

Bézier and Splines in Image Processing
and Machine Vision

Sambhunath Biswas • Brian C. Lovell

Bézier and Splines in Image
Processing and Machine Vision

Sambhunath Biswas Brian C. Lovell
Indian Statistical Institute The University of Queensland
Kolkata, India Brisbane, Australia

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2007939448

ISBN: 978-1-84628-956-9 e-ISBN: 978-1-84628-957-6

c© Springer-Verlag London Limited 2008

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permit-
ted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored
or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in
the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright
Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

To my late parents, Kali Kinkar Biswas and Niharbala
Biswas, who were always inspiring

Sambhunath Biswas

To my wonderful and supportive wife, Vicki, and my beautiful
daughters, Adeleine, Quetta, and Tess, who were very

understanding during the many hours spent writing this
manuscript, both at home and abroad

Brian C. Lovell

Preface

The rapid development of spline theory in the last five decades—and its wide-
spread applications in many diverse areas—has not only made the subject
rich and diverse, but also made it immensely popular within different research
communities. It is well established that splines are a powerful tool and have
tremendous problem-solving capability. Of the large number of splines discov-
ered so far, a few have established permanent homes in computer graphics,
image processing, and machine vision. In computer graphics, their significant
role is well documented. Unfortunately, this is not really the case in machine
vision, even though a great deal of spline-based research has already been
done in this area. The situation is somewhat better for image processing. One,
therefore, feels the need for something in the form of a report or book that
clearly spells out the importance of spline functions while teaching a course
on machine vision. It is unfortunate that despite considerable searching, not
even a single book in this area was found in the market. This singular fact
provides the motivation for writing this book on splines, with special attention
to applications in image processing and machine vision.

The philosophy behind writing this book lies in the fact that splines are
effective, efficient, easy to implement, and have a strong and elegant mathe-
matical background as well. Its problem-solving capability is, therefore, un-
questionable. The remarkable spline era in computer science started when P.
E. Bézier first published his work on UNISURF. The subject immediately
caught the attention of many researchers. The same situation was repeated
with the discovery of Ingrid Daubechi’s wavelets. Different wavelet splines are
now well known and extensively found in the literature. As splines are rich
in properties, they provide advantages in designing new algorithms and hence
they have wide-scale applications in many important areas. Bézier and wavelet
splines, can, therefore, be regarded as two different landmarks in spline the-
ory with wide application in image processing and machine vision, and this
justifies the title of the book.

In writing this book, therefore, we introduce the Bernstein polynomial
at the very beginning, since its importance and dominance in Bézier spline

VIII Preface

models for curve and surface design and drawing are difficult to ignore. We
omitted the design problems of curves and surfaces because they are dealt with
in almost all books on computer graphics. Some applications in different image
processing areas, based on the Bézier-Bernstein model, are discussed in depth
in Chapters 1, 2, 3, and 4, so that researchers and students can get a fairly
good idea about them and can apply them independently. Chapter 1 provides
a background for Bézier-Bernstein (B-B) polynomial and how binary images
can be viewed, approximated, and regenerated through Bézier-Bernstein arcs.
Chapter 2 explains the underlying concept of graylevel image segmentation
and provides some implementation details, which can be successfully used for
image compression. In Chapter 3 of this book, we will show how one can
use one dimensional B-B function to segment as well as compress image data
points. Chapter 4 depicts image compression in a different way, using two
dimensional B-B function.

B-splines, discussed in Chapter 5, are useful to researchers and students
of many different streams including computer science and information tech-
nology, physics, and mathematics. We tried to provide a reasonably compre-
hensive coverage. Attention has been devoted to writing this chapter so that
students can independently design algorithms that are sometimes needed for
their class work, projects, and research. We have also included applications of
B-splines in machine vision because we believe it also has strong potential in
research. The beta splines discussed in Chapter 6 are relatively new and much
work remains to be done in this area. However, we tried to discuss them as
much as possible and indicated possible directions of further work.

In Chapter 7, discrete splines are discussed, along with the feasibility of
their use in machine vision. The application is appropriate and informative.
It shows how the problem of recovering surface orientations can be solved
through a system of nonlinear equations. Splines in vision is an open area and
much attention needs to be paid for further research work. Wavelet splines
are relatively new, so we took special care to write the theory in a clear,
straightforward way in Chapter 8. To aid in understanding, we used examples
whenever necessary.

Snakes and active contours are explained in Chapter 9, and we discuss
their intimate relationship with mathematical splines. Minimizing snake en-
ergy using both the original calculus of variations method and the dynamic
programming approach are discussed. This chapter also includes problems and
pitfalls drawn from several applications to provide a better understanding of
the subject. Chapter 10, on the other hand, discusses powerful globally opti-
mal energy minimization techniques, keeping in mind the need of students and
researchers in this new and promising area of image processing and machine
vision.

Finally, we believe that this book would help readers from many diverse
areas, as it provides a reasonably good coverage of the subject. We believe this
book can be used in many different areas of image processing and machine
vision. It is our hope that this book differs from many other books, as we

Preface IX

made a considerable effort to make these techniques as easy to understand
and implement as possible. We do hope the reader will agree with us.

Sambhunath Biswas Brian C. Lovell
Indian Statistical Institute The University of Queensland
Kolkata, India Brisbane, Australia
March 2007 March 2007

Acknowledgments

We have freely consulted different books, articles from reputed journals and
conference proceedings, and Ph.D theses. All of them are listed in the bibli-
ography. We gratefully acknowledge all the authors whose contributions we
have used in some minor forms. Among them, we express our sincere ac-
knowledgement to Roberto Cipolla and Andrew Blake for the application of
B-spline in machine vision; Brian Andrew Barsky for beta splines; Cohen, Ly-
che and Risenfeld, David Lee and B.K.P. Horn for some of the properties of
discrete splines and application, respectively. We believe these works are be-
fitting and informative. We extend our acknowledgments to Charles K. Chui
and S. Mallat for inclusion of a few articles on wavelet splines. Chapter 10
outlines a number of research themes currently being pursued within the Intel-
ligent Real-Time Imaging and Sensing Group and National ICT Australia. We
would like to acknowledge the contributions of Terry Caelli, Hugues Talbot,
Peter Kootsookos, and Brian’s current and former students Pascal Bamford,
Ben Appleton, Carlos Leung, David McKinnon, Christian Walder, Stephen
Franklin, and Daniel Walford. We would also like to acknowledge the ANU
Centre for Mental Health for providing the labeled brain images.

Contents

Part I Early Background

1 Bernstein Polynomial and Bézier-Bernstein Spline 3
1.1 Introduction . 3
1.2 Significance of Bernstein Polynomial in Splines 3
1.3 Bernstein Polynomial . 5

1.3.1 Determination of the Order of the Polynomial 6
1.3.2 Bézier-Bernstein Polynomial . 8

1.4 Use in Computer Graphics and Image Data Approximation . . . 9
1.4.1 Bézier-Bernstein Curves . 10
1.4.2 Bézier-Bernstein Surfaces . 13
1.4.3 Curve and Surface Design . 13
1.4.4 Approximation of Binary Images . 14

1.5 Key Pixels and Contour Approximation . 15
1.5.1 Key Pixels . 15
1.5.2 Detection of Inflection Points . 21

1.6 Regeneration Technique . 23
1.6.1 Method 1 . 23
1.6.2 Method 2 . 24
1.6.3 Recursive Computation Algorithm 25
1.6.4 Implementation Strategies . 26

1.7 Approximation Capability and Effectiveness 28
1.8 Concluding Remarks . 31

2 Image Segmentation . 33
2.1 Introduction . 33
2.2 Two Different Concepts of Segmentation 33

2.2.1 Contour-based Segmentation . 34
2.2.2 Region-based Segmentation . 35

2.3 Segmentation for Compression . 35
2.4 Extraction of Compact Homogeneous Regions 36

XIV Contents

2.4.1 Partition/Decomposition Principle for Gray Images 41
2.4.2 Approximation Problem . 43
2.4.3 Polynomial Order Determination . 44
2.4.4 Algorithms . 46
2.4.5 Merging of Small Regions . 47

2.5 Evaluation of Segmentation . 48
2.6 Comparison with Multilevel Thresholding Algorithms 50

2.6.1 Results and Discussion . 51
2.7 Some Justifications for Image Data Compression 52
2.8 Concluding Remarks . 55

3 1-d B-B Spline Polynomial and Hilbert Scan for Graylevel
Image Coding . 57
3.1 Introduction . 57
3.2 Hilbert Scanned Image . 58

3.2.1 Construction of Hilbert Curve . 58
3.3 Shortcomings of Bernstein Polynomial and Error of

Approximation . 63
3.4 Approximation Technique . 64

3.4.1 Bézier-Bernstein (B-B) Polynomial 64
3.4.2 Algorithm 1: Approximation Criteria of f(t) 65
3.4.3 Implementation Strategy . 67
3.4.4 Algorithm 2 . 69

3.5 Image Data Compression . 70
3.5.1 Discriminating Features of the Algorithms 71

3.6 Regeneration . 72
3.7 Results and Discussion . 73
3.8 Concluding Remarks . 81

4 Image Compression . 83
4.1 Introduction . 83
4.2 SLIC: Subimage-based Lossy Image Compression 84

4.2.1 Approximation and Choice of Weights 88
4.2.2 Texture Coding . 90
4.2.3 Contour Coding . 91

4.3 Quantitative Assessment for Reconstructed Images 95
4.4 Results and Discussion . 98

4.4.1 Results of SLIC Algorithm for 64 X 64 Images 99
4.4.2 Results of SLIC Algorithm for 256 X 256 Images 101
4.4.3 Effect of the Increase of Spatial Resolution on

Compression and Quality . 103
4.5 Concluding Remarks . 106

Contents XV

Part II Intermediate Steps

5 B-Splines and Its Applications . 109
5.1 Introduction . 109
5.2 B-Spline Function . 110

5.2.1 B-Spline Knot Structure for Uniform, Open Uniform,
and Nonuniform Basis . 110

5.3 Computation of B-Spline Basis Functions 112
5.3.1 Computation of Uniform Periodic B-spline Basis 113

5.4 B-Spline Curves on Unit Interval . 114
5.4.1 Properties of B-Spline Curves . 117
5.4.2 Effect of Multiplicity . 117
5.4.3 End Condition . 117

5.5 Rational B-Spline Curve . 118
5.5.1 Homogeneous Coordinates . 118
5.5.2 Essentials of Rational B-Spline Curves 120

5.6 B-Spline Surface . 121
5.7 Application . 121

5.7.1 Differential Invariants of Image Velocity Fields 121
5.7.2 3D Shape and Viewer Ego-motion 123
5.7.3 Geometric Significance . 124
5.7.4 Constraints . 125
5.7.5 Extraction of Differential Invariants 127

5.8 Recovery of Time to Contact and Surface Orientation 129
5.8.1 Braking and Object Manipulation 129

5.9 Concluding Remarks . 130

6 Beta-Splines: A Flexible Model . 133
6.1 Introduction . 133
6.2 Beta-Spline Curve . 133
6.3 Design Criteria for a Curve . 136

6.3.1 Shape Parameters . 138
6.3.2 End Conditions of Beta Spline Curves 138

6.4 Beta-Spline Surface . 141
6.5 Possible Applications in Vision . 142
6.6 Concluding Remarks . 142

XVI Contents

Part III Advanced Methodologies

7 Discrete Splines and Vision . 145
7.1 Introduction . 145
7.2 Discrete Splines . 145

7.2.1 Relation Between αi,k and Bi,k, k > 2. 148
7.2.2 Some Properties of αi,k(j) . 151
7.2.3 Algorithms . 152

7.3 Subdivision of Control Polygon . 154
7.4 Smoothing Discrete Splines and Vision . 155
7.5 Occluding Boundaries and Shape from Shading 155

7.5.1 Image Irradiance Equation . 156
7.5.2 Method Based on Regularization . 157
7.5.3 Discrete Smoothing Splines . 157
7.5.4 Necessary Condition and the System of Equations 158
7.5.5 Some Important Points About DSS 159

7.6 A Provably Convergent Iterative Algorithm 159
7.6.1 Convergence . 160

7.7 Concluding Remarks . 161

8 Spline Wavelets: Construction, Implication, and Uses 163
8.1 Introduction . 163
8.2 Cardinal Splines . 164

8.2.1 Cardinal B-Spline Basis and Riesz Basis 167
8.2.2 Scaling and Cardinal B-Spline Functions 170

8.3 Wavelets . 172
8.3.1 Continuous Wavelet Transform . 172
8.3.2 Properties of Continuous Wavelet Transform 173

8.4 A Glimpse of Continuous Wavelets . 174
8.4.1 Basic Wavelets . 174

8.5 Multiresolution Analysis and Wavelet Bases 176
8.6 Spline Approximations . 179

8.6.1 Battle-Lemarié Wavelets . 181
8.7 Biorthogonal Spline Wavelets . 182
8.8 Concluding Remarks . 184

9 Snakes and Active Contours . 187
9.1 Introduction . 187

9.1.1 Splines and Energy Minimization Techniques 187
9.2 Classical Snakes . 189
9.3 Energy Functional . 190
9.4 Minimizing the Snake Energy Using the Calculus of Variations 194
9.5 Minimizing the Snake Energy Using Dynamic Programming . . 196
9.6 Problems and Pitfalls . 207

Contents XVII

9.7 Connected Snakes for Advanced Segmentation 207
9.8 Conclusions . 211

10 Globally Optimal Energy Minimization Techniques 213
10.1 Introduction and Timeline . 213
10.2 Cell Image Segmentation Using Dynamic Programming 214
10.3 Globally Optimal Geodesic Active Contours (GOGAC) 219

10.3.1 Fast Marching Algorithm . 221
10.4 Globally Minimal Surfaces (GMS) . 224

10.4.1 Minimum Cuts and Maximum Flows 225
10.4.2 Development of the GMS Algorithm 227
10.4.3 Applications of the GMS Algorithm 229

10.5 Conclusions . 233

References . 235

Index . 245

Part I

Early Background

1

Bernstein Polynomial and Bézier-Bernstein
Spline

1.1 Introduction

Bernstein polynomial, its significance, different properties, and detection of its
order for approximation of a data set, are very important and useful as a first
course material to study splines. In fact, Bernstein polynomial can be thought
of as the gateway to splines, namely the Bézier spline. Its strong relation with
the Bézier spline can, in no way, be forgotten. Bézier polynomial can be made
to act in either of these ways: as a spline or as a non-spline. When it acts as
a spline, it does piecewise approximation of a data set with some smoothness
conditions satisfying at the break points, but when it acts as a non-spline to
approximate, it does not take into consideration the smoothness conditions
to satisfy at the break points. Readers interested in details of Bernstein poly-
nomial may consult any standard text book on mathematics. Bézier curves,
on the other hand, show how their geometry is influenced by Bernstein poly-
nomials. As Bézier curves and surfaces are driven by Bernstein basis, they
can also be thought of, respectively, the Bernstein polynomial pieces of curves
and surfaces. P. E. Bézier, a French designer in the automobile industry for
Rénault, suggested a revolutionary concept for the interactive design of curves
and surfaces. He suggested that these curves behave exactly the same way as
humans do until satisfaction reaches a maximum. For this, he artfully incor-
porated [22] the Bernstein basis and some control points in his design. This
concept of control points and their positioning play the most significant and
vital role in his interactive design mechanism.

1.2 Significance of Bernstein Polynomial in Splines

Bernstein polynomial is well known in the mathematical theory of function
approximation. It can be used to approximate known, as well as unknown,
functions with any desired degree of accuracy. Besides, this polynomial pos-
sesses a number of significant properties that have made it attractive to many

4 1 Bernstein Polynomial and Bézier-Bernstein Spline

researchers for its use in diverse areas. The success behind the efficient ap-
plications of this polynomial in many fields has also made it widely popular.
The basic philosophy behind the Bernstein polynomial approximation is that
this polynomial is very convenient to free-form drawing. In fact, some of the
properties of this polynomial are so attractive that no sooner than the tech-
nique was published by Bézier, it became widely popular in many industries.
In order to design the body of an automobile, Bézier developed a spline model
that became the first widely accepted spline model in computer graphics and
computer-aided design, due to its flexibility and ease over the then-used draw-
ing and design techniques. Since Bézier used the Bernstein polynomial basis
as the basis function in his spline model, the justification of the name “Bézier-
Bernstein” spline immediately applies and hence, the Bernstein basis domi-
nates the performance of the Bézier spline. This model, therefore, helps to
design and draw smooth curves and surfaces of different shapes and sizes,
corresponding to different arbitrary objects, based on a set of control points.

Bézier spline model, though is extensively used for free-form drawing, can
also be used to approximate data points originated from different functions.
The problem of function approximation is essentially the problem of estima-
tion of control points from a data set. Drawing and function approximation
are essentially different in nature, though approximation is done in both cases.
In the curve and surface design, approximation error is not of prime concern.
Visual effect or the aesthetics of the shape of the object is the sole objective.
So, one should observe how accurately a drawn object depicts the shape of
its corresponding target object. Notice that Bézier spline-based drawing tech-
nique starts from the zeroth order Bernstein approximation (which is exactly
the line drawing between control points) of the data points and goes to some
higher order (quadratic or cubic) approximation, until it mimics the shape
of the object. Step by step through interactions, a designer can make nec-
essary corrections to achieve perfection in shape of the object. On the other
hand, in a data approximation problem, we justify the approximation by the
error in approximation. This is a purely mathematical problem where we are
in no way concerned with the graphics involved behind the approximation.
Furthermore, if the data set corresponds to a graylevel image, the error in
approximation becomes subjective. We accept small or large error depending
on the nature of applications. Such an approximation of image data points is
useful in compression and feature extraction.

The concept of control points in Bézier-Bernstein spline is implicit in the
definition of the Bernstein polynomial and it was Bézier who made it explicit.
Later on, the concept of control points was generalized to knots in B-spline
to keep the interaction locally confined, so that the global shape of curves
and surfaces is least affected. The generalization, therefore, introduces more
drawing flexibility in the B-spline model.

1.3 Bernstein Polynomial 5

1.3 Bernstein Polynomial

Bernstein polynomial approximation of degree p to an arbitrary real valued
function f(t) is

Bp[f(t)] =
p∑

i=0

f(
i

p
)φip(t) 0 ≤ t ≤ 1, (1.1)

where the function φ is the Bernstein basis function. The ith basis function is
precisely given by

φip(t) =
(

p

i

)
ti(1 − t)p−i, i ∈ [0, p]. (1.2)

Some of the elementary properties of φip(t) are:

(1) ∀i ∈ [0, p]: φip ≥ 0; ∀t ∈ [0, 1] :
p∑

i=0

φip(t) = 1.

(2) ∀i ∈ [1, p − 1]: φ0p(0) = 1; φ
(i)
ip (0) = p!

(p−i)! .

∀r ∈ [0, i − 1] : φ
(r)
ip (0) = 0; ∀s ∈ [0, p − i − 1] : φ

(s)
ip (1) = 0.

(3) ∀r ∈ [0, p − 1]: φ
(r)
pp = 0; φpp(1) = 1.

(4) φ
(p−i)
ip (1) = (−1)p−i p!

(p−i)! .
(5) φip(i

p) =
(
p
i

)
ii(p − i)(p−i) > φip(t) if t �= i

p .
Properties (2) and (3) imply that the end point values, f(0) and f(1),

are the only values that are interpolated by the Bernstein polynomial. From
the condition for φip(t) listed above, the end-point derivatives of Bp can be
obtained as follows:

dr

dtr
Bip[f(t)]|t=0 =

p!
(p − r)!

r∑

i=0

(−1)r−i

(
r

i

)
f(

i

p
) (1.3)

and,
dr

dtr
Bip[f(x)]|t=1

p!
(p − r)!

r∑

i=0

(−1)i

(
r

i

)
f(

p − i

p
). (1.4)

Hence, the rth derivative at the end points, t = 0 and t = 1, is determined by
the values of f(t) at the respective end point and at the r points nearest to
that end point. Specifically, the first derivatives are equal to the slope of the
straight line joining the end point and the adjacent interior point.

Bernstein polynomials satisfy the Weierstrass approximation theorem, i.e.,
they converge uniformly, with increasing p, to the function they approximate.
Also, Bp(f(t)) is smoother than f itself if smoothness is measured in terms of
the number of oscillations about a given straight line. Despite all these inter-
esting features, Bernstein polynomials are never widely used to approximate
the minimal norm. This is because they converge very slowly to the uniform
norm.

6 1 Bernstein Polynomial and Bézier-Bernstein Spline

1.3.1 Determination of the Order of the Polynomial

To judiciously fit a Bernstein curve over a set of data points, we need to know
the order of the polynomial. Once the order is known, one can fit a curve
over the data points using any standard method. We shall present here a
classical approach to determine the order of the polynomial to approximate a
one dimensional function. Extension to two or higher dimensions is not very
difficult. We shall later consider a relatively simple approach to determine
the order of a Bézier-Bernstein polynomial for approximating image intensity
(pixels) values.

Let f(t) be defined and finite on the closed interval [0, 1]. The Bernstein
polynomial [113] of degree p for the function f(t) is

Bkp(t) =
p∑

k=0

(
p

k

)
f(k/p)tk(1 − t)p−k. (1.5)

Since f(t) is continuous on [0, 1], it is uniformly continuous, i.e., for every ε > 0
there will exist a δ > 0 such that |f(t1) − f(t2)| < ε whenever |t1 − t2| < δ.
Let us select an arbitrary t on [0, 1]. Then

f(t) =
p∑

k=0

f(t)
(

p

k

)
tk(1 − t)p−k

since
p∑

k=0

(
p

k

)
tk(1 − t)p−k = 1.

Hence,

| Bkp(t) − f(t) | = |
p∑

k=0

(f(k/p) − f(t))
(

p

k

)
tk(1 − t)p−k |

≤
p∑

k=0

| f(k/p) − f(t) |
(

p

k

)
tk(1 − t)p−k.

(1.6)

Now we divide the set of integers 0, 1, 2, · · · into two sets A and B according
to the following rule: an integer k ∈ A if | k/p − t | < δ, k is in B otherwise.
Therefore, the sum on the right of the equation (1.6) can be broken into two
different sums, one for each of the two sets A and B.

If k is in A, we have according to the definition of δ

| f(k/p) − f(t) | < ε.

Therefore,

1.3 Bernstein Polynomial 7

∑

k∈A

| f(k/p) − f(t) |
(

p

k

)
tk(1 − t)p−k < ε

∑

k∈A

(
p

k

)
tk(1 − t)p−k

< ε

p∑

k=0

(
p

k

)
tk(1 − t)p−k

< ε,

(1.7)

since the extended sum is unity.
Let us now estimate the second sum where k is in set B. Since f is

continuous and [0, 1] is compact, there is an Mt such that |f(t)| ≤ Mt.
Mt = |f(t)|max, 0 ≤ t ≤ 1. So, we get | f(k/p) − f(t) | ≤ 2Mt consider-
ing the worst case (when f(k/p) = −f(t) or when f(k/p) and f(t) are of
opposite sign). Therefore,

∑

k∈B

| f(k/p) − f(t) |
(

p

k

)
tk(1 − t)p−k ≤ 2Mt

∑

k∈B

(
p

k

)
tk(1 − t)p−k.

If k is in B, then (k/p − t)2 ≥ δ2 or (k−pt)2

p2δ2 ≥ 1. Now one can prove the
identity

p∑

k=0

(k − pt)2
(

p

k

)
tk(1 − t)p−k ≤ p

4
. (1.8)

Using equation (1.8), we can show that

∑

k∈B

(
p

k

)
tk(1 − t)p−k ≤

p∑

k=0

(k − px)2

p2δ2

(
p

k

)
tk(1 − t)p−k.

The second sum is, therefore,

∑

k∈B

|f(k/p) − f(t)|
(

p

k

)
tk(1 − t)p−k

≤ 2Mt

p2δ2

∑

k∈B

(k − pt)2
(

p

k

)
tk(1 − t)p−k

≤ 2Mt

p2δ2

p∑

k=0

(k − pt)2
(

p

k

)
tk(1 − t)p−k

≤ 2Mt

p2δ2
p
4

= Mt

2pδ2 .

(1.9)

Considering equations (1.6), (1.7), and (1.9) ∀t ∈ [0, 1] we can write,

| Bkp(t) − f(t) | ≤ ε +
Mt

2pδ2
.

Therefore, | Bkp(t) − f(t) | < 2ε whenever Mt

2pδ2 < ε. Thus, we get,

8 1 Bernstein Polynomial and Bézier-Bernstein Spline

p >
Mt

2εδ2
. (1.10)

From equation (1.10) it is clear that 2ε is the error for a given approximation.
So, once we choose the error for an approximation, ε then corresponding to
this ε, we can search the data set and determine δ and hence the order of the
polynomial. For two dimensions, the extension is straightforward.

Example

Approximate f(t) = 1
1+t with a Bernstein polynomial for which |Bp(t) −

f(t)| < 0.9.
We have,

| Bkp(t) − f(t) | < 2ε whenever Mt

2pδ2 < ε. Thus, we can write,
| 1
1+t̄ − 1

1+t | < 0.45 whenever |t̄ − t| < 2
3 . So we consider δ = 2

3 . Also, from
equation (1.10),

Mt

2εδ2
<

1
2(0.45)(2/3)2

= 2.5.

Since, p > Mt

2εδ2 we can choose, p = 3 (considering the nearest integer).
Hence,

B3(t) =
3∑

i=0

(
3
i

)
f(

i

3
) ti(1 − t)3−i

= (1 − t)3 + 9/4 t(1 − t)2 + 9/5 t2(1 − t),

is the required polynomial. Here, f(0) = 1, f(1/3) = 3/4, f(2/3) = 3/5 and
f(1) = 1/2).

1.3.2 Bézier-Bernstein Polynomial

The elementary properties of the Bernstein polynomial show that during ap-
proximation of a data set, having some ordered representative points f(i

p),
the approximating polynomial always remains confined within the convex hull
of the representative points of the data set. The polynomial interpolates the
end points of the ordered representative set of points. All other points are
approximated by the polynomial.

Bézier-Bernstein polynomial (BBP) of degree p is mathematically defined
as

P (t) =
p∑

i=0

φip(t)Vi 0 ≤ t ≤ 1.

The polynomial is based on the Bernstein basis or the blending function, given
by

φip(t) =
(

p

i

)
ti(1 − t)p−i, i ∈ [0, p].

1.4 Use in Computer Graphics and Image Data Approximation 9

φip is the ith basis function of order p. Vi, for i = 0, 1, · · · p defines a polygon
known as the Bézier control polygon. Bézier based his approximation method
on the classical Bernstein polynomial approximation. The Bernstein polyno-
mial approximation of degree p to an arbitrary real valued function f(t) is

Bip[f(t)] =
p∑

i=0

f(
i

p
)φip(t) 0 ≤ t ≤ 1.

Bézier’s approach, therefore, specifies a well-ordered set of points, say p+1 in
number to do the approximation. These points {Vi, i = 0, 1, · · · p} define a p-
sided polygon that is well suited to the problem of interactive design of smooth
free-form curves. Changing the values of Vi changes the polygon and hence,
changes the shape of the curve. Thus, the shape of the curve is controlled
through the shape of the polygon. In two dimensions, B-B polynomial repre-
sents a surface patch or a piece of a surface. The free-form drawing of curves
and surfaces is very useful in computer graphics. The ordered representative
points f(i/p) in equation (1.1) in the approximation mode are, therefore, the
guiding or control points in the design mode for curves.

Some Properties

One dimensional Bézier-Bernstein polynomial represents a curve that can be
generated from a set of ordered representative points, called the control points
or the guiding points. The line joining these control points is called the control
line of the polynomial. It reflects the shape of the curve that one wants to
draw or generate. Such curves have the following attractive properties:

• They always interpolate the end control points, and the line joining two
consecutive points at either end is a tangent to the curve at that end point.

• They remain always enclosed within the convex hull defined by the control
points.

• They have the variation diminishing property, i.e., they do not exhibit any
oscillating behavior about any line more often than a sequence of lines
joining the control points.

• They have the axis independence property, i.e., the drawing of the curve
does not depend on any axis.

• They are affine invariant.
• Determination of the polynomial order in drawing a curve is easy and

straightforward. It is always one less than the number of vertices of the
control polygon.

1.4 Use in Computer Graphics and Image Data
Approximation

Due to the attractive properties of the Bézier-Bernstein polynomial, one can
successfully use them in both computer graphics and image data approxima-

10 1 Bernstein Polynomial and Bézier-Bernstein Spline

tion. Their use in computer graphics is well known, while the use in image data
approximation for image compression or feature extraction is challenging. We
shall discuss the efficiency of the polynomial in each area. Before doing that,
we shall elaborate on Bézier curves.

1.4.1 Bézier-Bernstein Curves

This class of curves was first proposed by Bézier [22, 17]. The parametric form
of the curves is

X = Px(t) (1.11)

Y = Py(t). (1.12)

Let (x0, y0), (x1, y1) · · · (xp, yp) be (p + 1) ordered points in a plane. The
Bézier curve associated with the polygon through the aforementioned points
is the vector valued Bernstein polynomial and is given by

Px(t) =
p∑

i=0

φip(t) xi (1.13)

Py(t) =
p∑

i=0

φip(t) yi (1.14)

where φip(t)s’s are the binomial probability density function of (1.2). In the
vector form, equation (1.13) and equation (1.14) can be written as

P (t) =
p∑

i=0

φip(t) Vi. (1.15)

The points V0, V1, · · · , Vp are known as the guiding points or the control points
for the curve P(t). From equation (1.15) it is seen that

P (0) = V0 and P (1) = Vp.

Thus, the average of t significantly extends from 0 to 1. The derivative of P (t)
is

P
′
(t) = −p(1 − t)p−1

v0 +
p−1∑

i=1

(
p

i

)
{iti−1(1 − t)p−i

−(p − i)ti(1 − t)p−i−1}Vi + ptp−1vp.

Now P
′
(0) = p(V1 − V0) and P ′(1) = p(Vp − Vp−1). Thus the Taylor series

expansion near zero is

P (t) = P (0) + tP
′
(0) + higher order terms of t

= V0(1 − pt) + · · ·

and an expansion near one is

1.4 Use in Computer Graphics and Image Data Approximation 11

P (t) = P (1) − (1 − t)P
′
(1) + higher order terms of t

= Vp{1 − p(1 − t)} + p(1 − t)Vp−1.

We observe that as t → 0, the Bézier polynomial lies on the line joining V0 and
V1, and for t → 1 on the line joining Vp−1 and Vp. This concludes that these
lines are tangents to the curve P(t) at V0 and Vp. one can choose, therefore,
the end control points in such a way that that they lie on a straight line.
Hence, two pieces of curves can be easily drawn to maintain continuity at
their joining point, and as a result, this provides effectively a single spline
curve. For the B-B basis function in the model, the spline curve so obtained
is known as B-B spline curve and the underlying spline function is known as
the B-B spline or simply the Bézier spline.

Since
p∑

i=0

φip(t) = 1, the Bézier curve lies inside the convex hull defined

by the control points. For cubic Bézier curve, p = 3. The control polygon
corresponding to p = 3 consists of four control vertices, namely, V0, V1, V2, V3,
and the Bézier curve is

P (t) = (1 − t)3V0 + 3t(1 − t)2V1 + 3t2(1 − t)V2 + t3V3. (1.16)

The Bernstein basis functions in this case are as follows:
φ03(t) = 1 − t3 = 1 − 3t2 + 3t − t3

φ13(t) = 3t(1 − t)2 = 3t − 6t2 + 3t3

φ23(t) = 3t2(1 − t) = 3t2 − 3t3

φ33(t) = t3.
Though the cubic Bézier curve is widely used in computer graphics [133],

one can use, as well, its quadratic version to speed up the procedure, without
degrading the quality of drawing. For a quadratic Bézier curve, p = 2 and the
control polygon consists of three points. The Bernstein basis in this case are

φ02(t) = (1 − t)2 = 1 − 2t + t2

φ12(t) = 2(1 − t)t = 2t − 2t2

φ22(t) = t2.
In the polynomial form, the Bézier curve is

P (t) = t2(V0 + V2 − 2V1) + t(2V1 − 2V0) + V0. (1.17)

This is a second degree polynomial and can be computed much faster than in
Horner’s process [133].

One should note that for a cubic Bézier curve, the basis function φ13

attains its maximum at t = 1
3 and the maximum value is

φ13(
1
3
) =

4
9
, (1.18)

while φ23 has the maximum at t = 2
3 with

φ23(
2
3
) =

4
9
. (1.19)

12 1 Bernstein Polynomial and Bézier-Bernstein Spline

Figure 1.1 shows the behavior of the basis functions for different values of the
parameter t ∈ [0, 1], for cubic Bézier-Bernstein polynomial.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

φ 3,
 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t

φ 3,
 1

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t

φ 3,
 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

φ 3,
 3

(c) (d)

Fig. 1.1. Behavior of the basis functions for cubic B-B curve.

Consider the equation of a Bézier curve in a matrix form for compact
representation. For a cubic curve, we have

P (t) =
(
(1 − t)3 3t(1 − t)2 3t2(1 − t) t3

)

⎛

⎜⎜⎝

V0

V1

V2

V3

⎞

⎟⎟⎠ . (1.20)

This can be written as

P (t) =
(
t3 t2 t 1

)

⎛

⎜⎜⎝

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

V0

V1

V2

V3

⎞

⎟⎟⎠

=
(
T
) (

C
) (

V
)
.

(1.21)

Cohen and Risenfeld [42] have generalized this representation to

P (t) =
(
T
) (

C
) (

V
)

1.4 Use in Computer Graphics and Image Data Approximation 13

where (T) = (tp, tp−1, · · · 1),

(C) =

⎛

⎜⎜⎜⎜⎜⎜⎝

(
p
0

) (
p
p

)
(−1)p (

p
1

)(
p−1
p−1

)
(−1)p−1 · · ·

(
p
p

)(
p−p
p−p

)
(−1)0(

p
0

)(
p

p−1

)
(−1)p−1

(
p
1

)(
p−1
p−2

)
(−1)p−2 · · · 0

...
...

...
...(

p
0

)(
p
1

)
(−1)1

(
p−1
0

)
(−1)0 · · · 0(

p
0

)(
p
0

)
(−1)0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎠
(1.22)

and (V)T is (V0, V1 , V2, · · ·Vp).

1.4.2 Bézier-Bernstein Surfaces

A Bézier-Bernstein surface is a tensor product surface and is represented by
a two-dimensional Bézier-Bernstein (B-B) polynomial. If we designate the
surface patch by S(u, v), then

S(u, v) =
p∑

i=0

q∑

j=0

φip(u)φjq(v)Vij , (1.23)

where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. Vij is the (i,j)th control point. φip is the
ith basis Bernstein basis function of order p and φjq is the Bernstein basis of
order q. When p �= q, the Bézier-Bernstein surface is defined on a rectangular
support. This support becomes a square for p = q. Thus, for p = 3 and q = 3,
we get a bicubic surface on a square support.

All the properties mentioned for 1-d B-B curves also hold for 2-d B-B
surfaces. Once again, for selection of control points for two pieces of a surface,
it is possible to draw a single piece of a spline surface.

1.4.3 Curve and Surface Design

One dimensional Bézier-Bernstein splines are used to design curves. To draw
a curve with a definite shape, a designer inputs a set of ordered control points,
which when joined in succession, produces the polygonal shape corresponding
to the shape of the object that the designer wants to draw. The designer refines
the shape, changing a few control points, through adequate interaction. Figure
1.2 shows two important cubic curves.

A 2-d Bézier spline is used to design a surface. The control points in this
case define a control polygonal surface, which upon interactive refinement pro-
duces a desired surface. However, a quadratic spline provides some advantage
from the computational point of view. For actual drawing, interested readers
can consult books on computer graphics.

We now discuss the problem of data approximation in relation to binary
image approximation and reconstruction.

14 1 Bernstein Polynomial and Bézier-Bernstein Spline

20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160
70

75

80

85

90

95

100

Fig. 1.2. Cubic Bézier-Bernstein curves.

1.4.4 Approximation of Binary Images

Data approximation, for binary images, based on Bézier-Bernstein spline
model is the inverse of drawing mechanism used in computer graphics. So,
instead of supplying the control points from outside, they are extracted from
within images. The extraction, in general, uses the local geometry. As the con-
trol points are viewed as key pixels [26], i.e., knots on the discrete boundary
of objects in the discrete image plane, they are extracted using local discrete
geometry.

Image boundaries, in general, have many discontinuities and we need to
preserve them during an approximation so that the approximated version of
an image boundary does not appreciably change from its original one. It is,
therefore, wise to carry out the polynomial approximation instead of poly-
nomial spline approximation. The main reason is that we do not want to
incorporate smoothness at points where two pieces of boundary segments join
in. Smoothness can appreciably change the shape of a boundary and as a
result, the underlying image may change noticeably. For successful approxi-
mation, one can search for a set of key pixels on contours and, based on them,
decompose the contour into a set of arcs and line segments. Regeneration of
an arc may use vertices of the corresponding Bézier characteristic triangle.
It is possible to eliminate one of the vertices and use an intercept instead.
Regeneration for straight line segments may use Bresenham’s algorithm [29]
and Bézier method for generation of arc segments. For regeneration, key pix-
els are considered to be the guiding or control pixels, and their locations are,
therefore, in no way disturbed. This maintains the basic definition or shape
of image boundaries (binary image). To preserve them and to maintain the
connectivity property, sometimes we may need some intermediate operations
(e.g., deletion and shifting of undesirable pixels, generated by Bézier approx-
imation, and insertion of new pixels).

Difference in area as well as the compactness between the input and output
versions of an image may serve as a measure for regeneration error.

1.5 Key Pixels and Contour Approximation 15

Bresenham’s Algorithm

Given two end points, restricted to an octant, Bresenham’s algorithm [29]
for generating points for a straight line segment between them checks the
proximity of the actual line to the desired grid location. Let (x1, y1) and
(x2, y2) be the two points through which a discrete straight line segment is
needed. Intercept of the line segment with the line at x = x1+1, x1+2, · · · , x2

is first considered. If the intercept with the line at x = x1 + 1 is closer to the
line at y = y1 + 1, then the point (x1 + 1, y1 + 1) better approximates
the line segment in question than the point (x1 + 1, y). This means if the
intercept is greater than or equal to half the distance between (x1 +1, y) and
(x1 +1, y1 +1), then the point (x1 +1, y1 +1) is selected for approximation;
otherwise, the point (x1 +1, y) is selected. Next, intercept of the line segment
with the line at x = x1 +2 is considered, and the same logic is applied for the
selection of points.

Now instead of finding the intercept, an error term e is used for the se-
lection purpose. Initially, e = − 1

2 , and the initial point (x1, y1) is selected.
The slope of the line, �y

�x , is added to e, and the sign of the current value of
e = e+ �y

�x is tested. If it is negative, then the point is selected along the hor-
izontal line, i.e., x is incremented by one and y remains the same. The error
term is then updated by adding the slope to it. However, if the error term is
positive (or two) then the point is selected along the vertical line, i.e., both x
and y are incremented by one. The error term is then updated by decreasing
it by one. For integer calculation, e is initialized to e = 2�y − �x because
2�y −�x = 2e�x = e(say). The flow chart as shown in Figure 1.3 provides
details of the algorithm for the first octant.

1.5 Key Pixels and Contour Approximation

1.5.1 Key Pixels

In the analytic plane, contours of an object may exhibit sharp maxima and
minima, and we can detect these points almost accurately without much dif-
ficulty. However, when a contour is digitized in a two dimensional array space
of M×N points or pels or pixels, the sharpness in the curvature of the contour
is destroyed due to the information loss inherent in the process of digitization.
The error is known as the digitization error. Consequently, it becomes rather
difficult and complicated to estimate the points of maxima and minima. We
can always seek an approximate solution to this problem. We define a set of
pixels and call them key pixels, which are close to the points of maxima and
minima.

Consider, for example, a function f(x) in the discrete plane. When f(x) is
constant in an interval [k1, k2], the corresponding function fa(x) may exhibit

16 1 Bernstein Polynomial and Bézier-Bernstein Spline

End

No

P l o t (X , Y)

Yes

No

1

2

2

Y Y

X X 1

Start

i 1

i > Δ X
Yes

X X + 1

i i + 1
e + 2 YΔ

,

e < 0 e

e e + 2 X Δ

X Y + 1

X - X 1
Y Y - YΔ 1
e

XΔ

Δ2 Y - X Δ

Fig. 1.3. Flow chart for Bresenham’s algorithm in the first octant.

local maxima and minima (or a global maximum or minimum) anywhere
within the interval as shown in Figures 1.4(a) and 1.4(b).

If we get pixels either directly connected or outward-corner connected to
the end pixels of the interval [k1, k2] such that both the values f(x) at these
pixels are larger or smaller than its value in the interval, then we assume
a maximum or minimum to exist at the midpoint of the interval, i.e., at
x = (k1 + k2)/2 if (k1 + k2), is even and at x = (k1 + k2 + 1)/2 if (k1 + k2),
is odd. Consider this point or pixel in the discrete plane to be a key pixel.
Another example for the existence of a key pixel is depicted in Figure 1.5 for
which f(x) is not constant over an interval.

1.5 Key Pixels and Contour Approximation 17

Definition

A function f(x), constant in [k1, k2], in the discrete plane is said to have a
key pixel P at x = c (where c = (k1+k2)/2 or (k1+k2+1)/2 corresponding
to even and odd values of (k1 + k2)) provided δ1, δ2 ∈ {0, 1} exist such that
in both the intervals [(k1 − δ1), k1] and [k2, (k2 + δ2)] either f(c) > f(x)
or f(c) < f(x) when k1 = k2 = c; the definition is applicable for Figure
1.5 where δ1 = δ2 = 1. Note that the foregoing definition corresponds to
Figures 1.4 and 1.5, where key pixels lie on a horizontal sequence of pixels
for the interval [k1, k2] of x. Similarly, key pixels can also be defined for a
vertical sequence of pixels for the interval [k1, k2] of y.

Contour Approximation

Let k1, k2, · · · , kp be P key pixels on a contour. The segment (geometrical
entity, GE) between two key pixels can be classified as either an arc or a
straight line. If the distance of each pixel from the line joining the two key
pixels is less than a pre-specified value, say δ, then the segment is considered
to be a straight line (Figure 1.6(c)); otherwise, it is an arc. The arc may again
be of two types, with all the pixels either lying on both sides (Figure 1.6(a))
or lying on the same side (Figure 1.6(b)) of the line joining the key pixels. We
denote the GE in Figure 1.6(c) by L (line) and that in Figure 1.6(b) by CC
(curve). GE in Figure 1.6(a), therefore, is nothing but a combination of two
CCs meeting at a point Q (point of inflection). Key pixels on the contour of a
two-tone picture can hence be used to decompose the contour into two types
of GEs, namely, arcs and lines.

Consider Figure 1.7, where the curve CC in Figure 1.6(b) is enclosed within
a right triangle ABC. AC, the line joining kj and kj+1, is the hypotenuse,
whereas AB and BC are the two other sides.

Proposition 1 justifies that the arc CC will always be confined within
a right triangle ABC. A line DF is drawn parallel to the hypotenuse AC
and passing through the pixel E of maximum displacement with respect to
AC. The sub-triangles, ADE and CFE, so constructed may be taken as the
characteristic triangles to approximate the curve CC by the quadratic Bézier
approximation technique. Information preservation of Bézier characteristic
triangles with the key pixels forms the basis of the underlying concept of the
generation scheme.

Proposition 1

In the discrete plane, all pixels on the arc between two key pixels remain
always on or inside a right triangle, with the line joining the key pixels as the
hypotenuse. The other two sides of the right triangle are the horizontal and
vertical lines through the key pixels.

18 1 Bernstein Polynomial and Bézier-Bernstein Spline

Fig. 1.4. Possible behavior of fa(x) when f(x) is constant. (a) Considering local
maxima/minima of fa(x); (b) considering global maximum/minimum of fa(x), •
denotes the position of key pixel.

Proof : When the key pixels are on the horizontal line at x = c, it follows from
the definition of key pixel that
either f(c) > f(x)
or f(c) < f(x)
in both the intervals [(k1−δ1), K1] and [K2, (k2+δ2)], where f(x) is constant
in [K1, K2] and δ1, δ2 ∈ {0, 1}. Thus,

(1) the pixels at K1 and K2 are either corner connected or direct connected
or its combination to the neighboring pixels outside the interval [K1,K2]; or

1.5 Key Pixels and Contour Approximation 19

Fig. 1.5. Position of key pixel when K1 = K2 = C.

Q

Kj+1

(a) (b) (c)

Kj Kj j

Kj +1

j

Kj+1

Kj

L

Fig. 1.6. Types of GE: (a) Arc with inflection point; (b) arc; (c) straight line.

(2) when K1 = K2 = C, the key pixels will have at least one corner
connection to its neighboring pixels. Similar arguments hold when the key
pixel lies on a vertical line.

Let ANB be the arc, with A and B being two successive key pixels as
shown in Figure 1.8. A pixel on the arc can go outside the line AC or BC if
and only if a sequence of collinear pixels exists such that its end pixels are
either corner connected or direct connected or a combination thereof, or a
pixel exists that has at least one corner connection with its neighboring pixel.

20 1 Bernstein Polynomial and Bézier-Bernstein Spline

A
D B

E

F

C

Fig. 1.7. Bézier characteristic triangles for an arc AEC.

A

BC

N

Fig. 1.8. Arc with its associated right triangle.

Both of these conditions lead to the existence of another key pixel outside the
line AC or BC.
This is a contradiction.

Algorithm for Key Pixel Extraction

The following algorithm can be used for extraction of key pixels.
Algorithm for extraction of key pixels.
We assume:
{Pi}n

i=1 are the contour points in the binary image and {(xi, yi)}n
i=1 are their

position coordinates.

1.5 Key Pixels and Contour Approximation 21

Since for a closed contour there is a possibility of missing the first key pixel,
we need to examine a few more points after the starting point is reached to
enable us to get the same back.
Step 1: Set i ← 1, count ← 1. Find the initial direction code between Pi

and Pi+1 according to Freeman’s chain code system. Let it be d1.
Step 2: Increment i ← i + 1; if i = n, go to step 7; otherwise, find the

directional code between Pi and pi+1; let it be d2.
Step 3: If d1 = d2, go to step 2; otherwise, if d1 div 2 = 0 and d2 div 2 = 0

or if | d1 − d2 | = 3 or 5, then return (xi, yi).
Step 4: Set i ← i + 1; if i = n, go to step 7; otherwise, find the direction

code between Pi and Pi+1; let it be d3.
Step 5: If d3 = d2, then count← count+1 and go to step 4; otherwise,

if | d1 − d3 | = 0 or 1, then set count← 1, d1 ← d3, and go to step 2
else do step 6.

Step 6: If count div 2 =0, then return (xi− count/2, yi− count/2); otherwise
return (xi− count div 2, yi− count div 2).

Step 7: Stop.

1.5.2 Detection of Inflection Points

It is rather difficult to detect the points of inflection in a digital or discrete
contour (a string of pixels). Due to discretization of an analog curve or con-
tour, many inflection points (in the analytical sense) may be present, although
all of them may not be properly justified from the standpoint of discrete ge-
ometry in relation to discrete straight line [143, 32, 176]. It is possible to find
inflection points between two key pixels in a way somewhat similar to that
in the analytical plane. Detection of inflection points also helps in maintain-
ing the curvature of the contour during reconstruction and, as a result, the
reconstruction quality is improved.

i P i

 /
 = G (P) 2

3P

P

1P

 3P /

 2
/P

 1
/ P

Fig. 1.9. Gaussian circle and its image detecting points of inflection.

22 1 Bernstein Polynomial and Bézier-Bernstein Spline

Gaussian Circle

Consider a unit circle in the plane of a curve and draw radii in the direction
of tangents at points P1, P2, and P3, thus providing points P

′

1, P
′

2, and P
′

3

as shown in Figure 1.9. The process, which assigns Pi to P
′

i , is known as the
Gaussian map and the points on the circle are the Gaussian image of the
curve. Therefore, if G is the Gaussian map, then

G(Pi) −→ P
′

i .

G maps every single point Pi on the curve to a unique point P
′

i on the circle,
though G−1(P

′

i) may stand for two or more points on the curve depending
on the directions of tangents at these points. Two points Pi and Pj appear to
be the same under G if tangents at these points have the same directions. In
other words, it is quite likely that G−1(P

′

i) equals Pi and Pj both.
Note that as we move on, from Pi to Pi+1 and from Pi+1 to Pi+2, it is

not necessary that the same sequential order is maintained by their G-images.
With this effect, we can make the following classification.

• The sequential order of the Gaussian image points P
′

i is the same as that
of the points Pi of the curve—we get regular points.

• The sequential order of P
′

i s reverses, whereas that of Pis remains the
same—we get point of inflection.

• The order of Pis reverses, i.e., the direction of the tangents at these points
reverses, whereas that of motion of P

′

i s remains the same—we get cusp of
the first kind.

• The order of Pis as well as that of P
′

i s gets reversed—we get cusp of the
second kind.

Figure 1.10 shows all these four classifications. In the discrete domain, tangent
to a discrete curve at a point is not defined in the existing literature. Therefore,
it is very difficult to get the Gaussian image of a discrete curve. To detect
between two key pixels on a discrete contour segment, an approximate position
of a pixel as the position of a point of inflection, we first approximate the
contour segment by straight line segments and these line segments are used
to obtain the Gaussian image. If a reversal of order in the Gaussian image
is detected for any line segment, then a point of inflection is marked at the
midpoint of the previous line segment.

The process is repeated for all the pixels between other key pixels. Thus,
all the key pixels and points of inflection can be extracted from the entire
contour. Between any two key pixels or between a key pixel and a point of
inflection or vice versa, the set of pixels can be viewed either as a line or a
convex/concave arc segment.

1.6 Regeneration Technique 23

 (a) regular point (b) inflection point

 (c) cusp of first kind

(d) cusp of second kind

Fig. 1.10. Classification of different G-images:(a) regular point; (b) inflection point;
(c) cusp of first kind; (d) cusp of second kind.

1.6 Regeneration Technique

Below we depict two different methods of regeneration of a contour from its
approximate information. These regenerations of arcs and line segments are
simple and straightforward, and are helpful in data reduction.

1.6.1 Method 1

Method 1 considers only two points, namely E and C (Figure 1.7) of the
characteristic triangle for the regeneration of an arc when the starting point
A is known beforehand. D is the point of intersection of the horizontal line
through A, and the line through E and parallel to AC. So, one can easily get
the Bézier characteristic triangle and regenerate the arc. If the GE between
two key pixels is found to be a straight line, then it is generated by the
Bresenham algorithm as already mentioned.

24 1 Bernstein Polynomial and Bézier-Bernstein Spline

1.6.2 Method 2

Method 2 generates an arc in a slightly different way. It uses the information of
the intercept along the horizontal or vertical line to extract the vertices of the
Bézier characteristic triangles. Coordinates of the end point of the intercept
may be computed using the following simple approach.

Consider (x1, y1) and (x2, y2) to be the initial and final points of an arc
as shown in Figure 1.11. Let us now imagine a set of mutually perpendicular
reference axes placed at the point (x1, y1). Also, let h be the value of the
intercept and (X

′
, Y

′
) be the coordinate of the end point of the intercept.

Y

Y
/

X X

II I

IVIII

P P
P

h

(x, y)

P (x ,y)

3 4
2

1 1 1

(x ,y)2 2

Fig. 1.11. Detection of Bézier characteristic triangles for Method 2.

Since an arc may lie either in the left (clockwise) or in the right (counter-
clockwise) side of the line joining (x1, y1) and (x2, y2), X

′
and Y

′
may have

the values
X

′
= x1 Y

′
= y1 + h or,

X
′
= x1 + h Y

′
= y1

corresponding to the two possible senses of the arc in quadrant I where x2 >
x1 and y2 > y1.

Similarly, for the other quadrants, where x2 < x1 and y2 > y1 (quadrant
II), x2 < x1 and y2 < y1 (quadrant III), and x2 > x1 and y2 < y1 (quadrant
IV), we have

X
′
= x1 − h Y

′
= y1 or,

X
′
= x1 Y

′
= y1 + h,

1.6 Regeneration Technique 25

for quadrant II.

X
′
= x1 Y

′
= y1 − h or,

X
′
= x1 − h Y

′
= y1,

for quadrant III and,

X
′
= x1 + h Y

′
= y1 or,

X
′
= x1 Y

′
= y1 − h,

for quadrant IV, corresponding to the two possible senses.
Having determined the point (X

′
, Y

′
), the next task is to construct the

line passing through (X
′
, Y

′
) and parallel to P1P2 so that it meets the line

P2P3 at some point P4. The midpoint of this line, together with the pairs of
points (X

′
, Y

′
), (X1, Y1), and ((X2, Y2), P4) then constitutes the Bézier

characteristic triangles for the arc.

1.6.3 Recursive Computation Algorithm

The recursive algorithm for computation of values for the second-order Bézier
approximation curve uses the forward difference scheme. Let

y = at2 + bt + c

be a polynomial representation of (1.17), where the constant parameters
a, b, c are determined by the vertices of the Bézier characteristic triangle.
Suppose a number of points (values of y) on the arc are to be evaluated for
equispaced value of the independent variable t. The usual Newton’s method
of evaluating the polynomial results in multiplications and does not make use
of the previously computed values to compute new values.

Assume that the parameter t ranges from 0 to 1. Let the incremental value
be q. Then the corresponding y values will be c, aq2 + bq + c, 4aq2 + 2bq + c,
9aq2+3bq+c, · · ·. The difference Table 1.1 for recursive computation of points
for Bézier curve then takes the following form. Observe that

Table 1.1. Difference table for recursive computation of points.

t y �y (1st difference) �2y (2nd difference)

0 c aq2 + bq 2aq2

q aq2 + bq + c 3aq2 + bq 2aq2

2q 4aq2 + 2bq + c 5aq2 + bq 2aq2

3q 9aq2 + 3bq + c 7aq2 + bq
4q 16aq2 + 4bq + c

26 1 Bernstein Polynomial and Bézier-Bernstein Spline

�2yj = 2aq2

and
yj+2 + 2yj+1 + yj = 2aq2, for all j ≥ 0.

This leads to the recurrence formula y2 = 2y1 − y0 + 2aq2 which involves
just three additions to get the next value from two preceding values at hand.
Therefore, we see that one does not need to store all the points on the curve.

1.6.4 Implementation Strategies

After approximating a contour of single pixel width, we get a set of key pixels
with some labels. The labels indicate the geometrical entity between any two
key pixels. We can use this set of key pixels in many applications. When we
pay attention to regeneration of the contour, we immediately see that it results
in its approximated version (output). During regeneration of a closed contour,
only the outer contour is traced using Freeman’s chain code (clockwise sense),
assuring the positions of the key pixels on it. In other words, key pixels are
considered to be the guiding pixels (important for preserving the input shape)
during regeneration.

Note that due to the approximation scheme, sometimes the following un-
desirable situations may arise:

• The regenerated contour may not have single-pixel width.
• The key pixel may become an interior pixel of the contour.

To overcome these situations, the contours can be traced from the ordered
regenerated data set, keeping the following operations in mind.

Deletion of Pixels

While tracing a contour with the enclosed region lying on the right, if a pixel
on the contour finds more than one neighbor in its eight-neighborhood domain,
that neighbor is selected as the contour pixel for which the other neighboring
pixels become interior pixels, and they are then deleted. But, if there is a
key pixel falling in such a neighborhood, then the key pixel is retained as the
contour pixel and the rest are deleted. This enables us to keep the key pixel
always on the contour, and thus, improves approximation of the input. Figures
1.12(a) and (b) depict the situation. Considering “c” to be current pixel and
“p” the previous pixel, the contour (clockwise) is “a” for the situation as
shown in Figure 1.12(a), but if the situation is as in Figure 1.12(b), the next
pixel on the contour is then k (the key pixel).

1.6 Regeneration Technique 27

a a
p c b −→ p c b

e d e
k

(a) (b)

Fig. 1.12. Deletion of pixels: (a) In absence of key pixel; (b) in presence of key
pixel.

Shifting of Pixels

Suppose a GE is generated, and a key pixel is reached. Now during the gen-
eration of a following GE, its first data point may put the preceding key pixel
on the interior contour. For example, consider the Figure 1.13(a). Here abk
is a part of the GE already generated. Now generating the next GE kcd · · ·,
the first move from k to c makes the key pixel (k) lie on the interior of the
contour (assuming the enclosed region is on the right).

In such cases, the data point c is shifted as shown in Figure 1.13(b). This
preserves connectedness of the pixel c with both the GEs and also ensures
single-pixel width of the contour.

d d c
c k −→ k
b b
a a

(a) (b)

Fig. 1.13. Shifting of pixels: (a) Contour before shifting; (b) contour after shifting.

Undesirable Loop

Sometimes in the vicinity of key pixels an undesirable loop (contour with a
single pixel hole) may appear due to the generation procedure. For example,
consider Figure 1.14. Here GEs ak1k2k3 are already generated. The next move
from k3 to b creates an undesirable loop having a single-pixel hole.

To overcome this situation, the pixel b is shifted along with an insertion
of a new pixel e (as shown in Figure 1.14(b)). Since the shifting of b alone
loses the connectivity property between k3 and the subsequent pixels, it ne-
cessitates insertion of a new pixel whose location is governed by the concept
of a minimum connected path.

28 1 Bernstein Polynomial and Bézier-Bernstein Spline

d d
c c e

b b
k1 k3 −→ k1 k3

a k2 a k2

(a) (b)

Fig. 1.14. Undesirable loop: (a) Before cleaning; (b) After cleaning.

1.7 Approximation Capability and Effectiveness

So far, we have dealt with different approximation techniques based on Bézier-
Berntein spline polynomial. Here we show their approximation capability.
Consider the Figures 1.15 and 1.17(a) of two different digital contours, namely
a butterfly and a chromosome. Key pixels and the points of inflection detected
on them are marked by “3” and “I” respectively. Images regenerated by Meth-

3 3 3

o o 3 3 o o o 3 o o

o o o 3 o I o

I o o o I o

o o o o o o

o o o 3 o o

3 o I o o 3

3 o o o o o

o o 3 3 o o

o o 3 3

o o o

o o

I o

o I

o o 3 o 3 o

o o 3 3 o o

o o 3 3 o o o

o o o o o o o o

3 o o o 3 o o o

o o o o o o

o o o o o o o

I o o o o o o o o 3

3 o o 3 o o

Fig. 1.15. Butterfly input.

ods 1 and 2 corresponding to the butterfly and chromosome images are shown
in Figures 1.16(a), (b), and (c), and 1.17(b) and (c), respectively. Positions of
key pixels in both the input and output remain unaltered.

As a typical illustration, section 1.6.4 shows the effectiveness of the clean-
ing operations on the generated points for the butterfly image. Figure 1.16(b)
shows such an intermediate state for Method 1 before its final reconstructed
output. Here, d denotes a pixel to be deleted and X corresponds to the posi-
tion where a pixel is to be inserted to keep connectivity.

1.7 Approximation Capability and Effectiveness 29

3 2 2 2 2 2 2 2 2 3 2

I 2 2 2 2 2 3

2 2 2 2 2 2 2 2

2 2 2 2 2 2

3 2 2 3 2 2 2

2 2 2 2 2 2 2 2 2

2 2 3 3 2 2

2 2 3 3 2 2

2 2 3 3 2 2

2 2

I I

2 2

2 2

2 2 3 3 2 2

2 2 2 3 3 2 2

3 2 2 2 2 2

2 2 I 2 2 3

3 2 2 3 2 2

2 2 2 2 2 2

2 2 2 2 I 2

I 2 3 2 I 2 2

2 2 3 3 2 2 2 3 2 2

2 2 3 3 3 2

(a)
3 2 2 2 2 2 2 2 2 3 2

I 2 2 2 2 d 2 3

2 2 2 2 2 2 2 2

2 2 2 2 2 2

3 2 2 3 2 2 2

2 2 2 2 2 2 2 2 2

2 d 2 d 3 3 2 2

2 x d d 3 3 d d x 2

2 x 3 2 3 2

2 I

I 2

2 2

2 d 2

2 d 2 3 3 2 2

2 2 x 3 3 d 2 2

d 3 x d x 2 2 2

3 x d I 2 2 3

2 2 2 3 2 2

2 d d 2 2 2 2 d 2

I 2 2 2 I d 2

2 d 2 3 2 I 2 2

2 d 3 3 d 2 2 2 3 2 2

2 2 3 3 3 2

(b)
3 2 2 2 2 2 2 2 3 2

I 2 2 2 2 2 2 2 2 3

2 2 2 2 2 2 2

2 2 2 2 2 2 2

3 2 2 3 2 2 2

2 2 2 2 2 2 2

2 2 2 3 3 2 2

2 2 3 3 2 2

2 2 3 2 3 2

2 I

I 2

2 2

2 2

2 2 3 3 2

2 2 2 3 3 2 2

3 2 2 2 2 2

3 2 I 2 2 3

2 2 2 3 2 2

2 2 2 2 2 2

I 2 2 2 I 2

2 2 3 2 I 2 2

2 2 3 3 2 2 2 3 2 2

2 2 3 3 3 2

(c)

Fig. 1.16. (a) Method 1 after cleaning; (b) Method 1 before cleaning; (c) Method
2 after cleaning.

30 1 Bernstein Polynomial and Bézier-Bernstein Spline

o 3 o
o o o

o 3 o o o
o o o o

o o o o
o o o o
o I o o

o o o o
I o o o
o o 3 o

o o o o
o o o 3
o o o o

o 3 I o
3 o o o

o o o o
o o o o

o 3 3 o
o o o o

o o o o
o o o o

o o o o
o o o o
o o o o

o o 3 o o
o o

o o
o o

o o
3 3

o o
o o

o o
o o

o o
o o
o o

o o 3 o o o
I o o o
o o o o

o o o o
o o o o

o o o o
o o o o

o o o o
o o I o

o o o o
o I o o

o o o o
o o o o
o o o 3

o o o o
3 o o o
o o o o o

o o o 3 o o
o o o

o o 3 o o 2 2 2 3 2 2 2
2 2
2 2 2 2 3 2 2

2 2 2 2
3 2 2 2
2 2 2 2
2 2 2 3

2 2 2 2
2 2 2 2
2 I 2 2

2 2 2 2
2 2 I 2

2 2 2 2
2 2 2 2

2 2 2 2
2 2 2 2

2 2 2 2
2 2 2 2

I 2 2 2
2 2 2 2 3 2 2 2

2 2
2 2

2 2
2 2
2 2
2 2

2 2 2
3 3

2 2
2 2

2 2
2 2

2 2 2 3 2 2
2 2 2 2 2

2 2 2 2
2 2 2 2

2 2 2 2
2 2 2 2

2 2 2 2
2 3 3 2

2 2 2 2
2 2 2 2

3 2 2 2
2 3 I 2
2 2 2 2
2 2 2 3
2 2 2 2

2 2 3 2
I 2 2 2
2 2 2 2
2 I 2 2
2 2 2 2

2 2 2 2
2 2 2 2

2 2 3 2 2 2 2
2 2

2 2 3 2

(a) (b)
2 2 2 3 2 2

2 2
2 2 2 2 2 3 2 2
2 2 2 2
3 2 2 2
2 2 2 2
2 2 2 3

2 2 2 2
2 2 2 2
2 I 2 2

2 2 2 2
2 2 I 2

2 2 2 2
2 2 2 2

2 2 2 2
2 2 2 2

2 2 2 2
2 2 2 2

I 2 2 2 2
2 2 3 2 2 2

2 2
2 2
2 2
2 2

2 2
2 2
2 2 2
3 3

2 2
2 2

2 2
2 2

2 2 2 3 2 2 2
2 2 2 2

2 2 2 2
2 2 2 2

2 2 2 2
2 2 2 2

2 2 2 2
2 3 3 2

2 2 2 2
2 2 2 2

3 2 2 2
2 3 I 2
2 2 2 2
2 2 2 3
2 2 2 2

2 2 3 2
I 2 2 2
2 2 2 2
2 I 2 2
2 2 2 2

2 2 2 2
2 2 2 2

2 3 2 2 2 2
2 2 2

2 2 3 2

(c)

Fig. 1.17. (a) Chromosome input; (b) Method 1; (c) Method 2.

1.8 Concluding Remarks 31

A reconstructed image normally deviates from its original version if the
reconstruction is not perfect. Therefore, to observe the deviation of the im-
age quality, one can compute different objective measures. One such is to
provide the error in area and shape compactness between the original and
reconstructed images. Kulpa [96] provided a good way to compute the area
and perimeter. Since the key pixels are always on the contour and the recon-
structed arcs between them are restricted by the respective Bézier character-
istic triangles, the maximum error for an arc is the area of its pair of Bézier
characteristic triangles. Also, for this constraint, shape compactness is a good
measure for distortion in reconstructed images.

Table 1.2. Error in regeneration.

Figure % error Compactness Compactness
in area of original generated figure by

Mtd 1 Mtd 2 Figure Mtd 1 Mtd 2

Butterfly 8.63 10.07 0.024635 0.025393 0.025551
Chromosome 6.8 6.28 0.016061 0.016672 0.016359

Table 1.2 shows both the percentage error and the compactness of images
associated with the two different methods. The reconstructed image in each
case is a faithful reproduction of its input version. The butterfly contour,
having the larger number of GEs, incurs the higher percent of error in their
regeneration. Furthermore, since the regeneration/reconstruction procedure
uses the quadratic Bézier approximation, the reconstruction is very fast.

1.8 Concluding Remarks

Bernstein polynomial together with its properties and approximation capa-
bilities provides a major step in the formulation of Bézier spline model. Some
of the properties of this polynomial are very powerful, and they serve the
basic background for the development of a new branch in mathematics as
well as in computer graphics. The widespread use and importance of B-spline
mathematics is basically a generalization of Bézier-Bernstein spline. Similarly,
the formulation of computer graphics algorithms for curve and surface design,
based on this spline model, plays a major role in various engineering design
and painting of computer drawn pictures.

The illustrative example provided in the text, to find the order of the
Bernstein polynomial, is helpful to readers to approximate a function in the
continuous domain by the Bernstein polynomial. The techniques and strate-
gies discussed in this chapter for approximating a set of data points in the

32 1 Bernstein Polynomial and Bézier-Bernstein Spline

discrete domain are clear and explicit, and provide insight to handle various
image data. We have not included any curve and surface design examples in
this chapter because readers can find them almost in all graphics textbooks.
However, one can use the recursive computation algorithm for curve and sur-
face design to achieve some speed in algorithms.

2

Image Segmentation

2.1 Introduction

We pay attention to segmentation, as it plays a significant role not only in
image processing but also in pattern recognition. Segmentation of an image is
its subdivision or partition, such that each partition is homogeneous in some
sense. Partitions may be neither geometrically nor physically meaningful, i.e.,
an input image that shows, say, different industrial parts, may not be divided
into regions, each describing one complete physical object (i.e., an industrial
part of its input) or a single geometrically defined object (which means a
completely circular, cylindrical or of any other definition from the input).
Such a segmentation is very difficult and needs semantic knowledge at different
levels of subdivisions, so that division and integration, or the split and merge of
image regions, can successfully exploit this knowledge. Unfortunately, most of
the time we do not have this knowledge. Consequently, segmentation becomes
a difficult task. In the simplest case, one can use the graylevel threshold values
to segment images. Obviously, different segmentations for an input image
are possible, depending on different applications. As an example, segmented
homogeneous regions, along with their contours, may be useful for designing
image compression algorithms, whereas segmentation into known geometric
entities may be useful for industrial inspection and medical diagnosis. A lot
of research work has already been done in the area of segmentation, though
we believe that segmentation still needs attention for semantic partition. An
ideal segmentation or the ultimate objective of segmentation is to separate a
physical object out from a scene.

2.2 Two Different Concepts of Segmentation

Segmentation can be broadly classified into two different groups: contour-
based and region-based segmentation. The idea of segmentation into different
image parts can be viewed as a pixel classification process, where we view the

34 2 Image Segmentation

problem as a clustering problem. Given an image, we therefore try to form
several clusters by assigning each pixel into a cluster. The assignment of a
pixel into a cluster may depend on the image properties. One should keep in
mind, while forming a cluster, that the distance between any two points of a
cluster is smaller compared to the distance between any two points of different
clusters. A cluster can be thought of as an image region.

2.2.1 Contour-based Segmentation

Contours or edges are the line segments (curved or straight) that separate one
region from the other. Therefore, an edge detection technique can be used for
segmentation. One of the major drawbacks of this segmentation technique
is that it does not provide any guarantee for connected edges. However, we
can use an edge linking algorithm to connect fragmented edges. Since edge
is a feature of an image, edge-based or contour-based segmentation can also
be thought of as a feature-based segmentation. Different techniques for edge
detection are already in use.

Gradient Operator

The simplest edge detection procedure is the gradient operator. The mag-
nitude of the gradient

√
∂f
∂x + ∂f

∂y can be used to locate the edge pixels. On
the edges, values of the gradient magnitude are high, while in object and
background regions, it is low.

The Laplacian Operator

The Laplacian operator over an image f(x, y) is given by ∂2f
∂2x + ∂2f

∂2y . Edges
are located at pixels where the Laplacian changes its sign.

Laplacian of Gaussian Operator

Marr and Hildreth [119] suggested the Laplacian of the Gaussian operator for
edge detection. The Gaussian, G(x,y) is given by

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 .

Laplacian of Gaussian is, therefore

∇2G = − 1
2πσ4

(2 − x2 + y2

2πσ2
) e−

x2+y2

2σ2 . (2.1)

They developed a refined approach considering difference of Gaussian opera-
tor, given by

DOG(σ1, σ2) =
1√
2πσ2

1

e
− x2

2σ2
1 +

1√
2πσ2

2

e
− y2

2σ2
2 . (2.2)

2.3 Segmentation for Compression 35

2.2.2 Region-based Segmentation

Region-based segmentation mainly depends on either thresholding or region
growing, merge, and splitting. Selection of thresholds has an important role
in threshold-based segmentation, e.g., single level thresholding produces a
partition in the way that

f(x, y) =
{

f(x, y) when f(x, y) ≥ T,
0 otherwise,

(2.3)

where f(x, y) is the gray value in the image and T is a threshold. There
are many ways by which one can calculate T. The simplest way is to use
the histogram of the image. Equation (2.3) provides binary segmentation or
object/background segmentation when f(x, y) is taken as 1 for f(x, y) ≥ T
and zero otherwise.

For multilevel thresholding, we choose

f(x, y) =
{

f(x, y) when Ti ≤ f(x, y) ≤ Ti+1 i = 1, 2, · · · k,
0 otherwise. (2.4)

By multilevel thresholding we can separate out different segments of an image
corresponding to different ranges of gray values. This corresponds to different
objects or different portions of an object in an image.

Recursive thresholding can also be used for good segmentation. For this,
segment an image corresponding to a threshold and if that segmentation
does not fulfill certain objectives, then re-segment the segmented image
through an iterative computation of a new threshold. So, segmentation and
re-segmentation go on continuously until the criterion is satisfied for a definite
task.

Region Growing, Merge, and Split

Region growing normally starts from a small region, and merges small nearby
regions to grow in size. If the merge is successful, neighborhood regions are
further merged depending on a condition for successful merge. The process
can keep on running if the merge passes the test, otherwise, the merge is
declared unsuccessful, and split of the previous merge is carried out.

2.3 Segmentation for Compression

We now discuss how we can obtain a good segmentation of an image for image
data compression. Choose the region-based segmentation of an image rather
than the contour-based segmentation. Region-based segmentation is more use-
ful and effective in image data compression because region contours are not
disconnected like edges. Keep in mind that a contour-based segmentation may

36 2 Image Segmentation

always produce disconnected edges. For background reading in this area, read-
ers can consult [33, 97, 98, 152], whereas a broad over-view of segmentation
can be found in [68, 133, 144].

To get compact homogeneous regions (or patches), we describe a segmen-
tation method that recursively uses an object/background thresholding algo-
rithm [130]. Unlike the region growing [133] or adaptive region growing [97]
technique, it provides a number of compact regions of similar graylevels for
a given threshold. We call this collection of regions for a given threshold a
subimage. This segmentation method produces a number of subimages de-
pending on the number of computed thresholds. Then it merges small regions
depending on a criterion, and uses some quantitative indices for objective
evaluation of the segmented regions.

2.4 Extraction of Compact Homogeneous Regions

Segmentation is objective oriented. Assume for illustration purposes, that we
are using segmentation for image compression. We can think of a compression
scheme that is based on modeling compact homogeneous regions or patches
using Bézier-Bernstein polynomial function. Given an image, we therefore first
try to extract from it the homogeneous subimages. There are many approaches
[173, 65, 74] to achieve this goal. For example, it can be based on pixel level
decision making such as iterative pixel modification, region growing, or adap-
tive region growing, or it can be based on multilevel thresholding. Each of
these categories of algorithms, except multilevel thresholding, produces one
region of similar graylevels at a time and, therefore, it forces local approxi-
mation for a region. Such methods may be called local thresholding schemes
as a decision is made at the pixel level. It does not provide any information
about other regions of similar gray values. Hence, from the standpoint of com-
pression, segmentation algorithms based on local region growing are not very
attractive. On the other hand, global thresholding based segmentation algo-
rithms, (where the entire image is partitioned by one or a few thresholds),
such as multilevel thresholding algorithms [174, 58, 35], depend on the num-
ber of local minima in the one or two dimensional histogram of gray values
in the image. The extraction of these minima from the histogram information
sometimes may not be very reliable, because all desirable thresholds may not
be reflected as deep valleys in the histogram. Also, the detection of thresholds
is influenced by all pixels in the image.

Several authors [1, 87, 131, 132, 135, 136] have used entropy as the criterion
for object/background classification. All methods described in [87, 135, 136]
use only the entropy of the histogram, while the methods in [1, 131, 132] use
the spatial distribution of gray levels, i.e., the higher order entropy of the
image. For the set of images reported in [130], authors found that conditional
entropy of the objects and background based on Poisson distribution produced
better results compared to the methods in [135, 136, 87, 91]. All these methods

2.4 Extraction of Compact Homogeneous Regions 37

produce only an object/background (two level) partitioning of the image.
Here in a segmentation problem, such a bi-level thresholding is not adequate.
But, one can consider an algorithm for hierarchical extraction of homogeneous
patches using the conditional entropy thresholding method. The conditional
entropy we can define in terms of the second order co-occurence matrix.
a. Co-occurrence Matrix

Let F = [f(x, y)] be an image of size M × N , where f(x, y) is the gray
value at (x, y), f(x, y) ∈ GL = {0, 1, 2, · · · , L − 1}, the set of graylevels.
The co-occurrence matrix of the image F is an L×L dimensional matrix that
gives us an idea of the transition of intensity between adjacent pixels. In other
words, the (i, j)th entry of the matrix gives the number of times the graylevel
“j” follows the graylevel “i” in a specific way.

Let “a” denote the (i, j)th pixel in F and let “b” be one of eight neigh-
boring pixels of “a”, i.e.,

b ∈ a8 = {(i, j − 1), (i, j + 1), (i + 1, j), (i − 1, j), (i − 1, j − 1),
(i − 1, j + 1), (i + 1, j − 1), (i + 1, j + 1)} .

Define tik =
∑

a∈F, b∈a8

δ,

where δ = 1 if the graylevel of “a” is “i” and that of ‘b’ is ‘k’, δ = 0
otherwise.

Obviously, tik gives the number of times the gray level ‘k’ follows graylevel
‘i’ in any one of the eight directions. The matrix T = [tik]L×L is, therefore, the
co-occurrence matrix of the image F . One may get different definitions of the
co-occurrence matrix by considering different subsets of a8, i.e., considering
b ∈ a′

8, where a′
8 ⊆ a8.

The co-occurrence matrix may again be either asymmetric or symmetric.
One of the asymmetrical forms can be defined considering

tik =
M∑

i=1

N∑

j=1

δ

with δ = 1 if f(i, j) = i and f(i, j + 1) = k,
f(i, j) = i and f(i + 1, j) = k,

δ = 0 otherwise.
Here only the horizontally right and vertically lower transitions are consid-

ered. The following definition of tik gives a symmetrical co-occurence matrix.

tik =
M∑

i=1

N∑

j=1

δ,

where δ = 1 if f(i, j) = i and f(i, j + 1) = k,
or f(i, j) = i and f(i, j − 1) = k,
or f(i, j) = i and f(i + 1, j) = k,

38 2 Image Segmentation

or f(i, j) = i and f(i − 1, j) = k,
δ = 0, otherwise.

b. Conditional Entropy of a Partitioned Image
The entropy of an n-state system as defined by Shannon [151] is

H = −
n∑

i=1

pi ln pi , (2.5)

where
n∑

i=1

pi = 1 and 0 ≤ pi ≤ 1, pi is the probability of the i-th state of

the system. Such a measure is claimed to give information about the actual
probability structure of the system. Some drawbacks of (2.5) were pointed out
by Pal and Pal [131] and the following expression for entropy was suggested:

H =
n∑

i=1

pie
1−pi , (2.6)

where
n∑

i=1

pi = 1 and 0 ≤ pi ≤ 1. The term − ln pi, i.e., ln(1/pi) in (2.5)

or e1−pi in (2.6) is called gain in information from the occurrence of the i-th
event. Thus, one can write,

H =
n∑

i=1

pi�I(pi), (2.7)

where �I(pi) = ln(1/pi) or, e1−pi depending on the definition used.
Considering two experiments A(a1, a2, · · · , am) and B(b1, b2, · · · , bn)

with respectively m and n possible outcomes, the conditional entropy of A
given bl has occurred in B is

H(A | bl) =
m∑

k=1

p(ak | bl)�I(p(ak | bl)), (2.8)

where p(ak | bl) is the conditional probability of occurrence of ak given that
bl has occurred. We can write the entropy of A conditioned by B as

H(A | B) =
n∑

l=1

p(bl) H(A | bl),

=
n∑

l=1

m∑

k=1

p(bl) p(ak | bl)�I(p(ak | bl)),

=
n∑

l=1

m∑

k=1

p(ak, bl)�I(p(ak | bl)),

(2.9)

2.4 Extraction of Compact Homogeneous Regions 39

where p(ak, bl) is the joint probability of occurrence of (ak, bl).
Let p(i | j) be the probability that a gray value i belongs to the object,

given that the adjacent pixel with gray value j belongs to the background,∑

i

p(i | j) = 1. Thus, for a given threshold s, the conditional entropy of the

object given the background, as defined by Pal and Bhandari [130] (using
(2.9)) is

Hs(O | B) =
∑

i ∈ object

∑

j ∈ background

po(i, j)�I (po(i | j)),

=
s∑

i=0

L−1∑

j=s+1

po(i, j)�I (po(i | j)),
(2.10)

where
po(i, j) =

tij
s∑

i=0

L−1∑

j=s+1

tij

(2.11)

and
po(i | j) =

tij
s∑

i=0

tij

(2.12)

for 0 ≤ i ≤ s and s + 1 ≤ j ≤ L − 1. Here tij is the frequency of occurrence
of the pair (i, j). The conditional entropy of the background given the object
can similarly (using(2.9)) can defined as

Hs(B | O) =
∑

i ∈ background

∑

j ∈ object

pb(i, j)�I (pb(i | j)) (2.13)

where
pb(i, j) =

tij
L−1∑

i=s+1

s∑

j=0

tij

(2.14)

and
pb(i | j) =

tij
L−1∑

i=s+1

tij

(2.15)

for s + 1 ≤ i ≤ L − 1 and 0 ≤ j ≤ s. Then the total conditional entropy of
the partitioned image is

HT
C = Hs(O | B) + Hs(B | O). (2.16)

For an image, the conditional entropy of the object, given the background,
provides a measure of information about the object when we know about the

40 2 Image Segmentation

existence of the background. Entropy is a measure of expected gain in informa-
tion or expected loss of ignorance with an associated probability distribution.
Thus, H(O | B) can also be viewed as average loss of ignorance about the
object when we are told about the background. Similar interpretation is also
applicable to H(B | O). Hence, maximization of HT

C is expected to result in
a good threshold. HT

C can also be viewed as a measure of contrast.
Let th be the correct threshold for an object/background segmentation.

Now if th is used to partition the co-occurrence matrix, entries in quadrants
two and four in Figure 2.1 will have low frequencies, but expected to be more or
less uniformly distributed. Similarly, for the first and third quadrants, frequen-
cies also will be uniformly distributed but with high values, because within a
region, frequencies of transition from one level to another will be high. How-
ever, as far as the two dimensional probability distribution is concerned, all
cells will have more or less uniform probability mass function. Now suppose
the assumed threshold s is less than th. The second quadrant will have some
high frequencies that are actually transitions within the object. In addition
to this, it will also have actual low frequency transitions from object to back-
ground (i.e., across the boundary). Thus, the second quadrant will have a
highly skewed probability distribution resulting in a drastic lowering of HT

C .

Fig. 2.1. Partitioning of the co-occurrence matrix for thresholding.

The uniformity of quadrant one will be maintained, but that of quadrants
three and four will be affected causing a lowering of entropy of quadrants
three and four. Similarly, if the assumed threshold is more than th, HT

C will

2.4 Extraction of Compact Homogeneous Regions 41

be reduced. Hence, its maximization with respect to s is expected to provide
a good object/background segmentation.

Next, we provide a schematic description of the algorithm.
c. Algorithm Cond threshold(X , th)
begin

Compute Co-occurrence matrix, t = [tij]L×L.
s = 0 ; max = 0 ;
th = 0 ; th is the threshold for segmentation
while (s < L − 1) do

compute HT
C by (2.16)

if (HT
C(s) > max) then begin

th = s ;
max = HT

C(s)
end

s = s+1 ;
endwhile;

end;
Here, we use �I(pi) = e1−pi in equation (2.16).

2.4.1 Partition/Decomposition Principle for Gray Images

Explore the possibility of using the object/ background thresholding algorithm
(Cond threshold) for the extraction of homogeneous patches from a graylevel
image. To partition the image into several subimages, one should keep in mind
the following points:

• Each subimage consisting of different regions should be approximated well
by some low order function.

• Number of subimages should be as low as possible.
• Homogeneity within a region and contrast between regions should be rea-

sonably good.

In order to achieve this goal, one can use either a multilevel thresholding algo-
rithm [174, 58, 35] or an object/background thresholding algorithm. The mul-
tilevel thresholding algorithm depends on the number of local minima in the
histogram of the image. The extraction of these minima from the histogram
information sometimes may not be very reliable, because some of them may
not be strong enough to be detected by the objective function being used. The
object/background algorithm, on the other hand, relies on a single threshold
to extract the object from the background. Consider a scheme that repeatedly
uses an object/background segmentation algorithm for extraction of homoge-
neous patches.

Consider an L-level image F0(x, y). The input gray image F0(x, y) initially
provides a threshold, s on application of the object/background thresholding
algorithm. The threshold, s partitions the image F0(x, y) into two subim-
ages F01(x, y) and F02(x, y). The graylevels in F01(x, y) lie in the interval

42 2 Image Segmentation

[0, s] and in F02(x, y), it is limited to (s, L − 1]. From the standpoint of
object/background thresholding, F01(x, y) can be viewed as the object while
F02(x, y) is the background, without loss of generality.

To check the feasibility of global approximation of the subimages so ob-
tained, we approximate, first of all, F01(x, y) by a polynomial of order p ≤ q
(q is a predefined upper limit on the order of polynomials) satisfying a crite-
rion C. It should be noted that F01(x, y) may consist of a number of isolated
regions or patches, say, Ω1, Ω2, · · ·Ωr. If the approximation satisfies the
criterion C, we accept the subimage F01(x, y). Otherwise, even when a poly-
nomial surface of order q cannot approximate the subimage subject to C, we
compute the variance in each of the regions. Next, we fit a global surface
of order q over the entire subimage and a local surface of order less than q
over the residual errors (defined with respect to surface of order q) of the
most dispersed region. This may give rise to one of the following four different
situations:
(1) The criterion C is satisfied for the most dispersed region (with respect to
global and local surface fitting) and also for rest of the regions (with respect
to global fitting).
(2) C is satisfied for the most dispersed region but not for rest of the regions.
(3) C is not satisfied for the most dispersed region but satisfied for rest of the
regions.
(4) C is not satisfied for both the most dispersed region and rest of the regions.

In situation in (1), both local and global fits are satisfied. Hence, it implies
that all segmented regions or surface patches are homogeneous and we accept
the subimage.

In situation (2), additionally fit a local surface of order less than q over the
residual errors (defined with respect to surface of order q) of the second most
dispersed region. The process may continue for all regions in the subimage,
only in case of failure for the global surface approximation. But if the local
surface fit fails to satisfy the criterion C at any stage (cases 3 and 4), it indi-
cates the need for further decomposition and hence, we seek a new threshold
for the subimage F01(x, y). We accept the partition, F01 when both local and
global fits satisfy the criterion C.

A new threshold s1 divides the image F01 into F011(x, y) and F012(x, y).
The graylevels in F011(x, y) extend from zero to s1 while in F012(x, y), they
extend from s1 + 1 to s. In other words, the graylevel bands are [0, s1] and
(s1, s] respectively for F011(x, y) and F012(x, y). The image F02(x, y) may
likewise be examined and segmented if needed. The segmentation, therefore,
follows a binary tree structure as shown in Figure 2.2.

The criterion C plays a crucial role in the determination of polynomial
orders. If the segmented regions are more or less uniform, then low order
polynomials will fit the data reasonably well. However, if the approximation
criterion C is very strict and if the spatial distribution of gray values over a
region deviates from uniformity, higher order polynomial will be required to
justify the fit. This will result in better reconstruction of the image at the

2.4 Extraction of Compact Homogeneous Regions 43

cost of compression ratio. Hence, the choice of C should be made based on a
compromise between the quality of reconstructed image and the compression
ratio. Sections 2.4.2–2.4.4, provide details of approximation, along with a new
approach for the determination of polynomial order. In most of the cases,
order is seen to be 2 but it can go up to 3 or 4 depending on variations in the
segmented regions and the criterion, C.

Fig. 2.2. Binary tree structure for hierarchical segmentation.

2.4.2 Approximation Problem

For approximation, one can first formulate the problem using Bézier-Bernstein
polynomial and then can consider the issue of the polynomial order determina-
tion. Choose the Bézier-Bernstein polynomial because the segmentation algo-
rithm we are considering is for image compression, for which Bézier-Bernstein
polynomial provides a number of merits during reconstruction. However, one
can use also other functions. The Bézier-Bernstein surface is a tensor product
surface and is given by

spq(u, v) =
p∑

r=0

q∑

z=0

φrp(u)φ′
zq(v) Vrz,

=
p∑

r=0

q∑

z=0

BrpDzq ur (1 − u)p−r vz (1 − v)q−z Vrz,

(2.17)

where u, v ∈ [0, 1] and Brp = p!
(p−r)!r! , Dzq = q!

(q−z)z! . p and q define the order
of the Bézier-Bernstein surface.

44 2 Image Segmentation

To approximate an arbitrary image surface f(x, y) of size M ×M ,f(x, y)
should be defined in terms of a parametric surface (here spq) with the param-
eters u, v in [0, 1]. Therefore, the function f(x, y) can be thought in terms of
g(u, v) where u = (i−1)

(M−1) ; i = 1, 2 · · · , M and v = (j−1)
(M−1) ; j = 1, 2 · · · , M .

Now choose the weighted least square technique for estimation of parame-
ters Vrz for reconstruction of the decoded surface. Although the total squared
error for the conventional unweighted least square approximation may be less
than that for the weighted least square, the approximation produced by the
latter may be visually more appealing than that by the former, provided
weights are chosen judiciously. For an image, edge points are more informative
than the homogeneous regions. Edges are the distinct features of an image.
Thus, edges should be given more emphasis while approximating an image
patch and this can be done through weighted least square.

The weighted squared error we can write as

E2 =
∑

u

∑

v

[W (u, v)(g(u, v) − spq(u, v))]2,

=
∑

u

∑

v

[W (u, v)(g(u, v) −
p∑

r=0

q∑

z=0

φrp(u)φ′
zq(v) Vrz)]2,

(2.18)

where W (u, v) is the weight associated with the pixel corresponding to (u, v).
For p = q, the surface spq(u, v) is defined on a square support. Since W (u, v)
is the weight associated with each pixel, it is considered constant for that pixel.
Therefore, one needs to find out the weight matrix before solving equations for
the weighted least square. Once W (u, v) is known, these equations reduce to
a system of linear equations and can be solved by any conventional technique.

We emphasize for order determination the unweighted approximation
scheme.

2.4.3 Polynomial Order Determination

The order of the polynomial can be determined using either the classical
approach as discussed in Chapter 1 or the image quality index IQI [25]. Since
IQI reflects the average contrast (with respect to background) per pixel in
the image, we can say if the original and approximated image have nearly
the same IQI, the approximated image is expected to preserve the boundary
contrast in the average sense. Therefore, very small �IQI between the input
and approximated subimages is an indicator of the adequacy of the polynomial
order. In order to determine optimal polynomial, one can increase the order
of the polynomial unless the following condition is satisfied

| (IQI)input − (IQI)approximated | ≤ εa, (2.19)

where εa is a small positive number.
To calculate IQI we find, first of all, the total contrast K of the image. For

an M × N image, K is be defined as

2.4 Extraction of Compact Homogeneous Regions 45

K =
M∑

i=1

N∑

j=1

cij . (2.20)

The contrast cij , at the pixel position (i, j) is written using the concept of
psycho-visual perception as [73]

cij = | B−Bij |
B ,

= | �B |
B ,

(2.21)

where B is the immediate surrounding luminance of the (i, j)th pixel with
intensity Bij . Equations (2.20) and (2.21) reveal that the contrast of pixels in
a perfectly homogeneous region is zero everywhere except near the boundary
points. The contribution to K of the image, therefore, comes mainly from its
noisy pixels and contrast regions (edge points). Thus the image quality index
or the average contrast per pixel is defined as

IQI =
K

nk
, (2.22)

where nk = MN − nh, nk = total number of significant contrast points,
nh = total number of significant homogeneous points, and MN = number
of pixels in the image. Note that the average is taken over only those pixels
that mainly contribute to the contrast measure, K; the pixels of homogeneous
regions, being least contributory, have been discarded.

To find out nh we define the homogeneity, hij of the (i, j)th pixel as

hij =

8∑

r=1

exp − |Bij − Br|

8
, (2.23)

where Br indicates the intensity of a background pixel in the 3 × 3 neigh-
borhood, N3(i, j), of (i, j). From equation (2.23), it is seen that when each
background pixel is equal to the central pixel, the tiny region around the
central pixel is perfectly homogeneous, and the homogeneity measure at the
central pixel is equal to unity. For other cases, homogeneity value of a pixel
exponentially drops with its difference from the background intensity.

Therefore, if we compute total homogeneity of an image as

H =
M∑

i=1

N∑

j=1

hij , (2.24)

then the major contribution to H comes only from the pixels that lie in per-
fectly homogeneous regions. Thus, H will be a good approximation to nh.
Therefore,

46 2 Image Segmentation

IQI =

M∑

i=1

N∑

j=1

| �Bij |/B

MN −
∑∑

hij
. (2.25)

The condition in equation (2.19) follows a psycho-visual criterion. A low value
of εa psycho-visually produces a good quality of image. Note that for an ordi-
nary least square approximation using polynomial surface, the error over the
boundary points normally is higher than that over the interior points. There-
fore, any polynomial with order determined relative to an error function mea-
sured over the boundary points is expected to provide a good approximation
for the interior points.

2.4.4 Algorithms

Method 1: Variable order global approximation
Here we determine the order of the global approximation over data points in
each subimage obtained under different thresholds. A schematic description
of the global approximation scheme is given below. We assume that there are
k number of thresholds for an image and N1, N2, · · ·Nk are the number of
regions in these k subimages.

Algorithm global approx (input image, th, εa , p)
begin

step 1: compute the weights as the gradients of the image;
step 2: find an acceptable subimage corresponding to a threshold th

obtained during segmentation by Algorithm Cond threshold
(assuming W(i,j)=1 ∀ i,j);

step 3: find the value of IQI of the subimage using equation (2.25);
step 4: set the order of the polynomial, p = 1;
step 5: approximate the subimage with weights as computed in

step 1.
step 6: find IQI of the approximated image.
step 7: if | (IQI)subimage − (IQI)approximated | ≤ εa then return p

and goto step 8 else set p = p+1 and goto step 5;
step 8: stop;

end;
Method 2: Variable/fixed-order local approximation
If the variable order global approximation over subimages does not provide
good approximation for some regions in a subimage, then we do local cor-
rection. The global approximation is performed over each of the k subimages
using a variable order polynomial function. The residual error surface patches
are computed using the globally approximated surface spp(u, v) and the orig-
inal input surface (here, the input subimage). Let us denote l-th error surface
patch of the i-th subimage by ei

l(u, v). Considering Ni error surface patches
that need local correction in the i-th subimage, we see that

2.4 Extraction of Compact Homogeneous Regions 47

ei
l(u, v) = g(u, v) − spp(u, v), i = 1, 2, · · · k and l = 1, 2, · · · , Ni.

Each of these error surface patches is approximated locally using a fixed or
variable order polynomial. A schematic description of variable order local
surface approximation is given below.

Algorithm local approx (input image, th, εa , q , p)
begin

step 1: find the most dispersed region, Ωk in the input image; find
the residual error surface for it with respect to order q;

step 2: find p using the Algorithm global approx (Ωk , th, εa , p);
step 3: if p ≥ q, a pre-assigned positive integer then goto step 4 else

assign an index for the region and return p;
step 4: stop;

end;
To summarize, this scheme is a two stage process. In stage 1, first deter-

mine a threshold. This threshold partitions an image into two subimages, F01

and F02. Determine the order of a polynomial minimizing unweighted least
square error for approximating a subimage F01. If the order of the polynomial
is less than a predefined order, say, q then accept the partition F01, else do
a local correction for one or more regions. Local correction is always with
respect to the global surface of order q. If the global approximation together
with local correction(s) is all right, then accept the subimage, F01, else com-
pute a new threshold to subdivide F01 into F011 and F012. The process goes on
subdividing the subimages hierarchically until all of them are approximated
by global approx and local approx. The same is also true for F02. The segmen-
tation algorithm may produce some small isolated patches. After the partition
of the entire image, all single pixel and small regions or patches are merged
to the neighboring regions depending on some criteria, which are described
in section 2.4.5. Note that all approximations in stage 1 are unweighted, i.e.,
W (i, j) = 1 ∀i, j in approximation algorithms. In stage 2, for encoding one
can approximate the subimages minimizing a weighted least square error with
a polynomial of the same order as determined in stage 1. The same order can
be used because the order (global and also local) of a subimage or the nature
of approximation is not expected to change due to merging of small regions.
However, one can once again find the order of approximation before encoding.

2.4.5 Merging of Small Regions

Merge is always used for better segmentation. Obviously, small noninformative
regions are merged to nearby regions. Two issues are raised: which regions are
to be merged and where are they to be merged. In order to detect regions of
small size for possible merge to one of its neighboring regions, a merge index
is often very helpful. Consider a merge index, MI, as the ratio of a measure
of within region interactions to that of between regions interactions. Assume
that for a nontrivial region, the within region interaction should be more than

48 2 Image Segmentation

that across the boundary, i.e., MI > 1. A very simple measure of within
region interaction is the number of transitions within the region. Similarly,
the between region interaction can be defined as the number of transitions
across the border of the region. Thus, MI can be computed as

MI =
Number of transitions within a region

Number of transitions across the border of the region
. (2.26)

Note that MI cannot be computed directly from the co-occurence matrix
discussed earlier because more than one isolated regions may contribute to
the computation of tij for a particular (i, j). In the present context we need to
consider only the transitions with respect to one region. This is a very simple,
yet effective, measure of interaction.

Small regions detected by MI are the potential candidates for merge and
they are merged if the magnitude of the average gradient computed over their
region boundaries is less than a preassigned positive value. This criterion will
avoid merging small but informative regions. High contrast small regions are
usually informative, e.g., the white spot in the eye ball in a face image. The
average gradient over a region, say Ω1, may be computed as

Ḡ =
∑

(i, j) ∈ ∂Ω1

G(i, j)
p

, (2.27)

where p is the perimeter of the region Ω1 and G(i, j) is the gradient at the
position (i, j). The average gradient over other regions can likewise be com-
puted. We have used the following gradient functions. Let gi,j and gk,l be two
adjacent pixels belonging to two different regions, say, Ωi and Ωk, then

G(i, j) = max | gi,j − gk,l | (2.28)

k ∈ N3(i, j),
where N3(i, j) is the 3×3 neighborhood of (i, j). Note that rechecking of the
segmentation criteria may be avoided because of merging small regions with
low gradients across the boundary positions. It is expected that the condition
will be satisfied and our computational experience indeed supports this fact.
However, to ensure the validity of the condition, one can once more check the
thresholding after merging.

Single Pixel Merge: Sometimes, single pixel region can occur in a thresh-
olded image. This should be merged to the neighboring region having the
closest gray value in the 3 × 3 neighborhood of the single pixel region.

2.5 Evaluation of Segmentation

Evaluation of segmentation is very important, though adequate attention is
not always paid. For evaluation of segmentation, one can consider region ho-
mogeneity and contrast along the boundary points. A good segmentation tech-
nique should create homogeneous regions or patches with high contrast at the

2.5 Evaluation of Segmentation 49

inter-region boundaries. Merging should have very little effect on the over-
all contrast of the image. The following objective measures for quantitative
evaluation of segmentation are helpful.
a. Correlation

Correlation has already been used as a criterion for graylevel threshold-
ing and evaluation [31]. In the present context, it can be used to examine
the graylevel similarity between the segmented region/patches and the origi-
nal image. Consider the segmented image where all patches under respective
thresholds are replaced by their average value. The correlation between the
segmented and input images provides an idea about how a segmented patch
is nearer to the corresponding region in the original input image. For a good
segmentation, the correlation coefficient between the two images should be
very high. However, if the segmented patches are not homogeneous, i.e., if
they have edges in them, the variance of the corresponding regions would be
high and as a result, the correlation coefficient would be low. Thus correlation
between the two different images—input and segmented—can be an useful
measure to evaluate the quality of segmentation. The correlation coefficient
can be calculated in the following way.

The coefficient of correlation ρxy for two sets of data X = {x1, x2, · · · , xN}
and Y = {y1, y2, · · · , yN} is given by

ρxy =

1
N

N∑

i=1

xiyi − x̄ȳ

√√√√ 1
N

N∑

i=1

x2
i − x̄2

√√√√ 1
N

N∑

i=1

y2
i − ȳ2

, (2.29)

where x̄ = 1
N

N∑

i=1

xi and ȳ = 1
N

N∑

i=1

yi. The correlation coefficient, ρxy takes on

values from +1 to -1, depending on the type and extent of correlation between
the sets of data.
b. Contrast

Another requirement for a good segmentation is that the contrast at inter-
region boundaries must be very high compared to that for the interior points.
This criterion immediately suggests that the average contrast, i.e., contrast
per pixel, say K̄b, of all inter-region boundary points in all subimages should
be high compared to that (say, K̄Ω) over all points enclosed within the bound-
aries. Therefore,

K̄b >> K̄Ω .

The contrast cij , at the pixel position (i, j) can be computed as in equation
(2.21), which we repeat here as

cij =
| B − Bij |

B
=

| �B |
B

, (2.30)

50 2 Image Segmentation

where B is the immediate surrounding luminance of the (i, j)th pixel with
intensity Bij .

Let SB be the set of all boundary points and SI be the set of all interior
points (SB ∪ SI = F , SB ∩ SI = null set). Contrast of all boundary points,
Kb and that of interior points, KΩ are, therefore,
Kb =

∑

(i,j) ∈ SB

cij and KΩ =
∑

(i,j) ∈ SI

cij .

Note that KΩ is an indicant of homogeneity within regions—lower the
value of KΩ , higher is the homogeneity. The contrast per pixel, K̄b, of all
inter-region boundary points and that over all points enclosed within the
boundaries, K̄Ω can be obtained by dividing Kb by the number of boundary
points and KΩ by the number of interior points.

2.6 Comparison with Multilevel Thresholding
Algorithms

Since the co-occurrence matrix contains information regarding the spatial dis-
tribution of graylevels in the image, several workers have used it for segmen-
tation. For thresholding at graylevel s, Weszka and Rosenfeld [174] defined
the busyness measure as follows:

Busy(s) =
s∑

i=0

L−1∑

j=s+1

tij +
L−1∑

i=s+1

s∑

j=0

tij . (2.31)

The co-occurrence matrix used in (2.31) is symmetric. For an image with only
two types of regions, say, object and background, the value of s which mini-
mizes Busy(s), gives the threshold. Similarly, for an image having more than
two regions, the busyness measure provides a set of minima corresponding to
different thresholds.

Deravi and Pal [58] gave a measure that they called “conditional probabil-
ity of transition” from one region to another as follows. If the threshold is at s,
the conditional probability of transition from the region [0, s] to [s+1, L− 1]
is

P1 =

s∑

i=0

L−1∑

j=s+1

tij

s∑

i=1

s∑

j=0

tij +
s∑

i=0

L−1∑

j=s+1

tij

(2.32)

and the conditional probability of transition from the region [(s+1), (L− 1)]
to [0, s] is

2.6 Comparison with Multilevel Thresholding Algorithms 51

P2 =

L−1∑

i=s+1

s∑

j=0

tij

L−1∑

i=s+1

L−1∑

j=s+1

tij +
L−1∑

i=s+1

s∑

j=0

tij

. (2.33)

pc(s), the conditional probability of transition across the boundary, is then
defined as

pc(s) = (P1 + P2)/2. (2.34)

Expressions (2.32)–(2.34) suggest that a minimum of pc(s) will correspond to
a threshold such that most of the transitions are within the class and few are
across the boundary. Therefore, a set of minima of pc(s) would be obtained
corresponding to different thresholds in F.

Chanda et al. [35] also used the co-occurrence matrix for thresholding.
They defined an average contrast measure as

AV C(s) =

s∑

i=0

L−1∑

j=s+1

tij ∗ (i − j)2

s∑

i=0

L−1∑

j=s+1

tij

+

L−1∑

i=s+1

s∑

j=0

tij ∗ (i − j)2

L−1∑

i=s+1

s∑

j=0

tij

. (2.35)

AVC(s) shows a set of maxima corresponding to the thresholds between var-
ious regions in F. In the computation of tij , they considered only vertical
transitions in the downward direction.

2.6.1 Results and Discussion

Table 2.1 shows some objective measures, which we have already discussed
in the previous sections. Consider two 32-level images (Figure 2.3 and Figure
2.4), each of size 64 × 64. Figure 2.3(a) is the Lincoln image while Figure 2.4(a)
is the biplane image. Table 2.1 shows the values of different objective measures
in conjunction with the total number of regions or patches, say NΩ , produced
by different segmentation techniques for the images. Note that the number of
regions is an important parameter to justify goodness of segmentation. For
the Lincoln image, the number of segmented regions obtained by the discussed
algorithm is almost one-fourth of those obtained by the other algorithms and
for biplane image, the number of regions is roughly half of those produced by
the algorithms of Rosenfeld, Pal-Deravi, and Chanda et al., respectively.

Usually, with the increase in number of regions, correlation is expected to
increase. The segmentation of both Lincoln and biplane images supports this
fact. But even with a much smaller number of regions for both the images
produced by the proposed scheme, the correlation values are comparable to
those for the segmented images obtained from other algorithms. This indi-
cates successful merging of small regions to the proper neighboring regions.

52 2 Image Segmentation

Table 2.1. Evaluation of different segmentation algorithms.

Lincoln image

Objective measure described [174] [58] [35]

Number of regions NΩ 52 187 192 189
Correlation 0.9788 0.9879 0.9873 0.9908
Boundary contrast/pixel K̄b 0.204 0.202 0.200 0.194
Region contrast/pixel K̄Ω 0.0294 0.0257 0.0258 0.0293

Biplane image

Number of regions NΩ 35 59 59 76
Correlation 0.9886 0.9892 0.9892 0.9884
Boundary contrast/pixel K̄b 0.1499 0.1866 0.1866 0.1782
Region contrast/pixel K̄Ω 0.0151 0.0144 0.0144 0.0150

Also, due to merging, the homogeneity of the segmented regions is expected
to increase. For good segmentation, this homogeneity should be very high.
This means that the average contrast K̄Ω within a region should be low. The
parameter region contrast/pixel, K̄Ω , shows that the average homogeneity is
reasonably good. Finally, the average boundary contrast K̄b, for both images
is very much comparable to all the cases. Different segmented images along
with the input are shown in Figures 2.3((a)–(e)) and 2.4((a)–(e)). For a better
display of segmented regions, all segmented images are stretched over a gray
scale of 0–255.

2.7 Some Justifications for Image Data Compression

The segmentation scheme, discussed in this chapter, is well suited for image
data compression. It exploits the benefit of the multilevel thresholding based
on conditional entropy, and partitions an image hierarchically. It also merges
small regions efficiently.

The algorithm shows the possibility of globally approximating many seg-
mented regions or patches by a single polynomial function. In other words, one
can think to model different regions in an image by a single polynomial sur-
face. For this, all such regions should have similar graylevels. The segmented
regions to be approximated by a single polynomial can be extracted under
a single threshold. Thresholding based segmentation thus provides an advan-
tage over the split and merge technique of segmentation [133]. The latter does
not provide any group of patches or regions of similar gray levels located at
different places in an image at a time. It is, therefore, preferable to choose a
thresholding technique of segmentation for coding application because, under
such segmentation, a set of approximation parameters can represent many
regions. This set of parameters represents a single surface on which differ-
ent regions are situated at different locations. Hence, one need not code all

2.7 Some Justifications for Image Data Compression 53

(a)

(b) (c)

(d) (e)

Fig. 2.3. (a) Input Lincoln image; (b) segmented image by the proposed method;
(c) segmented image by Chanda et al. [35]; (d) segmented image by Weska and
Rosenfeld [174]; (e) segmented image by Deravi and Pal [58].

54 2 Image Segmentation

(a)

(b) (c)

(d) (e)

Fig. 2.4. (a) Input image of biplane; (b) segmented image by the proposed method;
(c) segmented image by Chanda et al. [35]; (d) segmented image by Weska and
Rosenfeld [174]; (e) Segmented image by Deravi and Pal [58].

2.8 Concluding Remarks 55

the regions separately for their gray information. This is an important rea-
son, responsible for providing advantage to image compression. However, the
graylevel distribution over some of the image surface patches may be such
that the global approximation is not adequate for them. One can call such
patches, under a given threshold, busy patches. To overcome this difficulty, a
lower order (compared to that of the global approximation) polynomial func-
tion can be used for local approximation of each of the residual surface patches
in the subimage. Therefore, a subimage can be reconstructed using the global
surface, along with the local residual surfaces for the busy patches if they are
really present. Such a hybrid approximation scheme helps to improve the com-
pression ratio. Note that exactly the same kind of approximation is used to
guide the segmentation process, which ensures that the extracted subimages
can be modeled by low order polynomials resulting in better compression.

To more clearly visualize the advantage of the algorithm to image com-
pression, one can consider the following example.

Suppose in a threshold band limited subimage F(x, y) we have N surface
patches, then for the local quadratic approximation one requires 6N coeffi-
cients. On the other hand, if we have the global quadratic approximation of
the subimage and local planar approximation of the residual surface patches,
the total number of coefficients is 3N +6. For an improvement in compression
ratio of the global–local approximation over the conventional local approxi-
mation, we must have 6N > 3N + 6, i.e., N > 2. This implies a positive gain
in storage if the subimage has more than two surface patches, which is usually
the case. Thus, it is evident that for polynomial approximation, we need fewer
numbers of bits for any segmentation based lossy image compression technique
where regions or patches are approximated separately. Compression factor, as
a result, would improve (assuming the same contour coding scheme as in the
concerned method).

2.8 Concluding Remarks

It is always desirable to break up an image into different regions. Later on,
these regions can be processed either separately or collectively. We must al-
ways keep in mind that segmentation should fulfill our purpose. One segmen-
tation technique may be found to be very good in one application while it may
be completely unsuitable for the other. However, a knowledge based segmen-
tation is expected to yield semantically meaningful regions, which can find
many new applications in a wider scale. Such segmentation can be viewed as
an intelligent segmentation.

3

1-d B-B Spline Polynomial and Hilbert Scan
for Graylevel Image Coding

3.1 Introduction

Chapter 3 examines the use of one dimensional Bézier-Bernstein (B-B) poly-
nomial function in image segmentation and image compression. The approx-
imation used here can be viewed as a modification of the standard B-B ap-
proximation. We shall explain the way of approximation in the one dimen-
sional case using graylevel image pixel values. Later on, we shall examine its
feasibility in the area of image coding. To find the justification of such an
approach of approximation, we shall first examine if the conventional way
of approximating an image by Bézier-Bernstein polynomial, in a raster scan,
provides any advantage from the data compression standpoint. For this, one
can consider an entire row (or column) of an image as a single segment for
its approximation. From the approximation theorem of Bernstein [113] it is
evident that, for a given error, the order of the polynomial increases with the
maximum gray value present in the segment. Therefore, if the maximum gray
value in an image is very large, the order of the polynomial also becomes large.
Consequently, it introduces a large number of control or guiding pixels for ap-
proximation. As a result, approximation becomes computationally expensive
and the segment generation also becomes slow. This makes it inconvenient to
use the conventional way of approximating an image for its compression.

We emphasize on the local control of data points (pixels) instead of min-
imizing the global squared error. We can think of an absolute error criterion
to keep the absolute error within a bound during approximation of image
segments. And, for the sake of data compression, of course, one can choose
the second order polynomial function. Approximation is seen to be more ef-
fective on Hilbert scanned images rather than on raster scanned images. This
is because due to the neighborhood property of the Hilbert scan, long homo-
geneous segments are found to be approximated; resulting in fewer numbers
of segments for encoding than that for a raster scanned image. Consequently,
the compression ratio is found to be higher.

58 3 1-d B-B Spline Polynomial and Hilbert Scan for Graylevel Image Coding

3.2 Hilbert Scanned Image

Hilbert curve is one of the space filling curves, published by G. Peano in
1890. The Hilbert curve has a one-to-one mapping between an n-dimensional
space and a one dimensional space, which preserves point neighborhoods
as much as possible. There are many applications of this curve. A review
on the applications of Hilbert curve can be found in [137, 155]. Some of
the researchers have already used this curve in the area of image process-
ing. Reported works in the area of image compression can be found in
[5, 4, 45, 83, 84, 85, 86, 126, 154, 153].

Let Rn be an n-dimensional space. The Peano curve published in 1890
is a locus of points (y1, y2, · · · yn) ∈ Rn defined by continuous functions
y1 = χ1(ν), y2 = χ2(ν) · · · yn = χn(ν), (ν ∈ R1) where 0 ≤ y1, y2, · · · yn < 1
and 0 ≤ ν < 1. It was an analytical solution of a space filling curve. In
1891, Hilbert drew a curve having the space filling property in R2. Hilbert
found a one-to-one mapping between segments on the line and quadrants
on the square. Figure 3.1 shows the Hilbert curve with different resolutions.
Hilbert scan considers the positions on the square through which the curve
passes. Therefore, a Hilbert scanned image or simply a Hilbert image is a one
dimensional image with its pixels identical to those through which the curve
passes. Thus, it maintains the neighborhood property.

A Hilbert image or a Hilbert scanned image is a set of ordered pixels that
can be obtained by scanning the positions of pixels through which this curve
passes.

3.2.1 Construction of Hilbert Curve

Construction of Hilbert curve, following Hilbert’s ideas, considers a square
that is filled by the curve. Since our objective is to scan a gray tone image
and produce a Hilbert scanned image for the study of image compression,
we shall explain the basic philosophy behind construction of the curve and
provide a scheme through which real life images can be converted into Hilbert
scanned images. We also provide a scheme for inverse mapping to get back
gray tone images from the Hilbert scanned images.

First of all, we divide the square as shown in Figure 3.2 into four quarters.
The construction starts with a curve H0, which connects the centers of the
quadrants by three line segments. Let us assume the size of the segments to
be 1. In the next step, we produce four copies (reduced by 1/2) of this initial
stage and place the copies into the quarters as shown. Thereby we rotate the
first copy clockwise and the last one counterclockwise by 90 degrees. Then we
connect the start and end points of these four curves using three line segments
(of size 1/2) as shown and call the resulting curve H1. In the next step, we
scale H1 by 1/2 and place four copies into the quadrants of the square as in
step one. Again we connect using three line segments (now of size 1/4) and
obtain H2. This curve contains 16 copies of H0, each of size 1/4. As a general

3.2 Hilbert Scanned Image 59

Fig. 3.1. Hilbert curve with different resolutions.

Fig. 3.2. Four stages of the Hilbert curve.

rule, in step n we obtain Hn from four copies of Hn−1, which are connected
by three line segments of length 1/2n and this curve contains 4n copies of
H0 (scaled by 1/2n). A different approach (normally known as the L-system
approach) for construction of the Hilbert curve can be found in [134]. Since in
image compression problem we are concerned with mapping gray tone images
of different sizes into corresponding Hilbert scanned images, we construct
Hilbert curve with different resolutions using Freeman’s four connected chain
code. The chain code is shown in Figure 3.3. Using this chain code, the curves
H0, H1, and H2 are respectively given below:

H0: 123.
H1: 214,1,123,2,123,3,432.

60 3 1-d B-B Spline Polynomial and Hilbert Scan for Graylevel Image Coding

3

4

1

2

Fig. 3.3. 4-connected chain code.

H2: 123221412144341,1,214112321233432,2,214112321233432,
3,341443234322123.

Below we present a c-program fragment that provides four connected chain
codes for different resolutions of a Hilbert curve and the corresponding Hilbert
scanned image.

printf(”Enter resolution of the Hilbert curve : ”);
scanf(”%d”,&k);
l=1;
p=(int)pow(4.0,(double) l);
for (i=1; i < p; i++);
x2[i]=i;
printf(”The curve H0, seed pattern, is : ”);
for (i=1; i < p; i++)
printf(”%d”,x2[i]);
while (l <=k){
/*—————find first copy——————–*/
for (i=1; i < p; i++){
x1[i]=x2[i]+1;
if (x1[i] > 4)
x1[i]=x1[i] - 4;
}
for (i=1; i < p; i++){
x1[i]=x1[i]+2;
if (x1[i] > 4)
x1[i]=x1[i] - 4;
}
j=0;
for (i=p-1; i > 0; i–){
++j;

3.2 Hilbert Scanned Image 61

y[j] =x1[i];
}
for (i=1; i < p; i++)
x1[i]=y[i];
/*——————seed filling——————-*/
for (i=1; i < p; i++)
x3[i]=x2[i];
/*——————find last copy—————-*/
for (i=1; i < p; i++){
x4[i]=x2[i] -1;
if (x4[i] < 1)
x4[i]=x4[i]+4;
}
for (i=1; i < p; i++){
x4[i]=x4[i] + 2;
if (x4[i] > 4)
x4[i]=x4[i] - 4;
}
j=0;
for (i=p-1; i > 0; i–){
++j;
y[j]=x4[i];
}
for (i=1; i < p; i++)
x4[i]=y[i];
/*—————-substitution——————-*/
x1[p]=1;
x2[p]=2;
x3[p]=3;
printf(”H-scan for level l = %d is: ”,l);
for (i=1; i<=p; i++)
printf(”%d”,x1[i]);
for (i=1; i<=p; i++)
printf(”%d”,x2[i]);
for (i=1; i<=p; i++)
printf(”%d”,x3[i]);
for (i=1; i < p; i++)
printf(”%d”,x4[i]);
/* —————-seed for the higher level——–*/
for (i=1; i<=p; i++)
y[i]=x1[i];
j=p;
for (i=1; i<= p; i++){
++j;
y[j]=x2[i];

62 3 1-d B-B Spline Polynomial and Hilbert Scan for Graylevel Image Coding

}
j=2*p;
for (i=1; i<=p; i++){
++j;
y[j]=x3[i];
}
j=3*p;
for (i=1; i< p; i++){
++j;
y[j]=x4[i];
}
l++;
p=(int)pow(4.0,(double)l);
for (i=1; i < p; i++)
x2[i]=y[i];
}

Thus, we see for a fixed resolution, the program fragment provides a repre-
sentation of the Hilbert curve in terms of 4-connected chain codes. This chain
codes provide the scan directions in an image for the corresponding Hilbert
image. Below, we show how the Hilbert scanned image can be obtained.

/*————pixel arrangement according to H-scan——————*/
/* pixel can be arranged using the coded Hilbert curve or its mirror */
/* image. Below we give one example.——————————–*/
/* Array y contains the Hilbert image for an image in img array.——*/

i=1; j=1;
y[1]=img[i][j];
for (k1=1; k1 < p; k1++){
if (x2[k1] ==1)
i=i+1;
if (x2[k1] ==2)
j=j+1;
if (x2[k1] ==3)
i=i-1;
if (x2[k1] ==4)
j=j-1;
y[k1+1]=img[i][j];
}

The inverse mapping of the Hilbert scanned image is straightforward. We
have the 1-d Hilbert scanned image and the corresponding 4-connected chain
codes. From these two factors, one can quickly get back the original image.

3.3 Shortcomings of Bernstein Polynomial and Error of Approximation 63

3.3 Shortcomings of Bernstein Polynomial and Error of
Approximation

Bernstein polynomial is a powerful tool to approximate a continuous function
within any degree of accuracy. It uses the global information while approxi-
mating a function and the order of the polynomial increases with accuracy in
approximation. The Bernstein polynomial of degree p from is

Bip(t) =
p∑

i=0

f(
i

p
) φip(t) (3.1)

for approximating a function f(t). Here f(t) is defined and finite on the closed
interval [0, 1]. Also,

φip(t) =
(

p

i

)
ti (1 − t)p−i

and (
p

i

)
=

p!
(p − i)!(i)!

with i = 1, 2, · · · p.
The order p of the Bernstein polynomial Bip(t) satisfies the inequality

km

ε δ2
< p (3.2)

in order to have the error of approximation less than ε, where km is the
maximum value of the approximating function f(t) in the interval [0, 1]. δ is
a positive number such that for points t1 , t2 ∈ (0, 1)

| f(t1) − f(t2) |<
ε

2
,

whenever | t1 − t2 |< δ.
Since a graylevel image in a raster scan can be approximated either row

wise or column wise, it appears from the inequality (3.2) that the order of the
approximating polynomial may be different for different rows (or columns)
depending on the value of km (assuming ε and δ do not change appreciably). As
an illustration, let us consider the case of approximating, row wise, a 32 level
(0, 1, · · · 31) image of size 32×32. If a row has its maximum value km = 31,
then for ε = 1, (i.e., one unit error in gray value) p > 31 ×31×31

29×29 ≈ 35.42, i.e.,
36. Note that the maximum value of δ = 29

31 , because |t1 − t2| = 1/31− 30/31
(t1, t2 ∈ (0, 1). Therefore, for km = 31, one can choose p to be equal to 36.

On the other hand, if km = 2, then m ≈ 1.06, i.e., p = 2. km = 2 means
some of the graylevel values in the row are same and is equal to 1. Since in
a gray image it is very likely to have the maximum value anywhere in each
row, the order may be as high as the maximum graylevel in the image. This
makes the method ineffective.

64 3 1-d B-B Spline Polynomial and Hilbert Scan for Graylevel Image Coding

3.4 Approximation Technique

It is seen in the previous section that to approximate a raster scanned gray
tone image row wise (or column wise), the order of the Bernstein polynomial
varies from row to row (or column to column), and for an image with one unit
error in approximation (ε = 1) this order becomes close to the maximum value
present in each row (or column). The large order of the polynomial, in turn,
makes the approximation time as well as the reconstruction time relatively
high. Again, the variation in order of the polynomial from row to row (or
column to column) makes the coding scheme complicated.

An attempt is made in this chapter to develop an approximation scheme
that keeps the order of the polynomial equal to two. Since the order is chosen
two, the amount of error ε, as expected, will be significantly high. In order
to circumvent this, a modification of the conventional approximation scheme
based on Bézier-Bernstein polynomial is proposed. This leads to the formu-
lation of a new scheme by which it is also possible to obtain any degree of
accuracy in approximation.

Given n points, the approximation algorithm requires n-2 unique quadratic
B-B spline functions for their representation. Unlike the method described in
section 3.3, the scheme, proposed here, decomposes a row (column) either into
a single gray segment or into a number of segments so as to enable them to
be approximated properly. An error bound has been defined that guides the
process of segmentation.

3.4.1 Bézier-Bernstein (B-B) Polynomial

Equation (3.1), which represents a p-th degree Bernstein polynomial for ap-
proximating a function f(t) , 0 ≤ t ≤ 1 can be written as

Bip(t) = φop(t)f(0) + φ1p(t) f(
1
p
) + φ2p(t) f(

2
p
) + · + φpp(t)f(1).

Bip(t) is seen to consider a set of weights φip(t) (0 ≤ t ≤ 1) along with
some fixed points of the function f(t) in [0, 1] for its approximation. With
the choice of some arbitrary points for f(i

p), one can determine Bip(t) for each
value of t.

Let vi represent a point in a multi-dimensional space and that vi = f(i
p).

Thus Bip(t) becomes,

Bip(t) =
p∑

i=0

φip(t) vi. (3.3)

Equation (3.3) can be viewed as a vector valued Bernstein polynomial and it
approximates a polygon with vertices vi and t in [0, 1]. Bip(t) is thus seen
to generate a space curve. Equation (3.3) is known as p-th degree Bézier-
Bernstein (B-B) polynomial. For p = 2, the quadratic B-B polynomial (drop-
ping the index i in Bip) is

3.4 Approximation Technique 65

B2(t) =
2∑

i=0

φi2(t)vi

= φo2(t) vo + φ12(t) v1 + φ22(t) v2

= (1 − t)2 vo + 2 t (1 − t) v1 + t2 v2.

(3.4)

3.4.2 Algorithm 1: Approximation Criteria of f(t)

In order to develop an approximation technique, let us first formulate the key
criteria associated with this technique.

Let us assume n-2 quadratic B-B polynomials for the representation of n
data points such that

f(ti) = B2
i(ti) i = 1, 2, 3, · · · , n − 2

where B2
i(ti) is the value of the ith quadratic B-B polynomial at the point ti

and is given by

B2
i(ti) = (1 − ti)

2
vo + 2ti(1 − ti)v1

i + ti
2v2. (3.5)

Let
B2

1(0) = B2
2(0) = · · · = B2

n−2(0) = vo

and
B2

1(1) = B2
2(1) = · · · = B2

n−2(1) = v2.

In other words, at the end supports all the quadratic B-B polynomials are
assumed to be identical. The points at end supports are also the vertices of
the underlying n-2 polygons. The second vertex (also called the control point)
v1

i of the n-2 polynomials are all different. This is shown in Figure 3.4.

Fig. 3.4. Second control points due to a sequence of quadratic polynomials.

From equation (3.5), the second control point of the ith polynomial can
be computed as

66 3 1-d B-B Spline Polynomial and Hilbert Scan for Graylevel Image Coding

v1
i =

B2
i(ti) − (1 − ti)2 vo − ti

2 v2

2 ti (1 − ti)
. (3.6)

Let v1 = 1
n−2

n−2∑

i=1

v1
i be the average value of the second control points for (n-

2) polynomials and let the corresponding B-B polynomial with control points
vo, v1, and v2 be B2(ti). The discrete form of B2(ti) can be written as

B2(ti) = (1 − ti)
2

vo + 2 ti (1 − ti)v1 + ti
2 v2. (3.7)

From equations (3.5) and (3.7),

| B2(ti) − B2
i(ti) | =| v1 − v1

i | × 2 ti (1 − ti). (3.8)

This equation denotes the absolute difference between the polynomial B2(ti)
and an arbitrary ith quadratic B-B polynomial B2

i(ti) at an instant ti. The
maximum absolute difference of B2 (ti) and B2

i (ti) is

| B2 − B2
i | max = | v1 − v1

i | max × [2 ti (1 − ti)]max

= | v1 − v1
i | max × 1

2 .
(3.9)

Note that ti(1 − ti) is always positive. Similarly,

| B2 − B2
i | min = | v1 − v2

i | min × [2 ti (1 − ti)] min. (3.10)

The expression ti (1 − ti) has maximum at t = 1
2 and the value falls sym-

metrically either side as t moves away from 1
2 . Since ti ∈ (0, 1), the expression

2 ti (1− ti) is minimum for the possible minimum/maximum value of ti. For
equally spaced data points, the minimum possible value of ti is 1

(n−1) and the

maximum possible value of ti is n−2
n−1 . In either case, [2ti(1 − ti)]min = 2(n−2)

(n−1)2
.

With this,

| v1 − v1
i | min = (n−1)2

2 (n−2) | B2 − B2
i | min

= (n−1)2

2 (n−2) εmin

(3.11)

and

| v1 − v1
i | max = 2 | B2 − B2

i | max

= 2 εmax
(3.12)

where | B2 − B2
i | min = εmin and | B2 − B2

i | max = εmax are respectively
the minimum and maximum absolute errors in approximating a function f(t)
and ti (1 − ti) is maximum at ti = 1

2 . It is straightforward to observe from
equation (3.11) and (3.12) that

| v1 − v1
i |min ≤ | v1 − v1

i | ≤ | v1 − v1
i |max, (3.13)

3.4 Approximation Technique 67

or,
2(n − 2)
(n − 1)2

≤ | v1 − v1
i | ≤ 2εmax. (3.14)

Similarly,
εmin ≤ | B2 − B2

i | ≤ εmax. (3.15)

Therefore, the inequality (3.13) tells that the function f(ti) = B2
i(ti), i =

1, 2, · · ·n−2 can be approximated by B2(t) with an error inequality expressed
in equation (3.15).

3.4.3 Implementation Strategy

It is seen from the previous section that the inequality (3.13) and (3.15) can
be used to approximate a gray tone image segment. During approximation,
it may be the case that the inequality (3.13) does not hold for all values of i
associated with a segment of the image, representing either a row (or a column)
or the entire Hilbert scanned image. Let us consider that the inequality is true
for no pixels out of n in the segment. Thus the remaining (n-no) pixels can
again be approximated over the interval [0, 1]. Approximation technique for
a raster scanned image thus may involve decomposition of all the rows (or
columns) into a number of gray segments, while for a Hilbert scanned image,
it may decompose the single piece of segment into segments of different sizes.
The approximation always starts, in either case, with a fixed size, which may
be 16, 32, 64, 128, or 256. Note that the inequality (3.13) is always true for a
segment having three pixels irrespective of the inequality (3.15). The 3-pixel
approximation is, therefore, the smallest segment for approximation. For a
raster scanned image, either the last two pixels or the last pixel of the row (or
column) may remain free. In this case, the same pixels/pixel may be left as it
is or the same pixel may be considered once or twice to ensure approximation.
This is the undesired situation for approximation at the end point. For a raster
scanned image of size M × M , the undesired situation may happen at most
M times (worst case) due to row or column wise approximation while for a
Hilbert scanned image, this undesired situation may happen only once.
Example:

In order to illustrate the method of approximation, let us consider a se-
quence of 38 data points as shown in Table 3.1. The maximum and minimum
errors, εmax and εmin, for approximation are 10.0 and 0.000001, respectively.
The approximation partitions the data set into three segments. The beginning
and end point of each partitioned segment are approximated with zero error,
whereas all other data points are approximated with errors between εmin and
εmax. Note that the approximation may have much lower error than εmax.
The partition of data points in Table 3.1 into three segments is controlled by
the equation (3.13). Length of the first partition of the data segment is 11,
whereas the second and third partitions have lengths 7 and 20, respectively.

68 3 1-d B-B Spline Polynomial and Hilbert Scan for Graylevel Image Coding

Table 3.1. Illustration of approximation techniques.

No. of Original data Approx. Error in v1

segments data values approximation

140 140.0000 0.0000
140 143.1117 -3.1117
140 146.1098 -6.1098
157 148.9941 8.0059

1 157 151.7647 5.2353 155.8432
162 154.4216 7.5784
157 156.9647 0.0353
157 159.3941 -2.3941
157 161.7098 -4.7098
166 163.9117 2.0883
166 166.0000 0.0000

166 166.0000 0.0000
174 170.3444 3.6556

2 174 172.6844 1.3156 182.0400
174 173.0200 0.9800
166 171.3511 -5.3511
166 167.6777 -1.6777
162 162.0000 0.0000

166 166.0000 0.0000
166 165.4410 0.5590
162 164.8388 -2.8388
162 164.1936 -2.1936
166 163.5051 2.4949
162 162.7735 -0.7735
162 161.9988 0.0012
162 161.1808 0.8192
162 160.3198 1.6802
157 159.4156 -2.4156

3 157 158.4682 -1.4682 160.8947
157 157.4777 -0.4777
157 156.4440 0.5560
157 155.3672 1.6328
157 154.2472 2.7528
157 153.0841 3.9159
157 151.8778 5.1222
148 150.6283 -2.6283
148 149.3357 -1.3357
148 148.0000 0.0000

3.4 Approximation Technique 69

3.4.4 Algorithm 2

Here each row (column) of pixels has been viewed as a space curve and is
segmented depending on the homogeneity among the pixels. Each segment is
then approximated by the modified approximation scheme. Here, we consider

v1 =
1
n

n∑

i=1

v1
i, (3.16)

where vi
1s are computed using equation (3.6).

Since the segments are all homogeneous, approximation for coding depends
on the homogeneity parameter and not on any external approximation param-
eter as required in the case of Algorithm 1. The approximation is faster. Since
for each homogeneous segment vi

1s are averaged for v1, every approximation
has its own εmax that varies from segment to segment.
Small deformation space curve and the concept of homogeneity

An image may be considered as an intensity surface with surface contours
representing the space curves along the rows and columns of the image. Note
that for any curve Γ , the amount of information contained in it can be rep-
resented by its curvature vector kv or by any other related quantity. The
curvature vector kv is defined as

kv =
dt

ds
,

t being the tangent vector and s being the arc length. For a curve Γ , with
given end points, its bending energy Be can be written as

Be =
∫

Γ

kv
2 ds.

Here the deformation of the curve is in the direction normal to the axis of the
equilibrium position. Therefore, when the x-axis is along the axis of equilib-
rium position, the deformation may be represented by z(x) and consequently
we have

Be =
∫

Γ

kv
2 dx

=
∫

Γ

[z′′(x)]2

[1 + (z′(x))2]3
dx.

(3.17)

For small deformation, z′(x) ≈ 0 and Be ≈
∫

Γ
[z′′(x)]2 dx. Since Be represents

the total energy of the curve, kv
2 or (z′′)2 represents the energy of the curve

at an arbitrary point. Therefore, in an image plane, kv
2 will represent the

energy of the image space curve at a pixel position.
With the above principle, a curve (a set of pixels along a row or a column)

can be considered to be perfectly homogeneous if the bending energy is zero at

70 3 1-d B-B Spline Polynomial and Hilbert Scan for Graylevel Image Coding

every pixel position. This is obviously the most stable state of the curve (i.e.,
without any deformation). Homogeneity decreases with the increase of defor-
mation. For the purpose of image compression, we are interested in finding
the homogeneous segments of pixels in an image because such segments can
be approximated with a small amount of error and they do not significantly
produce any smearing effect. From the space curve analogy, homogeneous seg-
ments of pixels are segments with z′(x) ≈ 0. However, in practice, it is very
difficult to obtain long segments of pixels with zero gradient everywhere. In
order to circumvent this difficulty, we consider the average of the first order
derivative values for a segment of pixels and compute the variance of these
derivative values. Since small value of z′(x) corresponds to small deformation
of the image space curve at a pixel position, its average value should corre-
spond to average deformation and hence, the square root of the variance, i.e.,
the standard error provides a measure for the deformation.

3.5 Image Data Compression

Since we are restricted to one dimensional approximation, we consider both
the Hilbert and raster scanned images for compression. Among the space-
filling curves, note that the Hilbert/Peanno scanned images have already
received attention in image compression due to its neighborhood scanning
behavior.
A. Coding Scheme

An image on a raster scan can be approximated either row wise or column
wise. The one that needs fewer number of segments is selected for coding. For
a Hilbert scanned image, the approximation is along the length of the curve.
We basically encode the approximation parameters of a segment along with
the length of the segment. In the following section, we will be explaining the
bit requirement for the proposed methods of coding.
B. Bit Requirement

Let us consider an image of size M ×M with L number of gray levels {0, 1,
2, · · · , (L−1)}. Since there may be a number of gray segments resulting in the
process of approximation, each of them can be coded with their corresponding
approximation parameters, namely vo, v1, v2, and the length of the segment,
n. Since the positional information of approximation (control parameters of
the Bézier curve) parameters is not taken into account for coding, the size of
the gray segments plays an important part for regeneration of the image. As
the maximum possible size of a segment on a raster scan is M, the maximum
number of bits required for encoding the size of a segment is log2 M . In par-
ticular, the number of bits required to encode the size of a segment, satisfying
the approximation criterion, depends on the maximum value for a segment
chosen for approximation. In practice, the size of segments is found to be much
less than the length of the raster. The segments, in fact, are found to occur
frequently with the same length. As a result, the probability of occurrence for

3.5 Image Data Compression 71

the segments of same size is noticeable. Each of the gray segments is a Bézier
arc and is represented by its three parameters, namely vo, v1 and v2. Of them,
v1 may not be an integer. So, instead of v1, we consider the integer part of the
reconstructed data point d1 (say) at t = 1

2 for the segment. We designate this
pixel by vd. Thus, vo, vd, v2, and n completely specifies an approximated data
segment, where vo, vd, and v2 are the three pixel brightness values on the arc.
These brightness values (approximation parameters) in an image are found to
frequently occur for different segments. Consequently, Huffman coding for all
the parameters provide good results for compression of images. Furthermore,
vo, vd, and v2 being the brightness values, they are found to be indistinguish-
able from their neighboring values when they differ by small values. This fact
can be used to reduce the number of independent brightness values to be en-
coded. The number of parameters drastically decreases when all the arcs are
replaced by horizontal line segments. This increases the compression ratio at
the cost of quality of the reconstructed image in terms of PSNR value. We,
therefore, have the following two different situations for compression:
(a) when the segments are all quadratic arc segments,
(b) when the segments are all replaced by horizontal line segments.

Let θl, θvo
, θvd

, and θv2 be the average number of bits/pixel for the length
of segments, and the parameters vo, vd, and v2, respectively. The total number
of bits Nb, when the segments are all arcs, is given by,

(Nb)A = Ns(θl + θvo
+ θv2 + θvd

), (3.18)

where, Ns=number of segments.
When all the segments are lines, the number of bits reduces to

(Nb)L = Ns(θl + θbl) (3.19)

where θbl is the average number of bits/pixel for the pixel values on line
segments.

3.5.1 Discriminating Features of the Algorithms

Below we provide the discriminating features of the two proposed algorithms.
For Algorithm 1:

• Segmentation of pixels does not need any separate algorithm. The approx-
imation scheme itself selects the specific segments.

• The method of approximation depends on the selection of εmax and εmin .
The values of these parameters are the same for all segments in the im-
age. The resulting performance in reconstruction, therefore, is parameter
dependent.

• For large εmax, the possibility of long homogeneous segments of pixels for
satisfying the approximation criterion increases. This may introduce visual
disparity (smearing effect) between the original and the reconstructed seg-
ments. This, in turn, may affect the overall picture quality. For a raster

72 3 1-d B-B Spline Polynomial and Hilbert Scan for Graylevel Image Coding

scanned image, this effect may become formidable if εmax exceeds a certain
value. However, for a Hilbert scanned image, this effect is almost negligible
even for a very high value εmax.

For Algorithm 2:

• A separate algorithm selects only those segments that are homogeneous
in some sense. For this, an image is considered as an intensity surface
and the homogeneity concept of pixels over segments is viewed as a small
deformation space curve on this intensity surface.

• Length of a homogeneous segment of pixels depends on the standard error
of deformation of the segment from its equilibrium position.

• Different homogeneous segments in an image are approximated with dif-
ferent values of εmax, which are automatically determined in the process
of approximation. The performance of the algorithm, therefore, does not
depend on εmax as in algorithm 1, but on the chosen value for the standard
error.

3.6 Regeneration

Reconstruction of the image during decoding is done using quadratic B-B
polynomial. We use here the recursive computation algorithm based on New-
ton’s forward difference scheme as described in [27, 26]. Let y = at2 +bt+c be
a polynomial representation of the equation (3.4) where the constant param-
eters a, b, and c are determined by the three pixels (two end pixels and one
mid pixel) of the arc segment. The usual Newton‘s method for evaluating the
polynomial results in multiplications and does not make use of the previously
computed values to compute new values.

Assume the parameter t ranges from 0 to 1. Let the incremental value be
q. Then the corresponding y values will be c, aq2 + bq + c, 4aq2 + 2bq + c,
9aq2 + 3aq + c, · · ·. It is observed from [27, 26] that

�2 yj = 2aq2 and yj+2 − 2yj+1 + yj = 2aq2 j ≥ 0.

This leads to the recurrence formula

y2 = 2y1 − yo + 2aq2 (3.20)

that involves just three additions to get the next value from the two preceding
values at hand. Since the gray segment size is known, the increment q can be
obtained from q = 1

segment size −1 The regenerated gray value y2 can therefore
be determined from equation (3.20).

3.7 Results and Discussion 73

3.7 Results and Discussion

Here, we have made an attempt to demonstrate an application of 1-dimensional
quadratic Bézier-Bernstein polynomial approximation in coding gray tone
Hilbert and raster scanned images. Drawbacks in using the conventional way
of approximation were examined and a modification was then introduced in
order to make it useful for image data compression. Based on the modified
concept, two different algorithms have been formulated. Both the algorithms
have been examined to compress 256×256 (8 bits) gray tone images following
the Hilbert and raster scan. The performance of the algorithms on the Hilbert
scanned images is found to be better than that on the raster scanned images.
This is due to the neighborhood property of the Hilbert scan. More precisely,
the Hilbert curve always passes through the neighborhood pixels, and since
the neighborhood pixels are, in general, strongly correlated, the approxima-
tion is done over longer segments. Over such long segments, the variation in
pixel intensity is low. As a result, arc approximation is not as economical
as the line segment approximation (in terms of approximation parameters).
Consequently, lower compression ratio or larger number of bits/pixel is re-
quired. But the line segment approximation reduces the PSNR value com-
pared to that for arc segment approximation. On the other hand, for raster
scanned images, the quality of the reconstructed images is disturbed when
the maximum length of segment exceeds a certain value. Short segments, in
general, are found to produce better quality for the reconstructed images. Ta-
ble 3.2 shows the results on compression and quality for 256×256 8-bit raster
scanned images for Algorithm 1, while Table 3.3 provides the results for the
corresponding Hilbert scanned images. The approximation uses both the line
and arc segments. Tables 3.4 and 3.5 indicate the performance of Algorithm
2 for the raster and Hilbert scanned images. Finally, the comparison for the
algorithm due to Kamata et al. [86] is shown in Table 3.6.

Note that Algorithm 1 in the raster scan mode may produce smearing for
large values of εmax , because with the increase in the value of εmax , the
possibility of long homogeneous segments of pixels satisfying the approxima-
tion criterion increases. As a result, visual disparity may arise. This fact is
also true for Algorithm 2 in the raster mode for larger values of the standard
error. Figure 3.5 shows this smearing effect for Algorithm 1 and Algorithm 2
in the raster scan mode. The line segment approximation in the raster mode
also affects the reconstructed quality for high values of εmax.

For the 8-bit Lena and Girl images, compression is found to be higher
in the Hilbert scan mode compared to that in the raster scan mode. From
the Tables 3.4, and 3.5, it is seen that Algorithm 2 also behaves in the same
way as Algorithm 1. Higher compression is found to occur in the Hilbert scan
mode. Figure 3.6 shows two different decoded images for Lena and Girl images
for Algorithm 1, while Figure 3.7 shows the results of the decoded images
for Algorithm 2 due to Hilbert scan. Comparison with Kamata’s algorithm
(Figures 3.8 and 3.9) shows that the proposed algorithms perform better for

74 3 1-d B-B Spline Polynomial and Hilbert Scan for Graylevel Image Coding

(a) (b)

(c) (d)

(e) (f)

Fig. 3.5. Results for Algorithm 1 ((c), (d)) and Algorithm 2 ((e)), (f)) due to raster
scan: (a) Input Lena image; (b) input Girl image; (c) bpp = 1.47, PSNR = 30.574;
(d) bpp = 1.40, PSNR = 28.075; (e) bpp = 1.71, PSNR = 30.020; (f) bpp = 1.539,
PSNR = 30.169.

3.7 Results and Discussion 75

Table 3.2. Performance of Algorithm 1 on raster scanned images.

Image Mode of εmax Max length Compression MSQ PSNR
approx. for segment rate in bpp in db

Lena line 7 128 1.231 211.817 24.871
segment 10 64 1.084 244.087 24.255

Girl 5 128 1.347 84.673 28.853
7 64 1.215 99.526 28.151

Lena arc 20 256 1.767 25.763 34.020
segment 25 256 1.602 38.745 32.248

30 256 1.477 56.967 30.574

Girl 20 256 1.839 53.287 30.864
25 256 1.590 77.102 29.260
30 256 1.404 101.274 28.075

Table 3.3. Performance of Algorithm 1 on Hilbert scanned images.

Image Mode of εmax Max length Compression MSQ PSNR
approx. for segment rate in bpp in db

Lena line 8 256 1.122 104.865 27.924
segment 10 256 1.027 110.625 27.692

15 256 0.846 124.338 27.184
18 256 0.692 131.624 26.937

Girl 18 128 0.768 99.579 28.149
20 128 0.720 105.089 27.915
25 128 0.607 119.794 27.346

Lena arc 25 256 1.644 48.765 31.249
segment 30 256 1.443 56.924 30.577

35 256 1.286 68.758 29.757

Girl 35 256 1.094 81.878 28.999
38 256 1.007 86.545 28.758
40 256 0.974 104.883 27.923

the Lena image, in terms of PSNR value at the same compression rate. At
the compression rate of 1.44 bit/pixel, Algorithm 1 provides a PSNR value
of 30.57 db, while the algorithm due to Kamata et al. provides 30.01 db, and
Algorithm 2 provides 31.22 db. At the compression rate of approximately 1.28
bpp, the PSNR due to Algorithm 1 is 29.75 db; the PSNR due to Kamata’s
algorithm is 29.16 db, while Algorithm 2 provides a PSNR of 30.82 db at a
slightly higher compression rate of 1.34 bpp. For the Girl image, Algorithm
2 provides a PSNR value of 28.81 db at the compression rate of 0.68 bpp,
compared to 28.44 db as provided by the algorithm due to Kamata et al.

76 3 1-d B-B Spline Polynomial and Hilbert Scan for Graylevel Image Coding

Table 3.4. Performance of Algorithm 2 on raster scanned images.

Image Mode of Standard Max length Compression MSQ PSNR
approx. error for segment in bpp in db

Lena line 4 64 1.897 190.19 25.33
segment 6 64 1.609 232.55 24.46

Girl 6 64 1.952 111.57 27.65
7 64 1.785 128.79 27.03

Lena arc 15 64 1.933 40.27 32.08
segment 17 64 1.819 50.71 31.07

19 64 1.713 64.71 30.02

Girl 15 64 1.827 42.64 31.83
17 64 1.627 54.80 30.74
18 64 1.539 62.53 30.16

Table 3.5. Performance of Algorithm 2 on Hilbert scanned images.

Image Mode of Standard Max length Compression MSQ PSNR
approx. error for segment in bpp in db

Lena line 16 64 0.78 87.09 28.73
segment 18 64 0.72 92.98 28.44

20 64 0.66 101.51 28.06

Girl 16 64 0.76 77.52 29.23
17 64 0.71 81.20 29.03
18 64 0.67 85.49 28.81

Lena arc 17 64 1.44 49.07 31.22
segment 19 64 1.34 53.81 30.82

Girl 18 64 1.48 101.42 28.06
20 64 1.33 114.48 27.54

Table 3.6. Comparison between three different algorithms.

image Algorithm 1 Algorithm 2 Algorithm[86]

bpp PSNR bpp PSNR bpp PSNR
in db in db in db

Lena 1.44 30.577 1.44 31.222 1.45 30.019
1.28 29.757 1.34 30.821 1.20 29.163

Girl 1.09 28.999 1.07 30.436 1.01 30.361
0.67 27.692 0.68 28.811 0.68 28.442

3.7 Results and Discussion 77

(a) (b)

(c) (d)

Fig. 3.6. Results for Algorithm 1 due to Hilbert scan: (a) bpp = 0.69, PSNR
=26.937; (b) bpp = 0.60, PSNR = 27.346; (c) bpp = 1.28, PSNR = 29.757; (d) bpp
= 0.97, PSNR = 27.923.

The approximation technique described is different from the conventional
least square method of approximation. Instead of minimizing the global
squared sum of errors, it controls an absolute maximum error for each data
point. It should be noticed in this context that if the pixels of a segment have
low intensity variation, then the techniques based on conventional quadratic
least square and the quadratic B-B polynomial approximation will produce
the same result. Since the proposed method of approximation controls an
absolute local error instead of global sum of errors, it is expected that even
for moderate variation of intensity within data points, the proposed method
will produce better results. Also, given an error term, the conventional least

78 3 1-d B-B Spline Polynomial and Hilbert Scan for Graylevel Image Coding

(a) (b)

(c) (d)

Fig. 3.7. Results for Algorithm 2 due to Hilbert scan: (a) bpp = 0.72, PSNR =
28.446; (b) bpp = 0.67, PSNR = 28.811; (c) bpp = 1.34, PSNR = 30.821; (d) bpp
= 1.33, PSNR = 27.543.

square technique does not ensure that all the data points will satisfy the error
criterion, whereas in the proposed method this is not the case. Furthermore,
it is not needed to compute any functional distance to justify the goodness of
approximation because the error term itself quantifies this.

Note further that our intention here is to demonstrate, through an appli-
cation, the effectiveness of one-dimensional B-B spline function in image data
compression for both the raster and Hilbert scanned images. The algorithms
are efficient for the Hilbert scanned images because of strong correlation be-
tween pixels over long segments. Both the schemes are fast and simple in
hardware implementation. However, it is needless to mention that the two-

3.7 Results and Discussion 79

(a) (b)

(c) (d)

(e) (f)

Fig. 3.8. Comparison of Lena image: (a) Algorithm 1: bpp = 1.44, PSNR = 30.577;
(b) Kamata: bpp = 1.45, PSNR = 30.019; (c) Algorithm 2: bpp = 1.44, PSNR =
31.222; (d) Algorithm 1: bpp = 1.28, PSNR = 29.757; (e) Kamata: bpp = 1.20,
PSNR = 29.163; (f) Algorithm 2: bpp = 1.34, PSNR = 30.821.

80 3 1-d B-B Spline Polynomial and Hilbert Scan for Graylevel Image Coding

(a) (b)

(c) (d)

(e) (f)

Fig. 3.9. Comparison of Girl image: (a) Algorithm 1: bpp = 1.09, PSNR = 28.999;
(b) Kamata: bpp = 1.01, PSNR = 30.361; (c) Algorithm 2: bpp = 1.07, PSNR =
30.436; (d) Algorithm 1: bpp = 0.60, PSNR = 27.346; (e) Kamata: bpp = 0.68,
PSNR = 28.442; (f) Algorithm 2: bpp = 0.68, PSNR = 28.811.

3.8 Concluding Remarks 81

dimensional approximation always provides a better compression ratio than
the corresponding one-dimensional approximation.

3.8 Concluding Remarks

The modified approach for approximation of one-dimensional data using B-
B spline function is very efficient both in making the approximation as well
as in generating the approximated data values. Depending on the specified
error, the method itself chooses the data segment and the approximation is
done simultaneously. The combination of two such important steps is a unique
feature of the approximation as described in Algorithm 1.

4

Image Compression

4.1 Introduction

Image compression is a process where we are mainly concerned with minimiz-
ing the number of bits to represent an image. It has applications primarily
in the areas of transmission, storage of information, and reduced data pro-
cessing. All the compression techniques can, in general, be grouped into four
different categories, namely pixel coding, predictive coding, transform cod-
ing, and other methods. Between the four different categories, three deal with
the spatial domain techniques, while the transform coding category mainly
deals with various transform domain techniques. Under the pixel coding cat-
egory, the prominent methods are pulse code modulation (PCM), run length,
and bit plane coding. The predictive coding category includes delta modu-
lation (DM), line by line differential pulse code modulation or line by line
DPCM, two dimensional DPCM, interpolative technique, and adaptive tech-
nique. The other methods include hybrid coding, two tone/graphics coding,
vector quantization, second generation coding, and fractal coding. Transform
coding plays a very significant role and includes zonal coding, threshold cod-
ing, multidimensional techniques, and adaptive techniques. In transform cod-
ing, discrete Fourier transform (DFT), Karhunen-Loeve transform KLT (also
known as Hotelling transform), Walsh-Hadamard transform, Harr transform,
Slant transform, discrete cosine transform (DCT), and various wavelet tran-
forms are frequently used.

During the last two decades, various image compression techniques have
been developed. Each of these methods has its own merits and demerits,
and each has its own compression ratio. The segmentation based technique
is relatively easy to understand and belongs to second generation coding.
We shall, therefore, consider an image compression algorithm that uses 2-
d Bézier-Bernstein function to encode gray values in segmented subimages.
The algorithm is known as SLIC (subimage based lossy image compression).
SLIC encodes images through approximation of segmented regions by 2-d

84 4 Image Compression

Bézier-Bernstein polynomial, contours by 1-d Bézier-Bernstein polynomial,
and texture by Huffman coding scheme using Hilbert scan on texture blocks.

4.2 SLIC: Subimage-based Lossy Image Compression

In the approximate coding of digital still images, one is mainly concerned
with the compression ratio and the fidelity of the reconstructed images. We
show how compression can be made by globally approximating many seg-
mented patches by a single polynomial function together with local correc-
tion, if needed. For this, all such patches should have similar graylevels, and
one can extract the segmented patches under approximation by a single poly-
nomial using a single threshold. Such segmented patches can be viewed as
different surface patches of almost similar gray values, and the collection of all
such patches under a single threshold is defined as a subimage. The segmenta-
tion scheme [24] recursively uses an object/background thresholding algorithm
based on conditional entropy. Thresholding based segmentation strategy pro-
vides an advantage over that done by the split and merge technique [133]. The
latter does not provide any group of patches or regions of similar graylevels at
a time. It is, therefore, preferable to choose a thresholding based segmentation
strategy for coding application. However, the graylevel distribution over some
of the image surface patches may be such that the global approximation is
not adequate for them. We call such patches, under a given threshold, busy
patches. To overcome this difficulty under such circumstances, a lower order
(compared to that of the global approximation) polynomial function is used
for local approximation of each of the residual surface patches in the subim-
age. Therefore, the subimage is reconstructed using the global surface along
with the local residual surfaces for the busy patches, if they are really present.
Such a hybrid approximation scheme helps to improve the compression ratio.
Note that this is exactly the same kind of approximation one can use during
segmentation of an image [24]. Thus, compression can use necessary infor-
mation of approximation from the segmentation of images. Contours can be
coded by line and arc segments. Sometimes very small regions are found in
images in the form of a texture, and region contours are found to fluctuate
very rapidly so that a large number of knots or key pixels is required on con-
tours for approximation. Under such conditions, encoding of contours by line
and arc segments is not economical. Such regions can be separated out in
the form of blocks from images, if they are really present. These blocks are
then suitably encoded. Figure 4.1 shows the 8-bit Lena image of size 256 ×
256 and its segmentation without and with texture regions. Contour images
for some hierarchical thresholds are shown in Figure 4.2. In Figure 4.1(b),
all the gray values in thresholded regions are replaced by the corresponding
threshold value. This approach is simple and straightforward, and displays
the segmented image noticeably well, provided the difference of gray values at
respective pixel positions between the two images is adequate to be visually

4.2 SLIC: Subimage-based Lossy Image Compression 85

perceived. However, to perceive difference between the two images, one can
use completely different values as we have done for Figure 4.1(c). Here, we
have chosen zero gray values (completely dark) for textured regions. To get
segmented images with texture regions, we first found the textured regions,
and then the non-textured segmented regions from the rest of the regions.
Their gray values have been replaced by respective threshold values. For an

(a) (b)

(c)

Fig. 4.1. (a) Input Lena image; (b) segmentation without texture region; (c) seg-
mentation with texture region.

input image of k-1 thresholds, we have k subimages. If N1, N2, · · ·Nk are the
number of sparse image surface patches in them, then considering variable
order global approximation of k subimages and variable order approximation
for sparse residual surface patches, the compression ratio for an M×M image
with L graylevels becomes

86 4 Image Compression

(a) (b)

(c) (d)

(e) (f)

Fig. 4.2. Contours of Lena image for some hierarchical thresholds.

4.2 SLIC: Subimage-based Lossy Image Compression 87

Rc =

α(
k∑

i=1

Cgi +
k∑

i=1

Cie) + βc + β + γ

M2 log2 L
, (4.1)

where Cg,i, i = 1, 2, · · · , k is the number of coefficients required for the
ith subimage for variable order global approximation and Cie is the number
of coefficients for regions that require residual approximation. We assign α
number of bits for each coefficient. βc is the overhead for all patches due to
such correction. β is the overhead due to different orders of approximation of
subimages and γ is the number of bits for contour representation of the image.

If ν is the number of bits required for encoding texture blocks, then the
equation (4.1) becomes

Rc =

α(
k∑

i=1

Cgi +
k∑

i=1

Cie) + βc + β + ν + γ

M2 log2 L
. (4.2)

Note that the number of bits for graylevel approximation, in general, is

βgr = α (
k∑

i=1

Cgi +
k∑

i=1

Cie) + βc + β + ν. (4.3)

If the global approximation itself is sufficient to meet the desired error crite-
rion so that the approximation of residual error is not needed, then the term
containing Cie and hence βc in equation (4.2) do not contribute anything and
under such conditions, equation (4.2) reduces to

Rc =

α

k∑

i=1

Cgi + β + ν + γ

M2 log2 L
. (4.4)

Further, when all global approximations are seen to be of fixed order and local
residual approximations are also of fixed order, we get the total number Nc

of coefficients as

Nc = Cg k + Cl (N1 + N2 + · · · + Nk), (4.5)

where Cg is the number of coefficients required for global approximation of
a subimage and Cl is the number of coefficients for local residual surface
approximation of each of the N1, N2, · · · , Nk patches. Compression ratio Rc

in this case reduces to
Rc =

αNc + ν + γ

M2 log2 L
. (4.6)

Note that when all the regions N1, N2, · · ·Nk in all subimages are locally
approximated for their residual surface, we do not need to store information

88 4 Image Compression

for β and βc. So these two terms do not contribute anything. Kunt et al. [97]
observed small errors in data approximation when each surface is represented
by its r pixels. These r pixels on the surface are used to recompute the co-
efficients. The only possible error appears in the quantization of each pixel.
We followed the same strategy and examined both the cases in our work.
Since each pixel can be represented by log2 L bits, the equation (4.2) can be
rewritten as

Rc =
log2 LNpix + βc + β + ν + γ

M2 log2 L
, (4.7)

where Npix is the total number of surface pixels. The number of bits required
for graylevel approximation in this case is

βgr = log2 LNpix + βc + β + ν. (4.8)

In the following section, we discuss the choice of weights in the least square
approximation for the proposed coding scheme.

4.2.1 Approximation and Choice of Weights

Subimages obtained through the segmentation scheme as described in Chap-
ter 1 were used for compression. Readers interested in details can consult [24].
The approximation algorithms are exactly the same as used for segmenta-
tion, but the weights are different from unity. For compression, weights are
chosen in a way described below. For completeness and clear understanding,
we first briefly state the approximation problem. Bézier-Bernstein polynomial
has been used because our segmentation algorithm was basically designed for
image compression, and Bézier-Bernstein polynomial provides a number of
merits in compression and reconstruction. The Bézier-Bernstein surface is a
tensor product surface and is given by

spq(u, v) =
p∑

r=0

q∑

z=0

φrp(u)φ′
zq(v)Vrz

=
p∑

r=0

q∑

z=o

BrpDzqu
r(1 − u)p−rvz(1 − v)q−zVrz,

(4.9)

where u, v ∈ [0, 1] and Brp = p!
(p−r)!r! , Dzq = q!

(q−z)!z! . p and q define the
order of the Bézier-Bernstein surface.

To approximate an arbitrary image surface f(x, y) of size M×M, f(x, y)
should be defined in terms of a parametric surface (here spq with the pa-
rameters u and v both in [0, 1]. Therefore, the function f(x, y) can be
thought in terms g(u, v) where u = (i−1)

(M−1) ; i = 1, 2, .. · · ·M and v = (j−1)
(M−1) ;

j = 1, 2, .. · · ·M .
We choose the weighted least square technique for estimation of parame-

ters Vrz to be used for reconstruction of the decoded surface. Although the

4.2 SLIC: Subimage-based Lossy Image Compression 89

total square error for the conventional unweighted least square approximation
may be less than that for the weighted least square, the approximation pro-
duced by the latter may be psychovisually more appealing than that by the
former, provided weights are chosen judiciously. For an image, edge points are
more informative than the homogeneous regions because edges are the dis-
tinct features of an image. Thus, edges should be given more emphasis while
approximating an image patch and this can be done through weighted least
square. Thus, the weighted squared error can be written as

E2 =
∑

u

∑

v

[W (u, v)(g(u, v) − spq(u, v))]2

=
∑

u

∑

v

[W (u, v)(g(u, v) −
p∑

r=0

q∑

z=0

φrp(u)φ′
zq(v)Vrz]2,

(4.10)

where W (u, v) is the weight associated with the pixel corresponding to (u, v).
For p = q, the surface spq(u, v) is defined on a square support. Since W (u, v)
is the weight associated with each pixel, it can be considered constant for that
pixel. Therefore, one needs to find out the weight matrix before solving equa-
tions for the weighted least square. Once W (u, v) is known, these equations
reduce to a system of linear equations and can be solved by any conventional
technique.

We emphasize that for order determination, we use the unweighted ap-
proximation scheme. In the weighted least square approximation of regions,
special weights are given to boundary pixels so that the error, in the mean
square sense, over the boundary is less than that in the unweighted least
square approximation. For this, we have considered the gradients of boundary
pixels as their weights. One can also consider higher power of gradients. The
gradients of the boundary pixels, G(u, v) and hence the weights W (u, v) in
equation (4.10), can be calculated using the following equation.

W (u, v) = (Gv
2 + Gu

2)1/2, (4.11)

where Gu = g(u+1, v)−2g(u, v)+g(u−1, v) and Gv = g(u, v+1)−2g(u, v)+
g(u, v − 1).

Image compression in our scheme is a two-stage process. In stage 2, for
encoding we approximate the subimages minimizing a weighted least square
error with a polynomial of the same order as determined in stage 1 (for seg-
mentation). The same order is used because the order (global and also local)
of a subimage or the nature of approximation is not expected to change due
to merging of small regions. However, one can once again find the order of
approximation before encoding. The reason is, the best fit surface does not nec-
essarily psychovisually represent the most appealing (informative) surface. If
we try to find the optimal order of the polynomial using weighted least square,
then that optimal order is expected to be more than that for the unweighted
least square. Consequently, the compression ratio will go down. Of course, the
two orders cannot be widely different. Thus, there is a need to compromise.

90 4 Image Compression

We have to find a polynomial that can approximate the surface satisfactorily,
and at the same time, preserve information that is psychovisually important.
That is exactly what we attempted to achieve with the proposed scheme.

Note that the order of the polynomial can be determined exactly in the
same way as we did in 2.4.3

4.2.2 Texture Coding

To encode the texture blocks we, first of all, Hilbert scan [134] each block. A
Hilbert scanned image or simply a Hilbert image corresponding to a graylevel
image is a 1-d image with its pixels identical to those in the graylevel image
through which the Hilbert curve passes. Hilbert drew a curve having the space
filling property in R2 and he found a one-to-one mapping between segments
on the line and quadrants on the square. The merit of the curve is to pass
through all points on a quadrant and move to the neighboring quadrant.
Hilbert curves with different resolutions are shown in Figure 4.3 The efficiency

Fig. 4.3. Hilbert curve with different resolutions.

of Hilbert scan has already been reported in 1-d image compression [86]. In our
texture compression scheme, Hilbert scan converts each texture block into its
corresponding 1-d Hilbert image. Line segments are then extracted from these
Hilbert images in a straightforward way because texture blocks are all labeled
by the threshold values. Also, since the blocks are textured in nature, we get
tiny line segments in large number. Repetition of line segments of identical
size and identical labels is very frequent. Huffman coding, therefore, provides
good compression for them. Since Hilbert scan is used for texture blocks, one

4.2 SLIC: Subimage-based Lossy Image Compression 91

must be able to express the block size compatible to Hilbert image. Therefore,
the choice of the window size for extraction of texture blocks can be made
very easily. We have chosen the block size equal to 16. The number of bits for
texture coding is the total number of bits required for all the blocks, i.e., ν in
equation (4.4) is given by

ν =
Ntb∑

i=1

νi, (4.12)

where νi is the number of bits for the ith texture block and Ntb is the total
number of texture blocks.

4.2.3 Contour Coding

Contours of segmented regions are coded using the methodologies described in
[26] and [23]. [26] uses 1-dimensional Bézier-Bernstein polynomial while [23]
uses stretched discrete circular arcs for encoding contour images. In encoding
contours of segmented regions, they are processed once again, as described
below, to remove redundancy. Regions in each of the k subimages (k-1 being
the number of thresholds) have their own contours labeled respectively from
1 to k. All these contours need not be coded because of redundancy. We
have reduced this redundancy in two stages. In the first stage, we remove the
contours of all regions in the subimage with maximum boundary or contour
length compared to those in other subimages. The reason behind this removal
is that the contours of (k-1) subimages uniquely define the contour geometry
for the remaining subimage. In the second stage, the contour map for (k-
1) subimages is examined to get a representation suitable for coding. Since
the regions are adjacent to each other and each region is defined by its own
boundary, we have “double contouring” in the contour map of an image. Note
that the contour of one region defines part of other adjacent regions. In order
to remove double contouring, we consider the following contour processing
scheme. The part of a contour, which is defined by contour of some other
regions, is deleted and the non-deleted contour fragments are encoded. Let us
now elaborate on it.
Removal of double contouring:

Let us first consider a particular region (say, the jth region of lth subimage)
Ωlj of a fixed label l and examine if the regions of other labels are adjacent
to Ωlj . We call the contour of Ωlj the primary contour and contours of the
adjacent regions the adjacent contours. The primary contour is first encoded.
The part of adjacent contours defined by the primary contour is then ex-
amined and deleted. Also, different parts of a higher labeled contour defined
by its adjacent lower labeled contours are deleted, provided the deleted seg-
ments are all connected. Thus, the deletion is always done by lower labeled
adjacent contours. Non-deleted contour fragments are then encoded. Lower
labeled contours are encoded first. The process is repeated until all contours
of different labels adjacent to a primary contour are examined for deletion and

92 4 Image Compression

encoded. Note that the same primary contour may be considered more than
once to examine and encode all adjacent contours, but the primary contour
is to be encoded only once. This happens if a primary contour has more than
one adjacent contour of the same label. All other primary contours having the
same label are then sequentially considered. The entire process is repeated
for regions of different labels. To explain the contour processing scheme more
clearly, we consider a (k + 1) bit status word Ws = Xs, X1X2 · · ·Xk. It indi-
cates the status of the primary and adjacent contours. The first bit, Xs in Ws,
always shows the status of the primary contour. Xs = 1 indicates that the
primary contour is to be encoded along with adjacent contours but Xs = 0
indicates the primary contour is already encoded and only the adjacent con-
tours need to be examined and encoded. The position of the first non-zero bit
in X1X2 · · ·Xk denotes the label of the primary contour. For example, con-
sider Ws = 1, 111101101. According to the status word, the primary contour
has label 1 and adjacent contours have labels 2, 3, 4, 6, 7, and 9. Further,
the adjacent contours with labels 2, 3, 4, 6, 7, and 9 must have some part
of their contours defined by the primary contour. The defined part must be
deleted in each case. Since Xs = 1, the primary contour must also be encoded.
Similarly, Ws = 0, 101100101 indicates that the primary contour has label
1. The primary contour must not be encoded because it has the status word
Xs = 0. Contours with labels 3, 4, 7, and 9 are to be examined for deletion
and encoded if required. Note that we consider, sequentially, all the primary
contours of a fixed label. As a result, when we move on to a primary contour
of label k, all the bits in Ws from 2 to (k − 1) are zeros. Therefore, if Np is
the number of primary contours, the number of bits Nbp, required to preserve
the region adjacency information, is given by

Nbp = (k + 1)Np . (4.13)

Encoding of primary and adjacent contours using 1-d
Bézier-Bernstein polynomial:

Key pixels are detected on the primary contour as well as on the non-
deleted contour fragments to serve as knots. Key pixels are basically points
of high curvature and inflexion points. The key pixels on contours are such
that an arc between any two key pixels always remains confined within a right
triangle, with its base as the line joining the two key pixels. As a result, be-
tween two consecutive key pixels, contour fragments are decomposed either
into straight line or arc segments [26, 27]. Each of the arcs is approximated by
a 1-d Bézier-Bernstein polynomial and so can be viewed as a Bézier-Bernstein
arc. We consider the parametric representation of arcs because it is axis inde-
pendent. Given the starting point, each line segment requires one point while
an arc needs two points for their description. Since the selection of key pix-
els depend on high curvature, any segment with rapid changes of curvature
will have more number of key points (dense) than a segment with less curva-
ture change. Note that line and arc segments between knots, therefore, are of
variable sizes. Obviously, the line and arc segments between key pixels have

4.2 SLIC: Subimage-based Lossy Image Compression 93

smaller length where the key pixels are dense. Thus, key pixels (dense and
non-dense) captures the structure of the contour and helps to maintain cur-
vature of the entire contour at the time of reconstruction. Now, to encode an
arc we first consider the end pixel of the arc. Next, we encode the difference of
coordinates (�x, �y) of the pixel on the arc at the parameter value, t=1/2
and the mid pixel of the base of the arc. Since an arc between two key pix-
els may or may not be approximated by a single quadratic Bézier-Bernstein
polynomial, to ensure good approximation and encoding, we restrict the min-
imum and the maximum number of pixels on an arc. For a 64 × 64 image,
these numbers are taken 12 and 30, respectively, while for a 256× 256 image,
these numbers are assumed to be 20 and 40, respectively. In other words, for
a 64× 64 image, the length of every arc is restricted to lie between 12 and 30,
while for a 256× 256 image, the length of every arc is assumed to lie between
20 and 40. To find out the number of bits required to encode �x and �y, we
consider a few steps from 1-dimensional quadratic B-B polynomial. Position
coordinates of the point on the arc at t=1/2 are

xa = (1 − t)2xo + 2t(1 − t)x1 + t2x2

= xo

4 + x1
2 + x2

4
ya = (1 − t)2yo + 2t(1 − t)y1 + t2y2

= yo

4 + y1
2 + y2

4 .

(4.14)

Here, (xo, yo) and (x2, y2) are respectively the start and end pixels of an arc,
and at these two points, tangents to the reconstructed arc have their point
of intersection at (x1, y1). Since we are using relative coordinates, (xo, yo) is
always the origin of the running frame of axes and hence, we take xo = 0 and
yo = 0. Therefore, equation (4.14) reduces to

xa = x1
2 + x2

4
ya = y1

2 + y2
4 .

(4.15)

The midpoint of the base of the arc is given by (xm = x2/2, ym = y2/2). The
difference thus becomes

�x = xa − xm

= x1
2 + x2

4 − xm

�y = ya − ym

= y1
2 + y2

4 − ym .

Since an arc between any two key pixels remains always confined within a
right triangle with its base as the line joining the two key pixels, the point of
intersection of tangents at two ends of the arc also remains within this right
triangle. Therefore, x1 can take on its position anywhere between 0 and x2,
and y1 between 0 and y2 with respect to the running axes of coordinates.
Thus, we get three different cases as given below.

94 4 Image Compression

case I: x1 = 0,
�x = x2

4 − xm

= −x2
4 , since xm = x2/2;

case II: x1 = x2

�x = x1
2 + x2

4 − xm

= x2
4 ;

case III: x1 = xm

�x = xm

2 + x2
4 − xm

= 0.

Thus, we see that |�x| has its maximum equal to x2/4 while its minimum
equals zero. For odd x2, we take �x2

2 � or �x2
2 �, depending on whether x1 is

greater or less than xm so that their difference remains small. The same is
the case for y2. Therefore, the number of bits required to encode �x and �y
can be dynamically decided based on x2 and y2, respectively (end pixel of the
arc). For a 64× 64 image, the maximum number of pixels on an arc, we have
assumed, is 30. Hence, its base is always less than 30. So the end pixel can
always be encoded by 5 bits. Therefore, �x < 30/4, which is 7.5. Similarly,
�y < 7.5. In the discrete case, we consider �x ≤ 8 and �y ≤ 8. Thus, we
get the following bit requirements for an arc as follows:

64 × 64 image 256 × 256 image

identity (line or arc): 1 bit. identity (line or arc): 1 bit.
xd: 5 bits; xd: 6 bits;
yd: 5 bits; yd: 6 bits;
quadrant information: 2 bits; quadrant information: 2 bits;
�x: log2�x2/4� bits; �x: log2�x2/4� bits;
�y: log2�y2/4� bits; �y: log2�y2/4�; bits
sign for �x: 1 bit; sign for �x: 1 bit;
sign for �y: 1 bit; sign for �y: 1 bit;

Note that the number of bits used to encode of �x and �y varies with
the number of pixels on arcs. Thus, for a 256 × 256 image, we need 25 bits
for an arc of length 33 to 40 pixels and 23 bits for an arc of length less than
or equal to 32. Number of types of arcs of 33 to 40 pixels is 40-33+1=8 and
of 20 to 32 pixels is 32-20+1=13. The total number of bits for these types of
arcs is 8 ∗ 25 + 13 ∗ 23 = 499 and the total number of pixels on these types of
arcs is 4 ∗ 73+13 ∗ 26 = 630. Assuming arcs of all possible lengths are equally
probable, the average bit per contour pixel on arc in a 256 × 256 image is
499/630 = 0.79 bits/pixel.

For a 64 × 64 image, an arc of length 17 to 30 pixels needs 21 bits while
19 bits are needed for an arc of length less than or equal to 16. This gives
an average of 0.97 bits/contour pixel on arc. The number of types of arcs less
than or equal to 16 is 16-12+1=5 and that greater than 16 is 30-17+1=14.

For a line segment, we set the minimum and maximum number of pixels to
4 and 8 respectively for both 64×64 and 256×256 images. Chosen length for

4.3 Quantitative Assessment for Reconstructed Images 95

a line segment is small enough to maintain high accuracy of the curvature of
contour lines. Here, we encode straightaway the absolute difference (xd, yd)
between the start and end points of the line segment. Thus, we need the
following bits for images of two different sizes.

64 × 64 image 256 × 256 image

identity (line or arc): 1 bit. identity (line or arc): 1 bit.
xd: 3 bits; xd: 3 bits;
yd: 3 bits; yd: 3 bits;
quadrant information: 2 bits; quadrant information: 2 bits;

This gives a total of 9 bits, i.e., a maximum of (9/4) or 2.25 bits/pixel
and a minimum of (9/8) or 1.125 bits/pixel. One can also find the number of
bits for line segments of all possible lengths. Here, the number of types of line
segments of different lengths is 8-4+1=5. The total number of pixels for these
types of line segments is 4+5+6+· · · +8=5/2(8+4)=30. Considering all such
types of line segments are equally probable, we have an average of 5∗9/30 bits
or 1.5 bits for a contour pixel on line segments.
Starting pixels

For a 64 × 64 image, we consider 12 bits and for a 256 × 256 image, 16
bits per starting pixel. Therefore, the number of bits for contour pixels can
be computed using the following equations:

γ64×64 = Nbp + 12Nsp + 0.97Nca + 1.5Ncl (4.16)

γ256×256 = Nbp + 16Nsp + 0.79Nca + 1.5Ncl (4.17)

where Nsp is the number of starting pixels on contours. The number of contour
pixels on arc and line segments are represented respectively by Nca and Ncl.

4.3 Quantitative Assessment for Reconstructed Images

In order to check the quality of the reconstructed images, most of the authors
compute the mean squared error (MSE), although it is clear that MSE does
not always reflect the quality of visual images. A reconstructed image with
low MSE may psychovisually appear to be distorted compared to another one
with high MSE. For this reason, many authors have felt the need of some
other measures for the image quality assessment. Since the mechanism of un-
derstanding image quality is not yet fully known, it is very hard to devise a
perfectly complete quantitative measure for quality judgment. But one can
always consider a measure that depends on some important attributes (de-
pending on local and global properties) present in the input image. We have,
therefore, proposed in our investigation, a fidelity vector Fv whose components
are indices of different measures. Here, in addition to MSE and PSNR, we use
image correlation, homogeneity, contrast, and fractal dimension to assess the
quality of the reconstructed image.

96 4 Image Compression

We classify the quality assessment indices into two categories: (say) x and
y. The classification is based on mathematical and physical features. The in-
dices based on mathematical features take care of accuracy in approximation
while the indices based on physical features take care of the preservation of
physical features present in the reconstructed image. In x, we compute indices
taking into account both the images (input and reconstructed) together. MSE
and PSNR are in this category. Image correlation between the input and re-
constructed images is also included in the category of x. In y, we compute
various indices, each characterizing a different image attribute such as homo-
geneity, contrast, and fractal dimension for the two images separately. The
above indices are all concerned with pixel intensities of the image.

A good quality reconstructed image should preserve all these components
in the fidelity vector of the input image. Thus, the closeness between two such
fidelity vectors for the input and reconstructed images indicates the closeness
between them.

Different components of the fidelity vector Fv are given below.
MSE

The mean squared error

MSE =
Total squared error

Number of data points
. (4.18)

PSNR
The normal procedure to evaluate the image quality is to compute the peak

signal to noise ratio (PSNR) value of the original as well as of the reconstructed
image. PSNR value is defined as

PSNR(dB) = 10 log10

(L − 1)2

MSE
. (4.19)

Correlation
The coefficient of correlation ρxy for two sets of data X = {x1, x2, · · · , xN}

and Y = {y1, y2, · · · , yN} is given by

ρxy =

1
N

N∑

i=1

xiyi − x̄ȳ

√√√√ 1
N

N∑

i=1

xi
2 − x̄2

√√√√ 1
N

N∑

i=1

yi
2 − ȳ2

, (4.20)

where x̄ = 1
N

N∑

i=1

xi and ȳ = 1
N

N∑

i=1

yi. The correlation coefficient ρxy takes

on values from +1 to -1, depending on the type and extent of correlation
between the sets of data. We use correlation measure between the input and
reconstructed image. This provides a measure of nearness of two images.

4.3 Quantitative Assessment for Reconstructed Images 97

Homogeneity Index
As a measure of homogeneity, we compute an homogeneity index. This

index simply calculates the second order entropy because it provides local
information about the behavior of pixel intensity change. The graylevel values
in an image are not independent of each other. One can consider the sequences
of pixels to incorporate the dependency of pixel intensities in estimating the
entropy. In order to compute the entropy of an image, the following theorem
due to Shannon [151, 73] can be stated.
Theorem

Let p(si) be the probability of a sequence si of graylevels of length l, where
a sequence si of length l is defined as a permutation of l graylevels. Let us
define

H(l) = − 1
l

∑

i

p(si) log2 p(si), (4.21)

where the summation is taken over all graylevel sequences of length l. Then
H(l) is a monotonic decreasing function of l and H

(l)
lim l→∞ = H, the entropy

of the image. For different values of l, we get different orders of entropy.

Case 1: l = 1, i.e., sequence of length one. If l = 1, we get

H(1) = −
L−1∑

i=0

pi log2 pi,

where pi is the probability of occurrence of the graylevel i. Such an entropy
is a function of the histogram only and it may be called global entropy of the
image. Therefore, different images with identical histograms would have the
same H(1) value, irrespective of their content.

Case 2: l = 2, i.e., sequence of length two. Hence,

H(2) = − 1
2

∑

i

p(si) log2 p(si)

= − 1
2

∑

i

∑

j

pij log2 pij ,
(4.22)

where si is a sequence of length two and pij is the probability of occurrence of
the graylevels i and j. Therefore, H(2) can be obtained from the co-occurrence
matrix. H(2) takes into account the spatial distribution of graylevels. There-
fore, two images with identical histograms but different spatial distributions
will result in different entropy, H(i) values. H(i), i ≥ 2 may be called local
entropy. Since the second order entropy reflects the local behavior of image,
it is expected that for a homogeneous region/patch, this measure should be
low.

98 4 Image Compression

Contrast Measure
Image quality index (IQI) from equation (2.25) is used as a measure of

contrast.

IQI =

M∑

i=1

N∑

j=1

| �Bij |/B

MN −
∑∑

hij
.

Texture Measure
To compare the texturedness of the reconstructed image with the original

image, we examine the fractal dimension (FD) of the reconstructed as well
as of the original images. In general, fractal dimension provides a measure
of irregularities and, therefore, it can be used very effectively as one of the
means to compare the texture quality of two images, provided one of them
is obtained after some operation on the other. This is because two images
having the same fractal dimension does not necessarily mean that they have
the same surface irregularities. In our case, the change in fractal dimension of
the reconstructed image from that of the original image indicates the extent
of damage in texture of the input image due to approximation. The concept
of self-similarity can be used to estimate the fractal dimension. A bounded
set A in Euclidian n-space is self-similar if A is the union of Nr distinct
(non-overlapping) copies of itself scaled up or down by a ratio r. The fractal
dimension D of A is given by the relation [117] 1 = Nrr

D, i.e.,

D =
log(Nr)
log(1/r)

. (4.23)

There exist several approaches to estimate the FD of an image. We have used
[36] to compute the fractal dimension.

Thus, we get the fidelity vector,

Fv = [MSE,PSNR, ρxy,H(1),H(2), IQI, FD]T . (4.24)

4.4 Results and Discussion

In the SLIC algorithm, subimages obtained through segmentation have been
used for gray encoding while their contour maps are encoded after remov-
ing redundancy. For each subimage, the order of the approximating Bézier-
Bernstein polynomial is computed. We have followed the IQI based approach
for order computation because of psychovisual reasons. For the Lincoln im-
age, local correction is not needed for the residual surface of any region in any
subimage, while for both Lena and Girl images, local corrections are required.
The Girl image is found to have local correction for 18 patches while the Lena
image requires local correction for 31 patches. For the Lincoln image, we have
obtained eight subimages corresponding to seven thresholds. Orders of the
polynomials for these subimages, computed by the IQI based approach, were

4.4 Results and Discussion 99

found to be 2, 2, 2, 2, 2, 0, 2, 2, respectively. Determination of the orders
of polynomials using the classical method requires a search for δ in equation
(1.10) from the data set, corresponding to an ε that is twice the error of
approximation (in fact, for graylevel images, we require a 2-d version of the
equation (1.10) and hence a search for δ1 and δ2 is required). We have seen
that the orders computed by the classical approach for the subimages of Lin-
coln are more or less the same to those computed by the IQI based approach.
However, this order may sometimes be higher than that computed by the IQI
based approach. This is because of the hard constraint of ε on δ in equation
(1.10).

After removing contour redundancy, knots or key pixels were detected
from the contours, and segments between two key pixels were approximated
by line or arc segments. A line or arc segment greater than the pre-assumed
length was suitably broken up and was approximated accordingly. For the
reconstruction of coded images, we followed two different ways using the same
polynomial order for each of the subimages. The main reason behind these
two reconstructions is to examine how different they are from each other as
well as from the original input. Reconstructions are based on:

(1) the estimated (in the weighted least square sense) control points for
each subimage resulting in a Bézier-Bernstein surface;

(2) equally spaced points on the estimated Bézier-Bernstein surface ob-
tained in (1).

Contour encoding in the two different cases of reconstruction of the image
remains the same. Only the gray values in subimages are encoded using the
above two different ways. In the first case, each control point (coefficient)
has been encoded by 12 bits whereas in the second case, equally spaced gray
points are coded using the graylevel information of the image. The number
of gray points (pixels) are exactly equal to the number of control points.
Assuming these points to lie on a Bézier-Bernstein surface patch, we have
solved (p + 1) ∗ (p + 1) equations to get (p + 1) ∗ (p + 1) control points of the
surface. The Bézier-Bernstein surfaces in two cases are not exactly identical,
but they are very close.

The experiments have been performed using a Silicon Graphics Indy work-
station running IRIX 5.3. The workstation has MIPS RS4600, 96 MB memory,
and 132 MHz speed. The JPEG algorithm used is of version 6a (7 Feb. 96).
All the images in our experiments have been printed by a HP LaserJet printer
5P with a resolution of 600 dpi.

4.4.1 Results of SLIC Algorithm for 64 X 64 Images

Table 4.1 shows the number of bits and the compression ratio required to
encode the 5-bit Lincoln image when contours are encoded by 1-d B-B poly-
nomial. Since this image does not have any texture blocks, the number of bits
are mainly due to graylevel and contour encoding. The number of bits, βgr

for graylevel encoding, can be computed using equations (4.3) and (4.8) for

100 4 Image Compression

reconstruction 1 and reconstruction 2, while the number of bits, γ64×64 for
contour encoding, can be computed using the equation (4.16). The Lincoln
image was found to have 442 contour pixels on line segments and 348 contour
pixels on arc segments. Nine status words, each 9 bits long, provided region
adjacency information during decoding of the Lincoln image, and the number
of starting pixels was found to be 38. So, the overhead due to contour encod-
ing is 9 ∗ 9 + 12 ∗ 38 bits or 537 bits. For gray encoding, the overhead due
to order of approximation from equation (4.3) is β = 8 ∗ 2 = 16 bits (since,
βc = 0). The number of coefficients for approximation of Lincoln image is
64. Thus, we get the total bit requirements and compression ratio as shown
in Table 4.1. From Table 4.1, it is seen that for reconstruction 2, the gain

Table 4.1. Bit requirements.

Image βgr γ64X64 Total no. of bits C.R C.R

Recon. 1 Recon. 2 from eq.(4.16) Recon. 1 Recon. 2 1 2
from eq.(4.3) from eq.(4.8)

Lincoln 784 336 1537.56 2321.56 1873.56 8.82 10.93

in compression ratio is higher than that for reconstruction 1 by roughly 25
percent. One can notice the total number of bits for contour coding is not an
integer. This is because we computed an average estimate for them instead of
actual number of bits. Hence the total number of bits is also not an integer.
For the quality of reconstructed images, we consider the following tables for
different values of the components of the fidelity vectors. From the evaluation

Table 4.2. Evaluation of reconstructed image.

Components of Fv Lincoln image

Input Approach 1
recons. 1 recons. 2

MSE 0 7.438 7.884
PSNR ∞ 21.388 21.135
ρxy 1.0 0.958 0.958

H(1) 3.432 2.693 2.646

H(2) 0.1005 0.144 0.054
IQI 6959.24 6973.53 6985.07
FD 2.577 2.547 2.555

Table 4.2, it is clear that the coefficient based reconstructions for the two dif-
ferent approaches are very close to each other, though the PSNR value when
the contours are encoded and reconstructed by 1-d B-B polynomial is slightly

4.4 Results and Discussion 101

higher. Other components of the fidelity vector are practically the same. This
is also true for the reconstructions based on equispaced surface pixels. All the
reconstructed images have different values in entropy from that of the input
image. This change is due to merging of small regions in the segmentation
procedure before encoding of the input image and polynomial approximation
in the reconstruction process. Fractal dimension of the reconstructed images
differ slightly from that of the input. This is probably due to the reason that
contours of the reconstructed images are not as smooth as that of the input.
Below in Figure 4.4, we present reconstructed Lincoln image along with the
input for visual comparison.

(a) (b)

(c)

Fig. 4.4. Reconstruction of Lincoln image: (a) input Lincoln image; (b) reconstruc-
tion from coefficients; (c) reconstruction from surface points.

4.4.2 Results of SLIC Algorithm for 256 X 256 Images

We now discuss the results of the compression algorithm on two famous 8-bit
images (Lena and Girl) where each one is of size 256× 256. These two images
are more complicated than the previous 64× 64 Lincoln image, because these
images have texture regions in them and the texture blocks as seen from Table
4.3 have taken a considerably large number of bits, lowering the compression
ratio. The number of contour pixels on line and arc segments for the Lena

102 4 Image Compression

image are, respectively 7398 and 3538. The number of bits for starting pixels
were found to be 5328 for 333 pixels while 600 bits were required for status
words. Graylevel values altogether needed 111 coefficients for global approxi-
mation and 124 coefficients for local corrections. An overhead of 198 bits were
required for graylevel approximation. Figures 4.5(a), 4.5(b), and 4.5(c) show
the reconstructed Lena images for the input image as shown in Figure 1.1(a).
For the Girl image (Figure 4.6(a)), the number of pixels approximated by line
and arc segments were 6041 and 4016, respectively. 4720 bits were required for
the starting pixels, while 912 bits were required for the status words. For the
local corrections of 18 patches, 72 coefficients or 576 bits were required. The
reconstructed images due to two different approaches are shown in Figures
4.6(b), 4.6(c), and 4.6(d), respectively.

To examine the performance of the proposed algorithm on a 256 × 256
image, we examined the compression ratio as well as compared the result with
that of JPEG algorithm [169]. Note that due to different versions of JPEG
algorithm, results may slightly vary. In order to compute the compression
ratio by the JPEG algorithm, we chose the quality factor in such a way that
the PSNR value of the decompressed images remains as close as possible to
that of the reconstructed images due to our proposed algorithm. For the Lena
image, the quality factors are 50 and 30, respectively, for the JPEG result 1
and JPEG result 2 (Figures 4.5(b) and (c)); for the Girl image, the quality
factors are 32 and 30 (Figures 4.6(c) and 4.6(d)).

Table 4.3. Bit requirements.

Image βgr ν γ256X256 Total no. of bits

from eqn.(4.8) from eqn.(4.12) from eqn.(4.17)

Lena 2238 26122 19820.02 48180.02
Girl 1742 20123 17866.14 39731.14

Table 4.4. Comparison of compression ratio.

Image compression ratio

Approach 1 JPEG result 1 JPEG result 2

Lena 10.88 8.86 10.92
Girl 13.20 13.12 13.63

In order to evaluate the quality of the reconstructed images, we present
below the values of the different indices of the fidelity vector Fv. To compare
the performance of our method we used the JPEG algorithm. Table 4.5 shows

4.4 Results and Discussion 103

(a)

(b) (c)

Fig. 4.5. Reconstruction of Lena image: (a) Using surface points; (b) JPEG result
1; (c) JPEG result 2.

that the result of the described algorithm is better than the JPEG result 1
because it has lower MSE and higher PSNR values. The correlation values
are comparable for all the images, which means that all the images are almost
alike. The index FD for the texture measure is the same for all of them, which
means texture in all the images is maintained in the same way (on the average
basis).

4.4.3 Effect of the Increase of Spatial Resolution on Compression
and Quality

For the 8-bit Lena image, some of the researchers have used an image size
of 256 × 256 while some others have used the size of 512 × 512. These two

104 4 Image Compression

(a) (b)

(c) (d)

Fig. 4.6. Reconstruction of Girl image: (a) Input; (b) using surface points; (c) JPEG
result 1; (d) JPEG result 2.

different sizes are widely found in the literature. Due to this variation in size,
compression is, also, found to be widely different. To get an idea how the
compression and quality are affected by the increase of spatial resolution, we
provide some of the results on the Lena image from the recent articles.

In [145], two different compression ratios correspond to two different sizes
of the structuring element used in the work. The compression ratio is 31.00
when the structuring element has the size 6 × 6 and 20.00 when the size is
4 × 4. PSNR values for the reconstructed images have not been mentioned.
From Table 4.7, it is found that except in one case [160], the quality (PSNR
value) of the reconstructed images, due to different methods, are almost the
same. In some of the articles, the PSNR value is not mentioned (N.M). From
the work of Fisher et al. [61], the compression ratio is found to be 3.10 times

4.4 Results and Discussion 105

Table 4.5. Evaluation of reconstructed Lena images.

Components of Fv Lena image

For input For output JPEG result 1 JPEG result 2

MSE 0 96.953 129.638 142.574
PSNR ∞ 28.265 27.003 26.590
ρxy 1.0 0.977 0.992 0.989

H(1) 2.529 1.909 2.639 2.528

H(2) 0.0021 0.0009 0.00007 0.00046
IQI 27.616 35.700 30.197 30.372
FD 2.619 2.620 2.624 2.593

Table 4.6. Evaluation of reconstructed Girl images.

Components of Fv Girl image

For input For output JPEG result 1 JPEG result 2

MSE 0 52.848 37.236 38.497
PSNR ∞ 31.457 32.421 32.27
ρxy 1.0 0.987 0.991 0.991

H(1) 1.956 1.591 2.268 2.264

H(2) 0.043 0.018 0.144 0.197
IQI 85.952 115.263 90.619 89.553
FD 2.607 2.577 2.531 2.529

Table 4.7. Some results on Lena image due to increase in spatial resolution.

Image size Article Principle of Compression PSNR in
coding ratio db

512 × 512 [139] vector quantization 12.30 29.95
256 × 256 [33] sketch based 5.30 N.M
256 × 256 [61] fractal 11.85 30.58
512 × 512 [61] fractal 36.78 30.71
512 × 512 [107] fractal 40.00 30.20
512 × 512 [145] segmentation using 31.00 N.M

morphology 20.00 N.M
512 × 512 [141] block prediction 30.76 32.78
512 × 512 [160] region based 41.00 26.56

fractal
512 × 512 [108] fractal 44.00 29.10
512 × 512 [159] fractal 44.44 29.10
256 × 256 [75] fractal 10.60 30.72
512 × 512 [52] wavelet based 65.60 29.90

fractal

106 4 Image Compression

larger for the size of 512 × 512, while from the work of [75] and [108], we see
that an increase of 4.15 times is possible. In our opinion, one can obtain a
compression ratio larger by a factor between 3.5 and 4.0 simply by increasing
the size of an image from 256×256 to 512×512. Thus, it is expected that our
developed method will provide a compression ratio in the range 38.0–43.52
for the Lena and 46.2–52.8 for the Girl image, respectively.

4.5 Concluding Remarks

The algorithm, SLIC, uses a segmentation scheme that is suitable for image
compression. The segmentation scheme provides a number of similar gray re-
gions corresponding to each threshold, instead of a single region. Consequently,
a global surface fit (high possibility due to similar gray regions) becomes most
economical. When the order of a polynomial for approximating a subimage
goes beyond a preassigned positive integer, say q (which may happen due to
the physical configuration of regions or large variation on region boundaries),
we need to compute local corrections over the residual surfaces for which the
mean squared error with respect to the global surface of order q exceeds a cer-
tain limit. Computing the order of the polynomial by the IQI based approach
is simple as well as effective. A remarkable gain in compression ratio is found
when encoded in terms of surface points, with the quality of reconstructed
images almost the same as that found for reconstruction from control points.
It is seen that texture regions require the largest number of bits during their
encoding (Lena and Girl images). Examination of the quality of reconstructed
images through the fidelity vector is to quantitatively determine the fidelity
of images.

The approximation for hierarchical segmentation is different from approx-
imation of subimages for their encoding. The former examines the segmen-
tation of subimages, with the assurance that more psychovisually appealing
reconstruction can be made while the latter actually does the approximation.
The components of the fidelity vector are different objective measures that
examine different important features of images. Thus, the smaller the val-
ues of the components of the fidelity vectors of two images, the larger the
resemblance between the two images.

Part II

Intermediate Steps

5

B-Splines and Its Applications

5.1 Introduction

Though Bézier-Bernstein (B-B) splines are very similar to B-splines in design-
ing a curve or a surface, the latter provides more flexibility during interactions.
Consequently, B-splines are more effective and more efficient, and hence are
more widely used. Since B-B splines use the Bernstein basis, we cannot deny
its influence over the design of B-B curves and surfaces. Any point on a B-B
curve is the weighted average of all the control points, of course, excepting
the end control points. Therefore, the effect of a change in one control point
is transmitted over the entire curve. Thus, any change in one control point
globally affects the curve. We cannot make a local change within a curve, even
when we are badly in need of one. The other limitation of the B-B spline is the
degree of the polynomial. For a cubic B-B spline, the number of control points
is always four while for an mth degree curve, the number of control points is
m+1, or in other words, the degree of the spline function is always one less
than the number of control points. Hence, the degree of the B-B spline curve
is restricted by the number of control points. The lack of local control and the
hard relation of degree of the polynomial function with the number of control
points are the major drawbacks of B-B splines.

To design curves and surfaces in a more versatile way, Schoenberg [146]
formulated the B-spline theory. He introduced a unique non-global basis func-
tion associated with each control point. This basis is called the B-spline basis.
Here, each control point is capable of controlling the curve over a range of
parameter values. Within this range of parameter values, the associated basis
function is non-zero and is zero beyond the parameter values. As a result,
B-spline basis functions are found to introduce better interactive flexibility in
curve and surface design. One of the great advantages of B-spline basis is that
one can change the order of the basis function without changing the number
of the control points in the control graph of an object.

In a special situation, B-spline contains the Bernstein basis.

110 5 B-Splines and Its Applications

5.2 B-Spline Function

Cox [46] and de Boor [54] independently put forward a recursive definition for
numerical computation of normalized B-spline basis function. An (m − 1)th
degree B-spline curve P(u) is defined as

P (u) =
n∑

i=0

Bi,m(u)Vi 2 ≤ m ≤ n + 1, (5.1)

where Vi is the ith control point of the (n+1)th point control polygon vertices
and Bi,m are the B-spline blending functions, which are basically polynomials
of degree m-1. Bi,m are also called the B-spline basis functions. The order m
can be chosen from 2 to n + 1. The basis function Bi,m(u) is defined by the
recursion formula of Cox-de Boor.

Bi,m(u) =
(u − ti)

ti+m−1 − ti
Bi,m−1(u) +

(ti+m − u)
ti+m − ti+1

Bi+1,m−1(u), (5.2)

where, ti ≤ u ≤ ti+m and

Bi,1(u) =
{

1 if ti ≤ u ≤ ti+1

0 otherwise.
(5.3)

The tis in equation (5.2) are elements of a knot vector. From the equation
(5.2), it is clear that the basis function Bi,m(u) is non-zero in the interval
[ti, ti+m]. For a cubic B-spline, m = 4 and Bi,4 is non-zero in the interval
[ti, ti+4]. The basis function spans the knots ti, ti+1, ti+2, ti+3, ti+4. Note
that when knots are not repeated, B-spline is zero at the end-knots ti and
ti+m, i.e.,

Bi,m(u = ti) = 0, Bi,m(u = ti+m) = 0.

But in B-splines, we use repeated knots (i.e., ti = ti+1 = · · ·). Therefore, Bi,m

can have the form 0
0 . Hence, we assume 0

0 = 0 to incorporate repeated knots.
To trace an (m− 1)th degree curve, P (u), in equation (5.1) the parameter

u ranges from 0 to n − m + 2. It can be shown that for any value of the
parameter u, the sum of the basis functions is

n∑

i=0

Bi,m(u) = 1. (5.4)

Therefore, the B-spline curve lies within the convex hull defined by its control
polygon, which is a similar property exhibited by the B-B curve.

5.2.1 B-Spline Knot Structure for Uniform, Open Uniform, and
Nonuniform Basis

The equation (5.2) shows that we need to choose a set of knots , ti, which
relate the parameter u to the control points. This relation, together with the

5.2 B-Spline Function 111

location of the control points, provides control over the shape of the curve
to be drawn. In B-spline, we have three different choices for knot values: the
uniform non-periodic B-spline knots, uniform periodic knots, and nonuniform
knots. Open curves are modeled by uniform non-periodic knots, while closed
curves are modeled by uniform periodic knots. Similarly, nonuniform knots
can also be of two different types: nonuniform non-periodic and nonuniform
periodic to model respectively open and closed curves.

Uniform Non-Periodic Knot Structure

The mth order or (m-1 degree) B-spline Bi,m(u), i = 0, 1, · · · , n is defined
for the parameter u ∈ [0, n − m + 2]. Bi,m represents a curve, known as the
B-spline curve. When the curve is a uniform open curve (non-periodic), its
uniform non-periodic knots t0 to tn+m are chosen according to the following
rule:

ti = 0 if 0 ≤ i < m
= i − m + 1 if m ≤ i ≤ n
= n − m + 2 if n < i ≤ n + m.

(5.5)

Example: Find the uniform non-periodic knot vector for a b-spline open curve
for which n = 5 and m = 3.

We can note that knots range from t0 to tn+m = t8. According to equation
(5.5), t0 = t1 = t2 = 0 and t6 = t7 = t8 = 4. Besides, we have t3 = 1, t4 = 2,
and t5 = 3. The knot vector is, therefore, [0, 0, 0, 1, 2, 3, 4, 4, 4].

In general, the choice of knots according to the equation (5.5) is found to
provide the following knot structure for uniform non-periodic open curves,

0, 0, · · · 0︸ ︷︷ ︸
m knots

, 1, 2, · · · , n − m + 1, n − m + 2, n − m + 2, · · · , n − m + 2︸ ︷︷ ︸
m knots

.

The use of repeated knots ensures that the end points of the spline coincide
with the end points of the control polygon. Note that in the beginning, we
have m knots, at the end we have m knots, and in between we have n−m+1
knots. Therefore, the total number of knots for any open control polygon is
m + (n − m + 1) + m or n + m + 1.

Uniform Periodic Knot Structure

When the B-spline curve is closed (periodic) and the spacing between the knot
values is fixed, the resulting curve is called a uniform periodic B-spline curve.
In other words, uniform periodic B-spline is used to model closed curves. Some
of the uniform knot vectors, for example, are shown below.

A knot vector with uniform spacing looks like

[−1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5, 2.0].

112 5 B-Splines and Its Applications

Sometimes, knot values are normalized in the range between 0 and 1. An
example for this is

[0.0, 0.2, 0.4, 0.6, 0.8, 1.0].

In many applications, we need a knot vector with a separation of unity and
starting value of 0. We take an example for this as

[0, 1, 2, 3, 4, 5, 6, 7].

In general, the total number of knots in this case is one less than that for the
open curves, i,e., n+m, since the initial and starting knots are identical. The
knot values t0, t1, · · · , tn+m are cyclic, i.e., 0, 1, · · · , n, 0, 1, · · ·. Hence,

tm = 0, tm+1 = 1, tm+i = ti.

This means we choose the knot values ti = i, and reduce all basis functions
to one.

Nonuniform Knot Structure

Nonuniform knot vectors may be unequally spaced together with or without
multiple internal knots. Some of the knot vectors are [0, 0, 0, 1, 1, 1, 2, 2, 2,
3, 3], [0, 1, 2, 2, 3, 3, 4], and [0, 0.22, 0.48, 0.75, 1].

5.3 Computation of B-Spline Basis Functions

Given the knot structure, one can easily compute the B-spline basis functions
recursively using the equation (5.2) to design a curve. All these basis functions
in the recursive computation defines a triangular structure as shown below.

Bi,m

Bi,m−1 Bi+1,m−1

Bi,m−2 Bi+1,m−2 Bi+2,m−3

...
...

...
Bi,1 Bi+1,1 Bi+2,1 Bi+3,1 · · · Bi+m−1,1.

(5.6)

The inverse structure shows how the first order basis function Bi,1 depends
on higher order basis functions.

Bi−m+1,m · · · Bi−1,m Bi,m Bi+1,m · · · Bi+m−1,m

...
...

...
...

...
...

Bi−1,2 Bi,2 Bi+1,2

Bi,1.

(5.7)

We shall now consider a few examples so that readers get a complete under-
standing of the computation of the basis functions.

5.3 Computation of B-Spline Basis Functions 113

Example: Compute the quadratic periodic basis functions.
Since the degree = 2, we have m = 3. Also, let us choose, n = 3 in equation

(5.1); i.e., we consider four control points: V0, V1, V2, and V3. Hence, we need
to compute four basis functions, namely B0,3, B1,3, B2,3, and B3,3.

We can compute using equation (5.6)

B0,3 B1,3 B2,3 B3,3

B0,2 B1,2 B2,2 B3,2 B4,2

B0,1 B1,1 B2,1 B3,1 B4,1 B5,1.

The inverse functions can be written using equation (5.7):

B0,3 B1,3 B2,3 B3,3 B4,3 B5,3

B0,2 B1,2 B2,2 B3,2 B4,2

B0,1 B1,1 B2,1 B3,1.

Let us now find out the knot vector. From equation (5.2), it is clear that B5,1

needs the knots t5 and t6. The total number of knots is, therefore, n+m+1 =
3 + 3 + 1 = 7. Hence, the knot vector is t = [0123456], i.e., t0 = 0, · · ·
tn+m = t3 + 3 = t6.

5.3.1 Computation of Uniform Periodic B-spline Basis

The blending functions for a uniform periodic B-splines are also periodic.
This means for all values of n and m, all the blending functions have the same
shape. Each successive blending function is a shifted version of the previous
function. Hence,

Bi,m(u) = Bi+1,m(u + �u)
= Bi+2,m(u + 2�u), (5.8)

where �u is the interval between adjacent knot values.
Example: Computation of a uniform quadratic B-spline basis functions.

Let us now compute the blending functions corresponding to a uniform
quadratic B-spline. For a quadratic B-spline, the order is 3. Hence we choose
n=3. This means we have four control points. We, therefore, have four basis
or blending functions, e.g., B0,3, B1,3, B2,3, and B3,3. Each of these blending
functions is defined over m subintervals. The total number of knots is n +
m + 1, which is 7 in the present case [0, 1, 2, 3, 4, 5, 6, 7]. The total number of
subintervals is, therefore, 6. The parameter u ranges from 0 to n + m or 6.

Now,

B0,3(u) = u−t0
t2−t0

B0,2 + t3−u
t3−t1

B1,2

= 1
2uB0,2 + 1

2 (3 − u)B1,2

= 1
2u u−t0

t1−t0
B0,1 + 1

2u t2−u
t2−t1

B1,1

+ 1
2 (3 − u) u−t1

t2−t1
B1,1 + 1

2 (3 − u) t3−u
t3−t2

B2,1

= 1
2u2B0,1 + { 1

2u(2 − u)
+ 1

2 (3 − u)(u − 1)}B1,1

+ 1
2 (3 − u)2B2,1.

(5.9)

114 5 B-Splines and Its Applications

Equation (5.9) provides the basis functions over the m subintervals. It can be
decomposed as follows.

B0,3(u) =

⎧
⎨

⎩

1
2u2 0 ≤ u < 1
1
2u(2 − u) + 1

2 (u − 1)(3 − u) 1 ≤ u < 2
1
2 (3 − u)2 2 ≤ u < 3.

(5.10)

Computing B0,3(u), we can get the other periodic basis functions by subtract-
ing a shift of one unit from u. Thus,

B1,3(u) =

⎧
⎨

⎩

1
2 (u − 1)2 1 ≤ u < 2
1
2 (u − 1)(3 − u) + 1

2 (u − 2)(4 − u) 2 ≤ u < 3
1
2 (4 − u)2 3 ≤ u < 4

(5.11)

B2,3(u) =

⎧
⎨

⎩

1
2 (u − 2)2 2 ≤ u < 3
1
2 (u − 2)(4 − u) + 1

2 (u − 3)(5 − u) 3 ≤ u < 4
1
2 (5 − u)2 4 ≤ u < 5

(5.12)

B3,3(u) =

⎧
⎨

⎩

1
2 (u − 3)2 3 ≤ u < 4
1
2 (u − 3)(5 − u) + 1

2 (u − 4)(6 − u) 4 ≤ u < 5
1
2 (6 − u)2 5 ≤ u < 6.

(5.13)

With all the basis functions in hand, we can draw the uniform periodic
quadratic B-spline curve.

5.4 B-Spline Curves on Unit Interval

We now want to examine the periodic B-spline curves on a unit interval, in-
stead of considering different intervals because for the periodic B-splines, the
blending functions in different intervals are translates of one another. There-
fore, we need to reparameterize the B-spline parameter on the unit interval.
We have already seen that the influence of a given blending function is limited
to m intervals. Hence, considering these facts, we can write a periodic B-spline
curve on the unit interval as

Pj(s) =
m−1∑

i=0

Ni+1,m(s)Vj+i 1 ≤ j ≤ n − m + 1

and, 0 ≤ s < 1.

(5.14)

In equation (5.14), s is the reparameterized form of the parameter u and
Ni,m(s) is the reparameterized blending function corresponding to the blend-
ing function Bi,m(u); j gives the number of curve segments and n is one less
than the number of vertices of the control polygon. Equation (5.14) can be
extended as

5.4 B-Spline Curves on Unit Interval 115

Pj(s) = N1,k(s)Vj + N2,k(s)Vj+1 + · · · + Nm,m(s)Vj+m−1. (5.15)

For m = 3, the re-parameterized blending functions on the unit interval 0 ≤
s < 1 are as follows:

N1,3(s) = (1−s)2

2

N2,3(s) = −2s2+2s+1
2

N3,3(s) = s2

2 .

(5.16)

Substituting all these blending functions, the periodic quadratic B-spline curve
on the unit interval is then

2 Pj(s) = (1 − 2s + s2)Vj + (−2s2 + 2s + 1)Vj+1 + s2Vj+2

= s2(Vj − 2Vj+1 + Vj+2)
+s(−2Vj + 2Vj+1 + 0.Vj+2

+1(Vj + Vj+1 + 0.Vj+2

(5.17)

or, in the matrix form

Pj(s) = (S) (N) (V)

= 1
2 (s2 s 1)

⎛

⎝
1 −2 1
−2 2 0
1 1 0

⎞

⎠

⎛

⎝
Vj

Vj+1

Vj+2

⎞

⎠ .
(5.18)

Likewise for periodic cubic B-spline, m = 4 and the reparameterized blending
functions on the unit interval are as follows :

N1,4(s) = −s3+3s2−3s+1
6

N2,4(s) = −3s3+6s2+4
6

N3,4(s) = −s3+3s2+3s+1
6

N4,4(s) = s3

6 .

(5.19)

The curve in the matrix form is, therefore,

Pj(s) = (S) (N) (V)

= 1
6 (s3 s2 s 1)

⎛

⎜⎝

−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

⎞

⎟⎠

⎛

⎜⎝

Vj

Vj+1

Vj+2

Vj+3

⎞

⎟⎠ .
(5.20)

Note that for any m,

(S) = (sm−1 sm−2 · · · 1) 0 ≤ s < 1. (5.21)

Cohen and Risenfeld [42] have shown the generalized form of N for periodic
B-spline curves, as given by

Ni+1,j+1 =
1

(m − 1)!

(
(m − 1)

i

)m−1∑

r=j

(m − (r + 1))i(−1)r−j

(
m

r − j

)
(5.22)

where 0 ≤ i, j ≤ m − 1.

116 5 B-Splines and Its Applications

Closed Periodic B-Spline Curves

For closed periodic B-spline curves, we need to repeat some of the control
polygon vertices. The curve in this case is given by

Pj+1(s) =
m−1∑

i=0

Ni+1,m(s)V((j+i) mod(n + 1)) + 1 0 ≤ j ≤ n. (5.23)

In the matrix form, this can be written as

Pj+1(s) = (S) (N)

⎛

⎜⎜⎜⎝

V(j mod (n+1))+1

V((j+1) mod (n+1))+1

...
V((j+1+n−m) mod (n+1))+1

⎞

⎟⎟⎟⎠ . (5.24)

Here, mod is the modulo or remainder function, e.g., 5 mod 3 = 2 (mod is the
remainder function).
Example:

Find the 4th order closed B-spline curve whose control polygon is a square
with 8 vertices, say, V1 = (2, 0), V2 = (4, 0), V3 = (4, 2), V4 = (4, 4), V5 =
(2, 4), V6 = (0, 4), V 7 = (0, 2), and V8 = (0, 0).
Answer: Since the curve has order = 4, we have m = 4. The number of polygon
vertices is n = 8. Obviously here, V9 = V1 = (2, 0), since the curve is closed.
The first curve segment, P1 from equation (5.24) is, therefore,

P1 = (S) (N)

⎛

⎜⎝

−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

⎞

⎟⎠

⎛

⎜⎝

V1

V2

V3

V4

⎞

⎟⎠

= (S) (N)

⎛

⎜⎝

2 0
4 0
4 2
4 4

⎞

⎟⎠ .

From equation (5.21), the S matrix is

(S) =

⎛

⎜⎝

s3

s2

s
1

⎞

⎟⎠ ,

and the reparameterized N matrix can be obtained from equation (5.22):

N1,4 = 1
3!

(
3
0

)(
4
0

)

= 1
6 .

Therefore, the first segment can be computed using the following matrix equa-
tion;

5.4 B-Spline Curves on Unit Interval 117

P1 = 1
6 (s3 s2 s 1)

⎛

⎜⎝

−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

⎞

⎟⎠

⎛

⎜⎝

2 0
4 0
4 2
4 4

⎞

⎟⎠ .

5.4.1 Properties of B-Spline Curves

A B-spline curve, P (t) is a polynomial spline function of degree m − 1 such
that in each interval ti ≤ t < ti+1, P (t) is a polynomial of degree m − 1,
and P (t) and its derivatives of order 1, 2, 3 ·m− 2 are all continuous over the
entire curve. When m = 4, we get a cubic B-spline curve. This means in each
interval, the curve is a cubic polynomial. Since for any parameter u, the sum
of all the basis functions is one, i.e.,

n∑

i=0

Bi,m(u) = 1,

the B-spline curve lies within the convex hull defined by the control points.
We can note in this context that the B-spline convex hull is different from the
Bézier convex hull. Any point on a B-spline curve lies within a convex hull of
m neighboring points. Hence,
(1) The entire curve lies within the union of all such convex hulls formed by
taking m successive defining polygon vertices.
(2) The curve has variation diminishing property, i.e., the curve does not
oscillate about any straight line more often than its defining polygon.
(3) The curve is affine invariant.
(4) The curve follows the shape of the defining polygon.

5.4.2 Effect of Multiplicity

Sometimes we need to insert corner points on a curve to depict a realistic
shape. Corner points are the locations of high curvature regions. This may be
effected by increasing the multiplicity of one or more control points. Multi-
plicity of a control point means counting it more than once. Thus, multiplicity
of a control point by 2 means the same control point is considered twice, while
multiplicity of 4 means it is considered 4 times, and so on. The effect is that
the curve is pulled on and on, and finally passes through it. Readers interested
in details can consult the book [142]

5.4.3 End Condition

Sometimes, we have difficulty in designing closed or periodic B-spline curves.
The curve does not pass through the extreme end or control points of the
guiding polygons. Barsky [16] has examined the conditions of the end control
points for cubic B-splines. David and Rogers provided a generalized treatment

118 5 B-Splines and Its Applications

in their book [142]. For quadratic periodic B-spline curves, we have m = 3
and it can be shown that the starting and end points are given by

Ps = 1
2 (V0 + V1)

Pe = 1
2 (Vn1 + Vn),

and for cubic curves (m = 4)

Ps = 1
6 (V0 + 4V1 + V2)

Pe = 1
6 (Vn2 + 4Vn−1 + Vn).

The first derivative at these points for m = 3 is

P
′

s = V1 − V0

P
′

e = Vn − Vn−1,

while for cubic periodic B-spline (m = 4), first and second order derivatives
are

P
′

s = 1
2 (V2 − V0) P

′′

s V0 − 2V1 + V2

P
′

e = 1
2 (Vn − Vn−2 P

′′

e Vn−2 − 2Vn−1 + Vn.

Multiple coincident vertices at one end of a periodic B-spline curve pulls the
starting and end points of the curve nearer to the vertex. For m− 1 multiple
coincident vertices, the end point of the curve coincides with the vertices and
the tangent vector of the curve.

5.5 Rational B-Spline Curve

Adams and Rogers nicely explained the rational B-spline curves in their book
[142]. We shall slightly review it so that the image processing and machine
vision community can examine the possibility of using it in their area. Before
we explain rational B-spline curve, we would like to explain homogeneous
coordinates in some detail.

5.5.1 Homogeneous Coordinates

In order to study the geometric relationships of figures under perspective
transformations, projective planes were introduced by geometers. The two
dimensional projective plane is defined as follows:

In a three dimensional Cartesian space, consider the set of all lines through
the origin and the set of all panes through the origin. In the projective plane,
a line through the origin is called a point, while a plane through the origin
is called a line of the projective plane. This is so, because if we consider the
perspective projection onto the plane z = 1 using the origin as the center of
projection, then a line through the origin always projects onto a point on the

5.5 Rational B-Spline Curve 119

plane z = 1 and a plane through the origin projects onto line on the plane
z = 1.

If (a, b, c) is any point in Cartesian 3-dimensional space, then this point
determines a line through the origin whose equations are

x = at
y = bt
z = ct,

where t is a parameter. Any other point (at, bt, ct) determines the same line.
So, two points, (a1, b1, c1) and (a2, b2, c2), are on the same line through the
origin if

a2 = a1t
b2 = b1t
c2 = c1t.

We say (a1, b1, c1) (a2, b2, c2). The equivalence classes of all triples equiva-
lent to (a, b, c), written as [(a, b, c)], are the points of the projective plane.
Any representative (a1, b1, c1) equivalent to (a, b, c) is called the homogeneous
coordinates of the point [a, b, c] in the projective plane.

The points of the form (a, b, 0) are called ideal points of the projective
plane. This comes from the fact that lines in the plane z = 0 project to
infinity. In a similar way, any plane through the origin has an equation n1x +
n2y + n3z = 0. We can observe that knx + kn2y + kn3z = 0, where k is a
multiple, also defines the same plane.

Any triple of numbers (n1, n2, n3) defines a plane through the origin. Now,
(n1, n2, n3) (d1, d2, d3) if there is a number k such that d1 = kn1, d2 = kn2,
and d3 = kn3. The equivalence classes of all triples [n1, n2, n3] are the lines of
the projective plane. Any representative (d1, d2, d3) of the equivalence classes
[n1, n2, n3] is called the homogeneous line coordinate in the projective plane.

If (x1, y1, z1), z1 �= 0 are the homogeneous coordinates of a point of the
projective plane, the equations x = x1

Z1
and y = y1

Z1
define a correspondence

between points P1(x1, y1, z1) of the projective plane and points P (x, y) of the
Cartesian plane. There is no Cartesian point corresponding to the ideal point
(x1, y1, 0). But it is convenient to consider it as defining an infinitely distant
point.

Also, it is clear that any Cartesian point P (x, y) corresponds to a projective
point P (x1, y1, z1) whose homogeneous coordinates are x1 = x, y1 = y, and
z1 = 1. This correspondence between Cartesian coordinates and homogeneous
coordinates is exploited in graphics transformations. Note that even though
there is a correspondence between the points of the projective plane and those
of the Cartesian plane, these planes have different topological properties and
these properties should be taken into account while working with homogeneous
coordinates. Finally, if P1(x1, y1, z1, w1) are the homogeneous coordinates of a
point in the three dimensional projective plane, then the corresponding three
dimensional Cartesian point P (x, y, z) for w �= 0 is as follows:

120 5 B-Splines and Its Applications

x =
x1

w1
, y =

y1

w1
, z =

z1

w1
.

On the other hand if P (x, y, z) is a Cartesian point, it corresponds to the
projective point P (x, y, z, 1). Hence, the homogeneous representation of an
object in n-space can be viewed as an object in (n+1)-space. The coordinates
in n-space are called ordinary coordinates and those in (n+1)-space are called
homogeneous coordinates. The mapping from n-space to (n+1)-space is one-
to-many, i.e., there is an infinite number of equivalent representations of n-
space object in (n+1)-space. The inverse mapping from (n+1)-space to n-space
is many-to-one. The homogeneous representation of (x, y, z) is (wx,wy,wz,w)
for any w �= 0 and a homogeneous point (a, b, c, d) has a three dimensional
image (a/d, b/d, c/d).

5.5.2 Essentials of Rational B-Spline Curves

With the concept of homogeneous coordinates discussed above, a rational B-
spline curve is defined in 3-d Cartesian space as a projection of a nonrational
B-spline in 4-d homogeneous coordinate space by

Pr(u) =
n∑

i=o

Ri,m(u)Vi, (5.25)

where Vis are the 3-d control polygon vertices and Ri,m is the rational B-spline
basis functions, and are connected to nonrational B-spline basis functions in
the way as

Ri,m(u) =
wiBi,m(u)

n∑

i=0

wiBi,m(u)

, (5.26)

where wi ≥ 0 for ∀i. Thus, Ri,m(u)Vi is the projection in 3-space from
Bi,m(u)V

w
i in homogeneous 4-space. Hence, the rational B-spline basis func-

tions and curves are generalizations of nonrational B-spline basis functions
and curves.

For rational B-spline basis functions, it is also true that
n∑

i=0

Ri,m(t) = 1, (5.27)

where t is any parameter. About the properties of rational B-spline curve, we
can say that:
(1) It is also variation diminishing like the B-spline curve.
(2) It also lies within the union of convex hulls formed by m successive defining
polygon vertices like the B-spline curve.
(3) Like B-spline, it also follows the shape of the defining polygon.
(4) The curve is invariant with projective transformation. Thus, it follows a
stronger condition compared to B-spline curves, which are affine invariant.

5.7 Application 121

5.6 B-Spline Surface

B-spline surface is defined exactly in the same way as the Bézier surface. It is
the Cartesian product surface and is given by

S(u, v) =
n∑

i=0

q∑

j=0

Bi,mBj,pVi,j . (5.28)

5.7 Application

Roberto Cipolla and Andrew Blake [39] used B-spline to measure the differ-
ential invariants of the image velocity field by computing average values from
the integral of normal image velocities around image contours. They showed
how an active observer making small, deliberate motions can use the estimate
of the divergence and deformation of the image velocity field to determine
the orientation of the object surface and time to contact. They tracked arbi-
trary image shapes using B-spline control snakes and computed efficiently the
invariants as closed-form functions of the B-spline snake control points. Sub-
sequently, they used this information to guide a robot manipulator in obstacle
collision avoidance, object manipulation, and navigation.

5.7.1 Differential Invariants of Image Velocity Fields

Differential invariants of image velocity fields were originally introduced by
Koenderink and Van Doorn [92, 94, 93] in the context of computational vision
and analysis of visual motion. The image velocity of a point in space due to
motion between the observer and scene [121] is

Qt =
(U ∧ Q) ∧ Q

λ
− Ω ∧ Q, (5.29)

where U =translational velocity, Ω =rotational velocity around the viewer
center, and λ is the distance to the point. Let us now look at the local variation
of image velocities in the vicinity of the ray Q, and consider an arbitrary co-
ordinary system with the x − y plane spanning the image plane. We assume
that the z-axis is aligned with the ray. With respect to this coordinate system,
let the translational and angular velocity have respectively the components as
shown, U = {U1, U2, U3} and Ω = {Ω1, Ω2, Ω3}. Assume the image velocity
field at a point (x, y) in the vicinity of Q is v(x, y) with (u, v) as x and y
components. The image velocity field for a sufficiently small field of view can
be described by (u0, v0) and by the first order partial derivatives of the image
velocity, i.e., by ux, uy, vx, vy [171, 122] as

u0 = −U1
λ − Ω2. (5.30)

122 5 B-Splines and Its Applications

v0 = −U2
λ + Ω1. (5.31)

ux = U3
λ + U1λx

λ2 . (5.32)

uy = Ω3 + U1λy

λ2 . (5.33)

vx = −Ω3 + U2λx

λ2 (5.34)

vy = U3
λ + U2λy

λ2 . (5.35)

The system of equations is underconstrained as there are fewer number of
equations than there are number of unknowns. λ determines the structure of
the scene.

An image feature or shape will undergo a transformation for the image
velocity field. The transformation from a shape at time t to the deformed
shape at time t+δt can be approximated by an affine transformation. We can
write as the first order approximation

(
u
v

)
=

(
u0

v0

)
+
(

ux uy

vx vy

)(
x
y

)
+ O

(
x2, xy, y2). (5.36)

Cipolla and Blake neglected the non-linear term O
(
x2, xy, y2) in their anal-

ysis. One can decompose the velocity gradient term into three components
with each term having a simple geometric significance, invariant under the
transformation of the image coordinate system.

(
ux uy

vx vy

)
= curlv

2

(
0 −1
1 0

)
+ divv

2

(
1 0
0 1

)
+

defv
2

(
cos μ − sin μ
sinμ cos μ

)(
1 0
0 −1

)(
cos μ sin μ
− sin μ cos μ

)

= curlv
2

(
0 −1
1 0

)
+ divv

2

(
1 0
0 1

)

+defv
2

(
cos 2μ sin 2μ
sin 2μ − cos 2μ

)
,

(5.37)

where

divv = (ux + vy)
curlv = −(uy − vx)
(defv) cos 2μ = (ux − vy)
(defv) sin 2μ = (uy + vx).

(5.38)

The curl, divergence, and magnitude of deformation are scalar invariants and
do not depend on a particular choice of coordinate system. The axes of max-
imum extension and compression rotate with rotations of the image plane

5.7 Application 123

axes. The curl component measures the change in orientation of patches in
the image, while the divergence term indicates scale or change in size. The
deformation term indicates the distortion of the image shape as a shear. Use
of differential invariants of the image velocity field is significant in the sense
that the deformation component provides information about the orientation
of surface and the divergence component can provide an estimate of the time
to contact or collision.

We shall now check the conditions under which the image velocity field
can be well approximated by its first order terms. The requirement is trans-
formation that should be locally equivalent to an affine transformation, i.e.,
parallel lines remain parallel. In other words, transformation from a plane
in the world to the image must be described by an affine mapping. This is
what we call weak perspective. One can establish after an examination of the
quadratic terms in the equation of image velocity about the vicinity of a point
in the image,

�λ

λ
<< 1, (5.39)

and
Ω.δ

Ω.Q
<< 1. (5.40)

We note that δ, the difference between two rays, defines the field of view
in radians and �λ is the depth of relief in the field of view. An empirical
result says that if the distance to the object is greater than the depth of relief
by an order of magnitude [161], then the assumption of weak perspective
is a good approximation to perspective projection. It is true that at close
distances “looming” or “fanning” effects will become prominent and the affine
transformation is not sufficient to describe the changes in the image. In many
practical cases, it is possible to restrict our attention to small fields of view in
which the weak perspective model is valid.

5.7.2 3D Shape and Viewer Ego-motion

In the above section, we have seen the differential invariants expressed
in terms of viewer’s translation (U1/λ, U2/λ, U3/λ) and surface orientation
(λx/λ, λy/λ). From the previous equations through some algebraic manipula-
tions one can write,

curlv = −2Ω3 + (−U1λy+U2λx)
λ2 (5.41)

divv = 2U3
λ + (U1λx+U2λy)

λ2 (5.42)

(defv) cos 2μ = (U1λx−U2λy)
λ2 (5.43)

124 5 B-Splines and Its Applications

(defv) sin 2μ = (U1λy+U2λx)
λ2 . (5.44)

The average image translation (u0, v0) can always be canceled out by appro-
priate camera rotations, while divergence and deformation remain unaffected
by viewer rotation, such as panning or tilting of the camera or eye move-
ments, whereas these rotations could lead to considerable changes in image
point velocities or disparities.

Differential invariants depend on the viewer motion, depth, and surface
orientation. When the translations are scaled by depth, λ, we get a 2-D vector,
say A, given by

A =
(

U1
λ , U2

λ

)

= U−(U.Q)Q
λ .

(5.45)

Similarly, when the depth gradient is scaled by depth, λ, we get a 2-D vector,
say F to represent the surface orientation, given by

F =
(

λx

λ ,
λy

λ

)

= gradλ
λ .

(5.46)

|F| provides the tangent of the slant of the surface, i.e., tangent of the angle
between the surface normal and visual direction. It is zero for a frontal view
and infinite when the viewer is in the tangent plane of the surface. Direction of
F provides the direction in the image of increasing distance and this is equal
to the tilt, τ , of the surface tangent plane. Hence,

|F| = tan σ, � F = τ.

Relation between the differential invariants, motion parameters, and surface
orientation can, therefore, be shown as

curlv = −2Ω.Q + |F ∧ A|. (5.47)

divv =
2U.Q

λ
+ F.A. (5.48)

defv = |F||A|, (5.49)

and
μ =

� A + � F
2

. (5.50)

Note that μ bisects the sum of the angles of F and A.

5.7.3 Geometric Significance

Formulation in the preceding section clearly shows the speed-scale ambiguity
and the bas-relief ambiguity. Translational velocities appear scaled by depth.
So, we note that a nearby object moving slowly or a far-away object moving

5.7 Application 125

quickly have the same effects and, therefore, introduces an ambiguity known
as speed-scale ambiguity. Similarly, increasing the slant of the surface F while
scaling the movement by the same amount will leave the local image velocity
field unchanged. As a result, the ambiguity, viz. the bas-relief ambiguity, arises.
Therefore, we conclude that from two weak perspective views and with no
knowledge of the viewer translation, it is impossible to determine whether the
deformation in the image is due to a large |A| and a small slant or due to a
small rotation and a large slant. So, a nearby “shallow” object will produce
the same effect as a far-away “deep” structure. As a consequence, we can only
recover the depth gradient F up to an unknown scale.

it is interesting to note the similarity between motion parallax [109, 140,
38] which relate the relative image velocity between two nearby points Q(1)

t

and Q(2)
t to their relative inverse depths,

Q(2)
t − Q(1)

t = [(U ∧ Q) ∧ Q]
[

1
λ(2)

− 1
λ(1)

]
, (5.51)

and the equation relating image deformation to surface orientation

defQt = |(U ∧ Q) ∧ Q|
[
grad(

1
λ

)
]

. (5.52)

The results are essentially the same, relating local measurements of relative
image velocities to scene structure in a simple way which is uncorrupted by
the rotational image velocity component. In the first case, the depths are dis-
continuous and differences of discrete velocities are related to the difference
of inverse depths. In the latter case, the surface is assumed smooth and con-
tinuous and derivatives of image velocities are related to derivatives of inverse
depth.

5.7.4 Constraints

It is difficult to completely solve for the structure and motion due to insuf-
ficient information. We have six equations in eight unknowns of the scene
structure and motion. For a complete solution in a single neighborhood we
need to compute second order derivatives to get more equations [109, 171].

Case: Known Translation and Arbitrary Rotation

In this case, we can use equations (5.48), (5.49) and (5.50) to unambiguously
recover the surface orientation and the distance to the object in temporal
units. For the speed-scale ambiguity, we can express the latter as a time to
contact. The axis of expansion (μ) of the deformation component and the
projection in the image of the direction of translation (� A) allow the recovery
of the tilt of the surface equation (5.50). Now subtract the contribution due

126 5 B-Splines and Its Applications

to the surface orientation and viewer translation parallel to the image axis
from the image divergence equation (5.48). This equals |defv| cos(τ − � A).
The remaining component of divergence is due to movement towards or away
from the object. This can be used to recover the time to contact tc as

tc =
λ

U.Q
. (5.53)

The time to contact fixes the viewer translation in temporal units. It allows
the specification of the magnitude of translation parallel to the image plane
A, up to the same speed-scale ambiguity. The magnitude of deformation can
be used to recover the slant σ of the surface from equation (5.49).

The advantage of this formulation is that camera rotations do not affect
the estimation of shape and distance. Effects of errors in the direction of
translation are evident as scalings in depth or by a relief transformation [92].

If the cameras or eye rotate to keep the object of interest in the middle
of the image, the eight unknowns reduce to six. The magnitude of rotations
needed to bring the object back to the center of the image determines A and
hence allows us to solve for these unknowns. The major effect of any error in
the estimate of rotation is to scale depth and orientations.

Even without any additional assumptions, we can get useful information
from the first order differential invariants. Inspection of equations (5.48) and
(5.49) shows that the time to contact must lie in an interval given by

1
tc

=
divv

2
± defv

2
. (5.54)

The upper bound on time to contact occurs when the component of viewer
translation parallel to the image plane is in the opposite direction to the
depth gradient. The lower bound occurs when the translation is parallel to
the depth gradient. The upper and lower estimates of time to contact are equal
when there is no deformation component. This is the case in which the viewer
translation is along the ray. The estimate of time to contact is then exact.
A similar equation has been described by [157]. Subbarao’s result suggests
the curl and deformation components can be used to estimate bounds on the
rotational component about the ray,

Ω.Q = −curlv
2

± defv
2

. (5.55)

Koenderink and Van Doorn [95] showed that when weak perspective is a
valid approximation, the deformation component alone in a small field of view
can provide surface shape information. As a result, recovery of a 3D shape
can be made up to a scale and relief transformation.
Two different cases are described next.

5.7 Application 127

5.7.5 Extraction of Differential Invariants

There are a number of ways to extract differential invariants from the image.
Differential invariants of the image velocity field characterize the changes in
apparent shape due to relative motion between the viewer and scene. It is
possible to recover the normal image velocity component from local measure-
ments at a curve [163, 76]. It is shown that this information is sufficient to
estimate differential invariants within closed curves. The moments of area of
a contour are defined in terms of an area integral with boundaries defined by
the contour in the image plane;

If =
∫

a(t)

fdxdy, (5.56)

where a(t) is the area of a contour of interest at time t and f is a scalar
function of image position (x, y). For example, f = 1 gives the zero order
moment of area (labeled as Io). This is the area of the contour. Similarly,
when f = x or f = y, we get first order moments about the x or y axis in
the image plane. Moments of area can be measured through their temporal
derivatives in the following way:

d
dt (If) = d

dt

[∫

a(t)

fdxdy

]

=
∮

c(t)

[fv.np] ds.

(5.57)

v.np is the normal component of the image velocity v at a point on the
contour. We, therefore, note that the temporal derivatives of moments of area
are simply the effect of integration of the normal image velocities at a contour
weighted by a scalar f(x, y). By Green’s theorem, an integral over the contour
c(t) can be expressed as an integral over the area enclosed by the contour a(t).
Therefore,

d
dt (If) =

∫

a(t)

div(fv)]dxdy

=
∫

a(t)

[fdivv + v.gradf]dxdy

=
∫

a(t)

[fdivv + fxu + fyv]dxdy

= u0

∫

a(t)

fxdxdy + ux

∫

a(t)

[xfx + f]dxdy + uy

∫

(t)

yfxdxdy

+v0

∫

a(t)

fydxdy + vx

∫

a(t)

[xfy + f]dxdy + vy

∫

a(t)

[yfy + f]dxdy,

(5.58)

where we get the last line using equation (5.36). We, therefore, see that the
image velocity field deforms the shape of contours in the image and the shape

128 5 B-Splines and Its Applications

of contours can be described by moments of area. Thus, the change in moments
of area can be used in terms of the affine transformation parameters.

With the origin at the centroid of the contour of interest so that the first
moments are zero, the above equation with f = x and f = y shows that the
centroid of the deformed shape specifies the mean translation [u0, v0]. f = 1
shows that the divergence of the image velocity field can be estimated as the
derivative of scaled area,

dI0

dt
= I0(ux + vy) (5.59)

and
da(t)
dt

= a(t)divv. (5.60)

To get additional constraints, one can increase the order of moments. So, if we
get six linearly independent equations, we can solve for the affine transforma-
tion parameters and combine the coefficients to recover the differential invari-
ants. The error between the transformed and observed image contours helps
to check the validity of the affine transformation. Note that certain contours
in practice may lead to equations that are not independent or ill-conditioned.
Under such circumstances, the normal components of image velocity are not
sufficient to recover the true image velocity field globally. Waxman and Whon
[172] termed this problem as the “aperture problem in the large.” This was
investigated in the article [20]. However, it is always possible to recover the
divergence from a closed contour.

Tracking Closed Contours

B-spline snakes are used to localize and track closed image contours. We can
write the B-spline curve in the way,

x(s) =
∑

i=1

fi(s)Vi, (5.61)

where fis are the spline basis functions and Vis are the control points of the
curve and s is a parameter, not necessarily arc length. The snakes are initial-
ized as points in the center of the image and are forced to expand radially
outwards until they are near the edge and the image forces stabilize the snake
close to a high contrast closed contour. Subsequent image motion is automat-
ically tracked by the snake. B-spline snakes have local control and continuity.
The enclosed area is a function of control points and also applies to other
moments.

From Green’s theorem in the plane, the area enclosed by a curve with
parametrization x(s) and y(s) is given by

a =
∫ sN

so

x(s)y
′
(s)ds. (5.62)

5.8 Recovery of Time to Contact and Surface Orientation 129

Substituting the B-spine derivative in the above equation,

a(t) =
∫ sN

so

∑

i

∑

j

(Vxi
, Vyj

)fif
′

jds

=
∑

i

∑

j

(Vxi
, Vyj

)
∫ sN

so

fif
′

jds.
(5.63)

The integrals can be computed in closed form. For a cubic B-spline, we need
to use ten possible values due to symmetry. In the worst case, we need sixteen
coefficient values. At each time instant, multiplication with the control point
gives the area of the contour.

5.8 Recovery of Time to Contact and Surface
Orientation

Cipolla and Blake [38] presented preliminary implementation of their theory.
The examples are based on a camera mounted on a robot arm whose transla-
tions are deliberate while rotations around the camera center are performed to
keep the target of interest in the center of its field of view. The camera intrinsic
parameters (image center, scaling factors, and focal length) and orientation
are unknown. The direction of translation is assumed known and expressed
with bounds. Nelson and Aloimonos [127] demonstrated a robotics system that
computed divergence using spatio-temporal techniques from images of highly
textured visible surfaces, while Cipolla and Blake [38] used image contours for
a real time implementation. The closed contour is localized automatically by
initializing a closed loop B-spline snake in the center of the image. The snake
explodes outwards and deforms under the influence of image forces that cause
it to be attracted to high contrast edges. The robot manipulator then makes
a deliberate motion towards the target. Tracking the area of the contour and
computing its rate of change allows us to estimate the divergence. For motion
along the visual ray, this provides sufficient information to estimate the time
to contact. The manipulator, in fact, travels blindly after its sensing actions
and at a uniform speed for the time before contact. In repeated trials, image
divergences measured at distances of 0.5m to 1.0m were estimated accurately
to the nearest half of a time unit. This corresponds to a positional accuracy of
20mm for a manipulator translational velocity of 40mm/s. The affine trans-
formation approximation breaks down at close proximity to the target. This
may lead to a degradation in the estimate of time to contact.

5.8.1 Braking and Object Manipulation

The experiment of Cipolla and Blake shows a sequence of images taken from a
moving car approaching the windshield of a stationary car in front. In the first

130 5 B-Splines and Its Applications

frame (time t = 0), the relative distance between the two cars is approximately
7m. The velocity of approach is uniform and approximately 1m/time unit.
A B-spline snake is initialized in the center of the windshield and expands
out until it localizes the closed contour of the edge of the windshield. The
snake then automatically tracks the windshield over the sequence. For uniform
translation along the optical axis, the relationship between area and time is
given (from equations 5.48 and 5.60) as

d

dt
(a(t)) =

(
2U.Q

λ

)
a(t). (5.64)

Its solution is

a(t) =
a(0)

(
1 − t

tc(0)

)2 , (5.65)

where tc(0) is the initial estimate of the time to contact as given by

tc(0) =
λ(0)
U.Q

. (5.66)

This is in close agreement with the data. For uniform motion, this should
decrease linearly. For nonuniform motion, time to contact as a function of time
is important for braking and landing. Lee [102] provided a braking condition
for drivers that states

d

dt
(tc(t)) ≥ −0.5. (5.67)

This ensures that vehicles will decelerate uniformly and to avoid collision.
Thus, the divergence of the image velocity field provides sufficient information
to control over braking.

If the translational motion has a component parallel to the image plane,
the image divergence is composed of two components. The first term deter-
mines time to contact, while the other term occurs due to image foreshortening
when the surface has a non-zero slant. The two effects can be computed sep-
arately by measuring the deformation. The deformation also helps to recover
the surface orientation. The only assumption of Cipolla and Blake [38] is of
uniform motion and known direction of translation.

5.9 Concluding Remarks

B-spline has widespread applications in image processing and vision problems.
The application of B-spline in machine vision problems discussed in this chap-
ter shows its importance. Based on the original philosophy, different solutions
have been suggested to render the snake more stable and to yield faster con-
vergence results. An alternative approach to snakes, which also circumvents
some of the problems, is to use a parametric B-spline representation of the

5.9 Concluding Remarks 131

curve, first introduced as B-snake [124], and improved in [62, 106, 170]. The
basic concept of B-spline snakes has been extended in [30] to improve their
efficiency, speed, and applicability in an interactive environment. We believe
B-spline has the potential to become a mighty tool in the area of image pro-
cessing and machine vision.

6

Beta-Splines: A Flexible Model

6.1 Introduction

In general, a spline with greater flexibility is always desired because it en-
hances the strength for modeling a set of data points. A beta spline is a spline
with such an ability. For its flexibility, it can be used in image processing as
well as in vision problems in many different ways. Beta spline was developed
by Barsky [15] and our discussion in this chapter is based on his thesis.

6.2 Beta-Spline Curve

A β-spline curve is a piecewise parametric cubic beta curve that is the weighted
average of its control vertices. For every point of the curve, the weight w is
different and depends on two different shape parameters β1, β2, and position
parameter, t itself. Hence, we can represent the ith piece of a beta curve as

Pi(t) =
n=1∑

n=−2

wn(β1, β2, t)Vi+n, 0 ≤ t < 1. (6.1)

The weight, w, is a basis function of β1, β2 and can be computed for some
values of the parameters β1, β2, and t. Vi+n are the control points. Weight,
w, is given by

wn(β1, β2, t) =
m=3∑

m=0

cmn(β1, β2)tm for n = −2,−1, 0, 1. (6.2)

Consider two beta curve segments, say Pi(t) and Pi+1(t). Then from the
position, first order and second order continuity we can write,

Pi+1(0) = Pi(1) (6.3)

134 6 Beta-Splines: A Flexible Model

P
′

i+1(0) = β1Pi
′(1) (6.4)

and

P
′′

i+1(0) = β2
1P

′′

i (1) + β2P
′

i (1). (6.5)

This leads to

n=1∑

n=−2

wn(β1, β2, 0)Vi+1+n =
n=1∑

n=−2

wn(β1, β2, 1)Vi+n (6.6)

n=1∑

n=−2

w
′

n(β1, β2, 0)Vi+1+n = β1

n=1∑

n=−2

w
′

n(β1, β2, 1)Vi+n (6.7)

n=1∑

n=−2

w
′′

n(β1, β2, 0)Vi+1+n = β2
1

n=1∑

n=−2

w
′′

n(β1, β2, 1)Vi+n

+ β2

n=1∑

n=−2

w
′

n(β1, β2, 1)Vi+n.

(6.8)

Equating coefficients of the vertices Vi+n, n = −2,−1, 0, 2, 1, we get,

0 = w2(β1, β2, 1) (6.9)

wn−1(β1, β2, 0) = wn(β1, β2, 1), r = −1, 0, 1 (6.10)

w1(β1, β2, 0) = 0 (6.11)

0 = β1w
′

2(β1, β2, 1) (6.12)

w
′

n−1(β1, β2, 0) = β1w
′

n(β1, β2, 1), n = −1, 0, 1 (6.13)

w
′

1(β1, β2, 0) = 0 (6.14)

0 = β2
1w

′′

2 (β1, β2, 1) + β2w
′

2(β1, β2, 1) (6.15)

w
′′

n−1(β1, β2, 0) = β2
1w

′′

n(β1, β2, 1) + β2W
′

n(β1, β1, 1), n = −1, 0, 1 (6.16)

w
′′

1 (β1, β2, 0) = 0. (6.17)

6.2 Beta-Spline Curve 135

We obtain the coefficient functions, cmn, in equation(6.2) for m = 0, 1, 2, 3 and
n = −2,−1, 0, 1 once we differentiate the basis functions and get their values
at t = 0 and t = 1. These provide us a system of 15 linear equations in 16
unknowns. Hence, we need one more constraint to determine the coefficients
uniquely. The adequate constraint is chosen to satisfy the convex hull property
to normalize the basis functions at t = 0.

c3,−2 + c2,−2 + c1,−2 + c0,−2 = 0
c3,r + c2,r + c1,r + c0,r = c0,r−1 r = −1, 0, 1
c0,1 = 0
β1(c3,−2 + 2c2,−2 + c1,−2 = 0
β1(3c3,r + 2c2, r + c1,r = c1,r−1 r = −1, 0, 1
c1,1 = 0
3(2β2

1 + β2)c3,−2 + 2(β2
1 + β2)c2,−2 + β2c1,−2 = 0

3(2β2
1 + β2)c3,r + 2(β2

1 + β2)c2,r + β2c1,r = 2c2,r−1 r = −1, 0, 1
c2,1 = 0.

(6.18)

The convex hull property to normalize the basis function at t = 0 is

c0,−2 + c0,−1 + c0,0 + c0,1 = 1. (6.19)

Note that, c0,1, c1,1, and c2,1 are zero. Hence we have effectively thirteen
equations in thirteen unknowns. The unknowns are coefficient functions of β1

and β2. Barsky [15] used a computer algebra system “REDUCE” to determine
the coefficients as

c0,−2 = 2β3
1/δ

c1,−2 = −6β3
1/δ

c2,−2 = 6β3
1/δ

c3,−2 = −2β3
1/δ

c0,−1 = 4β2
1 + 4β1 + β2/δ

c1,−1 = 6β1(β2
1 − 1)/δ

c2,−1 = 3(−2β3
1 − 2β2

1 − β2)/δ
c3,−1 = 2(β3

1 + β2
1 + β1 + β2)/δ

c0,0 = 2/δ
c1,0 = 6β1/δ
c2,0 = 3(2β2

1 + β2)/δ
c3,0 = −2(β2

1 + β1 + β2 + 1)/δ
c3,1 = 2/δ,

(6.20)

with δ = 2β3
1 + 4β2

1 + 4β1 + β2 + 2.
β1 and β2 are the shape parameters because they are defined through

the unit tangent vector and curvature vector. Hence, one can use these two
parameters to control the shape of a curve at the time of design. Given the
two pieces of curve segments, say P1(t) and P2(t), β1 and β2 are visualized
through

136 6 Beta-Splines: A Flexible Model

P
′

2(0) = β1P
′

1(1) (6.21)

and
P

′′

2 (0) = β2
1P

′′

1 (1) + β2P
′

1(1). (6.22)

We can observe that β1 = 1 provides the continuity of the parametric
first derivative vector and, β1 = 1 and β2 = 0 provides the continuity of
the parametric first and second derivative vectors. For β1 > 0 and β2 ≥ 0,
they form a basis, i.e., they are linearly independent. With the coefficients
so determined, one can compute the four wn values in equation (6.2). These
values after simplification can be written as

w−2(β1, β2, t) = 2β3
1(1 − t)3/δ (6.23)

w−1(β1, β2, t) = [2β3
1t[t2 − 3t + 3] + 2β2

1 [t3 − 3t2 + 2]
+ 2β1[t3 − 3t + 2] + β2[2t3 − 3t2 + 1]]/δ

(6.24)

w0(β1, β2, t) = [2β2
1t2[−t + 3] + 2β1t[−t2 + 3]

+ β2t
2[−2t + 3] + 2[−t3 + 1]]/δ

(6.25)

w1(β1, β2, t) = 2t3/δ. (6.26)

6.3 Design Criteria for a Curve

In order to design a curve with two pieces of curve segments, say P1(t) and
P2(t), we need to maintain position continuity, first order continuity, and
curvature continuity. The ith curve segment in terms of β1 and β2 can be
written as

Pi(t) = (2β3
1(1 − t)3/δ)Vi−2

+ ([2β3
1t[t2 − 3t + 3] + 2β2

1 [t3 − 3t2 + 2]
+ 2β1[t3 − 3t + 2] + β2[2t3 − 3t2 + 1]]/δ)Vi−1

+ ([2β3
1t[t2 − 3t + 3] + 2β2

1 [t3 − 3t2 + 2]
+ 2β1[t3 − 3t + 2] + β2[2t3 − 3t2 + 1]]/δ)Vi−0

+ ([2β2
1t2[−t + 3] + 2β1t[−t2 + 3]

+ β2t
2[−2t + 3] + 2[−t3 + 1]]/δ)Vi+1.

(6.27)

The first derivative of the curve P
′

i (t) can be computed through

w
′

−2(β1, β2, t) = −6β3
1(1 − t2)/δ (6.28)

6.3 Design Criteria for a Curve 137

w
′

−1(β1, β2, t) = (6β3
1 [t2 − 2t + 1] + β2

1t[t − 1]
+ β1[t2 − 1] + β2t[t − 1])/δ

(6.29)

w
′

0(β1, β2, t) = 6(β2
1t(−t + 2) + β1[−t2 + 1]

+ β2t[−t + 1] − t2)/δ
(6.30)

w
′

1(β1, β2, t) = 6t2/δ. (6.31)

Therefore,

P
′

i (t) = (−6β3
1(1 − t2))Vi−2/δ

+ (6β3
1 [t2 − 2t + 1] + β2

1t[t − 1]
+ β1[t2 − 1] + β2t[t − 1])Vi−1/δ
+ 6(β2

1t(−t + 2) + β1[−t2 + 1]
+ β2t[−t + 1] − t2)V0/δ
+ 6t2Vi+1/δ.

(6.32)

The second derivative of the curve P
′′

i (t) can be computed through

w
′′

−2(β1, β2, t) = 12β3
1(1 − t)/δ (6.33)

w
′′

−1(β1, β2, t) = 6(2β3
1 [t − 1] + 2β2

1 [t − 1]
+ 2β1t + β2[2t − 1])/δ

(6.34)

w
′′

0 (β1, β2, t) = 6(2β2
1(−t + 1) − 2β1t

+ β2[−2t + 1] − 2t)/δ
(6.35)

w
′′

1 (β1, β2, t) = 12t/δ. (6.36)

This yields,

P
′′

i (t) = (12β3
1(1 − t))Vi−2/δ

+ 6(2β3
1 [t − 1] + 2β2

1 [t − 1]
+ 2β1t + β2[2t − 1])Vi−1/δ
+ 6(2β2

1(−t + 1) − 2β1t
+ β2[−2t + 1] − 2t)V0/δ
+ 12tVi+1/δ.

(6.37)

138 6 Beta-Splines: A Flexible Model

6.3.1 Shape Parameters

Barsky also examined the conditions for continuous shape parameters. Let
β1,i(t) and β2,i(t) be the values of the shape parameters at the point Pi(t),
where i = 1, 2, · · · ,m. Hence, we can choose different values of shape pa-
rameters to exhibit the local behavior of the curve. Now, if we consider a
complete curve consisting of many pieces, then at each joint between two
such pieces, shape parameters should have unique values, i.e., at Pi+1(0) =
Pi, i = 1, 2, · · · ,m − 1 we have,

β1,i+1(0) = β1,i(1),
β2,i+1(0) = β2,i(1), i = 1, 2, · · · ,m − 1.

When an user specifies the values of β1 and β2, it can be taken as discrete
parameter values. We represent the discrete values of β1,i and β2,i as α1,i and
α2,i respectively. Therefore, we write, β1,1(0) = α1,0 and β2,1(0) = α2,0. Thus,
between two pieces of curves we can write,

β1,i+1(0) = α1,i = β1,i(1),
β2,i+1(0) = α2,i = β2,i(1), i = 1, 2, · · · ,m − 1.

Hence, α1,m = β1,m(1) and α2,m = β2,m(1). A solution for this is as follows:

β1,i(t) = (1 − t)α1,i−1 + tα1,i,
β2,i(t) = (1 − t)α2,i−1 + tα2,i, i = 1, 2, · · · ,m − 1.

(6.38)

In addition, delta = 2β3
1 + 4β2

1 + 4β1 + β2 + 2 becomes

δi(t) = 2β3
1,i(t) + 4β2

1,i(t) + 4β1,i(t) + β2,i(t) + 2.

Finally, the discrete analogue to δi(t) is

γ0 = δ1(0),
γi = δi(1).

6.3.2 End Conditions of Beta Spline Curves

Suppose we have m+1 control vertices, say V0, V1, V2, · · · , Vm. Then the control
polygon defined by these vertices help to generate m− 2 pieces of a complete
curve curve, namely, P2(t), P3(t), · · ·, Pm−1(t). The β-spline curve starts at

P2(0) = (2α3
1,0V0 + (γ1 − 2α3

1,0 − 2)V1 + 2V2)/γ1 (6.39)

and ends at

Pm−1(1) = (2α3
1,mVm−2 + (γm−1 − 2α3

1,m − 2)Vm−1 + 2Vm)/γm−1. (6.40)

In a real situation we should have the objective for the curve to start at V0

and end at Vm. This is accomplished through the use of multiple vertices as
well as by phantom vertices.

6.3 Design Criteria for a Curve 139

Double Vertices

Double vertices mean a vertex is considered twice to generate a piece of curve.
So, when V0 and Vm are considered twice, we get two more pieces of the
complete curve, one at the beginning and the other at the terminal end. This
means, instead of P2(t), P3(t), · · ·, Pm−1(t), we get P1(t), P2(t), P3(t), · · ·,
Pm−1(t), Pm(t). Additional pieces of the curve are then P1(t) and Pm(t).
These two pieces of the curve are given by

P1(t) = (w−2(t) + w−1(t))V0 + w0(t)V1 + w1(t)V2,
Pm(t) = w−2(t)Vm−2 + w−1(t)Vm−1 + (w0(t) + w1(t))Vm.

With these two additional pieces of curves, β-spline curve starts at

P1(0) = (1 − 2
γ0

)V0 +
2
γ0

V1,

and ends at

Pm(1) = 2
α3

1,m

γm
.Vm−1 + (1 − 2

α3
1,m

γm
)Vm.

The initial point of the curve is 2
γ0

along the vector from V0 to V1 and the

terminal point is (1− 2α3
1,m

γm
) along the vector from Vm−1 to Vm. At both the

end points, the curve is tangent to the control polygon.
The first derivative vector at the end points can be easily shown to be

P
′

1(0) = 6α1,0(V1 − V0/γ0),
P

′

m(1) = 6α1,m(Vm − Vm−1/γm),

while the second derivative at each end point of the curve can be derived to
be

P
′′

1 (0) = 6(2α2
1,0 + α2,0)(V1 − V0)/γ0),

P
′′

m(1) = 6(2α1,m + α2,m)(Vm−1 − Vm)/γm).

From the above expressions for the first and second derivative vectors at each
end point of the curve, we get after some algebraic manipulations

P
′′

1 (0) = {(2α2
1,0 + α2,0)/α1,0}P

′

1(0),
P

′′

m(1) = {−(2α1,m + α2,m)/α2
1,m}P ′

m(1).

Triple Vertices

For the use of double vertices, we get two extra pieces of curves at each end
of the complete curve and these extra pieces of curves are P1(t) and Pm(t).
When we use triple vertices, we get one more piece of curve at each end, i.e.,
we get P0(t) and Pm+1(t). These pieces of curves are given by

140 6 Beta-Splines: A Flexible Model

P0(t) = {w−2(t) + w−1(t) + w0(t)}V0 + w1(t)V1,
Pm+1(t) = w−2(t)Vm−1 + {w−1(t) + w0(t) + w1(t)}Vm.

Upon substitution of these expressions, the basis functions become

P0(t) = {1 − 2t3/δ0(t)}V0 + {2t3/δ0(t)}V1,
Pm+1(t) = {2(β1,m+1(t)(1 − t))3/δm+1(t)}Vm−1

+{1 − 2(β1,m+1(t)(1 − t))3/δm+1}Vm.

As t varies from 0 to 1, P0(t) traces a straight line segment starting at V0

and ending at a point distant 2/γ0 along the vector V0V1. Similarly, Pm+1(t)
also traces a straight line segment from a point −2α3

1,m/γm along the vector
Vm−1Vm to the terminal point Vm. Use of triple vertices interpolates the
end points.

Phantom Vertices

Phantom vertices are auxiliary vertices that are generally created for the pur-
pose of additional pieces of curves. As these vertices are inaccessible to the
users and are not displayed, they are named phantom vertices. Normally, they
are defined in terms of the original control polygon vertices, and at each end
point, the curve interpolates a specified point. This means P1(0) = P0 and
Pm(1) = Pm.

From equation (6.1), solving for the phantom vertices we get,

V1 = (γ0P0 − {(γ0 − 2α3
1,0 − 2)V0 + 2V1})/2α3

1,0,
Vm+1 = (γmPm − {(γm − 2α3

1,m − 2)Vm + 2α3
1,mVm−1})/2.

(6.41)

First derivatives are then

P
′

1(0) = 6α1,0(−α2
1,0V1 + (α2

1,0 − 1)V0 + V1)/γ0,

P
′

m(1) = 6(−α2
1,mVm−1 + (α2

1,m − 1)Vm + Vm+1)/γm.

Substituting the expressions of phantom vertices in equation (6.41), the above
expressions become

P
′

1(0) = 3({2(α1,0 + 1)V1 + (γ0 − 2α1,0 − 2)V0}/γ0 − P0),
P

′

m(1) = 3({(2α2
1,m(α1,m + 1) − γm)Vm − 2α2

1,m(α1,m + 1)Vm−1}/γ0 + Pm).

Similarly, the second derivative vector at each end point of the curve is

P
′′

1 (0) = 6({(2α2
1,0 + α2,0 − 2)V1 − (γ0 + 2α2

1,0 + α2,0 − 2)V0}/γ0

+P0),
P

′′

m(1) = 6({(−2α3
1,m + 2α1,m + α2,m)Vm−1 − (γm − 2α3

1,m + 2α1,m

+α2,m)Vm}/γm + Pm).

(6.42)

The first and second derivative vectors at each end point of the curve are,
in general, linearly independent. Thus, the curvature is non-zero at each end
point of the curve.

6.4 Beta-Spline Surface 141

End Vertex Interpolation

It is convenient as well as meritorious to start the curve at V0 and end at
Vm. It is a special case of the previous end conditions where P0 = V0 and
Pm = Vm. From equation (6.41), phantom vertices can be written as

V−1 = {(α3
1,0 + 1)V0 − V1}/α3

1,0,
Vm+1 = (α3

1,m + 1)Vm − α3
1,mVm−1.

Values of the first derivative vectors at each end point are

P
′

1(0) = 6(α1,0 + 1)(V1 − V0)/γ0,

P
′

m(1) = 6α2
1,m(α1,m + 1)(Vm − Vm−1)/γ0.

This shows that the curve is tangent to the control polygon at each end point.
Substitution into equation (6.42) gives

P
′′

1 (0) = 6(2α2
1,0 + α2,0 − 2)(V1 − V0)/γ0,

P
′′

m(1) = 6(2α3
1,m − 2α1,m − α2,m)(Vm − Vm−1)/γm.

Hence, at the initial point of the curve, the first and second derivative vectors
are related as

P
′′

1 (0) = {(2α2
1,0 + α2,0 − 2)/(α1,0 + 1)}P ′

1(0),
P

′′

m(1) = {(2α3
1,m − 2α1,m − 2α2,m)/α2

1,m(α1,m + 1)}P ′

m(1).

Assuming distinct vertices, the first and second derivatives are non-zero, and
the first and second derivative vectors are linearly dependent at the initial
and final points of the curve.

6.4 Beta-Spline Surface

A β spline surface is a straightforward extension of the β spline curve in two
dimensions. Mathematically, it is the Cartesian cross product of two sets of
orthogonal curves. The (i, j)th β-spline surface patch is given by

Si,j(u, v) =
n=1∑

n=−2

m=3∑

m=0

cmn(β1, β2) um ×

q=1∑

q=−2

p=3∑

p=0

epq(β1, β2) vp Vi+n,j+q.

(6.43)

Rearranging, we get

142 6 Beta-Splines: A Flexible Model

Si,j(u, v) =
m=3∑

m=0

(
n=1∑

n=−2

cmn(β1, β2)) um ×

p=3∑

p=0

(
q=1∑

q=−2

epq(β1, β2)) vp Vi+n,j+q.

(6.44)

End conditions for a surface can be written exactly in the same way as for a
curve.

6.5 Possible Applications in Vision

Since β-spline has two more shape parameters, it provides more flexibility and
hence data can be approximated in a much better way. Normally, a β-spline
surface interpolates the corner points but not all the other control points.
Hence, a suitable interpolation technique can be envisaged and used to model
the disparity data in stereo vision. The β surface with minimum energy may
produce a continuous smooth surface with suitable discontinuities controlled
by shape parameters. A comparison between the Laplacian or biharmonic
operator yielded surface and the β surface, each based on disparity data, may
be useful to judge the merit of the β surface. It should be noted that both the
Laplacian and biharmonic operator yield a good surface where the disparity is
continuous but will provide a poor result when the disparity is discontinuous,
e.g., over the region where one object occludes the other.

Another potential application of β-spline may be in feature extraction in
pattern recognition. An object may be decomposed into many surface patches
and each of them can be approximated well by the β-spline. The approxima-
tion parameters, which are essentially the approximated control points along
with the values of two shape parameters, namely the β1 and β2 parameters,
for each surface patch may act as its feature vector.

6.6 Concluding Remarks

β-spline has been examined from the standpoint of computer graphics and
not from the viewpoint of other research areas. Very little work using β-spline
has been done in image processing and machine vision. It may, therefore, be
effective if the field is investigated thoroughly.

Part III

Advanced Methodologies

7

Discrete Splines and Vision

7.1 Introduction

This chapter presents a theoretical background of discrete splines: how it can
be used in the area of subdivision so that refinement can be done for better
representation and better visualization, and how to examine the feasibility of
discrete smoothing splines to detect shapes of opaque physical objects from
their shading. For this, we first look at the theory of discrete splines as de-
veloped by Cohen, Lyche, and Risenfeld [41] and use it for understanding the
underlying structure of subdivision algorithms.

Next, we try to view knots of smoothing discrete splines as the discrete
grid points defined in the greylevel image plane, and examine the feasibility
of using such a spline to detect shapes of objects with the help of a reflectance
map [77], defined in terms of image brightness values and surface gradients.
The feasibility of using smoothing splines in the shape from shading problem
has been discussed by David Lee [101].

7.2 Discrete Splines

Discrete splines were introduced by Mangasarian and Schumaker [118] as solu-
tions to certain minimization problems involving differences instead of deriva-
tives. Lyche [111, 112] studied approximation properties of discrete splines.
Schumaker [148] provided discrete B-splines on a uniform partition, while de-
Boor [55] provided the same on a nonuniform partition.

We have already discussed B-splines Bi,k of order k in a previous chapter.
We now consider a piecewise polynomial f(x) in terms of Bi,k, so that

f(x) =
n∑

i=1

Bi,k(x)Pi. (7.1)

The knots τ = {τ1, τ2, · · · τn+k} can be made uniform as well as multiple.

146 7 Discrete Splines and Vision

Let τa = {τa
1 , τa

2 , · · · τa
l } be the knots in addition to existing ones. If m = n+ l

and t = {t1, t2, · · · tm+k} = τ ∪ τa is the new knot sequence in nondecreasing
order, then f(x) can be written as a linear combination of the B-splines, Nj,k

on t, with j = 1, 2, · · ·m, i.e.,

f(x) =
m∑

j=1

djNj,k(x), (7.2)

djs are unknown coefficients and need to be computed. There are several ways
to compute djs. We cite a few of them.
(1) One can choose m points, say, ρ1, ρ2, · · · , ρm, and solve the following in-
terpolation problem:

m∑

j=1

djNj,k(ρi) = f(ρi), i = 1, 2 · · · ,m. (7.3)

This set of linear equations has a unique solution d1, d2, · · · dm if tj < ρj <
tj+k, j = 1, 2, · · ·m. The coefficient matrix is totally positive, banded, and can
be inverted by Gaussian elimination without pivoting in O(mk3) operations
[57].
(2) Another technique to compute djs is to use the quasi-interpolant of deBoor
and Fix [56]. If

λif =
1

(k − 1)!

k−1∑

r=0

(−1)k−1−rΨ
(r)
j (aj)f (k−1−r)(aj), (7.4)

where aj is any point on (tj , tj+k) and

Ψj(y) =
k−1∏

r=1

(y − tj+r), (7.5)

then
λjNi,k = δi,j = 1, i = j,

= 0, i �= j.

Therefore, applying λj on both sides of equation (7.2), we get

dj = λjf, j = 1, 2, · · ·m. (7.6)

Computation of dj gives advantages provided f is given in its piecewise poly-
nomial representation.
(3) One can also compute dj recursively. This method is similar to the subdi-
vision scheme of Lane and Risenfeld [100] for the special case of Bézier curves
(k-tuple knots) and for uniform knots.
Let us assume

7.2 Discrete Splines 147

dj =
n∑

i=1

αi,k(j)Pi (7.7)

for some αi,k(j). Consider two different cases for understanding.
Case 1: k = 1 (step-functions)
In this case,

f(x) =
n∑

i=1

Bi,1(x)Pi, (7.8)

where
Bi,1 = 1, τi ≤ x < τi+1,

= 0, otherwise.

If

f(x) =
m∑

j=1

Nj,1(x)dj , (7.9)

where

Nj,1 = 1, tj ≤ x < ti+1,
= 0, otherwise,

(7.10)

then
dj = Pi, τi ≤ tj < τi+1.

Therefore, in equation (7.7) we must have,

αi,1(j) = 1, τi ≤ tj < τi+1,
= 0, otherwise.

Hence, one can easily note that αi,1(j) = Bi,1(tj)
Case 2: k = 2 (piecewise linear functions)
For this case, we can consider

f(x) =
n∑

i=1

Bi,2(x)Pi, (7.11)

where
Bi,2(x) = (x − τi)/(τi+1 − τi), τi ≤ x < τi+1,

= (τi+2 − x)/(τi+2 − τi+1), τi+1 ≤ x < τi+2,
= 0, otherwise.

Now suppose

f(x) =
m∑

j=1

Nj,2(x)dj , (7.12)

where
Nj,2(x) = (x − tj)/(tj+1 − tj), tj ≤ x < ti+1,

= (tj+2 − x)/(tj+2 − tj+1), tj+1 ≤ x < ti+2,
= 0, otherwise.

148 7 Discrete Splines and Vision

If ν and j are such that
τν ≤ tj+1 < τν+1,

then

f(tj+1) = dj

= {(τν+1 − tj+1)Pν−1 + (tj+1 − τν)Pν}/(τν+1 − τν). (7.13)

Now, equation (7.7) is valid with,

αi,2(j) = (tj+1 − τi)/(τi+1 − τi), τi ≤ tj+1 < τi+1,
= (ti+2 − tj+1)/(τi+2 − τi+1), τi+1 ≤ tj+1 < τi+2,
= 0, otherwise.

Hence, we note that αi,2(j) = Bi,2(tj+1). Here, we observe that the numbers
αi,2(j) are related to the B-spline Bi,k for k = 1, 2. αi,k(j) is a discrete spline.

7.2.1 Relation Between αi,k and Bi,k, k > 2

We have assumed Ni,k as B-splines on a partition {tj} and Bi,k as B-splines
on a coarser subpartition {τi}. Let us now consider the following theorem.
Theorem 1:
For all x, we have,

Bi,k(x) =
m∑

j=1

αi,k(j)Nj,k(x) i = 1, 2, · · ·m, (7.14)

where
αi,j(j) = (τi+k − τi)[τi, · · · τi+k]φj,k, (7.15)

φj,k(y) = (y − aj)0+Ψj,k(y), (7.16)

with Ψj,k(y) given by equation (7.5). Here,

(y − aj)0+ = 1 y > aj

= 0 otherwise,

aj can be chosen anywhere in [tj , tj+k), and [τi, · · · τi+k]φj,k denotes a divided
difference. We have the following remarks:
(1) αi,k(j) is called a discrete spline.
(2) The numbers αi,k(j) in equation (7.7) are the discrete B-splines given by
equation (7.15).
From equation (7.1) and equation (7.14), we have,

7.2 Discrete Splines 149

f(x) =
n∑

i=1

Bi,k(x)Pi

=
n∑

i=1

m∑

j=1

Piαi,k(j)Nj,k(x)

=
m∑

j=1

[
n∑

i=1

Piαi,k(j)]Nj,k(x)

where αi,k(j) is given by equation (7.15). Comparing this with equation (7.7),
we get the following statement:
(3) For k = 1, from equation (7.15),

αi,1(j) = (τi+1 − aj)0+ − (τi − aj)0+. (7.17)

It agrees with αi,1(j) given by case 1, for any aj ∈ [tj , tj+1). Similarly, for
k = 2 we get,

αi,2(j) = [τi+1, τi+2]φj,2 − [τi,τi+1]φj,2

with
φj,2(y) = (y − aj)0+(y − tj+1).

This agrees with αi,2(j) for the case 2, described above, for any ajν[tj .tj+2).
Now to prove Theorem 1, we present two lemmas. The first lemma is due

to Marsden [120].
Lemma 1:
For any y ∈ � and any x ∈ [tk, tm+1), we have

(y − x)k−1 =
m∑

j=1

Ψj,k(y)Nj,k(x), (7.18)

where Ψj,k is given by equation (7.5).
Proof (deBoor [53]):

For k = 1 we get from the lemma 1, 1 =
m∑

j=1

Nj,1(x), which follows from

equation (7.10). For k ≥ 2, one can use the recurrence relation of deBoor [53],
Cox [47]

Nj,k(x) = (x − tj)Qj,k−1(x) + (tj+k − x)Qj+1,k−1(x), (7.19)

where

Qj,k(x) = Nj,k(x)/(tj+k − tj), tj+k > tj ,
= 0, otherwise.

(7.20)

Letting ζk = (y − x)k−1 in equation (7.18), we get

150 7 Discrete Splines and Vision

ζk =
m∑

j=1

Ψj,k(y)[(x − tj)Qj,k−1(x) + (tj+k − x)Qj+1,k−1(x)].

Since x ∈ [tk, tm+1), we have Q1,k−1(x) = Qm+1,k−1(x) = 0. Hence, ζk can
be written as

ζk =
m∑

j=2

γj,k(x, y)Qj,k−1(x), (7.21)

where
γj,k(x, y) = Ψj,k(y)(x − tj) + Ψj−1,k(y)(tj+k−1 − x).

But it can be shown in a straightforward way that

γj,k(x, y) = (y − x)(tj+k−1 − tj)Ψj,k−1(y).

Therefore, ζk can be written as

ζk = (y − x)
m∑

j=2

Ψj,k−1(y)(tj+k−1 − tj)Qj,k−1(x).

Since, (tj+k−1 − tj)Qj,k−1(x) = Nj,k−1(x) and N1,k−1(x) = 0, we get ζk =
(y − x)ζk−1 (from equation (7.18)). But then ζk = (y − x)k−1ζ1. sinceζ1 = 1,
equation (7.18), follows.
Lemma 2:
Let φj and aj be as in Theorem 1. For any y ∈ t and any x ∈ [tk, tm+1),

(y − x)k−1
+ =

m∑

j=1

φj,k(y)Nj,k(x). (7.22)

Proof:
Let us fix x and μ be such that tμ ≤ x < tμ+1. Since Nj,k(x) = 0 for x /∈
[tj , tj+k), we have to show that

(y − x)k−1
+ = σk

def=
μ∑

j=μ−k+1

φj,k(y)Nj,k(x). (7.23)

Assume y = tμ. Since, φj,k(tμ) contains a factor tμ−tμ for j = μ−k+1, · · · , μ−
1, we have σk = φμ,k(tμ)Nμ,k(x). But φμ,k(tμ) = 0 since aμ ∈ [tμ, tμ+k).
Hence, σk = 0 = (tμ − x)k−1

+ and equation (7.23) follows in this case. Sim-
ilarly, if y = tμ−1, then σk = φμ−1,k(tμ−1)Nμ−1,k(x) + φμ,k(tμ−1)Nμ,k(x) =
0 = (tμ−1 − x)k−1

+ . Continuing in this way, we see that equation (7.23)
holds for y = ts and s ≤ μ. Next let us assume y = tμ+1. Then σk =
φμ−k+1,k(tμ+1)Nμ−k+1,k(x). But φμ−k+1,k(tμ+1) = Ψμ−k+1,k(tμ+1) and equa-
tion (7.23) follows from equation (7.18). Similarly, equation (7.23) follows from
equation (7.18) for y = ts and s ≥ tμ+1.

We shall now turn to the proof of Theorem 1.

7.2 Discrete Splines 151

Proof of Theorem 1:
Suppose aj /∈ {tj+1, · · · , tj+k−1}. We can apply the divided difference equation
(7.22) [τi, · · · , τi+k] on both sides of equation (7.22). Multiplying also by τi+k−
τi, equation (7.14) follows. Since the right-hand side of equation (7.22) is
constant as a function of aj ∈ [tj , tj+k), αi,k(j) is also independent of aj . One
can then let aj ∈ {tj+1,···,tj+k−1} and take limits from either left or right.

We next describe a recurrence relation in Theorem 2 for αi,k(j). One can
see its proof in the article by Cohen et al. [41].
Theorem 2:
Suppose τi+k > τi and that αi,k(j) is given by equation (7.15). Then

αi,1(j) = 1, τi ≤ tj < τi+j ,
= 0, otherwise.

(7.24)

Moreover for k ≥ 2 and for all i, j,

αi,k(j) = (tj+k−1 − τi)βi,k−1(j) + (τi+k − tj+k−1)βi+1,k−1(j), (7.25)

where

βi,k(j) = αi,k(j)/(τi+k − τi), τi+k > τi,
= 0, otherwise.

(7.26)

The discrete splines αi,k(j) is thus seen to have properties similar to those for
Bi,k.

7.2.2 Some Properties of αi,k(j)

If αi,k(j) are as in Theorem 2, then we can consider some of its properties in
the following corollary.
Corollary 1:
(1) αi,k(j) = 0 for i /∈ {μ − k + 1, · · · , μ} with 1 ≤ j ≤ m and μ be such that
τμ ≤ tj < τμ+1;
(2) αi,k(j) ≥ 0,∀(i, j);

(3)
n∑

i=1

αi,k(j) = 1, τk ≤ tj < τn+1.

Property (1) says that for each j, there are at most k discrete B-splines
αμ−k+1,k(j), · · · , αμ,k(j) with a (possible) nonzero value.

One can now compute dj in equation (7.7) when Pis are known. Equation
(7.7) can be written as

d(j) =
n∑

i=1

αi,kPi. (7.27)

αi,k(j) is a discrete B-spline and d(j) is a linear combination of αi,k(j) and
so it is a discrete B-spline. Discrete splines have local support, as can be seen

152 7 Discrete Splines and Vision

from the corollary 1. Similarity between the recurrence relations for αi,k(j)
in equation (7.25) and Bi,k in equation (7.3) hence makes the computation of
d(j) very similar to the computation of f(x) for some x with f(x) as given
below.

f(x) =
n∑

i=1

Bi,k(x)Pi. (7.28)

7.2.3 Algorithms

We shall now consider two different algorithms to compute discrete B-splines.
We have already seen the discrete B-spline as

d(j) =
n∑

i=1

αi,k(j)Pi.

When τμ ≤ tj < τμ+1,

d(j) =
μ∑

i=μ−k+1

αi,k(j)Pi. (7.29)

To compute the spline, we need to compute αi,k(j).
Algorithm 1:
For integers k ≥ 2 and j, μ let τμ+2−k, · · · , τμ+k−1 and tj+1, · · · , tj+k−1 be
given such that

τμ+2−k ≤ · · · ≤ τμ < τμ+1 ≤ · · · ≤ τμ+k−1 (7.30)

and
τμ ≤ tj < τμ+1. (7.31)

The algorithm 1, computes αir = αi,r(j) as given by equation (7.15) or equa-
tion (7.25), r = 1, 2, · · · k; i = μ + 1− r, · · · , μ. The discrete B-splines here are
of order ≤ k that can be nonzero for the given j. Steps in algorithm 1 are
described as follows.
Step 1: α(μ, 1) = 1;μ2 = μ;
Step 2: for r = 1, 2, · · · k − 1 do

begin
β1 = 0; tj = t(j + r);
for i = μ2, μ2 + 1, · · · , μ do
begin

d1 = tj − τ(i);d2 = τ(i + r) − tj;
β = α(i, r)/(d1 + d2);
α(i − 1, r + 1) = d2 ∗ β + β1;
β1 = d1 ∗ β;

end

7.2 Discrete Splines 153

α(μ, r + 1) = β1;
μ2 = μ2 − 1;

end
One can also use an alternative algorithm to compute d(j) as given by

equation (7.29). Now, before we describe the algorithmic steps, we first con-
sider the underlying background of it. By equation (7.25),

d(j) =
μ∑

i=μ−k+1

αi,k(j)Pi

=
μ∑

i=μ−k+1

[(tj+k−1 − τi)βi,k−1(j) + (τi+k − tj+k−1)βi+1,k−1(j)]Pi.

Since βμ−k+1,k−1(j)=βμ+1,k−1(j) = 0 by (1) in the corollary, we get,

d(j) =
μ∑

i=μ−k+2

αi,k−1(j)P
[2]
i,j ,

where

P
[2]
i,j = [(tj+k−1 − τi)Pi + (τi+k−1 − tj+k−1)Pi−1]/(τi+k−1 − τi).

In general, for r = 1, 2, · · · , k,

d(j) =
μ∑

i=μ−k+r

αi,k−r+1(j)P
[r]
i,j ,

with
P

[1]
i,j = Pi

and

P
[r+1]
i,j = [(tj+k−r − τi)P

[r]
i,j + (τi+k−r − tj+k−r)P

[r]
i−1,j]/(τi+k−r − τi).

Therefore, when r = k, we have

d(j) = αμ,1(j)P
[k]
μ,j

= P
[k]
μ,j .

With this, we write down Algorithm 2 to compute d(j).
Algorithm 2:
Step 1: μ2 = μ − k + 1;
Step 2: for i = μ2, μ2 + 1, · · · , μ do

begin
P

[1]
i = Pi;

Step 3: for r = 1, 2, · · · , k − 1 do

154 7 Discrete Splines and Vision

begin
μ2 = μ2 − 1; kr = k − r; tj = t(j + kr);
for i = μ, μ − 1, · · · , μ2
begin

d1 = tj − τ(i); d2 = τ(i + kr) − tj;
P

[r+1]
i = (P [r]

i ∗ d1 + P
[r]
i−1 ∗ d2)/(d1 + d2)

end
end

end

Step 4: d(j) = P
[k]
μ

Since τμ < τμ+1, we must always have d1 + d2 > 0. Also, k, j, μ, τi and tj
are exactly the same as in Algorithm 1.

7.3 Subdivision of Control Polygon

Subdivision of a control polygon helps to refine a curve or a surface. Subdi-
vision basically is to introduce new control points. The refinement or modifi-
cation, so achieved, enhances the curve or surface accuracy in visualization.
This section examines the Oslo algorithm to insert new control points. We use
algorithm 2 for this purpose.
Input:
Total number of vertices in the original polygon = N.
Vertices of the original polygon in planar or spatial coordinates,
P = (P (0), P (1), · · · , P (N). Order of the B-spline curve = K.
Knot vector in the original polygon is Tau = (Tau(0), Tau(1), · · · , Tau(N +
K).
Refinement knot vector T = (T (0), T (1), · · · , T (N) for a particular applica-
tion, Q ≥ N + K.
Output:
Vertices D = (D(0),D(1), · · · ,D(Q − K) = D of the subdivided polygon for
the same curve.
Pseudo code for the algorithm is as follows.
procedure loop (K,N,Q,P,Tau,T,D)
begin

for j=0 to (Q-K)do
begin

find (K+N,Tau,T,j,Mu);
subdiv (P,K,Tau,T,K,Mu,j,D(j));

end
end
procedure find (KN,Tau,T,j,Mu);
/* this routine finds the unique Mu */
/* so that Tau(MU)≤ T(j) < Tau(MU+1) */

7.5 Occluding Boundaries and Shape from Shading 155

begin
for i=0 to (KN-1)do
if(T(j) ≥ Tau(i))then MU=i;

end
recursive procedure subdiv(P,K,Tau,T,RP1,I,J,PP);
/* PP is output and equals D

[RP1]
ij */

begin
r=RP1-1;
if (r > 0) then begin

PP2=0;
PP1=0;
P1=T(J+K-r)-Tau(I);
P2=Tau(I+K-r)-T(J+K-r);
if (P1 <> 0) subdiv(P,K,Tau,T,r,I,J,PP1);
if (P2 <> 0) subdiv(P,K,Tau,T,r,I-1,J,PP2);
PP=(P1*PP1+P2*PP2)/(P1+p2);

end
else PP=P(I);

end
An iterative form for subdiv can also be found in [41].

7.4 Smoothing Discrete Splines and Vision

To recover the shape of a 3d surface from the reflectance map is an important
problem in shape from shading. Reflectance map, developed by Horn [77],
relates image brightness to surface orientation. Reflectance map, therefore,
is a powerful concept behind the recovery of the shape of a physical surface
from its image brightness values and is a major starting point. Ikeuchi and
Horn [81] initiated numerical shape from shading. David Lee [101] followed
the model of Ikeuchi and Horn [81] and constructed a smoothing spline as
a solution using regularization. He reduces the problem to solving a large
system of non-linear equations for a discrete spline. For the difficulty of the
direct method, he provided an iterative method. The algorithm converges for
a range of the regularization parameter and the discrete smoothing spline is
unique for that range. It has been seen that even provably convergent iterative
schemes are difficult to devise [81, 78].

7.5 Occluding Boundaries and Shape from Shading

Occluding boundary is important and informative in the shape from shading
problem because for all points on such a boundary one can compute surface
orientations directly from image brightness values. Suppose the image domain
D of an object is connected and compact. Let ∂D be the boundary and Di

156 7 Discrete Splines and Vision

the interior of D, respectively. The silhouette for an object in the image plane
provides the outline of projection. If the object has a smooth surface, then
the silhouette provides occluding boundaries, where the surface orientation is
known. Though it has a problem, even then surface orientations can be made
known depending on the nature of the reflectance map, e.g., if the reflectance
map is a strictly monotonic function of gradients along x and y axes. David
Lee, however, considered the surface orientations known on the boundary ∂D
of the image domain that contains the occluding boundary.

7.5.1 Image Irradiance Equation

For a Lambertian surface illuminated by a single distant point source, the
reflectance map is

R(p, q) =
1 + pps + qqs√

1 + p2 + q2
√

1 + p2
s + q2

s

. (7.32)

R(p, q) is the function of surface gradient (p, q) and the gradient (ps, qs) speci-
fies the direction of the source. The reflectance map tells the relation of image
brightness on surface orientation. In the image plane at a particular point
(x, y), we record the image irradiance I(x, y). It is proportional to the image
radiance at the corresponding point on the surface. R(p, q) is known as the
image radiance. Hence, by normalizing, we get the image irradiance equation
as

R(p, q) = I(x, y). (7.33)

If we take f(x, y) and g(x, y) as two different functions for p and q, then the
reflectance map can also be written as

R(f(x, y), g(x, y)) = I(x, y). (7.34)

In the present case, (x, y) ∈ D. The function R(f, g) can be determined the-
oretically or experimentally if distribution of light sources, viewing geometry,
and intrinsic reflecting properties of the materials composing the surface are
known [80]. One easily note that in stereographic projection, the Northern
Hemisphere is projected into a plane, namely the fg plane, tangent to the
Gaussian sphere at the North Pole with the South Pole as the center of pro-
jection. As it is a bijection of the Northern Hemisphere onto a disc S of radius
2 in the fg-plane, points in S provide surface orientations of visible parts of
the object’s surface. Points on the circumference of S are, therefore, the ori-
entations of the points on the occluding boundaries. Therefore, for any point
(x, y) on the occluding boundary, we must have,

f2(x, y) + g2(x, y) = 4. (7.35)

One can assume for interior points (x, y) ∈ Di, I(x, y) > 0 and, for occluding
boundary points, (x, y) ∈ ∂D, I(x, y) = 0.

7.5 Occluding Boundaries and Shape from Shading 157

We cannot determine surface orientations uniquely from the image irradi-
ance equation, even with supplementary boundary information. The problem
is ill-posed and regularization is used [162, 81, 21].

7.5.2 Method Based on Regularization

To find a smoothing spline (f∗(x, y), g∗(x, y)), Ikeuchi and Horn used regu-
larization [81] that minimizes the error

E(f, g) =
∫ ∫

D

((f2
x(x, y) + f2

y (x, y) + g2
x(x, y) + g2

y(x, y))

+ λ(R(f(x, y), g(x, y)) − I(x, y))2)dxdy.
(7.36)

The first term, the squared gradient of the surface orientations, in the inte-
grand is the departure from smoothness and the second term is the error in the
image irradiance equation. λ is the penalty parameter. When the brightness
measurements are accurate, λ is chosen large.

Three critical issues in regularization method are as follows:
(1) The existence of the solution.
(2) The uniqueness of the solution.
(3) The well-conditioning of the problem.
Of these three issues, existence of smoothing splines is ensured but the unique-
ness and well-conditioning cannot be guaranteed. Smoothing splines without
boundary conditions, in general, are not unique.
Theorem 1:
Without any boundary conditions, the smoothing splines are in general not
unique, and the problem of computing a smoothing spline is ill-conditioned.
Ikeuchi and Horn [81] mentioned a number of boundary conditions, e.g.,
occluding boundaries, self-shadow boundaries, specular points, and singular
points.

7.5.3 Discrete Smoothing Splines

Any image domain D can be embedded into a rectangular region D̄ where all
four sides can always be thought to intersect ∂D through proper shrinking of
D̄.

Suppose we discretize D̄ with mesh size h. Further assume the region D is
divided into m + 2 rows and that the i − th row contains ni + 2 grid points,
for i = 0, 1, · · · ,m = 1. The total number of interior grid points in Di is

N =
m∑

i=1

ni.

Let
n = max

i
{ni}.

158 7 Discrete Splines and Vision

One can assume that m ≤ n and h = 1
m . Now if we designate the surface

orientation at the grid point (i, j) by (fij , gij) and the image brightness by
Iij , then (fij , gij) are known if (i, j ∈ ∂D). Consider a vector x of surface
orientations at an interior grid point Di as

x = (· · · , fij , · · · , , · · · , gij , · · ·)T .

Then x is defined on a compact set SN , where S is disc of radius 2 in the
fg-plane and N is the number of interior grid points in Di. A corresponding
smoothing spline or DSS minimizes the following error between all x:

e(x) =
∑

i,j

(
1
h2

((fi+1,j − fi,j)2 + (fi,j+1 − fi,j)2

+(gi+1,j − gi,j)2 + (gi,j+1 − gi,j)2 + λ(R(fi,j , gi,j) − Ii,j)2).
(7.37)

The term (i, j) is included in the sum if and only if {(i, j), (i+1, j), (i, j+1)} ∈
D. The minimization is subject to the condition {fij , gij} ∈ ∂D, so that fij

and gij are known.

7.5.4 Necessary Condition and the System of Equations

One can find the necessary condition for a DSS and hence the system of
equations by computing the partial derivatives of e(x) in equation (7.37) with
respect to fij and gij for all (i, j) in Di. Equating these derivative to zero,
one gets in a generalized form the necessary condition,

Mx = −λh2b(x) + r. (7.38)

Here, M = diag(A,A) where A is the N × N Laplacian Matrix of Di.

b(x) = (· · · , (R(fij , gij) − Iij)
∂R(fij ,gij)

∂fij
, · · · ,

· · · , (R(fij , gij) − Iij)
∂R(fij ,gij)

∂gij
, · · ·)T

and r = (· · · , rij , · · ·)T . Now, rij = 0 when all the four neighbors of (i, j)th
pixel are within the region Di, otherwise rij �= 0 and its value depends on the
number of pixels lying outside the region. Obviously, there can be a number
of situations; for example, suppose the grid points at (i − 1, j) and (i, j − 1)
are the boundary points and fi−1,j , fi,j−1, gi−1,j , and gi,j−1 are known. This
provides rij = fi−1,j + fi,j−1. For details see the article by David Lee [101].
The remaining cases can be treated similarly. Equation (7.38) is equivalent to

x = (I − M)x − λh2b(x) + r, (7.39)

where I is the identity matrix of size 2N . An algorithmic approach to solve
equation (7.39) is described below [81].

7.6 A Provably Convergent Iterative Algorithm 159

Algorithm 1:
x(0) = 0;
x(k) = (I − M)x(k−1) − λh2b(x(k−1)) + r, for k = 1, 2, · · ·
The following three points here are worth paying attention to:
(1) Existence and uniqueness of the solution of equation (7.38) were not ad-
dressed.
(2) Convergence of Algorithm 1 was not shown.
(3) Necessary condition did not have dependence on the interior points. The
constraint fij + gij < 4 for interior points is not taken into account.
Lee showed that for a range of λ, equation (7.38) has a unique solution that
provides a unique DSS. His proposed algorithm converges to this unique
solution.

7.5.5 Some Important Points About DSS

(1) A DSS minimizes the error expression e(x) of equation (7.37) between all
x in the compact set SN .
(2) If R(f, g) is continuous, then e(x) is a continuous functional of x and its
infimum is in SN . This means DSS exists.
(3) A DSS x is regular, if for all (i, j) in Di, f2

ij + g2
ij < 4.

(4) A regular DSS minimizes expression (7.37) and is an interior point in SN ,
so it satisfies equation (7.38).
(5) One can show that add DSSs are regular.
Theorem 2:
If the function R in the image irradiance equation (7.34) is continuous, then
discrete smoothing splines exist and are regular.

From Theorem 2, one can tell that a regular DSS x∗ exists that minimizes
error e(x) between all x and also satisfies equation (7.38). Hence we can write,

Mx∗ = −λh2b(x∗) + r.

Matrix M is symmetric and positive definite, and so it has an inverse M−1.
This leads to:

x∗ = −λh2M−1(x∗) + M−1r. (7.40)

7.6 A Provably Convergent Iterative Algorithm

To provide the algorithm, Lee rewrote equation (7.38) as

x = −λh2M−1b(x) + M−1r, (7.41)

and based on this the algorithm is as follows.
Algorithm 2
x(0) = 0;
x(k) = −λh2M−1b(x(k−1)) + M−1r, k = 1, 2, · · ·

160 7 Discrete Splines and Vision

7.6.1 Convergence

To discuss convergence, Lee assumed (R(f, g) − Iij)
∂R(f,g)

∂f and (R(f, g) −
Iij)

∂R(f,g)
∂g are Lipschitz functions for all (i, j). This means for (f, g), (f

′
, g

′
) ∈

S,

|(R(f, g) − Iij)
∂R(f,g)

∂f − (R(f
′
, g

′
) − Iij)

∂R(f
′
,g

′
)

∂f |
≤ L

(1)
ij

√
(f − f ′)2 + (g − g′)2,

and
|(R(f, g) − Iij)

∂R(f,g)
∂g − (R(f

′
, g

′
) − Iij)

∂R(f
′
,g

′
)

∂g |
≤ L

(2)
ij

√
(f − f ′)2 + (g − g′)2,

where Lijs are Lipschitz constants. Then for x,x
′ ∈ SN ,

‖b(x) − b(x
′
)‖2 ≤ ν‖x − x

′
)‖2, (7.42)

where
ν =

√
max

ij
{(L(1)

ij)2 + (L(2)
ij)2}.

Note that ν is also a Lipschitz constant and ‖.‖2 is the L2-norm.
Some of the interesting results in connection to DSS are as follows:

(1) Theorem 3:
If x∗ is a discrete smoothing spline, then for the range

λ ∈ [0,
4s(n,m)

h2ν
), s(n,m) = sin2 π

2(m + 1)
+ sin2 π

2(n + 1)

x(k) in Algorithm 2 converges to x∗. λ is the penalty parameter in expression
(7.37). h is the mesh size of discretization, m is the number of rows in Di,
n is the maximum number of grid points in a single row, and ν is Lipschitz
constant determined by the function R(f, g) and I(x, y).
(2) Theorem 4:

For

λ ∈ [0,
4s(n,m)

h2ν
),

Algorithm 2 converges to the unique regular discrete smoothing spline, which
is also the unique solution of equation (7.38). Algorithm 2 can be modified in
a number of ways to make it more efficient for regular and irregular regions.
Interested readers may have look at the article of David Lee [101]. Some of
the drawbacks of Algorithm 2 are:
• It does not consider the integrability constraint, which plays an important
part in surface description.
• Implementation of Algorithm 2 is not straightforward for irregular regions.
This is for the computation of M−1, the matrix M being equal to diag(A,A),

7.7 Concluding Remarks 161

where A is the Laplacian matrix of Di, M−1 = diag(A−1, A−1). As A−1 is
irregular, there is no method for multiplying A−1 efficiently by any vector.
• We cannot say anything about the optimality of λ. Interested readers can
consult the book [79].

7.7 Concluding Remarks

This chapter provides a theoretical background for discrete splines, which can
be used effectively in designing a high quality surface. Resolution of a surface
can be increased with the addition of knots in steps. This is the process of
repeated refinement. The impact of discrete smoothing spline in computer
vision shows that it is only possible to have a range of the regularization
parameter for which an iterative algorithm can be devised to explore the
shape of a physical surface from its image brightness values.

As splines are a powerful tool, their capability in different aspects should
be re-investigated thoroughly. This tool is equally useful both in analysis and
synthesis.

8

Spline Wavelets: Construction, Implication,
and Uses

8.1 Introduction

At the beginning of the eighties while doing the seismic data analysis, J. Morlet
introduced wavelets as a tool for signal analysis. His success led A. Grossman
to make a detailed study of the wavelet transform [69]. Later on, Y. Meyer
pointed out that there was a connection between signal analysis methods and
existing powerful techniques in the mathematical study of singular integral op-
erators. Ingrid Daubechies, together with Grossman and Meyer [50], provided
first the construction of a special type of frames. Later on in 1988, Daubechies
[48] provided a major breakthrough with her construction of the families of
orthonormal wavelets with compact support. The remarkable papers of Mal-
lat [114, 115] and Daubechies [48] came out in 1988 and 1989. The subject,
along with its applications, then grew out in many diverse fields during the
last two decades.

To have an idea about various developments on wavelets, readers can go
first through an introduction to continuous wavelet transform in [156, 49].
Wavelet bases of Meyer, Battle [18] and Lemarié [103] can be easily realized
using orthonormal multirate filter banks. But the filters involved are not ratio-
nal and the corresponding wavelets cannot be computed exactly. Hence they
are limited from the signal processing viewpoint. Daubechies’ compactly sup-
ported wavelets [48] are based on finite impulse response (FIR) filter banks.
Orthogonal filter banks and their relation to wavelet bases have been stud-
ied in [164, 165, 166]. Details about wavelets and various applications can be
found in books [49, 166, 116, 14]. Other books can also be consulted.

Different, well-known wavelets have been widely used in many problems.
Some are more efficient and more capable compared to others. Excepting
these remarkable wavelets, another class of wavelets that has gained attention,
interest, and importance (due to their simplicity in construction) is the class
of spline wavelets. These wavelets are found to secure a good place in signal
processing, as they have merit in implementations. They are also relatively
easy to understand and simple in their construction. The easiest of them uses

164 8 Spline Wavelets: Construction, Implication, and Uses

cardinal B-spline functions. We shall, therefore, discuss cardinal splines first
in this chapter. Readers can consult Schoenberg and Chui [147, 37] for an
extensive study on cardinal splines and their uses.

In this chapter, we shall restrict ourselves to spline wavelets and their
properties but to understand them well, we shall also discuss the related es-
sentials.

8.2 Cardinal Splines

Cardinal splines are polynomial spline functions with equally spaced knots.
Because of the simple knot structure, these splines can be used easily with
computational advantages. One of the major advantages of cardinal splines
over others is that cardinal splines have essentially only one B-spline of a
given order. All others of the same order are (scaled) translates of this one.
Further simplicity and convenience can be achieved if we consider that knots
are integers. Let us assume n is an integer, n ≥ 0 and Sn = {f(x)}, Class of
polynomial functions of order at most n, with f(x) ∈ Cn−2(IR) and f(x) ∈
πn−1. πn is the collection of all algebraic polynomials of degree not exceeding
n and f(x) are n − 2 times differentiable. Elements of Sn are called cardinal
spline functions of degree n. Therefore, if we restrict our attention to any
interval [j, j + 1) where j is an integer, then the function in [j, j + 1) is

f ∈ πn−1, j ∈ ZZ.

We can now connect two polynomial pieces of functions in adjacent intervals.
Consider two intervals [j, j+1) and [j−1, j). Let the polynomials in these two
intervals be p

(l)
n,j and p

(l)
n,j−1 from the collection of πn−1 and j = −N, · · · , N−1.

Considering the continuity of the two polynomials at the point x = j, one can
write

p
(l)
n,j(j) − p

(l)
n,j−1(j) = 0, l = 0, 1, · · · , n − 2, n ≥ 2.

Now the order of the polynomials is n. Hence the degree of each of the poly-
nomials is n−1. After (n−1)th differentiation each of them is a constant that
is different at the knot sequence ZZ, as we approach it from the right and left
sides of j. This means we can write this difference as

cj = p
(n−1)
n,j (j+) − p

(n−1)
n,j−1(j−)

= lim
ε→0

{f (n−1)(j + ε) − f (n−1)(j − ε)}. (8.1)

cj is the jump of f (n−1) and can be used to link between the polynomial
pieces in two adjacent intervals. cj

(n−1)! can be taken as the leading coefficient
of the difference polynomial between the two adjacent intervals. Note that
other coefficients are zero. Hence

pn,j(x) = pn,j−1(x) +
cj

(n − 1)!
(x − j)n−1. (8.2)

8.2 Cardinal Splines 165

Then considering for all x ∈ [−N,N], one can write f(x) as

f(x) = f[−N,−N+1)(x) +
N−1∑

j=−N+1

cj

(n − 1)!
(x − j)n−1

+ , (8.3)

where we use the following notation,

x+ = max(0, x),
xn−1

+ = (x+)n−1, n ≥ 2.
(8.4)

The collection of n + 2N − 1 functions

{x0, x1, · · · , xn−1, (x + N − 1)n−1
+ , · · · , x − N + 1)n−1

+ } (8.5)

is a basis of Sn,N . We can replace the monomials 1, x, · · · , xn−1 by truncated
powers:

(x + N + n − 1)n−1
+ , · · · , (x + N)n−1

+ .

With this, we now can generate the entire set of truncated powers by integer
translates of a single function, xn−1

+ as,

{(x − r)n−1
+ , r = −N − n + 1, · · · , N − 1}. (8.6)

This is also a basis of Sn,N .
Now for different values of N , different spaces Sn,N can be visualized; each

of them is of finite dimension when N is finite. Making N infinitely large and
considering the union of all such spaces, we can make the space Sn of infinite
dimension and the basis in equation (8.6) will, therefore, be a different basis
of the infinite dimensional space Sn (due to the different bases for the values
of N). This basis can be written as

B1 = {(x − r)n−1
+ , r ∈ ZZ. (8.7)

To find cardinal splines in L2(IR), one can consider backward differences
with recursion as

(�f)(x) = f(x) − f(x − 1)
(�kf)(x) = (�k−1(�f)), k = 2, 3, · · · (8.8)

For nth order polynomial, the nth order difference is zero, i.e.,

�nf = 0, f ∈ πn−1.

Let us now define a linear combination of the basis functions given in equation
(8.7) as

Mn(x) =
1

(n − 1)!
�nxn−1

+ , n ≥ 2 (8.9)

where M1 = N1, the characteristic function of [0, 1), i.e.,

166 8 Spline Wavelets: Construction, Implication, and Uses

N1(x) = 1, 0 ≤ x < 1,
= 0, otherwise.

(8.10)

Now,
(�2f)(x) = (�(�f))(x),

= (�(f(x) − f(x − 1)),
= (�f)(x) − (�f)(x − 1),
= (f(x) − f(x − 1)) − (f(x − 1) − f(x − 2)),

=
2∑

k=0

(−1)k

(
2
k

)
(x − k)+,

where, f(x) = (x−0)n
+−1, f(x−1) = (x−1)n

+−1 and f(x−2) = (x−2)n
+−1

for n = 2. Proceeding this way, one can easily show that

Mn(x) =
1

(n − 1)!

n∑

r=0

(−1)r

(
n

r

)
(x − r)n−1

+ . (8.11)

Obviously, Mn(x) = 0 for x ≥ n. Also, Mn(x) = 0 for x < 0 (since, x+ =
max(0, x)). This helps to establish

supp Mn = [0, n].

With this, we observe that:
(1) The collection B = {Mn(x− r), r ∈ ZZ} reduces to B2 = {Mn(x− r), r =
−N − n + 1, · · · , N − 1}.
(2) Mn(x − r) = 0 for r > N − 1 and r < −N − m + 1.
(3) {Mn(x − r)} is a linearly independent set.
Hence, B2 is a basis of Sn,N . We can take the union of Sn,N over N = 1, 2, 3, · · ·
and we come to B. This helps to write a spline series as

f(x) =
∞∑

r=−∞
arMn(x − r). (8.12)

We shall now describe the importance of the space L2(IR) and the basis set
from the engineering point of view. L2(IR) space is important in signal pro-
cessing. This is the space of all functions f(t), which can be used to represent
a signal. The energy of the signal can be taken as the integral of the square
of the modulus of the function. Since, this integral is finite, it corroborates
the fact of finite energy of a signal in practice. IR indicates the time instant t
of occurrence of the signal (also the independent variable of integration) is a
number on the whole real line.

Now if we start with the vector space of signals S, then if any f(t) ∈ S can
be expressed as f(t) =

∑

k

akφk(t), then the set of functions φk(t) is called an

expansion set for the space S. If the representation is unique, then the set is a
basis. One could also start with the expansion set or basis set and define the

8.2 Cardinal Splines 167

space S as the set of all functions that can be expressed by f(t) =
∑

k

akφk(t).

This is called the span of the basis set. In many cases, the signal spaces are
taken as the closure of the space, spanned by the basis set. This closure tells
us the space contains not only all signals that can be expressed by a linear
combination of the basis functions, but also the signals that are the limit of
these infinite expansions.

8.2.1 Cardinal B-Spline Basis and Riesz Basis

Since in wavelets we consider functions in L2(IR) and our objective in this
chapter is to study spline wavelets, we consider cardinal splines that are both
in Sn and and L2(IR), i.e., in Sn ∩ L2(IR). We now suppose that V n

0 is its
closure. This means V n

0 is the smallest closed subspace of L2(IR) that contains
Sn ∩ L2(IR). Since Mn has compact support, one can visualize B ⊂ V n

0 .
For simplicity we have considered cardinal splines with sequence of integer

knots ZZ. Now we consider the space Sj
n of cardinal spline functions with knot

sequences 2−jZZ, j ∈ ZZ. Since a spline function with knot sequence 2−j1ZZ is
also a spline function with knot sequence 2−j2ZZ, whenever j1 < j2, we can
write a nested sequence

· · · ⊂ S−1
n ⊂ S0

n ⊂ S1
n ⊂ · · ·

of cardinal spline spaces, with S0
n = Sn. If we let V n

j to denote the L2(IR)
closure of Sj

n ∩ L2(IR), then the nested sequence

· · · ⊂ V n
−1 ⊂ V n

0 ⊂ V n
1 ⊂ · · ·

of closed spline subspaces of L2(IR). Thus, the nested sequence of subspaces
satisfies

⋃

j∈ZZ

V n
j = L2(IR),

⋂

j∈ZZ

V n
j = {0},

(8.13)

where the overhead bar indicates the closure.
We now write the nth order cardinal B-spline basis through the convolution

of

Nn(x) = (Nn−1 ∗ N1)(x)

=
∫ 1

0

Nn−1(x − t)dt. m ≥ 2
(8.14)

N − 1 is the characteristic function of the interval [0, 1). Setting Mn = Nn

for n ≥ 2, we can tell Nn is an nth cardinal spline function in V n
0 ⊂ Sn. The

cardinal B-spline basis

168 8 Spline Wavelets: Construction, Implication, and Uses

B = {Nn(x − r)}, r ∈ ZZ (8.15)

is a Riesz basis of V n
0 . Now a basis is a Riesz basis, if it satisfies the Riesz

condition. If we have a function φ ∈ L(IR) and two constants A and B with
0 < A ≤ B < ∞, then we say that {φ(. − r), r ∈ ZZ)} satisfies the Riesz
condition if

A‖{cr}‖2 ≤‖
∞∑

r=−∞
crφ(. − r) ‖2≤ B‖{cr}‖2, {cr} ∈ l2,

and the Fourier transform φ̂ of φ satisfies

A ≤
∞∑

r=−∞
|φ̂(x + 2πr)|2 ≤ B, a.e.

In order to find the condition for the cardinal B-spline, we should detect the
lower and upper bounds A and B. From equation (8.14),

Nn(x) = Nn−1(x) ∗ N1(x)
= Nn−2(x) ∗ N1(x) ∗ N1(x)
= N1(x) ∗ N1(x) ∗ N1(x) ∗ · · · ∗ N1(x),

and hence taking the Fourier transform, we get

N̂n(ω) = (N̂1)n(ω).

Since,

N̂1(ω) =
∫ 1

0

e−iωxdx

= 1−e−iω

iω .

(8.16)

Therefore.

|N̂n(ω)|2 =
∣∣∣∣
1 − e−iω

iω

∣∣∣∣
2n

.

Now,
1−e−iω

iω = e−iω/2(eiω/2−e−iω/2)
iω,

= e−iω/2 2
ω sin (ω/2),

= e−iω/2 sin (ω/2)
(ω/2) .

Therefore, considering 2π periodicity with replacement of ω by 2x and sum-
ming over r, the expression for |N̂n(ω)|2 becomes

∞∑

r=−∞
|N̂n(2x + 2πr)|2 = e−4inx/2 22n

∞∑

r=−∞

sin2n(x + πr)
(2x + 2πr)2n ,

= e−2inx(sin2n x)
∞∑

r=−∞

1
(x + πr)2n ,

= (sin2n x)
∞∑

r=−∞

1
(x + πr)2n ,

(8.17)

8.2 Cardinal Splines 169

since, e−i2nx = (cos 2nx − i sin 2nx) = 1.
Now,

cot x = lim
l→∞

l∑

r=−l

1
(x + πr)

,

and hence ∞∑

r=−∞

1
(x + πr)2n = − 1

(2n − 1)!
d2n−1

dx2n−1
cot x.

This provides

∞∑

r=−∞
|N̂n(2x + 2πr)|2 = − sin2n x

(2n − 1)!
d2n−1

dx2n−1
cot x. (8.18)

Equation (8.18) helps to compute optimal Riesz bounds. For smaller values,
the computation of spline order is straightforward, while for larger values,
algebraic exercise to some extent is needed.

There could be other approaches. One such approach establishes [37]

∞∑

r=−∞
|N̂n(ω + 2πr)|2 =

n−1∑

r=−n+1

N2n(n + r)e−irω,

and using the properties of cardinal B-splines, one can show

∞∑

r=−∞
|N̂n(ω + 2πr)|2 ≤ 1.

The Riesz basis bound B = 1. To get the greatest lower bound, one can
consider “Euler-Frobenius polynomials:”

E2n−1(z) = (2n − 1)! zn−1
n−1∑

r=−n+1

N2n(n + r)zr

of order 2n− 1. Since its degree is 2n− 2, it has 2n− 2 roots. All these 2n− 2
roots, say, λ1, λ2, · · · , λ2n−2 are negative, simple, real, and are found to hold
the relation

0 > λ1 > λ2 > · · · > λ2n−2,

and
λ1λ2n−2 = · · · = λn−1λn = 1.

This provides,

An =
1

(2n − 1!)

n−1∏

r=1

(1 + λr)2

|λr|
> 0.

Also using the properties of Euler-Frobenius polynomial, one can show

170 8 Spline Wavelets: Construction, Implication, and Uses

∞∑

r=−∞
|N̂n(ω + 2πr)|2 =

1
(2n − 1!)

n−1∏

r=1

1 − 2λr cos ω + λ2
r

|λr|
,

since λrs are negative and −1 ≤ cos ω ≤ 1 we have,

An ≤
∞∑

r=−∞
|N̂n(ω + 2πr)|2 ≤ 1.

Hence, for any integer n ≥ 2 the cardinal B-spline basis B = {Nn(x−r)}, r ∈
ZZ is a Riesz basis of V n

0 with bounds A = An and B = 1.

Example: Compute the optimal Riesz bounds for the first and second order
cardinal B-splines, N! and N2. From equation (8.18), we have

∞∑

r=−∞
|N̂1(2x + 2πr)|2 = − sin2 x

1!
d
dx cot x,

= − sin2 x(−cosec2x),
= 1,

or,
∞∑

r=−∞
|N̂1(ω + 2πr)|2 = 1,

and,

∞∑

r=−∞
|N̂2(2x + 2πr)|2 = − sin4 x

3!
d3

dx3 cot x,

= − sin4 x
6 {−2(cosec4x + 2cosecx cotx)},

= 2
6 (1 + 2 cos2 x),

= 1
3 (1 + 2 cos2 x),

or,
∞∑

r=−∞
|N̂2(ω + 2πr)|2 =

1
3

+
2
3

cos2(
ω

2
).

Hence, {N1(. − r)} is orthonormal and

1
3
≤

∞∑

r=−∞
|N̂2(ω + 2πr)|2 ≤ 1.

8.2.2 Scaling and Cardinal B-Spline Functions

Since the cardinal B-spline basis B is a Riesz basis of V n
0 , one can conclude

that
{2j/2Nn(2jx − r), r ∈ ZZ} (8.19)

8.2 Cardinal Splines 171

is also a Riesz basis of V n
j with the same bounds as of B for any j ∈ ZZ. We

shall now check if the cardinal B-spline can act as a scaling function. Also, if
we would like to view the image in terms of signal space, then we should write
the functions in terms of a time variable t rather than of x. A scaling function
φ is a function that generates a multiresolution analysis (MRA). We shall see
an nth order cardinal B-splines Nn satisfies all the conditions of an MRA, and
since a wavelet system can be defined in terms of a scaling function, cardinal
B-splines can be successfully used in wavelet systems. This helps to construct
different spline wavelets efficiently that can be used effectively.

Consider a scaling function φ. The set of scaling functions based on integer
translates of the mother scaling function is

φr(t) = φ(t − r), r ∈ ZZ, φ ∈ L2(IR).

The subspace of L2(IR) spanned by these functions is given by

V0 = spanr{φr(t)}.

Hence, any function f(t) ∈ V0 can be written as

f(t) =
∑

r

arφr(t).

Now instead of the mother scaling function, if we look at the scaling functions
at different resolutions, i.e., instead of t in the mother scaling function, if we
consider 2jt, then

φj,r(t) = 2j/2φ(2jt − r).

This helps us to write f(t) ∈ Vj as

f(t) =
∑

r

arφ(2jt + r).

Obviously,
Vj = spanr{φr(2jt)}

= spanr{φj,r(t)}.
To visualize the effect of j in the scaling function φ, we can think of ap-
proximation of a graylevel image by the scaling function. As an image is a
two-dimensional function, we can approximate row-wise and column-wise or
vice-versa. It is evident that as j = 1, 2, · · ·, φj,r(t) becomes narrower and
narrower and hence it represents finer and finer details. On the other hand,
if j = −1,−2,− · · ·, φj,r(t) becomes wider and wider and hence it represents
coarser and coarser information. For narrower φj,r, the span is larger while
for wider φj,r, span is smaller. Thus, Vjs represent the approximation spaces
and as j increases, the size of these approximation spaces increases.

Below we will explain the concepts of an MRA but before that, we will
examine what is meant by wavelets.

172 8 Spline Wavelets: Construction, Implication, and Uses

8.3 Wavelets

A wavelet ψ(t) is a function in the L2(IR) space over the real line IR that it
satisfies the following conditions.

• The admissibility condition Cψ must remain finite, i.e.,

Cψ =
∫ +∞

−∞

| ψ̂(ω) |2
| ω | dω < ∞, (8.20)

where ψ̂(ω) is the Fourier transform of ψ(t). ψ̂(ω) =
∫ +∞

−∞
ψ(t)e−iωt dt.

| ψ̂(ω) |2 is the total power contained in ψ(t) and Cψ is, therefore, the
total power per every frequency component present in ψ(t).

• Its Fourier transform must be zero when the frequency is zero. This means
when ω = 0,

ψ̂(ω) = ψ̂(0) = 0.

As a result, we obtain
∫ +∞

−∞
ψ(t)dt = 0.

∫
ψ(t)dt is the area under the

curve ψ(t). Since it is zero, ψ(t) must change its sign, i.e., ψ(t) must be
oscillatory in nature or will have a wavelike behavior.
Since the sum of the power per every frequency component is finite, we

must have | ψ̂(ω) |2
| ω | → 0 when ω → 0. Now, ω → 0 implies 1

| ω | → ∞.
Therefore, to have

| ψ̂(ω) |2
| ω | → 0,

we must have | ψ̂(ω) |2 → 0 with a faster rate. Such a basic wavelet is
called a mother wavelet.

The mother wavelet represents a family of functions with two parameters: one
of them is for position and the other one is for frequency. In other words, the
family of functions is

ψa,b(t) =
1√
|a|

ψ(
t − b

a
),

where a �= 0 and b ∈ IR.

8.3.1 Continuous Wavelet Transform

Let us consider the family of functions

ψa,b(t) =
1√
|a|

ψ(
t − b

a
), (8.21)

8.3 Wavelets 173

that one can obtain by shifting and scaling a mother wavelet, ψ(t). Here a and
b are the scale and shift parameters (a �= o). From the admissibility condition,
we can say that ψ̂(ω) will always have sufficient decay. Because the Fourier
transform is zero at the origin and the spectrum decays at high frequencies,
the wavelet has a bandpass behavior. Normalizing the wavelet to unit energy,
we get

‖ ψ(t) ‖2 =
∫ +∞

−∞
|ψ(t)|2dt,

= 1
2π

∫ +∞

−∞
|ψ̂(t)|2dω,

= 1.

(8.22)

The continuous wavelet transform of a function ft) ∈ L2(IR) is then defined
as

Tcw(f(a, b)) =
∫ +∞

−∞
ψa,bf(t)dt

= < ψa,b(t), f(t) > .

(8.23)

The inverse of Tcw(f(a, b)) can be written as

f(t) =
1

Cψ

∫ +∞

−∞

∫ +∞

−∞
Tcw(f(a, b))ψa,b(t)

da db

a2
. (8.24)

Thus, any f(t) ∈ L2(IR) can be written as a superposition of shifted and
dilated wavelets.

8.3.2 Properties of Continuous Wavelet Transform

• Linearity: Since the linearity is satisfied by the inner product, we can write

Tcw(f1(a, b)) + Tcw((f2(a, b)) = Tcw((f1(a, b) + f2(a, b)).

• Shift: If f(t) has a continuous wavelet transform Tcw(f(a, b)), then the
continuous wavelet transform of f(t−k) is given by Tcw(f(a, b−k)). Note
that the wavelet transform of f(t) is

∫ +∞

−∞
ψa,bf(t)dt = Tcw(f(a, b)).

Therefore, the wavelet transform of f(t − k) is
∫ +∞

−∞
ψa,bf(t − k)dt =

1√
|a|

ψ(
t − b

a
)f(t − k) dt,

=
1√
|a|

∫ +∞

−∞
ψ(

T + k − b

a
)f(T) dT,

= Tcw(f(a, b − k)).

174 8 Spline Wavelets: Construction, Implication, and Uses

• Scale: If f(t) has a continuous wavelet transform Tcw(f(a, b)), then the con-
tinuous wavelet transform of the scaled function 1√

s
f(t

s , b
s) is Tcw(f(a

s , b
s)).

The continuous wavelet transform of 1√
s
f(t

s , b
s)

1√
|a| s

∫ +∞

−∞
ψ(

t − b

a
)f(

t

s
) dt =

√
s

|a|

∫ +∞

−∞
ψ(

sT − b

a
)f(T) dT,

=
√

s

|a|

∫ +∞

−∞
ψ(

T − b
s

a
s

)f(T) dT,

= Tcw(f(a
s , b

s),

where we let t
s = T . Thus, when the function is scaled, its Tcw is also

scaled.
• Energy of conservation: Continuous wavelet transform has an energy con-

servation property similar to that of Fourier transform.
• Localization: The continuous wavelet transform has sharp time localization

at high frequencies and this distinguishes the wavelet transform from the
traditional Fourier or Fourier-like transform.

• Time localization: To check the time localization of a particular wavelet,
one can examine the wavelet transform of a Dirac pulse using the wavelet
in question. For a given scale factor, the transform is equal to the scaled
wavelet reversed in time and centered at the location of the Dirac.

8.4 A Glimpse of Continuous Wavelets

Continuous wavelets can be viewed in two different forms, isotropic and
anisotropic wavelets, depending on how they can be applied in real life prob-
lems. For point-wise analysis, i.e., when no oriented features are present or
relevant in the signal, we may choose an analyzing wavelet ψ, which is invari-
ant under rotation. A typical example of an isotropic wavelet is the Mexican
hat wavelet. But when directional features are in the signal or when one is
interested in directional filtering, anisotropic wavelets are of much use. Typ-
ical directional or anisotropic wavelets are Morelet wavelet or the Cauchy
wavelets. Whether isotropic or anisotropic, these are all the basic wavelets.

8.4.1 Basic Wavelets

Below, we describe two important basic wavelets.

Gaussian Wavelet

A Gaussian wavelet is simply the derivative of Gaussian function. The Gaus-
sian function is

8.4 A Glimpse of Continuous Wavelets 175

gσ(t) =
1√

2π σ
e−

t2

2σ2 ,

=
1

2
√

πα
e−

t2
4α , letting σ2 = 2α.

The Gaussian wavelet is, therefore,

ψ(t) = − t

4α
√

πα
e−

t2
4α .

Its Fourier transform is

ψ̂(ω) =
∫ ∞

−∞
ψα(t) e−iωt dt,

= iω e−αω2
.

Morlet Wavelet

The Morlet wavelet uses a windowed complex exponential. This was proposed
in [69] for signal analysis and is given by

ψ(t) =
1√
2π

e−iωot e−t2/2.

Its Fourier transform is
ψ̂(ω) = e−(ω−ωo)2/2,

where ωo is the center frequency and the factor 1/
√

2π guarantees ‖ ψ(t) ‖= 1.
The center frequency ωo is normally so chosen that the second maximum of
the real part of ψ(t), t > 0 is half of the first one at t = 0. This provides

ω0 = π
√

2
ln2 = 5.336. One can notice that Morlet wavelet is not admissible

since ψ̂(0) �= 0. But it does not present any problem in practice since its value
is very small, roughly, ψ̂(0) ≈ 7.10−7.

An important topic in wavelet theory is the discretization of the continuous
wavelet transform, Tcw(f(a, b)). We would like to have the wavelet ψ such that
f can be recovered from Tcw(f(a, b)) values on a certain grid in the (a, b) plane,
i.e., from the values

Tcw(f(2−j , 2−jk)), j, k ∈ ZZ.

Note that ψ should have a property that the wavelets

2j/2 ψ (2j x − k), j, k ∈ ZZ

constitute an orthonormal basis of L2(IR). The Mexican hat or Marr wavelet
does not have this property. Such a function ψ is called the mother wavelet.
Often prior to the construction of the mother wavelet ψ, one constructs a func-
tion φ such that the functions {φ(t − k)}, k ∈ ZZ constitute an orthonormal
system. φ is, sometimes, called the father wavelet. This orthonormal system
then can be supplemented to a full orthonormal basis of L2(IR) with the
functions

2j/2 ψ (2j t − k), j ∈ Z+, k ∈ ZZ.

176 8 Spline Wavelets: Construction, Implication, and Uses

8.5 Multiresolution Analysis and Wavelet Bases

The concept of multiresolution analysis was first published in 1989 by Mallat
[115] and Meyer in 1990 [125]. Here the main objective is to find a function
ψ such that {ψj,r} is an orthonormal basis of L2(IR). In {ψj,r}, we have two
parameters: one is the translation parameter and the other is the dilation
parameter designated respectively by r and j. Now, considering the Fourier
transform, we can write

| ψ̂j,r(ω) | = 2−j/2 | ψ̂(
ω

2j
) |.

Therefore, for fixed j, we get a fixed bandwidth in the signal.
Definition (MRA): A multiresolution analysis consists of a sequence of

embedded closed subspaces

· · ·V2 ⊂ V1 ⊂ V0 ⊂ V1 ⊂ V2 · · · (8.25)

such that we have
(1) Upward completeness:

⋃
j∈Z

Vj = L2(IR) (8.26)

(2) Downward completeness:
⋂

j∈Z
Vj = {0} (8.27)

(3) Scale invariance:

f(t) ∈ Vj ⇐⇒ f(2j t) ∈ Vj+1 (8.28)

(4) Shift invariance:

f(t) ∈ V0 =⇒ f(t − r) ∈ V0 ∀r ∈ ZZ (8.29)

(5) Existence of a basis: There exists φ ∈ V0, such that

{φ(t − r) |r ∈ ZZ} (8.30)

is an orthonaormal basis for V0. Because of the embedding spaces of functions
(equation(8.25)) and the scaling property (equation(8.28)), one can verify that
the scaling function φ(t) satisfies a two-scale equation. Since V0 is included
in V1, φ(t), which belongs to V0, belongs to V1 as well. As such, φ(t) can be
written as a linear combination of the weighted sum of shifted φ(2t). Thus
φ(t) can be expressed as

φ(t) =
√

2
∞∑

k=−∞
h[k]φ(2t − k) k ∈ ZZ. (8.31)

8.5 Multiresolution Analysis and Wavelet Bases 177

h[k] are called the scaling function coefficients or the scaling filter coefficients.
With the above normalization, ‖ h[k] ‖= 1 and h[k] =

√
2 < φ(2t −

k), φ(t) >. Taking the Fourier transform of both sides, we get

φ̂(ω) =
∫

φ(t) e−iωtdt,

=
∫ √

2
∞∑

k=−∞
h[k]φ(2t − k)e−iωt,

=
√

2
∞∑

k=−∞
h[k]

∫
φ(t1) e−iω(t1/2+k/2) 1

2
dt1,

=
√

2
∞∑

k=−∞
h[k]

1
2

∫
φ(t1) e−iω/2t1e−iω/2kdt1,

= 1√
2

∞∑

k=−∞
h[k]e−i(ω/2)k

∫
φ(t1)e−i(ω/2)t1 dt1,

= 1√
2
ĥ(ω/2)φ̂(ω/2),

(8.32)

where ĥ(ω/2) =
∑

k∈ZZ

h[k]e−iω/2k. An important property of ĥ(eiω) is the fol-

lowing:
|ĥeiω)|2 + |ĥ(ei(ω+π))|2 = 2. (8.33)

We have already seen that the scaling function φ can approximate a func-
tion f(t) in different subspaces and these subspaces can be obtained by in-
creasing the index j, i.e., increasing the size of the subspaces spanned by the
scaling functions. However, this procedure is not efficient and hence, we take
help of wavelet functions at different scales, i.e., at different wavelet subspaces.
The wavelets ψj,r(t) generated from the mother wavelet ψ(t) span the differ-
ence between the spaces that are spanned by the different scales of the scaling
functions. Scaling functions and wavelets are assumed to be orthogonal for a
number of reasons from the standpoint of computation. Wj is defined as the
orthogonal complement of Vj in Vj+1, so that all elements of Vj are orthogonal
to all elements of Wj . For this, we need the following inner product condition
to hold true.

< φj,k(t), ψj,l(t) > =
∫

φj,k(t)ψj,l(t)dt,

= 0, j, k, l ∈ ZZ.

The wavelet spanned subspace at j = 0 is V1 = V0 ⊕ W0. Similarly, V2 =
V1 ⊕ W1 = V0 ⊕ W0 ⊕ W1. Proceeding this way, we finally get

· · · ⊕ W2 ⊕ W1 ⊕ W0 ⊕ W1 ⊕ W2 ⊕ · · · = L2.

The scaling subspace V0 can be viewed as

W−∞ ⊕ · · · ⊕ W1 = V0.

178 8 Spline Wavelets: Construction, Implication, and Uses

In practice, we choose those wavelet subspaces that are sufficient to represent
the coarse information. As W0 ⊂ V1, the wavelets can be expressed as

ψ(t) =
√

2
∞∑

k=−∞
h1[k]φ(2t − k) k ∈ ZZ, (8.34)

where h1[k] are the wavelet function coefficients and are given by

h1[k] = (−1)kh[1 − k].

The function ψ in equation (8.34) provides a set of functions

ψj,r(t) = 2j/2ψ(2jt − r).

Here, 2j is the scaling of t. Any function f(t) can then be approximated by

f(t) =
∑

r

cj(r)2j/2φ(2jt − r) +
∑

r

dj(r)2j/2ψ(2jt − r),

where
cj(r) = < f(t), φj,r(t) >,

=
∫

f(t)2j/2φ(2jt − r)dt.

Now if we scale and translate the time variable, we can write from equation
(8.31)

φ(2jt − r) =
∑

k

h[k]
√

2φ(2j+1t − 2r − k),

=
∑

l

h(l − 2r)
√

2φ(2j+1t − l),

after substituting l = 2r + k. With this, cj(r) becomes

cj(r) =
∑

l

h(l − 2r)
∫

f(t)2(j+1)/2φ(2j+1t − l),

=
∑

l

h(l − 2r)cj+1(l).

Similarly, dj(r) can be written as

dj(r) =
∑

l

h1(l − 2r)cj+1(l).

For infinite k, h[k] and h1[k] are coefficients of IIR filter, while when k is
finite, they form the coefficients of FIR filter. When the filter length, N (say)
is even, h and h1 are connected by

h1[k] = (−1)kh[N − 1 − k].

8.6 Spline Approximations 179

8.6 Spline Approximations

Polynomial spline approximations do smooth approximations with fast asym-
totic decay. One can construct a Riesz basis of polynomial splines with box
splines. In this section, we present a slightly different approach to find the
filter coefficients. The method is simple and straightforward. A box spline,
αn, of order n, is computed by convolving the box window 1[0,1] with itself n
times. Hence, considering the previous equation

N̂n(ω) = (
sin ω/2

ω/2
)ne−iβω/2.

When n is odd, β = 1 and α is centered at t = 1/2, while when n is even,
β = 0, then α(t) is symmetric about t = 0. For n ≥ 1, α(t − r), r ∈ ZZ is a
Riesz basis of V0.
Now, let us consider the following theorem.
Theorem. Let {Vj}, j ∈ ZZ be a multiresolution approximation and φ be
scaling function whose Fourier transform is

φ̂(ω) =
N̂n(ω)

(
∞∑

r=−∞
|N̂n(ω + 2πr)|2)1/2

. (8.35)

If
φj,k = 2j/2φ(2jt − k),

then the family φj,k, j, k ∈ ZZ is an orthonormal basis of Vj for all j ∈ ZZ.
Proof.
In order to construct an orthonormal basis, we need a function φ ∈ V0 that
can be expanded in basis of Nn(t − k), i.e., we must have

φ(t) =
∞∑

−∞
a[k]Nn(t − k).

Taking Fourier transform we get,

φ̂(ω) = â(ω)N̂n(ω).

â(ω) is a 2π periodic Fourier series of finite energy. For computation of â(ω),
we take help of orthogonality of {φ(t − k)}. Assuming φ̄(t) = φ∗(−t), we can
write

< φ(t − k), φ(t − p) > =
∫ ∞

∞
φ(t − k)φ∗(t − p)dt,

= φ ∗ φ̄∗(p − k).

Hence, {φ(t − k)} is orthonormal if and only if φ ∗ φ̄(k) = δ[k]. Computing
Fourier transform, we get

180 8 Spline Wavelets: Construction, Implication, and Uses

∞∑

r=−∞
|φ̂(ω + 2πr)|2 = 1. (8.36)

This is because φ∗φ̄(t) is |φ̂(ω)|2 and sampling a function periodizes its Fourier
transform. Equation (8.36) is true if we choose

â(ω) =
1

(
∞∑

r=−∞
|N̂n(ω + 2πr)|2)1/2

.

Using the above result we can write,

φ̂(ω) = 2n sinn ω/2e−iβω/2

ωn(

∞∑

r=−∞
|N̂n(ω + 2πr)|2)1/2

,

= 2n sinn ω/2e−iβω/2

ωn2n sinn ω/2(

∞∑

r=−∞

1
(ω + 2πr)2n

)1/2

,

= e−iβω/2

ωn
√

S2n
,

(8.37)

where

S2n =
∞∑

r=−∞

1
(ω + 2πr)2n

,

= − 1
22n

1
(2n−1)!

d2n−1

dx2n−1 cot x.

(8.38)

Example 1: Linear splines
For linear splines, the order of the polynomial is n = 2. Also when n is even,
β = 0 and β = 1 when n is odd. Hence, from equation (8.38),

S4(ω) =
1
48

1 + 2 cos2 x

sin4 x
.

Therefore,
√

S4(ω) =
1

4
√

3

√
1 + 2 cos2 x

sin2 x
,

and so,

φ̂(ω) =
1
ω2

4
√

3 sin2 x√
1 + 2 cos2 x

.

Example 2: Cubic splines
For cubic spline, n = 4. Hence, from equation (8.38),

8.6 Spline Approximations 181

S8 = −1
28

1
7!

d7

dx7 cot x,
= −1

28
1

105.48
−16

sin8 x
[4 cos6 x + 10 cos4 x + 26.4 cos4 x + 26.3 cos2 x

+ 17.6 cos2 x + 17],
= 1

28
1

105.48
16

sin8 x
[4(1 − 3 sin2 x + 3 sin4 x − sin6 x)

+ 3.38 cos4 x + 3.60 cos2 x + 7],
= 1

28
1

105sin8x [(5 + 30 cos2 x + 30 sin2 x cosx)
+ (70 cos4 x + 2 sin4 x cos2 x + 2

3 sin6 x)].

8.6.1 Battle-Lemarié Wavelets

Battle and Lemarié wavelets are polynomial splines. These wavelets can be
computed from multiresolution approximation. To get these wavelets in a
general form, one can consider splines of order n for which ĥ(ω) and first
n− 1 derivatives are zero at ω = π. The wavelet ψ has n vanishing moments.
Being a polynomial of order n, it has degree n− 1 and hence it is n− 2 times
continuously differentiable. Also, when the degree of the polynomial is odd, ψ
is symmetric about 1

2 and when the degree is even, ψ is antisymmetric about
1
2 .
From equation (8.34),

ψ̂(ω) =
∫

ψ(t) e−iωtdt,

=
∫ √

2
∞∑

k=−∞
h1[k]φ(2t − k)e−iωt,

=
√

2
∞∑

k=−∞
h1[k]

∫
φ(t1) e−iω(t1/2+k/2) 1

2
dt1,

=
√

2
∞∑

k=−∞
h1[k]

1
2

∫
φ(t1) e−iω/2t1e−iω/2kdt1,

= 1√
2

∞∑

k=−∞
h1[k]e−i(ω/2)k

∫
φ(t1)e−i(ω/2)t1 dt1,

= 1√
2
ĥ1(ω/2)φ̂(ω/2),

(8.39)

where, ĥ1(ω) =
∑

k∈ZZ

h[k]e−iωk, and for any scale 2j , {ψj,r}, j, r ∈ ZZ is an

orthonormal basis of L2(IR). ĥ1(ω) is connected to ĥ(ω) through

ĥ1(ω) = e−iωĥ∗(ω + π).

Mallat and Meyer [116] proved that {ψj,r}, r ∈ ZZ is an orthonormal basis of
Wj if and only if

|ĥ1(ω)|2 + |ĥ1(ω + π)|2 = 2

and

182 8 Spline Wavelets: Construction, Implication, and Uses

ĥ1(ω)ĥ∗(ω) + ĥ1(ω + π)ĥ∗(ω + π) = 0.

Thus, we have
ψ̂(ω) = 1√

2
ĥ1(ω/2)φ̂(ω/2),

= 1√
2
e−iω/2ĥ∗(ω/2 + π)φ̂(ω/2).

Now from ĥ(ω)-φ̂(ω) relation, we can write (from equation (8.32))

φ̂(ω) =
1√
2
ĥ(ω/2)φ̂(ω/2).

Therefore,

φ̂(2ω) =
1√
2
ĥ(ω)φ̂(ω)

or,

ĥ(ω) =
√

2 φ̂(2ω)

φ̂(ω)
,

=
√

2 e−iβω

(2ω)n
√

S2n(2ω)
.
ωn

√
S2n(ω)

e−iβω/2 ,

= e−iβω/2
√

S2n(ω)
22n−1S2n(2ω) .

(8.40)

With this, we are in a position to compute Battle and Lemarié wavelets in a
straightforward way. The generalized form of the Fourier transform of these
wavelet functions from equation (8.39) can be written as

ψ̂(ω) = 1√
2
ĥ1(ω/2)φ̂(ω/2),

= 1√
2
e−iω/2ĥ∗(ω/2 + π)φ̂(ω/2),

= 1√
2
e−iω/2

√
S2n(ω/2+π)

22n−1S2n(2(ω/2+π)) .
1

(ω/2)n
√

S2n(ω/2)
,

= e−iω/2

ωn

√
S2n(ω/2+π)

S2n(ω)S2n(ω/2) .

(8.41)

One can compute the spline of any degree following the procedure for com-
putation adopted for linear and cubic splines for n = 2 and n = 4. The
conjugate mirror filters for n = 2 and n = 4 are given by respective ĥ(ω), and
their impulse response h(k) is listed in Table 8.1.

8.7 Biorthogonal Spline Wavelets

We have already seen the underlying concept of splines in orthogonal wavelet
systems. Use of splines in biorthogonal systems is equally simple, straight-
forward, and efficient. The main advantages of biorthogonal systems over or-
thogonal systems are more flexibility and greater ease of design. As far as
the filter design is concerned, orthogonal wavelet and scaling filters must have
equal length. This restriction, however, is not present in biorthogonal systems.

8.7 Biorthogonal Spline Wavelets 183

Table 8.1. Conjugate mirror filter h[k] for linear and cubic splines [116].

n k h[k] n k h[k]

0 0.817645956 7,-7 -0.017982291
1,-1 0.397294430 8,-8 0.008685294
2,-2 -0.069101020 9,9 0.008201477

2 3,-3 -0.051945337 4 10,-10 -0.004353840
4,-4 0.016974805 11,-11 -0.003882426
5,-5 0.009990599 12,-12 0.002186714
6,-6 -0.003883261 13,-13 0.001882120
7,-7 -0.002201945 14,-14 -0.001103748
8,-8 0.000923371 15,-15 -0.000927187
9,-9 0.000511636 16,-16 0.000559952

10,-10 -0.000224296 17,-17 0.000462093
11,-11 -0.000122686 18,-18 -0.000285414

0 0.766130398 4 19,-19 -0.000232304
1,-1 0.433923147 20,-10 0.000146098
2,-2 -0.050201753

4 3,-3 -0.110036987
4,-4 0.032080869
5,-5 0.042068328
6,-6 -0.017176331

In a biorthogonal system, two pairs of filters are normally used. One pair is
called the analysis filter and the other pair is called the synthesis filter. Hence,
if h̃, g̃ are the analysis filters and h and g are the synthesis filters, then they
should be connected to each other suitably. According to Cohen, Daubechies,
and Feauveau [40], they are connected by

g̃[k] = (−1)kh(1 − k),
g[k] = (−1)kh̃[1 − k],

i.e., they are cross related by time reversal and flipping signs of every other
member. When h̃[k] = h[k], g[k] reduces to g[k] = (−1)kh[1 − k]. This tells
us about scaling and wavelet coefficients for orthogonal wavelets, wherein
g[k] = (−1)kh[1− k]. From the perfect reconstruction condition, we can write

∑

k

[̃k]h[k + 2r] = δ(r). (8.42)

Thus, h̃ is orthogonal to h. Hence, if we assume h̃[k] is not zero for Ñ1 ≤ r ≤
Ñ2 and h[k] is not zero for N1 ≤ r ≤ N2, then

N2 − Ñ1 = 2l + 1,

Ñ2 − N1 = 2l̃ + 1, l, l̃ ∈ ZZ.

h[k] and h̃[k] are called the coefficients of the scaling and dual scaling func-
tions. Similarly, g[k] and g̃[k] are called the coefficients of the wavelet and

184 8 Spline Wavelets: Construction, Implication, and Uses

dual wavelet functions. Hence the scaling and wavelet functions and their
respective dual are given by

φ(t) =
∑

k

h[k]
√

2φ(2t − k), (8.43)

φ̃(t) =
∑

k

h[k]
√

2φ̃(2t − k), (8.44)

with ∑

k

h[k] =
∑

k

h̃[k],

=
√

2.

And,

ψ(t) =
∑

k

g[k]
√

2φ(2t − k),

=
∑

k

(−1)kh̃[1 − k]
√

2φ(2t − k).
(8.45)

Its dual is

ψ̃(t) =
∑

k

g̃[k]
√

2φ̃(2t − k),

=
∑

k

(−1)kh[1 − k]
√

2φ̃(2t − k).
(8.46)

We list below the filter coefficients for some members of the Cohen-Daubechies-
Feauveau (CDF) family of biorthogonal spline wavelets. It is easy to observe
from Table 8.2 that they are symmetric.

Table 8.2. Coefficients for some members of Cohen-Daubechies-Feauveau family of
biorthogonal spline wavelets [14].

h/
√

2 h̃/
√

2

1/2,1/2 -1/16,1/16,1/2,1/16,-1/16
1/4,1/2,1/4 -1/8,1/4,3/4,1/4,-1/8

1/8,3/8,3/8,1/8 −5/512, 15/512, 19/512,−97/512,−13/256, 175, 256, · · ·

8.8 Concluding Remarks

Spline wavelets have been discussed in a simple way so that one can get some
idea about them without any difficulty. A brief background for wavelets may

8.8 Concluding Remarks 185

be helpful to students. Continuous wavelet transform, along with some con-
tinuous wavelet functions, have been examined. Multiresolution analysis for
wavelets can be used to design spline wavelets using splines of various degrees.
One of the areas involving B-spline wavelet transform and multiresolution is
the Chinese character processing, which can be found in [158]. The work is
based on three stages, namely pre-processing, wavelet transform, and objec-
tive processing. Initially, a Chinese character is represented by its contours.
Each contour with its coordinates is interpolated by a cubic B-spline function.
The coefficient sequences, called the control points of the B-spline interpola-
tion curves, are then linked with the coordinate points of the contour curves.
Multiresolution analysis is then used to describe the interpolated curves. The
book [158] describes several algorithms using both the global and local ap-
proaches for objective processing of curves.

9

Snakes and Active Contours

9.1 Introduction

9.1.1 Splines and Energy Minimization Techniques

If we examine the origin and historical usage of splines, there is a clear link
between smooth curves and energy minimization. Splines were originally thin,
wooden strips used in both traditional ship and aircraft building techniques
to help create the curved hulls needed to allow the ship or aircraft to travel
speedily through the water or air. The splines were used for the process of
lofting, which is required to expand the small scale plan from a boat designer
into the full-size plans required for construction. The rescaling was done by
transferring a series of measurements called offsets on to the large lofting floor
of the lofthouse and then interpolating these offset points by bending splines
into smooth interpolative curves. The wooden splines were bent into shape
with the aid of a small number of weights, called ducks, and clamps that kept
the wood in position as shown in Figure 9.1. The ducks provided positional
constraints and the clamps could provide both positional and tangential (i.e.,
derivative) constraints. Wooden splines have a natural tendency to assume a
smooth shape to minimize overall bending energy while satisfying the imposed
constraints.

This energy minimization approach to producing smooth curves is fun-
damentally different from the approach taken with Bernstein-Bézier and B-
splines. In the former approach, the smoothness derives naturally from the
minimization of energy—as in the case of the wooden spline. By contrast,
the latter approach ensures smoothness by representing a shape as a sum
of smooth mathematical functions. So it could be persuasively argued that
energy minimization methods are more faithful to the historical concept of
splines than the modern concept of mathematical splines developed by Bézier
et al.

Indeed Kass, Witken, and Terzopoulos [88, 89] referred to snakes as a
form of spline in their groundbreaking paper presented at the very first ICCV

188 9 Snakes and Active Contours

Fig. 9.1. Wooden splines for boat building.

held in London in 1987. They introduced the concept of snakes by stating
that,“A snake is an energy minimizing spline guided by external contraint
forces and influenced by image forces that pull it towards lines and edges.”
Unlike Bernstein-Bézier splines, the splines of Kass et al. could determine their
own control points directly from the image under analysis by using constraints
based on image intensity and gradient. This was an exciting time in computer
vision research and represented a major break from image analysis via the
sequential linking of low level features such as edges and intensities.

Kass, Witken, and Terzopoulos were working for Schlumberger Palo-Alto
Research and were interested in using snakes to speed up the manual labeling
of seismic data as required for oil exploration. These seismic images are com-
plicated and their interpretation requires the input of interpretation experts.
Indeed, sometimes there would be little agreement between the experts. In
the words of Kass et al. [88]:

Different seismic interpreters can derive significantly different percep-
tual organizations from the same seismic sections depending on their
knowledge and training. Because a single “correct” interpretation can-
not always be defined, we suggest low-level mechanisms which seek
appropriate local minima instead of searching for global minima.

Thus the authors saw snakes as an interactive “power assist” for manual
labeling by a human expert rather than as a fully automatic image interpreter
algorithm in its own right. The human expert would adjust the snake by hand
until it was close to the desired solution, and the snake energy minimization
would do the rest.

In the case of seismic sections, the effort of manually labeling the images
is relatively low compared to the huge expense and effort of collection. How-
ever, in the case of, say, computer analysis of closed circuit television feeds
for building security, the process of image analysis must be completely auto-
matic and reliable to be effective. Fortunately, in many image labeling tasks,
interpretation is much more straightforward than for seismic sections. Indeed,
in many cases, virtually all people would agree on the same interpretation.

9.2 Classical Snakes 189

For example, when presented with a photograph of an unobstructed person,
almost everyone would agree on the same partitioning of such an image into
person and background. Yet, this important and seemingly trivial task of im-
age labeling is extraordinarily difficult to achieve automatically. It turns out
that snakes and general energy minimization techniques are some of the most
promising methods for automated analysis—though all methods have their
weaknesses.

9.2 Classical Snakes

An active contour or snake as proposed by Kass et al. [88] is a closed or open
curve defined within a 2D image domain that is able to evolve or deform to
conform to features, such as edges and lines, in the image under analysis.
The evolution of the snake is formulated as an iterative energy minimization
process in which the snake is deformed to reach a locally minimum energy
configuration.
The total energy associated with the snake is defined as the sum of an internal
energy term, an external energy term, and an external force term. The internal
energy influences the shape and smoothness of the snake and depends only on
the properties of the snake itself, independent of the underlying image (cf the
bending strain in a wooded spline). The external energy is what causes the
snake to align itself with image features and is derived from the underlying
image. The force term allows the user to manually force the snake to move in
particular directions to aid in finding the best solution.

In general, curves cannot be described by one-dimensional functions as
they may double back on themselves, so we parameterize the snakes along
their length as follows:

ν(s) = (x(s), y(s)), s ∈ [0, 1]. (9.1)

Thus as s varies from 0 to 1 inclusive, we traverse the entirety of the snake.
In practice, we discretize this parameterization and evaluate the energy of the
snake at, say, N sample points, often called control points, along the contour.
These points actually define the snake so they must be spaced somewhat
closer than would be the case for the control points of a Bernstein-Bézier
spline—generally they are spaced just a few pixels apart so that small image
features are not missed.

Thus we have initially a set of N points such that

νn = ν(s)|s=k/N , k ∈ [0..N − 1]. (9.2)

In other words, we place the N control points successively along the length
of the snake at locations (xn, yn) = νn = ν(s) evaluated at monotonically
increasing values of s by assumption. Normally, we try to space the points
evenly along the snake initially. However, even if we don’t, the membrane

190 9 Snakes and Active Contours

term (see Section 9.3) of the snake internal energy will quickly even out the
points during the evolution phase. Figure 9.3 shows the evolution of a closed
snake when applied to the cell segmentation problem.

Fig. 9.2. Parameterized and discretized closed and open snakes.

9.3 Energy Functional

The initial position of the snake is usually specified by the user based on a
priori knowledge of the image under analysis. Often the initial snake may
be drawn with a mouse or drawing tablet for convenience. Once initialized,
the evolution of the snake can be considered as the process of minimizing the
following energy functional1:

Esnake =
∫ 1

0

Eint(ν(s)) + Eimage(ν(s)) + Eforces(ν(s)) (9.3)

where Eint is the internal energy term, Eimage is the image energy term, and
Eforces is the external forces constraints term. In Kass et al. [88], the internal
energy of the snake is defined as follows:

Eint(ν(s)) = α(s)
∣∣∣∣

∂

∂s
ν(s)

∣∣∣∣
2

︸ ︷︷ ︸
membrane term

+β(s)
∣∣∣∣

∂2

∂s2
ν(s)

∣∣∣∣
2

/2
︸ ︷︷ ︸

thin-plate term

. (9.4)

The spline energy is defined by a first-order term controlled by α(s) and a
second-order term controlled by β(s). The first-order term provides behavior
similar to the elasticity exhibited by a membrane2 and the second-order term
provides behavior similar to the stiffness exhibited by a thin metal plate. The
1 A functional is a function of a function.
2 Equation (9.4) is a membrane equation known from mechanics combined with a

stiffness-term.

9.3 Energy Functional 191

Fig. 9.3. Application of a Kass et al. closed snake for screening for cervical cancer
using Pap smear images. Here we wish to segment the cell nucleus from the cytoplasm
(from [11]).

behavior of snakes is easier to understand if we examine the discrete form of
the internal energy as follows [3]:

Eint(νi) = αi |νi − νi−1|2︸ ︷︷ ︸
membrane term

+βi |νi+1 − 2νi + νi−1|2︸ ︷︷ ︸
thin-plate term

. (9.5)

Now the membrane term

|νi − νi−1|2 =
√

(xi − xi−1)2 + (yi − yi−1)2

just represents the square of the distance between successive control points.
Since Eint is the sum of the squared distances between the control points, this
energy is minimized when the distances are all equal and the control points
are collinear. In the case of an open snake, this low energy configuration will

192 9 Snakes and Active Contours

be satisfied by a straight line with uniformly spaced control points. Note that
if there are no external forces imposed, the sum of the membrane terms in the
snake energy is minimized by contracting all control points into a single point;
just like a soap bubble that becomes a tiny droplet when the air escapes. The
membrane term is often considered to be providing elasticity—it makes the
snake shrink during evolution somewhat like a stretched elastic band.

The membrane term also penalizes curvature indirectly because curvature
increases the snake energy by increasing the distance between the control
points—a straight line is always the shortest distance between two points in
a Euclidean space. Note that in the case of a closed snake, there must always
be some curvature to allow the snake to connect back on to itself.

The second-order or thin-plate term in (9.5) penalizes changes in curvature
and makes the snake behave like a thin metal plate.3 The thin-plate term only
penalizes changes in the distance between the control points. This becomes
obvious if we rewrite the argument of the modulus in the thin-plate term of
(9.5),

νi+1 − 2νi + νi−1,

in the form
(νi+1 − νi) − (νi − νi−1).

So unlike the membrane term, minimization of the thin-plate term does not
provide the elastic behavior that collapses the snake to a single point under
evolution. Rather it provides stiffness as exhibited by, say, a thin metal plate
that ensures that both the control points and the curvature are uniformly
distributed. This term makes the snake form smooth curves during evolution
just like the traditional wooden spline for lofting in shipbuilding. Thus during
evolution, a closed snake with no external constraints will tend to become
circular due to the stiffness provided by the thin-plate term before it finally
collapses to a single point due to the elasticity provided by the membrane
term.

The image energy is formulated so that its value is minimal at the location
of the desired image features. Kass et al. [88] considered a weighted set of
features based on lines, edges, and terminations (i.e., the end points of lines)
as follows:

Eimage = wlineEline(νs) + wedgeEedge(νs) + wtermEterm(νs). (9.6)

In this chapter and henceforth, we will only consider edge energy, so a
suitable image energy term is:

Eimage = Eedge(ν(s)) = − |∇I(x, y)|2 (9.7)

where ∇I(x, y) is the gradient of the image intensity.
3 cf a thin-plate spline, is the surface with minimum mean square second derivative

energy that interpolates a given collection of points.

9.3 Energy Functional 193

Finally the force term can be expressed by the following term [89]:

Eforce = −k(x1 − x2)2. (9.8)

This force energy Eforce represents the energy of a spring connected between
a point x1 on the contour and some point x2 in the image plane. In practice,
there could be multiple force terms—one for each spring added. These forces
may be used by a human expert to direct and guide the evolution of the snake.

Special Cases and Variations on a Theme

By adjusting the values of the α and β terms in the internal energy of (9.5),
snakes of varying elasticity and stiffness can be produced. If βi is set to zero
at control point νi, we allow the snake to become second-order discontinuous
(flexible) at νi and develop a corner. This is analogous to folding a piece of
corrugated cardboard to make a cardboard box—the fold then behaves like a
flexible hinge between the stiff cardboard sides. This property allows snakes
to better conform to corners of objects such as car licenseplates and allows
for the possibility of embedding shape grammars into snakes.

In some applications, the contractive behavior of the membrane term is in-
convenient, as it may pull the snake away from the best solution. In such cases,
setting α to a low value or zero yields the so-called thin-plate splines, which
behave much more like wooden splines and are best compared to Bernstein-
Bézier and B-splines.

Due to the contractive nature of the membrane term, snakes must always
be initialized outside the region of interest, so they can contract down onto the
image features like a contracting elastic band. In some situations, this behavior
may be inconvenient. For this reason, Cohen [43] proposed both inflationary
and deflationary forces normal to the surface of closed snakes to force them to
either grow or shrink as illustrated in Figure 9.4; he used the term balloons to
refer to these modified closed snakes. Balloons can be initialized either within
or outside image objects of interest. Figure 9.5 shows the application of a
balloon to the cell image segmentation problem.

Fig. 9.4. Balloons with inflationary and deflationary forces.

194 9 Snakes and Active Contours

Fig. 9.5. Balloon applied to the cell image segmentation problem (from [11]).

9.4 Minimizing the Snake Energy Using the Calculus of
Variations

As minimizing the snake energy is an optimization problem we can use tech-
niques from calculus of variations. In particular, we will use Lagrangian mul-
tipliers.

Following the development of Amini, Weymouth, and Jain [3], we let
Eext = Eimage + Eforces where Eext is the external energy. Substituting (9.4)
into (9.3), we have

Esnake =
∫ 1

0

α(s)
∣∣∣∣

∂

∂s
ν(s)

∣∣∣∣
2

+ β(s)
∣∣∣∣

∂2

∂s2
ν(s)

∣∣∣∣
2

+ Eext(ν(s)) ds. (9.9)

For simplicity, we represent the integrand by F (s, νs, νss), then the Euler-
Lagrange necessary condition for minimization is derived by

Fν =
∂

∂s
Fνs

+
∂2

∂s2
Fνss

= 0. (9.10)

9.4 Minimizing the Snake Energy Using the Calculus of Variations 195

Substituting the terms in the above equation, we obtain a pair of independent
Euler-Lagrange equations,

−αxss + βxssss +
∂Eext

∂x
= 0

and
−αyss + βyssss +

∂Eext

∂y
= 0.

This is best to solve numerically. The Euler-Lagrange equations with

fx(i) = ∂Eext/∂xi

and
fy(i) = ∂Eext/∂yi

are discretized, yielding

αi(νi − νi−1) − αi+1(νi+1 − νi) + βi−1(νi−2 − 2νi−1 + νi)
− 2βi(νi−1 − 2νi + νi+1) + βi−1(νi − 2νi+1 + νi+2)
+ (fx(i), fy(i)) = 0.

Writing the equation in matrix forms, one for x and another for y, yields

Ax + fx(x, y) = 0

and
Ay + fy(x, y) = 0.

We can now solve for position vectors iteratively by,

xt = (A + γI)−1(γxt−1 − fx(xt−1, yt−1))

and
yt = (A + γI)−1(γyt−1 − fu(xt−1, yt−1)).

Amini, Weymouth, and Jain identified several problems with the above cal-
culus of variations approach as originally proposed by Kass, Witten, and Ter-
zopoulos in 1987. In particular, they raised the following objections:

1. There is a significant risk that the above procedure does not converge.
2. Optimality cannot be guaranteed as the Euler-Lagrange equations are a

necessary but not a sufficient condition for optimality in a local sense.
3. Constraints are required to be differentiable, which cannot be guaranteed

in general.
4. The requirement for differentiability of the images will lead to instability

unless the image is smoothed leading to poor localization of features.
5. If a snake is not subject to appropriate external forces, it will contract to

a line or a point.
6. If a snake is not placed close to image features, it will not get attracted.

For these reasons, they proposed the dynamic programming approach to
minimizing the energy [3]. This method has now been adopted as the standard
algorithm by most researchers and will be used henceforth in this chapter.

196 9 Snakes and Active Contours

9.5 Minimizing the Snake Energy Using Dynamic
Programming

One of the most popular methods today is the dynamic programming ap-
proach as implemented by the Viterbi algorithm [167] as proposed by Amini,
Weymouth, and Jain [3] and extended by Geiger et al. [66]. The approach
of dynamic programming is to solve the optimization problem by studying a
collection, or family, of problems where the particular problem in question is
a member. This concept is known as embedding.

The Viterbi method is closely related to Dijkstra’s algortithm [59], which
solves for the shortest path in a network between two points by finding the
shortest paths to all points. The major difference is that the Viterbi algorithm
calculates the shortest path on a trellis, whereas Dijkstra’s algorithm finds the
shortest path in a network. Returning to the snake minimization problem at
hand, instead of attempting to find the local minimum directly, the Viterbi
algorithm efficiently evaluates a very large set of alternative solutions in the
neighborhood of the current best solution and then picks the minimum. The
process is repeated until convergence is attained.

The dynamic programming formulation of snakes requires the snake to be
discretized to a finite set of points in the image pixel domain as before. To limit
the number of possible solutions examined, the position of each control point
on the snake on the next iteration is constrained to a finite set of positions,
xi ∈ Xi, where each set Xi contains m positions. With the snake discretized
and the domain of possible solutions constrained in this manner, the set of
all possibilities for the next configuration of the snake can be visualized as a
trellis as illustrated in Figure 9.6.

Fig. 9.6. Snake configuration space visualized as a trellis.

It is possible, but not at all practical, to exhaustively enumerate all possi-
ble configurations to determine the snake with minimum energy. This would
require O(mN) evaluations of the energy function, where m is the number of
candidate positions and N is the number of control points forming the snake.
This is prohibitively expensive for even small values of m and N . For example,
if m = N = 30, this task would require 3030 = 2×1044 evaluations. Assuming

9.5 Minimizing the Snake Energy Using Dynamic Programming 197

each energy evaluation takes just 1 microsecond, the exhaustive minimization
would require almost 7 × 1030 years—much, much longer than the age of the
universe. Yet with the Viterbi algorithm we can calculate the exact same min-
imal value in just O(Nm) time, which is equivalent to just 900 evaluations,
or barely one millisecond!

The Viterbi algorithm is therefore deservedly referred to as a fast algo-
rithm. Along with the more famous family of Fast Fourier Transform algo-
rithms, it is one of the classic fast algorithms of digital signal processing
[28]. The inventor of the algorithm, Andrew Viterbi, was a co-founder of
Qualcomm, a wireless telecommunications research and development company
based in San Diego, California. The algorithm still finds wide application in
communications including the widely-used V32 and V90 telephone modem
standards. It is instrumental in decoding highly efficient trellis and convo-
lutional codes for high-speed data communication. The algorithm also finds
application in pattern recognition, where it forms the basis of the forward and
backward algorithms for learning and recognition via hidden Markov models
for speech and gesture recognition [138].

Returning to the problem at hand, the Viterbi algorithm is used to effi-
ciently calculate the optimal configuration of the snake, which minimizes total
energy. This is possible because of the decoupled form of the discrete internal
energy function of (9.5). We observe that the internal energy of each control
point is only dependent on the points immediately preceding and following it.
So the total energy of the snake can be written in the form:

Esnake = E1(ν0, ν1, ν3) + E2(ν1, ν2, ν3) + . . . + EN−2(νN−3, νN−2, νN−1).
(9.11)

Dynamic Programming and the Principle of Optimality

Dynamic programming in general can be applied to any problem that observes
the Principle of Optimality. Bellman [19], the inventor of dynamic program-
ming, states:

An optimal policy has the property that, whatever the initial state
and optimal first decision may be, the remaining decisions constitute
an optimal policy with regard to the state resulting from the first
decision.

If a problem observes the Principle of Optimality it means that optimal solu-
tions of subproblems can be used to find the optimal solutions to the overall
problem.

In the case of the shortest (or equivalently minimum energy) path prob-
lem in a network as addressed by Dijkstra’s algorithm [59], this means that all
subpaths A to B, say, of the shortest path from A to Z, must themselves be
shortest paths. In order to explain this seemingly obvious but very powerful

198 9 Snakes and Active Contours

principle better, let’s consider the the shortest path between the cities of Bris-
bane and Sydney. We assume that the shortest path between these cities passes
through the city of, say, Armidale. Immediately we can say that the shortest
path between Brisbane and Armidale is just that section of the Brisbane-
Sydney shortest path that lies between Brisbane and Armidale. Why? Well, if
there existed a path between Brisbane and Armidale that was shorter than the
one already found, then that original path from Brisbane to Sydney via Armi-
dale could not have been the shortest path between those cities—so we have
proof by contradiction. Hence all subpaths of a shortest path must themselves
be shortest paths between their respective endpoints. Reversing the argument,
we see that new shortest paths can be found by recursively extending known
shortest paths.

Fig. 9.7. Shortest path in a graph or network problem.

Dijkstra’s Algorithm for the Shortest Path on a Network

The above insight leads directly to Dijkstra’s algorithm for the single-source
shortest path problem for a directed graph with nonnegative edge weights.
Let us determine the shortest path from node A to Z, say, in the network of
Figure 9.7. We know initially that the shortest path to A is the null path of
cost 0. From the Principle of Optimality we know our solution can be obtained
by extending known shortest paths, in this case the null path. So we follow
all paths leading out of A to reach the following nodes with their associated
path costs:

9.5 Minimizing the Snake Energy Using Dynamic Programming 199

(known) A0 | B1, C3 (trial).

Here we have partitioned our nodes into known, where we now know the short-
est path to the node, and trial where we are yet to determine the shortest
path. Now AB of cost 1 must be the shortest path from A to B as any alter-
native path must go via AC, which has cost 3 already. It will always be the
case that the trial node with minimum path cost found so far will be the end
node of a new shortest path. Now we know that the shortest path AZ can be
constructed by extending shortest paths, so now we follow all paths leading
out of B, except those leading back to known nodes, and then add B to the
known nodes list, which yields the following nodes and costs:

(known) A0, B1 | C2,D4. (trial).

In this case, we have found an alternate route to C via B with cost 2, which is
lower than the cost found so far. So we have updated the cost to C with the
new value. We now know that there is no shorter path to C other than the
one we have found since any alternate path would have to go via D, which has
cost 4. This process is repeated until we reach reach node Z. The complete
sequence is given in Table 9.1. All that remains to complete the algorithm
is to maintain a list of backward pointers for each node, which will allow us
to backtrack along the shortest paths to the starting node. The steps of the
algorithm including the backward pointers are shown in Table 9.2 and the
pseudo-code is given in Figure 9.8.

Table 9.1. Evolution of Dijkstra’s algorithm on the network of Figure 9.7. Shortest
path costs to known nodes are shown in bold. The cost of the shortest path from A
to Z is 8.

A B C D E F G Z

0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
0 1 3 ∞ ∞ ∞ ∞ ∞
0 1 2 4 ∞ ∞ ∞ ∞
0 1 2 4 7 6 ∞ ∞
0 1 2 4 5 6 6 11
0 1 2 4 5 6 6 11
0 1 2 4 5 6 6 8
0 1 2 4 5 6 6 8

It is useful to visualize the evolution of Dijkstra’s algorithm as an expand-
ing wavefront. At each stage of the algorithm, the minimum distance node
is found and paths leading out of this node are followed yielding another
shortest path. Dijkstra’s algorithm is closely related to the Fast Marching Al-
gorithm introduced by Sethian [149, 150], which is used in both Level Sets
and Geodesic Active Contours.

200 9 Snakes and Active Contours

Table 9.2. Stages of Dijkstra’s algorithm on the network of Figure 9.7 including
the backward pointers. Shortest path costs to known nodes are shown in bold. The
shortest path to Z is the path ABDEGZ of cost 8.

A B C D E F G Z

0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

A B C D E F G Z

0 1 3 ∞ ∞ ∞ ∞ ∞
∅ A A ∅ ∅ ∅ ∅ ∅

A B C D E F G Z

0 1 2 4 ∞ ∞ ∞ ∞
∅ A B B ∅ ∅ ∅ ∅

A B C D E F G Z

0 1 2 4 7 6 ∞ ∞
∅ A B B C C ∅ ∅

A B C D E F G Z

0 1 2 4 5 6 ∞ 11

∅ A B B D C ∅ D

A B C D E F G Z

0 1 2 4 5 6 6 11

∅ A B B D C E D

A B C D E F G Z

0 1 2 4 5 6 6 11

∅ A B B D C E D

A B C D E F G Z

0 1 2 4 5 6 6 8

∅ A B B D C E G

A B C D E F G Z

0 1 2 4 5 6 6 8

∅ A B B D C E G

9.5 Minimizing the Snake Energy Using Dynamic Programming 201

function Dijkstra(G, w, s) // G = graph

// w = costs

// s = start node

for each vertex v in V[G] // Initializations

d[v] := infinity

previous[v] := undefined

d[s] := 0

S := empty set // S = known nodes

Q := V[G] // Q = trial nodes

while Q is not an empty set // The algorithm

u := Extract_Min(Q)

S := S union {u}

for each edge (u,v) outgoing from u

if d[u] + w(u,v) < d[v]

d[v] := d[u] + w(u,v)

previous[v] := u

Fig. 9.8. Pseudocode for Dijkstra’s Algorithm for finding the shortest path on a
graph or network.

Fig. 9.9. Air transportation network converted to a trellis.

202 9 Snakes and Active Contours

Viterbi Algorithm for the Shortest Path on a Trellis

The Viterbi algorithm finds the shortest path on a trellis rather than on a
network. A trellis can be derived from a network by associating a state with
each node of the network and then representing the set of states vertically
as a column. This column of states is then replicated horizontally to indicate
increasing increments of time or equivalently transitions or “hops” between
states. Connecting lines are used to show the allowable state transitions and
possible paths. Note that self-transitions are often permissible on a trellis and
may incur non-zero cost.

Fig. 9.10. Shortest path problem in a trellis.

Figure 9.9 shows the paths available through an air transportation network
between a set of cities represented by a trellis. Each flight from city to city
would be just one leg of an overall itinerary (cf path) and a self-transition
could be a flight returning to the city of departure. In the above example,
we show direct flights between all cities, but that is not always the case in
a general air transportation network. If there were no direct flights between
two particular cities, a common problem is finding the cheapest itinerary
requiring just N stopovers. This is a problem that can be rapidly solved using
the Viterbi algorithm as follows.

Consider the trellis illustrated in Figure 9.10 with M = 4 states and
length N = 4 hops. We examine paths from the starting node4 ν0 in state
xi ∈ [x0..xM−1] reaching a terminating node νN−1 in state xj ∈ [x0..xM−1] on
the right. Let the distance measure d(i, j, k) denote the cost of transitioning
from state xi in node νk to state xj in node νk+1.

4 Here we use the word “node” to refer to a junction in the trellis that corresponds
to a particular state at a particular hop count.

9.5 Minimizing the Snake Energy Using Dynamic Programming 203

Now the cost of a path on the trellis is simply the sum of the costs along
the path. For example, the cost of traveling from ν0 to ν3 along the illustrated
path in Figure 9.11 is given by

Total Cost = d(2, 1, 0) + d(1, 2, 1) + d(2, 3, 2).

Now we wish to determine the shortest path between two nodes on the trellis.
The possible number of paths in a fully-connected5 trellis equals MN which
can be an enormous number—exhaustive evaluation of all possible paths is out
of the question. The trick that makes the Viterbi algorithm so incredibly fast
is again due to the Principle of Optimality. This tells us that if we maintain
the shortest path to each of the M states as we progress through the trellis,
we can find the overall shortest path by recursively extending these M paths.
Thus the computational load is linear with respect to the length of the trellis,
O(MN), rather than exponential, O(MN). As for Dijkstra’s algorithm, we
maintain a list of backward pointers so that we can eventually recover the
shortest paths.

The pseudocode for the complete Viterbi algorithm is shown in Figure
9.12. The algorithm progresses along the trellis one hop at a time maintaining
a record of the shortest path to each destination node from the starting node.
After a hop, the algorithm extends the shortest paths to the previous set
of destination nodes in all directions to find the shortest paths to each of
the current set of destination nodes, and then it hops again. However, unlike
Dijkstra’s algorithm, which can extend known paths in any direction, the
Viterbi algorithm marches through the trellis column by column updating
the paths. If it was useful to visualize the evolution of Dijkstra’s algorithm
as an expanding wavefront, perhaps the Viterbi algorithm is more akin to an
electromagnetic wave traveling down a waveguide.

Note that in the Viterbi algorithm pseudocode of Figure 9.12, we have
chosen to initialize the algorithm with the distance to the starting node set
to 0 and the distance to all other nodes set to infinity (i.e., unreachable) to
force all paths to start at the starting node. Nevertheless, there are situations
where we may not know the best starting node or we may have a choice of
several starting nodes. In these cases, we could initialize the distances to all
possible starting nodes to 0 and the Viterbi algorithm would then calculate the
shortest path to the best choice from the set of starting nodes. If we follow the
backward pointers back from the destination node, we can determine which
of the stating nodes was actually chosen for the particular shortest path at
hand.

Following the same reasoning, when the Viterbi algorithm is used with
discrete hidden Markov models (HMMs) [138] for, say, speech recognition, it
is common practice to assign a particular probability to each of the starting
states based on a priori knowledge. Indeed, when used with HMMs, the costs
of transitioning between the states are actually state transition probabilities
5 For example, where a state can transition to any other state.

204 9 Snakes and Active Contours

representing the likelihood of transitioning from one state to the next. In this
application, the multiplication of these very small numbers leads to a risk
of arithmetic underflow in the calculation of the Viterbi algorithm, which is
overcome by using the logarithm of probability and other scaling techniques.

Fig. 9.11. Example path in a trellis.

function Viterbi(T, w, s) // T = trellis

// w = costs

// s = start state

for each state x in X[T] // Initializations

d[x] := infinity

previous[x,0] := undefined // Index on state,hop

d[s] := 0

for each hop h in H[T] // H[T] is hops

for each state v in X[T] // Destination states

dist[v] := infinity // Flag v as trial

for each state u in X[T] // Source states

for each edge (u,v) outgoing from u

if d[u] + w(u,v) < dist[v]

d[v] := d[u] + w(u,v) // Flag v as known

previous[v,h] := u

Fig. 9.12. Pseudocode for Viterbi algorithm for finding the shortest path on a
trellis.

9.5 Minimizing the Snake Energy Using Dynamic Programming 205

Dynamic Programming for Open Snakes

Returning now to the calculation of evolving snakes, the usage of the Viterbi
algorithm is quite straightforward. For each control point, we determine a set
of candidate points for the next evolution of the snake spread along a short
distance in a direction perpendicular to the snake as illustrated in Figure 9.13.
Then the problem of minimizing snake energy becomes the problem of finding
the minimum cost path on this (distorted) trellis. We can allow the starting
node to remain fixed, or by using the initialization trick above, we can allow
both ends of the snake to move freely to a new minimal energy configuration.
This algorithm can be applied iteratively to allow the snake to evolve over a
larger area.

A problem that can be encountered is that the control points of the snake
may bunch up and become uneven after several iterations. Thus it becomes
necessary to reinterpolate the control points from time to time. Another prob-
lem common to all snake techniques is the risk of the snake crossing itself or
forming loops that may be undesirable for the purposes of image segmenta-
tion. While many researchers have tackled this problem [82, 128, 123], most
solutions are somewhat inelegant and add significant complexity to the ap-
proach.

Fig. 9.13. An open snake converted to a trellis.

Dynamic Programming for Closed Snakes

Closed snake energy minimization presents a challenge because the efficient
application of dynamic programming is not entirely straightforward. Geiger
et al. [66] address this problem in the context of dynamic programming for
energy minimization. Their approach is to unwrap the circular domain to
form a linear trellis as shown in Figure 9.14. To ensure that the solution is
indeed a closed contour, they examine shortest paths where the start and finish
nodes have the same index and select the global minimum contour. Thus if m
candidate points are to be examined, this method would require the Viterbi
algorithm to be run m times for each possible starting node instead of just

206 9 Snakes and Active Contours

Fig. 9.14. A closed snake search space converted to a trellis.

once. So with a value of, say, m = 30, the optimal closed snake evolution
would run 30 times slower than the open snake evolution.

As this would be unacceptably slow, Geiger et al. suggest a heuristic speed-
up that requires only two passes of the algorithm. The Viterbi algorithm is
run once using an arbitrary start point—in practice, it is best to choose the
candidate point with highest image gradient that is likely to be on the optimal
contour. Then for the second run the contour is reordered so as to start and
terminate from the second point of the trellis. The argument for this procedure
would be that the second point is more likely to be on the optimal contour
that the arbitrary first point since the snake energy minimization process will
have “pulled” it toward the optimal contour. Now assuming our trellis has N
control points, if the second point is more likely to be on the optimal contour
than the first, why not unwrap the trellis at the N/2thpoint on the other side
of the circular search space?

This idea leads us to the mid-point heuristic. The mid-point heuristic can
be stated as, the optimal positions of the mid-points of a snake are generally
independent of the positions of the end-points. This led Gunn and Nixon [71] to
propose a similar two-pass technique to use dynamic programming to solve the
closed snake problem using two open snakes. The closed snake is converted
to an open snake problem by unwrapping about an arbitrary cut point as
before. First an open snake minimization is performed using no smoothness
or continuity constraints on the endpoints. The two points at the mid-point
of this contour are then taken as the start and end points for the closed
contour. The Viterbi algorithm is run again with the start and end points
fixed. Thus we only require two runs of the Viterbi algorithm instead of the
m runs required for the optimal method.

Although these heuristics work well in practice, there is a theoretical pos-
sibility that they may fail to find the true optimal contour. We address this
issue in Section 10.2 and describe a fast and optimal minimization method
using branch and bound techniques.

9.7 Connected Snakes for Advanced Segmentation 207

9.6 Problems and Pitfalls

Traditional snakes minimize energy within a local search space only. This leads
to difficulties in many applications because the snakes become stuck on local
minima rather than on finding global solutions that may be preferable for fully
automated image segmentation. As a result of the gradient descent nature of
the traditional snake, the answer obtained is very dependent on initialization
and stopping criteria, and these criteria, may be very difficult to determine in
general.

An example of this difficulty with a traditional closed snake or balloon
on the cell image segmentation problem is shown in Figure 9.15, where the
contour is stuck in a local minimum. If we increase the deflationary force,
we may be able to contract the contour down on to the nuclear membrane.
Unfortunately, we may also run the very real risk of the contour being pushed
right inside the membrane—especially if the image gradient on the nuclear
membrane is less than on the surrounding artifacts.

Gunn and Nixon [72] attempt to address this issue by using a dual active
contour model. Their idea is to initialize balloons both inside and outside
the object of interest. The inner balloon would then expand and the outer
balloon would contract. If the two balloons did not meet, the inflationary and
deflationary forces would be increased until the balloons were forced together.
This approach has the advantage of clear initialization and stopping criteria,
but does not necessarily yield the optimal minimal energy solution in general.
The dual active contour process is illustrated in Figure 9.16 on the cell image
problem.

9.7 Connected Snakes for Advanced Segmentation

Snakes can be used to segment quite complicated images with a little guidance
from a human expert. Usually only one snake is evolved, but some situations
call for a far more complex segmentation where many snakes must be evolved
simultaneously. Figure 9.17 shows a set of connected objects and an initial
hand-drawn rough segmentation. Our goal is to use snakes to refine the rough
object segmentation into an acceptable segmentation with good boundary
delineation. This approach was developed by Walford [168] to fuse spatial
LIDAR information with image data for the automatic analysis of rock wall
faces in a mine.

We treat each section of the boundary between the joins as an open-ended
snake as illustrated in Figure 9.18. Now our problem is to find the minimum
energy configuration of snakes by evolving all snakes simultaneously. At first
glance, this appears to be a very challenging problem. Nevertheless, a good
solution can be found if we decouple the problem by taking advantage of the
mid-point heuristic as described in Section 9.5.

208 9 Snakes and Active Contours

Fig. 9.15. Closed snake being prematurely stopped by a local minimum when
applied to cell image segmentation problem (from [11]).

Each snake in the network is evolved within its search space as an open-
ended snake, without regard to its connectivity to other snakes in the network
to estimate the optimal position of its mid-points. Next, each snake is split
in two at the mid-points to create two new half-snakes. We fix the location
of the mid-point end of each half-snake and perform a forward pass of the
Viterbi algorithm. This yields the minimum energy of each half-snake for all
m possible positions of its joint-end. All half-snakes that are connected by a
joint have the same m possible positions for their joint-end so we can then
determine the common joint-end position that minimizes the total energy of

9.7 Connected Snakes for Advanced Segmentation 209

Fig. 9.16. The Gunn and Nixon dual active contour approach to handle local
minimum problem applied to cell image segmentation problem (from [11]).

all half-snakes that meet at that joint. Once we know the common joint-end
position, we can follow the backward pointers of the Viterbi algorithm to
determine the position of all remaining points on the half-snake. The refined
half-snakes are then reconnected to form the final result as shown in Figure
9.19.

210 9 Snakes and Active Contours

Fig. 9.17. Hand drawn segmentation of a connected object (from [168]).

Fig. 9.18. Viewing segmentation boundaries as a network of connected snakes (from
[168]).

9.8 Conclusions 211

Fig. 9.19. Refined segmentation of the connected object using a connected snake
network (from [168]).

9.8 Conclusions

Snakes use energy minimization techniques to form smooth curves. However,
snakes are mainly used for image segmentation and interpretation rather than
mathematical interpolation per se. Rather than interpolating between known
control points as is the case with Bernstein-Bézier splines, snakes find their
own control points using image features such as edges, lines, and line termi-
nations in an image under analysis. The formulation of internal snake energy
has a membrane term that provides a form of elasticity similar to an elastic
band, and a thin-plate term that provides a form of stiffness like a traditional
wooden spline.

Traditionally, a local gradient descent method is used to determine the
minimum energy contour. This leads to the well-known pitfalls in the appli-
cation of conventional snakes due to the inability to find satisfactory answers
to the following problems.

• How do we initialize the snake to find the best solution?
• When do we stop the snake evolving?
• How do we avoid unsatisfactory local minima?

Gunn and Nixon [71] argue that, “A weakness of the evolutionary, or
local minimum, approach is the sensitivity to initialization and difficulty in
determining suitable parameters. This can be exaggerated by noise.” They
then advocate techniques based on global energy minimization rather than
local minimization.

212 9 Snakes and Active Contours

Techniques to find optimal global minimum energy solutions may be
preferable for fully automated image segmentation applications because they
will usually lead to a unique answer for a given search space. Moreover, there
is no need to specify initialization and starting criteria for the search. Note
that the global minimum is not always the best solution for a given segmenta-
tion problem but, in our experience, it can work surprisingly well if the search
space is well chosen.

Henceforth we will concentrate on methods for finding globally optimal
solutions to the energy minimization problem and then apply this to the
optimal image segmentation problem. In the next chapter, we will relate the
development of this theme over a number of years through case studies from
several research projects.

10

Globally Optimal Energy Minimization
Techniques

10.1 Introduction and Timeline

In 1992, we began a research project to automatically segment cell images
from Pap smear slides for the detection of cancer of the cervix. We investigated
simple low-level techniques based on edge detection, grayscale thresholding,
and grayscale morphology (e.g., watersheds), but could only achieve accurate
segmentation on about 60% of cell images (Figure 10.1). In 1997, we started
looking at dual active contour segmentation techniques as proposed by Gunn
and Nixon [72], but this method suffered from poor robustness on our images.
However, Gunn [70] also suggested a fast globally optimal method based on
converting the problem of finding the best circular contour into a linear trellis
and then applying the Viterbi algorithm to determine the minimum energy
path. This approach worked remarkably well, as reported by Bamford and
Lovell [13] in 1998, and yielded 99.5% correct segmentation on a cell database
of nearly 20,000 cell images.

(a) (b) (c)

Fig. 10.1. Traditional bottom-up approach to cell image segmentation. (a) Original
graylevel image, (b) thresholded image showing voids and artifacts, and (c) Canny
edge map showing a partially complete border and other spurious edges (from [11]).

214 10 Globally Optimal Energy Minimization Techniques

As this method was so remarkably effective on cell images, there was little
incentive to improve the method for the Pap smear problem itself, but we still
held a desire to develop more powerful global energy minimization techniques
that could be applied to a general class of objects. In particular, the Viterbi
algorithm based method would only work for objects that were convex and
two-dimensional.

In 2002, Appleton and Sun [8] put the problem of minimizing the energy
of closed contours unwrapped onto linear trellis onto a firm mathematical ba-
sis. Then, in 2003, Appleton and Talbot [6, 10] extended and generalized the
energy minimization approach to handle the optimal segmentation of planar
concave objects as well as convex images such as cells. This extension avoided
dependence on a coarse discretization grid so that grid-bias could be removed.
The extension to 3D was achieved in late 2003 by Appleton and Talbot [9] by
converting the shortest path techniques into an equivalent continuous maxi-
mum flow/minimal surface problem.

In this chapter we briefly describe the various energy minimization seg-
mentation techniques and show how they can be applied to solve quite difficult
segmentation and reconstruction problems in diverse domains from volumetric
medical imaging to multiview reconstruction.

10.2 Cell Image Segmentation Using Dynamic
Programming

Although the use of active contours [88] is well established, it is well known
that these methods tend to suffer from local minima, initialization, and stop-
ping criteria problems [44]. Fortunately global minimum energy, or equiva-
lently shortest-path, searching methods have been found that are particularly
effective in avoiding such local minima problems due to the presence of the
many artifacts often associated with medical images [51, 66].

The energy minimization method employed was based on a suggestion in
Gunn’s dissertation [70]. A circular search space is first defined within the
image, bounded by two concentric circles centralized upon the approximate
center of the nucleus found by an initial rough segmentation technique (e.g.,
converging squares algorithm). This search space is sampled to form a circular
trellis by discretizing both the circles and a grid of evenly-spaced radial lines
joining them (Figure 10.2). This circular trellis is then unwrapped in a polar
to rectangular transformation yielding a conventional linear trellis.

Every possible contour that lies upon the nodes of the search space is then
evaluated and an associated energy or cost function is calculated. As with the
snake energy formulation of (9.3), this cost is a function of both the contour’s
smoothness and how closely it follows image edges. The energy [13] is defined
by:

10.2 Cell Image Segmentation Using Dynamic Programming 215

Fig. 10.2. Discrete search space.

Esnake =
∫ 1

0

Eint(ν(s)) + Eimage(ν(s)). (10.1)

Using the discrete notation from Chapter 9, we have

Eint =
(

νi+1 − 2νi + νi−1

νi+1 − νi−1

)
(10.2)

and
Eimage = −|∇I(x, y)|2. (10.3)

The internal energy consists of a thin-plate term only. The relative weight-
ing of the cost components is controlled by a single regularization parameter,
λ ∈ [0, 1]. By choosing a high value of λ, the thin-plate or stiffness term
dominates, which may lead to smooth contours that tend to ignore important
image edges. On the other hand, low values of λ allow contours to develop
sharp corners as they attempt to follow all high gradient edges, even those
that may not necessarily be on the desired object’s boundary. Once every
contour has been evaluated, the single contour with least cost is the global
solution. The Viterbi algorithm provides a very efficient method to find this
global solution, as described in Section 9.5.

A data set of 19946 Pap stained cervical cell images was available for
testing. The single regularization parameter λ was empirically chosen to be
0.7 after trial runs on a small subset of the images. The effect of the choice of
λ on segmentation accuracy on this trial set is shown by the graph of Figure
10.3. This figure shows a value of λ = 0.7 as being the most suitable for these
particular images. It further shows that acceptable segmentation performance
can be obtained with λ ranging from 0.1 to 0.9—an enormous range, which
demonstrates the robustness and suitability of the approach. Every image in
the data set was then segmented at λ = 0.7 and the results verified by eye.
Of the 19946 images, 99.5% were found to be correctly segmented.

With λ set at 0.0, the smoothness constraint from the thin-plate term is
completely ignored and the point of greatest gradient is chosen along each of
the search space radii. Previous studies [12] have shown that for approximately

216 10 Globally Optimal Energy Minimization Techniques

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

Lambda

P
er

ce
nt

ag
e

C
or

re
ct

 S
eg

m
en

ta
tio

ns

Fig. 10.3. Plot of percentage of correct segmentations against λ for a set of images
consisting of known “difficult” images and randomly selected images.

65% of images, all points of greatest gradient actually lie upon the nucleus-
cytoplasm border, so these“easy” cell images will be correctly segmented with
λ = 0. For the remaining 35% of images, a large gradient due to an artifact
or darkly stained chromatin will draw the contour away from the desired
border. As λ increases, the large curvatures necessary to admit these incorrect
configurations become less probable, as shown in Figure 10.4.

(a) (b) (c)

Fig. 10.4. The effect of increasing λ. (a) λ = 0.1, (b) λ = 0.2, and (c) λ = 0.5.

Comments on the Dynamic Programming Method

We show in [110] that the above segmentation method can be viewed as the
application of hidden Markov model techniques [138], where the transition

10.2 Cell Image Segmentation Using Dynamic Programming 217

matrix is determined by the curvature constraints and the observation matrix
is determined by the gradient image.

A simple way to find shortest paths on the linear trellis that corresponds
to the closed contours in the image domain is to replicate the m nodes. Specif-
ically, we unwrap the circular domain such that the last column of nodes in
the trellis is a copy of the first column. Then if there are m such nodes in a
column, we would need to evaluate each of the m paths, starting and finishing
on the same node i ∈ [0 . . . M − 1]. This would require m evaluations of the
Viterbi algorithm, as described in Section 9.5. So we use the two-pass method
of Gunn and Nixon [71] based on the midpoint heuristic to find the minimum
energy.

Although this heuristic works very well in practice, in theory there are
clearly situations where it could fail to find the optimal solution.

Circular Shortest Path Algorithm (CSP)

Appleton and Sun [8] investigated this general problem of optimal circular
shortest paths to address the theoretical deficiencies of the midpoint heuris-
tic. Their circular shortest path algorithm is guaranteed to find the shortest
circular path and uses a branch and bound technique [175, 99] to efficiently
locate it.

The need for circular shortest paths arises when the search space is nat-
urally periodic. Here we must satisfy the constraint that the end points of
the shortest path must be connected in the periodic extension of the trellis.
This constraint creates a cyclic dependency in the computation of the path
cost, which prevents us from applying the standard shortest path algorithms
of Section 9.5 based on dynamic programming. However, this dependency is
quite simply overcome by periodically extending the trellis as follows.

We perform a rectangular to polar mapping to convert the circular search
space into a linear one as before. However, in this case, the column at the cut
point is replicated as the last column to provide a periodic extension. In other
words, a circular search space with N nodes is represented by a linear trellis
of length N +1 where the last column is a replica of the first. Then a contour
is circular if and only if the row index of the first node ν0 is the same as the
row index of the last node νN .

The root of the branch and bound search tree consists of the entire first
column of nodes. This set of nodes is recursively split in two to form the
binary search tree as depicted in Figure 10.5. The Viterbi algorithm allows us
to treat a set of nodes in the first column of the trellis as the source rather
than using a single node as the source as described in Section 9.5. The circular
shortest path algorithm progresses as follows.

The shortest path to the other end of the trellis is found from the root
node (i.e., the entire first column) and this forms a lower bound on the cost of
the circular shortest path. We find the destination node corresponding to the
shortest path and follow the backward pointers to determine the corresponding

218 10 Globally Optimal Energy Minimization Techniques

Fig. 10.5. The binary search tree for m=8. Only the first column of the trellis
containing the potential source vertices is shown (from [7]).

source node. If the source node ν0 is the same as the destination node νN ,
then we have found the circular shortest path and the algorithm terminates.

Otherwise the source node is split in two and the Viterbi algorithm is
then run on the upper and lower subproblems. Since we know that a circular
shortest path must start and finish on the same node, a new bound on the
circular shortest path is obtained by examining the shortest path length to
the corresponding upper and lower half of the destination nodes. For example,
if m = 8, we would look for the shortest paths between source and destination
nodes with row indices 0–3 and 4–7, respectively. As before, if the shortest
path found is circular, the algorithm terminates.

Otherwise we recursively split the node with the lowest circular shortest
path bound and continue the search. The complete algorithm is given in [7]
and an example segmentation of a diatom is shown in Figure 10.6. On typi-
cal images, the CSP algortihm often identifies the optimum circular shortest

10.3 Globally Optimal Geodesic Active Contours (GOGAC) 219

path with just one run of the Viterbi algorithm, although some pathological
examples may take considerably longer to compute.

(a) (b) (c)

Fig. 10.6. Segmentation of Cyclostephanos Dubius by circular shortest path
method. (a) The original microscope image of the diatom, (b) the polar unwrapping
with circular shortest path overlaid, and (c) the corresponding segmentation contour
(from [7]).

However, despite this improvement, a major shortcoming of all methods
based on a polar to rectangular mapping is the inability to handle concave
contours and higher dimensional objects, thus severely limiting their applica-
tion domain.

10.3 Globally Optimal Geodesic Active Contours
(GOGAC)

The classic active contour or snake model proposed by Kass [88] modeled
a segmentation boundary by a series of point masses connected by springs.
This explicit view of curves as a polygon was replaced by an implicit view of
curves as the level set of some 3D surface by Osher and Sethian [129]. Level
sets offer significant advantages over traditional snakes including improved
stability and much better handling of topology (e.g., segmentation of multiple
objects with just one contour). Another advance came in the form of geodesic
active contours as proposed by Caselles et al [34]. They demonstrated the
equivalence of their energy function to the length of a geodesic (i.e., path of
least cost, path of least time) in an isotropic space. A problem with traditional
geodesic active contours is that they are a gradient descent method and thus
have all the usual problems of initialization, termination, and local minima
associated with such methods. They simply do not have the stability and
simplicity of application of globally optimal segmentation methods.

The globally optimal GOGAC method we outline here finds closed con-
tours in the image domain itself rather than unwrapping the image through
polar to rectangular transformation. Working in the image domain means that
we cannot find simple shortest paths, as this would cause a bias towards small

220 10 Globally Optimal Energy Minimization Techniques

contours that wrap tightly around the origin. Instead, we use a contour energy
of the form [7]

E[C] =
∮

C

g

r
ds (10.4)

where g is a measure of probability of being on the boundary (e.g., image
gradient) and r is the radius of the contour C. Thus all circles centered on
the origin would have the same contour energy.

Now we cut the image plane with an arbitrary cut line as depicted in
Figure 10.7. Let us now consider a point on the cut line, pcut, which is mapped
to two equivalent points pstart and pend in the cut plane S′. Now to find
the shortest circular path beginning and ending at pcut, we just solve the
equivalent problem of finding the shortest path from pstart to pend in the cut
plane S′ (using the Fast Marching algorithm described in the next section).

Fig. 10.7. A minimal closed geodesic in the image plane passing through pcut and
the corresponding open shortest path (i.e., geodesic) in the cut plane between pstart

and pend. (from [7]).

A problem with the above approach is that it would not allow the shortest
path to cross the cut line. This would once again restrict the algorithm to
convex shapes only. However Appleton [7] shows that if we represent the
open search space in an augmented helicoidal representation, it allows us
to represent concave contours that cross the cut line (i.e., unwrapping line)
multiple times as illustrated in Figure 10.8. Thus we can now find the shortest
closed path passing through pcut even if the contour wraps around the origin
several times. Thus the arbitrary choice of the cut line does not influence nor
restrict the range of image topology the GOGAC algorithm can handle.

In the above development it was assumed that pcut, the intersection of the
shortest path and the cut line, is known in advance. This is not the case, and
an exhaustive search of all possible values of pcut would be quite inefficient.
Instead, we use the branch and bound approach of the CSP algorithm in
Section 10.2. Referring to Figure 10.7, we use the set of all possible points for

10.3 Globally Optimal Geodesic Active Contours (GOGAC) 221

Fig. 10.8. The helicoidal representation of the cut-concave shape. (a) Open curve;
(b) closed curve (from [7]).

Fig. 10.9. Application of GOGAC to lung Xray image segmentation. Evolution of
the fast marching wavefront from the cut line. (Images provided by Ben Appleton.)

pcut along the cut line as the source and the periodic replica of these points
in the cutplane S′ as the destination and then proceed with the binary search
in the same manner as the CSP algorithm. Figure 10.9 shows the evolution
of the fast marching wavefront emanating from the cut line as it segments a
lung using GOGAC. Figures 10.10 and 10.11 show other segmentation results
from the GOGAC method.

10.3.1 Fast Marching Algorithm

We use the Fast Marching algorithm [149] to find the surfaces of minimal
action whose gradient curves form shortest paths, also known as geodesics.
A geodesic is a generalization of the concept of a “straight line” to “curved
spaces” (i.e., Riemannian spaces) such as the surface of the earth. In the case
of a sphere such as the Earth, a geodesic is a great circle. With respect to
a given metric, geodesics are defined to be the shortest path between points
on the space. A shortest path between two points in a curved space can be

222 10 Globally Optimal Energy Minimization Techniques

(a) (b)

Fig. 10.10. Globally optimal geodesic active contours applied to overlapping ob-
jects. The cells (a) are separated despite the weak intensity gradient between them
(b) (from [7]).

(a) (b)

Fig. 10.11. Segmentation of MRI image of a concave contour, the corpus callosum
in a human brain, from [7]. Image (a) is the original and (b) is the segmentation via
GOGAC.

found by writing the equation for the length of a curve, and then minimizing
the length using techniques from calculus of variations. An entirely equivalent
approach is to define the energy of a curve; then minimizing the energy leads
to the same equations for a geodesic. This latter formulation can better be un-
derstood when we consider how an elastic band stretched between two points
will contract in length to minimize its energy—the final shape of the band is
a geodesic. Thus there is an intimate relationship between the mathematical
formalism of geodesics and the concepts underpinning snakes as proposed by
Kass et al.

The globally minimal geodesic between two sets of points in an isotropic
Riemannian space can be calculated with the fast marching method [2]. This
method computes the surface of minimal action, also known as a distance

10.3 Globally Optimal Geodesic Active Contours (GOGAC) 223

Fast Marching Algorithm

Initialization:

For all grid points x in P0:

• Set U(x) = 0
• Label x as Trial and insert into Q

For all other grid points x:

• Set U(x) = ∞
• Label x as Far

Main loop:

• If Q is empty, halt
• Otherwise remove the Trial point of minimum value from the priority queue:

x = argmin
x′

{U(x′)|x′ ∈ Q}

• Label x as Known
• For each neighbor n of x in the grid:

– If n is Known, continue to next neighbor
– If n is Far, change label to Trial and insert into Q
– Update U(n) by solving (10.5). Only use the values at neighboring grid points

which are labeled Known.

Fig. 10.12. Pseudocode for the fast marching algorithm to find the surfaces of
minimal action and geodesics (i.e., shortest paths)(from [7]).

function, from the starting set P0 to all points in the space. It finds the
surface of minimal action by considering it as the first time-of-arrival of a
wavefront emanating from the starting set P0 and traveling with speed 1

g ,
where g is usually the image gradient as before. This wavefront sweeps the
grid beginning with the starting set P0 and proceeds in order of arrival time
U .

The algorithm is identical to Dijkstra’s shortest distance algorithm [59]
from Section 9.5 apart from the need to update g. On a rectangular two-
dimensional grid in with grid step h, we may use the discrete gradient operator
defined by

g2(i, j) =
1
h2

max{U [i, j] − U [i − 1, j], U [i, j] − U [i + 1, j], 0}2

+
1
h2

max{U [i, j] − U [i, j − 1], U [i, j] − U [i, j + 1], 0}2. (10.5)

During the course of the algorithm, points that have not been considered
yet are labeled Far. Points that have been assigned a temporary value for U
are labeled Trial. Points for which U has been finalized are labeled Known.

224 10 Globally Optimal Energy Minimization Techniques

The algorithm makes use of a priority queue1 Q of trial points in order to
maintain efficient access to the minimum distant point. Pseudocode for the
complete algorithm is provided in Figure 10.12.

Figure 10.13 shows that the fast marching algorithm calculates distance
functions that behave similarly to propagating electromagnetic radiation. In-
deed this example shows that the shortest path calculated via the fast march-
ing algorithm follows Snell’s Law of Refraction from the field of optics. This
formula relates the angles of incidence and refraction where a ray of light
crosses a boundary between different media, such as air and glass. Snell’s
law can be derived from Fermat’s principle of least time, which states that
the path taken between two points by a ray of light is the path that can be
traversed in the least time–that is, a geodesic. Figure 10.14 shows a similar
computation on an inverse velocity cost function.

(a) (b)

Fig. 10.13. The fast marching algorithm calculates the surfaces of minimal action
(b) for the two-valued cost function of (a). Note that the geodesic shown in (b)
follows Snells’ Law of refraction for optical and electromagnetic waves—that is, the
sine of the angle of incidence divided by the sine of the angle of refraction is a
constant determined by the properties of the two media at the interface (images
provided courtesy of Ben Appleton).

10.4 Globally Minimal Surfaces (GMS)

The planar segmentation technique outlined in the last section cannot be ex-
tended to higher dimensions, so we need an entirely new approach. Minimum
cuts and maximum flow techniques are naturally suited to globally optimal
1 The implemention employs a heap data structure and heap sort for efficient lo-

cation of the minimum.

10.4 Globally Minimal Surfaces (GMS) 225

(a) (b) (c)

Fig. 10.14. The fast marching algorithm is used to compute the path of a ball
rolling on an inclined plane under the influence of gravity. The path of the ball
will always be a geodesic. (a) Inverse velocity metric, (b) arrival time (surfaces of
minimal action), and (c) geodesic (shortest path).

segmentation in higher dimensions. Although this has been tried in the past
with discrete approximations, Appleton and Talbot [9] proposed a method
based on continuous maximal flows by solving a system of partial differential
equations. It is shown in [7] that this method gives identical results to the
previous GOGAC method in the case of planar images.

10.4.1 Minimum Cuts and Maximum Flows

Minimum cuts are another concept from graph theory that are related to
shortest paths, although the computation is often slower and more compli-
cated. Graph cuts may be used to determine the capacity of a communications
network or to determine the minimum number of links that must fail before a
network becomes disconnected—an important measure of the reliability of a
network. In image analysis they have been proposed for optimally partitioning
an image or volume into two regions. For example, this technique could be
used to determine the most likely shape of a 3D object in an ultrasound or
Magnetic Resonance Imaging (MRI) image.

Consider a finite directed graph G where every edge (u, v) has a capacity of
c(u, v), which is a non-negative real number. We identify two vertices, known
as the source s and the sink t. A cut is a partition of the nodes into two sets
S and T , such that s ∈ S and t ∈ T . The capacity of a cut (S,T) is

c(S, T) =
∑

u∈S,v∈T |(u,v) is an edge
c(u, v),

which is just the sum of the capacity of all edges crossing the cut from region
S to T .

The max-flow min-cut theorem [60, 63] states that, the maximal amount
of flow in a network is equal to the capacity of a minimal cut. In other words,
the theorem states that the maximum flow in a network is dictated by its

226 10 Globally Optimal Energy Minimization Techniques

bottleneck—the minimum cut surface. It turns out that the maximum flow
problem is convex and is consequently easier to solve than the dual problem
of finding the minimum cut.

Augmenting Path Algorithm

The best known algorithm for solving the maximum flow problem is the fa-
mous Ford-Fulkerson [63] augmenting path algorithm. This algorithm suc-
cessively increases the maximum flow from source s to sink t by continually
locating paths along which more flow may be pushed. Once all paths from
source to sink are saturated, the flow is maximal. The pseudocode for the
Ford-Fulkerson algorithm is given in Figure 10.15.

Ford Fulkerson Augmenting Path Algorithm

Initialization:

Set F = 0 on each edge

Main loop:

- Search for an s-t path along which more flow may be pushed
- If no such path exists, halt
- Otherwise, increase the flow uniformly along this path until at least one edge

becomes saturated

Fig. 10.15. Pseudocode for Ford-Fulkerson Augmenting Path algorithm (from [7]).

Preflow Push Algorithm

An alternative to the augmenting path algorithm is the more recent preflow
push algorithm of Goldberg and Tarjan [67]. One advantage of this formulation
is that it is highly parallelizable compared to the Ford-Fulkerson algorithm.
A preflow is like a flow, except that the total amount flowing into a vertex is
allowed to exceed the total amount flowing out. The algorithm maintains a
preflow in the original network and then pushes excess local flow toward the
sink along what are estimated to be shortest paths.

A vertex that has greater inward flow than outward flow is called an active
vertex—the excess being the positive difference between the two. The algo-
rithm repeatedly pushes flow outwards from active vertices toward the sink.
A height function H is introduced on the vertices to guide the flow along
the shortest unsaturated path toward the sink. The source and sink have
fixed heights of |V | and 0, respectively, and may never become active. Active
vertices are stored in a queue, Q. The pseudocode for the Goldberg-Tarjan
algorithm is given in Figure 10.16.

10.4 Globally Minimal Surfaces (GMS) 227

Goldberg-Tarjan Preflow Push Algorithm

Initialization:

• Set F = 0 on each edge
• Set H to be the length of the shortest (unweighted) path to the sink t, and

H(s) = |V |
• Set the source s as active and place it in the Q

Main loop:

• If Q is empty, halt
• Otherwise, retrieve an active vertex v from Q
• For all neighboring vertices u of v:

– If the edge (v, u) is unsaturated and H(v) = H(u)+1, push more flow along
edge (v, u) until it is saturated or v has excess 0

– If this increased the flow to u, set u as active and place in Q. Note: u may
already be active

– If v still has positive excess, increment H(v) and place v in Q
• Otherwise, set v as inactive

Fig. 10.16. Pseudocode for Goldberg-Tarjan Preflow Push algorithm (from [7]).

10.4.2 Development of the GMS Algorithm

It is well known that maximum flow techniques work well in a discrete do-
main of a network, but the imposition of a coarse discretization grid on a
natural image leads to quite unnatural grid-biases in the segmentation. The
segmentation contours tend to follow the artificially imposed discretization
grid rather than the following smooth curves in the image itself, leading to
unacceptable staircase artifacts. The goal here is to develop an algorithm that
works directly in the continuous image domain.

It is not at all clear how the augmenting path algorithm can be extended
from the continuous to the discrete domain. On the other hand, the preflow
push method is much better suited to the problem. One advantage is that the
updates on vertices require only local information from the neighbors rather
than global knowledge of the image. This suggests a method based on solving
a system of partial differential equations—indeed in much the same way, the
solution of Maxwell’s equations leads to the solutions for electromagnetic fields
and traveling electromagnetic waves such as light.

We relax the flow conservation constraint at each vertex by adding an
additional variable at each point. This results in a scalar potential field, P ,
which will keep track of the inflow-outflow imbalance (i.e., divergence) in the
(compressible) flow and provides a restoring force to drive this imbalance to
zero at convergence.

One way to visualize the potential function is to think of a network of water
pipes connected to an underground junction. When water initially surges down
the pipes and meets at the junction, enormous pressures are generated, which

228 10 Globally Optimal Energy Minimization Techniques

(a) (b)

Fig. 10.17. Comparison of 3D lung MRI image segmentation using (a) discrete min-
cut, and (b) continuous GMS. Note the unnatural staircase effect in the segmentation
of the lower left lung due to grid bias. Computation time was 2 minutes for min-cut
and 30 seconds for GMS using a 1Ghz Pentium c© computer. (Images provided by
Ben Appleton.)

Fig. 10.18. Application of GMS to 2D lung Xray image segmentation. Evolution
of the potential function used to find the global minimal surface. (Images provided
by Ben Appleton.)

10.4 Globally Minimal Surfaces (GMS) 229

could split the pipes unless the junction box is vented. The ancient Romans
knew of this problem and their solution was to relieve the pressures in their
underground aquaducts with a series of vertical vents and fountains. Vents
allow the excess water to rise up the vent pipe, providing a restoring force to
balance the flow. Thus the water level in the vent pipe is equivalent to the
potential function in the GMS algorithm.

Now consider the following system of differential equations.

∂P

∂t
= −div

→
F , (10.6)

∂
→
F

∂t
= −∇P, (10.7)

‖
→
F‖2 ≤ g. (10.8)

These first two equations, taken together, form a simple system of wave equa-
tions. They may be interpreted as a linear model of the dynamics of an ide-
alized fluid with pressure P and velocity

→
F . Without loss of generality and to

maintain symmetry between source and sink, we fix the scalar potential field
P at the source s and sink t such that Ps = 1 and Pt = −1.

It can be shown [7] that at convergence the potential field is an isosurface of
value +1 in the region connected to the source and -1 in the region connected
to the sink. Thus the potential field becomes an indicator function that tells
us whether we are inside or outside the minimal surface. Without loss of
generality, we choose level set 0 as the minimal surface.

10.4.3 Applications of the GMS Algorithm

The evolution of the potential function to determine the minimal surface cor-
responding to a human lung is shown in Figure 10.18. Note how the potential
function evolves to an indicator function separating the interior region of the
lung from the exterior. Figure 10.19 shows the segmentation of volumetric
MRI data to segment the hippocampus.

A less obvious application is the use of GMS to find the optimal 3D recon-
struction from multiview images. Now the use of a stereo pair of images to de-
termine ground elevation from image disparity is a well known technique from
aerial photogrammetry. Unfortunately, stereo image pair photogrammetry can
only provide so-called 2-1/2D rather than true 3D reconstruction—with just
two frontal images, it is impossible to reconstruct the back of an object. So
true 3D model reconstruction requires multiple images—hence the term mul-
tiview reconstruction.

Leung [105] developed a technique called Embedded Voxel Coloring (EVC),
which employed space carving and photoconsistency contraints to the 3D re-
construction problem. He determines the 3D surface that optimally satis-
fied all the reconstruction constraints using the GMS algorithm. Figure 10.21

230 10 Globally Optimal Energy Minimization Techniques

(a) (b)

Fig. 10.19. Segmentation of the hippocampi from an MRI dataset using GMS.
Image (a) is the view from the side and (b) is the view from below from [7].

(a) (b) (c)

(d) (e) (f)

Fig. 10.20. Reconstruction of the dinosaur image sequence using Embedded Voxel
Colouring (EVC) and adaptive thresholding via GMS. Images (a) and (d) are se-
lected images from the dinosaur image set. Images (b), (c), (e), and (f) are new
views generated from the 3D reconstruction (from [104]).

10.4 Globally Minimal Surfaces (GMS) 231

(a) (b) (c)

(d) (e) (f)

Fig. 10.21. Reconstruction of the Ghirardelli image sequence using Embedded
Voxel Colouring (EVC) and adaptive thresholding via GMS. Images (a) and (d)
are selected images from the Ghirardelli image set. Images (b), (c), (e), and (f) are
new views generated from the 3D reconstruction (from [105, 104]).

shows a 3D reconstruction from multiview images using GMS as a postpro-
cessor.

One advantage of the GMS algorithm for extraordinarily difficult segmen-
tation tasks, such as extracting the hippocampus from MRI images, is the
ability to define multiple sources and sinks to mark points that are definitely
interior and exterior to the object undergoing segmentation as shown in Figure
10.22. Franklin [64] used this approach to guide the GMS algorithm so that
the hippocampi of sets of human brains could be labeled fully automatically
as shown in Figure 10.23. This study has now been completed on a small set
of brains, yielding quite good results. It will be extended to a much larger set
in the near future.

This latter work is important because there is evidence that changes in the
shape of the hippocampi may be an early indicator of the onset of Alzheimer’s
disease (also known as dementia). The economic and social cost of Alzheimer’s
disease is growing rapidly due to the aging population in the western world. In-
deed, Access Economics estimates that the cost of dementia to the Australian
economy alone in 2004 was approximately USD 4 billion [90]. At present, the
detection of Alzheimer’s disease is largely performed through psychological
tests that detect loss of cognitive ability once the brain is damaged. What

232 10 Globally Optimal Energy Minimization Techniques

Fig. 10.22. The usage of multiple sources and sinks to control the evolution of the
GMS algorithm for the fully automated segmentation of the hippocampus in the
human brain (from [64]).

(a) (b)

Fig. 10.23. Comparison of manual and automatic segmentation of the hippocampus
in the human brain. Image (a) is a manual segmentation by a clinician that required
about 2 hours of labeling and (b) is a fully-automated segmentation via GMS using
multiple sources and sinks positioned by cross-validated training on labeled images,
which required just 2 minutes of computation (from [64]).

10.5 Conclusions 233

is needed is a fast, cheap, and reliable method to extract the shape of the
hippocampi from brain MRI that could be used as a screening test for early
Alzheimer’s disease. Such a test may allow health workers to intervene before
serious brain damage occurs.

10.5 Conclusions

These globally optimal energy minimization methods are fast, easy to apply,
and tend to yield robust solutions. When using conventional active contours
based on local energy minimization, a great deal of effort is expended in
developing techniques for choosing the initial position of the contour, escap-
ing local minima, and determining stopping criteria. It is certainly true that
some effort must be expended on determining the search space and the en-
ergy function when using global energy minimization techniques. Yet, in our
experience, these techniques are much simpler to apply in practice and yield
more robust and accurate results. Note further that by carefully positioning
the search space, global energy minimization techniques can always find lo-
cally minimal energy solutions. In particular, for the globally minimal surface
approach, multiple sources and sinks can be used to guide the solution, pro-
viding many of the purported advantages of the original snakes of Kass et al.
The converse, however, is not true—local energy minimization techniques are
never guaranteed to find global solutions.

Future work is focussed on integrating these techniques with statistical
shape models to develop an 3D Expectation Maximization algorithm incorpo-
rating prior shape knowledge for detection and segmentation of known shapes.

References

1. A.S. Abutaleb. Automatic thresholding of graylevel pictures using two-
dimensional entropy. Computer Vision, Graphics and Image processing, 47:22–
32, 1989.

2. D. Adalsteinsson and J.A. Sethian. A fast level set method for propagating
interfaces. Journal of Computational Physics, 118(2):269277, 1995.

3. A.A. Amini, T.E. Weymouth, and R.C. Jain. Using dynamic programming for
solving variational problems in vision. IEEE Trans. Pattern Anal. Machine
Intell., 12:855–867, 1990.

4. A.C. Ansari, I. Gertner, and Y.Y. Zeevi. Combined wavelets DCT image com-
pression. In Proc. SPIE Int. Soc. Opt. Eng., volume 1699, pages 308–317,
1992.

5. A.C. Ansari, I. Gertner, and Y.Y. Zeevi. Image compression: wavelet type
transform along generalized scan. In Proc. SPIE conf. Synthetic Aperture
Rader, volume 1630, pages 99–107, 1992.

6. B. Appleton. Optimal geodesic active contours: application to heart segmen-
tation. In B.C. Lovell and A.J. Maeder, editors, APRS Workshop on Digital
Image Computing, volume 1, pages 27–32, Brisbane, February 2003. APRS.

7. B. Appleton. Globally Minimal Contours and Surfaces for Image Segmentation.
The University of Queensland, 2004.

8. B. Appleton and C. Sun. Circular shortest paths by branch and bound. Pattern
Recognition, 36(11):2513–2520, 2003.

9. B. Appleton and H. Talbot. Globally optimal surfaces by continuous maximal
flows. In C. Sun, H. Talbot, S. Ourselin, and T. Adriaansen, editors, Digi-
tal Image Computing: Techniques and Applications, volume 2, pages 987–996,
Sydney, December 2003. CSIRO Publishing.

10. B. Appleton and H. Talbot. Globally optimal geodesic active contours. Journal
of Mathematical Imaging and Vision, July 2005.

11. P. Bamford. Segmentation of Cell Images with Application to Cervical Cancer
Screening. PhD thesis, The University of Queensland, 1999.

12. P. Bamford and B. Lovell. Improving the robustness of cell nucleus segmen-
tation. In P.H. Lewis and M.S. Nixon, editors, Proc. Ninth British Machine
Vision Conference, BMVC ’98, pages 518–524. University of Southampton,
September 1998.

236 References

13. P. Bamford and B. Lovell. Unsupervised cell nucleus segmentation with active
contours. Signal Processing Special Issue: Deformable Models and Techniques
for Image and Signal Processing, 71(2):203–213, December 1998.

14. C.S. Barrus, R.A. Gopinath, and H. Guo. Introduction to Wavelets and Wavelet
Transforms. Prentice-Hall, New Jersey, 1998.

15. B.A. Barsky. The Beta Spline: Local Representation Based on Shape parameters
and Fundamental Geometric Measures. PhD thesis, The University of Utah,
1981.

16. B.A. Barsky. End conditions and boundary conditions for uniform B-spline
curve and surface representations. Comp. in Indus., 3:17–29, 1982.

17. B.A. Barsky. A description and evaluation of various 3-d models. In T.L.
Kunii, editor, Computer Graphics: Theory and Applications. Springer-Verlag,
New York, 1983.

18. G.A. Battle. A block spin construction of ondelettes, part-i:Lemarie functions.
Comm. Math. Phys., 110:601–615, 1987.

19. R.E. Bellman. Dynamic Programming. Princeton University Press, 1957.
20. F. Bergholm. Motion from flow along contours: a note on robustness and

ambiguous case. Int. J. Computer Vision, 3:395–415, 1989.
21. M. Bertero, T. Poggio, and V. Torre. Ill-posed problems in early vision. In

Proc. IEEE, volume 76, pages 869–889, 1988.
22. P.E. Bézier. Mathematical and practical possibilities of unisurf. In R.E. Barn-

hill and R.F. Risenfeld, editors, Computer Aided Geometric Design. Academic
Press, New York, 1974.

23. S. Biswas. Contour coding through stretching of discrete circular arcs by affine
transformation. Pattern Recognition, 34:63–77, 2001.

24. S. Biswas and N.R. Pal. On hierarchical segmentation for image compression.
Pattern Recog. Lett., 21:131–144, 2000.

25. S. Biswas, N.R. Pal, and S.K. Pal. A quantitative index for termination of
iterative image smoothing algorithms. In Proc. 3rd. Int. Conf. Automation,
Robotics and Computer Vision, pages 1107–1111, 1994.

26. S. Biswas and S.K. Pal. Approximate coding of digital contours. IEEE Trans.
Syst., Man, Cybern., 18:1056–1066, 1988.

27. S. Biswas, S.K. Pal, and D. DuttaMajumder. Binary contour coding using
Bézier approximation. Pattern Recog. Lett., 8:237–249, 1988.

28. R.E. Blahut. Fast Algorithms for Digital Signal Processing. Addison-Wesley,
1987.

29. J.E. Bresenham. Algorithm for computer control of a digital plotter. IBM
System Journal, 4:25–30, 1965.

30. P. Brigger, J. Hoeg, and M. Unser. B-spline snakes: a flexible tool for para-
metric contour detection. IEEE Trans. Image Processing, 4:909–920, 2000.

31. A.D. Brink. Grey-level thresholding of images using a correlation criterion.
Pattern Recog. Lett., 9:335–341, 1989.

32. R. Brons. Linguistic methods for description of a straight line on a grid.
Computer Graphics and Image Processing, 2:48–62, 1974.

33. S. Carlsson. Sketch based coding of gray level images. Signal processing, 15:57–
83, 1988.

34. V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. International
Journal of Computer Vision, 22(1):61–79, 1997.

35. B. Chanda, B.B. Choudhuri, and D. DuttaMajumder. Minimum error thresh-
olding. Pattern Recog. Lett., 3:243–251, 1985.

References 237

36. B.B. Choudhuri and N. Sarkar. Texture segmentation using fractal dimension.
IEEE Trans. Pattern Anal. Machine Intell., 17:72–77, 1995.

37. C.K. Chui. An Introduction to Wavelets. Academic Press, Inc., San Diego,
CA:, 1992.

38. R. Cipolla and A. Blake. The dynamic analysis of apparent contours. In Proc.
3rd Int. Conf. on Computer Vision, pages 616–623, 1990.

39. R. Cipolla and A. Blake. Surface orientation and time to contact from image
divergence and deformation. In proc. 2nd European Conference on Computer
Vision–ECCV’92, volume 588 of Lecture Notes in Computer Science, pages
187–202, Santa Margherita Ligure, Italy, 1992. Springer.

40. A. Cohen, I. Daubechies, and J.C. Feauveau. Biorthogonal bases of compactly
supported wavelets. Commun. Pure Appl. Math., 45:485–560, 1992.

41. E. Cohen, T. Lyche, and R. Risenfeld. Discrete B-splines and subdivision tech-
niques in computer-aided geometric design and computer graphics. Computer
Vision, Graphics and Image Processing, 14:87–111, 1980.

42. E. Cohen and R.F. Risenfeld. General matrix representations for Bézier and
B-spline curves. Comp. in Indus., 3:9–15, 1982.

43. L. Cohen. On active contour models and balloons. Computer Vision, Graphics
and Image Processing: Image Understanding, 53(2):211–218.

44. L.D. Cohen and I. Cohen. Finite-element methods for active contour models
and balloons for 2-D and 3-D images. IEEE Trans. Pattern Anal. Machine
Intell., 15(11):1131–1147, 1993.

45. A.J. Cole. Compaction technique for raster scan graphics using space filling
curves. Computer Journal, 30:87–92, 1987.

46. M.G. Cox. The numerical evaluation with B-splines. National Physical Labo-
ratory DNAC 4, 1971.

47. M.G. Cox. The numerical evaluation of b-splines. J. Inst. Math. Appl., 10:134–
149, 1972.

48. I. Daubechies. Orthonormal bases of compactly supported wavelets. Commun.
Pure Appl. Math., XII:909–996, 1988.

49. I. Daubechies. Ten Lectures on Wavelets. SIAM, Philadelphia, PA, 1992.
50. I. Daubechies, A. Grossman, and Y. Mayer. Painless nonorthogonal expansions.

J. Math. Phys., 27:1271–1283, 1986.
51. C.A. Davatzikos and J.L. Prince. An active contour model for mapping the

cortex. IEEE Trans. Medical Imaging, 14(1):65–80.
52. G. Davis. A wavelet-based analysis of fractals image compression. IEEE Trans.

Image Processing, 7:141–154, 1998.
53. C. deBoor. On calculating with B-splines. J. Approximation Theory, 6:7–49,

1972.
54. C. deBoor. On calculation with B-splines. J. Approx. Theory, 6:50–62, 1972.
55. C. deBoor. Spline as linear combination of B-splines: a survey. In G.G. Lorenz,

C.K. Chui, and L.L. Schumaker, editors, Approximation Theory. Academic
Press, New York, 1976.

56. C. deBoor and G. Fix. Spline approximation by quasi-interpolants. J. Approx-
imation Theory, 7:19–45, 1973.

57. C. deBoor and A. Pinkus. Backward error analysis for totally positive linear
systems. Numer. Math., 27:485–490, 1977.

58. F. Deravi and S.K. Pal. Graylevel thresholding using second-order statistics.
Pattern Recog. Lett., 1:417–422, 1983.

238 References

59. E. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271.

60. P. Elias, A. Feinstein, and C.E. Shannon. Note on maximum flow through a
network. IRE Trans. Inform. Theory, IT-2:117–119, 1956.

61. Y. Fisher, E.W. Jacbos, and R.D. Boss. Fractal image compression using
iterated transforms. In J.A. Storer, editor, Image and Text Compression, pages
35–61. Kluwer Academic Publishers, 1992.

62. M. Flickner, H. Sawhney, D. Pryor, and J.L. Lotspiech. Intelligent interactive
image outlining using B-spline snakes. In Proc. 28th Asilomar Conf. Signals,
Systems, computers, volume 1, pages 731–735, 1994.

63. L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press,
1962.

64. S. Franklin. Automatic segmentation of MRI brain images. Master’s thesis,
The University of Queensland, 2006.

65. K.S. Fu and J.K. Mui. A survey of image segmentation. Pattern Recognition,
13:3–16, 1981.

66. D. Geiger, A. Gupta, A. Costa, and J. Vlontzos. Dynamical programing for
detecting, tracking, and matching deformable contours. IEEE Trans. Pattern
Anal. Machine Intell., 17(3):294–302, 1995.

67. A.V. Goldberg and R.E. Targan. A new approach to the maximum-flow prob-
lem. Journal of the ACM, 35(4):921–940, 1988.

68. R.C. Gonzalez and P. Wintz. Digital Image Processing. Addison-Wesley, MA,
1977.

69. A. Grossman and J. Morlet. Decomposition of Hardy functions into square
integrable wavelets of constant shape. SIAM J. Math. Anal., 15:723–736, 1984.

70. S.R. Gunn. Dual Active Contour Models for Image Feature Extraction. Uni-
versity of Southampton, May 1996. PhD Thesis.

71. S.R. Gunn and M.R. Nixon. Snake head boundary extraction using global and
local energy minimization. In Proc. 13th Int. Conf. on Pattern Recognition,
pages 25–29. IAPR, IEEE, August 1996.

72. S.R. Gunn and M.S. Nixon. A robust snake implementation: A dual active
contour. IEEE Trans. Pattern Anal. Machine Intell., 19(1):63–68, January
1997.

73. E.H. Hall. Computer Image Processing and Recognition. Academic Press, New
York, 1979.

74. R.M. Haralick and L.G. Shapiro. Image sementation techniques. Computer
Vision, Graphics and Image processing, 29:100–132, 1985.

75. M.E. Haziti, H. Cherifi, and D. Aboutajdine. Complexity reduction in factal
image compression. In Proc. IASTED Int. Conf. Signal and Image Process-
ing(SIP’97), pages 245–250, New Orleans, USA, 1997.

76. E.C. Hildreth. The Measurement of Visual Motion. MIT Press, Cambridge,
Massachusetts, 1984.

77. B.K.P. Horn. Robot Vision. MIT Press, Cambridge, Massachusetts, 1986.
78. B.K.P. Horn and M.J. Brooks. The variational approach to shape from shading.

Computer Vision, Graphics and Image Processing, 33:174–208, 1986.
79. B.K.P. Horn and M.J. Brooks (ed.). Shape from Shading. MIT Press, Cam-

bridge, Massachusetts, 1989.
80. B.K.P. Horn and R.W. Sjoberg. Calculating the reflectance map. Applied

Optics, 18:1770–1779, 1979.

References 239

81. K. Ikeuchi and B.K.P. Horn. Nimerical shape from shading and occluding
boundaries. In B.K.P. Horn and M.J. Brooks, editors, Shape from Shading.
MIT Press, Cambridge, Massachusetts, 1989.

82. L. Ji and H. Yan. Loop-free snakes for image segmentation. In Int. Conf. on
Image Processing, volume 3, pages 193–197, October 1999.

83. S. Kamata, R.O. Eason, and E. Kawaguchi. An efficient Hilbert scanning
algorithm and its application to data compression. In Proc. Scandinavian
Conf. Image Analysis, pages 1333–1340, 1993.

84. S. Kamata, R.O. Eason, and E. Kawaguchi. An implementation of Hilbert
scanning algorithm and its application to data compression. IEICE Trans.
Inform. and Syst., 76:420–428, 1993.

85. S. Kamata, N. Niimi, and E. Kawaguchi. Interactive analysis of multi-spectral
images using a Hilbert curve. In Proc. IAPR, pages 93–97, 1994.

86. S. Kamata, N. Niimi, and E. Kawaguchi. A gray image compression using
Hilbert scan. In Proc. ICPR, pages 905–909, 1996.

87. J.N. Kapur, P.K. Shaoo, and A.K.C. Wong. Gray level picture thresholding
using the entropy of histogram. Computer Vision, Graphics and Image pro-
cessing, 29:273–285, 1985.

88. M. Kass, A. Witten, and D. Terzopoulos. Snakes: Active contour models. In
Proc. Int. Conf. Computer Vision, pages 259–268. IEEE, 1987.

89. M. Kass, A. Witten, and D. Terzopoulos. Snakes: Active contour models.
International Journal of Computer Vision, 1(4):321–331, 1988.

90. Z. Khachaturian, H. Brodaty, T. Broe, T. Jorm, C. Masters, R. Nay, M. Haiker-
wal, G. Rees, and L. Low. Dementia research: A vision for australia. Technical
report, Alzheimers Australia, September 2004.

91. J. Kittler and J. Illingworth. Minimum error thresholding. Pattern Recog.
Lett., 19:97–108, 1986.

92. J.J. Koenderink. Optic flow. Vision Research, 26:161–179, 1986.
93. J.J. Koenderink and A.J. Van Doorn. Invariant properties of the motion par-

allax field due to the movement of rigid bodies relative to an observer. Optica
Acta, 22:773–791, 1975.

94. J.J. Koenderink and A.J. Van Doorn. Geometry of binocular vision and a
model for stereopsis. Biological Cybernetics, 21:29–35, 1976.

95. J.J. Koenderink and A.J. Van Doorn. Depth and shape from differential per-
spective in the presence of bending deformations. J. Opt. Soc. Am., 3:242–249,
1986.

96. Z. Kulpa. Area and perimeter measurement of blobs in discrete binary pictures.
Computer Graphics and Image Processing, 6:434–451, 1977.

97. M. Kunt, M. Benard, and R. Leonardi. Recent results in high compression
image coding. IEEE Trans. Circuits and Systems, 34:1306–1336, 1987.

98. M. Kunt, A. Ikonomopoulos, and M. Kocher. Second-generation image coding
techniques. In Proc. IEEE., volume 73, pages 549–574, 1985.

99. A. Land and A. Doig. An automatic method of solving discrete programming
problems. Econometrica, 28:497–520, 1960.

100. J. Lane and R. Risenfeld. A theoretical development for computer generation
of piecewise polynomial surfaces. IEEE Trans. PAMI, 2:35–46, 1980.

101. D. Lee. A provably convergent algorithm for shape from shading. In B.K.P.
Horn and M.J. Brooks, editors, Shape from Shading. MIT Press, Cambridge,
Massachusetts, 1989.

240 References

102. J.S. Lee. Digital image enhancement and noise filtering by use local statistics.
IEEE Trans. Pattern Anal. Machine Intell., 2:165–168, 1980.

103. P.G. Lemarie. Ondelettes a localization exponentielles. J. Math. Pure et Appl.,
67:227–236, 1988.

104. C. Leung. Efficient Methods For 3D Reconstruction From Multiple Images.
PhD thesis, The University of Queensland, 2006.

105. C. Leung, B. Appleton, B.C. Lovell, and C. Sun. An energy minimisation ap-
proach to stereo-temporal dense reconstruction. In Int. Conf. Pattern Recog-
nition, volume 1, pages 72–75, Cambridge, August 23-26.

106. C.W. Liao and G. Medioni. Surface approximation of a cloud of 3d points.
Graph Models Image Process., 57:67–74, 1995.

107. H. Lin and A.N. Venetsanopoulos. Incorporating nonlinear contractive func-
tions into the fractal coding. In Proc. IEEE Int. Workshop on Intelligent Signal
Processing and Communication Systems, pages 169–172, Seoul, Korea, 1994.

108. H. Lin and A.N. Venetsanopoulos. A pyramid algorithm for fast fractal image
compression. In Proc. IEEE Int. Conf. Image Processing (ICIP’95), pages
596–599, Washington D. C., 1995.

109. H.C. Longuet-Higgins and K. Pradzny. The interpretation of a moving retinal
image. In Proc. Royal Society, London, volume B208, pages 385–397, 1980.

110. B.C. Lovell. Hidden Markov models for spatio-temporal pattern recognition
and image segmentation. In D.P. Mukherjee and S. Pal, editors, Int. Conf.
Advances in Pattern Recognition, volume 1, pages 60–65, Calcutta, December.

111. T. Lyche. Discrete Polynomial Spline Approximation Methods. PhD thesis,
University of Texas at Austin, 1975.

112. T. Lyche. Discrete cubic spline interpolation. BIT, 16:281–290, 1976.
113. N. Macon. Numerical Analysis. John Wiley and Sons inc., New York, 1963.
114. S.G. Mallat. Multifrequency channel decomposition of images and wavelet

models. IEEE Trans. Accoust. Speech, Signal Processing, 37:2091–2110, 1989.
115. S.G. Mallat. A theory of multiresolution signal decomposition: The wavelet

representation. IEEE Trans. Pattern Anal. Machine Intell., 11:674–693, 1989.
116. S.G. Mallat. A Wavelet Tour of Signal Processing. Academic Press, San-Diego,

CA, 1998.
117. B.B. Mandelbrot. Fractal Geometry of Nature. Freeman Press, San Francisco,

1982.
118. O.L. Mangasarian and L.L. Schumaker. Discrete B-splines via mathematical

programming. Siam J. Contr., 9:174–183, 1971.
119. D.C. Marr and E.C. Hildreth. Theory of edge detection. In Proc. R. Society

Lond.B, volume B-207, pages 187–217, 1980.
120. J.J. Marsden. A identity for spline functions with applications to variation-

diminishing spline approximation. J. Approximation Theory, 3:7–49, 1970.
121. S.J. MayBank. The angular velocity associated with the optical flow field

arising from motion through a rigid environment. Proc. Royal Society, London,
A401:317–326, 1985.

122. S.J. MayBank. A theoretical study of optical flow. PhD thesis, Birbeck College,
University of London, 1987.

123. T. McInerney and D. Terzopoulos. Topologically adaptable snakes. In Int.
Conf. on Computer Vision, pages 840–845. IEEE, June 1995.

124. S. Menet, P. Saint-Marc, and G. Medioni. B-snakes: Implementation and ap-
plication to stereo. In Proc. Image Understanding Workshop, pages 720–726,
1990.

References 241

125. Y. Meyer. Ondelettes et Operateurs I. Hermann, Paris, 1990.
126. B. Moghaddam, K.J. Hintz, and C.V. Stewart. Space filling curves for image

compression. In Proc. SPIE conf. Automatic Object Recognition, volume 1471,
pages 414–421, 1991.

127. R.C. Nelson and J. Aloimonos. Using flow field divergence for obstacle avoid-
ance: towards qualitative vision. In Proc. 2nd Int. conf. on Computer Vision,
pages 188–196, 1988.

128. A. Oliveira, S. Ribeiro, C. Esperanca, and G. Giraldi. Loop snakes: the gener-
alized model. In Int. Conf. on Information Visualisation, pages 975–980, July
2005.

129. S. Osher and J.A. Sethian. Fronts propagating with curvature dependent
speeed: Algorithms based on Hamilton-Jacobi formulations. Journal of Com-
putational Physics, 79:12–49, 1988.

130. N.R. Pal and D. Bhandari. Image thresholding. Signal Processing, 33:139–158,
1993.

131. N.R. Pal and S.K. Pal. Entropic thresholding. Signal Processing, 16:97–108,
1989.

132. N.R. Pal and S.K. Pal. Object background segmentation using new definition
of entropy. In Proc. IEE., volume part E, pages 284–295, 1989.

133. T. Pavlidis. Algorithms for Graphics and Image Processing. Springer-Verlag,
New York, 1982.

134. H.O. Peitjen, H. Jurjens, and D. Saupe. Chaos and Fractals. Springer Verlag,
New York, 1992.

135. T. Pun. A new method for gray level picture thresholding using the entropy
of the histogram. Signal processing, 2:223–237, 1980.

136. T. Pun. Entropic thresholding: a new approach. Computer Vision, Graphics
and Image Processing, 9:210–239, 1981.

137. J. Quinqueton and M. Berthod. A locally adaptive Peano scanning algorithm.
IEEE Trans. Pattern Anal. Machine Intell., 3:403–412, 1981.

138. L.R. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. Proc. IEEE, 77(2):257–286, February 1989],.

139. B. Ramamurthi and A. Gersho. Classified vector quantization. IEEE Trans.
Communications, 34:1105–1115, 1986.

140. J.H. Rieger and D.T. Lawton. Processing differential image motion. J. Opt.
Soc. Am., A2:354–360, 1985.

141. R. Rinaldo and G. Calvango. Image coding by block prediction of multi-
resolution subimages. IEEE Trans. Image Processing, 4:909–920, 1995.

142. D.F. Rogers and J.A. Adams. Mathematical Elements for Computer Graphics.
McGraw Hill, Singapore, 1990.

143. A. Rosenfeld. Digital straight line segment. IEEE Trans. Computers, 23:1264–
1269, 1974.

144. A. Rosenfeld and A.C. Kak. Digital Picture Processing. Academic Press,
Florida, 1982.

145. P. Salembier. Morphological multiscale segmentation for image coding. Signal
Processing, 38:359–386, 1994.

146. I.J. Schoenberg. Contributions to the problem of approximation of equidistant
data by analytic functions. Q. Appl. Math., 4:45–99, 1946.

147. I.J. Schoenberg. Cardinal spline interpolation. J. Soc. Indust. Appl. Math,
12:1–119, 1973.

242 References

148. L.L. Schumaker. Constructive aspects of discrete polynomial spline functions.
In C.C. Lorenz, editor, Approximation Theory. Academic Press, New York,
1973.

149. J.A. Sethian. A fast marching level set method for monotonically advancing
fronts. Proc. National Academy of Sciences, 93(4):1591–1595, 1996.

150. J.A. Sethian. Level Set Methods and Fast Marching Methods—Evolving In-
terfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and
Materials Science. Cambridge University Press, 1999.

151. C.E. Shannon and W. Weaver. The Mathematical Theory of Communication.
University Illinois Press, Urbana, 1949.

152. L. Shen and R.M. Rangayyan. A segmentation based lossless image coding
method for high resolution medical image compression. IEEE Trans. Medical
Imaging, 16:301–307, 1997.

153. W. Skarbek, T. Agui, and M. Nikajima. Compression of dithered binary images
using Hilbert scan. Trans. IEICE, 72:1235–1242, 1989.

154. N. Sorek and Y.Y. Zeevi. On-line visual data compression along a one dimen-
sional scan. In Proc. SPIE conf. Visual Communication and Image Processing,
volume 1001, pages 764–770, 1988.

155. R.J. Stevens, A.F. Lehar, and F.H. Preston. Manipulation and presentation
of multidimensional image data using peano scan. IEEE Trans. Pattern Anal.
Machine Intell., 5:520–526, 1983.

156. G. Strang. Wavelets and dilation equations:A brief introduction. SIAM Rev.,
31:614–627, 1989.

157. M. Subbarao. Bounds on time-to-collision and rotational component from
first-order derivatives ofimage flow. Computer Vision, Graphics and Image
Processing, 50:329–341, 1990.

158. Y.Y. Tang, L.H. Yang, J. Liu, and H. Ma. Wavelet Theory and Its Applications
to Pattern Recognition. World Scientific, Singapore, 2000.

159. N.T. Thao. A hybrid fractal-DCT coding scheme for image compression. In
Proc. IEEE Int. Conf. Image Processing (ICIP’96), pages 169–172, Lausanne,
Switzerland, 1996.

160. L. Thomas and F. Deravi. Region-based fractal image compression using
heuristic search. IEEE Trans. Image Processing, 4:832–838, 1995.

161. D.W. Thompson and J.L. Mundy. Three-dimensional model matching from an
unconstrained viewpoint. In Proceedings of IEEE Conference on Robotics and
Automation, 1987.

162. A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill-posed Problems. V.H. Win-
ston and Sons, Washington, D. C., 1977.

163. S. Ullman. The Interpretation of Visual Motion. MIT Press, Cambridge,
Massachusetts, 1979.

164. P.P. Vaidyanathan and P.Q. Hoang. Lattice structures for optimal design
and robust implementation of two channel perfect reconstruction QMF banks.
IEEE Trans. Acoust. Speech and signal Processing, 36:81–93, 1988.

165. M. Vetterli and C. Herley. Wavelets and filter banks: theory and design. IEEE
Trans. Signal Processing, 40:2207–2232, 1992.

166. M. Vetterli and J. Kovacevic. Wavelets and Subband Coding. Prentice-Hall,
Englewood-Cliffs, 1995.

167. A.J. Viterbi. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Trans. Inform. Theory, 13(2):260–269,
April 1967.

References 243

168. D. Walford. Rock wall segmentation using spatial and image information fu-
sion. Technical report, The University of Queensland, 2006.

169. G.K. Wallace. The JPEG still picture compression standard. Communications
of The ACM, 34(4):30–44, 1991.

170. M. Wang, J. Evans, L. Hassebrook, and C. Knapp. A multistage optimal active
contour model. IEEE Trans. Image Processing, 5:1586–1591, 1996.

171. A.M. Waxman and S. Ullman. Surface structure and three-dimensional motion
from image flow kinematics. Int. Journal of Robotics Research, 4:72–94, 1985.

172. A.M. Waxman and K. Whon. Contour evaluation, neighborhood deformation
and global image flow: planar surfaces in motion. Int. J. Robotics Research,
4:95–108, 1985.

173. J.S. Weszka. A survey of threshold selection techniques. Computer Graphics
and Image Processing, 7:259–265, 1978.

174. J.S. Weszka and A. Rosenfeld. Threshold evaluation techniques. IEEE Trans.
Syst., Man, Cybern., 8:622–629, 1978.

175. P.H. Winston. Artificial Intelliegence. Addison-Wesley Publishing Company
Inc, 1984.

176. L.D. Wu. On the chain code of a line. IEEE Trans. Pattern Analy. Machine
Intell., 3:347–353, 1982.

Index

β coefficients, 134
β-spline, 131
β-spline surface, 139
1-d B-B polnomial approx. technique,

65

Bézier-Bernstein surface, 13

active contour, 187
algorithms for discrete splines, 150

B-B polynomial, 64
B-spline, 110
B-spline basis, 113
B-spline curves, 114
B-spline surface, 121
Bézier curves, 10
Bézier spline, 11
Bézier-Bernstein polynomial (BBP), 8
balloon, 191
Battle-Lemarié wavelets, 179
bending energy, 69
Bernstein basis, 5
Bernstein polynomial, 5
biorthogonal spline, 180
bit requirement, 70
branch and bound, 215
Bresenham’s algorithm, 15

calculus of variations, 193
cardinal B-spline, 166
cardinal splines, 162
cell segmentation, 188
chain codes for Hilbert scan, 62

choice of weights, 88
circular trellis, 212
closed B-spline curves, 116
closed snake, 203
co-occurrence matrix, 37
conditional entropy, 38
continuous shape parameters, 136
control points, 9, 187
control polygon, 9
convergence of Lee’s algorithm, 158
cw-transform, 170

design criteria, 134
differential invariants, 121
Dijkstra algortithm, 194
discrete splines, 143
double contouring, 91
double vertices, 137
DSS, 155
DSS in vision, 157
dual active contour, 205
ducks, 185
dynamic programming, 193

elasticity, 190
embedding, 194
end conditions, 136
end vertex interpolation, 139
energy functional, 188
entropy, 38
Euler-Frobenius polynomials, 167
Euler-Lagrange equations, 193
evaluation of segmentation, 48
evolution, 187, 190

246 Index

expanding wavefront, 197
external energy, 187
external forces, 187

fast marching algorithm, 219
fidelity vector, 96
Ford-Fulkerson algorithm, 224

Gaussian circle, 21
geodesic, 219
Goldberg-Tarjan algorithm, 224

hidden Markov model, 201
Hilbert curve, 58
Hilbert scanned image, 58
hippocampus, 229
homogeneity, 70
homogeneity index, 97
homogeneous coordinate, 119

image compression, 83
image irradiance equation, 154
image quality index, 44
initialization criteria, 205
internal energy, 187, 188
IQI, 98

key pixels, 15, 92
knots, 110

Laplacian operator, 34
lofting, 185, 190

max-flow min-cut theorem, 223
maximum flow, 222
membrane, 188
merge, 47
mid-point heuristic, 204
minimal action, 219
minimum cut, 222
MRA, 174
multiplicity, 117

occluding boundary, 153
open snake, 203
order, 6
order of the polynomial, 44

Pap smear, 211

phantom vertices, 138
potential function, 225
preflow, 224
Principle of Optimality, 195
properties of B-spline curves, 117
properties of cw-transform, 171

quadratic B-spline, 113
quality assessment, 95

rational B-spline, 120
reconstruction, 72
rectangular to polar mapping, 215
reflectance map, 154
region growing, 35
Riemannian spaces, 219
Riesz bounds, 168

search tree, 215
segmentation, VIII
seismic, 186
Shannon’s theorem, 97
single-source shortest path problem, 196
slant, 124
snakes, 186
some properties of discrete spline, 149
spline approximations, 177
spline energy, 188
stereographic projection, 154
stiffness, 190
stopping criteria, 205
subdivision of control polygon, 152

texture coding, 90
thin-plate, 188
tilt, 124
time to contact, 129
tracking, 128
trellis, 200
triple vertices, 137

uniform non-periodic knots, 111
uniform periodic knot structure, 111

Viterbi algorithm, 194

wave equations, 227
wavelets, 170
wooden spline, 185, 190

	cover-image-large.jpg
	front-matter.pdf
	front-matter_001.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	front-matter_002.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	front-matter_003.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	back-matter.pdf

