

Formal Modeling and Analysis of

Software Architecture:
Components, Connectors, and Events

David Garlan

Carnegie Mellon University, Pittsburgh PA 15213, USA,
garlan@cs.cmu.edu

Abstract. Developing a good software architecture for a complex sys-
tem is a critically important step for insuring that the system will satisfy
its principal objectives. Unfortunately, today descriptions of software ar-
chitecture are largely based on informal “box-and-line” drawings that
are often ambiguous, incomplete, inconsistent, and unanalyzable. This
need not be the case. Over the past decade a number of researchers have
developed formal languages and associated analysis tools for software ar-
chitecture. In this paper I describe a number of the representative results
from this body of work.

1 Introduction

The field of software architecture is concerned with the design and modeling of
systems at a level of abstraction that reveals their gross structure and allows
one to reason about key system properties, such as performance, reliability, and
security. Typically architectural modeling is done by describing a system as a set
of interacting components, where low-level implementation details are hidden,
and relevant high-level system level properties (such as expected throughputs,
latencies, and reliabilities) are exposed [29, 32].

Software architecture can be viewed as a level of design and system modeling
that forms a bridge between requirements and code. By providing a high-level
model of system structure it permits one to understand a system in much sim-
pler terms than is afforded by code level structures, such as classes, variables,
methods, and the like. Moreover, if characterized properly an architectural de-
scription should in principle allow one to argue that a system’s design satisfies
key requirements by appealing to abstract reasoning over the structure. Finally,
an architecture forms a blueprint for implementations, indicating what are the
principle loci of computation and data storage, the channels of communication,
and the interfaces through which communication takes place.

To illustrate with a simple example, consider a simple pipelined dataflow
architecture, in which streams of data are processed in linear fashion by a se-
quence of stream transformations, or “filters.” When annotated with properties
such as rates of processing, buffering capabilities of the channels, and expected
input rates, one can typically reason about expected throughput and latency of

M. Bernardo and P. Inverardi (Eds.): SFM 2003, LNCS 2804, pp. 1–24, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

2 David Garlan

the overall system. Additionally, the architectural structure likely mirrors the
implementation structures For example, each filter might be implemented as a
separate process communicating over buffered, asynchronous channels provided
by the operating system.

Software architecture consequently plays a critical role in almost all aspects
of the software development lifecycle.

Requirements specification: Architectural design allows one to determine
what one can build, and what requirements are reasonable. Often an ar-
chitectural sketch is necessary to assess product viability. For example, a
preliminary architectural design might tell one whether subsecond response
time is a feasible requirement on a new client-server system.

System design: Software architecture is a form of high-level system design. It
typically determines the first, and most critical, system decomposition. A
system without a well-conceived architecture is doomed to failure.

Implementation: As noted, an architecture is often the blueprint for low-level
design and implementation. The components in an architectural description
typically represent subsystems in the implementation, where the architec-
tural interfaces correspond to the interfaces provided by an implementation.

Reuse: Most systems exhibit regular structures that represent instances of
reusable idioms. For example signal processing systems are often designed
as stream processing systems. Data-centric information systems are often
designed as 3-tiered client-server systems. More generally, software architec-
tures are a key component of product lines and frameworks. Those systems
exploit architectural (and coding) regularities across a family of systems to
make it possible to design and create new systems at low cost by specializing
a general framework to create a particular product.

Maintenance: Software architectures facilitate maintenance by clarifying the
system design, and enabling maintainers to understand the impact of changes.
Since maintenance can account for well over half of a system’s lifetime costs,
and a substantial portion of maintenance is simply understanding a sys-
tem in order to make a desired change, software architectures can be play a
significant role in maintenance.

Run time adaptation: Increasingly systems are expected to operate continu-
ously. Automated mechanisms for detecting and repairing system faults while
a system is running will likely become essential capabilities in future systems.
Software architecture can play an key role in supporting self adaptation, by
providing a reflective model that can be used as a basis for automated repair.

Unfortunately, the potential uses of software architecture are thwarted by to-
day’s relatively informal approaches to architectural representation, documenta-
tion, and analysis. Architectural designs are, more often than not, simply infor-
mal “box-and-line” diagrams accompanied by prose. While these representations
remain useful to practitioners [31] they suffer from their imprecision. Generally,
it is not possible to use them for analysis, to determine with confidence whether
some property holds of a system, whether a design is complete or consistent,

Formal Modeling and Analysis of Software Architecture 3

whether an implementation conforms to an architectural design, or whether a
proposed change violates an architectural principle.

In an effort to improve this situation many researchers have proposed formal
notations and tools to set architectural design on a more solid engineering foot-
ing. Indeed, over the past decade dozens of architectural description languages
(ADLs), numerous architectural evaluation methods, and many architectural
analysis tools have been proposed by researchers [14, 23].

In the remainder of this paper, we outline some of the ways in which formal
methods and notations can be brought to bear on software architecture. We
begin with a brief introduction to software architecture. Next we consider various
formal approaches to modeling and analyzing architectures. Then we briefly
consider automated support, and conclude by listing some of the more interesting
open research problems.

2 Software Architecture

Before characterizing ways in which we can apply formal modeling and analysis
to software architecture, it is important to be clear about what we mean by the
term. Definitions of software architecture abound. (The Software Engineering
Institute’s Web site catalogs more than 90 definitions [8].) A typical one is the
following:

The structure or structures of the system, which comprise software com-
ponents, the externally visible properties of those components, and the
relationships among them [6].

Unfortunately, as with most definitions of software architecture, this one begs the
questions: What structures? What is a component? What kinds of relationships
are relevant? What is an externally visible property?

In practice there are a number of kinds of structural decompositions of a
system [8, 18]. Each of these has a legitimate place in the design and description
of a complex software system, and each has its associated uses with respect to
modeling and analysis.

One of these is a code decomposition, in which the primary elements are
code modules (classes, packages, etc.). Relationships between these elements
typically determine code usage and functionality relationships (imports, calls,
inherits-from, etc.). Typical analyses include dependency analysis, portability
analysis, reuse analysis.

A second class of decomposition characterizes the run-time structures of a
system. Elements in such descriptions include the principal components of a sys-
tem that exist as a system is running (clients, servers, databases, etc.). Also im-
portant in such descriptions are the communication channels that determine how
the components interact. Relationships between these elements determine which
components can communicate with each other and how they do so. Analyses
of these structures address run-time properties, such as potential for deadlocks
and race conditions, reliability, performance, and security. Whether a particular

4 David Garlan

analysis can be performed will usually depend on the kind of system. For exam-
ple, a queueing theoretic analysis might only be valid for a system composed of
components that process streams of requests submitted by clients. Or, a schedu-
lability analysis might only be valid for a system in which each component is
treated as a periodic process.

Other structural representations might emphasize the physical context in
which a system is deployed (processors, networks etc.), or developed (organiza-
tional teams or business units).

In this paper we focus on the second of these classes of structure: run-time de-
compositions emphasizing the principal computational elements and their com-
munication channels. Sometimes this is referred to as the “component and con-
nector” viewtype [8]. Indeed, in what follows, unless otherwise indicated, when
we refer to the software architecture a system, we will mean a component and
connector architectural view of it.

While systems can in principle be described as arbitrary compositions of
components and connectors, in practice there are a number of benefits to con-
straining the design space for architectures by associating an architectural style
with the architecture. An architectural style typically defines a vocabulary of
types for components, connectors, interfaces, and properties together with rules
that govern how elements of those types may be composed.

Requiring a system to conform to a style has many benefits, including support
for analysis, reuse, code generation, and system evolution [11, 34, 7]. Moreover,
the notion of style often maps well to widely-used component integration infras-
tructures (such as EJB, HLA, CORBA), which prescribe the kinds of components
allowed and the kinds of interactions that may take place between them.

3 Formal Approaches to Software Architecture

Since architectural description is a multi-faceted problem, it is helpful to classify
the properties of interest into several broad categories:

Structure: What are the principal components and the connectors that allow
those components to communicate? What kinds of interfaces do components
provide? What are the boundaries of subsystem encapsulation? Do the struc-
tures conform to any constraints on topology? Is the design complete?

Design Constraints: What design decisions should not change over time?
What assumptions are being made that should be preserved in the face
of future modification, or dynamically evolving architectures?

Style: What are the constraints implied by the architectural style? Does a given
system conform to constraints of a given architectural style? What analyses
are appropriate for a particular architectural style. What are the relation-
ships between different architectural styles? Is it possible to combine two
styles to produce a third one?

Behavior: What is the abstract behavior of each of the components? What
are the protocols of communication that are required for two components to
interact? Are the components behaviorally compatible? How does a system

Formal Modeling and Analysis of Software Architecture 5

evolve structurally over time? Can we guarantee that all possible structures
that emerge at run time will satisfy some property?

Refinement: Does a more detailed representation, and in particular a concrete
implementation, respect the structure and properties of an architectural de-
sign?

Let us now consider how formal representations of software architecture can
address many of these questions.

3.1 Formalizing Architectural Structure

Over the past decade there has been considerable research devoted to the prob-
lem of providing more precise ways to characterize the structure of software
architectures, and to derive properties of those structures. Indeed, more than
a dozen Architecture Description Languages (or ADLs) have been proposed.
These notations usually provide both a conceptual framework and a concrete
syntax for modeling software architectures. They also typically provide tools for
parsing, unparsing, displaying, compiling, analyzing, or simulating architectural
descriptions written in their associated language.

Examples of ADLs include Aesop [11], Adage [9], C2 [22], Darwin [20],
Rapide [19], SADL [26], UniCon [30], Meta-H [7], and Wright [4]. While all of
these languages are concerned with architectural design, each provides certain
distinctive capabilities: Adage supports the description of architectural frame-
works for avionics navigation and guidance; Aesop supports the use of archi-
tectural styles; C2 supports the description of user interface systems using an
event-based style; Darwin supports the analysis of distributed message-passing
systems; Meta-H provides guidance for designers of real-time avionics control
software; Rapide allows architectural designs to be simulated, and has tools for
analyzing the results of those simulations; SADL provides a formal basis for
architectural refinement; UniCon has a high-level compiler for architectural de-
signs that support a mixture of heterogeneous component and connector types;
Wright supports the formal specification and analysis of interactions between
architectural components.

Although there is considerable diversity in the capabilities of different ADLs,
all share a similar conceptual basis [23], that determines a common foundation
for architectural description. The main elements are:

– Components represent the primary computational elements and data stores
of a system. Intuitively, they correspond to the boxes in box-and-line de-
scriptions of software architectures. Typical examples of components include
such things as clients, servers, filters, objects, blackboards, and databases. In
most ADLs components may have multiple interfaces, each interface defining
a point of interaction between a component and its environment.

– Connectors represent interactions among components. Computationally
speaking, connectors mediate the communication and coordination activi-
ties among components. That is, they provide the “glue” for architectural

6 David Garlan

designs, and intuitively, they correspond to the lines in box-and-line descrip-
tions. Examples include simple forms of interaction, such as pipes, procedure
call, and event broadcast. But connectors may also represent more com-
plex interactions, such as a client-server protocol or a SQL link between a
database and an application. Connectors also have interfaces that define the
roles played by the various participants in the interaction represented by the
connector.

– Systems represent configurations (graphs) of components and connectors.
In modern ADLs a key property of system descriptions is that the overall
topology of a system is defined independently from the components and con-
nectors that make up the system. (This is in contrast to most programming
language module systems where dependencies are wired into components via
import clauses.) Systems may also be hierarchical: components and connec-
tors may represent subsystems that have “internal” architectures.

– Properties represent semantic information about a system and its compo-
nents that goes beyond structure. As noted earlier, different ADLs focus
on different properties, but virtually all provide some way to define one
or more extra-functional properties together with tools for analyzing those
properties. For example, some ADLs allow one to calculate overall system
throughput and latency based on performance estimates of each component
and connector [33].

– Constraints represent claims about an architectural design that should re-
main true even as it evolves over time. Typical constraints include restric-
tions on allowable values of properties, topology, and design vocabulary. For
example, an architecture might constrain its design so that the number of
clients of a particular server is less than some maximum value.

– Styles represent families of related systems. An architectural style typi-
cally defines a vocabulary of design element types and rules for compos-
ing them [32]. Examples include dataflow architectures based on graphs of
pipes and filters, blackboard architectures based on shared data space and
a set of knowledge sources, and layered systems. Some architectural styles
additionally prescribe a framework1 as a set of structural forms that spe-
cific applications can specialize. Examples include the traditional multistage
compiler framework, 3-tiered client-server systems, the OSI protocol stack,
and user interface management systems.

As a very simple illustrative example, consider a simple containing a client
and server component connected by a RPC connector. The server itself might be
represented by a subarchitecture. Properties of the connector might include the
protocol of interaction that it requires. Properties of the server might include the

1 Terminology distinguishing different kinds of families of architectures is far from
standard. Among the terms used are “product-line frameworks,” “component inte-
gration standards,” “kits,” “architectural patterns,” “styles,” “idioms,” and others.
For the purposes of this paper, the distinctions between these kinds of architectural
families is less important than the fact that they all represent a set of architectural
instances.

Formal Modeling and Analysis of Software Architecture 7

average response time for requests. Constraints on the system might stipulate
that no more than five clients can ever be connected to this server and that
servers may not initiate communication with a client. The style of the system
might be a “client-server” style in which the vocabulary of design includes clients,
servers, and RPC connectors.

This conceptual basis of ADLs provides a natural way to model the run-
time architectures of systems. First, ADLs allow one to describe compositions
of components precisely, making explicit the ways in which those components
communicate. Second, they support hierarchical descriptions and encapsulation
of subsystems as components in a larger system. Third, they support the specifi-
cation and analysis of non-functional properties. Fourth, many ADLs provide an
explicit home for describing the detailed semantics of communication infrastruc-
ture (through specification of connector types). Fifth, ADLs allow one to define
constraints on system composition that make clear what kinds of compositions
are allowed. Finally, architectural styles allow one to make precise the differences
between kinds of component integration standards.

To be concrete, we now describe a representative ADL, called Acme [13]
Acme supports the definition of four distinct aspects of architecture. First is
structure—the organization of a system as a set of interacting parts. Second is
properties of interest—information about a system or its parts that allow one to
reason abstractly about overall behavior (both functional and extra-functional).
Third is constraints—guidelines for how the architecture can change over time.
Fourth is types and styles—defining classes and families of architecture.

Structure Architectural structure is defined in Acme using seven core types
of entities: components, connectors, systems, ports, roles, representations, and
rep-maps. Consistent with the vocabulary outlined earlier, Acme components
represent computational elements and data stores of a system. A component
may have multiple interfaces, each of which is termed a port. A port identifies
a point of interaction between the component and its environment, and can
represent an interface as simple as a single procedure signature. Alternatively, a
port can define a more complex interface, such as a collection of procedure calls
that must be invoked in certain specified orders, or an event multicast interface.

Acme connectors represent interactions among components. Connectors also
have interfaces that are defined by a set of roles. Each role of a connector defines
a participant of the interaction represented by the connector. Binary connectors
have two roles such as the caller and callee roles of an RPC connector, the reading
and writing roles of a pipe, or the sender and receiver roles of a message passing
connector. Other kinds of connectors may have more than two roles. For example
an event broadcast connector might have a single event-announcer role and an
arbitrary number of event-receiver roles.

Acme systems are defined as graphs in which the nodes represent components
and the arcs represent connectors. This is done by identifying which component
ports are attached to which connector roles.

8 David Garlan

Figure 1 contains an Acme description of the simple architecture described
above. A client component is declared to have a single send-request port, and the
server has a single receive-request port. The connector has two roles designated
caller and callee. The topology of this system is defined by listing a set of
attachments that bind component ports to connector roles. In this case, the
client’s requesting port is bound to the rpc’s caller role, and the servers’s request-
handling port is bound to the rpc’s callee role.

System simple_cs = {

Component client = { Port sendRequest }

Component server = { Port receiveRequest }

Connector rpc = { Roles {caller, callee} }

Attachments : {

client.sendRequest to rpc.caller ;

server.receiveRequest to rpc.callee }

}

Fig. 1. Simple Client-Server System in Acme.

To support hierarchical descriptions of architectures, Acme permits any com-
ponent or connector to be represented by one or more detailed, lower-level de-
scriptions. Each such description is termed a representation.

When a component or connector has an architectural representation there
must be some way to indicate the correspondence between the internal system
representation and the external interface of the component or connector that
is being represented. A rep-map (short for “representation map”) defines this
correspondence. In the simplest case a rep-map provides an association between
internal ports and external ports (or, for connectors, internal roles, and external
roles).2 In other cases the map may be considerably more complex.

Figures 2 illustrates the use of representations in elaborating the simple
client-server example. In this case, the server component is elaborated by a
more detailed architectural representation.

Properties The seven classes of design element outlined above are sufficient
for defining the structure of an architecture as a graph of components and con-
nectors. However, there is more to architectural description than structure. But
what exactly? Looking at the range of ADLs, each typically has its own forms
of auxiliary information that determines such things as the run-time semantics
of the system, protocols of interaction, scheduling constraints, and resource con-
sumption. Clearly, the needs for documenting extra-structural properties of a
system’s architecture depend on the nature of the system, the kinds of analyses
required, the tools at hand, and the level of detail included in the description.
2 Note that rep-maps are not connectors: connectors define paths of interaction, while

rep-maps identify an abstraction relationship between sets of interface points.

Formal Modeling and Analysis of Software Architecture 9

System simpleCS = {

Component client = { ... }

Component server = {

Port receiveRequest;

Representation serverDetails = {

System serverDetailsSys = {

Component connectionManager = {

Ports { externalSocket; securityCheckIntf; dbQueryIntf } }

Component securityManager = {

Ports { securityAuthorization; credentialQuery; } }

Component database = {

Ports { securityManagementIntf; queryIntf; } }

Connector SQLQuery = { Roles { caller; callee } }

Connector clearanceRequest = { Roles { requestor; grantor } }

Connector securityQuery = {

Roles { securityManager; requestor } }

Attachments {

connectionManager.securityCheckIntf to clearanceRequest.requestor;

securityManager.securityAuthorization to clearanceRequest.grantor;

connectionManager.dbQueryIntf to SQLQuery.caller;

database.queryIntf to SQLQuery.callee;

securityManager.credentialQuery to securityQuery.securityManager;

database.securityManagementIntf to securityQuery.requestor; }

}

Bindings { connectionManager.externalSocket to server.receiveRequest }

}

}

Connector rpc = { ... }

Attachments { client.send-request to rpc.caller ;

server.receive-request to rpc.callee }

Fig. 2. Client-Server System with Representation.

To accommodate the open-ended requirements for specification of auxiliary
information, Acme supports annotation of architectural structure with arbitrary
lists of properties. Figure 3 shows the simple client-server system elaborated
with several properties. In the figure, properties document such things as the
client’s expected request rate and the location of its source code. For the rpc
connector, properties document the protocol of interaction described as a Wright
specification [4] (described in Section 3.4).

Properties serve to document details of an architecture relevant to its design
and analysis. However, from Acme’s point of view properties are uninterpreted
values—that is, they have no intrinsic semantics. Properties become useful, how-
ever, when tools use them for analysis, translation, display, and manipulation.

10 David Garlan

System simple_cs = {

Component client = {

Port sendRequest;

Properties { requestRate : float = 17.0;

sourceCode : externalFile = "CODE-LIB/client.c" }}

Component server = {

Port receiveRequest;

Properties { idempotent : boolean = true;

maxConcurrentClients : integer = 1;

multithreaded : boolean = false;

sourceCode : externalFile = "CODE-LIB/server.c" }}

Connector rpc = {

Role caller;

Role callee;

Properties { synchronous : boolean = true;

maxRoles : integer = 2;

protocol : WrightSpec = "..." }}

Attachments {

client.send-request to rpc.caller ;

server.receive-request to rpc.callee }

}

Fig. 3. Client-Server System with Properties.

3.2 Formalizing Architectural Design Constraints

One of the key ingredients of an architecture model is a set of design constraints
that determine how an architectural design is permitted to evolve over time.
Acme uses a constraint language based on first order predicate logic. That is,
design constraints are expressed as predicates over architectural specifications.
The constraint language includes the standard set of logical constructs (con-
junction, disjunction, implication, quantification, and others). It also includes a
number of special functions that refer to architecture-specific aspects of a system.
For example, there are predicates to determine if two components are connected,
and if a component has a particular property. Other functions return the set of
components in a given system, the set of ports of a given component, the set of
representations of a connector, and so forth. Figure 4 lists a representative set
of example functions. (For a detailed description see [25].)

Constraints can be associated with any design element of an architectural
model. The scope of the constraint is determined by that association. For exam-
ple, if a constraint is attached to a system then it can refer to any of the design
elements contained within it (components, connectors, and their parts). On the
other hand, a constraint attached to a component can only refer to that compo-

Formal Modeling and Analysis of Software Architecture 11

Connected(comp1, comp2) True if component comp1 is connected to
component comp2 by at least one connector

Reachable(comp1, comp2) True if component comp2 is in the transitive
closure of Connected(comp1, *)

HasProperty(elt, propName) True if element elt has a property called propName

HasType(elt, typeName) True if element elt has type typeName

SystemName.Connectors The set of connectors in system SystemName

ConnectorName.Roles The set of the roles in connector ConnectorName

Fig. 4. Sample Functions for Constraint Expressions.

nent (using the special keyword self , and its parts (that is, its ports, properties,
and representations).

To give a few examples, consider the following constraints that might be
associated with a system:

connected(client, server)

will be true if the components named client and server are connected directly
by a connector.

Forall conn : connector in systemInstance.Connectors @ size(conn.roles)
= 2

will be true of a system in which all of the connectors are binary connectors.

Forall conn : connector in systemInstance.Connectors @
Forall r : role in conn.Roles @

Exists comp : component in systemInstance.Components @
Exists p : port in comp.Ports @ attached(p,r) and (p.protocol

= r.protocol)

will be true when all connectors in the system are attached to a port, and the
attached (port, role) pair share the same protocol. Here the port and role protocol
values are represented as properties of the port and role design elements.

Constraints can also define the range of legal property values, as in

self.throughputRate >= 3095

and indicate relationships between properties, as in

comp.totalLatency =
(comp.readLatency + comp.processingLatency + comp.writeLatency)

Constraints may be attached to design elements in one of two ways: as an
invariant or a heuristic. In the first case, the constraint is taken to be a rule
that cannot be violated. In the second case, the constraint is taken to be a
rule that should be observed, but may be selectively violated. Tools that check

12 David Garlan

for consistency will naturally treat these differently. A violation of an invariant
makes the architectural specification invalid, while a violation of a heuristic is
treated as a warning.

Figure 5 illustrates how constraints might be used for a hypothetical Mes-
sagePath connector. In this example an invariant prescribes the range of le-
gal buffer sizes, while a heuristic prescribes a maximum value for the expected
throughput.

System messagePathSystem = {

...

Connector MessagePath = {

Roles {source; sink;}

Property expectedThroughput : float = 512;

Invariant (queueBufferSize >= 512) and (queueBufferSize <= 4096);

Heuristic expectedThroughput <= (queueBufferSize / 2);

}

}

Fig. 5. MessagePath Connector with Invariants and Heuristics.

3.3 Formalizing Architectural Style

An important general capability for the description of architectures is the ability
to define styles—or families—of systems. Styles allow one to define a domain-
specific or application-specific design vocabulary, together with constraints on
how that vocabulary can be used. This in turn supports packaging of domain-
specific design expertise, use of special-purpose analysis and code-generation
tools, simplification of the design process, and the ability to check for confor-
mance to architectural standards.

The basic building block for defining styles in Acme is a type system that
can be used to encapsulate recurring structures and relationships. Using Acme
one can define types of components, connectors, ports, and roles. Each such
type provides a type name and a list of required substructure, properties, and
constraints.

Figure 6 illustrates the definition of a Client component type. The type
definition specifies that any component that is an instance of type Client must
have at least one port called Request and a property called request-rate of type
float. Further, the invariants associated with the type require that all ports of
a Client component have a protocol property whose value is rpc-client, that no
client more than 5 ports, that a component’s request rate is larger greater than
0. Finally, there is a heuristic indicating that the request-rate should be less than
100.

Formal Modeling and Analysis of Software Architecture 13

Component Type Client = {

Port Request = {Property protocol: CSPprotocolT};

Property request-rate: Float;

Invariant Forall p in self.Ports @ p.protocol = rpc-client;

Invariant size(self.Ports) <= 5;

Invariant request-rate >= 0;

Heuristic request-rate < 100;

}

Fig. 6. Component Type “Client.”

An Acme style, or family3 is defined by specifying a set of types and a
set of constraints. The types provide the design vocabulary for the style. The
constraints determine how instances of those types can be used.

Figure 7 illustrates the definition of a “Pipe and Filter” style, together with
a sample system declaration using the style. The style defines two component
types, one connector type, and one property type. The single invariant of this
family prescribes that all connectors must be pipes. The system simplePF is
then defined as an instance of the style. This declaration allows the system to
make use of any of the types in the style, and it must satisfy all of the style’s
invariants.

But what does it mean for an instance to satisfy a type? In Acme, types
are interpreted as predicates, and asserting that an instance satisfies a type is
the same as asserting that it satisfies the predicate denoted by the type. The
predicate associated with a type is constructed by viewing declared structure
as asserting the existence of that structure in each instance. In other words, a
type defines the minimal structure of its instances.4 (Hence, in the example of
Figure 7 it is essential to include the invariant asserting that all connectors have
type pipe.)

The use of a predicate-based type system has several important consequences.
First, design elements (and systems) can have an arbitrary number of types. For
example, the fact that a structural element is declared to be of a particular
type, does not preclude it from satisfying other type specifications. This is an
important property since it permits, for example, a system to be considered a
valid instance of a style, even though it was not explicitly declared as such.

Second, the use of invariants fits smoothly within the type system. Adding a
invariant to a structural type or family simply conjoins that predicate with the
others in the type. This means that the type system becomes quite expressive –
essentially harnessing predicate logic to create useful type distinctions.

3 For historical reasons a “style” in Acme is termed a “family.”
4 The semantics of the Acme type system is similar to – but considerably simpler than

– that of other predicate-based type systems, such as the one used by PVS [28]. For
a formal treatment of the semantics, see [25].

14 David Garlan

Family PipeFilterFam = {

Component Type FilterT = {

Ports { stdin; stdout; };

Property throughput : int;

};

Component Type UnixFilterT extends FilterT with {

Port stderr;

Property implementationFile : String;

};

Connector Type PipeT = {

Roles { source; sink; };

Property bufferSize : int;

};

Property Type StringMsgFormatT = Record [size:int; msg:String;];

Invariant Forall c in self.Connectors @ HasType(c, PipeT);

}

System simplePF : PipeFilterFam = {

Component smooth : FilterT = new FilterT

Component detectErrors : FilterT;

Component showTracks : UnixFilterT = new UnixFilterT extended with {

Property implementationFile : String = "IMPL_HOME/showTracks.c";

};

// Declare the system’s connectors

Connector firstPipe : PipeT;

Connector secondPipe : PipeT;

// Define the system’s topology

Attachments { smooth.stdout to firstPipe.source;

detectErrors.stdin to firstPipe.sink;

detectErrors.stdout to secondPipe.source;

showTracks.stdin to secondPipe.sink; }

}

Fig. 7. Definition of a Pipe-Filter Family.

Third, the process of type checking becomes one of checking satisfaction of
a set of predicates over declared structures. Hence, types play two useful roles:
(a) they encapsulate common, reusable structures and properties, and (b) they
support a powerful form of checkable redundancy.

The use of predicates does, however, raise the issue that, in general, checking
for satisfaction of predicates is not decidable. Therefore, systems that rely on
predicate-based type systems usually do so with the aid of a theorem prover

Formal Modeling and Analysis of Software Architecture 15

(for example, PVS [28]). In Acme, however, we constrain the expressiveness of
types so that type checking remains decidable by ensuring that quantification
is only over finite sets of elements. (Finiteness comes from the fact that Acme
structures can only declare a finite number of subparts – components, ports,
representations, and others.)

3.4 Formalizing Architectural Behavior

In addition to formal modeling of architectural structure, properties, constraints
and styles, it is also useful to be able to model and analyze architectural be-
havior. By associating behavior with architectures, we are able to express much
richer semantic models, capturing things such as the fact that a pipe provides
buffered, order-preserving data transmission, or that a given component will call
the services of another component in some particular order. This in turn al-
lows us to attach analyze important properties, such as system deadlocks, race
conditions, and interface incompatibilities.

In principle there are many possible ways one might specify behavior of the
elements in an architectural model. Indeed, almost any formalism can be used,
and researchers have experimented with formal techniques ranging from pre-
post conditions [1], process algebras [4, 20], statecharts [5], POSets [19], rewrite
rules [17], and many others.

However, all of these have a similar flavor: (1) they document the individual
elements with behavior characterized in terms of abstract events, states and
transitions, and (2) they then perform various composition checks or simulations
to test for aggregate behavior, mismatches, deadlocks, and other anomalies.

Wright. To illustrate how this can be done, consider the Wright architecture
specification language [4]. Wright adopts an approach based on the process alge-
bra CSP [16]. Specifically it associates a CSP-like process with each component,
each component interface (port), each connector, and each connector interface
(role). The overall behavior is then a set of interacting protocols.

The notation used is a subset of CSP, containing the following elements:

– Processes and Events: A process describes an entity that can engage in
communication events.5 Events may be primitive or they can have associated
data (as in e?x and e!x, representing input and output of data, respectively).
The simplest process, STOP, is one that engages in no events. The event

√

is used represent the “success” event. The set of events that a process, P,
understands is termed the “alphabet of P,” or αP .

– Prefixing: A process that engages in event e and then becomes process P
is denoted e→P .

5 It should be clear that by using the term “process” we do not mean that the im-
plementation of the protocol would actually be carried out by a separate operating
system process. That is to say, processes are logical entities used to specify the
components and connectors of a software architecture.

16 David Garlan

– Alternative: (“deterministic choice”) A process that can behave like P or
Q, where the choice is made by the environment, is denoted P Q. (“Envi-
ronment” refers to the other processes that interact with the process.)

– Decision: (“non-deterministic choice”) A process that can behave like P or
Q, where the choice is made (non-deterministically) by the process itself, is
denoted P�Q.

– Named Processes: Process names can be associated with a (possibly re-
cursive) process expression. Unlike CSP, however, we restrict the syntax so
that only a finite number of process names can be introduced. We do not
permit, for example, names of the form Namei, where i can range over the
positive numbers.

In process expressions → associates to the right and binds tighter than either
or �. So e→f→P g→Q is equivalent to (e→(f→P)) (g→Q).

In addition to this standard notation from CSP we introduce three notational
conventions. First, we use the symbol § to represent a successfully terminating
process. This is the process that engages in the success event,

√
, and then stops.

(In CSP, this process is called SKIP.) Formally, § def=
√→STOP. Second, we

allow the introduction of scoped process names, as follows: let Q = expr1 in R.
Third, as in CSP, we allow events and processes to be labeled. The event e
labeled with l is denoted l.e. The operator “:” allows us to label all of the events
in a process, so that l : P is the same process as P , but with each of its events
labeled. For our purposes we use the variant of this operator that does not label√

. We use the symbol Σ to represent the set of all unlabeled events.
This subset of CSP defines processes that are essentially finite state. It pro-

vides sequencing, alternation, and repetition, together with deterministic and
non-deterministic event transitions.

Connector Description. To see how this is used let us consider first how a
connector is specified. A connector type is specified by a set of roles processes
and a glue process. The roles describe the expected local behavior of each of the
interacting parties. For example, the client-server connector illustrated earlier
would have a client role and a server role. The client role process might describe
the client’s behavior as a sequence of alternating requests for service and receipts
of the results. The server role might describe the server’s behavior as the alter-
nate handling of requests and return of results. The glue specification describes
how the activities of the client and server roles are coordinated. It would say
that the activities must be sequenced in the order: client requests service, server
handles request, server provides result, client gets result.

This is how it would be written using the notation just outlined.

connector Service =
role Client = request!x→ result?y → Client � §
role Server = invoke?x→ return!y → Server §
glue = Client.request?x→ Service.invoke!x

→Service.return?y→Client.result!y→glue
§

Formal Modeling and Analysis of Software Architecture 17

The Server role describes the communication behavior of the server. It is de-
fined as a process that repeatedly accepts an invocation and then returns; or it
can terminate with success instead of being invoked. Because we use the alter-
native operator (), the choice of invoke or

√
is determined by the environment

of that role (which, as we will see, consists of the other roles and the glue).
The Client role describes the communication behavior of the user of the ser-

vice. Similar to Server, it is a process that can call the service and then receive
the result repeatedly, or terminate. However, because we use the decision oper-
ator (�) in this case, the choice of whether to call the service or to terminate
is determined by the role process itself. Comparing the two roles, note that the
two choice operators allow us to distinguish formally between situations in which
a given role is obliged to provide some services – the case of Server – and the
situation where it may take advantage of some services if it chooses to do so –
the case of Client.

The glue process coordinates the behavior of the two roles by indicating how
the events of the roles work together. Here glue allows the Client role to decide
whether to call or terminate and then sequences the remaining three events and
their data.

The example above illustrates that the connector description language is
capable of expressing the traditional notion of providing and using a set of ser-
vices – the kind of connection supported by import/export clauses of module
interconnection.

As another illustration, consider two examples of a shared data connector.

connector Shared Data1 =
role User1 = set→User1 � get→User1 � §
role User2 = set→User2 � get→User2 � §
glue = User1.set→glue User2.set→glue

User1.get→glue User2.get→glue §

connector Shared Data2 =
role Initializer =

let A = set→A � get→A � §
in set→A

role User = set→User � get→User � §
glue = let Continue = Initializer.set→Continue

User.set→Continue
Initializer.get→Continue
User.get→Continue §

in Initializer.set→Continue §

The first, Shared Data1, indicates that the data does not require an explicit ini-
tialization value. The second, Shared Data2, indicates that there is a distinguished
role Initializer that must supply the initial value.

To take a more complex example, consider the following specification of a
pipe connector.

18 David Garlan

connector Pipe =
role Writer = write→Writer � close→§
role Reader =

let ExitOnly = close→§
in let DoRead = (read→Reader

read-eof→ExitOnly)
in DoRead � ExitOnly

glue = let ReadOnly = Reader.read→ReadOnly
Reader.read-eof
→Reader.close →§
Reader.close→§

in let WriteOnly = Writer.write→WriteOnly
Writer.close→§

in Writer.write→glue
Reader.read→glue
Writer.close→ReadOnly
Reader.close→WriteOnly

It might appear to be a simple matter to define a pipe: both the writer
and the reader decide when and how many times they will write or read, after
which they will each close their side of the pipe. In fact, the writer role is just
that simple. The reader, on the other hand, must take other considerations into
account. There must be a way to inform the reader that there will be no more
data.

Connector Semantics. The intuition behind a connector description is that
the roles are treated as independent processes, constrained only by the glue,
which serves to coordinate and interleave the events. To make this idea precise
we use the CSP parallel composition operator, ‖, for interacting processes. The
process P1‖P2 is one whose behavior is permitted by both P1 and P2. That
is, for the events in the intersection of the processes’ alphabets, both processes
must agree to engage in the event. We can then take the meaning of a connector
description to be the parallel interaction of the glue and the roles, where the
alphabets of the roles and glue are arranged so that the desired coordination
occurs.

Hence, the meaning of a connector description with roles R1, R2, . . ., Rn,
and glue Glue is the process:

Glue ‖ (R1:R1 ‖ R2:R2 ‖ . . . ‖ Rn:Rn)

where Ri is the (distinct) name of role Ri, and

αGlue = R1:Σ ∪ R2:Σ ∪ . . . ∪ Rn:Σ ∪ {√}.

In this definition we arrange for the glue’s alphabet to be the union of all
possible events labeled by the respective role names (e.g. Client, Server), together

Formal Modeling and Analysis of Software Architecture 19

with the
√

event. This allows the glue to interact with each role. In contrast,
(except for

√
) the role alphabets are disjoint and so each role can only interact

with the glue. Because
√

is not relabeled, all of the roles and glue can (and must)
agree on

√
for it to occur. In this way we ensure that successful termination of

a connector becomes the joint responsibility of all the parties involved.

Describing Components. Thus far we have concerned ourselves with the
definition of connector types. To complete the picture we must also describe the
ports of components and how those ports are attached to specific connector roles
in a complete software architecture.

In Wright, component ports are also specified by processes: The port process
defines the expected behavior of the component at that particular point of inter-
action. For example, a component that uses a shared data item only for reading
might be partially specified as follows:

component DataUser =
port DataRead = get→DataRead � §
other ports...

Since the port protocols define the actual behavior of the components when
those ports are associated with the roles, the port protocol takes the place of
the role protocol in the actual system. Thus, an attached connector is defined
by the protocol that results from the replacement of the role processes with
the associated port processes. More formally, the meaning of attaching ports
P1 . . . Pn as roles R1 . . . Rn of a connector with glue Glue is the process:

Glue ‖ (R1:P1 ‖ R2:P2 ‖ . . . ‖ Rn:Pn).

Note that this definition of attachment implies that port protocols need not
be identical to the role protocols that they replace. This is advantageous because
it allows greater opportunities for reuse. For instance, in the above example, the
DataUser component should be able to interact with another component (via a
shared data connector) even though it never needs to set. As another example,
we would expect to be able to attach a File port as the Reader role of a pipe (as
is commonly done in Unix when directing the output of a pipe to a file).

But this raises an important question: when is a port “compatible” with a
role? For example, it would be reasonable to forbid DataRead to be used as the
Initializer role for the Shared Data2 connectors, since it requires an initial set;
clearly DataRead will never provide this event.

Analyzing Architectural Behavior. Once one has a formal definition of
behavior there are a number of analyses that one can perform. The most obvious
one is checking that a connector is well-formed. That is to say, that the Glue
in combination with the roles does not lead to deadlock. Another useful check
is to investigate race conditions. This can be done by checking whether certain
events can ever occur out of order.

20 David Garlan

Yet another check is to answer questions like “what ports may be used in
this role?” At first glance it might seem that the answer is obvious: simply check
that the port and role protocols are equivalent. But as illustrated earlier, it is
important to be able to attach a port that is not identical to the role. On the
other hand, we would like to make sure that the port fulfills its obligations to the
interaction. For example, if a role requires an initialization as the first operation
(cf., the shared data example), we would like to guarantee that any port actually
performs it.

Informally, we would like to be able to guarantee that an attached port
process always acts in a way that the corresponding role process is capable
of acting. This can be recast as follows: When in a situation predicted by the
protocol, the port must always continue the protocol in a way that the role could
have.

In CSP this intuitive notion is captured by the concept of refinement. Roughly,
process P2 refines P1 (written P1 � P2) if the behaviors of P1 include those of
P2. Technically, the definition is given in terms of the failures/divergences model
of CSP [16, Chapter 3]. For various technical reasons, however, the actual def-
inition of compatibility is a little more complex to define, although it captures
the same essential idea of refinement. (See [4] for details.)

As another check, one can investigate whether a port can be left unattached.
This can be done by seeing if the port will deadlock when connected to a “do
nothing” connector. Other checks are described in detail in [2].

Analyzing Reconfigurable Architectures Thus far the analysis has assumed
a static architecture: that is, the structure of the architecture does not change
during the execution of a system. While this is often a useful approximation to
systems, clearly in the general case systems do evolve structurally. At the very
least, during initialization the system must be created, and this is not likely to
be an atomic operation.

As another example, consider a simple client-server system, such as the one
illustrated earlier, but that allows for the possibility that a server may crash. In
such cases the system might reconfigure itself so that the client uses a backup
server. This can be done by adding a new connector during run time. One of the
things we would like to guarantee for such a system is that no client requests
are lost. This requires some constraints on when reconfiguration can happen.

Some work has been done to address these issues, although comparatively
that work is relatively sparse. In our own work we showed how to extend Wright
to handle dynamically changing topologies [3]. Others have looked at ways to
use the Pi Calculus to specify such things [20]. Others have looked at graph
grammars [24] and category-theoretic approaches [35]. Unfortunately, in all of
these cases the complexity of the specification becomes drastically higher, and
the models become much less tractable for static analysis.

Formal Modeling and Analysis of Software Architecture 21

4 Automated Support

For all of the formal approaches outlined earlier, researchers have developed
numerous tools to aid in the modeling and analysis process for architects. Broadly
speaking there are three general categories of tools:

1. Design Assistants: These tools tend to focus on providing a graphical front
end to allow architects to develop designs. Typically they provide a pallet
of component and connector types that can be instantiated to create system
descriptions. Typical examples are environments such as C2 [22], MetaH [7],
Aesop [11], and Darwin [20].

2. Design Checkers: While automated support for architectural creation and
browsing is valuable, to be effective one must also provide analysis capabili-
ties. Hence, a number of tools have been created to perform various checks.
For example AcmeStudio [25] checks for violations of design constraints.
Wright provides a tool for performing the checks outlined earlier. Those
checks are based on the use of the FDR [10] model checker for CSP. Kramer
and Magee demonstrate how to use their LTSA tool to check specifications
written in their process algebra, FSP [21].

3. Code Generators: In many cases a formal definition of an architecture can
be used to generate system code. For example, the UniCon system handles
the generation of connector code for a wide variety of connector types [30].
Similarly C2 can generate partial implementations in using various infras-
tructures to handle component interaction.

5 Conclusion and Future Prospects

As we have tried to illustrate, software architecture is a field in which formal
modeling and analysis can have a major impact. While the state of practice
continues to rely on informal and semi-formal descriptions, considerable research
has been done to develop good formal models and associated tools for analyzing
them.

But the story is far from complete and there a number of areas in which
further research is needed. Here are a few.

– Scalability: Although some large case studies have been carried out (e.g.,
[5]), there are relatively few demonstrated success stories for large, complex
industrial systems. When systems have thousands of components, it is not
clear how well the representation techniques (particularly graphical ones)
scale. Nor is it clear whether analyses remain tractable. For example, many
analysis tools are based on model checkers, which have significant limitation
on the size of the model that can be checked.

– Dynamism: As noted earlier a key issue is modeling systems whose structure
changes at run time.

– Code conformance: One of the big problems is guaranteeing that an imple-
mentation conforms to its architectural specification. In situations where a

22 David Garlan

code generator is used it is often possible to guarantee conformance by con-
struction. But more generally, given an architecture and body of code, there
has been very little work on finding ways to make sure they are consistent.
The main problem is that architectures (as we have discussed them) repre-
sent run-time models, whereas code is obviously a design-time artifact. In
general it is undecidable whether a given body of code will generate a given
architecture.

There are also some intriguing new directions being explored in the area
of self-adaptive systems. Increasingly systems are required to run continuously.
Moreover they must often do this in the context of environments whose resources
are constantly changing (e.g., wireless bandwidth), or whose components may
be changing dynamically (e.g., web services). One approach that is being in-
vestigated by a number of researchers is the incorporation of self-adaptation or
self-healing into a system. The interesting question is how should one do this?

One approach is to use architectural models as the basis for system moni-
toring and repair [12, 15, 27]. The idea is that the architectural model becomes
available at run-time in order to understand whether a system is performing
optimally, and if not it can be used model to reason about reasonable repair
strategies at a high level of abstraction. While work is just beginning in this
area, it appears to be a promising avenue for future research.

References

[1] Gregory Abowd, Robert Allen, and David Garlan. Formalizing style to understand
descriptions of software architecture. ACM Transactions on Software Engineering
and Methodology, October 1995.

[2] Robert Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie
Mellon, School of Computer Science, January 1997. Issued as CMU Technical
Report CMU-CS-97-144.

[3] Robert Allen, Rémi Douence, and David Garlan. Specifying and analyzing dy-
namic software architectures. In Proceedings of the 1998 Conference on Funda-
mental Approaches to Software Engineering (FASE’98), Lisbon, Portugal, March
1998.

[4] Robert Allen and David Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, July 1997.

[5] Robert Allen, David Garlan, and James Ivers. Formal modeling and analysis of the
HLA component integration standard. In Proceedings of of the 6th International
Symposium on the Foundations of Software Engineering (FSE-6), Lake Buena
Vista, Florida, November 1998. ACM Press.

[6] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison
Wesley, 1998. ISBN 0-201-19930-0.

[7] Pam Binns and Steve Vestal. Formal real-time architecture specification and
analysis. In Tenth IEEE Workshop on Real-Time Operating Systems and Software,
New York, NY, May 1993.

[8] Paul Clements, Felix Bachmann, Len Bass, David GArlan, James Ivers, Reed
Little, Robert Nord, and Judith Stafford. Documenting Software Architectures:
Views and Beyond. Addison Wesley, 2002.

Formal Modeling and Analysis of Software Architecture 23

[9] L. Coglianese and R. Szymanski. DSSA-ADAGE: An Environment for
Architecture-based Avionics Development. In Proceedings of AGARD’93, May
1993.

[10] Failures Divergence Refinement: User Manual and Tutorial. Formal Systems (Eu-
rope) Ltd., Oxford, England, 1.2β edition, October 1992.

[11] David Garlan, Robert Allen, and John Ockerbloom. Exploiting style in archi-
tectural design environments. In Proceedings of SIGSOFT’94: The Second ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pages 179–
185. ACM Press, December 1994.

[12] David Garlan, Shang-Wen Cheng, and Bradley Schmerl. Increasing system de-
pendability through architecture-based self-repair. In A. Romanovsky R. de
Lemos, C. Gacek, editor, Architecting Dependable Systems. Springer-Verlag, 2003.

[13] David Garlan, Robert T. Monroe, and David Wile. Acme: Architectural descrip-
tion of component-based systems. In Gary T. Leavens and Murali Sitaraman,
editors, Foundations of Component-Based Systems, page 47. Cambridge Univer-
sity Press, 2000.

[14] David Garlan and Dewayne Perry. Introduction to the special issue on software
architecture. IEEE Transactions on Software Engineering, 21(4), April 1995.

[15] Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. Self-organising software ar-
chitectures for distributed systems. In Proceedings of the First ACM SIGSOFT
Workshop on Self-Healing Systems (WOSS ’02), 2002.

[16] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[17] Paola Inverardi and Alex Wolf. Formal specification and analysis of software
architectures using the chemical, abstract machine model. IEEE Transactions
on Software Engineering, Special Issue on Software Architecture, 21(4):373–386,
April 1995.

[18] P. B. Kruchten. The 4+1 view model of architecture. IEEE Software, pages 42–50,
November 1995.

[19] David C Luckham, Lary M. Augustin, John J. Kenney, James Veera, Doug Bryan,
and Walter Mann. Specification and analysis of system architecture using Rapide.
IEEE Transactions on Software Engineering, Special Issue on Software Architec-
ture, 21(4):336–355, April 1995.

[20] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed soft-
ware architectures. In Proceedings of the Fifth European Software Engineering
Conference, ESEC’95, September 1995.

[21] Jeff Magee and Jeff Kramer. Concurrency: State Models and Java Programs.
Wiley, 1999.

[22] Nenad Medvidovic, Peyman Oreizy, Jason E. Robbins, and Richard N. Taylor.
Using object-oriented typing to support architectural design in the C2 style. In
SIGSOFT’96: Proceedings of the Fourth ACM Symposium on the Foundations of
Software Engineering. ACM Press, October 1996.

[23] Nenad Medvidovic and Richard N. Taylor. Architecture description languages. In
Software Engineering – ESEC/FSE’97, volume 1301 of Lecture Notes in Computer
Science, Zurich, Switzerland, September 1997. Springer.

[24] Daniel Le Metayer. Software architecture styles as graph grammars. In Proceedings
of the Fourth ACM Symposium on the Foundations of Software Engineering. ACM
SIGSOFT, October 1996.

[25] Robert T. Monroe. Rapid Develpomentof Custom Software Design Environments.
PhD thesis, Carnegie Mellon University, July 1999.

24 David Garlan

[26] M. Moriconi, X. Qian, and R. Riemenschneider. Correct architecture refinement.
IEEE Transactions on Software Engineering, Special Issue on Software Architec-
ture, 21(4):356–372, April 1995.

[27] P. Oriezy et al. An architecture-based approach to self-adaptive software. IEEE
Intelligent Systems, 14(3):54–62, 1999.

[28] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752.
Springer-Verlag, June 1992.

[29] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40–52, October
1992.

[30] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young,
and Gregory Zelesnik. Abstractions for software architecture and tools to support
them. IEEE Transactions on Software Engineering, Special Issue on Software
Architecture, 21(4):314–335, April 1995.

[31] Mary Shaw and David Garlan. Formulations and formalisms in software architec-
ture. In Jan van Leeuwen, editor, Computer Science Today: Recent Trends and
Developments, Lecture Notes in Computer Science, Volume 1000. Springer-Verlag,
1995.

[32] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerg-
ing Discipline. Prentice Hall, 1996.

[33] Bridget Spitznagel and David Garlan. Architecture-based performance analysis.
In Tenth International Conference on Software Engineering and Knowledge En-
gineering (SEKE’98), San Francisco, CA, June 1998.

[34] Richard N. Taylor, Nenad Medvidovic, Kenneth M. Anderson, Jr. E. James White-
head, Jason E. Robbins, Kari A. Nies, Peyman Oreizy, and Deborah L. Dubrow. A
component- and message-based architectural style for gui software. IEEE Trans-
actions on Software Engineering, 22(6):390–406, June 1996.

[35] Michel Wermelinger. Formal specification and analysis of dynamic reconfiguration
of software architecture. In Proceedings of the 20th International Conference on
Software Engineering, volume 2, pages 178–179. IEEE Computer Society Press,
1998.

avl@info.ucl.ac.be

{j.kramer,j.magee,s.uchitel}@imperial.ac.uk

interface Wallet
 {authorise; invo
interface Service
 {request; reply;

component CLIENT {
 require
 wallet:Wallet;
 service:Servi
 /%
 CLIENT =
 (wallet.authori
 (service.rep
 |service.abo
)
).%/
}

ice; confirm; default;}

 abort; }

ce;

se ->service.request->
ly -> CLIENT
rt -> CLIENT

/% %/
->

x P (x->P)
x P x

y (x->P|y->Q)
x y
P x Q y

nvoice
ice.reply ->SERVER
ice.abort ->SERVER

component SERVER {
 provide
 service:Service;
 require
 wallet:Wallet;
 /%
 SERVER
 = (service.request -> wallet.i
 -> (wallet.confirm -> serv
 |wallet.default -> serv
)
).
 %/
 }

component SES {
 inst
 client:CLIENT
 server:SERVER
 cw:WALLET(2);
 sw:WALLET(0);
 bind
 client.servic
 client.wallet
 server.wallet
 cw.transfer
 }

;
;

e -- server.service;
 -- cw.wallet;
 -- sw.wallet;
 -- sw.transfer;

||SES =
 (client:CLIENT
 || server:SERVER
 || cw:WALLET(2)
 || sw:WALLET(0)
)
 /{client.service/server.service,
 client.wallet/cw.wallet,
 server.wallet/sw.wallet,
 cw.transfer/sw.transfer
 }.

property HONEST
 = (transfer.unit -> service.reply -> HONEST
 |transfer.null -> service.abort -> HONEST
).

The Application of Dependence Analysis

to Software Architecture Descriptions

Judith A. Stafford1, Alexander L. Wolf2, and Mauro Caporuscio3

1 Department of Computer Science
Tufts University

Medford, MA 02155 USA
jas@cs.tufts.edu

2 Department of Computer Science
University of Colorado

Boulder, Colorado 80309-0430 USA
alw@cs.colorado.edu

3 Dipartimento di Informatica
Università dell’Aquila

I-67010 L’Aquila, Italy
caporusc@univaq.it

Abstract. As the focus of software design shifts increasingly toward
the architectural level, so too are its analysis techniques. Dependence
analysis is one such technique that shows promise at this level. In this
paper we briefly describe and illustrate the application of dependence
analysis to architectural descriptions of software systems.

1 Introduction

Traditionally, software architectures are described using informal, natural-
language documents. Box and arrow diagrams are often used to bring more
precision to the descriptions, but while they can reveal some ambiguous and
missing properties, they are not capable of modeling all the information pro-
vided in the natural-language specification, such as system behavior. Formaliza-
tion, as applied to software development at the architectural level, involves the
application of mathematically based modeling languages to capture structural
and behavioral properties of the components of a system. Above all, these lan-
guages provide support for rigorous analysis of a system early in the life cycle
and/or at high levels of abstraction. Additionally, a formally described software
architecture can serve as a vehicle for precise and unambiguous communication
among the stakeholders in a system, and can provide a means to accurately
capture domain-specific properties in ways that support domain-specific archi-
tectural generalizations.

The goal of formally describing and analyzing the structure and behavior of
a software system is not new. Formal approaches have been proposed and used
in various phases of software development and maintenance for as long as people
have recognized the challenges of software engineering. Formal design notations

M. Bernardo and P. Inverardi (Eds.): SFM 2003, LNCS 2804, pp. 52–62, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

The Application of Dependence Analysis 53

and their associated analyses, in particular, were a major focus of research in
the 1970s and early 1980s. Results ranged from techniques for describing and
analyzing module interconnection, which were intended to address static prop-
erties of component structure and import/export relationships, to techniques for
describing and analyzing concurrent processes, which were intended to address
dynamic properties of component interaction behavior.

Software architecture is but the latest framework within which researchers are
trying to attain the goal of formal system description and analysis. Its empha-
sis is on unifying and extending earlier techniques for description and analysis,
and in applying the resulting new techniques in the context of modern-day soft-
ware practice. Unification is coming about from considering how the component
structure of a system can be used to modularize the description and analysis of
behavioral properties such that those descriptions and analyses can be performed
in a more tractable, compositional manner. Extensions are being explored that
are enhancing the typing of components and their interfaces to account for dy-
namic interaction behaviors. And, finally, the application of formal approaches
is benefiting from the rapidly growing industry interest in system development
based on large-grain component assembly rather than on small-grain component
programming.

2 Formal Architectural Analysis

Research in architectural analysis centers on determining which specific proper-
ties are appropriate for this level of analysis, and on developing techniques to
carry out those analyses. The premise underlying this work is that the confidence
gained through analysis at an architectural level will translate into confidence
in other levels of the system.

Many techniques for analyzing software systems have been developed over
the past decades. Most, however, are ineffective for analyzing large systems.
This is particularly true for techniques aimed at analyzing concurrent systems,
where state explosion problems are especially acute. To make techniques for
these situations more tractable, traditional specification and analysis techniques
have been enhanced in a variety of ways. Software architecture can be seen as
another approach to attacking the problem by providing a particular method for
abstraction and modularization.

Automated analysis techniques can differ in the levels of assurance they pro-
vide. In general, the techniques trade off efficiency and tractability against pre-
cision and completeness. For instance, it may be possible to guarantee some
properties only under certain assumptions or conditions. Carefully chosen, those
assumptions and conditions can match well with the context in which the system
is anticipated to operate, and thus the analysis can provide useful information.

A desirable characteristic of any imprecise or incomplete analysis technique
used to examine a property is that it give no false positive results concerning
that property. In other words, it should never indicate the absence of a problem
when, in fact, there is a problem. On the other hand, it is reasonable to allow a

54 Judith A. Stafford, Alexander L. Wolf, and Mauro Caporuscio

technique to indicate the possible presence of a problem, even if none truly exists,
and defer further analysis to some other automated analysis technique or to the
human. This characteristic is commonly referred to as conservatism. Clearly, the
most conservative analysis technique is one that indicates the possible presence
of an error in all situations. Such an absurd technique, while highly efficient (it
can be implemented using a constant function), is not of use. One goal of analysis
research is to increase the precision of conservative techniques such that they
are both efficient and useful.

3 Dependence Analysis

Dependence analysis involves the identification of interdependent elements of a
system. It is referred to as a “reduction” technique, since the interdependent
elements induced by a given inter-element relationship forms a subset of the sys-
tem. It has been widely studied for purposes such as code restructuring during
optimization, automatic program parallelization, test-case generation, and de-
bugging. Dependencies can be identified based on syntactic information readily
available in a formal specification. This type of analysis generally ignores state
information, but may incorporate some knowledge of the semantics of a language
to improve the precision of the results [6].

Dependence analysis as applied to program code is based on the relationships
among statements and variables in a program. Techniques for identifying and
exploiting dependence relations at the architectural level have also been devel-
oped [8,13,14,15]. Dependence relationships at the architectural level arise from
the connections among components and the constraints on their interactions.
These relationships may involve some form of control or data flow, but more
generally involve source structure and behavior. Source structure (or structure,
for short) has to do with system dependencies such as “imports”, while behavior
has to do with dynamic interaction dependencies such as “causes”. Structural
dependencies allow one to locate source specifications that contribute to the
description of some state or interaction. Behavioral dependencies allow one to
relate states or interactions to other states or interactions. Both structural and
behavioral dependencies are important to capture and understand when analyz-
ing an architecture.

4 Example: Aladdin

Aladdin [9] is a tool that identifies dependencies in software architectures. It was
designed to be easily adapted for use with a variety of architectural description
languages and has been demonstrated on the languages Acme [4] and Rapide [10].

If one thinks of an architectural description as a set of boxes and arrows in
a diagram, where the arrows represent the ability for a box, or some port into
or out of that box, to communicate with another box in the diagram, then one
can think about Aladdin as walking forwards or backwards from a given box,
traversing arrows either from heads to tails or vice versa. In Aladdin, the arrows

The Application of Dependence Analysis 55

are called links and the process of walking (i.e., performing a transitive closure)
over the links is called chaining.

If there is no knowledge about how a box’s input ports behaviorally relate to
it output ports, then a forward (backward) walk must include leaps from each
input (output) port that is reached to all output (input) ports. In that case, the
analysis is essentially being performed in a conservative manor at the compo-
nent level, which can lead to a high degree of false dependencies. If, instead, the
designer makes a precise statement about how input and output ports are re-
lated, presumably using an appropriately rich architecture description language,
then Aladdin can take advantage of this information to produce a more precise
reduction set.

The behavioral relationship among the input and output ports of a compo-
nent define the interaction behavior of that component. It is important to note
that the interaction behavior is not intended to capture the functional behavior
of the component. For example, the description of how a server interacts with its
clients is independent of the computation carried out by the server on behalf of
its clients. Aladdin uses a summarization algorithm operating on the description
of a component’s interaction behavior to identify possible relationships between
pairs of input and output ports. The resulting connections are called transitional
connections.

Conservative Precise

Fig. 1. Increasing Precision of Dependence Analysis.

Figure 1 illustrates the improvement in precision that can be gained when
transitional connections are included in the information used to determine possi-
ble dependencies. The solid arcs in this figure denote arcs that must be traversed
in order to identify a conservative set of dependencies. In the view of the system
shown on the left, the transitional connections are unknown. Therefore, when
tracing back from the circled port, one must assume that any stimulus applied
to input port could have contributed to a response on any output port. The lack
of information on the interaction behavior of the component forces the analysis
to include all components of the system in the dependency set. The existence
of the transitional connections in the view of the system on the right provides

56 Judith A. Stafford, Alexander L. Wolf, and Mauro Caporuscio

information that allows the analysis to eliminate the component connected only
by the dashed arcs.

Rather than constructing a complete dependence graph, Aladdin’s analysis
is performed on demand in response to an analyst’s query. The query might
request information about the existence of certain specific kinds of anomalous
dependence relationships, or might request information about the parts of the
system that could affect or be affected by a specific port in the architecture. A
view of Aladdin’s interface is shown in Figure 2. A file containing a Rapide archi-
tectural specification is selected using the file menu. In this figure a specification
for a variant of the familiar gas station example was selected. The specification
is displayed in the left pane of the main Aladdin window. The right pane dis-
plays the list of component ports that have been identified from the architectural
description.

Rapide is a high-level, event-based simulation language that provides sup-
port for the dynamic addition and deletion of predeclared components. Rapide
descriptions are composed of type specifications for component interfaces and
architecture specifications for permissible connections among the components of
a system.

System behavior is described through architectural connection rules, state
transition rules, and patterns of events required to generate events that activate
the rules. System behavior can be simulated through execution of the Rapide
description. The results of a simulation of system behavior can be studied using a
representation called a poset. A poset is a partially ordered set of events captured
during a single simulation of a system.

Components are defined in terms of their interfaces. Three types of com-
ponents are described in Figure 3, which is the Rapide description of the gas
station problem. The component types are a pump, a customer, and an oper-
ator. In this simple example we see that interfaces specify several aspects of
the component’s interactions with other components. The declaration of in and
out actions specify the component’s ability to observe or emit particular events.
Implicitly declared actions represent events generated in the environment of the
system that are emitted by or watched for in an interface; the event start in the
first transition rule of the customer interface in Figure 3 is an example. Behav-
iors, which may involve local variables, describe the computation performed by
the component, including how the component reacts to in actions and generates
out actions. Computations are defined in an event pattern language [12], where
a pattern is a set of events together with their partial ordering. The partial order
of events is represented as a poset.

The analyst can instruct Aladdin to perform any of several queries. The
queries window shown at the top left in the figure appears when the analyst
selects the “Queries” menu item. The analyst can choose to see a list of ports
with no source or those with no target, which are two kinds of port-related
anomalies. The small window to the right of the window “Queries” contains a
list of all the ports in the specification that do not have targets. Ports with no

The Application of Dependence Analysis 57

Fig. 2. Use of Aladdin to Identify Anomalies and Perform Port-Based Queries.

source or no target may indicate an unspecified connection or they may indicate
a function of the component that is not used in this particular architecture.

The analyst can also choose to create a chain. If “Create chain. . .” is selected,
then the window “Get Query” appears. The analyst selects a query, in this case
the analyst wanted to see a chain of all the ports in the architecture that could
causally affect port R.ON. Dotty [3], a graph layout tool, is used to display the

58 Judith A. Stafford, Alexander L. Wolf, and Mauro Caporuscio

type Dollars is integer; -- enum 0, 1, 2, 3 end enum;

type Gallons is integer; -- enum 0, 1, 2, 3 end enum;

type Pump is interface

action in O(), Off(), Activate(Cost : Dollars);

out Report(Amount : Gallons, Cost : Dollars);

behavior

Free : var Boolean := True;

Reading, Limit : var Dollars := 0;

action In Use(), Done();

begin

(?X : Dollars)(On ∼ Activate(?X)) where

$Free ||> Free := False; Limit := ?X; In Use;;

In Use ||> Reading := $Limit; Done;;

Off or Done ||> Free := True; Report($Reading);;

end Pump;

type Customer is interface

action in Okay(), Change(Cost : Dollars);

out Pre Pay(Cost : Dollars)Okay(), Turn On(), Walk(), Turn Off();

behavior

D : Dollars is 10;

begin

start ||> Pre Pay(D);;

Okay ||> Walk;;

Walk ||> Turn On;;

end Customer;

type Operator is interface

action in Request(Cost : Dollars), Result(Cost : Dollars);

out Schedule(Cost : Dollars), Remit(Change : Dollars);

behavior

Payment : var Dollars := 0;

begin

(?X : Dollars)Request(?X) ||> Payment := ?X; Schedule(?X);;

(?X : Dollars)Result(?X) ||> Remit($Payment - ?X);;

end;

architecture gas station() return root is

O : Operator; P : Pump; C1, C2 : Customer;

connect

(?C : Customer; ?X : Dollars) ?C.Pre Pay(?X) ||> O.Request(?X);

(?X : Dollars) O.Schedule(?X) ||> P.Activate(?X);

(?X : Dollars) O.Schedule(?X) ||> C1.Okay;

(?C : Customer) ?C.Turn On ||> P.On;

(?C : Customer) ?C.Turn Off ||> P.Off;

(?X : Gallons; ?Y : Dollars)P.Report(?X, ?Y) ||> O.Result(?Y);

end gas station;

Fig. 3. Rapide Description of the Gas Station Example [11].

The Application of Dependence Analysis 59

resultant chain, which appears in the window “Dotty”. The chain is displayed as
a directed graph rooted at the node representing the specified port of interest,
in this case the node R.ON at the bottom of the graph. The arcs are labeled with
a relationship type and represent direct (or perhaps summarized) dependence
relationships between pairs of ports. The nodes of the graph represent all ports
that could cause, directly or indirectly, the port of interest, the event R.ON, to
be triggered.

This query was performed in order to help identify the cause of a failure in a
Rapide simulation of the gas station. In the simulation it was discovered that A2
was never allowed to refuel. The cause of this is apparent from viewing the chain,
and in fact could have been discovered through running an anomaly check prior
to simulation, since the event A2.OKAY has no source. Through examination of
the chain, the analyst determines that the problem occurs because O.REQUEST
must record the source of a request so that the appropriate OKAY can be triggered.

Aladdin takes advantage of the behavior section of Rapide interface defini-
tions. Aladdin applies a summarization algorithm to the behavioral description in
order to identify the transitional connections in the Rapide description. Aladdin
can also be used in conjunction with Rapide’s simulation tools. If a specification
error is detected during a simulation, Aladdin can be used to identify a reduced
set of description elements.

As another example, consider the architecture depicted in Figure 4. The
components and relationships shown in this figure represent the architecture of
a software system called MobiKit [1], which supports the mobility of clients of
a distributed publish/subscribe service. Clients of the system first “move out”
from one location and then “move in” to a new location. Figure 5 shows a portion
of a forward chain resulting from this architecture. The analysis reveals a lack
of coordination in the architecture. For example, a mobile client can perform a
moveIn operation before the moveOut is completed.

Aladdin can also be used independently of any particular architecture de-
scription language. The analyst can manually define links by using, for example,
an informal graphical notation. When all the connections have been identified,
the analyst can make queries about the relationship of specific ports to other
ports in the architecture, as described above. In this way it supports Jackson
and Wing’s notion of “lightweight formal methods” [5] in a manner similar to
Feather’s use of a database [2].

5 Conclusion

As the focus of software design shifts increasingly toward the architectural level,
so too are its analysis techniques. Dependence analysis is one such technique that
shows promise at this level. For dependence analysis to most effective, however,
designers must employ sophisticated, behavior-oriented architectural description
languages. As it turns out, the model underlying these languages tends to be
that of concurrent, compositional, event-based computation, not the traditional

60 Judith A. Stafford, Alexander L. Wolf, and Mauro Caporuscio

S0
HierarchicalDispatcher

MC
MobiKit Client

rUNS

sUNS

rSUB

sSUB

rMVO

sMVO-P

MP1
MobiKit Proxy

MVO-req

startQstartD

enqueue

rUNS rSUBrPUB

Publisher
ThinClient

start

publish

Subscriber
ThinClient

start

moveOut

subscribe

unsubscribe
recNotif

Manage
Notif

Dummy
ThinClient

start

publish

subscribe

unsubscribe
recNotif

Manage
Notif

S1
HierarchicalDispatcher

rUNS rSUBrPUB

fPUB fUNS fSUB

NOT

rNOT

S2
HierarchicalDispatcher

rUNS rSUBrPUB

fPUB fUNS fSUB

NOT

rNOT

Q
Queuestart

storerequest

MVI-req

moveIn

rMVI

MP2
MobiKit Proxy

MVO-req

startQ

startDummy

MVI-req

stop

stopQ

dwlQ

uplNOT

sMVI-P

getQ
retQ

DWL-req

stop

stopD
getSN

uplSN

rDWL

NOT

rUPL

uplC

Fig. 4. Architecture of MobiKit.

basis for dependence analysis. Early work is beginning to emerge to extend the
theoretical foundation of dependence analysis [7], but much remains to be done.

Acknowledgments

The work of J.A. Stafford was sponsored in part by the Software Engineering
Institute, a federally funded research and development center sponsored by
the U.S. Department of Defense. The work of A.L. Wolf was supported in part by

The Application of Dependence Analysis 61

Subscriber.start

Subscriber.subscribe

MC.rSUB Subscriver.moveOut

MC.rMVO Subscriber.moveIn

MC.sMVI-P

MP2.MVI-req

MP2.DWLreq

MP1.rDWL

MP1.stopQ

Q.getQ

Q.stop

Q.retQ

MP1.getSN

MP1.uplSN

MP1.stopD

Dummy.stop

Dummy.unsubscribe

S0.rUNS

S0.fUNS

S1.rUNS

MP2.rUPL

MP2.uplC

MC.dwlQ

MC.uplNOT

Subscriber.recNotif

Subscriber.ManageNotif

Fig. 5. Portion of a Chain Derived from the MobiKit Architecture.

the Air Force Material Command, Rome Laboratory, and the Defense Advanced
Research Projects Agency under Contract Number F30602-00-2-0608. The con-
tent of the information does not necessarily reflect the position or the policy of
the U.S. Government and no official endorsement should be inferred. The work
of M. Caporuscio was supported in part by the MIUR National Research Project
SAHARA.

62 Judith A. Stafford, Alexander L. Wolf, and Mauro Caporuscio

References

1. M. Caporuscio, A. Carzaniga, and A.L. Wolf. Design and Evaluation of a Support
Service for Mobile, Wireless Publish/Subscribe Applications. IEEE Transactions
on Software Engineering. To appear.

2. M.S. Feather. Rapid Application of Lightweight Formal Methods for Consistency
Analyses. IEEE Transactions on Software Engineering, 24(11):949–959, November
1998.

3. E.R. Gansner, E. Koutsofios, S.C. North, and K.-P. Vo. A Technique for Drawing
Directed Graphs. IEEE Transactions on Software Engineering, 19(3):214–230,
March 1993.

4. D. Garlan, R. Monroe, and D. Wile. ACME: An Architecture Description Inter-
change Language. In Proceedings of CASCON ’97, pages 169–183. IBM Center for
Advanced Studies, November 1997.

5. D. Jackson and J.M. Wing. Lightweight Formal Methods. Computer, 29(4):21–22,
April 1996.

6. A. Podgurski and L.A. Clarke. A Formal Model of Program Dependences and its
Implications for Software Testing, Debugging, and Maintenance. IEEE Transac-
tions on Software Engineering, 16(9):965–979, September 1990.

7. J.A. Stafford. A Formal, Language-Independent, and Compositional Approach to
Control Dependence Analysis. PhD thesis, University of Colorado, Boulder, Col-
orado, USA, August 2000.

8. J.A. Stafford and A.L. Wolf. Architecture-Level Dependence Analysis in Support
of Software Maintenance. In Proceedings of the Third International Software Ar-
chitecture Workshop, pages 129–132, November 1998.

9. J.A. Stafford and A.L. Wolf. Architecture-Level Dependence Analysis for Software
Systems. International Journal of Software Engineering and Knowledge Engineer-
ing, 11(4):431–452, August 2001.

10. RAPIDE Design Team. Draft: Guide to the Rapide 1.0 Language Reference Man-
uals. July 1997.

11. RAPIDE Design Team. Draft: Rapide 1.0 Architecture Language Reference Man-
ual. July 1997.

12. RAPIDE Design Team. Draft: Rapide 1.0 Pattern Language Reference Manual.
July 1997.

13. S. Vestal. MetaH Programmer’s Manual Version 1.27. Honeywell, Inc., Minneapo-
lis, MN, 1998.

14. M.E.R. Vieira, M.S. Dias, and D.J. Richardson. Analyzing Software Architectures
with Argus-I. In Proceedings of the 2000 International Conference on Software
Engineering, pages 758–761. Association for Computer Machinery, June 2000.

15. J. Zhao. Using Dependence Analysis to Support Software Architecture Under-
standing. New Technologies on Computer Software, pages 135–142, September
1997.

Validating Distributed Object

and Component Designs�

Nima Kaveh and Wolfgang Emmerich

Department of Computer Science
University College London

Gower Street, London WC1E 6BT, UK
{N.Kaveh|W.Emmerich}@cs.ucl.ac.uk

Abstract. Distributed systems are increasingly built using distributed
object or component middleware. The dynamic behaviour of those dis-
tributed systems is influenced by the particular combination of middle-
ware synchronisation and threading primitives used for communication
amongst distributed objects. A designer may accidentally choose combi-
nations that cause a distributed application to enter undesirable states
or violate liveness properties. We exploit the fact that modern object and
component middleware offer only a small number of underlying synchro-
nisation primitives and threading policies. For each of these we define a
UML stereotype and a formal process algebra specification of the stereo-
type semantics. We devise a means to specify safety and liveness proper-
ties in UML and again map those to process algebra safety and liveness
properties. We can thus apply model checking techniques to verify that
a given design does indeed meet the desired properties. We propose how
to reduce the state space that needs to be model checked by exploiting
middleware characteristics. We finally show how model checking results
can be related back to the input UML models. In this way we can hide
the formalism and the model checking process entirely from UML de-
signers, which we regard as critical for the industrial exploitation of this
research.

1 Introduction

Distributed software architectures prescribe the composition of software compo-
nents intended to be deployed on a distributed system. There is an increasing
trend of developing software applications based on distributed architectures.
Increased overall system availability through better fault tolerance, parallel ex-
ecution of an application and a simplification of scalability are some of the key
motivators behind the popularisation of distributed architectures.

The direct use of networking primitives or proprietary technologies for the
development of distributed applications is no longer a viable option. Such ap-
proaches stifle application maintainability and ease of interoperability with other
applications developed with proprietary technologies. Instead, open object and
� This work is partially funded through EU project TAPAS (IST-2001-34069).

M. Bernardo and P. Inverardi (Eds.): SFM 2003, LNCS 2804, pp. 63–91, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

64 Nima Kaveh and Wolfgang Emmerich

component middleware technologies, such as CORBA [26] and Enterprise Java
Beans [22], are rapidly becoming the preferred approach for the development of
distributed systems.

These middleware approaches attempt to hide the complexity of distribu-
tion and aspire to provide developers with the ability to invoke operations on
remote hosts in the same way as they would invoke local methods. While they
succeed in many respects, there are some fundamental differences between local
and remote method invocations [2]. One such difference is the inherent parallel
execution of objects or components that reside on different machines. A local
method call can recursively call itself, possibly indirectly via some other meth-
ods, and will not cause any problems as long as the recursion terminates at
some stage. Recursion of distributed objects may however cause deadlocks. Due
to the non-determinism introduced by components that execute in parallel, it
is considerably more complicated to develop safe distributed applications than
centralised applications.

Software engineers can now use these powerful middleware technologies for
the implementation of distributed systems. The implementation support, how-
ever, needs to be complemented with appropriate architecture and design meth-
ods that address the new challenges that are introduced by the use of distributed
object and component middleware. In particular, software engineers need sup-
port for reasoning about the correctness of a distributed object design that goes
beyond the diagram drawing capabilities offered by current CASE tools.

In this paper we show that the use of particular combinations of client-side
synchronisation primitives and server-side threading policies provided by most
distributed object middleware may cause deadlocks as well as safety and liveness
problems. We discuss a method to support the software engineer in detecting
violations of desired system properties in their distributed object designs. We
exploit the fact that object and component middleware standards and imple-
mentations only offer a fixed number of client-side synchronisation primitives
and server-side threading policies. We suggest the use of UML stereotypes to
represent each of these primitives in distributed object designs. We define the
semantics of the stereotypes using a process algebra. We use that semantics to
translate UML models and properties into behaviourally equivalent process al-
gebra representations and can then use model checking techniques to detect any
violations of the properties. Finally, we demonstrate how model checking results
can be related back to the original UML design model. We present the tools
that we have built in support of this method and evaluate the scalability of our
validation technique.

In the next section, we discuss a scenario that we use throughout this paper
to exemplify the problems that we address, as well as our solutions. Section 3
gives details of how UML stereotypes are used to model the identified synchroni-
sation characteristics of a given system and includes UML models of the example
scenario. Section 4 shows how designers can express desired safety and liveness
properties in UML for the design models to adhere to. Sections 5 and 6 use a pro-
cess algebra to define the semantics for the identified synchronisation primitives

Validating Distributed Object and Component Designs 65

and threading policies as well as user-defined safety and progress properties. In
Section 7, we demonstrate the importance of tackling the state explosion prob-
lem and outline our efforts in that area. In Section 8, we show how deadlocks and
safety property violations can be detected using reachability analysis as well as
the use of efficient graph algorithms on the underlying state space for the detec-
tion of a restricted form of liveness properties. Section 9 shows the mechanism
by which designers receive feedback from the verification process. We discuss the
scalability of our approach in Section 10. Section 11 introduces the tool that we
have built to support our approach, with focus on its design and architecture.
Section 12 puts our work in context with related research in the field. Finally,
we conclude in Section 13 and present future goals for this research.

2 Motivating Scenario

To aid the demonstration of this work, we discuss an example of a distributed
software architecture, which we assume is implemented using object middleware
technology. We refer to this scenario throughout the paper to demonstrate the
key steps of our approach.

The example that we use is a stock trading system, which in practice is often
distributed as different market participants interact from different locations with
servers that are hosted by a stock exchange. In particular, traders need to interact
with a component that executes orders when a transaction is completed. Every
completed transaction at the same time determines a new price for a stock that
needs to be communicated to all interested market participants.

Fig. 1. Market Trading Scenario

66 Nima Kaveh and Wolfgang Emmerich

Fig. 1 depicts the main components of the stock trading system and the
communication channels between them. To keep the scenario simple, we only
concentrate on the three types of entities responsible for communicating trade
information, since it is these entities that determine the dynamic synchronisa-
tion behaviour of the application. We do not make any assumption about the
infrastructure of the system, except that their hosts are connected by a network
and that they communicate via object-oriented middleware.

Market traders carry out transactions and monitor fluctuations in various
stock prices. Triggered by changes in prices or external requests from customers
to deal in particular stock, a Trader will enter a new transaction and send its
results to the EquityServer. Fig. 1 shows three traders sending updates to the
EquityServer. Note that the Trader entity could in reality consist of multiple
components but for all intents and purposes of this scenario it is viewed as a
simple entity that can send and receive information.

Upon receipt of trading information the EquityServer will carry out specific
computations based on the received data and other sources, such as stock pro-
files stored in a database. At a certain point the EquityServer will complete
processing the transaction results and use this data to feed new price informa-
tion to all traders. To do so, the EquityServer sends an updated price to the
NotificationServer, which, in turn, publishes the price to registered traders.
The delegation of the task to the notification server simplifies the EquityServer

and minimises coupling. We assume that all traders have registered with the
NotificationServer during initialisation and that communication channels are
already established.

Communication between all entities in the system follows the push model. In
this model information flows in one direction and is initiated by the source. In
our example the sink end always reacts by forwarding information to the next
entity. This creates recursion, whereby a Trader component calls an operation
from the EquityServer, which calls an operation from the NotificationServer

and this, in turn eventually calls back the Trader to notify it of a new price. If
all these operations are called in a synchronous manner and servers are single
threaded, we will reach a situation where all the components are blocked waiting
the reception of information from one another, thus entering a deadlock.

Additionally, there are several domain specific properties that the designer
may want the trading system to adhere to for the successful execution of the
application. If we consider a closed market, prices are not changed in any other
way than traders completing a transaction. This means that prior to any new
prices being sent by the NotificationServer, traders need to send trade results to
the EquityServer entity. Another desirable property is the guarantee that traders
will be able to deal in stocks, no matter what the state of other components.
Devising a means of representing these properties in a suitable notation and
being able to verify a design model for such properties is the main theme of this
paper.

Validating Distributed Object and Component Designs 67

3 Distributed Object Design

We use the Unified Modelling Language [29] for designing the static export inter-
faces of distributed object types and their dynamic object interactions. UML is
widely accepted and deployed in industry and we hope to leverage its popularity
to bring our research results into industrial practice. UML is a self-descriptive
notation, in that its entities are defined via meta-model expressed in UML. The
consequence of this approach is a lack of formal semantics for the notation,
which is needed for rigorous verification of a design model. The UML standard
also provides extension-mechanisms by which new semantics can be introduced
into a model, whilst still remaining within the UML framework. This section
describes how our approach uses the stereotype extension mechanism for em-
bodying middleware specific information into UML design models.

Initially we chose UML class and interaction diagrams to model a given
system [16]. This resulted in the system being represented at a type level of
abstraction through class diagrams and an instance level of abstraction through
interaction diagrams. The use of interaction diagrams limited us in obtaining
only one specific interleaving of interactions between objects. This clearly did not
take full advantage of the exhaustive search powers of model checking techniques.
In this paper, we use UML state diagrams [10] rather than interaction diagrams
to model the dynamic behaviour of distributed objects. Statecharts maintain
the ability to model dynamic behaviour but because they model the behaviour
at a type-level of abstraction they also hold all possible interleaving of object
interactions in a given system.

The behaviour of distributed object interactions is governed by synchronisa-
tion and threading policies. We note that current distributed object and com-
ponent middleware systems support a fixed number of such synchronisation and
threading primitives. OMG’s CORBA, Microsoft’s Component Object Model
(COM) and Java Remote Method Invocation (RMI) all support synchronous in-
vocations, which block the client until the server returns the result. CORBA also
supports deferred synchronous, oneway and asynchronous invocations. Server
objects, similarly, only support a small number of threading models. CORBA’s
Portable Object Adapter defines single-threaded behaviour, which would force a
client to wait while a server object is busy processing another request and multi-
threaded behaviour, which is often implemented by spawning new threads for
requests or by selecting a thread from a thread pool. RMI only directly supports
single threaded behaviour, but server programmers can use Java’s threading
primitives to construct multi-threaded behaviour on top of this.

As the synchronisation and threading behaviour is of great importance for
the overall design of a distributed object system, we believe that they should be
captured in static and dynamic design diagrams. CORBA provides a superset
of the synchronisation primitives and threading policies of COM and RMI. We
subsequently define stereotypes for all the primitives that CORBA provides.
These primitives can then be used during the design of applications based on
other distributed object and component technologies too. Our approach therefore

68 Nima Kaveh and Wolfgang Emmerich

caters for design and property violation detection of all applications based on
mainstream object and component middleware.

Recent advances in middleware technology have brought about component
middleware technologies such as Enterprise Java Beans and the CORBA Com-
ponent Model (CCM). Components representing business logic are hosted in the
middleware’s container. Component middleware technologies use existing object
middlewares for establishing communication between components. For exam-
ple EJB communication is achieved via RMI and CCM communication is done
through CORBA. Therefore by providing semantics for the primitives of the un-
derlying object middleware technologies we cater for the component middleware
technologies as well.

The 〈〈synchronous〉〉 stereotype represents a synchronous request primitive,
while the 〈〈deferredsynchronous〉〉 stereotype is used to indicate a deferred-
synchronous request being made on a server object. The 〈〈asynchronous〉〉 stereo-
type is used to indicate an asynchronous client request, and a 〈〈oneway〉〉
stereotype represents a oneway request. Similarly on the server-side, we de-
fine the 〈〈singleThreaded〉〉 stereotype to indicate that a particular server object
uses a single threaded policy to deal with incoming service requests and the
〈〈multiThreaded〉〉 stereotype shows that the server object handles multiple con-
current service requests by using multiple threads. We will specify the semantics
of these stereotypes formally in Section 5.

Fig. 2. Class diagram of Market Trading Scenario

Server-side threading policies are defined statically for object types. We there-
fore model those in the class diagrams that capture the export interfaces of object
types. As an example, Fig. 2 shows a class diagram of the equity trading system.
Each of the classes correspond to one of the three entities in the example scenario
of Section 2. Each class is annotated with the 〈〈singleThreaded〉〉 stereotype, indi-
cating that they handle one incoming request at a time. As previously mentioned,
this is the default threading policy in all mainstream middleware. Each class has
a method responsible for receiving stock related information. This method is re-
motely invoked by an object of another class in order to push information to the
recipient. Method receiveTraderUpdate() in the EquityServer class, for instance,
is invoked remotely by an instance of the Trader class in order to pass any trading

Validating Distributed Object and Component Designs 69

activity reports. Likewise, method receiveServerUpdates() of Trader is invoked
by an object of type NotificationServer to pass the EquityServer updates.

Synchronisation of remote operation invocations is a dynamic aspect and
as such we define them in state diagrams. We use the synchronisation stereo-
types mentioned above in those transitions of statecharts whose actions cor-
respond to remote operation invocations. The statechart of the EquityServer

in Fig. 3 initially starts in the idle state. After receiving a request for its
exported receiveTraderUpdate method, it moves to state update. The action
notifier.receiveEquityData that takes place whilst moving from update to
updates completed is marked with a 〈〈synchronous〉〉 stereotype. This corre-
sponds to a request invocation upon the receiveEquityData method of the
NotificationServer class in Fig. 2. Notice that the action name contains the
name of the association-end used in the class diagram. From this information
we can deduct that an EquityServer object requests a remote synchronous op-
eration from a single-threaded NotificationServer server object. Finally, the
EquityServer goes back to the idle state causing a reply to be sent back to the
Trader instance who sent the updates. If a state diagram contains actions indi-
cating receiving an operation request then the designer must also indicate the
point at which a reply is sent back to the client object. An example of this is
the receiveEquityData and receiveEquityData reply actions in Fig. 3.

reply

Fig. 3. EquityServer Statechart

Fig. 4 shows how the NotificationServer can register and unregister
traders whilst in the idle state. Requests to be added or removed from
the subscription list is replied to immediately via the addTrader reply and
removeTrader reply methods respectively. Upon reception of update instructions
from the EquityServer it moves into the sending state. It then continually sends
updates via the traders.receiveServerUpdates action, until all traders have been
notified. This action is marked with the 〈〈synchronous〉〉 stereotype. Similarly to
the EquityServer case, we can deduce that instances of the NotificationServer

class invoke the remote synchronous method receiveServerUpdates on Trader

objects. The object re-enters the idle state upon updating all traders.

70 Nima Kaveh and Wolfgang Emmerich

Fig. 4. NotificationServer Statechart

Fig. 5 shows the statechart for the Trader class. A trader processes a new
transactions whilst in the trading state. It then sends the results of the trade
to the EquityServer using the myEquityServer.receiveTraderUpdate action. This
action is marked with a 〈〈synchronous〉〉 stereotype, indicating that invocations
made to instances of type EquityServer are synchronous. After replying to the
receiveTraderUpdate event the object returns to state idle.

Fig. 5. Trader Statechart

Although class diagrams and state diagrams depict the static and dynamic
characteristics of a system respectively, they both operate at a type-level of ab-
straction. In the case of distributed software architecture, it is often necessary
to include instance-level designs as well. This is because the wide ranging dy-
namic behaviour of a distributed system depends on deployment configuration
of an application and its environment. This also explains the need for component
instantiation primitives in popular Architecture Description Languages such as
Darwin [19].

Our initial solution for the inclusion of instance-level information was to
derive it from the cardinality of association ends in class diagrams. This method

Validating Distributed Object and Component Designs 71

was found to be infeasible for two main reasons. Firstly, the derived instance-
level information depicts all potential instances of a class being connected to all
other instances of its associated classes. We found that this is rarely the case
in real applications. Secondly, cardinalities with an infinite nature such as one-
to-many and many-to-many cannot be mapped to the category of finite-natured
formal specifications that we would like to use. Moreover at run-time there will
only exist a finite number of instances in a distributed system and by specifying
this at design time one captures a more accurate description of the system.

Our revised solution replaces the class diagram cardinality information with
UML object diagrams. These characterise component instances and their connec-
tors in the deployed distributed software architecture. This approach addresses
the two mentioned problems and has some additional advantages: UML object
diagrams allow designers to model different run-time configurations of an ap-
plication, which can be automatically verified against a given set of safety and
liveness properties. Moreover, designers gain flexibility as they can verify differ-
ent run-time configurations of an application without any modifications to the
state or class diagrams. Deployment diagrams were not considered for this pur-
pose as they force designers to indicate matters such as location and different
types of resources, which are of no use to our approach and furthermore break
some of the transparencies that middleware technologies aim to provide.

Fig. 6. Distributed Equity Trading System

Fig. 6 shows the deployment of the Distributed Equity Trading System Archi-
tecture using an object diagram. The run-time configuration of the application
consists of two distributed Trader objects and one distributed EquityServer and
NotificationServer object. The connectors are shown as links in the object dia-
gram and reflect the association instances that exist between objects. Each link
holds the names of the association-ends of its respective association. This is done
to prevent any ambiguities in the case of having multiple associations between
classes. In distributed object programs, these connectors would be implemented
using distributed object references, which a client needs to request a remote
operation execution.

In order to reconfigure the architecture to reflect, for example, that two
equity markets work in conjunction with each other, we could reconfigure this
architecture by sharing the same NotificationServer object but include a second
EquityServer object. This would then be achieved by connecting notifier1 in

72 Nima Kaveh and Wolfgang Emmerich

Fig. 6 with the new EquityServer object (equityServer2) and having new Trader

objects linked to the equityServer2 instance.

4 Property Specification

Our prior work in the area of reasoning about distributed object architectures
concentrated on the detection of potential deadlocks [17]. Deadlocks are a com-
mon source of errors in distributed applications. The absence of deadlocks is a
necessary, but not sufficient criterion for the behavioural correctness of a dis-
tributed software architecture. Designers might want to specify more general
safety and liveness properties. A safety property defines that no undesirable be-
haviour will be exhibited during the execution of a system, while a liveness
property determines the desirable actions that will eventually be executed.

Unlike for absence of deadlocks, designers need to provide the assertions for
safety and liveness properties, as they are specific to a particular distributed
application. Traditionally notations such as Linear Temporal Logic [28] have
been used to express these properties. The main drawback of this logic is the
high level of expertise and fluency in formal notations that is required from a
designer. Thus, such an option would break the formal specification transparency
that our approach offers to designers. For these reasons we provide the designer
with a technique of expressing desired properties in UML notation. There has
been some research [23] carried out in order to create new categorisations of
properties. However, for the purposes of our approach and the properties that we
would like to offer the traditional safety and liveness classifications are sufficient
and as we cannot benefit from different categorisation, we have based our work
on well-understood conceptual foundations.

4.1 Safety Properties

We support the specification of safety properties for distributed object designs
based on action orderings as these are more intuitive for the distributed system
designer than the reachability of states. This is because the parallel execution
of objects and components causes a large number of potential states many of
which are implicit and not directly evident to designers. Moreover the notion of
actions map nicely to operation invocations, which are the means of interaction
in object middleware.

As was discussed above, the designer provides a UML state diagram for
each object type in order to model the behaviour of instances of that type.
Thus the order and occurrence of actions within a single UML state diagram
govern the behaviour of individual instances. Using safety properties, we can
determine whether the behaviour that is modelled locally in objects respects
global correctness criteria.

We define safety properties by asserting global constraints on the order in
which remote operation invocations may occur. We propose the use of state
diagrams to determine these action ordering. We refer to these diagrams as

Validating Distributed Object and Component Designs 73

safety state diagrams in order to distinguish them from those that determine
object behaviour.

In order to define the intuitive meaning of these safety statecharts, we need to
introduce the notion of traces and alphabets. A trace is a sequence of distributed
operation invocations that is permitted by the state diagrams that govern the
behaviour of individual distributed objects. A single element of a trace is an
action, which we label with the name of the invoked operation. The set of op-
eration names used in the union of all possible traces is called the alphabet of
the distributed object system. Given a subset S of a distributed object system’s
alphabet A, we may restrict a trace of the system with S by deleting any actions
that denote operations that are not in S.

The union of operation names that annotate transitions in a safety state
diagram will be a subset of the system’s alphabet. When checking for a safety
property, we would like to ascertain that any trace of the distributed system
restricted to the alphabet used in the safety state diagram is identical to the one
described in the safety state diagram.

Fig. 7. Safety Property with Types

Fig. 7 shows a safety property for the scenario example discussed in Sec-
tion 2. The purpose of the property is to ensure that trade activity is generated
before any updates are sent to the traders. This property states that all possible
execution traces of the application should respect the below recurring pattern
in the given order:

1. An instance of the EquityServer class must receive a receiveTraderUpdate

request
2. Next an instance of the NotificationServer class must receive a

receiveEquityData request
3. Next an instance of the Trader class must receive a receiveServerUpdates

request. Back to step 1.

74 Nima Kaveh and Wolfgang Emmerich

The alphabet of the Trading system is the union of traces obtained from the
interaction between all instances of the EquityServer, NotificationServer and
Trader classes. In the case of the above safety property we have introduced a
subset of the alphabet which needs to be matched by all traces obtained from
any interaction. This safety alphabet consists of the actions shown in Fig. 7
enumerated over the instances of the corresponding types, obtained from the
object diagram of Fig. 6.

In Fig. 7, the operation names are preceded by class names. The meaning
of that construct is that we offer a non-deterministic choice of any objects that
are instances of that class. There may be situations, however, where designers
want to express safety properties for particular objects. Thus, we also support
the enumeration of sets of object names from the object diagram that describes
the distributed system architecture.

Fig. 8 demonstrates this by specialising the safety property in Fig. 7 by
only including the trader1 object. In general, designers simply wrap a comma
separated list of objects in curly braces to indicate that the property targets
certain instances instead of all instances associated with a class.

Fig. 8. Safety Property with Objects

By supporting the safety properties using action ordering we enable designers
to express various higher level properties specific to a distributed application,
such as mutual exclusion.

4.2 Liveness Properties

The focus of liveness properties is on the continuity of the execution of an appli-
cation i.e. that a specific set of actions eventually happen. We currently support
the progress property as defined by Magee and Kramer [20]. Intuitively, progress
means that that it is always the case that an action from a given set will even-
tually be executed. Progress evaluates to the temporal logic property of ”always

Validating Distributed Object and Component Designs 75

eventually” Using progress properties, we can detect livelocks in application de-
signs.

Fig. 9. Trading Order Liveness Property

We support the specification of progress properties by defining a 〈〈progress〉〉
stereotype that can be attached to operations of classes crucial to the progress
of the application. Fig. 9 depicts an example that adds progress properties to
the example scenario discussed in Section 2. In this case, we have identified that
the respective methods of each class responsible for circulating new and update
trade information are vital for the continuity of our application.

5 Formal Semantics of Stereotypes

Section 3 demonstrated our approach in producing annotated UML models of
a distributed application. In order to make firm and accurate deductions about
the dynamic behaviour of such an application, our approach prescribes a map-
ping of the design model into a formal specification. The formal specification is
a description of when and in what way do parallel executing objects synchro-
nise with one another. The point of synchronisation is found by analysing the
state diagram of each object type. The method of synchronisation is derived by
detecting the client-side synchronisation primitive and the server-side threading
policy stereotypes specified for each interaction.

Process algebras represent mathematically rigorous frameworks for modelling
concurrent systems of interacting processes. We have chosen process algebras for
defining a formal semantics of our stereotypes over alternatives such as denota-
tional and axiomatic models due to their more powerful model of concurrency.
Process algebras allow for hierarchical description of processes, a valuable fea-
ture for compositional reasoning, verification and analysis. The particular alge-
bra that we have chosen for defining the semantics of the stereotypes are Finite
State Processes [20] (FSP). We chose FSP because it is well-supported by a
model checking tool.

In our approach we have derived FSP specifications for all combinations of
client-side synchronisation primitives and server-side threading policies discussed

76 Nima Kaveh and Wolfgang Emmerich

in Section 3. By analysing the input annotated UML model we obtain the specific
combination of synchronisation primitives and threading policies specified by
the designer. By mapping each detected combination with its corresponding
formal semantic and by finally composing all the formal specification fragments
together, we obtain a formal specification of the overall application design.

There are two concepts that we commonly use across specifications of prim-
itives and threading policies. Firstly we insert into the system specification,
middleware-specific actions relating to the mediation of requests and results be-
tween a client and a server object. This is required for the correct modelling of
the system’s synchronisation behaviour. Secondly we directly support the notion
of instance-level modelling in the formal domain by reflecting the specification
from the object diagrams discussed in Section 3.

At a notation level there are two techniques that we use for the generation of
FSP specifications, namely synchronised actions and parallel composition. Each
FSP process is composed of a set of actions that occur in a specified and fixed
order. Parallel composition is used to describe a system with multiple concur-
rent processes, whereby the actions of the processes are interleaved. Therefore,
whilst the actions of individual processes still occur in a fixed order, we obtain
many different execution traces of the composite process. Note, that this di-
rectly reflects the concept of concurrent states in UML statecharts. Processes
can be forced to perform actions simultaneously in a lock-step fashion via syn-
chronised/shared actions. Actions with the same name are executed at the same
time; this achieves synchronisation between concurrent processes. Actions with
different names can be synchronised using the FSP relabelling mechanism. This
Section discusses these specifications in detail.

5.1 Synchronisation Primitives

A synchronous request blocks the client object until the server object processes
the request and returns the results of the requested operation. This is the de-
fault synchronisation primitive not only in CORBA, but also in RMI and COM.
Fig. 10 shows the FSP specification for a synchronous call. A central compo-
nent of any object middleware system is an Object Adapter(OA). The Object
Adapter is the key entity in middleware technology, in terms of orchestrating
the synchronisation between server objects and client requests. It is possible for
an object adaptor to be responsible for handling more than one server object.
However since there is no way of knowing this, our formalisation assumes the
extreme case of appointing an object adapter for each server object. The role of
an object adapter is directly mapped to the OA FSP process, which forms the
synchronisation between Client and Server processes. The OA process receives
requests sent by the Client process and relays them onto the Server process.
SynchInvocation is a composite process made up of the parallel composition of
the Client, Server and OA processes. It uses relabelling to synchronise the four ac-
tions of the OA process with the relevant actions in the Client and Server process.
For example the sendRequest action of the Client process is synchronised with
OA’s receiveRequest action, similarly the OA’s relayReply is synchronised with

Validating Distributed Object and Component Designs 77

the Server’s sendReply action. This simply indicates that a client must have sent
a request before the server sends back a reply. The overall execution of the com-
posite process follows the order set in the OA process, therefore implementing a
synchronous call.

Client=(sendRequest-> receiveReply-> Client).

OA=(receiveRequest->relayRequest->

receiveReply->relayReply->OA).

Server=(receiveRequest->processRequest->

sendReply->Server).

||SynchInvocation=(client:Client || serverOA:OA

||server:Server)

/{client.sendRequest/serverOA.receiveRequest,

client.receiveReply/serverOA.relayReply,

server.receiveRequest/serverOA.relayRequest,

server.sendReply/serverOA.receiveReply}.

Fig. 10. Synchronous Stereotype Semantics

With an asynchronous request control is returned to the client as soon as the
invocation has been sent. Results of the invocation are returned to the client by a
call-back mechanism invoked by the server. This means that the onus of directing
the results to the client is now on the server. Fig. 11 shows the FSP specification
for the asynchronous invocation method. Similarly to the previous case the OA

process mediates the synchronisation of the Client and Server actions. However,
in this case the client can engage in other actions infinitely often before it receives
a call-back invocation from the server, via the OA. This is indicated by the “...” in
the process, otherExecutions. This is made possible by the FSP choice operator
“|”, which introduces a non-deterministic method of executing alternate actions.

A oneway method invocation does not block because there is no reply by the
server. This offers an inexpensive way of invoking methods but offers no guar-
antees or indications as to whether the request has been received or processed
by the server.

5.2 Threading Policies

The primitives described in Section 5.1 were demonstrated in combination
with a single threaded policy. The multi-threaded policy, expressed using the
<<multiThreaded>> stereotype, allows for handling multiple requests simultane-
ously. There are several different methods of implementing this policy but all use
the common principle of delegating the request handling to threads. Threadpools
are a common implementation method, whereby new requests are delegated to

78 Nima Kaveh and Wolfgang Emmerich

Client=(sendRequest->OtherExecutions),

OtherExecutions=(...->OtherExecutions |

callBack->receiveReply->Client).

OA=(receiveRequest->relayRequest->

receiveReply->relayReply->OA).

Server=(receiveRequest->processRequest->

sendReply->Server).

||ASyncInvocation=(client:Client || serverOA:OA

||server:Server)

/{client.sendRequest/serverOA.receiveRequest,

client.callBack/serverOA.relayReply,

server.receiveRequest/serverOA.relayRequest,

server.sendReply/serverOA.receiveReply}.

Fig. 11. Asynchronous Stereotype Semantics

threads drawn from a threadpool. Once the request has been processed the
thread is returned to the threadpool and is declared available again. If all threads
are busy at the time of a request arrival the request is put into a queue. In the
situation where the queue is also full the request is discarded. If the client is
expecting a reply from its operation request it will receive a generated system-
level exception. Fig. 12 defines the semantics of a server that uses a thread
pool policy. The total number of slave threads and queue slots are specified as
constants at the beginning. The server-side is composed of four processes, rep-
resenting the thread, threadpool, queue and the server. All server-side processes
are composed with the same label so as to synchronise their action. The Server

process uses two variables to keep track of the current size of the queue and the
number of threads currently in use. The server ReceiveRequest action indicates
the arrival of a client request. If there are any available threads the synchronised
action getFreeThread is taken which starts the ThreadPool process. This further
causes the Thread process to be initiated using the shared delegateTask action.
Once the request has been serviced the responsible Thread process engages in a
ReceiveReply. If the number of used threads has not reached the maximum the
server attempts to add the message to the queue. This addToQueue succeeds if
there are free queue slots left, otherwise the message is being rejected.

6 Formal Semantics of Properties

In order to automatically verify the generated formal specification of a system
against user-provided properties, we need to translate the expressed safety and
liveness properties into the process algebra domain. The property specifications

Validating Distributed Object and Component Designs 79

const PoolSize=16

const QueueSize = 10

range T=0..PoolSize

range Q=0..QueueSize

OA=(receiveRequest->relayRequest->

receiveReply->sendReply->OA).

Thread=(delegateTask->taskExecuted->sendBackReply->Thread).

ThreadPool = ThreadPool[0],

ThreadPool[i:T]=

if (i<PoolSize) then

(getFreeThread->delegateTask->ThreadPool[i+1]

| taskExecuted -> ThreadPool[i-1])

else (noFreeThreads -> ThreadPool[i]).

Queue = Queue[0],

Queue[j:Q]=

if(j<QueueSize)then(inspectQueue->

if(j>0) then (dequeueMessage->Queue[j-1]

| addToQueue[j]->Queue[j+1])

else(addToQueue[j]->Queue[j+1]))

else (rejectMessage -> Queue[j]).

Server = Server[0][0],

Server[i:T][j:Q]=(receiveNewRequest->

if(i<PoolSize) then

(getFreeThread->Server[i+1][j])

else (noFreeThreads->

if(j<QueueSize)then

(addToQueue[j]->Server[i][j+1])

else (rejectMessage->Server[i][j]))).

||MTSystem=(oa:OA||server:Server||

server:ThreadPool||server:Thread||

server:Queue)

/{server.receiveNewRequest/oa.relayRequest,

server.sendBackReply/oa.receiveReply}.

Fig. 12. Semantics of Multi-Threaded Stereotype

need to be in the same notation as the system specification. In this section we
discuss the generation and integration of property specifications expressed in
Section 4.

80 Nima Kaveh and Wolfgang Emmerich

6.1 Safety Property Semantics

In order to generate FSP to model the system at an object level of granularity
we must refer to the object diagram. Fig. 13 shows the corresponding generated
FSP process algebra for the safety property specified in Fig. 7. The class names
in the transitions are replaced by a list of instance names obtained from the
object diagram.

For example the server class name on the first transition is EquityServer.
Consulting the object diagram shows that the list of instances of this class con-
tains only one element, equityServer1. By further consulting the state and object
diagrams we determine the list of client objects that are linked to and invoke
operations from equityServer1 – trader1 and trader2. We can now construct the
FSP action by combining the names of the clients, the server and the operation.

property SFY= ({trader1,trader2}.equityServer1.receivetraderupdate->S1),

S1=({equityServer1}.notifier1.receiveequitydata->S2),

S2=({notifier1}.trader1.receiveserverupdates->SFY

|{notifier1}.trader2.receiveserverupdates->SFY).

Fig. 13. Safety Property Semantics Example

The above specification is composed of three sections, each section corre-
sponding to each transition action of Fig. 7. As introduced in Section 4.1, the
complete set of traces generated from the formal specification of the Trading sce-
nario need to comply with the traces generated from the above safety property.

6.2 Liveness Property Semantics

Fig. 14 shows the generated FSP specification for the progress property example
of Fig. 9. Similarly to the safety property example discussed in previous subsec-
tion, we make use of the object diagram to generate object-level specifications.
Each annotated method is prefixed with the object names of the class type and
further prefixed with the object name of instances linked to them in the object
diagram. For example the progress property EQUITYSERVER PROGRESS0 addresses
the source instance equityServer1 as well as instances that can potentially invoke
the operation receiveTraderUpdate, namely trader1 and trader2.

7 Minimisation

The main challenge of verification of system properties using model checking
techniques is the potential for state explosion [11]. There has been a growing
trend of applying model checking techniques to more complex fields, such as
software engineering, than its original field of use, hardware and protocol de-
sign. This growing complexity has turned this problem into a pivotal factor for

Validating Distributed Object and Component Designs 81

progress EQUITYSERVER_PROGRESS0=

{ trader1.equityServer1.receivetraderupdate,

trader2.equityServer1.receivetraderupdate }

progress NOTIFICATIONSERVER_PROGRESS0 =

{ equityServer1.notifier1.receiveequitydata }

progress TRADER_PROGRESS0 =

{ notifier1.trader1.receiveserverupdates,

notifier1.trader2.receiveserverupdates }

Fig. 14. Progress Property Semantics Example

deploying finite-state verification techniques. Attempting to verify distributed
object systems amplifies this problem. This is due to the high degree of auton-
omy present between objects executing in parallel, giving way to a very large
number of possible execution traces. As a consequence, the model’s state space
grows exponentially with respect to the number of objects involved, rendering
naive brute force approaches unusable.

We tackle the state space explosion problem from a number of different an-
gles. Our work concentrates on exploiting middleware characteristics for state
reduction and the generated process algebra only takes into account a small
finite number of synchronisation primitives and threading policies.

The insight of knowing our problem domain is further reflected in the un-
derlying process algebra specification that we generate. The behaviour of each
distributed object is described in one FSP process. However, only the actions that
deal with making or receiving remote method requests, as described in the UML
state diagram, are exposed. The execution of local method calls, the interaction
between a possibly large number of local objects, as well as the operation pa-
rameter and return values have no implications on the emergent synchronisation
behaviour of a distributed application and can therefore be ignored. Abstracting
from these details reduces the state space significantly. We can achieve further
reductions by considering the way in which middleware implements distributed
interactions.

In all object and component-oriented middleware systems there is a mid-
dleware component that is responsible for receiving all incoming requests for a
server objects and for delivering them to the appropriate object implementation
for servicing. In CORBA, this component is called the Object Adapter, COM
provides a Service Control Module that has this function and Java/RMI uses
the activation interfaces that are contained in the RMI daemon. We subsume
these components under the notion of object adapters below.

An object adapter decouples client from server objects. All operation invo-
cation requests are initially received by the object adapter on the server object’s
hosts and the adapter then forwards them to the server objects as exemplified in
Fig. 15. Likewise any reply of the server object will be transmitted via the object

82 Nima Kaveh and Wolfgang Emmerich

adapter. Since the object adapter has a fixed interface of only two actions – for
receiving and replying to requests – and the client objects can only interact with
server objects through these two actions, we can achieve further minimisation of
the state space: In a scenario of n clients invoking m different server methods,
we can reduce the combination of interactions from n×m to n× 2. This means
that the final state space will be independent of the number of methods that
a server object type exports. As the final state space is the product of the size
of the component states during parallel composition, this reduction will greatly
reduce the final state space.

Fig. 15. Middleware Aware Minimisation

8 Model Checking

Model checking provides a means of automatically verifying input process al-
gebra for a given set of properties. This is achieved by building a state space
representation of the specification and exhaustively searching this space to ensure
that all states are valid with respect to the desired properties. Model checking
tools vary in features such as the data structures they use to hold the state space
and the algorithm they use for searching the state space. Whilst such features
may affect the performance of the model checking performance by a given factor,
they are quite similar in the way they approach the problem.

The FSP process algebra is provided with the Labelled Transition System
Analyser(LTSA) model checker. The LTSA model checker generates a Labelled
Transition System(LTS) for each of the generated FSP processes and applies our
minimisation methods. These LTSs are then composed together into one large
LTS, taking into account the required synchronisation between the objects as
specified in the FSP processes. This final LTS represents the state space of the
application model. Subsequently the LTSA carries out an exhaustive search of
the state space for verification purposes. It is the exhaustive nature of the search
that gives formal verification methods their rigorous powers and high reliability
in finding the most subtle of errors. In case of a property violation detected the
LTSA outputs the shortest trace of actions that causing the violation.

A deadlock situation is detected when a state with no outgoing transition is
found. This indicates that there is no further states that the modelled application
can enter, causing the system to halt and deadlock. Fig. 16 shows the trace of

Validating Distributed Object and Component Designs 83

actions leading to a potential deadlock in the Trading scenario we have been
discussing. The trace shows how initially trader1 sends the results of an equity
transaction to the equitysever1 instance. The instance equityserver1 receives
this and successfully requests the object notifier1 to send equity price updates
to the traders. The deadlock occurs when trader1 again sends new transaction
information to equityserver1, but notifier1 immediately follows this up by
sending another update to trader1. At this stage both trader1 and notifier1

are blocked and any further synchronous invocations to these two objects would
block the caller for ever. Thus when this does happen the system enter a deadlock
status.

Trace to DEADLOCK:

trader1.equityServer1.receivetraderupdate

equityServer1.receivetraderupdate

equityServer1.notifier1.receiveequitydata

notifier1.receiveequitydata

notifier1.trader1.receiveserverupdate

trader1.receiveserverupdate

trader1.receiveserverupdates_reply

notifier1.receiveequitydata_reply

equityServer1.receivetraderupdate_reply

trader1.equityServer1.receivetraderupdate

equityServer1.receivetraderupdate

notifier1.trader1.receiveserverupdate

equityServer1.notifier1.receiveequitydata

trader2.equityServer1.receivetraderupdate

Fig. 16. LTSA Deadlock Trace

A safety property violations is detected when the model checker finds a trace
of actions containing one or more actions of the safety property, where the safety
property’s action ordering is not followed. Fig. 17 shows an example of the safety
property violation depicted in Fig. 8. This safety property stated that out of
all active traders only the instance, trader1 should be informed of new equity
updates via instances of the NotificationServer class. The property is violated
in our distributed object model as the NotificationServer object might send
notifications to both trader objects (refer to Fig. 6). In this case an update was
sent to the instance trader2.

Progress violations are detected by looking for any set of actions that form an
infinite cycle in which one or more of the progress actions are not included. Such
set of actions are referred to as a terminal set. The LTSA reports this violation
by showing a trace of actions to the terminal set and the terminal set itself.

84 Nima Kaveh and Wolfgang Emmerich

Trace to property violation in SFY:

trader1.equityServer1.receivetraderupdate

equityServer1.receivetraderupdate

equityServer1.receivetraderupdate_reply

trader1.equityServer1.receiveInvocationReply

equityServer1.notifier1.receiveequitydata

notifier1.receiveequitydata

notifier1.trader2.receiveserverupdates

Fig. 17. LTSA Safety Violation Trace

9 Relating Results

A key requirement of this research is to enable designers to reason about dis-
tributed object designs entirely using the UML notation. To attain this goal,
we translate the traces of actions generated due to safety and liveness property
violations into UML Sequence Diagrams. Sequence Diagrams offer a comprehen-
sive and intuitive manner of showing a designer counter-examples of how their
properties can be potentially violated.

Fig. 18. Violation of Safety Property depicted in Fig. 8

Fig. 18 shows the sequence diagram generated for the safety property viola-
tion shown in Fig. 17. The sequence diagram shows how the application design
allows a potential execution where by the instance notifier1 could send updates
to the trader2 object, thus violating the safety property.

We envisage the process of design verification to be iterative. So at this stage
the user should make any required modifications, to make their design rid of the
potential problem and repeat the verification on the new modified design model.

10 Evaluation

In order to analyse the effectiveness of the suggested minimisation methods we
have carried out an evaluation using the equity trading scenario introduced in

Validating Distributed Object and Component Designs 85

Section 2. The experiment is based on the configuration shown in Fig. 6 and
carried out on a x86 architecture machine with dual 1.7GHz Xeon processors
and 1GB of memory. The variant was the number of Trader instances executing
in parallel along with the instances, notifier1 and equityServer1. The main
point of interest was the size of the state space gained by using the different
approaches.

Fig. 19 shows the results of the evaluation. Not shown in the chart is the size
of the maximum state space which ranged from 231-271 for the set of traders
shown on the x-axis. The line on the left hand side in the chart plots the state
space gained by using the Compositional Reachability Analysis (CRA) [1] of
the LTSA model checker without applying any minimisation. The line on the
right hand side shows the performance of our minimisation technique. The CRA
line is discontinued for all values above 7 traders since the model checker runs
out of memory after generating 5300000 states. Whilst both techniques exhibit
exponential growth, our minimisation approach has a lower growth factor and
supports the validation of larger systems. In this case our minimisation approach
was able to almost double the performance of the CRA method. Moreover our
early evaluation was carried out on a relatively modest machine. We envisage
designers to operate the MUDV tool on a stronger machine, thus yielding even
better results.

When interpreting absolute state space size, the reader should bear in mind
that in realistic distributed applications the total number of distributed objects
is fairly low. The distributed object architecture that we discussed in [4], for
example, deployed 10 distributed objects for the trading system integration of
the sixth largest German bank. The reason for this small number of objects is
that while application may be composed of a large number of objects and compo-
nents, developers typically choose to only make a small portion of them available
for distributed interactions and the rest execute locally or are deactivated. This
is to minimise the resources required by the distributed application which in-
clude network bandwidth and memory for holding the stubs and skeletons of
distributed objects.

11 MUDV Tool

Our “Modelchecking UML Design Verifier (MUDV)” is the tool that we have
built in order to apply and evaluate our approach. The core task of the MUDV
tool is to generate process algebra specification from input annotated UML mod-
els. An overview architecture of the tool is shown in Fig. 20. Designers use off-
the-shelf UML CASE tools to create their system design. Most of these tools
now support export into the Object Management Group’s XML Metadata In-
terchange [27] (XMI) format. XMI is a standard for encoding UML models in
XML. The wide support of XMI in UML CASE tools and the intuitive meth-
ods of information extraction from XML documents makes it a suitable input
notation for the MUDV.

86 Nima Kaveh and Wolfgang Emmerich

Fig. 19. State Space Size Comparison

The MUDV tool generates the process algebra specification of the input
design model. We then use the Labelled Transition System Analyser (LTSA), a
model checker for FSP, to verify the conformance of all possible execution traces
with the provided properties. This architecture gives designers the flexibility of
using any UML design application with XMI support as well as decoupling it
from the model checking tool. This allows us to create mappings to different
formal specifications and integrate them into the overall architecture seamlessly.

Fig. 21 shows the design of the MUDV tool. The main feature of this design is
the use of the Visitor pattern [7], which accommodates the seamless integration
of new formal specification mappings. The three UML diagram types that we
use in our approach are represented by the three classes which realise the general
MUDVElement interface. All classes of type MUDVElement support the method
accept which takes as input-parameter a reference to an instance of the general
type Visitor. Instances of this type hold the functionality for producing specific
types of formal specification. Once a MUDVElement has been passed a Visitor
instance, via the MUDVTool class, it invokes the appropriate method for it to
be analysed and mapped to a specification. This design makes the MUDV tool
flexible and with low cohesion between its components. We have implemented
the plug-in for the generation of FSP specifications and are currently creating a
SPIN [13] plug-in to demonstrate the general applicability of our approach.

Validating Distributed Object and Component Designs 87

Fig. 20. MUDV Architecture

Fig. 21. MUDV Core Design

12 Related Work

The notion of accelerating the development life-cycle of software methodologies
through automation is an appealing idea with a long history. This originally
started with the introduction of Computer Aided Software Engineering(CASE)
tools in the 80s. The OMG’s Model Driven Architecture [6] is the most recent
attempt at standardising the automation of deployment design and substantial
implementation tasks.

The work done in [18] is similar to our approach in that a formal specification
is generated from UML design models. One of the assumptions made, however,
is that each instance of the modelled class runs in a separate process. This is
not the case for object middleware as many server objects can run in the same
process. In [15] automatic deadlock free synthesis of COM/DCOM architecture
connectors is achieved from the dynamic behaviour specification of the compo-
nents, but no general safety or liveness properties are enforced. The work of the
same authors reported in [14] is related in that the authors also translate UML

88 Nima Kaveh and Wolfgang Emmerich

designs into SPIN models. The most important difference is that we explicitly
use stereotypes to express the synchronisation and threading policies and that
we aim to hide the complexity of using a model checker completely.

In [30], FSP specifications are generated from an extended version of Message
Sequence Charts (MSC) for the synthesis of system behaviour models. Whilst
scenario-based specification is a suitable method for checking and communicating
the key scenarios of a system it cannot be applied to detailed design models for
the purposes of thorough validation and verification. The large number of key
scenarios in a typical industrial case are too large to make this a scalable solution
for design verification.

The pUML [5] research attempts to give formal semantics of UML diagrams
using the Z notation, allowing them to verify UML models. The approach taken
in the Hydra project [21] is provide a mapping from the UML metamodel to
formal language metamodels. This mapping leads to a set of rules which govern
the automation of a particular formal specification. This mapping does not cover
the whole of the UML diagrams set, specifically UML stereotypes which is the
basis of conveying middleware related information in our approach.

13 Summary and Conclusion

It is our belief that the advances in distributed object and component technolo-
gies need to be complemented by new software engineering methods and tools
to guide developers in increasingly complex situations [3]. The work presented
in this paper focuses on automatically verifying the non-deterministic synchro-
nisation behaviour of object middleware applications, caused by the interaction
between distributed objects executing in parallel.

This paper reports on a number of new contributions. By extending the se-
mantics of UML state diagrams and the introduction of new stereotypes, we
provide designers with the ability to express safety and liveness properties in
the UML notation. Formal specifications of the properties are automatically
generated and composed with the process algebra specification of the system.
Feedback on any property violations is done via UML sequence diagrams, main-
taining transparency of the heavy formal specification to designers. Traditional
property specification techniques, such as those using temporal logic, offer a
more expressive power than our approach. However, this comes at a cost of be-
ing user-unfriendly and difficult to master, which we have often found to be a
stumbling block for the industrial adoption of these techniques. Taking into con-
sideration the fact that this research is aimed at supporting general industrial
practitioners with little or no experience of formal techniques, we feel that our
approach maintains a suitable balance in this trade off.

Our second contribution is the integration of models for the deployment
of distributed components and their interconnection via the use of UML object
diagrams. This enables designers to experiment with and verify different run-time
configurations of a distributed object system without any modification required
to other models. The analysis of an application at an instance level is further

Validating Distributed Object and Component Designs 89

reflected in the generated process algebra and the feedback sequence diagrams.
Furthermore, by solely modelling object interactions where indicated in an object
diagram we reduce the complexity, and thus the state space, of the formal model,
leading to more efficient model checking.

We also presented and evaluated the methods we employ to tackle the state
explosion problem. By exploiting domain specific (object middleware) knowledge
of the nature of the applications being modelled, we build further minimisation
methods on top of what is typically offered by model checkers, with the goal of
reducing a model’s state space. Only actions that correspond to remote object
interactions, making up the synchronisation behaviour of an application, are
model checked. By modelling the entity responsible for receiving and delivering
requests in a distributed system we also gain incremental minimisation.

Even though the minimisation techniques we presented above greatly im-
prove the usability of our approach and facilitate verification of medium-sized
industrial models, we are aware that they do not yet scale up to large scale dis-
tributed systems with several hundred distributed objects. In order to achieve
this scalability, we need to take advantage of the fact that these objects are
often isolated from each other and partitioned into federations of distributed ob-
jects. Fortunately, the federations of objects that do interact with each other are
rarely larger than the ones that we can model check. We can then analyse these
federations in isolation from each other and in that way achieve the scalability
required in practice.

We are currently developing a new semantic mapping of UML models into
Promela specifications, the input notation for the SPIN model checker. This will
demonstrate the general applicability of our approach to various formal seman-
tics as well as benefiting from the advantages of the SPIN model checker, such
as support for timeouts, assertions and optional compact searches as opposed to
an exhaustive one. We plan to further evaluate our approach by carrying out a
case-study obtained from our industrial collaborators.

The techniques that we have outlined in this paper are providing feedback on
qualitative properties of distributed object design. We have started investigating
reasoning techniques for quantitative properties, such as scalability, performance
and reliability of distributed object and component designs. It would be highly
desirable to avoid costly risk mitigation iterations during a development pro-
cess and address the question of whether an architecture scales and performs
efficiently and reliably by analytic means. The performance modelling literature
includes a large body of work on stochastic process algebras, which use distri-
bution functions with which transitions are executed [12, 9, 8]. It seems natural
to extend the research that we presented here to performance, scalability and
reliability properties of UML models that can then be expressed and analysed
with stochastic process algebras.

In [24, 25], we have described xlinkit, a consistency checker that can be used
to validate the static consistency of software engineering documents represented
in XML. That research is largely complementary to the techniques for establish-
ing behavioural consistency that we have presented in this paper. A combination

90 Nima Kaveh and Wolfgang Emmerich

of the two approaches would enable us to statically validate the correctness of
the various relationships between the different diagrams, such as that for each
object in an object diagram, there is a class in a class diagram whose name is
identical to the type of the object and would therefore enhance the usability
of our our model checker. We therefore plan to address this integration in the
immediate future.

References

[1] S.-C. Cheung and J. Kramer. Checking Safety Properties Using Compositional
Reachability Analysis. ACM Transactions on Software Engineering and Method-
ology, 8(1):49–7, 1999.

[2] W. Emmerich. Engineering Distributed Objects. John Wiley & Sons, April 2000.
[3] W. Emmerich. Distributed Component Technologies and their Software Engi-

neering Implications. In Proc. of the 24th Int. Conf. on Software Engineering,
Orlando, Florida. ACM Press, 2002. To appear.

[4] W. Emmerich, E. Ellmer, and H. Fieglein. TIGRA – An Architectural Style for
Enterprise Application Integration. In Proc. of the 23rd Int. Conf. on Software
Engineering, Toronto, Canada, pages 567–576. IEEE Computer Society Press,
2001.

[5] A. Evans, R. France, K. Lano, and B. Rumpe. The UML as a Formal Mod-
eling Notation. In Pierre-Alain Muller and Jean Bézivin, editors, Proc. of the
International Conference on the Unified Modeling Language (UML): Beyond the
Notation, volume 1618 of Lecture Notes in Computer Science, pages 336–348.
Springer-Verlag, 1998.

[6] D. Frankel. Model Driven Architecture – Applying MDA to Enterprise Computing.
OMG Press. Wiley, 2003.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison Wesley, Mas-
sachusetts, 1994.

[8] S. Gilmore, J. Hillston, and M. Ribaudo. An efficient algorithm for aggregating
PEPA models. IEEE Transactions on Software Engineering, 27(5):449–464, 2001.

[9] N. Götz, U. Herzog, and M. Rettelbach. The Integration of Functional Specifi-
cation and Performance Analysis using Stochastic Process Algebras. In Proc. of
the 16th Int. Symposium on Computer Performance Modelling, Measurement and
Evaluation (PERFORMANCE 93), volume 729, pages 121–146. Springer, 1993.

[10] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8(3):231–274, 1987.

[11] David Harel, Orna Kupferman, and Moshe Y. Vardi. On the complexity of veri-
fying concurrent transition systems. In International Conference on Concurrency
Theory, pages 258–272, 1997.

[12] J. A. Hillston. A Compositional Approach to Performance Modelling. PhD thesis,
Dept. of Computer Science, University of Edinburgh, UK, 1994.

[13] Gerard J. Holzmann. The Model Checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–295, 1997.

[14] P. Inverardi, H. Muccini, and P. Pelliccione. Automated Check of Architectural
Models Consistency using SPIN. In Proc. of the 16th Automated Software Engi-
neering Conference, Coronado Island, CA, pages 346–349. IEEE Computer Soci-
ety Press, 2001.

Validating Distributed Object and Component Designs 91

[15] P. Inverardi and S. Scriboni. Connector Synthesis for Deadlock-Free Compo-
nent Based Architectures. In Proc. of the 16th Automated Software Engineering
Conference, Coronado Island, CA, pages 174–181. IEEE Computer Society Press,
2001.

[16] N. Kaveh. Model Checking Distributed Objects. In W. Emmerich and S. Tai,
editors, Proc. of the 2nd Int. Workshop on Distributed Objects, Davis, Cal, Nov.
2000, volume 1999 of Lecture Notes in Computer Science, pages 116–128. Springer,
2001.

[17] N. Kaveh and W. Emmerich. Deadlock Detection in Distributed Object Systems.
In V. Gruhn, editor, Joint Proc. of the 8th European Software Engineering Con-
ference and the 9th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 44–51. ACM Press, 2001.

[18] J. Lilius and I. Paltor. A Tool for verifying UML models. In Proc. of the 14th

Int. Conference on Automated Software Engineering, Cocoa Beach, Florida, pages
255–258. IEEE Computer Society Press, 1999.

[19] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Software
Architectures. In W. Schafer and P. Botella, editors, Proc. 5th European Software
Engineering Conf. (ESEC 95), volume 989, pages 137–153, Sitges, Spain, 1995.
Springer-Verlag, Berlin.

[20] J. Magee and J. Kramer. Concurrency: Models and Programs – From Finite State
Models to Java Programs. John Wiley, 1999.

[21] W. E. McUmber and B. H. C. Cheung. A General Framework for Formalizing
UML with Formal Languages. In Proc. of the 23rd Int. Conf. on Software Engi-
neering, Toronto, Canada, pages 433–442. IEEE Computer Society Press, 2001.

[22] R. Monson-Haefel. Enterprise Javabeans. O’Reilly UK, 1999.
[23] G. Naumovich and L. A. Clarke. Classifying Properties: An Alternative to the

Safety-Liveness Classification. Technical Report UM-CS-2000-012, Dept. of Com-
puter Science, University of Massachusetts in Amherst, 2000.

[24] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein. xlinkit: A Consistency
Checking and Smart Link Generation Service. ACM Transactions on Internet
Technology, 2002. To appear.

[25] C. Nentwich, W. Emmerich, and A. Finkelstein. Static Consistency Checking for
Distributed Specifications. In Proc. of the 16th Automated Software Engineering
Conference, Coronado Island, CA, pages 115–124. IEEE Computer Society, 2001.

[26] Object Management Group. The Common Object Request Broker: Architecture
and Specification Revision 2.3. 492 Old Connecticut Path, Framingham, MA
01701, USA, December 1998.

[27] Object Management Group. XML Meta Data Interchange (XMI) – Proposal to
the OMG OA&DTF RFP 3: Stream-based Model Interchange Format (SMIF). 492
Old Connecticut Path, Framingham, MA 01701, USA, October 1998.

[28] A. Pnueli. The Temporal Logic of Programs. In Proc. 18th IEEE Symp. Founda-
tions of Computer Science, pages 46–57, Providence, R.I., 1977.

[29] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Ref-
erence Manual. Addison Wesley, 1999.

[30] Sebastian Uchitel and Jeff Kramer. A Workbench for Synthesising Behaviour
Models from Scenarios. In Proc. of the 23rd Int. Conf. on Software Engineering,
Toronto, Canada, pages 188–197. ACM Press, 2001.

Software Architecture for

Correct Components Assembly

Paola Inverardi and Massimo Tivoli

University of L’Aquila
Dip. Informatica

fax: +390862433057
via Vetoio 1, 67100 L’Aquila

{inverard, tivoli}@di.univaq.it

Abstract. Correct automatic assembly in software components is an
important issue in CBSE (Commercial-Off-The-Shelf). Building a sys-
tem from reusable software components or from COTS (Commercial-
Off-The-Shelf) components introduces a set of problems. One of the
main problems in components assembly is related to the ability to prop-
erly manage the dynamic interactions of the components. Component
assembling can result in architectural mismatches when trying to inte-
grate components with incompatible interaction behavior like deadlock
and other software anomalies. This problem represents a new challenge
for system developers. The issue is not only in specifying and analyzing
a set of properties rather in being able to enforce them out of a set of
already implemented (local) behaviors. Our answer to this problem is a
software architecture based approach in which the software architecture
imposed on the assembly allows for detection and recovery of COTS in-
tegration anomalies. Starting from the specification of the system to be
assembled and of its properties we develop a framework which automati-
cally derives the glue code for the set of components in order to obtain a
properties-satisfying system (i.e. the failure-free version of the system).

1 Introduction

Nowadays there is the need to built high quality software systems in short time.
This moves developers toward reuse-based development methodologies. CBSE
(Component Based Software Engineering) is a process focussed on the software
systems design and developing by assembling reusable software components.
Clemens (1995) describes the CBSE process as follows: the CBSE is changing the
methods to develop huge-size software systems. It adopts the philosophy ”Buy!
No Build!” followed by Fred Brooks et al. The CBSE moves the attention of the
software developers to the software systems assembly (i.e. component assembly).
The implementation has been replaced from the integration.

Thus in CBSE the integration is the real challenge. Building a system from
a set of COTS(Commercial-Off-The-Shelf) [26] components introduces a set of

M. Bernardo and P. Inverardi (Eds.): SFM 2003, LNCS 2804, pp. 92–121, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Software Architecture for Correct Components Assembly 93

problems. Many of these problems arise because of the nature of COTS com-
ponents. They are truly black-box and developers have no method of looking
inside the box. This limit is coupled with an insufficient behavioral specification
of the component which does not allow to understand the component interac-
tion behavior in a multi-component system. Component assembling can result in
architectural mismatches [9] when trying to integrate components with incom-
patible interaction behavior like deadlock and other software anomalies. Thus if
we want to assure that a component based system validates specified dynamic
properties, we must take into account the component interaction behavior. In
this context, the notion of software architecture assumes a key role since it repre-
sents the reference skeleton used to compose components and let them interact.
In the software architecture domain, the interaction among the components is
represented by the notion of software connector [2, 10].

Our approach to the assembly problem is to compose systems by assuming
a well defined architectural style [15, 14] in such a way that it is possible to
detect and to fix software anomalies. Moreover we assume that a specification
of the desired assembled system is available and that a precise definition of the
properties to satisfy exists. With these assumptions we are able to develop a
framework that automatically derives the assembly code for a set of components
so that, if possible, a properties-satisfying system is obtained (i.e. the failure-free
version of the system). The assembly code implements an explicit software con-
nector which mediates all interactions among the system components as a new
component to be inserted in the composed system. The connector can then be
analyzed and modified in such a way that the behavioral (i.e. functional) prop-
erties of the composed system are satisfied. Depending on the kind of property,
the analysis of the connector is enough to obtain a property satisfying version of
the system. Otherwise, the property is due to some component internal behav-
ior and cannot be fixed without directly operating on the component code. In
a component based setting in which we are assuming black-boxes components,
this is the best we can expect to do. We assume that components behavior is
only partially and indirectly specified by using bMSC (basic Message Sequence
Charts) and HMSC (High level MSC) specifications [1] of the desired assem-
bled system and we address behavioral properties of the assembly code together
with different recovery strategies. The behavioral properties we deal with are
the deadlock freeness property [15, 14] and generic coordination policies of the
components interaction behavior [16].

The paper is organized as follows. Section 2 introduces background notions
and theoretical foundations in order to understand our approach. Section 3 for-
malizes the method concerning the behavioral failures-free connectors synthesis
which is also applied to an explanatory example. Section 4 describes a realis-
tic application example of our approach. Section 5 presents related works and
Section 6 discusses future work and concludes.

94 Paola Inverardi and Massimo Tivoli

2 Background

In this section we provide the background needed to understand the approach
formalized in Section 3.

2.1 The Reference Architectural Style

The architectural style we use, called Connector Based Architecture (CBA), is
derived from C2 architectural style [22] and consists of components and connec-
tors which define a notion of top and bottom. The top (bottom) of a component
may be connected to the bottom (top) of a single connector. There is no bound on
the number of components that may be attached to a single connector. Compo-
nents can only communicate via connectors. It is disallowed the direct connection
between connectors. Each component is connected to the connector through a
synchronous communication channel. Components communicate synchronously
by passing two type of messages: notifications and requests. A notification is
sent downward, while a request is sent upward. Requests are service or data
demands, while notifications are reply to requests, and they announce state
changes or return data. Both components and connectors have a top-domain
and a bottom-domain. A top-domain of a component or of a connector is the
set of requests sent upward and of received notifications. A bottom-domain of a
component or of a connector is the set of received requests received and of noti-
fications sent downward. Connectors are responsible for the routing of messages
and they exhibit a strictly sequential input-output behavior1. CBA is a generic
layered style. Since it is always possible to decompose a n-layered CBA system
in n single-layered CBA systems (see the right side of Figure 1), in the following
of this paper we will only deal with single layered systems. This decomposition
is done by considering for each intermediate component (i.e. a component of
an intermediate layer) two behavioral views: i) the component’s behavior with
respect to the messages exchanged on the component’s top-domain and ii) the
component’s behavior with respect to the messages exchanged on the compo-
nent’s bottom-domain [15]. This decomposition is possible because each layer of
a multi-layered CBA system is independent from the other ones. Thus to cope
with multi-layered systems we apply the formalized approach for each single-
layered sub-system.

In Figure 1 we show an instance of the CBA style made of two components
and one connector.

2.2 CCS

For our purpose we need to summarize the most relevant definitions regarding
CCS (Calculus of Communicating Systems), we refer to [23] for more details.

1 Each input action is strictly followed by the corresponding output action.

Software Architecture for Correct Components Assembly 95

C5

connector on 1 st layer (K
1
)

C2

7

2

bottom

bottom

top

top

re
qu

es
t notification

C1

1
top

C4

top

bottom
C3

top

bottom
43

connector on 2 nd layer (K 2)

6
bottom

top

5

C5
7

bottom

C4

top
C3

top

K2

65

top

bottom

C3
3

bottom

C2

top
C1

top

K1

21

top

bottom

C4
4

bottom

Fig. 1. An instance of the 2-layered CBA style and its decomposition

The CCS syntax is the following:

p ::= μ.p | nil | p + p | p|p | p\A | x | p[f]

Terms generated by p (Terms) are called process terms (called also processes
or terms); x ranges over a set {X, Y, ..}, of process variables. A process variable is

defined by a process definition x
def
= p, (p is called the expansion of x). As usual,

there is a finite set of visible actions V is = {a, a, b, b, ...} over which α ranges,
while μ, ν range over Act = V is ∪ {τ}, where τ denotes the so-called internal
action. We denote by α the action complement: if α = a, then α = a, while
if α = a, then α = a. By nil we denote the empty process. The operators to
build process terms are prefixing (μ.p), summation (p + p), parallel composition
(p|p), restriction (p\A) and relabelling (p[f]), where A ⊆ V is and f : V is → V is.

An operational semantics OP is a set of inference rules defining a relation
D ⊆ Terms×Act×Terms. The relation is the least relation satisfying the rules.
If (p, μ, q) ∈ D, we write p

μ→OP q. The rules defining the semantics of CCS [23],
from now on referred to as SOS, are here recalled:

Act
α.P

α→P
Synch P

α→P ′,Q
α→Q′

P |Q τ→P ′|Q′

Sum P
α→P ′

P+Q
α→P ′ Rel P

α→P ′

P [f]
f(α)→ P ′[f]

Comp P
α→P ′

P |Q α→P ′|Q Res P
α→P ′,α�∈L∪L

P\L
α→P ′\L

Con P
α→P ′,A

def
= P

A
α→P ′

The rules Sum and Comp have a symmetric version which is omitted.

96 Paola Inverardi and Massimo Tivoli

A labelled transition system (LTS) (or simply transition system) TS is a
quadruple (S, T, D, s0), where S is a set of states, T is a set of transition labels,
s0 ∈ S is the initial state, and D ⊆ S × T × S. A transition system is finite if D
is finite.

A finite computation of a transition system is a sequence μ1μ2..μn of labels
such that:
s0

μ1→OP ..
μn→OP sn.

Given a term p (and a set of process variable definitions), and an operational
semantics OP , OP (p) is the transition system (Terms, Act, D, p), where D is the
relation defined by OP . For example, SOS(p) is the transition system defined
by the SOS semantics for the term p. CCS can be used to define a wide class
of systems, that ranges from Turing machines to finite systems [27]; therefore,
in general, CCS terms cannot be represented as finite state systems. For our
purposes we will in the following assume that all the systems we will deal with
are finite state. In general a correspondence between CCS terms and LTSs can
be always defined. A CCS term may be encoded in LTS as follows:

– LTS states are CCS terms;
– transitions given by →OP , i. e. by operational semantics;
– the LTS start state is the one corresponding to the encoded CCS term;

and any finite-state LTS can be encoded in CCS as follows:

– associate a process Si to each LTS state si;
– in declaration of Si, sum (summation operator +) together terms of form

α.Sj for each transition si
α→ sj in LTS;

– the CCS term is the one corresponding to the encoded LTS start state.

2.3 Configuration Formalization

In order to describe components and system behaviors we use the CCS [23]
notation. For the purpose of this paper this is a fair assumption. Actually our
framework allows to automatically derive these CCS descriptions from the HMSC
and bMSC specifications [1] of the system [29, 25]. These kinds of specifications
are common in practice thus CCS can merely be regarded as an internal to the
framework specification language. In Section 4 we show a complete treatment of
a case study starting from a HMSC and bMSC specification of the system. Since
HMSC and bMSC specifications model finite-state behaviors of a system we will
use finite-state CCS. To our purposes we need to formalize two different ways to
compose a system. The first one is called Connector Free Architecture (CFA) and
is defined as a set of components directly connected in a synchronous way (i.e.
without a connector). The second one is called Connector Based Architecture
(CBA) and is defined as a set of components directly connected in a synchronous
way to one or more connectors :

Software Architecture for Correct Components Assembly 97

Definition 1 (Connector Free Architecture (CFA)).
CFA ≡ (C1 | C2 | ... | Cn)\

⋃n
i=1 Acti where for all i = 1, .., n, Acti is the

actions set of the CCS process Ci.

Definition 2 (Connector Based Architecture (CBA)).
CBA ≡ (C1[f1] | C2[f2] | ... | Cn[fn] | K)\

⋃n
i=1 Acti[fi] where for all i = 1, .., n,

Acti is the actions set of the CCS process Ci and fi is a relabelling functions
such that fi(α) = αi for all α ∈ Acti and K is the CSS process representing the
connector.

α in a CFA denotes a visible action (i.e. an input action or an output action).
αi in the corresponding CBA denotes the same visible action performed on the
communication channel i. The channel i connects the component has performed
αi with the connector. In Figure 2 we show an example of a CFA system and
of the corresponding CBA system. The double circled states represent initial
states.

C1
C2 Ka

b b

a a1 a2

b2b1

C1[f1] C2[f2]a1

b1

a2

b2

CFA-system CBA-system

Fig. 2. CFA and corresponding CBA

In Figure 3, we show a graphic representation of the CFA and CBA systems
showed in Figure 2.

C1 C2

CFA = (C1 | C2) \ {a,b}

CBA = (C1[f1] | C2[f2] | K) \ {a1,b1,a2,b2}

C1

C2

K
1

2

Fig. 3. A graphic representation of the CFA and CBA systems of Figure 2

98 Paola Inverardi and Massimo Tivoli

3 Approach Description

The problem we want to treat can be informally phrased as follows: given a CFA
system T for a set of black-box interacting components and a set of coordination
properties P automatically derive the corresponding CBA system V which satis-
fies every property in P .

We are assuming that a specification of the system to be assembled is pro-
vided in terms of bMSCs and HMSCs. Referring to Definition 1, we also assume
that for each component a description of its behavior as finite-state CCS term
(i.e. LTS Labelled Transitions System) has been automatically derived from the
bMSCs and HMSCs specification [29, 25]. Moreover we assume that a specifi-
cation of the coordination properties to be checked exists. In the following, by
means of a working example, we discuss our method proceeding in three steps
as illustrated in Figure 4.

C1 C2

C3 C4
connectorStep 1: Connector

Synthesis

C1 C2

C3 C4

1 2

3 4
Step 2: Deadlocks

Analysis

deadlock-free
connector

C1 C2

C3 C4

1 2

3 4

Step 3:
Failures
Analysis

failure-free
connector

C1 C2

C3 C4

1 2

3 4

Fig. 4. 3 step method

The first step builds a connector following the CBA style constraints. The
second step performs the deadlocks detection and recovery process. Finally, the
third step performs the check of the specified coordination properties against
the deadlock-free connector model and then synthesizes a properties-satisfying
connector model.

Note that although in principle we could carry on the second and third step
together, for the sake of clarity we decided to keep them separate. Actually, the
current framework implementation follows this schema.

3.1 First Step: Connector Synthesis

The first step of our method (see Figure 4) starts with a CFA system and pro-
duces the equivalent CBA system. It is worthwhile noticing that this can always
be done [15]. As we will see in Section 3.2 the two systems behave equivalently,
under a suitable notion of equivalence. We proceed as follows:

i) By taking into account the bMSCs and the HMSCs specification of the
composed system and the CFA architectural style, we first derive the CCS spec-
ification for each component and then for each finite-state CCS component speci-
fication (in the CFA system) we derive the corresponding AC-Graph. AC-Graphs

Software Architecture for Correct Components Assembly 99

model components behavior in terms of interactions with the external environ-
ment. The external environment for a component Ci is represented by the parallel
composition of the components Cj , j �= i. The term actual emphasizes the dif-
ference between component behavior and the intended, or assumed, behavior of
the environment. AC graphs model components in an intuitive way. Each node
represents a state of the component and the root node represents its initial state.
Each arc represents the possible transition into a new state where the transition
label is the action performed by the component. AC-Graph carry on information
on both labels and states:

Definition 3 (AC-Graph). Let 〈Si, Li,→i, si〉 be a labelled transition system
of a component Ci. The corresponding Actual Behavior (AC) Graph ACi is a
tuple of the form
〈NACi , LNACi, AACi , LAACi , si〉 where NACi = Si is a set of nodes, LNACi is
a set of state labels, LAACi is a set of arc labels with τ (LAACi = Li

⋃
τ),

AACi ⊆ NACi × LAACi × NACi is a set of arcs and si is the root node.

– We shall write g
l→ h, if there is an arc (g, l, h) ∈ AACi . We shall also write

g → h meaning that g
l→ h for some l ∈ LAACi.

– If t = l1 · · · ln ∈ LA∗
ACi

, then we write g
t

−→∗ h, if g
l1→ · · · ln→ h. We shall

also write g −→∗ h, meaning that g
t

−→∗ h for some t ∈ LA∗
ACi

.

– We shall write g
l⇒ h, if g

t

−→∗ h for some t ∈ τ∗.l.τ∗.

In Figure 5 we show the AC-Graphs of the CFA system of our working
example.

AC1: c

a

d
b a

S1

SI
1

S2

SI
2

SII
2

S3

SII
3

SIII
3

c

a

d

SI
3

abAC2: AC3:

Fig. 5. AC-Graphs of the example

ii) By taking into account the deadlock freeness property and the CFA ar-
chitectural style, we derive from AC-Graph the requirements on its environment
that guarantee deadlock freedom. Referring to Definition 1, we recall that the en-
vironment of a component Ci is represented by the set of components Cj (j �= i)
in parallel. A component will not block if its environment can always provide
the actions it requires for changing state. This is represented as AS-Graphs (Fig-
ure 6):

100 Paola Inverardi and Massimo Tivoli

Definition 4 (AS-Graph). Let (NACi , LNACi, AACi , LAACi , si) be the AC-
Graph ACi of a component Ci, then the corresponding ASsumption (AS) Graph
ASi is (NASi , LNASi, AASi , LAASi, si) where NASi = NACi , LNASi = LNACi,
LAASi = LAACi and
AAS= {(ν,a,ν′) | (ν,a,ν′) ∈ AAC}

⋃
{(ν,b,ν′) | (ν,b,ν′) ∈ AAC}.

AS1: c

a

d
b a

S1

SI
1

S2

SI
2

SII
2

S3

SII
3

SIII
3

c

a

d

SI
3

abAS2: AS3:

Fig. 6. AS-Graphs of the example

Analogously to AC-Graphs we have one graph for each component. The only
difference from AC-graphs is in the arcs labels, which are symmetric since they
model the environment as each component expects it.

iii) Now if we consider Definition 2 (i.e. by taking into account CBA ar-
chitectural style), the environment of a component can only be represented by
connectors. Thus we can refine the definition of AS-Graph in a new graph, the
EX-Graph, that represents the behavior that the component expects from the
connector (Figure 7). We know that the connector performs strictly sequential
input-output operations only, thus if it receives an input from a component it will
then output the received input message to the destination component. Analo-
gously, if the connector outputs a message, this means that immediately before it
inputs that message. Intuitively, for each transition labelled with a visible action
α (α) in the AS graph, in the corresponding EX graph there are two strictly
sequential transition labelled αi and α? (α? and αi), respectively. Let Ci the
component for which we are deriving from the AS-Graph the corresponding EX-
Graph; referring to CBA in Section 2.3, action αi (αi) denotes an input (output)
action α towards the connector on the communication channel that connects Ci

to the connector (i. e. the communication channel i). Action α? (α?) denote an
input (output) action α towards the connector on a communication channel that
connects the connector to a component different than Ci; thus this communica-
tion channel is unknown for Ci (we denotes this unknown channel by using the
question mark):

Definition 5 (EX-Graph). Let (NASi , LNASi , AASi , LAASi, si) be the AS-
Graph ASi of a component Ci; we define the connector EXpected (EX) Graph
EXi from the component Ci the graph (NEXi , LNEXi , AEXi , LAEXi , si), where:

Software Architecture for Correct Components Assembly 101

– NEXi = NASi and LNEXi = LNASi

– AEXi and LAEXi are empty
– ∀ (μ, α, μ′) ∈ AASi , with α �= τ

• Create a new node μnew with a new unique label, add the node to NEXi

and the unique label to LNEXi

• if (μ, α, μ′) is such that α is an input action (i.e. α = a, for some a)
∗ add the labels ai and a? to LAEXi

∗ add (μ, ai, μnew) and (μnew, a?, μ′) to AEXi

• if (μ, α, μ′) is such that α is an output action (i.e. α = a, for some a)
∗ add the labels ai and a? to LAEXi

∗ add (μ, a?, μnew) and (μnew, ai, μ′) to AEXi

– ∀ (μ, τ , μ′) ∈ AASi add τ to LAEXi and (μ, τ , μ′) to AEXi

EX1: c2

a2

d?b1

a1

S1

SI
1

S2

SI
2

SII
2

EX 2: EX3:

a?

b?

S1

SI
1

c?

a?

d2

S2 SI
2

SII
2

c?

a?

d3
S3

SII
3

c3

a3

d?

S3
SII

3

SIII
3

SIII
3

b3

a3

b?

a?

S3
SI

3

SI
3

Fig. 7. EX-Graphs of the example

iv) Each EX-Graph represents a partial view of the connector behavior. It
is partial since it only reflects the expectations of a single component. We de-
rive the connector global behavior through an EX-Graphs unification algorithm.
We refer to [13, 15] for a formal definition of the EX-Graphs unification algo-
rithm. Informally this unification algorithm is based on syntactic unification.
For each step the unification procedure attempts to match actions on known
communication channels (i.e. terms) in a EX-Graph with actions on unknown
communication channels (i.e. variables) in another EX-Graph. Each match rep-
resents a new transition (in the connector graph) from the current node to the
next new (i.e. not yet considered) adjacent node. Then the algorithm proceeds
in the unification procedure from each adjacent node. It is worthwhile noticing
that in a generic step it could be possible to not find matches representing new
transitions from the current node. In this case we obtain a stop node (i.e. a node
without outgoing arcs) in the connector graph. In Figure 8 we show the effect
of the first step of the above unification procedure on the EX-Graphs of our
working example.

In Figure 9 we show the connector graph K for the example illustrated in
this section. The i − th generated node of the connector graph is annotated as
Ki and its label is reported in the figure. The resulting CBA system is built as
defined in Definition 2.

102 Paola Inverardi and Massimo Tivoli

unifiable pairs generated at the first
step of the unification procedure:

(a1,a?) (c 2,c?)

current state

EX1: c2

a2

d?b1

a1

S1

SI
1

S2

SI
2

SII
2

EX2: EX3:

a?

b?

S1

SI
1

c?

a?

d2

S2 SI
2

SII
2

c?

a?

d3
S3

SII
3

c3

a3

d?

S3
SII

3

SIII
3

SIII
3

b3

a3

b?

a?

S3
SI

3

SI
3

(S1,S2,S3)

a1

a3

(SI
1,S2,S

I
3) (S1,S

I
2,S

II
3)

c3

c2

not yet visited
adjacent nodes

CONNECTOR GRAPH K AT THE FIRST STEP
OF THE UNIFICATION PROCEDURE:

Fig. 8. An example of execution of the first step of the unification procedure

K: c2 a2

d3
K1

K5
c3

a3

d2

K4

K9

K10
K11

b3

a3

b1

a1

K2
K3

K6

K7
K8

nodes labels:

a1 a3

K1=<S1,S2,S3>

K2=<S1,S2,S3>
K3=<SI

1,S2,SI
3>

K4=<S1,S2,S3>

K5=<S1,SI
2,S

II
3>

K6=<SI
1,S2,SI

3>

K7=<S1,SI
2,S

II
3>

K8=<SI
1,SI

2,S
III

3>

K9=<S1,S
I
2,SII

3>

K10=<S1,SII
2,SIII

3>

K11=<S 1,S
II

2,S
III

3>

Fig. 9. Connector graph K of the example

3.2 Correctness and Completeness of the Approach

In [15] we have proved that the CBA-system obtained by the connector synthe-
sis process is equivalent to the corresponding CFA-system. To do this we have
proved the following proposition:

Proposition 1. Let T be a CFA-system, and let V be the corresponding CBA-
system; then T can be CB-simulated from V.

Where we define the notion of CB-Simulation as follows:

Definition 6 (CB-Simulation). Let S and T be two systems and s and t two
generic states of the systems;

Software Architecture for Correct Components Assembly 103

– a relation ≤CB is called CB-simulation if s ≤CB t then:
• the label of s is equal to the label of t;
• if s → s′ then there exists n > 0 , t0, ..., tn such that t = t0 and for all

i < n :
ti → ti+1, s′ ≤CBtn.

– A state t CB-simulates a state s (s ≤CB t) if it exists a relation of CB-
simulation between s and t

– A path σ CB-simulates a path ρ, (ρ ≤CB σ), if ρ can be partitioned as ρ1ρ2...
and σ can be partitioned as σ1σ2... in such a way that, for all j, the sequences
ρj and σj are not empty and ρj ≤CB σj

In other words we have proved the correctness of the synthesis by proving
that the CFA-system can be simulated by the synthesized CBA-system under a
suitable notion of ”state based”2 equivalence called CB-Simulation. The start-
ing point of CB-Simulation is the stuttering equivalence [24]. In [15], we have
also proved that the connector does not introduce in the system any new logic
(completeness of the synthesis).

3.3 Second Step: Deadlocks Analysis and Recovery

The second step concerns the deadlock freeness analysis, which is performed on
the CBA system. Depending on the deadlock type we can operate on the connec-
tor in order to obtain a deadlock-free equivalent system. We distinguish between:
i) deadlocks due to wrong coordination among components and ii) deadlocks due
to wrong components assumptions.

The former are deadlocks due to a bad coordination of components interac-
tions, while the latter are due to components incorrect internal behaviors (e.g.
buffer size). It is worthwhile recalling we are dealing with black-box components,
whose only known behavior concerns the interactions with the others components
into the system. This means that we can only operate on the components in-
teraction behavior and we cannot operate on the components internal behavior.
Thus we can only deal with wrong coordination deadlocks. In a black-box setting
this is the best we can expect to do in terms of deadlocks prevention. In terms
of deadlocks detection we could detect not only wrong coordination deadlocks
but also wrong components assumption deadlocks [15]. To do this we need a
more complete specification than the bMSCs and HMSCs specification. Actu-
ally we need to know not only the observable components interactions but also
the hidden interactions of a component. An hidden interaction represents the
situation in which the component changes (in an autonomous way) its internal
state because of some internal event (e.g. buffer overflow). An hidden interac-
tion is represented on the component’s AC-Graph through a τ transition. Refer
to [15] for a detailed description of the detection process of wrong components
assumptions deadlocks.

2 By definition, both CFA and CBA systems exhibit only τ transitions.

104 Paola Inverardi and Massimo Tivoli

We can formally define wrong coordination deadlocks as follows:

Definition 7 (Wrong coordination deadlock). Let K be the connector graph
synthesized by the unification of EX-Graphs EX1, .., EXn of the CFA-system
components C1, .., Cn respectively. We define a wrong coordination deadlock of
K as a stop node of K (i.e. a node without outgoing arcs).

If a wrong coordination deadlock is possible, then this results in a precise con-
nector behavior that is detectable by observing the connector graph. To fix this
problem it is enough to prune all the finite branches of the connector transition
graph. The pruned connector preserves all the correct (with respect to dead-
lock freeness) behaviors of CFA-system (Proposition 2). Refer to [15] for a proof
of Proposition 2. In Figure 10 we show the wrong coordination deadlock-free
connector graph.

Proposition 2. Let T be a CFA-system, let Vdf be the corresponding CBA-
system based on wrong coordination deadlock-free connector and let Πinf

T be T
without the finite paths; then Πinf

T can be CB-Simulated from Vdf .

K: c2 a2

d3
K1

K5
c3

a3

d2

K4

K9

K10
K11

b3

a3

b1

a1

K2
K3

K6

Fig. 10. Deadlock-free connector graph of the example

3.4 Third Step: Behavioral Failures Analysis and Recovery

In this section we formalize the third step of the method of Figure 4. This step
concerns properties enforcing on the connector graph.

General Behavioral Properties Specification:

The behavioral properties we want to enforce are related to behaviors of the
CFA system that concern coordination policies of the interaction behavior of
the components in the CFA system. The CFA behaviors that do not comply
to the specified properties represent behavioral failures. A behavior of the CFA
system is given in terms of sequences of actions performed by components in
the CFA system. In specifying properties we have to distinguish an action α
performed by a component Ci with the same action α performed by a compo-
nent Cj (i �= j). Thus, referring to Definition 1, the behavioral properties (i.e.

Software Architecture for Correct Components Assembly 105

coordination properties) can only be specified in terms of visible actions of the
components C1[f1], C2[f2], .., Cn[fn] where for each i = 1, .., n, fi is a relabelling
function such that fi(α) = αi for all α ∈ Acti and Acti is the actions set
for Ci. By referring to the usual model checking approach [7] we specify every
property through a temporal logic formalism. We choose LTL [7] (Linerar-time
Temporal Logic) as specification language. We define AP = {γ : γ = li ∨ γ =
li with l ∈ LAACi , l �= τ, i = 1, .., n} as the set of atomic proposition on which
we define the LTL formulas corresponding to the coordination policies.

LTL Syntax:

Referring to [7], we give the standard syntax for the LTL. Given a set of atomic
propositions AP , a LTL formula is either:

– if p ∈ AP , then p is a LTL formula;
– if f and g are LTL formulas, then:

• !f (logical not),
• f ∨ g (logical or),
• f ∧ g (logical and),
• f −→ g (logical implication ≡ !f ∨ g),
• Xf (”next time” temporal operator),
• Ff (”eventually” or ”in the future” temporal operator),
• Gf (”always” or ”globally” temporal operator),
• fUg (”until” temporal operator),
• and fRg (”release” temporal operator) are LTL formulas.

LTL Semantics:

Referring to [7], we give the standard semantics for the LTL. We define the
semantics of LTL with respect to a Kripke structure. Recall that a Kripke struc-
ture M is a quadruple (S, R, S0, L), where S is the set of states; R ⊆ S × S is
the total transition relation; L : S → 2AP is a function that labels each state
with a set of atomic proposition true in that state; and S0 ⊆ S is the set of
initial states. A path in M is an infinite sequence of states, π = s0, s1, .. such
that for every i ≥ 0 (si, si+1) ∈ R and s0 ∈ S0. We use πi to denote the suffix
of π starting at si.

If f is a LTL formula the notion M, πi |= f means that f holds along every
path starting from the state si of the path π in the Kripke structure M . The
relation |= is defined inductively as follows (assuming that f and g are LTL
formulas):

– for all f ∈ AP , M, πi |= f iff f ∈ L(si);
– M, πi |= !f iff not M, πi |= f ;
– M, πi |= f ∨ g iff M, πi |= f or M, πi |= g;

106 Paola Inverardi and Massimo Tivoli

– M, πi |= f ∧ g iff M, πi |= f and M, πi |= g;
– M, πi |= f −→ g iff not M, πi |= f or M, πi |= g;
– M, πi |= Xf iff M, πi+1 |= f ;
– M, πi |= Ff iff there exists a k ≥ i such that M, πk |= f ;
– M, πi |= Gf iff for all k ≥ i, M, πk |= f ;
– M, πi |= fUg iff there exists a k ≥ i such that M, πk |= g and for all

i ≤ j < k, M, πj |= f ;
– M, πi |= fRg iff for all k ≥ i, if for every j < k, not M, πj |= f then

M, πk |= g.

Enforcing a Behavioral Property:

The semantics of a LTL formula is defined with respect to a model represented
by a Kripke structure. We consider as Kripke structure corresponding to the
connector graph K a connector model KSK that represents the Kripke structure
of K. KSK is defined as follows:

Definition 8 (Kripke structure of a connector graph K). Let
(N, LN, LA, A, k1) be the connector graph K. We define the Kripke Structure
of K, the Kripke structure KSK = (V, T, {k1}, LV) where V = N , T = A,
LV = 2LA with LV (k1) = {αi : LA((k, k1)) = αi, (k, k1) ∈ A}. For each
v ∈ V then LV (v) is interpreted as the set of atomic propositions true in state
v.

In Figure 11, we show the Kripke structure of K. The node with an incoming
little-arrow is the initial state (i.e. k1).

KSK:

{b1,d2}

{c3}{c2}
{a2}

{a3}
{d3}

{a1}

{b3}

{a3}

Fig. 11. Kripke structure of K

In Section 3.4 we have described how we can specify a property in terms
of desired CFA behaviors. We have also said that all the undesired behaviors
represent CFA failures. Analogously to deadlocks analysis, we can solve behav-
ioral failures of the CFA system that are identifiable in the corresponding CBA
system with precise behaviors of the synthesized connector. A connector behav-
ior is simply an execution path into the connector graph. An execution path
is a sequence of state’s transition labels. It is worthwhile noticing that the be-
havioral properties (i.e. coordination properties) that we specify for the CFA

Software Architecture for Correct Components Assembly 107

system are corresponding to behavioral properties of the connector in the CBA
system. In fact every action γ = αi ∈ AP can be seen as the action α (into the
connector graph) performed on the communication channel that connects Ci to
the connector. This is true for construction (see Section 3.1). Thus let P be a
behavioral property specification (i.e. LTL formula) for the CFA system, we can
translate P in another behavioral property: Pcba. Pcba is automatically obtained
by applying the CCS complement operator to the atomic propositions in P . Pcba

is the property specification for the CBA system corresponding to P . Then we
translate Pcba in the corresponding Büchi Automaton [7] BPcba

:

Definition 9 (Büchi Automaton). A Büchi Automaton B is a 5-tuple
< S, A,�, q0, F >, where S is a finite set of states, A is a set of actions,
� ⊆ S × A × S is a set of transitions , q0 ∈ S is the initial state, and
F ⊆ S is a set of accepting states. An execution of B on an infinite word
w = a0a1... over A is an infinite sequence σ = q0q1... of elements of S, where
(qi, ai, qi+1) ∈ �, ∀ i ≥ 0. An execution of B is accepting if it contains some
accepting state of B an infinite number of times. B accepts a word w if there
exists an accepting execution of B on w.

Referring to our example we consider the following behavioral property:
P = F ((a1 ∧ X(!a1Ua2)) ∨ (a2 ∧ X(!a2Ua1))). This property specifies all CFA
system behaviors that guarantee the evolution of all components in the system. It
specifies that the components C1 and C2 can perform the action a by necessarily
using an alternating coordination policy. In other words it means that if the
component C1 performs an action a then C1 cannot perform a again if C2 has not
performed a and viceversa. The connector to be synthesized will avoid starvation
by satisfying this property. In Figure 12 we show BPcba

. We recall that Pcba =
F ((a1 ∧X(!a1Ua2))∨ (a2 ∧X(!a2Ua1))); p0 and p2 are the initial and accepting
state respectively.

p0

p1

p3

a1 a2

true

BPcba

!a1

a2 a1

!a2

p2

b1 d2

c3

c2

a2

a3

d3

a1b3

a3

b1 d2

BKS K

k1

k2
k3 k4 k5

k6

k9

k10

k11

Fig. 12. Büchi Automata BPcba
and BKSK of Pcba and KSK respectively

Given a Büchi Automaton A, L(A) is the language consisting of all words ac-
cepted by A. Moreover to a Kripke structure T corresponds a Büchi Automaton
BT [7]. We can derive BKSK as the Büchi Automaton corresponding to KSK

(see Figure 12). The double-circled states are accepting states.

108 Paola Inverardi and Massimo Tivoli

Given BKSK = (N, Δ, {s}, N) and BP = (S, Γ, {v}, F) the method performs
the following enforcing procedure in order to synthesize a deadlock-free connector
graph that satisfies the property P :

1. build the automaton that accepts L(BKSK) ∩ L(BPcba
); this automaton is

defined as BK,P
intersection = (S × N, Δ′, {< v, s >}, F × N) where (< ri, qj >

, a, < rm, qn >) ∈ Δ′ if and only if (ri, a, rm) ∈ Γ and (qj , a, qn) ∈ Δ;
2. if BK,Pcba

intersection is not empty return BK,Pcba

intersection as the Büchi Automaton
corresponding to the P -satisfying execution paths of K.

In Figure 13, we show BK,Pcba

intersection.

a1

a3

b3

c3
a2

b1

d3

c2

(k1,p0)

(k2,p1)(k3,p1)

(k6,p1)

(k1,p1)

(k4,p1)

(k5,p1) (k9,p3)

(k10,p2)(k4,p0) (k5,p0) (k9,p2)

(k11,p2)

c2
c3 a2

a3

d2
b1 d2

(k1,p2)

a1 c2

(k4,p2)(k2,p3)

c3

(k5,p2)

a1

a3

b3

c3

b1

d3

c2

(k1,p0)

(k2,p1)(k3,p1)

(k6,p1)

(k1,p1)

(k4,p1)

(k5,p1)

(k10,p2)(k4,p0) (k5,p0) (k9,p2)

(k11,p2)

c2
c3 a2

a3

d2
(k1,p2)

a2

(k9,p3)

a1

(k2,p3)

Fig. 13. BK,Pcba

intersection and deadlock-free property-satisfying connector graph of
the explanatory example

Finally our method derives from BK,Pcba

intersection the corresponding connec-
tor graph. This graph is constructed by considering the execution paths of
BK,Pcba

intersection that are only accepting (see the path made of bold arrows in Fig-
ure 13); we define an accepting execution path of BK,Pcba

intersection as follows:

Definition 10 (Accepting execution path of BK,Pcba

intersection). Let
BK,Pcba

intersection = (S × N, Δ′, {< v, s >}, F × N) be the automaton that accepts
L(BKSK) ∩ L(BPcba

). We define an accepting execution path of BK,Pcba

intersection a
sequence of states γ = s1, s2, .., sn such that ∀ i = 1, .., n : si ∈ S × N ; for
1 ≤ i ≤ n − 1, (si, si+1) ∈ Δ′ and (sn, s1) ∈ Δ′ or (sn, s1) /∈ Δ′; and
∃ k = 1, .., n : k ∈ F × N .

Software Architecture for Correct Components Assembly 109

It is worthwhile noticing that (depending on the property) an accepting ex-
ecution path of BK,Pcba

intersection could be also cyclic (for example if we consider a
property using the always temporal operator). In this case (in order to build
the property-satisfying connector graph) we do not consider the cyclic execution
paths without accepting states (refer to [13] for an example in which we find
cyclic accepting execution paths in BK,Pcba

intersection).

In Figure 13, we show the deadlock-free property-satisfying connector graph
for our explanatory example. Depending on the property, this graph could con-
tain finite paths (i.e. paths terminating with a stop node). Note that at this
stage the stop nodes representing accepting states. In fact we have obtained
the deadlock-free property-satisfying connector graph by considering only the
accepting execution paths of BK,Pcba

intersection, thus stop nodes represent connec-
tor states satisfying the property. Once the connector has reached an accepting
stop node it will return to its initial state waiting for a new request from an its
client. Returning to the initial state is not explicitly represented in the deadlock-
free property-satisfying connector graph but it will be implicitly considered in
the automatic derivation of the code implementing the deadlock-free property-
satisfying connector.

By visiting this graph and by exploiting the information stored in its states
and transitions we can automatically derive the code that implements the P-
satisfying deadlock-free connector (i.e. the coordinator component) analogously
to what done for deadlock-free connectors [14]. The implementation refers to
Microsoft COM (Component Object Model) components and uses C++ wiht
ATL (Active Template Library) as programming environment. A single-layered
CFA system can be considered a client-server COM system. Into the CFA of
our example we have two COM clients components (C1 and C2) and one COM
server component (C3). C3 exports to its clients an interface IC3 declaring two
methods: input actions a and c on AC3 (see Figure 5). All the other actions (b
and d on AC3) are responses to the requests of a and c. The connector compo-
nent K implements the COM interface IC3 of the component C3 by defining
a COM class K and by implementing a wrapping mechanism in order to wrap
the requests that C1 and C2 perform on component C3 (actions a and c on AC1

and AC2 of Figure 5). In the following we show fragments of the IDL (Interface
Definition Language) definition for K, of the K COM library and of the K COM
class respectively. c3Obj is an instance of the inner COM server corresponding
to C3 and encapsulated into connector component K.

import ic3.idl; ... library K_Lib {

...

coclass K {

[default] interface IC3;

}

}

110 Paola Inverardi and Massimo Tivoli

...

class K : public IC3 {

// stores the current state of the connector

private static int sLbl;

// stores the current state of the

// property automaton

private static int pState;

// stores the number of clients

private static int clientsCounter = 0;

// channel’s number of a client

private int chId;

// COM smart pointer; is a reference to

// the C3 server object

private static C3* c3Obj;

...

// the constructor

K() {

sLbl = 1;

pState = 0;

clientsCounter++;

chId = clientsCounter;

c3Obj = new C3();

...

}

// implemented methods

...

}

In the following we show the deadlock-free property-satisfying code imple-
menting the methods a and c of the connector component K. Even if the prop-
erty P of our example considers a coordination policy only for action a, we have
to coordinate also the requests of c in order to satisfy P . Actually, as we can
see in Figure 13, the deadlock-free property-satisfying connector has execution
paths in which transitions labelled with c there exist.

HRESULT a(/* params list of a */) {

if(sLbl == 1) {

if((chId == 1) && (pState == 0)) {

return c3Obj->a(/* params list of a */);

pState = 1; sLbl = 1; //it goes on the state preceding the next

//request of a method from a client

}

Software Architecture for Correct Components Assembly 111

else if((chId == 1) && (pState == 2)) {

return c3Obj->a(/* params list of a */);

pState = 0; sLbl = 1; //since it has found an accepting stop node,

//it returns to its initial state

}

}

else if(sLbl == 5) {

if((chId == 2) && (pState == 1)) {

return c3Obj->a(/* params list of a */);

pState = 0; sLbl = 1; //since it has found an accepting stop node,

//it returns to its initial state

}

else if((chId == 2) && (pState == 0)) {

return c3Obj->a(/* params list of a */);

pState = 2; sLbl = 1; //it goes on the state preceding the next

//request of a method from a client

}

}

return E_HANDLE;

}

HRESULT c(/* params list of c */) {

if(sLbl == 1) {

if((chId == 2) && (pState == 1)) {

return c3Obj->a(/* params list of a */);

pState = 1; sLbl = 5; //it goes on the state preceding the next

//request of a method from a client

}

else if((chId == 2) && (pState == 0)) {

return c3Obj->a(/* params list of a */);

pState = 0; sLbl = 5; //it goes on the state preceding the next

//request of a method from a client

}

}

return E_HANDLE;

}

3.5 Correctness of the Approach

The following proposition states the correctness of the property enforcing pro-
cedure. For the complete proof, please refer to [18]. We prove that the CBA-
system based on the property-satisfying deadlock-free connector preserves all the
property-satisfying behaviors of the corresponding deadlock-free CFA-system.

Proposition 3. Let T be a CFA-system, let VP be the corresponding CBA-
system based on a P -satisfying deadlock-free connector and let ΠP

T be T without
the finite paths then ΠP

T can be CB-Simulated from VP except for the execution

112 Paola Inverardi and Massimo Tivoli

paths ρ of ΠP
T that are also execution paths of the automaton B!P (! is the logical

not).

4 An Application Example

In this section we present a real-scale application example of the approach for-
malized in Section 3. We use our approach to build from a set of suitable COTS
components a collaborative writing (CW) system [20, 19, 8, 21]. Refer to [17, 16]
for a detailed description of the CW system and of the complete application of
the approach to it. In this paper we just reuse a sub-system of the CW system
described in [17, 16]. We apply our approach to this sub-system in order to de-
rive an assembly satisfying a property different than the property enforced for
the whole system in [17, 16].

Based on a detailed analysis [17] of many CW systems [20, 19, 8, 21] we can
identify the COTS computational components that provide the main features of
a CW system. These four types of COTS components are showed in Figure 14.

DATA-BASE
OBJECT

(DBO)

CW
ENGINE
(CWE)

DOCUMENT
STORAGE
SERVICE

(DSS)

INTEGRATED
USER

INTERFACE 1
(IUI1)

INTEGRATED
USER

INTERFACE 2
(IUI2)

INTEGRATED
USER

INTERFACE n
(IUIn)

…

…

DATA TIER

BUSINESS-LOGIC
TIER

PRESENTATION
TIER

Fig. 14. Architecture of the CW system

Our CW system is a three-tier application. According to our approach, it is
composed through coordinators components automatically synthesized in order
to satisfy a specified coordination policy. In the following, we briefly describe
our CW system and apply our approach to a sub-system of it (namely the grey
area in Figure 14).

In order to build our CW system we have identified the following four COTS
components. 1) DBO: This component is a data-base. The data-base stores all
group awareness information useful to support a group activity. 2) CWE: This
is a CW engine; it provides all services useful to perform a group activity in
the CW context. It is an handler of all group awareness information stored in

Software Architecture for Correct Components Assembly 113

DBO and of the typical CW activities [17]. 3) DSS: A document is a set of
document’s partitions. This component is an abstraction of the physical con-
tainer of the shared documents that are logically partitioned according to their
structure. In an asynchronous working mode we use version-controlled docu-
ments. In a synchronous working mode it is shared among the users and we
have to use pessimistic concurrency control. Referring to the version-controlled
hierarchical documents [21], a local copy of a document is an alternative and the
globally shared document is the last document’s version. When a user wants to
work in asynchronous mode, DSS expects that all the other users work in asyn-
chronous mode too. In this way DSS can maintain a consistent version of the
globally shared document and it evolves in a new consistent version only after
the merging of all users alternatives. 4) IUI: This component is an integrated
environment of tools for editing, navigation, display of awareness communica-
tion among the group members and import and export of data from external
applications. It is composed of a CW user interface supporting all CW opera-
tions, editors for many data types, communication tools such as e-mail and chat.

Let us suppose that the designer of the composed CW system provides a
behavioral specification in terms of bMSCs and HMSCs see Figures 15 and 16.
The continued lines in the bMSCs are method calls; the hatched lines are the
corresponding responses. In our example we consider only two instances of IUIi:
IUI1 and IUI2. Moreover we provide the system’s behavioral specification only
for the part of the CW system identified in the grey area of Figure14. This
sub-system is composed by the components IUI1, IUI2 and DSS.

IUI i CWE DBODSS
open

OPEN:
query

res
ok

IUI i CWE DBODSS
open

OPENF:
query

res
fail

IUI i CWE DBODSS
close

CLOSE:
update

IUI i CWE DBODSS
read

READ: rview
update

IUI i CWE DBODSS
write

SYNCWR: wview
update

IUI i CWE DBODSS
write

ASYNCWR: lwview
update

IUI i CWE DBODSS
replicate

REPL:
update

lcopy

Fig. 15. bMSCs of OPEN, OPENF, CLOSE, READ, SYNCWR, ASYNCWR
and REPL scenarios

In Figure 15 we show the bMSCs representing the ’open work session’, the
’close work session’, the ’data displaying’, the ’data synchronous updating’, the

114 Paola Inverardi and Massimo Tivoli

’data asynchronous updating’ and the ’data replication for asynchronous writing’
scenarios. DSS is a server for the two clients IUI1 and IUI2. It exports an in-
terface IDSS declaring five methods (open, close, read, write and replicate)
whose behavior is described in the above five scenarios.

init

OPEN

OPENF
CLOSE

READ SYNCWR ASYNCWR REPL

Fig. 16. HMSC of the CW sub-system

In Figure 16 the HMSC specification for the composed CW sub-system is
reported in. Let us suppose that the designer of the CW system wants that the
composed system satisfies a particular coordination policy. The policy is speci-
fied in form of the following behavioral LTL property:
P = F (write1 ∧ X(!write1Uwrite2)). P specifies that when the client IUI1

wants to update the document it necessarily has to use an alternating coordi-
nation policy with IUI2. Once IUI1 has performed a write request it cannot
perform it again before IUI2 has not performed a write request. From the
HMSC and bMSCs specification we can automatically derive the AC-Graphs for
each component in our CW sub-system (see Figure 17).

fail

open

ok

close

read write

replicate lcopy

write

lwview

ACtop
IUI

wview

rview

fail
open

ok

closeread write

replicate

lcopywrite

lwview
wview

rview
ACbottom

DSS

lwview

replicate

lcopy

read

rview

Fig. 17. AC-Graphs of components IUI1, IUI2 and DSS

Software Architecture for Correct Components Assembly 115

According to Section 3, from the AC-Graphs of IUI1, IUI2 and DSS we
derive the corresponding AS-Graphs and then we derive the corresponding EX-
Graphs (see Figure 18).

EXtop
IUI1

open 1

open ?

ok? ok1

close 1

close ?

fail
?

fail 1

read 1

read ?
rview

?

rview 1

write 1

write
?wview 1

wview ?

replicate
1

replicate
?

lcopy ?

lcopy
1

write1

write?

lwview ?

lwview
1

EXbottom
DSS

open?

open 4

ok
4 ok?

close 4 close ?

fail4

fail
?

read ?

read
4

rview 4

rview
?

write ?

write 4wview ?

wview 4

replicate 4

lcopy
4

lcopy
?

write?

write
4

lwview 4

lwview ?

replicate ?

Fig. 18. EX-Graphs of components IUI1, IUI2 and DSS

Referring to Figure 18, the EX-Graph of IUI2 is different from the EX-Graph
of IUI1 only in the identifier of the channel specified in known actions labels (2
instead of 1). We derive the connector global behavior through the EX-Graphs
unification algorithm described in Section 3.1. In this paper, for the sake of
presentation, we only show a sub-graph of the connector global behavior graph
(see Figure 19) and we reduce the analysis of the whole connector to the sub-
graph K1.1 of the connector global behavior graph. Refer to [17] for a complete
visualization of the connector graph.

The sub-connector K1.1 has two deadlocks represented by two finite branches.
These deadlocks are related to the consistency maintenance in an asynchronous
writing scenario. We recall that in order to maintain a consistent version of
the shared document, the DSS expects that all users work in asynchronous
mode every time another user chooses to work in asynchronous mode. The third-
party components IUI1 and IUI2 do not respect this DSS assumption. Thus
the composed system has concurrency conflicts. This puts in evidence a typical
problem in COTS components assembling. In order to synthesize the deadlock-
free version of K1.1 we simply prune the two finite branches. The deadlock-
free K1.1 forces IUI1 and IUI2 to respect the DSS assumption. According
to our approach, once obtained the deadlock-free version of the connector our
framework performs the coordination policy enforcing step (see Section 3.4).
In Figure 20 we have shown the P -satisfying and deadlock-free connector model
for K1.1.

As said in Section 3.4, this behavioral model is enough to derive the deadlock-
free property-satisfying connector code that implements the connector methods

116 Paola Inverardi and Massimo Tivoli

K1.1read 1

read
4

rview 4

rview 1

write
1

write
4

wview
4

wview
1

replicate
1

replicate 4

lcopy 4

lcopy 1

write
1

write
4

lwview 4

lwview 1

read2

read 4

rview
4

rview
2

write 2 write 4

wview 4

wview 2

replicate 2

replicate 4

lcopy
4

lcopy 2

write
2

write 4

lwview 4

lwview 2

read
2

read
4

rview 4

rview 2

read 1

read 4

rview 4

rview 1

write
2

write
4 write

1 write 4
deadlock

deadlock

replicate
2

replicate
4
lcopy

4

lcopy 2

replicate 1

replicate
4

lcopy 4

lcopy1

write 2
write

4lwview 4

lwview 2

write1

write 4 lwview 4

lwview
1

k24

k25

k26

k27

k28

k29

k30

k31

k32

k33

k34

k35

k36

k37 k38

k39
k40

k41

k42

k43

k44
k45k46

k47

k48

k49

k50

k51

k52

k53

k54

k55
k56

k57k58
k59

k60
k61

k63

k62

k64

k65

k66

k67

k68

k69

k70

k71
k72 k73

Fig. 19. Sub-graph K1.1 of the global connector graph

related to the LTL property specification. The only methods relating to prop-
erty P are the methods write and replicate (see Figure 20). For all the others
methods (i.e. open, close and read) the connector is a simple delegator since
property P has not influence on them. In the following we show the deadlock-
free property-satisfying code implementing the method write of the connector
component K1.1. We refer to [17], for the complete implementation of K1.1.
The implementation refers to Microsoft COM (Component Object Model) com-
ponents and uses C++ wiht ATL (Active Template Library) as programming
environment. The method write of the inner DSS object gets a parameter of
type S DA. S DA is a document alternative ”struct”. It contains information
about the document update to be realized.

HRESULT write(S_DA da) {

if(sLbl == 24) {

if((chId == 1) && (pState == 0)) {

return dssObj->write(da);

pState = 1; sLbl = 24;

}

else if((chId == 2) && (pState == 1)) {

return dssObj->write(da);

pState = 0; sLbl = 24;

}

}

Software Architecture for Correct Components Assembly 117

write 1

write 4

wview 4

wview 1

write 2

replicate 1

replicate
4

lcopy 4

lcopy 1

replicate 2

replicate 4

lcopy
4

replicate 2

lcopy 2

write 2

replicate
4

lcopy
4

lcopy 2

replicate 1

lcopy 4

lcopy
1

replicate
4

replicate
2

(k
24

,p
0
)

replicate 4

lcopy 4

lcopy 2

replicate 1

(k
44

,p
0
)

replicate
4

lcopy
4

lcopy 1

write 1

(k56,p0)

(k44,p1)

write
4

(k56,p1)

(k42,p1)

replicate 1

replicate 4

lcopy 4

lcopy
1

(k
42

,p
0
)

replicate 2

replicate 4 lcopy
4

lcopy 1

(k31,p1)

(k32,p1)

(k
40

,p
1
)

(k
24

,p
1
)

(k33,p1)

(k
34

,p
1
)

(k41,p1)

(k33,p0)

(k34,p0)

(k41,p0)

write
1

(k47,p1)

(k35,p1)

(k36,p1)

(k43,p1)

(k
35

,p
0
)

(k
36

,p
0
)

(k43,p0)

(k66,p0)

(k67,p0)

(k
70

,p
0
)

(k
71

,p
1
)(k72,p1)

(k73,p1)
write 4

lwview 4

lwview 1

(k66,p1)
(k

67
,p

1
) (k

70
,p

1
)

(k51,p0)
(k

52
,p

0
)

(k
55

,p
0
)

(k48,p1)

(k53,p1)

write 4

lwview 4

lwview
1

(k51,p1)

(k52,p1)

(k
55

,p
1
)

(k
29

,p
2
)

write2

(k62,p2)

(k57,p2)

Fig. 20. P -satisfying connector model for K1.1

else if(sLbl == 56) {

if((chId == 1) && (pState == 0)) {

return dssObj->write(da);

pState = 1; sLbl = 44;

}

else if((chId == 2) && (pState == 1)) {

return dssObj->write(da);

pState = 0; sLbl = 42;

}

}

else if(sLbl == 42) {

if((chId == 1) && (pState == 0)) {

return dssObj->write(da);

pState = 1; sLbl = 24;

}

}

else if(sLbl == 44) {

if((chId == 2) && (pState == 1)) {

return dssObj->write(da);

pState = 0; sLbl = 24;

}

}

return E_HANDLE;

}

118 Paola Inverardi and Massimo Tivoli

This code is automatically synthesized by visiting the sub-automaton of Fig-
ure 20 and by exploiting the information stored in its states and transitions
labels. The connector component K1.1 is an aggregated server component that
encapsulates an instance of the inner DSS component.

5 Related Works

The architectural approach to correct and automatic connector synthesis pre-
sented in this paper is related to a large number of other problems that have been
considered by researchers over the past two decades. For the sake of brevity we
mention below only the works closest to our approach. The most strictly related
approaches are in the ”scheduler synthesis” research area. In the discrete event
domain they appear as ”supervisory control” problem [3, 4, 28]. In very general
terms, these works can be seen as an instance of a problem similar to the problem
treated in our approach. However the application domain of these approaches is
sensibly different from the software component domain. Dealing with software
components introduces a number of problematic dimensions to the original syn-
thesis problem: i) the computational complexity and the state-space explosion
and ii) in general the approach is not compositional. The first problem can be
avoided by using a logical encoding of the system specification in order to use a
more efficient data structure (i. e. BDD (Binary Decision Diagram)) to perform
the supervisor synthesis; however the second problem cannot be avoided and
only under particular conditions it is possible to synthesize the global complete
supervisor by composing modular supervisors. While the state-space explosion is
a problem also present in our approach, on the other side we have proved in [15]
that our approach is compositional to some extents. It means that if we build
the connector for a given set of components and later we add a new component
in the resulting system we can extend the already available connector and we
must not perform again the entire synthesis process.

Other works that are related to our approach, appear in the model check-
ing of software components context in which CRA (Compositional Reachability
Analysis) techniques are largely used [12, 11]. Also these works can be seen as
an instance of the general problem formulated in Section 3. They provide an
optimistic approach to software components model checking. These approaches
suffer the state-space explosion problem too. However this problem is raised only
in the worst case that may not be the case often in practice. In these approaches
the assumptions that represent the weakest environment in which the compo-
nents satisfy the specified properties are automatically synthesized. However the
synthesized environment does not provide a model for the properties satisfying
glue code. The synthesized environment may be rather used for runtime moni-
toring or for components retrieval.

Recently promising formal techniques for the compositional analysis of com-
ponent based design have been developed [5, 6]. The key of these works is the

Software Architecture for Correct Components Assembly 119

modular-based reasoning that provides a support for the modular checking of
behavioral properties. The goal of these works is quite different from our in fact
they are related only to software components interfaces compatibility check.
Thus they provide only a check on component-based design level.

6 Conclusion and Future Work

In this paper we have described a connector-based architectural approach to
component assembly. Our approach focusses on detection and recovery of the
assembly concurrency conflicts and on enforcing of coordination policies on the
interaction behavior of the components constituting the system to be assembled.

A key role is played by the software architecture structure since it allows all
the interactions among components to be explicitly routed through a synthesized
connector. By imposing this software architecture structure on the composed
system we isolate the components interaction behavior in a new component (i.e.
the synthesized connector) to be inserted into the composed system. By acting
on the connector we have two effects: i) the components interaction behavior
can satisfies the properties specified for the composed system and ii) the global
system becomes flexible with respect to specified coordination policies.

Our approach requires to have a bMSC and HMSC specification of the sys-
tem to be assembled. Since these kinds of specifications are common practice in
real-scale contexts, this is an acceptable assumption. Moreover we assumed to
have a LTL specification of the coordination policies to be enforced.

The complexity of the synthesis and analysis algorithm is exponential either
in space and time. This value of complexity is obtained by considering the uni-
fication process complexity and the size of the data structure used to build the
connector graph. At present we are studying better data structures for the con-
nector model in order to reduce their size. By referring to the automata based
model checking [7], we are also working to perform on the fly analysis during the
connector model building process. Other possible limits of the approach are: i)
we completely centralize the connector logic and we provide a strategy for the
connector source code derivation step that derives a centralized implementation
of the connector component. We do not think this is a real limit because even if
we centralize the connector logic we can actually think of deriving a distributed
implementation of the connector component; ii) we assume that an HMSC and
bMSC specification for the system to be assembled is provided. Although this
is reasonable to be expected, it is interesting to investigate testing and inspec-
tion techniques to directly derive from a COTS (black-box) component some
kind (possibly partial) behavioral specification; iii) we assume also an LTL spec-
ification for the coordination policy to be enforced. It is interesting to find a
more user-friendly coordination policy specification; for example by extending
the HMSC and bMSC notations to express more complex system’s components
interaction behaviors.

120 Paola Inverardi and Massimo Tivoli

Acknowledgements

This work has been partially supported by Progetto MIUR SAHARA and by
Progetto MURST CNR-SP4.

References

[1] Itu telecommunication standardisation sector, itu-t reccomendation z.120. mes-
sage sequence charts. (msc’96). Geneva 1996.

[2] R. Allen and D. Garlan. A formal basis for architectural connection. ACM
Transactions On Software Engineering and Methodology, Vol. 6, No. 3, pp. 213-
249, 6(3):213–249, July 1997.

[3] S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. F. Franklin. Supervi-
sory control of a rapid thermal multiprocessor. IEEE Transactions on Automatic
Control, 38(7):1040–1059, July 1993.

[4] B. A. Brandin and W. M. Wonham. Supervisory control of timed discrete-event
systems. IEEE Transactions on Automatic Control, 39(2), February 1994.

[5] L. de Alfaro and T. Heinzinger. Interface automata. In ACM Proc. of the joint
8th ESEC and 9th FSE, ACM Press, Sep 2001.

[6] L. de Alfaro and T. Heinzinger. Interface theories for component-based design. In
In Proc. of EMSOFT’01: Embedded Software, LNCS 2211, pp. 148-165. Springer-
Verlang, 2001.

[7] O. G. Edmund M. Clarke, Jr. and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, London, England, 2001.

[8] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. In
Proceedings of the 1989 ACM SIGMOD international conference on Management
of data, pages 399–407, 1989.

[9] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why reuse is
so hard. IEEE Software, 12(6), November, 1995.

[10] D. Garlan and D. E. Perry. Introduction to the Special Issue on Software Archi-
tecture, Vol. 21. Num. 4. pp. 269-274, April 1995.

[11] D. Giannakopoulou, J. Kramer, and S. Cheung. Behaviour analysis of distributed
systems using the tracta approach. Journal of Automated Software Engineering,
special issue on Automated Analysis of Software, 6(1):7–35, January 1999.

[12] D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. Assumption generation
for software component verification. Proc. 17th IEEE Int. Conf. Automated Soft-
ware Engineering 2002, September 2002.

[13] P. Inverardi and M. Tivoli. Failure-free connector synthesis for correct com-
ponents assembly. Specification and Verification of Component-Based Systems
(SAVCBS’03) - Workshop at ESEC/FSE 2003. September 1-2, 2003. Helsinki,
Finland.

[14] P. Inverardi and M. Tivoli. Automatic synthesis of deadlock free connectors for
com/dcom applications. In ACM Proceedings of the joint 8th ESEC and 9th FSE,
ACM Press, Vienna, Sep 2001.

[15] P. Inverardi and M. Tivoli. Connectors synthesis for failures-free com-
ponent based architectures. Technical Report, University of L’Aquila, De-
partment of Computer Science, http://sahara.di.univaq.it/tech.php?id tech=7 or
http://www.di.univaq.it/∼tivoli/ffsynthesis.pdf, ITALY, January 2003.

Software Architecture for Correct Components Assembly 121

[16] P. Inverardi, M. Tivoli, and A. Bucchiarone. Automatic synthesis of coordina-
tors of cots group-ware applications: an example. In International Workshop on
Distributed and Mobile Collaboration (DMC 2003). To be published by the IEEE
Computer Society Press in the post-proceedings of the 12th IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE 2003), 9-11 June, Linz, Austria 2003.

[17] P. Inverardi, M. Tivoli, and A. Bucchiarone. Coordinators synthesis for cots
group-ware systems: an example. Technical Report, University of L’Aquila, De-
partment of Computer Science, http://www.di.univaq.it/tivoli/cscw techrep.pdf,
ITALY, March 2003.

[18] P. Inverardi, M. Tivoli, and A. Bucchiarone. Failures-free connector synthesis for
correct components assembly. Technical Report, University of L’Aquila, Depart-
ment of Computer Science, http://www.di.univaq.it/tivoli/ffs techrep.pdf, ITALY,
March 2003.

[19] M. Koch. Design issues and model for a distributed multi-user editor. Computer
Supported Cooperative Work, International Journal, 5(1), 1996.

[20] M. Koch and J. Kock. Using component technology for group editors - the iris
group editor environment. In In Proc. Workshop on Object Oriented Groupware
Platforms, pages 44–49, Sep 1997.

[21] B. G. Lee, K. H. Chang, and N. H. Narayanan. A model for semi-(a)synchronous
collaborative editing. In Proceedings of the Third European Conference on Com-
puter Supported Cooperative Work, ECSCW 93, pages 219–231, September 1993.

[22] N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of off-the-shelf components
in c2-style architectures. In In Proceedings of the 1997 Symposium on Software
Reusability and Proceedings of the 1997 International Conference on Software
Engineering, May 1997.

[23] R. Milner. Communication and Concurrency. Prentice Hall, New York, 1989.
[24] R. D. Nicola and F. Vaandrager. Three logics for branching bisimulation. Journal

of the ACM, 42(2):458–487, 1995.
[25] P.Inverardi and M.Tivoli. Automatic failures-free connector synthesis: An exam-

ple. Technical Report, published on the Monterey 2002 Workshop Proceedings:
Radical Innovations of Software and Systems Engineering in the Future, Univer-
sita’ Ca’ Foscari di Venezia, Dip. di Informatica, Technical Report CS-2002-10,
September 2002.

[26] C. Szyperski. Component Software. Beyond Object Oriented Programming. Ad-
dison Wesley, Harlow, England, 1998.

[27] D. Taubner. Finite representations of ccs and tcsp programs by automata and
petri nets. LNCS 369, 1989.

[28] E. Tronci. Automatic synthesis of controllers from formal specifications. Proc. of
2nd IEEE Int. Conf. on Formal Engineering Methods, December 1998.

[29] S. Uchitel, J. Kramer, and J. Magee. Detecting implied scenarios in message
sequence chart specifications. In ACM Proceedings of the joint 8th ESEC and 9th
FSE, Vienna, Sep 2001.

Formal Methods in Testing Software

Architectures

Antonia Bertolino1, Paola Inverardi2, and Henry Muccini2

1 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo” (ISTI-CNR),
Area della Ricerca CNR di Pisa,

56100 Pisa, Italy
antonia.bertolino@isti.cnr.it

2 Dipartimento di Informatica, Universitá dell’Aquila,
Via Vetoio 1,

67100 L’Aquila, Italy
[muccini,inverard]@di.univaq.it

Abstract. SAs provide a high-level model of large, complex systems
using suitable abstractions of the system components and their interac-
tions. SA dynamic descriptions can be usefully employed in testing and
analysis. We describe here an approach for SA-based conformance test-
ing: architectural tests are selected from a Labelled Transition System
(LTS) representing the SA behavior and are then refined into concrete
tests to be executed on the implemented system. To identify the test se-
quences, we derive abstract views of the LTS, called the ALTSs, to focus
on relevant classes of architectural behaviors and hide away uninterest-
ing interactions. The SA description of a Collaborative Writing system is
used as an example of application. We also briefly discuss the relation of
our approach with some recent research in exploiting the standard UML
notation as an Architectural Description Language, and in conformance
testing of reactive systems.

1 Introduction

Software testing consists of the dynamic verification of a program’s behavior,
performed by observing its execution on a selected set of test cases [5]. Depending
on the strategy adopted for test selection, and on the notation and technologies
employed in development, testing can take myriads of forms.

Traditionally, software testing was mostly a manual, error-prone and expen-
sive process, whose importance in achieving quality was underestimated. Re-
cently, however, more emphasis is given to this phase, and more rigorous and
automated approaches are sought. In particular, as opposed to ad-hoc derivation
of test cases based on the tester’s intuition, the highly greater value of systematic
derivation of test cases from a model of the system (model-based testing) is now
generally recognized.

Conformance testing checks that an implementation fulfills its specifications,
and a suite of black-box tests is executed in an attempt to “capture” all and only

M. Bernardo and P. Inverardi (Eds.): SFM 2003, LNCS 2804, pp. 122–147, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Formal Methods in Testing Software Architectures 123

the relevant behaviors. The usage of formal methods in software development was
initially advocated in the specification and design stages, to allow for the formal
verification of system properties, and for supporting formal refinement along
the subsequent development steps. However, as several recent studies suggest
(e.g., [18,43,44,28]), formal methods can be also advantageously employed in
conformance testing, allowing for the systematic and automated synthesis of
test cases from a system’s formal model.

For large, complex systems, the testing task is usually organized into stages,
i.e., it is partitioned into a phased process, addressing at each step the testing
of increasingly larger subsystems. The aim is to keep complexity under control
and to eventually reach the final stage of system testing with all the composing
subsystems extensively tested. At each stage, the strategies that can be used for
tests selection are closely related with the object under test (e.g., its abstraction
level, the modelling notation, etc.).

With the emergence of Software Architecture (SA) as an autonomous dis-
cipline to describe and analyze large, complex systems, several authors have
advocated the use of the architectural models also to drive testing, and in par-
ticular to select relevant behaviors of interactions between system components,
based on the early SA specification.

The topic of architectural testing has thus recently raised some interest,
and some contributions have been proposed. In [40], the authors define six
architectural-based testing criteria, adapting specification-based approaches; in
[7], the authors analyze the advantages in using SA-level testing for reuse of
tests and to test extra-functional properties. In [22] Harrold presents approaches
for using software architecture for effective regression testing, and in [23], she
also discusses the use of software architecture for testing. In [41], the authors
present an architecture-based integration testing approach that takes into con-
sideration architecture testability, simulation, and slicing. However, to the best
of our knowledge, our approach is the only comprehensive attempt to tackle the
whole cycle of SA-based testing [38,8,9]. It spans the whole spectrum from test
derivation down to test execution, and relies on empirical hands-on experience
on real-world case studies.

Our approach is based on the specification of SA dynamics, which is used
to identify useful schemes of interactions between system components, and to
select test classes corresponding to relevant architectural behaviors. The goal
is to provide a test manager with a systematic method to extract suitable test
classes for the higher levels of testing and to refine them into concrete tests at
the code level.

The approach relies on a formal description of the SA. In particular, we refer
to a Labeled Transition System (LTS), modelling the SA dynamics. In general, an
LTS provides a global, monolithic description of the set of all possible behaviors
of the system; a path on the LTS can be taken as a test sequence. The problem
is that the LTS describes a vast amount of information flattened into a graph.
Trying to enforce any coverage criteria on the LTS would be out of question. We

124 Antonia Bertolino, Paola Inverardi, and Henry Muccini

need means for tackling the state-space large scale problem, and for selecting a
manageable number of test sequences.

In our approach, we provide the software architect with a key to decipher the
LTS by building an Abstract LTS (ALTS), that represents a suitable abstrac-
tion of the LTS. ALTSs offer specific views of the SA dynamics by concentrating
on relevant features and abstracting away from uninteresting ones. Intuitively,
deriving an adequate set of test classes entails deriving a set of paths that ap-
propriately cover the ALTS.

Then the architectural tests must be refined into code-level tests in order to
be executed. To this end, we have followed a stepwise, manual methodology, to
deal with the lack of a formal relation between the SA description and the code.

The technical underpinnings of our SA-based approach are in line with recent
research in conformance testing of reactive systems, that also uses an LTS for
modelling the behavior semantics of a formally described system [43,44,28]. In
the paper we will discuss the relation between these two research areas.

The approach we describe here relies on an input description of the SA com-
ponents into the FSP language [21,34]. However, a large interest comes from
industry for using the standard UML as the Architectural Description Language
(ADL). With a rigorous use of UML state diagrams and of appropriate stereo-
types and tags this is a potential useful generalization of our approach. We only
briefly outline how this will be done in future research.

The paper is structured as follows: in the next section we introduce some basic
concepts of software testing, focusing more extensively on model-based testing
from LTS. In Section 3 we overview issues in SA-based testing. Our approach is
then presented in Section 4: we describe the Test Selection stage (in Subsection
4.1), and the Test Execution stage (in Subsection 4.2). An example of application
of the approach to a case study is illustrated in Section 5, and details on the tools
used are provided in Section 6. We finally discuss in Section 7 the relation of our
approach with some recent research in exploiting the standard UML notation
as an ADL (Subsection 7.1), and in conformance testing of reactive systems
(Subsection 7.2). Conclusions and future plans are drawn in Section 8.

2 Software Testing

Software testing refers to the dynamic verification of a system’s behavior based
on the observation of a selected set of controlled executions, or test cases [5].

2.1 Basic Concepts

Testing is a crucial part of the software life cycle, and recent trends evidence the
importance of this activity along the whole development process. The testing
activities have to start at the requirement specification-level and have to be
propagated down to the code-level, all along the various subsequent refinement
steps. As discussed in [6], testing involves several demanding tasks: the ability
to launch the selected tests (in a controlled host environment, or worse in the

Formal Methods in Testing Software Architectures 125

tight target environment of an embedded system); deciding whether the test
outcome is acceptable or not (which is referred to as the test oracle problem);
if not, evaluating the impact of the failure and finding its direct cause (the
fault), and the indirect one (Root Cause Analysis); judging whether the test
campaign is sufficient, which in turn would require having at hand measures
of the effectiveness of the tests: one by one, each of these tasks presents tough
challenges for the tester.

However, the problem that has received the highest attention in the literature
is by far test-case selection: in brief, how to identify a suite of test cases that is
effective in demonstrating that the software behaves as intended, or, otherwise,
in evidencing the existing malfunctions. Clearly, a good test suite is in fact the
crucial starting point to a successful testing session.

In contrast with the conventional practice of handcrafted ad-hoc test cases,
or of random input generation, many methods for systematic test selection have
been proposed in the past decades [5]. No method is superior to the others,
thus several methods should be used in combination throughout the lifecycle,
with focus shifting, as development proceeds, on differing aspects of software
behavior, and also on differing projections of the system.

The term model-based testing refers to test case derivation from a model
representing the software behavior. Indeed, testing is always against an expected
behavior: the difference being essentially whether such a model is explicit (which
is clearly better!), or implicit, i.e., in the mind of the testers. In particular,
when there exists a specification of the system to be tested in some formal
language, this can be used as the reference model both for test-case selection
and as an oracle. This allows for rigorous mathematical analysis, and automated
processing.

Testing an implementation against its (formal) specifications is also known as
conformance testing, which, looking at the big picture of test strategies, belongs
to the black box class, because we do not consider the internals of a system, but
only its input/output behavior.

After the test cases are derived from the specifications, two major problems
remain to be solved: traceability and test execution.

– Traceability concerns “relating the abstract values of the specification to
the concrete values of the implementation” [18]. In fact, the synthesized
test cases describe sequences of actions that have an interpretation at the
abstract level of the specification. To be able to execute these tests on the
code, we need to refine the test cases into more concrete sequences, that have
a meaningful interpretation in terms of the actual system I/O interface.

– Test execution entails forcing the Implementation Under Test (IUT) to exe-
cute the specific sequence of events that has been selected. A problem arises
with concurrent programs which, starting from the same input, may exercise
different sequences of interactions (among several concurrent processes) and
produce different results. This problem has already been analyzed in the
literature, and deterministic- and nondeterministic-testing approaches have
been proposed. In nondeterministic testing, the approach is to repeat the

126 Antonia Bertolino, Paola Inverardi, and Henry Muccini

launching of a program run under some specified input conditions several
times until the desired test sequence is observed (or a maximum number of
iterations is reached). In contrast, the deterministic testing approach (pro-
posed by Carver and Tai [14]) forces a program to execute a specified test
sequence by instrumenting it with synchronization constructs that determin-
istically reproduce the desired sequence.

2.2 Testing from Labeled Transition Systems

While formal testing includes several research directions, we restrict here to test
derivation from Labelled Transition Systems, for which a quite mature theory of
conformance testing now exists. We recall the definition of an LTS:

Definition 1. A Labeled Transition System (LTS) is a quintuple (S,L, S0,SF ,
T), where S is the set of states, L is the set of distinguished labels (actions)
denoting the LTS alphabet, S0 ∈ S is the initial state, SF ⊆ S is the set of final
states, and T = { l−→ ⊆ S × S | l ∈ L} is the transition relation labeled with
elements of L.

This theory has been originated by Tretmans [43,44], rooting on earlier results
on equivalence testing of transition systems [17]. It addresses the conformance
testing of reactive systems (i.e., systems which behave by reacting to the envi-
ronment stimuli). The following of this section refers to work from [43,44,28], to
which we send for further information.

The aim of a formal testing framework is to define a conformance relation
between the implementation I and the (formal) specification S. Such a relation
precisely establishes when I is a correct implementation of S. However, to do
this, we need to reason on the naturally informal implementations as if they were
formal objects [46]. The prerequisite to this is the test hypothesis : this consists
into assuming that I can be modeled by a formal object MOD (even though
it is not required that this model MOD is known a priori), such that all the
observations that we can take (of the black boxes) of I and of MOD along the
executions of all defined test cases cannot be distinguished. In such a way, we
can formally define an “implementation relation” (imp) that correlates S with
MOD: then, we conclude that I conforms to S iff MOD is imp-correct with
respect to S.

When a test is executed, what we observe are the outputs provided by the
implementation. Translated in practical terms, the test hypothesis is what allows
a tester to assume that the output observed for one test case can be taken as
a representative for (infinite) many other possible executions. The set of all
executed test cases forms an observational framework.

In Tretmans’ approach, both the specification S and the model MOD of
the implementation I are expressed using Input/Output Transition Systems
(IOTSs), an extension of the classical LTS model, in which the set of actions
are partitioned into the Input actions and the Output actions. This partition is

Formal Methods in Testing Software Architectures 127

useful for testing purposes, to allow the tester to distinguish between the con-
trollable events and the observable events, respectively. Also the possible absence
of Outputs is modelled, using the special action quiescence, labelled by δ (and
observed in practice by means of timers). Moreover, it is assumed that all inputs
are enabled in any state.

The implementation relation imp used is of the form ioco, that is a relation
holding when MOD can never produce an output (included δ) which could not
have been produced by S after the same sequence of actions, or trace [46].

Having established formally a conformance relation, formal techniques can
now be used to automatically derive from the IOTS of the specifications an
ideal test suite T , i.e., a set of tests by which for any implementation its ioco-
correctness can be established. This ideal test suite is called complete, and holds
the properties of soundness : conformant implementations are never rejected,
and exhaustiveness: all non conformant implementations are rejected. The latter
property however would require infinite test suites in almost all practical cases,
therefore a selection of a finite test suite is made, by which only soundness is
preserved, while exhaustiveness is lost.

The selection can be made randomly, as currently implemented in the TorX
tool [42]. Alternatively, the tester can use his/her knowledge of the implementa-
tion under test and of the context to guide the selection; this second approach
is implemented in the TGV tool [28] and is formalized through the notion of
a test purpose [28,46]. Informally, test purposes describe the behaviors to be
tested. More formally, they are themselves modelled by I/O automata, plus two
distinct sets of trap states called Accept and Refuse.

Both TorX and TGV have been experimented on several case studies, some
of industrial size, and are now quite mature. Although their use clearly requires
some expertise in formal methods, which is not obviously yielded in standard test
laboratories, they demonstrate that formal testing can and should be pursued,
to get more effective test suites.

3 Software Architecture and Testing

SA represents the most promising approach to tackle the problem of scaling
up in software engineering, because, through suitable abstractions, it provides
the way to make large applications manageable. Nowadays, SA descriptions are
commonly integrated into the software development process, e.g. [24,4].

However, SA production and management are, in general, quite expensive
tasks. Therefore the effort is worthwhile if the SA artifacts are extensively used
for multiple purposes. Typical use of SA is as a high-level design blueprint of the
system to be used during system development and later on for maintenance and
reuse. In particular, the importance of the role of SA in testing and analysis is
evident.

As witnessed in this book, SA formal dynamic descriptions are used for many
different kinds of analysis. We are here interested in SA primarily as a means for
driving the testing of large, complex systems. Our concern is on exploiting the

128 Antonia Bertolino, Paola Inverardi, and Henry Muccini

information described at the SA level to drive the testing of the implementation.
What we discuss in Section 4 is how formal SA descriptions (and the obtained
models) can be used for testing purposes. In other words, we assume the SA
description is correct and we are investigating approaches to specification-based
integration and system testing, whereby the reference model used to generate
the test cases is the SA description.

In general, deriving a functional test plan means to identify those classes of
behavior that are relevant for testing purposes. A functional equivalence class
collects all those system executions that, although different in details, carry
on the same informative contents for functional verification. I.e., the tester’s
expectation/hope is that any test execution among those belonging to a class
would be equally likely to expose possible non conformities to the specification.

These high level tests are finally passed to the software tester, who has to i)
derive code level tests corresponding to the specified architectural test sequences,
and ii) actually run the tests and observe if the current implementation conforms
to its architectural model. We say that the implementation does not conform to
the specification if some interactions described at the architectural level would
not be allowed in the implementation.

However, despite the high-level of abstraction, the SA can be still too complex
to be described and managed, especially in industrial contexts. A strategic tool
to manage the description of real systems is the use of views, by which different
aspects of the system can be handled separately. Several slightly different types
of views are defined in different approaches, e.g., [24,30,27], and different nota-
tions, generally graphical, have been introduced for views representation. Also,
approaches have been proposed to check views consistency.

4 An Approach to SA-based Testing

The goal of our approach is to use the SA for code testing. As the starting
point for this approach, we assume that the software architect, by looking at the
SA dynamics from different viewpoints, defines various observation functions, in
brief obs-functions, over the SA model. Each obs-function highlights a specific
perspective of interest for a test session; in line with what we said above, it
identifies a specific SA view. In fact, by applying an obs-function to the LTS, an
Abstract LTS (ALTS) is automatically generated, which is a reduced LTS show-
ing only interesting behaviors according to the selected view. This graph offers a
much more manageable model than the original LTS. The software architect can
thus choose on it a set of important patterns of behaviors (paths over the ALTS)
to be tested. Finally, these high-level tests are passed to the software tester, who
runs the tests and observes whether the current implementation “conforms” to
its architectural model. We also refer informally to an obs-function as a “testing
criterion”.

Summarizing, our approach to SA-based testing consists of four logical steps:

– Step 1: Definition of an obs-function relative to a selected test concern;
– Step 2: Derivation, from the SA LTS, of the Abstract LTS (ALTS) corre-

sponding to the defined obs-function;

Formal Methods in Testing Software Architectures 129

– Step 3: Selection of a set of test classes over the derived ALTS;
– Step 4: Execution of the selected tests on the source code.

These four steps altogether cover both stages of testing: the selection stage,
in which some criterion is applied to select a suitable set of test cases, and the
execution stage, in which the selected tests are executed against the imple-
mentation.

The first stage is covered by Steps 1 to 3: they form a rigorous method to
extract architectural tests from an architectural specification, which has been
first presented in [8]. The first stage is where application of formal methods
mostly helps. Step 4 covers the second stage: it deals with the execution of these
tests at the code level, and has been discussed in [9]. As far as the fourth step
is concerned, we cannot always rely on a strictly formal refinement process from
SA to code. We use a less formal approach which comes out of our experience
in dealing with a real-world case study [9].

In the following of this section we provide a brief description of our approach.
A detailed description can be found in [38].

4.1 Test Selection Stage

From the SA specification of the system under analysis, we derive an LTS which
models the SA dynamics. Such LTS can be automatically generated from formal
ADLs [25,2,21,33] or drawn using existing formalisms (e.g., UML state diagrams
or Harel’s statecharts).

LTS node and arc labels represent, respectively, states and transitions rele-
vant in the context of SA dynamics. A path p on an LTS, where p = S0

l1−→
S1

l2−→ S2
l3−→ . . .

ln−→ Sn, is a complete path if S0 is the initial state and Sn is a
final state. Hereafter, for the sake of brevity, an LTS path will also be denoted
by its sequence of labels (e.g., p = l1.l2.ln). In the following, we use the terms
LTS “labels” and “actions” interchangeably.

In principle, the LTS can directly be used as the reference model for deriving
the test scenarios. The problem is that this graph provides a global, monolithic
description; it is a vast amount of information flattened into a graph. Extracting
from this global model the observations of system behavior that are relevant for
validation is a difficult task.

This is a problem that always arises in formal testing: with the exception of
very small routines, we need ways for exploring the LTS and deriving represen-
tative behaviors that constitute the test suite.

The basic idea of our SA-based test approach is to allow for the formal
derivation (from the LTS) of reference models for testing, each representing a
relevant pattern of behavior which we want to focus attention on. In other words,
our approach provides software architects with a key to decipher the LTS.

As we have discussed earlier in Section 3, a common practice in the analysis
of complex systems is to derive from the global SA model a set of simplified
models that provide different system views. We do this here by partitioning the
LTS actions L into two groups: relevant interactions R (i.e., those we want to

130 Antonia Bertolino, Paola Inverardi, and Henry Muccini

observe by testing) and non-relevant interactions NR (i.e., those we are not in-
terested in at this time), so that L = R ∪ NR and R ∩ NR = ∅. Formally, we
define an obs-function that maps the relevant LTS labels to a specified interpre-
tation domain D, whereas any other (non-relevant) one is mapped to a distinct
element τ . The obs-function may also be considered as a hiding operator that
makes a set of actions invisible to its environment and may relabel the others in
an interpretation domain D. The relabeling may help emphasize the semantic
meaning of observable actions. More precisely:

obs : L −→ L′, so that

obs(r ∈ R) = d ∈ D, obs(n ∈ NR) = τ , and L′ = D ∪ τ .

We can also extend the obs-function definition to LTS paths so that if p =
l1.l2.ln, obs(p) = obs(l1.l2.ln) = obs(l1).obs(l2).obs(ln).

We then use the obs-function as a means to derive a smaller automaton from
the LTS which still expresses all high-level behaviors we want to test, but hides
away any other irrelevant behavior. The automaton is called an Abstract LTS
(ALTS).

The ALTS is obtained from the LTS via two transformations: i) by relabeling
each transition in LTS according to the obs-function, and ii) by minimizing
the resulting automaton with respect to a selected equivalence relation. The
relabeled automaton is called the ObsLTS, and the minimized one is the ALTS.

For minimization, we analyzed trace- and bisimulation-based equivalences,
both familiar from the theory of concurrency [36]. If one wants to reduce as much
as possible the number of τ transitions and corresponding nodes, then a trace
equivalence can be considered. In fact, this equivalence abstracts from τ -labeled
transitions and for any computational paths concentrates only on transitions
that are different from τ . A bisimulation-based equivalence is more suited when
one wants to observe how the system evolves step-by-step, even along τ -moves
(preserving the LTS branching structure).

Figure 1 gives an example of the ALTS construction: the original LTS is
analyzed, identifying the observation of interest (Figure 1.a); the abstraction
is applied over this LTS with respect to the selected obs-function (Figure 1.b);
and finally the trace equivalence minimization function is applied. The resulting
ALTS is shown in Figure 1.c. Figure 1.d, in contrast, presents a bisimulation-
based minimization. It can be seen that the latter gives more information on the
original LTS structure.

Taking into consideration that i) the aim of ALTS is to provide a more
compact and analyzable graph, and that ii) the ALTS automaton is built to
highlight only interesting behaviors, the trace equivalence is more suitable for
our purposes.

In [39] we prove that the ALTS generation process is correct and complete,
that is, each ALTS path comes from a LTS path (ALTS does not introduce new
paths) and each LTS path can be mapped onto an ALTS path (ALTS does not
lose information).

Formal Methods in Testing Software Architectures 131

act2

act1

act1S1

S5

S2

act0

a) b)

S4

act0

act2

act1

act2

d2

d2
c)

S3
act3 d3

B

A

C
d3

d2

d2

d2

S0

Obs -function:
act0 -> , act1 -> ,

act2 -> d2, act3 -> d3

d2

d2D’

B’
d2

C’
d3

d2

d)

A’

τ

τ

τ

ττ

τ

τ

τ τ

Fig. 1. a) LTS; b) ObsLTS; c) trace-based ALTS; d) bisimulation-based ALTS

The ALTS derivation is completely automated: we customized the existing
FC2Tools [19], taking advantage of the functions “fc2explicit” and “fc2weak.”
The tools supporting our approach are described in Section 6.

Once the ALTS associated with a SA testing criterion via an obs-function
has been derived, the task of deriving an adequate set of tests according to the
selected test criterion is converted into the task of deriving a set of complete
paths appropriately covering the ALTS.

Given the relatively small dimensions of an ALTS, a tester might consider to
apply extensive coverage criteria on it. However, ALTS paths clearly specify ar-
chitectural behaviors at a higher abstraction level than the original LTS because
they are based on an obs-function applied over the LTS. Thus, one ALTS com-
plete path can correspond to many possible LTS paths. Therefore, less thorough
coverage criteria seem more practical.

We apply here the well known McCabe’s [47] test technique since it is a good
compromise between arc and path coverage in the case of ALTS coverage; in
fact, any base set of paths covers all edges and nodes in the graph (i.e., this
coverage subsumes branch and statement coverage testing).

When considering what to take as the specification of an “architectural test”
we are left with two options. The first option, which is the one we take in this
paper, is to consider an ALTS complete path as the test specification. In this case,
the test is specified at a more abstract level and the tester instinctively focuses
the testing on a restricted set of interactions (those in the ALTS alphabet). A
second option is to identify those LTS paths of which the selected ALTS path is
an abstraction. Because LTS paths are more detailed than ALTS paths, in this
case the tester would have more information about how to perform the tests,

132 Antonia Bertolino, Paola Inverardi, and Henry Muccini

but also stricter requirements; that is, the tester doesn’t have as much freedom
in choosing the code-level tests. In practice, it might actually be more difficult
to test the conformance of source code to the test specification.

In either case (ALTS or LTS path), an architectural test is essentially a
sequence of system actions that are meaningful at the SA level. They can be
represented by UML-like sequence diagrams in which each box represents a SA
component, while arrows represent actions performed by the components, i.e.,
the (A)LTS labels. The difference in the two options is the level of abstraction
at which the sequence is described.

To derive from an ALTS path one or more corresponding LTS paths, we have
developed an algorithm, described in [39]. The idea is that after an ALTS-based
set of paths has been chosen, we can find out what the selected observation
function is hiding; that is, we can identify those LTS paths corresponding to the
selected ALTS path. This step could also be automated by adapting the Test
Generation and Verification (TGV) tool [20], inside the Caesar/Aldebaran [13]
toolset (see also Section 7.2).

In this process, we may find many LTS paths corresponding to an abstract
path. The strategy we applied for reducing the number of LTS paths is a transi-
tion rules coverage criterion: for each ALTS path, we want to derive enough LTS
paths to cover as many transition rules as possible, in a sense trying to consider
all possible system behaviors corresponding to an abstract test sequence.

4.2 Test Execution Stage

In this section we will try to understand how a tester can use the architectural
paths to actually test whether the source code conforms to the architectural
description.

Of course, the two problems of traceability and test execution, introduced in
Section 2.1, remain. Note that the traceability problem is here even exacerbated
by the distance between the code and the SA-level of abstraction, which is nec-
essarily high. Several researchers have recognized the importance and difficulty
of this problem [48,41], but no one has yet found a general solution.

In our analysis, we identify different factors characterizing the mapping be-
tween the two levels: the development process, the relationships among archi-
tectural components and the source code, and the SA-level of abstraction.

If a well-formalized architecture-based development process is in place, SA
specifications can be used to formally drive the generation of low-level design
and code, and thus the correspondence is maintained throughout the process.
For instance, some ADLs (such as C2ADL [11] and xADL [16]) provide devel-
opment support for implementing software architectures in Java and C++ [12].
Explicit mapping rules drive the source-code implementation of architectural
components, connectors, and messages via objects. However, such a process can-
not generally be assumed, and would severely restrict the software developer’s
choices. Moreover, rigorous formal approaches to relate architectural elements
and code are not yet current practice in SA-based processes, as illustrated for
instance in [4,27].

Formal Methods in Testing Software Architectures 133

In our experience, due to real-world constraints, SA specifications and low-
level design have been intermixed without any formal mapping. While this is
certainly not an ideal process, it is a realistic and plausible approach. In general,
the problem is to provide a way to identify a sequence of low-level operations
implementing a high-level behavior.

We first analyzed the system implementation to understand how architectural
actions (e.g., high-level functionalities) are implemented in the code by sequences
of partially ordered code level operations.3

Assuming for instance that the SA is implemented in Java, we map actions
into sequences of method calls. If each action is implemented, at the low level,
by a sequence of methods calls, it would be useful to understand how sequences
of these actions (i.e., an architectural test) are implemented by the source code.

Two alternatives may be taken into account: i) each action is implemented
by a sequence of operations, and they run sequentially; or ii) the actions can
run concurrently. In the former case, a sequence of architectural actions is im-
plemented by the sequential execution of the respective low-level sequence dia-
grams. In the latter case, the operations may interleave with each other. Note
that in this context, “acti before actj” (where actk is a generic action) does not
mean that all the operations implementing acti must run before all the opera-
tions implementing actj. It means that some operations that identify the action
termination must be executed following a given order, whereas the others may
be run in any order.

We finally run the code and evaluate the execution traces with respect to
the expected ones to analyze the source code conformance with respect to the
architectural behavior. To execute the desired test sequence, one can use either
a deterministic or a nondeterministic approach (see Section 2.1).

In summary, the approach we devised can be conceptually decomposed into
four substeps:

1. the SA path to be tested is represented as an ordered sequence of events.
For instance, UML [45] stereotyped Sequence diagrams [24] can be used to
represent these scenarios, where each box represents an SA component, while
arrows represent actions performed by the components;

2. for each action in the SA path, the tester identifies the code level sequence
(again, for instance, specified as UML Sequence Diagrams) implementing its
behavior. These sequence diagrams represent how one action of the SA path
is implemented in the code;

3. given the SA path to be tested, the tester combines the code level sequence
diagrams corresponding to each action. The global sequence diagram so ob-
tained represents a source code scenario implementing the SA path. The
technical details of this step are discussed in [9];

4. the tester runs the code to check whether the sequence diagram generated
in substep 3 is correctly implemented by the system. Since the system runs

3 Note that more than one implementation sequence, might correspond to one LTS
action. In such cases, to test the architectural action, all of them should be consid-
ered.

134 Antonia Bertolino, Paola Inverardi, and Henry Muccini

several concurrent processes, in general it is very difficult to trace system be-
havior. In fact, multiple executions of a concurrent program with the same
input may exercise different sequences of interactions and may produce differ-
ent results. A pragmatic approach here is to apply nondeterministic testing
for some attempts; if the expected sequence of events is not observed, then
a deterministic approach [14] could be applied to force the desired behavior.

Implementing each of the above substeps, in practice, involves several difficult
problems, as we discussed in [9].

5 An Application Example

Collaborative writing (CW) is one discipline of the multi-disciplinary research
area known as Computer Supported Cooperative Working (CSCW). Collabora-
tive writing is defined in [32] as: “the process in which authors with different
expertise and responsibilities interact during the invention and revision of a
common document”. A CW system involves two or more people (geographi-
cally distributed) working together to produce a common document. CW sys-
tems are often categorized according to the time/location matrix in two major
groups. First, there are systems supporting synchronous editing. This group of
CW system provides changes to the cooperative team partners (i.e. authors and
co-authors) in real time. The second group is related to asynchronous writing
tools. To better support all the CW stages, in literature have been proposed also
semi-synchronous CW systems supporting the integration of asynchronous and
synchronous styles of work. Since semi-synchronous CW systems seem to be the
best solution for the complete support of all the activities related to the CW we
focus on such systems.

The actors of a CW system are authors, co-authors and the manager. The
manager divides the work of writing between groups of users (authors and co-
authors). She will provide document templates, links and whatever may be of
help to the realization of the document. Authors can be required to write a
specific portion of a book/paper. They have to observe the document formats
proposed by the manager and they can delegate one of more co-authors to pro-
duce portions of the document. The realization of such a document foresees a
certain cooperation, and information exchange, between the manager and au-
thors, between the authors and co-authors and among the authors themselves.
A list of requirements a CW has to implement is described in [26].

From an architectural viewpoint, a CW system operates in a heterogeneous
hardware environment where authors can edit, change and exchange documents,
which are stored in a shared database. The CW software architecture we use in
this paper is borrowed from [26]. This CW system is a three-tier application
composed by the following four components:

– an Integrated User Interface (IUI): it is an integrated environment of tools
for editing, navigation, display of awareness communication among the group
members and import and export of data from external applications;

Formal Methods in Testing Software Architectures 135

info,
fail1

update2,
query2

CWE DSS

DBO

IUIk

...

update1,
query1

reg, unreg,
strEd, grpEd,

lIn, lOut,
accEd, accSh,

hist,

open, close,
read, write,
replicate

res2res1

fail2, ok,
rview,

wview,
lcopy,

lwview

Fig. 2. A Software Architecture description of a CW system

– a CW Engine (CWE): it provides all services useful to perform a group
activity in the CW context. It handles a list of CW activities, such as, user
registration and deregistration, user login and logout, users group definition
and editing;

– a Document Storage Service (DSS): it is an abstraction of the physical con-
tainer of the shared documents that are logically partitioned according to
their structure. In an asynchronous working mode we use version-controlled
documents. In a synchronous working mode it is shared among the users and
we have to use pessimistic concurrency control;

– a Database Object (DBO): it stores all group awareness information useful
to support a group activity.

Figure 2 shows the CW SA. It depicts the different components, the architec-
ture topology and the list of services each component provides and/or requires.
The meaning of each service is explained in [26]. The notation IUIk means that
many instances of the IUI component can be present at the same time. The
behavior of each component (in terms of services required and provided) has
been specified using the Finite State Process (FSP2) [21] process algebra. Each
component behavior is described by an LTS which is automatically generated
by the Labeled Transition System Analyzer (LTSA) tool [31].

By running the LTSA tool on the CW FSP specification (assuming that two
IUIs are working concurrently), we obtain a (minimized) LTS composed of 47
states with 76 transitions (assuming only one IUI is connected). On this we
apply the method for test selection described in Section 4. A list of interesting
observations we could make on this global LTS includes:

136 Antonia Bertolino, Paola Inverardi, and Henry Muccini

1. Interaction between a subset of the architecture components;
2. Scenario-based testing (given a selected interaction scenario, we want to test

a subgraph implementing only such scenario);
3. Input/Output for a selected component only.

In the following of this section, we propose samples of the first two observa-
tions listed above.

Related to the first observation (interaction between components), we focus
on the following testing criterion: “all those behaviors involving the interactions
from IUI to CWE”. This criterion needs to be formally expressed by an obs-
function. In this case, D will contain all and only the actions (i.e., elements
of the LTS alphabet) that specifically involve the communication among the
selected components. Such actions are “reg”, “unreg”, “strEd”, “grpEd”, “lin”,
“lout”, “accEd”, “accSh”, and “hist”. Figure 3 shows the obs-function defined
for the given criterion, called IUI-to-CWE obs.

D = {reg, unreg, strEd, grpEd, lin, lout, accEd, accSh, hist}

obs (reg) = Register
obs (unreg) = Unregister
obs (strEd) = Structure Editing
obs (grpEd) = Group Editing
obs (lin) = Login
obs (lout) = Logout
obs (accEd) = Access to Documents
obs (accSh) = Access Information
obs (hist) = History
For any other Ti , obs (Ti) = tau

Fig. 3. Obs-function for the IUI-to-CWE testing criterion

Given the IUI-to-CWE criterion, and by applying reduction and minimiza-
tion algorithms, we have derived the ALTS depicted in Figure 4 (label S0 identi-
fies the initial state, that in this example also coincides with the only final one).
This ALTS represents in a concise, graphical way how the IUI requires services
to the CWE component.

Following the McCabe’s path coverage criterion [47], we can select on this
graph NP = m - n + 1 independent paths, where “m” identifies the ALTS arcs
and “n” the ALTS nodes. NP is “precisely the minimum number of paths that
can, in (linear) combination, generate all possible paths through the module”
[47]. Applying this metric to the IUI-to-CWE criterion, we can get 8 independent
paths as listed below:

Formal Methods in Testing Software Architectures 137

Logout

S0 S1S2

S3

S4

S5

Structure
Editing

Group
Editing

Register, Unregister, Access Information, History

Access to
Documents

Login

Structure
Editing

Login

Logout

Login

Logout
Logout

Register,
Unregister,
Access Information,
History

Fig. 4. ALTS for the IUI-to-CWE testing criterion

Path1: S0
StructureEditing−→ S1

GroupEditing−→ S4
AccesstoDocuments−→ S3

Logout−→ S5
Login−→

S0

Path2: S0
StructureEditing−→ S1

GroupEditing−→ S4
AccesstoDocuments−→ S3

StructureEditing−→
S1

GroupEditing−→ S4
AccesstoDocuments−→ S3

Logout−→ S5
Login−→ S0

Path3: S0
StructureEditing−→ S1

GroupEditing−→ S4
AccesstoDocuments−→ S3

Logout−→ S2
Login−→

S3
Logout−→ S5

Login−→ S0

Path4: S0
Login−→ S0

Path5: S0
Logout−→ S5

Login−→ S0

Path6: S0
AccessInformation−→ S3

StructureEditing−→ S1
GroupEditing−→

S4
AccesstoDocuments−→ S3

Logout−→ S5
Login−→ S0

Path7: S0
Logout−→ S2

Login−→ S3
Logout−→ S5

Login−→ S0

Path8: S0
Logout−→ S2

Login−→ S3
Unregister−→ S3

StructureEditing−→ S1
GroupEditing−→

S4
AccesstoDocuments−→ S3

Logout−→ S2
Login−→ S3

Logout−→ S5
Login−→ S0

Some of these paths are particularly interesting for testing purposes. For ex-
ample, Paths 1 to 3 show how the IUI component can initially edit the document

138 Antonia Bertolino, Paola Inverardi, and Henry Muccini

structure, edit information on other authors, access the document, and eventu-
ally logout from the system. Path6 considers the case where an author initially
checks how other authors are modifying the paper, then, starts accessing the
paper and finally logouts.

Related to the second observation (the scenario-based one), we define the
following testing criterion: “the OPEN scenario, i.e., all the operations related
to the execution of the open action”. This criterion is called OpenScenario Obs
and is formally expressed by the obs-function in Figure 5: “pre” is a path of
actions performed before “open”, “postOpen” is a path of actions performed
after “open”, while “postZ” is a path of actions performed after “z”, which
generically denotes an alternative path to Open.

obs(pre.open.postOpen) = pre.open.postOpen
obs(pre.z.postZ) = pre.tau, with z different from open

Fig. 5. Obs-function for the OpenScenarios-Obs testing criterion

Figure 6 shows the ALTS for the OpenScenario-Obs. Label S0 identifies the
initial state, that is also a final state. There is another final state, that is labelled
as S4.

lin query1 res1

info

fail1

open query2 res2

fail2

ok

close

read

write

replicateupdate2 lcopy lout update1 lin query1 res1 info write update2

lwview

update2

wview

update2

rview

update2

S0 S1 S2 S3

S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24

Fig. 6. ALTS for the OpenScenarios-Obs testing criterion

A list of ALTS test paths, derived according to McCabe’s technique, is the
following:

Formal Methods in Testing Software Architectures 139

Path1: S0
lin−→ S1

query1−→ S2
res1−→ S3

fail1−→ S0

Path2: S0
lin−→ S1

query1−→ S2
res1−→ S3

info−→ S4
open−→ S5

query2−→ S6
res2−→ S7

fail2−→ S4

Path3: S0
lin−→ S1

query1−→ S2
res1−→ S3

info−→ S4
open−→ S5

query2−→ S6
res2−→ S7

ok−→ S8
close−→

S24
update2−→ S4

Path4: S0
lin−→ S1

query1−→ S2
res1−→ S3

info−→ S4
open−→ S5

query2−→ S6
res2−→ S7

ok−→ S8
write−→

S20
update2−→ S21

wview−→ S8
close−→ S24

update2−→ S4

Path5: S0
lin−→ S1

query1−→ S2
res1−→ S3

info−→ S4
open−→ S5

query2−→ S6
res2−→ S7

ok−→ S8
read−→

S22
update2−→ S23

rview−→ S8
close−→ S24

update2−→ S4

Path6: S0
lin−→ S1

query1−→ S2
res1−→ S3

info−→ S4
open−→ S5

query2−→ S6
res2−→ S7

ok−→
S8

replicate−→ S9
update2−→ S10

lcopy−→ S11
lout−→ S12

update1−→ S13
lin−→ S14

query1−→ S15
res1−→

S16
info−→ S17

write−→ S18
update2−→ S19

lwview−→ S8
close−→ S24

update2−→ S4

Path1 shows how the precondition for the execution of the “open” action
may fail. Path2 shows that the open action may fail. Paths 3 to 6 describe the
sequences of actions that may happen when an open is successfully performed.

6 Approach Automation

In our approach, we used several tools to implement the different steps. Initially,
an architectural language is used to specify our software architecture. An LTS
model of the SA dynamics is then automatically generated from this specifica-
tion, and abstraction and minimization are applied over the LTS to build an
Abstract LTS. Finally, we instrument the source code to analyze the CW behav-
ior with respect to the architectural tests. Figure 7 summarizes the framework
we use:

LTSA Tool
LTS Abstractor

(using FC2Tools)

FSP SA
specification

LTS ALTS

Fig. 7. The framework

1. The Finite State Process (FSP) [21,34] process algebra is used to specify
software component behaviors.

2. The LTSA tool [31] takes an FSP SA specification and gives the corre-
sponding LTS as a result.

140 Antonia Bertolino, Paola Inverardi, and Henry Muccini

3. The LTS Abstractor builds abstracted views of the LTS (based on the
previously discussed theory). It has been implemented by using the existing
FC2Tools [19].

The FSP language provides a concise way of describing LTSs; each FSP
expression can be mapped onto a finite LTS and vice versa. The FSP specification
is based on the definition of processes, whose behavior is modeled by LTSs; each
process instance implements an architectural component; several processes can
be combined (with a parallel composition operator) to describe the interaction
between different processes. An FSP specification comprises a declarative section
defining variables and ranges, a section defining the process initial state, and a
section describing the other reachable states. Semantically, an FSP process waits
for an action (e.g., for receiving messages), performs actions (e.g., for sending
messages) and changes its state. The LTS alphabet is composed of the exchanged
messages.

Figure 8 shows a portion of the FSP specification for the CW system. For
those not familiar with FSP, Figure 8.a specifies the behavior of the IUI compo-
nent. The prefixes “in ” and “out ” identify which are IUI’s inputs and outputs,
respectively. Figure 8.b is used to put the various processes in parallel, specify-
ing how the LTSs cooperate. This specifies how the CW system behaves, that
is, how the IUI, DBO, CWE, DSS and DBO processes have to be put in parallel
to describe the whole system behavior.

Each FSP process can be described by an LTS model that contains all the
states a process may reach and all the transitions it may perform. The LTSA
tool supports the FSP language by automatically generating the LTSs of each
FSP process. The tool provides graphical and textual visualization of the result-
ing LTSs, allows for evaluating process properties (i.e., safety, deadlock, reach-
ability), supports specification animation to facilitate interactive exploration of
system behavior and can be used to put different processes in parallel. This last
feature allows us to obtain a global LTS model of the system.

The observation of the LTS via an abstraction mechanism has been imple-
mented by using the FC2Tool. In particular, we took advantage of a function
called “fc2explicit” provided by the tool for comparing two “.FC2” graphs. The
first graph is the one we want to abstract (the architectural LTS), and the second
one (in the following, Obs-graph) is a graph we generate once the observation is
specified.

By running the “fc2explicit -abstract LTS.fc2 Obsgraph.fc2 > ALTS-nm.fc2”
command, we can compare the two graphs and generate a non-minimized ALTS.
The “fc2explicit -<opt> ALTS-nm.fc2 > ALTS.fc2” command generates the
minimized graph, i.e., the ALTS.

7 Putting the Approach in the Global Picture

We have described so far an original approach for the derivation of SA-based con-
formance test cases. Our aim is to integrate this approach in industrial practice.

Formal Methods in Testing Software Architectures 141

a)

b)

/** IUI Component */

IUI = (out_lin -> STEP1),
STEP1 = (in_info -> STEP2|in_fail1 -> IUI),
STEP2 = (out_lout -> IUI| out_reg -> in_info -> STEP2|out_unreg -> in_info -> STEP2|out_accSh -> in_info -> STEP2|out_hist ->
in_info -> STEP2| out_strEd -> out_grpEd -> out_accEd -> in_info -> STEP2 | out_open -> (in_fail2 -> STEP2|in_ok -> STEP3)),
STEP3 = (out_close -> STEP2 | out_read -> in_rview -> STEP3| out_write -> in_wview -> STEP3|
out_replicate -> in_lcopy -> out_lout -> out_lin -> in_info -> out_write -> in_lwview -> STEP3).

/** CW */

||CW = (IUI||DBO||CWE||DSS)/
{out_lin/in_lin,
out_info/in_info,
out_fail1/in_fail1,
out_fail2/in_fail2,
out_lout/in_lout,
out_reg/in_reg,
out_unreg/in_unreg,
out_strEd/in_strEd,
out_grpEd/in_grpEd,
out_accEd/in_accEd,
out_accSh/in_accSh,
out_hist/in_hist,
out_open/in_open,
out_close/in_close,
out_read/in_read,
out_write/in_write,
out_replicate/in_replicate,
out_ok/in_ok,
out_rview/in_rview,
out_wview/in_wview,
out_lcopy/in_lcopy,
out_update1/in_update1,
out_query1/in_query1,
out_res1/in_res1,
out_update2/in_update2,
out_query2/in_query2,
out_res2/in_res2,
out_lwview/in_lwview}.

Fig. 8. CW FSP Specification

This requires that the approach is enhanced in two dimensions: standardizing
the input modelling notation, i.e., the SA description; and, increasing the degree
of automation, that can be done efficiently by exploiting existing tools.

7.1 Standardizing SA Description

SA stakeholders in academia and in industry understand SAs in different ways,
use them with different goals and unfortunately, specify them with different
formalisms. Researchers have proposed formal ADLs in order to make auto-
matic analysis and validation possible. Practitioners use more informal notations,
sometimes, just simple box-and-line notations.

As a way to provide a standard notation to describe SAs, the Unified Mod-
eling Language (UML) [45] is more and more used. UML has now gained a wide
acceptance as the de-facto standard for object oriented modeling. Although its

142 Antonia Bertolino, Paola Inverardi, and Henry Muccini

original purpose was for detailed design, its extension mechanisms (i.e., the pos-
sibility to extend the UML semantics associated to modeling elements) make it
potentially applicable in contexts outside the object-oriented world (e.g., [15,29]).
Moreover, its multi-view modeling approach [30] allows to use different diagrams
to describe different system perspectives.

In the last few years, various approaches to incorporate architectural descrip-
tions in the UML framework have been proposed. In [35], the authors discuss
two different approaches, adhering to the requirement that the resulting notation
still complies to standard UML.

In the first approach, UML is used “as is”, i.e., the existing UML notation is
used to represent SAs. One relevant drawback of this approach is that specific SA
concepts (for example, connectors and rules) do not have direct counterparts in
UML. Moreover, UML imposes structural and compositional constraints which
do not apply to SA descriptions and viceversa.

The second approach, instead, constrains the UML meta model using UML
built-in mechanisms. It has been used to formalize architectures in C2, Rapide
and Wright [11,33,2]. However, application of this approach showed that the use
of the formal Object Constraint Language (OCL), in order to extend the UML
standard notation, strongly limits the use of UML tools to support architectural
models. Moreover, the ambiguity still existing in the UML semantics, makes it
difficult to model some architectural concepts.

This research direction can also be relevant for testing purposes, because
UML-based testing is a very active research area (e.g., [3,1,10]). For testing, we
need to express besides the structure also the behavior of the architecture under
analysis. As already said, behavioral modelling is in fact the key instrument in
SA conformance testing. For instance in [35], state diagrams have been used to
specify behavioral information.

Indeed, the use of a UML compliant model for SAs would allow us to export
results from the UML-based testing area to the SA domain.

Several methods and tools for UML-based testing have been proposed. None
of these however focuses explicitly on testing of the SA. An ongoing European
project for automated generation of test cases from a UML model 4 is AGEDIS
[1]. Interestingly, the system model it takes in input is essentially composed
of class diagrams, for describing the system components, and state diagrams,
for describing the behavior of components, plus stereotypes and tagged values.
This coincides exactly with the basic set of diagrams identified in the second
approach of [35]. Therefore, it is possible that a tool such as AGEDIS could be
adapted to SA-based testing. However, even though the notation and underlying
techniques are the same, conceptual differences exist and should be investigated
by experimentation.

4 More precisely, a subset of UML, called the AML, for Agedis Modelling Language,
has been formally defined.

Formal Methods in Testing Software Architectures 143

7.2 Importing Automation from Existing Tools

If we rethink our approach in terms of the existing and now well-settled theory of
conformance testing from formal specifications (as summarized in Section 2.2),
it is evident that from a technical point-of-view several commonalities exist.

Indeed, the methodology and tools used are basically the same. The behav-
ior semantics of the system is expressed in both cases by LTSs, possibly with
some extensions (in Tretmans’ testing theory IOTSs, including input and out-
put labelling of events). On the LTS model, formal methods need to be applied
for restricting the analysis to relevant classes of behavior, because an exhaus-
tive coverage of the LTS is not feasible. More precisely, we need a technique
for reducing the possible sequences of transitions to a limited number of test
sequences. In our approach we have used an observation function on the LTS
which finally (after renaming and reductions) gives back an ALTS. On the ALTS
we can then more easily identify a set of test sequences, but as we have shown
these are very abstract and far from the concrete level at which these tests have
to be eventually executed. In contrast, in TGV, the identification of relevant test
sequences is made by specifying a test purpose. Given a test purpose, a set of
paths on the LTS is derived which satisfies the test purpose and corresponds to
a set of test sequences, defined over the LTS.

Roughly, a test purpose would correspond in our approach to a path on the
ALTS. Intuitively, then, we could in principle reformulate our approach within
the context of TGV (by translating the obs-function in terms of guidelines for
deriving a test purpose), with the advantage of being able to use a well devel-
oped and mature set of tools [13]. Actually, the above cited AGEDIS project [1]
incorporates the TGV algorithms.

However, the intermediate step of the ALTS is not explicitly supported in
TGV, and we believe that it introduces a useful and intuitive means for reasoning
at the complex architectural level by separately considering differing classes of
behavior. ALTSs offer specific views of the SA dynamics by concentrating on
relevant features and abstracting away from less interesting features. ALTS is
a graphical tool we provide that allows the software architect to more easily
identify those behavioral patterns that are meaningful for validation purposes.

Conceptually, there are significant differences between our approach and ex-
isting ones:

i) The SA description tries to capture SA-relevant behaviors alone, while
abstracting away other system functions. Thus, our tests specifically belong to
the integration testing stages and certainly do not aim to test the system as
completely as possible, as in traditional specification-based test approaches.

ii) The abstraction level of the reference model and its relative “distance”
from the implementation under test varies much in the two contexts. In SA-based
testing, this distance is purposely very high, whereas in existing approaches to
specification-based testing, this is often thought as being low. In other words,
a high abstraction level is a basic assumption of our approach, whereas tradi-
tional approaches require a close distance between the reference model and the
implementation.

144 Antonia Bertolino, Paola Inverardi, and Henry Muccini

8 Conclusions and Future Perspectives

As testified by the collection of papers in this book, SA can play an important
role throughout the software life cycle. However, while the literature is rich
in approaches for design and analysis based on SA, relatively little has been
proposed so far for SA-based testing. Our research investigates how the SA
concepts, methods, and tools can be usefully exploited in the conformance testing
of a large distributed system against its high-level specifications.

Our approach to SA-based testing essentially consists of deriving a set of
architectural test sequences by covering abstracted views of the LTS description
of the SA behavior. We have here illustrated it on the CW case study.

Our experience in using the approach on some real-world case studies re-
vealed that practical difficulties can hinder its direct application in industry.
Deriving suites of architectural test cases according to some notion of coverage
may be relatively easy, with the support of adequate tools. What can be more
complicated is to subsequently establish a relationship that maps these high-level
test sequences on concrete, executable test cases. The problem arises especially
in absence of a rigorous, formalized refinement process from the SA specifica-
tion down to the source-code, as it is still common industrial practice. In our
view, the only means to investigate such a tough problem is through empirical,
hands-on investigation.

On the other hand, we might not even have a global architectural model at
our disposal. This can happen for several reasons: i) architectural components
may be described through complex models, in terms of states and transitions
and putting these models together may give rise to a state explosion problem. ii)
The architectural models may be incomplete, which means that some component
behaviors are unknown or components are not completely specified. These may
be very common situations in industrial contexts. We thus are investigating the
possibility of generating abstract observations and test sequences directly from
partial architectural models.

As discussed in the paper, future developments of the approach will encom-
pass on one side the possibility of using the standard UML notation for modelling
the SA behavior. This can be useful in two respects: for pushing the industrial
usage of rigorous SA-based testing methods, and for exploiting the rich reposi-
tory of UML-based test techniques. On the other side, we are also investigating
the relation between our approach and the framework of conformance testing of
distributed reactive systems, already implemented in the TorX and TGV tools,
and under development in the AGEDIS tool.

Finally, empirical investigations on more case studies, possibly developed by
using different development processes and programming paradigms, are neces-
sary to further generalize and refine the approach.

Acknowledgments

We would like to acknowledge the Italian MURST/MIUR national projects SAL-
ADIN and SAHARA, which partially supported this work. We are indebted to

Formal Methods in Testing Software Architectures 145

Antonio Bucchiarone, who provided the CW case study, and to Thierry Jeron
for his constructive help in applying the TGV tool on the CW.

References

1. The AGEDIS Project: Automated Generation and Execution of Test Suites for
Distributed Component-based Software. On-line at http://www.agedis.de

2. Allen, R., Garlan, D.: A Formal Basis for Architectural Connection. ACM Trans.
on Software Engineering and Methodology, Vol. 6, N. 3, pp. 213-249, July 1997.

3. Basanieri, F., Bertolino, A., Marchetti, E.: The Cow Suite Approach to Planning
and Deriving Test Suites in UML Projects. In Proc. 5th Int. Conf. UML 2002,
Dresden, Germany. LNCS 2460 (2002), pp. 383-397.

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. SEI Series
in Software Engineering, Addison-Wesley, 1998.

5. Bertolino, A.: Knowledge Area Description of Software Testing. In SWEBOK,
Joint IEEE-ACM Software Engineering Coordinating Committee. On-line at:
<http://www.swebok.org>.

6. Bertolino, A.: Software Testing Research and Practice. Invited presentation at ASM
2003, Taormina, Italy. LNCS 2589 (2003), pp. 1-21.

7. Bertolino, A., Inverardi, P.: Architecture-based software testing. In Proc. ISAW96,
October 1996.

8. Bertolino, A., Corradini, F., Inverardi, P., Muccini, H.: Deriving Test Plans from
Architectural Descriptions. In ACM Proc. Int. Conf. on Software Engineering
(ICSE2000), pp. 220-229, June 2000.

9. Bertolino, A., Inverardi, P., Muccini, H.: An Explorative Journey from Architectural
Tests Definition downto Code Tets Execution. In IEEE Proc. Int. Conf. on Software
Engineering (ICSE2001), pp. 211-220, May 2001.

10. Briand, L., Labiche, Y.: A UML-Based Approach to System Testing. Software and
System Modeling 1(1), 2002, pp. 10-42.

11. The C2 style and ADL. Project web page on-line at:
<http://www.isr.uci.edu/architecture/c2.html>.

12. The C2 Framework. On-line at:
<http://www.isr.uci.edu/architecture/software.html>.

13. Caesar/Aldebaran Tool (CADP). On-line at: <http://inrialpes.fr/vasy/cadp>.
14. Carver, R. H., Tai, K.-C.: Use of Sequencing Constraints for Specification-Based

Testing of Concurrent Programs. IEEE Trans. on Software Engineering, Vol. 24,
N. 6, pp. 471-490, June 1998.

15. Conallen, J.: Building Web Applications with UML. The Addison-Wesley Object
Technology Series.

16. Dashofy, E. M., van der Hoek, A., Taylor, R. N.: An Infrastructure for the Rapid
Development of XML-Based Architecture Description Languages. In Proc. of the
24th Int. Conf. on Software Engineering, 2002.

17. De Nicola, R., Hennessy, M.: Testing Equivalences for Processes. Theoretical
Computer Science, 34: 83-133, (1984).

18. Dick, J., Faivre, A.: Automating the Generation and Sequencing of Test Cases from
Model-Based Specifications. In J.C.P. Woodcock and P.G. Larsen (Eds.), FME’93:
Industrial-Strenght Formal Methods, pp. 268-284. LNCS 670, Springer Verlag, 1993.

19. FC2Tools. On-line at:
<http://www-sop.inria.fr/meije/verification/quick-guide.html>.

146 Antonia Bertolino, Paola Inverardi, and Henry Muccini

20. Fernandez, J.-C., Jard, C., Jeron, T., Nedelka, L., Viho, C.: An Experiment in
Automatic Generation of Test Suites for Protocols with Verification Technology.
Special Issue of Science of Computer Programming, Vol. 29, pp. 123-146, 1997.

21. Finite State Process (FSP). On-line at:
<http://www.dse.doc/ic.ac.uk/∼jnm/book/ ltsa/Appendix-A.html>.

22. Harrold, M. J.: Architecture-Based Regression Testing of Evolving Systems. In
Proc. Int. Workshop on the ROle of Software Architecture in TEsting and Analysis
(ROSATEA), CNR-NSF, pp. 73-77, July 1998.

23. Harrold, M. J.: Testing: A Roadmap. In A. Finkelstein (Ed.), ACM ICSE 2000,
The Future of Software Engineering, pp. 61-72, 2000.

24. Hofmeister, C., Nord, R. L., Soni, D.: Applied Software Architecture. Addison
Wesley, 1999.

25. Inverardi, P., Wolf, A. L.: Formal Specifications and Analysis of Software Archi-
tectures Using the Chemical Abstract Machine Model. IEEE Trans. on Software
Engineering, Vol. 21, N. 4, pp. 100-114, April 1995.

26. Inverardi, P., Tivoli, M., Bucchiarone, A.: Coordinators synthesis for
COTS group-ware systems: an example. In Proc. Int. Workshop on Dis-
tributed and Mobile Collaboration, 2003 (DMC 2003). Extended version as
technical Report, University of LAquila, Department of Computer Science,
http://www.di.univaq.it/tivoli/cscw techrep.pdf, March 2003.

27. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison Wesley, Object Technology Series, 1999.

28. Jard, C., Jéron, T.: TGV: Theory, Principles and Algorithms. Proc. Conf. IDPT
2002. Pasadena (USA), (2002).

29. Jrjens, J.: UMLsec: Extending UML for Secure Systems Development. Proc. UML
2002, Dresden, Sept. 30 - Oct. 4, 2002, LNCS.

30. Kruchten, P.: Architectural Blueprints - The “4+1” View Model of Software Ar-
chitecture. IEEE Software, 12(6) November 1995, pp. 42-50.

31. Labelled Transition System Analyzer (LTSA). On-line at:
<http://www-dse.doc.ic.ac.uk/∼jnm/book/>.

32. Lay, M., Karis, M.: Collaborative writing in industry: Investigations in theory and
practice. Baywood Publishing Company, Amityville, 1991.

33. Luckham, D. C., Kenney, J. J., Augustin, L. M., Vera, J., Bryan, D., Mann, W.:
Specification and Analysis of System Architecture Using Rapide. IEEE Trans. on
Software Engineering, Special Issue on Software Architecture, Vol. 21, N. 4, pp.
336-355, April 1995.

34. Magee, J., Kramer, J.: Concurrency: State Models & Java Programs. Wiley, April
1999.

35. Medvidovic, N., Rosenblum, D. S., Redmiles, D. F., Robbins, J. E.: Modeling
software architectures in the Unified Modeling Language. ACM Transactions on
Software Engineering and Methodology (TOSEM), Vol. 11 , Issue 1, Jan. 2002.

36. Milner, R.: Communication on Concurrences. International Series on Computer
Science. Prentice Hall International, 1989.

37. Muccini, H.: Software Architecture for Testing, Coordination Models and Views
Model Checking. PhD thesis, University of L’Aquila, year 2002. On-line at:
<http://www.HenryMuccini.com/publications.htm>.

38. Muccini, H., Bertolino, A., Inverardi, P.: Using Software Architecture for Code
Testing Submitted for publication.

39. Muccini, H., Bertolino, A., Inverardi, P.: Using Software Architecture for Code
Testing. Long version of [38]. On-line at
http://www.HenryMuccini.com/publications.htm

Formal Methods in Testing Software Architectures 147

40. Richardson, D. J., Wolf, A. L.: Software testing at the architectural level. ISAW-2
in Joint Proc. of the ACM SIGSOFT ’96 Workshops, pp. 68-71, 1996.

41. Richardson, D. J., Stafford, J., Wolf, A. L.: A Formal Approach to Architecture-
based Software Testing. Technical Report, University of California, Irvine, 1998.

42. TorX Test Tool Information.
http://fmt.cs.utwente.nl/tools/torx/introduction.html

43. Tretmans, J.: Test Generation with Inputs, Outputs and Repetitive Quiescence.
Software–Concepts and Tools, 17(3):103-120, 1996.

44. Tretmans, J.: Testing Concurrent Systems: A Formal Approach. Proc. of CON-
CUR’99, LNCS 1664 (1999), pp. 46–65.

45. UML. Object Management Group: OMG Unified Modeling Language (UML),
V1.4, 2001. http://www.omg.org

46. de Vries, R. G., Tretmans, J.: Towards Formal Test Purposes. Proc. FATES’01,
Aalborg, Denmark (2001).

47. Watson, A. H., McCabe, T. J.: Structured Testing: A Testing Methodology Using
the Cyclomatic Complexity Metric. NIST Special Publication 500-235, August 1996.

48. Young, M.: Testing Complex Architectural Conformance Relations. In Proc.
Int. Workshop on the ROle of Software Architecture in TEsting and Analysis
(ROSATEA), CNR-NSF, pp. 42-45, July 1998.

landrade@atxsoftware.com

jose@fiadeiro.org

balance():money credit(n:money) debit(n:money)

owns(a:account):Boolean withdrawal(n:money,a:account)

coordination interface customer-withdrawal
import types money, account;
services owns(a:account):Boolean
events withdrawal(n:money; a:account)
end interface

withdrawal(n,a) a.debit(n)

coordination interface account-debit
import types money;

services balance():money;
 debit(a:money) post balance() = old balance()-a
end interface

coordination law standard-withdrawal
partners a:account-debit; c:customer-withdrawal
rules when c.withdrawal(n,a)
 with a.balance() • n & c.owns(a)
 do a.debit(n);
end law

 when condition
 with condition
 do set of operations

account

coordination law VIP-withdrawal
partners a:account-debit; c:customer-withdrawal
operations credit():money
rules when c.withdrawal(n,a)
 with a.balance()+credit()• n & c.owns(a)
 do a.debit(n);
end law

credit

coordination interface account-credit
import types money;
services balance():money;
 credit(a:money) post balance() =
 old balance()+a
end interface

coordination interface external-transfer
import types money, account, transfer-id;
events transfer(n:money;a:account;t:transfer-id)
end interface

coordination law external-transfer-handler
partners a:account-credit; external-transfer
operations ackn(t:transfer-id)
rules when transfer(n,a,t)
 with a.exists
 do n•1000:a.credit(n–100)
 & n<1000:a.credit(90%n)
 & ackn(t)
end law

coordination interface account-credit-event
import types money;
events credit(a:money)
end interface

coordination law report-big-credits
partners a:account-credit-event
operations big():money;
 report(n:money);
 set-big(n:money) post big()=n
rules when a.credit(n) & n•big()
 do report(n);
end law

account-credit

coordination interface average-balance
import types money
services average():money;
 debit(n:money)
end interface

coordination law commission-on-low-balance
partners a:average-balance
operations minimum():money; charge():money
rules when end-of-month
 do minimum>a.average():a.debit(charge())
end law

end-of-month

coordination interface account-debit&credit
type-id account
events balance():Money;
services debit(a:Money);
 credit(a:Money);
 balance():Money;

properties balance() after credit(a) is balance()+a
 balance() after debit(a) is balance()-a
end interface

balance

coordination law flexible-package
partners c,s:account-debit&credit
operations minimum,maximum:money
rules when c.balance()<minimum
 do s.debit(min(s.balance(),maximum–c.balance())
 & c.credit(min(s.balance(),maximum–c.balance())
 when c.balance()>maximum
 do c.debit(c.balance()–maximum)
 & s.credit(c.balance()–maximum)
end law

john:
Customer

standard-
withdrawal

aaa/bbb:
Account

Balance:1000

mary:
Customer

ccc/ddd:
Account

Balance:5000

VIP-
withdrawal

credit:3000

standard-
withdrawal

report-
big-credit

big:10000

coordination context customer(c:customer)
workspace

component types account, customer
contract types standard-withdrawal, VIP-withdrawal,

 pensioner-package, home-owner-package
constants min-VIP: money
attributes avg-balance = …
services

subscribe_VIP(a:account,V:money):
pre: c.owns(a) & avg-balance•min-VIP &
 not exists home-owner-package(c,a)
post: exists’ VIP-withdrawal(c,a) &
 VIP-withdrawal(c,a)’.credit=V

subscribe_home(a:account):
pre: not exists pensioner-package(c)
post: c.owns(a)’ & exists’ home-owner-package(c,a)

subscribe_pensioner:
pre: not exists pensioner-package(c) &
 not exists home-owner-package(c,a)
post: exists’ pensioner-package(c)

rules
VIP-to-std:

when exists VIP-withdrawal(c,a) & avg-balance<min-VIP
post not exists’ VIP-withdrawal(c,a) &
 exists’ standard-withdrawal(c,a)

end context

0100
1001
0010
1010

Contract
Editor

System

Animator

REPOSITORY

0100
1001
0010

Edit/Develop
Contracts

Build

Test
CheckIn/CheckOut

Code generation

Register Components

Byte Code

Component

proxy

broker

ImplemProxy

<<abstract>>

Subject

Interface

<< abstract>>

RealSubject

Client
Component

Component Pattern

Partner
Connector

Contract-nContract-1

Coordination Pattern

chain of
delegation

0..*

Contract-1
Connector

abstract>>

Contract-n
Connector

Request

Request
Request

Request

Account Pattern

Coordination
Pattern

fp:
Flexible
Package

chain of
delegation

vipPartner2:
VIP Contract
Connector

proxy1

partner1:
Flexible Package

Contract
Connector

broker1

realAc1:
RealAccount

checkingAc1:
Account

broker2

realAc2:
RealAccount

savingsAc2:
Account

partner2:
Flexible Package

Contract
Connector

proxy2

vp:
VIP

Account Pattern

withdrawal

deposit

➏

➊

➋

❺➍

➌

withdrawal

withdrawal

transfer

transfer

withdrawal

withdrawal

withdrawal
withdrawal

Software Architecture for Mobile Computing

Amy L. Murphy1, Gian Pietro Picco2, and Gruia-Catalin Roman3

1 University of Rochester, Rochester NY 14607, USA,
murphy@cs.rochester.edu,

http://www.cs.rochester.edu/u/murphy
2 Politecnico di Milano, Milan, Italy,

picco@elet.polimi.it

http://www.elet.polimi.it/~picco
3 Washington University, St. Louis MO 63130, USA,

roman@cse.wustl.edu

http://www.cse.wustl.edu/~roman

Abstract. One form of software architecture is a framework for systems
that serve the needs of a specific domain. These frameworks must contain
sufficient detail to not lose the interesting aspects of the environment, yet
they must not expose so many details as to be overwhelming and force
the developer to lose the big picture. As the environments we develop
for become more complex, it becomes more necessary to compose these
frameworks in order to manage the complexity. Mobility is precisely one
such environment that is emerging as computing components shrink in
size and become more portable. As these components change location
in space, their connectivity to other components changes and thus their
access to data changes. Some programs needs to be able to respond to
this change in connectivity. Others are able to abstract it away, simply
perceiving changes in connectivity as changes in data availability. In this
paper, we overview a solution to managing the complexity of applications
for the the mobile environment in the context of a middleware. First, we
present a meta-model, or a framework for generating middleware for
mobile environments. Second, we show how this meta-model has been
instantiated in the Lime middleware and how it has been used to develop
several mobile applications.

1 Introduction

Mobility entails the study of systems in which components change location, in a
voluntary or involuntary manner, and move across a space that may be defined
to be either logical or physical. By definition, systems of mobile components
are distributed systems, and while distributed computing has been carefully
studied for decades, mobility poses new challenges that have not previously been
addressed.

The development of compact computing devices such as notebook computers
and personal digital assistants allow people to carry computational power with
them as they change their physical location in space. The number of such compo-
nents is steadily increasing. One goal, referred to as ubiquitous computing [21], is

M. Bernardo and P. Inverardi (Eds.): SFM 2003, LNCS 2804, pp. 182–206, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Software Architecture for Mobile Computing 183

for these devices to become seamlessly integrated into the environment until we
are no longer explicitly aware of their presence, much the way that the electric
motor exists in the world today. Part of enabling this vision is coordinating the
actions of these devices, most likely through wireless mediums such as radio or
infrared.

Logical mobility, or the movement of code and state through a fixed infras-
tructure of servers, is emerging as a powerful design abstraction for distributed
systems. The pervasiveness of the Java programming language and its porta-
bility have led to a wealth of mobile agent systems. Demonstration purpose
applications built on top of these systems range from logical agents managing
physical objects in a kitchen [11] to agents managing the placement of a video
conferencing server to minimize bandwidth consumption [1].

Developing applications in the mobile environment is a difficult task. Many
existing applications restrict themselves to addressing a specific aspect of mo-
bility in a highly specialized environment, such as disconnected operation in the
Coda filesystem [8] or using agents to perform remote queries on a database as
in the Oracle Agent System [13]. Development of these systems requires highly
specialized knowledge of low level networking as well as details of the application
domain.

Our goal is to enable the development of diverse classes of applications by
providing flexible abstractions that can be applied in a variety of settings. Our
success in this area comes from an integrated research approach that involves
analyzing the needs of mobile applications, formulating models to describe the
key concepts of our approaches, specifying formally these models, implementing
the abstractions, and returning to the development of applications to evaluate
our results.

Our work focuses on mobile ad hoc networks where no infrastructure exists
to support communication among physically mobile hosts. Instead, hosts com-
municate directly with one another and the distance between hosts determines
connectivity. A system is typically composed of multiple groups of hosts with
connectivity available within the group but no communication from one group
to another. Changes in connectivity and corresponding changes in available re-
sources make this a challenging environment for application design.

Our strategy for development in this arena is the design for new high-level co-
ordination abstractions, generically referred to as global virtual data structures.
The abstraction presented to the application programmer is simply a local data
structure whose content changes according to connectivity. Conceptually each
component stores a piece of a global data structure, when components are within
communication range these pieces are transiently shared and accessible to other
components. Interaction with the data structure occurs exclusively by execut-
ing operations on the local data structure, however, transient sharing enables
transparent interaction with other mobile components.

One of the features of this approach is its ability to facilitate the devel-
opment of applications that never explicitly access remote data. We term this
context-transparent interaction, where the data is part of the current context in

184 Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman

which a mobile component finds itself. The distribution and changes to the data
structure are hidden from the application programmer by the abstraction itself.
Alternately, context-aware interaction can easily be provided as an extension to
the basic model by explicitly introducing the notion of location.

We have successfully applied this strategy in the development of Lime, Linda
In a Mobile Environment, which provides the simple mobile coordination ab-
straction through transiently shared Linda tuple spaces, enabling application
programmers to clearly separate the concerns of computation from the commu-
nication among hosts. The implementation of Lime in the form of middleware
presents the same interface and semantics as the model, simplifying the imple-
mentation process. Mobile application developers utilizing the Lime concepts
need not concern themselves with any of the low level details of communication
or changing connections, as all of these are handled within the implementation
of the middleware.

Work with the Lime system has shown it to be a clean conceptual tool for
introducing programmers to the concepts of mobility. Several applications have
been built on top of the middleware, demonstrating its usefulness in a variety of
mobility scenarios.

In this paper, Section 2 provides an introduction to the concept of global
virtual data structures, Section 3 describes the instantiation of this concept in
the Lime coordination model, Section 4 steps through an application that sits
on top of Lime, and Section 5 concludes with future directions for this work.

2 Global Virtual Data Structures

Physical mobility through space can be categorized into base station mobility
and ad hoc mobility. Base station mobility is similar to the cellular telephone
system, where mobile components (i.e., mobile telephones) communicate with
one another and with the fixed network by always communicating first with a
base station (i.e., cellular tower). Ad hoc mobility distinguishes itself from base
station mobility by completely removing the fixed infrastructure, leaving only
direct communication among hosts. In a mobile ad hoc network, the distance
between components determines connectivity. As components move, the system
is continuously reshaped into multiple partitions, with connectivity available
within each partition but not across partitions.

Freeing mobile users from a fixed infrastructure makes the ad hoc network
model ideal for many scenarios such as systems of small components with limited
resources to spend on communication, situations in which the infrastructure has
been destroyed such as following a natural disaster, and for settings in which
establishing an infrastructure is impossible as in a battlefield environment or
economically impractical as in a short duration meeting or conference.

The application needs in these scenarios can be classified broadly by how
they interact with their changing environment, or context. The context of a
mobile unit consists of two primary components: system configuration and data.
System configuration context describes the knowledge about which mobile units

Software Architecture for Mobile Computing 185

are connected and possibly also about topology information concerning physical
location in space or logical connectivity. This knowledge is limited to the current
partition of the network in which the mobile unit finds itself. We refer to this
as the current transient group. Because communication cannot extend beyond
the group, knowledge of configuration beyond the boundaries of the group is not
possible. Data context refers to the more passive data elements and resources
that are carried by the mobile components.

This view of context fosters two distinct programming styles: context aware
programming and context transparent programming. Context aware applications
are those that access both the system configuration context and the data context
explicitly. For example, a context aware application may store a piece of new
data on a specific mobile host, or retrieve a piece of data from a named mobile
host. All operations must be carried out within the current connectivity context,
but this style is distinguished by the needs of the application to be aware of the
current context. In contrast, context transparent applications can be developed
without explicit knowledge of the current context. Data access is performed on
the data in the current context without regard to where it is located. Such
applications do not need to be aware of the details of the configuration changes,
but simply aware that they are occurring and that these changes affect the
available resources. Many applications require a combination of both context
aware and context transparent programming.

Our goal is to enable the rapid and dependable development of both styles
of application programs for the mobile ad hoc environment. Fundamentally our
approach is to design abstractions tailored to the ad hoc environment that hide
many of the unnecessary details, but give the programmer sufficient power to
tailor the abstraction to their specific needs. This involves providing both context
aware and context transparent operations within the same abstraction. At the
same time, implementations of these abstractions must be responsive to the
technical challenges of the environment.

Our approach to abstractions to simplify the programming task comes from a
study of coordination models for distributed computing that separate the com-
putation, or the task-specific programming, from the communication, or the
interaction among processes. Distributed coordination models also consider the
need to take local decisions while still conceptualizing the effect of these actions
on the global scale. Thus, our driving design strategy can be summarized by the
desire to coordinate mobile ad hoc applications by thinking globally but acting
locally.

2.1 The GVDS Model

One common coordination mechanism in distributed systems is shared memory,
or more structured shared data structures. Through this, the complexity of large
systems is managed by accessing a single, global data structure. An implementa-
tion may be distributed, but the user is not aware of this. The concept of shared
memory is appealing in the mobile environment, which is itself a distributed

186 Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman

b d
ca

b

a c
d

(a) (b)

Fig. 1. Transforming a matrix into a global virtual data structure by distributing it
among mobile units.

system, however disconnections and the resulting inaccessibility of data make a
direct application of shared memory to mobile systems impossible.

By applying our design strategy to shared memory data structures the global
data structure emerges as the concept we wish to conceive of globally, but con-
nectivity does not allow this. The first step toward a mobility-viable global data
structure is to make explicit the distribution of data across the mobile compo-
nents, or mobile hosts. For example, Figure 1(a) shows how a large matrix can
be evenly divided among four hosts. While all mobile components are within
communication range, the entire structure remains accessible to all processes.

When mobile components move and connectivity changes, the available por-
tions of the data change to reflect only reachable data. In Figure 1(b) mobile
components a and b are each isolated from all other components, restricting ac-
cess only to their local partitions of the matrix. However, components c and d
remain connected to one another and have access to the combination of c’s and
d’s data.

The global matrix data structure of Figure 1(a) can be visualized at any time
from outside the system by ignoring connectivity constraints and combining the
data from all mobile components. This is, however, only a virtual data structure
because it cannot be created in reality. Despite this it remains a powerful concept
to the programmer to view how local changes affect the entire system.

We have discussed how connectivity limits the availability of data, but we
must also consider how the operations that access the data structure change
in response to this accessibility constraint. Some operations must clearly be re-
stricted if full connectivity is not available. In the matrix example, computations
such as matrix inversion require the entire matrix and must be restricted. Many
operations, however, require no changes and can simply be evaluated over the
current projection of the global virtual data structure. These operations play an
important role in implementing context-transparent applications as they do not
require the programmer to be aware of the details of the environment, but are
simply aware that it is changing. Finally some operations can be extended to
explicitly address the distribution of data over the hosts. Consider an alternate

Software Architecture for Mobile Computing 187

division of the matrix example that distributes data based on some aspect of
the data other than its location in the matrix. In this case, it may be meaning-
ful to query the part of the distributed data located at a specific agent. These
operations are likely to play a role in context-aware applications.

For any global virtual data structure to be successful, its development cycle
must include not only the model definition, but also formal specification and im-
plementation. The informal model presents the underlying data structure, how
it changes with respect to connectivity, what the primitives are, and how they
are affected and extended. Most importantly, the informal model also describes
the abstraction provided to the programmer and a way of thinking to effec-
tively develop applications on top of the model. Next, formal semantics force
clear definitions of all model concepts and how they are affected by mobility
before beginning an implementation. The formal specification also enables user
applications to be formally specified and reasoned about, lending dependability
to the resulting system. Finally, the data structures must be implemented and
applications built. One mechanism to deliver the data structures is via a mid-
dleware that sits between the application and the operating system, providing
the abstractions defined by the model and formal specification.

The key to development from these three key perspectives is to allow each
step to inform the others in an iterative fashion. By considering the needs of
the applications, the primitives of the model can be defined and extended to
meet the demands of the application programmer. A formal specification can
reveal key parts in the model where restrictions must be made to keep the op-
erations computable in the presence of disconnections. The formal specification
also informs the implementation, showing where the complexity is involved in
the interactions of concurrent programs. A proper implementation must adhere
to the formal specification. The process of implementing may reveal atomicity
assumptions of the model that are either impossible or impractical to imple-
ment. This can lead to an expansion of the model to include more elements of
the environment, or to a weakening of the model constructs to make them more
practical. Complementary changes must also be made to the formal specification.

2.2 Instantiating a GVDS

Many standard distributed data structures have the potential to be converted
into global virtual data structures. For each structure, the fundamental issues to
address as part of the evaluation and development processes are similar: Does
the data structure match the basic needs of the underlying application? Is there
a natural and useful partitioning of the data structure across units in a mobile
ad hoc network? How is the data structure perceived by the individual units as
changes in connectivity occur?

A tree, as in Figure 2, could be partitioned among units with the nodes where
a cut occurs being replicated. A global naming convention would allow commu-
nicating units to determine the relation between the tree fragments they carry
and make content and structural changes (e.g., swapping subtrees) as long as no
disconnected units are affected. In principle, certain operations (e.g., adding a

188 Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman

unit2unit1

Fig. 2. A hierarchical data structure where units in range agree to transfer a subtree
that is under their jurisdiction even though parts of the global structure remain hidden.
Moving a subtree distributes data to a different location to satisfy changing access
patterns.

leaf node) could be issued at any time with their evaluation being delayed until
such time that the affected units are within range. Attempts to access nodes
on disconnected units may result in blocking the respective agent. The gener-
alization to a directed graph is straightforward and can overcome the problems
caused by the possible loss of one of the units.

Other data structures may be devised to meet the needs of highly specialized
applications. For instance, resource-limited units searching a physical space may
appear logically as ants crawling on a fixed network of passageways (Figure 2.2).
Each unit’s knowledge of the surrounding geography is enhanced by the knowl-
edge of all the other units within range. As the density of units decreases, each
unit must maintain more and more information. Finally, at a point when the
unit’s memory is full, information needs to be dropped, e.g., only the main pas-
sageways are kept. In an application involving the construction of distributed
predictive models of the changes taking place in a physical environment it is con-
ceivable to have the units tied together by a complex structure that combines
information about space and time. Each unit may be exploring and collecting
data in the present while simulating the future in order to build a predictive
model. As units meet they may exchange information about the present but also
about various points in the future since some units may be further ahead than
others in their simulation.

In the field of parallel programming, tuple space communication à la Linda
provides a good example of how coordination can simplify the programming task.
Tuple space coordination facilitates temporal and spatial decoupling among par-
allel programs. By limiting the power of the tuple space access primitives, effi-
cient implementation is achieved as well. The programmer is presented with the
appearance of a persistent global data structure that can be readily understood
and operated on: a set of tuples accessed by content. Applying the concept of
global virtual data structures to Linda yields a model that distributes the global

Software Architecture for Mobile Computing 189

A

Ant 2Ant 1

Fig. 3. Ant 1 learns from Ant 2 about landmark A when, by virtue of being in range,
the locally built maps are merged. Solid lines denote paths explored by Ants 1 and
2, and dashed lines denote unexplored regions. After sharing, each ant has the same
knowledge of the global structure.

host
tuple spaces
combined into
one federated
tuple space

link
wireless

unit
mobile

communication
barrior

to disconnection
fracture due

Fig. 4. Creating the illusion of a globally shared tuple space.

tuple space among the mobile units and limits access to the confines of each
mobile ad hoc network. For a programmer, mobility is perceived simply as an
independently evolving host tuple space, i.e., a continuously changing context.
When the mobile components are co-located, the tuple spaces are transiently
shared and all tuple space accesses, including pattern matching for reading and
removing data, are done on the now shared data space (see Figure 4). Additional
primitives with extensions for location are straightforward to access specific tu-
ple spaces, however the presence of the specified tuple space is dependent on
connectivity. This data structure has been explored in detail and has resulted
in the Lime model, Linda in a Mobile Environment. The details of Lime are
presented in the next section.

190 Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman

3 Lime, a GVDS

The Lime model [15, 12] is the first full instantiation of the gvds concept,
and as such, it provides a proof of concept of the idea itself. Lime borrows
and adapts the communication model made popular by Linda [4] to provide a
coordination abstraction for the mobile environment. After presenting a concise
Linda primer, the remainder of this section discusses how the core concepts
of Linda are reshaped in the Lime model and embodied in the programming
interface of the corresponding middleware implementation.

3.1 Linda in a Nutshell

In Linda, processes communicate through a shared tuple space that acts as a
repository of elementary data structures, or tuples. A tuple space is a multiset
of tuples that can be accessed concurrently by several processes. Each tuple is a
sequence of typed fields, such as 〈“foo”, 9, 27.5〉, and contains the information
being communicated.

Tuples are added to a tuple space by performing an out(t) operation, and
can be removed by executing in(p). Tuples are anonymous, thus their selection
takes place through pattern matching on the tuple content. The argument p is
often called a template or pattern, and its fields contain either actuals or formals.
Actuals are values; the fields of the previous tuple are all actuals, while the last
two fields of 〈“foo”, ?integer, ?float〉 are formals. Formals act like “wild cards”,
and are matched against actuals when selecting a tuple from the tuple space.
For instance, the template above matches the tuple defined earlier. If multiple
tuples match a template, the one returned by in is selected non-deterministically.
Tuples can also be read from the tuple space using the non-destructive rd(p)
operation. Both in and rd are blocking, i.e., if no matching tuple is available
in the tuple space the process performing the operation is suspended until a
matching tuple becomes available. A typical extension to this synchronous model
is the provision of a pair of asynchronous primitives inp and rdp, called probes,
that allow non-blocking access to the tuple space4. Moreover, some variants of
Linda (e.g., [19]) provide also bulk operations, which can be used to retrieve all
matching tuples in one step. In Lime we provide a similar functionality through
the ing and rdg operations, whose execution is asynchronous like in the case of
probes5.

3.2 The Lime Model

Linda characteristics resonate with the mobile setting. In particular, communi-
cation in Linda is decoupled in time and space, i.e., senders and receivers do not
4 Additionally, Linda implementations often include an eval operation that provides

dynamic process creation and enables deferred evaluation of tuple fields. For the
purposes of this work, however, we do not consider this operation further.

5 Hereafter we often do not mention this pair of operations, since they are useful
in practice but do not add significant complexity either to the model or to the
implementation.

Software Architecture for Mobile Computing 191

need to be available at the same time, and mutual knowledge of their identity
or location is not necessary for data exchange. This form of decoupling is of
paramount importance in a mobile setting, where the parties involved in com-
munication change dynamically due to their migration or connectivity patterns.
Moreover, the notion of tuple space provides a straightforward and intuitive
abstraction for representing the computational context perceived by the com-
municating processes. On the other hand, decoupling is achieved thanks to the
properties of the Linda tuple space, namely its global accessibility to all the
processes, and its persistence—properties that are clearly hard if not impossible
to maintain in a mobile environment. Finally, these properties make Linda tuple
spaces amenable to providing the basis for the gvds meta-model.

The Core Idea: Transparent Context Maintenance In Linda, the data
accessible through the tuple space represents the data context available during
process interaction. In the model underlying Lime, the shift from a fixed context
to a dynamically changing one is accomplished by breaking up the Linda tuple
space into many tuple spaces, each permanently associated to a mobile unit, and
by introducing rules for transient sharing of these individual tuple spaces based
on connectivity.

The individual tuple space permanently and exclusively attached to a mobile
unit is referred to as the interface tuple space (its) because it provides the only
access to the data context for that mobile unit. Each its contains the tuples
the mobile unit is willing to make available to other units, and access to this
data structure uses standard Linda operations, whose semantics remain basically
unaffected. These tuples represent the only context accessible to a mobile unit
when it is alone.

When multiple mobile units are able to communicate, either directly or tran-
sitively, we say these units form a Lime group. We can restrict the notion of
group membership beyond simple communication, but for the purposes of this
paper, we consider only connectivity. Conceptually, the contents of the itss of
all group members are merged, or transiently shared, to form a single, large
context that is accessed by each unit through its own its. The sharing itself is
transparent to each mobile unit, however as the members of the group change,
the content of the tuple space each member perceives through operations on the
ITS changes in a transparent way.

The joining of a group by a mobile unit, and the subsequent merging of
its local context with the group context is referred to as engagement, and is
performed as a single, atomic operation. A mobile unit leaving a group triggers
disengagement, that is, the atomic removal of the tuples representing its local
context from the remaining group context. In general, whole groups can merge,
and a group can split into several groups due to changes in connectivity.

In Lime, agents may have multiple itss distinguished by a name since this is
recognized [2] as a useful abstraction to separate related application data. The
sharing rule in the case of multiple tuple spaces relies on tuple space names: only
identically-named tuple spaces are transiently shared among the members of a

192 Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman

Mobile Host
Mobile Agents

Interface Tuple SpaceHost−Level Tuple Space

Federated Tuple Space

migrate

Fig. 5. Transiently shared tuple spaces encompass physical and logical mobility.

group. Thus, for instance, when an agent a owning a single tuple space named
X joins a group constituted by an agent b that owns two tuple spaces named X
and Y , only X becomes shared between the two agents. Tuple space Y remains
accessible only to b, and potentially to other agents owning Y that may join the
group later on.

Transient sharing of the its constitutes a very powerful abstraction, as it
provides a mobile unit with the illusion of a local tuple space that contains all
the tuples coming from all the units belonging to the group, without any need
to know the members explicitly. The notion of transiently shared tuple space is
a natural adaptation of the Linda tuple space to a mobile environment. When
physical mobility is involved, and especially in the radical setting defined by
mobile ad hoc networking, there is no stable place to store a persistent tuple
space. Connections among machines come and go and the tuple space must
be partitioned in some way. Analogously, in the scenario of logical mobility,
maintaining locality of tuples with respect to the agent they belong to may
be complicated. Lime enforces an a priori partitioning of the tuple space in
subspaces that get transiently shared according to precise rules, providing a
tuple space abstraction that depends on connectivity.

Encompassing Physical and Logical Mobility In Lime, mobile hosts are
connected when a communication link is available. Availability may depend on
a variety of factors, including quality of service, security considerations, or con-
nection cost; all of which can be represented in Lime, although in this paper we
limit ourselves to availability determined by the presence of a functioning link.
Mobile agents are connected when they are co-located on the same host, or they
reside on hosts that are connected. Changes in connectivity among hosts depend
only on changes in the physical communication links. Connectivity among mo-
bile agents may depend also on arrival and departure of agents, with creation
and termination of mobile agents being regarded as a special case of connection
and disconnection, respectively. Figure 5 depicts the model adopted by Lime.
Mobile agents are the only active components; mobile hosts are mainly roaming
containers that provide connectivity and execution support for agents. In other

Software Architecture for Mobile Computing 193

words, mobile agents are the only components that carry a “concrete” tuple
space with them.

The transiently shared itss belonging to multiple agents co-located on a
host define a host-level tuple space. The concept of transient sharing can also
be applied to the host-level tuple spaces of connected hosts, forming a federated
tuple space. When a federated tuple space is established, a query on the its of an
agent returns a tuple that may belong to the tuple space carried by that agent,
to a tuple space belonging to a co-located agent, or to a tuple space associated
with an agent residing on some remote, connected host.

In this model, physical and logical mobility are separated in two different
tiers of abstraction. Nevertheless, many applications do not need both forms
of mobility, and straightforward adaptations of the model are possible. For in-
stance, applications that do not exploit mobile agents but run on a mobile host
can employ one or more stationary agents, i.e., programs that do not contain
migration operations. In this case, the design of the application can be modeled
in terms of mobile hosts whose its is a fixed host-level tuple space. Applications
that do not exploit physical mobility—and do not need a federated tuple space
spanning different hosts—can exploit only the host-level tuple space as a local
communication mechanism among co-located agents.

Nevertheless, it is interesting to note how mobility is not dealt with directly
in Lime, i.e., there are no constructs for triggering the mobility of agents or
hosts. Instead, the effect of migration is made indirectly manifest to the model
and middleware only through the changes observed in the connectivity among
components. This choice, that sets the nature of mobility aside, keeps our model
as general as possible and, at the same time, enables different instantiations of
the model based on different notions of connectivity.

Controlling Context Awareness Thus far, Lime appears to foster a style
of coordination that reduces the details of distribution and mobility to content
changes in what is perceived as a local tuple space. This view is very powerful,
and has the potential for greatly simplifying application design in many sce-
narios by relieving the designer from the chore of maintaining explicitly a view
of the context consistent with changes in the configuration of the system. On
the other hand, this view may hide too much in domains where the designer
needs more fine-grained control over the portion of the context that needs to
be accessed. For instance, the application may require control over the agent
responsible for holding a given tuple, something that cannot be specified only in
terms of the global context. Also, performance and efficiency considerations may
come into play, as in the case where application information would enable access
aimed at a specific host-level tuple space, thus avoiding the greater overhead of
a query spanning the whole federated tuple space. Such fine-grained control over
the context perceived by the mobile unit is provided in Lime by extending the
Linda operations with tuple location parameters that operate on user-defined
projections of the transiently shared tuple space. Further, all tuples are implic-
itly augmented with two fields, representing the tuple’s current and destination

194 Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman

location. The current location identifies the single agent responsible for holding
the tuple when all agents are disconnected, and the destination location indicates
the agent with whom the tuple should eventually reside.

The out[λ] operation extends out with a location parameter representing
the identifier of the agent responsible for holding the tuple. The semantics of
out[λ](t) involve two steps. The first step is equivalent to a conventional out(t),
the tuple t is inserted in the its of the agent calling the operation, say ω. At this
point the tuple t has a current location ω, and a destination location λ. If the
agent λ is currently connected, the tuple t is moved to the destination location
in the same atomic step. On the other hand, if λ is currently disconnected the
tuple remains at the current location, the tuple space of ω. This “misplaced”
tuple, if not withdrawn6, will remain misplaced unless λ becomes connected. In
the latter case, the tuple will migrate to the tuple space associated with λ as
part of the engagement. By using out[λ], the caller can specify that the tuple is
supposed to be placed within the its of agent λ. This way, the default policy of
keeping the tuple in the caller’s context until it is withdrawn can be overridden,
and more elaborate schemes for transient communication can be developed.

Variants of the in and rd operations that allow location parameters are
allowed as well. These operations, of the form in[ω, λ](p) and rd[ω, λ](p), enable
the programmer to refer to a projection of the current context defined by the
value of the location parameters, as illustrated in Table 1. The current location
parameter enables the restriction of scope from the entire federated tuple space
(no value specified) to the tuple space associated to a given host or even a given
agent. The destination location is used to identify misplaced tuples.

Current location Destination location Defined projection

unspecified unspecified Entire federated tuple space

unspecified λ Tuples in the federated tuple space and
destined to λ

ω unspecified Tuples in ω’s tuple space

Ω unspecified Tuples in Ω’s host-level tuple space,
i.e., belonging to any agent at Ω

ω λ Tuples in ω’s tuple space and destined to λ

Ω λ Tuples in Ω’s host-level tuple space
and destined to λ

Table 1. Accessing different portions of the federated tuple space by using location
parameters. In the table, ω and λ are agent identifiers, while Ω is a host identifier.

6 Note how specifying a destination location λ implies neither guaranteed delivery nor
ownership of the tuple t to λ. Linda rules for non-deterministic selection of tuples
are still in place; thus, it might be the case that some other agent may withdraw t
from the tuple space before λ, even after t reached λ’s its.

Software Architecture for Mobile Computing 195

Reacting to Changes in Context In the fluid scenario we target, the set of
available data, hosts, and agents change rapidly according to the reconfiguration
induced by mobility. Reacting to changes constitutes a significant fraction of an
application’s activities. At first glance, the Linda model would seem sufficient to
provide some degree of reactivity by representing relevant events as tuples, and
by using the in operation to execute the corresponding reaction as soon as the
event tuple appears in the tuple space. Nevertheless, in practice this solution has
a number of drawbacks. For instance, programming becomes cumbersome, since
the burden of implementing a reactive behavior is placed on the programmer
rather than the system. Moreover, enabling an asynchronous reaction would
require the execution of in in a separate thread of control, hence degrading
performance. Therefore, Lime explicitly extends the basic Linda tuple space
with the notion of reaction. A reaction R(s, p) is defined by a code fragment s
that specifies the actions to be executed when a tuple matching the pattern p
is found in the tuple space. The semantics of reactions are based on the Mobile
Unity reactive statements [10]. Informally, a reaction can fire if a tuple matching
pattern p exists in the tuple space. After every regular tuple space operation, a
reaction is selected non-deterministically and, if it is enabled, the statements in s
are executed in a single, atomic step. This selection and execution continues until
no reactions are enabled, at which point normal processing resumes. Blocking
operations are not allowed in s, as they may prevent the execution of s from
terminating.

Lime reactions can be explicitly registered and deregistered on a tuple space,
and hence do not necessarily exist throughout the life of the system. Moreover,
a notion of mode is provided to control the extent to which a reaction is allowed
to execute. A reaction registered with mode once is allowed to fire only one
time, i.e., after its execution it becomes automatically deregistered, and hence
removed from the reactive program. Instead, a reaction registered with mode
oncepertuple is allowed to fire an arbitrary number of times, but never twice
for the same tuple. Finally, reactions can be annotated with location parameters,
with the same meaning discussed earlier for in and rd. Hence, the full form of
a Lime reaction is R[ω, λ](s, p, m), where m is the mode.

Reactions provide the programmer with very powerful constructs. They en-
able the specification of the appropriate actions that need to take place in re-
sponse to a state change and allow their execution in a single atomic step. In
particular, it is worth noting how this model is much more powerful than many
event-based ones [18], including those exploited by tuple space middleware such
as TSpaces [6] and JavaSpaces [7], that are typically stateless and provide no
guarantee about the atomicity of event reactions.

Nevertheless, this expressive power comes at a price. In particular, when mul-
tiple hosts are present, the content of the federated tuple space depends on the
content of the tuple spaces belonging to physically distributed, remote agents.
Thus, maintaining the requirements of atomicity and serialization imposed by re-
active statements requires a distributed transaction encompassing several hosts
for every tuple space operation on any its—very often, an impractical solution.

196 Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman

For specific applications and scenarios, e.g., those involving a very limited num-
ber of nodes, these kind of reactions, referred to as strong reactions, would still
be reasonable and therefore they remain part of the model. For practical perfor-
mance reasons, however, our implementation currently limits the use of strong
reactions by restricting the current location field to be a host or agent, and by
enabling a reaction to fire only when the matching tuple appears on the same
host as the agent that registered the reaction. As a consequence, a mobile agent
can register a reaction for a host different from the one where it is residing, but
such a reaction remains disabled until the agent migrates to the specified host.
These constraints effectively force the detection of a tuple matching p and the
corresponding execution of the code fragment s to take place (atomically) on a
single host, and hence does not require a distributed transaction.

To strike a compromise between the expressive power of reactions and the
practical implementation concerns, we introduce a new reactive construct that
allows some form of reactivity spanning the whole federated tuple space but with
weaker semantics. The processing of a weak reaction proceeds as in the case of a
strong reaction, but detection and execution do not happen atomically: instead,
execution is guaranteed to take place only eventually, after a matching tuple is
detected. The execution of s takes place on the host of the agent that registered
the reaction.

Exposing System Configuration It is interesting to note that the extension
of Linda operations with location parameters, as well as the other operations
discussed thus far, foster a model that hides completely the details of the sys-
tem (re)configuration that generated those changes. For instance, if the probe
inp[ω, λ](p) fails, this simply means that no tuple matching p is available in the
projection of the federated tuple space defined by the location parameters [ω, λ].
It cannot be directly inferred whether the failure is due to the fact that agent ω
does not have a matching tuple, or simply agent ω is currently not part of the
group.

Without awareness of the system configuration, only a partial context aware-
ness can be accomplished, where applications are aware of changes in the portion
of context concerned with application data. Although this perspective is often
enough for many mobile applications, in many others the portion of context
more closely related to the system configuration plays a key role. For instance,
a typical problem is to react to departure of a mobile unit, or to determine the
set of units currently belonging to a Lime group. Interestingly, Lime provides
this form of awareness of the system configuration by using the same abstrac-
tions discussed thus far: through a transiently shared tuple space conventionally
named LimeSystem to which all agents are permanently bound. The tuples in this
tuple space contain information about the mobile units present in the group and
their relationship, e.g., which tuple spaces they are sharing or, for mobile agents,
which host they reside on. Insertion and withdrawal of tuples in LimeSystem is a
prerogative of the run-time support. Nevertheless, applications can read tuples
and register reactions to respond to changes in the configuration of the system.

Software Architecture for Mobile Computing 197

public class LimeTupleSpace {
public LimeTupleSpace(String name);
public String getName();
public boolean isOwner();
public boolean isShared();
public boolean setShared(boolean isShared);
public static boolean setShared(LimeTupleSpace[] lts, boolean isShared);
public void out (ITuple tuple);
public ITuple in (ITuple template);
public ITuple rd (ITuple template);
public void out (AgentLocation destination, ITuple tuple);
public ITuple in (Location current, AgentLocation destination, ITuple template);
public ITuple inp (Location current, AgentLocation destination, ITuple template);
public ITuple[] ing (Location current, AgentLocation destination, ITuple template);
public ITuple rd (Location current, AgentLocation destination, ITuple template);
public ITuple rdp (Location current, AgentLocation destination, ITuple template);
public ITuple[] rdg (Location current, AgentLocation destination, ITuple template);
public RegisteredReaction[] addStrongReaction(LocalizedReaction[] reactions);
public RegisteredReaction[] addWeakReaction(Reaction[] reactions);
public void removeReaction(RegisteredReaction[] reactions);
public boolean isRegisteredReaction(RegisteredReaction reaction);
public RegisteredReaction[] getRegisteredReactions();

}

Fig. 6. The class LimeTupleSpace, representing a transiently shared tuple space.

Together, the LimeSystem tuple space and the other application-defined tran-
siently shared tuple spaces enable the definition of a fully context aware style of
computing.

3.3 Programming with Lime

We complete the presentation of the Lime model by concisely illustrating the
application programming interface provided in the current implementation7 of
Lime.

The class LimeTupleSpace, whose public interface is shown8 in Figure 6,
embodies the concept of a transiently shared tuple space. In the current im-
plementation, agents are single-threaded and only the thread of the agent that
creates the tuple space is allowed to perform operations on the LimeTupleSpace
object; accesses by other threads fail by returning an exception. This represents
the constraint that the its must be permanently and exclusively attached to
the corresponding mobile agent. The name of the tuple space is specified as a
parameter of the constructor.

Agents may also have private tuple spaces, i.e., not subject to sharing and
not appearing in the LimeSystem tuple space. A private LimeTupleSpace can be
used as a stepping stone to a shared data space, allowing the agent to populate
it with data prior to making it publicly accessible, or it can be useful as a prim-
itive data structure for local data storage. All tuple spaces are initially created
private, and sharing must be explicitly enabled by calling the instance method
7 The Lime Web site [20] contains extensive documentation and programming exam-

ples.
8 Exceptions are not shown for the sake of readability.

198 Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman

setShared. The method accepts a boolean parameter specifying whether the
transition is from private to shared (true) or vice versa (false). Calling this
method effectively triggers engagement or disengagement of the corresponding
tuple space. The sharing properties can also be changed in a single atomic step
for multiple tuple spaces owned by the same agent by using the static ver-
sion of setShared (see Figure 6). Engagement or disengagement of an entire
host, instead, can be triggered explicitly by the programmer by using the meth-
ods engage and disengage, provided by the LimeServer class, not shown here.
Otherwise, they are implicitly called by the run-time support according to con-
nectivity. The LimeServer class is essentially an interface towards the run-time
support, and exports additional system-related features, e.g., loading of an agent
into a local or remote run-time support, setting of properties, and so on. In par-
ticular, it also allows the programmer to define whether transient sharing is
constrained to a host-level tuple space, or whether it spans the whole federated
tuple space.

LimeTupleSpace contains the Linda operations needed to access the tuple
space, as well as the operation variants annotated with location parameters.
The only requirement for tuple objects is to implement the interface ITuple,
which is defined in a separate package providing access to a lightweight tuple
space implementation. As for location parameters, Lime provides two classes,
AgentLocation and HostLocation, which extend the common superclass
Location, enabling the definition of globally unique location identifiers for hosts
and agents. Objects of these classes are used to specify different scopes for Lime
operations, as described earlier. For instance, a probe inp(cur,dest,t)may be
restricted to the tuple space of a single agent if cur is of type AgentLocation,
or it may refer the whole host-level tuple space, if cur is of type HostLocation.
The constant Location.UNSPECIFIED is used to allow any location parameter to
match. Thus, for instance, in(cur,Location.UNSPECIFIED,t) returns a tuple
contained in the tuple space of cur, regardless of its final destination, including
also misplaced tuples. Note how typing rules allow the proper constraint of the
current and destination location according to the rules of the Lime model. For
instance, the destination parameter is always an AgentLocation object, as
agents are the only carriers of “concrete” tuple spaces in Lime. In the current
implementation of Lime, probes are always restricted to a local subset of the
federated tuple space, as defined by the location parameters. An unconstrained
definition, as the one provided for in and rd, would involve a distributed trans-
action in order to preserve the semantics of the probe across the federated tuple
space.

All the operations retain the same semantics on a private tuple space as on a
shared tuple space, except for blocking operations. Since the private tuple space
is exclusively associated to one agent, the execution of a blocking operation when
no matching tuple is present would suspend the agent forever, effectively waiting
for a tuple that no other agent can possibly insert. Hence, blocking operations
always generate a run-time exception when invoked on a private tuple space.

Software Architecture for Mobile Computing 199

public abstract class Reaction {
public final static short ONCE;
public final static short ONCEPERTUPLE;
public ITuple getTemplate();
public ReactionListener getListener();
public short getMode();
public Location getCurrentLocation();
public AgentLocation getDestinationLocation();

}
public class UbiquitousReaction extends Reaction {

public UbiquitousReaction(ITuple template, ReactionListener listener, short mode);
}
public class LocalizedReaction extends Reaction {

public LocalizedReaction(Location current, AgentLocation destination,
ITuple template,ReactionListener listener, short mode);

}
public class RegisteredReaction extends Reaction {

public String getTupleSpaceName();
public AgentID getSubscriber();
public boolean isWeakReaction();

}
public class ReactionEvent extends java.util.EventObject {

public ITuple getEventTuple();
public RegisteredReaction getReaction();
public AgentID getSourceAgent();

}
public interface ReactionListener extends java.util.EventListener {

public void reactsTo(ReactionEvent e);
}

Fig. 7. The classes Reaction, RegisteredReaction, ReactionEvent, and the interface
ReactionListener, required for the definition of reactions on the tuple space.

The remainder of the interface of LimeTupleSpace is devoted to managing
reactions; other relevant classes for this task are shown in Figure 7. Reactions
can either be of type LocalizedReaction, where the current and destination
location restrict the scope of the operation, or UbiquitousReaction, that spec-
ifies the whole federated tuple space as a target for matching. The type of a
reaction is used to enforce the proper constraints on the registration through
type checking. These two classes share the abstract class Reaction as a common
ancestor, which defines a number of accessors for the properties established for
the reaction at creation time. Creation of a reaction is performed by specifying
the template that needs to be matched in the tuple space, a ReactionListener
object that specifies the actions taken when the reaction fires, and a mode. The
ReactionListener interface requires the implementation of a single method
reactsTo that is invoked by the run-time support when the reaction actually
fires. This method has access to the information about the reaction carried by
the ReactionEvent object passed as a parameter to the method. The reac-
tion mode can be either of the constants ONCE or ONCEPERTUPLE, defined in
Reaction. Reactions are added to the its by calling either addStrongReaction
or addWeakReaction, depending on the desired semantics. As we discussed ear-
lier, in the current implementation strong reactions are confined to a single host,
and hence only a LocalizedReaction can be passed to the first method. Regis-
tration of a reaction returns an object RegisteredReaction, that can be used to

200 Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman

deregister a reaction with the method removeReaction, and provides additional
information about the registration process. The decoupling between the reaction
used for the registration and the RegisteredReaction object returned allows
for registration of the same reaction on different itss and for the same reaction
to be registered with strong and, subsequently, with weak semantics.

4 Application Development

Lime has been used in the development of a variety of mobile applications. In
this section, we focus on applications dealing with physical mobility of hosts and
first present a high level description of several different applications built on top
of Lime, then we go into detail of another application that shows how physical
hosts can perform collaborative tasks in the presence of disconnection.

4.1 Three Brief Examples

The first two applications presented here are not stand-alone applications, but
instead add an additional layer of abstraction on top of Lime to support the
development of mobile applications. The third is a mobile game that exploits the
system configuration information available through Lime to react to changes in
connectivity.

Because mobility of hosts defines a working environment in which the acces-
sible components is constantly in flux, applications that must avail themselves
of services need a mechanism to discover those services in a dynamic manner. A
group from Washington University built a Jini-like service discovery mechanism
as an application layer on top of Lime [5]. This project uses the tuple space for
sharing service advertisements and performing pattern-based service discovery.
This extends the client-server model of service discovery for the mobile ad hoc
environment by coupling the services available for discovery with the services
available in the network, and maintaining this connection even as connectivity
changes.

In another project at Politecnico di Milano, the Lime tuple space is used
to support code mobility by storing Java class bytecode [14]. The class loading
mechanism is extended to resolve class names by searching the federated tu-
ple space, instead of a well-known, centralized code repository. This mechanism
enables the code on demand paradigm for code mobility in the mobile ad hoc
environment, where connections to specific code servers are not always available.

The third application exploits the context aware features of Lime. It is a
spatial game we refer to as RedRover, in which individuals equipped with small
mobile devices form teams and interact in a physical environment augmented
with virtual elements. This forces the participants to rely to a great extent on
information provided by the mobile units and not solely on what is visible to the
naked eye. The display to the players is dominated by a radar-like image with
an icon of the player in the middle, and icons indicating the current locations of
the other connected players. Up-to-date location information is maintained by

Software Architecture for Mobile Computing 201

each player periodically inserting a tuple into their local tuple space indicating
their current location. All other players register a reaction for these location
tuples, and are notified when a player moves. When a player disconnects, their
icon is changed to indicate their temporary unavailability. This functionality is
attained with a single reaction registered on the LimeSystem tuple space whose
listener changes the icon of the disconnected player. RedRover also exploits the
ability to create multiple tuple spaces for a single application. Location updates
are fed to a common tuple space that is shared by all player, but RedRover
uses separate team-only tuple spaces to share private information, such as the
location of a flag when playing “capture the flag”.

4.2 Extended Example: Accessing Shared Data

RoamingJigsaw, is a multi-player jigsaw assembly game. A group of players
cooperate in a disconnected fashion on the solution of the jigsaw puzzle. They
can construct assemblies independently (e.g., while disconnected), and share
intermediate results or acquire pieces from each other when connected. Play
begins with one player loading the puzzle pieces into a shared workspace that
is visualized by the user as a puzzle tray. The workspace is shared among all
connected users, therefore the puzzle trays of all users show the same set of
puzzle pieces at this point.

Players can select pieces in the puzzle tray by clicking on them. The visual
effect is that the piece outline is highlighted on all users’ displays with the color
of the selecting player. Selection has deeper consequences. In fact, although all
the puzzle pieces are displayed on the tray, a player can make assemblies using
only the pieces that she has selected, and that are currently displayed with her
color. A player can select pieces or assemblies that are currently selected by
another player, provided that the target player is connected.

Disconnection of a player does not have an immediate effect on the puzzle
tray of the others. Nevertheless, pieces that have been selected by the departing
player can no longer be selected by the others—and vice versa. Hence, the dis-
connected player can now construct assemblies by using only the pieces outlined
with her color. Nevertheless, the pieces of all players remain visible. The as-
semblies made by each player during disconnection become visible to the others
when connectivity among the players is restored. At this point, the view provided
by the user interfaces is reconciled with the changes made during disconnection,
and the selection of a piece belonging to a connected player is again possible.
Figure 8 shows the appearance of the puzzle tray during disconnection and after
reconnection.

From the description, it is evident that RoamingJigsaw embodies a pattern
of interaction where the shared workspace displayed by the user interface of each
player provides an accurate image of the state of all connected players, but only
a weakly consistent image of the global state of the system. For instance, a user’s
display contains only the last known information about each puzzle piece in the
tray. If two pieces have been assembled by a disconnected player, this change
is not visible to others. However, this still allows the players to work towards

202 Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman

Fig. 8. RoamingJigsaw. The top two images show the puzzle trays of the black and
white players while they are disconnected and able to assemble only their selected
pieces. The bottom two images show the black and white puzzle trays after the players
re-engage and see the assemblies that occurred during disconnection.

achieving the global goal, i.e., the solution of the puzzle, through incremental
updates of their local state.

RoamingJigsaw is a simple game that nonetheless exhibits the character-
istics of a general class of applications in which data sharing is the key element.
Hence, the design strategy we exploited in RoamingJigsaw may be adapted
easily to handle updates in the data being shared by real applications. One ex-
ample could be provided by collaborative work applications involving mobile
users, where our mechanism could be used to deal with changes in sections of a
document, or with paper submissions and reviews to be evaluated by a program
committee.

Design and Implementation. In our design of RoamingJigsaw, we chose to
represent pieces and assemblies as tuples, and the shared workspace as a tuple
space. When a player selects a piece, the corresponding tuple is withdrawn and
subsequently reinserted in the tuple space, with the field indicating the current
“owner” automatically changed by Lime. Similarly, when a player builds an
assembly out of several pieces, a new tuple is written containing information
about the assembled pieces; the tuples associated with the latter are removed
from the tuple space.

Software Architecture for Mobile Computing 203

The critical issues in the design of RoamingJigsaw are the detection of piece
selection and assembly, the reconciliation of the puzzle tray taking place on re-
connection, and the joining of a new player. Interestingly, all of these rely upon
a single weak reaction of type UbiquitousReaction and mode oncepertuple.
Registration of the reaction is specified so that its template looks for any new
tuple corresponding to a puzzle piece, while its listener takes care of updating
the puzzle tray by using the information found in the tuple, thus correctly main-
taining the weakly consistent view of the workspace. Since the reaction type
sets its scope to the whole federated tuple space, the application receives up-
dates about new pieces regardless of where and why they have been inserted,
and hence notably without any need to be explicitly aware of the arrival and
departure of players. Thus, the programming effort can be rightfully spent on
handling data changes, rather than monitoring the system configuration.

Although the processing described thus far operates on the federated tuple
space, fine-grained control over the location of tuples is critical in dealing with
disconnections. To ensure that a player can access her selected pieces during a
disconnection period, piece selection should actually transfer the corresponding
tuple into the local tuple space of the player’s application. Moreover, according to
what we discussed earlier, a player must be prevented from selecting a piece that
is currently not present in the federated tuple space. For this reason, selection
is performed by the application agent by issuing an inp operation on the tuple
space of the player last known to have the piece. If the piece is returned, it is
reinserted in the local tuple space of the new owner, thus leading to a successful
selection. Otherwise, if no tuple is returned it means that the piece is unavailable
for selection, and a message is displayed to the user.

Design Process. The Lime version of RoamingJigsaw was developed as a port
of a previous version written on top of the TSpaces middleware [6]. In this
version, all puzzle pieces were held at the tuple space server and players issued
remote operations. Porting the application to the mobile environment and Lime
involved only minor changes to the application, including the introduction of
puzzle piece ownership and the conversion of TSpaces clients to Lime agents.

Interestingly, the coordination necessary to handle the inaccessibility of tu-
ples due to disconnection was already addressed in the original application. In
the original, when two pieces are assembled, two independent inp operations are
performed to remove the separate pieces, following by a single out to insert the
joined piece. If one of the original two pieces is not present (i.e., the inp returns
null), the non-mobile application assumes that some other player is attempting
to assemble the same piece simultaneously, and therefore the player backs-off,
allowing the other player to continue. If the conflict occurs on the second piece
removed, then the first removed piece must be reinserted. The same problem
occurs in the mobile version, and similar corrective action is required. Also in
the mobile version, a similar issue arises when a player tries to select a piece to
become the owner. This operation involves an inp that may fail either because
another player is trying to select the same piece or because the piece is not acces-
sible due to disconnection. The significance of this is that the programmer of the

204 Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman

mobile version had already encountered complex coordination issues during the
development of the server version, and the mobile issues were much the same.

Finally, in converting from TSpaces to Lime, the event mechanisms were
changed. TSpaces uses events that fire in response to an operation on the tuple
space. Therefore, in order to update a player’s puzzle tray, an event was registered
on the insertion (i.e., out) of a tuple. In Lime, reactions are registered on the
state of the tuple space. By replacing the original TSpaces event with a Lime
oncepertuple reaction, we achieved the same functionality, and simultaneously
were able to update the player puzzle trays to reflect changes that occurred
during disconnection.

5 Conclusions and Future Directions

Mobility is emerging as an important area for computing research, posing many
challenges that must be overcome in a society that is increasingly placing de-
mands on computing technology. Our research into methods for designing mid-
dleware for mobile computing, specifically the instantiation of the global virtual
data structures concept in Lime has demonstrated the benefit of providing high
level abstractions to application developers, easing the software development
process and ultimately resulting in reliable applications built on top of a stable
platform.

Future work remains to be done in adapting other data structures to the
gvds concept, although some work has already proceeded in this direction. For
example, the xmiddle [9] system developed at University College of London
presents the user with a tree data structure based on XML data. When con-
nectivity becomes available, trees belonging to different users can be composed,
based on the node tags. After disconnection, operations on replicated data are
still allowed, and their effect is reconciled when connectivity is restored. Also
PeerWare [3], a project at Politecnico di Milano, exploits a tree data struc-
ture, albeit in a rather different way. In PeerWare, each host is associated
with a tree of document containers. When connectivity is available, the trees
are shared among hosts, meaning that the document pool available for searching
under a given tree node includes the union of the documents at that node on
all connected hosts. We are also working on a parallel project to formalize the
gvds concept, identifying the core concepts, making it more accessible to other
researchers, and clarifying the process of instantiating the model.

Lime itself is a promising middleware that has taken on a life of its own
outside the gvds model. While the version Lime described here has already
been shown to be useful for a variety of applications, and is general enough
to provide a foundation for additional mobile ad hoc services, the model itself
makes strong guarantees about connectivity that are not always possible in the
mobile ad hoc environment. For example, even by incorporating the notion of
safe distance [17] as part of the engagement and disengagement protocols, it is
still possible for a host to disconnect without prior warning. Work is continuing
on Lime to weaken the model to both handle unannounced disconnection and

Software Architecture for Mobile Computing 205

to remove the transactional nature of engagement. We expect this weakening to
result in an implementation which is widely applicable, but for which guaran-
tees are difficult to formally describe and even to achieve. We have also begun
to explore the issues of security in tuple space based mobile ad hoc environ-
ments [16] by allowing applications to protect selected tuple spaces and even
individual tuples through the use of passwords. The same passwords are also
used to encrypt communication among hosts when exchanging messages related
to sharing specific tuples spaces.

Finally, Lime, in addition to demonstrating the practical use of coordina-
tion technology in mobile computing, opens a new area of research involving
the application of state-based coordination models and middleware to context-
aware computing. The complex mobile environment becomes manageable with
the abstractions provided by the middleware, the software development process
is simplified, and the resulting applications are more reliable.

Availability. Lime continues to be developed as an open source project, available
under GNU’s LGPL license. Source code and development notes are available at
lime.sourceforge.net.

References

[1] M. Baldi and G.P. Picco. Evaluating the Tradeoffs of Mobile Code Design
Paradigms in Network Management Applications. In Proc. of the 20th Int. Conf.
on Software Engineering, 1998.

[2] N. Carriero, D. Gelernter, and L. Zuck. Bauhaus-Linda. In Workshop on Lan-
guages and Models for Coordination, European Conference on Object Oriented
Programming, 1994.

[3] G. Cugola and G.P. Picco. PeerWare: Core middleware support for peer-to-peer
and mobile systems. Technical report, Politecnico di Milano, Italy, 2001. Available
at www.elet.polimi.it/upload/picco .

[4] D. Gelernter. Generative Communication in Linda. ACM Computing Surveys,
7(1):80–112, Jan. 1985.

[5] R. Handorean and G.-C. Roman. Service provision in ad hoc networks. In
F. Arbab and C. Talcott, editors, Proceedings of the 5th International Confer-
ence on Coordination Models and Languages, LNCS 2315, pages 207–219, York,
UK, April 2002. Springer.

[6] IBM. TSpaces Web page. http://www.almaden.ibm.com/cs/TSpaces.

[7] JavaSpaces. The JavaSpaces Specification web page.
http://www.sun.com/jini/specs/js-spec.html.

[8] J.J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File
System. ACM Trans. on Computer Systems, 10(1):3–25, 1992.

[9] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich. xmiddle: A data-sharing
middleware for mobile computing. Kluwer Personal and Wireless Communica-
tions Journal, 21(1), April 2002.

[10] P.J. McCann and G.-C. Roman. Compositional Programming Abstractions for
Mobile Computing. IEEE Trans. on Software Engineering, 24(2):97–110, 1998.

206 Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman

[11] N. Minar, M. Gray, O. Roup, R. Krikorian, and P. Maes. Hive: Distributed
Agents for Networking Things. In Proc. of the 1st Int. Symp. on Agent Systems
and Applications and 3rd Int. Symp. on Mobile Agents (ASA/MA ’99), pages
118–129, Palm Springs, CA, USA, October 1999. IEEE Computer Society.

[12] A.L. Murphy, G.P. Picco, and G.-C. Roman. Lime: A Middleware for Physical and
Logical Mobility. In F. Golshani, P. Dasgupta, and W. Zhao, editors, Proc. of the
21st Int. Conf. on Distributed Computing Systems (ICDCS-21), pages 524–533,
May 2001.

[13] Oracle. Oracle 8i Lite web page. http://www.oracle.com/, 1999.
[14] G.P. Picco and M.L. Buschini. Exploiting transiently shared tuple spaces for

location transparent code mobility. In F. Arbab and C. Talcott, editors, Proc.
of the 5th Int. Conf. on Coordination Models and Languages, LNCS 2315, pages
258–273, York, UK, April 2002. Springer.

[15] G.P. Picco, A.L. Murphy, and G.-C. Roman. Lime: Linda Meets Mobility. In
D. Garlan, editor, Proc. of the 21st Int. Conf. on Software Engineering, pages
368–377, May 1999.

[16] G.-C. Roman and R. Handorean. Secure Sharing of Tuple Spaces in Ad Hoc
Settings. Technical Report WUCS-02-31, Dept. of Computer Science and Engi-
neering, Washington Univ. in St. Louis, MO, USA, 2003.

[17] G.-C. Roman, Q. Huang, and A. Hazemi. Consistent group membership in ad hoc
networks. In Proceedings of the 23rd Int. Conf. on Software Engineering, pages
381–388, Toronto, Canada, May 2001.

[18] D.S. Rosenblum and A.L. Wolf. A Design Framework for Internet-Scale Event
Observation and Notification. In Proc. of the 6th European Software Engineering
Conf. held jointly with the 5th ACM SIGSOFT Symp. on the Foundations of Soft-
ware Engineering (ESEC/FSE97), number 1301 in LNCS, Zurich (Switzerland),
September 1997. Springer.

[19] A. Rowstron. WCL: A coordination language for geographically distributed
agents. World Wide Web Journal, 1(3):167–179, 1998.

[20] Lime Team. Lime Web page. lime.sourceforge.net.
[21] M. Weiser. The computer for the 21st century. Scientific American, 265(3):94–

104, 1991.

Performance Evaluation

at the Software Architecture Level

Simonetta Balsamo1, Marco Bernardo2, and Marta Simeoni1

1 Università ”Ca’ Foscari” di Venezia
Dipartimento di Informatica

Via Torino 155, 30172 Mestre, Italy
{balsamo, simeoni}@dsi.unive.it
2 Università di Urbino ”Carlo Bo”

Istituto di Scienze e Tecnologie dell’Informazione
Piazza della Repubblica 13, 61029 Urbino, Italy

bernardo@sti.uniurb.it

Abstract. When tackling the construction of a software system, at the
software architecture design level there are two main issues related to
the system performance. First, the designer may need to choose among
several alternative software architectures for the system, with the choice
being driven especially by performance considerations. Second, for a spe-
cific software architecture of the system, the designer may want to un-
derstand whether its performance can be improved and, if so, it would
be desirable for the designer to have some diagnostic information that
guide the modification of the software architecture itself. In this paper
we show how these two issues can be addressed in practice by employing
a methodology relying on the combined use of Æmilia — an architec-
tural description language based on stochastic process algebra — and
queueing networks — structured performance models equipped with fast
solution algorithms — which allows for a quick prediction, improvement,
and comparison of the performance of different software architectures for
a given system. The methodology is illustrated through a case study in
which a sequential architecture, a pipeline architecture, and a concurrent
architecture for a compiler system are compared on the basis of typical
average performance indices.

1 Introduction

Software architecture (SA) is an emerging discipline within software engineering,
aiming at describing the structure and the behavior of the software systems at a
high level of abstraction [43,46]. A SA represents the structure and the behavior
of a software system in an early stage of the development cycle, the phase in
which basic design choices of components and interactions among components
are made and clearly influence the subsequent development and deployment
phases. Appropriate languages and tools are required to give precise descriptions
of SAs and to support the efficient analysis of their properties in a way that

M. Bernardo and P. Inverardi (Eds.): SFM 2003, LNCS 2804, pp. 207–258, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

208 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

provides component-oriented diagnostic information in case of malfunctioning
detection.

A crucial issue in the software development cycle is that of integrating the
analysis of nonfunctional system properties since the early stages, where per-
formance is one of the most influential factors that drive the design choices.
To this purpose, in the formal method research field several description and
analysis techniques have been proposed in the past twenty years, like stochastic
Petri nets (SPN; see, e.g., [39,1]) and stochastic process algebras (SPA; see, e.g.,
[29,31,30,14]). On the side of the system performance evaluation research field,
various models and methods have been proposed for the quantitative evalua-
tion of hardware and sofware systems, which were traditionally based mostly
on queueing networks (QN; see, e.g., [34,35,37,33,42,50,8]). However, only more
recently some research has been truly focused on the integration of specific per-
formance models in the software development cycle (see, e.g., [47,52,3]).

In this paper, which is a full and revised version of [7] that builds on material
in [16,3], we propose a methodology to evaluate the performance of SAs, which
combines formalisms and techniques developed in the two different communities
in a way that can be integrated in the software development cycle. More precisely,
the methodology is based on both SPA modeling and QN analysis and is realized
through a transformation of SPA specifications into QN models.

On the modeling side, we choose SPAs because they are compositional lan-
guages permitting the description of functional and performance aspects, which
can be enhanced to act as fully fledged architectural description languages (ADL)
that elucidate the architectural notions of component and interaction and sup-
port the detection of architectural mismatches arising when assembling several
components together. The specific ADL that we consider is Æmilia [16], which
is based on the stochastic process algebra EMPAgr [14]. Æmilia is illustrated in
Sect. 2.

On the analysis side, we choose QNs for several reasons. First, QNs are
structured performance models, therefore they should support the possibility of
keeping track of the correspondence between their constituent service centers
and the components of the architectural specifications. Second, typical perfor-
mance measures can be computed both at the level of the overall QNs and at
the level of their constituent service centers. Such global and local performance
indicators can then be interpreted back at the level of the overall architectural
specifications and at the level of their constituent components, respectively, so
that useful diagnostic information can be obtained in the case of poor global
performance. Third, QNs are equipped with efficient solution techniques that
do not require the construction of the underlying state space, so that scalabil-
ity with respect to the number of components in the architectural specifications
should be achieved. Fourth, the solution of the QNs can be expressed symbol-
ically in the case of simple open topologies, and can be approximated through
an asymptotic bound analysis. This feature is useful in the early stages of the
software development cycle, since the actual values of the system parameters, as

Performance Evaluation at the Software Architecture Level 209

well as its complete behavior, may be unknown. The basic concepts and results
about QNs are recalled in Sect. 3.

The translation of Æmilia specifications into QN models is not straightfor-
ward, because the two formalisms are quite different from each other. On the
one hand, Æmilia is a component-oriented language for handling both functional
and performance characteristics, in which all the details must be expressed in
an action-based way. On the other hand, QNs result in a queue-oriented graph-
ical notation for performance modeling purposes only, in which some details —
notably the queueing disciplines — are described in natural language. In ad-
dition to that, the components of the Æmilia specifications cannot be mapped
to QN service centers, but on finer parts that we call QN basic elements. As a
consequence, the translation can be applied only to a (reasonably wide) class
of Æmilia specifications that satisfy certain syntax restrictions, which ensure
that each component in such specifications is a QN basic element, i.e. an ar-
rival process, a buffer, a fork process, a join process, or a service process. The
translation, whose complexity is linear in the number of components declared
in the Æmilia specifications, leads to the generation of open, closed or mixed
QN models with phase-type interarrival and service time distributions, queueing
disciplines with noninterruptable service, fork and join nodes for handling par-
allelism and synchronization, and arbitrary topologies. Depending on the type
of QN model, various solution algorithms, either exact or approximate, can be
applied to efficiently evaluate some average performance indices that are eventu-
ally interpreted back at the Æmilia specification level. The translation is defined
in Sect. 4.

Based on the above translation of Æmilia specifications into QN models,
we develop a practical multi-phase methodology to quickly predict, improve,
and compare the performance of different architectures for the same software
system. In the proposed methodology, the first step is to model with Æmilia all
the architectural alternatives devised by a designer for the same system. Such
Æmilia specifications may then need to be manipulated in such a way that they
satisfy the syntax restrictions that make it possible to derive QN models out
of them. Once the QN models for the architectural alternatives are obtained by
applying the above translation, they are in turn manipulated so that some typical
average performance measures can efficiently be computed in several scenarios of
interest. The previous approximations, both at the Æmilia level and at the QN
level, are justified at the architectural level of abstraction by the fact that we are
more interested in rapidly getting an indication about the performance of the
architectural alternatives, rather than in their precise evaluation. On the basis
of the computed average performance measures, the designer gets a feedback
that can be used to guide the modification of the Æmilia specifications of some
architectural alternatives in order to ameliorate their performance. Once the
predict-improve cycle is terminated, the architectural alternatives are compared
on the basis of the values of the average performance measures obtained in
the considered scenarios, in order to single out the best one. Because of the
approximations that might have been performed in the previous phases, and

210 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

the fact that the considered average performance measures are not necessarily
related to the performance requirements of the system under study, the exact
Æmilia specification of the selected architectural design is finally checked against
the specific performance requirements. The methodology is presented in Sect. 5.

The application of the methodology and the translation of Æmilia specifica-
tions into QN models are clarified in Sect. 6 by means of a case study in which
three different architectures — a sequential one, a pipeline one, and a concurrent
one — for a compiler system are compared in different scenarios on the basis
of average performance indices like the mean number of programs compiled per
unit of time, the mean fraction of time during which the compiler is being used,
the mean number of programs in the compiler system, and the mean compilation
time.

Finally, in Sect. 7 we report some concluding remarks about future perspec-
tives.

2 Æmilia: A SPA-based ADL

In this section we present the main ingredients of Æmilia [16], a performance-
oriented ADL. Æmilia is the result of the integration of two earlier formalisms:
PADL [15,17,18,2] and EMPAgr [14]. The former is a process-algebra-based ADL,
which is equipped with some architectural checks for the detection of deadlock-
related architectural mismatches within families of software systems called ar-
chitectural types. The latter is an expressive SPA, which allows for both the
functional verification and the performance evaluation of concurrent and dis-
tributed systems. Below we recall through a running example how PADL and
EMPAgr have been combined together in order to give rise to the syntax, the
semantics, and the analysis support for Æmilia.

2.1 Textual and Graphical Notation

A description in Æmilia represents an architectural type. An architectural type is
an intermediate abstraction between a single SA and an architectural style [46],
which results in a family of software systems sharing certain constraints on the
component observable behavior as well as on the architectural topology [15,17,18].

As shown in Table 1, the description of an architectural type starts with the
name of the architectural type and its formal parameters, which can represent
variables as well as exponential rates, priorities, and weights for EMPAgr actions.
Each architectural type is defined as a function of its architectural element types
(AETs) and its architectural topology. An AET, whose description starts with
its name and its formal parameters, is defined as a function of its behavior,
specified either as a list of sequential EMPAgr defining equations or through
an invocation of a previously defined architectural type, and its interactions,
specified as a set of EMPAgr action types occurring in the behavior that act as
interfaces for the AET.

Performance Evaluation at the Software Architecture Level 211

ARCHI TYPE 〈name and formal parameters〉
ARCHI ELEM TYPES 〈architectural element types: behaviors and

interactions〉
ARCHI TOPOLOGY

ARCHI ELEM INSTANCES 〈architectural element instances〉
ARCHI INTERACTIONS 〈architectural interactions〉
ARCHI ATTACHMENTS 〈architectural attachments〉

END

Table 1. Structure of an Æmilia textual description

A sequential EMPAgr defining equation specifies a possibly recursive behav-
ior in the following way:

behavior id(formal parameter list ; local variable list) = sequential term
where a sequential EMPAgr term is written according to the following syntax:

sequential term ::= stop
| <action type, action rate> . sequential term 1
| choice {sequential term 2 list }

sequential term 1 ::= sequential term
| behavior id(actual parameter list)

sequential term 2 ::= sequential term
| cond(boolean guard) −> sequential term

Every behavior is given an identifier, a possibly empty list of comma-separated
formal parameters, and a possibly empty list of comma-separated local vari-
ables. The admitted data types for parameters and variables are boolean, integer,
bounded integer interval, real, list, array, and record. The sequential term stop
cannot execute any action. The sequential term <action type, action rate> .
sequential term 1 can execute an action having a certain type and a certain
rate and then behaves as specified by sequential term 1 , which can be in turn a
sequential term or a behavior invocation with a possibly empty list of comma-
separated actual parameters. The action type can be a simple identifier (un-
structured action), an identifier followed by the symbol ”?” and a list of comma-
separated variables enclosed in parentheses (input action), or an identifier fol-
lowed by the symbol ”!” and a list of comma-separated expressions enclosed in
parentheses (output action). The action rate can be the identifier or the numeric
value for the rate of an exponential distribution (exponentially timed action),
the keyword inf followed by the identifiers or the numeric values of a priority
level and a weight enclosed in parentheses (immediate action), or the symbol
”*” followed by the identifiers or the numeric values of a priority level and
a weight enclosed in parentheses (passive action). Finally, the sequential term
choice {sequential term 2 list } expresses a choice among at least two comma-
separated alternatives, each of which may be subject to a boolean guard. If all
the alternatives with a true guard start with an exponentially timed action, then
the race policy applies: each involved action is selected with a probability pro-
portional to its rate. If some of the alternatives with a true guard start with an

212 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

immediate action, then such immediate actions take precedence over the expo-
nentially timed ones and the generative preselection policy applies: each involved
immediate action with the highest priority level is selected with a probability
proportional to its weight. If some of the alternatives with a true guard start
with a passive action, then the reactive preselection policy applies to them: for
every action type, each involved passive action of that type with the highest
priority level is selected with a probability proportional to its weight (the choice
among passive actions of different types is nondeterministic).

. . .

. . .

(a) uni−uni (b) uni−and (c) uni−or

Fig. 1. Legal attachments

The architectural topology is specified through the declaration of a set of
architectural element instances (AEIs) representing the system components, a
set of architectural (as opposed to local) interactions given by some interac-
tions of the AEIs that act as interfaces for the whole architectural type, and a
set of directed architectural attachments among the interactions of the AEIs.
Alternatively, the architectural topology can be specified through the Æmilia
graphical notation inspired by flow graphs [38], in which the boxes denote the
AEIs, the black circles denote the local interactions, the white squares denote
the architectural interactions, and the directed edges denote the attachments.

Every interaction is declared to be an input interaction or an output interac-
tion and every attachment must go from an output interaction to an input inter-
action of two different AEIs. In addition, every interaction is declared to be a uni-
interaction, an and-interaction, or an or-interaction. As shown in Fig. 1, the only
legal attachments are those between two uni-interactions, an and-interaction and
a uni-interaction, and an or-interaction and a uni-interaction. An and-interaction
and an or-interaction can be attached to several uni-interactions. In the case of
execution of an and-interaction, it synchronizes with all the uni-interactions
attached to it. In the case of execution of an or-interaction, instead, it synchro-
nizes with only one of the uni-interactions attached to it. An AEI can have
different types of interactions (input/output, uni/and/or, local/architectural).
Every local interaction must be involved in at least one attachment, while every
architectural interaction must not be involved in any attachment. No isolated
groups of AEIs are admitted in the architectural topology. On the performance
side, we have two additional requirements. For the sake of modeling consistency,
all the occurrences of an action type in the behavior of an AET must have the

Performance Evaluation at the Software Architecture Level 213

same kind of rate (exponential, or infinite with the same priority level, or passive
with the same priority level). In order to comply with the generative-reactive
synchronization discipline of EMPAgr, which establishes that two nonpassive ac-
tions cannot synchronize, every set of attached interactions must contain at most
one interaction whose associated rate is exponential or infinite.

get_prog2
1get_prog

put_prog2

put_prog1
PG1

PG2

PB

deliver_prog

deliver_prog

SC

select_prog

select_prog1

2

Fig. 2. Graphical description of SeqCompSys

As an example, we show in Table 2 an Æmilia textual description for an
architectural type representing a compiler system. The compiler we consider is
a sequential monolithic compiler that carries out all the phases (lexical analy-
sis, parsing, type checking, code optimization, and code generation), with each
phase introducing an exponentially distributed delay. For the sake of perfor-
mance evaluation, the description of the compiler system comprises a generator
of programs to be compiled, where the program interarrival times are assumed
to follow an exponential distribution, as well as un unbounded buffer in which
such programs wait before being compiled one at a time. We suppose that there
are two different classes of programs: those whose code must be optimized and
those whose code must not. As can be noted, the description of the architectural
type SeqCompSys is parametrized with respect to the arrival rates of the two
classes of programs (λ1, λ2) and the service rates of the five compilation phases
(μl, μp, μc, μo, μg). The omitted values for the priority levels and the weights of
the infinite and passive rates in the specification are taken to be 1. The same
sequential compiler system is depicted in Fig. 2 through the Æmilia graphical
notation.

2.2 Formal Semantics and Analysis Support

The semantics of an Æmilia specification is given by translation into EMPAgr.
This translation is carried out in two steps. In the first step, the semantics of
each AEI is defined to be the behavior of the corresponding AET — in which
the formal rates, priority levels, and weights are replaced by the corresponding
actual ones — projected onto its interactions. Such a projected behavior is ob-
tained from the list of sequential EMPAgr defining equations representing the
behavior of the AET by applying a hiding operator on all the actions that are
not interactions. In this way, we abstract from all the internal details of the

214 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

ARCHI TYPE SeqCompSys(rate λ1, λ2, μl, μp, μc, μo, μg)

ARCHI ELEM TYPES

ELEM TYPE ProgGenT(rate λ)
BEHAVIOR ProgGen(void; void) =

<generate prog, λ>.<deliver prog, inf>.ProgGen()
INPUT INTERACTIONS

OUTPUT INTERACTIONS UNI deliver prog

ELEM TYPE ProgBufferT(integer h1, h2)
BEHAVIOR ProgBuffer(integer h1, h2; void) =

choice

{
<get prog1, ∗>.ProgBuffer(h1 + 1, h2),
<get prog2, ∗>.ProgBuffer(h1, h2 + 1),
cond(h1 > 0) −> <put prog1, ∗>.ProgBuffer(h1 − 1, h2),
cond(h2 > 0) −> <put prog2, ∗>.ProgBuffer(h1, h2 − 1)

}
INPUT INTERACTIONS UNI get prog1; get prog2
OUTPUT INTERACTIONS UNI put prog1; put prog2

ELEM TYPE SeqCompT(rate μl, μp, μc, μo, μg)
BEHAVIOR SeqComp(void; void) =

choice

{
<select prog1, inf>.<recognize tokens, μl>.

<parse phrases, μp>.<check phrases, μc>.
<optimize code, μo>.<generate code, μg>.SeqComp(),

<select prog2, inf>.<recognize tokens, μl>.
<parse phrases, μp>.<check phrases, μc>.
<generate code, μg>.SeqComp()

}
INPUT INTERACTIONS UNI select prog1; select prog2
OUTPUT INTERACTIONS

ARCHI TOPOLOGY

ARCHI ELEM INSTANCES PG1 : ProgGenT(λ1);
PG2 : ProgGenT(λ2);
PB : ProgBufferT(0, 0);
SC : SeqCompT(μl, μp, μc, μo, μg)

ARCHI INTERACTIONS

ARCHI ATTACHMENTS FROM PG1.deliver prog TO PB.get prog1;
FROM PG2.deliver prog TO PB.get prog2;
FROM PB.put prog1 TO SC.select prog1;
FROM PB.put prog2 TO SC.select prog2

END

Table 2. Textual description of SeqCompSys

Performance Evaluation at the Software Architecture Level 215

behavior of the AEI. In addition, the projected behavior must reflect the fact
that an or-interaction can result in several distinct synchronizations. Therefore,
every or-interaction is rewritten as a choice among as many indexed instances of
uni-interactions as there are attachments involving the or-interaction. Recalled
that in EMPAgr the hiding operator is denoted by the symbol ”/”, for our com-
piler system example we have:

[[PG1]] = ProgGen1 / {generate prog}
[[PG2]] = ProgGen2 / {generate prog}
[[PB]] = ProgBuffer(0, 0)
[[SC]] = SeqComp / {recognize tokens, parse phrases, check phrases,

optimize code, generate code}
where ProgGen1 (resp. ProgGen2) is obtained from ProgGen by replacing each
occurrence of λ with λ1 (resp. λ2).

In the second step, the semantics of an architectural type is obtained by
composing in parallel the semantics of its AEIs according to the specified at-
tachments, after relabeling to the same fresh action type all the interactions
attached to each other. This relabeling is required by the synchronization mech-
anism of EMPAgr, which establishes that only actions with the same type can
synchronize. Recalled that in EMPAgr the relabeling operator is denoted by the
symbols ”[” and ”]” and that the left-associative parallel composition operator
is denoted by the symbol ”‖S” where S is the set of action types on which the
synchronization is enforced, for our compiler system example we have:

[[SeqCompSys]] = [[PG1]][deliver prog �→ a1] ‖∅
[[PG2]][deliver prog �→ a2] ‖{a1,a2}

[[PB]][get program1 �→ a1, get program2 �→ a2,
put program1 �→ b1, put program2 �→ b2] ‖{b1,b2}

[[SC]][select prog1 �→ b1, select prog2 �→ b2]
Given the translation above, Æmilia inherits the semantic models of EMPAgr.

More precisely, the semantics of an Æmilia specification is a state-transition
graph called the integrated semantic model, whose states are represented by
EMPAgr terms and whose transitions are labeled with EMPAgr actions together
with the related guards arising from the use of the choice operator. This graph
is finite state and finitely branching unless variables taking values from infinite
domains are used (like in the buffer of the compiler system example), in which
case a symbolic representation of the state space is employed in accordance
with [13]. After pruning the lower priority transitions from the integrated se-
mantic model, it is possible to derive a functional semantic model, by removing
the action rates from the transitions, and a performance semantic model, by re-
moving the action types from the transitions. The performance semantic model,
which is defined only if the integrated semantic model has neither passive tran-
sitions nor transitions with a guard different from true, is a continuous-time or
a discrete-time Markov chain [48] depending on whether the integrated semantic
model has exponentially timed transitions or not.

On the analysis side, Æmilia inherits from EMPAgr standard techniques to
assess functional properties as well as performance measures. Among such tech-
niques we mention model checking [23], equivalence checking [24], Markovian

216 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

analysis [48] based on rewards [32] as described in [14], and discrete event simu-
lation [51], all of which are available in the Æmilia-based software tool TwoTow-
ers 3.0 [12]. In addition to these capabilities, Æmilia comes equipped with some
specific checks for the detection of architectural mismatches — and the provi-
sion of related diagnostic information — that may arise when assembling the
components together. The first group of checks ensures that deadlock freedom
is preserved when building a system from deadlock-free components [15,2]. The
second group of checks makes sure that assembling components with partially
specified performance details (i.e., with passive actions occurring in their behav-
iors) results in a system with fully specified performance aspects [16]. Finally,
the third group of checks comes into play in case of hierarchical modeling, i.e.
whenever the description of a component behavior contains an architectural type
invocation. Such checks guarantee that the actual parameters of an invocation
of an architectural type conform to the formal parameters of the definition of
the architectural type, in the sense that the actual components have the same
observable behavior as the corresponding formal components [15] and that the
actual topology is a legal extension of the formal topology [17,18].

3 Queueing Networks

QN models have been widely applied as system performance models to repre-
sent and analyze resource sharing systems [34,35,37,33,42,50,8]. In essence, a
QN model is a collection of interacting service centers, representing system re-
sources, and a set of customers, representing the users sharing the resources.
The customers’ competition for the resource service corresponds to queueing
into the service centers. The popularity of QN models for system performance
evaluation is due to their relatively high accuracy in performance results and
their efficiency in model analysis and evaluation. In this section we briefly recall
the basic notions and properties of QN models. In particular, we shall focus on
the class of product form QNs, which admit fast solution techniques.

3.1 Queueing Systems

As depicted in Fig. 3(a), the simplest case of QN is the one in which there is
a single service center together with a source of arrivals, which is referred to
as a queueing system (QS). Every QS is completely described by the customer
interarrival time distribution, the customer service time distribution, the number
of independent servers, the queue capacity, the customer population size, and
the queueing discipline. The first five parameters are summarized by using the
Kendall’s notation A/B/m/c/p, with A and B ranging over a set of probability
distributions — ’M’ for memoryless distributions, ’D’ for deterministic values,
’PH’ for phase-type distributions, and ’G’ for general distributions — and m, c,
and p being natural numbers. If c and p are unspecified, they are assumed to
be ∞, i.e. to describe an unlimited queue capacity and an unlimited population.

Performance Evaluation at the Software Architecture Level 217

Every customer needing a certain service arrives at the QS, waits in the queue
for a while, is served by one of the servers, and finally leaves the QS.

The queueing discipline is an algorithm that determines the order in which
the customers in the queue are served. Such a scheduling algorithm may depend
on the order in which the customers arrive at the QS, the priorities assigned
to the customers, or the amounts of service already provided to the customers.
Here are some commonly adopted queueing disciplines:

– First come first served (FCFS): the customers are served in the order of their
arrival.

– Last come first served (LCFS): the customers are served in the reverse order
of their arrival.

– Service in random order (SIRO): the next customer to be served is chosen
probabilistically, with equal probabilities assigned to all the waiting cus-
tomers.

– Nonpreemptive priority (NP): the customers are assigned fixed priorities; the
waiting customer with the highest priority is served first; if several waiting
customers have the same highest priority, they are served in the order of
their arrival; once begun, a service cannot be interrupted by the arrival of a
higher priority customer.

– Preemptive priority (PP): same as NP, but each arriving higher priority
customer interrupts the current service, if any, and begins to be served;
a customer whose service was interrupted resumes service at the point of
interruption when there are no higher priority customers to be served.

– Last come first served preemptive resume (LCFS-PR): same as LCFS, but
each arriving customer interrupts the current service, if any, and begins to
be served; the interrupted service of a customer is resumed when all the
customers that arrived later than that customer have departed.

– Round robin (RR): each customer is given continuous service for a maximum
interval of time called a quantum; if the customer’s service demand is not
satisfied during the quantum, the customer reenters the queue and waits
to receive an additional quantum, repeating this process until its service
demand is satisfied; the waiting customers are served in the order in which
they last entered the queue.

– Processor sharing (PS): all the waiting customers receive service simultane-
ously with equal shares of the service rate.

– Infinite server (IS): no queueing takes place as each arriving customer always
find an available server.

If the queueing discipline is omitted in the QS notation, it is assumed to be
FCFS.

The QS behavior can be analyzed either during a given time interval (tran-
sient analysis) or by assuming that it reaches a stationary condition (steady-state
analysis). The analysis of the QS is based on the definition of an underlying
continuous-time Markov chain. The QS steady-state analysis usually evaluates
a set of four average performance indices after computing the queue length dis-
tribution, i.e. the distribution of the number of customers in the QS. The four

218 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

queue

server
arrivals departures

(a) A QS (b) A simple closed QN

Fig. 3. QN graphical representation

average performance indices are the throughput (mean number of customers
leaving the system per unit of time), the utilization (average fraction of time
during which the servers are used), the mean number of customers in the QS,
and the mean response time experienced by the customers visiting the QS.

For instance, let us consider the simplest case of QS M/M/1 with arrival
rate λ and service rate μ [34]. Although the stochastic process underlying the
QS M/M/1 is an infinite-state continuous-time Markov chain, where each state
represents the number of customers in the system, the particular structure of this
Markov chain allows us to easily derive that the distribution of the number N1 of
customers in the system — on the basis of which the four average measures above
are defined — is geometrical with parameter given by the traffic intensity ρ1 =
λ/μ. The steady-state analysis of this QS requires that the stability condition
ρ1 < 1 holds, i.e., that the customer arrival rate is less than the service rate. In
this case we can easily derive the four average perfomance indices as follows:

– The throughput is given by the probability that there is at least one customer
in the system multiplied by the service rate, i.e. X1 = Pr{N1 > 0} · μ =
ρ1 · μ = λ.

– The utilization is given by the probability that there is at least one customer
in the system, i.e. U1 = Pr{N1 > 0} = ρ1.

– The mean number of customers in the system is the expected value of the
geometrical distribution describing the number of customers in the system,
i.e. N1 = ρ1/(1 − ρ1).

– The mean response time is obtained from Little’s law as the ratio of the mean
number of customers in the system to the arrival rate, i.e. R1 = N1/λ =
1/[μ · (1 − ρ1)].

It can be shown that all the queueing disciplines with noninterruptable, nonpri-
oritized service — like FCFS, LCFS, and SIRO — together with PS — which
is a good approximation of RR — and LCFS-PR are equivalent with respect to
the four average performance measures above for a QS M/M/1.

In the more general case of a QS M/M/m with arrival rate λ, which has m
identical servers that operate independently and in parallel each with service
rate μ, the traffic intensity is defined by ρm = λ/(m ·μ) and, under the stability
condition ρm < 1, the four average performance indices are given by:

Performance Evaluation at the Software Architecture Level 219

Xm =
m−1∑
i=1

i · μ · Pr{Nm = i} +
∞∑

i=m

m · μ · Pr{Nm = i} = λ

Um = 1 − Pr{Nm = 0}
Nm = m · ρm + Pr{Nm=0}·ρm·(m·ρm)m

m!·(1−ρm)2

Rm = 1
μ ·

(
1 + Pr{Nm=0}·ρm·(m·ρm)m−1

m!·(1−ρm)2

)
where:

Pr{Nm = 0} =

(
m−1∑
i=0

(m · ρm)i

i!
+

(m · ρm)m

m! · (1 − ρm)

)−1

3.2 Networks of Queueing Systems

A QN is composed of a set of interconnected service centers. When describing
a QN, which can be represented — as shown in Fig. 3(b) — through a directed
graph whose nodes are the service centers and whose edges represent the behavior
of the customers’ service requests, it is necessary to specify for each service
center the service time distribution, the number of servers, the queue capacity,
the queueing discipline, and the routing probabilities for the customers leaving
the service center. A QN can be open or closed, depending on whether external
arrivals and departures are allowed or not, or mixed. In an open QN, a customer
that completes service at a service center immediately enters another service
center, reenters the same service center, or departs from the network. In a closed
QN, instead, a fixed number of customers circulate indefinitely among the service
centers.

1s
2s

s3
fclass

class e

class
class

class

b
a
c

dclass

closed chain

open chain

Fig. 4. A mixed network with three service centers, an open chain with classes
a, b, e, and a closed chain with classes c, d, f .

Different types of customers in the QN model can be used to represent dif-
ferent behaviors. This in fact allows various types of external arrival process,
different service demands, and different types of network routing to be modeled.
A chain gathers the customers of the same type. A chain consists then of a set
of classes that represent different phases of processing in the system for a given
type of customers. Classes are partitioned within the service centers and each
customer in a chain moves between the classes. A chain can be used to represent

220 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

a customer routing behavior dependent on the past history. For example, two
classes of the same chain in a service center can represent the customer require-
ment of two successive services. Each chain can be open or closed depending
on whether external arrivals and departures are allowed or not. Multiclass or
multichain networks can be open or closed if all the chains are open or closed,
respectively. A mixed network has both open and closed chains. Fig. 4 shows an
example of a multiclass network with two chains and six classes. The open chain
describes the routing behavior of the type 1 customers: two successive visits to
the service center s1 followed by a visit to service center s3. Chain 2 is closed
and there is a constant number of type 2 customers circulating between service
centers s1, s2, and s3.

Evaluating a QN model means obtaining a quantitative description of its
behavior by computing a set of figures of merit, such as the four average perfor-
mance indices considered for a single QS. The analysis of a QN model provides
information both on the local and on the global performance, i.e. the performance
of each service center and the overall system performance. A QN can be analyzed
by defining and solving the underlying stochastic process, which under general
assumptions is a countinous-time Markov chain. Unfortunately, its solution can
often become unfeasible since its state space size grows exponentially with the
number of components of the QN model. However, some efficient solution algo-
rithms can be defined for the special subclass of product form QNs, which we
briefly introduce in the next section. Such algorithms provide a powerful tool for
performance analysis based on QNs.

3.3 Product Form QNs

Product form QNs (see [6] for a complete survey) avoids the state space explosion
problem because they can be solved compositionally. Given that the state of a QN
is a tuple consisting of the number of customers in the various service centers, the
probability of a product form QN state is simply obtained as the product of the
probabilities of its constituent service center states, up to a normalizing constant
in the case of closed QNs. An important characterization of product form QNs is
given by the BCMP theorem [10], which defines the BCMP class of product form
open, closed and mixed QNs with multiple classes of customers, Poisson arrivals
(i.e. exponentially distributed interarrival times) with rates possibly depending
on the total population of the QN or on the population of a chain, and arbitrary
Markovian routing. According to the BCMP theorem, each multiclass service
center can have one combination of the following queueing disciplines and service
time distributions:

– FCFS with exponentially distributed service times, with the same rate for
all the classes of customers;

– PS, LCFS-PR, or IS with phase-type distributed service times, possibly dif-
ferent for the various classes of customers.

In the second case, only the expected values of the phase-type service time
distributions affect the QN solution in terms of the four average performance

Performance Evaluation at the Software Architecture Level 221

indices, so when computing such indices the phase-type distributions can be
replaced with exponential distributions having the same expected values.

In the case of an open product form QN, the four average performance mea-
sures can easily be obtained at the global level and at the local level from the
analysis of the constituent service centers, when considered as isolated QSs with
Poisson arrivals, by exploiting the two groups of formulas at the end of Sect. 3.1.
The arrival rates are derived by solving the linear system of the traffic equa-
tions defined by the routing probabilities among the service centers. The same
average indices can be obtained at the global level and at the local level for a
closed or mixed product form QN by applying one of the following algorithms:
the convolution algorithm [19], the mean-value analysis algorithm (MVA) [44],
the local balance algorithm for normalizing constants (LBANC) [20], and the
recursion-by-chain algorithm (RECAL) [25]. These algorithms also provide the
basis for most approximate analytical methods that need to be applied whenever
the QN model under consideration does not belong to the class of product form
QNs (see, e.g., [36]).

An important property of product form QNs is exact aggregation, which al-
lows replacing a subnetwork with a single service center, in such a way that the
new aggregated QN has the same behavior in terms of the four average perfor-
mance indices. Thus, exact aggregation can be used to represent and evaluate a
system at different levels of abstraction. Moreover, exact aggregation for prod-
uct form QNs provides a basis for approximate solution methods of more general
QNs that are not product form (see, e.g., [36]).

Various extensions of the class of BCMP product form QNs have been de-
rived. They include QNs with other queueing disciplines, QNs with state depen-
dent routing, some special cases of QNs with finite capacity queues, subnetwork
popolation constraints, and blocking, and QNs with batch arrivals and batch
services. Another extension of QNs networks with product form is the class of
G-networks [28], which comprise both positive and negative customers.

3.4 QN Extensions

Extensions of classical QN models, named extended QN (EQN) models, have
been introduced in order to represent several interesting features of real systems,
such as synchronization and concurrency constraints, finite capacity queues,
memory constraints, and simultaneous resource possession.

In particular, concurrency and synchronization among tasks are represented
in an EQN model by fork and join nodes. A fork node starts the parallel execution
on distinct service centers of the different tasks in which a customer’s request can
be split, while a join node represents a synchronization point for the termination
of all such tasks. A few cases of QNs with forks and joins have been solved with
exact and approximate analytical techniques (see, e.g., [40,4,9]).

QNs with finite capacity queues and blocking have been introduced as more
realistic models of systems with finite resources and population constraints.
When a customer arrives at a finite capacity queue that is full, the customer
cannot enter the queue and it is blocked. Various blocking mechanisms can be

222 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

defined — like blocking after or before service and repetitive service — that
specify the behavior of the customers blocked in the network. Except for a few
cases that admit product form solutions, QNs with blocking are solved through
approximate techniques (see, e.g., [42,8]).

Another extension of the QN model is given by the layered queueing network
(LQN) model, which allows client-server communication patterns to be modeled
in concurrent and/or distributed software systems. LQN models can be solved
by analytic approximation methods based on standard methods for EQNs with
simultaneous resource possession and MVA (see, e.g., [45,52,27]).

The exact and approximate analytical methods for solving EQNs require that
a set of assumptions and constraints are satisfied. Should this not be the case,
EQN models can be analyzed via simulation, at the cost of higher development
and computational times to obtain accurate results.

Examples of performance evaluation tools based on QNs and their extensions
are RESQ [21], QNAP2 [49], HIT [11], and LQNS [26].

4 Translating Æmilia Specifications into QN Models

In this section we provide a translation that maps an Æmilia specification into
a QN model to be used to predict and improve the performance of the described
SA. As mentioned in Sect. 1, there are several good reasons for resorting to
QN models at the SA level of design, instead of the flat state-transition graphs
used as semantic models for Æmilia. First, QNs are structured performance
models whose constituent service centers can be put in correspondence with
groups of AEIs of the Æmilia specifications. Second, typical average performance
measures can be computed at the level of the overall QNs and interpreted at the
level of the groups of AEIs of the Æmilia specifications corresponding to their
constituent service centers, thus providing a useful feedback. Third, QNs do not
suffer from the state space explosion problem, as they are equipped with efficient
solution techniques that avoid the construction of the state space. Finally, QNs
can sometimes be solved symbolically, without having to instantiate the values
of the corresponding parameters in the Æmilia specifications.

To carry out the translation, first of all we observe that the two formalisms
that we are considering are quite different from each other. On the one hand,
Æmilia is a component-oriented language for handling both functional and per-
formance characteristics, in which all the details must be expressed in an action-
based way. On the other hand, QNs result in a queue-oriented graphical notation
for performance modeling purposes only, in which some details — notably the
queueing disciplines — are described in natural language. As a consequence,
there will be Æmilia specifications that cannot be converted into QN models,
either because they do not follow a queue-oriented pattern, or because it is hard
to understand — by looking at their process algebraic defining equations — the
queueing disciplines that they encode. Therefore, we shall impose some general
syntax restrictions that single out a reasonably wide class of Æmilia specifica-
tions for which a QN model may be derived.

Performance Evaluation at the Software Architecture Level 223

Within the class of Æmilia specifications that obey the general syntax re-
strictions, given a specification we try to map each of its constituent AEIs into a
part of a QN model. In principle, it would seem to be natural to map each AEI
into a QS PH/PH/m/c/p. However, this is not always possible because the AEIs
are usually finer than the QSs. As a consequence, we identify five classes of QN
basic elements — which we call arrival processes, buffers, fork processes, join
processes, and service processes, respectively, and graphically represent through
an extension of the traditional notation used for QNs — and we impose some
further specific syntax restrictions to single out those AEIs that fall into one
of the five classes. For each Æmilia specification obeying both the general and
the specific syntax restrictions, the translation is accomplished by first mapping
each of its constituent AEIs into the corresponding QN basic element and then
composing the previously obtained QN basic elements according to the attach-
ments declared in the Æmilia specification. The translation will be illustrated
by means of the sequential compiler system example introduced in Sect. 2.

4.1 General Syntax Restrictions: Benefits and Limitations

The general syntax restrictions helps identifying the Æmilia specifications for
which it is possible to derive an open, closed or mixed QN model comprising ar-
rival processes, buffers, fork processes, join processes, and service processes. The
general restrictions are mainly based on the observation that an AEI describes
a sequential software component, which thus runs on a single computational
resource.

The first general restriction is that every AEI of an Æmilia specification
must be an arrival process, a buffer, a fork process, a join process, or a service
process, and must be properly connected to the other AEIs in order to obtain a
well-formed QN. This is achieved through specific syntax restrictions depending
on the particular QN basic element, which will be introduced in the next sections.

The second general restriction aims at easing the identification of those AETs
that represent arrival or service processes, which are built around exponentially
timed actions describing the relevant delays. The second general restriction es-
tablishes that the interactions of an Æmilia specification cannot be exponentially
timed, i.e. they must be immediate or passive.

The third general restriction aims at avoiding the unnatural application of
the race policy to several distinct activities within the same (sequential) AEI,
thus causing the various arrival and service processes to be modeled separately
with different AEIs. The third general restriction establishes that, within the
behavior of the AETs of an Æmilia specification, no exponentially timed action
can be alternative to another exponentially timed action.

The fourth general restriction aims at allowing interarrival and service times
to be characterized through precisely defined phase-type distributions. The fourth
general restriction establishes that, within the behavior of the AETs of an Æmilia
specification, no exponentially timed action can be alternative to an immediate
or passive action, no immediate action can be alternative to a passive action,
and no interaction can be alternative to a local action.

224 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

The last three general restrictions, as well as the specific restrictions illus-
trated in the next sections that implement the first general restriction, can au-
tomatically be checked at the syntax level, without constructing the underlying
state space of the entire Æmilia specification. They preserve much of the mod-
eling power that Æmilia inherits from EMPAgr, without hampering the descrip-
tion of typical situations like parallel executions, synchronization constraints,
probabilistic/prioritized choices, and activities whose duration is or can be ap-
proximated with a phase-type distribution. It is straightforward to verify that
SeqCompSys defined in Table 2 satisfies the last three general restrictions.

The four general restrictions, together with the specific syntax restrictions
accompanying the first general one, introduce two main limitations. First, due
to the fourth general restriction, the Æmilia specifications modeling preemption
cannot be dealt with, as it is not possible to express the fact that the service of a
customer of a certain class is interrupted by the arrival of a customer of another
class having higher service priority. Second, as we shall see when presenting the
specific syntax restrictions for the buffers, we only address queueing disciplines
with noninterruptable service for a fixed number of servers, like FCFS, LCFS,
SIRO, and NP, thus excluding those policies in which the service of a customer
can be interrupted (PP, LCFS-PR) or divided into several rounds (RR, PS),
as well as those policies in which no queueing takes place as every incoming
customer always finds an available server (IS).

4.2 Modeling Phase-Type Distributions

Since the interarrival times and the service times are allowed to follow phase-
type distributions, before proceeding with the translation it is worth recalling
how the phase-type distributions can be modeled in a language like Æmilia,
where only exponentially distributed delays can directly be specified. A continu-
ous phase-type distribution [41] describes the time to absorption in a finite-state
continuous-time Markov chain having exactly one absorbing state. Well known
examples of phase-type distributions are the exponential distribution, the hypo-
exponential distribution, the hyperexponential distribution, and combinations
thereof, which are characterized in terms of time to absorption in a finite-state
continuous-time Markov chain with one absorbing state as depicted in Fig. 5,
where the numbers labeling the states describe the initial state probability func-
tions.

Observed that an absorbing state can be modeled by term stop, the three
phase-type distributions above can easily be modeled through a suitable inter-
play of exponentially timed actions and immediate actions as follows. An expo-
nential distribution with rate λ can be modeled through the following equation:

Expλ(void; void) = <phase, λ>.stop

An n-stage hypoexponential distribution with rates λ1, . . . , λn can be modeled
through the following equation:

Hypoexpλ1,...,λm
(void; void) = <phase, λ1>.<phase, λn>.stop

Performance Evaluation at the Software Architecture Level 225

λ
1

(a) Exponential distribution
λ2

p1

λ1

λn

p2

pn

(c) Hyperexponential distribution

...
...

λ2λ1 λn
1

(b) Hypoexponential distribution

......

Fig. 5. Typical phase-type distributions

An n-stage hyperexponential distribution with rates λ1, . . . , λn and branching
probabilities p1, . . . , pn can be modeled through the following equation:

Hyperexpλ1,...,λn,p1,...,pn(void; void) =
choice
{

<branch, inf(1, p1)>.<phase, λ1>.stop,
...
<branch, inf(1, pn)>.<phase, λn>.stop

}

In the arrival processes and in the service processes with phase-type dis-
tributed delays, the occurrences of stop will be replaced by suitable invocations
of the behaviors that must take place after the delays have elapsed.

4.3 Arrival Processes

An arrival process is a generator of arrivals of customers of a certain class,
whose interarrival times follow a phase-type distribution. As depicted in Fig. 6,
we distinguish between two different kinds of arrival processes depending on
whether the related customer population is unbounded or finite.

1deliver ,inf

ndeliver ,inf

1

n

rp

rp

1

n

rp

rp

(a) Arrival process for unbounded population (b) Arrival process for single customer of finite population

return ,*1

return ,*mndeliver ,inf

1deliver ,inf

int_arr_time int_arr_time

Fig. 6. Graphical representation of the arrival processes

In the case of an unbounded customer population, the customer interarrival
time distribution refers to the whole population, so there is no need to explicitly
model the return of a customer after its service termination. As an example,

226 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

the behavior of an AEI, which acts as an arrival process for an unbounded pop-
ulation of customers whose interarrival time is exponentially distributed with
rate λ, where each customer has a set of n different forks or service centers as
destinations chosen according to the intraclass routing probabilities rp1, . . . , rpn,
must be equivalent 3 to the following one:

UnboundedPopArrProc(void; void) =
<generate, λ>.UnboundedPopArrProc′()

UnboundedPopArrProc′(void; void) =
choice
{

<choose1, inf(1, rp1)>.<deliver1, inf>.UnboundedPopArrProc(),
...
<choosen, inf(1, rpn)>.<delivern, inf>.UnboundedPopArrProc()

}

with deliver1, . . . , delivern being output interactions attached to input inter-
actions of buffers (not related to join processes), fork processes with no buffer,
or service processes with no buffer. The specific syntax restriction requires that,
in order for an AEI to be classified as an arrival process for an unbounded popu-
lation of customers, its behavior and interactions must be equivalent to the pre-
vious ones, with: the exponentially timed action possibly replaced by a term de-
scribing a more general phase-type distribution where UnboundedPopArrProc’()
is substituted for each occurrence of stop; the destination choice actions omit-
ted if there is only one possible destination; the delivery actions possibly having
specific priority levels and specific weights if the related destinations are service
processes with no buffer.

If the customer population is finite, instead, then the customer interarrival
time distribution for the whole population varies proportionally to the number
of customers that are not requesting any service, hence the return of a customer
after its service termination must explicitly be modeled. In this case, the cus-
tomers are represented separately through independent instances of the same
AET with the same individual interarrival time distribution, in order to easily
achieve the global interarrival time distribution scaling. For instance, the behav-
ior of an AEI, which acts as an arrival process for a single customer belonging to
a finite population of customers whose individual interarrival time is exponen-
tially distributed with rate λ, where the customer has a set of n different forks or
service centers as destinations chosen according to the intraclass routing prob-
abilities rp1, . . . , rpn and can return from m distinct joins or service processes,
must be equivalent to the following one:

3 In our framework, equivalence can formally be checked on the basis of the notion of
strong extended Markovian bisimulation [14].

Performance Evaluation at the Software Architecture Level 227

SingleCustArrProc(void; void) =
<generate, λ>.SingleCustArrProc′()

SingleCustArrProc′(void; void) =
choice
{

<choose1, inf(1, rp1)>.<deliver1, inf>.SingleCustArrProc′′(),
...
<choosen, inf(1, rpn)>.<delivern, inf>.SingleCustArrProc′′()

}
SingleCustArrProc′′(void; void) =

choice
{

<return1, ∗>.SingleCustArrProc(),
...
<returnm, ∗>.SingleCustArrProc()

}
with: deliver1, . . . , delivern being output interactions attached to input or-
interactions of buffers (not related to join processes), fork processes with no
buffer, or service processes with no buffer; return1, . . . , returnm being input
interactions attached to output or-interactions of join processes or service pro-
cesses. The specific syntax restriction requires that, in order for an AEI to be
classified as an arrival process for a single customer belonging to a finite pop-
ulation of customers, its behavior and interactions must be equivalent to the
previous ones, with the remaining constraints similar to those for the arrival
processes for unbounded populations. In addition, all the AEIs modeling the
customers of the same finite population must be instances of the same AET
characterized by the same individual interarrival time distribution and must be
attached to the same input or-interactions of buffers (not related to join pro-
cesses), fork processes with no buffer, or service processes with no buffer as well
as to the same output or-interactions of join processes or service processes.

To conclude, for the sequential compiler system of Sect. 2 we observe that
PG1 and PG2 are arrival processes for unbounded populations of customers of two
different classes, each having a single destination.

4.4 Buffers

A buffer is a repository of customers of different classes that are waiting to
be served. As depicted in Fig. 7, we distinguish between two different kinds of
buffers depending on their capacity.

In the case of an unbounded buffer, the incoming customers can always be
accommodated within the buffer. The specific syntax restriction requires that,
in order for an AEI to be classified as an unbounded buffer for n classes of cus-
tomers, it must have a behavior equivalent to the following one:

228 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

(a) Unbounded buffer

1

(b) Finite capacity buffer

get ,*

get ,*n

1 put ,*1

put ,*n

get ,*1

get ,*n

put ,*

put ,*

1

n

N ,...,Nn

Fig. 7. Graphical representation of the buffers

UnboundedBuffer(integerh1, . . . , hn; void) =
choice
{

<get1, ∗>.UnboundedBuffer(h1 + 1, . . . , hn),
...
<getn, ∗>.UnboundedBuffer(h1, . . . , hn + 1),
cond(h1 > 0) −> <put1, ∗>.UnboundedBuffer(h1− 1, . . . , hn),
...
cond(hn > 0) −> <putn, ∗>.UnboundedBuffer(h1, . . . , hn − 1)

}
with: h1, . . . , hn initially set to nonnegative integers; get1, . . . , getn being input
interactions attached to output interactions of arrival processes, fork processes,
join processes, or service processes; put1, . . . , putn being output interactions at-
tached to input interactions of fork processes with buffer, join processes with
buffers, or service processes with buffer; geti being an input or-interaction if
the customers of class i belong to a finite population and come directly from
their arrival processes.

If the buffer capacity is finite, instead, then the incoming customers can be
accommodated only if the buffer capacity is not exceeded. The specific syntax
restriction requires that, in order for an AEI to be classified as a finite capacity
buffer for n classes of customers, where the customers of class i can occupy up to
Ni positions in the buffer, it must have a behavior equivalent to the following one:

FiniteCapBuffer(integer(0..N1) h1, . . . , integer(0..Nn) hn; void) =
choice
{

cond(h1 < N1) −> <get1, ∗>.FiniteCapBuffer(h1 + 1, . . . , hn),
...
cond(hn < Nn) −> <getn, ∗>.FiniteCapBuffer(h1, . . . , hn + 1),
cond(h1 > 0) −> <put1, ∗>.FiniteCapBuffer(h1− 1, . . . , hn),
...
cond(hn > 0) −> <putn, ∗>.FiniteCapBuffer(h1, . . . , hn − 1)

}
with the remaining constraints equal to those for the unbounded buffers, except
for the fact that now the initial values of h1, . . . , hn cannot exceed the corre-
sponding capacities.

Performance Evaluation at the Software Architecture Level 229

It is worth observing that the buffers outlined above do not make any as-
sumption about the order in which the customers of the same class are taken
from the buffer with respect to the order in which they arrive at the buffer.
Therefore, from the point of view of the four average performance indices intro-
duced in Sect. 3.1, such buffers can be used to support any queueing discipline
with noninterruptable service, like FCFS, LCFS, SIRO, and NP. On the con-
trary, the buffers above cannot be used to describe those queueing disciplines in
which the service of a customer can be interrupted (PP, LCFS-PR), or can be
divided into several rounds (RR, PS), or can immediately take place (IS).

To conclude, for the sequential compiler system of Sect. 2 we observe that
PB is an unbounded buffer for two classes of customers.

4.5 Fork Processes

A fork process handles the splitting of each request of the customers of a certain
class into several subrequests to be served in parallel by different service centers.
As depicted in Fig. 8, we distinguish between two different kinds of fork processes
depending on the presence or the absence of a buffer — modeled by another AEI
— where the customers can wait before being split.

0
select,inf arrive,*

(a) Fork process with buffer (b) Fork process with no buffer

fork ,inf

fork ,infn

1 fork ,inf1

fork ,infn

Fig. 8. Graphical representation of the fork processes

In the case of a fork process equipped with a buffer, the description of the
fork process starts with the selection of the next customer to be split from the
buffer. The specific syntax restriction requires that, in order for an AEI to be
classified as a fork process equipped with a buffer, where the subrequests are
forwarded to n different forks or service centers, it must have a behavior equiv-
alent to the following one:
ForkProcWithBuffer(void; void) =

<select, inf>.<fork1, inf>.<forkn, inf>.ForkProcWithBuffer()
with: select being an input interaction attached to the output interaction of a
buffer; fork1, . . . , forkn being output interactions attached to input interactions
of buffers (not related to join processes), fork processes with no buffer, or service
processes with no buffer; the fork actions possibly having specific priority levels
and specific weights if the related destinations are service processes with no
buffer.

In the case of a fork process with no buffer, instead, the description of the
fork process starts with the arrival of the next customer to be split directly from

230 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

an arrival process, a fork, a join, or a service center. The specific syntax restric-
tion requires that, in order for an AEI to be classified as a fork process with
no buffer, where the subrequests are forwarded to n different forks or service
centers, it must have a behavior equivalent to the following one:

ForkProcNoBuffer(void; void) =
<arrive, ∗>.<fork1, inf>.<forkn, inf>.ForkProcNoBuffer()

with arrive being an input interaction — or an input or-interaction if the
customers belong to a finite population and come directly from their arrival pro-
cesses — attached to an output interaction of an arrival process, a fork process,
a join process, or a service process and the remaining constraints equal to those
for the fork processes equipped with a buffer.

4.6 Join Processes

A join process handles the merging of the subrequests of the customers of a
certain class after they have been served in parallel by different service centers.
As depicted in Fig. 9, we distinguish between two different kinds of join processes
depending on the presence or the absence of buffers — modeled by other AEIs
— where the subrequests can wait before being merged.

1

n

rp

rp

leave ,inf1

leave ,infn

1

n

rp

rp

leave ,inf1

leave ,infn

0

(a) Join process with buffers (b) Join process with no buffers

join,inf

join,inf

join,*

join,*

Fig. 9. Graphical representation of the join processes

In the case of a join process equipped with buffers, the description of the join
process starts with the selection of the next subrequests to be merged from the
buffers. The specific syntax restriction requires that, in order for an AEI to be
classified as a join process equipped with buffers, where the subrequests are for-
warded by several different joins or service centers and the result of the merging
has a set of n different finite population arrival processes, forks, joins, or service
centers as destinations chosen according to the intraclass routing probabilities
rp1, . . . , rpn, it must have a behavior equivalent to the following one:

JoinProcWithBuffer(void; void) =
<join, inf>.JoinProcWithBuffer′()

JoinProcWithBuffer′(void; void) =
choice
{

<choose1, inf(1, rp1)>.<leave1, inf>.JoinProcWithBuffer(),
...
<choosen, inf(1, rpn)>.<leaven, inf>.JoinProcWithBuffer()

}

Performance Evaluation at the Software Architecture Level 231

with: join being an input and-interaction attached to the output interaction
of each buffer; leave1, . . . , leaven being output interactions attached to input
interactions of arrival processes for finite populations, buffers, fork processes with
no buffer, join processes with no buffers, or service processes with no buffer; the
destination choice actions omitted if there is only one possible destination; the
departure actions possibly having specific priority levels and specific weights
if the related destinations are service processes with no buffer; the departure
actions omitted if the related destinations are arrival processes for unbounded
populations; leavei being an output or-interaction if destination i is an arrival
process for a finite population.

In the case of a join process with no buffers, instead, the description of the
join process starts with the arrival of the subrequests to be merged directly from
a join or a service center. The specific syntax restriction requires that, in order
for an AEI to be classified as a join process with no buffers, with the same char-
acteristics as in the previous example, it must have a behavior equivalent to the
following one:

JoinProcNoBuffer(void; void) =
<join, ∗>.JoinProcNoBuffer′()

JoinProcNoBuffer′(void; void) =
choice
{

<choose1, inf(1, rp1)>.<leave1, inf>.JoinProcNoBuffer(),
...
<choosen, inf(1, rpn)>.<leaven, inf>.JoinProcNoBuffer()

}
with join being an input and-interaction attached to output interactions of join
processes or service processes and the remaining constraints equal to those for
the join processes equipped with buffers.

4.7 Service Processes

A service process is a server for customers of different classes, whose service
times follow a phase-type distribution. As depicted in Fig. 10, we distinguish
between two different kinds of service processes depending on the presence or
the absence of a buffer — modeled by another AEI — where the customers can
wait before being served.

In the case of a service process equipped with a buffer, the description of
the service process starts with the selection of the next customer to be served
from the buffer. As an example, the behavior of an AEI, which acts as a service
process equipped with a buffer that serves customers of n different classes, where
each class i has priority prioi to be selected, probability probi to be selected
among the classes with the same priority, exponentially distributed service time
with rate μi, and a set of di different finite population arrival processes, forks,
joins, or service centers as destinations chosen according to the intraclass routing
probabilities rpi,1, . . . , rpi,di , respectively, must be equivalent to the following
one:

232 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

select ,infn

1select ,inf

leave ,inf

leave ,inf
n,1 n,1

n,dn

rp

rp

leave ,inf

leave ,infrp

rp
1,1 1,1

1,d1
1,d1

nn,d leave ,inf

leave ,inf
n,1 n,1

n,dn

rp

rp

leave ,inf

leave ,infrp

rp
1,1 1,1

1,d1
1,d1

nn,d

serv_time

0

serv_time

arrive ,*1

arrive ,*n

(a) Service process with buffer (b) Service process with no buffer

Fig. 10. Graphical representation of the service processes

ServProcWithBuffer(void; void) =
choice
{

<select1, inf(prio1, prob1)>.ServProcWithBuffer′1(),
...
<selectn, inf(prion, probn)>.ServProcWithBuffer′n()

}
ServProcWithBuffer′i(void; void) =

<servei, μi>.ServProcWithBuffer′′i()
ServProcWithBuffer′′i(void; void) =

choice
{

<choosei, inf(1, rpi,1)>.<leavei,1, inf>.ServProcWithBuffer(),
...
<choosei, inf(1, rpi,di)>.<leavei,di, inf>.ServProcWithBuffer()

}
with: select1, . . . , selectn being input interactions attached to the output in-
teractions of a buffer; leave1,1, . . . , leaven,dn being output interactions attached
to input interactions of arrival processes for finite populations, buffers, fork pro-
cesses with no buffer, join processes with no buffers, or service processes with
no buffer. The specific syntax restriction requires that, in order for an AEI to
be classified as a service process equipped with a buffer, its behavior and inter-
actions must be equivalent to the previous ones, with: the exponentially timed
actions possibly replaced for certain classes of customers by terms describing
more general phase-type distributions where ServProcWithBuffer′′i() is substi-
tuted for each occurrence of stop; the destination choice actions omitted for
those classes of customers for which there is only one possible destination; the
departure actions possibly having specific priority levels and specific weights
if the related destinations are service processes with no buffer; the departure
actions omitted if the related destinations are arrival processes for unbounded
populations; the departure actions being output or-interactions if the related
destinations are arrival processes for finite populations.

In the case of a service process with no buffer, instead, the description of
the service process starts with the arrival of the next customer to be served di-

Performance Evaluation at the Software Architecture Level 233

rectly from arrival processes, forks, joins, or service centers. As an example, the
behavior of an AEI, which acts as a service process with no buffer that serves
customers of n different classes, where each class i has the same characteristics
as in the previous example, must be equivalent to the following one:

ServProcNoBuffer(void; void) =
choice
{

<arrive1, ∗>.ServProcNoBuffer′1(),
...
<arriven, ∗>.ServProcNoBuffer′n()

}
ServProcNoBuffer′i(void; void) =

<servei, μi>.ServProcNoBuffer′′i()
ServProcNoBuffer′′i(void; void) =

choice
{

<choosei, inf(1, rpi,1)>.<leavei,1, inf>.ServProcNoBuffer(),
...
<choosei, inf(1, rpi,di)>.<leavei,di, inf>.ServProcNoBuffer()

}
with: arrive1, . . . , arriven being input interactions attached to output inter-
actions of arrival processes, fork processes, join processes, or service processes;
leave1,1, . . . , leaven,dn being output interactions attached to input interactions
of arrival processes for finite populations, buffers, fork processes with no buffer,
join processes with no buffers, or service processes with no buffer. The specific
syntax restriction requires that, in order for an AEI to be classified as a service
process with no buffer, its behavior and interactions must be equivalent to the
previous ones, with the arrival actions being input or-interactions if the related
customers belong to a finite population and come directly from their arrival pro-
cesses, and the remaining constraints similar to those for the service processes
equipped with a buffer.

It is worth observing that the service processes above allow for classes of cus-
tomers with different service priorities (NP) and with specific service frequencies
among classes with the same service priority (variants of SIRO). This is realized
in two different ways for the two kinds of service processes. For the service pro-
cesses equipped with a buffer, the service priorities and the service frequencies
are expressed through the priority levels and the weights associated with the im-
mediate selection actions. This is not possible in the case of the service processes
with no buffer, because the arrival actions are passive, hence their priority levels
and weights are reactive, i.e. their scope is limited to passive actions of the same
type, whereas the arrival actions for different classes of customers have different
types. This drawback is overcome by expressing the service priorities and the
service frequencies through the priority levels and the weigths of the immediate
output interactions of the arrival processes, fork processes, join processes, and
service processes that forward customers to the service processes without buffer.

234 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

The case of a service center composed of several identical and independent
servers is regulated by an additional specific syntax restriction. It requires first
of all that the service processes constituting the multi-server service center are
instances of the same AET with the same individual service time distribution
and the interactions attached to the same AEIs. Three cases then arise. In the
first case, the service processes share a buffer, from which they take all of their
customers. In this case, the put1, . . . , putn actions of the buffer must be out-
put or-interactions. In the second case, the service processes have no buffer and
receive some of their customers directly from arrival processes for unbounded
populations, fork processes, join processes, or service processes. Similarly to the
previous case, the output interactions of the upstream arrival processes for un-
bounded populations, fork processes, join processes, or service processes that
are related to the multi-server service center, must be output or-interactions.
In the third case, the service processes have no buffer and receive some of their
customers from arrival processes for finite populations. For each such upstream
arrival process, the action among deliver1, . . . , delivern that is related to the
multi-server service center must be replaced in the specification of the arrival
process by as many alternative copies of it as there are service processes in the
multi-server service center.

To conclude, for the sequential compiler system of Sect. 2 we observe that
SC is a service process equipped with a buffer, which serves two different classes
of customers — returning to the unbounded populations to which they belong
— according to two different hypoexponential distributions.

4.8 Translating AEIs into QN Basic Elements

Given an Æmilia specification that satisfies both the general and the specific
syntax restrictions introduced in the previous sections, the translation of its
constituent AEIs into their corresponding QN basic elements is carried out by
applying a set of functions that provide the attributes that label the resulting
QN basic elements, as depicted in Fig. 6, 7, 8, 9, and 10.

There are two groups of functions. The functions of the first group play a
documental role and are subsequently used to assemble the QN basic elements
according to the attachments declared in the Æmilia specification. The functions
of the first group are qnbe, name, input , and output . When applied to an AEI,
qnbe determines whether it is an arrival process for an unbounded population
or a single customer belonging to a finite population, a buffer with unlimited
or finite capacity, a fork process with or without buffer, a join process with or
without buffers, or a service process with or without buffer. As an example, for
the sequential compiler system of Sect. 2 we have:

qnbe(PG1) = arrival process for an unbounded population
qnbe(PG2) = arrival process for an unbounded population
qnbe(PB) = unbounded buffer
qnbe(SC) = service process equipped with a buffer

The other three functions, instead, associate the name of the AEI with the corre-
sponding QN basic element and label the incoming and outgoing arrow-headed

Performance Evaluation at the Software Architecture Level 235

arcs of the QN basic element with the corresponding input and output interac-
tions of the AEI, respectively. As an example:

name(PG1) = PG1
name(PG2) = PG2
name(PB) = PB
name(SC) = SC
input(PG1) = ∅
input(PG2) = ∅
input(PB) = {<get prog1, ∗>, <get prog2, ∗>}
input(SC) = {<select prog1, inf>, <select prog2, inf>}

output(PG1) = {<deliver prog, inf>}
output(PG2) = {<deliver prog, inf>}
output(PB) = {<put prog1, ∗>, <put prog2, ∗>}
output(SC) = ∅

pt distr(stop) = ∅
pt distr(<phase, λ>.E) = hypoexp(exp(λ), pt distr(E))

pt distr(choice
{

<branch1, inf(1, w1)>.E1,
...

<branchn, inf(l, wn)>.En
}) = hyperexp(w1

w1+...+wn
, pt distr(E1);
...

wn
w1+...+wn

, pt distr(En))

pt distr(A(e)) = pt distr(E) if A(x; y) = E

Table 3. Recursive definition of function pt distr

The functions of the second group are int arr time, capacity , queueing disc,
serv time, and intra routing prob:

– Function int arr time indicates the phase-type distribution governing the
interarrival times of the arrival processes. In the case of an AEI acting as
an arrival process for an unbounded population of customers (resp. for a
single customer belonging to a finite population), int arr time is the re-
sult of the application of function pt distr of Table 3 to the term equivalent
to UnboundedPopArrProc() (resp. SingleCustArrProc()), with each occur-
rence of the term equivalent to UnboundedPopArrProc’() (resp.
SingleCustArrProc’()) replaced by stop. As an example:

int arr time(PG1) = exp(λ1)
int arr time(PG2) = exp(λ2)

236 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

– Function capacity determines the capacity of the buffers. In the case of an
AEI acting as an unbounded buffer, the application of capacity yields ∞. In
the case of an AEI acting as a finite capacity buffer for n classes of customers,
where the customers of class i can occupy up to Ni positions in the buffer as
specified by the parameters of the AEI behavior, the application of capacity
yields N1, . . . , Nn. As an example:

capacity(PB) = ∞

– Function queueing disc defines the queueing discipline of the buffers based
on the priority levels of the input interactions of the service processes to
which the buffers are attached. If all the input interactions of the service
process to which a buffer is attached have the same priority level, then the
application of queueing disc to the buffer yields FCFS, otherwise NP. As an
example:

queueing disc(PB) = FCFS

– Function serv time establishes the phase-type distribution governing the ser-
vice times of the service processes. In the case of an AEI acting as a ser-
vice process equipped with a buffer (resp. with no buffer) for n classes of
customers, serv time for class i is the result of the application of func-
tion pt distr of Table 3 to the term equivalent to ServProcWithBuffer′i()
(resp. ServProcNoBuffer′i()), with each occurrence of the term equivalent
to ServProcWithBuffer′′i() (resp. ServProcNoBuffer′′i()) replaced by stop.
As an example:

serv time(SC, 1) = hypoexp(exp(μl), exp(μp), exp(μc), exp(μo), exp(μg))
serv time(SC, 2) = hypoexp(exp(μl), exp(μp), exp(μc), exp(μg))

– Function intra routing prob reports the intraclass routing probabilities for
the customers of a certain class leaving an arrival process, a join process,
or a service process. It is simply derived from the weights of the choice ac-
tions of the QN basic element from which the customers of the considered
class depart. It is worth observing that, in the case of a join process or a
service process, this function returns a value also for a destination given by
an arrival process for an unbounded customer population, and that, for a
complete graphical representation of the considered QN basic element, such
a value must label the join process or service process despite of the absence
of the related outgoing arrow-headed arc. As an example:

intra routing prob(PG1, 1, PB) = 1
intra routing prob(PG2, 2, PB) = 1
intra routing prob(SC, 1,−) = 1
intra routing prob(SC, 2,−) = 1

We conclude by showing in Fig. 11 the QN basic elements associated with
the AEIs constituting the sequential compiler system.

Performance Evaluation at the Software Architecture Level 237

PG1

deliver_prog,inf
λ

PG2

2

deliver_prog,inf
λ1

PB

SC

SC,1
SC,2serv_time()

serv_time()

FCFS

get_prog ,*1

get_prog ,*2

put_prog ,*1

put_prog ,*2

select_prog ,inf

select_prog ,inf2

1

1

1
1

1
exp()

exp()

Fig. 11. QN basic elements of SeqCompSys

4.9 Attachment Driven Composition of QN Basic Elements

Given an Æmilia specification that satisfies both the general and the specific syn-
tax restrictions introduced in the previous sections, once each of its constituent
AEIs has been mapped to its corresponding QN basic element, the translation
is completed by connecting the resulting QN basic elements according to the
attachments declared in the Æmilia specification. Graphically, this amounts to
superposing the arrow-headed arcs of the QN basic elements corresponding to
interactions attached to each other. The obtained QN is closed if there are no
arrival processes, in which case the QN population is given by the summation
of the initial number of customers in each buffer.

It is worth observing that the specific syntax restrictions ensure the correct
composition of the QN basic elements obtained from the translation of the AEIs
declared in the Æmilia specification, because the restrictions impose that:

– The input interactions of an arrival process for a finite population cannot be
attached to output interactions of other arrival processes, buffers, and fork
processes.

– The output interactions of an arrival process cannot be attached to input
interactions of other arrival processes for finite populations, buffers related
to join processes, and join processes with no buffers.

– The input interactions of a buffer cannot be attached to output interactions
of other buffers.

– The output interactions of a buffer cannot be attached to input interactions
of arrival processes for finite populations and other buffers.

– The output interactions of a fork process cannot be attached to input in-
teractions of arrival processes for finite populations, buffers related to join
processes, and join processes with no buffers.

– The input interactions of a join process cannot be attached to output inter-
actions of arrival processes and fork processes.

– Suitable or-interactions are used in the case of arrival processes for finite
populations as well as multi-server service centers.

– Suitable and-interactions are used in the case of join processes.

We conclude by showing in Fig. 12 the QN associated with the Æmilia spec-
ification of the sequential compiler system of Sect. 2.

238 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

λ2

λ1

deliver_prog,inf

deliver_prog,inf

SC,1
SC,2serv_time()

serv_time()

SeqCompSys

FCFS

get_prog ,*1

get_prog ,*2

select_prog ,inf1

put_prog ,*1

put_prog ,*2

select_prog ,inf2

1

1

1

1exp()

exp()

Fig. 12. QN associated with SeqCompSys

5 A Practical Methodology

When tackling the construction of a software system, at the SA design level there
are two main issues related to the system performance. First, the designer may
need to choose among several alternative SAs for the system under study, with
the choice being driven especially by performance considerations. Second, for a
specific SA of the system under study, the designer may want to understand
whether its performance can be improved and, if so, it would be desirable for
the designer to have some diagnostic information that guide the modification
of the SA itself. In this section we show how these two issues can be addressed
in practice by employing a methodology based on the translation of Æmilia
specifications into QN models, which allows for a quick prediction, improvement,
and comparison of the performance of different SAs for the system under study.

Before illustrating the methodology, it is worth recalling that the use of
an ADL like Æmilia in the methodology is due to the fact that Æmilia comes
equipped with an analysis machinery that supports both functional verification
and performance evaluation, together with some SA level checks. On the other
hand, the use of QNs in the methodology is motivated by their capability of
providing performance indices both at their constituent service center level and
at the overall network level. Another advantage is that the local performance
indices can be interpreted back on the components of the architectural specifica-
tion and used as a feedback to ameliorate the performance of the architectural
specification.

The methodology focuses on the four average performance measures men-
tioned in Sect. 3.1, which will be computed for groups of software components
forming a QN service center:

– The throughput is a measure of the productivity of the service centers, so it
can provide information about those components that are bottlenecks, i.e.
those components that are responsible for degrading the system performance.

– The utilization is the fraction of time during which a service center is being
used. In software component terms, this amounts to the fraction of time
during which the code of a group of components is being executed, so it
supplies useful information, which may be exploited at deployment time,
about the relative usage of computational resources by different software
components.

Performance Evaluation at the Software Architecture Level 239

– The mean number of customers present in a service center is an indicator
to be used for a reasonable dimensioning of buffers and data repositories in
general, in order to avoid performance degradation due to code execution
blocking (under-sized buffers) and waste of memory (over-sized buffers).

– The mean response time is the time spent on average by a customer within
a service center. In software component terms, this essentially amounts to
the expected running time of a group of software components for a complete
execution of their code. In other terms, it is a measure of the quality of
service perceived by a generic user of the software system.

The four average performance measures considered above, although generally
useful for the feedback they quickly provide, are not necessarily connected in
a specific way to the performance requirements of the system under study. In
addition to that, as we shall see they are usually computed after applying some
approximations at the Æmilia specification level or at the QN level. As a con-
sequence, the methodology must be complemented by an additional phase, in
which the exact Æmilia specification of the chosen SA is checked against the
specific performance requirements.

The various phases of the methodology are depicted in Fig 13. Given a set of
(functional and performance) requirements characterizing the software system
under study, the designer can devise multiple alternative SAs that should meet
the requirements. Such SAs are typically expressed in an informal way, e.g. in
natural language or through box-and-line diagrams (phase 1). Then the designer
works on each SA separately.

First of all, since the SA must be analyzed, its informal description must be
converted by the designer into a component-oriented formal representation sup-
porting both functional verification and performance evaluation. This is carried
out by the designer using Æmilia (phase 2).

The Æmilia specification produced for the SA does not necessarily satisfy the
syntax restrictions that make it possible to translate the specification into a QN
model. In such a case, the original Æmilia specification must be approximated
with another Æmilia specification that meets both the general restrictions and
the specific restrictions, so that it can be converted into a QN (phase 3). The
approximation must be conducted in a way that every original AEI becomes
an arrival process, a buffer with a noninterruptable queueing discipline, a fork
process, a join process, or a service process, with the appropriate attachments.
This may require that the behavior of some AEI is modified. This happens
e.g. when some scheduling algorithm based on PP, LCFS-PR, RR, PS, or IS
is adopted within an AEI, which needs to be approximated with a noninter-
ruptable discipline. 4 In addition, the approximation may require adding new
AEIs or deleting existing AEIs. This is the case e.g. when an AEI contains sev-
eral alternative exponentially timed actions, which means that the AEI is the
combination of several components running in parallel that must therefore be

4 According to the results mentioned at the end of Sect. 3.1, this approximation may
be exact with respect to the four average performance indices of interest.

240 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

specification
AEmilia

1

QN
model1

begin

requirements
system

think

end

architecture
software

1

model1

scenario based
measures1

architecture
software

model

scenario based
measures

architecture
software

model

scenario based
measures

2

specification
AEmilia

specification

2

2

QN
model2

2

2

specification
AEmilia

specification

QN
model

n

n

n

n

n

n

architecture
selected

phase 1

phase 2

phase 3

phase 4

phase 5

phase 6

phase 7

phase 8

phase 9

specification1

appr. AEmilia appr. AEmilia appr. AEmilia

appr. QN appr. QN appr. QN

translate translate translate

approximate approximate approximate

translate translate translate

approximate approximate approximate

evaluate evaluate evaluate

interpret interpret interpret

compare

check

Fig. 13. Phases of the methodology

Performance Evaluation at the Software Architecture Level 241

represented separately. The approximation is justified at this level of abstraction
by the fact that we are more interested in getting a quick indication about the
performance of the SA, rather than in its precise evaluation.

The Æmilia specification is then automatically translated into a QN based
performance model, in accordance with the guidelines provided in Sect. 3.1
(phase 4).

The QN model obtained for the SA is not necessarily product form, which
may hamper a quick computation of the four average performance measures of
interest at the component level as well as at the overall system level. In such
a case, the original QN model must be approximated with another QN model
that hopefully is product form, with the approximation aiming at transforming
every service center of the QN into a QS M/M/1 or a QS M/M/m with possibly
variable arrival rates (phase 5):

– Finite, nonzero capacity buffers must be transformed into unbounded buffers,
and similarly NP must be transformed into FCFS. This is not a problem at
this stage as we are more interested in finding a reasonable size and queueing
discipline for the buffers, rather than working with a size and a queueing dis-
cipline fixed a priori. However, zero capacity buffers cannot be approximated
as seen before, because their performance would be significantly altered.

– Since we are considering only noninterruptable, nonprioritized queueing dis-
ciplines, phase-type distributed interarrival times and service times must be
approximated with exponentially distributed interarrival times and service
times having the same expected values as the original ones, respectively.

– For each multi-class service center, the classes must be approximated with
a single class whose service time distribution is the convex combination of
the original (exponential) service time distributions, with the coefficients be-
ing given by the interclass routing probabilities of the original classes. The
resulting hyperexponential service time distribution must then be approxi-
mated with an exponential service time distribution with the same expected
value. 5

– As far as the arrival processes are concerned, we recall that the overall arrival
rate for an unbounded customer population (represented by a single arrival
process) is constant, whereas the overall arrival rate for a finite customer
population (represented by several arrival processes) is variable. Such overall
arrival rates convey useful information to be exploited when computing the
interclass routing probabilities needed for the approximation of multi-class
service centers with single-class service centers. We also recall that the total
arrival rate for a service center having several external arrivals is the sum
of the overall arrival rates of the different populations of customers that can
get to the service center.

Although the perturbation of the four average performance measures introduced
by the approximations above cannot easily be quantified, it is worth reminding
5 If all the classes have the same (exponential) service time distribution, then the

overall service time distribution coincides with the original one and no further ap-
proximation is needed.

242 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

that, as observed in [37], QN models are in general robust, i.e. their approximate
analysis is in any case useful to get some indications about the performance of
the systems they represent. With respect to the architectural level of abstrac-
tion, the approximations above are justified in the framework of the proposed
methodology by the fact that we are more interested in getting a quick feedback
about how to improve the average performance of a specific SA or making a rapid
comparison of the average performance of architectural alternatives, rather than
in a precise performance evaluation. This is conducted anyhow, but only in the
last phase of the methodology, in order to make sure that the exact Æmilia
specification of the best architectural design, selected with respect to the four
average performance indices possibly after some approximations, actually meets
the specific performance requirements.

The QN model for the SA is subsequently evaluated in order to compute
the throughput, the utilization, the mean number of customers, and the mean
response time for each service center, as well as the corresponding measures for
the overall QN, in different scenarios (phase 6):

– Such an evaluation preliminarily requires the parameterization of the QN
and the characterization of its workload. Since the Æmilia specifications are
already parameterized and their translation into QN models preserves the
parameterization, the QN model for the SA is parameterized by construc-
tion. As far as the characterization of the workload is concerned, we have to
include in the Æmilia specification suitable arrival processes for those ser-
vice centers with external arrivals and to establish the number of customers
initially present in each buffer.

– The evaluation of the QN then proceeds in accordance with some scenarios
of interest, which are derived by playing with the arrival rates and the ser-
vice rates. As an example, the four average performance measures can be
computed under light and heavy load, by making the interrival rates vary
from small values to values close to those of the service rates (without vi-
olating stability), or by changing the numbers of customers initially in the
buffers from small values (close to zero) to large values (close to the buffer
capacities). As another example, it is useful to assess how the four average
performance measures vary in the case in which all the service centers have
service rates of the same order of magnitude, in the case in which there is
one service center whose service rate is some orders of magnitude smaller
than the service rates of the other service centers, and in the more general
case in which the rates of all the service centers range in an interval between
a minimum rate and a maximum rate that are some orders of magnitude
apart.

– The evaluation of the QN can be accomplished on the basis of the selected
scenarios in three different ways. The most convenient way is symbolic anal-
ysis, which is possible only if the QN is open and product form and has a
simple topology. In this case the four average performance measures are ex-
pressed through a suitable combination of the formulas at the end of Sect. 3.1,
which is particularly desirable at the architectural level of design, as usually

Performance Evaluation at the Software Architecture Level 243

the actual values of the arrival rates and the service rates are not known
yet in this early stage. If the QN is product form but it is not open or it
has not a simple topology, then the four average performance measures are
calculated after solving the traffic equations or by applying some algorithm
like MVA, which require the specification of the values of the arrival rates,
the service rates, and the intraclass routing probabilities. In this case, the
specification of the parameter values will be driven by the selected scenarios.
If the QN is not product form, as may happen in the case in which some
buffers have zero capacity or there are forks and joins, then we resort to ap-
proximation algorithms, which again require the scenario driven specification
of the parameter values.

Once the values of the four average performance indices for the SA are avail-
able in the selected scenarios, they are interpreted back on the Æmilia specifica-
tion of the SA at the level of the groups of components forming the QN service
centers (phase 7). On the basis of such a component-oriented feedback, the de-
signer can make some modification on the SA to improve its performance and
return to phase 2, or proceed with the next phase.

When the predict-improve cycle is terminated for every SA devised for the
system under study, all the alternative SAs are compared on the basis of the
four average performance measures in different scenarios, in order to single out
the best one (phase 8). Of course, the scenario driven comparison should be fair,
which means that all the alternative SAs should be given comparable workloads
in each scenario. In addition, we note that the outcomes of the comparison in
different scenarios may be different. In this case, the best SA must be selected
by taking into account the frequency with which every considered scenario can
arise in practice.

Finally, the chosen SA is checked against the specific performance require-
ments of the system under study (phase 9). As explained at the beginning of
this section, this is needed because the four average performance measures used
to choose among the alternative SAs are not necessarily connected in a specific
way to the performance requirements, so we do not know whether the best SA
selected on the basis of the four average performance measures actually meets
the performance requirements. Moreover, we have to take into account that the
Æmilia specification or the QN model of the chosen SA might have been approx-
imated in the previous phases, while now we have to consider the exact Æmilia
specification of the chosen SA. The check of such an exact Æmilia specifica-
tion can be accomplished by formally specifying the performance requirements
through reward structures and temporal logic formulas [14,22,5]. If the outcome
of the check is positive, then the application of the methodology terminates, oth-
erwise the designer has to reconsider the performance requirements — as they
may turn out to be impossible to meet — and apply the methodology again.

244 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

6 Comparing Three Different Compiler Architectures

The compiler shown in Table 2, whose QN model is reported in Fig. 12, examines
one source program at a time, i.e. it is a completely sequential compiler. In this
section we consider two different architectures realizing a pipeline compiler and
a concurrent compiler, respectively, and we apply the methodology described in
Sect. 5 to compare the three alternative architectures. This requires specifying
the pipeline compiler and the concurrent compiler in Æmilia, building their as-
sociated QN models as described in Sect. 4, and computing the four average
performance measures on the three QN models in some scenarios of interest.

6.1 Æmilia Specification of the Pipeline Compiler

The architecture for the pipeline compiler allows the various compilation phases
to work on different programs. This is achieved by splitting the various phases
into different AETs — one for the lexer, one for the parser, one for the type
checker, one for the code optimizer, and one for the code generator — and by
providing each such AET with its own buffer.

The pipeline compiler system, which includes the arrival sources for the two
classes of programs, is graphically represented in Fig. 14, while its Æmilia spec-
ification is given in Tables 4, 5, and 6. Each compilation phase is modeled by a
specific AET. In addition, there are two further AETs that model unbounded
FCFS buffers accepting one class of programs — for the optimizer — or two
classes of programs — for all the other compilation phases. The declared AEIs
and their attachments ensure that the compilation phases are combined in the
correct order and that each phase is provided with its own buffer, so making
it possible the simultaneous compilation of several programs at different stages.
PipeCompSys is the output of phase 2 of the methodology for the pipeline archi-
tecture. Since it satifies all the syntax restrictions of Sect. 4, it is also the output
of phase 3.

6.2 QN Model of the Pipeline Compiler

In order to carry out phase 4 for the pipeline architecture, we apply the functions
defined in Sect. 4.8 to the AEIs of PipeCompSys, thus obtaining their correspond-
ing QN basic elements. In particular, the service time of each class of programs
within each service process is exponentially distributed as follows:

serv time(L, 1) = serv time(L, 2) = exp(μl)
serv time(P, 1) = serv time(P, 2) = exp(μp)
serv time(C, 1) = serv time(C, 2) = exp(μc)
serv time(O) = exp(μo)
serv time(G, 1) = serv time(G, 2) = exp(μg)

By connecting the QN basic elements according to the attachments, we then
obtain the QN model depicted in Fig. 15, where the actions labeling the arrows
have been omitted for the sake of readability. Note that the QN structure closely
resembles the structure of the graphical description in Fig. 14, making it easier

Performance Evaluation at the Software Architecture Level 245

L

PB

P

CB

C

GB

2

G

LB

PG PG2 1

deliver_prog deliver_prog

2 1

2 1

2

get_item get_item

put_item put_item

get_progget_prog 1

send_tokenssend_tokens 1

2

2

get_itemget_item 1

put_item put_item1

2 get_tokensget_tokens 1

2 send_phrasessend_phrases 1

2 get_itemget_item 1

2 put_itemput_item 1

2

2

2

2

get_phrasesget_phrases 1

send_checked_phrases

get_item

put_item

get_checked_phrases get_optimized_phrases

send_checked_phrases

send_optimized_phrases

OB

O

get_item

put_item

get_checked_phrases

get_item1

put_item1

1

Fig. 14. Graphical description of PipeCompSys

246 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

ARCHI TYPE PipeCompSys(rate λ1, λ2, μl, μp, μc, μo, μg)

ARCHI ELEM TYPES

ELEM TYPE ProgGenT(rate λ)
BEHAVIOR ProgGen(void; void) =

<generate prog, λ>.<deliver prog, inf>.ProgGen()
INPUT INTERACTIONS

OUTPUT INTERACTIONS UNI deliver prog

ELEM TYPE OneClassBufferT(integer h)
BEHAVIOR OneClassBuffer(integer h; void) =

choice

{
<get item, ∗>.OneClassBuffer(h + 1),
cond(h > 0) −> <put item, ∗>.

OneClassBuffer(h − 1)
}

INPUT INTERACTIONS UNI get item

OUTPUT INTERACTIONS UNI put item

ELEM TYPE TwoClassesBufferT(integer h1, h2)
BEHAVIOR TwoClassesBuffer(integer h1, h2; void) =

choice

{
<get item1, ∗>.TwoClassesBuffer(h1 + 1, h2),
<get item2, ∗>.TwoClassesBuffer(h1 , h2 + 1),
cond(h1 > 0) −> <put item1, ∗>.

TwoClassesBuffer(h1 − 1, h2),
cond(h2 > 0) −> <put item2, ∗>.

TwoClassesBuffer(h1 , h2 − 1)
}

INPUT INTERACTIONS UNI get item1; get item2
OUTPUT INTERACTIONS UNI put item1; put item2

ELEM TYPE LexerT(rate μl)
BEHAVIOR Lexer(void; void) =

choice

{
<get prog1, inf>.<recognize tokens, μl>.

<send tokens1, inf>.Lexer(),
<get prog2, inf>.<recognize tokens, μl>.

<send tokens2, inf>.Lexer()
}

INPUT INTERACTIONS UNI select prog1; select prog2
OUTPUT INTERACTIONS UNI send tokens1; send tokens2

Table 4. Textual description of PipeCompSys — first part

Performance Evaluation at the Software Architecture Level 247

ELEM TYPE ParserT(rate μp)
BEHAVIOR Parser(void; void) =

choice

{
<get tokens1, inf>.<parse phrases, μp>.

<send phrases1, inf>.Parser(),
<get tokens2, inf>.<parse phrases, μp>.

<send phrases2, inf>.Parser()
}

INPUT INTERACTIONS UNI get tokens1; get tokens2
OUTPUT INTERACTIONS UNI send phrases1; send phrases2

ELEM TYPE CheckerT(rate μc)
BEHAVIOR Checker(void; void) =

choice

{
<get phrases1, inf>.<check phrases, μc>.

<send checked phrases1 , inf>.Checker(),
<get phrases2, inf>.<check phrases, μc>.

<send checked phrases2 , inf>.Checker()
}

INPUT INTERACTIONS UNI get phrases1; get phrases2
OUTPUT INTERACTIONS UNI send checked phrases1; send checked phrases2

ELEM TYPE OptimizerT(rate μo)
BEHAVIOR Optimizer(void; void) =

<get checked phrases, inf>.
<optimize phrases, μo>.
<send optimized phrases, inf>.Optimizer()

INPUT INTERACTIONS UNI get checked phrases

OUTPUT INTERACTIONS UNI send optimized phrases

ELEM TYPE GeneratorT(rate μg)
BEHAVIOR Generator(void; void) =

choice

{
<get optimized phrases, inf>.

<generate code, μg>.Generator(),
<get checked phrases, inf>.

<generate code, μg>.Generator()
}

INPUT INTERACTIONS UNI get optimized phrases; get checked phrases

OUTPUT INTERACTIONS

Table 5. Textual description of PipeCompSys — second part

248 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

ARCHI TOPOLOGY

ARCHI ELEM INSTANCES PG1 : ProgGenT(λ1);
PG2 : ProgGenT(λ2);
LB : TwoClassesBufferT(0, 0);
L : LexerT(μl);
PB : TwoClassesBufferT(0, 0);
P : ParserT(μp);
CB : TwoClassesBufferT(0, 0);
C : CheckerT(μc);
OB : OneClassBufferT(0);
O : OptimizerT(μo);
GB : TwoClassesBufferT(0, 0);
G : GeneratorT(μg);

ARCHI INTERACTIONS

ARCHI ATTACHMENTS FROM PG1.deliver prog TO LB.get item1;
FROM PG2.deliver prog TO LB.get item2;
FROM LB.put item1 TO L.get prog1;
FROM LB.put item2 TO L.get prog2;
FROM L.send tokens1 TO PB.get item1;
FROM L.send tokens2 TO PB.get item2;
FROM PB.put item1 TO P.get tokens1;
FROM PB.put item2 TO P.get tokens2;
FROM P.send phrases1 TO CB.get item1;
FROM P.send phrases2 TO CB.get item2;
FROM CB.put item1 TO C.get phrases1;
FROM CB.put item2 TO C.get phrases2;
FROM C.send checked phrases1 TO OB.get item;
FROM C.send checked phrases2 TO GB.get item2;
FROM OB.put item TO O.get checked phrases;
FROM O.send optimized phrases TO GB.get item1;
FROM GB.put item1 TO G.get optimized phrases;
FROM GB.put item2 TO G.get checked phrases

END

Table 6. Textual description of PipeCompSys — third part

to interpret at the architectural description level the performance results that
will be obtained at the QN level.

6.3 Æmilia Specification of the Concurrent Compiler

The architecture for the concurrent compiler consists of two sequential compilers
operating in parallel and taking the programs from a shared buffer. Its graphical
representation is shown in Fig. 16, while its Æmilia description is reported in
Table 7. The difference with respect to SeqCompSys is that in ConcCompSys there

Performance Evaluation at the Software Architecture Level 249

2λ λ1

FCFS

PipeCompSys

L,1
L,2

FCFS

P,2
P,1serv_time()

serv_time()

FCFS

C,1
C,2

serv_time()
serv_time()

Oserv_time()

G,1
G,2

serv_time()
serv_time()

FCFS

FCFS

serv_time()serv_time()serv_time()
serv_time()serv_time()

serv_time()

1 1

1

1

1

1

1

1

1

1

1

exp() exp()

Fig. 15. QN associated with PipeCompSys

are two instances of SC and the output interactions of the buffer are declared to
be or-interactions, thus forwarding programs to either of the two instances of SC.
It is easy to see that ConcCompSys satisfies all the syntax restrictions of Sect. 4.

get_prog2
1get_prog

put_prog1

put_prog2

select_prog1

2select_prog

select_prog1

2select_prog

PG1

PG2

PB

deliver_prog

deliver_prog
SC

SC1

2

Fig. 16. Graphical description of ConcCompSys

6.4 QN Model of the Concurrent Compiler

The QN for ConcCompSys is shown in Fig. 17, where once again the action
labeling the arrows have been omitted for simplicity. Differently from the QN
for SeqCompSys, now we have a service center with two servers.

6.5 Analysis of the Sequential Compiler

We now return to the sequential architecture and we evaluate it with respect to
the four average performance measures in a given set of scenarios of interest. Let
us concentrate on a specific scenario in this set, which is characterized by certain
actual values for the numeric parameters of SeqCompSys denoted by λseq,1, λseq,2,
μseq,l, μseq,p, μseq,c, μseq,o, and μseq,g. Before proceeding with phase 6, we observe
that the QN model associated with SeqCompSys, which is shown in Fig. 12, is

250 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

ARCHI TYPE ConcCompSys(rate λ1, λ2, μl, μp, μc, μo, μg)

ARCHI ELEM TYPES

ELEM TYPE ProgGenT(rate λ)
BEHAVIOR ProgGen(void; void) =

<generate prog, λ>.<deliver prog, inf>.ProgGen()
INPUT INTERACTIONS

OUTPUT INTERACTIONS UNI deliver prog

ELEM TYPE ProgBufferT(integer h1, h2)
BEHAVIOR ProgBuffer(integer h1, h2; void) =

choice

{
<get prog1, ∗>.ProgBuffer(h1 + 1, h2),
<get prog2, ∗>.ProgBuffer(h1, h2 + 1),
cond(h1 > 0) −> <put prog1, ∗>.ProgBuffer(h1 − 1, h2),
cond(h2 > 0) −> <put prog2, ∗>.ProgBuffer(h1, h2 − 1)

}
INPUT INTERACTIONS UNI get prog1; get prog2
OUTPUT INTERACTIONS OR put prog1; put prog2

ELEM TYPE SeqCompT(rate μl, μp, μc, μo, μg)
BEHAVIOR SeqComp(void; void) =

choice

{
<select prog1, inf>.<recognize tokens, μl>.

<parse phrases, μp>.<check phrases, μc>.
<optimize code, μo>.<generate code, μg>.SeqComp(),

<select prog2, inf>.<recognize tokens, μl>.
<parse phrases, μp>.<check phrases, μc>.
<generate code, μg>.SeqComp()

}
INPUT INTERACTIONS UNI select prog1; select prog2
OUTPUT INTERACTIONS

ARCHI TOPOLOGY

ARCHI ELEM INSTANCES PG1 : ProgGenT(λ1);
PG2 : ProgGenT(λ2);
PB : ProgBufferT(0, 0);
SC1, SC2 : SeqCompT(μl, μp, μc, μo, μg)

ARCHI INTERACTIONS

ARCHI ATTACHMENTS FROM PG1.deliver prog TO PB.get prog1;
FROM PG2.deliver prog TO PB.get prog2;
FROM PB.put prog1 TO SC1.select prog1;
FROM PB.put prog1 TO SC2.select prog1;
FROM PB.put prog2 TO SC1.select prog2;
FROM PB.put prog2 TO SC2.select prog2

END

Table 7. Textual description of ConcCompSys

Performance Evaluation at the Software Architecture Level 251

SC,1
SC,2serv_time()

serv_time()

SC,1
SC,2serv_time()

serv_time()

λ2

λ1

FCFS

ConcCompSys

1

1

1

1

1

1

exp()

exp()

Fig. 17. QN associated with ConcCompSys

closely related to a QS M/M/1. To transform it into a QS M/M/1, we perform
phase 5 as follows:

– The two arrival processes are merged into a single arrival process with arrival
rate λseq = λseq,1 + λseq,2. We observe that the probability that an incoming
program belongs to class 1 (resp. 2) is λseq,1/λseq (resp. λseq,2/λseq).

– The hypoexponential service time for the first class of programs is ap-
proximated with an exponential service time with rate μseq,1 such that
μ−1
seq,1 = μ−1

seq,l + μ−1
seq,p + μ−1

seq,c + μ−1
seq,o + μ−1

seq,g.
– The hypoexponential service time for the second class of programs is ap-

proximated with an exponential service time with rate μseq,2 such that
μ−1
seq,2 = μ−1

seq,l + μ−1
seq,p + μ−1

seq,c + μ−1
seq,g.

– The two classes of programs are merged into a single class, whose hyper-
exponential service time is approximated with an exponential service time
with rate μseq such that μ−1

seq = (λseq,1/λseq) · μ−1
seq,1 + (λseq,2/λseq) · μ−1

seq,2.

Denoted by ρseq = λseq/μseq the traffic intensity of the resulting QS M/M/1
approximating the open QN model for the sequential architecture, and assumed
ρseq < 1, phase 6 is conducted symbolically by employing the first group of
formulas at the end of Sect. 3.1. The results of the evaluation are reported in
Table 8.

Compiler throughput: Xseq = λseq

Compiler utilization: Useq = ρseq

Mean number of programs in the compiler: N seq = ρseq/(1 − ρseq)

Mean compilation time: Rseq = 1/[μseq · (1 − ρseq)]

Table 8. Symbolic evaluation for the sequential architecture

252 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

6.6 Analysis of the Pipeline Compiler

As far as the evaluation of the pipeline architecture is concerned, after denoting
by λpipe,1, λpipe,2, μpipe,l, μpipe,p, μpipe,c, μpipe,o, and μpipe,g the actual values
for the numeric parameters of PipeCompSys that characterize a certain scenario,
we note that the application of phase 5 to the QN of Fig. 15 simply boils down
to merging the two arrival processes into a single arrival process with arrival
rate λpipe = λpipe,1 + λpipe,2. The multi-class service processes for the lexer, the
parser, the checker, and the generator are trivially converted into single-class
service processes with service rates μpipe,l, μpipe,p, μpipe,c, and μpipe,g, respec-
tively, as the two classes of programs have the same service rate in each of the
four multi-class service processes.

The resulting open QN model, which is used in phase 6, is product form and is
symbolically evaluated by decomposing it into five QSs M/M/1 with the appro-
priate arrival rates. In particular, at equilibrium the arrival rate for the lexer,
the parser, the checker, and the generator is λpipe, while the arrival rate for
the optimizer is λpipe,1. As a consequence, the probability that a program leav-
ing the checker enters the optimizer (resp. the generator) is λpipe,1/λpipe (resp.
λpipe,2/λpipe). Another consequence is that the traffic intensity for the lexer,
the parser, the checker, and the generator is ρpipe,j = λpipe/μpipe,j where j ∈
{l, p, c, g}, while the traffic intensity for the optimizer is ρpipe,o = λpipe,1/μpipe,o.
Assuming that the QN is stable, which means that each of its service centers is
stable, i.e. λpipe < min(μpipe,l, μpipe,p, μpipe,c, μpipe,o · (λpipe/λpipe,1), μpipe,g), we
symbolically derive the four average performance indices both for the various
compilation phases and for the overall pipeline compiler, as reported in Table 9.

Phase j throughput: Xpipe,j = λpipe for j ∈ {l, p, c, g}
Xpipe,o = λpipe,1

Phase j utilization: Upipe,j = ρpipe,j

Mean number of programs in phase j: Npipe,j = ρpipe,j/(1 − ρpipe,j)

Mean duration of phase j: Rpipe,j = 1/[μpipe,j · (1 − ρpipe,j)]

Compiler throughput: Xpipe = Xpipe,g

Compiler utilization: Upipe = 1 − ∏
j
(1 − Upipe,j)

Mean number of programs in the compiler: Npipe =
∑

j
N pipe,j

Mean compilation time: Rpipe =
λpipe,1

λpipe
· ∑

j
Rpipe,j +

λpipe,2

λpipe
· ∑

j �=o
Rpipe,j

Table 9. Symbolic evaluation for the pipeline architecture

6.7 Analysis of the Concurrent Compiler

We denote by λconc,1, λconc,2, μconc,l, μconc,p, μconc,c, μconc,o, and μconc,g the
actual values for the numeric parameters of ConcCompSys with respect to a

Performance Evaluation at the Software Architecture Level 253

certain scenario. The QN model associated with ConcCompSys, which is shown
in Fig. 17, can easily be transformed into a QS M/M/2 by performing phase 5
as in the case of SeqCompSys.

Denoted by ρconc = λconc/(2 · μconc) the traffic intensity of the resulting QS
M/M/2 approximating the open QN model for the concurrent architecture, and
assumed ρconc < 1, phase 6 is conducted symbolically by employing the second
group of formulas at the end of Sect. 3.1 with m = 2. The results of the evaluation
are reported in Table 10.

Compiler throughput: Xconc = λconc

Compiler utilization: U conc = 2 · ρconc/(1 + ρconc)

Mean number of programs in the compiler: N conc = 2 · ρconc/(1 − ρ2
conc)

Mean compilation time: Rconc = 1/[μconc · (1 − ρ2
conc)]

Table 10. Symbolic evaluation for the concurrent architecture

6.8 Comparison of the Three Architectures

Due to the simplicity of the three architectures, for each of them phase 7 is
skipped altogether. So, we can finally compare the sequential architecture, the
pipeline architecture, and the concurrent architecture on the basis of the four
average performance indices that we have symbolically computed (phase 8). In
order to perform a fair comparison, we assume that in every scenario the com-
pilation phases have the same duration for the three architectures, i.e. μseq,j =
μpipe,j = μconc,j ≡ μj for all j ∈ {l, p, c, o, g}. On the contrary, the three arrival
rates λseq, λpipe, and λconc can freely vary provided that they preserve the fre-
quency of each class of programs, i.e. λseq,c/λseq = λpipe,c/λpipe = λconc,c/λconc ≡
pc for all c ∈ {1, 2}.

We focus on two different scenarios and we concentrate only on the mean
number of programs that are compiled per unit of time, as analogous results can
be derived for the other three average performance indices. In the first scenario,
we assume that the three architectures undergo to a light workload. In this
case, the specific architecture does not really matter, as the relations among
the three throughputs directly depend on the relations among the three arrival
rates: Xt1 RXt2 if and only if λt1 Rλt2 , with t1, t2 ∈ {seq, pipe, conc} and
R ∈ {<, =, >}.

In the second scenario, instead, we assume that the three architectures un-
dergo to a heavy workload. This means that the values of the three arrival
rates are such that all the architectures work close to their maximum through-
puts, which can be derived from the corresponding stability conditions. In the
case of the sequential architecture, λseq is close to Xseq,max = μseq, with μ−1

seq =
p1·

∑
j μ−1

j +p2·
∑

j �=o μ−1
j . In the case of the pipeline architecture, λpipe is close to

254 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

Xpipe,max = min(μl, μp, μc, μo/p1, μg). In the case of the concurrent architecture,
λconc is close to Xconc,max = 2 · μconc, with μ−1

conc = p1 ·
∑

j μ−1
j + p2 ·

∑
j �=o μ−1

j .
In this scenario, for an accurate comparison it is worth considering the three
following sub-scenarios:

– In the first sub-scenario, the five compilation phases have approximatively
the same average duration, i.e. μl

∼= μp
∼= μc

∼= μo
∼= μg ≡ μ. In this case

Xseq,max
∼= (4 + p1)−1 · μ, Xpipe,max

∼= μ, and Xconc,max
∼= 2 · (4 + p1)−1 · μ. It

follows that:
Xpipe,max/Xseq,max

∼= 4 + p1
Xpipe,max/Xconc,max

∼= 2 + 0.5 · p1
Xconc,max/Xseq,max

∼= 2
Therefore, in this sub-scenario, the pipeline architecture outperforms — in
terms of mean number of programs compiled per unit of time — the sequen-
tial architecture (resp. the concurrent architecture) of a factor that ranges
between 4 and 5 (resp. between 2 and 2.5) depending on the frequency of
the programs of class 1. In addition, we see that the concurrent architecture
outperforms the sequential architecture of a factor 2. We conclude that in
this sub-scenario the pipeline architecture is the architecture of choice.

– In the second sub-scenario, there is one compilation phase, say lexical anal-
ysis, whose average duration is several orders of magnitude greater than the
average duration of the other phases, i.e. μl � μj for all j ∈ {p, c, o, g}. In
this case Xseq,max

∼= μl, Xpipe,max = μl, and Xconc,max
∼= 2 ·μl. It follows that:

Xpipe,max/Xseq,max
∼= 1

Xconc,max/Xpipe,max
∼= 2

Xconc,max/Xseq,max
∼= 2

We conclude that in this sub-scenario, in which one of the five phases is a
bottleneck, splitting the various phases among different components oper-
ating in parallel brings no advantage, and the architecture of choice is the
concurrent one.

– In the third sub-scenario, the average durations of the five compilation phases
range between a minimum value and a maximum value that are several or-
ders of magnitude apart, i.e. μmin ≤ μj ≤ μmax for all j ∈ {l, p, c, o, g} with
μmin � μmax. In this case (4 + p1)−1 · μmin ≤ Xseq,max ≤ (4 + p1)−1 · μmax,
Xpipe,max = μmin, and 2 · (4 + p1)−1 · μmin ≤ Xconc,max ≤ 2 · (4 + p1)−1 · μmax.
It follows that:

(4 + p1) · (μmin/μmax) ≤ Xpipe,max/Xseq,max ≤ 4 + p1
(4 + p1) · (μmin/μmax) / 2 ≤ Xpipe,max/Xconc,max ≤ (4 + p1) / 2

2 ≤ Xconc,max/Xseq,max ≤ 2
which generalizes the results of the previous two sub-scenarios, showing that
the concurrent architecture is always twice as faster as the sequential one,
and that the pipeline architecture is not always better than the other two, as
(4 + p1) · (μmin/μmax) and (4 + p1) · (μmin/μmax) / 2 can be less than 1 because
so is μmin/μmax.

Performance Evaluation at the Software Architecture Level 255

7 Conclusion and Future Perspectives

In this paper we have presented a methodology for the prediction, the improve-
ment, and the comparison of typical average performance indices of alternative
architectural designs developed for a software system. The methodology relies
on the SPA based ADL called Æmilia, which provides a textual and graphical
environment in which architectural descriptions can be developed in an easy and
controlled way, and on QNs, which are structured performance models equipped
with fast solution algorithms for computing typical average performance mea-
sures and allow such performance measures to be interpreted back at the SA
description level. The combined use of Æmilia and QNs is made possible by a
suitable translation, which can be applied to a reasonably wide class of Æmilia
specifications satisfying certain syntax restrictions and has a complexity linear
in the number of software components declared in the Æmilia specifications. The
methodology and the translation have been illustrated on a scenario-based com-
parison of a sequential SA, a pipeline SA, and a concurrent SA for a compiler
system.

As far as future work is concerned, first we would like to provide an automated
support for our methodology. This will be accomplished by implementing the
translation of Æmilia specifications into QN models as well as the solution of
QN models in the architectural assistant module of the Æmilia-based software
tool TwoTowers 3.0 [12]. Second, we would like to integrate our methodology
within the software development cycle, both upstream and downstream. On the
one hand, we would like to develop a translation from notations used in the
software engineering practice, like e.g. UML, to our framework, in order to hide
as much as possible all the formal details with which the typical designer may
not be familiar. On the other hand, we would like to be able to generate code
that is guaranteed to possess the performance requirements proved at the SA
level. In this respect, a critical issue to address is taking into account the impact
on the software performance of the hardware architecture and operating system
on which the software system will be deployed.

References

1. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis,
“Modelling with Generalized Stochastic Petri Nets”, John Wiley & Sons, 1995.

2. A. Aldini and M. Bernardo, “A General Deadlock Detection Approach for Soft-
ware Architectures”, to appear in Proc. of the 12th Int. Formal Methods Europe
Symp. (FME 2003), LNCS, Pisa (Italy), 2003.

3. F. Aquilani, S. Balsamo, and P. Inverardi, “Performance Analysis at the Software
Architectural Design Level”, in Performance Evaluation 45:205-221, 2001.

4. F. Baccelli, W.A. Massey, and D. Towsley, “Acyclic Fork-Join Queueing Net-
works”, in Journal of the ACM 22:248-260, 1989.

5. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, “Automated Perfor-
mance and Dependability Evaluation Using Model Checking”, in Performance
Evaluation of Complex Systems: Techniques and Tools, LNCS 2459:261-289,
2002.

256 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

6. S. Balsamo, “Product Form Queueing Networks”, in Performance Evaluation:
Origins and Directions, LNCS 1769:377-401, 2000.

7. S. Balsamo, M. Bernardo, and M. Simeoni, “Combining Stochastic Process Al-
gebras and Queueing Networks for Software Architecture Analysis”, in Proc. of
the 3rd Int. Workshop on Software and Performance (WOSP 2002), ACM Press,
pp. 190-202, Roma (Italy), 2002.

8. S. Balsamo, V. De Nitto Personè, and R. Onvural, “Analysis of Queueing Net-
works with Blocking”, Kluwer, 2001.

9. S. Balsamo, L. Donatiello, and N. van Dijk, “Bounded Performance Analysis
of Parallel Processing Systems”, in IEEE Trans. on Parallel and Distributed
Systems 9:1041-1056, 1998.

10. F. Baskett, K.M. Chandy, R.R. Muntz, and G. Palacios, “Open, Closed, and
Mixed Networks of Queues with Different Classes of Customers”, in Journal of
the ACM 22:248-260, 1975.

11. H. Beilner, J. Mäter, and C. Wysocki, “The Hierarchical Evaluation Tool HIT”,
in Proc. of the 7th Int. Conf. on Modelling Techniques and Tools for Computer
Performance Evaluation (TOOLS 1994), LNCS 794, Wien (Austria), 1994.

12. M. Bernardo, “TwoTowers 3.0: Enhancing Usability”, to appear in Proc. of the
11th Int. Symp. on Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems (MASCOTS 2003), IEEE-CS Press, Orlando (FL), October
2003 (http://www.sti.uniurb.it/bernardo/twotowers/).

13. M. Bernardo, “Symbolic Semantic Rules for Producing Compact STGLA from
Value Passing Process Descriptions”, to appear in ACM Trans. on Computa-
tional Logic, 2003.

14. M. Bernardo and M. Bravetti, “Performance Measure Sensitive Congruences
for Markovian Process Algebras”, in Theoretical Computer Science 290:117-160,
2003.

15. M. Bernardo, P. Ciancarini, and L. Donatiello, “Architecting Families of Software
Systems with Process Algebras”, in ACM Trans. on Software Engineering and
Methodology 11:386-426, 2002.

16. M. Bernardo, L. Donatiello, and P. Ciancarini, “Stochastic Process Algebra: From
an Algebraic Formalism to an Architectural Description Language”, in Perfor-
mance Evaluation of Complex Systems: Techniques and Tools, LNCS 2459:236-
260, 2002.

17. M. Bernardo and F. Franzè, “Exogenous and Endogenous Extensions of Architec-
tural Types”, in Proc. of the 5th Int. Conf. on Coordination Models and Languages
(COORDINATION 2002), LNCS 2315:40-55, York (UK), 2002.

18. M. Bernardo and F. Franzè, “Architectural Types Revisited: Extensible And/Or
Connections”, in Proc. of the 5th Int. Conf. on Fundamental Approaches to Soft-
ware Engineering (FASE 2002), LNCS 2306:113-128, Grenoble (France), 2002.

19. J.P. Buzen, “Computational Algorithms for Closed Queueing Networks with Ex-
ponential Servers”, in Comm. of the ACM 16:527-531, 1973.

20. K.M. Chandy and C.H. Sauer, “Computational Algorithms for Product Form
Queueing Networks”, in Comm. of the ACM 23:573-583, 1980.

21. W.-M. Chow, E.A. MacNair, and C.H. Sauer, “Analysis of Manufactoring Sys-
tems by the Research Queueing Package”, in IBM Journal of Research and De-
velopment 29:330-342, 1985.

22. G. Clark, S. Gilmore, J. Hillston, and M. Ribaudo, “Exploiting Modal Logic to
Express Performance Measures”, in Proc. of the 11th Int. Conf. on Modeling
Techniques and Tools for Computer Performance Evaluation (TOOLS 2000),
LNCS 1786:247-261, Schaumburg (IL), 2000.

Performance Evaluation at the Software Architecture Level 257

23. E.M. Clarke, O. Grumberg, and D.A. Peled, “Model Checking”, MIT Press, 1999.
24. W.R. Cleaveland and O. Sokolsky, “Equivalence and Preorder Checking for

Finite-State Systems”, in Handbook of Process Algebra, Elsevier, pp. 391-424,
2001.

25. A.E. Conway and N.D. Georganas, “RECAL - A New Efficient Algorithm for
the Exact Analysis of Multiple-Chain Closed Queueing Networks”, Journal of the
ACM 33:786-791, 1986.

26. R.G. Franks, A. Hubbard, S. Majumdar, J.E. Neilson, D.C. Petriu, J.A. Ro-
lia, and C.M. Woodside, “A Toolset for Performance Engineering and Software
Design of Client-Server Systems”, in Performance Evaluation 24:117-135, 1995.

27. R.G. Franks and C.M. Woodside, “Performance of Multi-level Client-server Sys-
tems with Parallel Service Operations”, in Proc. of the 1st Int. Workshop on
Software and Performance (WOSP 1998), ACM Press, pp. 120-130, Santa Fe
(NM), 1998.

28. E. Gelenbe, “Queueing Networks with Negative and Positive Customers”, in Jour-
nal of Applied Probability 28:656-663, 1991.

29. N. Götz, U. Herzog, and M. Rettelbach, “Multiprocessor and Distributed System
Design: The Integration of Functional Specification and Performance Analysis
Using Stochastic Process Algebras”, in Proc. of the 16th Int. Symp. on Computer
Performance Modelling, Measurement and Evaluation (PERFORMANCE 1993),
LNCS 729:121-146, Roma (Italy), 1993.

30. H. Hermanns, “Interactive Markov Chains”, LNCS 2428, 2002.
31. J. Hillston, “A Compositional Approach to Performance Modelling”, Cambridge

University Press, 1996.
32. R.A. Howard, “Dynamic Probabilistic Systems”, John Wiley & Sons, 1971.
33. K. Kant, “Introduction to Computer System Performance Evaluation”, McGraw-

Hill, 1992.
34. L. Kleinrock, “Queueing Systems”, Wiley, 1975.
35. S.S. Lavenberg, “Computer Performance Modeling Handbook”, Academic Press,

1983.
36. S.S. Lavenberg and C.H. Sauer, “Approximate Analysis of Queueing Networks”,

in [35], pp. 173-221.
37. E.D. Lazowska, J. Zahorjan, G. Scott Graham, and K.C. Sevcik, “Quantitative

System Performance: Computer System Analysis Using Queueing Network Mod-
els”, Prentice Hall, 1984.

38. R. Milner, “Communication and Concurrency”, Prentice Hall, 1989.
39. M.K. Molloy, “Performance Analysis using Stochastic Petri Nets”, in IEEE

Trans. on Computers 31:913-917, 1982.
40. R. Nelson and A. Tantawi, “Approximate Analysis of Fork-Join Synchronization

in Parallel Queues”, in IEEE Trans. on Computers 37:739-743, 1988.
41. M.F. Neuts, “Matrix-Geometric Solutions in Stochastic Models – An Algorithmic

Approach”, John Hopkins University Press, 1981.
42. H.G. Perros, “Queueing Networks with Blocking”, Oxford University Press, 1994.
43. D.E. Perry and A.L. Wolf, “Foundations for the Study of Software Architecture”,

in ACM SIGSOFT Software Engineering Notes 17:40-52, 1992.
44. M. Reiser and S.S. Lavenberg, “Mean-Value Analysis of Closed Multichain

Queueing Networks”, in Journal of the ACM 27:313-322, 1980.
45. J.A. Rolia and K.C. Sevcik, “The Method of Layers”, in IEEE Trans. on Software

Engineering 21:682-688, 1995.
46. M. Shaw and D. Garlan, “Software Architecture: Perspectives on an Emerging

Discipline”, Prentice Hall, 1996.

258 Simonetta Balsamo, Marco Bernardo, and Marta Simeoni

47. C. Smith, “Performance Engineering of Software Systems”, Addison-Wesley,
1990.

48. W.J. Stewart, “Introduction to the Numerical Solution of Markov Chains”,
Princeton University Press, 1994.

49. Simulog Corp., “The QNAP2 Reference Manual”, 1989.
50. K.S. Trivedi, ”Probability and Statistics with Reliability, Queueing, and Com-

puter Science Applications”, John Wiley & Sons, 2001.
51. P.D. Welch, “The Statistical Analysis of Simulation Results”, in [35], pp. 267-329.
52. C.M. Woodside, J.E. Neilson, D.C. Petriu, and S. Majumdar, “The Stochastic

Rendezvous Network Model for Performance of Synchronous Client-Server-like
Distributed Software”, in IEEE Trans. on Computers 44:20-34, 1995.

Software Architecture and Dependability

Valérie Issarny1 and Apostolos Zarras2

1 INRIA, Domaine de Voluceau, B.P. 105, 78 153 Le Chesnay Cédex, France,
Valerie.Issarny@inria.fr

2 Computer Science Department, University of Ioannina, Greece,
zarras@cs.uoi.gr

Abstract. Dependable systems are characterized by a number of at-
tributes including: reliability, availability, safety and security. For some
attributes (namely for reliability, availability, safety), there exist probabi-
lity-based theoretic foundations, enabling the application of dependabil-
ity analysis techniques. The goal of dependability analysis is to forecast
the values of dependability attributes, based on certain properties (e.g.
failure rate, MTBF, etc.) that characterize the system’s constituent ele-
ments.

Nowadays, architects, designers and developers build systems based on
an architecture-driven approach. They specify the system’s software ar-
chitecture using Architecture Description Languages or other standard
modeling notations like UML. Given the previous, we examine what we
need to specify at the architectural level to enable the automated gen-
eration of models for dependability analysis. In this paper, we further
present a prototype implementation of the proposed approach, which re-
lies on UML specifications of dependable systems’ software architectures.
Moreover, we exemplify our approach using a case study system.

1 Introduction

To characterize a system as a dependable one, it must be trustworthy. In other
words, the users of the system must be able to rely on the services it provides.
The less the system fails in providing correct service the more dependable it
is. A system failure is the manifestation of a fault, which leads the system into
an erroneous state. Building dependable systems amounts in building systems
that do not fail, or building systems whose failure can be tolerated. In order
to achieve the previous there are several techniques that have been proposed.
These techniques can be classified into the following categories [22]:

– Fault prevention techniques, aiming at the avoidance of fault creation within
the system.

– Fault tolerance techniques aiming at the provision of correct service, despite
the presence of faults.

– Fault removal techniques, whose main objective is to reduce the presence of
faults in the system.

M. Bernardo and P. Inverardi (Eds.): SFM 2003, LNCS 2804, pp. 259–285, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

260 Valérie Issarny and Apostolos Zarras

– Fault forecasting techniques, whose goal is to analyze and estimate the num-
ber of faults in the system and their consequences.

Developing dependable systems relies on a software development process that
consists of a set of typical engineering work-flows. This set of work-flows is usually
performed in an iterative manner. Namely, the work-flows we consider are:

– The requirements elicitation work-flow.
– The analysis and design work-flow.
– The implementation work-flow.
– The test work-flow.
– The deployment work-flow.

The development process further comprises work-flows that aim at manag-
ing the execution of the engineering work-flows. The previous consist of several
tasks for managing workers (i.e., architects, designers, developers), the activi-
ties performed by those workers and the artifacts produced after the execution
of the activities. Applying fault prevention, fault removal, fault tolerance and
fault forecasting techniques requires introducing corresponding activities in the
engineering work-flows of the software development process. Moreover, using the
aforementioned techniques has also implications on the management work-flows.

Fault prevention involves applying specific design methodologies and con-
struction rules. Consequently, there are activities to be added in the analysis
and design work-flow and in the implementation work-flow. The management
work-flows must further contain activities that constraint the workers participat-
ing in the aforementioned engineering work-flows to apply the fault prevention
activities introduced in the engineering work-flows.

Fault tolerance techniques consist of: error recovery and error compensation
techniques. Error recovery aims at taking the system from an erroneous state
to an error-free state, while error compensation involves enhancing the system
with redundant entities so as to be able to deliver correct service from an er-
roneous state. Based on the previous, the analysis and design work-flow must
include activities that introduce fault detectors, fault notifiers, redundancy man-
agement, logging and recovery elements in the architecture of the dependable
system. The implementation work-flow must contain activities that deal with
the integration of the previous elements with the rest of the system’s entities.
Finally, the deployment work-flow must contain activities for properly deploying
redundant elements on hardware nodes.

Fault removal techniques are composed of three basic steps: verification, diag-
nosis and correction. The verification step aims at checking whether the system’s
behavior is coherent with the system’s expected behavior. If it is not, the other
two steps must be performed. In general, during the verification step a number
of constraints are checked against the system’s actual behavior. The constraints
may be either generic in that they are required for many different families of
systems (dead-lock freedom, absence of starvation, absence of memory leaks), or
specific to the particular system. System-specific constraints are deduced from

Software Architecture and Dependability 261

the users’ functional requirements on the system (e.g., the system is able to
successfully execute specific scenarios). Verification may be either static, or dy-
namic. In static verification, the constraints on the system behavior are checked
against a model of the system (e.g., model checking techniques). Static verifica-
tion techniques involve introducing specific activities in the analysis and design
work-flow for building the system model in terms of a formalism like PROMELA
[14], FSP [27], etc. Dynamic verification amounts in testing the runtime behav-
ior of the system using random or deterministic test cases. Naturally, dynamic
verification imposes performing specific activities in the testing work-flow.

By definition [22], dependability is a quite wide concept, which is charac-
terized by a number of attributes including reliability, availability, security and
safety. Depending on the system, our interest is usually narrowed into some of
those attributes. The goal of fault forecasting is to estimate-predict the values of
dependability attributes, based on certain properties (e.g., failure rate, MTBF,
service rate, etc.) that characterize the system’s constituent elements. From now
on, we refer to fault forecasting techniques as dependability analysis techniques.
Reliability analysis, for instance, aims at calculating the probability that the sys-
tem provides correct service for a particular time period. Traditional techniques
for dependability analysis rely on specifying constraints describing either what
it means for the system to provide error-free service (Block Diagrams), or what
it means for the system to provide erroneous service (Fault Trees). More so-
phisticated analysis techniques require modeling the system’s failure and repair
behavior using state space models.

Regarding the software development process, dependability analysis requires
specifying related properties (e.g., failure rate, MTBF) characterizing the ele-
ments that make up the system. Consequently, we need to enhance the analysis
and design work-flow to include such activities. Moreover, we have to enhance the
deployment work-flow with activities that allow achieving the previous for the
nodes used for executing the system’s elements. Finally, constraints for error-free
or erroneous service delivery and state space models must be specified during
the analysis and design work-flow. The values of the properties that characterize
the system’s constituent elements may be assumed, or they may be based on
measures gathered during the testing work-flow of a previous iteration.

In this paper, we present an approach for automating the previous activities.
More specifically, in Section 2, we present general concepts related to the spec-
ification of software architectures and the dependability analysis of systems at
the architectural level. Then, in Section 3, we examine what we need to specify
at the architectural level to enable the automated generation of models for de-
pendability analysis and how to generate them from architectural descriptions.
Section 4 presents a prototype implementation of the proposed approach, which
relies on UML to specify the architecture of dependable systems. In Section 5,
we give details related to a case study we use for the assessment of the solution
we propose. Finally, in Section 6, we summarize with our contribution and the
future perspectives of this work.

262 Valérie Issarny and Apostolos Zarras

2 Software Architecture and Dependability Analysis

As we mentioned in Section 1, our main goal is to facilitate the generation of
constraints and state space models for the dependability analysis of systems,
from the systems’ architectural descriptions. Specifying software architectures
involves using a notation. Architecture Description Languages (ADLs) are nota-
tions enabling the rigorous specification of the structure and behavior of software
systems.

ADLs come along with tools supporting the analysis and the construction
of software systems, whose architecture is specified using them. Several ADLs
have been proposed so far (e.g., Aster[17], Conic [28], C2 [40], Darwin [26],
Dcl [4], Durra [5], Rapide [24], Sadl [33], Unicon [38], Wright [2]); they
are more or less based on the same principles [7, 15, 30]. In particular, the
architecture of software systems is specified using components, connectors and
configurations.

Before getting into the semantics of components, connectors and configura-
tion, it should be noted that ADLs are widely known and used in academia,
but their use in the industry is quite limited. Industrials, nowadays, prefer using
object-oriented notations for specifying the architecture of their software sys-
tems. UML, in particular, is becoming an industrial standard notation for the
definition of a family of languages (i.e., UML profiles) for modeling software
systems. However, there is a primary concern regarding the imprecision of the
semantics of UML.

One way to increase the impact of ADLs in the real world and decrease the
ambiguity of UML is to define an ADL that provides a set of core extensible
UML-based language constructs for the specification of components, connectors
and configurations. This core set of extensible constructs shall further facilitate
future attempts for mapping existing ADLs into UML.

2.1 Components

A component is a unit of data or computation and the basic features that char-
acterize it are its interface, type and properties.

A component interface describes a number of interaction points between the
component and the rest of the architecture. All of the ADLs mentioned above
support this particular feature. However, several syntactic and semantic differ-
ences have been observed between them. In Aster, for instance, an interface
defines a set of operations; components export interfaces to the environment and
import interfaces from other architectural elements. In Conic, an interface de-
fines a set of entry and exit ports that are typed. In Darwin, Conic’s successor,
an interface specifies services required from and provided by a component. In
Dcl, components are called modules. A module is a group of actors, i.e., a group
of processing elements that communicate through asynchronous point-to-point
message passing [1]. A module description comprises request rules, which pre-
scribe the module’s interface. A component interface in C2 defines two kinds of

Software Architecture and Dependability 263

interaction points, named top and bottom ports. Ports are used by a particu-
lar component to accept requests from, and issue requests to, components that
reside either above, or below it (the architecture is topologically structured). A
component interface in Unicon defines a number of interaction points, called
players. Players are typed entities. The type of a player can be out of a limited
set of predefined types. In Wright, a component interface defines input and
output ports. Pretty similar is the way interaction points are defined in Durra.
In Rapide, the points of interaction can be either services required from or pro-
vided by a component, or events generated by a component. Finally, in Sadl,
an interface is just a point of interaction.

A component type is a template used to instantiate different component in-
stances into a running configuration. All of the ADLs mentioned above distin-
guish between component types and instances. Types are usually extensible.
Sub-typing (e.g., in C2, Aster) is a typical method used to define type exten-
sions. In Darwin and Rapide, types are extended through parameterization.

Component properties characterize the component’s observable behavior
(which may include erroneous behavior). In Wright, behavior is described in
Csp [12, 13]. In Rapide, partially ordered sets of events (posets) are used to
describe component behavior. In the very first version of Darwin, properties
were described in Ccs [32]; in the latest version, properties are described in pi-
calculus, which extends the semantics of Ccs with means that allow specifying
the dynamic instantiation of processes [31]. In Dcl, the behavior of a module
is deduced by the behaviors of the actors that constitute the module. An exten-
sion of the basic Actors formalism is used to describe the behavior of actors [3]
within a software architecture. Finally, in Aster, temporal logic is used to de-
scribe properties. Similarly, in Sadl, the authors propose using Temporal Logic
of Actions (Tla) [21] for the specification of component properties.

2.2 Connectors

A connector is an architectural element that models the interaction protocols
among components. Its basic features are again its interface, type, and proper-
ties.

Some ADLs do not consider connectors as first-order architectural elements
(e.g., Conic, Darwin, Rapide). For the other ADLs, a connector specification
is similar to a component specification. In Wright and Unicon, for instance,
a connector interface is a set of interaction points, named roles. In Durra, a
connector is called channel and its interface is defined in the very same way
as a component interface. In C2 and Sadl, connector interfaces are described
using the same syntax as the one used to describe component interfaces. In
Dcl, connectors are again groups of actors, called protocols. Protocols define
a set of roles describing the way interaction takes place among modules. In all
ADLs, except for Unicon, connector types are extensible. The formalism used
for the specification of component properties is further used for the specification
of connector properties.

264 Valérie Issarny and Apostolos Zarras

2.3 Configurations

A configuration is the assembly of components and connectors. It is described
in terms of associations (usually called bindings) between points of interaction.
Several ADLs either assume or provide means to describe constraints for a par-
ticular configuration.

Constraints may simply describe restrictions on the way components are
bound. In Darwin, for instance, only bindings between required and provided
services are allowed. In Aster, the types of the interfaces that are bound should
match. Some ADLs allow specifying constraints on the behavior of the overall
configuration. In Aster, for example, we can specify dependability requirements
for a particular configuration. Rapide also allows specifying constraints on the
behavior of a particular configuration. Constraints may also relate to the (dy-
namic) evolution of a particular configuration. In Durra and Rapide, for ex-
ample, it is possible to describe conditions under which a configuration changes
into another one.

2.4 ADLs and Dependability Analysis

Pioneer work on the dependability analysis of software systems at the architec-
tural level includes Attribute-Based Architectural Styles (ABAS) [25]. In general,
an architectural style includes the specification of: types of basic architectural
elements (e.g., pipe and filter) that can be used for specifying a software archi-
tecture, constraints on the use of these types, and patterns describing the data
and control interaction between them.

An ABAS is an architectural style, which additionally provides modeling sup-
port for the analysis of a particular quality attribute. Dependability attributes
(i.e., reliability, availability, safety) are among the quality attributes for which
we can define ABASs. More specifically, an ABAS includes the specification of:

– Quality attribute measures characterizing the quality attribute (e.g., the
probability that the system correctly provides a service for a given dura-
tion).

– Quality attribute stimuli, i.e., events affecting the value of the quality at-
tribute measures (e.g., failures).

– Quality attribute properties, i.e., architectural properties affecting the value
of the quality attribute measures (e.g., faults, redundancy).

– Quality attribute models, i.e., traditional models that formally relate the
above elements (e.g., a state space model that predicts reliability based on
the failure rates and the redundancy used).

In [20], the authors introduce the Architecture Tradeoff Analysis Method
(ATAM) where the use of an ABAS is coupled with the specification of a set of
scenarios that constitutes a service profile. ATAM has been applied for analyz-
ing quality attributes like performance, availability, modifiability, and real-time.
In all these cases, quality attribute models (e.g., state-space models, queuing

Software Architecture and Dependability 265

networks, etc.) are manually built given the specification of a set of scenarios
and an ABAS-based architectural description of a system. However, in [20], the
authors recognize the complexity of the aforementioned task; the development
of quality analysis models requires about 25% of the time spent for applying the
whole method. ATAM is a promising approach for doing things right. However,
it needs to be enriched for facilitating the specification of quality models.

One solution to the previous lies on the automated generation of quality
attribute models from architectural descriptions. Note that there is no unique
way to model systems. A model is built based on certain assumptions. Thus,
the model generation procedures should be customizable. Customization is done
according to the assumptions, made by the developer for the quality stimuli and
properties, affecting the value of the particular quality attribute that is assessed.
While this paper concentrates on dependability quality attributes, the interested
reader may refer to [43] for details regarding the case of performance.

3 ABAS for Automated Dependability Analysis of
Software Architectures

As already mentioned in the introduction, dependability is characterized by a
number of attributes including reliability, availability, safety, security. For relia-
bility, availability and safety, there exist probability-based theoretic foundations,
enabling dependability analysis. In this section, we define an ABAS that facili-
tates dependability analysis regarding these attributes [42].

To perform dependability analysis, we have to specify a service profile, i.e., a
set of scenarios, describing how the system provides a particular service. A sce-
nario (e.g., a UML collaboration or sequence diagram) specifies the interactions
among a set of component and connector instances, structured as prescribed by
the configuration of the system. Scenarios are associated with the values of the
dependability measures that the system’s users require (these values are gath-
ered during the requirements elicitation). Moreover, the definitions of the base
architectural elements are associated with dependability measures, properties,
and stimuli, as detailed below.

3.1 Dependability Measures, Stimuli, and Properties

The basic reliability measure we use is the probability that the system provides
correct service for a given time period. Similarly, the availability measure we
consider is the probability that the system provides correct service at a given
moment in time. For safety, a typical measure is the probability that there will be
no catastrophic failure for a given time period. Hence, safety analysis is reliability
analysis regarding only catastrophic failures.

A scenario may fail if instances of components, nodes3, and connectors used
in it, fail because of faults causing errors in their state. The manifestations of
3 An architectural component is assumed to be associated with a set of nodes on top

of which it executes. For primitive components the associated set contains one node,
while for composite components, it may contain more than one node

266 Valérie Issarny and Apostolos Zarras

errors are failures. Hence, faults are the basic properties, associated with compo-
nents/connectors/nodes, which affect the dependability measures. Failures are
the stimuli, associated with components/connectors/nodes, causing changes in
the value of the dependability measures. According to [22], faults and failures
are further characterized by the features given in Tables 1 and 2. Different com-
binations of the values of these features can be used to customize properly the
generation of dependability models, which is detailed in Section 3.2.

Features Range Associated Architectural Element

domain time/value Component/Connector/Node
perception consistent/inconsistent

Table 1. Dependability Stimuli: Specification of Failures

Features Range Associated Architectural Element

nature intention/accident Component/Connector/Node
phase design/operational
causes physical/human
boundaries internal/external
persistence permanent/temporary
arrival-rate Real
active-to-benign Real
benign-to-active Real
disappearance Real

Table 2. Dependability Properties : Specification of Faults

Another property of the base architectural elements that affects dependabil-
ity measures is redundancy. Redundancy schemas can be specified using the
base architectural constructs defined in Section 2. More specifically, a redun-
dancy schema is a composite component that encapsulates a configuration of
redundant architectural elements, which behave as a single fault tolerant unit.
According to [23], a redundant schema is characterized by the following features:
the kind of mechanism used to detect errors, the way the constituent elements
execute towards serving incoming requests, the confidence that can be placed
on the results of the error detection mechanism and the number of component
and node faults that can be tolerated. The features characterizing a redundancy
schema are summarized in Table 3. A repairable redundancy schema is charac-
terized by additional features (e.g., repair-rate).

3.2 Dependability Models

The dependability properties, stimuli and measures can be formally related using
Block Diagrams (BDs), Fault Trees (FTs) and state space models [34, 11, 35].

Software Architecture and Dependability 267

Features Range Associated Architectural Element

error-detection vote/comp./acceptance Component
execution parallel/sequential
confidence absolute/relative
service-delivery continuous/suspended
no-comp-faults Integer
no-node-faults Integer

Table 3. Redundancy Property

A BD represents graphically a constraint for providing a service S. Here-
after, we call such a constraint, constraint-to-succeed. The BD consists of a set
of system components that need to be operational to provide S (i.e., the com-
ponents participating in a scenario that describe how the system provides S).
Every component C in the BD is characterized by certain dependability mea-
sures. The reliability (resp. availability) measure for C is the probability that C
provides correct service for a time period T (resp. time instance t). The safety
measure for C is the probability that there is no catastrophic failure of C during
a time period T. Components are connected using serial or M-out-of-N parallel
connections. If we connect N components using serial connections, all of them
must be operational to provide S. On the other hand, if we connect them using
an M-out-of-N parallel connection, at least M components out of the set must
be operational to provide S. The overall system reliability (resp. availability,
safety) is obtained through simple combinatorial calculations involving the re-
liability (resp. availability, safety) measures of the individual components that
belong to the BD.

Taking an example, suppose that providing a service for a time period T
requires using components C1, C2 and C3. The corresponding constraint-to-
succeed can be specified as a logical formula, C1 ∧ C2 ∧ C3, consisting of the
conjunction of three predicates. Predicates C1, C2, C3 are true if components
C1, C2, C3 are operational and false otherwise. The BD that graphically repre-
sents the constraint-to-succeed is shown in Figure 1(a). According to that BD,
C1 is connected in serial with C2, which is further connected in serial with C3.
The overall reliability is the probability that the C1∧C2∧C3 constraint holds:

BD.reliability = P (C1 ∧ C2 ∧ C3)
P (C1 ∧ C2 ∧ C3) = C1.reliability ∗ C2.reliability ∗ C3.reliability

Suppose now that providing a service S for a time period T requires using
either components C1, C2 or C1, C3. Again, the constraint-to-succeed can be
described as a logical formula, C1 ∧ (C2 ∨ C3). The corresponding BD is given
in Figure 1(b). C2 and C3 are connected with a 1-out-of-2 parallel connection
forming a new block, which is connected in serial with C1. The overall reliability
is the probability that the C1 ∧ (C2 ∨ C3) constraint holds:

268 Valérie Issarny and Apostolos Zarras

C1 C2 C3

C2

C1

C3

(b) C1 /\ (C2 \/ C3

(a) C1 /\ C2 /\ C3

)

reliablity

reliablity

reliablity reliablity reliablity

reliablity

Fig. 1. Example of a Block Diagram.

BD.reliability = P (C1 ∧ (C2 ∨ C3))
P (C1 ∧ (C2 ∨ C3)) = C1.reliability ∗ C2.reliability+

C1.reliability ∗ C3.reliability−
C1.reliability ∗ C2.reliability ∗ C3.reliability

So far, we calculate the dependability measures of a particular system as a
function of the dependability measures that characterize the components of this
system. However, we can further think of dependability measures as a function
of the probability that the system fails. To calculate the probability of system
failure we have to identify and model what should happen for the system to
fail. The previous can be achieved using FTs [34, 11, 35]. FTs and BDs are
equivalent in the sense that the values of the dependability measures obtained
are the same. Moreover, having a BD, we can easily generate automatically
an equivalent FT, and conversely. However, BDs and FTs enable modeling the
system from different perspectives, depending on which one is more convenient
for the worker in charge of the dependability analysis.

An FT visualizes a constraint, which describes undesired stimuli (i.e., fail-
ures) that lead to system failure. Hereafter, we call such a constraint, constraint-
to-fail. The overall system failure is called the top-event. Undesired events are
connected with AND and OR gates. AND gates connect events whose subse-
quent or concurrent occurrence triggers the top-event. OR gates connect events
whose alternative occurrence triggers the top-event. Every event is characterized
by the probability of its occurrence (Poccur).

Taking an example, suppose that providing a service S requires using compo-
nents C1, C2 and C3, then a failure of any of them leads to system failure. The
aforementioned constraint can be described as a logical formula, FC1 ∨ FC2 ∨
FC3. Predicates FC1, FC2, FC3 are true if components C1, C2, C3, respec-
tively, have failed and false otherwise. The resulting FT, shown in Figure 2(a),

Software Architecture and Dependability 269

depicts an OR gate that takes as input the failure events of C1, C2, C3 and has
as output the failure of the overall system. The reliability in this case is:

FT.reliability = 1 − P (FC1 ∨ FC2 ∨ FC3)
P (FC1 ∨ FC2 ∨ FC3) = FC1.Poccur + FC2.Poccur + FC3.Poccur−

FC1.Poccur ∗ FC2.Poccur−
FC1.Poccur ∗ FC3.Poccur−
FC2.Poccur ∗ FC3.Poccur+
FC1.Poccur ∗ FC2.Poccur ∗ FC3.Poccur

Suppose now that S requires using component C1 and either component C2,
or component C3. Then, a failure of both C2 and C3 leads to system failure. Al-
ternatively, a failure of C1 leads to system failure. The previous can be specified
as a logical formula, FC1 ∨ (FC2 ∧ FC3). Figure 2(b) gives the corresponding
FT. The reliability in this case is:

FT.reliability = 1 − P (FC1 ∨ (FC2 ∧ FC3))
P (FC1 ∨ (FC2 ∧ FC3)) = FC2.Poccur ∗ FC3.Poccur + FC1.Poccur−

FC2.Poccur ∗ FC3.Poccur ∗ FC1.Poccur

O
R

toplevel failure

FC1
Poccur

FC2
Poccur

FC3
Poccur

A
N
D

FC2
Poccur

FC3
Poccur

O
R

FC1
Poccur

toplevel failure

(b) C1 /\ (C2 \/ C3)

(a) C1 /\ C2 /\ C3

Fig. 2. Example of a Fault Tree.

The techniques we presented until now, rely on static descriptions of either
the components we need for correct service provisioning (i.e., BDs), or the fail-

270 Valérie Issarny and Apostolos Zarras

ures that lead to an overall system failure (i.e., FTs). Although those techniques
are quite easy to apply, they do not cover cases where we have to model dynamic
aspects of the system that affect the values of the dependability measures. For
example, the dependability analysis of systems with transient faults involves
modeling that those faults disappear with a certain rate. Similarly, the depend-
ability analysis of systems with intermittent faults requires modeling the way
those faults activate (if an intermittent fault is active the service is not correctly
provided) and passivate (if an intermittent fault is passive the service is correctly
provided despite the presence of the fault), during the lifetime of the system. In
other words, we have to model the failure behavior of the components and con-
nectors that make up the system. In the case of repairable systems, we have to
further model how faulty architectural elements eventually become operational,
and conversely. Another issue that we can not model with BDs and FTs is the
occurrence of dependent failures.

Modeling and analyzing the failure and repair behavior of systems relies
on state space models [34, 11, 6, 10]. A state space model consists of a set of
transitions between states of the system. A state describes a situation where
either the system operates correctly, or not. In the latter case, the system is
said to be in a death state. The state of the system depends on the states of
the architectural elements that constitute it. Hence, a state can be seen as a
composition of sub-states, each one representing the situation of an architectural
element. A state is constrained by the range of all possible situations that may
occur. A transition is characterized by the rate by which the source situation
changes into the target situation. If, for instance, the difference between the
source and the target situation is the failure of a component, the transition
rate is the faulty component’s failure rate. If, on the other hand, the difference
between the source and the target situation is the repair of a component, the
transition rate is the component’s repair rate. The mathematical model that is
employed for calculating reliability and availability based on a state space model,
involves solving a system of first order differential equations.

Taking an example, suppose that in order to provide a service S we have to
use components C1, C2 and C3. Moreover, suppose that C1, C2 and C3 have
permanent faults. The state space model that specifies the failure behavior of the
system is given in Figure 3; it consists of four states representing the following
situations:

State 1 C1, C2, C3 are operational.
State 2 C1 failed, C2, C3 are operational (death state).
State 3 C2 failed, C1, C3 are operational (death state).
State 4 C3 failed, C1, C2 are operational (death State).

The state space model comprises transitions from state 1 to states 2, 3, 4
characterized by the failure rates of C1, C2, C3, respectively.

Let P (t) = [p1(t), p2(t), p3(t), p4(t)] be a vector that gives the probabilities
that the system is in states 1, 2, 3, 4, respectively. The system of differen-
tial equations that can be used to calculate those probabilities is the following:
P ′(t) = P (t)∗A where A is a matrix that can be easily calculated from the state

Software Architecture and Dependability 271

space model as follows: For every transition from state i to state j, set A(i, j)
equal to the transition rate. The value of every diagonal element A(i, i) is set to
the negated sum of the non-diagonal i row elements of the matrix.

−
∑

(A(0, i))i=1...3 C1.failure rate C2.failure rate C3.failure rate
A = 0 0 0 0

0 0 0 0
0 0 0 0

Assuming that P (0) = [1, 0, 0, 0], and that the failure rates of C1, C2, C3 are
constant we have the following solution for P (t):

P (t) = P (0) ∗ eA∗t

C1 OK

C3 Failed

C2 OK

State 4:

C1 OK

C3 OK

C2 OK

C1 Failed

C2 Failed

C3 OK

C2 OK

C3 OK

C1 OK

C1/\C2/\C3

State 3:

State 2:

State 1:

C3.failure-rate

C1.failure-rate

C2.failure-rate

Fig. 3. Example of a state space model.

3.3 Automated Generation of State Space Models from
Architectural Descriptions

The specification of large state-space models is often too complex and error-
prone. The approach proposed in [19] alleviates this problem. In particular, in-
stead of specifying all possible state transitions, the authors propose specifying
the state range of the system, a death-state constraint, and transition rules be-
tween sets of states of the system.

272 Valérie Issarny and Apostolos Zarras

The state range consists of a set of variables whose values describe a possible
state situation. For example, a system that consists of a redundancy schema of
three redundant components may be in 4 states. In each state i : [0..3], 3 − i
redundant components are operational. Then, the state range is defined as a
single variable numOfOperational : [0..3] whose value specifies the number of
operational components.

A transition rule may state that: if the system is in a state where more than
1 component are operational (e.g., numOfOperational > 1), then the system
may get into a state where the number of operational components is reduced by
one (e.g., numOfOperational = numOfOperational − 1). Given the previous
information, a complete state space model can be generated using the algorithm
described in [19]. Briefly, the algorithm takes as input an initial state (e.g., the
state 0 where numOfOperational = 3) and recursively applies the transition
rules. During a recursive step and for a particular transition rule, the algorithm
produces a transition to a state derived from the initial one. If the death-state
(e.g., numOfOperational <= 1) constraint holds for the resulting state, the
recursion stops.

State range definitions, transitions rules and death constraints can be auto-
matically generated from architectural descriptions embedding the specification
of dependability stimuli and properties, by following the steps below.

First, a state range definition for each scenario scen belonging to a given
service profile is generated. The state of a scenario is composed of the states of
the component and connector instances used within the scenario and the state
of nodes on top of which the component instances execute. If a component is
composite, its state is composed of the states of the constituent elements. The
state range for the scenario consists of a set of variables, each one of which cor-
responds to a component/connector/node. The values of a variable depend on
the kind of faults that may cause failures. At this point, the generation pro-
cedure is customized accordingly. In the case of permanent faults for instance,
a component/connector/node may be either in an operational, or in a failed
state. Hence, the corresponding state range variable may take two possible val-
ues OPERATIONAL or FAILED. In the case of intermittent faults, a compo-
nent/connector/node may be in an operational state, or it may be in a failed-
active or in a failed-benign state. Consequently, the corresponding state range
variable may take three values OPERATIONAL, FAILED-ACTIVE, FAILED-
BENIGN. The values of a state range variable further depend on the kind of
redundancy used (take for instance the example we gave above with the 3 redun-
dant components). Again, the generation procedure is customized accordingly.

After generating the state range definition for a scenario scen, the step that
follows comprises the generation of transition rules for components/connectors/-
nodes used in the scenario. These rules depend on the kinds of faults of the
corresponding architectural element. For instance, for permanent faults, the rules
follow the pattern given in Table 4. What is left at this point is to generate the
definition of the initial state of the scenario, and the definition of the death
state constraint. The initial state is a state where all of the elements used in the

Software Architecture and Dependability 273

Architectural Rule
Element

Component For all instances of primitive components, c:

– If scen is in a state where c is in an OPERATIONAL state
st , then scen may get into a state st ′ where c is FAILED.
The rate of these transitions is equal to the arrival rates of
the faults that cause the failure of c, c.Faults.arrival -rate
(see Table 2).

For all instances of composite components, c:

– If scen is in a state st where c is OPERATIONAL, then scen
may get into a state st ′ where c is FAILED due to a failure
of a constituent element c′. The rate of these transitions is
equal to the arrival rates of the faults that cause the failure
of c′, c′.Faults.arrival -rate .

For all instances of composite components rc, representing a
redundancy schema of k components:

– If scen is in a state st where rc is OPERATIONAL, and the
number of failed redundant component instances is fc, then
scen may get into a state st ′ where the number of failed
components of rc is fc + l. The difference between st and
st ′ is l redundant component instances of the same type t,
which in st were OPERATIONAL and in st ′ are FAILED.
This rule captures failure dependencies among redundant
component instances of the same type. These components
are used in the same conditions and with the same input.
Hence, if one of them fails due to a design or an operational
fault, all of them will fail.

Connector For all instances of primitive connectors, see the case of primitive
components. For all instances of composite connectors, see the
case of composite components.

Node We assume that nodes fail independently from each other.
Hence, for all nodes in scen :

– If scen is in a state st where a node n is in an OPERA-
TIONAL state, then scen may get into a state st ′ where n
is in a FAILED state.

– Moreover, in st ′, all instances of components c deployed on
n are in a FAILED state.

– Finally, in st ′ all instances of redundancy schemas rc, built
out of m components deployed on n, have fc + m failed
components and fn + 1 failed nodes.

The rate of these transitions is equal to the arrival rate of the
faults that caused the failure of n, n.Faults.arrival -rate .

Table 4. Transition Rules for Permanent Faults

274 Valérie Issarny and Apostolos Zarras

scenario are operational. A scenario is in death state if any of the architectural
elements used in it is not operational. Hence, the death state constraint consists
of the disjunction of base predicates, each one of which defines the death state
constraint for an individual element used in the scenario. More specifically, the
base predicate for a component, connector, or a node, states that the value
of the corresponding state range variable is FAILED. The base predicate for a
redundancy schema is the disjunction of two predicates. The first one states that
the number of failed redundant component instances is greater than the number
of component faults that can be tolerated. Similarly, the second one states that
the number of failed redundant nodes is greater than the number of node faults
that can be tolerated.

4 A Developer-Oriented Environment for Dependability
Analysis

The ideas proposed so far for dependability analysis at the architectural level
are realized in the prototype implementation of a developer-oriented environment
[43, 36]. As we already discussed in Section 2, UML is an emerging industrial
standard for modeling the architecture of software systems. Consequently, our
environment relies on an already existing UML modeling tool. More specifically,
we use the Rational Rose tool4 for the specification of software architectures.

However, we further mentioned the fact that the semantics of UML are impre-
cise compared to the ones of the ADLs we examined in Section 2. Consequently,
we proposed defining an ADL that extends the standard UML semantics towards
dealing with this lack of precision. To define ADL components, connectors, and
configurations in relation to standard UML model elements, we undertook the
following steps: (i) identify standard UML element(s), whose semantics are close
to the ones needed for the specification of ADL components, connectors and con-
figurations; (ii) if the semantics of the identified element(s) do not exactly match
the ones needed for the specification of components, connectors, and configura-
tions, extend them properly and define a corresponding UML stereotype(s)5; (iii)
If the semantics of the identified element(s) match exactly, adopt the element(s)
as a part of the core ADL language constructs.

As discussed in the literature [9, 29], various UML modeling elements may be
used to specify an ADL component. The most popular ones are the Class, Com-
ponent, Package, and Subsystem elements. From our point of view, the UML
Component element is semantically far more concrete compared to an ADL
component, as it specifically corresponds to an executable software module. The
UML Class element is often considered as the basis for defining architectural
4 http://www.rational.com. Notice that the use of the Rational Rose tool was mainly

motivated by pragmatic consideration that is the ownership of a license and former
experience with this tool. However, our specific developments may be integrated
within any extensible, UML-based tool that processes XMI files.

5 A UML stereotype is a UML element whose base class is a standard UML element.
Moreover, a stereotype is associated with additional constraints and semantics.

Software Architecture and Dependability 275

components. However, a UML class does not directly support the hierarchical
composition of systems. It is true that the definition of a UML Class may be
composite, consisting of a number of constituent classes. However, the class spec-
ification can not contain the interrelationships among the constituent classes.
Consequently, if an ADL composite component is mapped into a UML class, its
definition may comprise a set of constituent components for which we have no
means to describe the way they are connected through connectors. Technically,
to achieve the previous we would need to define a Package containing the UML
class definitions and a static structure diagram showing how they are connected.
However, packages cannot be instantiated or associated with other packages.
Hence, they are not adequate for specifying ADL components. This leads us to
use the UML Subsystem element to model ADL components. A UML Subsystem
is a subtype of both the UML Package and Classifier element. Hence, it may be
instantiated multiple times, and associated with other subsystems. Precisely, we
define an ADL component as a stereotyped UML Subsystem, that may provide
and require standard UML interfaces. The ADL component stereotype is charac-
terized by a property, named “composite”, which may be true or false, depending
on whether or not a component is built out of other components and connectors.
Moreover, the ADL component stereotype is associated with the dependability
features identified in Tables 1, 2 and 3.

The natural choice for specifying ADL connectors in UML is by stereotyping
the standard UML Association element. A connector role corresponds to an as-
sociation end. Moreover, the distinctive feature of a connector is a non-empty set
of interfaces, named “Interfaces”, representing the specific parts of components’
functionality playing the roles. Each interface out of the set must be provided by
at least one associated component. Equally, each interface out of the set must be
required by at least one associated component. The ADL Connector stereotype
is further characterized by the dependability features identified in Tables 1 and
2.

So far, we considered connectors as associations representing communication
protocols. However, we must not ignore the fact that, in practice, connectors
are built from architectural elements, including components and more primitive
connectors. Taking CORBA for example, a CORBA connector can be seen as a
combination of functionalities of the ORB and of CORBA services (i.e., COSs).
Hence, it is necessary to support hierarchical composition of connectors. At this
point, we face a technical problem: UML Associations can not be composed of
other model elements. However, there exists a standard UML element called
Refinement defined as “a dependency where the clients are derived by the suppli-
ers” [37]. The refinement element is characterized by a property called mapping.
The values of this property describe how the client is derived by the supplier.
Hence, to support the hierarchical composition of connectors, we define a stereo-
type, whose base class is the standard UML Refinement element and is used
to define the mapping between a connector and a composite component that
realizes the connector.

276 Valérie Issarny and Apostolos Zarras

By definition, a configuration specifies the assembly of components and con-
nectors. In UML, the assembly of model elements is specified by a model. The
corresponding semantic element of a model is the standard UML Model ele-
ment, defined as “an abstraction of a modeled system specifying the system from
a certain point of view and at a certain level of abstraction...the UML Model
consists of a containment hierarchy where the top most package represents the
boundary of the modeled system” [37]. Hence, a configuration is actually a UML
model, consisting of a containment hierarchy where the top-most package is a
composite ADL component. The given definition of configuration is weak in that
it enables the description of any architectural configuration provided it complies
with the well-formedness rules associated with the component and connector
elements. This results from our concern of supporting the description of various
architectural styles, which possibly come along with specific ADLs as is the case
with the C2 style [30]. Constraints that are specific to a style are introduced
through the definition of a corresponding extension of the ADL configuration el-
ement, possibly combined with extensions of the ADL component and connector
stereotypes.

The Rational Rose tool allows the definition of user specific add-ins that
facilitate the specification and use of stereotyped elements and their associated
features. Given the aforementioned facility, we implemented an add-in that eases
the specification of architectural descriptions using the stereotypes mentioned
above. Moreover, we use an already existing add-in, which enables generating
XMI textual specifications of architectures specified graphically using the Ratio-
nal Rose tool; these textual specifications serve as input to tools for dependability
and performance analysis [43].

The generation of the XMI textual specifications for dependability analysis
relies on the automated procedure we described in Section 3 (the procedure and
the tools we use for the case of performance are detailed in [43]). The specific
tool we use for dependability analysis is SURE-ASSIST [6]. The tool is properly
customized to accept as input the textual specifications we generate. Then, it
calculates reliability bounds. The tool was selected because it is highly rated
among other reliability tools [10] and because it is available for free. However,
the automated support provided by our environment for dependability analysis
can be coupled with any other tool that accepts as input state space models.

5 The Developer-Oriented Environment in Action

To illustrate the use of our environment for dependability analysis, we employ
an example taken from a case study we investigated in the context of the DSoS
IST project6. The case study is a travel agent system (TA). TA offers services
for flight, hotel, and car reservations. It consists of the integration of different
kinds of existing systems supporting air companies, hotel chains, and car rental
companies. Figure 4 gives a screen shot of the actual architecture of the TA as

6 http://www.newcastle.research.ec.org/dsos

Software Architecture and Dependability 277

Fig. 4. The Architecture of the Travel Agent system.

specified using the UML modeling tool, which we customized. The TA comprises
the TravelAgentFrontEnd component, which serves as a GUI for potential cus-
tomers wanting to reserve tickets, rooms, and cars. The TA further includes the
HotelReservation, FlightReservation, CarReservation components, which accept
as input individual parts of a customer request for hotel, ticket and car reserva-
tion, and translate them into requests for services provided by specific hotel, air
company and car company components. The set of the hotel components is rep-
resented by the Hotels composite component. Similarly, the sets of air company
and car company components are represented by the AirCompanies and Car-
Companies composite components. Two different kinds of connectors are used in
our architecture. The HTTP connectors (e.g., see Figure 4) represent the inter-
action protocol among customers and the TA front end component, and among
components translating requests and existing component systems implementing
Web servers. The RPC connector represents the protocol used among the front
end component and the components that translate requests. Note that multi-
party connectors abstract complex connector realizations, which may actually be
refined into various protocols, depending on the intended behavior. For instance,
the RPC connector may be refined into a number of bi-party connectors as well
as into a complex transactional connector.

278 Valérie Issarny and Apostolos Zarras

The dependability measure we are interested in is reliability. However, the
goal of the analysis is not to obtain precise values of the reliability measure since
this would require to precisely model the Internet. The previous is considered, in
general, as rather unrealistic [8]. For that reason, we concentrate on comparing
different scenarios towards improving the design of our system, while assuming
certain invariants for modeling issues related to the Web. Our objective is to try
to improve the reliability of TA while keeping the cost of the required changes
in the TA system low.

The scenario shown in Figure 5 as a UML collaboration diagram, is a typical
use case of TA. This scenario constitutes the basic service profile used for the
reliability analysis, i.e., the provided scenario is processed for the automatic gen-
eration of the state space model analyzed by the SURE-ASSIST tool. According
to the scenario, one or more customers use an instance, ta, of the TravelAgent-
FrontEnd to request the reservation of a flight ticket, a hotel room and a car.
The ta component instance breaks down such a request into 3 separate requests.
The first one relates to the flight ticket reservation and is sent to an instance,
fr , of the FlightReservation component. The fr component instance uses this
request to generate a new set of requests, each one of which is specific to an
air company that collaborates with the TA system. The set of specific requests
is finally sent to an instance, ac, of the AirCompanies composite component,
which represents the current set of collaborating air companies. Similarly, the
second and the third requests are related to the hotel and the car reservations,
respectively. These requests are sent to instances of the HotelReservation and
CarReservation components, which reproduce them properly and send them to
the current sets of collaborating hotels and car companies.

The component instances used in the scenario may fail to give answers to
customers. Component failures are manifestations of design faults. We assume
that these faults are accidental, created by the component developers. Moreover,
component faults are all permanent and their arrival rates vary depending on
the type of the components. More specifically, the fault arrival rates for the
components that represent component systems supporting hotels, air companies
and car companies are much smaller compared to the faults arrival rates of
the rest of the components that make up the TA system. The reason behind
this is that the component systems supporting hotels, air companies and car
companies have already been in use and their implementations are quite stable.
On the other hand, the TA front end and reservation components are still under
development. The nodes used in our scenario may fail because of permanent
faults. HTTP and RPC connectors may also fail, however, in this case it is more
pragmatic to assume that we deal with temporary faults, which may disappear
with a certain rate. The arrival rates of node faults are much smaller than the
arrival rates of component faults. This holds similarly for the RPC connector.
On the contrary, the HTTP connector is expected to be quite unreliable, with a
failure rate greater than that of the components used in the TA. For illustration,
Figure 5 shows the detailed specification of the reliability stimuli and properties
that are given for the FlightReservation component.

Software Architecture and Dependability 279

Fig. 5. A generic scenario for TA

By taking a closer look at the architecture of the TA system, we can de-
duce that some sort of redundancy is used. In particular, the Hotels, AirCom-
panies and CarCompanies components are composite, consisting of k com-
ponents that represent the dependable systems supporting hotels, air compa-
nies and car companies. The reservation components request from them, room,
ticket and car reservations. For the scenario to be successful, we need answers
from at least one hotel, one air company, and one car company. Hence, Ho-
tels, AirCompanies, and CarCompanies can be seen as ad hoc redundancy
schemas with the following properties: the execution of redundant elements
is parallel (Redundancy.execution = parallel), the number of component and
node faults that can be tolerated is k − 1 (Redundancy.no-comp-faults and
Redundancy.no-node-faults = k − 1).

To further improve the architecture regarding the provided reliability, we
designed three additional redundancy schemas. The first one contains n differ-
ent versions of the HotelReservation component. Upon the instantiation of the
schema, n component instances are created, one of each version. These instances
execute in parallel and are deployed on n different nodes. The second schema
contains n versions of the FlightReservation component, the instances of which
are also deployed on the n nodes, on top of which the instances of the Hotel-
Reservation component execute. Finally, the last schema contains n versions
of the CarReservation component, the instances of which are also deployed on
the nodes used to execute the instances of the HotelReservation component. At

280 Valérie Issarny and Apostolos Zarras

runtime, a customer request is broken down by the instance of the TravelA-
gentFrontEnd component into individual requests for flight ticket, hotel room
and car reservation. Each one of these requests is replicated and sent to all the
redundant instances of the corresponding reservation component. Each instance
of the reservation component translates the request into specific requests for the
corresponding available component systems and sends them. When the instance
of the TravelAgentFrontEnd starts receiving offers for flight tickets, hotel rooms
and cars, it removes identical reply messages and combines them into replies that
are returned to the customer. We tried our scenario for n = 1, 2, 3 redundant
versions. Given the aforementioned scenario, three complete state space models
were generated and analytically solved. The results obtained are summarized
in Figure 6. For further detail about the scenario, including complexity of the
generated state space models, the interested reader is referred to [43].

The main observation we make is that the reliability of TA does increase.
However, the improvement when we use redundant versions is certainly not
spectacular. The explanation for this is simple. In our scenario, the most un-
reliable element used is the HTTP connector. This is the main source causing
the reliability measure to have small values. Any improvement in the rest of the
architectural elements used shall not cover this problem, which unfortunately can
not be easily alleviated. Hence, using multiple versions does not bring much gain.
However, the good news are that regarding the cost of using multiple versions,
we do not lose much. The elements for which we produced multiple versions just
translate TA specific requests into component systems’ specific requests. Since
the functionality of these components is quite simple, re-implementing them
differently (e.g., using different developers) is not a complex, neither a time-
consuming task. Note here that the fact that the functionality of the redundant
components is simple does not mean that there can be no bugs in their imple-
mentation. Actually, mistakes in the mapping of TA requests into component
systems’ specific requests can be quite often. Furthermore, the cost of developing
multiple versions is low since we did not really use any strong synchronization
among the different versions.

Fig. 6. Results produced by the reliability analysis of TA

Software Architecture and Dependability 281

6 Conclusion

Work in the software architecture domain primarily focuses on the standard (as
opposed to exceptional) behavior of the software system. However, it is crucial
from the perspective of system dependability to also account for failure occur-
rences, which impacts all the phases of the software development process, from
the requirements elicitation phase to the deployment phase. In the context of the
research activities of the INRIA ARLES research group7, we have more specif-
ically concentrated on solutions assisting the design and analysis of dependable
distributed software systems.

6.1 Assisting the Analysis of Dependable Systems

In this paper, we presented automated support for the dependability analysis of
software systems at the architectural level. The overall design and realization of
the resulting development environment is guided by the needs of its current and
potential users, imposing the simplification of certain important and inevitable
development activities related to the quality analysis and assurance of depend-
able systems. The quality analysis of systems is traditionally based on methods
and tools that have a strong formal basis. We believe that the proposed en-
vironment brings everyday developers closer to such methods and tools. The
environment relies on an architecture description language for the specification
of dependable systems architectures, which is defined based on UML, a standard
and widely accepted notation for modeling software. Our environment further
provides a certain level of automation that eases the development of traditional
quality models from architectural descriptions. The associated prototype has
been used in the context of the DSoS IST project for the quality analysis of
the Travel Agent system. Part of the analysis was presented here in the form of
demonstrating examples. We further used the basic ideas of our environment in
the context of the C3DS IST8 project for the performance and reliability analysis
of workflow-based dependable systems [41].

6.2 Assisting the Design of Dependable Systems

From the perspective of the system’s design, failures may be handled through
the integration within the system architecture of components and connectors
that provide fault tolerant capabilities. Practically, this means that failures are
handled by an underlying fault-tolerant mechanism (e.g., transparent replica-
tion management) at the middleware level. Such fault tolerance support must
further be coupled with application-specific fault tolerance that relies at least
on an exception handling mechanism, which enables the software developer to
specify the actions to be undertaken under the occurrence of application-specific
and underlying runtime exceptions. We have then carried out research in the
7 http://www-rocq.inria.fr/arles
8 http://www.newcastle.research.ec.org/c3ds/

282 Valérie Issarny and Apostolos Zarras

two following complementary directions towards assisting the architecting of de-
pendable systems:

(i) Systematic aid in the development of middleware architectures for depend-
able systems;

(ii) Architecture-based exception handling.

The use of middleware is the current practice for developing distributed sys-
tems. Developers compose reusable services provided by proprietary or standard
middleware infrastructures to deal with non-functional requirements. However,
developers still have to design and implement middleware architectures com-
bining available services in a way that best fits the application’s requirements.
In order to ease this task, we have customized the environment discussed in
this paper with the following features [18]: (i) an ADL for modeling middle-
ware architectures, (ii) a repository populated with architectural descriptions of
middleware services, and (iii) automated support for composing middleware ar-
chitectures out of available services according to target non-functional properties
whose quality may be assessed both qualitatively and quantitatively.

As previously raised, it is necessary to complement fault tolerance support
provided by the underlying middleware architecture, with support for exception
handling. We have, thus, proposed a solution to architecture-based exception
handling [16], which enhances exception handling implemented within compo-
nents and connectors. Our solution lies in: (i) extending the ADL so as to en-
able the specification of required changes to the architecture in the presence
of failures, and (ii) associated runtime support for enabling resulting dynamic
reconfigurations.

6.3 Perspectives

The above results have been proven successful for assisting the architecting of
dependable distributed systems that are closed, i.e., systems whose components
depend on a single administrative domain and are known at design time. How-
ever, future distributed systems will increasingly be open, which raises new issues
for making them dependable. In this context, we are undertaking research in the
following directions:

(i) Architecting open distributed systems in a way that accounts for mobility,
which requires support for the dynamic composition and quality assessment
of architecture instances;

(ii) Design of fault tolerance mechanisms for open distributed systems consider-
ing that the systems span multiple administrative domains and hence cannot
accommodate locking-based solutions as, e.g., enforced by transactional pro-
cessing [39].

In general, the above calls for new solutions that allow the development of de-
pendable systems that are highly dynamic and hence requires the integration of
adaptive runtime support aimed at enforcing dependability.

Software Architecture and Dependability 283

References

[1] G. Agha. Actors: A Model of Concurrent Computation. MIT Press, 1986.
[2] R. Allen and D. Garlan. Formalizing Architectural Connection. In Proceedings of

the 16th International Conference on Software Engineering, pages 71–80. IEEE,
1994.

[3] M. C. Astley. Customization and Composition of Distributed Objects: Policy Man-
agement in Distributed Software Architectures. PhD thesis, University of Illinois,
1999.

[4] M. C. Astley and G. Agha. Customization and Composition of Distributed Ob-
jects: Middleware Abstractions for Policy Management. In Proceedings of the 6th
International Symposium on the Foundations of Software Engineering, pages 1–9.
ACM-SIGSOFT, November 1998.

[5] M. Barbacci, C. Weinstock, D. Doubleday, M. Gardner, and R. Lichota. DURRA:
A Structure Description Language for Developing Distributed Applications. Soft-
ware Engineering Journal, pages 83–94, March 1993.

[6] R. Butler and W. Ricky. The SURE Approach to Reliability Analysis. IEEE
Transactions on Reliability, 41(2):210–218, June 1992.

[7] P. C. Clements. A Survey of Architecture Description Languages. In Proceedings
of the 8th International Workshop on Software Specification and Design, March
1996.

[8] S. Floyd and V. Paxson. Difficulties in Simulating the Internet. ACM/IEEE
Transactions on Networking, 2001.

[9] D. Garlan, J. Kompanec, and P. Pinto. Reconciling the Needs of Architectural De-
scription with Object-Modeling Notations. In Proceedings of the 3rd International
Conference on the Unified Modeling Language (UML-00), 2000.

[10] R. Geist and K. Trivedi. Reliability Estimation of Fault Tolerant Systems : Tools
and Techniques. IEEE Computer, 23(7):52–61, July 1990.

[11] R. Glass. Software Reliability Guidebook. Prentice-Hall, 1979.
[12] C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Communication

of the ACM, 12(10):576–583, October 1969.
[13] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[14] G. J. Holzmann. The SPIN Model Checker. IEEE Transactions on Software

Engineering, 23(5):279–295, 1997.
[15] V. Issarny. Configuration-Based Programming Systems. In Proceedings of SOF-

SEM’97: Theory and Practice of Informatics, pages 183–200. Springer-Verlag,
November 1997.

[16] V. Issarny and J-P. Banâtre. Architecture-based Exception Handling. In Proceed-
ings of the 34th Hawaii International Conference on System Sciences, 2001.

[17] V. Issarny, C. Bidan, and T. Saridakis. Achieving Middleware Customization
in a Configuration-based Development Environment: Experience with the Aster
Prototype. In Proceedings of the 4th International Conference on Configurable
Distributed Systems, pages 207–214. IEEE, 1998.

[18] V. Issarny, C. Kloukinas, and A. Zarras. Systematic Aid for Developing Middle-
ware Architectures. Communications of the ACM (CACM), 45(6):53–58, 2002.

[19] S. C. Johnson. Reliability Analysis of Large Complex Systems Using ASSIST.
In Proceedings of the 8th Digital Avionics Systems Conference, pages 227–234.
AIAA/IEEE, 1988.

[20] R. Kazman, S. J. Carriere, and S. G. Woods. Toward a Discipline of Scenario-
Based Architectural Engineering. Annals of Software Engineering, 9:5–33, 2000.

284 Valérie Issarny and Apostolos Zarras

[21] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, May 1994.

[22] J-C. Laprie. Dependable Computing and Fault Tolerance : Concepts and Ter-
minology. In Proceedings of the 15th International Symposium on Fault-Tolerant
Computing (FTCS-15), pages 2–11, 1985.

[23] J.-C. Laprie, J. Arlat, C. Beounes, and K. Kanoun. Definition and Analysis of
Hardware and Software Fault-Tolerant Architectures. IEEE Computer, 23(7):39–
51, 1990.

[24] D. C. Luckham and J. Vera. An Event-Based Architecture Definition Language.
IEEE Transactions on Software Engineering, 21(9):717–734, Sept 1995.

[25] M. Klein and R. Kazman and L. Bass and Carriere, S. J. and M. Barbacci and
H. Lipson. Attribute-based architectural styles. In Proceedings of the 1st IFIP
Working Conference on Software Architecture (WICSA-1), pages 225–243, 1999.

[26] J. Magee, N. Dulay, and J. Kramer. Structuring Parallel and Distributed Pro-
grams. In Proceedings of the 1st International Conference on Configurable Dis-
tributed Systems, March 1992.

[27] J. Magee, J. Kramer, and D. Giannakopoulou. Behavior Analysis of Software
Architectures. In Proceedings of the 1st IFIP Working Conference on Software
Architectures (WICSA-1), pages 35–49, 1999.

[28] J. Magee, J. Kramer, and M. Sloman. Constructing Distributed Systems in
CONIC. IEEE Transactions on Software Engineering, 16(5):663–675, June 1989.

[29] N. Medvidovic, D. S. Rosenblum, J. E. Robbins, and D. F. Redmiles. Modeling
Software Architectures in the Unified Modeling Language. ACM Transactions on
Software Engineering and Methodology, (to appear).

[30] N. Medvidovic and R. Taylor. A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software
Engineering, 26(1):70–93, 2000.

[31] R. Milner. A Calculus of Communicating Systems. Cambridge University Press,
1980.

[32] R. Milner. Communicating and Mobile Systems: the pi-calculus. Springer-Verlag,
1999.

[33] M. Moriconi, X. Qian, and A. Riemenschneider. Correct Architecture Refinement.
IEEE Transactions on Software Engineering, 21(4):356–372, April 1995.

[34] G. Myers. Software Reliability - Principles and Practices. John Wiley and Sons,
1976.

[35] NASA. Reliability Block Diagrams and Reliability Modeling. Tech-
nical report, NASA Glenn Research Center, May 1995. http://www-
osma.lerc.nasa.gov/rbd/rbdtut.html.

[36] K. Nguyen and V. Issarny. Demonstration of Support for Architectural Design
for Dependable SoS. CSDA2 report. Available at URL:
http://www.newcastle.research.ec.org/dsos/deliverables.

[37] OMG. UML Semantics 1.3, 1997.
[38] M. Shaw, R. Deline, D. Klein, T. Ross, D. Young, and G. Zelesnik. Abstractions

for Software Architecture and Tools to Support Them. IEEE Transactions on
Software Engineering, 21(4):314–335, 1995.

[39] F. Tartanoglu, V. Issarny, A. Romanovsky, and N. Levy. Architecting Depend-
able Systems, volume 2677 of LNCS, chapter Dependability in the Web Services
Architecture. Springer-Verlag, 2003.

[40] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead, J. E. Robbins,
K. A. Nies, P. Oreizy, and D. L. Dubrow. A Component and Message Based Ar-

Software Architecture and Dependability 285

chitectural Style for GUI Software. IEEE Transactions on Software Engineering,
22(6):390–406, July 1996.

[41] A. Zarras and V. Issarny. Automating the Performance and Reliability Analysis
of Enterprise Information Systems. In Proceedings of the 16th IEEE International
Conference on Automated Software Engineering (ASE’01), 2000.

[42] A. Zarras, C. Kloukinas, and V. Issarny. Architecting Dependable Systems, volume
2677 of LNCS, chapter Quality Analysis of Dependable Systems: A Developer
Oriented Approach. Springer-Verlag, 2003.

[43] A. Zarras, C. Kloukinas, V. Issarny, and K. Nguyen. Initial Results on Ar-
chitectures and Dependable Mechanisms for Dependable SoSs, IC2 report An
Architecture-based Environment for the Development of DSoS. Available at URL:
http://www.newcastle.research.ec.org/dsos/deliverables.

Author Index

Andrade, Luis Filipe 148

Balsamo, Simonetta 207
Bernardo, Marco 207
Bertolino, Antonia 122

Caporuscio, Mauro 52

Emmerich, Wolfgang 63

Fiadeiro, José Luiz 148

Garlan, David 1

Inverardi, Paola 92, 122
Issarny, Valérie 259

Kaveh, Nima 63
Kramer, Jeff 44

Lamsweerde, Axel van 25

Magee, Jeff 44
Muccini, Henry 122
Murphy, Amy L. 182

Picco, Gian Pietro 182

Roman, Gruia-Catalin 182

Simeoni, Marta 207
Stafford, Judith A. 52

Tivoli, Massimo 92

Uchitel, Sebastian 44

Wolf, Alexander L. 52

Zarras, Apostolos 259

	Frontmatter
	Formal Modeling and Analysis of Software Architecture: Components, Connectors, and Events
	From System Goals to Software Architecture
	Software Architecture Modeling \& Analysis: A Rigorous Approach
	The Application of Dependence Analysis to Software Architecture Descriptions
	Validating Distributed Object and Component Designs
	Software Architecture for Correct Components Assembly
	Formal Methods in Testing Software Architectures
	Architecture Based Evolution of Software Systems
	Software Architecture for Mobile Computing
	Performance Evaluation at the Software Architecture Level
	Software Architecture and Dependability
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

