitions, 182--83 

of variables, 130-32 
Oral presentations, 782--85 

visual presentation and, 
783--85 



Order effects, 183, 208-9 
Ordinal interaction, 466 
Ordinal scale, 68-70 
Orthogonal rotation, 711 
Oswestry Low Back Pain Disabil-

ity Questionnaire, 69 
Outcomes management, 5 
Outliers, 549-51 

Paired t-tests, 445, 448, 834, 
836-37 

Paradigm shift, 44 
Parameters, 146, 385 
Parametric statistics, 429, 503 
Partial correlation, 685-87 

coefficient, 685 
first-order, 687 

Participant observation, 310 
Passive voice, 779-80 
Pearson product-moment correla­

tion coefficient, 90, 528-30 
r statistic, 529 
test of significance for, 529 

PEDro. See Physiotherapy Evi-
dence Database 

Percent agreement, 598 
Percentiles, 393 
Per comparison error rate, 480 
Performance bias, 365 
Period prevalence, 664 
Person fit, in Rasch model, 347 
Person separation, in Rasch 

model, 347 
Person-time, 665 
Phenomenology, 307-8 
Phi coefficient, 533, 581 
Philosophy, understanding, 25-27 
Physical stress theory, 42-43 
Physiotherapy Evidence Data-

base (PEDro) scale, 368, 369 
PICO, 9, 10-11, 755 
Pillai-Bartlett trace, 719 
Pilot testing, 94 

for surveys, 330 
Planned comparisons, 479 
Point biserial correlation coeffi­

cient, 533 
Polynomial regression, 556 
Pooled risk estimates, 674-75 

Mantel-Haenszel, 674-75 
Pooled variance estimate, 438 
Population 

accessible, 144-46 
reference, 144 
samples and, 143-46 
target, 128, 144-46 

Population-based study, 284 
Population-specific reliability, 94 

Positive likelihood ratio, 627 
Positive predictive value, 622 
Poster presentations, 781-82 
Post hoc comparisons 

(unplanned comparisons), 
424, 479, 481 

Posttest-only control group 
design, 199-200 

Posttest probability, 627, 630-631 
Powe� 156-57, 175, 421-24 
Power analysis, 423 

a priori, 423-24 
conventional effect sizes, 838 
for analysis of variance, 837-41 
for chi square, 844-45 
for correlation, 841 
for regression, 841-44 
for t-test, 833-37 
post hoc, 424 

Power-efficiency, in nonparamet-
ric tests, 504-5 

Precision, 64, 752 
Prediction, accuracy of, 551-53 
Predictive correlational study, 

281-82 
Predictive validity, 104-5 
Predictive value, 622-24 

negative, 622 
positive, 622 

Predictor variable, 539. See also 
Independent variables 

Preferences, 213-14 
Presentations 

oral, 782-85 
poster, 781-82 
visual, 783-85 

Prettest-posttest control group 
design, 196-99 

Pretest probability, 625-26 
Prevalence, 624 

disease frequency and, 663-64 
incidence and, 665-66 
period, 664 

Preventive trials, 193 
Primary source, 137-38 
Principal components, 707 
Privacy Rule. See Health Insur-

ance Portability and 
Accountability Act (HIPAA) 

Probability, 405-8 
density, 721 
distribution of scores and, 407-8 
posttest, 627 
predicted, 698-700 
prettest, 625-27 

Probability sampling, 146, 148-54 
cluster, 152-54 
simple random, 148-50 
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stratified random, 
150-52 

systematic, 150 
Prognosis, 640-42 

study, validity of, 791 
Proportional stratified sample, 

151 
Proposals. See Research proposals 
Propositions, theories and, 36-37 

hierarchical, 36 
quantitative, 36 
temporal, 36 

Prospective cohorts, 288 
Prospective research, 278 
Publication bias, 365 
PubMed, 740, 745 
Purposive sampling, 155 

Q-sort, 348-49 
Quadratic curve, 556 
Quadratic trend, 496 
Qualitative research, 18-19, 22, 

306-13 
combining with quantitative, 

307 
data analysis, 311-12 
data collection methods, 

310-13 
ethnography, 308 
grounded theory, 308-9 
phenomenology, 307-8 
reliability and validity, 312-13 
triangulation, 312 

Quality Assessment of Diagnos­
tic Accuracy Studies 
(QUADAS), 368, 370 

Quantitative proposition, 36 
Quantitative research, 18-19 
Quartiles, 393 
Quasi-experimental designs, 22, 

194, 223-32 
multigroup, 228-32 
one-group, 223-28 

Questionnaires, 23, 326, 328. See 
also Surveys 

Questions 
background, 10 
foreground, 10 
guiding, 327 

Questions, survey 
closed-ended, 333-35 
constructing, 332-38 
double-barreled, 337 
frequency and time, 337 
open-ended, 332-33 
sensitive, 337-38 
wording of, 336 

Quota sampling, 155 
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Random assignment, 163-64 
Random-digit dialing, 154 
Random effect, 590 
Random errors of measurement, 

78 
Randomized block design, 194, 

203-5 
Randomized controlled trials 

(RCT), 22, 49, 194, 232, 370, 
677 

Random model, 578 
Random sampling, 148-50 
Random selection, 146 
Range, 393 

interquartile, 393 
Rasch analysis, 343-48 

item difficulty, 346 
item fit, 347 
item separation, 347 
person fit, 347 

Rater bias, 87 
Rater error, for intraclass correla­

tion coefficient, 595-97 
Rater reliability, 79, 86-88, 290-91 

coefficients for, 88 
interrater, 87-88 
intrarater, 87 

Rating scales, 367---68 
Ratio scale, 71 
Reactive measurements, 178 
Recall bias, 286, 327 
Receiver operating characteristic 

(RCX:) curves, 635-39, 650 
area under curve, 639 
constructing, 636--38 
cutoff scores, 635, 639 

Reciprocal transformation, 862 
Recruitment of subjects, 156--57 
Refereed journals, 788 
Reference population, 144 
Reference standard, 103, 619-20 
Regression, 281, 539-67 

accuracy of prediction, 
551-53 

analysis of covariance and, 
557---66, 559-61 

analysis of variance of, 
553-54 

calculation of line and residu-
als, 544-47 

coefficients, 542, 688 
constant, 542, 688 
fallacy, 81 
history of, 540 
linear, 539-47, 554--55 
model, 543-44 
multiple, 687-96 

nonlinear, 555-57 
outliers, 549-51 
polynomial, 556 
power analysis for, 841-44 

Regression toward the mean, 
79-80, 82, 178 

Relative risk (RR), 667-70, 676 
absolute, 678 
confidence intervals for, 

667-70 
reduction, 678 

Reliability, 77-96, 111 
agreement and, 83-84, 598-605 
coefficients, 88, 586, 615-17 
correlation and, 83-84 
facets of, 91-93 
internal consistency, 89-90, 

605-7 
interrater, 87-88 
intraclass correlation coeffi-

cient, 588-98 
intrarater, 87 
limits of agreement, 612-14 
population-specific, 94 
qualitative research and, 

312-13 
rater, 86--88 
response stability, 608-12 
of single-subject designs, 

241 
split-half, 89-90 
statistical measures of, 

585-617 
test-retest, 85-86 
types of, 84--90 
validity and, 97-98 
variance and, 586--88 

Reliability coefficients, 82-84 
for alternate forms reliability, 

89 
for internal consistency, 90 
for rater reliability, 88 
for test-retest reliability, 86 

Repeated factor (measure), 172, 
212 

Repeated measures analysis of 
variance, 469 

degrees of freedom, 469 
F statistic, 471 
intraclass correlation coefficient, 

593 
Repeated measures designs, 194, 

206--13 
analysis of variance and, 

467-75 
crossover, 209-11 
mixed design, 212-13 

multifactor, 211-13, 473-75 
multiple comparisons for, 

493-95 
one-way over time, 225 
single-factor, 207-9, 236, 

468-71 
variance assumptions with, 

471-73 
Research 

applied, 19 
basic, 19 
cross-sectional, 280 
descriptive, 22-23, 301-19 
developmental, 22, 302-4 
experimental, 20, 22 
exploratory, 22, 277-96 
grounded theory, 308 
historical, 22, 292-94 
hypothesis, 134, 135 
longitudinal, 279-80 
methodological, 22, 290-92 
nonexperimental, 20 
normative, 22, 304---6 
objectives, 133-36 
observational, 20 
problem, 123 
process, 23-25 
proposal, 24, 759-69 
protocol, 165-70 
qualitative, 18-19, 22, 306--13 
quantitative, 18-19 
rationale, 128-29, 361 
theory and, 40-44 
translational, 19-20 

Researcher, integrity of, 47-48 
Research proposals, 759-769 
Research question(s) 

clinical experience and, 123-24 
clinical theory and, 124--25 
literature review and, 136--38 
objectives, 133-36 
operational definitions and, 

130-32 
replication, 176 
surveys and, 327-28 
variables and, 129-30 

Research reports 
evaluating, 787-800 
writing, 771--86 

Residuals, 544 
analysis of, 547-49 
calculation of, 544-47 
standardized, 549, 573-74 
variance, 687 

Residual sum of squares, 554 
Response stability, 608-12 

coefficient of variation, 609-10 



method error, 610-12 
standard error of measurement 

and, 608-9 
Responsiveness, 112, 645 
Retrospective cohorts, 288 
Retrospective research, 278 
Review 

exempt, 52-53 
expedited, 52-53 
literature, 136-38 
systematic, 357-78 

Risk, 54, 640-42 
analytic epidemiology and, 

666-75 
factor, 667 

Risk-benefit ratio, 49, 52 
ROC curve. See Receiver operat­

ing characteristic curve 
Rotated factor matrix, 711 
Rotation 

factors, 710-11 
oblique, 711 
orthogonal, 711 
varimax, 711 

Roy's maximum characteristic 
root, 719 

r statistic, 529 

Sample size, 156-57, 423-24, 
832-33 

Sampling (samples), 143-58 
accessible population and, 

144-46 
accidental, 154 
area probability, 153 
bias, 143-44 
for chi-square, 860 
cluster, 152-54 
consecutive, 154 
convenience, 154-55 
disproportional, 152 
error, 146, 405, 408-10 
interval, 150 
nonprobability, 148, 154-56 
population and, 143-46 
probability, 146, 148-54 
proportional stratified, 151 
purposive, 155 
quota, 155 
recruitment, 156-57 
without replacement, 150 
simple random, 148-50 
size, 423, 851 
snowball, 155-56 
stratified random, 150-52 
for surveys, 330 
systematic, 150 

target population and, 
144-46 

techniques, 146-48 
theoretical, 313 

Scales, 338-48 
categorical, 338 
continuous, 339 
cumulative, 339, 342-43 
interval, 70-71 
jadad, 368 
Likert, 339-40 
of measurement, 66 
nominal, 67-68 
ordinal, 68-70 
Physiotherapy Evidence Data­

base (PEDro), 368, 369 
Quality Assessment of Diag­

nostic Accuracy Studies 
(QUADAS), 368, 370 

Rasch analysis, 343-48 
rating, 367-68 
ratio, 71 
semantic differential, 340-42 
summative, 339 
visual analogue, 132, 182, 342 

Scatter plots (diagram), 523-24 
Scheffe comparison, 488 
Scientific method, 16-18 
Scientific paradigms, 4 
Search, for literature, 741-58 

broadening, 752 
exploding, 749 
filters on, 749 
focusing, 749 
limiting, 749 
Science Citation Index, 752 
truncation, 750-51 
wildcard, 750-51 

Search engines, 740 
boolean logic, 747-48 
Coogle Scholar, 740 
MeSH headings, 748-50 
PubMed, 740 
Scirus, 740 

Search strategy, 364-65, 748-55 
Secondary analysis, 23, 294-96 
Secondary sources, 137-38 

of historical data, 295-96 
Segmented regression analysis, 228 
Selection 

bias, 285, 365 
criteria for systematic reviews, 

361-64 
interaction, 179 
interaction of treatment and 

external validity and, 
184-85 
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Selection-history effects, 179 
Selection-instrumentation inter-

action, 179 
Selection-maturation effects, 179 
Selection-regression, 179 
Selection-testing effects, 179 
Self-report, 327 
Self-selection, 154 
SEM. See Standard error of meas­

urement 
Semantic differential, 340-42 
Sensitivity, 620-21 

analysis, 374-75 
of literature searches, 752-53 

Sequential clinical trials, 213-18 
conditional decision, 218 
considerations in, 217-18 
measuring preferences, 213-14 
sequential chart, 214-17 
stopping rules, 217 

Serial dependency, 261-{;2 
Sickness Impact Profile (SIP), 5 
Significance 

criterion, statistical power and, 
422 

of trend components, 497-98 
of t-tests, 449 

Sign test, 513-16 
Simple effects, 465 
Simple expressions, 734 
Simple random sampling, 148-50 
Single-blind study, 171 
Single-factor designs (one-way 

designs), 194 
posttest-only control group, 

199-200 
pretest-posttest control group, 

196-99 
for repeated measures, 207-9 

Single-subject designs, 22, 235-72 
alternating treatment design, 

251-52 
baseline characteristics, 22, 

238-39 
celeration line, 257-61 
C statistic, 262-63 
data analysis in, 254-{;8 
design phases of, 236-38 
duration, 240 
frequency count, 240 
generalization of findings, 

268-71 
interactive designs, 254 
interval recording, 240 
intervention phase, 236 
length of phases, 239 
level, 255 
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Single-subject designs (cont.) 
multiple baseline, 246-51 
with multiple treatments, 

251-54 
quantitative score, 241 
reliability, 241 
serial dependency, 261-62 
slope, 257, 259 
split middle line, 259-61 
stability, 238, 255 
statistical process control, 

263-68 
structure of, 236-39 
target behavior, 239-41 
trend, 238, 255--56 
two standard deviation band 

method, 261 
visual analysis, 255--57 
withdrawal designs, 242-46 

Skewed distribution, 389 
Skewness, 402-3 
Slope, homogeneity of, 564 
SnNout, 624 
Snowball sampling, 155-56 
Social threats, 179--81 
Social validity, 271 
Sources 

primary, 137-38 
secondary, 137-38 

Spearman-Brown prophecy, 90 
Spearman's rank correlation coef­

ficient, 531-32 
critical values of, table, 

821-22 
Special cause variation, 263 
Specific aims, 133 
Specificity, 620-21 

of literature searches, 
752-53 

Sphericity 
assumption of, 472 
Mauchly's Test of, 472 

Split-half reliability, 89-90 
Split middle line, 259--61 
SpPin, 624 
Square transformation, 861 
Stability, 111, 238, 255 

response, 608-12 
Standard deviation, 396-98 
Standard error 

of the difference between the 
means, 438 

of the difference scores, 446 
of the estimate (SEE), 552-53, 

691 
of the mean, 409-10 
of measurement (SEM), 608-9 

Standardized normal curve, 
400-402 

Standardized regression coeffi­
cients, 690 

Standardized residuals, 549, 
573-74 

Standardized response mean, 649 
Standardized scores, normal dis­

tribution and, 400 
Standards for Reporting of Diag­

nostic Accuracy (STARD) 
statement, 631-34 

Static group comparison, 231 
Statistic, 385 
Statistical conclusion validity, 

174-76, 431 
Statistical hypotheses, 416-18, 

436-37 
analysis of variance and, 452 
for multivariate analyses, 718 
two-way classification and, 

463 
Statistical process control (SPC), 

263-68 
common cause variation, 263 
lower control limit (LCL), 

266--68 
special cause variation, 263 
upper control limit (UCL), 

266-68 
Statistical ratios, 435--36 

for multiple comparison tests, 
482-83 

Statistical significance 
clinical significance versus, 

429-31 
measures of, 647-48 

Statistical tables, 801-22 
areas under the normal curve, 

802-5 
binomical tests, 819 
critical values of F, 807-9 
critical values of Spearman's 

rank correlation coefficient, 
821-22 

critical values of t, 806 
critical values of t for Wilcoxan 

signed-ranks test, 820 
Mann-Whitney U-test, 

816-18 
studentized range statistic, 

811-12 
Stem-and-leaf plot, 387 
Stepwise multiple regression, 

691-94 
Stopping rules, 217 
Strata, 150 

Stratified random sampling, 
150-52 

String variables, 730 
Studentized range statistic, 483 
Subjects 

blocking, 171-72 
controlling intersubject differ­

ences, 171-74 
matching, 172 
monitoring participation, 

727-28 
of research study, 789-92 
selection of, 288--89 

Summative scales, 339 
Sum of squares (SS), 396, 452-54 

calculation of, 456 
partitioning, 453-54 
regression, 553 
residual, 554 
total, 453 

Surveys, 23, 325--52 
choosing design of, 

327-31 
contacting respondents, 

331 
cover letter, 331 
data analysis, 350-51 
data collection for, 352 
Delphi, 349-50 
descriptive, 313-14 
designing, 329 
informed consent and, 351-52 
pilot testing and revisions of, 

330 
preliminary drafts of, 329 
questionnaire, 326 
questions for, 332-38 
research question and, 327-28 
sample selection for, 330 

Survival analysis, 720-24 
censored observations, 720-21 
Cox proportional hazards 

model, 723-24 
Kaplan-Meier estimates, 

721-23 
life tables, 721 

Survival function, 721 
Syllogism, 14 
Systematic errors of measure­

ment, 78 
Systematic replication, 269-70 
Systematic reviews, 23, 357--81 

appraisal of, 375, 378 
background and research 

rationale, 361 
forest plot, 374 
grey literature, 364 



meta-analysis versus, 371, 373 
methodological quality, evalu-

ating, 365-71 
reporting elements, 778 
reviewing, 364 
search strategy for, 364--65, 754 
selection criteria, 361-64 
sensitivity analysis, 374, 376 

Systematic sampling, 150 

Table of random numbers, 
148-49 

Target behaviors, 236, 239-41 
choosing, 241 
measuring, 240-41 

Target population, 128, 144-46 
t-distribution, 414 
Terminal decision, 217 
Test-retest reliability, 85-86 

interval, 85 
Test threshold, 626 
Theoretical framework, 128 
Theoretical sampling, 313 
Theory, 33-45 

application of, 44-45 
characteristics of, 39-40 
components of, 35-38 
deductive, 39 
development of, 38-39 
generalizability, 91 
grounded, 308-9 
hypothetical-deductive, 39 
inductive, 38-39 
law and, 44 
reliability, 585-88 
research and, 40-44 
testing, 42, 282, 315-16 

Therapeutic trials, 193 
Threats to validity, 174-85 
Three-way classification. See 

Analysis of variance 
Time-series design, 225-28 

interrupted, 226-27 
Tolerance level, 692 
Tradition, as source of knowl­

edge, 12 
Transcutaneous electrical nerve 

stimulation (TENS), 182 
Transformation, data of, 861-63 
Translational research, 19-20 
Treatment arms, 196 
Treatment-received analysis, 167 
Trend analysis, 496-500 
Trend, in single subject design, 

238, 255 
Trial and error, as source of 

knowledge, 13-14 

Triangulation, 312 
True experimental design, 194 
True negatives, 620 
True positive, 620 

rate, 637 
Truncation, in literature search, 

750-51 
t-tests, 433-49 

Bonferroni, 488-90 
error variance, 435 
inappropriate use of multiple, 

447-49 
for independent samples, 

437-45 
one- versus two-tailed tests, 

441 
paired samples, 445-48 
power analysis for, 833-37, 846 
statistical hypothesis, 436-37 
for unequal variance, 442-45 
unpaired, 437-45 

Tukey's honestly significant dif­
ference (HSD), 483-84 

minimum significant difference, 
484 

table, 811-12 
Two standard deviation band 

method, 261 
Two-tailed tests, 426, 427-28, 441 

type I errors and, 481 
Two-way analysis of variance. 

See Analysis of variance 
Two-way classification. See 

Analysis of variance 
Two-way design with two 

repeated measures, 211 
Type I error, 419-21 

one-tailed versus two-tailed 
tests, 481 

rate, 480-81 
Type II error, 419, 421-24 

Uniform distribution, 571-73 
Univariate analysis, 685 
Unpaired t-test, 437, 440, 444, 

833-34, 835-36 
Unplanned comparisons, 

479 
Upper control limit (UCL), 

266 
U test, 506-9 

Validity, 77, 97-116, 619-53 
concurrent, 103 
construct, 105-9, 714 
content, 101-2 
convergent, 107 
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criterion-related, 102-5 
of diagnostic accuracy study, 

791 
of diagnostic tests, 619-34 
discriminant, 107-8 
of evidence, 186-89 
external, 184-85 
face, 99-101 
internal, 176-81 
of intervention study, 790 
predictive, 104-5 
of prognosis study, 791 
qualitative research and, 

312-13 
questions, 291-92 
reference standard, 619-20 
reliability and, 97-98 
of research studies, 789-93 
statistical conclusion, 174-76, 

431 
threats to, 174-85 

Variability 
coefficient of variation, 

398 
measures of, 391-98 
percentiles, 393-94 
quartiles, 393-94 
range, 393 
standard deviation, 

396-98 
variance, 394-96 

Variables, 35 
active, 162 
alphanumeric, 730 
attribute, 162 
blocking, 171-72, 203 
categorical, 569, 730 
computing new, 734-35 
continuous, 64, 701 
dependent, 129-30 
dichotomous, 64 
discrete, 64 
dummy, 694-96 
extraneous, 161 
grouping, 730 
independent, 129-30, 

824-29 
manipulation of, 162 
names, 731 
operational definitions of, 

130-32 
recording, 735-36 
string, 730 

Variance, 82, 394-96 
analysis of, 449, 451-77 
equal, 437-38 
error, 435, 453, 585 
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Variance (cont.) 
homogeneity of, 437 
for intraclass correlation coeffi-

cient, 595-97 
reliability and, 58(r88 
residual, 687 
statistical power and, 

422 
true, 585 
two-way analysis of, 458 
unequal, 443-45 

Variation, coefficient of, 609-10 
Varimax rotation, 711 
Vector, 718 

Visual analogue scale (VAS), 132, 
182, 342 

Vital statistics, 666 

Washout period, 209 
Weighted kappa, 

600-604 
Western Ontario and McMaster 

Osteoarthritis Index 
(WOMAC), 5, 649 

Wilcoxan signed-ranks test, 
516-17 

critical values of T for, table, 
820 

Wildcard, in literature search, 
750-51 

Withdrawal designs, 228, 242-46 
Within-subjects designs, 194, 206, 

468 
in multifactor repeated meas­

ures designs, 473-74 
Writing, 778-80 

Yates' correction for continuity, 579 

Zero-order correlation, 687 
z-ratio, 425 
z-scores, 400 
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