

Start with FREE Cheat Sheets
Cheat Sheets include
	 •	Checklists
	 •	Charts
	 •	Common	Instructions
	 •	And	Other	Good	Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
	 •	Videos
	 •	Illustrated	Articles
	 •	Step-by-Step	Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
	 •	Digital	Photography
	 •	Microsoft	Windows	&	Office
	 •	Personal	Finance	&	Investing
	 •	Health	&	Wellness
	 •	Computing,	iPods	&	Cell	Phones
	 •	eBay
	 •	Internet
	 •	Food,	Home	&	Garden

Find	out	“HOW”	at	Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/html5css3aio

http://www.dummies.com/cheatsheet/html5css3aio

HTML5 and
CSS3
A L L - I N - O N E

3rd Edition

by Andy Harris

HTML5 and CSS3 All-in-One For Dummies®, 3rd Edition
Published by:
John Wiley & Sons, Inc.,
111 River Street,
Hoboken, NJ 07030-5774,
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2014 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior writ-
ten permission of the Publisher. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS
OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT
THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR
A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For tech-
nical support, please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2013952425

ISBN 978-1-118-28938-9 (pbk); ISBN 978-1-118-42139-0 (ePub); ISBN 978-1-118-41983-0 (ePDF)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com
http://Dummies.com

Contents at a Glance
Introduction .. 1

Part I: Creating the HTML Foundation 7
Chapter 1: Sound HTML Foundations ... 9
Chapter 2: It’s All About Validation ... 19
Chapter 3: Choosing Your Tools .. 33
Chapter 4: Managing Information with Lists and Tables .. 51
Chapter 5: Making Connections with Links .. 67
Chapter 6: Adding Images, Sound, and Video .. 77
Chapter 7: Creating Forms .. 105

Part II: Styling with CSS .. 129
Chapter 1: Coloring Your World .. 131
Chapter 2: Styling Text .. 149
Chapter 3: Selectors: Coding with Class and Style .. 175
Chapter 4: Borders and Backgrounds ... 197
Chapter 5: Levels of CSS.. 225
Chapter 6: CSS Special Effects .. 245

Part III: Building Layouts with CSS 263
Chapter 1: Fun with the Fabulous Float .. 265
Chapter 2: Building Floating Page Layouts ... 285
Chapter 3: Styling Lists and Menus ... 309
Chapter 4: Using Alternative Positioning .. 327

Part IV: Client-Side Programming with JavaScript 353
Chapter 1: Getting Started with JavaScript .. 355
Chapter 2: Talking to the Page ... 375
Chapter 3: Decisions and Debugging ... 399
Chapter 4: Functions, Arrays, and Objects ... 429
Chapter 5: Getting Valid Input .. 459
Chapter 6: Drawing on the Canvas .. 483
Chapter 7: Animation with the Canvas ... 511

Part V: Server-Side Programming with PHP 527
Chapter 1: Getting Started on the Server .. 529
Chapter 2: PHP and HTML Forms .. 549
Chapter 3: Using Control Structures ... 569
Chapter 4: Working with Arrays .. 587
Chapter 5: Using Functions and Session Variables ... 605
Chapter 6: Working with Files and Directories .. 617
Chapter 7: Exceptions and Objects ... 639

Part VI: Managing Data with MySQL 653
Chapter 1: Getting Started with Data .. 655
Chapter 2: Managing Data with MySQL ... 679
Chapter 3: Normalizing Your Data ... 705
Chapter 4: Putting Data Together with Joins ... 719
Chapter 5: Connecting PHP to a MySQL Database .. 741

Part VII: Integrating the Client and Server
with AJAX ... 759
Chapter 1: AJAX Essentials ... 761
Chapter 2: Improving JavaScript and AJAX with jQuery .. 775
Chapter 3: Animating jQuery .. 795
Chapter 4: Using the jQuery User Interface Toolkit .. 819
Chapter 5: Improving Usability with jQuery ... 841
Chapter 6: Working with AJAX Data .. 859
Chapter 7: Going Mobile ... 883

Part VIII: Moving from Pages to Sites 909
Chapter 1: Managing Your Servers .. 911
Chapter 2: Planning Your Sites .. 933
Chapter 3: Introducing Content Management Systems .. 953
Chapter 4: Editing Graphics ... 977
Chapter 5: Taking Control of Content ... 995

Index .. 1015

Table of Contents
Introduction ... 1

About This Book .. 1
Foolish Assumptions ... 2
Use Any Computer ... 3
Don’t Buy Any Software .. 3
How This Book Is Organized .. 3
New for the Third Edition ... 4
Icons Used in This Book ... 5
Beyond the Book ... 6
Where to Go from ... 6

Part I: Creating the HTML Foundation 7

Chapter 1: Sound HTML Foundations .9
Creating a Basic Page .. 9
Understanding the HTML in the Basic Page ... 11
Meeting Your New Friends, the Tags .. 12
Setting Up Your System .. 15

Displaying file extensions ... 15
Setting up your software ... 16

Chapter 2: It’s All About Validation . .19
Somebody Stop the HTML Madness! .. 19

XHTML had some great ideas .. 20
Validating Your Page ... 23

Aesop visits W3C ... 25
Using Tidy to repair pages ... 30

Chapter 3: Choosing Your Tools . .33
What’s Wrong with the Big Boys: Expression Web and Adobe

Dreamweaver .. 33
How About Online Site Builders? ... 34
Alternative Web Development Tools .. 35
Picking a Text Editor ... 35

Tools to avoid unless you have nothing else 36
Suggested programmer’s editors ... 36
My Personal Choice: Komodo Edit .. 41
Other text editors .. 43
The bottom line on editors ... 44

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionvi

Finding a Good Web Developer’s Browser ... 44
A little ancient history ... 44
Overview of the prominent browsers ... 46
Other notable browsers .. 48
The bottom line in browsers .. 49

Chapter 4: Managing Information with Lists and Tables 51
Making a List and Checking It Twice ... 51

Creating an unordered list .. 51
Creating ordered lists .. 53
Making nested lists .. 54
Building the definition list .. 57

Building Tables .. 59
Defining the table ... 60
Spanning rows and columns... 63
Avoiding the table-based layout trap .. 65

Chapter 5: Making Connections with Links .67
Making Your Text Hyper ... 67

Introducing the anchor tag ... 68
Comparing block-level and inline elements...................................... 69
Analyzing an anchor .. 69
Introducing URLs ... 70

Making Lists of Links ... 71
Working with Absolute and Relative References 73

Understanding absolute references .. 73
Introducing relative references .. 73

Chapter 6: Adding Images, Sound, and Video .77
Adding Images to Your Pages .. 77

Linking to an image .. 78
Adding inline images using the tag .. 80
src (source) .. 81
height and width .. 81
alt (alternate text) .. 81

Choosing an Image Manipulation Tool ... 82
An image is worth 3.4 million words ... 82
Introducing IrfanView .. 84

Choosing an Image Format ... 85
BMP .. 85
JPG/JPEG ... 86
GIF .. 86
PNG .. 88
SVG... 89
Summary of web image formats ... 90

Manipulating Your Images .. 90
Changing formats in IrfanView ... 90
Resizing your images ... 91
Enhancing image colors .. 92

Table of Contents vii

Using built-in effects .. 93
Other effects you can use ... 97
Batch processing ... 98

Working with Audio ... 99
Adding video... 101

Chapter 7: Creating Forms . .105
You Have Great Form .. 105

Forms must have some form .. 107
Building Text-Style Inputs .. 109
Making a standard text field ... 109
Building a password field ... 111

Making multi-line text input .. 112
Creating Multiple Selection Elements ... 114

Making selections .. 114
Building check boxes... 116
Creating radio buttons .. 117

Pressing Your Buttons .. 119
Making input-style buttons ... 120
Building a Submit button .. 121
It’s a do-over: The Reset button ... 121
Introducing the <button> tag ... 121

New form input types .. 122
date .. 122
time .. 123
datetime .. 123
datetime-local ... 123
week ... 124
month .. 125
color... 125
number .. 125
range .. 126
search .. 126
email .. 127
tel ... 127
url ... 127

Part II: Styling with CSS ... 129

Chapter 1: Coloring Your World . .131
Now You Have an Element of Style ... 131

Setting up a style sheet ... 133
Changing the colors ... 134

Specifying Colors in CSS ... 134
Using color names ... 135
Putting a hex on your colors .. 136
Coloring by number ... 136

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionviii

Hex education... 137
Using the web-safe color palette .. 139

Choosing Your Colors ... 140
Starting with web-safe colors ... 141
Modifying your colors ... 141
Doing it on your own pages .. 141
Changing CSS on the fly... 142

Creating Your Own Color Scheme ... 143
Understanding hue, saturation, and lightness 143
Using HSL colors in your pages ... 145
Using the Color Scheme Designer .. 146
Selecting a base hue .. 147
Picking a color scheme ... 148

Chapter 2: Styling Text .149
Setting the Font Family ... 149

Applying the font-family style attribute .. 150
Using generic fonts .. 151
Making a list of fonts ... 153

The Curse of Web-Based Fonts .. 154
Understanding the problem ... 154
Using Embedded Fonts ... 155
Using images for headlines ... 158

Specifying the Font Size .. 160
Size is only a suggestion!... 160
Using the font-size style attribute .. 161
Absolute measurement units ... 162

Relative measurement units ... 163
Determining Other Font Characteristics .. 164

Using font-style for italics ... 165
Using font-weight for bold .. 166
Using text-decoration .. 167
Using text-align for basic alignment .. 169
Other text attributes.. 170
Using the font shortcut ... 171
Working with subscripts and superscripts 172

Chapter 3: Selectors: Coding with Class and Style 175
Selecting Particular Segments .. 175

Defining more than one kind of paragraph 175
Styling identified paragraphs ... 176

Using Emphasis and Strong Emphasis .. 177
Modifying the Display of em and strong ... 179
Defining Classes ... 180

Adding classes to the page ... 181

Table of Contents ix

Using classes .. 182
Combining classes ... 182

Introducing div and span .. 184
Organizing the page by meaning.. 185
Why not make a table? .. 186

Using Pseudo-Classes to Style Links ... 187
Styling a standard link ... 187
Styling the link states .. 187
Best link practices ... 189

Selecting in Context ... 190
Defining Styles for Multiple Elements ... 191
Using New CSS3 Selectors .. 193

attribute selection ... 193
not .. 194
nth-child .. 194
Other new pseudo-classes .. 195

Chapter 4: Borders and Backgrounds . .197
Joining the Border Patrol ... 197

Using the border attributes .. 197
Defining border styles ... 199
Using the border shortcut .. 200
Creating partial borders.. 201

Introducing the Box Model ... 202
Borders, margin, and padding .. 203
Positioning elements with margins and padding 205

New CSS3 Border Techniques .. 207
Image borders .. 207
Adding Rounded Corners ... 209
Adding a box shadow .. 210

Changing the Background Image ... 212
Getting a background check ... 214
Solutions to the background conundrum 215

Manipulating Background Images ... 218
Turning off the repeat ... 218
Using CSS3 Gradients .. 219

Using Images in Lists ... 223

Chapter 5: Levels of CSS .225
Managing Levels of Style .. 225

Using local styles ... 225
Using an external style sheet ... 228

Understanding the Cascading Part of Cascading Style Sheets 233
Inheriting styles ... 233
Hierarchy of styles ... 234

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionx

Overriding styles .. 235
Precedence of style definitions .. 236

Managing Browser Incompatibility ... 237
Coping with incompatibility ... 237
Making Internet Explorer–specific code ... 238
Using a conditional comment with CSS .. 240
Checking the Internet Explorer version .. 242
Using a CSS reset .. 243

Chapter 6: CSS Special Effects .245
Image Effects .. 245

Transparency ... 245
Reflections .. 247

Text Effects ... 249
Text stroke .. 249
Text-shadow ... 251

Transformations and Transitions .. 252
Transformations .. 253
Three-dimensional transformations .. 254
Transition animation ... 257
Animations .. 259

Part III: Building Layouts with CSS 263

Chapter 1: Fun with the Fabulous Float .265
Avoiding Old-School Layout Pitfalls .. 265

Problems with frames ... 265
Problems with tables ... 266
Problems with huge images.. 267
Problems with Flash .. 267

Introducing the Floating Layout Mechanism ... 268
Using float with images ... 269
Adding the float property ... 270

Using Float with Block-Level Elements ... 271
Floating a paragraph.. 271
Adjusting the width ... 273
Setting the next margin ... 275

Using Float to Style Forms .. 276
Using float to beautify the form ... 279
Adjusting the fieldset width.. 282
Using the clear attribute to control page layout 283

Table of Contents xi

Chapter 2: Building Floating Page Layouts .285
Creating a Basic Two-Column Design ... 285

Designing the page ... 285
Building the HTML ... 287
Using temporary background colors .. 288
Setting up the floating columns ... 290
Tuning up the borders .. 291
Advantages of a fluid layout ... 292
Using semantic tags ... 292

Building a Three-Column Design ... 295
Styling the three-column page ... 296
Problems with the floating layout.. 298
Specifying a min-height ... 299
Using height and overflow .. 300

Building a Fixed-Width Layout ... 302
Setting up the HTML .. 303
Fixing the width with CSS ... 303

Building a Centered Fixed-Width Layout .. 305
Making a surrogate body with an all div ... 306
How the jello layout works ... 307
Limitations of the jello layout .. 308

Chapter 3: Styling Lists and Menus . .309
Revisiting List Styles ... 309

Defining navigation as a list of links .. 310
Turning links into buttons .. 310
Building horizontal lists .. 313

Creating Dynamic Lists ... 314
Building a nested list ... 315
Hiding the inner lists ... 317
Getting the inner lists to appear on cue ... 318

Building a Basic Menu System ... 321
Building a vertical menu with CSS ... 322
Building a horizontal menu .. 324

Chapter 4: Using Alternative Positioning . .327
Working with Absolute Positioning ... 327

Setting up the HTML .. 327
Adding position guidelines ... 328
Making absolute positioning work... 330

Managing z-index ... 331
Handling depth ... 331
Working with z-index ... 332

Building a Page Layout with Absolute Positioning 332
Overview of absolute layout ... 333

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionxii

Writing the HTML .. 334
Adding the CSS ... 335

Creating a More Flexible Layout .. 336
Designing with percentages.. 337
Building the layout... 339

Exploring Other Types of Positioning ... 340
Creating a fixed menu system .. 340
Setting up the HTML .. 341
Setting the CSS values ... 342

Flexible Box Layout Model ... 344
Creating a flexible box layout ... 345
Viewing a flexible box layout .. 346
… And now for a little reality ... 348

Determining Your Layout Scheme ... 351

Part IV: Client-Side Programming with JavaScript 353

Chapter 1: Getting Started with JavaScript . .355
Working in JavaScript ... 355

Choosing a JavaScript editor .. 356
Picking your test browser ... 356

Writing Your First JavaScript Program ... 357
Embedding your JavaScript code .. 358
Creating comments .. 358
Using the alert() method for output ... 358
Adding the semicolon.. 359

Introducing Variables .. 359
Creating a variable for data storage .. 360
Asking the user for information ... 361
Responding to the user ... 361

Using Concatenation to Build Better Greetings 362
Comparing literals and variables ... 363
Including spaces in your concatenated phrases 364

Understanding the String Object ... 364
Introducing object-based programming (and cows)..................... 364
Investigating the length of a string .. 365
Using string methods to manipulate text 366

Understanding Variable Types .. 368
Adding numbers ... 369
Adding the user’s numbers .. 370
The trouble with dynamic data .. 370
The pesky plus sign ... 371

Changing Variables to the Desired Type .. 372
Using variable conversion tools .. 373
Fixing the addInput code .. 373

Table of Contents xiii

Chapter 2: Talking to the Page . .375
Understanding the Document Object Model ... 375

Previewing the DOM .. 375
Getting the blues, JavaScript-style .. 377
Writing JavaScript code to change colors 378

Managing Button Events ... 379
Adding a function for more … functionality................................... 381
Making a more flexible function ... 382
Embedding quotes within quotes .. 384
Writing the changeColor function ... 384

Managing Text Input and Output ... 384
Introducing event-driven programming .. 385
Creating the HTML form ... 386
Using getElementById to get access to the page 387
Manipulating the text fields .. 388

Writing to the Document .. 388
Preparing the HTML framework .. 390
Writing the JavaScript ... 390
Finding your innerHTML ... 391

Working with Other Text Elements ... 391
Building the form ... 392
Writing the function... 393
Understanding generated source .. 395
What if you’re not in Chrome? ... 397

Chapter 3: Decisions and Debugging .399
Making Choices with If .. 399

Changing the greeting with if ... 401
The different flavors of if .. 402
Conditional operators ... 403
Nesting your if statements .. 403
Making decisions with switch .. 405

Managing Repetition with for Loops ... 406
Setting up the web page .. 407
Initializing the output .. 408
Creating the basic for loop ... 409
Introducing shortcut operators ... 410
Counting backwards .. 411
Counting by fives ... 412
Understanding the Zen of for loops ... 413

Building While Loops .. 413
Making a basic while loop ... 413
Getting your loops to behave ... 415
Managing more complex loops .. 416

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionxiv

Managing Errors with a Debugger ... 418
Debugging with the interactive console ... 420
Debugging strategies ... 422
Resolving syntax errors .. 422
Squashing logic bugs ... 424

Chapter 4: Functions, Arrays, and Objects . .429
Breaking Code into Functions .. 429

Thinking about structure .. 430
Building the antsFunction.html program.. 431

Passing Data to and from Functions ... 432
Examining the makeSong code... 434
Looking at the chorus ... 434
Handling the verses ... 435

Managing Scope ... 437
Introducing local and global variables .. 437
Examining variable scope ... 437

Building a Basic Array ... 439
Accessing array data ... 440
Using arrays with for loops .. 441
Revisiting the ants song .. 442

Working with Two-Dimension Arrays ... 444
Setting up the arrays ... 446
Getting a city .. 447
Creating a main() function ... 448

Creating Your Own Objects .. 449
Building a basic object .. 449
Adding methods to an object ... 450
Building a reusable object .. 452
Using your shiny new objects .. 453

Introducing JSON ... 454
Storing data in JSON format ... 454
Building a more complex JSON structure 455

Chapter 5: Getting Valid Input .459
Getting Input from a Drop-Down List .. 459

Building the form ... 460
Reading the list box ... 461

Managing Multiple Selections .. 462
Coding a multiple selection select object 462
Writing the JavaScript code ... 463

Check, Please: Reading Check Boxes .. 465
Building the check box page .. 466
Responding to the check boxes ... 467

Working with Radio Buttons .. 468
Interpreting Radio Buttons ... 469

Table of Contents xv

Working with Regular Expressions ... 470
Introducing regular expressions .. 473
Using characters in regular expressions .. 475
Marking the beginning and end of the line 476
Working with special characters ... 476
Conducting repetition operations ... 477
Working with pattern memory ... 478

New HTML5/CSS3 Tricks for Validation ... 479
Adding a pattern .. 481
Marking a field as required ... 481
Adding placeholder text.. 481

Chapter 6: Drawing on the Canvas .483
Canvas Basics ... 483

Setting up the canvas .. 484
How <canvas> works ... 485

Fill and Stroke Styles ... 486
Colors .. 486
Gradients ... 487
Patterns ... 489

Drawing Essential Shapes ... 491
Rectangle functions ... 491
Drawing text ... 492
Adding shadows ... 494

Working with Paths ... 496
Line-drawing options ... 498
Drawing arcs and circles ... 500
Drawing quadratic curves... 502
Building a Bézier curve ... 503

Images ... 505
Drawing an image on the canvas ... 505
Drawing part of an image .. 507

Manipulating Pixels ... 508

Chapter 7: Animation with the Canvas .511
Transformations .. 511

Building a transformed image .. 512
A few thoughts about transformations ... 514

Animation ... 515
Overview of the animation loop ... 515
Setting up the constants ... 516
Initializing the animation .. 517
Animate the current frame ... 517
Moving an element... 519
Bouncing off the walls ... 520

Reading the Keyboard ... 521
Managing basic keyboard input ... 522
Moving an image with the keyboard ... 523

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionxvi

Part V: Server-Side Programming with PHP 527

Chapter 1: Getting Started on the Server .529
Introducing Server-Side Programming .. 529

Programming on the server .. 529
Serving your programs .. 530
Picking a language ... 531

Installing Your Web Server ... 532
Inspecting phpinfo() ... 533
Building HTML with PHP .. 536
Coding with Quotation Marks .. 539
Working with Variables PHP-Style ... 540

Concatenation .. 541
Interpolating variables into text .. 542

Building HTML Output .. 543
Using double quote interpolation .. 543
Generating output with heredocs .. 544
Switching from PHP to HTML ... 546

Chapter 2: PHP and HTML Forms . .549
Exploring the Relationship between PHP and HTML 549

Embedding PHP inside HTML .. 550
Viewing the results .. 551

Sending Data to a PHP Program ... 552
Creating a form for PHP processing .. 552
Receiving data in PHP ... 555

Choosing the Method of Your Madness ... 556
Using get to send data ... 557
Using the post method to transmit form data 559
Getting data from the form ... 560

Retrieving Data from Other Form Elements ... 563
Building a form with complex elements ... 563
Responding to a complex form .. 565

Chapter 3: Using Control Structures .569
Introducing Conditions (Again) ... 569
Building the Classic if Statement ... 570

Rolling dice the PHP way .. 571
Checking your six... 571
Understanding comparison operators .. 574
Taking the middle road ... 574
Building a program that makes its own form 576

Making a switch ... 578
Looping with for .. 581
Looping with while .. 584

Table of Contents xvii

Chapter 4: Working with Arrays .587
Using One-Dimensional Arrays .. 587

Creating an array ... 587
Filling an array .. 588
Viewing the elements of an array .. 588
Preloading an array ... 589

Using Loops with Arrays .. 590
Simplifying loops with foreach ... 591
Arrays and HTML ... 593

Introducing Associative Arrays ... 594
Using foreach with associative arrays .. 595

Introducing Multidimensional Arrays ... 597
We’re going on a trip ... 597
Looking up the distance .. 599

Breaking a String into an Array .. 600
Creating arrays with explode ... 601
Creating arrays with preg_split.. 602

Chapter 5: Using Functions and Session Variables 605
Creating Your Own Functions .. 605

Rolling dice the old-fashioned way .. 606
Improving code with functions .. 607
Managing variable scope .. 610
Returning data from functions ... 610

Managing Persistence with Session Variables ... 611
Understanding session variables ... 613
Adding session variables to your code ... 614

Chapter 6: Working with Files and Directories 617
Text File Manipulation .. 617

Writing text to files .. 618
Writing a basic text file.. 620
Reading from the file ... 625

Using Delimited Data ... 626
Storing data in a CSV file ... 627
Viewing CSV data directly ... 629
Reading the CSV data in PHP .. 630

Working with File and Directory Functions ... 633
opendir() .. 633
readdir() ... 634
chdir() .. 634
Generating the list of file links .. 635

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionxviii

Chapter 7: Exceptions and Objects .639
Object-Oriented Programming in PHP .. 639

Building a basic object .. 640
Using your brand-new class ... 642
Protecting your data with access modifiers 644
Using access modifiers .. 645

You’ve Got Your Momma’s Eyes: Inheritance ... 647
Building a critter based on another critter 648
How to inherit the wind (and anything else) 649

Catching Exceptions .. 650
Introducing exception handling ... 650
Knowing when to trap for exceptions ... 652

Part VI: Managing Data with MySQL 653

Chapter 1: Getting Started with Data .655
Examining the Basic Structure of Data ... 655

Determining the fields in a record ... 657
Introducing SQL data types .. 657
Specifying the length of a record ... 658
Defining a primary key .. 659
Defining the table structure .. 659

Introducing MySQL .. 660
Why use MySQL? .. 661
Understanding the three-tier architecture 662
Practicing with MySQL .. 662

Setting Up phpMyAdmin ... 663
Changing the root password .. 665
Adding a user.. 670
Using phpMyAdmin on a remote server ... 672

Implementing a Database with phpMyAdmin .. 674

Chapter 2: Managing Data with MySQL . .679
Writing SQL Code by Hand ... 679

Understanding SQL syntax rules.. 680
Examining the buildContact.sql script .. 680
Dropping a table... 681
Creating a table .. 681
Adding records to the table.. 682
Viewing the sample data ... 683

Running a Script with phpMyAdmin ... 683
Using AUTO_INCREMENT for Primary Keys .. 686

Table of Contents xix

Selecting Data from Your Tables ... 688
Selecting only a few fields ... 689
Selecting a subset of records ... 690
Searching with partial information .. 692
Searching for the ending value of a field ... 693
Searching for any text in a field.. 693
Searching with regular expressions .. 694
Sorting your responses ... 695

Editing Records .. 696
Updating a record .. 696
Deleting a record.. 697

Exporting Your Data and Structure ... 697
Exporting SQL code ... 700
Creating XML data ... 702

Chapter 3: Normalizing Your Data . .705
Recognizing Problems with Single-Table Data ... 705

The identity crisis .. 706
The listed powers .. 706
Repetition and reliability .. 708
Fields with changeable data ... 709
Deletion problems ... 709

Introducing Entity-Relationship Diagrams ... 709
Using MySQL workbench to draw ER diagrams 709
Creating a table definition in Workbench 710

Introducing Normalization ... 713
First normal form ... 714
Second normal form .. 715
Third normal form ... 716

Identifying Relationships in Your Data ... 717

Chapter 4: Putting Data Together with Joins .719
Calculating Virtual Fields .. 719

Introducing SQL functions .. 720
Knowing when to calculate virtual fields .. 721

Calculating Date Values .. 721
Using DATEDIFF to determine age ... 722
Adding a calculation to get years .. 723
Converting the days integer into a date.. 723
Using YEAR() and MONTH() to get readable values 724
Concatenating to make one field.. 725

Creating a View .. 726
Using an Inner Join to Combine Tables .. 728

Building a Cartesian join and an inner join 729
Enforcing one-to-many relationships .. 731

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionxx

Counting the advantages of inner joins .. 732
Building a view to encapsulate the join .. 733

Managing Many-to-Many Joins ... 733
Understanding link tables ... 735
Using link tables to make many-to-many joins 736

Chapter 5: Connecting PHP to a MySQL Database741
PHP and MySQL: A Perfect (but Geeky) Romance 741

Understanding data connections ... 744
Introducing PDO... 745
Building a connection .. 745
Retrieving data from the database .. 747
Using HTML tables for output .. 748

Allowing User Interaction ... 751
Building an HTML search form .. 753
Responding to the search request... 753

Part VII: Integrating the Client and Server
with AJAX .. 759

Chapter 1: AJAX Essentials .761
AJAX Spelled Out ... 762

A is for asynchronous ... 763
J is for JavaScript ... 763
A is for … and? ... 763
And X is for … data .. 763

Making a Basic AJAX Connection .. 764
Building the HTML form .. 766
Creating an XMLHttpRequest object ... 767
Opening a connection to the server .. 768
Sending the request and parameters .. 769
Checking the status ... 769

All Together Now — Making the Connection Asynchronous 771
Setting up the program ... 772
Building the getAJAX() function ... 772
Reading the response .. 773

Chapter 2: Improving JavaScript and AJAX with jQuery 775
Introducing jQuery .. 776

Installing jQuery ... 777
Importing jQuery from Google ... 777

Your First jQuery App ... 778
Setting up the page .. 779
Meet the jQuery node object .. 780

Creating an Initialization Function .. 781

Table of Contents xxi

Using $(document).ready() ... 782
Alternatives to document.ready .. 783

Investigating the jQuery Object ... 783
Changing the style of an element ... 783
Selecting jQuery objects ... 785
Modifying the style .. 785

Adding Events to Objects ... 786
Adding a hover event .. 787
Changing classes on the fly .. 788

Making an AJAX Request with jQuery ... 790
Including a text file with AJAX .. 791
Building a poor man’s CMS with AJAX .. 791

Chapter 3: Animating jQuery .795
Playing Hide and Seek ... 795

Getting transition support .. 797
Writing the HTML and CSS foundation ... 799
Initializing the page.. 800
Hiding and showing the content .. 800
Toggling visibility... 801
Sliding an element .. 801
Fading an element in and out ... 802

Changing Position with jQuery .. 802
Creating the framework .. 804
Setting up the events ... 805
Building the move() function with chaining 806
Building time-based animation with animate () 806
Move a little bit: Relative motion ... 808

Modifying Elements on the Fly ... 808
Building the basic page ... 813
Initializing the code ... 813
Adding text ... 813
Attack of the clones ... 814
It’s a wrap.. 815
Alternating styles ... 816
Resetting the page ... 816
More fun with selectors and filters .. 817

Chapter 4: Using the jQuery User Interface Toolkit 819
What the jQuery User Interface Brings to the Table 819

It’s a theme park .. 820
Using the themeRoller to get an overview of jQuery 820
Wanna drag? Making components draggable 823
Downloading the library ... 824
Writing the program .. 826

Resizing on a Theme ... 827
Examining the HTML and standard CSS.. 829

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionxxii

Importing the files .. 829
Making a resizable element .. 830
Adding themes to your elements ... 830
Adding an icon ... 833

Dragging, Dropping, and Calling Back ... 834
Building the basic page ... 836
Initializing the page.. 836
Handling the drop .. 838
Beauty school dropout events ... 838
Cloning the elements ... 839

Chapter 5: Improving Usability with jQuery .841
Multi-Element Designs .. 841

Playing the accordion widget ... 842
Building a tabbed interface .. 845
Using tabs with AJAX... 848

Improving Usability ... 849
Playing the dating game .. 851
Picking numbers with the slider .. 852
Selectable elements ... 854
Building a sortable list .. 855
Creating a custom dialog box ... 856

Chapter 6: Working with AJAX Data .859
Sending Requests AJAX Style ... 859

Sending the data .. 859
Building a Multipass Application ... 863

Setting up the HTML framework .. 864
Loading the select element ... 865
Writing the loadList.php program ... 866
Responding to selections .. 867
Writing the showHero.php script .. 868

Working with XML Data .. 870
Review of XML .. 871
Manipulating XML with jQuery .. 872
Creating the HTML ... 873
Retrieving the data .. 874
Processing the results ... 874
Printing the pet name .. 875

Working with JSON Data ... 876
Knowing JSON’s pros .. 876
Reading JSON data with jQuery ... 877
Managing the framework .. 878
Retrieving the JSON data .. 879
Processing the results ... 879

Table of Contents xxiii

Chapter 7: Going Mobile .883
Thinking in Mobile ... 883
Building a Responsive Site ... 885

Specifying a media type .. 885
Adding a qualifier ... 885

Making Your Page Responsive ... 888
Building the wide layout ... 891
Adding the narrow CSS ... 892

Using jQuery Mobile to Build Mobile Interfaces 894
Building a basic jQuery mobile page ... 894
Working with collapsible content .. 897
Building a multi-page document .. 900

Going from Site to App .. 905
Adding an icon to your program .. 906
Removing the Safari toolbar ... 906
Storing your program offline .. 907

Part VIII: Moving from Pages to Sites 909

Chapter 1: Managing Your Servers .911
Understanding Clients and Servers ... 911

Parts of a client-side development system 912
Parts of a server-side system ... 913

Creating Your Own Server with XAMPP ... 914
Running XAMPP ... 915
Testing your XAMPP configuration ... 916
Adding your own files .. 916
Setting the security level .. 917
Compromising between functionality and security 919

Choosing a Web Host .. 920
Finding a hosting service .. 920
Connecting to a hosting service... 922

Managing a Remote Site .. 922
Using web-based file tools .. 922
Understanding file permissions ... 924
Using FTP to manage your site... 925
Using an FTP client .. 926

Naming Your Site ... 928
Understanding domain names ... 928
Registering a domain name .. 929

Managing Data Remotely .. 931
Creating your database ... 931
Finding the MySQL server name .. 932

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionxxiv

Chapter 2: Planning Your Sites .933
Creating a Multipage Web Site ... 933
Planning a Larger Site ... 934
Understanding the Client .. 934

Ensuring that the client’s expectations are clear 935
Delineating the tasks ... 936

Understanding the Audience ... 937
Determining whom you want to reach .. 937
Finding out the user’s technical expertise 938

Building a Site Plan .. 939
Creating a site overview .. 940
Building the site diagram .. 941

Creating Page Templates .. 943
Sketching the page design .. 943
Building the HTML template framework ... 945
Creating page styles .. 947
Building a data framework .. 949

Fleshing Out the Project ... 950
Making the site live .. 950
Contemplating efficiency .. 951

Chapter 3: Introducing Content Management Systems953
Overview of Content Management Systems ... 954
Previewing Common CMSs ... 955

Moodle... 955
WordPress .. 956
Drupal .. 957
Building a CMS site with WebsiteBaker .. 958
Installing your CMS .. 958
Getting an overview of WebsiteBaker ... 962
Adding your content .. 962
Using the WYSIWYG editor ... 963
Changing the template .. 968
Adding additional templates .. 969

Building Custom Themes .. 971
Adding new functionality .. 970
Starting with a prebuilt template ... 971
Changing the info.php file ... 973
Modifying index.php .. 974
Modifying the CSS files .. 975
Packaging your template .. 976

Chapter 4: Editing Graphics .977
Using a Graphic Editor .. 977
Choosing an Editor .. 978

Table of Contents xxv

Introducing Gimp ... 979
Creating an image .. 980
Painting tools .. 980
Selection tools .. 982
Modification tools .. 984
Managing tool options ... 984
Utilities .. 985

Understanding Layers ... 986
Introducing Filters ... 988
Solving Common Web Graphics Problems ... 989

Changing a color .. 989
Building a banner graphic... 990
Building a tiled background ... 992

Chapter 5: Taking Control of Content .995

Building a “Poor Man’s CMS” with Your Own Code 995
Using Server Side Includes (SSIs) .. 995
Using AJAX and jQuery for client-side inclusion 998
Building a page with PHP includes .. 1000

Creating Your Own Data-Based CMS ... 1001
Using a database to manage content .. 1001
Writing a PHP page to read from the table 1004
Allowing user-generated content ... 1007
Adding a new block ... 1011
Improving the dbCMS design ... 1013

Index ... 1015

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionxxvi

Introduction

I
 love the Internet, and if you picked up this book, you probably do, too.
The Internet is dynamic, chaotic, exciting, interesting, and useful, all at

the same time. The web is pretty fun from a user’s point of view, but that’s
only part of the story. Perhaps the best part of the Internet is how participa-
tory it is. You can build your own content — free! It’s really amazing. There’s
never been a form of communication like this before. Anyone with access to
a minimal PC and a little bit of knowledge can create his or her own home-
stead in one of the most exciting platforms in the history of communication.

The real question is how to get there. A lot of web development books are
really about how to use some sort of software you have to buy. That’s okay,
but it isn’t necessary. Many software packages have evolved that purport to
make web development easier — and some work pretty well — but regard-
less what software package you use, there’s still a need to know what’s
really going on under the surface. That’s where this book comes in.

About This Book
You’ll find out exactly how the web works in this book. You’ll figure out how
to use various tools, but, more importantly, you’ll create your piece of the
web. You’ll discover:

 ✓ How web pages are created: You’ll figure out the basic structure of web
pages. You’ll understand the structure well because you build pages
yourself. No mysteries here.

 ✓ How to separate content and style: You’ll understand the foundation
of modern thinking about the Internet — that style should be separate
from content.

 ✓ How to use web standards: The web is pretty messy, but, finally, some
standards have arisen from the confusion. You’ll discover how these
standards work and how you can use them.

 ✓ How to create great-looking web pages: Of course, you want a terrific-
looking website. With this book, you’ll find out how to use layout, style,
color, and images.

 ✓ How to build modern layouts: Many web pages feature columns, menus,
and other fancy features. You’ll figure out how to build all these things.

 ✓ How to add interactivity: Adding forms to your pages, validating form
data, and creating animations are all possible with the JavaScript language.

Foolish Assumptions2

 ✓ How to write programs on the server: Today’s web is powered by pro-
grams on web servers. You’ll discover the powerful PHP language and
figure out how to use it to create powerful and effective sites.

 ✓ How to harness the power of data: Every web developer eventually
needs to interact with data. You’ll read about how to create databases
that work. You’ll also discover how to connect databases to your web
pages and how to create effective and useful interfaces.

 ✓ How AJAX is changing everything: The hottest web technology on
the horizon is AJAX (Asynchronous JavaScript and XML). You’ll figure
out how to harness this way of working and use it to create even more
 powerful and interesting applications.

Foolish Assumptions
I don’t have any foolish assumptions: I’m not assuming anything in this book.
If you’ve never built a web page before, you’re in the right hands. You don’t
need any experience, and you don’t have to know anything about HTML, pro-
gramming, or databases. I discuss everything you need.

If you’re reasonably comfortable with a computer (you can navigate the web
and use a word processor), you have all the skills you need.

If you’ve been around web development for a while, you’ll still find this book
handy.

If you’ve used HTML but not HTML5, see how things have changed and
 discover the powerful combination of HTML5 and CSS3.

You’ll see how new HTML and CSS features can literally make your web
pages sing and dance, with support for advanced tools like audio and video
embedding, animation, and much more.

If you’re already comfortable with HTML and CSS, you’re ready to add
JavaScript functionality for form validation and animation. If you’ve never
used a programming language before, JavaScript is a really great place to start.

If you’re starting to get serious about web development, you’ve probably
already realized that you’ll need to work with a server at some point. PHP is
a really powerful, free, and easy language that’s extremely prominent on the
web landscape. You’ll use this to have programs send e-mails, store and load
information from files, and work with databases.

If you’re messing with commercial development, you’ll definitely need to
know more about databases. I get e-mails every week from companies look-
ing for people who can create a solid relational database and connect it to a
website with PHP.

How This Book Is Organized 3

If you’re curious about AJAX, you can read about what it is, how it works,
and how to use it to add functionality to your site. You’ll also read about a
very powerful and easy AJAX library that can add tremendous functionality
to your bag of tricks.

I wrote this book as the reference I wish I had. If you have only one web develop-
ment book on your shelf, this should be the one. Wherever you are in your web
development journey, you can find something interesting and new in this book.

Use Any Computer
One of the great things about web development is how accessible it can be. You
don’t need a high-end machine to build websites. Whatever you’re using now
will probably do fine. I tested most of the examples in this book with Windows 7,
Ubuntu Linux, and a Macbook pro. I’ve tested on computers ranging from
cutting-edge platforms to mobile devices to a $35 Raspberry Pi. Most of the soft-
ware I use in the book is available free for all major platforms. Similar alterna-
tives for all platforms are available in the few cases when this isn’t true.

Don’t Buy Any Software
Everything you need for web development is on the companion website. I’ve
used only open-source software for this book. Following are the highlights:

 ✓ Komodo Edit: Komodo Edit is my current favorite editor. It’s a solid free text
editor well suited to the many text-editing tasks you’ll run across in your
programming travels. It also works exactly the same on every platform, so it
doesn’t really matter what computer or operating system you’re running.

 ✓ XAMPP: When you’re ready to move to the server, XAMPP is a com-
plete server package that’s easy to install and incredibly powerful. This
includes the incredible Apache web server, the PHP programming lan-
guage, the MySQL database manager, and tons of useful utilities.

 ✓ Useful tools: Every time I use a tool (such as a data mapper, a diagram
tool, or an image editor) in this book, I make it available on the compan-
ion website.

There’s no need to buy any expensive web development tools. Everything you
need is here and no harder than the more expensive web editors.

How This Book Is Organized
Web development is about solving a series of connected but different problems.
This book is organized into eight minibooks based on specific technologies. You
can read them in any order you wish, but you’ll find that the later books tend to
rely on topics described in the earlier books. (For example, JavaScript doesn’t
make much sense without HTML because JavaScript is usually embedded in a
web page written with HTML.) The following describes these eight minibooks:

New for the Third Edition4

 ✓ Book I: Creating the HTML Foundation — Web development incorpo-
rates a lot of languages and technologies, but HTML is the foundation.
Here I show you HTML5, the latest incarnation of HTML, and describe
how it’s used to form the basic skeleton of your pages.

 ✓ Book II: Styling with CSS — In the old days, HTML had a few tags to
spruce up your pages, but they weren’t nearly powerful enough. Today,
developers use Cascading Style Sheets (CSS) to add color and format-
ting to your pages as well as zing and pizazz. (I’m pretty sure those are
formal computer programming words.)

 ✓ Book III: Building Layouts with CSS — Discover the best ways to set up
layouts with floating elements, fixed positioning, and absolute position-
ing. Figure out how to build various multicolumn page layouts and how
to create dynamic buttons and menus.

 ✓ Book IV: Client-Side Programming with JavaScript — Figure out essen-
tial programming skills with the easy and powerful JavaScript language —
even if you’ve never programmed before. Manipulate data in web forms
and use powerful regular expression technology to validate form entries.
Also discover how to create animations with JavaScript with the powerful
new <canvas> element.

 ✓ Book V: Server-Side Programming with PHP — Move your code to the
server and take advantage of this powerful language. Figure out how to
respond to web requests; work with conditions, functions, objects, and
text files; and connect to databases.

 ✓ Book VI: Managing Data with MySQL — Most serious Web projects are
eventually about data. Figure out how databases are created, how to set
up a secure data server, the basics of data normalization, and how to
create a reliable and trustworthy data back end for your site.

 ✓ Book VII: Integrating the Client and Server with AJAX — Look forward
to the technology that has the web abuzz. AJAX isn’t really a language
but rather a new way of thinking about web development. Get the skinny
on what’s going on here, build an AJAX connection or two by hand, and
read about some really cool libraries for adding advanced features and
functionality to your pages.

 ✓ Book VIII: Moving from Pages to Sites — This minibook ties together
many of the threads throughout the rest of the book. Discover how
to create your own complete web server solution or pick a web host.
Walk through the process of designing a complex multipage web site.
Discover how to use content management systems to simplify complex
websites and, finally, to build your own content management system
with skills taught throughout the book.

New for the Third Edition
This is actually the third edition of this book. (The previous editions were
called HTML, XHTML, and CSS All in One For Dummies.) I have made a few
changes to keep up with advances in technology:

Icons Used in This Book 5

 ✓ Focus on HTML5: The first edition of the book used HTML4, the second
edition used XHTML, and this edition uses HTML5. I’m very excited
about HTML5 because it’s easier to use than either of the older versions,
and quite a bit more powerful.

 ✓ Integration with CSS3: CSS3 is the latest incarnation of CSS, and it has
some wonderful new features too, including the ability to use custom
fonts, animation, and new layout mechanisms.

 ✓ Improved PHP coverage: PHP has had some major updates reflected in
this book. I have modified all form input to use the safer filter_input
mechanism, and all database connectivity now uses the PDO library.

 ✓ Enhanced jQuery coverage: jQuery has become even more important
as a utility library than it was before. The coverage updates some of the
nice new features of this library.

 ✓ A new mobile chapter: Mobile web development is increasingly
important. I provide a new chapter with tips on making your pages
mobile-friendly, including use of the jQuery mobile library and building
responsive designs that automatically adjust based on screen size.

 ✓ Support for the WebsiteBaker CMS: I use this CMS quite a bit in my web
business, and I find it especially easy to modify. I changed Book VIII,
Chapter 3 to explain how to use and modify this excellent CMS.

 ✓ Various tweaks and improvements: No book is perfect (though I really
try). There were a few passages in the previous edition that readers
found difficult. I tried hard to clean up each of these areas. Many thanks
to those who provided feedback!

Icons Used in This Book
This is a For Dummies book, so you have to expect some snazzy icons, right?
I don’t disappoint. Here’s what you’ll see:

 This is where I pass along any small insights I may have gleaned in my travels.

I can’t really help being geeky once in a while. Every so often, I want to
explain something a little deeper. Read this to impress people at your next
computer science cocktail party or skip it if you really don’t need the details.

A lot of details are here. I point out something important that’s easy to forget
with this icon.

Watch out! Anything I mark with this icon is a place where things have blown
up for me or my students. I point out any potential problems with this icon.

Beyond the Book6

Beyond the Book
You can find additional features of this book online. Visit the web to find
these extras:

 ✓ Companion website: www.aharrisbooks.net/haio

 This is my primary site for this book. Every single example in the book
is up and running on this site so you can see it in action. When neces-
sary, I’ve also included source code so you can see the source code of
anything you can’t look at with the ordinary View Source command. I’ve
also posted a link to every piece of software that I mention in the book.
If you find any example is not working on your site, please come to my
site. If there was a problem with an example in the book, I’ll update the
site right away, so check my site to compare your code to mine. I also
have links to my other books, a forum where you can ask questions, and
a form for emailing me any specific questions you might have.

 ✓ Cheat Sheet: Go to www.dummies.com/cheatsheet/html5css3aio
to find this book’s Cheat Sheet. Here, you can find primers on selected
HTML syntax, CSS attributes, JavaScript syntax, and MySQL commands.

 ✓ Dummies.com online articles: Go to www.dummies.com/extras/
html5css3aio to find the Extras for this book. Here you can find arti-
cles on topics such as using HTML entities, resetting and extending CSS,
JavaScript libraries, using templates with PHP, SQLite and alternative
data strategies, fun with jQuery plug-ins, and what’s next for the web.

 ✓ Updates: For Dummies technology books sometimes have updates. To
check for updates to this book, go to www.dummies.com/extras/
html5css3aio.

Where to Go from Here
Well, that’s really up to you. I sincerely believe you can use this book to turn
into a top-notch web developer. That’s my goal for you.

Although this is a massive book, there’s still more to figure out. If you
have questions or just want to chat, feel free to e-mail me at andy@
aharrisbooks.net. You can also visit my website at www.aharrisbooks.
net/ for code examples, updates, and other good stuff.

I try hard to answer all reader e-mails, but sometimes I get behind. Please be
patient with me, and I’ll do my best to help.

I can’t wait to hear from you and see the incredible websites you develop.
Have a great time, discover a lot, and stay in touch!

http://www.aharrisbooks.net/haio
http://www.dummies.com/cheatsheet/html5css3aio
http://www.dummies.com/extras/html5css3aio
http://www.dummies.com/extras/html5css3aio
http://www.dummies.com/extras/html5css3aio
http://www.dummies.com/extras/html5css3aio
mailto://andy@aharrisbooks.net
mailto://andy@aharrisbooks.net
http://www.aharrisbooks.net/
http://www.aharrisbooks.net/

 Visit www.dummies.com for more great content online.

Part I
Creating the HTML

Foundation

http://www.dummies.com

Contents at a Glance

Contents at a Glance

Chapter 1: Sound HTML Foundations .9
Creating a Basic Page ...9
Understanding the HTML in the Basic Page ..11
Meeting Your New Friends, the Tags...12
Setting Up Your System ...15

Chapter 2: It’s All About Validation .19
Somebody Stop the HTML Madness! ...19
Validating Your Page ..23
Using Tidy to repair pages ...30

Chapter 3: Choosing Your Tools .33
What’s Wrong with the Big Boys: Expression Web and Adobe Dreamweaver33
How About Online Site Builders? ...34
Alternative Web Development Tools ...35
Picking a Text Editor ...35
Finding a Good Web Developer’s Browser ...44

Chapter 4: Managing Information with Lists and Tables 51
Making a List and Checking It Twice ...51
Building Tables ..59

Chapter 5: Making Connections with Links .67
Making Your Text Hyper ...67
Making Lists of Links ..71
Working with Absolute and Relative References ...73

Chapter 6: Adding Images, Sound, and Video .77
Adding Images to Your Pages ...77
Choosing an Image Manipulation Tool ..82
Choosing an Image Format ...85
Manipulating Your Images ..90
Working with Audio ..99

Chapter 7: Creating Forms . .105
You Have Great Form ..105
Building Text-Style Inputs ...109
Making a standard text field ...109
Building a password field ..111
Creating Multiple Selection Elements ...114
Pressing Your Buttons ..119
New form input types ...122

Chapter 1: Sound HTML
Foundations

In This Chapter
✓ Creating a basic web page

✓ Understanding the most critical HTML tags

✓ Setting up your system to work with HTML

✓ Viewing your pages

T
his chapter is your introduction to building web pages. Before this slim
chapter is finished, you’ll have your first page up and running. It’s a

humble beginning, but the basic web technology you learn here is the foun-
dation of everything happening on the web today.

In this minibook, you discover the modern form of web design using HTML5.
Your web pages will be designed from the ground up, which makes them
easy to modify and customize. Although you figure out more advanced tech-
niques throughout this book, you’ll take the humble pages you discover in
this chapter and make them do all kinds of exciting things.

Creating a Basic Page
Here’s the great news: The most important web technology you need is also
the easiest. You don’t need any expensive or complicated software, and you
don’t need a powerful computer. You probably have everything you need to
get started already.

No more talking! Fire up a computer and build a web page!

 1. Open a text editor.

 You can use any text editor you want, as long as it lets you save files
as plain text. If you’re using Windows, Notepad is fine for now. If you’re
using Mac, you’ll really need to download a text editor. I like Komodo
Edit (www.activestate.com/komodo-edit) or TextWrangler
(www.barebones.com/products/textwrangler/). It’s possible to
make TextEdit work correctly, but it’s probably easier to just download
something made for the job. I explain text editors more completely in
Chapter 3 of this mini-book.

http://www.activestate.com/komodo-edit
http://www.barebones.com/products/textwrangler/

Creating a Basic Page10

 Don’t use a word processor like Microsoft Word or Mac TextEdit. These
are powerful tools, but they don’t save things in the right format. The way
these tools do things like centering text and changing fonts won’t work on
the web. I promise that you’ll figure out how to do all that stuff soon, but a
word processing program won’t do it correctly. Even the Save as HTML
feature doesn’t work right. You really need a very simple text editor, and
that’s it. In Chapter 3 of this minibook, I show you a few more editors that
make your life easier. You should not use Word or TextEdit.

 2. Type the following code.

 Really. Type it in your text editor so you get some experience writing the
actual code. I explain very soon what all this means, but type it now to
get a feel for it:

<!DOCTYPE HTML>
<html lang="en-US">
<head>
<meta charset="UTF-8">
<!-- myFirst.html -->

<title>My very first web page!</title>
</head>

<body>

<h1>This is my first web page!</h1>

<p>
This is the first web page I've ever made,
and I'm extremely proud of it.
It is so cool!
</p>

</body>
</html>

 3. Save the file as myFirst.html.

 It’s important that your filename has no spaces and ends with the .html
extension. Spaces cause problems on the Internet (which is, of course,
where all good pages go to live), and the .html extension is how most
computers know that this file is an HTML file (which is another name for
a web page). It doesn’t matter where you save the file, as long as you can
find it in the next step.

 4. Open your web browser.

 The web browser is the program used to look at pages. After you post
your page on a web server somewhere, your Great Aunt Gertrude
can use her web browser to view your page. You also need one (a
browser, not a Great Aunt Gertrude) to test your page. For now, use
whatever browser you ordinarily use. Most Windows users already
have Internet Explorer installed. If you’re a Mac user, you probably
have Safari. Linux folks generally have Chrome or Firefox. Any of
these are fine. In Chapter 3 of this minibook, I explain why you prob-
ably need more than one browser and how to configure them for
maximum usefulness.

Understanding the HTML in the Basic Page 11

Book I
Chapter 1

Sound HTM
L

Foundations

5. Load your page into the browser.

 You can do this a number of ways. You can use the browser’s File menu
to open a local file, or you can simply drag the file from your Desktop (or
wherever) to the open browser window.

 6. Bask in your newfound genius.

 Your simple text file is transformed! If all went well, it looks like Figure 1-1.

Understanding the HTML in the Basic Page
The page you created in the previous section uses an extremely simple
notation — HTML (HyperText Markup Language), which has been around since
the beginning of the web. HTML is a terrific technology for several reasons:

 ✦ It uses plain text. Most document systems (like word processors) use
special binary encoding schemes that incorporate formatting directly
into the computer’s internal language, which locks a document into
a particular computer or software. That is, a document stored in
Word format can’t be read without a program that understands Word
formatting. HTML gets past this problem by storing everything in
plain text.

Figure 1-1:
Congratu
lations!
You’re
now a web
developer!

Meeting Your New Friends, the Tags12

 ✦ It works on all computers. The main point of HTML is to have a univer-
sal format. Any computer should be able to read and write it. The plain-
text formatting aids in this.

 ✦ It describes what documents mean. HTML isn’t really designed to
indicate how a page or its elements look. HTML is about describing the
meaning of various elements (more on that very soon). This has some
distinct advantages when you figure out how to use HTML properly.

 ✦ It doesn’t describe how documents look. This one seems strange. Of
course, when you look at Figure 1-1, you can see that the appearance of the
text on the web page has changed from the way the text looked in your text
editor. Formatting a document in HTML does cause the document’s appear-
ance to change. That’s not the point of HTML, though. You discover in Book
II and Book III how to use another powerful technology — CSS — to change
the appearance of a page after you define its meaning. This separation of
meaning from layout is one of the best features of HTML.

 ✦ It’s easy to write. Sure, HTML gets a little more complicated than this
first example, but you can easily figure out how to write HTML without
any specialized editors. You only have to know a handful of elements,
and they’re pretty straightforward.

 ✦ It’s free. HTML doesn’t cost anything to use, primarily because it isn’t
owned by anyone. No corporation has control of it (although a couple
have tried), and nobody has a patent on it. The fact that this technology
is freely available to anyone is a huge advantage.

Meeting Your New Friends, the Tags
The key to writing HTML code is the special text inside angle braces (<>).
These special elements are tags. They aren’t meant to be displayed on the
web page, but offer instructions to the web browser about the meaning of
the text. The tags are meant to be embedded into each other to indicate the
organization of the page. This basic page introduces you to all the major tags
you’ll encounter. (There are more, but they can wait for a chapter or two.)
Each tag has a beginning and an end tag. The end tag is just like the begin-
ning tag, except the end tag has a slash (/):

 ✦ <!DOCTYPE HTML>: This special tag is used to inform the browser that
the document type is HTML. This is how the browser knows you’ll be
writing an HTML5 document. You will sometimes see other values for
the doctype, but HTML5 is the way to go these days.

 ✦ <html lang = “en”></html>: The <html> tag is the foundation of
the entire web page. The tag begins the page. Likewise, </html> ends
the page. For example, the page begins with <html> and ends with
</html>. The <html></html> combination indicates that everything
in the page is defined as HTML code. In HTML5, you’re expected to tell

Meeting Your New Friends, the Tags 13

Book I
Chapter 1

Sound HTM
L

Foundations

the browser which language the page will be written in. Because I write
in English, I’m specifying with the code “en.”

 Some books teach you to write your HTML tags in uppercase letters.
This was once a standard, but it is no longer recommended.

 ✦ <head></head>: These tags define a special part of the web page called
the head (or sometimes header). This part of the web page reminds me of
the engine compartment of a car. This is where you put some great stuff
later, but it’s not where the main document lives. For now, the only thing
you’ll put in the header is the document’s title. Later, you’ll add styling
information and programming code to make your pages sing and dance.

 ✦ <meta charset=“UTF-8”>: The meta tag is used to provide a little more
information to the browser. This command gives a little more information
to the browser, telling it which character set to use. English normally uses
a character set called (for obscure reasons) UTF-8. You don’t need to worry
much about this, but every HTML5 page written in English uses this code.

 ✦ <!--/-->: This tag indicates a comment, which is ignored by the
browser. However, a comment is used to describe what’s going on in a
particular part of the code.

 ✦ <title></title>: This tag is used to determine the page’s title. The
title usually contains ordinary text. Whatever you define as the title will
appear in some special ways. Many browsers put the title text in the
browser’s title bar. Search engines often use the title to describe the page.

 Throughout this book, I use the filename of the HTML code as the title.
That way, you can match any figure or code listing to the corresponding
file on the web site that accompanies this book. Typically, you’ll use some-
thing more descriptive, but this is a useful technique for a book like this.

 It’s not quite accurate to say that the title text always shows up in the title
bar because a web page is designed to work on lots of different browsers.
Sure, the title does show up on most major browsers that way, but what
about cellphones and tablets? HTML never legislates what will happen; it
only suggests. This may be hard to get used to, but it’s a reality. You trade
absolute control for widespread capability, which is a good deal.

 ✦ <body></body>: The page’s main content is contained within these
tags. Most of the HTML code and the stuff the user sees are in the body
area. If the header area is the engine compartment, the body is where
the passengers go.

 ✦ <h1></h1>: H1 stands for heading level one. Any text contained within
this markup is treated as a prominent headline. By default, most browsers
add special formatting to anything defined as H1, but there’s no guaran-
tee. An H1 heading doesn’t really specify any particular font or formatting,
just the meaning of the text as a level one heading. When you find out how
to use CSS in Book II, you’ll discover that you can make your headline look
however you want. In this first minibook, keep all the default layouts for
now and make sure you understand that HTML is about semantic mean-
ing, not about layout or design. There are other levels of headings, of

Meeting Your New Friends, the Tags14

course, through <h6> where <h2> indicates a heading slightly less impor-
tant than <h1>, <h3> is less important than <h2>, and so on.

 Beginners are sometimes tempted to make their first headline an <h1>
tag and then use an <h2> for the second headline and an <h3> for the
third. That’s not how it works. Web pages, like newspapers and books,
use different headlines to point out the relative importance of various
elements on the page, often varying the point size of the text. You can
read more about that in Book II.

 ✦ <p></p>: In HTML, p stands for the paragraph tag. In your web pages,
you should enclose each standard paragraph in a <p></p> pair. You might
notice that HTML doesn’t preserve the carriage returns or white space in
your HTML document. That is, if you press Enter in your code to move text
to a new line, that new line isn’t necessarily preserved in the final web page.

 The <p></p> structure is one easy way to manage spacing before and
after each paragraph in your document.

 Some older books recommend using <p> without a </p> to add space to
your documents, similar to pressing the Enter key. This way of thinking
could cause you problems later because it doesn’t accurately reflect the
way web browsers work. Don’t think of <p> as the carriage return.
Instead, think of <p> and </p> as defining a paragraph. The paragraph
model is more powerful because soon enough, you’ll figure out how to
take any properly defined paragraph and give it yellow letters on a green
background with daisies (or whatever else you want). If things are
marked properly, they’ll be much easier to manipulate later.

Be proud of this first page. It may be simple, but
it’s the foundation of greater things to come.
Before moving on, take a moment to ponder
some important HTML principles shown in this
humble page you’ve created:

 ✓ All tags are lowercase. Although HTML
does allow uppercase tags, modern devel
opers have agreed on lowercase tags in
most cases. (<!DOCTYPE> is one nota
ble exception to this rule.)

 ✓ Tag pairs are containers, with a beginning
and an end. Tags contain other tags or text.

 ✓ Some elements can be repeated. There’s
only one <html> , <title> , and
<body> tag per page, but a lot of the
other elements (<h1> and <p>) can be
repeated as many times as you like.

 ✓ Carriage returns are ignored. In the
Notepad document, there are a number
of carriage returns. The formatting of the
original document has no effect on the
HTML output. The markup tags indicate
how the output looks.

A few notes about the basic page

Setting Up Your System 15

Book I
Chapter 1

Sound HTM
L

Foundations

Setting Up Your System
You don’t need much to make web pages. Your plain text editor and a web
browser are about all you need. Still, some things can make your life easier
as a web developer.

Displaying file extensions
The method discussed in this section is mainly for Windows users, but it’s a
big one. Windows uses the extension (the part of the filename after the period)
to determine what type of file you’re dealing with. This is very important in
web development. The files you create are simple text files, but if you store
them with the ordinary .txt extension, your browser can’t read them prop-
erly. What’s worse, the default Windows setting hides these extensions from
you, so you have only the icons to tell you what type of file you’re dealing with,
which causes all kinds of problems. I recommend you have Windows explicitly
describe your file extensions. Here’s how to set that up in Windows 7:

 1. Click the Start button.

 This opens the standard Start menu.

 2. Open the Control Panel.

 The Control Panel application allows you to modify many parts of your
operating system.

 3. Find Appearance and Personalization.

 This section allows you to modify the visual look and feel of your operat-
ing system.

 4. Choose Folder Options.

 This dialog box lets you modify the way folders look throughout the
visual interface.

 5. Find Advanced Settings.

 Click the View tab and then look under Advanced Settings.

 6. Display file extensions.

 By default, the Hide Extensions for Known File Types check box is
selected. Deselect this check box to display file extensions.

The process for displaying file types is similar in Windows 8:

 1. Go to Windows Explorer.

 Use the Windows Explorer tile to view Windows Explorer — the standard
file manager for Windows.

 2. Click the View tab.

 This tab allows you to modify how directories look.

Setting Up Your System16

 3. De-select filename extensions.

 If this button is checked, file extensions are shown (which is what
you want.) (See Figure 1-2.) Note this is the opposite of Windows 7’s
behavior.

 Although my demonstration uses Windows 7 and 8, the technique is similar
in older versions of Windows. Just do a quick search for “displaying file
extensions.”

Setting up your software
You’ll write a lot of web pages, so it makes sense to set up your system to
make that process as easy as possible. I talk a lot more about some software
you should use in Chapter 3 of this minibook, but for now, here are a couple
of easy suggestions:

 ✦ Put a Notepad icon on your Desktop. You’ll edit a lot of text files, so it’s
helpful to have an icon for Notepad (or whatever other text editor you

Figure 1-2:
Don’t
hide file
extensions
(deselect
that Hide
Extensions
check box).

Setting Up Your System 17

Book I
Chapter 1

Sound HTM
L

Foundations

use) available directly on the Desktop. That way, you can quickly edit
any web page by dragging it to the Desktop. When you use more sophis-
ticated editors than Notepad, you’ll want links to them, too.

 ✦ Get another web browser. You may just love your web browser, and
that’s fine, but you can’t assume that everybody likes the same browser
you do. You need to know how other browsers interpret your code.
Chrome is an incredibly powerful browser, and it’s completely free, as
well has having a lot of great programmer’s features. If you don’t already,
I suggest having links to at least two browsers directly on your Desktop.

Most of the problems people have with the web
are from misunderstandings about how this
medium really works. Most people are com
fortable with word processors, and we know
how to make a document look how we want.
Modern applications use WYSIWYG tech
nology, promising that what you see is what
you get. That’s a reasonable promise when it
comes to print documents, but it doesn’t work
that way on the web.

How a web page looks depends on a lot of
things that you don’t control. The user may
read your pages on a smaller or larger screen
than you. She may use a different operating
system than you. She may have a slower con
nection or may turn off the graphics for speed.
She may be blind and use screenreader tech
nology to navigate web pages. She may be
reading your page on a tablet, smart phone,

or even an older (not so smart) cellphone. You
can’t make a document that looks the same in
all these situations.

A good compromise is to make a document
that clearly indicates how the information
fits together and makes suggestions about
the visual design. The user and her browser
can determine how much of those sugges
tions to use.

You get some control of the visual design but
never complete control, which is okay because
you’re trading total control for accessibility.
People with devices you’ve never heard of can
visit your page.

Practice a few times until you can easily build
a page without looking anything up. Soon
enough, you’re ready for the next step — build
ing pages like the pros.

Understanding the magic

18 Book I: Creating the HTML Foundation

Chapter 2: It’s All About Validation

In This Chapter
✓ Introducing the concept of valid pages

✓ Using a doctype

✓ Setting the character set

✓ Meeting the W3C validator

✓ Fixing things when they go wrong

✓ Using HTML Tidy to clean your pages

W
eb development is undergoing a revolution. As the web matures and
becomes a greater part of everyday life, it’s important to ensure that

web pages perform properly — thus, a call for web developers to follow
voluntary standards of web development.

Somebody Stop the HTML Madness!
In the bad old days, the web was an informal affair. People wrote HTML
pages any way they wanted. Although this was easy, it led to a lot of
problems:

 ✦ Browser manufacturers added features that didn’t work on all
browsers. People wanted prettier web pages with colors, fonts, and
doodads, but there wasn’t a standard way to do these things. Every
browser had a different set of tags that supported enhanced features. As
a developer, you had no real idea if your web page would work on all the
browsers out there. If you wanted to use some neat feature, you had to
ensure your users had the right browser.

 ✦ The distinction between meaning and layout was blurred. People
expected to have some kind of design control of their web pages, so
all kinds of new tags popped up that blurred the distinction between
describing and decorating a page.

 ✦ Table-based layout was used as a hack. HTML didn’t have a good way
to handle layout, so clever web developers started using tables as a
layout mechanism. This worked, after a fashion, but it wasn’t easy or
elegant.

 ✦ People started using tools to write pages. Web development soon
became so cumbersome that people began to believe that they couldn’t
do HTML by hand anymore and that some kind of editor was necessary

Somebody Stop the HTML Madness!20

to handle all that complexity for them. Although these editing programs
introduced new features that made things easier upfront, these tools
also made code almost impossible to change without the original editor.
Web developers began thinking they couldn’t design web pages without
a tool from a major corporation.

 ✦ The nature of the web was changing. At the same time, these factors
were making ordinary web development more challenging. Innovators
were recognizing that the web wasn’t really about documents but was
about applications that could dynamically create documents. Many of
the most interesting web pages you visit aren’t web pages at all, but
programs that produce web pages dynamically every time you visit. This
innovation meant that developers had to make web pages readable by
programs, as well as humans.

 ✦ XHTML tried to fix things. The standards body of the web (there really
is such a thing) is called the World Wide Web Consortium (W3C), and
it tried to resolve things with a new standard called XHTML. This was a
form of HTML that also followed the much stricter rules of XML. If every-
one simply agreed to follow the XHTML standard, much of the ugliness
would go away.

 ✦ XHTML didn’t work either. Although XHTML was a great idea, it
turned out to be complicated. Parts of it were difficult to write by
hand, and very few developers followed the standards completely.
Even the browser manufacturers didn’t agree exactly on how to read
and display XHTML. It doesn’t matter how good an idea is if nobody
follows it.

In short, the world of HTML was a real mess.

XHTML had some great ideas
In 2000, the World Wide Web Consortium (usually abbreviated as W3C) got
together and proposed some fixes for HTML. The basic plan was to create a
new form of HTML that complied with a stricter form of markup, or eXtensi-
ble Markup Language (XML). The details are long and boring, but essentially,
they came up with some agreements about how web pages are standardized.
Here are some of those standards:

 ✦ All tags have endings. Every tag comes with a beginning and an end
tag. (Well, a few exceptions come with their own ending built in. I’ll
explain when you encounter the first such tag in Chapter 6 of this
minibook.) This was a new development because end tags were con-
sidered optional in old-school HTML, and many tags didn’t even have
end tags.

 ✦ Tags can’t be overlapped. In HTML, sometimes people had the tendency
to be sloppy and overlap tags, like this: <a>my stuff.
That’s not allowed in XHTML, which is a good thing because it confuses
the browser. If a tag is opened inside some container tag, the tag must
be closed before that container is closed.

Book I
Chapter 2

It’s All About
Validation

Somebody Stop the HTML Madness! 21

 ✦ Everything’s lowercase. Some people wrote HTML in uppercase, some
in lowercase, and some just did what they felt like. It was inconsistent
and made it harder to write browsers that could read all the variations.

 ✦ Attributes must be in quotes. If you’ve already done some HTML, you
know that quotes used to be optional — not anymore. (Turn to Chapter
3 for more about attributes.)

 ✦ Layout must be separate from markup. Old-school HTML had a bunch
of tags (like and <center>) that were more about format-
ting than markup. These were useful, but they didn’t go far enough.
XHTML (at least the strict version) eliminates all these tags. Don’t
worry, though; CSS gives you all the features of these tags and a lot
more.

This sounds like strict librarian rules, but really they aren’t restricting at all.
Most of the good HTML coders were already following these guidelines or
something similar.

Even though you’re moving past XHTML into HTML5, these aspects of
XHTML remain, and they are guidelines all good HTML5 developers still use.

 HTML5 actually allows a looser interpretation of the rules than XHTML strict
did, but throughout this book I write HTML5 code in a way that also passes
most of the XHTML strict tests. This practice ensures nice clean code with
no surprises.

You validate me
In old-style HTML, you never really knew how your pages would look on
various browsers. In fact, you never really knew if your page was even writ-
ten properly. Some mistakes would look fine on one browser but cause
another browser to blow up.

The idea of validation is to take away some of the uncertainty of HTML. It’s
like a spell checker for your code. My regular spell checker makes me feel a
little stupid sometimes because I make mistakes. I like it, though, because
I’m the only one who sees the errors. I can fix the spelling errors before I
pass the document on to you, so I look smart. (Well, maybe.)

It’d be cool if you could have a special kind of checker that does the same
things for your web pages. Instead of checking your spelling, it’d test your
page for errors and let you know if you made any mistakes. It’d be even
cooler if you could have some sort of certification that your page follows a
standard of excellence.

That’s how page validation works. You can designate that your page will
follow a particular standard and use a software tool to ensure that your
page meets that standard’s specifications. The software tool is a validator.
I show you two different validators in the upcoming “Validating Your Page”
section.

Somebody Stop the HTML Madness!22

The browsers also promise to follow a particular standard. If your page
validates to a given standard, any browser that validates to that same
standard can reproduce your document correctly, which is a big deal.

The most important validator is the W3C validator at http://validator.
w3.org, as shown in Figure 2-1.

A validator is actually the front end of a piece of software that checks pages
for validity. It looks at your web page’s doctype and sees whether the page
conforms to the rules of that doctype. If not, it tells you what might have
gone wrong.

You can submit code to a validator in three ways:

 ✦ Validate by URI. This option is used when a page is hosted on a web
server. Files stored on local computers can’t be checked with this
technique. Book VIII describes all you need to know about working with
web servers, including how to create your own and move your files to
it. (A URI, or uniform resource identifier, is a more formal term for a web
address, which is more frequently seen as URL.)

 ✦ Validate by file upload. This technique works fine with files you haven’t
posted to a web server. It works great for pages you write on your com-
puter but that you haven’t made visible to the world. This is the most
common type of validation for beginners.

 ✦ Validate by direct input. The validator page has a text box you can
simply paste your code into. It works, but I usually prefer to use the
other methods because they’re easier.

Figure 2-1:
The W3C
validator
page isn’t
exciting,
but it sure is
useful.

http://validator.w3.org
http://validator.w3.org

Book I
Chapter 2

It’s All About
Validation

Validating Your Page 23

Validation might sound like a big hassle, but it’s really a wonderful tool
because sloppy HTML code can cause lots of problems. Worse, you might
think everything’s okay until somebody else looks at your page, and
suddenly, the page doesn’t display correctly.

 As of this writing, the W3C validator can read and test HTML5 code, but the
HTML5 validation is still considered experimental. Until HTML5 becomes a
bit more mainstream, your HTML5 pages may get a warning about the
experimental nature of HTML5. You can safely ignore this warning.

Validating Your Page
To explain all this, I created a web page the way Aesop might have done in
ancient Greece. Okay, maybe Aesop didn’t write his famous fables as web
pages, but if he had, they might have looked like the following code listing:

<!DOCTYPE HTML>
<html lang="en-US">
<head>
 <meta charset="UTF-8">

<!-- oxWheels1.html -->

<!-- note this page has deliberate errors! Please see the text
 and oxWheelsCorrect.html for a corrected version.
-->

</head>
<body>
<title>The Oxen and the Wheels</title>
<h1>The Oxen and the Wheels
<h2></h1>From Aesop's Fables</h2>

<p>
 A pair of Oxen were drawing a heavily loaded wagon along a
 miry country road. They had to use all their strength to pull
 the wagon, but they did not complain.
<p>

<p>
 The Wheels of the wagon were of a different sort. Though the
 task they had to do was very light compared with that of the
 Oxen, they creaked and groaned at every turn. The poor Oxen,
 pulling with all their might to draw the wagon through the
 deep mud, had their ears filled with the loud complaining of
 the Wheels. And this, you may well know, made their work so
 much the harder to endure.
</p>

<p>
 "Silence!" the Oxen cried at last, out of patience. "What have
 you Wheels to complain about so loudly? We are drawing all the
 weight, not you, and we are keeping still about it besides."
</p>

<h2>
They complain most who suffer least.

Validating Your Page24

</h2>

</body>
</html>

The code looks okay, but actually has a number of problems. Aesop may
have been a great storyteller, but from this example, it appears he was a
sloppy coder. The mistakes can be hard to see, but trust me, they’re there.
The question is, how do you find the problems before your users do?

You might think that the problems would be evident if you viewed the
page in a web browser. The various web browsers seem to handle the page
decently, even if they don’t display it in an identical way. Figure 2-2 shows
oxWheels1.html in a browser.

Chrome appears to handle the page pretty well, but From Aesop’s
Fables is supposed to be a headline level two, or H2, and it appears as
plain text. Other than that, there’s very little indication that something is
wrong.

If it looks fine, who cares if it’s exactly right? You might wonder why we
care if there are mistakes in the underlying code, as long as everything
works okay. After all, who’s going to look at the code if the page displays
properly?

The problem is, you don’t know if it’ll display properly, and mistakes in your
code will eventually come back to haunt you. If possible, you want to know
immediately what parts of your code are problematic so you can fix them
and not worry.

Figure 2-2:
The page
looks okay,
but the
headings
are strange.

Book I
Chapter 2

It’s All About
Validation

Validating Your Page 25

Aesop visits W3C
To find out what’s going on with this page, pay a visit to the W3C validator
at http://validator.w3.org. Figure 2-3 shows me visiting this site and
uploading a copy of oxWheels1.html to it.

Hold your breath and click the Check button. You might be surprised at the
results shown in Figure 2-4.

The validator is a picky beast, and it doesn’t seem to like this page at all. The
validator does return some useful information and gives enough hints that
you can decode things soon enough.

Figure 2-3:
I’m
checking
the
oxWheels
page to
look for any
problems.

Figure 2-4:
Five errors?
That can’t
be right!

http://validator.w3.org

Validating Your Page26

Examining the overview
Before you look at the specific complaints, take a quick look at the web page
the validator sends you. The web page is chock-full of handy information.
The top of the page tells you a lot of useful things:

 ✦ Result: This is really the important thing. You’ll know the number of
errors remaining by looking at this line. Don’t panic, though. The errors
in the document are probably fewer than the number you see here.

 ✦ File: The name of the file you’re working on.

 ✦ Encoding: The text encoding you’ve set. If you didn’t explicitly set text
encoding, you may see a warning here.

 ✦ Doctype: This is the doctype extracted from your document. It indicates
the rules that the validator is using to check your page. This should usu-
ally say HTML5.

 ✦ The dreaded red banner: Experienced web developers don’t even have
to read the results page to know if there is a problem. If everything goes
well, there’s a green congratulatory banner. If there are problems, the
banner is red. It doesn’t look good, Aesop.

 Don’t panic because you have errors. The mistakes often overlap, so one
problem in your code often causes more than one error to pop up. Most of
the time, you have far fewer errors than the page says, and a lot of the errors
are repeated, so after you find the error once, you’ll know how to fix it
throughout the page.

Validating the page
The validator doesn’t always tell you everything you need to know, but it
does give you some pretty good clues. Page validation is tedious but not
as difficult as it might seem at first. Here are some strategies for working
through page validation:

 ✦ Focus only on the first error. Sure, 100 errors might be on the page,
but solve them one at a time. The only error that matters is the first one
on the list. Don’t worry at all about other errors until you’ve solved the
first one.

 ✦ Note where the first error is. The most helpful information you get is
the line and column information about where the validator recognized
the error. This isn’t always where the error is, but it does give you some
clues.

 ✦ Look at the error message. It’s usually good for a laugh. The error mes-
sages are sometimes helpful and sometimes downright mysterious.

 ✦ Look at the verbose text. Unlike most programming error messages,
the W3C validator tries to explain what went wrong in something like
English. It still doesn’t always make sense, but sometimes the text gives
you a hint.

Book I
Chapter 2

It’s All About
Validation

Validating Your Page 27

 ✦ Scan the next couple of errors. Sometimes, one mistake shows up as
more than one error. Look over the next couple of errors, as well, to see
if they provide any more insight; sometimes, they do.

 ✦ Try a change and revalidate. If you’ve got an idea, test it out (but only
solve one problem at a time.) Check the page again after you save it. If
the first error is now at a later line number than the previous one, you’ve
succeeded.

 ✦ Don’t worry if the number of errors goes up. The number of perceived
errors will sometimes go up rather than down after you successfully fix
a problem. This is okay. Sometimes, fixing one error uncovers errors
that were previously hidden. More often, fixing one error clears up many
more. Just concentrate on clearing errors from the beginning to the end
of the document.

 ✦ Lather, rinse, and repeat. Look at the new top error and get it straight-
ened out. Keep going until you get the coveted Green Banner of
Validation. (If I ever write an HTML adventure game, the Green Banner of
Validation will be one of the most powerful talismans.)

Examining the first error
Look again at the results for the oxWheels1.html page. The first error mes-
sage looks like Figure 2-5.

Figure 2-5:
Well, that
clears
every-
thing up.

Figure 2-5 shows the first two error messages. The first complains that the
head is missing a title. The second error message is whining about the title
being in the body. The relevant code is repeated here:

<!DOCTYPE HTML>
<html lang="en-US">

Validating Your Page28

<head>
 <meta charset="UTF-8">

<!-- oxWheels1.html -->

<!-- note this page has deliberate errors! Please see the text
 and oxWheelsCorrect.html for a corrected version.
-->

</head>
<body>
<title>The Oxen and the Wheels</title>

Look carefully at the head and title tag pairs and review the notes in
the error messages, and you’ll probably see the problem. The <title>
element is supposed to be in the heading, but I accidentally put it in the
body! (Okay, it wasn’t accidental; I made this mistake deliberately here
to show you what happens. However, I have made this mistake for real in
the past.)

Fixing the title
If the title tag is the problem, a quick change in the HTML should fix it.
oxWheels2.html shows another form of the page with my proposed fix:

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<!-- oxWheels2.html -->

<!-- Moved the title tag inside the header -->
<title>The Oxen and the Wheels</title>

</head>
<body>

Note: I’m only showing the parts of the page that I changed. The entire page
is available on this book’s website. See this book’s Introduction for more on
the website.

The fix for this problem is pretty easy:

 1. Move the title inside the head. I think the problem here is having the
<title> element inside the body, rather than in the head where it
belongs. If I move the title to the body, the error should be eliminated.

 2. Change the comments to reflect the page’s status. It’s important that
the comments reflect what changes I make.

 3. Save the changes. Normally, you simply make a change to the same docu-
ment, but I’ve elected to change the filename so you can see an archive
of my changes as the page improves. This can actually be a good idea
because you then have a complete history of your document’s changes,
and you can always revert to an older version if you accidentally make
something worse.

Book I
Chapter 2

It’s All About
Validation

Validating Your Page 29

 4. Note the current first error position. Before you submit the modified
page to the validator, make a mental note of the position of the current
first error. Right now, the validator’s first complaint is on line 12, column
7. I want the first mistake to be somewhere later in the document.

 5. Revalidate by running the validator again on the modified page.

 6. Review the results and do a happy dance. It’s likely you still have
errors, but that’s not a failure! Figure 2-6 shows the result of my revalida-
tion. The new first error is on line 17, and it appears to be very different
from the last error. I solved it!

Solving the next error
One down, but more to go. The next error (refer to Figure 2-6) looks strange,
but it makes sense when you look over the code.

This type of error is very common. What it usually means is you forgot to
close something or you put something in the wrong place. The error mes-
sage indicates a problem in line 17. The next error is line 17, too. See if you
can find the problem here in the relevant code:

<body>
<h1>The Oxen and the Wheels
<h2></h1>From Aesop's Fables</h2>

After you know where to look, the problem becomes a bit easier to spot.
I got sloppy and started the <h2> tag before I finished the <h1>. In many
cases, one tag can be completely embedded inside another, but you can’t
have tag definitions overlap as I’ve done here. The <h1> has to close before I
can start the <h2> tag.

Figure 2-6:
Heading
cannot be
a child of
another
heading.
Huh?

Validating Your Page30

This explains why browsers might be confused about how to display the
headings. It isn’t clear whether this code should be displayed in H1 or H2
format, or perhaps with no special formatting at all. It’s much better to
know the problem and fix it than to remain ignorant until something goes
wrong.

The third version — oxWheels3.html — fixes this part of the program:

<!-- oxWheels3.html -->
<!-- sort out the h1 and h2 tags at the top -->
<title>The Oxen and the Wheels</title>
</head>
<body>
<h1>The Oxen and the Wheels</h1>
<h2>From Aesop's Fables</h2>

The validator has fixed a number of errors, but there’s one really sneaky
problem still in the page. See if you can find it, and then read ahead.

Using Tidy to repair pages
The W3C validator isn’t the only game in town. Another great resource —
HTML Tidy — can be used to fix your pages. You can download Tidy or just
use the online version at http://infohound.net/tidy. Figure 2-7
illustrates the online version.

I can hear the angry e-mails coming in. “Andy,
I’ve been writing web pages since 1998, and I
never used a validator.” Okay, it’s true. A lot of
people, even some professional web develop-
ers, work without validating their code. Some
of my older web pages don’t validate at all.
(You can run the W3C validator on any page
you want, not just one you wrote. This can be
a source of great joy if you like feeling superior
to sloppy coders.) When I became more profi-
cient and more prolific in my web development,
I found that those little errors often caused a
whole lot of grief down the road. I really believe
you should validate every single page you
write. Get into the habit now, and it’ll pay huge
dividends. When you’re figuring out this stuff
for the first time, do it right.

If you already know some HTML, you’re gonna
hate the validator for a while because it rejects
coding habits that you might think are perfectly
fine. Unlearning a habit is a lot harder than
learning a new practice, so I feel your pain. It’s
still worth it.

After you discipline yourself to validate your
pages, you’ll find you’ve picked up good
habits, and validation becomes a lot less pain-
ful. Experienced programmers actually like
the validation process because it becomes
much easier and prevents problems that could
cause lots of grief later. You may even want
to re-validate a page you’ve been using for a
while. Sometimes a content update can cause
mistakes.

Is validation really that big a deal?

http://infohound.net/tidy

Book I
Chapter 2

It’s All About
Validation

Validating Your Page 31

Figure 2-7:
HTML
Tidy is an
alternative
to the W3C
validator.

Figure 2-8:
Tidy fixes
the page,
but the fix
is a little
awkward.

Unlike W3C’s validator, Tidy actually attempts to fix your page. Figure 2-8
displays how Tidy suggests the oxWheels1.html page be fixed.

Tidy examines the page for a number of common errors and does its best
to fix the errors. However, the result is not quite perfect:

 ✦ It outputs XHTML by default. XHTML is fine, but because we’re doing
HTML here, deselect the Output XHTML box. The only checkbox you
need selected is Drop Empty Paras.

Validating Your Page32

 ✦ Tidy got confused by the headings. Tidy correctly fixed the level one
heading, but it had trouble with the level two heading. It removed all the
tags, so it’s valid, but the text intended to be a level two heading is just
sort of hanging there.

 ✦ Sometimes, the indentation is off. I set Tidy to indent every element,
so it is easy to see how tag pairs are matched up. If I don’t set up the
indentation explicitly, I find Tidy code very difficult to read.

 ✦ The changes aren’t permanent. Anything Tidy does is just a suggestion.
If you want to keep the changes, you need to save the results in your
editor. Click the Download Tidied File button to do this easily.

I sometimes use Tidy when I’m stumped because I find the error messages
are easier to understand than the W3C validator. However, I never trust
it completely. Until it’s updated to truly understand HTML5, it sometimes
deletes perfectly valid HTML5 tags. There’s really no substitute for good old
detective skills and the official W3C validator.

Did you figure out that last error? I tried to close a paragraph with <p>
rather than </p>. That sort of thing freaks out an XHTML validator, but
HTML takes it in stride, so you might not even know there is a problem. Tidy
does notice the problem and repairs it. Remember this when you’re working
with a complex page and something doesn’t seem right. It’s possible there’s
a mistake you can’t even see, and it’s messing you up. In that case, consider
using a validator and Tidy to figure out what’s going wrong and fix it.

Chapter 3: Choosing Your Tools

In This Chapter
✓ Choosing a text editor

✓ Using a dedicated HTML editor

✓ Comparing common browsers

W
eb development is a big job. You don’t go to a construction site with-
out a belt full of tools (and a cool hat), and the same thing is true

with web development (except you don’t normally need a hard hat for web
development). An entire industry has evolved trying to sell tools that help
make web development easier. The funny thing is that the tools you need
might not be the ones that people are trying to sell you. Some of the very
best web development tools are free, and some of the most expensive tools
aren’t that helpful.

This chapter tells you what you need and how to set up your workshop with
great programs that simplify web development.

What’s Wrong with the Big Boys: Expression Web and
Adobe Dreamweaver

Many web development books are really books about how to use a particu-
lar type of software. Microsoft’s Expression Web and Adobe Dreamweaver
are the two primary applications in this category. These tools are powerful
and offer some seemingly great features:

 ✦ WYSIWYG editing: What you see is what you get is an idea borrowed
from word processors. You can create a web page much like a word-
processing document and use menus as well as tools to handle all the
formatting. The theory is that you don’t have to know any icky codes.

 ✦ Templates: You can create a template that stays the same and build
several pages from that template. If you need to change the template,
everything else changes automatically.

 ✦ Site management: The interaction between the various pages on your
site can be maintained automatically.

These sound like pretty good features, and they are. The tools (and the
newer replacements, like Microsoft’s Expression suite) are very powerful
and can be an important part of your web development toolkit. However,
the same powerful programs introduce problems, such as the following:

How About Online Site Builders?34

 ✦ Code maintenance: The commercial editors that concentrate on visual
design tend to create pretty unmanageable code. If you find there’s
something you need to change by hand, it’s pretty hard to fix the code.

 ✦ Vendor lock-in: These tools are written by corporations that want you to
buy other tools from them. If you’re using Dreamweaver, you’ll find it easy
to integrate with other Adobe applications (like ColdFusion), but it’s not
as simple to connect to non-Adobe technology. Likewise, Microsoft’s offer-
ings are designed to work best with other Microsoft technologies.

 ✦ Cost: The cost of these software packages keeps going up. Although
there are free versions of Microsoft’s web development tools, the com-
mercial versions are very expensive. Likewise, Dreamweaver weighs in
at $400. Both companies encourage you to buy the software as part of a
package, which can easily cost more than hundreds more.

 ✦ Complexity: They’re complicated. You can take a full class or buy a huge
book on how to use only one of these technologies. If it’s that hard to
figure out, is it really saving you any effort?

 ✦ Code: You still need to understand it. No matter how great your platform
is, at some point, you have to dig into your code. After you plunk down
all that money and spend all that time figuring out an application, you
still have to understand how the underlying code works because things
still go wrong. For example, if your page fails to work with Safari, you’ll
have to find out why and fix the problem yourself.

 ✦ Spotty standards compliance: The tools are getting better here, but if
you want your pages to comply with the latest standards, you have to
edit them heavily after the tool is finished.

 ✦ Display variations: WYSIWYG is a lie. This is really the big problem.
WYSIWYG works for word processors because it’s possible to make
the screen look like the printed page. After a page is printed, it stays
the same. You don’t know what a web page will look like because that
depends on the browser. What if the user loads your page on a cell-
phone or handheld device? The editors tend to perpetuate the myth that
you can treat a web page like a printed document when, in truth, it’s a
very different kind of beast.

 ✦ Incompatibility with other tools: Web development is now moving
toward content management systems (CMS) — programs that create
websites dynamically. Generally, CMS systems provide the same ease-
of-use as a visual editor but with other benefits. However, transitioning
code created in a commercial editor to a CMS is very difficult. I describe
CMS systems in detail in Book VIII.

How About Online Site Builders?
A lot of modern websites are built with a content management system (CMS).
Content management systems are software programs that allow you to build
and modify a page right in your web browser. Some CMS systems are free, and

35Alternative Web Development Tools

Book I
Chapter 3

Choosing Your Tools

some cost money to use. I go over how to install and modify a CMS (and even
build your own) in Book VIII. A CMS system can be nice because it allows you
to build a website visually without any special tools or knowledge.

The CMS approach is a very good solution, but I still recommend you dis-
cover how to build things by hand. Ultimately even a CMS uses HTML and
CSS, and you’ll need these skills to make your site look and perform well
even if you have help.

Alternative Web Development Tools
For web development, all you really need is a text editor and a web browser.
You probably already have a basic set of tools on your computer. If you
read Chapters 1 and 2 of this minibook, you’ve already written a couple of
web pages. However, the very basic tools that come with every computer
might not be enough for serious work. Web development requires a special-
ized kind of text editor, and a number of tools have evolved that make the
job easier.

I’ve found uses for four types of programs in web development:

 ✦ Enhanced text editors: These tools are text editors, but they’re souped-
up with all kinds of fancy features, like syntax checkers, code-coloring
tools, macro tools, and multiple document interfaces.

 ✦ Browsers and plug-ins: Some browsers are better than others for devel-
opment. You’ll also need a full suite of browsers to ensure your code
works in all of them. Some browsers can be extended with plug-ins for
advanced performance.

 ✦ Programming technologies: This book covers all pertinent info about
incorporating other technologies, like Apache, PHP, and MySQL. I show
you how to install everything you need for these technologies in Book
VIII, Chapter 1. You don’t need to worry about these things yet, but you
should develop habits that are compatible with these enhanced tech-
nologies from the beginning.

 ✦ Multimedia tools: It’s very common for a web page to feature various
types of images, as well as other multimedia like custom fonts, sound
effects, and video. You’ll need some tools to manage these resources.

Picking a Text Editor
As a programmer, you come to see your text editor as a faithful companion.
You spend a lot of time with this tool, so use one that works with you.

A text editor should save plain text without any formatting at all. You don’t
want anything that saves colors, font choices, or other text formatting
because these things don’t automatically translate to HTML.

Picking a Text Editor36

Fortunately, you have several choices, as the following sections reveal.

Tools to avoid unless you have nothing else
A text editor may be a simple program, but that doesn’t mean they’re all the
same. Some programs have a history of causing problems for beginners (and
experienced developers, too). There’s usually no need to use some of these
weaker choices.

Microsoft Word
 Just don’t use it for web development. Word is a word processor. Even though,

theoretically, it can create web pages, the HTML code it writes is absolutely
horrific. As an example, I created a blank document, wrote “Hello World” in it,
changed the font, and saved it as HTML. The resulting page was non-compliant
code, was not quite HTML or XHTML, and was 114 lines long. Word is getting
better, but it’s just not a good web development tool. In fact, don’t use any
word processor. They’re just not designed for this kind of work.

Windows Notepad
Notepad is everywhere, and it’s free. That’s the good news. However,
Notepad doesn’t have a lot of the features you might need, such as line
numbers, multiple documents, or macros. Use it if you’re on an unfamil-
iar machine, but try something else if you can. Many people begin with
Notepad, but it won’t be long until you outgrow its limitations.

Mac TextEdit
Mac has a simple text editor built in — TextEdit — that’s similar to Notepad, but
closer to a word processor than a programmer’s text editor. TextEdit saves files
in a number of formats. If you want to use it to write web pages, you must save
your files in plain-text format, and you must not use any of TextEdit’s formatting
features. It’s probably best not to use TextEdit unless you really have to.

Suggested programmer’s editors
If Notepad, Word, and TextEdit aren’t the best choices, what are some better
options?

Good question. Because a text editor is such an important tool, it might
depend a bit on your preferences, so I’ll highlight a few of my favorites. Note
that every editor I mention here is entirely free, so don’t go paying for some-
thing until you’ve tried some of these first.

A noteworthy editor: Notepad++
A number of developers have come up with good text editors. Some of the
best are free, such as Notepad++ by Don Ho. Notepad++ is designed for text
editing, especially in programming languages. Figure 3-1 shows Notepad++
with an HTML file loaded.

Book I
Chapter 3

Choosing Your Tools

Picking a Text Editor 37

Figure 3-1:
Notepad++
has many of
the features
you need in
a text editor.

Notepad++ has a lot of interesting features. Here are a few highlights:

 ✦ Syntax highlighting: Notepad++ can recognize key HTML terms and put
different types of terms in different colors. For example, all HTML tags
are rendered blue, and text is black, making it easy to tell if you’ve made
certain kinds of mistakes, such as forgetting to end a tag. Note that the
colors aren’t saved in the document. The coloring features are there to
help you understand the code.

 ✦ Multiple files: You’ll often want to edit more than one document at a time.
You can have several different documents in memory at the same time.

 ✦ Multi-language support: Currently, your pages consist of nothing but
HTML. Soon enough, you’ll use some other languages, like SQL, CSS, and
PHP. Notepad++ is smart enough to recognize these languages, too.

 ✦ Macros: Whenever you find yourself doing something over and over,
consider writing a keyboard macro. Notepad++ has a terrific macro
feature. Macros are easy to record and play back a series of keystrokes,
which can save you a lot of work.

 ✦ Page preview: When you write a page, test it. Notepad++ has short-
cut keys built in to let you quickly view your page in Internet Explorer
(Ctrl+Alt+Shift+I) and Firefox (Ctrl+Alt+Shift+X).

 ✦ TextFX: The open-source design of Notepad++ makes it easy to add fea-
tures. The TextFX extension (built into Notepad++) allows you to do all
sorts of interesting things. One especially handy set of tools runs HTML
Tidy on your page and fixes any problems.

 Sadly, Notepad++ is a Windows-only editor. If you’re using Mac or Linux, you
need to find something else. The closest alternative in the Mac and Linux
world is gedit.

Picking a Text Editor38

gedit
One simple but effective editor available free for all major operating sys-
tems is gedit. It is the default editor for many versions of Linux, but you can
download it for Mac and Windows from http://projects.gnome.org/
gedit/.

It has all the standard features including syntax highlighting (which colors
different parts of code in different colors to help with debugging), line
numbers, and a tag list, which is a special menu which allows you to pick
common HTML tags from a list if you forget some syntax. (You may need to
play with the plugins from the edit-preferences menu to activate all these
features.)

Sadly, gedit does not have a macro editor. This may not be a deal-breaker for
you, but often I find a macro tool to be extremely useful, and I’m happiest
when my editor has this feature. (If you’re especially geeky, it does expose
the entire Python language and allow you to modify anything with this lan-
guage, but that’s a topic for another day.) If you need a very nice general-
purpose editor, consider gedit. It does much of what you might want without
getting terribly complicated.

Figure 3-2 shows gedit in action.

Figure 3-2:
gedit is a
very nice
but simple
tool.

The old standards: VI and Emacs
No discussion of text editors is complete without a mention of the venerable
UNIX editors that were the core of the early Internet experience. Most of the
pioneering work on the web was done in the UNIX and Linux operating sys-
tems, and these environments had two extremely popular text-editor families.

http://projects.gnome.org/gedit/
http://projects.gnome.org/gedit/

Book I
Chapter 3

Choosing Your Tools

Picking a Text Editor 39

Both might seem obscure and difficult to modern sensibilities, but they still
have passionate adherents, even in the Windows community. (Besides, Linux
is more popular than ever!)

VI and VIM
VI stands for VIsual Editor. That name seems strange now because most
developers can’t imagine an editor that’s not visual. Back in the day, it was a
very big deal that VI could use the entire screen for editing text. Before that
time, line-oriented editors were the main way to edit text files. Trust me, you
have it good now. Figure 3-3 shows a modern variant of VI (called GVIM) in
action.

VI is a modal editor, which means that the same key sometimes has more
than one job, depending on the editor’s current mode. For example, the I key
is used to indicate where you want to insert text. The D key is used to delete
text, and so on. Of course, when you’re inserting text, the keys have their
normal meanings. This multimode behavior is baffling to modern users, but
it can be amazingly efficient after you get used to it. Skilled VI users swear by
it and often use nothing else.

VI is a little too obscure for some users, so a number of variants are floating
around, such as VIM, or VI Improved. (Yeah, it should be VII but maybe they
were afraid people would call it the Roman numeral seven.) VIM is a little
friendlier than VI, and GVIM is friendlier yet. It tells you which mode it’s in
and includes such modern features as mouse support, menus, and icons.
Even with these features, VIM is not intuitive for most people.

Versions of VI are available for nearly any operating system being used. If
you already know VI, you might enjoy using it for web page development

Figure 3-3:
VI isn’t
pretty, but
after you
know it,
it’s very
powerful.

Picking a Text Editor40

because it has all the features you might need. If you don’t already know VI,
it’s probably more efficient for you to start with a more standard text editor,
such as Notepad++.

Emacs
The other popular editor from the UNIX world is Emacs. Like VI, you prob-
ably don’t need this tool if you never use Linux or UNIX. Also like VI, if you
know it already, you probably don’t need anything else. Emacs has been a
programmer’s editor for a very long time (it has been in continuous develop-
ment since 1976) and has nearly every feature you can think of.

 Emacs also has a lot of features you haven’t thought of, including a built-in
text adventure game and even a psychotherapist simulator. I really couldn’t
make this stuff up if I tried.

Emacs has very powerful customization and macro features and allows
you to view and edit more than one file at a time. Emacs also has the abil-
ity to view and manipulate the local file system, manage remote files,
access the local operating system (OS) shell, and even browse the web or
check e-mail without leaving the program. If you’re willing to invest in a
program that takes some effort to understand, you’ll have an incredibly
powerful tool in your kit. Versions of Emacs are available for most major
operating systems. Emacs is one of the first programs I install on any new
computer because it’s so powerful. A version of Emacs is shown in
Figure 3-4.

An enhanced version — XEmacs — (shown in the figure) uses standard
menus and icons like modern programs, so it’s reasonably easy to get
started with.

Figure 3-4:
Emacs is
powerful but
somewhat
eccentric.

Book I
Chapter 3

Choosing Your Tools

Picking a Text Editor 41

 Emacs has an astonishing number of options and a nonstandard interface, so
it can be challenging for beginners. However, those who have made the
investment (like me) swear by it.

My personal choice: Komodo Edit
Personally I really like Komodo Edit (www.activestate.com/komodo-edit).
This editor is extremely powerful, but is not quite as intimidating as some of
the older tools. It has a modern streamlined interface, but more power than
you might realize at first. Komodo Edit is actually the open-source cousin to a
commercial Integrated Development Environment (IDE) called Komodo IDE.
Komodo IDE costs hundreds of dollars, but Komodo Edit has almost as many
features, and is entirely free. Figure 3-5 illustrates Komodo Edit.

Komodo Edit has a number of really intriguing features that make it stand
out in my mind:

 ✦ All the standard features: Komodo Edit has all the features I’ve men-
tioned as necessary for a programmer’s editor, including syntax high-
lighting, line numbers, and saving in plain text format.

 ✦ Code completion: A number of higher-end programmer’s editors have
this feature, but it’s not as common in text editors. Here’s how it works:
When you set up a page as HTML5 (by choosing from the menu on the
bottom right), Komodo “watches” as you type and provides hints. So, if
you begin typing <h, Komodo pops up a little dialog box showing all the
tags that begin with h. If you pick <html> and then move to the next line
and type an angle bracket (<) character, you’ll get a pop-up menu with
<head> and <body> listed because these are the two tags valid in this
context. Komodo is pretty smart about knowing what tags you can use
when. This can be a helpful feature when you’re starting out.

Figure 3-5:
Komodo Edit
is a really
powerful
editor.

http://www.activestate.com/komodo-edit

Picking a Text Editor42

 ✦ Multiple file support: Your first few web pages will be single documents,
but most websites incorporate many pages. Komodo allows you to have
several pages at once and to compare any two pages at the same time.

 ✦ Page Preview: Just use ctrl-K-V to preview the current web page in a
second tab. This is a quick way to see how your page is going.

 ✦ Multiple language support: This book (and web development in gen-
eral) requires a whole bunch of different languages. Komodo Edit is just
as good at the languages you’ll be using as it is with HTML. Komodo has
native support for HTML, CSS, JavaScript, PHP, MySQL and many more.
(In fact, I also use it for working in other languages like Python, C++, and
Java, so you might end up using it beyond even web development.)

 ✦ Multi-platform: It might not be a big deal to you right now, but Komodo
works the same on all major operating systems – Windows, Mac, and
Linux. This really matters in web development because you will encoun-
ter new operating systems in your web travels. I use all three major OS
types and use Komodo on all of them.

 ✦ Remote file support: Eventually, you’ll be posting your sites on a remote
web server. (See Book VIII for details on how to set up a server.) Komodo
makes it easy to edit a web page even when it’s not on your own machine!

 ✦ Page templates: If you don’t remember exactly how to start a page, you
can choose New ➪ File from Template from the File menu to start a file
with some starter code in it. Note that the HTML5 code provided with
Komodo does not include everything the validator wants, but you can
add the features you want and save it as your own template (File ➪ Save
As ➪ Template).

 ✦ Code sample library: Komodo comes with a complete code sample
library. To see it, pick View ➪ Tabs and Sidebars➪Toolbox. The toolbox
appears and contains a number of interesting tools. Choose samples-
HTML from the tree structure and you’ll see several useful HTML snip-
pets. You can double-click on any of these to add a code snippet directly
to your page. This can be helpful when you don’t remember exactly how
to type something.

 ✦ Powerful macro system: As you spend more time with your editor, you’ll
probably want to add some custom features. The Macro and command
feature is especially powerful. This system allows you to record a series of
keystrokes and play them back. This is handy when you find yourself doing
something repetitive (for example, if you have a list of filenames and you
want to turn them into links). I love a good macro system. If you create a
particularly good macro, you can save it for later reuse and even attach a
keystroke to it so it becomes a permanent part of your Komodo system.

 ✦ Tools and commands: Explore the Tools panel to see some very useful
tools that are installed by default. These tools are often used to send
commands to the underlying operating system. You can use the tool
system to view the contents of a particular directory, preview the cur-
rent document in a specific browser, or pretty much anything you can
do from the command line.

Book I
Chapter 3

Choosing Your Tools

Picking a Text Editor 43

As you begin coding, the basic features of
Komodo Edit are more than enough for your
needs. However, you’ll soon become more
adept at coding, you may want some tools to
improve your efficiency. My favorite add-on for
Komodo is a tool called Emmet (formerly known
as Zen Coding). It’s a neat tool for writing HTML
and CSS super-quickly.

Essentially, this tool allows you to enter a code
snippet and Emmet expands it to complete
code. For example, take a look at the following
code:

html:5>h1{my page}+ul>li*5>{item $}

With Emmet installed, you can simply invoke
Emmet’s expand abbreviation com-
mand, and the following HTML snippet is
created:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Document</title>
</head>
<body>

 <h1>my page</h1>

 item 1
 item 2
 item 3
 item 4
 item 5

</body>
</html>

Of course, you might not understand the Emmet
code or the HTML it generates yet, so don’t
worry about installing Emmet until you’re a
little more fluent with HTML and CSS. However,
when you’re ready, you’ll find that Emmet is one
of the most powerful tools in your library. You
can install Emmet (and many other interesting
add-ons) by searching for it in the Tools ➪ Add-
ons menu.

I actually use Emmet more often than the code
snippets built into Komodo because I find it
faster and more flexible. With this tool and
a little practice, I can build a web page far
more quickly and accurately in a text editor
than I ever would with a graphical tool like
Dreamweaver.

Super-charging Komodo with Emmet

 ✦ Extensions and add-ons: Komodo uses the same general architecture as
the Firefox web browser. The developers of Komodo made it very easy to
extend, so there are hundreds of really great add-ons you can install quite
easily. After you have a feel for the stock version of Komodo, you may want
to investigate some add-ons to make it even better. See the nearby sidebar
“Super-charging Komodo with Emmet” to find out about my favorite add-on.

Other text editors
Many other text editors are used in web development. The most impor-
tant thing is to find one that matches the way you work. If you don’t like
any of the editors I’ve suggested so far, here are a few more you might
want to try:

Finding a Good Web Developer’s Browser44

 ✦ SynEdit: Much like Notepad++ and very popular with web developers

 ✦ Scintilla: Primarily a programming editor, but has nice support for
HTML coding

 ✦ jEdit: A popular text editor written in Java with nice features, but some
developers consider it slower than the other choices

The bottom line on editors
There is a dizzying array of editors for you to choose from. Which is the best
for you is something of a personal decision. As your coding style develops,
you’ll know more about which is the best editor for you. If you’re not sure, I
recommend starting with gedit (if you want simple and fast) or Komodo Edit
(if you’re ready for a bit more power). Then as you spend more time with an
editor, try some of the others out to see what best fits your needs.

Finding a Good Web Developer’s Browser
Web pages are meant to display in a browser; so, of course, you need brows-
ers for testing. Not all browsers are the same, though, so you need more
than one. There are a number of important browsers in use right now, and
you need to understand how they are related because they are how the user
will see your work.

A little ancient history
You’ve probably already noticed that browsers are inconsistent in the way
they display and handle web pages. It’s useful to understand how we got into
this mess.

Mosaic/Netscape: The killer application
In the beginning, browsers were written by small teams. The most important
early browser was Mosaic, written by a team based at the National Center
for Supercomputing Applications (NCSA) in Champaign–Urbana, Illinois.

Several members of that NCSA team decided to create a completely com-
mercial web browser. Netscape was born and it quickly became the most
prominent and important browser, with 97 percent market share at the peak
of its popularity.

Microsoft enters (and wins) the battle
Microsoft came onto the scene with Internet Explorer (IE). A bitter fight
(sometimes called the First Browser Wars) ensued between Microsoft and
Netscape. Each browser added new features regularly. Eventually, entire
sets of tags evolved, so a web page written for IE would not always work in
Netscape and vice versa. Developers had three bad choices: pick only one

Book I
Chapter 3

Choosing Your Tools

Finding a Good Web Developer’s Browser 45

browser to support, write two versions of the page, or stick with the more
limited set of features common to both browsers.

Netscape 6.0 was a technical disappointment, and Microsoft capitalized,
earning a nearly complete lock on the browser market. Microsoft’s version of
standards became the only standards because there was virtually no compe-
tition. After Microsoft won the fight, there was a period of stability but very
little innovation.

Firefox shakes up the world
A new browser rose from the ashes of Netscape (in fact, its original name
was Firebird, after the mythical birds that rise from their own ashes). The
name was later changed to Firefox, and it breathed new life into the web.
Firefox has several new features that are very appealing to web developers:

 ✦ Solid compliance to standards: Firefox followed the W3C standards
almost perfectly.

 ✦ Tabbed browsing: One browser window can have several panels, each
with its own page.

 ✦ Easy customization: Firefox developers encouraged people to add
improvements and extensions to Firefox. This led to hundreds of inter-
esting add-ons.

 ✦ Improved security: By this time, a number of security loopholes in IE
were publicized. Although Firefox has many of the same problems, it has
a much better reputation for openness and quick solutions.

WebKit messes things up again
The next shakeup happened with a rendering engine called WebKit. This
tool is the underlying engine shared by Apple’s Safari and Google’s Chrome
browser. These browsers changed things again by being even more aggres-
sive about standards-compliance and by emphasizing the programming
capabilities built into a browser. Chrome and Safari are each extensions of
the same essential technology. It gets messier. Recently Google announced
that they are developing a new rendering engine called ‘blink’ based on
WebKit. It’s still not clear what this will mean, but for the time being, WebKit
is a solid place to start.

HTML5 ushers in the second browser war
It is now becoming clear that the web is far more than a document mecha-
nism. It is really becoming more like an operating system in its own right,
and increasingly the web is about applications more than documents.
HTML5 is at the center of this innovation, and today there are again many
browser choices. It’s a better situation, as developers are insisting on
compliance with HTML5 standards, and any browser that follows these

Finding a Good Web Developer’s Browser46

 standards will be acceptable. The real question today isn’t which browser
the user prefers, but does the user have a browser that’s reasonably com-
plaint with today’s standards?

Overview of the prominent browsers
The browser is the primary tool of the web. All your users view your page
with one browser or another, so you need to know a little about each of
them.

Microsoft Internet Explorer 10
Microsoft Internet Explorer (IE) remains a dominant player on the Internet.
Explorer is still extremely prevalent because it comes installed with Microsoft
Windows. Of course, it also works exclusively with Microsoft Windows. Mac
and Linux aren’t supported (users don’t seem too upset about it, though).

Version 10 of IE finally has respectable (if not complete support) for the
major parts of the HTML5 standard. If you write pages according to the ver-
sion of HTML5 described in this book (using a reasonably universal subset
of the HTML5 standard), you can expect your page to work well in IE10. Most
features will also work in IE9, but not all.

Older versions of Internet Explorer
The earlier versions of IE are still extremely important because so many
computers out there don’t have 10 installed yet. Version 6 was the dominant
player in the Internet for some time, and it refuses to die. However, it will not
play well with modern standards, so it’s considered obsolete by most devel-
opers. (There are some software packages built on the proprietary features
of IE6, so it refuses to die away completely, but there is no need for consum-
ers to use this version.)

Mozilla Firefox
Firefox is a major improvement on IE from a programmer’s point of view, for
the following reasons:

 ✦ Better code view: If you view the HTML code of a page, you see the code
in a special window. The code has syntax coloring, which makes it easy
to read. Some versions of IE display code in Notepad, which is confusing
because you think you can edit the code, but you’re simply editing a copy.

 ✦ Better error-handling: You’ll make mistakes. Generally, Firefox does a
better job of pointing out errors than IE, especially when you begin using
JavaScript and other advanced technologies.

 ✦ Great extensions: Firefox has some wonderful extensions that make web
development a lot easier. These extensions allow you to modify your
code on the fly, automatically validate your code, and explore the struc-
ture of your page dynamically.

Book I
Chapter 3

Choosing Your Tools

Finding a Good Web Developer’s Browser 47

 ✦ Multi-platform support: IE works only on the Windows operating
system, so it isn’t available to Mac or Linux users. Even if you’re a
Windows-only developer, your users may use something else, so you
need to know how the other browsers see things.

WebKit/Safari
The default browser for Mac and the iPhone/iPad Operating System (iOS)
is called Safari. It’s a very powerful browser built on the WebKit rendering
engine. Safari was designed with standards-compliance and speed in mind,
and it shows. Your Mac and iOS users will almost certainly be using Safari, so
you should know something about it. Fortunately, Chrome uses WebKit (or
a variant) as well, so if things look good on Chrome, you’re likely to be fine
with your Apple users.

Google Chrome
Google sees the future of computing in browser-based applications using
AJAX technologies. (AJAX is described in Book VII.) The Chrome browser
is extremely fast, especially in the JavaScript technology that serves as the
foundation to this strategy. Chrome complies quite well with common stan-
dards. In addition, Chrome has a number of developer toolkits that makes it
the hands-down favorite browser for many web developers (including me).
Many of the features of the developer tools make sense only when you have
a bit more experience, but here are the highlights:

 ✦ Real-time page editing: You can go to any web page, right click ‘inspect
this element’ and modify the text of that element in real time. You can
then see what the element looks like with new content. You can select
a part of the page to see which page corresponds to the code, and you
can select the code and see which part of the page that code represents.
Figure 3-6 illustrates this feature in action.

Figure 3-6:
The ability to
inspect an
element is
a powerful
feature of
Chrome.

Finding a Good Web Developer’s Browser48

 ✦ Page Outline: A well-designed web page is created in outline form, with
various elements nested inside each other. The elements view allows
you to see the web page in this format, with the ability to collapse and
expand elements to see your page’s structure clearly.

 ✦ Realtime CSS Edit: As you discover how to apply CSS styles in Books II
and III, you’ll want to be able to see how various CSS rules change your
page. In the Inspect Element view, you can highlight a part of your page
and change the CSS while seeing how the change affects your page in
real time.

 ✦ Network Tab: This feature allows you to examine how long each piece
of your page takes to load. It can be helpful for troubleshooting a slow-
loading page.

 ✦ Sources View: This allows you to see the complete code of your page.
It’s especially useful when you get to JavaScript programming (in Book
IV) because it includes a powerful debugging suite.

 ✦ Console: The console view is a little command-line tool integrated
directly into your browser. This can be very helpful because it often
shows errors that are otherwise hidden from view. The console is most
useful when using JavaScript, so it is described in more detail in Book IV.

Other notable browsers
Firefox and IE are the big players in the browser world, but they certainly
aren’t the only browsers you will encounter.

Opera
The Opera web browser, one of the earliest standards-compliant brows-
ers, is a technically solid browser that has never been widely used. If you
design your pages with strict compliance in mind, users with Opera have no
problems accessing them. Opera has very good HTML5 compliance. Many
gaming consoles and mobile devices have browsers based on Opera, so it’s
worth looking into.

WebKit/Safari
Apple includes a web browser in all recent versions of Mac OS. The cur-
rent incarnation — Safari — is an excellent standards-compliant browser.
Safari was originally designed only for the Mac, but a Windows version is
also available. The WebKit framework, the foundation for Safari, is used in a
number of other online applications, mainly on the Mac. A modified version
of Safari is the foundation of the browsers on the iPhone and iPad.

Text-only browsers
Some browsers that don’t display any graphics at all (such as Lynx) are
intended for the old command-line interfaces. This may seem completely
irrelevant today, but these browsers are incredibly fast because they don’t

Book I
Chapter 3

Choosing Your Tools

Finding a Good Web Developer’s Browser 49

display graphics. Auditory browsers read the contents of web pages. They
were originally intended for people with visual disabilities, but people with-
out any disabilities often use them as well. Fire Vox is a variant of Firefox
that reads web pages aloud.

 Worrying about text-only readers may seem unnecessary because people
with visual disabilities are a relatively small part of the population, and you
may not think they’re part of your target audience. You probably should
think about these users anyway because it isn’t difficult to help them (and if
you’re developing for certain organizations, support for folks with disabili-
ties is required). There’s another reason, too. The search engines (Google is
the main game in town) read your page just like a text-only browser.
Therefore, if an element is invisible to a text-based browser, it won’t appear
on the search engine.

The bottom line in browsers
Really, you need to have access to a couple browsers, but you can’t possi-
bly have them all. I tend to do my initial development testing with Chrome.
I look over my page in IE version 10 and I try to keep an older computer
around with IE7 or 8 just to see what will happen.

I also check the built-in browser on an Android phone and iOS tablet to
see how the pages look there. Generally, if you follow the subset of HTML5
outlined in this book, you can be satisfied that it works on most browsers.
However, there’s still no guarantee. If you follow the standards, your page
displays on any browser, but you might not get the exact layout you expect.

50 Book I: Creating the HTML Foundation

Chapter 4: Managing Information
with Lists and Tables

In This Chapter
✓ Understanding basic lists

✓ Creating unordered, ordered, and nested lists

✓ Building definition lists

✓ Building basic tables

✓ Using rowspan and colspan attributes

Y
ou’ll often need to present large amounts of organized information, and
HTML has some wonderful tools to manage this task. HTML has three

kinds of lists and a powerful table structure for organizing the content of
your page. Figure out how these tools work, and you can manage complex
information with ease.

Making a List and Checking It Twice
HTML supports three types of lists. Unordered lists generally contain bullet
points. They’re used when the order of elements in the list isn’t important.
Ordered lists usually have some kind of numeric counter preceding each list
item. Definition lists contain terms and their definitions.

Creating an unordered list
All the list types in HTML are closely related. The simplest and most
common kind of list is an unordered list.

Looking at an unordered list
Look at the simple page shown in Figure 4-1. In addition to a couple of
headers, it has a list of information.

This list of browsers has some interesting visual characteristics:

 ✦ The items are indented. There’s some extra space between the left
margin and the beginning of each list item.

 ✦ The list elements have bullets. That little dot in front of each item is a
bullet. Bullets are commonly used in unordered lists like this one.

Making a List and Checking It Twice52

Figure 4-1:
An
unordered
list of web
browsers.

✦ Each item begins a new line. When a list item is displayed, it’s shown
on a new line.

These characteristics help you see that you have a list, but they’re just
default behaviors. Defining something as a list doesn’t force it to look a par-
ticular way; the defaults just help you see that these items are indeed part of
a list.

 Remember the core idea of HTML here. You aren’t really describing how
things look, but what they mean. You can change the appearance later when
you figure out CSS, so don’t get too tied up in the particular appearance of
things. For now, just recognize that HTML can build lists, and make sure you
know how to use the various types.

Building an unordered list
Lists are made with two kinds of tags. One tag surrounds the entire list and
indicates the general type of list. This first example demonstrates an unor-
dered list, which is surrounded by the pair.

Note: Indenting all the code inside the set is common. The unordered
list can go in the main body.

Inside the set is a number of list items. Each element of the list
is stored between a (list item) and a tag. Normally, each
 pair goes on its own line of the source code, although you can
make a list item as long as you want.

 Look to Book II, Chapter 4 for information on how to change the bullet to all
kinds of other images, including circles, squares, and even custom images.

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Making a List and Checking It Twice 53

The code for the unordered list is pretty straightforward:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
<title>basicUL.html</title>
</head>
<body>
 <h1>Basic Lists</h1>
 <h2>Common Web Browsers</h2>

 Firefox
 Chrome
 Internet Explorer
 Opera
 Safari

</body>
</html>

Creating ordered lists
Ordered lists are almost exactly like unordered lists. Ordered lists tradition-
ally have numbers rather than bullets (although you can change this through
CSS if you want; see Book II, Chapter 4).

Viewing an ordered list
Figure 4-2 demonstrates a page with a basic ordered list — basicOL.html.

Figure 4-2 shows a list where the items are numbered. When your data is a
list of steps or information with some type of numerical values, an ordered
list is a good choice.

Figure 4-2:
A simple
ordered list.

Making a List and Checking It Twice54

Building the ordered list
The code for basicOL.html is remarkably similar to the previous unordered
list:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>basicOL.html</title>
</head>
<body>
 <h1>Basic Ordered List</h1>
 <h2>Top ten dog names in the USA</h2>

 Max
 Jake
 Buddy
 Maggie
 Bear
 Molly
 Bailey
 Shadow
 Sam
 Lady

 <p>
 data from http://www.bowwow.com.au
 </p>
</body>
</html>

The only change is the list tag itself. Rather than the tag, the ordered
list uses the indicator. The list items are the same pairs
used in the unordered list.

You don’t indicate the item number anywhere; it generates automatically
based on the position of each item within the list. Therefore, you can change
the order of the items, and the numbers are still correct.

 This is where it’s great that HTML is about meaning, not layout. If you speci-
fied the actual numbers, it’d be a mess to move things around. All that really
matters is that the element is inside an ordered list.

Making nested lists
Sometimes, you’ll want to create outlines or other kinds of complex data in
your pages. You can easily nest lists inside each other, if you want. Figure 4-3
shows a more complex list describing popular cat names in the U.S. and
Australia.

Figure 4-3 uses a combination of lists to do its work. This figure contains a
list of two countries: the U.S. and Australia. Each country has an H3 heading
and another (ordered) list inside it. You can nest various elements inside a
list, but you have to do it carefully if you want the page to validate.

Figure 4-3:
An ordered
list inside an
unordered
list!

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Making a List and Checking It Twice 55

In this example, there’s an unordered list with only two elements. Each of
these elements contains an <h3> heading and an ordered list. The page han-
dles all this data in a relatively clean way and validates correctly.

Examining the nested list example
The entire code for nestedList.html is reproduced here:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>nestedList.html</title>
</head>
<body>
 <h1>Nested Lists</h1>

 <h2>Popular Cat Names</h2>

 <h3>USA</h3>

 Tigger
 Tiger
 Max
 Smokey
 Sam

 <h3>Australia</h3>

 Oscar
 Max
 Tiger

Building the ordered list
The code for basicOL.html is remarkably similar to the previous unordered
list:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>basicOL.html</title>
</head>
<body>
 <h1>Basic Ordered List</h1>
 <h2>Top ten dog names in the USA</h2>

 Max
 Jake
 Buddy
 Maggie
 Bear
 Molly
 Bailey
 Shadow
 Sam
 Lady

 <p>
 data from http://www.bowwow.com.au
 </p>
</body>
</html>

The only change is the list tag itself. Rather than the tag, the ordered
list uses the indicator. The list items are the same pairs
used in the unordered list.

You don’t indicate the item number anywhere; it generates automatically
based on the position of each item within the list. Therefore, you can change
the order of the items, and the numbers are still correct.

 This is where it’s great that HTML is about meaning, not layout. If you speci-
fied the actual numbers, it’d be a mess to move things around. All that really
matters is that the element is inside an ordered list.

Making nested lists
Sometimes, you’ll want to create outlines or other kinds of complex data in
your pages. You can easily nest lists inside each other, if you want. Figure 4-3
shows a more complex list describing popular cat names in the U.S. and
Australia.

Figure 4-3 uses a combination of lists to do its work. This figure contains a
list of two countries: the U.S. and Australia. Each country has an H3 heading
and another (ordered) list inside it. You can nest various elements inside a
list, but you have to do it carefully if you want the page to validate.

Figure 4-3:
An ordered
list inside an
unordered
list!

Making a List and Checking It Twice56

 Sam
 Misty

</body>
</html>

Here are a few things you might notice in this code listing:

 ✦ There’s a large set surrounding the entire main list.

 ✦ The main list has only two list items.

 ✦ Each of these items represents a country.

 ✦ Each country has an <h3> element, describing the country name inside
the .

 ✦ Each country also has an set with a list of names.

 ✦ The indentation really helps you see how things are connected.

Indenting your code
You might have noticed that I indent all the HTML code in this book. The
browsers ignore all indentation, but it’s still an important coding habit.

There are many opinions about how code should be formatted, but the standard
format I use in this book will serve you well until you develop your own style.

Generally, I use the following rules to indent HTML code:

 ✦ Indent each nested element. Because the <head> tag is inside the
<html> element, I indent to indicate this. Likewise, the elements
are always indented inside or pairs.

 ✦ Line up your elements. If an element takes up more than one line, line
up the ending tag with the beginning tag. This way, you know what ends
what.

 ✦ Use spaces, not tabs. The tab character often causes problems in source
code. Different editors format tabs differently, and a mixture of tabs and
spaces can make your carefully formatted page look awful when you
view it in another editor.

 Most editors have the ability to interpret the tab key as spaces. It’s a
great idea to find this feature on your editor and turn it on, so any time
you hit the tab key, it’s interpreted as spaces. In Komodo Edit, you do
this in Edit ➪ Preferences ➪ Editor ➪ Indentation.

 ✦ Use two spaces. Most coders use two or four spaces per indentation
level. HTML elements can be nested pretty deeply. Going seven or eight
layers deep is common. If you use tabs or too many spaces, you’ll have
so much white space that you can’t see the code.

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Making a List and Checking It Twice 57

 ✦ End at the left margin. If you finish the page and you’re not back at
the left margin, you’ve forgotten to end something. Proper indentation
makes seeing your page organization easy. Each element should line up
with its closing tag.

Building a nested list
When you look over the code for the nested list, it can look intimidating, but
it isn’t really that hard. The secret is to build the list outside in:

 1. Create the outer list first. Build the primary list (whether it’s ordered or
unordered). In my example, I began with just the unordered list with the
two countries in it.

 2. Add list items to the outer list. If you want text or headlines in the
larger list (as I did), you can put them here. If you’re putting nothing but
a list inside your primary list, you may want to put some placeholder
 tags in there just so you can be sure everything’s working.

 3. Validate before adding the next list level. Nested lists can confuse the
validator (and you). Validate your code with the outer list to make sure
there are no problems before you add inner lists.

 4. Add the first inner list. After you know the basic structure is okay, add
the first interior list. For my example, this was the ordered list of cat
names in the U.S.

 5. Repeat until finished. Keep adding lists until your page looks right.

 6. Validate frequently. It’s much better to validate as you go than to wait until
everything’s finished. Catch your mistakes early so you don’t replicate them.

Building the definition list
One more type of list — the definition list — is very useful, even if it’s used
infrequently. The definition list was originally designed to format dictionary-
style definitions, but it’s really useful any time you have name and value
pairs. Figure 4-4 shows a sample definition list in action.

Definition lists don’t use bullets or numbers. Instead, they have two ele-
ments. Definition terms are usually words or short phrases. In Figure 4-4, the
browser names are defined as definition terms. Definition descriptions are the
extended text blocks that contain the actual definition.

The standard layout of definition lists indents each definition description. Of
course, you can change the layout to what you want after you understand
the CSS in Books II and III.

You can use definition lists any time you want a list marked by key terms,
rather than bullets or numbers. The definition list can also be useful in
other situations, such as forms, figures with captions, and so on.

Making a List and Checking It Twice58

Here’s the code for basicDL.html:

<!DOCTYPE HTML>
<html lang="en-US">
 <head>
 <meta charset="UTF-8">
 <title>BasicDL.html</title>
 </head>
 <body>
 <h1>Basic Definition List</h1>
 <h2>Common Web Browsers</h2>
 <dl>
 <dt>Mosaic</dt>
 <dd>
 The mother of all modern browsers. The first widely used
 visual browser.
 </dd>

 <dt>Netscape</dt>
 <dd>
 The commercial successor to Mosaic. Widely popular, but
 eventually eclipsed by Internet Explorer
 </dd>

 <dt>IE</dt>
 <dd>
 Microsoft's entry into the browser market, and a dominant
 player.
 </dd>

 <dt>Firefox</dt>
 <dd>
 An open-source browser that has shaken up the world.
 </dd>
 </dl>
 </body>
</html>

Figure 4-4:
A basic
definition
list.

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Building Tables 59

As you can see, the definition list uses three tag pairs:

 ✦ <dl></dl> defines the entire list.

 ✦ <dt></dt> defines each definition term.

 ✦ <dd></dd> defines the definition data.

Definition lists aren’t used often, but they can be extremely useful. Any time
you have a list that will be a combination of terms and values, a definition
list is a good choice.

Building Tables
Sometimes, you’ll encounter data that fits best in a tabular format. HTML
supports several table tags for this kind of work. Figure 4-5 illustrates a very
basic table.

Sometimes, the best way to show data in a meaningful way is to organize
it in a table. HTML defines a table with the (cleverly named) <table> tag.
The table contains a number of table rows (defined with the <tr> tag).
Each table row can consist of a number of table data (<td>) or table header
(<th>) tags.

Compare the output in Figure 4-5 with the code for basicTable.html that cre-
ates it:

<!doctype html>
<html lang="en">

Figure 4-5:
Tables are
useful for
certain
kinds of
data repre
sentation.

Building Tables60

<head>
 <meta charset="UTF-8">
 <title>basicTable.html</title>
</head>
<body>
 <h1>A Basic Table</h1>
 <h2>HTML Super Heroes</h2>
 <table border = "1">
 <tr>
 <th>Hero</th>
 <th>Power</th>
 <th>Nemesis</th>
 </tr>

 <tr>
 <td>The HTMLator</td>
 <td>Standards compliance</td>
 <td>Sloppy Code Boy</td>
 </tr>

 <tr>
 <td>Captain CSS</td>
 <td>Super-layout</td>
 <td>Lord Deprecated</td>
 </tr>

 <tr>
 <td>Browser Woman</td>
 <td>Mega-Compatibility</td>
 <td>Ugly Code Monster</td>
 </tr>

 </table>
</body>
</html>

Defining the table
The HTML table is defined with the <table></table> pair. It makes a lot of
sense to indent and space your code carefully so you can see the structure
of the table in the code. Just by glancing at the code, you can guess that the
table consists of three rows and each row consists of three elements.

In a word processor, you typically create a blank table by defining the
number of rows and columns, and then fill it in. In HTML, you define the table
row by row, and the elements in each row determine the number of columns.
It’s up to you to make sure each row has the same number of elements.

By default (in most browsers, anyway), tables don’t show their borders. If
you want to see basic table borders, you can turn on the table’s border
attribute. (An attribute is a special modifier you can attach to some tags.)

 <table border = "1">

This tag creates a table and specifies that it will have a border of size 1. If
you leave out the border = “1” business, some browsers display a border

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Building Tables 61

and some don’t. You can set the border value to 0 or to a larger number. The
larger number makes a bigger border, as shown in Figure 4-6.

 Although this method of making table borders is perfectly fine, I show a
much more flexible and powerful technique in Book II, Chapter 4.

 Setting a table border is a good idea because you can’t count on browsers to
have the same default. Additionally, the border value is always in quotes.
When you read about CSS in Book II (are you getting tired of hearing that
yet?), you discover how to add more complex and interesting borders than
this simple attribute allows.

Adding your first row
After you define a table, you need to add some rows. Each row is indicated
by a <tr></tr> pair.

Inside the <tr></tr> set, you need some table data. The first row often
consists of table headers. These special cells are formatted differently to indi-
cate that they’re labels, rather than data.

 Table headers have some default formatting to help you remember they’re
headers, but you can change the way they look. You can change the table
header’s appearance in all kinds of great ways in Books II and III. Define the
table header so when you discover formatting and decide to make all your
table headers chartreuse, you’ll know where in the HTML code all the table
headers are.

Indent your headers inside the <tr> set. If your table contains three col-
umns, your first row might begin like this:

Figure 4-6:
I set the
border
attribute
to 10.

Building Tables62

<tr>
 <th></th>
 <th></th>
 <th></th>
</tr>

Place the text you want shown in the table headers between the <th> and
</th> elements. The contents appear in the order they’re defined.

 Headings don’t have to be on the top row. If you want headings on the left, just
put a <th></th> pair as the first element of each row. You can have headings
at both the top and the left, if you want. In fact, you can have headings
anywhere, but it usually makes sense to put headings only at the top or left.

Making your data rows
The next step is to create another row. The data rows are just like the head-
ing row, except they use <td></td> pairs, rather than <th></th> pairs, to
contain the data elements. Typically, a three-column table has blank rows
that look like this:

<tr>
 <td></td>
 <td></td>
 <td></td>
</tr>

Place the data elements inside the <td></td> segments and you’re ready to go.

Building tables in the text editor
Some people think that tables are a good reason to use WYSIWYG (what you
see is what you get) editors because they think it’s hard to create tables in
text mode. You have to plan a little, but it’s really quite quick and easy to
build an HTML table without graphical tools if you follow this plan:

 1. Plan ahead. Know how many rows and columns will be in the table.
Sketching it on paper first might be helpful. Changing the number of
rows later is easy, but changing the number of columns can be a real
pain after some of the code has been written.

 2. Create the headings. If you’re going to start with a standard headings-
on-top table, begin by creating the heading row. Save, check, and
validate. You don’t want mistakes to multiply when you add more com-
plexity. This heading row tells how many columns you’ll need.

 3. Build a sample empty row. Make a sample row with the correct number
of td elements with one <td></td> pair per line. Build one td set and
use copy and paste to copy this data cell as many times as you need.
Make sure the number of <td> pairs equals the number of <th> sets in
the heading row.

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Building Tables 63

 4. Copy and paste the empty row to make as many rows as you need.

 5. Save, view, and validate. Be sure everything looks right and validates
properly before you put a lot of effort into adding data.

 6. Populate the table with the data you need. Go row by row, adding the
data between the <td></td> pairs.

 7. Test and validate again to make sure you didn’t accidentally break
something.

Spanning rows and columns
Sometimes, you need a little more flexibility in your table design. Figure 4-7
shows a page from an evil overlord’s daily planner.

Being an evil overlord is clearly a complex business. From a code stand-
point, the items that take up more than one cell are the most interesting.
Designing traps takes two mornings, and improving the hideout takes three.
All Friday afternoon and evening are spent on world domination. Take a look
at the code, and you’ll see how it works:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>tableSpan.html</title>
</head>
<body>
 <h1>Using colspan and rowspan</h1>
 <table border = "1">
 <caption><p>My Schedule</p></caption>
 <tr>
 <th></th>
 <th>Monday</th>
 <th>Tuesday</th>
 <th>Wednesday</th>
 <th>Thursday</th>
 <th>Friday</th>
 </tr>

 <tr>
 <th>Breakfast</th>
 <td>In lair</td>
 <td>with cronies</td>
 <td>In lair</td>
 <td>in lair</td>
 <td>in lair</td>
 </tr>

 <tr>
 <th>Morning</th>
 <td colspan = "2">Design traps</td>
 <td colspan = "3">Improve Hideout</td>
 </tr>

 <tr>
 <th>Afternoon</th>
 <td>train minions</td>

Building Tables64

 <td>train minions</td>
 <td>train minions</td>
 <td>train minions</td>
 <td rowspan = "2">world domination</td>
 </tr>

 <tr>
 <th>Evening</th>
 <td>manaical laughter</td>
 <td>manaical laughter</td>
 <td>manaical laughter</td>
 <td>manaical laughter</td>
 </tr>

 </table>
</body>
</html>

The secret to making cells larger than the default is two special attributes:
rowspan and colspan.

Figure 4-7:
Some
of these
activities
take up
more than
one cell.

Spanning multiple columns
The morning activities tend to happen over several days. Designing traps
will take both Monday and Tuesday morning, and improving the hide-
out will occupy the remaining three mornings. Take another look at the
Morning row; here’s how this is done:

 <tr>
 <th>Morning</th>
 <td colspan = "2">Design traps</td>
 <td colspan = "3">Improve Hideout</td>
 </tr>

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Building Tables 65

The Design Traps cell spans over two normal columns. The colspan attri-
bute tells how many columns this cell will take. The Improve Hideout cell
has a colspan of 3.

The Morning row still takes up six columns. The <th> is one column wide, like
normal, but the Design Traps cell spans two columns and the Improve Hideout
cell takes three, which totals six columns wide. If you increase the width of a
cell, you need to eliminate some other cells in the row to compensate.

Spanning multiple rows
A related property — rowspan — allows a cell to take up more than one
row of a table. Look back at the Friday column in Figure 4-7, and you’ll see
the World Domination cell takes up two time slots. (If world domination was
easy, everybody would do it.) Here’s the relevant code:

 <tr>
 <th>Afternoon</th>
 <td>train minions</td>
 <td>train minions</td>
 <td>train minions</td>
 <td>train minions</td>
 <td rowspan = "2">world domination</td>
 </tr>

 <tr>
 <th>Evening</th>
 <td>maniacal laughter</td>
 <td>maniacal laughter</td>
 <td>maniacal laughter</td>
 <td>maniacal laughter</td>
 </tr>

The Evening row has only five entries because the World Domination cell
extends into the space that would normally be occupied by a <td> pair.

 If you want to use rowspan and colspan, don’t just hammer away at the
page in your editor. Sketch out what you want to accomplish first. I’m pretty
good at this stuff, and I still needed a sketch before I was able to create the
tableSpan.html code.

Avoiding the table-based layout trap
Tables are pretty great. They’re a terrific way to present certain kinds of
data. When you add the colspan and rowspan concepts, you can use
tables to create some pretty interesting layouts. In fact, because old-school
HTML didn’t really have any sort of layout technology, a lot of developers
came up with some pretty amazing layouts based on tables. You still see a
lot of web pages today designed with tables as the primary layout
mechanism.

Using tables for layout causes some problems though, such as

Building Tables66

 ✦ Tables aren’t meant for layout. Tables are designed for data presenta-
tion, not layout. To make tables work for layout, you have to do a lot
of sneaky hacks, such as tables nested inside other tables or invisible
images for spacing.

 ✦ The code becomes complicated fast. Tables involve a lot of HTML
markup. If the code involves tables nested inside each other, it’s very dif-
ficult to remember which <td> element is related to which row of which
table. Table-based layouts are very difficult to modify by hand.

 ✦ Formatting is done cell by cell. A web page could be composed of hun-
dreds of table cells. Making a change in the font or color often involves
making changes in hundreds of cells throughout the page. This makes
your page less flexible and harder to update.

 ✦ Presentation is tied tightly to data. A table-based layout tightly inter-
twines the data and its presentation. This runs counter to a primary goal
of web design — separation of data from its presentation.

 ✦ Table-based layouts are hard to change. After you create a layout
based on tables, it’s very difficult to make modifications because all the
table cells have a potential effect on other cells.

 ✦ Table-based layouts cause problems for screen-readers. People with
visual disabilities use special software to read web pages. These screen-
readers are well adapted to read tables as they were intended (to
manage tabular data), but the screen-readers have no way of knowing
when the table is being used as a layout technique rather than a data
presentation tool. This makes table-based layouts less compliant to
accessibility standards.

 ✦ Table-based layouts do not adapt well. Modern users expect to run
pages on cell phones and tablets as well as desktop machines. Table-
based designs do not easily scale to these smaller form-factors.

Resist the temptation to use tables for layout. Use tables to do what they’re
designed for: data presentation. Book III is entirely about how to use
CSS to generate any kind of visual layout you might want. The CSS-based
approaches are easier, more dependable, and much more flexible.

Chapter 5: Making Connections
with Links

In This Chapter
✓ Understanding hyperlinks

✓ Building the anchor tag

✓ Recognizing absolute and relative links

✓ Building internal links

✓ Creating lists of links

T
he basic concept of the hyperlink is common today, but it was a major
breakthrough back in the day. The idea is still pretty phenomenal, if you

think about it: When you click a certain piece of text (or a designated image,
for that matter), your browser is instantly transported somewhere else. The
new destination might be on the same computer as the initial page, or it
could be literally anywhere in the world.

Any page is theoretically a threshold to any other page, and all information
has the ability to be linked. This is still a profound idea. In this chapter, you
discover how to add links to your pages.

Making Your Text Hyper
The hyperlink is truly a wonderful thing. Believe it or not, there was a time
when you had to manually type in the address of the web page you wanted
to go to. Not so anymore. Figure 5-1 illustrates a page that describes some of
my favorite websites.

In Figure 5-1, the underlined words are hyperlinks. Clicking a hyperlink takes
you to the indicated website. Although this is undoubtedly familiar to you
as a web user, a few details are necessary to make this mechanism work:

 ✦ Something must be linkable. Some text or other element must provide
a trigger for the linking behavior.

 ✦ Things that are links should look like links. This is actually easy to do
when you write plain HTML because all links have a standard (if ugly)
appearance. Links are usually underlined blue text. When you can create
color schemes, you may no longer want links to look like the default
appearance, but they should still be recognizable as links.

Making Your Text Hyper68

Figure 5-1:
You can
click the
links to visit
the other
sites.

 ✦ The browser needs to know where to go. When the user clicks the
link, the browser is sent to some address somewhere on the Internet.
Sometimes that address is visible on the page, but it doesn’t need to be.

 ✦ It should be possible to integrate links into text. In this example, each
link is part of a sentence. It should be possible to make some things act
like links without necessarily standing on their own (like heading tags do).

 ✦ The link’s appearance sometimes changes. Links sometimes begin as
blue underlined text, but after a link has been visited, the link is shown
in purple, instead. After you know CSS, you can change this behavior.

 Of course, if your web page mentions some other website, you should pro-
vide a link to that other website.

Introducing the anchor tag
The key to hypertext is an oddly named tag called the anchor tag. This tag is
encased in an <a> set of tags and contains all the information needed
to manage links between pages.

The code for the basicLinks.html page is shown here:

<!DOCTYPE html>
<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>basicLinks.html</title>

Making Your Text Hyper 69

Book I
Chapter 5

M
aking

Connections
w

ith Links

 </head>

 <body>
 <h1>Some of my favorite sites</h1>
 <h2>Wikipedia</h2>
 <p>
 One of my favorite websites is called
 wikipedia.
 This terrific site allows ordinary users to enter
 encyclopedia definitions. Over time, the entries
 can be as reliable as a commercial encyclopedia,
 and a lot more complete.
 </p>

 <h2>Dummies</h2>
 <p>
 You can find out a lot about upcoming and current
 Dummies books at
 www.dummies.com. You might even find this
 book mentioned there.
 </p>

 <h2>PopURLS</h2>
 <p>
 If you want
 to know what's happening on the Internet today,
 check out
 popurls.com. This site aggregates a bunch of
 social networking sites.
 </p>
 </body>
</html>

As you can see, the anchor tag is embedded into paragraphs. The text gener-
ally flows around an anchor, and you can see the anchor code is embedded
inside the paragraphs.

Comparing block-level and inline elements
All the tags described so far in this book have been block-level tags. Block-
level tags typically begin and end with carriage returns. For example, three
<h1> tags occupy three lines. Each <p></p> set has implied space above
and below it. Most HTML tags are block-level.

Some tags are meant to be embedded inside block-level tags and don’t interrupt
the flow of the text. The anchor tag is one such tag. Anchors never stand on
their own in the HTML body. This type of tag is an inline tag. They’re meant to be
embedded inside block-level tags, such as list items, paragraphs, and headings.

Analyzing an anchor
The first link shows all the main parts of an anchor in a pretty straightfor-
ward way:

Making Your Text Hyper70

 wikipedia.

 ✦ The anchor tag itself: The anchor tag is simply the <a> pair. You
don’t type the entire word anchor, just the a.

 ✦ The hypertext reference (href) attribute: Almost all anchors contain
this attribute. It’s very rare to write <a without href. The href attribute
indicates a web address will follow.

 ✦ A web address in quotes: The address that the browser will follow is
encased in quotes. See the next section in this chapter for more informa-
tion on web addresses. In this example, http://www.wikipedia.org
is the address.

 ✦ The text that appears as a link: The user will typically expect to click
specially formatted text. Any text that appears between the <a href>
part and the part is visible on the page and formatted as a link. In
this example, the word wikipedia is the linked text.

 ✦ The marker: This marker indicates that the text link is finished.

Introducing URLs
The special link addresses are a very important part of the web. You prob-
ably already type web addresses into the address bar of your browser
(http://www.google.com), but you may not be completely aware of
how they work. Web addresses are technically URLs (Uniform Resource
Locators), and they have a very specific format.

 Sometimes, you’ll see the term URI (Uniform Resource Identifier) instead of
URL. URI is technically a more correct name for web addresses, but the term
URL has caught on. The two terms are close enough to be interchangeable.

A URL usually contains the following parts:

 ✦ Protocol: A web protocol is a standardized agreement on how communi-
cation occurs. The web primarily uses HTTP (hypertext transfer proto-
col), but occasionally, you encounter others. Most addresses begin with
http:// because this is the standard on the web. Protocols usually end
with a colon and two slashes (://).

 ✦ Host name: It’s traditional to name your primary web server www.
There’s no requirement for this, but it’s common enough that users
expect to type www right after the http:// stuff. Regardless, the text
right after http:// (and up to the first period) is the name of the actual
computer you’re linking to.

 ✦ Domain name: The last two or three characters indicate a particular
type of web server. These letters can indicate useful information about
the type of organization that houses the page. Three-letter domains usu-
ally indicate the type of organization, and two-letter domains indicate a
country. Sometimes, you’ll even see a combination of the two.

http://www.wikipedia.org
http://www.google.com

Making Lists of Links 71

Book I
Chapter 5

M
aking

Connections
w

ith Links

 ✦ Subdomain: Everything between the host name (usually www) and the
domain name (often .com) is the subdomain. This is used so that large
organizations can have multiple servers on the same domain. For exam-
ple, my department web page is http://www.cs.iupui.edu. www is
the name of the primary server, and this is the computer science depart-
ment at IUPUI (Indiana University–Purdue University Indianapolis),
which is an educational organization.

 ✦ Page name: Sometimes, an address specifies a particular document
on the web. This page name follows the address and usually ends with
.html. Sometimes, the page name includes subdirectories and username
information, as well. For example, my web development course is in the
N241 directory of my (aharris) space at IUPUI, so the page’s full address is
http://www.cs.iupui.edu/~aharris/n241/index.html.

 ✦ Username: Some web servers are set up with multiple users. Sometimes,
an address will indicate a specific user’s account with a tilde (~) charac-
ter. My address has ~aharris in it to indicate the page is found in my
(aharris) account on the machine.

 The page name is sometimes optional. Many servers have a special name
set up as the default page, which appears if no other name is specified.
This name is usually index.html but sometimes home.htm. On my server,
index.html is the default name, so I usually just point to www.cs.iupui.
edu/~aharris/n241, and the index page appears.

Domain Explanation

.org Non-profit institution

.com Commercial enterprise

.edu Educational institution

.gov Governing body

.ca Canada

.uk United Kingdom

.tv Tuvali

Making Lists of Links
Many web pages turn out to be lists of links. Because lists and links go so
well together, it’s good to look at an example. Figure 5-2 illustrates a list of
links to books written by a certain (cough) devilishly handsome author.

This example has no new code to figure out, but the page shows some inter-
esting components:

 ✦ The list: An ordinary unordered list.

http://www.cs.iupui.edu
http://www.cs.iupui.edu/~aharris/n241/index.html
http://www.cs.iupui.edu/~aharris/n241
http://www.cs.iupui.edu/~aharris/n241

Making Lists of Links72

 ✦ Links: Each list item contains a link. The link has a reference (which you
can’t see immediately) and linkable text (which is marked like an ordi-
nary link).

 ✦ Descriptive text: After each link is some ordinary text that describes the
link. Writing some text to accompany the actual link is very common.

Figure 5-2:
Putting links
in a list is
common.

This code shows the way the page is organized:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>listLinks.html</title>
 </head>

 <body>
 <h1>Some nice programming books</h1>

 HTML / CSS / JavaScript ALL in One for Dummies
 A complete resource to web development

 JavaScript / AJAX for Dummies
 Using JavaScript, AJAX, and jQuery

 Game Programming - the L Line
 Game development in Python

 HTML5 Game Development for Dummies
 Building web and mobile games in HTML5

 </body>
</html>

Working with Absolute and Relative References 73

Book I
Chapter 5

M
aking

Connections
w

ith Links

The indentation is interesting here. Each list item contains an anchor and
some descriptive text. To keep the code organized, web developers tend to
place the anchor inside the list item. The address sometimes goes on a new
line if it’s long, with the anchor text on a new line and the description on suc-
ceeding lines. I normally put the tag at the end of the last line, so the
beginning tags look like the bullets of an unordered list. This makes it
easier to find your place when editing a list later.

Working with Absolute and Relative References
There’s more than one kind of address. So far, you’ve seen only absolute
references, used for links to outside pages. Another kind of reference — a
relative reference — links multiple pages inside your own website.

Understanding absolute references
The type of link used in basicLinks.html is an absolute reference. Absolute
references always begin with the protocol name (usually http://). An
absolute reference is the complete address to a web page, just as you’d use
in the browser’s address bar. Absolute references are used to refer to a site
somewhere else on the Internet. Even if your website moves (say, from your
desktop machine to a web server somewhere on the Internet), all the abso-
lute references will work fine because they don’t rely on the current page’s
position for any information.

Introducing relative references
Relative references are used when your website includes more than one
page. You might choose to have several pages and a link mechanism for
moving among them. Figure 5-3 shows a page with several links on it.

Figure 5-3:
These
little piggies
sure get
around . . .

74 Working with Absolute and Relative References

The page isn’t so interesting on its own, but it isn’t meant to stand alone.
When you click one of the links, you go to a brand-new page. Figure 5-4
shows what happens when you click the market link.

Figure 5-4:
The market
page lets
you move
back.

The market page is pretty simple, but it also contains a link back to the ini-
tial page. Most websites aren’t single pages at all, but an interconnected web
of pages. The relative reference is very useful when you have a set of pages
with interlacing links.

The code for pigs.html shows how relative references work:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>pigs.html</title>
 </head>

 <body>
 <h1>Destinations of Porcine Mammals</h1>

 This little pig went to
 market
 This little pig stayed
 home.
 This little pig had
 roast beef
 This little pig had
 none.
 This little pig went
 'wee wee wee'
 all the way home.

 </body>
</html>

Working with Absolute and Relative References 75

Book I
Chapter 5

M
aking

Connections
w

ith Links

Most of the code is completely familiar. The only thing surprising is what’s
not there. Take a closer look at one of the links:

 home.

There’s no protocol (the http:// part) and no address at all, just a file-
name. This is a relative reference. Relative references work by assuming
the address of the current page. When the user clicks market.html, the
browser sees no protocol, so it assumes that market.html is in the same
directory on the same server as pigs.html.

Relative references work like directions. For example, if you’re in my lab
and ask where the water fountain is, I’d say, “Go out into the hallway,
turn left, and turn left again at the end of the next hallway.” Those direc-
tions get you to the water fountain if you start in the right place. If you’re
somewhere else and you follow the same directions, you don’t really know
where you’ll end up.

Relative references work well when you have a bunch of interconnected web
pages. If you create a lot of pages about the same topic and put them in the
same directory, you can use relative references between the pages. If you
decide to move your pages to another server, all the links still work
correctly.

 In Book VIII, you discover how to set up a permanent web server. It’s often
most convenient to create and modify your pages on the local machine and
then ship them to the web server for the world to see. If you use relative ref-
erences, it’s easy to move a group of pages together and know the links will
still work.

If you’re referring to a page on somebody else’s site, you have to use an
absolute reference. If you’re linking to another page on your site, you typi-
cally use a relative reference.

76 Book I: Creating the HTML Foundation

Chapter 6: Adding
Images, Sound, and Video

In This Chapter
✓ Understanding the main uses of images

✓ Choosing an image format

✓ Creating inline images

✓ Using IrfanView and other image software

✓ Changing image sizes

✓ Adding audio clips

✓ Working with video

Y
ou have the basics of text, but pages with nothing but text are… well,
a little boring. Pictures do a lot for a web page, and they’re pretty easy

to work with. Today’s web is really a multimedia environment, and HTML5
finally offers great support for audio and video. Find out how to add all
these great features to your web pages.

Adding Images to Your Pages
Every time you explore the web, you’re bound to run into tons of pictures
on just about every page you visit. Typically, images are used in four ways
on web pages:

 ✦ External link: The page has text with a link embedded in it. When the
user clicks the link, the image replaces the page in the web browser.
To make an externally linked image, just make an ordinary link (as I
describe in Chapter 5 of this minibook), but point toward an image file,
rather than an HTML (HyperText Markup Language) file.

 ✦ Embedded images: The image is embedded into the page. The text of
the page usually flows around the image. This is the most common type
of image used on the web.

 ✦ Background images: An image can be used as a background for the
entire page or for a specific part of the page. Images usually require
some special manipulation to make them suitable for background use.

 ✦ Custom bullets: With CSS, you can assign a small image to be a bullet
for an ordered or unordered list. This allows you to make any kind of
customized list markers you can draw.

Adding Images to Your Pages78

The techniques you read about in this chapter apply to all type of images,
but a couple of specific applications (such as backgrounds and bullets) use
CSS. For details on using images in CSS, see Book II, Chapter 4.

Linking to an image
The easiest way to incorporate images is to link to them. Figure 6-1 shows
the externalImage.html page.

The page’s code isn’t much more than a simple link:

<!DOCTYPE html>
<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>externalImage.html</title>
 </head>
 <body>
 <h1>Linking to an External Image</h1>
 <p>

 Susan B. Constant

 </p>
 </body>
</html>

The href points to an image file, not an HTML page. You can point to any
type of file you want in an anchor tag. If the browser knows the file type (for
example, HTML and standard image formats), the browser displays the file.
If the browser doesn’t know the file format, the user’s computer tries to dis-
play the file using whatever program it normally uses to open that type of
file.

Figure 6-1:
This page
has a link to
an image.

Book I
Chapter 6

Adding Im
ages,

Sound, and Video
Adding Images to Your Pages 79

 See Chapter 5 of this minibook for a discussion of anchor tags if you need a
refresher.

This works fine for most images because the image is displayed directly in
the browser.

 You can use this anchor trick with any kind of file, but the results can
be very unpredictable. If you use the link trick to point to some odd file
format, there’s no guarantee the user has the appropriate software to view
it. Generally, save this trick for very common formats, like GIF and JPG. (If
these formats are unfamiliar to you, they are described later in this chapter.)

Most browsers automatically resize the image to fit the browser size. This
means a large image may appear to be smaller than it really is, but the user
still has to wait for the entire image to download.

Because this is a relative reference, the indicated image must be in the
same directory as the HTML file. When the user clicks the link, the page is
replaced by the image, as shown in Figure 6-2.

Figure 6-2:
The image
appears in
place of the
page.

External links are easy to create, but they have some problems:

 ✦ They don’t preview the image. The user has only the text description to
figure out what the picture might be.

 ✦ They interrupt the flow. If the page contains a series of images, the user
has to keep leaving the page to view images.

 ✦ The user must back up to return to the main page. The image looks
like a web page, but it isn’t. No link or other explanatory text in the

Adding Images to Your Pages80

image indicates how to get back to the web page. Most users know to
click the browser’s Back button, but don’t assume all users know what
to do.

Adding inline images using the tag
The alternative to providing links to images is to embed your images into the
page. Figure 6-3 displays an example of this technique.

Figure 6-3:
The ship
image is
embedded
into the
page.

The code shows how this image was included into the page:

<!DOCTYPE html>
<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>embeddedImage.html</title>
 </head>
 <body>
 <h1>The Susan B. Constant</h1>
 <p>
 <img src = "shipStandard.jpg"
 height = "480"
 width = "640"
 alt = "Susan B. Constant" />
 </p>
 <p>
 The Susan B. Constant was flagship of the
 fleet of three small ships that brought settlers to Jamestown, the first
 successful English Colony in the new world. This is a replica housed
 near Jamestown, Virginia.
 </p>
 <body>
</html>

Book I
Chapter 6

Adding Im
ages,

Sound, and Video
Adding Images to Your Pages 81

The image (img) tag is the star of this page. This tag allows you to grab an
image file and incorporate it into the page directly. The image tag is a one-
shot tag. It doesn’t end with . Instead, use the /> characters at the
end of the img definition to indicate that this tag doesn’t have content.

 You might have noticed that I italicized Susan B. Constant in the page, and I
used the tag to get this effect. stands for emphasis, and
 means strong emphasis. By default, any text within an
pair is italicized, and text is boldfaced. Of course, you
can change this behavior with CSS.

The image tag has a number of important attributes, which I discuss in the
following sections.

src (source)
The src attribute allows you to indicate the URL (Uniform Resource
Locator) of the image. This can be an absolute or relative reference. Linking
to an image in your own directory structure is generally best because you
can’t be sure an external image will still be there when the user gets to the
page. (For more on reference types, turn to Chapter 5 of this minibook.)

height and width
The height and width attributes are used to indicate the size of the image.
The browser uses this information to indicate how much space to reserve
on the page.

 The height and width attributes should describe the size of an image. You
can use these attributes to actually change the size of an image, but it’s a
bad idea. Change the image size with your image editor (I show you how
later in this chapter). If you use the height and width attributes, the user
has to wait for the full image, even if she’ll see a smaller version. Don’t make
the user wait for information she won’t see. If you use these attributes to
make the image larger than its default size, the resulting image has poor res-
olution. Find the image’s actual size by looking at it in your image tool and
use these values. If you leave out height and width, the browser deter-
mines the size automatically, but you aren’t guaranteed to see the text until
all the images have downloaded. Adding these attributes lets the browser
format the page without waiting for the images.

alt (alternate text)
The alt attribute gives you an opportunity to specify alternate text describ-
ing the image. Alternate text information is used when the user has images
turned off and by screen-readers. Information in alt tags is also used in
image-searching software like Google Images.

Choosing an Image Manipulation Tool82

 The alt attribute is required on all images.

Additionally, the tag is an inline tag, so it needs to be embedded
inside a block-level tag, like a <p> or .

Choosing an Image Manipulation Tool
You can’t just grab any old picture off your digital camera and expect it to
work on a web page. The picture might work, but it could cause problems
for your viewers. It’s important to understand that digital images (any kind of
images you see on a computer or similar device) are different from the kind
of images you see on paper.

An image is worth 3.4 million words
Digital cameras and scanners are amazing these days. Even moderately
priced cameras can now approach the resolution of old-school analog
cameras. Scanners are also capable of taking traditional images and convert-
ing them into digital formats that computers use. In both cases, though, the
default image can be in a format that causes problems. Digital images are
stored as a series of dots, or pixels. In print, the dots are very close together,
but computer screens have larger dots. Figure 6-4 shows how the ship image
looks straight from the digital camera.

Figure 6-4:
Wow. That
doesn’t look
like much.

My picture (taken on an older digital camera) registers at 6 megapixels (MP).
That’s a pretty good resolution, but modern digital cameras are much higher.
If I print that picture on paper, all those dots are very tiny, and I get a nice
picture. If I try to show the same picture on the computer screen, I see only

Book I
Chapter 6

Adding Im
ages,

Sound, and Video
Choosing an Image Manipulation Tool 83

one corner. This actual picture came out at 2,816 pixels wide by 2,112 pixels
tall. You only see a small corner of the image because the screen shots for
this book are taken at 1024×768 pixels. Less than a quarter of the image is
visible.

When you look at a large image in most browsers, it’s automatically resized
to fit the page. The cursor usually turns into some kind of magnifying glass,
and if you click the image, you can see it in its full size or the smaller size.

 Some image viewers take very large images and automatically resize them so
they fit the screen. (This is the default behavior of Windows’ default image
viewer and most browsers.) The image may appear to be a reasonable size
because of this feature, but it’ll be huge and difficult to download in an
actual web page. Make sure you know the actual size of an image before you
use it.

Although shrinking an image so that it can be seen in its entirety is obviously
beneficial, there’s an even more compelling reason to do so. Each pixel on
the screen requires 3 bytes of computer memory. (A byte is the basic unit
of memory in a computer.) For comparison purposes, one character of text
requires roughly 1 byte. The uncompressed image of the ship weighs a whop-
ping 17 megabytes (MB). If you think of a word as five characters long, one
picture straight from the digital camera takes up the same amount of storage
space and transmission time as roughly 3,400,000 words. This image requires
nearly three minutes to download on a 56K modem!

In a web page, small images are often shown at about 320×240 pixels, and
larger images are often 640×480 pixels. If I use software to resample the
image to the size I actually need and use an appropriate compression algo-
rithm, I can get the image to look like Figure 6-5.

Figure 6-5:
The resized
image is
a lot more
manageable.

Choosing an Image Manipulation Tool84

The new version of the image is the size and file format I need, it looks just
as good, and it weighs a much more reasonable 88 kilobytes. That’s 2 per-
cent of the original image size.

 Although this picture is a lot smaller than the original image, it still takes
up a lot more memory than text. Even this smaller image takes up as much
transmission time and storage space as 1,600 words! It still takes 10 seconds
to download without a broadband connection. Use images wisely.

Images are great, but keep some things in mind when you use them:

 ✦ Make sure the images are worth displaying. Don’t use a picture without
some good reason because each picture makes your page dramatically
slower to access.

 ✦ Use software to resize your image. Later in this chapter, I show you
how to use free software to change the image to exactly the size you
need.

 ✦ Use a compressed format. Images are almost never used in their native
format on the web because they’re just too large. Several formats have
emerged that are useful for working with various types of images. I
describe these formats in the section “Choosing an Image Format,” later
in this chapter.

Introducing IrfanView
IrfanView, by Irfan Skiljan, is a freeware program that can handle your basic
image manipulation needs and quite a bit more. I used it for all the screen-
shots in this book, and I use it as my primary image viewer when I’m using
Windows. You can get a copy at www.irfanview.net. Of course, you can
use any software you want, but if something’s really good and free, it’s a
great place to start. In the rest of this chapter, I show you how to do the
main image-processing jobs with IrfanView, but you can use any image editor
you want.

A web developer needs to have an image manipulation program to help
with all these chores. Like other web development tools, you can pay quite
a bit for an image manipulation tool, but you don’t have to. Your image tool
should have at least the following capabilities:

 ✦ Resizing: Web pages require smaller images than printing on paper. You
need a tool that allows you to resize your image to a specific size for
web display.

 ✦ Saving to different formats: There’s a dizzying number of image formats
available, but only a few formats work reliably on the web (which I dis-
cuss in the next section). You need a tool that can take images in a wide
variety of formats and reliably switch it to a web-friendly format.

http://www.irfanview.net

Book I
Chapter 6

Adding Im
ages,

Sound, and Video
Choosing an Image Format 85

 ✦ Cropping: You may want only a small part of the original picture. A crop-
ping tool allows you to extract a rectangular region from an image.

 ✦ Filters: You may find it necessary to modify your image in some way. You
may want to reduce red-eye, lighten or darken your image, or adjust the
colors. Sometimes, images can be improved with sharpen or blur filters,
or more artistic filters, such as canvas or oil-painting tools.

 ✦ Batch processing: You may have a number of images you want to work
with at one time. A batch processing utility can perform an operation on
a large number of images at once, as you see later in this chapter.

You may want some other capabilities, too, such as the ability to make
composite images, images with transparency, and more powerful effects.
You can use commercial tools or the excellent open-source program Gimp. I
use IrfanView for basic processing, and I use Gimp when I need a little more
power. See Book VIII, Chapter 4 for a more complete discussion of Gimp.

IrfanView is my favorite, but it’s only available for Windows. Here are a few
free alternatives if you want to try some other great software:

 ✦ XnView: Similar to IrfanView, XnView allows you to preview and modify
pictures in hundreds of formats, create thumbnails, and more. It’s avail-
able for Mac and Linux.

 ✦ Pixia: Pixia is a full-blown Windows-only graphic editor from Japan. Very
powerful.

 ✦ GimpShop: This is a version of Gimp modified to have menus like
Photoshop.

 ✦ Paint.NET: This is a powerful Windows-only Paint program.

Use Google or another search engine to locate any of these programs.

Choosing an Image Format
Almost nobody uses raw images on the web because they’re just too big and
unwieldy. Usually, web images are compressed to take up less space. All the
types of image files you see in the computer world (BMP, JPG, GIF, and so on)
are essentially different ways to make an image file smaller. Not all the for-
mats work on the web, and they have different characteristics, so it’s good
to know a little more about them.

BMP
The BMP format is Microsoft’s standard image format. Although it’s com-
pressed sometimes, usually it isn’t. The BMP format creates very detailed
images with little to no compression, and the file is often too large to use on
the web. Many web browsers can handle BMP images, but you shouldn’t use
them. Convert to one of the other formats, instead.

Choosing an Image Format86

JPG/JPEG
The JPG format (also called JPEG) is a relatively old format designed by the
Joint Photographic Experts Group. (Get it? JPEG!) It works by throwing away
data that’s less important to human perception. Every time you save an
image in the JPG format, you lose a little information. This sounds terrible,
but it really isn’t. The same image that came up as 13MB in its raw format is
squeezed down to 1.5MB when stored as a JPG. Most people can’t tell the dif-
ference between the compressed and non-compressed version of the image
by looking at them.

 The JPG algorithm focuses on the parts of the image that are important to
perception (brightness and contrast, for example) and throws away data
that isn’t as important. (Actually, much of the color data is thrown away, but
the colors are re-created in an elaborate optical illusion.)

JPG works best on photographic-style images with a lot of color and detail.
Many digital cameras save images directly as JPGs.

One part of the JPG process allows you to determine the amount of compres-
sion. When you save an image as a JPG, you can often determine the quality
on a scale between accuracy and compression.

The JPG compression scheme causes particular problems with text. JPG is
not good at preserving sharp areas of high contrast (such as letters on a
background). JPG is not the best format for banner images or other images
with text on them. Use GIF or PNG instead. A JPG with text will show charac-
teristic square artifacts.

Even if you choose 100 percent accuracy, the file is still greatly compressed.
The adjustable compression operates only on a small part of the process.
Compressing the file too much can cause visible square shadows, or artifacts.
Experiment with your images to see how much compression they can take and
still look like the original.

 Keep a high-quality original around when you’re making JPG versions of an
image because each copy loses some detail. If you make a JPG from a JPG
that came from another JPG, the loss of detail starts to add up, and the pic-
ture loses some visual quality.

GIF
The GIF format was developed originally for CompuServe, way before the
web was invented. This format was a breakthrough in its time and still has
some great characteristics.

GIF is a lossless algorithm so, potentially, no data is lost when converting an
image to GIF (compare that to the lossy JPG format). GIF does its magic with
a color palette trick and a run-length encoding trick.

Book I
Chapter 6

Adding Im
ages,

Sound, and Video
Choosing an Image Format 87

The color palette works like a paint-by-number set where an image has a
series of numbers printed on it, and each of the paint colors has a corre-
sponding number. What happens in a GIF image is similar. GIF images have
a list of 256 colors, automatically chosen from the image. Each of the colors
is given a number. A raw (uncompressed) image requires 3 bytes of informa-
tion for each pixel (1 each to determine the amount of red, green, and blue).
In a GIF image, all that information is stored one time in the color palette.
The image itself contains a bunch of references to the color palette.

For example, if blue is stored as color 1 in the palette, a strip of blue might
look like this:

1, 1, 1, 1, 1, 1, 1, 1, 1, 1

GIF uses its other trick — run-length encoding — when it sees a list of identi-
cal colors. Rather than store the above value as 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, the
GIF format can specify a list of 10 ones. That’s the general idea of run-length
encoding. The ship image in this example weighs 2.92MB as a full-size GIF
image.

The GIF format works best for images with a relatively small number of
colors and large areas of the same color. Most drawings you make in a
drawing program convert very well to the GIF format. Photos aren’t ideal
because they usually have more than 256 colors in them, and the subtle
changes in color mean there are very few solid blotches of color to take
advantage of run-length encoding.

GIF does have a couple of great advantages that keep it popular. First, a GIF
image can have a transparent color defined. Typically, you’ll choose some
awful color not found in nature (kind of like choosing bridesmaid dresses) to
be the transparent color. Then, when the GIF encounters a pixel that color, it
displays whatever is underneath instead. This is a crude but effective form
of transparency. Figure 6-6 shows an image with transparency.

Whenever you see an image on a web page that doesn’t appear to be
rectangular, there’s a good chance the image is a GIF. The image is still a
rectangle, but it has transparency to make it look more organic. Typically,
whatever color you set as the background color when you save a GIF
becomes the transparent color.

 Creating a complex transparent background, like the statue, requires a more
complex tool than IrfanView. I used Gimp, but any high-end graphics tool can
do the job. IrfanView is more suited to operations that work on the entire
image.

Another interesting feature of GIF is the ability to create animations.
Animated GIFs are a series of images stored in the same file. You can embed
information, determining the interval between images. You can create ani-
mated GIFs with Gimp.

Choosing an Image Format88

Figure 6-6:
This statue
is a GIF
with trans
parency.

Animated GIFs were overused in the early days of the web, and many now
consider them the mark of an amateur. Nobody really thinks that animated
mailbox is cute anymore. Look ahead to Book IV, Chapter 7 for the more flex-
ible modern way to add animation to your pages.

 For a while, there were some legal encumbrances regarding a part of the GIF
scheme. The owners of this algorithm tried to impose a license fee. This was
passed on to people using commercial software, but became a big problem
for free software creators.

Fortunately, it appears that the legal complications have been resolved
for now. Still, you’ll see a lot of open-software advocates avoiding the GIF
algorithm altogether because of this problem.

PNG
Open-source software advocates created a new image format that combines
some of the best features of both JPG and GIF, with no legal problems. The
resulting format is Portable Network Graphics, or PNG. This format has a
number of interesting features, such as

 ✦ Lossless compression: Like GIF, PNG stores data without losing any
information.

 ✦ Dynamic color palette: PNG supports as many colors as you want. You
aren’t limited to 256 colors as you are with GIF.

Book I
Chapter 6

Adding Im
ages,

Sound, and Video
Choosing an Image Format 89

 ✦ No software patents: The underlying technology of PNG is completely
open source, with no worries about whether somebody will try to
enforce a copyright down the road.

 ✦ True alpha transparency: The PNG format has a more sophisticated
form of transparency than GIF. Each pixel can be stored with an alpha
value. Alpha refers to the amount of transparency. The alpha can be
adjusted from completely transparent to completely opaque.

With all these advantages, it’s not surprising that PNG is one of the most
popular formats on the web. At one point, browser support for PNG was
inconsistent, but now browsers can manage PNG pretty well. The only
disadvantage of PNG is the inability to create animations. This is not a
major issue, as you’ll see in Book IV, Chapter 7.

SVG
All of the previously-mentioned formats store information pixel-by-pixel.
This mechanism is called raster-based image formats. However, this is not the
only approach to images. A format called “Scalable Vector Graphics (SVG)”
is relatively new to web development. SVG graphics are stored as a series
of instructions in a format much like HTML. For example, a circle in SVG is
stored like this:

<circle cx="50" cy="50" r="30"
 style="stroke:#0000ff; stroke-width: 5px; fill:#ff0000;"/>

Although it’s possible to write SVG code by hand, it’s more common to use
an editor like Inkscape. SVG graphics have some nice advantages:

 ✦ The image can be resized without loss of quality. The biggest advan-
tage of SVG is the ability to change the image size. With raster-based
images, any change of image size will involve a loss of image quality. SVG
images can change size arbitrarily without a loss of quality.

 ✦ File sizes can be extremely small. The file size of a vector-based image
is based on the complexity of the image rather than its visual size. So
simple images that can be described as a series of shapes can result in
tiny files, even if they take up an entire page.

 ✦ Vector images are easy to edit. You can edit a vector image by moving
and manipulating the various shapes that make up an image. This makes
vector-images like SVG quite easy to edit.

Vector images were not practical in previous versions of HTML. This is one
reason Flash (which is primarily a vector format) was so popular. SVG is one
of the most interesting new features of HTML5. An SVG image can be embed-
ded like any other sort of image, or it can be manipulated directly though

Manipulating Your Images90

JavaScript code. You can find a great number of free-to-use SVG images at
http://openclipart.org/.

Summary of web image formats
All these formats may seem overwhelming, but choosing an image format is
easy because each format has its own advantages and disadvantages:

 ✦ GIF is best when you need transparency or animation. Avoid using GIF
on photos, as you won’t get optimal compression, and you’ll lose color
data.

 ✦ JPG is most useful for photographic images, which are best suited for
the JPG compression technique. However, keep in mind that JPG isn’t
suitable for images that require transparency. Text in JPG images tends
to become difficult to read because of the lossy compression technique.

 ✦ PNG is useful in most situations. Older browsers may have trouble with
this format.

 ✦ SVG is useful for images which need to be re-sized without a loss of
image quality or when the image is relatively simple.

 ✦ BMP and other formats should be avoided entirely. Although you can
make other formats work in certain circumstances, there’s no good
reason to use any other image formats most of the time.

Manipulating Your Images
All this talk of compression algorithms and resizing images may be dandy,
but how do you do it?

Fortunately, IrfanView can do nearly anything you need for free. IrfanView
has nice features for all the main types of image manipulation you need.

Changing formats in IrfanView
Changing image formats with IrfanView is really easy. For example, find an
image file on your computer and follow these steps:

 1. Load the image into IrfanView by dragging the image into IrfanView
or using the File ➪ Open menu command.

 2. Make any changes you may want to the image before saving.

 3. Use the File ➪ Save As command to save the file.

 4. Pick the image format from the Save Picture As dialog box, as shown
in Figure 6-7.

 5. Save the file with a new filename. Keep the original file and save any
changes in a new file. That way, you don’t overwrite the original file.
This is especially important if you’re converting to JPG because each
successive save of a JPG causes some image loss.

http://openclipart.org/

Book I
Chapter 6

Adding Im
ages,

Sound, and Video
Manipulating Your Images 91

Figure 6-7:
IrfanView
can save
in all these
formats.

 Don’t use spaces in your filenames. Your files may move to other computers
on the Internet, and some computers have trouble with spaces. It’s best to
avoid spaces and punctuation (except the underscore character) on any files
that will be used on the Internet. Also, be very careful about capitalization.
It’s likely that your image will end up on a Linux server someday, and the
capitalization makes a big difference there.

Resizing your images
All the other image-manipulation tricks may be optional, but you should
really resize your images. Although high-speed connections may have no
trouble with a huge image, nothing makes a web page inaccessible to users
with weaker connectivity faster than bloated image sizes.

To resize an image with IrfanView, perform the following steps:

 1. Load the image into IrfanView. You can do this by dragging the image
onto the IrfanView icon, dragging into an open instance of IrfanView, or
using the menus within IrfanView.

 2. From the Image menu, choose Resize/Resample. You can also use
Ctrl+R for this step. Figure 6-8 shows the resulting dialog box.

 3. Determine the new image size. A number of standard image sizes are
available. 800×600 pixels will create a large image in most browsers. If
you want the image smaller, you need to enter a size in the text boxes.
Images embedded in web pages are often 320 pixels wide by 240 pixels
tall. That’s a very good starting point. Anything smaller will be hard to
see, and anything larger might take up too much screen space.

 4. Preserve the aspect ratio using the provided check box. This makes
sure the ratio between height and width is maintained. Otherwise, the
image may be distorted.

Manipulating Your Images92

Figure 6-8:
IrfanView’s
Resize/
Resample
Image
dialog box.

 5. Save the resulting image as a new file. When you make an image
smaller, you lose data. That’s perfectly fine for the version you put on
the web, but you should hang on to the original large image in case you
want to resize again.

 6. Resample, rather than resize. Resampling is a slower but more accu-
rate technique for changing the image size. This is IrfanView’s default
behavior, so leave it alone. It’s still quite fast on a modern computer. The
default (Lanczos) filter is fine, although you can experiment with other
filters to get a faster conversion, if you want.

Enhancing image colors
Sometimes, you can make improvements to an image by modifying the
colors. The Color corrections dialog box on the Images menu gives you a
wide range of options, as shown in Figure 6-9.

You can do a surprising number of helpful operations on an image with this
tool:

 ✦ Brightness: When adjusted to a higher value, the image becomes closer
to white. When adjusted to a negative value, the image becomes closer
to black. This is useful when you want to make an image lighter or
darker for use as a background image.

Figure 6-9:
You can
change
several
options in
the Color
Corrections
dialog box.

Book I
Chapter 6

Adding Im
ages,

Sound, and Video
Manipulating Your Images 93

 If your image is too dark or too bright, you may be tempted to use the
Brightness feature to fix it. The Gamma Correction feature described later in
this section is more useful for this task.

 ✦ Contrast: You usually use the Contrast feature in conjunction with the
Brightness feature to adjust an image. Sometimes, an image can be
improved with small amounts of contrast adjustments.

 ✦ Color Balance: Sometimes, an image has poor color balance (for
example, indoor lighting sometimes creates a bluish cast). You can
adjust the amount of red, green, and blue with a series of sliders. The
easiest way to manage color balance is to look at a part of the image
that’s supposed to be white and play with the slider until it looks truly
white.

 ✦ Gamma Correction: This is used to correct an image that is too dark or
too light. Unlike the Brightness adjustment, Gamma Correction automati-
cally adjusts the contrast. Small adjustments to this slider can some-
times fix images that are a little too dark or too light.

 ✦ Saturation: When saturation is at its smallest value, the image becomes
black and white. At its largest value, the colors are enhanced. Use this
control to create a grayscale image or to enhance colors for artistic
effect.

Using built-in effects
IrfanView has a few other effects available that can sometimes be extremely
useful. These effects can be found individually on the Image menu or with
the Image Effects browser on the Image menu. The Image Effects browser
(as shown in Figure 6-10) is often a better choice because it gives you a little
more control of most effects and provides interactive feedback on what the
effect will do. Sometimes, effects are called filters because they pass the
original image through a math function, which acts like a filter or processor
to create the modified output.

Figure 6-10:
The Image
Effects
browser lets
you choose
special
effects.

Manipulating Your Images94

Here’s a rundown of some of the effects, including when you would use
them:

 ✦ None: Just for comparison purposes, Figure 6-11 shows the ship image
without any filters turned on.

 I’ve exaggerated the effects for illustration purposes, but it may still be
difficult to see the full effect of these filters on the printed page. The
grayscale images in this book are a poor representation of the actual color
images. Use the images in this chapter as a starting point, but to understand
these filters, you really need to experiment with your own images in
IrfanView or a similar tool. I’ve also added all these images to this book’s
companion website so you can see them there. For more on the companion
website, see this book’s Introduction.

 ✦ Blur: This filter reduces contrast between adjacent pixels. (Really, we
could go over the math, but let’s leave that for another day, huh?) You
might wonder why you’d make an image blurry on purpose. Sometimes,
the Blur filter can fix graininess in an image. You can also use Blur in
conjunction with Sharpen (which I cover in just a moment) to fix small
flaws in an image. I applied the Blur filter to the standard ship image in
Figure 6-12.

 ✦ Sharpen: The opposite of Blur, the Sharpen filter enhances the contrast
between adjacent pixels. When used carefully, it can sometimes improve
an image. The Sharpen filter is most effective in conjunction with the
Blur filter to remove small artifacts. Figure 6-13 shows the ship image
with the Sharpen filter applied.

Figure 6-11:
Here’s the
standard
ship image,
at full
screen
resolution.

Book I
Chapter 6

Adding Im
ages,

Sound, and Video
Manipulating Your Images 95

Figure 6-12:
The Blur
filter
reduces
contrast.

Figure 6-13:
The
Sharpen
filter
increases
contrast.

 If you believe crime shows on TV, you can take a blurry image and keep applying
a sharpen filter to read a license plate on a blurry image from a security camera
a mile away. However, it just doesn’t usually work that way. You can’t make detail
emerge from junk, but sometimes, you can make small improvements.

 ✦ Emboss: This filter creates a grayscale image that looks like embossed
metal, as shown in Figure 6-14. Sometimes, embossing can convert an
image into a useful background image because embossed images have

Manipulating Your Images96

low contrast. You can use the Enhance Colors dialog box to change the
gray embossed image to a more appealing color.

 ✦ Oil Paint: This filter applies a texture reminiscent of an oil painting to an
image, as shown in Figure 6-15. It can sometimes clean up a picture and
give it a more artistic appearance. The higher settings make the painting
more abstract.

Figure 6-14:
Embossing
creates
a low
contrast 3D
effect.

Figure 6-15:
Oil Paint
makes
an image
slightly more
abstract.

Book I
Chapter 6

Adding Im
ages,

Sound, and Video
Manipulating Your Images 97

Figure 6-16:
The image
appears
to stick up
from the
page like a
button.

 ✦ 3D Button: This feature can be used to create an image, similar to
Figure 6-16, that appears to be a button on the page. This will be useful
later when you figure out how to use CSS or JavaScript to swap images
for virtual buttons. You can set the apparent height of the image in the
filter. Normally, you apply this filter to smaller images that you intend to
make into buttons the user can click.

 ✦ Red Eye Reduction: You use this filter to fix a common problem with
flash photography. Sometimes, a person’s eyes appear to have a reddish
tinge to them. Unlike the other filters, this one is easier to access from
the Image menu. Use the mouse to select the red portion of the image
and then apply the filter to turn the red areas black. It’s best not to
perform this filter on the entire image because you may inadvertently
turn other red things black.

Other effects you can use
Many more effects and filters are available. IrfanView has a few more built
in that you can experiment with. You can also download a huge number of
effects in the Adobe Photoshop 8BF format. These effects filters can often be
used in IrfanView and other image-manipulation programs.

Some effects allow you to explode the image, add sparkles, map images onto
3D shapes, create old-time sepia effects, and much more.

If you want to do even more image manipulation, consider a full-blown
image editor. Adobe Photoshop is the industry standard, but Gimp is an

Manipulating Your Images98

open-source alternative that does almost as much. See Book VIII, Chapter 4
for more about using Gimp for image processing.

Batch processing
Often, you’ll have a lot of images to modify at one time. IrfanView has a
wonderful batch-processing tool that allows you to work on several images at
once. I frequently use this tool to take all the images I want to use on a page
and convert them to a particular size and format. The process seems a little
complicated, but after you get used to it, you can modify a large number of
images quickly and easily.

If you want to convert a large number of images at the same time, follow
these steps:

 1. Identify the original images and place them in one directory. I find it
easiest to gather all the images into one directory, whether they come
from a digital camera, scanner, or other device.

 2. Open the Batch Conversion dialog box by choosing File ➪ Batch
Conversion — Rename. This Batch Conversion dialog box appears, as
shown in Figure 6-17.

 3. Find your original images by navigating the directory window in the
Batch Conversion dialog box.

 4. Copy your images to the Input Files workspace by clicking the
Add button. Select the images you want to modify and press the Add
button. The selected image names are copied to the Input Files
workspace.

Figure 6-17:
IrfanView
has a
powerful
batch
conversion
tool.

Book I
Chapter 6

Adding Im
ages,

Sound, and Video
Working with Audio 99

 5. Specify the output directory. If you want to put the new images in the
same directory as the input files, click the Use This Directory as Output
button. If not, choose the directory where you want the new images to go.

 6. In the Work As box, choose Batch Conversion — Rename Result Files.
You can use this setting to rename your files, to do other conversions, or
both. Generally, I recommend both.

 7. Set the output format to the format you want. For photos, you probably
want JPG format.

 8. Change renaming settings in the Batch Rename Settings area if you
want to specify some other naming convention for your images. By
default, each image is called image### where ### is a three-digit number.
They are numbered according to the listing in the Input Files workspace.
You can use the Move Up and Move Down buttons to change the order
images appear in this listing.

 9. Click the Set Advanced Options button to change the image size. This
displays the Set for All Images dialog box, as shown in Figure 6-18.

 10. Specify the new size of the image in the Resize area. Several common
sizes are preset. If you want another size, use the given options. I set my
size to 320×240.

 11. Close the Set for All Images dialog box and then, in the Batch
Conversion dialog box, click the Start button. In a few seconds, the
new images are created.

Working with Audio
HTML has supported images for a long time, but now it works just as well
with audio files. This is a major breakthrough, as audio previously required
external programs like Flash.

Figure 6-18:
Use the
Set for All
Images
dialog box
to resize
images in
batch mode.

Working with Audio100

Figure 6-19 demonstrates a page with a simple audio file.

Figure 6-19:
This page
has a song
embedded
in it.

It’s quite easy to add audio to a web page in HTML5 with the new <audio>
tag. Here’s the code for creating this page:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>audio.html</title>
</head>
<body>
 <h1>Audio Demo</h1>
 <audio controls = "controls">
 <source src = "Allemande.mp3" type = "audio/mpeg">
 <source src = "Allemande.ogg" type = "audio/ogg">
 Your browser does not support HTML5 Audio
 Please use this link instead:
 Allemande.mp3
 </audio>
 <p>
 Music: J.S. Bach "Allemande" Partita for Violin #2
 </p>
</body>
</html>

Although nearly every current browser supports the <audio> tag, they
still can’t agree on which format to support. Some browsers support
MP3 files, some support a newer standard called Ogg, and some
support WAV.

Book I
Chapter 6

Adding Im
ages,

Sound, and Video
Adding Video 101

The best way to be sure the sound plays is to supply two different formats.
I’ve found that including both Ogg and MP3 formats ensures my audio will
play on all major browsers.

To add an audio file to your page, follow these steps:

 1. Add the audio tag to your page. The <audio> tag indicates where an
audio file will be placed. Where you place the tag in the code corre-
sponds to where the controls will appear.

 2. Turn on controls. You can specify a control panel with the controls
= “controls” attribute. This causes a small control like the one in
Figure 6-19 to appear. If you leave this directive out, there will be no
control panel, which means the user will not be able to play the clip.

 3. Create a <source> element or two. Inside the <audio></audio> pair,
add one or more <source> elements. Each source element indicates a
file you will link to.

 4. Set the src attribute to indicate the file. The src attribute of the
<source> tag (could we please have one more thing with almost the
same name here?) is used to indicate the file name of the audio file you
wish to play.

 5. Add alternate code for older browsers. Any additional HTML
code between the <sound> and <sound> tags will be interpreted
only by browsers that do not understand the sound tag. You can
add an ordinary anchor to download the sound effect if you
wish. This way, even those with older browsers can hear what
they’re missing.

Adding Video
The <video> tag is very similar to the <audio> tag, and it works in exactly
the same way. You can use this tag to add a video to your web page, and the
video plays directly in the browser without requiring a plugin like Flash. The
ability to play videos through HTML is a major breakthrough, and it’s not dif-
ficult to implement.

Of course, it isn’t perfect. There are a number of competing video standards,
and the browsers (imagine this) cannot agree on which standard to accept.
The most important standards are called H.264 and Ogg. Some browsers
prefer one; some prefer the other. To make things more complicated, the file
extension for a video doesn’t always indicate the underlying coding mecha-
nism. This means video encoding requires some experimentation. If your
video file is not in the format you want, you may need to convert it. FFmpeg
and VLC are outstanding free tools you can use to convert video to whatever
format you need.

Adding Video102

 As with any intellectual property, be sure you have the permission of the
file’s original owner. Just because you can embed a video into your web page
doesn’t mean you should do so.

Figure 6-20 shows a page with a simple video embedded in it.

Figure 6-20:
This page
has a video.

The code for this page shows how much the <video> tag is like <audio>:

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>videoDemo</title>
 </head>
 <body>
 <h1>Video Demo</h1>
 <video src = "bigBuck.ogv"
 controls = "controls">
 Your browser does not support embedded video
 through HTML 5.
 </video>
 <p>
 This video is a trailer for the incredible short movie
 "Big Buck Bunny." This experiment proves that talented
 volunteers can produce a high-quality professional video
 using only open-source tools.
 Go to
 http://www.bigbuckbunny.org to see the entire video.
 </p>
 </body>
</html>

Book I
Chapter 6

Adding Im
ages,

Sound, and Video
Adding Video 103

 Video files are extremely large, and they can make your website seem much
slower to users. They also are cumbersome to move to a web server. For this
reason, many web developers prefer to upload videos to a service like
YouTube and simply link to the video on another server. If you right-click a
YouTube video, you can select Copy Embed Code from the menu that
appears. This gives you code you can use on your own site.

104 Book I: Creating the HTML Foundation

Chapter 7: Creating Forms

In This Chapter
✓ Adding forms to your pages

✓ Creating input and password text boxes

✓ Building multi-line text inputs

✓ Making list boxes and check boxes

✓ Building groups of radio buttons

✓ Using HTML5 form elements

✓ Creating buttons

H
TML gives you the ability to describe web pages, but today’s web isn’t
a one-way affair. Users want to communicate through web pages, by

typing in information, making selections from drop-down lists, and interact-
ing, rather than simply reading. In this chapter, you learn how to build these
interactive elements in your pages.

You Have Great Form
There’s one more aspect to HTML that you need to understand — the
ability to make forms. Forms are the parts of the page that allow user
interaction. Figure 7-1 shows a page with all the primary form elements
in place.

The form demo (or formDemo.html on this book’s web site, if you’re playing
along at home) exemplifies the main form elements in HTML. In this chapter,
you discover how to build all these elements. For more on this book’s web-
site, see the Introduction.

 You can create forms with ordinary HTML, but to make them do something,
you need a programming language. Book IV explains how to use JavaScript
to interact with your forms, and Book V describes the PHP language. Use
this chapter to figure out how to build the forms and then jump to another
minibook to figure out how to make them do stuff. If you aren’t ready for full-
blown programming yet, feel free to skip this chapter for now and move on
to CSS in Books II and III. Come back here when you’re ready to make forms
to use with JavaScript or PHP.

You Have Great Form106

Figure 7-1:
Form
elements
allow user
interaction.

The formDemo.html page shows the following elements:

 ✦ A form: A container for form elements. Although the form element itself
isn’t usually a visible part of the page (like the body tag), it could be
with appropriate CSS.

 ✦ Text boxes: These standard form elements allow the user to type text
into a one-line element.

 ✦ Password boxes: These boxes are like text boxes, except they automati-
cally obscure the text to discourage snooping.

 ✦ Text areas: These multi-line text boxes accommodate more text than the
other types of text boxes. You can specify the size of the text area the
user can type into.

 ✦ Select lists: These list boxes give the user a number of options. The user
can select one element from the list. You can specify the number of rows
to show or make the list drop down when activated.

 ✦ Check boxes: These non-text boxes can be checked or not. Check boxes
act independently — more than one can be selected at a time (unlike
radio buttons).

 ✦ Radio buttons: Usually found in a group of options, only one radio
button in a group can be selected at a time. Selecting one radio button
deselects the others in its group.

 ✦ Buttons: These elements let the user begin some kind of process. The
Input button is used in JavaScript coding (which I describe in Book IV),
whereas the Submit buttons are used for server-side programming (see
Book V). The Reset button is special because it automatically resets all
the form elements to their default configurations.

You Have Great Form 107

Book I
Chapter 7

Creating Form
s

 ✦ Labels: Many form elements have a small text label associated with
them. Although labels are not required, they can make a form easier to
style with CSS and easier for the user.

 ✦ Fieldsets and legends: These set off parts of the form. They’re optional,
but they can add a lot of visual appeal to a form.

Now that you have an overview of form elements, it’s time to start building
some forms!

Forms must have some form
All the form elements must be embedded inside a <form></form> pair. The
code for basicForm.html illustrates the simplest possible form:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>basicForm.html</title>
 </head>

 <body>
 <h1>A basic form</h1>
 <form action = "">
 <h2>Form elements go here</h2>
 <h3>Other HTML is fine, too.</h3>
 </form>
 <p>
 <input type = "text"
 value = "googoo" />
 </p>
 </body>
</html>

The <form></form> pair indicates a piece of the page that may contain
form elements. All the other form doohickeys and doodads (buttons,
select objects, and so on) must be inside a <form> pair.

The action attribute indicates what should happen when the form is sub-
mitted. This requires a programming language, so a full description of the
action attribute is in Book IV. Still, you must indicate an action to validate,
so for now just leave the action attribute null with a pair of quotes ("").

Organizing a form with fieldsets and labels
Forms can contain many components, but the most important are the
input elements (text boxes, buttons, drop-down lists, and the like) and the
text labels that describe the elements. Traditionally, web developers used
tables to set up forms, but this isn’t really the best way to go because forms
aren’t tabular information. HTML includes some great features to help you
describe the various parts of a form. Figure 7-2 shows a page with fieldsets,
layouts, and basic input.

You Have Great Form108

Figure 7-2:
This form
has a
legend and
labels.

A fieldset is a special element used to supply a visual grouping to a set of
form elements.

The form still doesn’t look very good, I admit, but that’s not the point. Like
all HTML tags, the form elements aren’t about describing how the form
looks; they’re about what all the main elements mean. (Here I go again. . . .)
You use CSS to make the form look the way you want. The HTML tags
describe the parts of the form, so you have something to hook your CSS to.
It all makes sense very soon, I promise.

Here’s the code for the fieldset demo (fieldsetDemo.html on this book’s website):

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>fieldsetDemo.html</title>
 </head>
 <body>
 <h1>Sample Form with a Fieldset</h1>
 <form action = "">
 <fieldset>
 <legend>Personal Data</legend>
 <p>
 <label>Name</label>
 <input type = "text" />
 </p>
 <p>
 <label>Address</label>
 <input type = "text" />
 </p>

Building Text-Style Inputs 109

Book I
Chapter 7

Creating Form
s

 <p>
 <label>Phone</label>
 <input type = "text" />
 </p>
 </fieldset>
 </form>
 </body>
</html>

The form has these elements:

 ✦ The <form> and </form> tags: These define the form as a part of the
page. Don’t forget the null action attribute.

 ✦ The <fieldset> pair: This pair describes the included elements as a
set of fields. This element isn’t necessary, but it does give you some
nice organization and layout options later when you use CSS. You can
think of the fieldset as a blank canvas for adding visual design to your
forms. By default, the fieldset places a border around all the contained
elements.

 ✦ The <legend> tag: A part of the fieldset, this tag allows you to specify a
legend for the entire fieldset. The legend is visible to the user.

 ✦ The paragraphs: I sometimes place each label and its corresponding
input element in a paragraph. This provides some nice formatting capa-
bilities and keeps each pair together.

 ✦ The <label> tag: This tag allows you to specify a particular chunk of
text as a label. No formatting is done by default, but you can add format-
ting later with CSS. The label also has an optional for attribute that
allows you to connect the label with a specific input element. This can
help to organize your form just a little more.

 ✦ The <input> elements: The user types data into these elements. For now,
I’m just using very basic text inputs so the form has some kind of input. In
the next section, I explain how to build more complete text inputs.

Building Text-Style Inputs
Most of the form elements are variations of the same tag. The <input>
tag can create single-line text boxes, password boxes, buttons, and even
invisible content (such as hidden fields). Most of these objects share the
same basic attributes, although the outward appearance can be different.

Making a standard text field
Figure 7-3 shows the most common form of the input element — a plain text
field.

Building Text-Style Inputs110

To make a basic text input, you need a form and an input element. Adding a
label so that the user knows what he’s supposed to enter into the text box is
also common. Here’s the code:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>textbox.html</title>
 </head>
 <body>
 <form action = "">
 <p>
 <label>Name</label>
 <input type = "text"
 id = "txtName"
 value = "Jonas"/>
 </p>
 </form>
 </body>
</html>

An input element has three common attributes:

 ✦ type : The type attribute indicates the type of input element this is.
This first example sets type to text , creating a standard text box.
Other types throughout this chapter create passwords, hidden fields,
check boxes, and buttons.

 ✦ id : The id attribute creates an identifier for the field. When you use a
programming language to extract data from this element, use id to specify
which field you’re referring to. An id field often begins with a hint phrase
to indicate the type of object it is (for instance, txt indicates a text box).

Figure 7-3:
The input
element is
often used
to make a
text field.

Building Text-Style Inputs 111

Book I
Chapter 7

Creating Form
s

 ✦ value : This attribute determines the default value of the text box. If
you leave this attribute out, the text field begins empty.

Text fields can also have other attributes, which aren’t used as often, such as

 ✦ size : This attribute determines the number of characters that are
displayed.

 ✦ maxlength : Use this attribute to set the largest number of characters
that are allowed.

There is no </input> tag. Input tags are a holdover from the days when
many tags did not have ending tags. You just end the original tag with a slash
character (/), as shown in the preceding sample code.

You might wonder why I added the <label> tag if it doesn’t have any effect
on the appearance or behavior of the form. In this particular example, the
<label> tag doesn’t have an effect, but like everything else in HTML, you
can do amazing style things with it in CSS. Even though labels don’t typically
have a default style, they are still useful.

Building a password field
Passwords are just like text boxes, except the text isn’t displayed. Instead, a
series of asterisks appears. Figure 7-4 shows a basic password field.

The following code reveals that passwords are almost identical to ordinary
text fields:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>password.html</title>
 </head>
 <body>
 <form action = "">
 <fieldset>
 <legend>Enter a password</legend>
 <p>
 <label>Type password here</label>
 <input type = "password"
 id = "pwd"
 value = "secret" />
 </p>
 </fieldset>
 </form>
 </body>
</html>

In this example, I’ve created a password field with the ID pwd . The default
value of this field is secret . The term secret won’t actually appear in the
field; it will be replaced with six asterisk characters.

Building Text-Style Inputs112

Figure 7-4:
Enter the
secret pass-
word. . . .

 The password field offers virtually no meaningful security. It protects the
user from spy satellites glancing over his shoulder to read a password, but
that’s about it. The open standards of HTML and the programming languages
mean passwords are often passed in the open. There are solutions — such as
the SSL (Secure Socket Layer) technology — but for now, just be aware that the
password field isn’t suitable for protecting the recipe of your secret sauce.

This example doesn’t really do anything with the password, but you’ll use
other technologies for that.

Making multi-line text input
The single-line text field is a powerful feature, but sometimes, you want
something with a bit more space. The essay.html program, as shown in
Figure 7-5, demonstrates how you might create a page for an essay question.

The star of this program is a new tag — <textarea> :

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>essay.html</title>
 </head>
 <body>
 <form action = "">
 <fieldset>
 <legend>Quiz</legend>
 <p>
 <label>Name</label>
 <input type = "text"
 id = "txtName" />

Building Text-Style Inputs 113

Book I
Chapter 7

Creating Form
s

 </p>
 <p>
 <label>
 Please enter the sum total of
 Western thought. Be brief.
 </label>
 </p>
 <p>
 <textarea id = "txtAnswer"
 rows = "10"
 cols = "40"></textarea>
 </p>
 </fieldset>
 </form>
 </body>
</html>

Here are a few things to keep in mind when using the <textarea> tag:

 ✦ It needs an id attribute, just like an input element.

 ✦ You can specify the size with rows and cols attributes.

 ✦ The content goes between the tags. The text area can contain a lot more
information than the ordinary <input> tags, so rather than placing the
data in the value attribute, the content of the text goes between the
<textarea> and </textarea> tags.

 Anything placed between <textarea> and </textarea> in the code ends
up in the output, too. This includes spaces and carriage returns. If you don’t
want any blank spaces in the text area, place the ending tag right next to the
beginning tag, as I did in the essay example.

Figure 7-5:
This quiz
might
require a
multi-line
response.

Building Text-Style Inputs114

Creating Multiple Selection Elements
Sometimes, you want to present the user with a list of choices and then have
the user pick one of these elements. HTML has a number of interesting ways
to do this.

Making selections
The drop-down list is a favorite selection tool of web developers for the fol-
lowing reasons:

 ✦ It saves screen space. Only the current selection is showing. When the
user clicks the list, a series of choices drop down and then disappear
again after the selection is made.

 ✦ It limits input. The only things the user can choose are things you’ve
put in the list. This makes it much easier to handle the potential inputs
because you don’t have to worry about typing errors.

 ✦ The value can be different from what the user sees. This seems like an
odd advantage, but it does turn out to be very useful sometimes. I show
an example when I describe color values later in this chapter.

Figure 7-6 shows a simple drop-down list in action.

Figure 7-6:
The user
can choose
from a list of
colors.

The code for this simple drop-down list follows:

<!DOCTYPE html>
<html lang = "en-US">

Building Text-Style Inputs 115

Book I
Chapter 7

Creating Form
s

 <head>
 <meta charset = "UTF-8">
 <title>basicSelect.html</title>
 </head>
 <body>
 <form action = "">
 <p>
 <label>What is your favorite color?</label>
 <select id = "selColor">
 <option value = "#ff0000">Red</option>
 <option value = "#00ff00">Green</option>
 <option value = "#0000ff">Blue</option>
 <option value = "#00ffff">Cyan</option>
 <option value = "#ff00ff">Magenta</option>
 <option value = "#ffff00">Yellow</option>
 <option value = "#000000">Black</option>
 <option value = "#ffffff">White</option>
 </select>
 </p>
 </form>
 </body>
</html>

The select object is a bit different from some of the other input elements
you’re used to, such as

 ✦ It’s surrounded by a <select></select> pair. These tags indicate the
entire list.

 ✦ The select object has an id attribute. Although the select object has
many other tags inside, typically only the select object itself has an id
attribute.

 ✦ It contains a series of <option></option> pairs. Each individual
selection is housed in an <option></option> set.

 ✦ Each <option> tag has a value associated with it. The value is used by
code. The value isn’t necessarily what the user sees. (See the sidebar
“What are those funky #ff00ff things?” for an example.)

 ✦ The content between <option></option> is visible to the user. The
content is what the user actually sees.

If you look carefully at the code for basic
Select.html , you see that the values are
all strange text with pound signs and weird
characters. These are hex codes, and they’re
a good way to describe colors for computers.
I explain all about how these work in Book
II, Chapter 1. This coding mechanism is not
nearly as hard to understand as it seems. For

now though, this code with both color names
and hex values is a good example of wanting
to show the user one thing (the name of a color
in English) and send some other value (the hex
code) to a program. You see this code again in
Book IV, Chapter 5, where I use a list box just
like this to change the background color of the
page with JavaScript.

What are those funky #ff00ff things?

Building Text-Style Inputs116

 Select boxes don’t require the drop-down behavior. If you want, you can
specify the number of rows to display with the size attribute. In this case,
the number of rows you specify will always be visible on the screen.

Building check boxes
Check boxes are used when you want the user to turn a particular choice on
or off. For example, look at Figure 7-7.

Figure 7-7:
Any number
of check
boxes can
be selected
at once.

Each check box represents a true or false value that can be selected or not
selected, and the status of each check box is completely independent from
the others. The user can check none of the options, all of them, or any
combination.

This code shows that check boxes use your old friend the <input> tag:

Sometimes, the value of a form element is
visible to users, and sometimes it’s hidden.
Sometimes, the text the user sees is inside
the tag, and sometimes it isn’t. It’s a little con-
fusing. The standards evolved over time, and
they honestly could have been a little more

consistent. Still, this is the set of elements you
have, and they’re not really that hard to under-
stand. Write forms a few times, and you’ll
remember. You can always start by looking
over my code and borrowing it as a starting
place.

This all seems inconsistent

Building Text-Style Inputs 117

Book I
Chapter 7

Creating Form
s

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>checkBoxes.html</title>
 </head>
 <body>
 <form action = "">
 <fieldset>
 <legend>Please check off your life goals </legend>
 <p>
 <input type = "checkbox"
 id = "chkPeace"
 value = "peace" />World peace
 </p>
 <p>
 <input type = "checkbox"
 id = "chkHarmony"
 value = "harmony" />Harmony and brotherhood
 </p>
 <p>
 <input type = "checkbox"
 id = "chkCash"
 value = "cash" />Cash
 </p>
 </fieldset>
 </form>
 </body>
</html>

You’re using the same attributes of the <input> tag, but they work a bit dif-
ferently than the way they do in a plain old text box:

 ✦ The type is checkbox . That’s how the browser knows to make a check
box, rather than a text field.

 ✦ The checkbox still requires an ID. If you’ll be writing programming
code to work with this thing (and you will, eventually), you’ll need an ID
for reference.

 ✦ The value is hidden from the user. The user doesn’t see the actual
value. That’s for the programmer (like the select object). Any text fol-
lowing the check box only appears to be the text associated with it.

Creating radio buttons
Radio buttons are used when you want to let the user pick only one option
from a group. Figure 7-8 shows an example of a radio button group in action.

Radio buttons might seem similar to check boxes, but they have some
important differences:

 ✦ Only one can be checked at a time. The term radio button came from
the old-style car radios. When you pushed the button for one station,
all the other buttons popped out. Even my car isn’t that old any more,
but the name has stuck.

Sometimes, the value of a form element is
visible to users, and sometimes it’s hidden.
Sometimes, the text the user sees is inside
the tag, and sometimes it isn’t. It’s a little con-
fusing. The standards evolved over time, and
they honestly could have been a little more

consistent. Still, this is the set of elements you
have, and they’re not really that hard to under-
stand. Write forms a few times, and you’ll
remember. You can always start by looking
over my code and borrowing it as a starting
place.

This all seems inconsistent

Building Text-Style Inputs118

Figure 7-8:
You can
choose
only one of
these radio
buttons.

 ✦ They have to be in a group. Radio buttons make sense only in a group
context. The point of a radio button is to interact with its group.

 ✦ They all have the same name! Each radio button has its own ID (like
other input elements), but they also have a name attribute. The name
attribute indicates the group a radio button is in.

 ✦ You can have more than one group on a page. Just use a different name
attribute for each group.

 ✦ One of them has to be selected. The group should always have one
value and only one. Some browsers check the first element in a group
by default, but just in case, you should select the element you want
selected. Add the checked = "checked" attribute (developed by
the Department of Redundancy Department) to the element you want
selected when the page appears. In this example, I preselected the most
expensive option, all in the name of good capitalistic suggestive selling.

Here’s some code that explains it all:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>radioButtons.html</title>
 </head>
 <body>
 <form action = "">
 <fieldset>
 <legend>How much do you want to spend?</legend>
 <p>
 <input type = "radio"
 name = "radPrice"
 id = "rad100"

Pressing Your Buttons 119

Book I
Chapter 7

Creating Form
s

 value = "100" />Too much
 </p>
 <p>
 <input type = "radio"
 name = "radPrice"
 id = "rad200"
 value = "200" />Way too much
 </p>
 <p>
 <input type = "radio"
 name = "radPrice"
 id = "rad5000"
 value = "5000"
 checked = "checked" />You've got to be kidding.
 </p>
 </fieldset>
 </form>
 </body>
</html>

Pressing Your Buttons
HTML5 also comes with several types of buttons. You use these guys to
make something actually happen. Generally, the user sets up some kind of
input by typing in text boxes and then selecting from lists, options, or check
boxes. Then, the user clicks a button to trigger a response. Figure 7-9 demon-
strates four types of buttons.

Figure 7-9:
HTML5
supports
several
types of
buttons.

The code for this button example is shown here:

<!DOCTYPE html>
<html lang = "en-US">

Pressing Your Buttons120

 <head>
 <meta charset = "UTF-8">
 <title>buttons.html</title>
 </head>
 <body>
 <h1>Button Demo</h1>
 <form action = "">
 <fieldset>
 <legend>
 input-style buttons
 </legend>
 <input type = "button"
 value = "input type = button" />
 <input type = "submit" />
 <input type = "reset" />
 </fieldset>
 <fieldset>
 <legend>button tag buttons</legend>
 <button type = "button">
 button tag
 </button>
 <button>
 <img src = "clickMe.gif"
 alt = "click me" />
 </button>
 </fieldset>
 </form>
 </body>
</html>

Each button type is described in this section.

Making input-style buttons
The most common form of button is just another form of your old friend, the
<input> tag. If you set the input’s type attribute to "button", you gener-
ate a basic button:

 <input type = "button"
 value = "input type = button" />

The ordinary Input button has a few key features:

 ✦ The input type is set to "button". This makes an ordinary button.

 ✦ The value attribute sets the button’s caption. Change the value
attribute to make a new caption. This button’s caption shows how the
button was made: input type = "button".

 ✦ This type of button doesn’t imply a link. Although the button appears
to depress when it’s clicked, it doesn’t do anything. You have to write
some JavaScript code to make it work.

 ✦ Later, you’ll add event-handling to the button. After you discover
JavaScript in Book IV, you use a special attribute to connect the button
to code.

Pressing Your Buttons 121

Book I
Chapter 7

Creating Form
s

 ✦ This type of button is for client-side programming. This type of code
resides on the user’s computer. I discuss client-side programming with
JavaScript in Book IV.

Building a Submit button
Submit buttons are usually used in server-side programming. In this form of
programming, the code is on the web server. In Book V, you use PHP to create
server-side code. The <input> tag is used to make a Submit button, too!

 <input type = "submit" />

Although they look the same, the Submit button is different than the ordi-
nary button in a couple subtle ways:

 ✦ The value attribute is optional. If you leave it out, the button displays
Submit Query. Of course, you can change the value to anything you
want, and this becomes the caption of the Submit button.

 ✦ Clicking it causes a link. This type of button is meant for server-side
programming. When you click the button, all the information in the form
is gathered and sent to some other page on the web.

 ✦ Right now, it goes nowhere. When you set the form’s action attribute
to null (""), you told the Submit button to just reload the current page.
When you figure out real server-side programming, you change the
form’s action attribute to a program that works with the data.

 ✦ Submit buttons aren’t for client-side. Although you can attach an event
to the Submit button (just like the regular Input button), the linking
behavior often causes problems. Use regular Input buttons for client-
side and Submit buttons for server-side.

It’s a do-over: The Reset button
Yet another form of the versatile <input> tag creates the Reset button:

 <input type = "reset" />

This button has a very specific purpose. When clicked, it resets all the ele-
ments of its form to their default values. Like the Submit button, it has a
default value ("reset"), and it doesn’t require any code.

Introducing the <button> tag
The button has been a useful part of the web for a long time, but it’s a bit
boring. HTML 4.0 introduced the <button> tag, which works like this:

New Form Input Types122

 <button type = "button">
 button tag
 </button>

The <button> tag acts more like a standard HTML tag, but it can also act
like a Submit button. Here are the highlights:

 ✦ The type attribute determines the style. You can set the button to
ordinary (by setting its type to button), submit , or reset . If you
don’t specify the type, buttons use the Submit style. The button’s type
indicates its behavior, just like the Input-style buttons.

 ✦ The caption goes between the <button></button> pair. There’s
no value attribute. Instead, just put the intended caption inside the
<button> pair.

 ✦ You can incorporate other elements. Unlike the Input button, you can
place images or styled text inside a button. This gives you some other
capabilities. The second button in the buttons.html example uses a
small GIF image to create a more colorful button.

New Form Input Types
HTML forms are centered around the humble but flexible input element.
HTML5 adds a number of very useful forms of input, which help build more
modern and flexible interfaces.

Although support for these tags is not universal, it is safe to begin using
them now. Any browser (even IE6) which does not understand the advanced
input types will revert to input type = "text" , which will still work
exactly as expected (although not with the validation and user interface
improvements of the newer tags).

Note that the standard indicates that the various types will be supported, but
the exact way the elements are supported will vary from browser to browser.
For example, the e-mail field will likely look just like an ordinary text field to a
user with a standard desktop machine, but the virtual keyboard on a mobile
device might change to include the @ when it encounters an e-mail field.

Figure 7-10 illustrates many of these form elements in action using Google
Chrome, which supports all of these features.

date
Setting the input type to date indicates that you wish the user to enter a date
value. Some browsers (Firefox 3.5) still display a text field, and others (Opera 10)
display a special calendar control, allowing for much more accurate and easier
date selection. Still other browsers (Chrome) include both text and a pop-up cal-
endar. If the date is entered by text, it must be entered in a yyyy-mm-dd format.

New Form Input Types 123

Book I
Chapter 7

Creating Form
s

 <input type="date"
 id = "date" />

Figure 7-10:
Newer
browsers
have special
inputs —
here I’m
picking a
color.

You can restrict the dates allowed to a specific range by applying the min
and max attributes to the element.

time
The purpose of the time input type is to allow the user to enter a time. Time
is stored in hh:mm format, where hh is the hour (in 24-hour format) and mm
is the minutes. Some browsers include a colon directly in the field, and some
modify the virtual keyboard with numbers and the colon character. It is also
possible that a browser will pop up some sort of custom time selector, but
this is not yet supported in any major browsers.

 <input type = "time"
 id = "time" />

datetime
The datetime element combines date and time into a single element. It
also includes a mechanism for entering the time zone.

 <input type="datetime"
 id = "datetime" />

Some browsers pop up a calendar control for the date and a formatted input
for the time. Others may modify virtual keyboards for date and time input.

datetime-local
The datetime-local element is just like the datetime element except it
does not include a time zone indicator.

 <input type="datetime-local"
 id = "datetimeLocal" />

New Form Input Types124

The official full date and time format returned
from the various date and time elements is a
specialized code:

yyyy-mm-ddThh:mm+ff:gg

Each of the characters in the code describe a
part of the date and time:

 ✓ yyyy: Four digits for the year.

 ✓ - (dash): Must be placed between year and
month. Another dash is placed between
the month and the day.

 ✓ mm: Two digits for the month.

 ✓ dd: Two digits for the day.

 ✓ T: Capital “T” indicates the beginning of the
time part of the code.

 ✓ hh: Two digits for the hour, in 24-hour
format.

 ✓ : (colon): The colon character between
the hour and minutes. Another colon will
appear between the hour and minutes of
the time zone offset.

 ✓ mm: Two digits for the minutes.

 ✓ +/-/Z: The time zone offset is indicated by a
capital Z (if the time is Zulu or GMT time) or
the + or - symbol if time is in another time
zone.

 ✓ ff: If the time zone is not Zulu time,
indicate the number of hours offset from
GMT.

 ✓ gg: Number of minutes offset from Zulu
time. Typically this is 00, but it is possible
that the time zone will be offset by 15, 30,
or 45 minutes.

For example, 5:30 PM on October 11, 2010, in
New York City will be indicated like this:

2010-10-11T17:30-05:00

If the user is using a browser that validates a
datetime field, the date and time will need
to be in this format to be considered valid.
The value of a datetime field will be in this
format, which is relatively easy for computer
programs to parse and manage.

Managing date and time data

The datetime-local input type expects and returns a date and time in the
same format as the standard datetime element, except datetime-local
does not include a time zone offset.

week
The week field is used to pick a week from a calendar control. It returns a
value in the following format:

 yyyy-Wnn

 ✦ yyyy represents a four-digit year

 ✦ - is the dash character

 ✦ W is the capital W character

 ✦ nn is the week as a two-digit number

New Form Input Types 125

Book I
Chapter 7

Creating Form
s

Some browsers pop up the standard calendar control. When the user selects
a date (or a week), only the year and week will be returned. Other browsers
will simply validate for the proper format:

 <input type = "week"
 id = "week" />

month
The month input type generates a four-digit year followed by a two-digit
month. It frequently pops up the same calendar control as other date pick-
ers, but only the year and month (yyyy-mm format) are returned.

 <input type = "month"
 id = "month" />

color
The color tool allows the user to choose a color using standard web for-
mats: recognized color names (yellow) and hex values preceded by a #
symbol (#ff0033.) The browser may display a color-picking tool like the ones
found in word processors and paint programs. At the moment, some brows-
ers simply display a text box and indicate whether the current content is a
valid color name or value.

 <input type = "color"
 id = "color" />

number
The number field allows the input of numerical data. This often consists of a
text field followed by some kind of selector (say up and down arrows), or it
might change the virtual keypad of a portable device to handle only numeric
input.

 <input type = "number"
 id = "number"
 max = "10"
 min = "0" />

The number input type supports several special attributes:

 ✦ min: This is the minimum value allowed. If there is an on-screen input
element, it will not allow a value less than the min value. The field will
also not validate if the value of the field is less than the min value.

 ✦ max: This is the maximum allowed value. If there is an on-screen input
element, it will not allow a value larger than the max value. The field will
not validate if the value of the field is larger than the max value.

 ✦ step: This value indicates how much the visual interface tools (typically
small up and down arrows) will change the value when activated.

 ✦ value: This is the numeric value of the element.

New Form Input Types126

All values can be integer or floating point. However, current browsers which
support this tag (Opera and Chrome) do not seem to validate as well with
floating-point values as they do with integer values. For more control of
numeric input, consider the range input type, described in the following
section.

range
The range input type is a long-anticipated addition to the HTML toolbox.
User interface experts have known for years that user input of integer
values is very difficult to get right. Most user interface toolkits have some
sort of slider or scrollbar mechanism that makes it easy for users to enter a
numeric value visually. The <input type = “range”> construct finally
adds this functionality to HTML forms.

 <input type = "range"
 id = "range"
 min = "0"
 max = "255"
 value = "128" />

The range input takes the attributes number, min, max, value, and step.
If the browser supports this tag, the user will see a scroller. If not, a plain-
text input type will appear. When this element becomes widespread, its use
will be encouraged because it is much easier to restrict the users input to a
valid range (especially when the mechanism for doing so is visual and easy)
than it is to check the user’s input after the fact.

However, the range type does not display the exact value, and it can be
harder to get precise results than with the number input type. One solution
is to pair an output tag to the range, and use JavaScript to update the
output when the range is changed. See rangeOutput.html on the book’s
website to see this in action. (You may need to review JavaScript coding in
Book IV to completely follow this example.)

search
The search input type is used to retrieve text that’s intended to be used
as part of a search (either internally or through some searching service
like Google). On most browsers, it is displayed like an ordinary text field.
It does sometimes have some special behavior. On Safari, the search field
has a small X that clears the contents of the search. On Chrome, the auto-
completion features of the main search bar (which is also the URL input
element in Chrome) are automatically applied to the search box.

 <input type="search"
 id = "search" />

New Form Input Types 127

Book I
Chapter 7

Creating Form
s

Like the other new input types, there is no penalty for using the search ele-
ment in browsers that do not support it. The fall-back is a plain text input.

Note that the search element doesn’t actually do any searching. If you
want to actually search for the value, you’ll still need to write some code.
The search element does give you an interface consistent with the
browser’s integrated search tools, but the actual behavior is still up to the
programmer.

email
The email element generally looks like a plain text field, but it validates on
an e-mail address. Also, it is possible that the browser will modify the user
experience in other ways. For example, mobile browsers may modify the
virtual keyboard to include the @ symbol, which is always present in e-mail
addresses:

 <input type="email"
 id = "txtEmail" />

tel
The tel field is used to input a telephone number. It expects three digits
followed by a dash and four digits. You may need to play with the pattern
attribute if you want to allow an area code or extensions to validate.

 <input type = "tel"
 id = "tel" />

url
Use this input type to indicate a web address. Browsers that support this
element will check for the http:// prefix. Mobile browsers may also adapt
the virtual keyboard to include characters commonly found in URLs: the
colon (:), forward slash (/), and tilde (~).

 <input type = "url"
 id = "url" />

128 Book I: Creating the HTML Foundation

 Visit www.dummies.com/extras/html5css3aio for more on using HTML
entities.

Part II
Styling with CSS

http://www.dummies.com/extras/html5css3aio

Contents at a Glance

Contents at a Glance

Chapter 1: Coloring Your World .131
Now You Have an Element of Style ..131
Specifying Colors in CSS ...134
Choosing Your Colors ...140
Creating Your Own Color Scheme ..143

Chapter 2: Styling Text . .149
Setting the Font Family ...149
The Curse of Web-Based Fonts ...154
Specifying the Font Size ..160
Relative measurement units ...163
Determining Other Font Characteristics ...164

Chapter 3: Selectors: Coding with Class and Style 175
Selecting Particular Segments ...175
Using Emphasis and Strong Emphasis ..177
Modifying the Display of em and strong ...179
Defining Classes ...180
Introducing div and span ...184
Using Pseudo-Classes to Style Links ..187
Selecting in Context ...190
Defining Styles for Multiple Elements ...191
Using New CSS3 Selectors ...193

Chapter 4: Borders and Backgrounds . .197
Joining the Border Patrol ..197
Introducing the Box Model ...202
New CSS3 Border Techniques ...207
Changing the Background Image ..212
Manipulating Background Images ..218
Using Images in Lists ...223

Chapter 5: Levels of CSS .225
Managing Levels of Style ..225
Understanding the Cascading Part of Cascading Style Sheets233
Managing Browser Incompatibility ...237

Chapter 6: CSS Special Effects .245
Image Effects ...245
Text Effects ..249
Transformations and Transitions ..252

Chapter 1: Coloring Your World

In This Chapter
✓ Introducing the style element

✓ Adding styles to tags

✓ Modifying your page dynamically

✓ Specifying foreground and background colors

✓ Understanding hex colors

✓ Appreciating HSL colors

✓ Developing a color scheme

H
TML does a good job of setting up the basic design of a page, but
face it: The pages it makes are pretty ugly. In the old days, develop-

ers added a lot of other tags to HTML to make it prettier, but changing the
design with HTML code was a haphazard affair. Now, HTML disallows all the
tags that made pages more attractive. That sounds bad, but it isn’t really a
loss. Today, HTML is almost always written in concert with CSS (Cascading
Style Sheets). It’s amazing how much you can do with CSS to beautify your
HTML pages.

CSS allows you to change the color of any image on the page, add back-
grounds and borders, change the visual appearance of elements (like lists
and links), as well as customize the entire layout of your page. Additionally,
CSS allows you to keep your HTML simple because all the formatting is
stored in the CSS. CSS is efficient, too, because it allows you to reuse a style
across multiple elements and pages. If HTML gives your pages structure,
CSS gives them beauty.

This chapter gets you started by describing how to add color to your pages.

Now You Have an Element of Style
The secret to CSS is the style sheet, a set of rules for describing how various
objects will display. For example, look at basicColors.html in Figure 1-1.

 As always, don’t take my word for it. This chapter is about color, and you
need to look at these pages from the companion website to see what I’m
talking about. See this book’s Introduction for more on the companion
website.

Now You Have an Element of Style132

Figure 1-1:
This page is
in color!

Nothing in the HTML code provides color information. What makes this page
different from plain HTML pages is a new section that I’ve stashed in the
header. Take a gander at the code to see what’s going on (interesting part is
in bold):

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>basicColors.html</title>
 <style type = "text/css">
 body {
 color: yellow;
 background-color: red;
 }
 h1 {
 color: red;
 background-color: yellow;
 }
 </style>
 </head>
 <body>
 <h1>Red text on a yellow background</h1>
 <p>
 Yellow text on a red background
 </p>
 </body>
</html>

As you can see, nothing is dramatically different in the HTML code. The
body simply contains an h1 and a p. Although the text mentions the colors,
nothing in the HTML code makes the colors really happen.

Book II
Chapter 1

Coloring Your W
orld

Now You Have an Element of Style 133

The secret is the new <style></style> pair I put in the header area:

 <style type = "text/css">
 body {
 color: yellow;
 background-color: red;
 }

 h1 {
 color: red;
 background-color: yellow;
 }
 </style>

The <style> tag is an HTML tag, but what it does is special: It switches lan-
guages! Inside the style elements, you’re not writing HTML anymore. You’re
in a whole new language — CSS. CSS has a different job than HTML, but
they’re made to work well together.

 It may seem that the CSS code is still part of HTML because it’s inside the
HTML page, but it’s best to think of HTML and CSS as two distinct (if related)
languages. HTML describes the content, and CSS describes the layout. CSS
(as you soon see) has a different syntax and style than HTML and isn’t
always embedded in the web page.

Setting up a style sheet
Style sheets describe presentation rules for HTML elements. If you look at
the preceding style sheet (the code inside the <style> tags), you can see
that I’ve described presentation rules for two elements: the <body> and
<h1> tags. Whenever the browser encounters one of these tags, it attempts
to use these style rules to change that tag’s visual appearance.

Styles are simply a list of selectors (places in the page that you want to
modify). For now, I use tag names (body and h1) as selectors. However, in
Chapter 3 of this minibook, I show many more selectors that you can use.

Each selector can have a number of style rules. Each rule describes some
attribute of the selector. To set up a style, keep the following in mind:

 ✦ Begin with the style tags. The type of style you’ll be working with for
now is embedded into the page. You should describe your style in the
header area.

 ✦ Include the style type in the header area. The style type is always
“text/css”. The beginning <style> tag always looks like this:

<style type = "text/css">

 ✦ Define an element. Use the element name (the tag name alone) to begin
the definition of a particular element’s style. You can define styles for all

Specifying Colors in CSS134

the HTML elements (and other things, too, but not today). The selector
for the body is designated like this:

 body {

 ✦ Use braces ({}) to enclose the style rules. Each style’s rules are
enclosed in a set of braces. Similar to many programming languages,
braces mark off special sections of code. It’s traditional to indent inside
the braces.

 ✦ Give a rule name. In this chapter, I’m working with two very simple
rules: color and background-color. Throughout this minibook, you
can read about many more CSS rules (sometimes called attributes) that
you can modify. A colon (:) character always follows the rule name.

 ✦ Enter the rule’s value. Different rules take different values. The attribute
value is followed by a semicolon. Traditionally, each name-value pair is
on one line, like this:

 body {
 color: yellow;
 background-color: red;
 }

Changing the colors
In this very simple example, I just changed some colors around. Here are the
two primary color attributes in CSS:

 ✦ color: This refers to the foreground color of any text in the element.

 ✦ background-color: The background color of the element. (The
hyphen is a formal part of the name. If you leave it out, the browser
won’t know what you’re talking about.)

With these two elements, you can specify the color of any element. For
example, if you want all your paragraphs to have white text on a blue back-
ground, add the following text to your style:

p {
 color: white;
 background-color: blue;
}

 CSS is case-sensitive. CSS styles should be written entirely in lowercase.

You’ll figure out many more style elements in your travels, but they all follow
the same principles illustrated by the color attributes.

Specifying Colors in CSS
Here are the two main ways to define colors in CSS. You can use color
names, such as pink and fuchsia, or you can use hex values. (Later in this

Book II
Chapter 1

Coloring Your W
orld

Specifying Colors in CSS 135

chapter, in the section “Creating Your Own Color Scheme,” you find out how
to use special numeric designators to choose colors.) Each approach has its
advantages.

Using color names
Color names seem like the easiest solution, and, for basic colors like red and
yellow, they work fine. However, here are some problems with color names
that make them troublesome for web developers:

 ✦ Only 16 color names will validate. Although most browsers accept
hundreds of color names, only 16 are guaranteed to validate in CSS and
HTML validators. See Table 1-1 for a list of those 16 colors.

 ✦ Color names are somewhat subjective. You’ll find different opinions on
what exactly constitutes any particular color, especially when you get to
the more obscure colors. (I personally wasn’t aware that PeachPuff and
PapayaWhip are colors. They sound more like dessert recipes to me.)

 ✦ It can be difficult to modify a color. For example, what color is a tad
bluer than Gainsboro? (Yeah, that’s a color name, too. I had no idea
how extensive my color disability really was.)

 ✦ They’re hard to match. Say you’re building an online shrine to your cat
and you want the text to match your cat’s eye color. It’ll be hard to figure
out exactly what color name corresponds to your cat’s eyes. I guess you
could ask the cat.

Hex color values can be indicated in uppercase or lowercase. The mysteri-
ous hex codes are included in this table for completeness. It’s okay if you
don’t understand what they’re about. All is revealed in the next section.

Table 1-1 Legal Color Names and Hex Equivalents
Color Hex Value

Black #000000

Silver #C0C0C0

Gray #808080

White #FFFFFF

Maroon #800000

Red #FF0000

Purple #800080

Fuchsia #FF00FF

Green #008800

Lime #00FF00
(continued)

Specifying Colors in CSS136

Color Hex Value

Olive #808000

Yellow #FFFF00

Navy #000080

Blue #0000FF

Teal #008080

Aqua #00FFFF

Obviously, I can’t show you actual colors in this black-and-white book, so I
added a simple page to this book’s companion website that displays all the
named colors. Check namedColors.html to see the actual colors, and see this
book’s Introduction for information on how to access the website.

Putting a hex on your colors
Colors in HTML are a strange thing. The “easy” way (with color names) turns
out to have many problems. The method most web developers really use
sounds a lot harder, but it isn’t as bad as it may seem at first. The hex color
scheme uses a seemingly bizarre combination of numbers and letters to
determine color values. #00FFFF is aqua. #FFFF00 is yellow. It’s a scheme
only a computer scientist could love. Yet, after you get used to it, you’ll find
the system has its own geeky charm. (And isn’t geeky charm the best kind?)

Hex colors work by describing exactly what the computer is doing, so you
have to know a little more about how computers work with color. Each dot (or
pixel) on the screen is actually composed of three tiny beams of light (or LCD
diodes or something similar). Each pixel has tiny red, green, and blue beams.

The light beams work kind of like stage lights. Imagine a black stage with
three spotlights (red, green, and blue) trained on the same spot. If all the
lights are off, the stage is completely dark. If you turn on only the red light,
you see red. You can turn on combinations to get new colors. For example,
turning on red and green creates a spot of yellow light. Turning on all three
lights makes white.

Coloring by number
In a computer system, each of the little lights can be adjusted to various
levels of brightness. These values measure from 0 (all the way off) to 255 (all
the way on). Therefore, you could describe red as rgb(255, 0, 0) and
yellow as rgb(255, 255, 0).

The 0 to 255 range of values seems strange because you’re probably
used to base 10 mathematics. The computer actually stores values
in binary notation. The way a computer sees it, yellow is actually

Table 1-1 (continued)

Book II
Chapter 1

Coloring Your W
orld

Specifying Colors in CSS 137

111111111111111100000000. Ack! There has to be an easier way to handle all
those binary values. That’s why we use hexadecimal notation. Read on. . . .

Figure 1-2 shows a page which allows you to pick colors with red, green, and
blue sliders. Each slider shows its value in base 10 as well as in hexadecimal.

Figure 1-2:
Play with
this program
to see the
various
colors you
can use.

 The colorChooser program shown in Figure 1-2 uses technology that will be
described in Book IV. Any page that interacts with the user will tend to use a
programming language (in this case, JavaScript). Feel free to look over the
code, but don’t worry if you’re not yet ready to add programming to your
sites. You’ll get there soon enough, I promise.

Hex education
All those 1s and 0s get tedious. Programmers like to convert to another
format that’s easier to work with. Believe it or not, it’s easier to convert
binary numbers to base 16 than base 10, so that’s what programmers do.
You can survive just fine without understanding base 16 (also called hexa-
decimal or hex) conversion, but you should understand a few key features,
such as:

 ✦ Each hex digit is shorthand for four digits of binary. The whole reason
programmers use hex is to simplify working with binary.

 ✦ Each digit represents a value between 0 and 15. Four digits of binary
represent a value between 0 and 15.

 ✦ We have to invent some digits. The whole reason hex looks so weird is
the inclusion of characters. This is for a simple reason: There aren’t enough
numeric digits to go around! Table 1-2 illustrates the basic problem.

Specifying Colors in CSS138

Table 1-2 Hex Representation of Base Ten Numbers
Decimal (Base 10) Hex (Base 16)

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A

11 B

12 C

13 D

14 E

15 F

The ordinary digits 0–9 are the same in hex as they are in base 10, but the
values from 10–15 (base ten) are represented by alphabetic characters in
hexadecimal.

 You’re very used to seeing the value 10 as equal to the number of fingers on
both hands, but that’s not always the case when you start messing around
with numbering systems like we’re doing here. The number 10 simply means
one of the current base. Until now, you may have never used any base but
base ten, but all that changes today. The numeral 10 is ten in base ten, but in
base two, 10 means two. In base eight, 10 means eight, and in base sixteen,
10 means sixteen. This is important because when you want to talk about
the number of digits on your hands in hex, you can’t use the familiar nota-
tion 10 because in hex 10 means sixteen. We need a single-digit value to rep-
resent ten, so computer scientists legislated themselves out of this mess by
borrowing letters. 10 is A, 11 is B, and 15 is F.

If all this math theory is making you dizzy, don’t worry. I show in the next
section some shortcuts for creating great colors using this scheme. For now,
though, here’s what you need to understand to use hex colors:

 ✦ A color requires six digits of hex. A pixel requires three colors, and
each color uses eight digits of binary. Two digits of hex cover each color.
Two digits represent red, two for green, and finally two for blue.

Book II
Chapter 1

Coloring Your W
orld

Specifying Colors in CSS 139

 ✦ Hex color values usually begin with a pound sign. To warn the browser
that a value will be in hexadecimal, the value is usually preceded with a
pound sign (#). So, yellow is #FFFF00.

Working with colors in hex may seem really crazy and difficult, but it has
some important advantages:

 ✦ Precision: Using this system gives you a huge number of colors to work
with (over 16 million, if you really want to know). There’s no way you
could come up with that many color names on your own. Well, you
could, but you’d be very, very old by the time you were done.

 ✦ Objectivity: Hex values aren’t a matter of opinion. There could be some
argument about which color is burnt sienna, but hex value #666600 is
unambiguous.

 ✦ Portability: Most graphic editing software uses the hex system, so you
can pick any color of an image and get its hex value immediately. This
would make it easy to find your cat’s eye color for that online shrine.

 ✦ Predictability: After you understand how it works, you can take any hex
color and convert it to a value that’s a little darker, a little brighter, or
that has a little more blue in it. This is difficult to do with named colors.

 ✦ Ease of use: This one may seem like a stretch, but after you understand
the web-safe palette, which I describe in the next section, it’s very easy
to get a rough idea of a color and then tweak it to make exactly the form
you’re looking for.

Using the web-safe color palette
A long time ago, browsers couldn’t even agree on what colors they’d display
reliably. Web developers responded by working within a predefined palette
of colors that worked pretty much the same on every browser. Today’s
browsers have no problems showing lots of colors, but the so-called web-
safe color palette is still sometimes used because it’s an easy starting point.

The basic idea of the web-safe palette (shown in Table 1-3) is this: Each color
can have only one of the following values: 00, 33, 66, 99, CC, or FF. 00 is the
darkest value for each color, and FF is the brightest. The primary colors are
all made of 0s and Fs: #FF0000 is red (all red, no green, no blue). A web-safe
color uses any combination of these values, so #33CC00 is web-safe, but
#112233 is not.

Table 1-3 Web-Safe Color Values
Description Red Green Blue

Very bright FF FF FF

CC CC CC
(continued)

Choosing Your Colors140

Description Red Green Blue

99 99 99

66 66 66

33 33 33

Very dark 00 00 00

To pick a web-safe value from this chart, determine how much of each color
you want. A bright red will have red turned on all the way (FF) with no green
(00) and no blue (00), making #FF0000. If you want a darker red, you might
turn the red down a little. The next darker web-safe red is #CC0000. If that
isn’t dark enough, you might try #990000. Say you like that, but you want it
a little purple. Simply add a notch or two of blue: #990033 or #990066.

Figure 1-3 is a simple tool that allows you to experiment with the web-safe
color palette.

Figure 1-3:
Use this tool
to explore
web-safe
colors.

 The original problem web-safe colors were designed to alleviate is long
resolved, but they’re still popular as a starting point. Web-safe colors give
you a dispersed and easily understood subset of colors you can start with.
You don’t have to stay there, but it’s a great place to start.

Choosing Your Colors
Colors can seem overwhelming, but with a little bit of practice, you’ll be
managing colors with style.

Table 1-3 (continued)

Book II
Chapter 1

Coloring Your W
orld

Choosing Your Colors 141

Starting with web-safe colors
The webSafe.html program works by letting you quickly enter a web-safe
value. To make red, press the FF button in the red column. The blue and
green values have the default value of 00, so the background is red.

The web-safe colors give you a lot of room to play, and they’re very easy to
work with. In fact, they’re so common that you can use a shortcut. Because
the web-safe colors are all repeated, you can write a repeated digit (FF) as a
single digit (F). You can specify magenta as either #FF00FF or as #FOF and
the browser understands, giving you a headache-inducing magenta.

To make a darker red, change the FF to the next smallest value, making
#CC0000. If you want it darker yet, try #990000. Experiment with all the
red values and see how easy it is to get several different types of red. If you
want a variation of pink, raise the green and blue values together. #FF6666
is a dusty pink color; #FF9999 is a bit brighter; and #FFCCCC is a very white
pink.

Modifying your colors
The web-safe palette is convenient, but it gives you a relatively small number
of colors (216, if you’re counting). Two hundred and sixteen crayons in the
box are pretty nice, but you might need more. Generally, I start with web-safe
colors and then adjust as I go. If you want a lighter pink than #FFCCCC, you
can jump off the web-safe bandwagon and use #FFEEEE or any other color
you wish!

In the webSafe.html program, you can use the top and bottom button in each
row to fine-tune the adjustments to your color.

Doing it on your own pages
Of course, it doesn’t really matter how the colors look on my page. The point
is to make things look good on your pages. To add color to your pages, do
the following:

 1. Define the HTML as normal.

 The HTML shouldn’t have any relationship to the colors. Add the color
strictly in CSS.

 2. Add a <style> tag to the page in the header area.

 Don’t forget to set the type = “text/css” attribute.

 3. Add a selector for each tag you want to modify.

 You can modify any HTML tag, so if you want to change all the para-
graphs, add a p { } selector. Use the tag name without the angle
braces, so <h1> becomes h1{ }.

 4. Add color and background-color attributes.

Choosing Your Colors142

 You’ll discover many more CSS elements you can modify throughout
Books II and III but for now, stick to color and background-color.

 5. Specify the color values with color names or hex color values.

Changing CSS on the fly
The Chrome web browser has an especially cool trick when it comes to CSS
coding. You can look at the CSS of any element on a web page and change it,
seeing the results in real time!

Here’s how it works:

 1. Build the page in the normal way.

 Use your text editor to build the basic page.

 2. Add CSS selectors.

 Specify the CSS for the elements you intend to change. The emptyCSS.
html page on the website shows a very simple example. You can put
any values you want in the CSS, or you can simply leave the CSS blank
for now. If you want to experiment, take a look at emptyCSS.html on the
website. It has empty selectors for the three elements described on the
page (body, h1, and p).

 3. Load your page in Chrome.

 The other browsers are starting to develop tools like Chrome, but it’s
clearly the leader, so start with Chrome.

 4. Inspect an element.

 Right-click any element and choose Inspect element from the resulting
pop-up menu.

 5. Gasp in wonderment at the awesome developer tools.

 Figure 1-4 shows the developer tools that pop up when you inspect an
element. Keep it in the Elements tab for now.

 6. Change the HTML code!

 You can double-click the code in the code viewer and modify the con-
tents. This is fun, but not permanent or especially helpful.

 7. You can also modify the CSS.

 If a style selector has been defined, it appears under the Styles tab in the
Matched CSS Rules section. You can add new style rules or change the
existing ones, and you’ll be able to see the results on the fly.

 8. You can even use a fancy color selector.

 When a color rule has been defined, you’ll see a little color swatch. Click
on that color to get a nice color selector you can use.

 9. Select different parts of the page to modify other rules.

Book II
Chapter 1

Coloring Your W
orld

Creating Your Own Color Scheme 143

 You can modify the CSS of any element as long as some sort of rule has
been saved.

 10. Copy and paste any style rules you want to keep.

 Modifications made in the web developer toolbar are not permanent. If
you find colors or other style rules you like, you can copy them from the
developer window and paste them into your code.

Figure 1-4:
The Chrome
developer
tools allow
you to
change CSS
on the fly.

Creating Your Own Color Scheme
The technical side of setting colors isn’t too difficult, but deciding what
colors to use can be a challenge. Entire books have been written about how
to determine a color scheme. A little bit of subjectivity is in the process, but
a few tools and rules can get you started.

Understanding hue, saturation, and lightness
The RGB color model is useful because it relates directly to how computers
generate color, but it’s not perfect. It’s a bit difficult to visualize variations
of a color in RGB. For that reason, other color schemes are often used. The
most common variation is Hue, Saturation, and Lightness, or HSL. The HSL
system organizes colors in a way more closely related to the color wheel.

 Sometimes you’ll run across the HSB or HSV color schemes, which are very
similar to HSL. In all these color modes, you begin with a Hue, and then use
saturation to indicate how far the color is from a grayscale. Brightness, value
and lightness, do basically the same thing (determine the general amount of
energy in the color) but using different models.

Creating Your Own Color Scheme144

To describe a color using HSL, you specify three characteristics of a color
using numeric values:

 ✦ Hue: The basic color. The color wheel is broken into a series of hues.
These are generally middle of the road colors that can be made brighter
(closer to white) and darker (closer to black).

 ✦ Saturation: How pervasive the color is. A high saturation is very bright.
A low saturation has very little color. If you reduce all the saturation in
an image, the image is grayscale, with no color at all.

 ✦ Lightness: The amount of light in the color. The easiest way to view
value is to think about how the image would look when reduced to gray-
scale (by pulling down the saturation). All the brighter colors will be
closer to white, and the darker colors will be nearly black.

The HSL model is useful because it allows you to pick colors that go well
together. Use the hue property to pick the basic colors. Because there’s a
mathematical relationship between the various color values, it becomes
easy to predict which colors work well together. After you have all the hues
worked out, you can change the saturation and value to modify the overall
tone of the page. Generally, all the colors in a particular scheme have similar
saturation and values.

You can use the HSL color model to pick colors if you prefer. Figure 1-5
shows a color picker that lets you design colors based on the HSL model.

Figure 1-5:
The HSL
model
provides
another
way to view
colors.

Book II
Chapter 1

Coloring Your W
orld

Creating Your Own Color Scheme 145

Using HSL colors in your pages
You can assign an HSL value wherever you use colors in your CSS. As an exam-
ple, look at HSLcolors.html on the companion website. (I do not show it here
because the color differences are too subtle to display in a black and white
book.) The code for HSLcolors.html shows how the HSL scheme can be used:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>HSLcolors.html</title>
 <style type = "text/css">
 body {
 background-color: HSL(180, 75%, 75%);
 }
 h1 {
 color: HSL(180, 75%, 25%);
 background-color: HSL(180, 75%, 90%);
 }
 p {
 color: HSL(0, 75%, 25%);
 }
 </style>
 </head>
 <body>
 <h1>This is a headline</h1>
 <p>
 This is a paragraph
 </p>
 </body>
</html>

To specify a color using the HSL scheme, do this:

 1. Set up your selectors as usual.

 In the CSS, set up a selector for each element you wish to color.

 2. Add the color rule.

 In this chapter you learn two color rules: color and background-
color. Apply one or both to each selector.

 3. Use the HSL function.

 Using HSL followed by parentheses indicates you wish to calculate the
color using the HSL technique.

 4. Indicate the hue.

 Imagine a color wheel with red at the top. The hue is the angle (in
degrees) of the color you want to pick. Hue should have a value between
0 and 360.

Creating Your Own Color Scheme146

 5. Determine the saturation.

 Saturation is measured as a percentage. Saturation of 0% indicates a
grayscale (somewhere between black and white) whereas Saturation of
100% is a fully saturated color with no grayscale. You need to include the
percent sign as part of the saturation value.

 6. Specify the lightness.

 Lightness is also indicated as a percentage, with 0% being completely
black and 100% being completely white. A lightness value of 50% will
determine a balanced color between white and black. Lightness values
should also include the percent sign.

The HSL model is a relatively recent addition to CSS, so it may not work with
older browsers, but it can be extremely helpful. HSL makes it easier to predict
whether colors will look good together. If you keep any two of the HSL values
the same and change the third, the two colors are likely to fit together well.

Using the Color Scheme Designer
Some people have great color sense. Others (like me) struggle a little bit
because it all seems a little subjective. If you’re already confident with
colors, you may not need this section — although, you still might find it
interesting validation of what you already know. On the other hand, if you
get perplexed in a paint store, you might find it helpful to know that some
really useful tools are available.

One great way to get started is with a free tool: the Color Scheme Designer,
shown in Figure 1-6. This tool, created by Petr Stanicek, uses a variation of
the HSV model to help you pick color schemes. You can find this program at
http://colorschemedesigner.com.

Figure 1-6:
The Color
Scheme
Designer
helps you
pick colors.

http://colorschemedesigner.com

Book II
Chapter 1

Coloring Your W
orld

Creating Your Own Color Scheme 147

The Color Scheme Designer has several features, such as

 ✦ The color wheel: This tool may bring back fond memories of your elemen-
tary school art class. The wheel arranges the colors in a way familiar to
artists. You can click the color wheel to pick a primary color for your page.

 ✦ The color scheme selector: You can pick from a number of color
schemes. I describe these schemes a little later in this section.

 ✦ A preview area: This area displays the selected colors in action so you
can see how the various colors work together.

 ✦ Hex values: The hex values for the selected colors display on the page
so you can copy them to your own application.

 ✦ Variations: You can look at variations of the selected scheme. These
variations are often useful because they show differences in the satura-
tion and value without you doing the math.

 ✦ Color-blindness simulation: This very handy tool lets you see your color
scheme as it appears to people with various types of color-blindness.

 This won’t make sense without experimentation. Be sure to play with this
tool and see how easy it is to create colors that work well together.

Selecting a base hue
The Color Scheme Designer works by letting you pick one main hue and then
uses one of a number of schemes for picking other hues that work well with
the base one. To choose the base hue you want for your page, click a color
on the color wheel.

 The color wheel is arranged according to the traditional artist’s color
scheme based on HSV rather than the RGB scheme used for computer graph-
ics. When you select a color, the closest RGB representation is returned. This
is nice because it allows you to apply traditional (HSV-style) color theory to
the slightly different RGB model.

When you pick a color on the color wheel, you’re actually picking a hue. If
you want any type of red, you can pick the red that appears on the wheel.
You can then adjust the variations to modify the saturation and value of all
the colors in the scheme together.

To pick a color using this scheme, follow these steps:

 1. Pick a hue.

 The colors on the color wheel represent hues in the HSV model. Find a
primary color you want to use as the foundation of your page.

 2. Determine a scheme.

 The scheme indicates which other colors you will use and how they
relate to the primary hue. More information on the various schemes is
available in the next section.

Creating Your Own Color Scheme148

 3. Adjust your scheme.

 The main schemes are picked using default settings for saturation and
value. The Adjust Scheme tab allows you to modify the saturation and
value settings to get much more control of your color scheme. You can
also adjust the level of contrast to get very interesting effects.

 4. Preview the scheme.

 The Designer has several options for previewing your color scheme,
including the ability to create quick web pages using the scheme. You
might also look at the color blindness simulators to see how your page
appears to people with different kinds of color blindness.

 5. Export the color settings.

 If you want, you can export the color settings to a number of formats,
including a very nice HTML/CSS format. You can also save the colors to
a special file for importing into GIMP or Photoshop, so the exact colors
used in your page will be available to your image editor, too.

Picking a color scheme
The various color schemes use mathematical relationships around the color
wheel to predict colors that work well with the primary color. Here are the
basic schemes, including what they do:

 ✦ Mono (monochromatic): Takes the base hue and offers a number of vari-
ations in saturation and value. This scheme is nice when you really want
to emphasize one particular color (for example, if you’re doing a website
about rain forests and want a lot of greens). Be sure to use high contrast
between the foreground and background colors so your text is readable.

 ✦ Complement: Uses the base hue and the complementary (opposite)
color. Generally, this scheme uses several variations of the base hue and
a splash of the complementary hue for contrast.

 ✦ Triad: Selects the base hue and two opposite hues. When you select the
Triad scheme, you can also choose the angular distance between the
opposite colors. If this distance is zero, you have the complementary
color scheme. When the angle increases, you have a split complementary
system, which uses the base hue and two hues equidistant from the con-
trast. Such schemes can be jarring at full contrast, but when adjusted for
saturation and value, you can create some very nice color schemes.

 ✦ Tetrad: Generates four hues. As with the Triad scheme, when you add
more hues, keeping your page unified becomes more difficult unless you
adjust the variations for lower contrast.

 ✦ Analogic: Schemes use the base hue and its two neighbors.

 ✦ Accented Analogic: Just like the Analogic scheme, but with the addition
of the complementary color.

Chapter 2: Styling Text

In This Chapter
✓ Introducing fonts and typefaces

✓ Specifying the font family

✓ Determining font size

✓ Understanding CSS measurement units

✓ Managing other font characteristics

✓ Using the font rule to simplify font styles

W
eb pages are still primarily a text-based media, so you’ll want to add
some formatting capabilities. HTML doesn’t do any meaningful text

formatting on its own, but CSS adds a wide range of tools for choosing the
typeface, font size, decorations, alignment, and much more. In this chapter,
you discover how to manage text the CSS way.

 A bit of semantics is in order. The thing most people dub a font is more prop-
erly a typeface. Technically, a font is a particular typeface at a particular size
with a specific set of decorations (underlining, italic, and so on). The dis-
tinction is honestly not that important in a digital setting. You don’t explic-
itly set the font in CSS. You determine the font family (which is essentially a
typeface), and then you modify its characteristics (creating a font as purists
would think of it). Still, when I’m referring to the thing that most people call
a font (a file in the operating system that describes the appearance of an
alphabet set), I use the familiar term font.

Setting the Font Family
To assign a font family to part of your page, use some new CSS. Figure 2-1
illustrates a page with the heading set to Comic Sans MS.

If this page is viewed on a Windows machine, it generally displays the
font correctly because Comic Sans MS is installed with most versions of
Windows. If you’re on another type of machine, you may get something else.
More on that in a moment, but for now, look at the simple case.

Here’s the code:

<!DOCTYPE html>
<html lang = "en-US">

Setting the Font Family150

 <head>
 <meta charset = "UTF-8">
 <title>comicHead.html</title>
 <style type = "text/css">
 h1 {
 font-family: "Comic Sans MS";
 }
 </style>
 </head>
 <body>
 <h1>This is a heading</h1>
 <p>
 This is ordinary text.
 </p>
 </body>
</html>

Applying the font-family style attribute
The secret to this page is the CSS font-family attribute. Like most CSS ele-
ments, this can be applied to any HTML tag on your page. In this particular
case, I applied it to my level one heading.

 h1 {
 font-family: "Comic Sans MS";
 }

You can then attach any font name you wish, and the browser attempts to
use that font to display the element.

 Even though a font may work perfectly fine on your computer, it may not
work if that font isn’t installed on the user’s machine.

Figure 2-1:
The
headline is
in the Comic
Sans font
(most of the
time).

Book II
Chapter 2

Styling Text

Setting the Font Family 151

If you run exactly the same page on an iPad, you might see the result shown
in Figure 2-2.

Figure 2-2:
On an iPad,
the heading
might not
be the same
font!

The specific font Comic Sans MS is installed on Windows machines, but the
MS stands for Microsoft. This font isn’t always installed on Linux or Mac.
(Sometimes it’s there, and sometimes it isn’t.) You can’t count on users
having any particular fonts installed.

 The Comic Sans font is fine for an example, but it has been heavily over-used
in web development. Serious web developers avoid using it in real applica-
tions because it tends to make your page look amateurish.

Using generic fonts
It’s a little depressing. Even though it’s easy to use fonts, you can’t use them
freely because you don’t know if the user has them. Fortunately, you can do a
few things that at least increase the odds in your favor. The first trick is to use
generic font names. These are virtual font names that every compliant browser
agrees to support. Figure 2-3 shows a page with all the generic fonts.

 I used browser controls to make the fonts larger than normal so you can see
the details in this figure. Both the programmer and the user should be able
to change the font size. Later, I describe how to change the font size through
code. If you want to see how your browser handles these fonts, take a look at
fontFamilyDemo.html on the companion website. For more on the compan-
ion website, see this book’s Introduction.

Setting the Font Family152

Figure 2-3:
Here are all
the generic
fonts.

The generic fonts really are families of fonts:

 ✦ Serif: These fonts have those little serifs (the tiny cross strokes that
enhance readability). Print text (like the paragraph you’re reading now)
tends to use serif fonts, and they’re the default font for most browsers.
The most common serif typeface is Times New Roman or Times.

 ✦ Sans Serif: Sans serif fonts don’t have the little feet. Generally, they’re
used for headlines or other emphasis. Sometimes, they’re seen as more
modern and cleaner than serif fonts, so sometimes they’re used for body
text. Arial is the most common sans serif font. In this book, the figure
captions use a sans serif font.

 ✦ Cursive: These fonts look a little like handwriting. In Windows, the script
font is usually Comic Sans MS. Script fonts are used when you want a
less formal look. For Dummies books use script fonts all over the place
for section and chapter headings.

 ✦ Fantasy: Fantasy fonts are decorative. Just about any theme you can
think of is represented by a fantasy font, from Klingon to Tolkien. You
can also find fonts that evoke a certain culture, making English text
appear to be Persian or Chinese. Fantasy fonts are best used sparingly,
for emphasis, as they often trade readability for visual appeal.

 ✦ Monospace: Monospace fonts produce a fixed-width font like typewrit-
ten text. Monospace fonts are frequently used to display code. Courier
is a common monospace font. All code listings in this book use a mono-
spaced font.

Because the generic fonts are available on all standards-compliant brows-
ers, you’d think you could use them confidently. Well, you can be sure they’ll
appear, but you still might be surprised at the result. Figure 2-4 shows the
same page as Figure 2-3 (in Windows) but on an iPad.

Book II
Chapter 2

Styling Text

Setting the Font Family 153

Figure 2-4:
Windows
and the iPad
disagree on
fantasy.

Macs display yet another variation because the fonts listed here aren’t actual
fonts. Instead, they’re virtual fonts. A standards-compliant browser promises
to select an appropriate stand in. For example, if you choose sans serif, one
browser may choose to use Arial. Another may choose Chicago. You can
always use these generic font names and know the browser can find something
close, but there’s no guarantee exactly what font the browser will choose. Still,
it’s better than nothing. When you use these fonts, you’re assured something in
the right neighborhood, if not exactly what you intended.

Making a list of fonts
This uncertainty is frustrating, but you can take some control. You can specify
an entire list of font names if you want. The browser tries each font in turn. If it
can’t find the specified font, it goes to the next font and on down the line.

You might choose a font that you know is installed on all Windows machines,
a font found on Macs, and finally one found on all Linux machines. The last
font on your list should be one of the generic fonts, so you’ll have some con-
trol over the worst-case scenario.

Table 2-1 shows a list of fonts commonly installed on Windows, Mac, and
Linux machines.

Table 2-1 Font Equivalents
Windows Mac Linux

Arial Arial Nimbus Sans L

Arial Black Arial Black
(continued)

The Curse of Web-Based Fonts154

Windows Mac Linux

Comic Sans MS Comic Sans MS TSCu_Comic

Courier New Courier New Nimbus Mono L

Georgia Georgia Nimbus Roman No9 L

Lucida Console Monaco

Palatino Palatino FreeSerif

Tahoma Geneva Kalimati

Times New Roman Times FreeSerif

Trebuchet MS Helvetica FreeSans

Verdana Verdana Kalimati

You can use this chart to derive a list of fonts to try. For example, look at the
following style:

p {
 font-family: "Trebuchet MS", Helvetica, FreeSans, sans-serif;
}

This style has a whole smorgasbord of options. First, the browser tries to
load Trebuchet MS. If it’s a Windows machine, this font is available, so that
one displays. If that doesn’t work, the browser tries Helvetica (a default Mac
font). If that doesn’t work, it tries FreeSans, a font frequently installed on
Linux machines. If this doesn’t work, it defaults to the old faithful sans serif,
which simply picks a sans serif font.

Note that font names of more than one word must be encased in quotes, and
commas separate the list of font names.

 Don’t get too stressed about Linux fonts. It’s true that the equivalencies are
harder to find, but Linux users tend to fall into two camps: They either don’t
care if the fonts are exact, or they do care and they’ve installed equivalent
fonts that recognize the common names. In either case, you can focus on
Mac and Windows people for the most part, and, as long as you’ve used a
generic font name, things work okay on a Linux box. Truth is, I mainly use
Linux, and I’ve installed all the fonts I need.

The Curse of Web-Based Fonts
Fonts seem pretty easy at first, but some big problems arise with actually
using them.

Understanding the problem
The problem with fonts is this: Font resources are installed in each operating
system. They aren’t downloaded with the rest of the page. Your web page

Table 2-1 (continued)

Book II
Chapter 2

Styling Text

The Curse of Web-Based Fonts 155

can call for a specific font, but that font isn’t displayed unless it’s already
installed on the user’s computer.

Say I have a cool font called Happygeek. (I just made that up. If you’re a font
designer, feel free to make a font called that. Just send me a copy. I can’t
wait.) It’s installed on my computer, and when I choose a font in my word
processor, it shows up in the list. I can create a word-processing document
with it, and everything will work great.

If I send a printout of a document using Happygeek to my grandma, every-
thing’s great because the paper doesn’t need the actual font. It’s just ink. If I
send her the digital file and tell her to open it on her computer, we’ll have a
problem. See, she’s not that hip and doesn’t have Happygeek installed. Her
computer will pick some other font.

This isn’t a big problem in word processing because people don’t gener-
ally send around digital copies of documents with elaborate fonts in them.
However, web pages are passed around only in digital form. To know which
fonts you can use, you have to know what fonts are installed on the user’s
machine, and that’s impossible.

 Part of the concern is technical (figuring out how to transfer the font infor-
mation to the browser), but the real issue is digital rights management. If
you’ve purchased a font for your own use, does that give you the right to
transfer it to others, so now they can use it without paying?

Using embedded fonts
Although a web developer can suggest any font for a web page, the font
files are traditionally a client-level asset. If the client doesn’t have the font
installed, she won’t see it. Fortunately, CSS3 supports a sensible solution for
providing downloadable fonts, called @font-face. Figure 2-5 shows a page
with a couple of embedded fonts.

There used to be a tag in old-school HTML
called the tag. You could use this tag
to change the size, color, and font family. There
were also specific tags for italic (<i>), bold-
face (), and centering (<center>). These
tags were very easy to use, but they caused
some major problems. To use them well, you
ended up littering your page with all kinds of
tags trying to describe the markup, rather than

the meaning. There was no easy way to reuse
font information, so you often had to repeat
things many times throughout the page, making
it difficult to change. Web developers are now
discouraged from using , < i>, ,
or <center> tags. The CSS elements I show
in this chapter more than compensate for this
loss. You now have a more flexible, more pow-
erful alternative.

The death of the font tag

The Curse of Web-Based Fonts156

Figure 2-5:
This page
includes a
couple of
embedded
fonts.

The @font-face style does not work like most CSS elements. It doesn’t
apply markup to some part of the page. Instead, it defines a new CSS value
that can be used in other markup. Specifically, it allows you to place a font
file on your server and define a font family using that font.

 @font-face {
 font-family: "Miama";
 src: url("Miama.otf");
 }

The font-family attribute indicates the name you will be giving this font
in the rest of your CSS code. Typically it is similar to the font file name, but
this is not required. The src attribute is the URL of the actual font file as it is
found on the server. After a font-face has been defined, it can be used in an
ordinary font-family attribute in the rest of your CSS code:

 h1 {
 font-family: Miama;
 }

Here’s the code for the custom font example:

<!DOCTYPE html>
 <head>
 <title>EmbeddedFont</title>
 <style type = "text/css">
 @font-face {
 font-family: "Miama";
 src: url("Miama.otf");
 }
 @font-face {
 font-family: "spray";
 src: url("ideoma_SPRAY.otf");
 }

Book II
Chapter 2

Styling Text

The Curse of Web-Based Fonts 157

 h1 {
 font-family: Miama;
 font-size: 300%;
 }

 h2 {
 font-family: spray;
 }
 </style>
 </head>

 <body>
 <h1>Embedded Font Demo</h1>
 <h2>Here's another custom font</h2>
 </body>
</html>

Although all modern browsers support the @font-face feature, the actual
file types supported vary from browser to browser. Here are the primary
font types:

 ✦ TTF: The standard TrueType format is well-supported, but not by all
browsers. Many open-source fonts are available in this format.

 ✦ OTF: This is similar to TTF, but is a truly open standard, so it is pre-
ferred by those who are interested in open standards. It is supported by
most browsers except IE.

 ✦ WOFF: WOFF is a proposed standard format currently supported by
Firefox. Microsoft has hinted at supporting this format in IE.

 ✦ EOT: This is Microsoft’s proprietary embedded font format. It only
works in IE, but to be fair, Microsoft has had embedded font support for
many years.

You can use a font conversion tool like http://onlinefontconverter.
com/ to convert to whatever font format you prefer.

It’s possible to supply multiple src attributes. This way, you can include
both an EOT and OTF version of a font so that it will work on a wide variety
of browsers.

When you use this technique, you need to have a copy of the font file locally.
For now, it should be in the same directory as your web page (just as you
do with images.) When you begin hosting on a web server, you’ll want to
move your font file to the server along with all the other resources your web
page needs. Just because you can include a font doesn’t mean you should.
Think carefully about readability. Also, be respectful of intellectual property.
Fortunately there are many excellent free open-source fonts available. Begin
by looking at Open Font Library (http://openfontlibrary.org/). Google
Fonts (www.google.com/fonts/) is another great resource for free fonts.
With the Google Font tool, you can select a font embedded on Google’s servers,
and you can copy code that makes the font available without downloading.

http://onlinefontconverter.com/
http://onlinefontconverter.com/
http://openfontlibrary.org/
http://www.google.com/fonts/

The Curse of Web-Based Fonts158

Using images for headlines
Generally, you should use standard fonts for the page’s main content, so
having a limited array of fonts isn’t such a big problem. Sometimes, though,
you want to use fonts in your headlines. You can use a graphical editor,
like GIMP, to create text-based images and then incorporate them into your
pages. Figure 2-6 shows an example of this technique.

Figure 2-6:
The font
shows up
because it’s
an image.

In this case, I want to use my special cow font. (I love my cow font.)

Here’s the process:

 1. Plan your page.

 When you use graphics, you lose a little flexibility. You need to know
exactly what the headlines should be. You also need to know what head-
line will display at what level. Rather than relying on the browser to dis-
play your headlines, you’re creating graphics in your graphic tool (I’m
using GIMP) and placing them directly in the page.

 2. Create your images.

 I used the wonderful Logos feature in GIMP (choose Xtns ➩ Script-fu ➩
logos) to create my cow text. I built an image for each headline with the
Bovination tool. I’m just happy to have a Bovination tool. It’s something
I’ve always wanted. If only it could be converted to a weapon.

 3. Specify font sizes directly.

 In the image, it makes sense to specify font sizes in pixels because here
you’re really talking about a specific number of pixels. You’re creating
“virtual text” in your graphic editor, so make the text whatever size you
want it to be in the finished page.

Book II
Chapter 2

Styling Text

The Curse of Web-Based Fonts 159

 4. Use any font you want.

 You don’t have to worry about whether the user has the font because
you’re not sending the font, just an image composed with the font.

 5. Create a separate image for each headline.

 This particular exercise has two images — a level 1 heading and a
level 2. Because I’m creating images directly, it’s up to me to keep track
of how the image will communicate its headline level.

 6. Consider the headline level.

 Be sure to make headline level 2 values look a little smaller or less
emphasized than level 1. That is, if you have images that will be used in
a heading 1 setting, they should use a larger font than images that will be
used in a less emphasized heading level. Usually, this is done by adjust-
ing the font size in your images.

 7. Build the page the way you normally would.

 After you create these specialty images, build a regular web page. Put
<h1> and <h2> tags in exactly the same places you usually do.

 8. Put tags inside the headings.

 Rather than ordinary text, place image tags inside the <h1> and <h2>
tags. See the upcoming code imageTitles.html if you’re a little confused.

 9. Put headline text in the alt attribute.

 The alt attribute is especially important here because if the user has
graphics turned off, the text still appears as an appropriately styled
heading. People with slow connections see the text before the images
load, and people using text readers can still read the image’s alt text.

Here’s the code used to generate the image-based headers:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>imageTitles.html</title>
 </head>
 <body>
 <h1>
 <img src = "cowsHistory.png"
 alt = "Cows in History" />
 </h1>
 <p>
 This page describes famous cows in history
 </p>
 <h2>
 <img src = "cowpens.png"
 alt = "Battle of Cowpens" />
 </h2>
 <p>
 Most people are unaware that cattle actually took
 part in the battle. They didn't of course. I just
 made that up.

Specifying the Font Size160

 </p>
 </body>
</html>

This technique is a nice compromise between custom graphics and ordinary
HTML as follows:

 ✦ You have great control of your images. If you’re skilled with your
graphics tool, you can make any type of image you want act as a head-
line. There’s literally no limit except your skill and creativity.

 ✦ The page retains its structure. You still have heading tags in place, so
it’s easy to see that you mean for a particular image to act as a headline.
You can still see the page organization in the HTML code.

 ✦ You have fallback text. The alt attributes will activate if the images
can’t be displayed.

 ✦ The semantic meaning of image headlines is preserved. The alt tags
provide another great feature. If they replicate the image text, this text
is still available to screen readers and search engines, so the text isn’t
buried in the image.

 This technique is great for headlines or other areas, but notice that I was
careful to repeat the headline text in the <alt> tag. This is important
because I don’t want to lose the text. Search engine tools and screen readers
need the text.

Don’t be tempted to use this technique for larger amounts of body text.
Doing so causes some problems:

 ✦ The text is no longer searchable. Search engines can’t find text if it’s
buried in images.

 ✦ The text is harder to change. You can’t update your page with a text editor.
Instead, you have to download the image, modify it, and upload it again.

 ✦ Images require a lot more bandwidth than text. Don’t use images if
they don’t substantially add to your page. You can make the case for a
few heading images, but it’s harder to justify having your entire page
stored as an image just to use a particular font.

Specifying the Font Size
Like font names, font sizes are easy to change in CSS, but there are some
hidden traps.

Size is only a suggestion!
In print media, after you determine the size of the text, it pretty much stays
there. The user can’t change the font size in print easily. By comparison,

Book II
Chapter 2

Styling Text

Specifying the Font Size 161

web browsers frequently change the size of text. A cellphone-based browser
displays text differently than one on a high-resolution LCD panel. Further,
most browsers allow the user to change the size of all the text on the screen.
Use Ctrl++ (plus sign) and Ctrl+– (minus sign) to make the text larger or
smaller. In older versions of IE (prior to IE7), choose the Text Size option
from the Page menu to change the text size.

The user should really have the ability to adjust the font size in the browser.
When I display a web page on a projector, I often adjust the font size so stu-
dents in the back can read. Some pages have the font size set way too small
for me to read. (It’s probably my high-tech monitor. It couldn’t possibly have
anything to do with my age.)

Determining font sizes precisely is counter to the spirit of the web. If you
declare that your text will be exactly 12 points, for example, one of two
things could happen:

 ✦ The browser might enforce the 12-point rule literally. This takes con-
trol from the user, so users who need larger fonts are out of luck. Older
versions of IE do this.

 ✦ The user might still change the size. If this is how the browser behaves
(and it usually is), 12 points doesn’t always mean 12 points. If the user
can change font sizes, the literal size selection is meaningless.

The web developer should set up font sizes, but only in relative terms. Don’t
bother using absolute measurements (in most cases) because they don’t
really mean what you think. Let the user determine the base font size and
specify relative changes to that size.

Using the font-size style attribute
The basic idea of font size is pretty easy to grasp in CSS. Take a look at font
Size.html in Figure 2-7.

This page obviously shows a number of different font sizes. The line
“Font Sizes” is an ordinary h1 element. All the other lines are paragraph tags.
They appear in different sizes because they have different styles applied to
them.

Font sizes are changed with the (cleverly named) font-size attribute:

p {
 font-size: small;
}

Simply indicate the font-size rule, and, well, the size of the font. In this
example, I used the special value small, but there are many other ways to
specify sizes in CSS.

Specifying the Font Size162

Figure 2-7:
You can
easily
modify font
sizes in your
pages.

Absolute measurement units
Many times, you need to specify the size of something in CSS. Of course, font
size is one of these cases. The different types of measurement have different
implications. It’s important to know there are two distinct kinds of units in
CSS. Absolute measurements attempt to describe a particular size, as in the
real world. Relative measurements are about changes to some default value.
Generally, web developers are moving toward relative measurement for font
sizes.

Points (pt)
In word processing, you’re probably familiar with points as a measurement
of font size. You can use the abbreviation pt to indicate you’re measuring in
points, for example:

p {
 font-size: 12pt;
}

 There is no space between 12 and pt.

Unfortunately, points aren’t an effective unit of measure for web pages.
Points are an absolute scale, useful for print, but they aren’t reliable on
the web because you don’t know what resolution the user’s screen has. A
12-point font might look larger or smaller on different monitors.

In some versions of IE, after you specify a font size in points, the user can no
longer change the size of the characters. This is unacceptable from a usabil-
ity standpoint. Relative size schemes (which I describe later in this chapter)
prevent this problem.

Book II
Chapter 2

Styling Text

Specifying the Font Size 163

Pixels (px)
Pixels refer to the small dots on the screen. You can specify a font size in
pixels, although that’s not the way it’s usually done. For one thing, different
monitors make pixels in different sizes. You can’t really be sure how big a
pixel will be in relationship to the overall screen size. Different letters are
different sizes, so the pixel size is a rough measurement of the width and
height of the average character. Use the px abbreviation to measure fonts
in pixels:

p {
 font-size: 20px;
}

Traditional measurements (in, cm)
You can also use inches (in) and centimeters (cm) to measure fonts, but
this is completely impractical. Imagine you have a web page displayed on
both your screen and a projection system. One inch on your own monitor
may look like ten inches on the projector. Real-life measurement units aren’t
meaningful for the web. The only time you might use them is if you’ll be
printing something and you have complete knowledge of how the printer is
configured. If that’s the case, you’re better off using a print-oriented layout
tool (like a word processor) rather than HTML.

Relative measurement units
Relative measurement is a wiser choice in web development. Use these
schemes to change sizes in relationship to the standard size.

Named sizes
CSS has a number of font size names built in:

 xx-small

 x-small

 small

 medium

 large

 x-large

 xx-large

 It may bother you that there’s nothing more specific about these sizes: How
big is large? Well, it’s bigger than medium. That sounds like a flip answer, but
it’s the truth. The user sets the default font size in the browser (or leaves
it alone), and all other font sizes should be in relation to this preset size.
The medium size is the default size of paragraph text on your page. For
 comparison purposes, <h1> tags are usually xx-large.

Determining Other Font Characteristics164

Percentage (%)
The percentage unit is a relative measurement used to specify the font in
relationship to its normal size. Use 50% to make a font half the size it would
normally appear and 200% to make it twice the normal size. Use the %
symbol to indicate percentage, as shown here:

p {
 font-size: 150%;
}

Percentages are based on the default size of ordinary text, so an <h1> tag at
100% is the same size as text in an ordinary paragraph.

Em (em)
In traditional typesetting, the em is a unit of measurement equivalent to the
width of the “m” character in that font. In actual web use, it’s really another
way of specifying the relative size of a font. For instance, 0.5 ems is half the
normal size, and 3 ems is three times the normal size. The term em is used to
specify this measurement.

p {
 font-size: 1.5em;
}

Here are the best strategies for font size:

 ✦ Don’t change sizes without a good reason. Most of the time, the
browser default sizes are perfectly fine, but there may be some times
when you want to adjust fonts a little more.

 ✦ Define an overall size for the page. If you want to define a font size for
the entire page, do so in the <body> tag. Use a named size, percentage,
or ems to avoid the side effects of absolute sizing. The size defined in the
body is applied to every element in the body automatically.

 ✦ Modify any other elements. You might want your links a little larger
than ordinary text, for example. You can do this by applying a font-
size attribute to an element. Use relative measurement if possible.

Determining Other Font Characteristics
In addition to size and color (see Chapter 1 of this minibook), you can
change fonts in a number of other ways.

Figure 2-8 shows a number of common text modifications you can make.

The various paragraphs in this page are modified in different ways. You can
change the alignment of the text as well as add italic, bold, underline, or
strikethrough to the text.

Book II
Chapter 2

Styling Text

Determining Other Font Characteristics 165

Figure 2-8:
Here are a
few of the
things you
can do to
modify text.

CSS uses a potentially confusing set of rules for the various font manipulation
tools. One rule determines the font style, and another determines boldness.

I describe these techniques in the following sections for clarity.

 I used a trick I haven’t shown yet to produce this comparison page. I have
multiple paragraphs, each with their own style. Look to Chapter 3 of this
minibook to see how to have more than one paragraph style in a particular
page.

Using font-style for italics
The font-style attribute allows you to make italic text, as shown in
Figure 2-9.

Here’s some code illustrating how to add italic formatting:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>italics.html</title>
 <style type = "text/css">
 p {
 font-style: italic;
 }
 </style>
 </head>
 <body>
 <h1>Italics</h1>
 <p>This paragraph is in italic form.</p>
 </body>
</html>

Determining Other Font Characteristics166

Figure 2-9:
You can
make italic
text with the
font-style
attribute.

The font-style values can be italic, normal, or oblique (tilted toward
the left).

If you want to set a particular segment to be set to italic, normal, or oblique
style, use the font-style attribute.

Using font-weight for bold
You can make your font bold by using the font-weight CSS attribute, as
shown in Figure 2-10.

Figure 2-10:
The font-
weight
attribute
affects the
boldness of
your text.

Book II
Chapter 2

Styling Text

Determining Other Font Characteristics 167

If you want to make some of your text bold, use the font-weight CSS attri-
bute, like this:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>bold.html</title>
 <style type = "text/css">
 p {
 font-weight: bold;
 }
 </style>
 </head>
 <body>
 <h1>Boldface</h1>
 <p>
 This paragraph is bold.
 </p>
 </body>
</html>

Font weight can be defined a couple ways. Normally, you simply indicate
bold in the font-weight rule, as I did in this code. You can also use a
numeric value from 100 (exceptionally light) to 900 (dark bold).

Using text-decoration
Text-decoration can be used to add a couple other interesting formats to
your text, including underline, strikethrough, overline, and blink.

For example, the following code produces an underlined paragraph:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>underline.html</title>
 <style type = "text/css">
 p {
 text-decoration: underline;
 }
 </style>
 </head>
 <body>
 <h1>Underline</h1>
 <p>
 This paragraph is underlined.
 </p>
 </body>
</html>

 Be careful using underline in web pages. Users have been trained that under-
lined text is a link, so they may click your underlined text expecting it to take
them somewhere.

Determining Other Font Characteristics168

The underline.html code produces a page similar to Figure 2-11.

Figure 2-11:
You can
underline
text with
text-
decoration.

You can also use text-decoration for other effects, such as strikethrough
(called “line-through” in CSS), as shown in the following code:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>strikethrough.html</title>
 <style type = "text/css">
 p {
 text-decoration: line-through;
 }
 </style>
 </head>
 <body>
 <h1>Strikethrough</h1>
 <p>
 This paragraph has strikethrough text.
 </p>
 </body>
</html>

The strikethrough.html code produces a page similar to Figure 2-12.

 Text-decoration has a few other rarely used options, such as

 ✦ Overline: The overline attribute places a line over the text. Except for
a few math and chemistry applications (which would be better done in
an equation editor and imported as images), I can’t see when this might
be used.

Book II
Chapter 2

Styling Text

Determining Other Font Characteristics 169

Figure 2-12:
Text-
decoration
can be used
for a strike-
through
effect.

 ✦ Blink: The blink attribute is a distant cousin of the legendary <blink>
tag in Netscape and causes the text to blink on the page. The <blink>
tag (along with gratuitous animated GIFs) has long been derided as the
mark of the amateur. Avoid blinking text at all costs.

 There’s an old joke among Internet developers: The only legitimate place to use
the <blink> tag is in this sentence: Schrodinger’s cat is <blink>not </blink>
dead. Nothing is funnier than quantum mechanics illustrated in HTML.

Using text-align for basic alignment
You can use the text-align attribute to center, left-align, or right-align
text, as shown in the following code:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>center.html</title>
 <style type = "text/css">
 p {
 text-align: center;
 }
 </style>
 </head>
 <body>
 <h1>Centered</h1>
 <p>This paragraph is centered.</p>
 </body>
</html>

You can also use the text-align attribute to right- or left-justify your text.
The page shown in Figure 2-13 illustrates the text-align attribute.

Determining Other Font Characteristics170

Figure 2-13:
This text is
centered
with text-
align.

 You can apply the text-align attribute only to text. The old <center> tag
could be used to center nearly anything (a table, some text, or images),
which was pretty easy but caused problems. Book III explains how to posi-
tion elements in all kinds of powerful ways, including centering anything.
Use text-align to center text inside its own element (whether that’s a
heading, a paragraph, a table cell, or whatever).

Other text attributes
CSS offers a few other text manipulation tools, but they’re rarely used:

 ✦ Font-variant: Can be set to small-caps to make your text use only
capital letters. Lowercase letters are shown in a smaller font size.

 ✦ Letter-spacing: Adjusts the spacing between letters. It’s usually mea-
sured in ems. (See the section “Relative measurement units” earlier in
the chapter for more on ems.) Fonts are so unpredictable on the web
that if you’re trying to micromanage this much, you’re bound to be
 disappointed by the results.

 ✦ Word-spacing: Allows you to adjust the spacing between words.

 ✦ Text-indent: Lets you adjust the indentation of the first line of an ele-
ment. This value uses the normal units of measurement. Indentation can
be set to a negative value, causing an outdent if you prefer.

 ✦ Vertical-align: Used when you have an element with a lot of vertical
space (often a table cell). You can specify how the text behaves in this
situation.

 ✦ Text-transform: Helps you convert text into uppercase, lowercase, or
capitalized (first letter uppercase) forms.

Book II
Chapter 2

Styling Text

Determining Other Font Characteristics 171

 ✦ Line-height: Indicates the vertical spacing between lines in the element.
As with letter and word spacing, you’ll probably be disappointed if
you’re this concerned about exactly how things are displayed.

Using the font shortcut
It can be tedious to recall all the various font attributes and their possible
values. Aptana and other dedicated CSS editors make it a lot easier, but
there’s another technique often used by the pros. The font rule provides
an easy shortcut to a number of useful font attributes. The following code
shows you how to use the font rule:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>fontTag.html</title>
 <style type = "text/css">
 p {
 font: bold italic 150% "Dadhand", cursive;
 }
 </style>
 </head>
 <body>
 <h1>Using Font shortcut</h1>
 <p>
 This paragraph has many settings.
 </p>
 </body>
</html>

Figure 2-14 illustrates the powerful font rule in action.

Figure 2-14:
The font rule
can change
many things
at once.

Determining Other Font Characteristics172

The great thing about the font rule is how it combines many of the other
font-related rules for a simpler way to handle most text-formatting needs.

The font attribute is extremely handy. Essentially, it allows you to roll all
the other font attributes into one. Here’s how it works:

 ✦ Specify the font rule in the CSS.

 ✦ List any font-style attributes. You can mention any attributes
 normally used in the font- style rule (italic or oblique). If you
don’t want either, just move on.

 ✦ List any font-variant attributes. If you want small caps, you can
 indicate it here. If you don’t, just leave this part blank.

 ✦ List any font-weight values. This can be “bold” or a font-weight
number (100–900).

 ✦ Specify the font-size value in whatever measurement system you want
(but ems or percentages are preferred). Don’t forget the measurement
unit symbol (em or %) because that’s how the font rule recognizes that
this is a size value.

 ✦ Indicate a font-family list last. The last element is a list of font families
you want the browser to try. This list must be last, or the browser may
not interpret the font attribute correctly. (Dadhand is a custom font I
own; cursive will be used if Dadhand is not available.)

The font rule is great, but it doesn’t do everything. You still may need sepa-
rate CSS rules to define your text colors and alignment. These attributes
aren’t included in the font shortcut.

Don’t use commas to separate values in the font attribute list. Use commas
only to separate values in the list of font-family declarations.

You can skip any values you want as long as the order is correct. For
example,

 font: italic "Comic Sans MS", cursive;

is completely acceptable, as is

 font: 70% sans-serif;

Working with subscripts and superscripts
Occasionally, you’ll need superscripts (characters that appear a little bit
higher than normal text, like exponents and footnotes) or subscripts (char-
acters that appear lower, often used in mathematical notation). Figure 2-15
demonstrates a page with these techniques.

Book II
Chapter 2

Styling Text

Determining Other Font Characteristics 173

Figure 2-15:
This
page has
superscripts
and
subscripts
(and, ooooh,
math!).

Surprisingly, you don’t need CSS to produce superscripts and subscripts.
These properties are managed through HTML tags. You can still style them
the way you can any other HTML tag.

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>SuperSub.html</title>
 </head>
 <body>
 <p>
 A² + B² = C²
 </p>
 <p>
 i₀ = 0
 </p>
 </body>
</html>

174 Book II: Styling with CSS

Chapter 3: Selectors: Coding
with Class and Style

In This Chapter
✓ Modifying specific named elements

✓ Adding and modifying emphasis and strong emphasis

✓ Creating classes

✓ Introducing span and div

✓ Using pseudo-classes and the link tag

✓ Selecting specific contexts

✓ Defining multiple styles

Y
ou know how to use CSS to change all the instances of a particular tag,
but what if you want to be more selective? For example, you might

want to change the background color of only one paragraph, or you might
want to define some special new type of paragraph. Maybe you want to
specify a different paragraph color for part of your page, or you want visited
links to appear differently from unselected links. The part of the CSS style
that indicates what element you want to style is a selector. In this chapter,
you discover powerful new ways to select elements on the page.

Selecting Particular Segments
Figure 3-1 illustrates how you should refer to someone who doesn’t appreci-
ate your web development prowess.

Defining more than one kind of paragraph
Apart from its cultural merit, this page is interesting because it has three dif-
ferent paragraph styles. The introductory paragraph is normal. The quote is
set in italicized font, and the attribution is monospaced and right-aligned.

The quote in the following code was generated by one of my favorite sites
on the Internet: the Shakespearean insult generator. Nothing is more satisfy-
ing than telling somebody off in iambic pentameter (www.pangloss.com/
seidel/Shaker/index.html.)

http://www.pangloss.com/seidel/Shaker/index.html
http://www.pangloss.com/seidel/Shaker/index.html

Selecting Particular Segments176

Figure 3-1:
This page
has three
kinds of
paragraphs.

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>quote.html</title>
 <style type = "text/css">
 #quote {
 font: bold italic 130% Garamond, Comic Sans MS, fantasy;
 text-align: center;
 }
 #attribution {
 font: 80% monospace;
 text-align: right;
 }
 </style>
 </head>
 <body>
 <h1>Literature Quote of the Day</h1>
 <p>
 How to tell somebody off the classy way:
 </p>
 <p id = "quote">
 [Thou] leathern-jerkin, crystal-button, knot-pated,
 agate-ring, puke-stocking, caddis-garter, smooth-tongue, Spanish pouch!
 </p>
 <p id = "attribution">
 -William Shakespeare (Henry IV Part I)
 </p>
 </body>
</html>

Styling identified paragraphs
Until now, you’ve used CSS to apply a particular style to an element all
across the page. For example, you can add a style to the <p> tag, and that
style applies to all the paragraphs on the page.

Book II
Chapter 3

Selectors: Coding
w

ith Class and Style
Using Emphasis and Strong Emphasis 177

Sometimes (as in the Shakespeare insult page), you want to give one element
more than one style. You can do this by naming each element and using the
name in the CSS style sheet. Here’s how it works:

 1. Add an id attribute to each HTML element you want to modify.

 For example, the paragraph with the attribution now has an id attribute
with the value attribution.

 <p id = "attribution">

 2. Make a style in CSS.

 Use a pound sign followed by the element’s ID in CSS to specify you’re
not talking about a tag type any more, but a specific element: For exam-
ple, the CSS code contains the selector #attribution, meaning, “Apply
this style to an element with the attribution id.”

 #attribution {

 3. Add the style.

 Create a style for displaying your named element. In this case, I want the
paragraph with the attribution ID right-aligned, monospace, and a
little smaller than normal. This style will be attached only to the specific
element.

 #attribution {
 font: 80% monospace;
 text-align: right;
 }

The ID trick works great on any named element. IDs have to be unique (you
can’t repeat the same ID on one page), so this technique is best when you
have a style you want to apply to only one element on the page. It doesn’t
matter what HTML element it is (it could be a heading 1, a paragraph, a table
cell, or whatever). If it has the ID quote, the #quote style is applied to it.
You can have both ID selectors and ordinary (element) selectors in the same
style sheet.

Using Emphasis and Strong Emphasis
You may be shocked to know that HTML doesn’t allow italics or bold. Old-
style HTML had the <i> tag for italics and the tag for bold. These
seem easy to use and understand. Unfortunately, they can trap you. In your
HTML5, you shouldn’t specify how something should be styled. You should
specify instead the purpose of the styling. The <i> and tags in XHTML
Strict are removed in HTML5 and replaced with and .

The tag means emphasized. By default, em italicizes your text. The
 tag stands for strong emphasis. It defaults to bold.

Figure 3-2 illustrates a page with the default styles for em and strong.

Using Emphasis and Strong Emphasis178

Figure 3-2:
You can
use em
and strong
to add
emphasis.

The code for the emphasis.html page is pretty straightforward. It has no
CSS at all:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>emphasis.html</title>
 </head>
 <body>
 <h1>Emphasis and Strong Emphasis</h1>
 <p>
 This paragraph illustrates two main kinds of emphasis.
 This sentence uses the em tag.
 By default, emphasis is italic.
 This sentence uses strong emphasis.
 The default formatting of strong emphasis is bold.
 </p>
 <p>
 Of course you can change the formatting with CSS.
 This is a great example of semantic formatting.
 Rather than indicating the formatting
 of some text, you indicate how much it is emphasized.
 </p>
 <p>
 This way, you can go back and change things, like adding color
 to emphasized text without the formatting commands
 muddying your actual text.
 </p>
 </body>
</html>

It’d be improper to think that em is just another way to say italic and strong
is another way to say bold. In the old scheme, after you define something

Book II
Chapter 3

Selectors: Coding
w

ith Class and Style
Modifying the Display of em and strong 179

as italic, you’re pretty much stuck with that. The HTML way describes the
meaning, and you can define it how you want.

Modifying the Display of em and strong
Figure 3-3 shows how you might modify the levels of emphasis. I used
yellow highlighting (without italics) for em and a larger red font for
strong.

The HTML code for emphasisStyle.html (as shown in Figure 3-3) is identi-
cal to the code for emphasis.html (as shown in Figure 3-2). The only differ-
ence is the addition of a style sheet. The style sheet is embedded in the web
page between style tags. Check out Chapter 1 of this minibook for a refresher
on how to incorporate CSS styles in your web pages.

 <style type = "text/css">
 em {
 font-style: normal;
 background-color: yellow;
 }

 strong {
 color: red;
 font-size: 110%;
 }
 </style>

The style is used to modify the HTML. The meaning in the HTML stays the
same — only the style changes.

Figure 3-3:
You can
change the
way that em
and strong
modify text.

Defining Classes180

The semantic markups are more useful than the older (more literal) tags
because they still tell the truth even if the style has been changed. (In the
HTML code, the important thing is whether the text is emphasized, not what
it means to emphasize the text. That job belongs to CSS.)

 What’s funny about the following sentence?

 is always bold.

Get it? That’s a bold-faced lie! Sometimes I crack myself up.

Defining Classes
You can easily apply a style to all the elements of a particular type in a
page, but sometimes you might want to have tighter control of your styles.
For example, you might want to have more than one paragraph style. As an
example, look at the classes.html page featured in Figure 3-4.

Once again, multiple formats are on this page:

 ✦ Questions have a large italic sans serif font. There’s more than one
question.

 ✦ Answers are smaller, blue, and in a cursive font. There’s more than
one answer, too.

Figure 3-4:
Each joke
has a
question
and an
answer.

Book II
Chapter 3

Selectors: Coding
w

ith Class and Style
Defining Classes 181

Questions and answers are all paragraphs, so you can’t simply style the
paragraph because you need two distinct styles. There’s more than one
question and more than one answer, so the ID trick would be problematic.
Two different elements can’t have the same ID. This is where the notion of
classes comes into play. Every ID belongs to a single element, but many ele-
ments (even of different types) can share the same class.

Adding classes to the page
CSS allows you to define classes in your HTML and make style definitions
that are applied across a class. It works like this:

 1. Add the class attribute to your HTML questions.

 Unlike ID, several elements can share the same class. All my questions
are defined with this variation of the <p> tag. Setting the class to
question indicates these paragraphs will be styled as questions:

 <p class = "question">
 What kind of cow lives in the Arctic?
 </p>

 2. Add similar class attributes to the answers by setting the class of the
answers to answer:

 <p class = "answer">
 An Eskimoo!
 </p>

 Now you have two different subclasses of paragraph: question and
answer.

 3. Create a class style for the questions.

 The class style is defined in CSS. Specify a class with the period (.)
before the class name. Classes are defined in CSS like this:

 <style type = "text/css">
 .question {
 font: italic 150% arial, sans-serif;
 text-align: left;
 }

 In this situation, the question class is defined as a large sans serif font
aligned to the left.

 4. Define the look of the answers.

 The answer class uses a right-justified cursive font.

 .answer {
 font: 120% "Comic Sans MS", cursive;
 text-align: right;
 color: #00F;
 }
 </style>

Defining Classes182

Using classes
Here’s the code for the classes.html page, showing how to use CSS
classes:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>classes.html</title>
 <style type = "text/css">
 .question {
 font: italic 150% arial, sans-serif;
 text-align: left;
 }
 .answer {
 font: 120% "Comic Sans MS", cursive;
 text-align: right;
 color: #00F;
 }
 </style>
 </head>
 <body>
 <h1>Favorite Jokes</h1>
 <p class = "question">
 What kind of cow lives in the Arctic?
 </p>
 <p class = "answer">
 An Eskimoo!
 </p>
 <p class = "question">
 What goes on top of a dog house?
 </p>
 <p class = "answer">
 The woof!
 </p>
 </body>
</html>

 Sometimes you see selectors, like

p.fancy

that include both an element and a class name. This style is applied only to
paragraphs with the fancy class attached. Generally, I like classes because
they can be applied to all kinds of things, so I usually leave the element name
out to make the style as reusable as possible.

Combining classes
One element can use more than one class. Figure 3-5 shows an example of
this phenomenon.

Book II
Chapter 3

Selectors: Coding
w

ith Class and Style
Defining Classes 183

Figure 3-5:
There’s
red, there’s
script, and
then there’s
both.

The paragraphs in Figure 3-5 appear to be in three different styles, but only
red and script are defined. The third paragraph uses both classes. Here’s the
code:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>redScript.html</title>
 <style type = "text/css">
 .red {
 color: white;
 background-color: red;
 }
 .script {
 font-family: cursive;
 }
 </style>
 </head>
 <body>
 <h1>Multiple Classes</h1>
 <p class = "red">
 This paragraph uses the red class
 </p>
 <p class = "script">
 This paragraph uses the script class
 </p>
 <p class = "red script">
 This paragraph uses both classes
 </p>
 </body>
</html>

Introducing div and span184

The style sheet introduces two classes. The red class makes the paragraph
red (well, white text with a red background), and the script class applies a
cursive font to the element.

The first two paragraphs each have a class, and the classes act as you’d
expect. The interesting part is the third paragraph because it has two
classes.

 <p class = "red script">

This assigns both the red and script classes to the paragraph. Both styles
will be applied to the element in the order they are written. Note that both
class names occur inside quotes and no commas are needed (or allowed).
You can apply more than two classes to an element if you wish. If the classes
have conflicting rules (say one makes the element green and the next makes
it blue), the latest class in the list will overwrite earlier values.

An element can also have an ID. The ID style, the element style, and all the
class styles are taken into account when the browser tries to display the
object.

 Normally, I don’t like to use colors or other specific formatting instructions
as class names. Usually, it’s best to name classes based on their meaning
(like mainBackgroundColor). You might decide that green is better than red,
so you either have to change the class name or you have to have a red class
that colored things green. That’d be weird.

Introducing div and span
So far, I’ve applied CSS styles primarily to paragraphs (with the <p> tag),
but you can really use any element you want. In fact, you may want to invent
your own elements. Perhaps you want a particular style, but it’s not quite a
paragraph. Maybe you want a particular style inside a paragraph. HTML has
two very useful elements that are designed as generic elements. They don’t
have any predefined meaning, so they’re ideal candidates for modification
with the id and class attributes.

 ✦ div: A block-level element (like the p element). It acts just like a para-
graph. A div usually has carriage returns before and after it. Generally,
you use div to group a series of paragraphs.

 ✦ span: An inline element. It doesn’t usually cause carriage returns
because it’s meant to be embedded into some other block-level element
(usually a paragraph or a div). Usually, a span is used to add some type
of special formatting to an element that’s contained inside a block-level
element.

Book II
Chapter 3

Selectors: Coding
w

ith Class and Style
Introducing div and span 185

Organizing the page by meaning
To see why div and span are useful, take a look at Figure 3-6.

Figure 3-6:
This page
has names
and phone
numbers.

The formatting of the page isn’t complete (read about positioning CSS in
Book III), but some formatting is in place. Each name and phone number pair
is clearly a group of things. Names and phone numbers are formatted differ-
ently. The interesting thing about this page is the code:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>divSpan.html</title>
 <style type = "text/css">
 .contact {
 background-color: #CCCCFF;
 }
 .name {
 font: italic 110% arial, sans-serif;
 }
 .phone {
 font: 100% monospace;
 }
 </style>
 </head>
 <body>
 <div class = "contact">
 Andy
 111-1111
 </div>
 <div class = "contact">
 Elizabeth

Introducing div and span186

 222-2222
 </div>
 <div class = "contact">
 Matthew
 333-3333
 </div>
 </body>
</html>

What’s exciting about this code is its clarity. When you look at the HTML,
it’s very clear what type of data you’re talking about because the structure
describes the data. Each div represents a contact. A contact has a name and
a phone number.

 The HTML doesn’t specify how the data displays, just what it means.

Why not make a table?
This is where experienced web people shake their heads in disbelief. This
page seems like a table, so why not make it one? What matters here isn’t that
the information is in a table, but that names and phone numbers are part
of contacts. There’s no need to bring in artificial table elements if you can
describe the data perfectly well without them.

If you still want to make the data look like a table, that’s completely possible,
as shown in Figure 3-7. See Book III to see exactly how some of the styling
code works. Of course, you’re welcome to look at the source code for this
styled version (dubbed divSpanStyled.html on the companion website)
if you want a preview. See this book’s Introduction for more on the compan-
ion website.

Figure 3-7:
After you
define the
data, you
can style it
as a table if
you want.

Book II
Chapter 3

Selectors: Coding
w

ith Class and Style
Using Pseudo-Classes to Style Links 187

The point is this: After you define the data, you can control it as much as
you want. Using span and div to define your data gives you far more control
than tables and leaves your HTML code much cleaner.

div and span aren’t simply a replacement for tables. They’re tools for
organizing your page into segments based on meaning. After you have them
in place, you can use CSS to apply all kinds of interesting styles to the
segments.

Using Pseudo-Classes to Style Links
Now that you have some style going in your web pages, you may be a bit
concerned about how ugly links are. The default link styles are useful, but
they may not fit with your color scheme.

Styling a standard link
Adding a style to a link is easy. After all, <a> (the tag that defines links) is
just an HTML tag, and you can add a style to any tag. Here’s an example,
where I make my links black with a yellow background:

a {
 color: black;
 background-color: yellow;
}

That works fine, but links are a little more complex than some other ele-
ments. Links actually have three states:

 ✦ Normal: This is the standard state. With no CSS added, most browsers
display unvisited links as blue underlined text.

 ✦ Visited: This state is enabled when the user visits a link and returns to
the current page. Most browsers use a purple underlined style to indi-
cate that a link has been visited.

 ✦ Hover: The hover state is enabled when the user’s mouse is linger-
ing over the element. Most browsers don’t use the hover state in their
default settings.

If you apply a style to the <a> tags in a page, the style is applied to all the
states of all the anchors.

Styling the link states
You can apply a different style to each state, as illustrated by Figure 3-8. In
this example, I make ordinary links black on a white background. A visited
link is black on yellow; and, if the mouse is hovering over a link, the link is
white with a black background.

Using Pseudo-Classes to Style Links188

Figure 3-8:
Links can
have three
states:
normal,
visited, and
hover.

Take a look at the code and see how it’s done:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>linkStates.html</title>
 <style type = "text/css">
 a {
 color: black;
 background-color: white;
 }
 a:visited {
 color: black;
 background-color: #FFFF33;
 }
 a:hover {
 color: white;
 background-color: black;
 }
 </style>
 </head>
 <body>
 <h1>Pseudo-classes and links</h1>
 <p>
 This link is normal
 </p>
 <p>
 This link has been visited
 </p>
 <p>
 The mouse is hovering over this link
 </p>
 </body>
</html>

Book II
Chapter 3

Selectors: Coding
w

ith Class and Style
Using Pseudo-Classes to Style Links 189

Nothing is special about the links in the HTML part of the code. The links
change their state dynamically while the user interacts with the page. The
style sheet determines what happens in the various states. Here’s how you
approach putting the code together:

 1. Determine the ordinary link style first by making a style for the <a> tag.

 If you don’t define any other pseudo-classes, all links will follow the ordi-
nary link style.

 2. Make a style for visited links.

 A link will use this style after that site is visited during the current
browser session. The a:visited selector indicates links that have been
visited.

 3. Make a style for hovered links.

 The a:hover style is applied to the link only when the mouse is hover-
ing over the link. As soon as the mouse leaves the link, the style reverts
to the standard or visited style, as appropriate.

Best link practices
Link styles have some special characteristics. You need to be a little bit care-
ful how you apply styles to links. Consider the following issues when apply-
ing styles to links:

 ✦ The order is important. Be sure to define the ordinary anchor first. The
pseudo-classes are based on the standard anchor style.

 ✦ Make sure they still look like links. It’s important that users know
something is intended to be a link. If you take away the underlining and
the color that normally indicates a link, your users might be confused.
Generally, you can change colors without trouble, but links should be
either underlined text or something that clearly looks like a button.

 ✦ Test visited links. Testing visited links is a little tricky because, after
you visit a link, it stays visited. Most browsers allow you to delete the
browser history, which should also clear the link states to unvisited.

 ✦ Don’t change font size in a hover state. Unlike most styles, hover
changes the page in real time. A hover style with a different font size
than the ordinary link can cause problems. The page is automatically
reformatted to accept the larger (or smaller) font, which can move a
large amount of text on the screen rapidly. This can be frustrating and
disconcerting for users. It’s safest to change colors or borders on hover
but not the font family or font size.

Selecting in Context190

Selecting in Context
CSS allows some other nifty selection tricks. Take a look at Figure 3-9 and
you see a page with two kinds of paragraphs in it.

The code for the context-style.html page is deceptively simple:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>context-style</title>
 <style type = "text/css">
 #special p {
 text-align: right;
 }
 </style>
 </head>
 <body>
 <h1>Selecting By Context</h1>
 <div>
 <p>This paragraph is left-justified.</p>
 <p>This paragraph is left-justified.</p>
 <p>This paragraph is left-justified.</p>
 </div>
 <div id = "special">
 <p>The paragraphs in this div are different.</p>
 <p>The paragraphs in this div are different.</p>
 <p>The paragraphs in this div are different.</p>
 </div>
 </body>
</html>

Figure 3-9:
Obviously
two kinds of
paragraphs
are here —
or are there?

Book II
Chapter 3

Selectors: Coding
w

ith Class and Style
Defining Styles for Multiple Elements 191

If you look at the code for context-style.html, you see some interesting
things:

 ✦ The page has two divs. One div is anonymous, and the other is special.

 ✦ None of the paragraphs has an ID or class. The paragraphs in this page
don’t have names or classes defined, yet they clearly have two different
types of behavior. The first three paragraphs are aligned to the left, and
the last three are aligned to the right.

 ✦ The style rule affects paragraphs inside the special div. Take
another look at the style:

#special p {

 This style rule means, “Apply this style to any paragraph appearing
inside something called special.” You can also define a rule that could
apply to an image inside a list item or emphasized items inside a par-
ticular class. When you include a list of style selectors without commas,
you’re indicating a nested style.

 ✦ Paragraphs defined outside special aren’t affected. This nested
selection technique can help you create very complex style combina-
tions. It becomes especially handy when you start building positioned
elements, like menus and columns.

Defining Styles for Multiple Elements
Sometimes, you want a number of elements to share similar styles. As an
example, look at Figure 3-10.

Figure 3-10:
H1, H2, and
H3 have
similar style
rules.

Defining Styles for Multiple Elements192

As shown in Figure 3-10, the top three headings all have very similar styles.
Creating three different styles would be tedious, so CSS includes a shortcut:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>multiStyle.html</title>
 <style type = "text/css">
 h1, h2, h3 {
 text-align: center;
 font-family: "Bradley Hand ITC", cursive;
 background-color: yellow;
 }
 h3 {
 font-family: monospace;
 }
 </style>
 </head>
 <body>
 <h1>H1 Heading</h1>
 <h2>H2 Heading</h2>
 <h3>H3 Heading</h3>
 </body>
</html>

One style element (the one that begins h1, h2, h3) provides all the informa-
tion for all three heading types. If you include more than one element in a
style selector separated by commas, the style applies to all the elements in
the list. In this example, the centered cursive font with a yellow background
is applied to heading levels 1, 2, and 3 all in the same style.

If you want to make modifications, you can do so. I created a second h3 rule,
changing the font-family attribute to monospace. Style rules are applied
in order, so you can always start with the general rule and then modify spe-
cific elements later in the style if you wish.

 If you have multiple elements in a selector rule, it makes a huge difference
whether you use commas. If you separate elements with spaces (but no
commas), CSS looks for an element nested within another element. If you
include commas, CSS applies the rule to all the listed elements.

It’s possible to get even more specific about selectors with punctuation. For
example, the + selector describes sibling relationship. For example, look at
the following rule:

h1+p

This targets only the paragraph that immediately follows a level-one head-
line. All other paragraphs will be ignored. There are other selectors as well,
but the ones mentioned here will suffice for most applications.

Book II
Chapter 3

Selectors: Coding
w

ith Class and Style
Using New CSS3 Selectors 193

 You might wonder why we need so many different kinds of selectors. You
can use the tag name for most elements, and just apply a class or ID to any
element that requires special attention. That’s true, but one goal of CSS is to
keep your HTML code as clean as possible. As much as possible, you want to
use the structure of the page itself to help you determine the style.

Using New CSS3 Selectors
CSS3 supports several new selectors with interesting new capabilities.

Attribute selection
You can now apply a style to any element with a specific attribute value. For
example, the input tag takes many different forms, all determined by the
type attribute. If you apply a single style to the input element, that style
gets applied to many different kinds of elements: check boxes, text fields,
and radio buttons. By using the new attribute syntax, you can apply a style
to any particular type of input element:

 input[type="text"]{
 background-color: #CCCCFF;
 }

You can apply the style with or without a tag type, but it is possible to have
unexpected side effects if you choose an extremely common attribute.

Figure 3-11 illustrates the input selector in operation.

Figure 3-11:
You can
apply a style
to elements
with a
particular
attribute.

Using New CSS3 Selectors194

not
There are times you want an inverse selection. For example, imagine you
wanted to apply a style to all the paragraphs that are not members of the
special class:

 p:not(.special) {
 border: 1px solid red;
 }

nth-child
The nth-child selector allows you to select one or more elements in a
group. The basic version uses a numeric input:

 #myList>li:nth-child(1){
 border: 1px solid blue;
 }

This allows you to apply a style to the first of a group of elements. In my
example, I have a list with four items. The style is applied to the list items,
not the list. (It seems to me the list items are children of the list, so it should
be the nth-child of the list, but nobody asked me.)

The numeric value can actually be a formula, like an+b. If you love algebra
(and who doesn’t?), you can select all the even-numbered elements like
this:

 #myList>li:nth-child(2n){
 border: 1px solid blue;
 }

A similar formula can be used to pick the odd-numbered children.

 #myList>li:nth-child(2n+1){
 border: 1px solid blue;
 }

You could use this formula system to get all kinds of groupings (every third
element with 3n, for example), but most people simply need a particular ele-
ment, or all the even or odd rows. CSS3 supplies shortcut keywords, even
and odd, so you don’t have to do it using math:

 #myList>li:nth-child(even){
 color: white;
 background-color: red;
 }

The last keyword allows you to pick the last element from a group. There
are a few more variations of this selection technique:

 ✦ :nth-last-child(N): Works just like nth-child, excepts counts
from the end of the group of elements rather than the beginning.

Book II
Chapter 3

Selectors: Coding
w

ith Class and Style
Using New CSS3 Selectors 195

 ✦ :nth-of-type(N): This selector works just like nth-child, except it
filters to a specific type and ignores any elements that are not of exactly
the same type of element.

 ✦ last-child: This (naturally enough) selects the last child element.

 ✦ last-nth-of-type(N): Works like nth-of-type, but from the end of
the group.

 ✦ first-child: Grabs the first element (technically this was available in
CSS2, but it was rarely used).

These selection tools are fully-supported in all the recent browsers.
However, as they are generally used simply to improve readability, it should
be safe to use them. Older browsers simply skip the style.

Figure 3-12 shows a number of variations of the nth-child selector.

Figure 3-12:
You can
select
specific
elements in
a group.

Other new pseudo-classes
Pseudo-classes allow you to specify styles based on the state of an element.
Modern CSS supports a number of new pseudo-classes:

 ✦ :hover: The :hover pseudo-class has been a part of CSS from the
beginning, but it was officially defined only for the <a> tag. Now the
:hover pseudo-class can be applied to any element. If the mouse (or
other pointing device) is over an element, that element has the hover
state activated. Note that mobile devices don’t always support hover
because the position of the pointing device (the stylus or finger) isn’t
known until the item is activated. Mobile devices may have some sort of
tabbing mechanism to indicate which item is being hovered over.

Using New CSS3 Selectors196

 ✦ :focus: The :focus pseudo-class is activated when an element is
ready to receive keyboard input.

 ✦ :active: A form element is active when it is currently being used: for
example, when a button has been pressed but not yet released. Mobile
devices often skip directly to active mode without going through hover
mode. This can be an important design consideration when using state
for styling.

The state pseudo-classes are fully supported by all modern browsers except
the IE family of browsers. There is limited but buggy support in even early
versions of IE.

Chapter 4: Borders and
Backgrounds

In This Chapter
✓ Creating borders

✓ Managing border size, style, and color

✓ Using the border shortcut style

✓ Understanding the box model

✓ Setting padding and margin

✓ Creating background and low-contrast images

✓ Changing background image settings

✓ Adding images to list items

C
SS offers some great features for making your elements more colorful,
including a flexible and powerful system for adding borders to your ele-

ments. You can also add background images to all or part of your page. This
chapter describes how to use borders and backgrounds for maximum effect.

Joining the Border Patrol
You can use CSS to draw borders around any HTML element. You have some
freedom in the border size, style, and color. Here are two ways to define
border properties: using individual border attributes, and using a shortcut.
Borders don’t actually change the layout, but they do add visual separation
that can be appealing, especially when your layouts are more complex.

Using the border attributes
Figure 4-1 illustrates a page with a simple border drawn around the heading.

Joining the Border Patrol198

The code for the borderProps.html page demonstrates the basic principles
of borders in CSS:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>borderProps.html</title>
 <style type = "text/css">
 h1 {
 border-color: red;
 border-width: .25em;
 border-style: double;
 }
 </style>
 </head>
 <body>
 <h1>This has a border</h1>
 </body>
</html>

Each element can have a border defined. Borders require three attributes:

 ✦ width: The width of the border. This can be measured in any CSS unit,
but border width is normally described in pixels (px) or ems. (Remember:
An em is roughly the width of the capital letter “M” in the current font.)

 ✦ color: The color used to display the border. The color can be defined
like any other color in CSS, with color names or hex values.

 ✦ style: CSS supports a number of border styles. For the example, in the
following section, I chose a double border. This draws a border with two
thinner lines around the element.

Figure 4-1:
This page
features a
double red
border.

Book II
Chapter 4

Styling w
ith CSS

Joining the Border Patrol 199

 You must define all three attributes if you want borders to appear properly.
You can’t rely on the default values to work in all browsers.

Defining border styles
CSS has a predetermined list of border styles you can choose from.
Figure 4-2 shows a page with all the primary border styles displayed.

Figure 4-2:
This page
shows the
main border
styles.

You can choose any of these styles for any border:

 ✦ Solid: A single solid line around the element.

 ✦ Double: Two lines around the element with a gap between them. The
border width is the combined width of both lines and the gap.

 ✦ Groove: Uses shading to simulate a groove etched in the page.

 ✦ Ridge: Uses shading to simulate a ridge drawn on the page.

 ✦ Inset: Uses shading to simulate a pressed-in button.

 ✦ Outset: Uses shading to simulate a button sticking out from the page.

 ✦ Dashed: A dashed line around the element.

 ✦ Dotted: A dotted line around the element.

I didn’t reprint the source of borderStyles.html here, but it’s included
on the companion website if you want to look it over. (See this book’s
Introduction for more on the companion website.) I added a small margin
to each list item to make the borders easier to distinguish. Margins are dis-
cussed later in this chapter in the “Border, margin, and padding” section.

Joining the Border Patrol200

Using the border shortcut
Defining three different CSS attributes for each border is a bit tedious.
Fortunately, CSS includes a handy border shortcut that makes borders a lot
easier to define, as Figure 4-3 demonstrates.

Figure 4-3:
This border
is defined
with only
one CSS
rule.

You can’t tell the difference from the output, but the code for borderShort
cut.html is extremely simple:

Several border styles rely on shading to pro-
duce special effects. Here are a couple things
to keep in mind when using these shaded
styles:

 ✓ You need a wide border. The shading
effects are typically difficult to see if the
border is very thin.

 ✓ Browsers shade differently. All the shad-
ing tricks modify the base color (the color
you indicate with the border-color
attribute) to simulate depth. Unfortunately,

the browsers don’t all do this in the same
way. I show a technique to define different
color schemes for each browser in Chapter
5 of this minibook. For now, avoid shaded
styles if this bothers you.

 ✓ Black shading doesn’t work in IE. IE makes
colors darker to get shading effects. If your
base color is black, IE can’t make anything
darker, so you don’t see the shading effects
at all. Likewise, white shading doesn’t work
well on Firefox.

Shades of danger

Book II
Chapter 4

Styling w
ith CSS

Joining the Border Patrol 201

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>borderShortcut.html</title>
 <style type = "text/css">
 h1 {
 border: red 5px solid;
 }
 </style>
 </head>
 <body>
 <h1>This page uses the border shortcut</h1>
 </body>
</html>

The order in which you describe border attributes doesn’t matter. Just spec-
ify a color, a size, and a border style.

Creating partial borders
If you want, you can have more precise control of each side of a border. There are
a number of specialized border shortcuts for each of the sub-borders. Figure 4-4
shows how you can add borders to the top, bottom, or sides of your element.

Figure 4-4:
You can
specify
parts of your
border if you
want.

Figure 4-4 applies a border style to the bottom of the heading as well as
different borders above, below, and to the sides of the paragraphs. Partial
borders are pretty easy to build, as you can see from the code listing:

Introducing the Box Model202

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>subBorders.html</title>
 <style type = "text/css">
 h1 {
 border-bottom: 5px black double;
 }
 p {
 border-left:3px black dotted;
 border-right: 3px black dotted;
 border-top: 3px black dashed;
 border-bottom: 3px black groove;
 }
 </style>
 </head>
 <body>
 <h1>This heading has a bottom border</h1>
 <p>
 Paragraphs have several borders defined.
 </p>
 <p>
 Paragraphs have several borders defined.
 </p>
 </body>
</html>

Notice the border styles. CSS has style rules for each side of the border:
border-top, border-bottom, border-left, and border-right. Each of
these styles acts like the border shortcut, but it only acts on one side of the
border.

 There are also specific border attributes for each side (bottom-border-width
adjusts the width of the bottom border, for example), but they’re almost
never used because the shortcut version is so much easier.

Introducing the Box Model
XHTML and CSS use a specific type of formatting called the box model.
Understanding how this layout technique works is important. If you don’t under-
stand some of the nuances, you’ll be surprised by the way your pages flow.

The box model relies on two types of elements: inline and block-level. Block-
level elements include <div> tags, paragraphs, and all headings (h1– h6),
whereas strong, a, and image are examples of inline elements.

The main difference between inline and block-level elements is this:
Block-level elements always describe their own space on the screen,
whereas inline elements are allowed only within the context of a block-
level element.

Book II
Chapter 4

Styling w
ith CSS

Introducing the Box Model 203

Your overall page is defined in block-level elements, which contain inline ele-
ments for detail.

Each block-level element (at least in the default setting) takes up the entire
width of the parent element. The next block-level element goes directly
underneath the last element defined.

Inline elements flow differently. They tend to go immediately to the right of
the previous element. If there’s no room left on the current line, an inline ele-
ment drops down to the next line and goes to the far left.

Border, margin, and padding
Each block-level element has several layers of space around it, such as

 ✦ Padding: The space between the content and the border.

 ✦ Border: Goes around the padding.

 ✦ Margin: Space outside the border between the border and the parent
element.

Figure 4-5 shows the relationship among margin, padding, and border.

Figure 4-5:
Margin is
outside
the border;
padding is
inside.

Margin
Border

Padding

Content

Introducing the Box Model204

You can change settings for the margin, border, and padding to adjust the
space around your elements. The margin and padding CSS rules are used
to set the sizes of these elements, as shown in Figure 4-6.

Figure 4-6:
Margins
and padding
affect the
positioning
of an
element.

In Figure 4-6, I applied different combinations of margin and padding to
a series of paragraphs. To make things easier to visualize, I drew a border
around the <div> containing all the paragraphs and each individual para-
graph element. You can see how the spacing is affected.

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>marginPadding.html</title>
 <style type = "text/css">
 div {
 border: red 5px solid;
 }
 p {
 border: black 2px solid;
 }
 #margin {
 margin: 5px;
 }
 #padding {
 padding: 5px;
 }
 #both {
 margin: 5px;
 padding: 5px;
 }
 </style>

Book II
Chapter 4

Styling w
ith CSS

Introducing the Box Model 205

 </head>
 <body>
 <h1>Margins and padding</h1>
 <div id = "main">
 <p>This paragraph has the default margins and padding</p>
 <p id = "margin">This paragraph has a margin but no padding</p>
 <p id = "padding">This paragraph has padding but no margin</p>
 <p id = "both">This paragraph has a margin and padding</p>
 </div>
 </body>
</html>

You can determine margin and padding using any of the standard CSS mea-
surement units, but the most common are pixels and ems.

Positioning elements with margins and padding
As with borders, you can use variations of the margin and padding rules to
affect spacing on a particular side of the element. One particularly important
form of this trick is centering.

In old-style HTML, you could center any element or text with the
<center> tag. This was pretty easy, but it violated the principle of sepa-
rating content from style. The text-align:center rule is a nice alterna-
tive, but it only works on the contents of an element. If you want to center
an entire block-level element, you need another trick, as you can see in
Figure 4-7.

Figure 4-7:
Using
margins
to adjust
positioning.

This page illustrates a few interesting ideas:

Introducing the Box Model206

 ✦ You can adjust the width of a block. The main div that contains all the
paragraphs has its width set to 75 percent of the page body width.

 ✦ Center an element by setting margin-left and margin-right to
auto. Set both the left and right margins to auto to make an element
center inside its parent element. This trick is most frequently used to
center divs and tables.

 ✦ Use margin-left to indent an entire paragraph. You can use margin-
left or margin-right to give extra space between the border and
the contents.

 ✦ Percentages refer to percent of the parent element. When you use
percentages as the unit measurement for margins and padding, you’re
referring to the percentage of the parent element; so a margin- left of
50 percent leaves the left half of the element blank.

 ✦ Borders help you see what’s happening. I added a border to the main-
Body div to help you see that the div is centered.

 ✦ Setting the margins to auto doesn’t center the text. It centers the div
(or other block-level element). Use text-align: center to center
text inside the div.

The code that demonstrates these ideas is shown here:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>center.html</title>
 <style type = "text/css">
 #mainBody {
 border: 5px double black;
 width: 75%;
 margin-left: auto;
 margin-right: auto;
 }
 .indented {
 margin-left: 50%;
 }
 </style>
 </head>
 <body>
 <h1>Centering</h1>
 <div id = "mainBody">
 <p>
 This paragraph is part of the centered main body.
 </p>
 <p class = "indented">
 This paragraph is indented to the right.
 </p>
 </div>
 </body>
</html>

Book II
Chapter 4

Styling w
ith CSS

New CSS3 Border Techniques 207

New CSS3 Border Techniques
Borders have been a part of CSS from the beginning, but CSS3 adds
some really exciting new options. Modern browsers now support
borders made from an image as well as rounded corners and box
shadows. These techniques promise to add exciting new capabilities to
your designs.

Image borders
CSS3 allows you to use an image for an element border. The mechanism is
quite powerful because it detects the edges of an image and “slices” it to
create the edges and corners of the border from the edges and corners of
the image.

For example, look at the simple picture frame image in Figure 4-8.

Figure 4-8:
This image
will be used
as a border
image.

The frame image is stored as frame.png in the same directory as the HTML
file. It has a transparent center. Apply the following code to add an image
border around all h2 elements on the page:

New CSS3 Border Techniques208

 h2 {
 border-width: 15px;
 border-image: url("frame.png") 25% repeat;
 -webkit-border-image: url("frame.png") 25% repeat;
 -moz-border-image: url("frame.png") 25% repeat;
 }

Here’s how you add a border image:

 1. Acquire your image.

 The image should already be designed as some sort of border. Typically
it will be a shape around the edges, with either a solid-color center or
a transparent center. I typically make the image 100×100 pixels, so the
math is easier to figure later.

 2. Specify the border width.

 You’ll need to indicate the border width directly. The border of the
frame image is scaled to fit whatever size you want.

 3. Calculate how much of the image’s border you want.

 I want to use the outer 25% of my frame image as the border, so specify
25%. If you leave off the percent sign, the value calculates in pixels. You
can add four values if you prefer to use different amounts of the original
image for each boundary.

 4. Indicate the behavior you want.

 The original image is almost never the same size as the element you’re
wanting to surround, so you can supply a tip to explain how the
browser should handle elements larger than the original. The most
common choices are repeat (repeat the original image) or stretch
(stretch the image to take up the entire space). With a simple image
like the frame.png used in this example, the results will be the same.

As you look over the code for the image
border demo, you’ll see three versions of
the border-image rule: border-image,
-webkit-border-image, and -moz-
border-image. This is a pattern you’ll see
on many of the newer CSS elements. While
an element is still being finalized, some of
the browser manufacturers will define a test
version of the rule using a special browser-
specific prefix.-webkit is the rendering

image used in Chrome and Safari, and -moz
is used by Firefox. Sometimes you’ll also see
the -o prefix to indicate Opera, and -ms to
represent Internet Explorer. You can always
try the generic rule name, but for newer rules
like image border, it’s also safe to include
the vendor-specific versions. As acceptance
of these newer rules becomes more wide-
spread, the vendor prefixes will no longer be
needed.

What’s up with the -moz and -webkit stuff?

Book II
Chapter 4

Styling w
ith CSS

New CSS3 Border Techniques 209

Figure 4-9 shows the image being used as a border around my headline.

Figure 4-9:
Using an
image as
a custom
border.

Adding Rounded Corners
Older CSS was known for being very rectangular, so web designers tried to
soften their designs by adding rounded corners. This was a difficult effect
to achieve. CSS3 greatly simplifies the creation of rounded corners with the
border-radius rule.

Figure 4-10 demonstrates a simple page with a rounded border.

Figure 4-10:
This
headline
has rounded
borders.

New CSS3 Border Techniques210

It’s pretty easy to get rounded corners on those browsers that support
the tag:

<!DOCTYPE HTML>
<html lang = "en">

 <head>
 <title>corners.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 h1 {
 width: 60%;
 background-color: #000066;
 color: #9999ff;
 border: #9999ff 3px groove;
 margin: auto;
 text-align: center;
 border-radius: .5em;
 }
 </style>
 </head>
 <body>
 <h1>Round Corners Demo</h1>

 </body>
</html>

The border-radius rule works by cutting an arc from each corner of the
element. The arc has the specified radius, so for sharp corners, you’ll want
a small radius. You can measure the radius in any of the common measure-
ments, but pixels (px) and character width (em) are the most commonly used.

The border is not visible unless the element has the background-color
or border defined. Note that there are variations of each tag to support
specific corners: border-top-left-radius and so on. This can be useful
if you do not wish to apply the same radius to all four corners of your ele-
ment. The most recent browsers now support the generic border-radius
rule. You can pick up a number of the previous-generation browsers by using
the vendor-specific prefix. If your browser does not understand the border-
radius rule, it will simply create the ordinary squared corners.

Adding a box shadow
Box shadows are often added to elements to create the illusion of depth.
Figure 4-11 displays a page with a simple box shadow.

The box shadow effect is not difficult to achieve, but it is normally done as
part of a class definition so it can be re-used throughout the page. Here’s
some sample code:

<!DOCTYPE HTML>
<html lang = "en">
<head>
 <title>boxShadow.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">

Book II
Chapter 4

Styling w
ith CSS

New CSS3 Border Techniques 211

 .shadow {
 box-shadow: 10px 10px 10px #000000;

 height: 200px;
 width: 200px;
 padding: 1em;
 border: 1px solid black;
 border-radius: 5px;

 background-color: #EEEEEE;
 }
 </style>
</head>
<body>
 <h1>Box Shadow Demo</h1>
 <div class = "shadow">
 This box has a shadow
 </div>
</body>
</html>

Adding a box shadow is much easier in CSS3 than it once was. Here are the
steps:

 1. Define a class.

 Often you’ll want to apply the same settings to a number of elements
on a page, so the box shadow is often combined with other elements
like background-color and border in a CSS class that can be reused
throughout the page.

 2. Add the box-shadow rule.

 The latest browsers support the standard box-shadow rule, but you may
also want to include browser prefixes to accommodate older browses.

Figure 4-11:
Adding a
box shadow.

Changing the Background Image212

 3. Specify the offset.

 A shadow is typically offset from the rectangle it belongs to. The first
two values indicate the horizontal and vertical offset. Measure using any
of the standard CSS measurements (normally pixels or ems).

 4. Determine the blur and spread distances.

 You can further modify the behavior of the shadow by specifying how
quickly the shadow blurs and how far it spreads. These are optional
parameters.

 5. Indicate the shadow color.

 You can make the shadow any color you wish. Black and gray are
common, but you can get interesting effects by picking other colors.

Many other shadow effects are possible. You can add multiple shadows, and
you can also use the inset keyword to produce an interior shadow to make
it look like part of the page is cut out.

There is a similar rule called text-shadow. It has the same general behavior
as box-shadow, but it’s designed to work on text. It’s possible to get some
really nice effects with this tool, but be careful not to impede readability.

Changing the Background Image
You can use the img tag to add an image to your page, but sometimes you want
to use images as a background for a specific element or for the entire page.

You can the background-image CSS rule to apply a background image to a
page or elements on a page. Figure 4-12 shows a page with this feature.

Figure 4-12:
This page
has a
background
image for
the body
and another
for the
heading.

Book II
Chapter 4

Styling w
ith CSS

Changing the Background Image 213

Background images are easy to apply. The code for backgroundImage.html
shows how:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>backgroundImage.html</title>
 <style type = "text/css">
 body {
 background-image: url("ropeBG.jpg");
 }
 h1 {
 background-image: url("ropeBGLight.jpg");
 }
 p {
 background-color: white;
 background-color: rgba(255, 255, 255, .85);
 }
 </style>
 </head>
 <body>
 <h1>Using Background Images</h1>
 <p>
 The heading uses a lighter version of the background,
 and the paragraph uses a solid color background with
 light transparency.
 </p>
 <p>
 The heading uses a lighter version of the background,
 and the paragraph uses a solid color background with
 light transparency.
 </p>
 </body>
</html>

Attaching the background image to an element through CSS isn’t difficult.
Here are the general steps:

 1. Find or create an appropriate image and place it in the same directory
as the page so it’s easy to find.

 2. Attach the background-image style rule to the page you want to
apply the image to.

 If you want to apply the image to the entire page, use the body element.

 3. Tell CSS where background-image is by adding a url identifier.

 Use the keyword url() to indicate that the next thing is an address.

 4. Enter the address of the image.

 It’s easiest if the image is in the same directory as the page. If that’s the
case, you can simply type the image name. Make sure you surround the
URL with quotes.

Changing the Background Image214

 5. Test your background image by viewing the web page in your browser.

 A lot can go wrong with background images. The image may not be in
the right directory, you might have misspelled its name, or you may
have forgotten the url() bit. (I do all those things sometimes.)

Getting a background check
It’s pretty easy to add backgrounds, but background images aren’t perfect.
Figure 4-13 demonstrates a page with a nice background. Unfortunately, the
text is difficult to read.

Figure 4-13:
The text is
very hard to
read. Don’t
do this to
your users!

Background images can add a lot of zing to your pages, but they can intro-
duce some problems, such as

 ✦ Background images can add to the file size. Images are very large, so
a big background image can make your page much larger and harder to
download.

 ✦ Some images can make your page harder to read. An image in the back-
ground can interfere with the text, so the page can be much harder to read.

 ✦ Good images don’t make good backgrounds. A good picture draws the
eye and calls attention to it. The job of a background image is to fade
into the background. If you want people to look at a picture, embed it.
Background images shouldn’t jump into the foreground.

 ✦ Backgrounds need to be low contrast. If your background image is dark,
you can make light text viewable. If the background image is light, dark text
shows up. If your image has areas of light and dark (like nearly all good
images), it’ll be impossible to find a text color that looks good against it.

Book II
Chapter 4

Styling w
ith CSS

Changing the Background Image 215

Solutions to the background conundrum
Web developers have come up with a number of solutions to background
image issues over the years. I used several of these solutions in the
backgroundImage.html page (the readable one shown in Figure 4-12).

Using a tiled image
If you try to create an image the size of an entire web page, the image will be
so large that dial-up users will almost never see it. Even with compression
techniques, a page-sized image is too large for quick or convenient loading.

Fortunately, you can use a much smaller image and fool the user into think-
ing it takes up the entire screen. Figure 4-14 shows the ropeBG.jpg that I used
to cover the entire page.

Image courtesy of Julian Burgess (Creative Commons License)

I used a specially created image for the background. Even though it’s only
500 pixels wide by 500 pixels tall, it’s been carefully designed to repeat so you
can’t see the seams. If you look carefully, you can tell that the image repeats,
but you can’t tell exactly where one copy ends and the next one begins.

 This type of image is a tiled background or sometimes a seamless texture.

Figure 4-14:
The image is
only 500×500
pixels.

Changing the Background Image216

Getting a tiled image
If you want an image that repeats seamlessly, you have two main options:

 ✦ Find an image online. A number of sites online have free seamless back-
grounds for you to use on your site. Try a search and see what you come
up with.

 ✦ Make your own image. If you can’t find a pre-made image that does what
you want, you can always make your own. All the main image editing tools
have seamless background tools. In GIMP, choose Filters ➪ Map ➪ Make
Seamless. Check Book VIII, Chapter 4 for a technique to build your own
tiled backgrounds in GIMP.

By default, a background image repeats as many times as necessary in both the
horizontal and vertical dimensions to fill up the entire page. This fills the entire
page with your background, but you only have to download a small image.

Setting background colors
Background colors can be a great tool for improving readability. If you set the
background color of a specific element, that background color appears on top
of the underlying element’s background image. For the backgroundImage.html
example, I set the background color of all p objects to white, so the text appears
on white regardless of the complex background. This is a useful technique for
body text (like <p> tags) because text tends to be smaller and readability is
especially important. If you want, you can set a background color that’s similar
to the background image. Just be sure the foreground color contrasts with the
background color so the text is easy to read.

Setting a semi-transparent background color
In modern browsers, you will be able to see the background through the
paragraph. I achieved this trick by setting the background color twice. The
first background-color rule sets the background to white. This always
works (but it won’t produce any transparency). The second background-
color rule uses a newer form of the color rule called rgba. This trick allows
you to supply a color value with transparency. This rule takes four param-
eters. The first few are the RGB values (in base 10, so white is 255, 255, 255).
The fourth parameter is the alpha value, which represents transparency.
Alpha is specified by a value between 0 and 1, where 0 is fully transparent
and 1 is fully opaque. To make your text readable, you should set alpha quite
high. I used .85 for this example.

There is also an HSLA color rule that allows you to add alpha to a color defined
with the HSL mechanism described in Chapter 1 of this mini-book. Like RGBA, it
simply takes a fourth 0-1 parameter to indicate the amount of alpha.

 When you use a dark background image with light text, be sure to also set
the background-color to a dark color. This way the text is readable.
Images take longer to load than colors and may be broken. Make sure the
user can read the text immediately.

Book II
Chapter 4

Styling w
ith CSS

Changing the Background Image 217

Reducing the contrast
In backgroundImage.html, the heading text is pretty dark, which won’t show
up well against the dark background image. I used a different trick for the h1
heading. The heading uses a different version of the ropes image; this one is
adjusted to be much brighter. The image is shown in Figure 4-15.

Figure 4-15:
This is the
ropes image
with the
brightness
turned way
up.

With this element, I kept the ropes image, but I made a much brighter back-
ground so the dark text would show up well underneath. This technique
allows you to use the background image even underneath text, but here are
a few things to keep in mind if you use it:

 ✦ Make the image very dark or very light. Use the Adjust Colors com-
mand in IrfanView or your favorite image editor to make your image
dark or light. Don’t be shy. If you’re creating a lighter version, make it
very light. (See Book I, Chapter 6 for details on color manipulation in
IrfanView and Book VIII, Chapter 4 for how to change colors in GIMP.)

 ✦ Set the foreground to a color that contrasts with the background. If
you have a very light version of the background image, you can use dark
text on it. A dark background requires light text. Adjust the text color
with your CSS code.

 ✦ Set a background color. Make the background color representative of
the image. Background images can take some time to appear, but the

Manipulating Background Images218

background color appears immediately because it is defined in CSS. This
is especially important for light text because white text on the default
white background is invisible. After the background image appears, it
overrides the background color. Be sure the text color contrasts with
the background, whether that background is an image or a solid color.

 ✦ Use this trick for large text. Headlines are usually larger than body text,
and they can be easier to read, even if they have a background behind
them. Try to avoid putting background images behind smaller body text.
This can make the text much harder to read.

Manipulating Background Images
After you place your background image, you might not be completely
pleased with the way it appears. Don’t worry. You still have some control.
You can specify how the image repeats and how it’s positioned.

Turning off the repeat
Background images repeat both horizontally and vertically by default. You
may not want a background image to repeat, though. Figure 4-16 is a page
with the ropes image set to not repeat at all.

Figure 4-16:
The
background
doesn’t
repeat at all.

The code uses the background-repeat attribute to turn off the automatic
repetition.

<!DOCTYPE html>
<html lang = "en-US">

 <head>

Book II
Chapter 4

Styling w
ith CSS

Manipulating Background Images 219

 <meta charset = "UTF-8">
 <title>noRepeat.html</title>
 <style type = "text/css">
 body {
 background-image: url("ropeBG.jpg");
 background-repeat: no-repeat;
 }
 h1 {
 background-color: white;
 }
 </style>
 </head>
 <body>
 <h1>Background with no-repeat</h1>
 </body>
</html>

The background-repeat attribute can be set to one of four values:

 ✦ repeat: The default value; the image is repeated indefinitely in both
x- and y-axes.

 ✦ no-repeat: Displays the image one time; no repeat in x- or y-axis.

 ✦ repeat-x: Repeats the image horizontally but not vertically.

 ✦ repeat-y: Repeats the image vertically but not horizontally.

Using CSS3 Gradients
A gradient (which is a blend between two or more colors) can be a nice
background. Previously, developers would create a gradient by building a
thin gradient strip in an image editor, and then using the repeat-x or repeat-y
rules to make that smaller image replicate across the page. This was a nice
technique, but it was not terribly flexible because the image size was still
fixed, and only relatively simple linear gradients were possible.

CSS3 has added a remarkable gradient rule that makes gradients natively
through CSS. When this technique is fully adopted, it makes gradients much
easier to work with.

Figure 4-17 demonstrates a number of examples of CSS3 gradients in action:

CSS3 supports two major types of gradients: linear and radial. A linear gradi-
ent changes colors along a straight line, and a radial gradient radiates out-
ward from a center point.

The gradient mechanism has been one of the slower parts of CSS to be stan-
dardized and adopted, so it’s still changing, but it looks like the browsers are
finally setting on a standard. Unfortunately, the vendor-specific prefixes are
necessary for the time being, making this technique a bit tedious.

 Up until very recently, the gradient syntax was even more messy than it is
now, with WebKit (Chrome and Safari) using an entirely different gradient
syntax than Mozilla, and Microsoft refusing to add any implementation at all.

Manipulating Background Images220

Now it looks like everybody’s settling on the Mozilla-style implementation,
which is pretty easy to use and the one demonstrated here. If you search
on the web, you will see some other syntaxes, especially for WebKit-based
browsers, but the mechanism described here looks to be the standard.

Building a simple gradient
The simplest gradient is demonstrated in box 1 of Figure 4-17. It varies from
left to right, starting at red and ending with white. (of course, you’ll need to
see this in color to fully appreciate it). Check gradient.html on the book’s
companion site to see this example in its multicolor glory.

 #box1 {
 background-image: linear-gradient(left, red, white);
 background-image: -moz-linear-gradient(left, red, white);
 background-image: -webkit-linear-gradient(left, red, white);
 }

Here’s how you build a simple linear gradient:

 1. Define the selector.

 A gradient is defined in CSS, and you’ll need to use any of your standard
CSS selectors to determine which element you’ll be adding the gradient
to. See Chapter 3 of this mini-book if you need more details on CSS selec-
tors.

 2. Use the background-image rule.

 A gradient is a special form of image. You can use the background-image
rule to apply a gradient to the background of any element, including the
entire body of the page.

Figure 4-17:
CSS3 allows
a number of
interesting
gradient
types.

Book II
Chapter 4

Styling w
ith CSS

Manipulating Background Images 221

 3. Invoke the linear-gradient function.

 A few CSS elements such as url() and rgba() require parentheses
because technically they are functions. The distinction doesn’t matter
right now, but you need to incorporate the parentheses when you use
this type of value. The linear-gradient technique is a function.
(You’ll write your own functions in JavaScript in Book IV and in PHP in
Book V.)

 4. Determine the direction the gradient will flow.

 You can make a gradient flow in any direction you want inside the ele-
ment. Indicating left causes the element to flow from left to right. You
can use top to flow from top to bottom, or top left to go from top
left to bottom right. Use any combination of top, left, bottom, and
right. You can also specify an angle in degrees, as demonstrated in the
next example.

 5. Indicate a starting color.

 Use any of the standard color tools (color names, hex colors, rgb()/
rgba(), or hsl()) to determine the beginning color.

 6. Indicate an ending color.

 The last color indicated will be the ending color of the gradient. The gra-
dient flows from the beginning to ending color evenly.

 7. Repeat with browser extensions.

 By the time you read this, it’s possible that the browsers will all use the
standard linear-gradient mechanism, and browser-specific rules
will no longer be necessary. For the moment, though, you’ll need to add
variants for the specific browsers. You’ll need to make a new version of
the background-image rule for each major vendor.

Making a more interesting gradient
As you look at box 2 of Figure 4-17, you’ll see a more complex gradient show-
ing multiple colors and an interesting angle.

 #box2 {
 background-image:
 linear-gradient(75deg, red, white 33%, white 66%, blue);
 background-image:
 -moz-linear-gradient(75deg, red, white 33%, white 66%, blue);
 background-image:
 -webkit-linear-gradient(75deg, red, white 33%, white 66%, blue);
 }

Here’s how you add more pizazz to your gradients.

Manipulating Background Images222

 1. Use an angle for direction.

 Rather than specifying your gradient direction with the standard top/
left keywords, you can specify a starting angle. Angles are measured
mathematically in degrees, with 0 coming from the right and 90 coming
from top-down. You must specify the degree measurement with deg, so
75 degrees is written as 75deg.

 2. Add as many colors as you wish.

 A gradient can have any number of colors in it. Each change in colors is
called a color stop. My example shows three different colors.

 3. Determine where the color stops happen.

 By default, the colors are evenly distributed along the gradient. If you
want, you can move any color to appear anywhere on the gradient you
wish. The color stop locations are indicated by percentages. It is not
necessary to add a location for the first and last color stop, as they are
presumed to be 0% and 100%.

 4. Create a band of color by providing two stops of the same color.

 Box 2 features a band of white. To get this effect, I produced two color
stops with white, one appearing at 33%, and the other at 66%. This
breaks my gradient roughly into thirds.

 5. Put two colors at the same location for an abrupt color change.

 If you want an abrupt color change, simply put two different colors at
the same percentage.

 6. Repeat for all browsers.

 Again, you’ll need to consider the various browsers until this technique
becomes more standardized.

Building a radial gradient
CSS3 supports a second gradient type called the radial gradient. The basic
idea is the same, except rather than following a straight line like a linear
gradient, a radial gradient appears to flow from a central spot in the element
and radiate outwards.

The basic radial gradient shown in box 3 is created with this CSS code:

 #box3 {
 background-image: radial-gradient(white, blue);
 background-image: -moz-radial-gradient(white, blue);
 background-image: -webkit-radial-gradient(white, blue);
 }

As you can see, the basic radial gradient is created much like a linear gradi-
ent, except it uses the radial-gradient function instead of the linear-
gradient function.

Book II
Chapter 4

Styling w
ith CSS

Using Images in Lists 223

Radial gradients have many options, which makes them quite promising, but
the browser support for these various standards is quite spotty. Box 4 has a
radial gradient with three colors:

#box4 {
 background-image:
 radial-gradient(red, white, blue);
 background-image:
 -moz-radial-gradient(red, white, blue);
 background-image:
 -webkit-radial-gradient(red, white, blue);
 }

It’s also possible to change the shape of the gradient from circle to ellipse, to
change the center of the gradient to a different point inside the element, and
to specify color stops. You’ll need to check the current specifications to see
how these things are done, as they are still quite experimental.

Using Images in Lists
It’s not quite a background, but you can also use images for list items.
Sometimes, you might want some type of special bullet for your lists, as
shown in Figure 4-18.

Figure 4-18:
I can’t get
enough
of those
Arrivivi
Gusanos.

On this page, I’ve listed some of my (many) favorite varieties of peppers. For
this kind of list, a custom pepper bullet is just the thing. Of course, CSS is the
answer:

Using Images in Lists224

<!DOCTYPE html>

<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>listImages.html</title>
 <style type = "text/css">
 li {
 list-style-image: url("pepper.gif");
 }
 </style>
 </head>
 <body>
 <h1>My Favorite Peppers</h1>

 Green
 Habenero
 Arrivivi Gusano

 </body>
</html>

The list-style-image attribute allows you to attach an image to a list
item. To create custom bullets:

 1. Begin with a custom image.

 Bullet images should be small, so you may have to make something
little. I took a little pepper image and resized it to 25×25 pixels. The
image will be trimmed to an appropriate width, but it will have all the
height of the original image, so make it small.

 2. Specify the list-style-image with a url attribute.

 You can set the image as the list-style-image, and all the bullets
will be replaced with that image.

 3. Test the list in your browser.

 Be sure everything is working correctly. Check to see that the browser
can find the image, that the size is right, and that everything looks like
you expect.

 If you don’t want to use an image, CSS has a number of other styles you can
apply to your list items. Use the list-style-type rule to set your list to
one of many styles. Look at official CSS documentation for a complete list,
but the most commonly used style types are disc, circle, square, deci-
mal, upper-roman, lower-roman, upper-latin, and lower-latin. Note
that you can apply a numeric styling to a list item in an ordered or unor-
dered list, so the distinction between these list types is less important than
it used to be.

Chapter 5: Levels of CSS

In This Chapter
✓ Building element-level styles

✓ Creating external style sheets

✓ Creating a multipage style

✓ Managing cascading styles

✓ Working with a CSS reset style

✓ Using conditional comments

C
SS is a great tool for setting up the visual display of your pages. When
you first write CSS code, you’re encouraged to place all your CSS rules

in a style element at the top of the page. CSS also allows you to define
style rules inside the body of the HTML and in a separate document. In this
chapter, you read about these alternative methods of applying style rules,
when to use them, and how various style rules interact with each other.

Managing Levels of Style
Styles can be applied to your pages at three levels:

 ✦ Local styles: Defined by specifying a style within an HTML element’s
attributes.

 ✦ Page-level styles: Defined in the page’s header area. This is the type of
style used in Chapters 1 through 4 of this minibook.

 ✦ External styles: Defined on a separate document and linked to the page.

Using local styles
A style can be defined directly in the HTML body. Figure 5-1 is an example
of this type of code. A local style is also sometimes called an element-level
style because it modifies a particular instance of an element on the page.

You can’t see the difference from Figure 5-1, but if you look over the code,
you’ll see it’s not like the style code you see in the other chapters in this
minibook:

Managing Levels of Style226

Figure 5-1:
This page
has styles,
but they’re
defined in a
new way.

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>localStyles.html</title>
 </head>
 <body>
 <h1>Local Styles</h1>
 <p style = "border: 2em #FF00FF groove">
 This paragraph has a locally-defined border
 </p>
 <p style = "font-family: sans-serif;
 font-size: 1.2em;
 font-style: italic">
 This paragraph has a series of font and text rules applied.
 </p>
 </body>
 </html>

As you look over this code, a couple things should become evident:

 ✦ No <style> element is in the header. Normally, you use a <style>
section in the page header to define all your styles. This page doesn’t
have such a segment.

 ✦ Paragraphs have their own style attributes. I added a style attribute
to each paragraph in the HTML body. All HTML elements support the
style attribute.

 ✦ The entire style code goes in a single pair of quotes. For each styled
element, the entire style goes into a pair of quotes because it’s one
HTML attribute. You can use indentation and white space (as I did) to
make things easier to understand.

Book II
Chapter 5

Levels of CSS

Managing Levels of Style 227

When to use local styles
Local styles should not be your first choice, but they can be useful in some
circumstances.

If you’re writing a program to translate from a word processor or other tool,
local styles are often the easiest way to make the translation work. If you use
a word processor to create a page and you tell it to save the page as HTML, it
will often use local styles because word processors often use this technique
in their own proprietary format. Usually when you see an HTML page with a
lot of local styles, it’s because an automatic translation tool made the page.

Sometimes, you see local styles used in code examples. For example, the
following code could be used to demonstrate different border styles:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>localBorders.html</title>
 </head>
 <body>
 <h1>Inline Borders</h1>
 <p style = "border: 5px solid black">
 This paragraph has a solid black border
 </p>
 <p style = "border: 5px double black">
 This paragraph has a double black border
 </p>
 </body>
</html>

For example purposes, it’s helpful to see the style right next to the element.
This code would be fine for demonstration or testing purposes (if you just
want to get a quick look at some border styles), but it wouldn’t be a good
idea for production code.

Local styles have very high priority, so anything you apply in a local style
overrides the other style rules. This can be a useful workaround if things
aren’t working like you expect, but it’s better to get your styles working
correctly than to rely on a workaround.

The drawbacks of local styles
It’s pretty easy to apply a local style, but for the most part, the technique
isn’t usually recommended because it has some problems, such as

 ✦ Inefficiency: If you define styles at the element level with the style
attribute, you’re defining only the particular instance. If you want to set
paragraph colors for your whole page this way, you’ll end up writing a
lot of style rules.

Managing Levels of Style228

 ✦ Readability: If style information is interspersed throughout the
page, it’s much more difficult to find and modify than if it’s centrally
located in the header (or in an external document, as you’ll see
shortly).

 ✦ Lack of separation: Placing the styles at the element level defeats the
goal of separating content from style. It becomes much more difficult
to make changes, and the mixing of style and content makes your code
harder to read and modify.

 ✦ Awkwardness: An entire batch of CSS rules has to be stuffed into a
single HTML attribute with a pair of quotes. This can be tricky to read
because you have CSS integrated directly into the flow of HTML.

 ✦ Quote problems: The HTML attribute requires quotes, and some CSS
elements also require quotes (font families with spaces in them, for
example). Having multiple levels of quotes in a single element is a recipe
for trouble.

Using an external style sheet
CSS supports another way to use styles, called external style sheets. This
technique allows you to define a style sheet as a separate document and
import it into your web pages. To see why this might be attractive, take a
look at the following figure.

Figure 5-2 shows a page with a distinctive style.

Figure 5-2:
This page
has styles
for the body,
h1, and
paragraph
tags.

Book II
Chapter 5

Levels of CSS

Managing Levels of Style 229

When you look at the code for externalStyle.html, you might be
surprised to see no obvious style information at all!

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>externalStyle.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "myStyle.css" />
 </head>
 <body>
 <h1>External Style</h1>
 <p>
 This page has styles set for paragraphs, body, and header 1.
 </p>
 <p>
 The styles are defined in an external style sheet.
 </p>
 </body>
</html>

Where you normally see style tags (in the header), there is no style. Instead,
you see a <link> tag. This special tag is used to connect the current docu-
ment with another document.

Defining the external style
When you use an external style, the style elements aren’t embedded in the
page header but in an entirely separate document.

In this case, the page is connected to a special file called myStyle.css. This
file contains all the CSS rules:

/* myStyle.css */

body {
 background-color: #333300;
 color: #FFFFFF;
}

h1 {
 color: #FFFF33;
 text-align: center;
 font: italic 200% fantasy;
}

p {
 background-color: #FFFF33;
 color: #333300;
 text-align: right;
 border: 3px groove #FFFF33;
}

Managing Levels of Style230

The style sheet looks just like a page-level style, except for a few key
differences:

 ✦ The style sheet rules are contained in a separate file. The style is no
longer part of the HTML page but is an entirely separate file stored on
the server. CSS files usually end with the .css extension.

 ✦ There are no <style></style> tags. These aren’t needed because the
style is no longer embedded in HTML.

 ✦ The code begins with a comment. The /* */ pair indicates a com-
ment in CSS. Truthfully, you can put comments in CSS in the page level
just like I did in this external file. External CSS files frequently have
comments in them.

 ✦ The style document has no HTML. CSS documents contain nothing
but CSS. This comes closer to the goal of separating style (in the CSS
document) and content (in the HTML document).

 ✦ The document isn’t tied to any particular page. The great advantage
of external CSS is reuse. The CSS document isn’t part of any particular
page, but any page can use it.

Reusing an external CSS style
External style sheets are really fun when you have more than one page that
needs the same style. Most websites today use multiple pages, and they
should share a common style sheet to keep consistency. Figure 5-3 shows a
second page using the same myStyle.css style sheet.

Figure 5-3:
Another
page using
exactly the
same style.

Book II
Chapter 5

Levels of CSS

Managing Levels of Style 231

The code shows how easily this is done:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>SecondPage.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "myStyle.css" />
 </head>
 <body>
 <h1>Second Page</h1>
 <p>
 This page uses the same style as
 externalStyle.html.
 </p>
 </body>
</html>

External style sheets have some tremendous advantages:

 ✦ One style sheet can control many pages: Generally, you have a large
number of different pages in a website that all share the same general
style. You can define the style sheet in one document and have all the
HTML files refer to the CSS file.

 ✦ Global changes are easier: Say you have a site with a dozen pages, and
you decide you want some kind of chartreuse background (I don’t know
why — go with me here). If each page has its own page-level style defi-
nition, you have to make the change 12 times. If you’re using external
styles, you make the change in one place and it’s automatically propa-
gated to all the pages in the system.

 ✦ Separation of content and design: With external CSS, all the design is
housed in the CSS, and the data is in HTML.

 ✦ Easy upgrades: Because the design parameters of the entire site are
defined in one file, you can easily change the site without having to mess
around with individual HTML files.

Understanding the link tag
The <link> tag is the key to adding a CSS reference to an HTML document.
The <link> tag has the following characteristics:

 ✦ The <link> tag is part of the HTML page. Use a <link> tag in your HTML
document to specify which CSS document will be used by the HTML page.

 ✦ The <link> tag only occurs in the header. Unlike the <a> tag, the
<link> tag can occur only in the header.

Managing Levels of Style232

 ✦ The tag has no visual presence. The user can’t see the <link> tag, only
its effects.

 ✦ The <link> tag is used to relate the document with another docu-
ment. You use the <link> tag to describe the relationship between
documents.

 ✦ The <link> tag has a rel attribute,which defines the type of relation-
ship. For now, the only relationship you’ll use is the stylesheet attri-
bute.

 ✦ The <link> tag also has an href attribute, which describes the loca-
tion of the other document.

 Link tags are often used to connect a page to an externally defined style doc-
ument (more on them in the next section).

 Most people refer to the hyperlinks created by the anchor (<a>) tag as hyper-
links or links. This can lead to some confusion because, in this sense, the link
tag doesn’t create that type of link. If it were up to me, the <a> tag would have
been called the <link> tag, and the tag now called link would have been
called import or something. Maybe Tim Berners-Lee meant to call me the day
he named these elements, and he just forgot. That’s what I’m thinking.

Specifying an external link
To use the <link> tag to specify an external style sheet, follow these steps:

 1. Define the style sheet.

 External style sheets are very similar to the ones you already know. Just
put all the styles in a separate text document without the <style> and
</style> tags. In my example, I created a new text file called myStyle.
css.

 2. Create a link element in the HTML page’s head area to define the
link between the HTML and CSS pages.

 My link element looks like this:
 <link rel = "stylesheet"
 type = "text/css"
 href = "myStyle.css" />

 3. Set the link ’s relationship by setting the rel = " stylesheet "
attribute.

 Honestly, stylesheet is almost the only relationship you’ll ever use, so
this should become automatic.

 4. Specify the type of style by setting type = " text/css " (just like you
do with page-level styles).

 5. Determine the location of the style sheet with the href attribute.

Book II
Chapter 5

Levels of CSS

Understanding the Cascading Part of Cascading Style Sheets 233

Understanding the Cascading Part of
Cascading Style Sheets

The C in CSS stands for cascading, which is an elegant term for an equally
elegant and important idea. Styles cascade or flow among levels. An ele-
ment’s visual display may be affected by rules in another element or even
another document.

Inheriting styles
When you apply a style to an element, you change the appearance of that
element. If the element contains other elements, the style is often passed on
to those containers. Take a look at Figure 5-4 for an illustration.

Figure 5-4 shows several paragraphs, all with different font styles. Each para-
graph is white with a black background. All the paragraphs use a fantasy
font. Two of the paragraphs are italicized, and one is also bold. Look at the
code to see how the CSS is defined.

Figure 5-4:
The last
paragraph
inherits
several style
rules.

<!DOCTYPE html>
<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>CascadingStyles</title>
 <style type = "text/css">
 body {
 color: white;
 background-color: black;
 }

Understanding the Cascading Part of Cascading Style Sheets 234

 p {
 font-family: comic sans ms, fantasy;
 }
 .italicized {
 font-style: italic;
 }
 #bold {
 font-weight: bold;
 }
 </style>
 </head>
 <body>
 <h1>Cascading Styles</h1>
 <p>This is an ordinary paragraph</p>
 <p class = "italicized">
 This paragraph is part of a special class
 </p>
 <p class = "italicized"
 id = "bold">
 This paragraph has a class and an ID
 </p>
 </body>
</html>

Take a look at the page, and you’ll notice some interesting things:

 ✦ Everything is white on a black background. These styles were defined
in the body. Paragraphs without specific colors will inherit the colors of
the parent element (in this case, the body). There’s no need to specify
the paragraph colors because the body takes care of them.

 ✦ Paragraphs all use the fantasy font. I set the paragraph’s font-family
attribute to fantasy. All paragraphs without an explicit font-family
attribute will use this rule.

 ✦ A class is used to define italics. The second paragraph is a member of
the italicized class, which gives it italics. Because it’s also a para-
graph, it gets the paragraph font, and it inherits the color rules from the
body.

 ✦ The bold ID only identifies font weight. The third paragraph has all
kinds of styles associated with it. This paragraph displays all the styles
of the second, plus the added attributes of its own ID.

In the cascadingStyles.html example, the final paragraph inherits the font from
the generic p definition, italics from its class, and boldfacing from its ID. Any
element can attain style characteristics from any of these definitions.

Hierarchy of styles
An element will display any style rules you define for it, but certain rules are
also passed on from other places. Generally, this is how style rules cascade
through the page:

 ✦ The body defines overall styles for the page. Any style rules that you
want the entire page to share should be defined in the body. Any

Book II
Chapter 5

Levels of CSS

Understanding the Cascading Part of Cascading Style Sheets 235

element in the body begins with the style of the page. This makes it easy
to define an overall page style.

 ✦ A block-level element passes its style to its children. If you define a div
with a particular style, any elements inside that div will inherit the div ’s
style attributes. Likewise, defining a list will also define the list items.

 ✦ You can always override inherited styles. Of course, if you don’t want
paragraphs to have a particular style inherited from the body, you can
just change them.

 Not all style rules are passed on to child elements. The text formatting
and color styles are inherited, but border and positioning rules are not.
This actually makes sense. Just because you define a border around a div
doesn’t mean you want the same border around the paragraphs inside
that div.

Overriding styles
The other side of inherited style is the ability to override an inherited style
rule. For example, take a look at this code:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>overRide.html</title>
 <style type = "text/css">
 body { color: red; }
 p {color: green; }
 .myClass { color: blue; }
 #whatColor { color: purple; }
 </style>
 </head>
 <body>
 <div>
 This div has only the style from the body.
 </div>
 <p>
 This is a regular paragraph with paragraph styling
 </p>
 <p class = "myClass">
 This paragraph is a member of a class
 </p>
 <p class = "myClass" id = "whatColor">
 This paragraph is a member of a class and has an ID,
 both with style rules.
 </p>
 </body>
</html>

 The code listing has a different indentation scheme than I’ve used in the rest
of the chapter. Because all the styles had one rule, I chose not to indent to
save space.

Understanding the Cascading Part of Cascading Style Sheets 236

The question is this: What color will the whatColor element display? It’s a
member of the body, so it should be red. It’s also a paragraph, and paragraphs
are green. It’s also a member of the myClass class, so it should be blue. Finally,
it’s named whatColor, and elements with this ID should be purple.

Four seemingly conflicting color rules are all dropped on this poor element.
What color will it be?

CSS has a clear ranking system for handling this type of situation. In general,
more specific rules trump more general rules. Here’s the precedence (from
highest to lowest precedence):

 1. User preference: The user always has the final choice about what styles
are used. Users aren’t required to use any styles at all and can always
change the style sheet for their own local copy of the page. If a user
needs to apply a special style (for example, high contrast for people
with visual disabilities), he should always have that option.

 2. Local style: A local style (defined with the style attribute in the HTML)
has the highest precedence of developer-defined styles. It overrules any
other styles.

 3. id : A style attached to an element id has a great deal of weight
because it overrides any other styles defined in the style sheet.

 4. Class: Styles attached to a class override the style of the object’s ele-
ment. So, if you have a paragraph with a color green that belongs to a
class colored blue, the element will be blue because class styles outrank
element styles.

 5. Element: The element style takes precedence over any of its containers.
For example, if a paragraph is inside a div, the paragraph style has the
potential to override both the div and the body.

 6. Container element: divs, tables, lists, and other elements used as con-
tainers pass their styles on. If an element is inside one or more of these
containers, it can inherit style attributes from them.

 7. Body: Anything defined in the body style is an overall page default, but
it will be overridden by any other styles.

In the overRide.html example, the id rule takes precedence, so the para-
graph displays in purple.

If you want to see a more complete example, look at cascadingStyles.html on
the companion website. It extends the whatColor example with other para-
graphs that demonstrate the various levels of the hierarchy.

Precedence of style definitions
When you have styles defined in various places (locally, page level, or
externally), the placement of the style rule also has a ranking. Generally, an

Book II
Chapter 5

Levels of CSS

Managing Browser Incompatibility 237

external style has the weakest rank. You can write a page-level style rule to
override an external style.

You might do this if you decide all your paragraphs will be blue, but you
have one page where you want the paragraphs green. Define paragraphs as
green in the page-level style sheet, and your page will have the green para-
graphs without interfering with the other pages’ styles.

Page-level styles (defined in the header) have medium weight. They can
override external styles but are overridden by local styles.

Locally defined styles (using the HTML style attribute) have the highest pre-
cedence, but they should be avoided as much as possible. Use classes or IDs
if you need to override the page-level default styles.

In general, a style defined later in the page takes precedence over one
defined earlier.

Managing Browser Incompatibility
While we’re messing around with style sheets, there’s one more thing you
should know. Although all the modern browsers manage CSS pretty well
these days, Internet Explorer (especially the earlier versions) is well known
for doing things in non-standard ways.

Most of what you know works equally well in any browser. I’ve focused
on the established standards, which work very well on most browsers.
Unfortunately, Internet Explorer (especially before version 7) is notorious for
not following the standards exactly. Internet Explorer (IE) doesn’t do every-
thing exactly right. When IE had unquestioned dominance, everybody just
made things work for IE. Now you have a bigger problem. You need to make
your code work for standards-compliant browsers, and sometimes you need
to make a few changes to make sure that IE displays things correctly.

Coping with incompatibility
This has been a problem since the beginning of web development, and a
number of solutions have been proposed over the years, such as

 ✦ “Best viewed with” disclaimers: One common technique is to code for
one browser or another and then ask users to agree with your choice by
putting up this disclaimer. This isn’t a good technique because the user
shouldn’t have to adapt to you. Besides, sometimes the choice is out of
the user’s hands. More and more custom devices (such as gaming con-
soles, tablets and cellphones) have browsers built in, which are difficult
to change. IE isn’t available on Linux machines, and not everyone can
install a new browser.

Managing Browser Incompatibility238

 ✦ Parallel pages: You might be tempted to create two versions of your page,
one for IE and one for the standards-compliant browsers (Firefox, Netscape
Navigator, Opera, Safari, and so on). This is also a bad solution because it’s
twice (or more) as much work. You’ll have a lot of trouble keeping track of
changes in two different pages. They’ll inevitably fall out of synch.

 ✦ JavaScript-based browser detection: In Book IV, you see that JavaScript
has features for checking on the browser. This is good, but it still doesn’t
quite handle the differences in style sheet implementation between the
browsers.

 ✦ CSS hacks: The CSS community has frequently relied on a series of
hacks (unofficial workarounds) to handle CSS compatibility problems.
This approach works by exploiting certain flaws in IE to overcome
others. The biggest problem with this is that when Microsoft fixes some
flaws (as they’ve done with IE 10), many of the flaws you relied on to fix
a problem may be gone, but the original problem is still there.

 ✦ Conditional comments: Although IE has bugs, it also has some innovative
features. One of these features, conditional comments, lets you write code
that displays only in IE. Because the other browsers don’t support this fea-
ture, the IE-specific code is ignored in any browser not based on IE. This is
the technique currently preferred by coders who adhere to web standards.

Making Internet Explorer–specific code
It’s a little easier for you to see how conditional comments work if I show
you a simple example and then show you how to use the conditional com-
ment trick to fix CSS incompatibility problems.

Figure 5-5 shows a simple page with Firefox. Figure 5-6 shows the exact same
page displayed in IE 7.

Figure 5-5:
This isn’t IE.

Book II
Chapter 5

Levels of CSS

Managing Browser Incompatibility 239

Figure 5-6:
And this
is IE.
Somehow
the code
knows the
difference.

Take a look at the code for IEorNot.html and see how it works.

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>IEorNot.html</title>
 </head>
 <body>
 <p>
 I will now use a conditional comment to determine your
 browser. I'll let you know if you're using IE.
 </p>
 <[!--if IE]
 <h1>You're using IE</h1>
 <![endif]-->
 </body>
</html>

The only part that’s new is the strange comments:

 <!--[if IE]>
 <h1>You're using IE</h1>
 <![endif]-->

Conditional comments are a special feature available only in Internet
Explorer. They allow you to apply a test to your browser. You can place any
HTML code you wish between <!-- [if IE]> and <![endif]--> , but that
code is rendered only by versions of Internet Explorer. Any other browser
reads the entire block as a comment and ignores it completely.

So, when you look at IEorNot.html in IE, it sees the conditional comment, says
to itself, “Why yes, I’m Internet Explorer,” and displays the “Using IE” headline.
If you look at the same page with Firefox, the browser doesn’t understand the

Managing Browser Incompatibility240

conditional comment but sees an HTML comment (which begins with <!-- and
ends with -->). HTML comments are ignored, so the browser does nothing.

Using a conditional comment with CSS
Conditional comments on their own aren’t that interesting, but they can be
a very useful tool for creating compatible CSS. You can use conditional com-
ments to create two different style sheets, one that works for IE and one that
works with everything else. Figures 5-7 and 5-8 illustrate a simple example of
this technique:

Figure 5-7:
This page
has a yellow
background
in most
browsers.

Most browsers will read a standard style sheet that creates a yellow
background.

Figure 5-8:
The same
page uses
a different
style sheet
in IE.

Book II
Chapter 5

Levels of CSS

Managing Browser Incompatibility 241

If the page is rendered in IE, it uses a second style sheet.

Look at the code, and you’ll see it’s very similar to the IEorNot.html page.

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>WhatBrowser.html</title>
 <!-- default style -->
 <style type = "text/css">
 body {
 background-color: yellow;
 color: blue;
 }
 </style>
 <!-- IE only style overrides default -->
 <!--[if IE]>
 <style type = "text/css">
 body {
 background-color: red;
 color: yellow;
 }
 </style>
 <![endif]-->
 </head>
 <body>
 <p>
 This page has a red background in IE, and a yellow
 background in other browsers.
 </p>
 </body>
</html>

If you want a page to use different styles in IE and other browsers, do the fol-
lowing:

 1. Define the default style first.

 Begin by creating the style that will work in most browsers. Most of the
time, this style will also work in IE. You can create the style at the page
level (with the <style></style> pair) or externally (with the <link>
tag).

 2. Create a conditional comment in the header.

 Create a conditional comment after the primary style, as shown in this
code snippet.

 <!-- default style -->
 <style type = "text/css">
 body {
 background-color: yellow;
 color: blue;
 }
 </style>

 <!-- IE only style overrides default -->

Managing Browser Incompatibility242

 <!--[if IE]>

 <![endif]-->

 3. Build a new IE-specific style inside the comment.

 The style inside the comment will be applied only to IE browsers, such
as in the following lines:

 <!--[if IE]>
 <style type = "text/css">
 body {
 background-color: red;
 color: yellow;
 }
 </style>
 <![endif]-->

 4. The commented style can be page level or external.

 Like the default style, you can use the <style></style> pair to make
a page-level style, or you can use the <link> tag to pull in an externally
defined style sheet.

 5. Only place code that solves IE issues in the conditional style.

 IE will read the code in both styles, so there’s no need to repeat every-
thing. Use the conditional style for only those areas where IE doesn’t do
what you expect.

 6. Don’t forget to end the conditional comment.

 If you leave off the end of your conditional comment (or any comment,
for that matter), most of your page won’t appear. That could be bad.

Checking the Internet Explorer version
So far, you haven’t encountered many situations that require conditional
comments, but they’re handy when you need them. One more trick can be
useful. You can specify which version of IE you’re using. This is important
when you read about positionable CSS in Book III because IE versions 7 and
later work pretty well with standards-compliant code, but the earlier ver-
sions do not. You can use this variation to specify code only for IE 6 and
earlier.

<!--[if lte IE 6]>
...
<[endif]-->

The lte signifies less than or equal to, so code inside this condition will run
only on early versions of IE. If you know the user is using IE version 10 or
later, most of the concepts described in this book will work fine. For earlier
versions of IE, you may have to rely on conditional comments to make every-
thing work.

Book II
Chapter 5

Levels of CSS

Managing Browser Incompatibility 243

Using a CSS reset
Even when browsers agree on which CSS elements to incorporate, they some-
times differ on the actual details. For example, they may choose different
margins and paddings for list elements. Web developers often use a special
CSS style called a css reset. This is simply an external CSS file that explicitly
determines the details of every single element. When you use a CSS reset,
you’re less likely to be surprised by differences between browsers. A number
of great resets are available to use for free from www.cssreset.com. For
HTML5 use, I prefer the HTML5 Doctor CSS reset available from that page.

Although page resets are a godsend for designers, they do slow down the
page load and rendering time a bit (as they reset every single element
whether it is used in the page or not). You should never use a page reset as
the only CSS, but modify it to suit your specific needs. Also, you’ll find that
resets aren’t critical until you’re concerned that things work exactly the
same on every browser (which is not likely to happen anyway).

For these reasons, I do not use CSS resets in this book, but they are fre-
quently used in web frameworks and CMS systems as described in Book VIII.

http://www.cssreset.com

244 Book II: Styling with CSS

Chapter 6: CSS Special Effects

In This Chapter
✓ Adding reflections

✓ Working with opacity

✓ Manipulating text with strokes and shadows

✓ Adding transformations to elements

✓ Animating with transitions

C
SS is great for adding visual interest to websites. Newer implementa-
tions of CSS go even further, adding new capabilities to web pages

that once required hours of work in an image editor or programming
language. In this chapter, you discover what you need to know to make
your page elements pop out, reflect, turn, move, and even respond to
basic input, all with CSS.

Image Effects
CSS allows you to apply some interesting special effects to your pages.
These effects can be applied to any element, but they generally are applied
to images and headlines. Note that these are still considered experimental,
so the browser implementations vary.

Transparency
CSS3 has complete support for adjustable opacity. This is reflected in a
couple of ways. First, any element has an opacity attribute that can be set
from 0 (fully transparent) to 1 (fully opaque).

Figure 6-1 shows a div with partial transparency superimposed on an
image.

Image Effects246

Figure 6-1:
The box
and text
are partially
transparent.

The complete code for this page is easy to follow:

<!DOCTYPE HTML>
<html lang = "en">
 <head>
 <title>opacity.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 body {
 background-image: url("apoyo.jpg");
 background-repeat: no-repeat;
 }
 h1 {
 color: rgba(0, 0, 0, .3);
 }

 #box {
 position: absolute;
 top: 350px;
 left: 100px;
 height: 100px;
 width: 100px;
 border: 1px solid red;
 background-color: white;
 opacity: .3;
 }
 </style>
 </head>
 <body>
 <h1>Opacity Demo</h1>
 <div id = "box"></div>
 </body>
 </html>

Book II
Chapter 6

CSS Special Effects

Image Effects 247

All of the code is common HTML and CSS2 stuff, except the last attribute.
The opacity attribute takes a single floating point value between 0 and 1.
Zero (0) is completely transparent and one (1) is completely opaque.

Note that Figure 6-1 also illustrates the other main form of transparency
supported by CSS — the headline uses the RGBA model to add alpha trans-
parency to a color. Take a look at Chapter 4 of this mini-book for more on
the rgba and hsla color models. In general, use alpha when you want to add
partial transparency to an individual color. Opacity can be used for an entire
element, even something complex like an image or a video.

All of the recent browser versions support opacity without requiring vendor-
specific prefixes. Older browsers simply display the element as fully opaque,
so anything under a partially transparent element may be invisible to older
browsers.

Reflections
Reflection is another one of those visual elements that adds quite a bit to a
page when done well. Although it’s not a formal part of the CSS3 specifica-
tion, it is a promising technology. Currently only the WebKit-based browsers
(that is, Safari, iPhone/iPad, and Chrome) support this capability. However,
it shows such promise that some form of this capability is likely to appear in
the other browsers at some point.

Figure 6-2 shows a reflected headline and image.

Figure 6-2:
Using the
reflection
attribute on
text and an
image.

Image Effects248

Apply the following CSS to make any element with the reflect class have a
nice-looking reflection in the supported browsers:

-webkit-box-reflect: below 2px;

Basic reflections are quite simple:

 1. Apply the -webkit-box-reflect attribute.

 Unfortunately, there is no generic version, nor has the reflect attri-
bute been duplicated by other browsers.

 2. Specify where the reflection is to be placed.

 Normally the reflection goes below the primary element, but it can also
be above, left, or right.

 3. Indicate a gap width.

 The reflection can be placed right next to the original element, but often
it looks better with a small gap. The gap is normally measured in pixels.

This will produce a very nice reflection.

However, reflections aren't usually pixel-perfect duplications. They tend to
fade out over distance. WebKit allows you to add a gradient to a reflection.
In this case, the gradient goes from completely opaque (white) to completely
transparent (transparent).

.reflect {
 -webkit-box-reflect: below 2px
 -webkit-linear-gradient(bottom, white, transparent 40%, transparent); }

The standard part of the reflection is just like the previous example, but it
includes a gradient that fades the reflection to transparency.

 1. Build a linear gradient.

 The gradient for a reflection is nearly linear. Note that the gradient is NOT
a new CSS rule, but simply a parameter in the existing reflection rule.

 2. Make the gradient move from bottom to top.

 Use top to indicate the gradient starts at the top, and bottom to indi-
cate the gradient starts at the bottom. These values represent the
top and bottom of the original image, not the reflection (which will, of
course, be reversed). Normally, your gradient starts at the bottom of the
original image (which is at the top of the reflected image).

 3. Begin with complete opacity.

 The bottom of the original image is the top of the reflected image, and
the top of the reflected image should be completely opaque. This gradi-
ent isn’t really about color, but about which parts of the reflection are
visible. Setting the initial color to white makes the top of the reflection

Book II
Chapter 6

CSS Special Effects

Text Effects 249

completely opaque. (Of course, you can use rgba() to set any other
transparency value you want, but only the alpha part is important in this
context.)

 4. Finish at complete opacity.

 The top of the original image (the bottom of the reflection) should be com-
pletely transparent, so end the gradient with the special color keyword
transparent (which is equivalent to rgba(255, 255, 255, 0)).

 5. Add a color-stop to adjust the fade.

 Add a color stop to indicate where in the reflection you want the image
to begin fading. I want the picture to begin fading around 40%, so I added
an internal transparent color stop at 40%.

If you need a refresher on how gradients work, please check Chapter 4 of
this mini-book.

Note that the reflected image is not calculated as a separate element for
page layout purposes, so text and other content will flow right on top of
your reflection.

Reflections are commonly applied to images, but they can be applied to any
element, even video!

 It’s possible to get a reflection effect in other browsers with clever use of the
transformation and gradient attributes. For now, though, it’s probably safest
to reserve this effect for situations where you know the user will be using a
supported browser or when the reflected effect is not absolutely necessary.

Text Effects
The most significant improvement to text in CSS is the @font mechanism
described in Chapter 2 of this minibook. This technique allows you to define
your own fonts and package them with your website. CSS3 has other text-
formatting tricks available, too. The text-stroke and text-shadow rules
allow you to make interesting transformations on text in your pages.

Both of these rules are used to decorate text, but they can impact readabil-
ity, so you should use them carefully. They’re more appropriate for larger
text (like headlines) than the main content of your site.

Text stroke
With CSS3, you can specify a stroke color for your text. This defines an
outline around the letter. You can specify the stroke color (using any of the
standard CSS color values) as well as a stroke width (using the normal size
attributes).

Text Effects250

Figure 6-3 shows a page with stroked text.

Figure 6-3:
You can add
an outline
to text for
interesting
effects.

The text-stroke rule applies this effect. You can see it used in the code:

<!DOCTYPE HTML>
<html lang = "en">
 <head>
 <title>textStroke.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 h2 {
 color: yellow;
 -webkit-text-stroke: 2px red;
 font-size: 300%;
 }
 </style>

 </head>

 <body>
 <h1>Text Stroke Demo</h1>

 <h2>This text has a stroke</h2>
 </body>
</html>

Currently no browsers support the text-stroke attribute directly, but WebKit-
based browsers (Chrome and Safari) support the vendor-specific -webkit-
version. A browser that does not support the rule will simply ignore it, so this
should not be a significant part of your design until support is more complete.

Book II
Chapter 6

CSS Special Effects

Text Effects 251

Text-shadow
Shadows are another common feature of modern web designs. Shadows add
an element of depth to a page, but they can also enhance readability (if used
properly) to lift a headline from the page. The text-shadow attribute was
technically part of CSS2, but it has only recently been supported by major
browsers. Figure 6-4 illustrates text-shadow in action:

<!DOCTYPE HTML>
<html lang = "en">
 <head>
 <title>textShadow.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 h2 {
 font-size: 300%;
 text-shadow: 5px 5px 2px #cccccc;
 }
 </style>
 </head>

 <body>
 <h1>Text Shadow Demo</h1>

 <h2>This text has a shadow</h2>

 </body>
</html>

Figure 6-4:
This text has
a shadow.

Transformations and Transitions252

The text-shadow attribute has four parameters:

 ✦ offset-x: Determines how far in the x (left-right) axis the shadow will be
from the original text. A positive value moves the shadow to the right,
and a negative value moves to the left.

 ✦ offset-y: Determines how far in the y (up-down) axis the shadow will be
from the original text. A positive value moves the shadow down, and a
negative value moves the shadow up.

 ✦ blur: Specifies the blur radius of the shadow. If the value is 0px, there is no
blur, and the shadow looks just like the original text. Generally, you’ll want
the blur value to be near the longest of your offsets. This allows the shadow
to be recognizable as a shadow of the text without becoming a distraction.

 ✦ color: Defines the shadow color. Generally a dark gray is preferred, but
you can also try other colors for special effects. Note that blurring tends
to lighten the shadow color. If there is a great deal of blur applied, the
shadow color can be the same color as the text. If the shadow will not be
blurred much, you may need to lighten the shadow color for readability.

The size of the shadow is determined indirectly with a combination of offsets
and blurs. You may have to experiment to get the shadow you’re looking for.
Shadow effects are best when they are subtle because they can affect readabil-
ity. For Figure 6-4, I made the shadow darker than I would in a normal web page
to ensure that the shadow is visible in the screen shot. Normally, I’d make the
shadow even lighter to give an almost subconscious indication of depth.

A special case of text shadowing can be used to help text stand out against
a background image. Apply a small shadow of a contrasting color. This
technique is frequently used when you need to have text on a background
because each letter produces its own high-contrast background. Again, be
sure not to sacrifice readability for sake of design ethic.

All latest-model browsers support the text-shadow feature. No special pre-
fixes are necessary.

Transformations and Transitions
One of the most consistent criticisms of early HTML was the limitations on
how elements are displayed on the screen. An entire mini-book (Book III) is
dedicated to screen layout, but CSS3 incorporates a significant new set of
tools for modifying the position, size, and orientation of any element.

The transformation mechanism allows you to apply classic transformations
(rotation, translation, or scale) on any element. The transition mechanism
allows you to perform these changes over time. Together, these two techniques
allow a relatively simple and powerful form of animation that once required
sophisticated programming techniques or an external plug-in like Flash.

Book II
Chapter 6

CSS Special Effects

Transformations and Transitions 253

Transformations
CSS3 includes the ability to apply geometric transformations onto any ele-
ment. This provides a remarkable level of visual control not previously avail-
able to web developers.

The transform attribute allows you to apply a mathematical transforma-
tion to any div. When you apply transform to an element, you need to
apply one or more of the following parameters to describe the type of trans-
formation:

 ✦ translate: Moves the object from its default position. Translation
requires two parameters, an X measurement and a Y measurement. Use
the standard CSS measurement units.

 ✦ rotate: Rotates the image around its center value. Takes one param-
eter, an angle measurement in degrees. (For example, 30 degrees is
30deg.)

 ✦ scale: Changes the size of the object. The standard version changes
both the horizontal and vertical size uniformly. The scalex and scaley
attributes can be used to adjust the scale along an individual axis. Scale
is measured in the standard CSS measurement units. If scale is larger
than 1, the object is larger than the original. A scale between zero and
one makes the item smaller than it was. Zero or negative scale values are
not defined.

 ✦ skew: This allows you to tilt the element by some angle. The skew
parameter requires an angle measurement in degrees. The skewx and
skewy variations allow for more complete control of the transformation.

You can combine multiple parameters by listing them after the transform
attribute separated by spaces.

To illustrate, imagine the following HTML snippet:

<div id = "box1">box 1</div> <div id = "box2">box 2</div> <div id = "box3">box
3</div> <div id = "box4">box 4</div> <div id = "box5">box 5</div>

The code shows five identical divs. For illustration purposes, all the divs
share the same common CSS:

#box1, #box2, #box3, #box4, #box5{ width: 100px; height: 80px; border: 3px
solid black; background-color: yellow; }

Apply variations of the transform attribute to each element to see how the
transformations work.

#box2 { transform: translate(100px, 0px); } #box3 { transform:
rotate(45deg); } #box4 { transform: scale(2) translate(100px, 0px); }
#box5 { transform: skew(3); }

Transformations and Transitions254

This code is illustrated in Figure 6-5.

Figure 6-5:
Page
elements
can be
transformed.

Note that browser support is changing on this element. Chrome and Safari
still expect the -webkit prefix, but Firefox and Opera support the non-
prefixed version. IE 10 theoretically works with the standard version, but
version 9 requires the -ms- prefix, and earlier versions of IE simply ignore
transformations altogether. If you view the actual source code of the
transform.html site, you’ll see multiple versions of each rule to handle
the various browsers:

 #box2 {
 transform: translate(100px, 0px);
 -webkit-transform: translate(100px, 0px);
 -ms-transform: translate(100px, 0px);
 }

Eventually, common sense will break out and vendor-specific prefixes will
no longer be necessary, but for the time being, it’s safest to put them all in
place. If you want to catch older versions of Firefox and Opera, you can also
include these (-moz- and -o-) prefixes as well.

Three-dimensional transformations
As browsers become more powerful, interesting new capabilities are emerg-
ing. One of the more exciting developments is the formation of 3D transfor-
mations. A 3D transform is similar to the traditional transformations, but it
allows for a virtual third axis.

Book II
Chapter 6

CSS Special Effects

Transformations and Transitions 255

Ordinary, 2D animations utilize the 2D coordinate system, with an X axis going
side-to-side and a Y axis traversing top-to-bottom. Even in 2D transformations,
there is a tacit acknowledgment of a Z axis. The Z axis goes through the center
of the object and points directly to the viewer’s eyes and back into infinity
behind the screen. 2D rotations are around this imaginary Z axis. You can
determine which elements overlap other elements through the CSS z-index
property, so although all screen elements are the same actual distance from the
user, they appear to have some form of depth.

3D transformations have the same general operations as 2D (translate,
rotate, and scale), but you can apply the transformation along one of the
three axes: X, Y, or Z. This might seem confusing, so take a look at Figure 6-6
for some clarification:

In Figure 6-6, you see five boxes with nearly identical styles. Each box has a
different 3D transformation applied:

 ✦ Box 1 has default behavior: Box 1 uses ordinary layout with no 3D
transformation applied at all.

 ✦ Box 2 is rotated 45 degrees around x: Box 2 appears to be truncated,
but it’s actually rotated around the horizontal (X) axis. Note that both
the box itself and the text inside the box are shortened.

 ✦ Box 3 is nearly invisible: Box 3 has also been rotated around the X axis,
but this one is rotated nearly 90 degrees, so it’s almost invisible. (Had
I rotated 90 degrees, it would be invisible because the element has no
depth.)

Figure 6-6:
These
boxes are
transformed
in three
dimensions.

Transformations and Transitions256

 ✦ Box 4 is upside-down: I rotated box 4 180 degrees around the X axis,
flipping it completely. Note that rotating around the Y axis would also
flip the box, but the text would remain at the top, and would be reversed
along the vertical axis.

 ✦ Box 5 is doing all kinds of crazy things: Box 5 has two transforma-
tions applied at the same time. It is rotated 45 degrees around x and -45
degrees along y.

Take a look at the code to see exactly what is happening here.

<!DOCTYPE HTML>
<html lang = "en">
 <head>
 <title>transform3D.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 body {
 perspective: 1000;
 -webkit-perspective: 1000;
 }

 #box1, #box2, #box3, #box4, #box5{
 width: 100px;
 height: 80px;
 border: 3px solid black;
 background-color: yellow;
 }

 #box2 {
 transform: rotateX(45deg);
 -webkit-transform: rotateX(45deg);
 }

 #box3 {
 transform: rotateX(89deg);
 -webkit-transform: rotateX(89deg);
 }

 #box4 {
 transform: rotateX(180deg);
 -webkit-transform: rotateX(180deg);
 }

 #box5 {
 transform: rotate3D(1, 2, 0, 45deg);
 -webkit-transform: rotate3D(1, -1, 0, 45deg);
 }

 </style>
 </head>

<body>
 <h1>3D Transform Demo</h1>

 <div id = "box1">box 1</div>
 <div id = "box1">box 2</div>
 <div id = "box1">box 3</div>

Book II
Chapter 6

CSS Special Effects

Transformations and Transitions 257

 <div id = "box1">box 4</div>
 <div id = "box1">box 5</div>

</body>
</html>

The first new rule is perspective. Change the perspective of the parent
element that will contain your transformed elements. This gives you
the ability to determine how the elements appear to be displayed. The
perspective indicates how close the camera appears to be to the
elements. I applied a perspective of 1,000 to my example, which gives a
decent illusion.

Boxes 2 through 4 all use the same transformation rule: rotateX(). This
mechanism is much like the 2D rotate() function, but it rotates along
the X axis. There are also rotateY() and rotateZ() functions, but
rotateZ() is infrequently used because it’s just like the 2D rotate()
technique.

If you want to apply more than one rotation, you can use the rotate3d()
function. This function takes four parameters. The first three are modifiers
for the three axes, and the fourth is an angle. Looking at box 5, I’ve rotated
45 degrees in the X and Y axes.

CSS3 also supports the translateX, translateY(), and trans-
lateZ() functions. These mechanisms allow you to specify a transla-
tion along a specific axis. (They are not used frequently because the 2D
translate() method encapsulates both translateX and translateY,
and z-index is a well-established way to translate along the z axis.) The
translate3d() function allows you to translate along multiple axes at
the same time.

CSS3 includes scaleX, scaleY, and scaleZ functions, but again these are
not always used because they act similar to the 2D scaling function. There is
also a scale3d() function for use with multiple scales.

Support for the 3D transformations is growing but not complete. At the
moment, the -webkit and no-prefix versions will support most browsers.
The IE family of browsers has limited support for 3D transformations.

Transition animation
It’s already possible to change CSS properties on the fly through pseudo-
classes (like hover) or with JavaScript code. Prior to CSS3, all CSS state
changes happened instantly. With the new transition attribute, you can
cause transitions to happen over time.

Figure 6-7 demonstrates transitions, but as it involves movement, you really
need to see this example in your browser.

Transformations and Transitions258

Figure 6-7:
As you
hover over
elements,
they
change!

Look at a simple h1 heading:

 <h1>Transition Demo</h1>

The CSS code is mainly quite straightforward:

 h1 { color: black font-size: 300%; transition:color 1s ease-in; }

 h1:hover { color: red; }

Begin by ignoring the transition attribute. If you look at the rest of the
code, it’s easy to see what it does. In the normal state, the heading is black.
In the hover state, the color is red. Typically, the heading turns red as soon
as the mouse hovers over it, and will instantly turn black when the mouse
leaves. However, when the transition attribute is added, the color change
is not immediate, but takes a second. The color gradually changes from
black to red and back.

Transitions are even more interesting when you pair them with transforma-
tions. Imagine a very simple div:

 <div id = "box">Box 1</div>

Apply a little CSS3 magic and when the user hovers over the div, it rotates
smoothly until it is upside-down. When the user leaves the div, it smoothly
rotates back to its original position:

Book II
Chapter 6

CSS Special Effects

Transformations and Transitions 259

 #box { transition: all 1s ease-in; height: 100px; width: 100px; border:
1px solid black; }

 #box:hover { transform: rotate(180deg); }

The transform is defined in the: hover pseudo-class. The only new ele-
ment is the transition specified in the class’ standard style.

The transition attribute takes several parameters:

 ✦ animation property: The type of animation defined by this tag.
The default value is all, but other types are expected to work, includ-
ing color, length, width, percentage, opacity, and number. If in
doubt, use the standard all.

 ✦ duration: The length of the animation in seconds. One second is 1s.

 ✦ timing function: If you want the animation to occur at a constant
speed, use linear. If you want a more natural motion that gradually
speeds up and slows down at the ends of the animation, use one of the
following: ease, ease-in, ease-out, ease- in-out.

 ✦ delay: If you include a second time value, this will be considered a
delay. The animation will not begin until after the delay.

If you prefer, you can use individual properties for the various parts of the
animation, but most developer prefer the one-line shortcut (like the one
used for borders).

Not all CSS attributes can be animated, but many can be. It may require
some experimentation to determine which CSS attributes can be animated
with the transition attribute.

Unfortunately, the stock transition attribute is not supported by any major
browsers, but there are vendor-specific versions for Mozilla (-moz-), WebKit
(-webkit-), and Opera (-o-). Your best bet until support is widespread is to
include all vendor-specific versions in addition to the standard version.

Animations
The transform behavior is pretty cool, but CSS3 promises an even more
exciting form of animation called the (wait for it) animation mechanism.

Figure 6-8 illustrates an animation of a box moving around the screen.

Of course, it doesn’t make sense to view an animation in a book. You’ll need
to see this on the website.

Transformations and Transitions260

Figure 6-8:
The box
auto-
matically
moves as
indicated by
the arrows.

Here’s the basic strategy for building a CSS animation:

 1. Generate a set of keyframes.

 Animations are based on the notion of keyframes. Each keyframe speci-
fies the state of an object, and the browser attempts to smoothly transi-
tion between keyframes.

 2. Provide a percentage for each keyframe.

 The keyframe starts with a percentage, indicating where in the animation
the keyframe will happen. The first keyframe should be 0% (the beginning
of the animation) and the last should be 100% (the end of the animation).
You can indicate as many intermediate keyframes as you want.

 3. Add a mini style sheet for each keyframe.

 Place any styles you want modified in a little style sheet. At the indicated
place in the timeline, an element following this animation will display the
given style behavior. You can place any style information you want here.

 4. Apply the animation to your elements.

 The animation rule allows you to apply a keyframe to an element. You
can reuse the same keyframes among many different elements if you
want.

 5. Modify the animation.

 You can apply many of the same characteristics to an animation as you
do a transition. There are a number of parameters, but the most com-
monly used elements are keyframe, time, and repeat.

Book II
Chapter 6

CSS Special Effects

Transformations and Transitions 261

Take a look at the code for animation.html to see it all in action:

<!doctype html>
<html lang="en">
 <head> <meta charset="UTF-8"> <title>animation.html</title>

 <style type = "text/css"> @keyframes anim { 0% {left: 0px; top: 0px;} 25%

{left: 100px; top: 0px;} 50% {left: 100px; top: 100px;} 75% {left: 0px;
top: 100px;} 100% {left: 0px; top: 0px;} } @-webkit-keyframes anim { 0%
{left: 0px; top: 0px;} 25% {left: 100px; top: 0px;} 50% {left: 100px;
top: 100px;} 75% {left: 0px; top: 100px;} 100% {left: 0px; top: 0px;}
} @-moz-keyframes anim { 0% {left: 0px; top: 0px;} 25% {left: 100px;
top: 0px;} 50% {left: 100px; top: 100px;} 75% {left: 0px; top: 100px;}
100% {left: 0px; top: 0px;} } @-o-keyframes anim { 0% {left: 0px; top:
0px;} 25% {left: 100px; top: 0px;} 50% {left: 100px; top: 100px;} 75%
{left: 0px; top: 100px;} 100% {left: 0px; top: 0px;} } #box { position:
absolute; border: 1px solid black; -webkit-animation: anim 5s linear
infinite; -moz-animation: anim 5s linear infinite; -o-animation: anim
5s linear infinite; animation: anim 5s linear infinite; }

 </style>
 </head>
 <body> <div id = "box">Moving box</div>
 </body>
</html>

There are a number of things to note about this example:

 ✦ Create a keyframes set called anim: The @keyframes rule (much like
the @font-family rule described in Chapter 2 of this mini-book) is
used to create a page-level resource that can be used in the rest of the
CSS. In this case, it’s used to generate a keyframe set.

 ✦ Build browser-specific versions: Unfortunately, the animation mecha-
nism still requires browser-specific prefixes. It’s usually easiest to target
one browser (I usually start with WebKit) and then copy for the other
browsers when the basic behavior is working.

 ✦ This example moves an element in a square pattern: For this particular
example, I intend to make a div move in a square motion. As you look at
the keyframes, you’ll see that I simply change the left and top position of
the div throughout time.

 ✦ Make beginning and end the same: Because I plan to run this animation
continuously, I want the beginning and ending places to be the same.

 ✦ Apply the anim keyframe set to the box element: Apply the anim key-
frame set by using the animation rule.

 ✦ Indicate the length of the animation: Animations are about changes
over time, so the animation tag also requires a duration, measured in
seconds (s) or milliseconds (ms).

 ✦ Determine the easing: Easing is how the animation acts at the begin-
ning and end of an animation segment. The linear rule used here keeps

Transformations and Transitions262

the animation at a constant speed. You can also use ease-in-out (the
default behavior) to make the element move at a variable rate.

 ✦ Determine the number of repetitions: You can specify a number of
times to repeat the animation. If you leave this part out, the animation
will happen only once when the page first loads. You can specify infinite
(as I did in the example) to make the animation repeat as long as the
page is in memory.

Note there are many other parameters you can set, such as easing
(described in the “Transition animation” section of this chapter) and delay.
These can be set through the animation rule or with individual rules. For
now, I tend to keep my animations as simple as possible, at least until the
browsers can all manage animations without vendor prefixes.

You learn much more sophisticated animation techniques with JavaScript
programming in Book IV.

 Visit www.dummies.com/extras/html5css3aio for more on resetting and
extending CSS.

Part III
Building Layouts with CSS

http://www.dummies.com/extras/html5css3aio

Contents at a Glance

Contents at a Glance

Chapter 1: Fun with the Fabulous Float .265
Avoiding Old-School Layout Pitfalls ..265
Introducing the Floating Layout Mechanism ...268
Using Float with Block-Level Elements ...271
Using Float to Style Forms ...276

Chapter 2: Building Floating Page Layouts .285
Creating a Basic Two-Column Design ...285
Building a Three-Column Design ...295
Building a Fixed-Width Layout ..302
Building a Centered Fixed-Width Layout ..305

Chapter 3: Styling Lists and Menus . .309
Revisiting List Styles ...309
Creating Dynamic Lists ..314
Building a Basic Menu System ..321

Chapter 4: Using Alternative Positioning . .327
Working with Absolute Positioning ...327
Managing z-index ...331
Building a Page Layout with Absolute Positioning ...332
Creating a More Flexible Layout ..336
Exploring Other Types of Positioning ...340
Flexible Box Layout Model ..344
Determining Your Layout Scheme ..351

Chapter 1: Fun with the Fabulous
Float

In This Chapter
✓ Understanding the pitfalls of traditional layout tools

✓ Using float with images and block-level tags

✓ Setting the width and margins of floated elements

✓ Creating attractive forms with float

✓ Using the clear attribute with float

O
ne of the big criticisms against HTML is that it lacks real layout tools.
You can do a lot with your page, but it’s still basically a list of ele-

ments arranged vertically on the screen. As the web matures and screen
resolutions improve, people want web pages to look more like print matter,
with columns, good-looking forms, and more layout options. CSS provides
several great tools for building nice layouts. After you get used to them, you
can build just about any layout you can imagine. This chapter describes the
amazing float attribute and how it can be used as the foundation of great
page layouts.

Avoiding Old-School Layout Pitfalls
Back in the prehistoric (well, pre-CSS) days, no good option was built into
HTML for creating a layout that worked well. Clever web developers and
designers found some ways to make things work, but these proposed solu-
tions all had problems.

Problems with frames
Frames were a feature of the early versions of HTML. They allowed you to
break a page into several segments. Each segment was filled with a different
page from the server. You could change pages independently of each other,
to make a very flexible system. You could also specify the width and height
of each frame.

At first glance, frames sound like an ideal solution to layout problems. In
practice, they had a lot of disadvantages, such as

Avoiding Old-School Layout Pitfalls266

 ✦ Complexity: If you had a master page with four segments, you had to
keep track of five web pages. A master page kept track of the relative
positions of each section, but had no content of its own. Each of the
other pages had content but no built-in awareness of the other pages.

 ✦ Linking issues: The default link action caused content to pop up in the
same frame as the original link, which isn’t usually what you want. Often,
you’d put a menu in one frame and have the results of that menu pop up
in another frame. This meant most anchors had to be modified to make
them act properly.

 ✦ Backup nightmares: If the user navigated to a page with frames and then
caused one of the frames to change, what should the backup button
do? Should it return to the previous state (with only the one segment
returned to its previous state) or was the user’s intent to move entirely
off the master page to what came before? There are good arguments for
either and no good way to determine the user’s intention. Nobody ever
came up with a reasonable compromise for this problem.

 ✦ Ugliness: Although it’s possible to make frames harder to see, they did
become obvious when the user changed the screen size and scroll bars
would automatically pop up.

 ✦ Search engine problems: Search engines had a lot of problems with
frame-based pages. The search engine might only index part of a frame-
based site, and the visitor might get incomplete websites missing
navigation or sidebars.

For all these reasons, frames are no longer supported in HTML5. The layout
techniques you read about in this chapter more than compensate for the
loss of frames as layout tools.

 HTML5 does allow one limited type of frame called the iFrame, but even it is
not necessary. Read how to integrate content from other pages on the server
with AJAX in Book VII, Chapter 6.

Problems with tables
When it became clear that frames weren’t the answer, web designers
turned to tables. HTML has a flexible and powerful table tool, and it’s pos-
sible to do all kinds of creative things with that tool to create layouts. A
few web developers still do this, but you’ll see that flow-based layout is
cleaner and easier. Tables are meant for tabular data, not as a layout tool.
When you use tables to set up the visual layout of your site, you’ll encoun-
ter these problems:

 ✦ Complexity: Although table syntax isn’t that difficult, a lot of nested
tags are in a typical table definition. To get exactly the look you want,

Book III
Chapter 1

Fun w
ith the

Fabulous Float
Avoiding Old-School Layout Pitfalls 267

you probably won’t use an ordinary table but tricks, like rowspan and
colspan, special spacer images, and tables inside tables. It doesn’t take
long for the code to become bulky and confusing.

 ✦ Content and display merging: Using a table for layout violates the prin-
ciple of separating content from display. If your content is buried inside
a complicated mess of table tags, it’ll be difficult to move and update.

 ✦ Inflexibility: If you create a table-based layout and then decide you
don’t like it, you basically have to redesign the entire page from scratch.
It’s no simple matter to move a menu from the left to the top in a table-
based design, for example.

Tables are great for displaying tabular data. Avoid using them for layout
because you have better tools available.

Problems with huge images
Some designers skip HTML altogether and create web pages as huge images.
Tools, like Photoshop, include features for creating links in a large image. Again,
this seems ideal because a skilled artist can have control over exactly what is
displayed. Like the other techniques, this has some major drawbacks, such as

 ✦ Size and shape limitations: When your page is based on a large image,
you’re committed to the size and shape of that image for your page. If a
person wants to view your page on a cellphone or PDA, it’s unlikely to
work well, if at all.

 ✦ Content issues: If you create all the text in your graphic editor, it isn’t
really stored to the web page as text. In fact, the web page will have no
text at all. This means that search engines can’t index your page, and
screen-readers for people with disabilities won’t work.

 ✦ Difficult updating: If you find an error on your page, you have to modify
the image, not just a piece of text. This makes updating your page more
challenging than it would be with a plain HTML document.

 ✦ File size issues: An image large enough to fill a modern browser window
will be extremely large and slow to download. Using this technique will
all but eliminate users with slower access from using your site.

Problems with Flash
Another tool that’s gained great popularity is the Flash animation tool from
Adobe. This tool allows great flexibility in how you position things on a page
and supports techniques that were once difficult or impossible in ordinary
HTML, such as sound and video integration, automatic motion tweening,
and path-based animation. Flash certainly had an important place in web

Introducing the Floating Layout Mechanism268

development (especially for embedded games — check out my earlier book,
Beginning Flash Game Programming For Dummies, published by John Wiley &
Sons). Even though Flash has historic significance, you should avoid using it
for ordinary web development for the following reasons:

 ✦ Cost: The Flash editor isn’t cheap, and it doesn’t look like it’ll get
cheaper. The tool is great, but if free or low-cost alternatives work just
as well, it’s hard to justify the cost.

 ✦ Binary encoding: All text in a Flash web page is stored in the Flash
file itself. It’s not visible to the browser. Flash pages (like image-based
pages) don’t work in web searches and aren’t useful for people with
screen-readers.

 ✦ Updating issues: If you need to change your Flash-based page, you need
the Flash editor installed. This can make it more difficult to keep your
page up-to-date.

 ✦ No separation of content: As far as the browser is concerned, there’s
no content but the Flash element, so there’s absolutely no separation of
content and layout. If you want to make a change, you have to change
the Flash application.

 ✦ Search engine problems: Code written in Flash can’t always be read by
search engines (though Google is working on the problem).

 ✦ Technical issues: Flash is not integrated directly into the browser, which
leads to a number of small complications. The Forward and Back but-
tons don’t work as expected, printing can be problematic, and support
is not universal.

 ✦ Limited mobile access: Flash is not supported on iPhones and iPads,
and support is limited on other mobile platforms. As the mobile plat-
form becomes more and more important, it’s hard to justify working
with a system that is not supported on these platforms.

 ✦ It’s no longer necessary: HTML5, CSS3, and JavaScript have now
addressed many of the shortcomings that once made Flash such a com-
pelling alternative. You no longer need a plug-in to play audio and video,
or to program games. (In fact, I now do all my web-based game program-
ming in HTML5 — see another of my books, HTML5 Game Programming
For Dummies, published by John Wiley & Sons).

Introducing the Floating Layout Mechanism
CSS supplies a couple techniques for layout. The preferred technique for
most applications is a floating layout. The basic idea of this technique is to
leave the HTML layout as simple as possible, but to provide style hints that
tell the various elements how to interact with each other on the screen.

Book III
Chapter 1

Fun w
ith the

Fabulous Float
Introducing the Floating Layout Mechanism 269

In a floating layout, you don’t legislate exactly where everything will go.
Instead, you provide hints and let the browser manage things for you. This
ensures flexibility because the browser will try to follow your intentions,
no matter what size or shape the browser window becomes. If the user
resizes the browser, the page will flex to fit to the new size and shape,
if possible.

Floating layouts typically involve less code than other kinds of layouts
because only a few elements need specialized CSS. In most of the other
layout techniques, you need to provide CSS for every single element to make
things work as you expect.

Using float with images
The most common place to use the float attribute is with images.
Figure 1-1 has a paragraph with an image embedded inside.

Figure 1-1:
The default
image
behavior is
to act like
a single
character.

It’s more likely that you want the image to take up the entire left part of
the paragraph. The text should flow around the paragraph, similar to
Figure 1-2.

When you add a float:left attribute to the img element, the image tends
to move to the left, pushing other content to the right. Now, the text flows
around the image. The image is actually removed from the normal flow of the
page layout, so the paragraph takes up all the space. Inside the paragraph,
the text avoids overwriting the image.

Introducing the Floating Layout Mechanism270

Figure 1-2:
Now the
text wraps
around the
image.

Adding the float property
The code for adding the float property is pretty simple:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>imgFloatLeft.html</title>
 <style type = "text/css">
 img {
 float: left;
 }
 </style>
 </head>
 <body>
 <p>
 <img src = "ball.gif"
 alt = "ball" />
 The image now has its float attribute set to left. That means
 that the text will flow around the image as it normally does
 in a magazine.
 The image now has its float attribute set to left. That means
 that the text will flow around the image as it normally does
 in a magazine.
 The image now has its float attribute set to left. That means
 that the text will flow around the image as it normally does
 in a magazine.
 The image now has its float attribute set to left. That means
 that the text will flow around the image as it normally does
 in a magazine.
 The image now has its float attribute set to left. That means
 that the text will flow around the image as it normally does
 in a magazine.
 </p>
 </body>
</html>

Book III
Chapter 1

Fun w
ith the

Fabulous Float
Using Float with Block-Level Elements 271

Figure 1-3:
Now the
image is
floated to
the right.

The only new element in the code is the CSS float attribute. The img object
has a float:left attribute. It isn’t necessary to change any other attri-
butes of the paragraph because the paragraph text knows to float around
the image.

Of course, you don’t have to simply float to the left. Figure 1-3 shows the
same page with the image’s float attribute set to the right.

Using Float with Block-Level Elements
The float attribute isn’t only for images. You can also use it with any ele-
ment (typically p or div) to create new layouts. Using the float attribute to
set the page layout is easy after you understand how things really work.

Floating a paragraph
Paragraphs and other block-level elements have a well-defined default
behavior. They take the entire width of the page, and the next element
appears below. When you apply the float element to a paragraph, the
behavior of that paragraph doesn’t change much, but the behavior of suc-
ceeding paragraphs is altered.

To illustrate, I take you all the way through the process of building two side-
by-side paragraphs.

Begin by looking at a page with three paragraphs. Paragraph 2 has its float
property set to left. Figure 1-4 illustrates such a page.

Using Float with Block-Level Elements272

Figure 1-4:
Paragraphs
2 and 3
are acting
strangely.

As you can see, some strange formatting is going on here. I improve on
things later to make the beginnings of a two-column layout, but for now, just
take a look at what’s going on:

 ✦ I’ve added borders to the paragraphs. As you’ll see, the width of an ele-
ment isn’t always obvious by looking at its contents. When I’m messing
around with float, I often put temporary borders on key elements so I
can see what’s going on. You can always remove the borders when you
have it working right.

 ✦ The first paragraph acts normally. The first paragraph has the same
behavior you see in all block-style elements. It takes the entire width of
the page, and the next element will be placed below it.

 ✦ The second paragraph is pretty normal. The second paragraph has
its float attribute set to left. This means that the paragraph will be
placed in its normal position, but that other text will be placed to the
right of this element.

 ✦ The third paragraph seems skinny. The third paragraph seems
to surround the second, but the text is pushed to the right. The
float parameter in the previous paragraph causes this one to be
placed in any remaining space (which currently isn’t much). The
remaining space is on the right and eventually underneath the second
paragraph.

Book III
Chapter 1

Fun w
ith the

Fabulous Float
Using Float with Block-Level Elements 273

The code to produce this is simple HTML with equally simple CSS markup:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>floatDemo</title>
 <style type = "text/css">
 p {
 border: 2px black solid;
 }
 .floated {
 float: left;
 }
 </style>
 </head>
 <body>
 <h1>Float Demo</h1>
 <p>
 Paragraph 1.
 This paragraph has the normal behavior of a block-level element.
 It takes up the entire width of the page, and the next element
 is placed underneath.
 </p>
 <p class = "floated">
 Paragraph 2.
 This paragraph is floated left. It is placed to the left, and the
 next element will be placed to the right of it.
 </p>
 <p>
 Paragraph 3.
 This paragraph has no floating, width or margin. It takes whatever
 space it can to the right of the floated element, and then flows
 to the next line.
 </p>
 </body>
</html>

As you can see from the code, I have a simple class called floated with the
float property set to left. The paragraphs are defined in the ordinary
way. Even though paragraph 2 seems to be embedded inside paragraph 3
in the screen shot, the code clearly shows that this isn’t the case. The two
paragraphs are completely separate.

I added a black border to each paragraph so you can see that the size of the
element isn’t always what you’d expect.

Adjusting the width
When you float an element, the behavior of succeeding elements is highly
dependent on the width of the first element. This leads to a primary prin-
ciple of float-based layout:

If you float an element, you must also define its width.

Using Float with Block-Level Elements274

 The exception to this rule is elements with a predefined width, such as
images and many form elements. These elements already have an
implicit width, so you don’t need to define width in the CSS. If in doubt,
try setting the width at various values until you get the layout you’re
looking for.

Figure 1-5 shows the page after I adjusted the width of the floated paragraph
to 50 percent of the page width.

Figure 1-5:
The floated
paragraph
has a
width of 50
percent of
the page.

Things look better in Figure 1-5, but paragraph 2 still seems to be embedded
inside paragraph 3. The only significant change is in the CSS style:

 <style type = "text/css">
 p {
 border: 2px black solid;
 }
 .floated {
 float: left;
 width: 50%;
 }
 </style>

I’ve added a width property to the floated element.

Elements that have the float attribute enabled generally also have a
width defined, except for images or other elements with an inherent
width.

Book III
Chapter 1

Fun w
ith the

Fabulous Float
Using Float with Block-Level Elements 275

 When you use a percentage value in the context of width, you’re expressing
a percentage of the parent element (in this case, the body because the para-
graph is embedded in the document body). Setting the width to 50% means
I want this paragraph to span half the width of the document body.

Setting the next margin
Things still don’t look quite right. I added the borders around each para-
graph so you can see an important characteristic of floating elements. Even
though the text of paragraph 3 wraps to the right of paragraph 2, the actual
paragraph element still extends all the way to the left side of the page. The
element doesn’t necessarily flow around the floated element, but its contents
do. The background color and border of paragraph 3 still take as much
space as they normally would if paragraph 2 didn’t exist.

This is because a floated element is removed from the normal flow of the
page. Paragraph 3 has access to the space once occupied by paragraph 2,
but the text in paragraph 3 will try to find its own space without stepping on
text from paragraph 2.

Somehow, you need to tell paragraph 3 to move away from the
paragraph 2 space. This isn’t a difficult problem to solve after you
recognize it. Figure 1-6 shows a solution.

Figure 1-6:
The left
margin of
paragraph
3 is set
to give a
two-column
effect.

The margin-left property of paragraph 3 is set to 52 percent. Because the
width of paragraph 2 is 50 percent, this provides a little gap between the
columns. Take a look at the code to see what’s going on here:

Using Float to Style Forms276

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>floatWidthMargin.html</title>
 <style type = "text/css">
 p {
 border: 2px black solid;
 }
 .floated {
 float: left;
 width: 50%;
 }
 .right {
 margin-left: 52%;
 }
 </style>
 </head>
 <body>
 <h1>Specifying the width</h1>
 <p>
 Paragraph 1.
 This paragraph has the normal behavior of a block-level element.
 It takes up the entire width of the page, and the next element
 is placed underneath.
 </p>
 <p class = "floated">
 Paragraph 2.
 This paragraph is floated left. The
 next element will be placed to the right of it. Now this has a width
 of 50%.
 </p>
 <p class = "right">
 Paragraph 3.
 This paragraph now has a margin-left so it is separated from the
 previous paragraph. Its width is still automatically
 determined.
 </p>
 </body>
</html>

Using Float to Style Forms
Many page layout problems appear to require tables. Some clever use of the CSS
float can help elements with multiple columns without the overhead of tables.

Forms cause a particular headache because a form often involves labels in a
left column followed by input elements in the right column. You’d probably be
tempted to put such a form in a table. Adding table tags makes the HTML much
more complex and isn’t required. It’s much better to use CSS to manage the layout.

You can float elements to create attractive forms without requiring tables.
Figure 1-7 shows a form with float used to line up the various elements.

As page design gets more involved, it makes more sense to think of the
HTML and the CSS separately. The HTML will give you a sense of the overall

Book III
Chapter 1

Fun w
ith the

Fabulous Float
Using Float to Style Forms 277

intent of the page, and the CSS can be modified separately. Using external
CSS is a natural extension of this philosophy. Begin by looking at floatForm.
html and concentrate on the HTML structure before worrying about style:

Figure 1-7:
This is a
nice-looking
form defined
without a
table.

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>floatForm.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "floatForm.css" />
 </head>
 <body>
 <form action = "">
 <fieldset>
 <label>Name</label>
 <input type = "text"
 id = "txtName" />
 <label>Address</label>
 <input type = "text"
 id = "txtAddress" />
 <label>Phone</label>
 <input type = "text"
 id = "txtPhone" />
 <button type = "button">
 submit request
 </button>
 </fieldset>
 </form>
 </body>
</html>

While you look over this code, note several interesting things about how the
page is designed:

Using Float to Style Forms278

 ✦ The CSS is external. CSS is defined in an external document. This makes
it easy to change the style and helps you to focus on the HTML docu-
ment in isolation.

 ✦ The HTML code is minimal. The code is very clean. It includes a form with a
fieldset. The fieldset contains labels, input elements, and a button.

 ✦ There isn’t a table. There’s no need to add a table as an artificial organi-
zation scheme. A table wouldn’t add to the clarity of the page. The form
elements themselves provide enough structure to allow all the format-
ting you need.

 ✦ Labels are part of the design. I used the label element throughout the
form, giving me an element that can be styled however I wish.

 ✦ Everything is selectable. I’ll want to apply one CSS style to labels, another
to input elements, and a third style to the button. I’ve set up the HTML
so I can use CSS selectors without requiring any id or class attributes.

 ✦ There’s a button. I used a button element instead of <input type =
“button”> on purpose. This way, I can apply one style to all the input
elements and a different style to the button element.

 Designing a page like this one so its internal structure provides all the selec-
tors you need is wonderful. This keeps the page very clean and easy to read.
Still, don’t be afraid to add classes or IDs if you need them.

Figure 1-8 demonstrates how the page looks with no CSS.

It’s often a good idea to look at your page with straight HTML before you
start messing around with CSS.

Figure 1-8:
The plain
HTML is a
start, but
some CSS
would help
a lot.

Book III
Chapter 1

Fun w
ith the

Fabulous Float
Using Float to Style Forms 279

 If you have a page with styles and you want to see how it will look without
the style rules, use Chrome developer tools or Firebug. You can temporarily
disable some or all CSS style rules to see the default content underneath.
This can sometimes be extremely handy.

Using float to beautify the form
It’d be very nice to give the form a tabular feel, with each row containing a
label and its associated input element. My first attempt at a CSS file for this
page looked like this:

/* floatNoClear.css
 CSS file to go with float form
 Demonstrates use of float, width, margin
 Code looks fine but the output is horrible.
*/

fieldset {
 background-color: #AAAAFF;
}
label {
 float: left;
 width: 5em;
 text-align: right;
 margin-right: .5em;
}
input {
 background-color: #CCCCFF;
 float: left;
}
button {
 float: left;
 width: 10em;
 margin-left: 7em;
 margin-top: 1em;
 background-color: #0000CC;
 color: #FFFFFF;
}

This CSS looks reasonable, but you’ll find it doesn’t quite work right. (I show
the problem and how to fix it later in this chapter.) Here are the steps to
build the CSS:

 1. Add colors to each element.

 Colors are a great first step. For one thing, they ensure that your
selectors are working correctly so that everything’s where you think
it is. This color scheme has a nice modern feel to it, with a lot of
blues.

 2. Float the labels to the left.

 Labels are all floated to the left, meaning they should move as far left as
possible, and other things should be placed to the right of them.

Using Float to Style Forms280

 3. Set the label width to 5em.

 This gives you plenty of space for the text the labels will contain.

 4. Set the labels to be right-aligned.

 Right-aligning the labels makes the text snug up to the input elements
but gives them a little margin-right so the text isn’t too close.

 5. Set the input’s float to left.

 This tells each input element to go as far to the left (toward its label)
as it can. The input element goes next to the label if possible and on
the next line, if necessary. Like images, input elements have a default
width, so it isn’t absolutely necessary to define the width in CSS.

 6. Float the button, too, but give the button a little top margin so it has
a respectable space at the top. Set the width to 10em.

This seems to be a pretty good CSS file. It follows all the rules, but if you
apply it to floatNoClear.html, you’ll be surprised by the results shown in
Figure 1-9.

After all that talk about how nice float-based layout is, you’re probably
expecting something a bit neater. If you play around with the page in your
browser, you’ll find that everything works well when the browser is narrow,
but when you expand the width of the browser, it gets ugly. Figure 1-10
shows the form when the page is really skinny.

Figure 1-9:
This form
is … well …
ugly.

Book III
Chapter 1

Fun w
ith the

Fabulous Float
Using Float to Style Forms 281

Figure 1-10:
The form
looks great
when the
page is
skinny.

Things get worse when the page is a little wider, as you can see in
Figure 1-11.

Figure 1-11:
With a
slightly
wider
browser,
things get
strange.

If you make the page as wide as possible, you’ll get a sense of what the
browser was trying to accomplish in Figure 1-12.

Using Float to Style Forms282

Figure 1-12:
The browser
is trying to
put all the
inputs on
the same
line.

When CSS doesn’t do what you want, it’s usually acting on some false
assumptions, which is the case here. Floating left causes an element to go as
far to the left as possible and on the next line, if necessary. However, that’s
not really what you want on this page. The inputs should float next to the
labels, but each label should begin its own line. The labels should float all
the way to the left margin with the inputs floating left next to the labels.

Adjusting the fieldset width
One approach is to consider how well the page behaves when it’s skinny
because the new label and input combination will simply wrap down to the
next line. You can always make a container narrow enough to force the behav-
ior you’re expecting. Because all the field elements are inside the fieldset,
you can simply make it narrower to get a nice layout, as shown in Figure 1-13.

 When you want to test changes in CSS, nothing beats the CSS editor in the
Chrome developer tools. I made Figure 1-13 by editing the CSS on the fly with
this tool.

Setting the width of the fieldset to 15em does the job. Because the widths
of the other elements are already determined, forcing them into a 15em-wide
box makes everything line up nicely with the normal wrapping behavior of
the float attribute. If you don’t want the width change to be so obvious,
you can apply it to the form element, which doesn’t have any visible attri-
butes (unless you add them, such as color or border).

Book III
Chapter 1

Fun w
ith the

Fabulous Float
Using Float to Style Forms 283

Figure 1-13:
With a
narrower
fieldset,
all the
elements
look much
nicer.

Unfortunately, this doesn’t always work because the user may adjust the
font size and mess up all your careful design.

Using the clear attribute to control page layout
Adjusting the width of the container is a suitable solution, but it does feel
like a bit of a hack. There should be some way to make the form work right,
regardless of the container’s width. There is exactly such a mechanism.

The clear attribute is used on elements with a float attribute. The clear
attribute can be set to left, right, or both. Setting the clear attribute to
left means you want nothing to the left of this element. In other words, the ele-
ment should be on the left margin of its container. That’s exactly what you want
here. Each label should begin its own line, so set its clear attribute to left.

To force the button onto its own line, set its clear attribute to both. This
means that the button should have no elements to the left or the right. It
should occupy a line all its own.

 If you want an element to start a new line, set both its float and clear
attributes to left. If you want an element to be on a line alone, set float to
left and clear to both.

Using the clear attribute allows you to have a flexible-width container and
still maintain reasonable control of the form design. Figure 1-14 shows that
the form can be the same width as the page and still work correctly. This
version works, no matter the width of the page.

Using Float to Style Forms284

Figure 1-14:
When you
apply clear
to floating
elements,
you can
control the
layout.

Here’s the final CSS code, including clear attributes in the labels and
button:

/* floatForm.css
 CSS file to go with float form
 Demonstrates use of float, width, margin, and clear
*/

fieldset {
 background-color: #AAAAFF;
}

label {
 clear: left;
 float: left;
 width: 5em;
 text-align: right;
 margin-right: .5em;
}

input {
 float: left;
 background-color: #CCCCFF;
}

button {
 float: left;
 clear: both;
 margin-left: 7em;
 margin-top: 1em;
 background-color: #0000CC;
 color: #FFFFFF;
}

You now have the basic tools in place to use flow layout. Look to Chapter 2
of this minibook to see how these tools are put together to build a complete
page layout.

Chapter 2: Building Floating Page
Layouts

In This Chapter
✓ Creating a classic two-column page

✓ Creating a page-design diagram

✓ Using temporary background colors

✓ Creating fluid layouts and three-column layouts

✓ Working with and centering fixed-width layouts

T
he floating layout technique provides a good alternative to tables,
frames, and other layout tricks formerly used. You can build many ele-

gant multi-column page layouts with ordinary HTML and CSS styles.

Creating a Basic Two-Column Design
Many pages today use a two-column design with a header and footer. Such a
page is quite easy to build with the techniques you read about in this chapter.

Designing the page
It’s best to do your basic design work on paper, not on the computer. Here’s
my original sketch in Figure 2-1.

Draw the sketch first so you have some idea what you’re aiming for. Your
sketch should include the following information:

 ✦ Overall page flow: How many columns do you want? Will it have a
header and footer?

 ✦ Section names: Each section needs an ID, which will be used in both the
HTML and the CSS.

 ✦ Width indicators: How wide will each column be? (Of course, these
widths should add up to 100 percent or less.)

 ✦ Fixed or percentage widths: Are the widths measured in percentages
(of the browser size) or in a fixed measurement (pixels)? This has
important implications. For this example, I’m using a dynamic width
with percentage measurements.

 ✦ Font considerations: Do any of the sections require any specific font
styles, faces, or colors?

Creating a Basic Two-Column Design286

 ✦ Color scheme: What are the main colors of your site? What will be the
color and background color of each section?

This particular sketch (in Figure 2-1) is very simple because the page will
use default colors and fonts. For a more complex job, you need a much more
detailed sketch. The point of the sketch is to separate design decisions from
coding problems. Solve as much of the design stuff as possible first so you
can concentrate on building the design with HTML and CSS.

If you’re really into detail and control, you’ll find
this chapter frustrating. People accustomed to
having complete control of a design (as you
often do in the print world) tend to get really
stressed when they realize how little actual
control they have over the appearance of a
web page.

Really, it’s okay. This is a good thing. When you
design for the web, you give up absolute con-
trol, but you gain unbelievable flexibility. Use
the ideas outlined in this chapter to get your

page looking right on a standards-compliant
browser. Take a deep breath and look at it on
something else (like Internet Explorer 6 if you
want to suffer a heart attack!). Everything you
positioned so carefully is all messed up. Take
another deep breath and use conditional com-
ments to fix the offending code without chang-
ing how it works in those browsers that do
things correctly. It is now becoming reasonable
to expect most users to have a browser that is
at least partially HTML5-compliant.

A note to perfectionists

Figure 2-1:
This is
a very
standard
two-column
style.

Book III
Chapter 2

Building Floating
Page Layouts

Creating a Basic Two-Column Design 287

Building the HTML
After you have a basic design in place, you’re ready to start building the
HTML code that will be the framework. Start with basic CSS, but create a div
for each section that will be in your final work. You can put a placeholder for
the CSS, but don’t add any CSS yet. Here’s my basic code. I removed some of
the redundant text to save space:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>twoColumn.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "twoCol.css" />
 </head>
 <body>
 <div id = "head">
 <h1>Two Columns with Float</h1>
 </div>
 <div id = "left">
 <h2>Left Column</h2>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus dui.
 </p>
 </div>
 <div id = "right">
 <h2>Right Column</h2>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus dui.
 </p>
 </div>
 <div id = "footer">
 <h3>Footer</h3>
 </div>
 </body>
</html>

Nothing at all is remarkable about this HTML code, but it has a few impor-
tant features, such as

 ✦ It’s standards-compliant. It’s good to check and make sure the basic
HTML code is well formed before you do a lot of CSS work with it. Sloppy
HTML can cause you major headaches later.

 ✦ It contains four divs. The parts of the page that will be moved later are
all encased in div elements.

 ✦ Each div has an ID. All the divs have an ID determined from the sketch.

 ✦ No formatting is in the HTML. The HTML code contains no formatting
at all. That’s left to the CSS.

 ✦ It has no style yet. Although a <link> tag is pointing to a style sheet,
the style is currently empty.

Figure 2-2 shows what the page looks like before you add any CSS to it.

Creating a Basic Two-Column Design288

Figure 2-2:
The plain
HTML
is plain
indeed;
some CSS
will come in
handy.

Using temporary background colors
And now for one of my favorite CSS tricks… Before doing anything else,
create a selector for each of the named divs and add a temporary back-
ground color to each div. Make each div a different color. The CSS might look
like this:

#head {
 background-color: lightblue;
}

The flexible layouts built throughout this chap-
ter require some kind of text so the browser
knows how big to make things. The actual text
isn’t important, but something needs to be there.

Typesetters have a long tradition of using
phony Latin phrases as filler text. Traditionally,
this text has begun with the words “Lorem
Ipsum,” so it’s called Lorem Ipsum text.

This particular version is semi-randomly gener-
ated from a database of Latin words.

If you want, you can also use Lorem Ipsum in
your page layout exercises. Conduct a search

for Lorem Ipsum generators on the web to get
as much fake text as you want for your mockup
pages.

Although Lorem Ipsum text is useful in the
screen shots, it adds nothing to the code
listings. Throughout this chapter, I remove
the Lorem Ipsum text from the code list-
ings to save space. See the original files
on the website for the full pages in all
their Caesarean goodness. This book’s
Introduction explains how to access the
companion website.

What’s up with the Latin?

Book III
Chapter 2

Building Floating
Page Layouts

Creating a Basic Two-Column Design 289

#left {
 background-color: yellow;
}

#right {
 background-color: green;
}

#footer {
 background-color: orange;
}

You won’t keep these background colors, but they provide some very useful
cues while you’re working with the layout:

 ✦ Testing the selectors: While you change the background of each selec-
tor, you can see whether you’ve remembered the selector’s name cor-
rectly. It’s amazing how many times I’ve written code that I thought was
broken just because I didn’t write the selector properly.

 ✦ Identifying the divs: If you make each div a different color, it’ll be easier
to see which div is which when they are not acting the way you want.

 ✦ Specifying the size of each div: The text inside a div isn’t always a good
indicator of the actual size. The background color tells you what’s really
going on.

Of course, you won’t leave these colors in place. They’re just helpful tools
for seeing what’s going on during the design process. Look at bg.html and
bg.css on the website to see the full code.

Figure 2-3 displays how the page looks with the background colors turned
on.

Figure 2-3:
Colored
backgrounds
make it easier
to manipulate
the divs.

Creating a Basic Two-Column Design290

 It’s fine that you can’t see the actual colors in the black-and-white image in
Figure 2-3. Just appreciate that when you see the page in its full-color splen-
dor, the various colors will help you see what’s going on.

Setting up the floating columns
This particular layout doesn’t require major transformation. A few CSS rules
will do the trick:

#head {
 border: 3px black solid;
}

#left {
 border: 3px red solid;
 float: left;
 width: 20%;
}

#right {
 border: 3px blue solid;
 float: left;
 width: 75%
}

#footer {
 border: 3px green solid;
 clear: both;
}

I made the following changes to the CSS:

 ✦ Float the #left div. Set the #left div’s float property to left
so other divs (specifically the #right div) are moved to the right
of it.

 ✦ Set the #left width. When you float a div, you must also set its width.
I’ve set the left div width to 20 percent of the page width as a starting
point.

 ✦ Float the #right div, too. The right div can also be floated left, and it’ll
end up snug to the left div. Don’t forget to add a width. I set the width of
#right to 75 percent, leaving another 5 percent available for padding,
margins, and borders.

 ✦ Clear the footer. The footer should take up the entire width of the page,
so set its clear property to both.

Figure 2-4 shows how the page looks with this style sheet in place (see
floated.html and floated.css on the website for complete code).

Book III
Chapter 2

Building Floating
Page Layouts

Creating a Basic Two-Column Design 291

Figure 2-4:
Now, the left
column is
floated.

Tuning up the borders
The colored backgrounds in Figure 2-4 point out some important features of
this layout scheme. For instance, the two columns are not the same height.
This can have important implications.

You can change the borders to make the page look more like a column
layout. I’m going for a newspaper-style look, so I use simple double borders.
I put a black border under the header, a gray border to the left of the right
column, and a gray border on top of the bottom segment. Tweaking the pad-
ding and centering the footer complete the look. Here’s the complete CSS:

#head {
 border-bottom: 3px double black;
}
#left {
 float: left;
 width: 20%;
}
#right {
 float: left;
 width: 75%;
 border-left: 3px double gray;
}
#footer {
 clear: both;
 text-align: center;
 border-top: 3px double gray;
}

Creating a Basic Two-Column Design292

The final effect is shown in Figure 2-5.

Figure 2-5:
This is a
decent
design,
which
adjusts with
the page
width.

Advantages of a fluid layout
This type of layout scheme (with floats and variable widths) is often called a
fluid layout because it has columns but the sizes of the columns are depen-
dent on the browser width. This is an important issue because, unlike layout
in the print world, you really have no idea what size the browser window
that displays your page will be. Even if the user has a widescreen monitor,
the browser may be in a much smaller window. Fluid layouts can adapt to
this situation quite well.

Fluid layouts (and indeed all other float-based layouts) have another great
advantage. If the user turns off CSS or can’t use it, the page still displays.
The elements will simply be printed in order vertically, rather than in the
intended layout. This can be especially handy for screen readers or devices
with exceptionally small screens, like phones.

Using semantic tags
As web developers began using floating layout techniques, they almost
always created divs called nav, header, and footer. The developers of
HTML5 decided to create new elements with these names. Take a look at the
following code to see the semantic tags in action.

<!DOCTYPE HTML>
<html lang="en">
<head>

Book III
Chapter 2

Building Floating
Page Layouts

Creating a Basic Two-Column Design 293

 <title>semantic</title>
 <meta charset="UTF-8">
 <style type = "text/css">
 header {
 border-bottom: 5px double black;
 }

 nav {
 float: left;
 width: 20%;
 clear: left;
 min-height: 400px;
 border-right: 1px solid black;
 }

 section {
 float: left;
 width: 75%;
 padding-left: 1em;
 }

 article {
 float: left;
 width: 75%;
 padding-left: 1em;
 }

 footer {
 clear: both;
 border-top: 5px double black;
 text-align: center;
 }

 </style>
</head>
<body>
 <header>
 <h1>This is my header</h1>
 </header>

 <nav>
 <h2>Navigation</h2>

 link a
 link b
 link c
 link d
 link e

 </nav>

 <section id = "1">
 <h2>Section 1</h2>
 <p>Section body...</p>
 </section>

 <section id = "2">
 <h2>Section 2</h2>
 <p>Section body...</p>
 </section>

Creating a Basic Two-Column Design294

 <article>
 <h2>Article</h2>
 <p>Article body...</p>
 </article>

 <footer>
 <h2>Footer</h2>
 <address>
 Andy Harris

 andy@aharrisbooks.net
 </address>
 </footer>

</body>
</html>

As you can see, there are a number of new semantic markup tags in HTML5:

 ✦ header: This is not the same as the h1-h6 tags. It denotes a chunk of the
page that will contain a header for the page. Often the header will fill up
the page width, and will have some sort of banner image. It frequently
contains h1 content.

 ✦ nav: This tag indicates some kind of navigation section. It has no par-
ticular style of its own, but it is frequently used as either a horizontal or
vertical menu for site navigation.

 ✦ section: A section is used to specify a generic part of the page. You can
have multiple sections on the same page.

 ✦ article: An article is like a section, but it’s intended for use with external
resources. Many pages are built automatically by software, and when
these pages integrate content from other sources, it’s intended to use
the article tag to integrate this content.

 ✦ footer: A footer is intended to display footer contents at the bottom of a
page. Typically a footer covers the bottom of a page, although this is not
the default behavior.

Note that none of these elements have any specific formatting. It’s up to you
to provide formatting through CSS code. Each of the elements can be format-
ted directly as an HTML element (because that’s what it is). All latest-version
browsers support the semantic markup tags, but if you want to support
older browsers (especially IE before version 8), you’ll still need to use divs.

Book III
Chapter 2

Building Floating
Page Layouts

Building a Three-Column Design 295

HTML5 introduced a number of other seman-
tic tags. Most of them have no specific for-
matting. Still, you will run across them, so
here are a few that seem likely to make
the cut:

 ✓ address: Holds contact information.

 ✓ aside: Indicates a page fragment that
is related to but separate from the main
content.

 ✓ menu/command: Eventually, will allow a
pop-up menu or toolbar. to be defined in
the page, and commands will be embed-
ded inside that menu. Not supported yet.

 ✓ figure: Incorporates an image and a
caption.

 ✓ figcaption: Describes an image, nor-
mally enclosed in a figure tag.

 ✓ time: Display dates or times.

 ✓ summary/detail: A summary is visible
at all times, and when it is clicked on, the
detail appears. Not supported yet.

 ✓ svg: Allows you to use the SVG language
to describe a vector image through code.

 ✓ meter: Indicates a numeric value falling
within a specific range.

 ✓ output: Intended for output in interac-
tive applications.

 ✓ progress: Should indicate progress of
a task (but it doesn’t look like a progress
bar yet).

More fun with semantic tags

Building a Three-Column Design
Sometimes, you’ll prefer a three-column design. It’s a simple variation of the
two-column approach. Figure 2-6 shows a simple three-column layout.

Figure 2-6:
This is
a three-
column
floating
layout.

Building a Three-Column Design296

This design uses very basic CSS with five named divs. Here’s the code (with
the dummy paragraph text removed for space):

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>threeColumn.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "threeColumn.css" />
 </head>
 <body>
 <div id = "head">
 <h1>Three-Column Layout</h1>
 </div>
 <div id = "left">
 <h2>Left Column</h2>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus dui.
 </p>
 </div>
 <div id = "center">
 <h2>Center Column</h2>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus dui.
 </p>
 </div>
 <div id = "right">
 <h2>Right Column</h2>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus dui.
 </p>
 </div>
 <div id = "footer">
 <h3>Footer</h3>
 </div>
 </body>
</html>

Styling the three-column page
As you can see from the HTML, there isn’t really much to this page. It has
five named divs, and that’s about it. All the really exciting stuff happens in
the CSS:

#head {
 text-align: center;
}

#left {
 float: left;
 width: 20%;
 padding-left: 1%;
}

#center {
 float: left;

Book III
Chapter 2

Building Floating
Page Layouts

Building a Three-Column Design 297

 width: 60%;
 padding-left: 1%;
}

#right {
 float: left;
 width: 17%;
 padding-left: 1%;
}

#footer {
 border: 1px black solid;
 float: left;
 width: 100%;
 clear: both;
 text-align: center;
}

Each element (except the head) is floated with an appropriate width. The
process for generating this page is similar to the two-column layout:

 1. Diagram the layout.

 Begin with a general sense of how the page will look and the relative
width of the columns. Include the names of all segments in this diagram.

 2. Create the HTML framework.

 Create all the necessary divs, including id attributes. Add representa-
tive text so you can see the overall texture of the page.

 3. Add temporary background colors.

 Add a temporary background color to each element so you can see
what’s going on when you start messing with float attributes. This also
ensures you have all the selectors spelled properly.

 4. Float the leftmost element.

 Add the float attribute to the leftmost column. Don’t forget to specify a
width (in percentage).

 5. Check your work.

 Frequently save your work and view it in a browser. Use the browser’s F5
key for a quick reload after you’ve saved the page.

 6. Float the center element.

 Add float and width attributes to the center element.

 7. Float the right-most element.

 Incorporate float and width in the right element.

 8. Ensure the widths total around 95 percent.

 You want the sum of the widths to be nearly 100 percent but not
quite. Generally, you need a little space for margins and padding. Final

Building a Three-Column Design298

adjustments come later, but you certainly don’t want to take up more
than 100 percent of the available real estate.

 9. Float and clear the footer.

 To get the footer acting right, you need to float it and clear it on both
margins. Set its width to 100 percent, if you want.

 10. Tune up.

 Remove the temporary borders, adjust the margins and padding, and
set alignment as desired. Use percentages for margins and padding, and
then adjust so all percentages equal 100 percent.

 Early versions of Internet Explorer (6 and earlier) have a well-documented
problem with margins and padding. According to the standards, the width of
an element is supposed to be the width of the content, with borders, margins,
and padding outside. A properly behaved browser won’t shrink your content
when you add borders and margins. The early versions of Internet Explorer
(IE) counted the width as including all borders, padding, and margin, effec-
tively shrinking the content when you added these elements. If your page
layout is looking a little off with IE, this may be the problem. Use the condi-
tional comment technique described in Chapter 5 of Book II to make a vari-
ant style for IE if this bothers you.

Problems with the floating layout
The floating layout solution is very elegant, but it does have one drawback.
Figure 2-7 shows the three-column page with the background colors for each
element.

Figure 2-7:
The
columns
aren’t really
columns;
each is a
different
height.

Book III
Chapter 2

Building Floating
Page Layouts

Building a Three-Column Design 299

Figure 2-7 shows an important aspect of this type of layout. The columns are
actually blocks, and each is a different height. Typically, I think of a column
as stretching the entire height of a page, but this isn’t how CSS does it. If you
want to give each column a different background color, for example, you’ll
want each column to be the same height. This can be done with a CSS trick
(at least, for the compliant browsers).

Specifying a min-height
The standards-compliant browsers (all versions of Firefox and Opera, and IE
7+) support a min-height property. This specifies a minimum height for an
element. You can use this property to force all columns to the same height.
Figure 2-8 illustrates this effect.

Figure 2-8:
The min-
height
attribute
forces all
columns to
be the same
height.

The CSS code simply adds the min-height attribute to all the column ele-
ments:

#head {
 text-align: center;
 border-bottom: 3px double gray;
}

#left {
 float: left;
 width: 20%;
 min-height: 30em;
 background-color: #EEEEEE;
}

#center {
 float: left;

Building a Three-Column Design300

 width: 60%;
 padding-left: 1%;
 padding-right: 1%;
 min-height: 30em;
}

#right {
 float: left;
 width: 17%;
 padding-left: 1%;
 min-height: 30em;
 background-color: #EEEEEE;
}

#footer {
 border: 1px black solid;
 float: left;
 width: 100%;
 clear: both;
 text-align: center;
}

 Some guesswork is involved still. You have to experiment a bit to determine
what the min-height should be. If you guess too short, one column will
be longer than the min-height, and the columns won’t appear correctly.
If you guess too tall, you’ll have a lot of empty space at the bottom of the
screen.

All modern browsers support min-height, but a few of the older browsers
may not support this attribute.

Using height and overflow
The min-height trick is ideal if you know the size of your content, but
modern web development is all about multiple screen sizes. It’s hard
to predict how your page will look on a smart phone or other smaller
browser. If you use min-height and the text is too large to fit the screen,
you can use another strategy. You can set the height of each element if
you wish using the height rule. Like all CSS, the height is a suggestion.
The question is what to do when content that fits fine in a large browser
is forced to fit in a smaller space. The answer is a range of techniques
popularly called responsive design. The basic idea of responsive design is
to design a page so it naturally adjusts to a good view regardless of the
device it’s on. One very basic approach to responsive design is to specify
both width and height for a page element, but then allow the browser to
manage overflow conditions. Figure 2-9 illustrates a page that is shrunk
below the minimum size needed to display the text. See Book VII chapter 7
for more information on responsive web design and mobile web
development.

Book III
Chapter 2

Building Floating
Page Layouts

Building a Three-Column Design 301

Figure 2-9:
The page
is too small
to hold the
text. Note
the scroll
bar.

If you set the height and width to a specific percentage of the page width,
there is a danger the text will not fit. You can resolve this by adding an
overflow rule in your CSS.

Take a look at the CSS code used in overflow.html:

#head {
 text-align: center;
 border-bottom: 3px double gray;
}

#left {
 float: left;
 width: 20%;
 height: 30em;
 overflow: auto;
 background-color: #EEEEEE;
}

#center {
 float: left;
 width: 60%;
 padding-left: 1%;
 padding-right: 1%;
 height: 30em;
 overflow: auto;
}

#right {
 float: left;
 width: 17%;
 padding-left: 1%;
 height: 30em;
 overflow: auto;
 background-color: #EEEEEE;
}

Building a Fixed-Width Layout302

#footer {
 border: 1px black solid;
 float: left;
 width: 100%;
 clear: both;
 text-align: center;
}

Setting the overflow property tells the browser what to do if it cannot place
the text in the indicated space. Use overflow: auto to place scrollbars
only when necessary. Other options for the overflow rule are visible
(text flows outside the box — the default value), hidden (overflow is not
shown), and scroll (always place a scrollbar). I prefer auto.

Building a Fixed-Width Layout
Fluid layouts are terrific. They’re very flexible, and they’re not hard to build.
Sometimes, though, it’s nice to use a fixed-width layout, particularly if you
want your layout to conform to a particular background image.

The primary attribute of a fixed-width layout is the use of a fixed measure-
ment (almost always pixels), rather than the percentage measurements used
in a fluid layout.

Figure 2-10 shows a two-column page.

Figure 2-10:
A fixed-
width layout
can work
well but
looks off-
center.

The next examples will look off-center. Follow along to see what’s going on,
and see how to center a floated layout in the “Building a Centered Fixed-
width Layout” section later in this chapter.

Book III
Chapter 2

Building Floating
Page Layouts

Building a Fixed-Width Layout 303

Setting up the HTML
As usual, the HTML code is minimal. It contains a few named divs. (Like
usual, I’ve removed filler text for space reasons.)

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>fixedWidth.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "fixedWidth.css" />
 </head>
 <body>
 <div id = "header">
 <h1>Fixed Width Layout</h1>
 </div>
 <div id = "left">
 <h2>Left Column</h2>
 </div>
 <div id = "right">
 <h2>Right Column</h2>
 </div>
 <div id = "footer">
 <h3>Footer</h3>
 </div>
 </body>
</html>

Fixing the width with CSS
After the HTML is set up, you can use CSS to enforce the two-column
scheme.

Here’s the CSS code:

#header {
 background-color: #e2e393;
 border-bottom: 3px solid black;
 text-align: center;
 width: 800px;
 padding-top: 1em;
}

#left {
 float: left;
 width: 200px;
 clear: left;
 border-right: 1px solid black;
 height: 30em;
 overflow: auto;
 padding-right: .5em;
}

#right {
 float: left;
 width: 570px;

Building a Fixed-Width Layout304

 height: 30em;
 overflow: auto;
 padding-left: .5em;
}

#footer {
 width: 800px;
 text-align: center;
 background-color: #e2e393;
 border-top: 3px double black;
 clear: both;
}

It’s all pretty straightforward:

 1. Color each element to see what’s happening.

 Begin by giving each div a different background color so you can see
what is happening.

 2. Determine the overall width of the layout.

 Pick a target width for the entire layout. I chose 800 pixels because it’s a
reasonably standard width.

 3. Adjust the widths of the page-wide elements.

 It’s often easiest to start with elements like the header and footer that
often take up the entire width of the design.

 4. Float the columns.

 The columns are floated as described throughout this chapter. Float
each column to the left.

 5. Set the column widths.

 Begin by making the column widths add up to the width of the entire
design (in my case, 800 pixels). Later you’ll adjust a bit for margins and
borders.

 6. Clear the left column.

 Ensure the left column has the clear: left rule applied.

 7. Set column heights.

 Give each column the same height. This makes things look right if you
add borders or background colors to the columns.

 8. Adjust borders and padding.

 Use borders, padding, and margin to adjust your page to get the look
you want. In my case, I added a border to the left column to separate the
columns, and I added padding to keep the text from sitting right on the
border.

Book III
Chapter 2

Building Floating
Page Layouts

Building a Centered Fixed-Width Layout 305

 9. Adjust widths again.

 Adding borders, padding, and margin can change the widths of the exist-
ing elements. After you’ve modified these attributes, take a careful look
at your layout to be sure it didn’t get messed up, and modify the various
widths if necessary.

Building a Centered Fixed-Width Layout
Fixed-width layouts are common, but they look a little strange if the
browser isn’t the width specified in the CSS. If the browser is too narrow,
the layout won’t work, and the second column will (usually) drop down to
the next line.

If the browser is too wide, the page appears to be scrunched onto the left
margin with a great deal of white space on the right.

The natural solution is to make a relatively narrow fixed-width design that’s
centered inside the entire page. Figure 2-11 illustrates a page with this
technique.

Figure 2-11:
Now the
fixed-width
layout is
centered in
the browser.

Some have called this type of design (fixed-width floating centered in the
browser) a jello layout because it’s not quite fluid and not quite fixed.

Building a Centered Fixed-Width Layout306

Making a surrogate body with an all div
In any case, the HTML requires only one new element, an all div that
encases everything else inside the body (as usual, I removed the placeholder
text):

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>fixedWidthCentered.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "fixedWidthCentered.css" />
 </head>
 <body>
 <div id = "all">
 <div id = "header">
 <h1>Fixed Width Centered Layout</h1>
 </div>
 <div id = "left">
 <h2>Left Column</h2>
 </div>
 <div id = "right">
 <h2>Right Column</h2>
 </div>
 <div id = "footer">
 <h3>Footer</h3>
 </div>
 </div>
 </body>
</html>

The entire page contents are now encapsulated in a special all div. This
div will be resized to a standard width (typically 640 or 800 pixels). The all
element will be centered in the body, and the other elements will be placed
inside all as if it were the body:

#all {
 width: 800px;
 height: 600px;
 margin-left: auto;
 margin-right: auto;
 border: 1px solid gray;
}

#header {
 background-color: #e2e393;
 border-bottom: 3px solid black;
 text-align: center;
 width: 800px;
 height: 100px;
 padding-top: 1em;
}

Book III
Chapter 2

Building Floating
Page Layouts

Building a Centered Fixed-Width Layout 307

#left {
 float: left;
 width: 200px;
 clear: left;
 border-right: 1px solid black;
 height: 400px;
 padding-right: .5em;
}

#right {
 float: left;
 width: 580px;
 height: 400px;
 padding-left: .5em;
}

#footer {
 width: 800px;
 height: 60px;
 text-align: center;
 background-color: #e2e393;
 border-top: 3px double black;
 padding-bottom: 1em;
 clear: both;
}

How the jello layout works
This code is very similar to the fixedWidth.css style, but it has some
important new features:

 ✦ The all element has a fixed width. This element’s width will determine
the width of the fixed part of the page.

 ✦ all also needs a fixed height. If you don’t specify a height, all will be
0 pixels tall because all the elements inside it are floated.

 ✦ Center all. Remember, to center divs (or any other block-level ele-
ments) you set margin-left and margin-right both to auto.

 ✦ Do not float all. The margin: auto trick doesn’t work on floated ele-
ments. all shouldn’t have a float attribute set.

 ✦ Ensure the interior widths add up to all’s width. If all has a width of
800 pixels, be sure that the widths, borders, and margins of all the ele-
ments inside all add up to exactly 800 pixels. If you go even one pixel
over, something will spill over and mess up the effect. You may have to
fiddle with the widths to make everything work.

 ✦ Adjust the heights: If your design has a fixed height, you’ll also need
to fiddle with the heights to get everything to look exactly right.
Calculations will get you close, but you’ll usually need to spend some
quality time fiddling with exact measurements to get everything just
right.

Building a Centered Fixed-Width Layout308

Limitations of the jello layout
Jello layouts represent a compromise between fixed and fluid layouts, but
they aren’t perfect:

 ✦ Implicit minimum width: Very narrow browsers (like cellphones) can’t
render the layout the way you want. Fortunately, the content will still be
visible, but not in exactly the format you wanted.

 ✦ Wasted screen space: If you make the rendered part of the page narrow,
a lot of space isn’t being used in higher-resolution browsers. This can be
frustrating.

 ✦ Complexity: Although this layout technique is far simpler than table-
based layouts, it’s still a bit involved. You do have to plan your divs to
make this type of layout work.

You can investigate a number of other layout techniques in Chapter 4 of this
mini-book.

If you’ve been looking through the CSS3
specifications (and what better bedtime
reading is there?), you may have discovered
the new column rule. I was pretty excited
when I found support for columns because
it seemed like the answer to the complexities
of floating layouts. Unfortunately, the column
mechanism isn’t really useful for page layout.
The columns are all exactly the same width,
and there’s no way to determine exactly

which content is displayed in which column.
It’s useful if you want to have a magazine-
style layout with text that flows in columns,
but for page layout, CSS3 has a better new
tool, the flexible box layout model (described
in Chapter 4 of this mini-book). If you want to
experiment with columns, take a look at this
example from one of my other books: www.
aharrisbooks.net/h5qr/part6/
columns.html.

Doesn’t CSS3 support columns?

http://www.aharrisbooks.net/h5qr/part6/columns.html
http://www.aharrisbooks.net/h5qr/part6/columns.html
http://www.aharrisbooks.net/h5qr/part6/columns.html

Chapter 3: Styling Lists and
Menus

In This Chapter
✓ Using CSS styles with lists

✓ Building buttons from lists of links

✓ Dynamically displaying sublists

✓ Managing vertical and horizontal lists

✓ Building CSS-based menus

M
ost pages consist of content and navigation tools. Almost all pages
have a list of links somewhere on the page. Navigation menus are

lists of links, but lists of links in plain HTML are ugly. There has to be a way
to make ’em prettier.

It’s remarkably easy to build solid navigation tools with CSS alone (at
least, in the modern browsers that support CSS properly). In this chapter,
you rescue your lists from the boring 1990s sensibility, turning them into
dynamic buttons, horizontal lists, and even dynamically cascading menus.

Revisiting List Styles
HTML does provide some default list styling, but it’s pretty dull. You often
want to improve the appearance of a list of data. Most site navigation is
essentially a list of links. One easy trick is to make your links appear as a set
of buttons, as shown in Figure 3-1.

The buttons in Figure 3-1 are pretty nice. They have a 3D effect with shad-
ows. They also act like buttons, with each button depressing when the
mouse hovers over it. When you click one of these buttons, it acts like a link,
taking you to another page, but they aren’t really buttons at all, but a list,
cleverly disguised to look and act like buttons.

Revisiting List Styles310

Defining navigation as a list of links
If you look at the HTML, you’ll be astonished at its simplicity:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>buttonList.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "buttonList.css" />
 </head>
 <body>
 <h1>Button Lists</h1>
 <div id = "menu">

 Google
 Wiley
 Wikipedia
 Reddit

 </div>
 </body>
</html>

Turning links into buttons
As far as the HTML code is concerned, it’s simply a list of links. There’s noth-
ing special here that makes this act like a group of buttons, except the cre-
ation of a div called menu. All the real work is done in CSS:

#menu li {
 list-style-type: none;
 width: 7em;

Figure 3-1:
These
buttons are
actually a
list. Note
that one
button is
depressed.

Revisiting List Styles 311

Book III
Chapter 3

Styling Lists
and M

enus

 text-align: center;
 margin-left: -2.5em;
}

#menu a {
 text-decoration: none;
 color: black;
 display: block;
 background-color: #EEEEFF;
 box-shadow: 5px 5px 5px gray;
 margin-bottom: 2px;
}

#menu a:hover {
 background-color: #DDDDEE;
 box-shadow: 3px 3px 3px gray;
 border: none;
}

The process for turning an ordinary list of links into a button group like this
is simply an application of CSS tricks:

 1. Begin with an ordinary list that will validate properly.

 It doesn’t matter if you use an unordered or ordered list. Typically, the
list will contain anchors to other pages. In this example, I’m using this
list of links to some popular websites:

 <div id = "menu">

 Google
 Wiley
 Wikipedia
 Reddit

 </div>

 2. Enclose the list in a named div.

 Typically, you still have ordinary links on a page. To indicate that these
menu links should be handled differently, put them in a div named menu.
All the CSS-style tricks described here refer to lists and anchors only
when they’re inside a menu div.

 3. Remove the bullets by setting the list-style-type to none.

 This removes the bullets or numbers that usually appear in a list
because these features distract from the effect you’re aiming for (a
group of buttons). Use CSS to specify how list items should be formatted
when they appear in the context of the menu ID:

#menu li {
 list-style-type: none;
 width: 5em;
 text-align: center;
 margin-left: -2.5em;
}

Revisiting List Styles312

 4. Specify the width of each button:
 width: 5em;

 A group of buttons looks best if they’re all the same size. Use the CSS
width attribute to set each li to 5em.

 5. Remove the margin by using a negative margin-left value, as shown
here:

 margin-left: -2.5em;

 Lists have a default indentation of about 2.5em to make room for the
bullets or numbers. Because this list won’t have bullets, it doesn’t need
the indentations. Overwrite the default indenting behavior by setting
margin-left to a negative value.

 6. Clean up the anchor by setting text-decoration to none and setting
the anchor’s color to something static, such as black text on light blue
in this example:

#menu a {
 text-decoration: none;
 color: black;
 display: block;
 background-color: #EEEEFF;
 box-shadow: 5px 5px 5px gray;
 margin-bottom: 2px;
}

 The button’s appearance will make it clear that users can click it, so this is
one place you can remove the underlining that normally goes with links.

 7. Give each button a box shadow, as shown in the following:
 box-shadow: 5px 5px 5px gray;

 The shadow makes it look like a 3D button sticking out from the page.
This is best attached to the anchor, so you can swap the border when
the mouse is hovering over the button.

 8. Set the anchor’s display to block.

 This is a sneaky trick. Block display normally makes an element act like
a block-level element inside its container. In the case of an anchor, the
entire button becomes clickable, not just the text. This makes your page
easier to use because the mouse has a much bigger target to aim for:

 display: block;

 9. Provide a small gap to separate each element.

 Use the margin-bottom rule to separate each button. This will enhance
the 3D effect by making the shadows more obvious.

 margin-bottom: 2px;

 10. Provide a border radius for rounded corners.

 Use of the border-radius property gives the corners a nice rounded
effect, enhancing the button feel.

 11. Use an outset border for a little more dimension.

 Setting the border to outset can give the buttons just a bit more 3D appeal.

Revisiting List Styles 313

Book III
Chapter 3

Styling Lists
and M

enus

 12. Make the button depress when the mouse hovers on an anchor:

#menu a:hover {
 background-color: #DDDDEE;
 box-shadow: 3px 3px 3px gray;
 border: none;
}

 When the mouse hovers on the button, the shadow is smaller, and the
background color of the element is darker. I also removed the border,
making the button feel flat. These techniques together give a convincing
illusion of the button being depressed.

This list makes an ideal navigation menu, especially when placed inside one
column of a multicolumn floating layout.

 The shadow trick is easy, but there are many variations. If you prefer, you
can build two empty button images (one up and one down) in your image
editor and simply swap the background images rather than changing the
shadows. Some variations also involve changing the border.

Building horizontal lists
Sometimes, you want horizontal button bars. Because HTML lists tend to be
vertical, you might be tempted to think that a horizontal list is impossible. In
fact, CSS provides all you need to convert exactly the same HTML to a hori-
zontal list. Figure 3-2 shows such a page.

Figure 3-2:
This list
uses the
same HTML
but different
CSS.

There’s no need to show the HTML again because it hasn’t changed at all.
(Ain’t CSS grand?) Even the CSS hasn’t changed much:

Creating Dynamic Lists314

#menu ul {
 margin-left: -2.5em;
}

#menu li {
 list-style-type: none;
 width: 7em;
 text-align: center;
 float: left;
}

#menu a {
 text-decoration: none;
 color: black;
 display: block;
 background-color: #EEEEFF;
 box-shadow: 5px 5px 5px gray;
 margin-bottom: 2px;
 margin-right: 2px;
 border-radius: 5px;
 border: 3px outset #EEEEFF;
}

#menu a:hover {
 background-color: #DDDDEE;
 box-shadow: 3px 3px 3px gray;
 border: none;
}

The modifications are incredibly simple:

 1. Float each list item by giving each li a float:left value:
#menu li {
 list-style-type: none;
 float: left;
 width: 5em;
 text-align: center;
}

 2. Move the margin-left of the entire ul by taking the margin-left
formatting from the li elements and transferring it to the ul:

#menu ul {
 margin-left: -2.5em;
}

 3. Add a right margin.

 Now that the button bar is horizontal, add a little space to the right of
each button so they don’t look so crowded together:

margin-right: 2px;

Creating Dynamic Lists
A simple list of buttons can look better than ordinary HTML links, but some-
times, your page needs to have a more complex navigation scheme. For
example, you may want to create a menu system to help the user see the
structure of your site.

Creating Dynamic Lists 315

Book III
Chapter 3

Styling Lists
and M

enus

When you think of a complex hierarchical organization (which is how most
multipage websites end up), the easiest way to describe the structure is in a
set of nested lists. HTML lists can contain other lists, and this can be a great
way to organize data.

Nested lists are a great way to organize a lot of information, but they can
be complicated. You can use some special tricks to make parts of your list
appear and disappear when needed. In the sections “Hiding the inner lists”
and “Getting the inner lists to appear on cue,” later in this chapter, you
expand this technique to build a menu system for your pages.

Building a nested list
Begin by creating a system of nested lists without any CSS at all. Figure 3-3
shows a page with a basic nested list.

Figure 3-3:
This nested
list has no
styles yet.

No CSS styling is in place yet, but the list has its own complexities:

 ✦ The primary list has three entries. This is actually a multilayer list. The
top level indicates categories, not necessarily links.

 ✦ Each element in the top list has its own sublist. A second layer of links
has various links in most elements.

 ✦ The Web Development element has another layer of sublists. The gen-
eral layout of this list entry corresponds to a complex hierarchy of infor-
mation — like most complex websites.

 ✦ The list validates to the HTML Strict standard. It’s especially important
to validate your code before adding CSS when it involves somewhat
complex HTML code, like the multilevel list. A small problem in the

Creating Dynamic Lists316

HTML structure that may go unnoticed in a plain HTML document can
cause all kinds of strange problems in your CSS.

Here is the code for the nested list in plain HTML:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>nestedList.html</title>
 </head>
 <body>
 <h1>Some of my favorite links</h1>

 Social networking

 digg
 reddit
 stumbleupon

 Reference

 google
 wikipedia
 dictionary

 Web development

 XHTML/CSS

 w3 schools
 htmlHelp
 CSS Zen Garden

 Programming

 javascript.com
 php.net
 mysql.com

 </body>
</html>

 Take special care with your indentation when making a complex nested
list like this one. Without proper indentation, it becomes very difficult to
establish the structure of the page. Also, a list item can contain text and
another list. Any other arrangement (putting text between list items, for
example) will cause a validation error and big headaches when you try to
apply CSS.

Creating Dynamic Lists 317

Book III
Chapter 3

Styling Lists
and M

enus

Hiding the inner lists
The first step of creating a dynamic menu system is to hide any lists that are
embedded in a list item. Add the following CSS style to your page:

li ul {
 display: none;
}

 In reality, you usually apply this technique only to a specially marked div,
like a menu system. Don’t worry about that for now. Later in this chapter, I
show you how to combine this technique with a variation of the button tech-
nique for complex menu systems.

Your page will undergo a startling transformation, as shown in Figure 3-4.

Figure 3-4:
Where did
everything
go?

That tiny little snippet of CSS code is a real powerhouse. It does some fasci-
nating things, such as

 ✦ Operating on unordered lists that appear inside list items: What this
really means is the topmost list won’t be affected, but any unordered list
that appears inside a list item will have the style applied.

 ✦ Using display:none to make text disappear: Setting the display
attribute to none tells the HTML page to hide the given data altogether.

This code works well on almost all browsers. It’s pretty easy to make text dis-
appear. Unfortunately, it’s a little trickier to make all the browsers bring it back.

Creating Dynamic Lists318

Getting the inner lists to appear on cue
The fun part is getting the interior lists to pop up when the mouse is over
the parent element. A second CSS style can make this happen:

li ul {
 display: none;
}

li:hover ul {
 display: block;
}

The new code is pretty interesting. When the page initially loads, it appears
the same as what’s shown in Figure 3-4, but see the effect of holding the
mouse over the Social Networking element in Figure 3-5.

Figure 3-5:
Holding the
mouse over
a list item
causes its
children to
appear.

 This code doesn’t work on all browsers! Internet Explorer 6 (IE6) and earlier
versions don’t support the:hover pseudo-class on any element except a.
Provide a conditional comment with an alternative style for early versions of
IE. All modern browsers (including IE 7 and later) work fine.

Here’s how the list-reappearing code works:

 ✦ All lists inside lists are hidden. The first style rule hides any list that’s
inside a list element.

 ✦ li:hover refers to a list item that’s being hovered on. That is, if the
mouse is situated on top of a list item, this rule pertains to it.

 ✦ li:hover ul refers to an unordered list inside a hovered list item.
In other words, if some content is an unordered list that rests inside a list
that currently has the mouse hovering over it, apply this rule. (Whew!)

Creating Dynamic Lists 319

Book III
Chapter 3

Styling Lists
and M

enus

 ✦ Display the list as a block. display:block overrides the previous
display:none instruction and displays the particular element as a
block. The text reappears magically.

This hide-and-seek trick isn’t all that great on its own. It’s actually quite
annoying to have the contents pop up and go away like that. There’s another
more annoying problem. Look at Figure 3-6 to see what can go wrong.

Figure 3-6: If
the mouse
hovers
on Web
development,
both
submenus
appear.

To see why this happens, take another look at the CSS code that causes the
segment to reappear:

li:hover ul {
 display: block;
}

This code means set display to block for any ul that’s a child of a
hovered li. The problem is that the Web Development li contains a ul that
contains two more uls. All the lists under Web Development appear, not just
the immediate child.

One more modification of the CSS fixes this problem:

li ul {
 display: none;
}

li:hover > ul {
 display: block;
}

The greater than symbol (>) is a special selector tool. It indicates a direct
relationship. In other words, the ul must be a direct child of the hovered li,

Creating Dynamic Lists320

not a grandchild or great-grandchild. With this indicator in place, the page
acts correctly, as shown in Figure 3-7.

Figure 3-7:
Now, only
the next
menu level
shows up
on a mouse
hover.

This trick allows you to create nested lists as deeply as you wish and to
open any segment by hovering on its parent.

My current code has a list with three levels of nesting, but you can add as
many nested lists as you want and use this code to make it act as a dynamic
menu.

Figure 3-8 illustrates how to open the next section of the list.

Figure 3-8:
You can
create these
lists as deep
as you wish.

Building a Basic Menu System 321

Book III
Chapter 3

Styling Lists
and M

enus

 I’m not suggesting that this type of menu is a good idea. Having stuff pop around
like this is actually pretty distracting. With a little more formatting, you can use
these ideas to make a functional menu system. I’m just starting here so you can
see the hide-and-seek behavior in a simpler system before adding more details.

Building a Basic Menu System
You can combine the techniques of buttons and collapsing lists to build a
menu system entirely with CSS. Figure 3-9 shows a page with a vertically
arranged menu.

Figure 3-9:
Only the
top-level
elements
are visible
by default.

When the user hovers over a part of the menu, the related sub-elements
appear, as shown in Figure 3-10.

This type of menu has a couple interesting advantages, such as

 ✦ It’s written entirely with CSS. You don’t need any other code or pro-
gramming language.

 ✦ The menus are simply nested lists. The HTML is simply a set of nested
lists. If the CSS turns off, the page is displayed as a set of nested lists,
and the links still function normally.

 ✦ The relationships between elements are illustrated. When you select
an element, you can see its parent and sibling relationships easily.

 Nice as this type of menu system is, it isn’t perfect. Because it relies on the
li:hover trick, it doesn’t work in versions of Internet Explorer (IE) prior to
7.0. You need alternate CSS for these users.

Building a Basic Menu System322

Building a vertical menu with CSS
The vertical menu system works with exactly the same HTML as the hid-
denList example — only the CSS changed. Here’s the new CSS file:

/* vertMenu.css */
/* unindent entire list */
#menu ul {
 margin-left: -2.5em;
}

/* set li as buttons */
#menu li {
 list-style-type: none;
 border: 1px black solid;;
 width: 10em;
 background-color: #cccccc;
 text-align: center;
}

/* display anchors as buttons */
#menu a {
 color: black;
 text-decoration: none;
 display: block;
}

/* flash white on anchor hover */
#menu a:hover {
 background-color: white;
}

/* collapse menus */
#menu li ul {
 display: none;
}

Figure 3-10:
The user
can select
any part of
the original
nested list.

Building a Basic Menu System 323

Book III
Chapter 3

Styling Lists
and M

enus

/* show submenus on hover */
#menu li:hover > ul {
 display: block;
 margin-left: -2em;
}

Of course, the CSS uses a few tricks, but there’s really nothing new. It’s just a
combination of techniques you already know:

 1. Un-indent the entire list by setting the ul’s margin-left to a negative
value to compensate for the typical indentation. 2.5em is about the
right amount.

 Because you’re removing the list-style types, the normal indenta-
tion of list items will become a problem.

 2. Format the li tags.

 Each li tag inside the menu structure should look something like a
button. Use CSS to accomplish this task:

/* set li as buttons */
#menu li {
 list-style-type: none;
 border: 1px black solid;
 width: 10em;
 background-color: #cccccc;
 text-align: center;
}

 a. Set list-style-type to none.

 b. Set a border with the border attribute.

 c. Center the text by setting text-align to center.

 d. Add a background color or image, or you’ll get some strange border
bleed-through later when the buttons overlap.

 3. Format the anchors as follows:
/* display anchors as buttons */
#menu a {
 color: black;
 text-decoration: none;
 display: block;
}

 a. Take out the underline with text-decoration: none.

 b. Give the anchor a consistent color.

 c. Set display to block (so the entire area will be clickable, not just the
text).

 4. Give some indication it’s an anchor by changing the background
when the user hovers on the element:

/* flash white on anchor hover */
#menu a:hover {
 background-color: white;
}

Building a Basic Menu System324

 Because the anchors no longer look like anchors, you have to do some-
thing else to indicate there’s something special about these elements.
When the user moves the mouse over any anchor tag in the menu div,
that anchor’s background color will switch to white.

 5. Collapse the menus using the hidden menus trick (discussed in the
section “Hiding the inner lists,” earlier in this chapter) to hide all the
sublists:

/* collapse menus */
#menu li ul {
 display: none;
}

 6. Display the hidden menus when the mouse hovers on the parent ele-
ment by adding the code described in the “Getting the inner lists to
appear on cue” section:

/* show submenus on hover */
#menu li:hover > ul {
 display: block;
 margin-left: -2em;
}

Building a horizontal menu
You can make a variation of the menu structure that will work along the top
of a page. Figure 3-11 shows how this might look.

Figure 3-11:
The same
list is now
a horizontal
menu.

The submenus come straight down from their parent elements. I find a little
bit of indentation helpful for deeply nested lists, as shown in Figure 3-12.

Building a Basic Menu System 325

Book III
Chapter 3

Styling Lists
and M

enus

Figure 3-12:
For the
multilevel
menus, a
little bit of
indentation
is helpful.

Again, the HTML is identical. The CSS for a horizontal menu is surprisingly
close to the vertical menu. The primary difference is floating the list items:

/* vertMenu.css */
/* unindent each unordered list */

#menu ul {
 margin-left: -2.5em;
}

/* turn each list item into a solid gray block */
#menu li {
 list-style-type: none;
 border: black solid 1px;
 float: left;
 width: 10em;
 background-color: #CCCCCC;
 text-align: center;
}

/* set anchors to act like buttons */
#menu a {
 display: block;
 color: black;
 text-decoration: none;
}

/* flash anchor white when hovered */
#menu a:hover {
 background-color: white;
}

/* collapse nested lists */
#menu li ul {
 display: none;
}

Building a Basic Menu System326

/* display sublists on hover */
#menu li:hover > ul {
 display: block;
}

/* indent third-generation lists */
#menu li li li{
 margin-left: 1em;
}

The CSS code has just a few variations from the vertical menu CSS:

 ✦ Float each list item by adding float and width attributes.
/* turn each list item into a solid gray block */
#menu li {
 list-style-type: none;
 border: black solid 1px;
 float: left;
 width: 10em;
 background-color: #CCCCCC;
 text-align: center;
}

 This causes the list items to appear next to each other in the same line.

 ✦ Give each list item a width. In this case, 10em seems about right.

 ✦ Indent a deeply nested list by having the first-order sublists appear
directly below the parent.

 A list nested deeper than its parent is hard to read. A little indentation
helps a lot with clarity.

 ✦ Use #menu li li li to indent nested list items, as shown here:

/* indent third-generation lists */
#menu li li li{
 margin-left: 1em;
}

 This selector is active on an element which has #menu and three list
items in its family tree. It will work only on list items three levels deep.
This special formatting isn’t needed at the other levels but is helpful to
offset the third-level list items.

These tricks are just the beginning of what you can do with some creativity
and the amazing power of CSS and HTML. You can adopt the simple exam-
ples presented here to create your own marvels of navigation.

 These menu systems work pretty well, but if they’re used in a standard
layout system, the rest of the page can shift around to fit the changing shape
of the menus. To avoid this, place the menu using the fixed mechanisms
described in Chapter 4 of this minibook.

Chapter 4: Using Alternative
Positioning

In This Chapter
✓ Setting position to absolute

✓ Managing z-index

✓ Creating fixed and flexible layouts

✓ Working with fixed and relative positioning

✓ Using the new flexbox model

F
loating layouts (described in Chapter 2 of this minibook) are the
preferred way to set up page layouts today but, sometimes, other

alternatives are useful. You can use absolute, relative, or fixed positioning
techniques to put all your page elements exactly where you want them.
Well, almost exactly. It’s still web development, where nothing’s exact.
Because none of these alternatives are completely satisfying, the W3C (web
standards body) has introduced a very promising new layout model called
the flexbox model.

The techniques described in this chapter will give you even more capabili-
ties when it comes to setting up great-looking websites.

Working with Absolute Positioning
Begin by considering the default layout mechanism. Figure 4-1 shows a page
with two paragraphs on it.

I used CSS to give each paragraph a different color (to aid in discussion
later) and to set a specific height and width. The positioning is left to the
default layout manager, which positions the second (black) paragraph
directly below the first (blue) one.

Setting up the HTML
The code is unsurprising:

<!DOCTYPE html>
<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">

Working with Absolute Positioning328

 <title>boxes.html</title>
 <style type = "text/css">
 #blueBox {
 background-color: blue;
 width: 100px;
 height: 100px;
 }
 #blackBox {
 background-color: black;
 width: 100px;
 height: 100px;
 }
 </style>
 </head>
 <body>
 <p id = "blueBox"></p>
 <p id = "blackBox"></p>
 </body>
</html>

If you provide no further guidance, paragraphs (like other block-level ele-
ments) tend to provide carriage returns before and after themselves, stack-
ing on top of each other. The default layout techniques ensure that nothing
ever overlaps.

Adding position guidelines
Figure 4-2 shows something new: The paragraphs are overlapping!

This feat is accomplished through some new CSS attributes:

Figure 4-2:
Now the
paragraphs
overlap
each other.

Figure 4-1:
These two
paragraphs
have a set
height and
width, but
default
positioning.

Book III
Chapter 4

Using
Alternative
Positioning

Working with Absolute Positioning 329

 <!DOCTYPE html>
 <html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>absPosition.html</title>
 <style type = "text/css">
 #blueBox {
 background-color: blue;
 width: 100px;
 height: 100px;
 position: absolute;
 left: 0px;
 top: 0px;
 margin: 0px;
 }
 #blackBox {
 background-color: black;
 width: 100px;
 height: 100px;
 position: absolute;
 left: 50px;
 top: 50px;
 margin: 0px;
 }
 </style>
 </head>
 <body>
 <p id = "blueBox"></p>
 <p id = "blackBox"></p>
 </body>
 </html>

 So, why do I care if the boxes overlap? Well, you might not care, but the
interesting part is this: You can have much more precise control over where
elements live and what size they are. You can even override the browser’s
normal tendency to keep elements from overlapping, which gives you some
interesting options.

 <title>boxes.html</title>
 <style type = "text/css">
 #blueBox {
 background-color: blue;
 width: 100px;
 height: 100px;
 }
 #blackBox {
 background-color: black;
 width: 100px;
 height: 100px;
 }
 </style>
 </head>
 <body>
 <p id = "blueBox"></p>
 <p id = "blackBox"></p>
 </body>
</html>

If you provide no further guidance, paragraphs (like other block-level ele-
ments) tend to provide carriage returns before and after themselves, stack-
ing on top of each other. The default layout techniques ensure that nothing
ever overlaps.

Adding position guidelines
Figure 4-2 shows something new: The paragraphs are overlapping!

This feat is accomplished through some new CSS attributes:

Figure 4-2:
Now the
paragraphs
overlap
each other.

Working with Absolute Positioning330

Making absolute positioning work
A few new parts of CSS allow this more direct control of the size and position
of these elements. Here’s the CSS for one of the boxes:

 #blueBox {
 background-color: blue;
 width: 100px;
 height: 100px;
 position: absolute;
 left: 0px;
 top: 0px;
 margin: 0px;
 }

 1. Set the position attribute to absolute.

 Absolute positioning can be used to determine exactly (more or less)
where the element will be placed on the screen:

 position: absolute;

 2. Specify a left position in the CSS.

 After you determine that an element will have absolute position, it’s
removed from the normal flow, so you’re obligated to fix its position.
The left attribute determines where the left edge of the element will
go. This can be specified with any of the measurement units, but it’s
typically measured in pixels:

 left: 0px;

 3. Specify a top position with CSS.

 The top attribute indicates where the top of the element will go. Again,
this is usually specified in pixels:

 top: 0px;

 4. Use the height and width attributes to determine the size.

 Normally, when you specify a position, you also want to determine the
size:

 width: 100px;
 height: 100px;

 5. Set the margins to 0.

 When you’re using absolute positioning, you’re exercising quite a bit of
control. Because browsers don’t treat margins identically, you’re better
off setting margins to 0 and controlling the spacing between elements
manually:

 margin: 0px;

 Generally, you use absolute positioning only on named elements, rather than
classes or general element types. For example, you won’t want all the para-
graphs on a page to have the same size and position, or you couldn’t see
them all. Absolute positioning works on only one element at a time.

Book III
Chapter 4

Using
Alternative
Positioning

Managing z-index 331

Managing z-index
When you use absolute positioning, you can determine exactly where
things are placed, so it’s possible for them to overlap. By default, elements
described later in HTML are positioned on top of elements described earlier.
This is why the black box appears over the top of the blue box in Figure 4-2.

Handling depth
You can use a special CSS attribute called z-index to change this default
behavior. The z-axis refers to how close an element appears to be to the
viewer. Figure 4-3 demonstrates how this works.

Figure 4-3:
The z-index
allows you
to change
which
elements
appear
closer to the
user.

The z-index attribute requires a numeric value. Higher numbers mean the
element is closer to the user (or on top). Any value for z-index places the ele-
ment higher than elements with the default z-index. This can be very useful
when you have elements that you want to appear over the top of other ele-
ments (for example, menus that temporarily appear on top of other text).

Here’s the code illustrating the z-index effect:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>zindex.html</title>
 <style type = "text/css">
 #blueBox {
 background-color: blue;
 width: 100px;
 height: 100px;
 position: absolute;

Building a Page Layout with Absolute Positioning332

 left: 0px;
 top: 0px;
 margin: 0px;
 z-index: 1;
 }
 #blackBox {
 background-color: black;
 width: 100px;
 height: 100px;
 position: absolute;
 left: 50px;
 top: 50px;
 margin: 0px;
 }
 </style>
 </head>
 <body>
 <p id = "blueBox"></p>
 <p id = "blackBox"></p>
 </body>
</html>

Working with z-index
The only change in this code is the addition of the z-index property. The
higher a z-index value is, the closer that object appears to be to the user.
Here are a couple things to keep in mind when using z-index:

 ✦ One element can totally conceal another. When you start position-
ing things absolutely, one element can seem to disappear because it’s
completely covered by another. The z-index attribute is a good way to
check for this situation.

 ✦ Negative z-index can be problematic. The value for z-index should
be positive. Although negative values are supported, some browsers
(notably older versions of Firefox) do not handle them well and may
cause your element to disappear.

 ✦ It may be best to give all values a z-index. If you define the z-index
for some elements and leave the z-index undefined for others, you have
no guarantee exactly what will happen. If in doubt, just give every value
its own z-index, and you’ll know exactly what should overlap what.

 ✦ Don’t give two elements the same z-index. The point of the z-index
is to clearly define which element should appear closer. Don’t defeat this
purpose by assigning the same z-index value to two different elements
on the same page.

Building a Page Layout with Absolute Positioning
You can use absolute positioning to create a page layout. This process
involves some trade-offs. You tend to get better control of your page with
absolute positioning (compared to floating techniques), but absolute layout
requires more planning and more attention to detail. Figure 4-4 shows a page
layout created with absolute positioning techniques.

Book III
Chapter 4

Using
Alternative
Positioning

Building a Page Layout with Absolute Positioning 333

Figure 4-4:
This layout
was created
with
absolute
positioning.

The technique for creating an absolutely positioned layout is similar to the
floating technique (in the general sense).

Overview of absolute layout
Before you begin putting your page together with absolute positioning,
it’s good to plan the entire process. Here’s an example of how the process
should go:

 1. Plan the site.

 Having a drawing that specifies how your site layout will look is really
important. In absolute positioning, your planning is even more impor-
tant than the floating designs because you’ll need to specify the size and
position of every element.

 2. Specify an overall size.

 This particular type of layout has a fixed size. Create an all div housing
all the other elements and specify the size of this div (in a fixed unit for
now, usually px or em).

 3. Create the HTML.

 The HTML page should have a named div for each part of the page (so if
you have headers, columns, and footers, you need a div for each).

 4. Build a CSS style sheet.

 The CSS styles can be internal or linked, but because absolute position-
ing tends to require a little more markup than floating, external styles
are preferred.

Building a Page Layout with Absolute Positioning334

 5. Identify each element.

 It’s easier to see what’s going on if you assign a different colored border
to each element.

 6. Make each element absolutely positioned.

 Set position: absolute in the CSS for each element in the layout.

 7. Specify the size of each element.

 Set the height and width of each element according to your diagram.
(You did make a diagram, right?)

 8. Determine the position of each element.

 Use the left and top attributes to determine where each element goes
in the layout.

 9. Tune-up your layout.

 You’ll probably want to adjust margins and borders. You may need to do
some adjustments to make it all work. For example, the menu is 150px
wide, but I added padding-left and padding-right of 5px each.
This means the width of the menu needs to be adjusted to 140px to
make everything still fit.

Writing the HTML
The HTML code is pretty straightforward:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>absLayout.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "absLayout.css" />
 </head>
 <body>
 <div id = "all">
 <div id = "head">
 <h1>Layout with Absolute Positioning</h1>
 </div>

 <div id = "menu">
 </div>

 <div id = "content">
 </div>

 </div>
 </body>
</html>

(As typical with layout examples, I have removed the lorem text from this
code listing for clarity.)

Book III
Chapter 4

Using
Alternative
Positioning

Building a Page Layout with Absolute Positioning 335

The HTML file calls an external style sheet called absLayout.css.

Adding the CSS
The CSS code is a bit lengthy but not too difficult:

/* absLayout.css */
#all {
 border: 1px solid black;
 width: 800px;
 height: 600px;
 position: absolute;
 left: 0px;
 top: 0px;
}

#head {
 border: 1px solid green;
 position: absolute;
 width: 800px;
 height: 100px;
 top: 0px;
 left: 0px;
 text-align: center;
}

#menu {
 border: 1px solid red;
 position: absolute;
 width: 140px;
 height: 500px;
 top: 100px;
 left: 0px;
 padding-left: 5px;
 padding-right: 5px;
}

#content{
 border: 1px solid blue;
 position: absolute;
 width: 645px;
 height: 500px;
 top: 100px;
 left: 150px;
 padding-left: 5px;
}

A static layout created with absolute positioning has a few important fea-
tures to keep in mind:

 ✦ You’re committed to position everything. After you start using absolute
positioning, you need to use it throughout your site. All the main page
elements require absolute positioning because the normal flow mecha-
nism is no longer in place.

 You can still use floating layout inside an element with absolute position,
but all your main elements (heading, columns, and footing) need to have
absolute position if one of them does.

Creating a More Flexible Layout336

 ✦ You should specify size and position. With a floating layout, you’re still
encouraging a certain amount of fluidity. Absolute positioning means
you’re taking the responsibility for both the shape and size of each ele-
ment in the layout.

 ✦ Absolute positioning is less adaptable. With this technique, you’re
pretty much bound to a specific screen width and height. You’ll have
trouble adapting to tablets and cellphones. (A more flexible alternative
is shown in the next section.)

 ✦ All the widths and the heights have to add up. When you determine the
size of your display, all the heights, widths, margins, padding, and bor-
ders have to add up, or you’ll get some strange results. When you use
absolute positioning, you’re also likely to spend some quality time with
your calculator, figuring out all the widths and the heights.

Creating a More Flexible Layout
You can build a layout with absolute positioning and some flexibility.
Figure 4-5 illustrates such a design.

Figure 4-5:
This page
uses
absolute
layout, but
it doesn’t
have a fixed
size.

The size of this layout is attached to the size of the browser screen. It
attempts to adjust to the browser while it’s resized. You can see this effect in
Figure 4-6.

Book III
Chapter 4

Using
Alternative
Positioning

Creating a More Flexible Layout 337

Figure 4-6:
The layout
resizes in
proportion
to the
browser
window.

The page simply takes up a fixed percentage of the browser screen. The pro-
portions are all maintained, no matter what the screen size is.

 Having the page resize with the browser works, but it’s not a complete solu-
tion. When the browser window is small enough, the text will no longer fit
without some ugly bleed-over effects. You can fix this with the overflow attri-
bute, but then you will have scrollbars in your smaller elements.

Designing with percentages
This absolute but flexible trick is achieved by using percentage measure-
ments. The position is still set to absolute, but rather than defining size
and position with pixels, use percentages instead. Here’s the CSS:

 /* absPercent.css */

 #all {
 border: 1px black solid;
 position: absolute;
 left: 5%;
 top: 5%;
 width: 90%;
 height: 90%;
 }

Creating a More Flexible Layout338

 #head {
 border: 1px black solid;
 position: absolute;
 left: 0%;
 top: 0%;
 width: 100%;
 height: 10%;
 text-align: center;
 }

 #head h1 {
 margin-top: 1%;
 }

 #menu {
 border: 1px green solid;
 position: absolute;
 left: 0%;
 top: 10%;
 width: 18%;
 height: 90%;
 padding-left: 1%;
 padding-right: 1%;
 overflow: auto;
 }

 #content {
 border: 1px black solid;
 position: absolute;
 left: 20%;
 top: 10%;
 width: 78%;
 height: 90%;
 padding-left: 1%;
 padding-right: 1%;
 overflow: auto;
 }

The key to any absolute positioning (even this flexible kind) is math. When you
just look at the code, it isn’t clear where all those numbers come from. Look at
the diagram for the page in Figure 4-7 to see how all the values are derived.

Figure 4-7:
The diagram
is the key to
a successful
layout.

Book III
Chapter 4

Using
Alternative
Positioning

Creating a More Flexible Layout 339

Building the layout
Here’s how the layout works:

 1. Create an all container by building a div with the all ID.

 The all container will hold all the contents of the page. It isn’t abso-
lutely necessary in this type of layout, but it does allow for a centering
effect.

 2. Specify the size and position of all.

 I want the content of the page to be centered in the browser window,
so I set its height and width to 90 percent, and its margin-left and
margin-top to 5 percent. In effect, this sets the margin-right and
margin-bottom to 5 percent also. These percentages refer to the all
div’s container element, which is the body, with the same size as the
browser window.

 3. Other percentages are in relationship to the all container.

 Because all the other elements are placed inside all, the percentage
values are no longer referring to the entire browser window. The widths
and heights for the menu and content areas are calculated as percent-
ages of their container, which is all.

 4. Determine the heights.

 Height is usually pretty straightforward because you don’t usually have
to change the margins. Remember, though, that the head accounts for 10
percent of the page space, so the height of both the menu and content
needs to be 90 percent.

 5. Figure the general widths.

 In principle, the width of the menu column is 20 percent, and the con-
tent column is 80 percent. This isn’t entirely accurate, though.

 6. Compensate for margins.

 You probably want some margins, or the text looks cramped. If you want
1 percent margin-left and 1 percent margin-right on the menu
column, you have to set the menu’s width to 18 percent to compensate
for the margins. Likewise, set the content width to 78 percent to com-
pensate for margins.

 As if this weren’t complex enough, remember that Internet Explorer 6 (IE6)
and earlier browsers calculate margins differently! In these browsers, the
margin happens inside the content, so you don’t have to compensate for
them (but you have to remember that they make the useable content area
smaller). You’ll probably have to make a conditional comment style sheet to
handle IE6 if you use absolute positioning.

Exploring Other Types of Positioning340

Exploring Other Types of Positioning
If you use the position attribute, you’re most likely to use absolute.
However, here are other positioning techniques that can be handy in certain
circumstances:

 ✦ Relative: Set position: relative when you want to move an ele-
ment from its default position. For example, if you set position to rela-
tive and top: -10px, the element would be placed 10 pixels higher on
the screen than normal.

 ✦ Fixed: Use fixed position when you want an element to stay in the same
place, even when the page is scrolled. This is sometimes used to keep a
menu on the screen when the contents are longer than the screen width.
If you use fixed positioning, be sure you’re not overwriting something
already on the screen.

The real trick is to use appropriate combinations of positioning schemes to
solve interesting problems.

Creating a fixed menu system
Figure 4-8 illustrates a very common type of web page — one with a menu on
the left and a number of stories or topics in the main area.

Figure 4-8:
At first
glance,
this is yet
another
two-column
layout.

Something is interesting about this particular design. The button list on the
left refers to specific segments of the page. When you click one of these but-
tons (say, the Gamma button), the appropriate part of the page is called up,
as shown in Figure 4-9.

Book III
Chapter 4

Using
Alternative
Positioning

Exploring Other Types of Positioning 341

Figure 4-9:
The page
scrolls to
the Gamma
content, but
the menu
stays put.

Normally, when you scroll down the page, things on the top of the page (like
the menu) disappear. In this case, the menu stays on the screen, even though
the part of the page where it was originally placed is now off the screen.

 Gamma isn’t necessarily moved to the top of the page. Linking to an element
ensures that it’s visible but doesn’t guarantee where it will appear.

You can achieve this effect using a combination of positioning techniques.

Setting up the HTML
The HTML for the fixed menu page is simple (as you’d expect by now):

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>fixedRelative.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "fixedRelative.css" />
 </head>
 <body>
 <h1>Fixed Position</h1>
 <div id = "menu">
 <h2>Menu</h2>

 Alpha
 Beta
 Gamma
 Delta

Exploring Other Types of Positioning342

 </div>

 <div class = "content"
 id = "alpha">
 <h2>Alpha</h2>
 </div>

 <div class = "content"
 id = "beta">
 <h2>Beta</h2>
 </div>

 <div class = "content"
 id = "gamma">
 <h2>Gamma</h2>
 </div>

 <div class = "content"
 id = "delta">
 <h2>Delta</h2>
 </div>
 </body>
</html>

The HTML has only a few noteworthy characteristics:

 ✦ It has a menu. The div named menu contains a list of links (like most
menus).

 ✦ The menu has internal links. A menu can contain links to external docu-
ments or (like this one) links inside the current document. The Alpha code means create a link to the element in
this page with the ID alpha.

 ✦ The page has a series of content divs. Most of the page’s content
appears in one of the several divs with the content class. This class
indicates all these divs will share some formatting.

 ✦ The content divs have separate IDs. Although all the content divs
are part of the same class, each has its own ID. This allows the menu
to select individual items (and would also allow individual styling, if
desired).

 As normal for this type of code, I left out the filler paragraphs from the code
listing.

Setting the CSS values
The interesting work happens in CSS. Here’s an overview of the code:

/* fixedRelative.css */

body {
 background-color: #fff9bf;
}

Book III
Chapter 4

Using
Alternative
Positioning

Exploring Other Types of Positioning 343

h1 {
 text-align: center;
}

#menu {
 position: fixed;
 width: 18%;
}

#menu li {
 list-style-type: none;
 margin-left: -2em;
 text-align: center;
}

#menu a{
 display: block;
 border: 2px gray outset;
 text-decoration: none;
 color: black;
}

#menu a:hover{
 color: white;
 background-color: black;
 border: 2px gray inset;
}

#menu h2 {
 text-align: center;
}

.content {
 position: relative;
 left: 20%;
 width: 80%;
}

.content h2 {
 border-top: 3px black double;
}

Most of the CSS is familiar if you’ve looked over the other chapters in this
minibook. I changed the menu list to make it look like a set of buttons, and
I added some basic formatting to the headings and borders. The interesting
thing here is how I positioned various elements.

Here’s how you build a fixed menu:

 1. Set the menu position to fixed by setting the position attribute to
fixed.

 The menu div should stay on the same spot, even while the rest of the
page scrolls. Fixed positioning causes the menu to stay put, no matter
what else happens on the page.

 2. Give the menu a width with the width attribute.

 It’s important that the width of the menu be predictable, both for
 aesthetic reasons and to make sure the content isn’t overwritten by the

Flexible Box Layout Model344

menu. In this example, I set the menu width to 18 percent of the page
width (20 percent minus some margin space).

 3. Consider the menu position by explicitly setting the top and left
attributes.

 When you specify a fixed position, you can determine where the element
is placed on the screen with the left and top attributes. I felt that the
default position was fine, so I didn’t change it.

 4. Set content position to relative.

 By default, all members of the content class will fill out the entire page
width. Because the menu needs the leftmost 20 percent of the page, set
the content class position to relative.

 5. Change content’s left attribute to 20 percent.

 Because content has relative positioning, setting the left to 20 per-
cent will add 20 percent of the parent element to each content’s left
value. This will ensure that there’s room for the menu to the left of all
the content panes.

 6. Give content a width property.

 If you don’t define the width, content panels may bleed off the right
side of the page. Use the width property to ensure this doesn’t happen.

 In reality, I rarely use absolute positioning for page layout. It’s just too dif-
ficult to get working and too inflexible for the range of modern browsers.
However, it is still used in certain specialty situations like web game devel-
opment where the programmer is deliberately subverting normal layout
schemes for more control of the visual interface.

Flexible Box Layout Model
Page layout has been a constant concern in web development. There have
been many different approaches to page layout, and all have weaknesses.
The current standard is the floating mechanism. While this works quite well,
it has two major weaknesses.

 ✦ It can be hard to understand: The various parts of the float specifica-
tion can be difficult to follow, and the behavior is not intuitive. The rela-
tionship between width, clear, and float attributes can be difficult to
follow.

 ✦ The page order matters: One goal of semantic layout is to completely
divorce the way the page is created from how it is displayed. With the
floating layout, the order in which various elements are written in the
HTML document influences how they are placed. An ideal layout solu-

Book III
Chapter 4

Using
Alternative
Positioning

Flexible Box Layout Model 345

tion would allow any kind of placement through CSS, even after the
HTML is finished.

Absolute positioning seems great at first, but it has its own problems:

 ✦ It’s a lot more detail-oriented: Absolute positioning is a commitment.
You often end up having to directly control the size and position of
every element on the screen, which is tedious and difficult.

 ✦ It’s not as flexible: With responsive design (creating a page that can
adapt to the many different devices available) all the rage today, the
absolute position scheme simply doesn’t deliver the flexibility needed in
modern web development.

There are some other layout mechanisms (tables and frames) that have
already been rejected as viable layout options, which seems to leave web
programmers without an ideal solution.

Creating a flexible box layout
CSS3 proposes a new layout mechanism which aims to solve a lot of the
layout problems that have plagued web development. The flexible box
layout scheme (sometimes called flexbox) shows a lot of promise. Here’s
essentially how it works (I’m deliberately leaving out details here for clarity.
Read on for specific implementation):

 1. Designate a page segment as a box.

 The display attribute of most elements can be set to various types.
CSS3 introduces a new display type: box. Setting the display of an ele-
ment to box makes it capable of holding other elements with the flexible
box mechanism.

 2. Determine the orientation of child elements.

 Use a new attribute called box-orient to determine if the child ele-
ments of the current element will be placed vertically or horizontally
inside the main element.

 3. Specify the weight of child elements.

 Each child element can be given a numeric weight. The weight deter-
mines how much space that element takes up. If the weight is zero, the
element takes as little space as possible. If the weight of all the elements
is one, they all take up the same amount of space. If one element has
a weight of two and the others all have a weight of one, the larger ele-
ment has twice the size of the others, and so on. Weight is determined
through the box-flex attribute.

Flexible Box Layout Model346

 4. Nest another box inside the first.

 You can nest flexboxes inside each other. Simply apply the box display
type to inner elements that will show the display.

 5. Modify the order in which elements appear.

 Normally elements appear in the order in which they were placed on the
page, but you can use the box-ordinal-group attribute to adjust the
placement order.

Viewing a flexible box layout
As an example, take a look at the following HTML code:

 <div id = "a">
 <div id = "b">b</div>
 <div id = "c">c</div>
 <div id = "d">
 <div id = "e">e</div>
 <div id = "f">f</div>
 </div>
 </div>

Although this is a clearly made-up example, it shows a complex structure
that could be difficult to style using standard layout techniques. Figure 4-10
illustrates a complex nested style that would be difficult to achieve through
traditional layout techniques:

Figure 4-10:
This
structure
would not
be easy to
build with
CSS2.

Book III
Chapter 4

Using
Alternative
Positioning

Flexible Box Layout Model 347

The following style sheet is used to apply a flex grid style to this page:

 div {
 border: 1px solid black;
 }

 #a {
 width: 300px;
 height: 200px;

 display: box;
 box-orient: horizontal;
 }

 #b {
 box-flex: 1;
 }

 #c {
 box-flex: 1;
 }

 #d {
 display: box;
 box-orient: vertical;
 box-flex: 2;
 }

 #e {
 box-flex: 1;
 box-ordinal-group: 2;
 }

 #f {
 box-flex: 1;
 }

The CSS looks complex, but there are only four new CSS elements. Here’s
how this specific example works:

 1. Set up a to be the primary container.

 The a div is the primary container, so give it a height and width. It will
contain flex boxes, so set the display attribute to box. Determine how
you want the children of this box to be lined up by setting the box-ori-
ent attribute to vertical or horizontal.

 2. Specify the weights of b, c, and d.

 In my example, I want elements b and c to take up half the space, and d
to fill up the remainder of the space. To get this behavior, set the box-
flex value of b and c to 1, and the box-flex value of d to 2.

 3. Set up d as another container.

 The d element will contain e and f. Use display: box to make d a flex
container, and box-orient to vertical to make the elements line up
vertically. (Normally nested elements will switch between horizontal and
vertical.)

Flexible Box Layout Model348

 4. Elements e and f should each take half of d.

 Use the box-flex attribute to give these elements equal weight.

 5. Change the ordinal group of e so it appears after f.

 The box-ordinal-group attribute indicates the order in which an
element will be displayed inside its group. Normally, all items have a
default value of 1, so they appear in the order they are written. You can
demote an element by setting its box-ordinal-group value to a higher
number, causing that element to be displayed later than normal. I set e
to ordinal group 2, so it is displayed after element f.

… And now for a little reality
The flexbox system seems perfect. It’s much more sensible than the
Byzantine layout techniques that are currently in use. However, the flexible
box system is not ready for common use yet. Right now, not a single browser
implements the flexbox attributes directly. However, there are special ven-
dor-specific versions available. WebKit-based browsers (primarily Safari and
Chrome) use variations that begin with -webkit- and Gecko-based brows-
ers (Firefox and Mozilla) use the -moz- prefix. Microsoft finally supports
flexbox, but it requires the -ms-. To make the example in this chapter work
in modern browsers, you need to include -ms-, -webkit- and -moz- ver-
sions of all the attributes, like this:

 #a {
 width: 300px;
 height: 200px;

 box-orient: horizontal;
 display: box;

 -moz-box-orient: horizontal;
 display: -moz-box;

 -webkit-box-orient: horizontal;
 display: -webkit-box;

 -ms-box-orient: horizontal;
 display: -ms-box;
 }

 #b {
 box-flex: 1;
 -moz-box-flex: 1;
 -webkit-box-flex: 1;
 -ms-box-flex: 1;
 }

None of the browsers currently support the vanilla version, but I put it in
anyway because hopefully in the near future only that version will be neces-
sary. This technique is worth learning about because it may well become the
preferred layout technique in the future.

For a complete example, take a look at Figure 4-11, which shows a standard
two-column page.

Book III
Chapter 4

Using
Alternative
Positioning

Flexible Box Layout Model 349

Figure 4-11:
This
standard
layout uses
flexbox.

Though you can’t tell from the screen shot, this page uses HTML5 through-
out, including the new semantic tags (See the sidebar for a discussion of
semantic tags) and a flexbox layout model.

Although the CSS code may look complex, it’s actually quite simple, but
repeated four times to handle all the various browser prefixes:

<!DOCTYPE HTML>
 <html lang = "en">
 <head>
 <title>flexTwoCol.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 #all {
 display: box;
 display: -moz-box;
 display: -wekbit-box;
 display: -ms-box;

 box-orient: vertical;
 -moz-box-orient: vertical;
 -webkit-box-orient: vertical;
 -ms-box-orient: vertical;

 height: 400px;
 width: 600px;
 margin-right: auto;
 margin-left: auto;
 }

 #main {
 display: box;
 display: -moz-box;
 display: -webkit-box;
 display: -ms-box;

Flexible Box Layout Model350

 box-orient: horizontal;
 -moz-box-orient: horizontal;
 -webkit-box-orient: horizontal;
 -ms-box-orient: horizontal;
 }

 #nav {
 box-flex: 1;
 -moz-box-flex: 1;
 -webkit-box-flex: 1;
 -ms-box-flex: 1;
 }

 #article {
 box-flex: 6;
 -moz-box-flex: 6;
 -webkit-box-flex: 6;
 -ms-box-flex: 6;
 }

 header, footer {
 display:block;
 text-align: center;
 }
 </style>
 </head>

 <body>
 <div id = "all">
 <header>
 <hgroup>
 <h1>Two Column Demo</h1>
 <h2>Using flexbox layout</h2>
 </hgroup>
 </header>

 <div id = "main">

 <div id = "nav">
 <h2>Navigation List</h2>

 one
 two
 three
 four
 five

 </div>

 <div id = "article">
 <h2>Main content</h2>
 </div>
 </div>

 <footer>
 <h2>Andy Harris</h2>

 http://www.aharrisbooks.net
 </footer>
 </div>
 </body>
 </html>

Book III
Chapter 4

Using
Alternative
Positioning

351Determining Your Layout Scheme

The flexbox approach is really promising. When you get used to it, flexbox is
less mysterious than the float approach, and far more flexible than abso-
lute positioning. Essentially, my page uses a fixed width div and places a flex-
box inside it. There’s no need to worry about float, clear, or any specific
measurements except the one for the all div. The only downside is the need
to code the CSS for all the browser prefixes. For now, I fix that with macros in
my text editor.

Determining Your Layout Scheme

All these layout options might just make your head spin. What’s the right
strategy? Well, that depends.

The most important thing is to find a technique you’re comfortable with that
gives you all the flexibility you need.

Floating layouts are generally your best bet, but it’s good to know how abso-
lute positioning works. Every once in a while, you find a situation where
absolute positioning is a good idea, but generally it’s more difficult to pull off
than the floating mechanism.

Absolute positioning seems very attractive at first because it promises so
much control. The truth is, it’s pretty complicated to pull off well, it isn’t

Web developers have embraced the idea of
semantic markup, which is all about labeling
things based on their meaning. Soon enough,
nearly every page had a number of divs with
the same name: div id = “header”, div id = “nav-
igation”, div id = “footer”, and so on.

HTML5 finally released a set of semantic
markup elements to describe the standard
page elements. Here’s a list of the most impor-
tant ones:

<header> - describes the header area of your
page

<nav> - navigation element, often contains
some sort of menu system

<section> - contains a section of content

<article> - contains an article – typically gener-
ated from an external source

<footer> - contains the footer elements

The semantic elements are useful because
they simplify markup. Unfortunately, all the
browsers do not yet recognize these elements.
They will render just fine, but it may be a while
before CSS can be used with these elements
with any confidence.

Introducing Semantic Layout Tags

352 Determining Your Layout Scheme

quite as flexible as the floating layout techniques, and it’s hard to make it
work right in older browsers.

Sometimes, fixed and relative positioning schemes are handy, as in the exam-
ple introduced in the fixed menu example described in this chapter.

The flexbox approach seems very promising, but it’s currently tedious to
write as you’ll need to repeat your code for all the browser prefixes. When it
can be used without prefixes, it will probably become the dominant scheme.

Sometimes, you’ll find it’s best to combine schemes. (It’s difficult to combine
absolute positioning with another scheme, but you can safely combine float-
ing, fixed, and relative positioning techniques most of the time.)

The main point is to understand the various options available to you so you
can make a good choice for whatever project you’re currently working on.

 Visit www.dummies.com/extras/html5css3aio for more on JavaScript
Libraries.

Part IV
Client-Side Programming

with JavaScript

http://www.dummies.com/extras/html5css3aio

Contents at a Glance

Contents at a Glance

Chapter 1: Getting Started with JavaScript . .355
Working in JavaScript..355
Writing Your First JavaScript Program ...357
Introducing Variables ...359
Using Concatenation to Build Better Greetings ..362
Understanding the String Object ..364
Understanding Variable Types ..368
Changing Variables to the Desired Type ...372

Chapter 2: Talking to the Page .375
Understanding the Document Object Model ...375
Managing Button Events ...379
Managing Text Input and Output ..384
Writing to the Document ...388
Working with Other Text Elements ...391

Chapter 3: Decisions and Debugging .399
Making Choices with If ..399
Managing Repetition with for Loops ...406
Building While Loops ...413
Managing Errors with a Debugger ..418

Chapter 4: Functions, Arrays, and Objects . .429
Breaking Code into Functions ...429
Passing Data to and from Functions ..432
Managing Scope ...437
Building a Basic Array ...439
Working with Two-Dimension Arrays ..444
Creating Your Own Objects ...449
Introducing JSON ...454

Chapter 5: Getting Valid Input .459
Getting Input from a Drop-Down List ...459
Managing Multiple Selections ...462
Check, Please: Reading Check Boxes ...465
Working with Radio Buttons ...468
Interpreting Radio Buttons ..469
Working with Regular Expressions ..470
New HTML5/CSS3 Tricks for Validation ..479

Chapter 6: Drawing on the Canvas .483
Canvas Basics ...483
Fill and Stroke Styles ..486
Drawing Essential Shapes ..491
Working with Paths ..496
Images ..505
Manipulating Pixels ..508

Chapter 7: Animation with the Canvas .511
Transformations ..511
Animation ...515
Reading the Keyboard ..521

Chapter 1: Getting Started with
JavaScript

In This Chapter
✓ Adding JavaScript code to your pages

✓ Setting up your environment for JavaScript

✓ Creating variables

✓ Inputting and outputting with modal dialogs

✓ Using concatenation to build text data

✓ Understanding data types

✓ Using string methods and properties

✓ Using conversion functions

W
eb pages are defined by the HTML code and fleshed out by CSS.
But to make them move and breathe, sing, and dance, you need to

add a programming language or two. If you thought building web pages
was cool, you’re going to love what you can do with a little programming.
Programming is what makes pages interact with the user. Interactivity is the
“new” in “new media” (if you ask me, anyway). Learn to program, and your
pages come alive.

Sometimes people are nervous about programming. It seems difficult
and mysterious, and only super-geeks do it. That’s a bunch of nonsense.
Programming is no more difficult than HTML and CSS. It’s a natural exten-
sion, and you’re going to like it.

In this chapter, you discover how to add code to your web pages. You use
a language called JavaScript, which is already built into most web brows-
ers. You don’t need to buy any special software, compilers, or special tools
because you build JavaScript just like HTML and CSS — in an ordinary text
editor or a specialty editor such as Aptana.

Working in JavaScript
JavaScript is a programming language first developed by Netscape
Communications. It is now standard on nearly every browser. You should
know a few things about JavaScript right away:

Working in JavaScript356

 ✦ It’s a real programming language. Don’t let anybody tell you otherwise.
Sure, JavaScript doesn’t have all the same features as a monster, such as
C++ or VB.NET, but it still has all the hallmarks of a complete program-
ming language.

 ✦ It’s not Java. Sun Microsystems developed a language called Java, which
is also sometimes used in web programming. Despite the similar names,
Java and JavaScript are completely different languages. The original plan
was for JavaScript to be a simpler language for controlling more complex
Java applets, but that never really panned out.

 Don’t go telling people you’re programming in Java. Java people love to
act all superior and condescending when JavaScript programmers make
this mistake. If you’re not sure, ask a question on my web page. I can
help you with either language.

 ✦ It’s a scripting language. As programming languages go, JavaScript’s
pretty friendly. It’s not quite as strict or wordy as some other languages.
It also doesn’t require any special steps (such as compilation), so it’s
pretty easy to use. These things make JavaScript a great first language.

Choosing a JavaScript editor
Even though JavaScript is a programming language, it is still basically text.
Because it’s normally embedded in a web page, you can work in the same
text editor you’re using for HTML and CSS. I’m a big fan of Komodo because
the same general features you’ve been enjoying in HTML and CSS are even
more important when you’re writing code in a more formal programming
language:

 ✦ Syntax highlighting: Like it does with HTML and CSS, Komodo automati-
cally adjusts code colors to help you see what’s going on in your pro-
gram. As you see in the later sidebar “Concatenation and your editor,”
this adjustment can be a big benefit when things get complicated.

 ✦ Code completion: When you type the name of an object, Komodo pro-
vides you with a list of possible completions. This shortcut can be really
helpful because you don’t have to memorize all the details of the various
functions and commands.

 ✦ Pop-up help: As you enter a function that Komodo recognizes, it auto-
matically pops up a help menu explaining what the function does and
what parameters could be placed there.

Picking your test browser
In addition to your editor, you should think again about your browser when
you’re testing JavaScript code. All the major browsers support JavaScript,
and the support for JavaScript is relatively similar across the browsers (at
least for the stuff in this chapter). However, browsers aren’t equal when it
comes to testing your code.

Writing Your First JavaScript Program 357

Book IV
Chapter 1

Getting Started
 w

ith JavaScript

Things will go wrong when you write JavaScript code, and the browser is
responsible for telling you what went wrong. Chrome is by far the favorite
browser for JavaScript programmers today because it has extremely power-
ful editing tools. The Firebug plug-in adds many of the same features to other
browsers, but it’s probably best to start with Chrome because everything
you need is already built-in. See Chapter 3 of this mini-book for much more
on debugging JavaScript code.

Writing Your First JavaScript Program
The foundation of any JavaScript program is a standard web page like the
ones featured in the first three minibooks.

To create your first JavaScript program, you need to add JavaScript code to
your pages. Figure 1-1 shows the classic first program in any language.

Figure 1-1:
A
JavaScript
program
caused this
little dialog
box to pop
up!

This page has a very simple JavaScript program in it that pops up the phrase
“Hello, World!” in a special element called a dialog box. It’s pretty cool.

There’s a long tradition in programming lan-
guages that your first program in any language
should simply say, “Hello, World!” and do noth-
ing else. There’s actually a very good practical
reason for this habit. Hello World is the sim-
plest possible program you can write that you
can prove works. Hello World programs are

used to help you figure out the mechanics of
the programming environment — how the pro-
gram is written, what special steps you have
to do to make the code run, and how it works.
There’s no point in making a more complicated
program until you know you can get code to
pop up and say hi.

Hello World?

Writing Your First JavaScript Program358

Here’s an overview of the code:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>HelloWorld.html</title>
 <script type = "text/javascript">
 // Hello, world!
 alert("Hello, World!");
 </script>
 </head>
 <body>
 </body>
</html>

As you can see, this page contains nothing in the HTML body. You can incor-
porate JavaScript with HTML content. For now, though, you can simply place
JavaScript code in the head area in a special tag and make it work.

Embedding your JavaScript code
JavaScript code is placed in your web page via the <script> tag. JavaScript
code is placed inside the <script></script> pair. The <script> tag
has one required attribute, type, which will usually be text/javascript.
(Other types are possible, but they’re rarely used.)

Creating comments
Just like HTML and CSS, comments are important. Because programming
code can be more difficult to decipher than HTML or CSS, it’s even more
important to comment your code in JavaScript than it is in these envi-
ronments. The comment character in JavaScript is two slashes (//).The
browser ignores everything from the two slashes to the end of the line. You
can also use a multi-line comment (/* */) just like the one in CSS.

Using the alert() method for output
You can output data in JavaScript in a number of ways. In this chapter, I
focus on the simplest to implement and understand — the alert().

This technique pops up a small dialog box containing text for the user to
read. The alert box is an example of a modal dialog. Modal dialogs interrupt
the flow of the program until the user pays attention to them. Nothing else
will happen in the program until the user acknowledges the dialog by click-
ing the OK button. The user can’t interact with the page until he clicks the
button.

 Modal dialogs may seem a bit rude. In fact, you probably won’t use them
much after you discover other input and output techniques. The fact that
the dialog box demands attention makes it a very easy tool to use when you
start programming. I use it (and one of its cousins) throughout this chapter

Introducing Variables 359

Book IV
Chapter 1

Getting Started
 w

ith JavaScript

because it’s easy to understand and use. Also, note that the dialog will be
slightly different from browser to browser and between operating systems.
There isn’t really a way to control more precisely how dialogs work, but
they’re easy. You’ll learn much more sophisticated means of interacting with
the user in the next few chapters.

Adding the semicolon
Each command in JavaScript ends with a semicolon (;) character. The semico-
lon in most computer languages acts like the period in English. It indicates the
end of a logical thought. Usually, each line of code is also one line in the editor.

 To tell the truth, JavaScript will usually work fine if you leave out the semico-
lons. However, you should add them anyway because they help clarify your
meaning. Besides, many other languages, including PHP (see Book V),
require semicolons. You may as well start a good habit now.

Introducing Variables
Computer programs get their power by working with information. Figure 1-2
shows a program that gets user data from the user to include in a custom-
ized greeting.

Figure 1-2:
First, the
program
asks the
user for a
name.

This program introduces a new kind of dialog that allows the user to enter
some data. The information is stored in the program for later use. After the
user enters her name, she gets a greeting, as shown in Figure 1-3.

Figure 1-3:
The
beginning of
the greeting.
Press the
button for
the rest.

Introducing Variables360

The rest of the greeting happens in a second dialog box, shown in Figure 1-4.
It incorporates the username supplied in the first dialog box.

 Your browser might or might not have the ‘prevent this page from creating
additional dialogs’ checkbox. This is actually a nice debugging feature in
Chrome. It will be possible to create programs that get out of control.
Chrome noticed two dialogs popping up in a row and thinks we might be in
one of those dangerous situations, called an endless loop. (More on loops,
endless and otherwise, in Chapter 3 of this mini-book.) For now, just press
the OK button because this program is acting as intended. Soon enough,
we’ll stop using dialogs because they’re just too annoying.

Figure 1-4:
Now the
greeting is
complete.

The output may not seem that incredible, but take a look at the source code
to see what’s happening:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>prompt.html</title>
 <script type = "text/javascript">
 // from prompt.html
 var person = "";
 person = prompt("What is your name?");
 alert("Hi");
 alert(person);
 </script>
 </head>
 <body>
 </body>
</html>

Creating a variable for data storage
This program is interesting because it allows user interaction. The user
can enter a name, which is stored in the computer and then returned in
a greeting. The key to this program is a special element called a variable.

Introducing Variables 361

Book IV
Chapter 1

Getting Started
 w

ith JavaScript

Variables are simply places in memory for holding data. Any time you want a
computer program to “remember” something, you can create a variable and
store your information in it.

Variables typically have the following characteristics:

 ✦ The var statement: You can indicate that you’re creating a variable with
the var command.

 ✦ A name: When you create a variable, you’re required to give it a name.

 ✦ An initial value: It’s useful to give each variable a value immediately.

 ✦ A data type: JavaScript automatically determines the type of data in a
variable (more on this in the upcoming “Understanding Variable Types”
section), but you should still be clear in your mind what type of data
you expect a variable to contain.

Asking the user for information
The prompt statement does several interesting things:

 ✦ Pops up a dialog box. This modal dialog box is much like the one the
alert() method creates.

 ✦ Asks a question. The prompt() command expects you to ask the user a
question.

 ✦ Provides space for a response. The dialog box contains a space for the
user to type a response and buttons for the user to click when he’s fin-
ished or wants to cancel the operation.

 ✦ Passes the information to a variable. The purpose of a prompt() com-
mand is to get data from the user, so prompts are nearly always con-
nected to a variable. When the code is finished, the variable contains the
indicated value.

Responding to the user
This program uses the alert() statement to begin a greeting to the user.
The first alert works just like the one from the helloWorld program,
described earlier in this chapter in the “Writing Your First JavaScript
Program” section:

 alert("Hi");

The content of the parentheses is the text you want the user to see. In this
case, you want the user to see the literal value “Hi”.

The second alert() statement is a little bit different:

 alert(person);

Using Concatenation to Build Better Greetings362

This alert() statement has a parameter with no quotes. Because the
parameter has no quotes, JavaScript understands that you don’t really want
to say the text person. Instead, it looks for a variable named person and
returns the value of that variable.

The variable can take any name, store it, and return a customized greeting.

Using Concatenation to Build Better Greetings
To have a greeting and a person’s name on two different dialogs seems a
little awkward. Figure 1-5 shows a better solution.

Figure 1-5:
Once again,
I ask the
user for a
name.

The program asks for a name again and stores it in a variable. This time, the
greeting is combined into one alert (see Figure 1-6), which looks a lot better.

Figure 1-6:
Now the
user’s name
is integrated
into the
greeting.

The secret to Figure 1-6 is one of those wonderful gems of the computing world:
a really simple idea with a really complicated name. The term concatenation is
a delightfully complicated word for a basic process. Look at the following code,
and you see that combining variables with text is not all that complicated:

 <script type = "text/javascript">
 //from concat.html

Using Concatenation to Build Better Greetings 363

Book IV
Chapter 1

Getting Started
 w

ith JavaScript

 var person = "";
 person = prompt("What is your name?");
 alert("Hi there, " + person + "!");
 </script>

 For the sake of brevity, I include only the script tag and its contents through-
out this chapter. The rest of this page is a standard blank HTML page. You
can see the complete document on the website. I do include a comment in
each JavaScript snippet that indicates where you can get the entire file on
the companion website.

Comparing literals and variables
The program concat.html contains two kinds of text. "Hi there, " is a
literal text value. That is, you really mean to say “Hi there, " (including the
comma and the space). person is a variable. (For more on variables, see the
section “Introducing Variables,” earlier in this chapter.)

You can combine literal values and variables in one phrase if you want:

 alert("Hi there, " + person + "!");

The secret to this code is to follow the quotes. "Hi there, " is a literal
value because it is in quotes. On the other hand, person is a variable name
because it is not in quotes; "!" is a literal value. You can combine any
number of text snippets together with the plus sign.

Using the plus sign to combine text is called concatenation. (I told you it was
a complicated word for a simple idea.)

The hard part about concatenation is figuring
out which part of your text is a literal value and
which part is a string. It won’t take long before
you go cross-eyed trying to understand where
the quotes go.

Modern text editors (like Komodo) have a won-
derful feature that can help you here. They
color different kinds of text. By default, Komodo
makes JavaScript keywords purple, text blue,

and variables black. This can be really helpful,
especially when you do something goofy like
forget to close a quote.

If these color differences are too subtle for
you, most editors that have syntax highlighting
allow you to change settings to fit your needs.
Don’t be afraid to use these tools to help you
program better.

Concatenation and your editor

Understanding the String Object364

Including spaces in your concatenated phrases
You may be curious about the extra space between the comma and the
quote in the output line:

 alert("Hi there, " + person + "!");

This extra space is important because you want the output to look like a
normal sentence. If you don’t have the space, the computer doesn’t add one,
and the output looks like this:

 Hi there,Rachael!

 You need to construct the output as it should look, including spaces and
punctuation.

Understanding the String Object
The person variable used in the previous program is designed to hold text.
Programmers (being programmers) devised their own mysterious term to
refer to text. In programming, text is referred to as string data.

 The term string comes from the way text is stored in computer memory. Each
character is stored in its own cell in memory, and all the characters in a
word or phrase reminded the early programmers of beads on a string.
Surprisingly poetic for a bunch of geeks, huh?

Introducing object-based programming (and cows)
JavaScript (and many other modern programming languages) uses a power-
ful model called object-oriented programming (OOP). This style of program-
ming has a number of advantages. Most important for beginners, it allows
you access to some very powerful objects that do interesting things out of
the box.

Objects are used to describe complicated things that can have a lot of char-
acteristics — like a cow. You can’t really put an adequate description of a
cow in an integer variable.

In many object-oriented environments, objects can have the following char-
acteristics. (Imagine a cow object for the examples.)

 ✦ Properties: Characteristics about the object, such as breed and age

 ✦ Methods: Things the objects can do, such as moo() and giveMilk()

 ✦ Events: Stimuli the object responds to, such as onTip

I describe each of these ideas throughout this minibook because not all
objects support all these characteristics.

Understanding the String Object 365

Book IV
Chapter 1

Getting Started
 w

ith JavaScript

If you have a variable of type cow, it describes a pretty complicated thing.
This thing might have properties, methods, and events, all of which can be
used together to build a good representation of a cow. (Believe it or not,
I’ve built cow programming constructs more than once in my life — and you
thought programming was dull!)

Most variable types in Java are actually objects, and most JavaScript objects
have a full complement of properties and methods; many even have event
handlers. Master how these things work and you’ve got a powerful and com-
pelling programming environment.

 Okay, before you send me any angry e-mails, I know debate abounds about
whether JavaScript is a truly object-oriented language. I’m not going to get
into the (frankly boring and not terribly important) details in this beginner
book. We’re going to call JavaScript object-oriented for now because it’s
close enough for beginners. If that bothers you, you can refer to JavaScript
as an object-based language. Nearly everyone agrees with that. You can find
out more information on this topic throughout this minibook while you dis-
cover how to make your own objects in Chapter 4 and use HTML elements
as objects in Chapter 2.

Investigating the length of a string
When you assign text to a variable, JavaScript automatically treats the vari-
able as a string object. The object instantly takes on the characteristics of a
string object. Strings have a couple of properties and a bunch of methods.
The one interesting property (at least for beginners) is length. Look at the
example in Figure 1-7 to see the length property in action.

Figure 1-7:
This
program
reports the
length of
any text.

That’s kind of cool how the program can figure out the length of a phrase.
The cooler part is the way it works. As soon as you assign a text value to a
variable, JavaScript treats that variable as a string, and because it’s a string,
it now has a length property. This property returns the length of the string
in characters. Here’s how it’s done in the code.

Understanding the String Object366

 <script type = "text/javascript">
 //from nameLength.html

 var person = prompt("Please enter your name.");
 var length = person.length;

 alert("Hi, " + person + "!");
 alert("The name " + person + " is " + length + " characters long.");
 </script>

A property is used like a special subvariable. For example, person is a vari-
able in the previous example. person.length is the length property of
the person variable. In JavaScript, an object and a variable are connected
by a period (with no spaces).

 The string object in JavaScript has only two other properties (constructor
and prototype). Both of these properties are needed only for advanced pro-
gramming, so I skip them for now.

Using string methods to manipulate text
The length property is kind of cool, but the string object has a lot more up
its sleeve. Objects also have methods (things the object can do). Strings in
JavaScript have all kinds of methods. Here are a few of my favorites:

 ✦ toUpperCase() makes an entirely uppercase copy of the string.

 ✦ toLowerCase() makes an entirely lowercase copy of the string.

 ✦ substring() returns a specific part of the string.

 ✦ indexOf() determines whether one string occurs within another.

 The string object has many other methods, but I’m highlighting the preced-
ing because they’re useful for beginners. Many string methods, such as
big() and fontColor(), simply add HTML code to text. They aren’t used
very often because they produce HTML code that won’t validate, and they
don’t really save a lot of effort anyway. Some other methods, such as
search(), replace(), and slice(), use advanced constructs like arrays
and regular expressions that aren’t necessary for beginners. (To find out
more about working with arrays, see Chapter 4 of this minibook. You can
find out more about regular expressions in Chapter 5.)

 Don’t take my word for it. Look up the JavaScript string object (in one of the
many online JavaScript references) and see what properties and methods it has.

Like properties, methods are attached to an object by the period. Methods
are distinguished by a pair of parentheses, which sometimes contain special
information called parameters.

The best way to see how methods work is to look at some in action. Look at
the code for stringMethods.html:

Understanding the String Object 367

Book IV
Chapter 1

Getting Started
 w

ith JavaScript

 <script type = "text/javascript">
 //from stringMethods.html

 var text = new String;
 text = prompt("Please enter some text.");

 alert("I'll shout it out:");
 alert(text.toUpperCase());

 alert("Now in lowercase...");
 alert(text.toLowerCase());

 alert("The first 'a' is at letter...");
 alert(text.indexOf("a"));

 alert("The first three letters are ...");
 alert(text.substring(0, 3));

 </script>

Figure 1-8 displays the output produced by this program.

Figure 1-8:
String
methods
can be fun.

In this example, I explicitly defined text as a string variable by saying

var text = new String;

JavaScript does not require you to explicitly determine the type of a vari-
able, but you can do so, and this is sometimes helpful.

Understanding Variable Types368

 Here’s another cool thing about Komodo Edit. When you type text, Komodo
understands that you’re talking about a string variable and automatically
pops up a list of all the possible properties and methods of the string object.
I wish I had that when I started doing this stuff!

You can see from the preceding code that methods are pretty easy to use.
When you have a string variable, you can invoke the variable name followed
by a period and the method name. Some methods require more information
to do their job. Here are the specifics:

 ✦ toUpperCase() and toLowerCase() take the value of the variable
and convert it entirely to the given case. This method is often used
when you aren’t concerned about the capitalization of a variable.

 ✦ indexOf(substring) returns the character position of the substring
within the variable. If the variable doesn’t contain the substring, it
returns the value –1.

 ✦ substring(begin, end) returns the substring of the variable from
the beginning character value to the end.

Understanding Variable Types
JavaScript isn’t too fussy about whether a variable contains text or a
number, but the distinction is still important because it can cause some
surprising problems. To illustrate, take a look at a program that adds two
numbers together, and then see what happens when you try to get num-
bers from the user to add.

The character locations for JavaScript (and
most programming languages) will seem some-
what strange to you until you know the secret.
You may expect text.substring(1,3) to
return the first three characters of the variable
text, yet I used text.substring(0,3).
Here’s why: The indices don’t refer to the char-
acter numbers but can be thought of as the
indices between characters.

|a|b|c|d|
0 1 2 3 4

So, if I want the first three characters of the
string abcd, I use substring(0,3). If I
want the cd part, it’s substring(2,4).

Why are the first three characters (0, 3)?

Understanding Variable Types 369

Book IV
Chapter 1

Getting Started
 w

ith JavaScript

Adding numbers
First, take a look at the following program:

 <script type = "text/javascript">
 //from addNumbers.html

 var x = 5;
 var y = 3;
 var sum = x + y;

 alert(x + " plus " + y + " equals " + sum);
 </script>

(As usual for this chapter, I’m only showing the script part because the rest
of the page is blank.)

This program features three variables. I’ve assigned the value 5 to x and 3 to
y. I then add x + y and assign the result to a third variable, sum. The last line
prints the results, which are also shown in Figure 1-9.

Figure 1-9:
This
program
(correctly)
adds two
numbers
together.

Note a few important things from this example:

 ✦ You can assign values to variables. It’s best to read the equal sign as
“gets” so that the first assignment is read as “variable x gets the value
5.”

 var x = 5;

 ✦ Numeric values aren’t enclosed in quotes. When you refer to a text
literal value, it’s always enclosed in quotes. Numeric data, such as the
value 5, isn’t placed in quotes.

 ✦ You can add numeric values. Because x and y both contain numeric
values, you can add them together.

 ✦ You can replace the results of an operation in a variable. The result of
the calculation x + y is placed in a variable called sum.

Understanding Variable Types370

 ✦ Everything works as expected. The behavior of this program works as
expected. That’s important because it’s not always true. (You can see an
example of this behavior in the next section — I love writing code that
blows up on purpose!)

Adding the user’s numbers
The natural extension of the addNumbers.html program is a feature that
allows the user to input two values and then returns the sum. This program
can be the basis for a simple adding machine. Here’s the JavaScript code:

 <script type = "text/javascript">
 //from addInputWrong.html

 var x = prompt("first number:");
 var y = prompt("second number:");
 var sum = x + y;

 alert(x + " plus " + y + " equals " + sum);
 </script>

This code seems reasonable enough. It asks for each value and stores them
in variables. It then adds the variables and returns the results, right? Well,
look at Figure 1-10 to see a surprise.

Figure 1-10:
Wait a
minute…
3 + 5 = 35?

Something’s obviously not right here. To understand the problem, you need
to see how JavaScript makes guesses about data types (see the next section).

The trouble with dynamic data
Ultimately, all the information stored in a computer, from music videos to
e-mails, is stored as a bunch of ones and zeroes. The same value 01000001
can mean all kinds of things: It may mean the number 65 or the character
A. (In fact, it does mean both those things in the right context.) The same
binary value may mean something entirely different if it’s interpreted as a
real number, a color, or a part of a sound file.

The theory isn’t critical here, but one point is really important: Somehow
the computer has to know what kind of data is stored in a specific variable.

Understanding Variable Types 371

Book IV
Chapter 1

Getting Started
 w

ith JavaScript

Many languages, such as C and Java, have all kinds of rules about defining
data. If you create a variable in one of these languages, you have to define
exactly what kind of data will go in the variable, and you can’t change it.

JavaScript is much more easygoing about variable types. When you make
a variable, you can put any kind of data in it that you want. In fact, the data
type can change. A variable can contain an integer at one point, and the
same variable may contain text in another part of the program.

JavaScript uses the context to determine how to interpret the data in a par-
ticular variable. When you assign a value to a variable, JavaScript puts the
data in one of the following categories:

 ✦ Integers are whole numbers (no decimal part). They can be positive or
negative values.

 ✦ A floating point number has a decimal point — for example, 3.14. You can
also express floating point values in scientific notation, such as 6.02e23
(Avogadro’s number –6.02 times 10 to the 23rd). Floating point numbers
can also be negative.

 ✦ A Boolean value can only be true or false.

 ✦ Text is usually referred to as string data in programming languages.
String values are usually enclosed in quotes.

 ✦ Arrays and objects are more complex data types that you can ignore for
now.

Most of the time, when you make a variable, JavaScript guesses right,
and you have no problems. But sometimes, JavaScript makes some faulty
assumptions, and things go wrong.

The pesky plus sign
I use the plus sign in two ways throughout this chapter. The following code
uses the plus sign in one way (concatenating two string values):

var x = "Hi, ";
var y = "there!";

result = x + y;
alert(result);

In this code, x and y are text variables. The result = x + y line is inter-
preted as “concatenate x and y,” and the result is "Hi, there!"

Here’s the strange thing: The following code is almost identical.

var x = 3;
var y = 5;

result = x + y;
alert(result);

Changing Variables to the Desired Type372

Strangely, the behavior of the plus sign is different here, even though the
statement result = x + y is identical in the two code snippets.

In this second case, x and y are numbers. The plus operator has two entirely
different jobs. If it’s surrounded by numbers, it adds. If it’s surrounded by
text, it concatenates.

That’s what happened to the first adding machine program. When the user
enters data in prompt dialogs, JavaScript assumes that the data is text.
When I try to add x and y, it “helpfully” concatenates instead.

 There’s a fancy computer science word for this phenomenon (an operator
doing different things in different circumstances). Those Who Care about
Such Things call this mechanism an overloaded operator. Smart people
sometimes have bitter arguments about whether overloaded operators are
a good idea because they can cause problems like this one, but they can
also make things easier in other contexts. I’m not going to enter into that
debate here. It’s not really a big deal, as long as you can see the problem
and fix it.

Changing Variables to the Desired Type
If JavaScript is having a hard time figuring out what type of data is in a
variable, you can give it a friendly push in the right direction with some
handy conversion functions, as shown in Table 1-1.

Table 1-1 Variable Conversion Functions
Function From To Example Result

parseInt() String Integer parseInt(“23”) 23

parseFloat() String Floating
point

parse-
Float(“21.5”)

21.5

toString() Any variable String myVar.toString() varies

eval() Expression Result eval(“5 + 3”) 8

Math.ceil() Floating
point

Integer Math.ceil(5.2) 6

Math.floor() Floating
point

Integer Math.floor(5.2) 5

Math.
round()

Floating
point

Integer Math.round(5.2) 5

Changing Variables to the Desired Type 373

Book IV
Chapter 1

Getting Started
 w

ith JavaScript

Using variable conversion tools
The conversion functions are incredibly powerful, but you only need them if
the automatic conversion causes you problems. Here’s how they work:

 ✦ parseInt() is used to convert text to an integer. If you put a text
value inside the parentheses, the function returns an integer value. If the
string has a floating-point representation (“4.3” for example), an integer
value (4) is returned.

 ✦ parseFloat() converts text to a floating-point value.

 ✦ toString() takes any variable type and creates a string representa-
tion. Usually, using this function isn’t necessary to use because it’s
invoked automatically when needed.

 ✦ eval() is a special method that accepts a string as input. It then
attempts to evaluate the string as JavaScript code and return the output.
You can use this method for variable conversion or as a simple calcula-
tor — eval(“5 + 3”) returns the integer 8.

 ✦ Math.ceil() is one of several methods of converting a floating-point
number to an integer. This technique always rounds upward, so Math.
ceil(1.2) is 2, and Math.ceil(1.8) is also 2.

 ✦ Math.floor() is similar to Math.ceil(), except it always rounds
downward, so Math.floor(1.2) and Math.floor(1.8) will both
evaluate to 1.

 ✦ Math.round() works like the standard rounding technique used in
grade school. Any fractional value less than .5 rounds down, and greater
than or equal to .5 rounds up, so Math.round(1.2) is 1, and Math.
round(1.8) is 2.

Fixing the addInput code
With all this conversion knowledge in place, it’s pretty easy to fix up the
addInput program so that it works correctly. Just use parseFloat() to
force both inputs into floating-point values before adding them. You don’t
have to explicitly convert the result to a string. That’s automatically done
when you invoke the alert() method.

 // from addInput.html

 var x = prompt("first number:");
 var y = prompt("second number:");
 var sum = parseFloat(x) + parseFloat(y);

 alert(x + " plus " + y + " equals " + sum);

Changing Variables to the Desired Type374

You can see the program works correctly in Figure 1-11.

Figure 1-11:
Now the
program
asks for
input and
correctly
returns the
sum.

Conversion methods allow you to ensure that the data is in exactly the
format you want.

Chapter 2: Talking to the Page

In This Chapter
✓ Introducing the Document Object Model

✓ Responding to form events

✓ Connecting a button to a function

✓ Retrieving data from text fields

✓ Changing text in text fields

✓ Sending data to the page

✓ Working with other text-related form elements

J
avaScript is fun and all, but it lives in web browsers for a reason: to let
you change web pages. The best thing about JavaScript is how it helps

 you control the page. You can use JavaScript to read useful information
from the user and to change the page on the fly.

Understanding the Document Object Model
JavaScript programs usually live in the context of a web page. The contents
of the page are available to the JavaScript programs through a mechanism
called the Document Object Model (DOM).

The DOM is a special set of complex variables that encapsulates the entire
contents of the web page. You can use JavaScript to read from the DOM and
determine the status of an element. You can also modify a DOM variable and
change the page from within JavaScript code.

Previewing the DOM
The easiest way to get a feel for the DOM is to load a page in Chrome and
play around in the console. Follow these steps to get a feel for the DOM:

 1. Use the Chrome browser.

 Most browsers have something like the web developer console used in
this example, but Chrome’s is very easy to use and comes built-in, so
you should begin with that one.

 2. Load any page you want.

 It’s probably easiest to start with a page that’s relatively simple, so you
can get a sense of what’s happening.

Understanding the Document Object Model376

 3. Turn on the web developer toolbar.

 Use the F12 key, View ➪ Developer ➪ Developer Tools or Tools ➪
Developer Tools from the menu. (It may vary based on your version of
Chrome or your operating system.)

 4. Go to the Console tab.

 The Developer Tools window has many tabs, but the console tab is the
one we need for now (and it will continue to be useful as you get more
advanced).

 5. Type document.

 Don’t forget the period at the end. When you type a period, Chrome’s
auto-complete describes all the various elements related to the docu-
ment. document is a very fancy variable (called an object) that contains
a ton of sub-variables. You can scroll through this list to see all the
things related to document.

 6. Change the page’s background color.

 Try typing this in the console:
document.body.style.backgroundColor = “green”

 You can use this trick to (temporarily) change all kinds of features.

 7. Play around with the document tree a bit more.

 It’s fine if you don’t know exactly what’s going on yet, but use this tech-
nique to get a general feel for the complexity of the page and all the
interesting things you can do with it.

Figure 2-1 illustrates a simple web page being dynamically modified through
the console tab.

Figure 2-1:
Even a
very simple
page has
a complex
DOM.

Book IV
Chapter 2

Talking to the
Page

Understanding the Document Object Model 377

 The Console tab is far more involved and powerful than I’m letting on here.
Chapter 3 of this mini-book goes into all kinds of details about how to use
this powerful tool to figure out what’s going on in your page.

When you look over the DOM of a simple page, you can easily get over-
whelmed. You’ll see a lot of variables listed. Technically, these variables are
all elements of a special object called window. The window object has a
huge number of subobjects, all listed in the DOM view. Table 1 describes a
few important window variables.

Table 1 Primary DOM Objects
Variable Description Notes

docu-
ment

Represents HTML
page

Most commonly scripted element

location Describes current
URL

Change location.href to move to a new
page

history A list of recently
visited pages

Access this to view previous pages

status The browser status
bar

Change this to set a message in the status
bar

Getting the blues, JavaScript-style
It all gets fun when you start to write JavaScript code to access the DOM.
Take a look at blue.html in Figure 2-2.

Figure 2-2:
This page
is blue. But
where’s the
CSS?

Understanding the Document Object Model378

The page has white text on a blue background, but there’s no CSS! Instead, it
has a small script that changes the DOM directly, controlling the page colors
through code.

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>blue.html</title>
 </head>
 <body>
 <h1>I've got the JavaScript Blues</h1>
 <script type = "text/javascript">
 // use javascript to set the colors
 document.body.style.color = "white";
 document.body.style.backgroundColor = "blue";
 </script>
 </body>
</html>

Writing JavaScript code to change colors
The page shown in Figure 2-3 is pretty simple, but it has a few unique features.

Figure 2-3:
The page is
white. It has
two buttons
on it. I’ve
gotta click
Blue.

 ✦ It has no CSS. A form of CSS is dynamically created through the code.

 ✦ The script is in the body. I can’t place this particular script in the
header because it refers to the body.

 When the browser first sees the script, there must be a body for the
text to change. If I put the script in the head, no body exists when the
browser reads the code, so it gets confused. If I place the script in the
body, there is a body, so the script can change it. (It’s really okay if you

Book IV
Chapter 2

Talking to the
Page

Managing Button Events 379

don’t get this discussion. This example is probably the only time you’ll
see this trick because I show a better way in the next example.)

 ✦ Use a DOM reference to change the style colors. That long “trail of
breadcrumbs” syntax (document.body.style.color) takes you all
the way from the document through the body to the style and finally the
color. It’s tedious but thorough.

 ✦ Set the foreground color to white. You can change the color property to
any valid CSS color value (a color name or a hex value). It’s just like CSS
because you are affecting the CSS.

 ✦ Set the background color to blue. Again, this adjustment is just like set-
ting CSS.

Managing Button Events
Of course, there’s no good reason to write code like blue.html. You will
find that it’s just as easy to build CSS as it is to write JavaScript. The advan-
tage comes when you use the DOM dynamically to change the page’s behav-
ior after it has finished loading.

Figure 2-3 shows a page called backgroundColors.html.

The page is set up with the default white background color. It has two but-
tons on it, which should change the body’s background color. Click the Blue
button, and you see that it works, as verified in Figure 2-4.

Some really exciting things just happened.

 ✦ The page has a form. For more information on form elements, refer to
Book I, Chapter 7.

 ✦ The buttons do something. Plain-old HTML forms don’t really do any-
thing. You’ve got to write some kind of programming code to accomplish
a task. This program does it. Twice. All for free.

If you’ve dug through the DOM style elements,
you’ll notice some interesting things. Many of
the element names are familiar but not quite
identical. background-color becomes
backgroundColor and font-weight
becomes fontWeight. CSS uses dashes to
indicate word breaks, and the DOM combines

words and uses capitalization for clarity. You’ll
find all your old favorite CSS elements, but the
names change according to this very predict-
able formula. Still, if you’re ever confused, just
use the console to look over various style
elements.

Shouldn’t it be background-color?

Managing Button Events380

 ✦ Each button has a special attribute called onclick: The onclick
attribute is an event handler. This is special because it allows you to
apply some sort of action to the button press. The action (a single line of
JavaScript code) assigned to onclick will happen each time the button
is clicked.

 ✦ Each button changes the background to a different color: The Blue
button makes the background blue and the White one — well, you get
it. I simply used the code from the console example to change the back-
ground colors.

 ✦ The code is integrated directly into the buttons: You can attach one
line of JavaScript code to a button’s onclick event. I use that line to
change the background colors.

Here’s the code:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>backgroundColors</title>
 </head>
 <body>
 <h1>Click a button to change the color</h1>
 <form action = "">
 <fieldset>
 <input type = "button"
 value = "blue"
 onclick = "document.body.style.backgroundColor = 'blue'"/>
 <input type = "button"
 value = "white"
 onclick = "document.body.style.backgroundColor = 'white'" />

Figure 2-4: It
turned blue!
Joy!

Book IV
Chapter 2

Talking to the
Page

Managing Button Events 381

 </fieldset>
 </form>
 </body>
</html>

Adding a function for more … functionality
The buttons work, but the program seems quite inefficient. First, buttons can
only have one line of code attached to the onclick event handler. Secondly,
the code is almost exactly the same in both buttons. There must be a more
efficient way. Most of the time, JavaScript code is not done one line at a time.
Instead, it is packaged into a special element called a function. Functions are
simply a collection of code lines with a name. Functions can also be sent an
optional parameter, and they can return output. You learn much more about
functions in Chapter 4 of this minibook, but look at this basic version for
now.

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>backgroundColors</title>
 <script type = "text/javascript">
 // from backgroundColors
 function makeBlue(){
 document.body.style.backgroundColor = "blue";
 } // end changeColor

 function makeWhite(){
 document.body.style.backgroundColor = "white";
 }
 </script>
 </head>
 <body>
 <h1>Click a button to change the color</h1>
 <form action = "">
 <fieldset>
 <input type = "button"
 value = "blue"
 onclick = "makeBlue()"/>
 <input type = "button"
 value = "white"
 onclick = "makeWhite()" />
 </fieldset>
 </form>
 </body>
</html>

This program looks and acts exactly like the program in Figures 2-3 and
2-4, so I don’t provide a screenshot here. The important thing is how I’ve
improved the code underneath the visible part of the page.

Something interesting is happening here. Take a look at how this program
has changed from the first one.

Managing Button Events382

 1. There’s a function called makeBlue()in the script area.

 The function keyword allows you to collect one or more commands
and give them a name. In this case, I’m giving that nasty document.
body.style nonsense a much more sensible name — makeBlue().

 2. The parentheses are necessary.

 Whenever you define a function, you have to include parentheses, but
sometimes (as in this simple example), they’re empty. You see how to
add something to the parentheses in the next example.

 3. One or more lines of code go inside the function.

 Mark a function with squiggle braces ({}). This example has only one line
of code in the function, but you can have as many code lines as you want.

 4. The function name describes what the function does.

 Functions are used to simplify code, so it’s really important that a func-
tion name describes what the function does.

 5. Another function makes the background white.

 One button makes the background blue, and the other makes it white, so
I’ll make a function to go with each button.

 6. Attach the functions to the buttons.

 Now the buttons each call a function rather than doing the work directly.

 You might wonder if all this business of making a function is worth the
effort — after all, these programs seem exactly the same — but the new
one is a bit more work. In this very simple example, the functions are a little
more work but clarify the code a smidge. As your programs get more com-
plex, there’s no doubt that functions improve things, especially as you learn
more about how functions work.

Making a more flexible function
The version of the code that uses functions doesn’t seem a lot easier than
adding the code directly, and it isn’t. But functions are much more powerful
than simply renaming a line of code. If you think about the two functions in
that example, you quickly realize they’re almost exactly the same. It would
be awesome if you could write one simple function and have it change the
background to any color you want. That’s exactly what happens in the next
example (backgroundColorFunction.html). Here’s the code:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>backgroundColors</title>
 <script type = "text/javascript">
 // from backgroundColors
 function changeColor(color){

Book IV
Chapter 2

Talking to the
Page

Managing Button Events 383

 document.body.style.backgroundColor = color;
 } // end changeColor
 </script>
 </head>
 <body>
 <h1>Click a button to change the color</h1>
 <form action = "">
 <fieldset>
 <input type = "button"
 value = "blue"
 onclick = "changeColor('blue')"/>
 <input type = "button"
 value = "white"
 onclick = "changeColor('white')" />
 </fieldset>
 </form>
 </body>
</html>

Once again, this program will seem to the casual user to be exactly like the
programs in Figures 2-3 and 2-4, so I’m not including a screen shot. This
is an important part of computer programming. Often the most important
changes are not visible to the user. If you’ve ever hired a programmer, you’re
no doubt aware of this issue.

 ✦ The page has a single changeColor()function. The page has only one
function called changeColor() defined in the header.

 ✦ The changeColor()function includes a color parameter. This time,
there’s a value inside the parentheses:

function changeColor(color){

 The term color inside the parentheses is called a parameter. A param-
eter is a value sent to a function. Inside the function, color is available
as a variable. When you call a function, you can send a value to it, like
this:

changeColor('white');

 This sends the text value ‘white’ to the function, where it becomes the
value of the color variable.

 You’ll sometimes see the terms argument and parameter used inter-
changeably to reference the stuff passed to a function, but these terms
are not exactly the same. Technically, the parameter is the variable
name (color) and the argument is the value of that variable (‘white’).

 You can design a function with as many parameters as you wish, but you
need to name each one. After a function is designed with parameters,
you must supply an argument for each parameter when you call the
function.

 ✦ Both buttons pass information to changeColor: Both of the buttons
call the changeColor() function, but they each pass a different color
value. This is one of the most useful characteristics of functions. They
allow you to repeat code that’s similar but not identical. That makes it
possible to build very powerful functions that can be reused easily.

Managing Text Input and Output384

Embedding quotes within quotes
Take a careful look at the onclick lines in the code in the preceding sec-
tion. You may not have noticed one important issue:

onclick is an HTML parameter, and its value must be encased in quotes.
The parameter happens to be a function call, which sends a string value.
String values must also be in quotes. This setup can become confusing if you
use double quotes everywhere because the browser has no way to know the
quotes are nested. Look at this incorrect line of code:

onclick = "changeColor("white")" />

HTML thinks the onclick parameter contains the value "changeColor("
and it will have no idea what white")" is.

Fortunately, JavaScript has an easy fix for this problem. If you want to embed
a quote inside another quote, just switch to single quotes. The line is written
with the parameter inside single quotes:

onclick = "changeColor('white')" />

Writing the changeColor function
The changeColor() function is pretty easy to write.

<script type = "text/javascript">
 // from backgroundColors

 function changeColor(color){
 document.body.style.backgroundColor = color;
 } // end changeColor
 //
</script>

It goes in the header area as normal. It’s simply a function accepting one param-
eter called color. The body’s backgroundColor property is set to color.

 I can write JavaScript in the header that refers to the body because the
header code is all in a function. The function is read before the body is in
place, but it isn’t activated until the user clicks the button. By the time the
user activates the code by clicking on the button, there is a body, and there’s
no problem.

Managing Text Input and Output
Perhaps the most intriguing application of the DOM is the ability to let the
user communicate with the program through the web page, without all those
annoying dialog boxes. Figure 2-5 shows a page with a web form containing
two textboxes and a button.

Book IV
Chapter 2

Talking to the
Page

Managing Text Input and Output 385

Figure 2-5:
I’ve typed
a name
into the top
textbox.

When you click the button, something exciting happens, demonstrated by
Figure 2-6.

Figure 2-6:
I got a
greeting!
With no
alert box!

Clearly, form-based input and output is preferable to the constant interrup-
tion of dialog boxes.

Introducing event-driven programming
Graphic user interfaces usually use a technique called event-driven program-
ming. The idea is simple.

Managing Text Input and Output386

 1. Create a user interface.

 In web pages, the user interface is usually built of HTML and CSS.

 2. Identify events the program should respond to.

 If you have a button, users will click it. (If you want to guarantee they
click it, put the text “Launch the Missiles” on the button. I don’t know
why, but it always works.) Buttons almost always have events. Some
other elements do, too.

 3. Write a function to respond to each event.

 For each event you want to test, write a function that does whatever
needs to happen.

 4. Get information from form elements.

 Now you’re accessing the contents of form elements to get information
from the user. You need a mechanism for getting information from a text
field and other form elements.

 5. Use form elements for output.

 For this simple example, I also use form elements for output. The output
goes in a second textbox, even though I don’t intend the user to type
any text there.

Creating the HTML form
The first step in building a program that can manage text input and output is
to create the HTML framework. Here’s the HTML code:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>textBoxes.html</title>
 <script type = "text/javascript">
 // from textBoxes.html
 function sayHi(){
 var txtName = document.getElementById("txtName");
 var txtOutput = document.getElementById("txtOutput");
 var name = txtName.value;
 txtOutput.value = "Hi there, " + name + "!"
 } // end sayHi
 </script>
 <link rel = "stylesheet"
 type = "text/css"
 href = "textBoxes.css" />
 </head>
 <body>
 <h1>Text Box Input and Output</h1>
 <form action = "">
 <fieldset>
 <label>Type your name: </label>
 <input type = "text"
 id = "txtName" />
 <input type = "button"
 value = "click me"

Book IV
Chapter 2

Talking to the
Page

Managing Text Input and Output 387

 onclick = "sayHi()"/>
 <input type = "text"
 id = "txtOutput" />
 </fieldset>
 </form>
 </body>
</html>

As you look over the code, note a few important ideas:

 ✦ The page uses external CSS. The CSS style is nice, but it’s not important
in the discussion here. It stays safely encapsulated in its own file. Of
course, you’re welcome to look it over or change it.

 ✦ Most of the page is a form. All form elements must be inside a form.

 ✦ A fieldset is used to contain form elements. input elements need to be
inside some sort of block-level element, and a fieldset is a natural choice.

 ✦ There’s a text field named txtName. This text field contains the name. I
begin with the phrase txt to remind myself that this field is a textbox.

 ✦ The second element is a button. You don’t need to give the button an ID
(as it won’t be referred to in code), but it does have an onclick() event.

 ✦ The button’s onclick event refers to a (yet undefined) function. In
this example, it’s named “sayHi()”.

 ✦ A second textbox contains the greeting. This second textbox is called
txtOutput because it’s the text field meant for output.

After you set up the HTML page, the function becomes pretty easy to write
because you’ve already identified all the major constructs. You know you
need a function called sayHi(), and this function reads text from the txt-
Name field and writes to the txtOutput field.

Using getElementById to get access to the page
HTML is one thing, and JavaScript is another. You need some way to turn
an HTML form element into something JavaScript can read. The magical
getElementById() method does exactly that. First, look at the first two
lines of the sayHi() function (defined in the header as usual).

 function sayHi(){
 var txtName = document.getElementById("txtName");
 var txtOutput = document.getElementById("txtOutput");

You can extract every element created in your web page by digging through
the DOM. In the old days, this approach is how we used to access form
elements. It was ugly and tedious. Modern browsers have the wonderful
getElementById() function instead. This beauty searches through the
DOM and returns a reference to an object with the requested ID.

A reference is simply an indicator where the specified object is in memory.
You can store a reference in a variable. Manipulating this variable manipulates

Writing to the Document388

the object it represents. If you want, you can think of it as making the textbox
into a variable.

Note that I call the variable txtName, just like the original textbox. This
variable refers to the text field from the form, not the value of that text field.
After I have a reference to the text field object, I can use its methods and
properties to extract data from it and send new values to it.

Manipulating the text fields
After you have access to the text fields, you can manipulate the values of
these fields with the value property:

 var name = txtName.value;
 txtOutput.value = "Hi there, " + name + "!"

Text fields (and, in fact, all input fields) have a value property. You can read
this value as an ordinary string variable. You can also write to this property,
and the text field will be updated on the fly.

This code handles the data input and output:

 1. Create a variable for the name.

 This is an ordinary string variable.

 2. Copy the value of the textbox into the variable.

 Now that you have a variable representing the textbox, you can access
its value property to get the value typed in by the user.

 3. Create a message for the user.

 Use ordinary string concatenation.

 4. Send the message to the output textbox.

 You can also write text to the value property, which changes the
 contents of the text field on the screen.

 Text fields always return string values (like prompts do). If you want to
pull a numeric value from a text field, you may have to convert it with the
 parseInt() or parseFloat() functions.

Writing to the Document
Form elements are great for getting input from the user, but they’re not ideal
for output. Placing the output in an editable field really doesn’t make much
sense. Changing the web document is a much better approach.

The DOM supports exactly such a technique. Most HTML elements feature
an innerHTML property. This property describes the HTML code inside the
element. In most cases, it can be read from and written to.

Book IV
Chapter 2

Talking to the
Page

Writing to the Document 389

 So what are the exceptions? Single-element tags (like and <input>)
don’t contain any HTML, so obviously reading or changing their inner HTML
doesn’t make sense. Table elements can often be read from but not changed
directly.

Figure 2-7 shows a program with a basic form.

Figure 2-7:
Wait, there’s
no output
text field!

This form doesn’t have a form element for the output. Enter a name and click
the button, and you see the results in Figure 2-8.

Figure 2-8:
The
page has
changed
itself.

Writing to the Document390

Amazingly enough, this page can make changes to itself dynamically. It isn’t
simply changing the values of form fields, but changing the HTML.

Preparing the HTML framework
To see how the page changes itself dynamically, begin by looking at the
HTML body for innerHTML.html:

 <body>
 <h1>Inner HTML Demo</h1>
 <form action = "">
 <fieldset>
 <label>Please type your name</label><p>
 <input type = "text"
 id = "txtName" />
 <button type = "button"
 onclick = "sayHi()">
 Click Me
 </button>
 </fieldset>
 </form>

 <div id = "divOutput">
 Watch this space.
 </div>
 </body>

The code body has a couple of interesting features:

 ✦ The program has a form. The form is pretty standard. It has a text field
for input and a button, but no output elements.

 ✦ The button will call a sayHi()function. The page requires a function
with this name. Presumably, it says hi somehow.

 ✦ There’s a div for output. A div element in the main body is designated
for output.

 ✦ The div has an ID. The id attribute is often used for CSS styling, but
the DOM can also use it. Any HTML elements that will be dynamically
scripted should have an id field.

Writing the JavaScript
The JavaScript code for modifying innerHTML isn’t very hard:

 <script type = "text/javascript">
 //from innerHTML.html

 function sayHi(){
 txtName = document.getElementById("txtName");
 divOutput = document.getElementById("divOutput");

 name = txtName.value;

 divOutput.innerHTML = "" + name + "";
 divOutput.innerHTML += " is a very nice name.";
 }
 </script>

Book IV
Chapter 2

Talking to the
Page

Working with Other Text Elements 391

The first step (as usual with web forms) is to extract data from the input ele-
ments. Note that I can create a variable representation of any DOM element,
not just form elements. The divOutput variable is a JavaScript representa-
tion of the DOM div.

Finding your innerHTML
Like form elements, divs have other interesting properties you can modify.
The innerHTML property allows you to change the HTML code displayed by
the div. You can put any valid HTML code you want inside the innerHTML
property, even HTML tags. Be sure that you still follow the HTML rules so
that your code will be valid.

Working with Other Text Elements
When you know how to work with text fields, you’ve mastered about half of
the form elements. Several other form elements work exactly like text fields,
including these:

 ✦ Password fields obscure the user’s input with asterisks, but preserve
the text.

 ✦ Hidden fields allow you to store information in a page without revealing
it to the user. (They’re used a little bit in client-side coding, but almost
never in JavaScript.)

 ✦ Text areas are a special variation of textboxes designed to handle mul-
tiple lines of input.

Figure 2-9 is a page with all these elements available on the same form.

Figure 2-9:
Passwords,
hidden
fields, and
text areas
all look the
same to
JavaScript.

Working with Other Text Elements392

When the user clicks the button, the contents of all the fields (even the
password and hidden fields) appear on the bottom of the page, as shown in
Figure 2-10.

Figure 2-10:
Now you
can see
what was in
everything.

Building the form
Here’s the HTML (otherText.html) that generates the form shown in
Figures 2-9 and 2-10:

 <body>
 <h1>Text Input Devices</h1>
 <form action = "">
 <fieldset>
 <label>Normal Text field</label>
 <input type = "text"
 id = "txtNormal" />
 <label>Password field</label>
 <input type = "password"
 id = "pwd" />
 <label>Hidden</label>
 <input type = "hidden"
 id = "hidden"
 value = "I can't tell you" />
 <textarea id = "txtArea"
 rows = "10"
 cols = "40">
This is a big text area.
It can hold a lot of text.
 </textarea>
 <button type = "button"
 onclick = "processForm()">
 Click Me
 </button>
 </fieldset>
 </form>

Book IV
Chapter 2

Talking to the
Page

Working with Other Text Elements 393

 <div id = "output">

 </div>
 </body>

The code may be familiar to you if you read about form elements in Book I,
Chapter 7. A few things are worth noting for this example:

 ✦ An ordinary text field appears, just for comparison purposes. It has an
id so that it can be identified in the JavaScript.

 ✦ The next field is a password field. Passwords display asterisks, but
store the actual text that was entered. This password has an id of pwd.

 ✦ The hidden field is a bit strange. You can use hidden fields to store
information on the page without displaying that information to the user.
Unlike the other kinds of text fields, the user can’t modify a hidden field.
(She usually doesn’t even know it’s there.) This hidden field has an id of
secret and a value (“I can’t tell you”).

 ✦ The text area has a different format. The input elements are all single-
tag elements, but the textarea is designed to contain a large amount of
text, so it has beginning and end tags. The text area’s id is txtArea.

 ✦ A button starts all the fun. As usual, most of the elements just sit there
gathering data, but the button has an onclick event associated with it,
which calls a function.

 ✦ External CSS gussies it all up. The page has some minimal CSS to clean
it up. The CSS isn’t central to this discussion, so I don’t reproduce it.
Note that the page will potentially have a dl on it, so I have a CSS style
for it, even though it doesn’t appear by default.

 The password and hidden fields seem secure, but they aren’t. Anybody
who views the page source will be able to read the value of a hidden field,
and passwords transmit their information in the clear. You really shouldn’t
be using web technology (especially this kind) to transport nuclear launch
codes or the secret to your special sauce. (Hmmm, maybe the secret sauce
recipe is the launch code — sounds like a bad spy movie.)

 When I create a text field, I often suspend my rules on indentation because
the text field preserves everything inside it, including any indentation.

Writing the function
After you build the form, all you need is a function. Here’s the good news:
JavaScript treats all these elements in exactly the same way! The way you
handle a password, hidden field, or text area is identical to the technique for
a regular text field (described under “Managing Text Input and Output,” ear-
lier in this chapter). Here’s the code:

Working with Other Text Elements394

 // from otherText.html
 function processForm(){
 //grab input from form
 var txtNormal = document.getElementById("txtNormal");
 var pwd = document.getElementById("pwd");
 var hidden = document.getElementById("hidden");
 var txtArea = document.getElementById("txtArea");

 var normal = txtNormal.value;
 var password = pwd.value;
 var secret = hidden.value;
 var bigText = txtArea.value;

 //create output
 var result = ""
 result += "<dl> \n";
 result += " <dt>normal</dt> \n";
 result += " <dd>" + normal + "</dd> \n";
 result += " \n";
 result += " <dt>password</dt> \n";
 result += " <dd>" + password + "</dd> \n";
 result += " \n";
 result += " <dt>secret</dt> \n";
 result += " <dd>" + secret + "</dt> \n";
 result += " \n";
 result += " <dt>big text</dt> \n";
 result += " <dd>" + bigText + "</dt> \n";
 result += "</dl> \n";

 var output = document.getElementById("output");
 output.innerHTML = result;

 } // end function

The function is a bit longer than the others in this chapter, but it follows
exactly the same pattern: It extracts data from the fields, constructs a string for
output, and writes that output to the innerHTML attribute of a div in the page.

The code has nothing new, but it still has a few features you should consider:

 ✦ Create a variable for each form element. Use the document.getEle-
mentById mechanism.

 ✦ Create a string variable containing the contents of each element.
Don’t forget: The getElementById trick returns an object. You need to
extract the value property to see what’s inside the object.

 ✦ Make a big string variable to manage the output. When output gets
long and messy like this one, concatenate a big variable and then just
output it in one swoop.

 ✦ HTML is your friend. This output is a bit complex, but innerHTML is
HTML, so you can use any HTML styles you want to format your code.
The return string is actually a complete definition list. Whatever is
inside the textbox is (in this case) reproduced as HTML text, so if I want
carriage returns or formatting, I have to add them with code.

 ✦ Newline characters (\n) clean up the output. If I were writing an ordi-
nary definition list in HTML, I’d put each line on a new line. I try to make

Book IV
Chapter 2

Talking to the
Page

Working with Other Text Elements 395

my programs write code just like I do, so I add newline characters every-
where I’d add a carriage return if I were writing the HTML by hand.

Understanding generated source
When you run the program in the preceding section, your JavaScript code
actually changes the page it lives on. The code that doesn’t come from
your server (but is created by your program) is sometimes called generated
source. The generated code technique is powerful, but it can have a signifi-
cant problem. Try this experiment to see what I mean:

 1. Reload the page.

 You want to view it without the form contents showing so that you can
view the source. Everything will be as expected; the source code shows
exactly what you wrote.

 2. Click the Click Me button.

 Your function runs, and the page changes. You clearly added HTML to
the output div because you can see the output right on the screen.

 3. View the source again.

 You’ll be amazed. The output div is empty, even though you can clearly
see that it has changed.

 4. Check generated code.

 Using the HTML validator extension or the W3 validator (described in
Book I, Chapter 2) doesn’t check for errors in your generated code. You
have to check it yourself, but it’s hard to see the code!

Figure 2-11 illustrates this problem.

Figure 2-11:
The ordinary
view source
command
isn’t
showing the
contents of
the div!

Working with Other Text Elements396

Here’s what’s going on: The view source command (on most browsers)
doesn’t actually view the source of the page as it currently stands. It goes
back to the server and retrieves the page, but displays it as source rather
than rendered output. As a result, the view source command isn’t useful
for telling you how the page has changed dynamically. Likewise, the page
validators check the page as it occurs on the server without taking into
account things that may have happened dynamically.

When you build regular web pages, this approach isn’t a problem because reg-
ular web pages don’t change. Dynamically generated pages can change on the
fly, and the view source tool doesn’t expect that. If you made a mistake in the
dynamically-generated HTML, you can’t simply view the source to see what
you did wrong. Fortunately, Chrome gives you a pretty easy solution.

The Chrome developer tools (available with the F12 or Cmd+shift+I on Mac
— have I mentioned how awesome this tool is?) can show you exactly what
the browser is currently displaying.

Here’s how you can use it:

 1. Run the page and put it through its paces.

 Click the buttons and do what the page does to modify itself.

 2. Inspect the page.

 Right-click anywhere on the page and choose inspect element from
the popup menu. The developer tools will pop up and you’ll be in a spe-
cial outline view.

 3. Select the code to see the corresponding page element.

 Select a piece of code in the elements view and the corresponding part
of the page is highlighted.

 4. Select an element to see its code.

 When you’re in inspect mode, you can click on any visible element of the
page and the corresponding code will be highlighted.

 5. The displayed code is what’s currently being displayed.

 Unlike the view source results, the element inspector shows what’s
currently on the screen rather than what’s on the server.

 6. You can even change the content here.

 You can double-click on content in the Elements tab and change it,
and the page changes alongside it. (Hmm … does this mean you could
change the headlines of an online newspaper and make it look totally
real? That seems mischievous. I hope nobody ever does that.) Don’t
worry. None of the changes are permanent.

Book IV
Chapter 2

Talking to the
Page

Working with Other Text Elements 397

 7. The “trail of breadcrumbs” shows where you are.

 You can see exactly what tags are active by looking at the bottom of the
developer screen.

 8. You can also see which CSS files are currently active.

 As described in Book II, you can also modify the CSS on this screen to
see how the page will look if the CSS is changed. This is an ideal way to
experiment with the page.

These tools keep you sane when you’re trying to figure out why your gener-
ated code isn’t acting right. (I wish I’d had them years ago….)

Figure 2-12 shows the Chrome developer tools with the dynamically gener-
ated contents showing.

Figure 2-12:
Chrome
shows the
current
status of
dynamically-
modified
pages

What if you’re not in Chrome?
If you’re using another browser, the Firebug extension does most of the same
things as the Chrome developer tools. Firebug performs best on Firefox, but
there is a light version which works on any browser.

If none of these tools is available, there’s another cool trick you can do. Type
the following into the address bar:

javascript:alert(document.body.innerHTML)

Working with Other Text Elements398

This very sneaky trick uses JavaScript to generate the source code of the
page as it currently stands:

 1. Begin with the javascript: identifier.

 When you begin an address with javascript, the browser immediately
renders the rest of the address as a JavaScript instruction rather than
an address. Cool, huh? (Try javascript: alert(2+5) to turn your
browser into a calculator. Whoa.)

 2. Use alert to produce quick output.

 You want to look at the source of whatever page is currently loaded, so
use the alert mechanism to print the code in a pop-up and leave the
original page in place.

 3. Print the current page’s source code.

 The document.body.innerHTML trick returns all the HTML code
inside the body tag. This doesn’t show your header or doctype infor-
mation, but it does display the page as it currently sits in memory, even
if it has been changed dynamically through code. That’s usually enough
to figure out what’s going wrong in a pinch.

Chapter 3: Decisions and
Debugging

In This Chapter
✓ Making decisions with conditions

✓ Working with nested if statements and switch

✓ Repeating with for loops

✓ Repeating with while loops

✓ Understanding the difference between bugs and crashes

✓ Using the debugger console

✓ Debugging your programs

C
omputer programs are complex. They involve information. Variables
(described in Chapter 1 of this mini-book) are the foundation of infor-

mation (although you’ll learn about some more complex and interesting
data types in later chapters). The other key component of programming
is control — that is, managing the instructions needed to solve interesting
complex problems. In this chapter, you learn the key control structures — if
statements and looping structures. With increased control comes increased
opportunity for error, so you also learn how to manage problems in your
code.

Making Choices with if
Sometimes you’ll need your code to make decisions. For example, if some-
body famous typed their name in your website, you might want to create a
custom greeting for them. (I know this is a goofy example, but stay with me.)
Take a look at the ifElse.html site in Figures 3-1 and 3-2.

Making Choices with if400

Figure 3-1:
Tim
Berners-
Lee gets
a special
greeting.

Figure 3-2:
Apparently,
this guy
isn’t famous
enough.

This program (and the next few) uses a basic HTML set up to take informa-
tion from a text field, respond to a button click, and print output in a desig-
nated area. Here’s the HTML part of the code:

<body>
 <h1>If Demo</h1>

 <form action = "">
 <fieldset>
 <label id = "lblOutput">Please enter your name</label>
 <input type = "text"

Book IV
Chapter 3

Decisions and
Debugging

Making Choices with if 401

 id = "txtInput"
 value = "Tim Berners-Lee" />
 <button type = "button"
 onclick = "checkName()">
 click me
 </button>
 </fieldset>
 </form>
</body>
</html>

As you can see, the program looks at the input in the text box and changes
behavior based on the value of the text field. Here’s the checkName() func-
tion called in ifElse.html:

 function checkName(){
 // from ifElse.html
 lblOutput = document.getElementById("lblOutput");
 txtInput = document.getElementById("txtInput");

 userName = txtInput.value;
 if (userName == "Tim Berners-Lee"){
 lblOutput.innerHTML = "Thanks for inventing HTML!";
 } else {
 lblOutput.innerHTML = "Do I know you?";
 } // end if
 } // end function

Changing the greeting with if
This code uses an important idea called a condition inside a construct called
an if statement. Here’s how to do it:

 1. Set up the web page as usual.

 The HTML code has elements called lblOutput and txtInput. It also
has a button that calls checkName() when it is clicked.

 2. Create variables for important page elements.

 You’re getting data from txtInput and changing the HTML code in
lblOutput, so create variables for these two elements.

 3. Get userName from txtInput.

 Use the txtInput.value trick to get the value of the input element
called txtInput and place it in the variable userName.

 4. Set up a condition.

 The key to this program is a special element called a condition — an
expression that can be evaluated as true or false. Conditions are often
(as in this case) comparisons. Note that the double equals sign (==)
is used to represent equality. In this example, I’m asking whether the
userName variable equals the value “Tim Berners-Lee”.

 5. Place the condition in an if structure.

 The if statement is one of a number of programming constructs which
use conditions. It contains the keyword if followed by a condition (in

Making Choices with if402

parentheses). If the condition is true, all of the code in the following set
of braces is executed.

 6. Write code to execute if the condition is true.

 Create a set of squiggly braces after the condition. Any code inside these
braces will execute if the condition is true. Be sure to indent your code,
and use the right squiggle brace (}) to end the block of code. In this
example, I give a special greeting to Tim Berners-Lee (because he is just
that awesome).

 7. Build an else clause.

 You can build an if statement with a single code block, but often you
want the code to do something else if the condition was false. Use the
else construct to indicate you will have a second code block that will
execute only if the condition is false.

 8. Write the code to happen when the condition is false.

 The code block following the else clause will execute only if the condi-
tion is false. In this particular example, I have a greeting for everyone
except Berners-Lee.

The different flavors of if
If statements are extremely powerful, and there are a number of variations.
You can actually have one, two, or any number of branches. You can write
code like this:

if (userName == "Tim Berners-Lee"){
 lblOutput.innerHTML = "Thanks for inventing HTML"
} // end if

With this structure, the greeting will occur if userName is “Tim Berners-
Lee” and nothing will happen if the userName is anything else. You can also
use the if-else structure (this is the form used in the actual code):

if (userName == "Tim Berners-Lee"){
 lblOutput.innerHTML = "Thanks for inventing HTML!";
} else {
 lblOutput.innerHTML = "Do I know you?";
} // end if

One more alternative lets you compare as many results as you wish by
adding new conditions:

if (userName == "Tim Berners-Lee"){
 lblOutput.innerHTML = "Thanks for inventing HTML!";
} else if (userName == "Al Gore") {
 lblOutput.innerHTML = "Thanks for inventing the Internet";
} else if (userName == "Hakon Wium Lie") {
 lblOutput.innerHTML = "Thanks for inventing CSS";

Book IV
Chapter 3

Decisions and
Debugging

Making Choices with if 403

} else {
 lblOutput.innerHTML = "Do I know you?";
} // end if

 I don’t repeat all the HTML code for these examples to save space. Please
look on the book’s website to see the appropriate HTML code that uses
these examples. (Find out how to access this book’s website in the
Introduction.) You’ll find if.html, ifElse.html, and ifElseIf.html available on
the site. Be sure to view the source to see how the HTML and the JavaScript
code interact. Also, review Chapter 2 of this mini-book if you want to remem-
ber how to have JavaScript code interact directly with the web page.

Conditional operators
The == operator checks to see if two values are identical, but JavaScript sup-
ports a number of other operators as well:

Operator Meaning

a == b a is equal to b

a < b a is less than b

a > b a is greater than b

a <= b a is less than or equal to b

a >= b a is greater than or equal to b

a != b a is not equal to b

 If you’re coming from another programming language like Java, C++, or
PHP you might wonder how string comparisons work because they require
different operators in these languages. JavaScript uses exactly the same
comparison operators for types of data, so there’s no need to learn different
operators. Yeah, JavaScript!

Nesting your if statements
There are a few other variations of the if structure you’ll sometimes run
across. One variation is the nested if statement. This simply means you can
put if statements inside each other for more complex options. For example,
look at the following code:

 function checkTemp(){
 //from nestedIf.html
 var temp = prompt("What temperature is it outside?");
 temp = parseInt(temp);

 if (temp < 60){
 //less than 60
 if (temp < 32){

Making Choices with if404

 //less than 32
 alert("It's freezing!");
 } else {
 //between 32 and 60
 alert("It's cold.");
 } // end 'freezing if'
 } else {
 //We're over 60
 if (temp < 75){
 //between 60 and 75
 alert("It's cool.");
 } else {
 //temp is higher than 75
 if (temp > 90){
 //over 90
 alert("It's really hot.");
 } else {
 //between 75 and 90
 alert("It's warm.");
 } // end 'over 90' if
 } // end 'over 75' if
 } // end 'over 60' if
 } // end function

This code looks complicated, but it really isn’t. It simply takes in a
 temperature and looks for a range of values. Here’s what’s happening:

 1. Get a temperature value from the user.

 Ask the user for a temperature. I’m using the simple prompt statement
here, but you could also grab the value from a form field. See Chapter 2
of this mini-book if you need help on that process.

 2. Convert the temperature to a numeric type.

 Recall that computers are fussy about data types, and sometimes you
need to nudge a variable to the right type. The parseInt() function
forces any value into an integer, which is perfect for our needs.

 3. Use an if statement to chop the possibilities in half.

 The outer (most encompassing) if statement separates all the cooler
temperatures from the warmer ones.

 4. Use an inner if statement to clarify more if needed.

 Within the cool (less than 60 degree) temperatures, you might want
to know if it’s cold or below freezing, so place a second condition to
 determine the temperatures.

 5. The upper bound is determined by the outer if statement.

 The first else clause in the code is triggered when the temperature is
between 32 and 60 degrees because it’s inside two if statements: temp
< 60 is true, and temp < 32 is false, so the temperature is between 32
and 60 degrees.

Book IV
Chapter 3

Decisions and
Debugging

Making Choices with if 405

 6. Indentation and comments are not optional.

 As the code becomes more complex, indentation and comment
 characters become more critical. Make sure your indentation accurately
reflects the beginning and end of each if statement, and the code is
clearly commented so you know what will happen (or what you expect
will happen — the truth may be different).

 7. You can nest as deeply as you wish.

 As you can see in this structure, there are three different possibilities for
temperatures higher than 60 degrees. Simply add more if statements to
get the behavior you wish.

 8. Test your code.

 When you build this kind of structure, you need to run your program
several times to ensure it does what you expect.

Making decisions with switch
JavaScript, like a number of languages, supports another decision-making
structure called switch. This is a useful alternative when you have a
number of discrete values you want to compare against a single variable.
Take a look at this variation of the name program from earlier in this chapter:

 function checkName(){
 //from switch.html
 var name = prompt("What is your name?");

 switch(name){
 case "Bill Gates":
 alert("Thanks for MS Bob!");
 break;
 case "Steve Jobs":
 alert("The Newton is awesome!");
 break;
 default:
 alert("do I know you?");
 } // end
 } // end checkName

The switch code is similar to an if-elseif structure in its behavior, but it
uses a different syntax:

 1. Indicate a variable in the switch statement.

 In the switch statement’s parentheses, place a variable or other expres-
sion. The switch statement is followed by a code block encased in
squiggly braces ({}).

 2. Use the case statement to indicate a case.

 The case statement is followed by a potential value of the variable, fol-
lowed by a colon. It’s up to the programmer to ensure the value type
matches the variable type.

Managing Repetition with for Loops406

 3. End each case with the break statement.

 End each case with the break statement. This indicates that you’re
done thinking about cases, and it’s time to pop out of this data structure.
If you don’t explicitly include the break statement, you’ll get strange
behavior (all the subsequent cases will evaluate true as well).

 4. Define a default case to catch other behavior.

 Just like you normally add a default else to an if–elseif structure
to catch any unanticipated values, the default keyword traps for any
values of the variable that were not explicitly caught.

Useful as the switch structure seems to be, I’m personally not a big fan of it,
for the following reasons:

 ✦ There are better options: The switch behavior can be built with the
if-else structure, and can often be improved by using arrays or
 functions. (Arrays and functions are both described in chapter 4 of this
mini-book.)

 ✦ Switches are not good with inequalities: The switch structure works fine
when there are discrete values to compare (like names) but are much more
awkward when you’re comparing a range of values (like temperatures).

 ✦ The syntax is anachronistic: The syntax of the switch statement
 harkens back to the C language, developed in the early days of
 programming. The colons and break statements combine awkwardly
with the braces used elsewhere to contain code fragments.

 ✦ Use of the break keyword is discouraged: Normally the break
 keyword indicates you want to break the normal flow of your program.
This is often used as a shortcut by sloppy programmers who can’t come
up with a more elegant way to write code. Because use of the break
keyword is discouraged elsewhere in programming, it’s weird to have a
structure that requires its use.

 ✦ Modern languages don’t even have it: A number of the newer languages
(like Python) don’t support switch at all, so at some point you’re likely
to be in a language that cannot do switch. You might as well learn
 alternatives now.

For these reasons, I rarely use switch in my own programming.

Managing Repetition with for Loops
Computers are well-known for repetitive behavior. It’s pretty easy to get a
computer to do something many times. The main way to get this behavior is
to use a mechanism called a loop. The for loop is a standard kind of loop
that is used when you know how often something will happen. Figure 3-3
shows the most basic form of the for loop:

Book IV
Chapter 3

Decisions and
Debugging

Managing Repetition with for Loops 407

Figure 3-3:
This
program
counts from
one to ten.

Setting up the web page
The same web page is used to demonstrate three different kinds of for
loops. As usual, the HTML code sets everything up. Here’s the HTML code
that creates the basic framework:

<body onload = "init()">
 <h1>For loops</h1>
 <form action = "">
 <fieldset>
 <button type = "button"
 onclick = "count()">
 count to ten
 </button>

 <button type = "button"
 onclick = "back()">
 count backwards
 </button>

 <button type = "button"
 onclick = "byFive()">
 count by fives
 </button>

 </fieldset>
 </form>

 <div id = "output">Click a button to see some counting...</div>
</body>

While the HTML is pretty straightforward, it does have some important
 features:

Managing Repetition with for Loops408

 1. The body calls an initialization function.

 Often you’ll want some code to happen when the page first loads.
One common way to do this is to attach a function call to the onload
 attribute of the body element. In this example, I call the init() function
as soon as the body is finished loading. The contents of the init()
function will be described in the next section.

 2. The page is mostly an HTML form.

 The most important part of this page is the form with three buttons on
it. Each button calls a different JavaScript function.

 3. A special div is created for output.

 It’s a good idea to put some default text in the div so you can see where
the output should go and so you can ensure the div is actually changing
when it’s supposed to.

From this example, it’s easy to see why it’s a good idea to write the HTML
first. The HTML code gives me a solid base for the program, and it also
 provides a good outline of what JavaScript code I’ll need. Clearly this
page calls for four JavaScript functions, init(), count(), back(), and
byFive(). The names of all the functions are pretty self-explanatory, so
it’s pretty easy to see what each one is supposed to do. It’s also clear that
the div named output is intended as an output area. When you design the
HTML page well, the JavaScript code becomes very easy to start.

Initializing the output
This program illustrates a situation that frequently comes up in JavaScript
programming: All three of the main functions will refer to the same output
area. It seems a waste to create a variable for output three different times.
Instead, I make a single global output variable available to all functions, and
attach the variable to that element once when the page loads.

In order to understand why this is necessary, it’s important to discuss an
idea called variable scope. Generally, variables are created inside functions.
As long as the function is running, the variable still exists. However, when
a function is done running, all the variables created inside that function are
instantly destroyed. This prevents functions from accidentally changing
the variables in other functions. Practically, it means you can think of each
 function as a separate program.

However, sometimes you want a variable to live in more than one function.
The output variable in the forLoop.html page is a great example because all
of the functions will need it. One solution is to create the variable outside any
functions. Then all the functions will have access to it.

You can create the output variable without being in a function, but you
can’t attach it to the actual div in the web page until the web page has

Book IV
Chapter 3

Decisions and
Debugging

Managing Repetition with for Loops 409

 finished forming. The init() function is called when the body loads. Inside
that function, I assign a value to the global output variable. Here’s how the
main JavaScript and the init() method code looks:

 var output;

 function init(){
 output = document.getElementById("output");
 } // end init

This code creates output as a global variable, and then attaches it to the
output div after the page has finished loading.

Creating the basic for loop
The standard for loop counts the values between 1 and 10. The “count to
ten” button triggers the count() function. Here’s the code for count():

 function count(){
 output.innerHTML = "";
 for (i = 1; i <= 10; i++){
 output.innerHTML += i + "
";
 } // end for loop
 } // end count

Although the count() function clearly prints ten lines, it only has one line
that modifies the output div. The main code repeats many times to create
the long output.

 1. You can use the output var immediately.

 Because output is a global variable and it has already been created, you
can use it instantly. There’s no need to initialize it in the function.

 2. Clear the output.

 Set output.value to the empty string (“”) to clear the output. This
will destroy whatever text is currently in the div.

 3. Start a for loop.

 The for loop is a special loop used to repeat something a certain
number of times. For loops have three components: initialization,
 comparison, and update.

 4. Initialize your counting variable.

 A for loop works by changing the value of an integer many times. The
first part of a for loop initializes this variable (often called i) to a
 starting value (usually 0 or 1).

 5. Specify a condition for staying in the loop.

 The second part of a for statement is a condition. As long as the
 condition is true, the loop will continue. As soon as the condition is
evaluated as false, the loop will exit.

Managing Repetition with for Loops410

 6. Change the variable.

 The third part of a for statement somehow changes the counting
 variable. The most common way to change the variable is to add one to
it. The i++ syntax is a shortcut for “add one to i.”

 7. Build a code block for repeated code.

 Use braces and indentation to indicate which code repeats. All code
inside the braces repeats.

 8. Inside the loop, write to the output.

 On each iteration of the loop, add the current value of i to the output
div’s innerHTML. Also add a break (
) to make the output look
better. When you add to an innerHTML property, you’re writing HTML
code, so if you want the output to occur on different lines, you need to
write the HTML to make this happen. (See the section “Introducing short-
cut operators” in this chapter for an explanation of the += statement.)

 9. Close the loop.

 Don’t forget to end the loop, or your program will not run correctly.

Introducing shortcut operators
You might have noticed a couple of new operators in the code for forLoops.
html. These are some shortcut tools that allow you to express common
ideas more compactly. For example, consider the following code:

i = i + 1;

This means, “Add one to i, and store the result back in i.” It’s a pretty stan-
dard statement, even if it does drive algebra teachers bananas. The state-
ment is so common that it is often abbreviated, like this:

i += 1;

This statement means exactly the same as the last one; add one to i. You
can use this to add any amount to the variable i.Because the + sign is used
to concatenate (combine) strings, you can use the += shortcut with string
manipulation, so consider this variation:

var userName = "Andy";
userName += ", Benevolent Dictator for Life";

The second statement appends my official (I wish) title to the end of my name.

 You can also use the -= operator to subtract from a variable. It’s even
 possible to use *= and /=, but they are not commonly used.

Moving back to numbers — because adding one is extremely common,
there’s another shortcut that’s even more brief:

i++;

Book IV
Chapter 3

Decisions and
Debugging

Managing Repetition with for Loops 411

This statement also means, “Add one to i.” In the standard for loop, I use
that variation because it’s very easy.

 When programmers decided to make a new variation of C, they called the
new language C++. Get it? It’s one better than C! Those guys are a hoot!

Counting backwards
After you understand basic for loops, it’s not difficult to make a loop
that counts backwards. Here’s the back() function (called by the Count
Backwards button):

 function back(){
 output.innerHTML = "";
 for (i = 10; i > 0; i--){
 output.innerHTML += i + "
";
 } // end for loop
 } // end back

When the user activates this function, she gets the result shown in Figure 3-4.

Figure 3-4:
Now the
page counts
backwards.

This code is almost exactly like the first loop, but look carefully at how the
loop is created:

 1. Initialize i to a high value.

 This time I want to count backwards from 10 to 1, so start i with the
value 10.

 2. Keep going as long as i is greater than 0.

 It’s important to note that the logic changes here. If i is greater than 0,
the loop should continue. If i becomes 0 or less, the loop exits.

Managing Repetition with for Loops412

 3. Subtract 1 from i on each pass.

 The -- operator works much like ++, but it subtracts 1 from the
 variable.

Counting by fives
Counting by fives (or any other value) is pretty trivial after you know how
for loops work. Here’s the byFive() code called by the Count by Five
button:

 function byFive(){
 output.innerHTML = "";
 for (i = 5; i <= 25; i += 5){
 output.innerHTML += i + "
";
 } // end for loop
 } // end byFive

It is remarkably similar to the other looping code you’ve seen.

 1. Initialize i to 5.

 The first value I want is 5, so that is the initial value for i.

 2. Continue as long as i is less than or equal to 25.

 Because I want the value 25 to appear, I set the condition to be less than
or equal to 25.

 3. Add 5 to i on each pass.

 Each time through the loop, I add 5 to i using the += operator.

The Count by Five code is shown in action in Figure 3-5.

Figure 3-5:
Now the
page counts
by fives.

Book IV
Chapter 3

Decisions and
Debugging

413Building while Loops

Understanding the Zen of for loops
For loops might seem complex, but they really aren’t. The key to making
a good for loop is understanding that the for statement has three parts.
All three parts of the statement refer to the same variable. Sometimes the
 variable used in a loop is called a sentry variable. If you don’t have a better
name for the sentry variable, it’s traditional to use i. To make a good loop,
you need to know three things about the sentry variable:

 ✦ How does it start? The first part of the for loop indicates the starting
value of the sentry variable. If you’re counting up, you’ll usually begin
the sentry variable at 0 or 1. If you’re counting down, you’ll usually begin
the sentry value with a larger number. Regardless, you have to indicate
some starting value.

 ✦ How does it end? The middle part of the for loop indicates a condition.
As long as the condition remains true, the loop continues. As soon as
the condition is evaluated as false, the loop ends.

 ✦ How does it change? There must be some mechanism for moving the
sentry from its starting position to the final position. In a for loop, this
is normally some kind of addition or subtraction. Whatever you do here,
you need to ensure that it’s possible for the sentry to move from the
starting position to the ending position, or the loop will never end.

Building while Loops
For loops are useful when you know how often a loop will continue, but
sometimes you need a more flexible type of loop. The while loop is based
on a simple idea. It contains a condition. When the condition is true, the
loop continues; if the condition is evaluated as false, the loop exits.

Making a basic while loop
Figure 3-6 shows a dialog box asking for a password. The program keeps
asking for a password until the user enters the correct password.

Figure 3-6:
This
program
keeps
asking
for the
password
until the
user gets it
right.

Building while Loops414

Here’s the HTML code used for two different while examples:

<body>
 <h1>While Loop Demo</h1>
 <p>The password is 'HTML5'</p>
 <form action = "">
 <fieldset>
 <button type = "button"
 onclick = "getPassword()">
 guess the password
 </button>

 <button type = "button"
 onclick = "threeTries()">
 guess the password in three tries
 </button>
 </fieldset>
 </form>
</body>

The version shown in Figure 3-6 keeps popping up a dialog box until the user
gets the answer correct.

 function getPassword(){
 //from while.html
 var correct = "HTML5";
 var guess = "";
 while (guess != correct){
 guess = prompt("Password?");
 } // end while
 alert("You may proceed");
 } // end getPassword

A while loop for passwords is not hard to build:

 1. Store the correct password in a variable.

 Variable names are important because they can make your code easier
to follow. I use the names correct and guess to differentiate the two
types of password. Beginners often call one of these variables pass-
word, but that can be confusing because there are actually two pass-
words (the correct password and the guessed password) in play here.
The best way to design variable names is to anticipate the conditions
they will be used in. This function is based on the condition guess ==
correct. This is a really nice condition because it’s really easy to deter-
mine what we’re trying to figure out (whether the guess is correct). It
takes some practice to anticipate variable names well, but it’s a habit
well worth forming.

 2. Initialize the guess to an empty value.

 The key variable for this loop is guess. It starts as an empty string. It’s
critical to initialize the key variable before the loop begins.

 3. Set up the while statement.

 The while statement has extremely simple syntax: the keyword while
followed by a condition, followed by a block of code.

Book IV
Chapter 3

Decisions and
Debugging

Building while Loops 415

 4. Build the condition.

 The condition is the heart of a while loop. The condition must be con-
structed so the loop happens at least once (ensure this by comparing
the condition to the variable initialization). When the condition is true,
the loop continues. When the condition is evaluated to false, the loop
will exit. This condition compares guess to correct. If guess is not
equal to correct, the code will continue.

 5. Write the code block.

 Use braces and indentation to indicate the block of code that will be
repeated in the loop. The only code in this particular loop asks the user
for a password.

 6. Add code to change the key variable inside the loop.

 Somewhere inside the loop, you need code that changes the value of the
key variable. In this example, the prompt statement changes the pass-
word. As long as the user eventually gets the right password, the loop
ends.

Getting your loops to behave
 While loops can be dangerous. It’s quite easy to write a while loop that

works incorrectly, and these can be an exceptionally difficult kind of bug
to find and fix. If a while loop is incorrectly designed, it can refuse to
ever run or run forever. These endless loops are especially troubling in
JavaScript because they can crash the entire browser. If a JavaScript pro-
gram gets into an endless loop, often the only solution is to use the operat-
ing system task manager (Ctrl+Alt+Delete on Windows) to shut down the
entire browser.

The easy way to make sure your loop works is to remember that while
loops need all the same features as for loops. (These ideas are built into
the structure of a for loop. You’re responsible for them yourself in a while
loop.) If your loop doesn’t work, check that you’ve followed these steps:

 ✦ Identify a key variable: A while loop is normally based on a condition,
which is usually a comparison (although it might also be a variable or
function that returns a Boolean value). In a for loop, the key variable
is almost always an integer. While loops can be based on any type of
 variable.

 ✦ Initialize the variable before the loop: Before the loop begins, set up
the initial value of the key variable to ensure the loop happens at least
once. (How does the variable start?)

 ✦ Identify the condition for the loop: A while loop is based on a condi-
tion. Define the condition so the loop continues while the condition is
true, and exits when the condition is evaluated to false. (How does
the variable end?)

Building while Loops416

 ✦ Change the condition inside the loop: Somewhere inside the loop code,
you need to have statements that will eventually make the condition
false. If you forget this part, your loop will never end. (How does the
variable change?)

 This example is a good example of a while loop, but a terrible way to
handle security. The password is shown in the clear, and anybody could
view the source code to see the correct password. There are far better ways
to handle security, but this is the cleanest example of a while loop I could
think of.

Managing more complex loops
It won’t take long before you find situations where the standard for or
while loops do not seem adequate. For example, consider the password
example again. This time, you want to ask for a password until the user gets
the password correct or guesses incorrectly three times. Think about how
you would build that code. There are a number of ways to do it, but here’s
the cleanest approach:

 function threeTries(){
 //continues until user is correct or has three
 //incorrect guesses
 //from while.html

 var correct = "HTML5";
 var guess = "";
 var keepGoing = true;
 var tries = 0;

 while (keepGoing){
 guess = prompt("Password?");
 if (guess == correct){
 alert("You may proceed");
 keepGoing = false;
 } else {
 tries++;
 if (tries >= 3){
 alert("Too many tries. Launching missiles...");
 keepGoing = false;
 } // end if
 } // end if
 } // end while
 } // end threetries

This code is a little more complex, but it uses a nice technique to greatly
simplify loops:

 1. Initialize correct and guess.

 As in the previous example, initialize the correct and guess pass-
words.

 2. Build a counter to indicate the number of tries.

 The tries variable will count how many attempts have been made.

Book IV
Chapter 3

Decisions and
Debugging

Building while Loops 417

 3. Build a Boolean sentry variable.

 The keepGoing variable is special. Its entire job is to indicate whether
the loop should continue or not. It is a Boolean variable, meaning it will
only contain the values true or false.

 4. Use keepGoing as the condition.

 A condition doesn’t have to be a comparison. It just has to be true or
false. Use the Boolean variable as the condition! As long as keepGoing
has the value true, the loop will continue. Any time you want to exit the
loop, set keepGoing to false.

 5. Ask for the password.

 You still need the password, so get this information from the user.

 6. Check to see if the password is correct.

 Use an if statement to see if the password is correct.

 7. If the password is correct, provide feedback to the user and set keep-
Going to false.

 The next time the while statement is executed, the loop ends.
(Remember, you want the loop to end when the password is correct.)

 8. If the password is incorrect, if the (guess == correct)condition is
false, that means the user did not get the password right.

 In this case, add one to the number of tries.

 9. Check the number of tries.

 Build another if statement to check the number of tries.

 10. If it’s been three turns, provide feedback (threatening global annihila-
tion is always fun) and set keepGoing to false.

The basic idea of this strategy is quite straightforward: Create a special
Boolean variable with the singular job of indicating whether the loop contin-
ues. Any time you want the loop to exit, change the value of that variable.

 If you change most of your while loops to this format (using a Boolean vari-
able as the condition), you’ll generally eliminate most while loop issues.
When your code gets complicated, it gets tempting to use and (&&) and or
(||) operators to make more complex conditions. These Boolean operators
are very confusing for beginners and are generally not necessary. (My rule
of thumb is this: If you can explain DeMorgan’s law, you can use Boolean
operators in your conditions.) Most beginners (like me, and I’ve been doing
this for thirty years) make their loops way too complicated. Using a Boolean
variable in your loop can eliminate the need for Boolean operators and solve
a lot of logic problems.

Managing Errors with a Debugger418

Managing Errors with a Debugger
By the time you’re writing loops and conditions, things can go pretty badly
in your code. Sometimes it’s very hard to tell what exactly is going on.
Fortunately, modern browsers have some nice tools that help you look at
your code more carefully.

A debugger is a special tool that allows you to run a program in “slow
motion,” moving one line at a time so you can see exactly what is happening.
Google Chrome has a built-in debugger, so I begin with that one.

To see how a debugger works, follow these steps.

 1. Load a page into Chrome.

 You can add a debugger to most browsers, but Chrome has one built in,
so start with that one. I’m loading the forLoops.html page because loops
are a common source of bugs.

 2. Open the Developer Tools window.

 If you right-click anywhere on the page and choose Inspect Element (or
press the F12 key), you’ll get a wonderful debugging tool that looks like
Figure 3-7.

 3. Inspect the page with the Elements tab.

 The default tab shows you the page in an outline view, letting you see
the structure of your page. If you click any element in the outline, you
can see what styles are associated with that element. The actual element
is also highlighted on the main page so you can see exactly where every-
thing is. This can be very useful for checking your HTML and CSS.

 4. Move to the Sources tab.

 The Developer Tools window has a separate tab for working with
JavaScript code. Select the Sources tab to see your entire code at once.
There’s a small menu button that lets you select from all the source
pages your program uses. If your page pulls in external JavaScript files,
you’ll be able to select them here as well. (Note some older versions of
Chrome called this the Scripts tab.)

 5. Set a breakpoint.

 Typically you let the program begin at normal speed and slow down
right before you get to a trouble spot. In this case, I’m interested in the
count() function, so click on the first line (16) of that function in the
code window. (It’s more reliable to click on the first line of the function
than the line that declares it, so use line 16 instead of line 15.) Click the
line number of the line you want to pause, and the line number will high-
light, indicating it is now a break point.

Book IV
Chapter 3

Decisions and
Debugging

Managing Errors with a Debugger 419

 6. Refresh the page.

 In the main browser, use the refresh button or F5 key to refresh the page.
The page may initially be blank. That’s fine — it means the program has
paused when it encountered the function.

 7. Your page is now running.

 If you look back over the main page, you should see it is now up and
 running. Nothing is happening yet because you haven’t activated any of
the buttons.

 8. Click the Count button.

 The Count button should activate the code in the count function. Click
this button to see if that happens.

 9. Code should now be paused on line 17.

 Back in the code window, line 17 is now highlighted. That means the
browser is paused, and when you activate the step button, the high-
lighted code will happen.

 10. Step into the next line.

 In the Developer Tool window is a series of buttons on top of the right
column. Step into the next line looks like a down arrow with a
dot under it. You can also use the F11 key to activate the command.

 11. Step a few times.

 Use the F11 key or the step button to step forward a few times. Watch
how the highlight moves around so you can actually see the loop
 happening. This is very useful when your code is not behaving properly
because it allows you to see exactly how the processor is moving
through your code.

 12. Hover over the variable i in your code.

 When you are in debug mode, you can hover the mouse over any
 variable in the code window and you’ll see what the current value of
that variable is. Often when your code is performing badly, it’s because a
variable isn’t doing what you think it is.

 13. Add a watch expression to simplify looking at variables.

 If you think the loop is not behaving, you can add a watch expression
to make debugging easier. Right under the step buttons you’ll see a tab
called Watch Expressions. Click the plus sign to add a new expression.
Type in i and enter.

 14. Continue stepping through the code.

 Now you can continue to step through the code and see what is
 happening to the variable. This is incredibly useful when your code is
not performing like you want it to.

Managing Errors with a Debugger420

Figure 3-7:
The Chrome
debugger
makes it
easy to
figure out
what’s
happening.

 I personally think the debugger built into Chrome is one of the best out
there, but it’s not the only choice. If you’re using Firefox, the excellent
Firebug extension adds the same functionality to Firefox (http://get
firebug.com/). Safari has a similar Web Inspector tool built in, and even IE
finally has a decent debugger called F12. All work in roughly the same way.
Usually, however, a JavaScript error will crash on all browsers, so pick one
you like for initial testing, and then use other browser-specific tools only
when necessary.

Debugging with the interactive console
The Developer Tools window has another really wonderful tool called the
console. I introduced it briefly in Chapter 2 of this mini-book, but there’s
much more you can do with this wonderful tool. Try this exercise to see
some of the great ways you can use the console:

 1. Begin with the forLoops.html page.

 You can debug any page, but forLoops.html is especially helpful for
debugging.

 2. Place a breakpoint.

 For this demonstration, put a breakpoint in the count() function (line
16 if you’re using my version of the code).

 3. Step through a few lines.

 Use the step button or F11 key to step through a few lines of code.

http://getfirebug.com/
http://getfirebug.com/

Book IV
Chapter 3

Decisions and
Debugging

Managing Errors with a Debugger 421

 4. Switch to the console tab.

 The Console tab switches to console mode. This is particularly interest-
ing when the program is paused, as you can investigate and change the
nature of the page in real time.

 5. Change a style.

 Try typing document.body.style.backgroundColor = light
Green in the console. This modifies the background color of the page in
real time. This is fun but not seriously useful.

 6. Examine the document.body.

 Type document.body in the console and press Enter. You’ll see plenty
of information about the body. Document.body is actually a JavaScript
variable containing the current document body. It’s very powerful and
allows you to understand a lot about what’s going on.

 7. Examine the body’s innerHTML.

 Like any HTML element, document.body has an innerHTML property.
You can examine this in the console: document.body.innerHTML.

 8. Look at the variable i.

 You can examine the current value of any variable as long as that vari-
able currently has a meaning. Type i (then press enter) to see the
current value of the variable i. If the count() function isn’t currently
running, you may get a strange value here.

 9. Check the type of i.

 As you may recall from Chapter 2 of this minibook, all variables have a
specific type defined by JavaScript, and sometimes that data type is not
what you expected. You can ask the browser what type of data any vari-
able contains: typeof(i) returns “number.” You may also see “string”
or “object.”

 10. See if your output variable is defined correctly.

 Like many interactive programs, this page has a div called div that
contains the output. If this is not defined correctly, it won’t work. Try
output in the console to see if the output variable is correctly defined
and in scope. You can view the contents of output with output.
innerHTML, or you can even change the value of output like this:
output.innerHTML = “Hi Mom!”.

 11. Check your functions.

 You can check to see if the functions are what you think they are in the con-
sole. Try typing count (with no parentheses) to see the contents of count.

 12. Print to the console from your programs.

 You can even have your programs print information to the console. Use
the code console.log(“hi there”) anywhere in your code to have

Managing Errors with a Debugger422

the code print a value to the console. Normally you’ll do this only when
your code is not functioning properly to see what’s going on. You might
use something like this: console.log(“current value of i” +
i). The user typically doesn’t know there is a console, so she won’t see
any results of console.log(). You should remove all calls to con-
sole.log() before releasing the final version of your code.

The console was not available in earlier browser versions, so it isn’t always
taught as a part of JavaScript programming. Now that it’s a commonly avail-
able tool, you should definitely consider using it.

Debugging strategies
It’s a fact of life — when you write code, you will have bugs. Every program-
mer needs to know how to diagnose and fix code when it goes wrong.

The first thing to understand is that crashes and bugs are not the same. A
crash is a problem with your code that prevents the program from running at
all. These sound bad, but they’re actually easier to resolve than bugs, which
are caused by technically correct code doing the wrong thing.

Resolving syntax errors
The most common type of error is a crash or syntax error, usually meaning
you misspelled a command or used a function incorrectly. From the user’s
point of view, browsers don’t usually tell you directly when a syntax error
occurs, but simply sit there and pout. The best way to discover what’s going
wrong is to call up the debugging console. As soon as you discover a page
not acting correctly, go to the debugging console and look at the Console
tab. You’ll see error messages there, and you can often click on an error mes-
sage to see the problem. As an example, take a look at the following code
from syntaxError.html:

 function getPassword(){
 var correct "HTML5";
 var guess = "";
 while (guess != correct){
 guess = prompt("Password?");
 } // end while
 alert("You may proceed");
 } // end getPassword

This code might look just like the getPassword() function from while.
html, but I introduced a subtle error that’s difficult to find with the naked
eye. Run the program in your browser, click the Guess the Password
button, and the browser will seem to do nothing but glare at you insolently.
However, if you activate the Debugging console, you’ll realize it’s telling you
what it thinks is wrong. Figure 3-8 illustrates the Debugging console trying to
help.

Book IV
Chapter 3

Decisions and
Debugging

Managing Errors with a Debugger 423

Figure 3-8:
The
debugging
console
has useful
information
here!

It would be great if the debugger told you exactly what is wrong, but nor-
mally there’s a bit of detective work involved in deciphering error messages.
It appears in this case that there are two errors, but they’re really the same
thing. Click the link to the right of the first error and you’ll be taken to the
Sources view with the offending line highlighted, as you see in Figure 3-9.

Figure 3-9:
Here’s
where the
browser
thinks
something
went wrong.

The error messages aren’t always as clear as they could be, but they are usu-
ally helpful in their own way. The error message here is “unexpected string.”
That means the browser encountered a string value when it expected

Managing Errors with a Debugger424

 something else. That’s somewhat helpful, but the real strategy is to know
that something is probably wrong with this line, and you need to look it over
carefully. At some point, you’ll probably realize that line 10 should have
a single equals sign. Rather than var correct “HTML5”, it should read
var correct = “HTML5”. This was (as are most syntax errors) a problem
caused by sloppy typing. Like most syntax errors, it’s kind of difficult to find
(but much easier with the debugger). After you find the error, it’s usually
pretty easy to fix. Change the code in your editor and reload in the browser
(with the F5 key) to see if your change fixes things.

Note that fixing the “unexpected string” error automatically resolves the
“function not defined” error. This is pretty common because often one error
cascades and causes other error messages. Generally you only need to
worry about the topmost error on the list because resolving it may solve
the other errors with no further work. (Of course, resolving one error may
unmask other heretofore hidden errors, but this is less common.)

Squashing logic bugs
Syntax errors seem bad because they cause the whole program to crash,
but they’re actually pretty easy to resolve. There’s another type of problem
called logic errors that are much more troublesome. In fact, they’re nearly
impossible to resolve without some sort of debugging tool. However, like
a syntax error, when you can find a logic error, it’s usually quite easy to
repair. Take a look at logicError.html to see a typical logic problem in the
getPassword() function:

 function getPassword(){
 var correct = "HTML5";
 var guess = "";
 while (guess == correct){
 guess = prompt("Password?");
 } // end while
 alert("You may proceed");
 } // end getPassword

Just looking at the code, it’s very difficult to see the problem. Worse, when
you run the program in your browser, it won’t report an error. It won’t work
correctly, but the code is all technically correct. Rather than telling it to do
something illegal (which would result in a syntax error), I have told the pro-
gram to do something that’s completely legal but not logical. Logic errors are
called bugs, and they’re much more interesting (but subtle) to resolve than
syntax errors (normally called crashes).

To resolve a logic error, there’s a few steps:

 1. Understand what you’re trying to accomplish.

 Whenever you write a program, be sure you review what you’re
trying to accomplish before you run the program. If you don’t know
what you expect, you won’t know if your program got there. It’s often

Book IV
Chapter 3

Decisions and
Debugging

425Managing Errors with a Debugger

good to write down what you expect so you’ll know if you got there.
(Professional programmers are usually required to list expectations
before they write a single line of code.) For this example, when the user
clicks the Guess the Password button, the user should get a prompt
allowing them to guess the password.

 2. Understand what your code did.

 Run the logicError.html page yourself to see what actually happens. With
a logic error, the behavior is unpredictable. A loop may never happen,
it may never end, or it might sometimes work right and sometimes not.
The key to finding logic errors is to predict why the code is doing what
it’s doing and why it’s not doing what you want. In this example, when I
press the Guess the Password button, the You May Proceed dialog box
immediately appears, never giving me the chance to guess a password.

 3. Form a hypothesis or two before looking at code.

 Think about what is wrong before you look over the code. Try to
describe in plain English (not technical jargon) what is going wrong.
In this case, I think something is preventing the prompt from appear-
ing. Maybe the statement causing the prompt is written incorrectly, or
maybe the code is never getting there. Those are the two most likely
possibilities, so they’re what I’ll look for. Decide this before you look
at code because the moment you see code, you’ll start worrying about
details rather than thinking about the big picture. Logic errors are
almost always about logic, and no amount of staring at code will show
you logic errors, nor will a debugger spot them for you.

 4. Resolve syntax errors.

 Go to the console and see if there are any syntax errors. If so, resolve
them. Logic errors will not appear until you’ve resolved all syntax
errors. If your code shows no syntax errors but still doesn’t work
 correctly, you’ve got a logic error.

 5. Start the debugger.

 Interactive debugging is incredibly helpful with logic errors. Begin with
your English definitions of what you think should happen and what you
know is happening. Find the function you think is the problem and set a
breakpoint at that function.

 6. Identify key variables or conditions.

 Most logic errors are centered around a condition that’s not working
right, and conditions are usually based on variables. Begin by taking a
careful look at the conditions that control the behavior you’re worried
about. In this case, I’ve got a loop that doesn’t seem to be happening —
ever. This means I should take a careful look at that loop statement and
any variables used in that statement.

426 Managing Errors with a Debugger

 7. Step to your suspicious code.

 If you’re worried about a condition (which is very common), use the
debugger tools to step to that condition, but don’t run it yet. (In most
debuggers, a highlighted line is about to be run.)

 8. Look at the relevant variables.

 Before running the condition line, think about what you think any
 variables used in that condition should contain. Use the Watch tools or
hover over the variable names to ensure you know the current values
and they’re what you think they should be. In this example, I’m con-
cerned about line 12 (while guess == correct), so I want to see
what those variables contain.

 9. Predict what the suspicious line should do.

 If you’re worried about a condition, you’re generally expecting it to do
something it isn’t doing. In this case, the condition should trigger the
prompt command on line 13 when the function is called, but it appears
that we’re never getting to line 13 (or we are getting there and line 13
isn’t doing what we think it’s doing). The goal of debugging is to identify
which possible problems could be happening and isolate which of these
problems are actually occurring. Make sure you know what you’re look-
ing for before you start looking for it.

 10. Compare your expectations with reality.

 As you step through the getPassword() function in the debugger
(with the step into button or F11 key), you might see the problem.
The while loop begun in line 12 never executes, meaning line 13 never
happens, but it should always happen on the first pass. Now you know
exactly what the program is doing, but you don’t know why yet.

 11. Think about your logic.

 Logic errors aren’t about getting the commands right (those are syntax
errors). Logic errors are about telling the computer to do the wrong
thing. Think hard about the logic you’ve applied here. In this case, it
appears my condition is backwards. You told the computer to continue
looping as long as the guess is correct. You probably meant to continue
as long as the guess is incorrect. The guess starts out incorrect because
of the way you (appropriately) initialized both variables. Thus the condi-
tion is automatically skipped and the prompt never happens.

 12. Fix it.

 Fixing code is easy when you know what’s wrong. In this case, my condi-
tion was legal but illogical. Replace guess == correct with guess !=
correct and your code will work correctly.

Don’t worry if you find debugging difficult. Programming is both an art and a
science, and debugging logic errors falls much more along the art side of the
equation. It does get much easier with practice and experience.

Book IV
Chapter 3

Decisions and
Debugging

Managing Errors with a Debugger 427

If a debugger can find syntax errors, wouldn’t
it be awesome if debuggers could find logic
errors too? This issue turns out to be one of the
big unsolved problems of computer science.
Researchers are still trying to discover a tech-
nique for mathematically determining whether
a program is logically correct without having

to run it, and such efforts are called proofs of
program correctness. If you study formal com-
puter science, you’ll encounter these problems
as part of a programming languages class.
Who knows? You might be the person who
solves this problem, and makes programming
easier for everybody!

Couldn’t we make this automatic?

428 Book IV: Client-Side Programming with JavaScript

Chapter 4: Functions, Arrays,
and Objects

In This Chapter
✓ Passing parameters into functions

✓ Returning values from functions

✓ Functions and variable scope

✓ Producing basic arrays

✓ Retrieving data from arrays

✓ Building a multidimensional array

✓ Creating objects

✓ Building object constructors

✓ Introducing JSON notation

I
t doesn’t take long for your code to become complex. Soon enough, you
find yourself wanting to write more sophisticated programs. When things

get larger, you need new kinds of organizational structures to handle the
added complexity.

You can bundle several lines of code into one container and give this new chunk
of code a name: a function. You can also take a whole bunch of variables, put
them into a container, and give it a name. That’s called an array. If you combine
functions and data, you get another interesting structure called an object.

You may have encountered variables and functions in their simplest forms
elsewhere in this book (variables were first introduced in Chapter 1 of this
minibook, and functions made their appearance in Chapter 2). This chapter
is about how to work with more code and more data without going crazy.

Breaking Code into Functions
Functions come in handy when you’re making complex code easier to
handle — a useful tool for controlling complexity. You can take a large, com-
plicated program and break it into several smaller pieces. Each piece stands
alone and solves a specific part of the overall problem.

You can think of each function as a miniature program. You can define vari-
ables in functions, put loops and branches in there, and do anything else

Breaking Code into Functions430

you can do with a program. A program using functions is basically a program
full of subprograms.

 After you define your functions, they’re just like new JavaScript commands.
In a sense, when you add functions, you’re adding to JavaScript.

To explain functions better, think back to an old campfire song, “The Ants Go
Marching.” Figure 4-1 re-creates this classic song for you in JavaScript format.
(You may want to roast a marshmallow while you view this program.)

Figure 4-1:
Nothing
reminds me
of functions
like a
classic
campfire
song.

If you’re unfamiliar with this song, it simply recounts the story of a bunch of
ants. The littlest one apparently has some sort of attention issues. During each
verse, the little one gets distracted by something that rhymes with the verse
number. The song typically has ten verses, but I’m just doing two for the demo.

Thinking about structure
Before you look at the code, think about the structure of the song, “The Ants
Go Marching.” Like many songs, it has two parts. The chorus is a phrase
repeated many times throughout the song. The song has several verses,
which are similar to each other, but not quite identical.

Think about the song sheet passed around the campfire. (I’m getting hungry
for a s’more.) The chorus is usually listed only one time, and each verse is
listed. Sometimes, you have a section somewhere on the song sheet that
looks like the following:

Verse 1
Chorus
Verse 2
Chorus

Book IV
Chapter 4

Functions, Arrays,
and Objects

Breaking Code into Functions 431

Musicians call this a road map, and that’s a great name for it. A road map is a
high-level view of how you progress through the song. In the road map, you
don’t worry about the details of the particular verse or chorus. The road
map shows the big picture, and you can look at each verse or chorus for the
details.

Building the antsFunction.html program
Take a look at the code for antsFunction.html and see how it reminds you of
the song sheet for “The Ants Go Marching”:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>antsFunction.html</title>
 <script type = "text/javascript">
 //from antsFunction.html

 var output;

 function chorus() {
 var text = "...and they all go marching down
";
 text += "to the ground
";
 text += "to get out
";
 text += "of the rain.
";
 text += "
";
 text += "boom boom boom boom boom boom boom boom

";
 output.innerHTML += text;
 } // end chorus

 function verse1(){
 var text = "The ants go marching 1 by 1 hurrah, hurrah
";
 text += "The ants go marching 1 by 1 hurrah, hurrah
";
 text += "The ants go marching 1 by 1
";
 text += " The little one stops to suck his thumb

";
 output.innerHTML += text;
 } // end verse1

 function verse2(){
 var text = "The ants go marching 2 by 2 hurrah, hurrah
";
 text += "The ants go marching 2 by 2 hurrah, hurrah
";
 text += "The ants go marching 2 by 2
";
 text += " The little one stops to tie his shoe

";
 output.innerHTML += text;
 } // end verse2

 function makeSong(){
 output = document.getElementById("output");
 output.innerHTML = "";
 verse1();
 chorus();
 verse2();
 chorus();
 } // end makeSong

 </script>

 </head>

Passing Data to and from Functions432

 <body>
 <h1>Using Basic Functions</h1>
 <form action = "">
 <fieldset>
 <button type = "button"
 onclick = "makeSong()">
 make song
 </button>
 </fieldset>
 </form>

 <div id = "output">
 The song will appear here...
 </div>

 </body>
</html>

The program code breaks the parts of the song into the same pieces a song
sheet does. Here are some interesting features of antsFunction.html:

 ✦ I created a function called chorus(). Functions are simply collections
of code lines with a name.

 ✦ All the code for the chorus goes into this function. Anything I want as
part of printing the chorus goes into the chorus() function. Later, when
I want to print the chorus, I can just call the chorus() function and it
will perform the code I stored there.

 ✦ Each verse has a function, too. I broke the code for each verse into its
own function.

 ✦ The makeSong function is a road map. When all the details are del-
egated to the functions, the main part of the code just controls the order
in which the functions are called. In this case, the makeSong() function
is called by the button press, which runs all the other functions.

 ✦ Details are hidden in the functions. The makeSong code handles the
big picture. The details (how to print the chorus or verses) are hidden
inside the functions.

 ✦ I’m using standard form-based output. Each of the functions creates its
own part of the song and adds it to the output as needed.

Passing Data to and from Functions
Functions are logically separated from each other. This separation is a good
thing because it prevents certain kinds of errors. However, sometimes you
want to send information to a function. You may also want a function to return
some type of value. The antsParam.html page rewrites the “The Ants Go
Marching” song in a way that takes advantage of function input and output.

Book IV
Chapter 4

Functions, Arrays,
and Objects

Passing Data to and from Functions 433

 <!DOCTYPE HTML>
 <html lang = "en">
 <head>
 <title>param.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 </style>
 <script type = "text/javascript">
 //Ants to marching in using functions with parameters

 function makeSong(){
 //create output variable
 var output = document.getElementById("output");

 output.innerHTML = "";

 output.innerHTML += verse(1);
 output.innerHTML += chorus();
 output.innerHTML += verse(2);
 output.innerHTML += chorus();
 } // end makeSong

 function chorus(){
 var result = "-and they all go marching down,
";
 result += "to the ground, to get out, of the rain.
";
 result += "boom boom boom boom
";
 result += "boom boom boom boom
";
 result += "
";
 return result;
 } // end chorus

 function verse(verseNumber){
 var distraction = "";
 if (verseNumber == 1){
 distraction = "suck his thumb";
 } else if (verseNumber == 2){
 distraction = "tie his shoe";
 } else {
 distraction = "there's a problem here...";
 } // end if

 var result = "The ants go marching ";
 result += verseNumber + " by " + verseNumber + ", ";
 result += "hurrah, hurrah
";
 result += "The ants go marching ";
 result += verseNumber + " by " + verseNumber + ", ";
 result += "hurrah, hurrah
";
 result += "The ants go marching ";
 result += verseNumber + " by " + verseNumber + "
";
 result += "The little one stops to ";
 result += distraction + "

";

 return result;
 } // end verse

 </script>

 I don’t provide a figure of this program because it looks just like antsFunc-
tion.html to the user. One advantage of functions is that I can improve the
underlying behavior of a program without imposing a change in the user’s
experience.

Passing Data to and from Functions434

This code incorporates a couple of important new ideas. (The following list
is just the overview; the specifics are coming in the following sections.)

 ✦ These functions return a value. The functions no longer do their own
alerts. Instead, they create a value and return it to the main program.

 ✦ Only one verse function exists. Because the verses are all pretty simi-
lar, using only one verse function makes sense. This improved function
needs to know what verse it’s working on to handle the differences.

Examining the makeSong code
The makeSong code has been changed in one significant way. In the last pro-
gram, the makeSong code called the functions, which did all the work. This
time, the functions don’t actually output anything themselves. Instead, they
collect information and pass it back to the main program. Inside the make-
Song code, each function is treated like a variable.

You’ve seen this behavior before. The prompt() method returns a value.
Now the chorus() and verse() methods return values. You can do any-
thing you want to this value, including storing it to a variable, printing it, or
comparing it to some other value.

 If you have one function that controls all the action, often that function is
called main(). Some languages require you to have a function called main(),
but JavaScript isn’t that picky. For this example, I went with makeSong()
because that name is more descriptive than main(). Still, the makeSong()
function is a main function because it controls the rest of the program.

 Separating the creation of data from its use as I’ve done here is a good idea.
That way, you have more flexibility. After a function creates some informa-
tion, you can print it to the screen, store it on a web page, put it in a data-
base, or whatever.

Looking at the chorus
The chorus of “The Ants Go Marching” song program has been changed to
return a value. Take another look at the chorus() function to see what I
mean.

 function chorus(){
 var result = "-and they all came marching down,
";
 result += "to the ground, to get out, of the rain.
";
 result += "boom boom boom boom
";
 result += "boom boom boom boom
";
 result += "
";
 return result;
 } // end chorus

Book IV
Chapter 4

Functions, Arrays,
and Objects

Passing Data to and from Functions 435

Here’s what changed:

 ✦ The purpose of the function has changed. The function is no longer
designed to output some value to the screen. Instead, it now provides
text to the main program, which can do whatever it wants with the
results.

 ✦ There’s a variable called text. This variable contains all the text to be
sent to the main program. (It contained all the text in the last program,
but it’s even more important now.)

 ✦ The text variable is concatenated over several lines. I used string
concatenation to build a complex value. Note the use of break tags
(
) to force carriage returns in the HTML output.

 ✦ The return statement sends text to the main program. When you want
a function to return some value, simply use return followed by a value or
variable. Note that return should be the last line of the function.

Handling the verses
The verse() function is quite interesting:

 ✦ It can print more than one verse.

 ✦ It takes input to determine which verse to print.

 ✦ It modifies the verse based on the input.

 ✦ It returns a value, just like chorus().

To make the verse so versatile (get it? verse-atile!), it must take input from
the primary program and return output.

Passing data to the verse() function
The verse() function is always called with a value inside the parentheses.
For example, the main program sets verse(1) to call the first verse, and
verse(2) to invoke the second. The value inside the parentheses is called
an argument.

The verse function must be designed to accept an argument (because I call it
using values inside the parentheses). Look at the first line to see how.

 function verse(verseNumber){

In the function definition, I include a variable name. Inside the function, this
variable is known as a parameter. (Don’t get hung up on the terminology.
People often use the terms parameter and argument interchangeably.) The
important idea is that whenever the verse() function is called, it automati-
cally has a variable called verseNumber. Whatever argument you send to

Passing Data to and from Functions436

the verse() function from the main program will become the value of the
variable verseNumber inside the function.

You can define a function with as many parameters as you want. Each
parameter gives you the opportunity to send a piece of information to the
function.

Determining the distraction
If you know the verse number, you can determine what distracts “the little
one” in the song. You can determine the distraction in a couple ways, but a
simple if-elseif structure is sufficient for this example.

 var distraction = "";
 if (verseNumber == 1){
 distraction = "suck his thumb.";
 } else if (verseNumber == 2){
 distraction = "tie his shoe.";
 } else {
 distraction = "I have no idea.";
 }

I initialized the variable distraction to be empty. If verseNum is 1, set
distraction to "suck his thumb". If verseNumber is 2, distraction
should be "tie his shoe". Any other value for verseNumber is treated
as an error by the else clause.

 If you’re an experienced coder, you may be yelling at this code. It still isn’t
optimal. Fortunately, in the section “Building a Basic Array” later in this
chapter, I show an even better solution for handling this particular situation
with arrays.

By the time this code segment is complete, verseNumber and
distraction both contain a legitimate value.

Creating the text
When you know these variables, it’s pretty easy to construct the output text:

 var result = "The ants go marching ";
 result += verseNumber + " by " + verseNumber + ", ";
 result += "hurrah, hurrah
";
 result += "The ants go marching ";
 result += verseNumber + " by " + verseNumber + ", ";
 result += "hurrah, hurrah
";
 result += "The ants go marching ";
 result += verseNumber + " by " + verseNumber + "
";
 result += "The little one stops to ";
 result += distraction + "

";

 return result;
 } // end verse

Book IV
Chapter 4

Functions, Arrays,
and Objects

Managing Scope 437

A whole lotta concatenating is going on, but it’s essentially the same code
as the original verse() function. This one’s just a lot more flexible because
it can handle any verse. (Well, if the function has been preloaded to under-
stand how to handle the verseNumber.)

Managing Scope
A function is much like an independent mini-program. Any variable you
create inside a function has meaning only inside that function. When the
function is finished executing, its variables disappear! This setup is actually
a really good thing. A major program will have hundreds of variables, and
they can be difficult to keep track of. You can reuse a variable name without
knowing it or have a value changed inadvertently. When you break your
code into functions, each function has its own independent set of variables.
You don’t have to worry about whether the variables will cause problems
elsewhere.

Introducing local and global variables
You can also define variables at the main (script) level. These variables are
global variables. A global variable is available at the main level and inside
each function. A local variable (one defined inside a function) has mean-
ing only inside the function. The concept of local versus global functions is
sometimes referred to as scope.

Local variables are kind of like local police. Local police have a limited geo-
graphical jurisdiction, but they’re very useful within that space. They know
the neighborhood. Sometimes, you encounter situations that cross local
jurisdictions. This situation is the kind that requires a state trooper or the
FBI. Local variables are local cops, and global variables are the FBI.

 Generally, try to make as many of your variables local as possible. The only
time you really need a global variable is when you want some information to
be used in multiple functions.

Examining variable scope
To understand the implications of variable scope, take a look at scope.html:

 <script type = "text/javascript">
 //from scope.html
 var globalVar = "I'm global!";

 function myFunction(){
 var localVar = "I'm local";
 console.log(localVar);
 }

 myFunction();
 </script>

Managing Scope438

This program defines two variables. In the main code, globalVar
is defined, and localVar is defined inside a function. If you run the
program in debug mode while watching the variables, you can see
how they behave. Figure 4-2 shows what the program looks like early
in the run.

Figure 4-2:
globalVar is
defined, but
localVar is
not.

localVar doesn’t have meaning until the function is called, so it remains
undefined until the computer gets to that part of the code. Step ahead a few
lines, and you see that localVar has a value, as shown in Figure 4-3.

Figure 4-3:
localVar
has a value
because I’m
inside the
function.

Book IV
Chapter 4

Functions, Arrays,
and Objects

Building a Basic Array 439

 Be sure to use Step Into (down arrow) rather than Step Over (up arrow) on
the “remote control” toolbar for this example. When Step Over encounters a
function, it runs the entire function as one line rather than looking at the func-
tion code line by line. If you want to look into the function and see what’s hap-
pening inside it (as you do here), use Step Into. Use Step Over when you know
a function is working fine and you want to treat it as a single instruction. If in
doubt, always use Step Into to see exactly what’s happening in your code. (I
added watch expressions to clarify the content of the variables.)

globalVar still has a value (it’s an FBI agent), and so does localVar
because it’s inside the function.

If you move a few more steps, localVar no longer has a value when the
function ends (see Figure 4-4).

Figure 4-4:
Once again,
localVar has
no meaning.

Variable scope is a good thing because it means you have to keep track of
only global variables and the variables defined inside your current function.
The other advantage of scope is the ability to reuse a variable name. You can
have ten different functions all using the same variable name, and they won’t
interfere with each other because they’re entirely different variables.

Building a Basic Array
If functions are groups of code lines with a name, arrays are groups of vari-
ables with a name. Arrays are similar to functions because they’re used to
manage complexity. An array is a special kind of variable. Use an array when-
ever you want to work with a list of similar data types.

Building a Basic Array440

The following code shows a basic demonstration of arrays:

 <script type = "text/javascript">
 //from genres.html

 //creating an empty array
 var genre = new Array(5);

 //storing data in the array
 genre[0] = "flight simulation";
 genre[1] = "first-person shooters";
 genre[2] = "driving";
 genre[3] = "action";
 genre[4] = "strategy";

 //returning data from the array
 alert ("I like " + genre[4] + " games.");
 //]]
 </script>

The variable genre is a special variable because it contains many values.
Essentially, it’s a list of genres. The new Array(5) construct creates space
in memory for five variables, all named genre.

Accessing array data
After you specify an array, you can work with the individual elements using
square-bracket syntax. An integer identifies each element of the array. The
index usually begins with.

 genre[0] = "flight simulation";

The preceding code assigns the text value “flight simulation” to the
genre array variable at position 0.

 Most languages require all array elements to be the same type. JavaScript is
very forgiving. You can combine all kinds of stuff in a JavaScript array. This flex-
ibility can sometimes be useful, but be aware that this trick doesn’t work in all
languages. Generally, I try to keep all the members of an array the same type.

After you store the data in the array, you can use the same square-bracket
syntax to read the information.

The line

 alert ("I like " + genre[4] + " games.");

finds element 4 of the genre array and includes it in an output message.

Figure 4-5 shows a run of genres.html.

Book IV
Chapter 4

Functions, Arrays,
and Objects

Building a Basic Array 441

Figure 4-5:
This data
came from
an array.

Using arrays with for loops
The main reason to use arrays is convenience. When you have a lot of
information in an array, you can write code to work with the data quickly.
Whenever you have an array of data, you commonly want to do something
with each element in the array. Take a look at games.html to see how you
can do so:

 <script type = "text/javascript">
 //from games.html

 //pre-loading an array
 var gameList = new Array("Flight Gear", "Sauerbraten", "Future Pinball",
 "Racer", "TORCS", "Orbiter", "Step Mania", "NetHack",
 "Marathon", "Crimson Fields");

 var text = "";
 for (i = 0; i < gameList.length; i++){
 text += "I love " + gameList[i] + "\n";
 } // end for loop
 alert(text);
 </script>

Notice several things in this code:

 ✦ The array called gameList. This array contains the names of some of
my favorite freeware games.

 ✦ The array is preloaded with values. If you provide a list of values when
creating an array, JavaScript simply preloads the array with the values
you indicate. You don’t need to specify the size of the array if you pre-
load it.

 ✦ A for loop steps through the array. Arrays and for loops are natural
companions. The for loop steps through each element of the array.

 ✦ The array’s length is used in the for loop condition. Rather than speci-
fying the value 10, I used the array’s length property in my for loop.
This practice is good because the loop automatically adjusts to the size
of the array when I add or remove elements.

Building a Basic Array442

 ✦ Do something with each element. Because i goes from 0 to 9 (the array
indices), I can easily print each value of the array. In this example, I
simply add to an output string.

 ✦ Note the newline characters. The \n combination is a special character
that tells JavaScript to add a carriage return, such as you get by pressing
the Enter key. Figure 4-6 shows a run of games.html.

Figure 4-6:
Now I
have a list
of games.
Arrays and
loops are
fun!

 If you want to completely ruin your productivity, Google some of these game
names. They’re absolutely incredible, and every one of them is free. It’s hard
to beat that. See, even if you don’t learn how to program in this book, you
get something good from it!

Revisiting the ants song
If you read the earlier sections, you probably just got that marching ant song
out of your head. Sorry. Take a look at the following variation, which uses
arrays and loops to simplify the code even more.

 <script type = "text/javascript">
 //This old man using functions and arrays

 var distractionList = Array("", "suck his thumb", "tie his shoe",
 "climb a tree", "shut the door");

 function makeSong(){
 //create output variable
 var output = document.getElementById("output");

Book IV
Chapter 4

Functions, Arrays,
and Objects

Building a Basic Array 443

 output.innerHTML = "";
 for (verseNumber = 1; verseNumber < distractionList.length; verseNumber++){
 output.innerHTML += verse(verseNumber);
 output.innerHTML += chorus();
 } // end for loop

 } // end makeSong

 function chorus(){
 var result = "-and they all came marching down,
";
 result += "to the ground, to get out, of the rain.
";
 result += "boom boom boom boom
";
 result += "boom boom boom boom
";
 result += "
";
 return result;
 } // end chorus

 function verse(verseNumber){
 var distraction = distractionList[verseNumber];

 var result = "The ants go marching ";
 result += verseNumber + " by " + verseNumber + ", ";
 result += "hurrah, hurrah
";
 result += "The ants go marching ";
 result += verseNumber + " by " + verseNumber + ", ";
 result += "hurrah, hurrah
";
 result += "The ants go marching ";
 result += verseNumber + " by " + verseNumber + "
";
 result += "The little one stops to ";
 result += distraction + "

";

 return result;
 } // end verse

 </script>

This code is just a little different from the antsParam program shown in the
section of this chapter called “Passing Data to and from Functions.”

 ✦ It has an array called distractionList. This array is (despite
the misleading name) a list of distractions. I made the first one (ele-
ment zero) blank so that the verse numbers would line up properly.
(Remember, computers normally count beginning with zero.)

 ✦ The verse()function looks up a distraction. Because distractions are
now in an array, you can use the verseNumber as an index to loop up a
particular distraction. Compare this function to the verse() function in
antsParam. This program can be found in the section “Passing data to
and from Functions.” Although arrays require a little more planning than
code structures, they can highly improve the readability of your code.

 ✦ The makeSong() function is a loop. I step through each element of the
distractionList array, printing the appropriate verse and chorus.

 ✦ The chorus()function remains unchanged. You don’t need to change
chorus().

Working with Two-Dimension Arrays444

Working with Two-Dimension Arrays
Arrays are useful when working with lists of data. Sometimes, you encounter
data that’s best imagined in a table. For example, what if you want to build
a distance calculator that determines the distance between two cities? The
original data might look like Table 4-1.

Table 4-1 Distance between Major Cities
0)
Indianapolis

1)
New York

2)
Tokyo

3)
London

0)
Indianapolis

0 648 6476 4000

1) New York 648 0 6760 3470

2) Tokyo 6476 6760 0 5956

3) London 4000 3470 5956 0

Think about how you would use Table 4-1 to figure out a distance. If you
wanted to travel from New York to London, for example, you’d pick the New
York row and the London column and figure out where they intersect. The
data in that cell is the distance (3,470 miles).

When you look up information in any kind of a table, you’re actually working
with a two-dimensional data structure — a fancy term, but it just means table.
If you want to look something up in a table, you need two indices, one to
determine the row and another to determine the column.

If this concept is difficult to grasp, think of the old game Battleship. The play-
ing field is a grid of squares. You announce I-5, meaning column I, row 5, and
the opponent looks in that grid to discover that you’ve sunk his battleship.
In programming, you typically use integers for both indices, but otherwise,
it’s exactly the same as Battleship. Any time you have two-dimensional data,
you access it with two indices.

Often, we call the indices row and column to help you think of the struc-
ture as a table. Sometimes, other names more clearly describe how the
behavior works. Take a look at Figure 4-7, and you see that the distance.
html program asks for two cities and returns a distance according to the
data table.

Book IV
Chapter 4

Functions, Arrays,
and Objects

Working with Two-Dimension Arrays 445

Figure 4-7:
It’s a Tale of
Two Cities.
You even get
the distance
between
them!

Working with Two-Dimension Arrays446

 Yep, you can have three, four, or more dimension arrays in programming, but
don’t worry about that yet. (It may make your head explode.) Most of the
time, one or two dimensions are all you need.

This program is a touch longer than some of the others, so I break it into
parts in the following sections for easy digestion. Be sure to look at the pro-
gram in its entirety on the website.

Setting up the arrays
The key to this program is the data organization. The first step is to set up
two arrays.

 <script type = "text/javascript">
 //from distance.html

 //cityName has the names of the cities
 cityName = new Array("Indianapolis", "New York", "Tokyo", "London");

 //create a 2-dimension array of distances
 distance = new Array (
 new Array (0, 648, 6476, 4000),
 new Array (648, 0, 6760, 3470),
 new Array (6476, 6760, 0, 5956),
 new Array (4000, 3470, 5956, 0)
);

The first array is an ordinary single-dimension array of city names. I’ve been
careful to always keep the cities in the same order, so whenever I refer to
city 0, I’m talking about Indianapolis (my hometown), New York is always
going to be at position 1, and so on.

 You have to be careful in your data design that you always keep things in the
same order. Be sure to organize your data on paper before you type it into
the computer, so you’ll understand what value goes where.

The cityNames array has two jobs. First, it reminds me what order all the cities
will be in, and, second, it gives me an easy way to get a city name when I know
an index. For example, I know that cityName[2] will always be “Tokyo”.

The distance array is very interesting. If you squint at it a little bit, it
looks a lot like Table 4-1, shown earlier in this chapter. That’s because it is
Table 4-1, just in a slightly different format.

distance is an array. JavaScript arrays can hold just about everything,
including other arrays! That’s what distance does. It holds an array of
rows. Each element of the distance array is another (unnamed) array
holding all the data for that row. If you want to extract information from the
array, you need two pieces of information. First, you need the row. Then

Book IV
Chapter 4

Functions, Arrays,
and Objects

Working with Two-Dimension Arrays 447

because the row is an array, you need the column number within that array.
So, distance[1][3] means go to row 1 (“New York”) of distance.
Within that row go to element 3 (“London”) and return the resulting value
(3470). Cool, huh?

 A beginning programmer would typically solve this problem with a huge
number of if statements. That solution will work, but it becomes unwieldy
in a hurry. With four cities, you’ll have four conditions to determine which
city you’re coming from, and each of these will need three conditions to
determine where we’re going. That’s doable, but by the time you have ten
cities, you’ll have somewhere near one hundred conditions, and with one
hundred cities, you’ll have roughly ten thousand conditions. When you use
an array like I’m demonstrating here, the code doesn’t get more complex
when the number of elements increases. For computer science majors out
there, this problem has a complexity of Big O(n2), meaning as the number of
elements increases, the complexity increases by the square. Using an array
tames that complexity and makes the program much more efficient and
extensible. Experienced programmers tend to aim for simpler code structure
by using more complex data structures.

Getting a city
The program requires that you ask for two cities. You want the user to enter
a city number, not a name, and you want to ask this question twice. Sounds
like a good time for a function.

 function getCity(){
 // presents a list of cities and gets a number corresponding to
 // the city name
 var theCity = ""; //will hold the city number

 var cityMenu = "Please choose a city by typing a number: \n";
 cityMenu += "0) Indianapolis \n";
 cityMenu += "1) New York \n";
 cityMenu += "2) Tokyo \n";
 cityMenu += "3) London \n";

 theCity = prompt(cityMenu);
 return theCity;
 } // end getCity

The getCity() function prints a little menu of city choices and asks for
some input. It then returns that input.

 You can improve getCity() in all kinds of ways. For one thing, maybe it
should repeat until you get a valid number so that users can’t type the city
name or do something else crazy. I’ll leave it simple for now. If you want to
find out how user interface elements help the user submit only valid input,
skip ahead to Chapter 5 of this minibook.

Working with Two-Dimension Arrays448

Creating a main() function
The main() function handles most of the code for the program.

 function main(){
 var output = "";
 var from = getCity();
 var to = getCity();
 var result = distance[from][to];
 output = "The distance from " + cityName[from];
 output += " to " + cityName[to];
 output += " is " + result + " miles.";
 alert(output);
 } // end main

 main();

The main() function controls traffic. Here’s what you do:

 1. Create an output variable.

 The point of this function is to create some text output describing the
distance. I begin by creating a variable called output and setting its ini-
tial value to empty.

 2. Get the city of origin.

 Fortunately, you have a great function called getCity() that handles
all the details of getting a city in the right format. Call this function and
assign its value to the new variable from.

 3. Get the destination city.

 That getCity() function sure is handy. Use it again to get the city
number you’ll call to.

 4. Get the distance.

 Because you know two indices, and you know they’re in the right format,
you can simply look them up in the table. Look up distance[from]
[to] and store it in the variable result.

 5. Output the response.

 Use concatenation to build a suitable response string and send it to the
user.

 6. Get city names from the cityNames array.

 The program uses numeric indices for the cities, but they don’t mean
anything to the user. Use the cityNames array to retrieve the two city
names for the output.

 7. Run the main()function.

 Only one line of code doesn’t appear in a function. That line calls the
main() function and starts the whole thing.

Book IV
Chapter 4

Functions, Arrays,
and Objects

Creating Your Own Objects 449

 I didn’t actually write the program in the order I showed it to you in the pre-
ceding steps. Sometimes it makes more sense to go “inside out.” I actually
created the data structure first (as an ordinary table on paper) and then con-
structed the main() function. This approach made it obvious that I needed
a getCity() function and gave me some clues about how getCity should
work. (In other words, it should present a list of cities and prompt for a
numerical input.)

Creating Your Own Objects
So far you’ve used a lot of wonderful objects in JavaScript, like the document
object and the array object. However, that’s just the beginning. It turns out
you can build your own objects too, and these objects can be very powerful
and flexible. Objects typically have two important components: properties and
methods. A property is like a variable associated with an object. The proper-
ties taken together describe the object. A method is like a function associated
with an object. The methods describe things the object can do. If functions
allow you to put code segments together and arrays allow you to put variables
together, objects allow you to put both code segments and variables (and
functions and arrays) in the same large construct.

Building a basic object
JavaScript makes it trivially easy to build an object. Because a variable can
contain any value, you can simply start treating a variable like an object and
it becomes one.

Figure 4-8 shows a critter that has a property.

Figure 4-8:
This alert
box is
actually
using an
object.

Take a look at the following code:

 //from basicObject.html
 //create the critter
 var critter = new Object();

 //add some properties
 critter.name = "Milo";
 critter.age = 5;

Creating Your Own Objects450

 //view property values
 alert("the critter's name is " + critter.name);

The way it works is not difficult to follow:

 1. Create a new Object.

 JavaScript has a built-in object called Object. Make a variable with the
new Object() syntax, and you’ll build yourself a shiny, new standard
object.

 2. Add properties to the object.

 A property is a subvariable. It’s nothing more than a variable attached
to a specific object. When you assign a value to critter.name, for
example, you’re specifying that critter has a property called name
and you’re also giving it a starting value.

 3. An object can have any number of properties.

 Just keep adding properties. This allows you to group a number of vari-
ables into one larger object.

 4. Each property can contain any type of data.

 Unlike arrays where it’s common for all the elements to contain exactly
the same type of data, each property can have a different type.

 5. Use the dot syntax to view or change a property.

 If the critter object has a name property, you can use critter.name
as a variable. Like other variables, you can change the value by assign-
ing a new value to critter.name or you can read the content of the
property.

 If you’re used to a stricter object-oriented language, such as Java, you’ll find
JavaScript’s easy-going attitude quite strange and maybe a bit sloppy. Other
languages do have a lot more rules about how objects are made and used,
but JavaScript’s approach has its charms. Don’t get too tied up in the differ-
ences. The way JavaScript handles objects is powerful and refreshing.

Adding methods to an object
Objects have other characteristics besides properties. They can also have
methods. A method is simply a function attached to an object. To see what
I’m talking about, take a look at this example:

 //create the critter
 //from addingMethods.html
 var critter = new Object();

 //add some properties
 critter.name = "Milo";
 critter.age = 5;

Book IV
Chapter 4

Functions, Arrays,
and Objects

Creating Your Own Objects 451

 //create a method
 critter.talk = function(){
 msg = "Hi! My name is " + this.name;
 msg += " and I'm " + this.age;
 alert(msg);
 } // end method

 // call the talk method
 critter.talk();

This example extends the critter object described in the last section.
In addition to properties, the new critter has a talk() method. If a prop-
erty describes a characteristic of an object, a method describes something
the object can do. Figure 4-9 illustrates the critter showing off its talk()
method:

Figure 4-9:
Now the
critter can
talk!

Here’s how it works:

 1. Build an object with whatever properties you need.

 Begin by building an object and giving it some properties.

 2. Define a method much like a property.

 In fact, methods are properties in JavaScript, but don’t worry too much
about that; it’ll make your head explode.

 3. You can assign a prebuilt function to a method.

 If you created a function that you want to use as a method, you can
simply assign it.

 4. You can also create an anonymous function.

 More often, you’ll want to create your method right there as you define
the object. You can create a function immediately with the function()
{ syntax.

 5. The this keyword refers to the current object.

 Inside the function, you may want to access the properties of the object.
this.name refers to the name property of the current object.

Creating Your Own Objects452

 6. You can then refer to the method directly.

 After you define an object with a method, you can invoke it. For exam-
ple, if the critter object has a talk method, use critter.talk() to
invoke this method.

Building a reusable object
These objects are nice, but what if you want to build several objects with
the same definition? JavaScript supports an idea called a constructor, which
allows you to define an object pattern and reuse it.

Here’s an example:

//building a constructor
//from constructor.html
function Critter(lName, lAge){
 this.name = lName;
 this.age = lAge;
 this.talk = function(){
 msg = "Hi! My name is " + this.name;
 msg += " and I'm " + this.age;
 alert(msg);
 } // end talk method
} // end Critter class def

function main(){
 //build two critters
 critterA = new Critter("Alpha", 1);

 critterB = new Critter("Beta", 2);
 critterB.name = "Charlie";
 critterB.age = 3;

 //have 'em talk
 critterA.talk();
 critterB.talk();

} // end main
main();

This example involves creating a class (a pattern for generating objects) and
reusing that definition to build two different critters. First, look over how the
class definition works:

 ✦ Build an ordinary function: JavaScript classes are defined as exten-
sions of a function. The function name will also be the class name. Note
that the name of a class function normally begins with an uppercase
letter. When a function is used in this way to describe an object, the
function is called the object’s constructor. The constructor can take
parameters if you wish, but it normally does not return any values. In my
particular example, I add parameters for name and age.

 ✦ Use this to define properties: Add any properties you want to include,
including default values. Note that you can change the values of these

Book IV
Chapter 4

Functions, Arrays,
and Objects

Creating Your Own Objects 453

later if you wish. Each property should begin with this and a period.
If you want your object to have a color property, you’d say something
like this.color = “blue”. My example uses the local parameters to
define the properties. This is a very common practice because it’s an
easy way to preload important properties.

 ✦ Use this to define any methods you want: If you want your object to
have methods, define them using the this operator followed by the
function(){ keyword. You can add as many functions as you wish.

 The way JavaScript defines and uses objects is easy but a little nonstandard.
Most other languages that support object-oriented programming (OOP) do it
in a different way than the technique described here. Some would argue that
JavaScript is not a true OOP language, as it doesn’t support a feature called
inheritance, but instead uses a feature called prototyping. The difference isn’t
all that critical because most uses of OOP in JavaScript are very simple
objects like the ones described here. Just appreciate that this introduction to
object-oriented programming is very cursory, but enough to get you started.

Using your shiny new objects
After you define a class, you can reuse it. Look again at the main function to
see how I use my newly minted Critter class:

function main(){
 //build two critters

 critterA = new Critter("Alpha", 1);

 critterB = new Critter("Beta", 2);
 critterB.name = "Charlie";
 critterB.age = 3;

 //have 'em talk
 critterA.talk();
 critterB.talk();

} // end main
main();

After you define a class, you can use it as a new data type. This is a very
powerful capability. Here’s how it works:

 ✦ Be sure you have access to the class: A class isn’t useful unless
JavaScript knows about it. In this example, the class is defined within
the code.

 ✦ Create an instance of the class with the new keyword: The new key-
word means you want to make a particular critter based on the defini-
tion. Normally, you assign your new object to a variable. My constructor
expects the name and age to be supplied, so it automatically creates a
critter with the given name and age.

Introducing JSON454

 ✦ Modify the class properties as you wish: You can change the values of
any of the class properties. In my example, I change the name and age of
the second critter just to show how it’s done.

 ✦ Call class methods: Because the critter class has a talk() method,
you can use it whenever you want the critter to talk.

Introducing JSON
JavaScript objects and arrays are incredibly flexible. In fact, they are so
well known for their power and ease of use that a special data format called
JavaScript Object Notation (JSON) has been adopted by many other lan-
guages.

JSON is mainly used as a way to store complex data (especially multidimen-
sional arrays) and pass the data from program to program. JSON is essen-
tially another way of describing complex data in a JavaScript object format.
When you describe data in JSON, you generally do not need a constructor
because the data is used to determine the structure of the class.

JSON data is becoming a very important part of web programming because
it allows an easy mechanism for transporting data between programs and
programming languages.

Storing data in JSON format
To see how JSON works, look at this simple code fragment:

 var critter = {
 "name": "George",
 "age": 10
 };

This code describes a critter. The critter has two properties, a name and an
age. The critter looks much like an array, but rather than using a numeric
index like most arrays, the critter has string values to serve as indices. It is
in fact an object.

You can refer to the individual elements with a variation of array syntax, like
this:

alert(critter["name"]);

You can also use what’s called dot notation (as used in objects) like this:

alert(critter.age);

Both notations work the same way. Most of the built-in JavaScript objects
use dot notation, but either is acceptable.

Book IV
Chapter 4

Functions, Arrays,
and Objects

Introducing JSON 455

 The reason JavaScript arrays are so useful is that they are in fact objects.
When you create an array in JavaScript, you are building an object with
numeric property names. This is why you can use either array or object
syntax for managing JSON object properties.

 Look at jsonDistance.html on the website to see the code from this section
in action. I don’t show a screenshot here because all the interesting work
happens in the code.

To store data in JSON notation:

 1. Create the variable.

 You can use the var statement like you do any variable.

 2. Contain the content within braces ({}).

 This is the same mechanism you use to create a preloaded array (as
described earlier in this chapter).

 3. Designate a key.

 For the critter, I want the properties to be named “name” and “age”
rather than numeric indices. For each property, I begin with the prop-
erty name. The key can be a string or an integer.

 4. Follow the key with a colon (:).

 5. Create the value associated with that key.

 You can then associate any type of value you want with the key. In this
case, I associate the value George with the key name.

 6. Separate each name/value pair with a comma (,).

 You can add as many name/value pairs as you wish.

 If you’re familiar with other languages, you might think a JSON structure sim-
ilar to a hash table or associative array. JavaScript does use JSON structures
the way these other structures are used, but it isn’t quite accurate to say
JSON is either a hash or an associative array. It’s simply an object. However,
if you want to think of it as one of these things, I won’t tell anybody.

Building a more complex JSON structure
JSON is convenient because it can be used to handle quite complex data
structures. For example, look at the following (oddly familiar) data structure
written in JSON format:

 var distance = {
 "Indianapolis" :
 { "Indianapolis": 0,
 "New York": 648,
 "Tokyo": 6476,
 "London": 4000 },

Introducing JSON456

 "New York" :
 { "Indianapolis": 648,
 "New York": 0,
 "Tokyo": 6760,
 "London": 3470 },

 "Tokyo" :
 { "Indianapolis": 6476,
 "New York": 6760,
 "Tokyo": 0,
 "London": 5956 },

 "London" :
 { "Indianapolis": 4000,
 "New York": 3470,
 "Tokyo": 5956,
 "London": 0 },
 };

This data structure is another way of representing the distance data used to
describe two-dimension arrays. This is another two-dimension array, but it is
a little different than the one previously described.

 ✦ distance is a JSON object: The entire data structure is stored in a
single variable. This variable is a JSON object with name/value pairs.

 ✦ The distance object has four keys: These correspond to the four rows
of the original chart.

 ✦ The keys are city names: The original 2D array used numeric indices,
which are convenient but a bit artificial. In the JSON structure, the indi-
ces are actual city names.

 ✦ The value of each entry is another JSON object: The value of a JSON
element can be anything, including another JSON object. Very complex
relationships can be summarized in a single variable.

 ✦ Each row is summarized as a JSON object: For example, the value asso-
ciated with “Indianapolis” is a list of distances from Indianapolis to the
various cities.

 ✦ The entire declaration is one “line” of code: Although it is placed on
several lines in the editor (for clarity) the entire definition is really just
one line of code.

Setting up the data in this way seems a bit tedious, but it’s very easy to work
with. The city names are used directly to extract data, so you can find the
distance between two cities with array-like syntax:

 alert(distance["Indianapolis"]["London"]);

If you prefer, you can use the dot syntax:

 alert(distance.Indianapolis.Tokyo);

Book IV
Chapter 4

Functions, Arrays,
and Objects

Introducing JSON 457

You can even go with some kind of hybrid:

 alert(distance["London"].Tokyo);

JSON has a number of important advantages as a data format:

 ✦ Self-documenting: Even if you see the data structure on its own without
any code around it, you can tell what it means.

 ✦ The use of strings as indices makes the code more readable: It’s much
easier to understand distance[“Indianapolis”][“London”] than
distance[0][3].

 ✦ JSON data can be stored and transported as text: This turns out to
have profound implications for web programming, especially in AJAX
(the techniques described in Book VII).

 ✦ JSON can describe complex relationships: The example shown here
is a simple two-dimension array, but the JSON format can be used to
describe much more complex relationships including complete data-
bases.

 ✦ Many languages support JSON format: Many web languages now offer
direct support for JSON. The most important of these is PHP, which is
frequently used with JavaScript in AJAX applications.

 ✦ JSON is more compact than XML: Another data format called XML is
frequently used to transmit complex data. However, JSON is more com-
pact and less “wordy” than XML.

 ✦ JavaScript can read JSON natively: Some kinds of data need to be
translated before they can be used. As soon as your JavaScript program
has access to JSON data, it can be used directly.

 You might wonder whether you can embed methods in JSON objects. The
answer is yes, but this isn’t usually done when you’re using JSON to trans-
port information. In Book VII about AJAX, you see that methods are often
added to JSON objects to serve as callback functions, but that usage won’t
make sense until you learn more about events.

458 Book IV: Client-Side Programming with JavaScript

Chapter 5: Getting Valid Input

In This Chapter
✓ Extracting data from drop-down lists

✓ Working with multiple-selection lists

✓ Getting data from check boxes and radio groups

✓ Validating input with regular expressions

✓ Using character, boundary, and repetition operators

✓ Using pattern memory

G
 etting input from the user is always nice, but sometimes users make
mistakes. Whenever you can, you want to make the user’s job easier

and prevent certain kinds of mistakes.

Fortunately, you can take advantage of several tools designed exactly for
that purpose. In this chapter, you discover two main strategies for improv-
ing user input: specialized input elements and pattern-matching. Together,
these tools can help ensure that the data the user enters is useful and valid.

Getting Input from a Drop-Down List
The most obvious way to ensure that the user enters something valid is to
supply him with valid choices. The drop-down list is an obvious and easy
way to do this, as you can see from Figure 5-1.

The list-box approach has a lot of advantages over text field input:

 ✦ The user can input with the mouse, which is faster and easier than typing.

 ✦ You shouldn’t have any spelling errors because the user didn’t type the
response.

 ✦ The user knows all the answers available because they’re listed.

 ✦ You can be sure the user gives you a valid answer because you supplied
the possible responses.

 ✦ User responses can be mapped to more complex values — for example,
you can show the user Red and have the list box return the hex value
#FF0000.

If you want to know how to build a list box with the HTML select object,
refer to Book I, Chapter 7.

Getting Input from a Drop-Down List460

Figure 5-1:
The user
selects from
a predefined
list of valid
choices.

Building the form
When you’re creating a predefined list of choices, create the HTML form first
because it defines all the elements you’ll need for the function. The code is a
standard form:

 <body>
 <form action = "">
 <h1>Please select a color</h1>
 <fieldset>
 <select id = "selColor">
 <option value = "#FFFFFF">White</option>
 <option value = "#FF0000">Red</option>
 <option value = "#FFCC00">Orange</option>
 <option value = "#FFFF00">Yellow</option>
 <option value = "#00FF00">Green</option>
 <option value = "#0000FF">Blue</option>
 <option value = "#663366">Indigo</option>
 <option value = "#FF00FF">Violet</option>
 </select>

 <input type = "button"
 value = "change color"
 onclick = "changeColor()" />
 </fieldset>
 </form>

 </body>
</html>

The select object’s default behavior is to provide a drop-down list. The
first element on the list is displayed, but when the user clicks the list, the
other options appear.

A select object that the code refers to should have an id field.

Book IV
Chapter 5

Getting Valid Input

Getting Input from a Drop-Down List 461

 In this and most examples in this chapter, I add CSS styling to clean up each
form. Be sure to look over the styles if you want to see how I did it. Note also
that I’m only showing the HTML right now. The entire code listing also
includes JavaScript code, which I describe in the next section.

The other element in the form is a button. When the user clicks the button,
the changeColor() function is triggered.

Because the only element in this form is the select object, you may want to
change the background color immediately without requiring a button click.
You can do so by adding an event handler directly onto the select object:

 <select id = "selColor"
 onchange = "changeColor()">

The event handler causes the changeColor() function to be triggered as
soon as the user changes the select object’s value. Typically, you’ll forego
the user clicking a button only when the select is the only element in
the form. If the form includes several elements, processing doesn’t usually
happen until the user signals she’s ready by clicking a button.

Reading the list box
Fortunately, standard drop-down lists are quite easy to read. Here’s the
JavaScript code:

 <script type = "text/javascript">
 // from dropdownList.html

 function changeColor(){
 var selColor = document.getElementById("selColor");
 var color = selColor.value;
 document.body.style.backgroundColor = color;
 } // end function
 </script>

As you can see, the process for reading the select object is much like work-
ing with a text-style field:

 ✦ Create a variable to represent the select object. The document.
getElementById() trick works here just like it does for text fields.

 ✦ Extract the value property of the select object. The value
property of the select object reflects the value of the currently
selected option. So, if the user has chosen Yellow, the value of
selColor is “#FFFF00”.

 ✦ Set the document’s background color. Use the DOM mechanism to set
the body’s background color to the chosen value.

Managing Multiple Selections462

Managing Multiple Selections
You can use the select object in a more powerful way than the method I
describe in the preceding section. Figure 5-2 shows a page with a multiple-
selection list box.

Figure 5-2:
You can pick
multiple
choices
from this
list.

To make multiple selection work, you have to make a few changes to both
the HTML and the JavaScript code.

Coding a multiple selection select object
You modify the select code in two ways to make multiple selections:

 ✦ Indicate multiple selections are allowed. By default, select boxes
have only one value. You’ll need to set a switch to tell the browser to
allow more than one item to be selected.

 ✦ Make the mode a multiline select. The standard drop-down behavior
doesn’t make sense when you want multiple selections because the user
needs to see all the options at once. Most browsers automatically switch
into a multiline mode, but you should control the process directly.

The HTML code for multiSelect.html is similar to the dropdownList
page, described in the preceding section, but note a couple of changes.

 <body>
 <h1>Multiple Selections</h1>
 <form action = "">
 <fieldset>

Book IV
Chapter 5

Getting Valid Input

Managing Multiple Selections 463

 <label>
 Select the language(s) you know.
 (ctrl-click to select multiple lines)
 </label>
 <select id = "selLanguage"
 multiple = "multiple"
 size = "10">
 <option value = "HTML">HTML</option>
 <option value = "CSS">CSS</option>
 <option value = "JavaScript">JavaScript</option>
 <option value = "PHP">PHP</option>
 <option value = "MySQL">MySQL</option>
 <option value = "Java">Java</option>
 <option value = "VB.NET">VB.NET</option>
 <option value = "Python">Python</option>
 <option value = "Flash">Flash</option>
 <option value = "Perl">perl</option>
 </select>
 <button type = "button"
 onclick = "showChoices()">
 Submit
 </button>
 </fieldset>
 </form>

 <div id = "output">

 </div>
 </body>
</html>

The code isn’t shocking, but it does have some important features:

 ✦ Call the select object selLanguage. As usual, the form elements need
an id attribute so that you can read it in the JavaScript.

 ✦ Add the multiple attribute to your select object. This attribute tells
the browser to accept multiple inputs using Shift+click (for contiguous
selections) or Ctrl+click (for more precise selection).

 ✦ Set the size to 10. The size indicates the number of lines to be dis-
played. I set the size to 10 because my list has ten options.

 ✦ Make a button. With multiple selection, you probably won’t want to trig-
ger the action until the user has finished making selections. A separate
button is the easiest way to make sure the code is triggered when you
want it to happen.

 ✦ Create an output div. This code holds the response.

Writing the JavaScript code
The JavaScript code for reading a multiple-selection list box is a bit
different than the standard selection code described in the section
“Reading the list box” earlier in this chapter. The value property usu-
ally returns one value, but a multiple-selection list box often returns
more than one result.

Managing Multiple Selections464

The key is to recognize that a list of option objects inside a select object
is really a kind of array, not just one value. You can look more closely at the
list of objects to see which ones are selected, which is essentially what the
showChoices() function does:

 <script type = "text/javascript">
 //from multi-select.html
 function showChoices(){
 //retrieve data
 var selLanguage = document.getElementById("selLanguage");

 //set up output string
 var result = "<h2>Your Languages<\/h2>";
 result += " \n";

 //step through options
 for (i = 0; i < selLanguage.length; i++){
 //examine current option
 currentOption = selLanguage[i];

 //print it if it has been selected
 if (currentOption.selected == true){
 result += " " + currentOption.value + "<\/li> \n";
 } // end if
 } // end for loop

 //finish off the list and print it out
 result += "<\/ul> \n";

 output = document.getElementById("output");
 output.innerHTML = result;
 } // end showChoices
 </script>

At first, the code seems intimidating, but if you break it down, it’s not too tricky.

 1. Create a variable to represent the entire select object.

 The standard document.getElementById() technique works fine.
 var selLanguage = document.getElementById("selLanguage");

 2. Create a string variable to hold the output.

 When you’re building complex HTML output, working with a string vari-
able is much easier than directly writing code to the element.

 var result = "<h2>Your Languages<\/h2>";

 3. Build an unordered list to display the results.

 An unordered list is a good way to spit out the results, so I create one in
my result variable.

 result += " \n";

 4. Step through selLanguage as if it were an array.

 Use a for loop to examine the list box line by line. Note that selLan-
guage has a length property like an array.

 for (i = 0; i < selLanguage.length; i++){

Book IV
Chapter 5

Getting Valid Input

Check, Please: Reading Check Boxes 465

 5. Assign the current element to a temporary variable.

 The currentOption variable holds a reference to each option
 element in the original select object as the loop progresses.

 currentOption = selLanguage[i];

 6. Check to see whether the current element has been selected.

 The object currentOption has a selected property that tells you
whether the object has been highlighted by the user. selected is a
Boolean property, so it’s either true or false.

 if (currentOption.selected == true){

 7. If the element has been selected, add an entry to the output list.

 If the user has highlighted this object, create an entry in the unordered
list housed in the result variable.

 result += " " + currentOption.value + "<\/li> \n";

 8. Close up the list.

 After the loop has finished cycling through all the objects, you can close
up the unordered list you’ve been building.

 result += "<\/ul> \n";

 9. Print results to the output div.

 The output div’s innerHTML property is a perfect place to print the
unordered list.

 output = document.getElementById("output");
 output.innerHTML = result;

 Something strange is going on here. The options of a select box act like an
array. An unordered list is a lot like an array. Bingo! They are arrays, just in
different forms. You can think of any listed data as an array. Sometimes you
organize the data like a list (for display), sometimes like an array (for storage
in memory), and sometimes it’s a select group (for user input). Now you’re
starting to think like a programmer!

Check, Please: Reading Check Boxes
Check boxes fulfill another useful data input function. They’re useful any
time you have Boolean data. If some value can be true or false, a check box
is a good tool. Figure 5-3 illustrates a page that responds to check boxes.

 Check boxes are independent of each other. Although they’re often found in
groups, any check box can be checked or unchecked regardless of the status
of its neighbors.

Check, Please: Reading Check Boxes466

Figure 5-3:
You can
pick your
toppings
here.
Choose as
many as you
like.

Building the check box page
To build the check box page shown in Figure 5-3, start by looking at the
HTML:

 <body>
 <h1>What do you want on your pizza?</h1>
 <form action = "">
 <fieldset>
 <input type = "checkbox"
 id = "chkPepperoni"
 value = "pepperoni" />
 <label for = "chkPepperoni">Pepperoni</label>
 <input type = "checkbox"
 id = "chkMushroom"
 value = "mushrooms" />
 <label for = "chkMushroom">Mushrooms</label>
 <input type = "checkbox"
 id = "chkSausage"
 value = "sausage" />
 <label for = "chkSausage">Sausage</label>
 <button type = "button"
 onclick = "order()">
 Order Pizza
 </button>
 </fieldset>
 </form>
 <h2>Your order:</h2>
 <div id = "output">
 </div>
 </body>

Each check box is an individual input element. Note that check box values
aren’t displayed. Instead, a label (or similar text) is usually placed after the
check box. A button calls an order() function.

Book IV
Chapter 5

Getting Valid Input

Check, Please: Reading Check Boxes 467

 Note the labels have a for attribute which connects each label to the
corresponding check box. When you connect a label to a check box in
this way, the user can activate the check box by clicking on the box or
the label. This provides a larger target for the user, making their life
easier. Happy users make fewer mistakes, which makes your life easier.

Responding to the check boxes
Check boxes don’t require a lot of care and feeding. After you extract it, the
check box has two critical properties:

 ✦ You can use the value property to store a value associated with the
check box (just like you do with text fields in Chapter 2 of this mini-
book).

 ✦ The checked property is a Boolean value, indicating whether the check
box is checked or not.

The code for the order() function shows how it’s done:

 //from checkBoxes.html
 function order(){
 //get variables
 var chkPepperoni = document.getElementById("chkPepperoni");
 var chkMushroom = document.getElementById("chkMushroom");
 var chkSausage = document.getElementById("chkSausage");
 var output = document.getElementById("output");
 var result = " \n"
 if (chkPepperoni.checked){
 result += "" + chkPepperoni.value + " \n";
 } // end if
 if (chkMushroom.checked){
 result += "" + chkMushroom.value + " \n";
 } // end if
 if (chkSausage.checked){
 result += "" + chkSausage.value + " \n";
 } // end if
 result += " \n"
 output.innerHTML = result;
 } // end function

For each check box,

 1. Determine whether the check box is checked.

 Use the checked property as a condition.

 2. If so, return the value property associated with the check box.

 Often, in practice, the value property is left out. The important thing is
whether the check box is checked. If chkMushroom is checked, the user
obviously wants mushrooms, so you may not need to explicitly store that
data in the check box itself.

Working with Radio Buttons468

Working with Radio Buttons
Radio button groups appear pretty simple, but they’re more complex than
they seem. Figure 5-4 shows a page using radio button selection.

Figure 5-4:
One and
only one
member of a
radio group
can be
selected at
one time.

The most important thing to remember about radio buttons is that, like wil-
debeests and power-walkers, they must be in groups. Each group of radio
buttons has only one button active. The group should be set up so that one
button is always active.

You specify the radio button group in the HTML code. Each element of the
group can still have a unique id (which comes in handy for associating with
a label). Look over the code, and you’ll notice something interesting. All the
radio buttons have the same name!

 <body>
 <h1>With what weapon will you fight the dragon?</h1>
 <form action = "">
 <fieldset>
 <input type = "radio"
 name = "weapon"
 id = "radSpoon"
 value = "spoon"
 checked = "checked" />
 <label for = "radSpoon">Spoon</label>
 <input type = "radio"
 name = "weapon"
 id = "radFlower"
 value = "flower" />
 <label for = "radFlower">Flower</label>
 <input type = "radio"

Book IV
Chapter 5

Getting Valid Input

Interpreting Radio Buttons 469

 name = "weapon"
 id = "radNoodle"
 value = "wet noodle" />
 <label for = "radNoodle">Wet Noodle</label>
 <button type = "button"
 onclick = "fight()">
 fight the dragon
 </button>
 </fieldset>
 </form>
 <div id = "output">
 </div>
 </body>

Using a name attribute when everything else has an id seems a little odd,
but you do it for a good reason. The name attribute is used to indicate the
group of radio buttons. Because all the buttons in this group have the same
name, they’re related, and only one of them will be selected. Each button can
still have a unique ID (and in fact it does). The ID is still useful for associat-
ing a label with the button. Once again, this provides a larger click target
so the user can click on either the button or the label associated with that
button.

The browser recognizes this behavior and automatically unselects the other
buttons in the group whenever one is selected.

I added a label to describe what each radio button means.

 You need to preset one of the radio buttons to true with the checked =
“checked” attribute. If you fail to do so, you have to add code to account
for the possibility that there is no answer at all.

Interpreting Radio Buttons
Getting information from a group of radio buttons requires a slightly differ-
ent technique than most of the form elements. Unlike the select object,
there is no container object that can return a simple value. You also can’t
just go through every radio button on the page because you may have more
than one group. (Imagine a page with a multiple-choice test.)

This issue is where the name attribute comes in. Although ids must be
unique, multiple elements on a page can have the same name. If they do, you
can treat these elements as an array.

Look over the code to see how it works:

 // from radioGroup.html
 function fight(){
 var weapon = document.getElementsByName("weapon");
 for (i = 0; i < weapon.length; i++){
 currentWeapon = weapon[i];

Working with Regular Expressions470

 if (currentWeapon.checked){
 var selectedWeapon = currentWeapon.value;
 } // end if
 } // end for
 var output = document.getElementById("output");
 var response = "<h2>You defeated the dragon with a ";
 response += selectedWeapon + "</h2> \n";
 output.innerHTML = response;
 } // end function

This code looks much like all the other code in this chapter, but it has a
sneaky difference:

 ✦ It uses getElementsByName to retrieve an array of elements with
this name. Now that you’re comfortable with getElementById, I throw
a monkey wrench in the works. Note that it’s plural — getElements-
ByName — because this tool is used to extract an array of elements. It
returns an array of elements. (In this case, all the radio buttons in the
weapon group.)

 ✦ It treats the result as an array. The resulting variable (weapon in this
example) is an array. As usual, the most common thing to do with arrays
is process them with loops. Use a for loop to step through each ele-
ment in the array.

 ✦ Assign each element of the array to currentWeapon. This variable
holds a reference to the current radio button.

 ✦ Check to see whether the current weapon is checked. The checked
property indicates whether any radio button is checked.

 ✦ If so, retain the value of the radio button. If a radio button is checked,
its value is the current value of the group, so store it in a variable for
later use.

 ✦ Output the results. You can now process the results as you would with
data from any other resource.

Working with Regular Expressions
Having the right kinds of form elements can be helpful, but things can still go
wrong. Sometimes, you have to let the user type things, and that information
must be in a particular format. As an example, take a look at Figure 5-5.

A mechanism that checks whether input from a form is in the correct format
would be great. This program implements such a feature, checking whether
there is content in every field and ensuring the e-mail address and phone
number are formatted correctly. You can create this kind of testing feature
with string functions, but it can be really messy. Imagine how many if state-
ments and string methods it would take to enforce the following rules on
this page:

Book IV
Chapter 5

Getting Valid Input

Working with Regular Expressions 471

Figure 5-5:
This page is
a mess. No
username,
plus an
invalid
e-mail and
phone
number.

 ✦ An entry must appear in each field. This one is reasonably easy — just
check for non-null values.

 ✦ The e-mail must be in a valid format. That is, it must consist of a few
characters, an “at” sign (@), a few more characters, a period, and a
domain name of two to four characters. That format would be a real pain
to check for.

 ✦ The phone number must also be in a valid format. Phone numbers can
appear in multiple formats, but assume that you require an area code in
parentheses, followed by an optional space, followed by three digits, a
dash, and four digits. All digits must be numeric.

Although you can enforce these rules, it would be extremely difficult to do
so using ordinary string manipulation tools.

JavaScript strings have a match method, which helps find a substring inside
a larger string. This tool is good, but we’re not simply looking for specific
text, but patterns of text. For example, we want to know whether some-
thing’s an e-mail address (text, an @, more text, a period, and two to four
more characters).

Imagine how difficult that code would be to write, and then take a look at the
code for the validate.html page:

 <script type = "text/javascript">
 function validate(){
 // get inputs
 name = document.getElementById("txtName").value;
 email = document.getElementById("txtEmail").value;
 phone = document.getElementById("txtPhone").value;

Working with Regular Expressions472

 //create an empty error message
 errors = "";

 //check name - It simply needs to exist
 if (name == ""){
 errors += "please supply a name \n";
 } // end if

 //check email
 emailRE = /^.+@.+\..{2,4}$/;
 if (email.match(emailRE)){
 //console.log("email match");
 //do nothing.
 } else {
 //console.log("email not a match");
 errors += "please check email address \n";
 } // end if

 //check phone number
 phoneRE = /^\(\d{3}\) *\d{3}-\d{4}$/;
 if (phone.match(phoneRE)){
 //console.log("phone matches");
 //do nothing
 } else {
 //console.log("phone problem");
 errors += "please check phone #\n";
 } // end phone if

 //check for errors
 if (errors == ""){
 alert ("now processing data");
 //process the form
 } else {
 alert(errors);
 } // end if

 } // end function

 I only show the JavaScript code here to save space. Look on the website to
see how the HTML and CSS are written.

The code isn’t really all that difficult!

 ✦ It extracts data from the form. It does so in the usual way.

 ✦ The validation is a series of nested if statements. Look at the overall
structure. The if statements go three layers deep.

 ✦ The name check is very simple. The only way it can go wrong is to have
no name.

 ✦ Don’t check anything else if the name is wrong. If the name isn’t right,
you don’t need to check the other things.

 ✦ Build a regular expression. This verification seems pretty simple
until you look at the line that contains the emailRE = /^.+@.+\..
{2,4}$/; business. That line looks like a cursing cartoonist. The weird-
looking text is a regular expression and the key to this program. For now,
just accept it as a magic incantation. I explain it in a moment, but focus
on the big picture here.

Book IV
Chapter 5

Getting Valid Input

Working with Regular Expressions 473

 ✦ Match the regular expression against the e-mail address. The next
line checks to see whether the e-mail address is a match to the regu-
lar expression. The result is true if the expression matches an e-mail
address or null if it doesn’t.

 ✦ Check the phone number. Once again, the phone number check is
simple except the match business, which is just as mysterious: /^\
(\d{3}\) *\d{3}-\d{4}$/ (seriously, who makes this stuff up?).
That’s another regular expression.

 ✦ If everything worked, process the form. Usually, at this point, you call
some sort of function to finish handling the form processing.

 Frequently, you do validation in JavaScript before you pass information to a
program on the server. This way, your server program already knows the
data is valid by the time it gets there. Look ahead to AJAX in Book VII,
Chapter 1 to see how this is done.

Introducing regular expressions
Of course, the secret of this program is to decode the mystical expressions
used in the match statements. They aren’t really strings at all, but very pow-
erful text-manipulation techniques called regular expression parsing. Regular
expressions have migrated from the Unix world into many programming lan-
guages, including JavaScript.

A regular expression is a powerful mini-language for searching and replacing
text patterns. Essentially, what it does is allow you to search for complex
patterns and expressions. It’s a weird-looking language, but it has a certain
charm once you know how to read the arcane-looking expressions.

 Regular expressions are normally used with the string match() method in
JavaScript, but you can also use them with the replace() method and a
few other places.

Table 5-1 summarizes the main operators in JavaScript regular expressions.

Table 5-1 Regular Expression Operators in JavaScript
Operator Description Sample

Pattern
Matches Doesn’t

Match

 . (period) Any single
character
except new-
line

 . e \n

 ^ Beginning of
string

 ^a apple banana

(continued)

Working with Regular Expressions474

Operator Description Sample
Pattern

Matches Doesn’t
Match

 $ End of string a$ Banana apple

[characters] Any of a list of
characters in
braces

 [abcABC] A D

[char range] Any character
in the range

 [a-zA-Z] F 9

 \d Any single
numerical
digit

 \d\d\d-
\d\d\d\d

123-4567 The-
thing

 \b A word
boundary

 \bthe\b the theater

 + One or more
occurrences
of the previ-
ous character

 \d+ 1234 text

 * Zero or more
occurrences
of the previ-
ous character

 [a-zA-
Z]\d*

B17, g 7

 {digit} Repeat pre-
ceding char-
acter digit
times

 \d{3}-
\d{4}

123-4567 999-99-
9999

 {min,
max}

Repeat
preceding
character at
least min but
not more than
max times

 ^.{2,4}$ ca, com,
info

water-
melon

(pattern seg-
ment)

Store results
in pattern
memory
returned with
code

 ^(.).*\1$ gig,
wallow

Bobby

Don’t memorize this table! I explain in the rest of this chapter exactly how
regular expressions work. Keep Table 5-1 handy as a reference.

To see how regular expressions work, take a look at regex.html in
Figure 5-6.

Table 5-1 (continued)

Book IV
Chapter 5

Getting Valid Input

Working with Regular Expressions 475

Figure 5-6:
This tool
allows
you to test
regular
expressions.

The top textbox accepts a regular expression, and the second text field con-
tains text to examine. You can practice the examples in the following sections
to see how regular expressions work. They’re really quite useful after you
get the hang of them. While you walk through the examples, try them out in
this tester. (I include it on the website for you, but I don’t reproduce the code
here. Of course you’re always welcome to view the source code.)

Using characters in regular expressions
The main thing you do with a regular expression is search for text. Say
that you work for the bigCorp company, and you ask for employee e-mail
addresses. You can make a form that accepts only e-mail addresses with the
term bigCorp in them by using the following code:

if (email.match(/bigCorp/)){
 alert("match");
} else {
 alert("no match");
} // end if

The text in the match() method is enclosed in slashes (/) rather than quote
symbols because the expression isn’t technically a string; it’s a regular
expression. The slashes help the interpreter realize this special kind of text
requires additional processing.

 If you forget and enclose a regular expression inside quotes, it will still work
most of the time. JavaScript tries to convert string values into regular
expressions when it needs to. However, if you’ve ever watched a science fic-
tion movie, you know it’s generally not best to trust computers. Use the
slash characters to explicitly coerce the text into regular expression format.
I’m not saying your computer will take over the world if you don’t, but you
never can tell. . . .

Working with Regular Expressions476

This match is the simplest type. I’m simply looking for the existence of the
needle (bigCorp) in a haystack (the e-mail address stored in email). If big-
Corp is found anywhere in the text, the match is true, and I can do what I
want (usually process the form on the server). More often, you want to trap
for an error and remind the user what needs to be fixed.

Marking the beginning and end of the line
You may want to improve the search because what you really want are
addresses that end with bigCorp.com. You can put a special character
inside the match string to indicate where the end of the line should be:

if (email.match(/bigCorp.com$/)){
 alert("match");
} else {
 alert("no match");
} // end if

The dollar sign at the end of the match string indicates that this part of the
text should occur at the end of the search string, so andy@bigCorp.com is a
match, but not bigCorp.com announces a new Website.

 If you’re an ace with regular expressions, you know this example has a minor
problem, but it’s pretty picky. I explain it in the upcoming “Working with spe-
cial characters” section. For now, just appreciate that you can include the
end of the string as a search parameter.

Likewise, you can use the caret character (^) to indicate the beginning of
a string.

If you want to ensure that a text field contains only the phrase oogie boogie
(and why wouldn’t you?), you can tack on the beginning and ending markers.
The code /^oogie boogie$/ is a true match only if nothing else appears
in the phrase.

Working with special characters
In addition to ordinary text, you can use a bunch of special character sym-
bols for more flexible matching:

 ✦ Matching a character with the period: The most powerful character is
the period (.), which represents a single character. Any single character
except the newline (\n) matches against the period. A character that
matches any character may seem silly, but it’s actually quite powerful.
The expression /b.g/ matches big, bag, and bug. In fact, it matches any
phrase that contains b followed by any single character and then g, so
bxg, b g, and b9g are also matches.

 ✦ Using a character class: You can specify a list of characters in square
braces, and JavaScript matches if any one of those characters matches.

mailto://andy@bigCorp.com
http://bigCorp.com

Book IV
Chapter 5

Getting Valid Input

Working with Regular Expressions 477

This list of characters is sometimes called a character class. For example,
/b[aeiou]g/ matches on bag, beg, big, bog, or bug. This method is a
really quick way to check a lot of potential matches.

 You can also specify a character class with a range. [a-zA-Z] checks all
the letters.

 ✦ Specifying digits: One of the most common tricks is to look for numbers.
The special character \d represents a number (0–9). You can check for
a U.S. phone number (without the area code — yet) using a pattern that
looks for three digits, a dash, and four digits: /\d\d\d-\d\d\d\d/.

 ✦ Marking punctuation characters: You can tell that regular expressions
use a lot of funky characters, such as periods and braces. What if you’re
searching for one of these characters? Just use a backslash to indicate
that you’re looking for the actual character and not using it as a modi-
fier. For example, the e-mail address would be better searched with
bigCorp\.com because it specifies there must be a period. If you don’t
use the backslash, the regular expression tool interprets the period as
“any character” and allows something like bigCorpucom. Use the back-
slash trick for most punctuation, such as parentheses, braces, periods,
and slashes.

 If you want to include an area code with parentheses, just use backs-
lashes to indicate the parentheses: /\(\d\d\d\) \d\d\d-\d\d\d\d/.
And if you want to ensure the only thing in the sample is the phone
number, just add the boundary characters: /^\(\d\d\d\) \d\d\d
\d\d\d\d$/.

 ✦ Finding word boundaries: Sometimes you want to know whether some-
thing is a word. Say that you’re searching for the, but you don’t want a
false positive on breathe or theater. The \b character means “the edge
of a word,” so /\bthe\b/ matches the but not words containing “the”
inside them.

Conducting repetition operations
All the character modifiers refer to one particular character at a time, but
sometimes you want to deal with several characters at once. Several opera-
tors can help you with this process.

 ✦ Finding one or more elements: The plus sign (+) indicates “one or
more” of the preceding character, so the pattern /ab+c/ matches on
abc, abbbbbbc, or abbbbbbbc, but not on ac (there must be at least one
b) or on afc (it’s gotta be b).

 ✦ Matching zero or more elements: The asterisk means “zero or more”
of the preceding character. So /I’m .* happy/ matches on I’m happy
(zero occurrences of any character between I’m and happy). It also
matches on I’m not happy (because characters appear in between).

http://bigCorp\.com

Working with Regular Expressions478

 The .* combination is especially useful, because you can use it to
improve matches like e-mail addresses: /^.*@bigCorp\.com$/ does a
pretty good job of matching e-mail addresses in a fictional company.

 ✦ Specifying the number of matches: You can use braces ({}) to indi-
cate the specific number of times the preceding character should be
repeated. For example, you can rewrite a phone number pattern as /\
(\d{3}\) *\d{3}-\d{4}/. This structure means “three digits in
parentheses, followed by any number of spaces (zero or more), and
then three digits, a dash, and four digits. Using this pattern, you can tell
whether the user has entered the phone number in a valid format.

 You can also specify a minimum and maximum number of matches, so /
[aeiou]{1, 3}/ means “at least one and no more than three vowels.”

 Now you can improve the e-mail pattern so that it includes any number
of characters, an @ sign, and ends with a period and two to four letters:
/^.+@.+\..{2,4}$/.

 A regular expression can check to see if an e-mail address matches the
right pattern, but it can’t tell if it’s a valid address that really exists on the
Internet. You actually have to try to send an e-mail to see if it’s valid, which
is beyond the scope of JavaScript. (I show how to send e-mails through PHP
in Book V.)

Working with pattern memory
Sometimes you want to remember a piece of your pattern and reuse it. You
can use parentheses to group a chunk of the pattern and remember it. For
example, /(foo){2}/ doesn’t match on foo, but it does on foofoo. It’s the
entire segment that’s repeated twice.

You can also refer to a stored pattern later in the expression. The pattern
/^(.).*\1$/ matches any word or phrase that begins and ends with the
same character. The \1 symbol represents the first pattern in the string; \2
represents the second, and so on.

After you’ve finished a pattern match, the remembered patterns are still
available in special variables. The variable $1 is the first pattern stored; $2
is the second, and so on. You can use this trick to look for HTML tags and
report what tag was found: Match ^<(.*)>.*<\/\1>$ and then print $1 to
see what the tag was.

There’s much more to discover about regular expressions, but this basic
overview should give you enough to write some powerful and useful
patterns.

Book IV
Chapter 5

Getting Valid Input

New HTML5/CSS3 Tricks for Validation 479

New HTML5/CSS3 Tricks for Validation
HTML5 and CSS3 add a few more tricks to simplify validation, and they are
absolutely wonderful.

While you can always use JavaScript and regular expressions to validate
your pages (as described in this chapter), HTML5 promises a much easier
solution. When you use the special-purpose input elements (described in
Book I, Chapter 7), the browser will automatically check the form field to
ensure it is in a proper format. If the entry is not valid, the form will (gener-
ally) not submit, and the special :invalid CSS pseudo-class will be asso-
ciated with the invalid field. Simply supply CSS to your page handling the
:invalid state:

 :invalid {
 background-color: red;
 }

When this CSS state is active, any invalid fields will have the :invalid styl-
ing. For example, if you have an email field defined and the content of that
field is not a valid e-mail address, the invalid style will be applied. As soon
as the address is in the right format, the invalid style will be removed.

The developer doesn’t need to add any other code to the form. Simply add
CSS to display invalid entries, and the browser will do the rest. You don’t
even need to specify the regular expression for e-mail addresses or any
other specialty input fields — the appropriate regular expression for each
field type is already built in.

Note that if a field is required (with the required attribute), it will be
 considered invalid until it contains some value.

It is possible that the browser will refuse to process a form until all fields
are validated, but this behavior does not yet seem to be universal among
HTML5-compliant browsers.

If you wish, you can turn off the validation for any field by adding the
novalidate attribute to that element.

Figure 5-7 shows the newElements.html page from Book I, Chapter 7 modi-
fied with a nice style sheet and the validation modifiers in place. Note that
the name field is required and the e-mail address is invalid, so these fields
show the red background I specified for invalid fields.

New HTML5/CSS3 Tricks for Validation480

Figure 5-7:
The new
HTML5 form
elements
have
automatic
validation.

Please look over the code for html5validation.html on the website — the
code hasn’t changed substantially from Book I, Chapter 7.
The CSS code is new, so I reproduce that here:

 <style type = "text/css">
 fieldset {
 width: 600px;
 background-color: #EEEEEE;
 margin-left: auto;
 margin-right: auto;
 box-shadow: 5px 5px 5px gray;
 }
 label {
 float: left;
 clear: left;
 width: 250px;
 text-align: right;
 padding-right: 1em;
 }

 input {
 float: left;
 }

 :required {
 border: 1px solid red;
 }

 :invalid {
 color: white;
 background-color: red;
 }

 button {
 display: block;
 margin-left: auto;
 margin-right: auto;
 clear: both;
 }
 </style>

Book IV
Chapter 5

Getting Valid Input

New HTML5/CSS3 Tricks for Validation 481

Adding a pattern
The pattern attribute allows you to specify a regular expression used to
validate the form. If the content matches the regular expression, the field will
be considered valid. (See the “Working with Regular Expressions” section of
this chapter for more details.) The pattern attribute should be used only
when the standard validation techniques are not sufficient (that is, you’re
using an ordinary input element that doesn’t have an automatic pattern)
because it can be difficult to debug regular expressions.

 <input type = "text"
 id = "txtPhone"
 pattern = "\(\d{3}\) +\d{3}-\d{4}"
 title = "(ddd) ddd-dddd" />

When you specify a pattern, you should also include a title attribute. The
title should indicate what the pattern is. The browser can use this as a tip
for the user. It may also be useful to add pattern information as placeholder
text. (See the placeholder attribute later.)

Marking a field as required
The required attribute allows you to specify a particular field as required.
Supporting browsers will mark all required fields (perhaps by highlighting
them in red) if they are not filled in. Some browsers will also send a warning
if the user tries to submit a form with empty required fields.

 <input type = "text"
 required />

The special :required pseudo-class allows you to apply a CSS style to all
required elements in your form (giving them a border or background-color,
for example). Here’s an example of a CSS style for marking required elements
with a red border:

 :required {
 border: 1px solid red;
 }

If you have a required field and it has no content, that field will trigger the
invalid style.

Adding placeholder text
The placeholder attribute allows you to add a special placeholder value in
your text fields. This placeholder acts as a temporary label showing the pur-
pose of the field without requiring a label tag. As soon as the user activates
the field, the placeholder text disappears.

 <input type = "text"
 placeholder = "Name" />

New HTML5/CSS3 Tricks for Validation482

Not all browsers support placeholder text. Other browsers will simply ignore
the placeholder attribute. Likewise, if the field is already filled in, the
placeholder will not be visible. For these reasons, it is still preferred to add a
label so users know what to type in each text area. Placeholder text is espe-
cially helpful when it is used to indicate how the input should be formatted
(especially if this will be enforced by validation or a pattern).

Chapter 6: Drawing on the
Canvas

In This Chapter
✓ Adding a canvas to your HTML page

✓ Using colors, patterns, and gradients

✓ Drawing paths and geometric shapes

✓ Working with images

✓ Pixel manipulation

T
he canvas element is one of the most interesting new developments
in HTML5. Although the <canvas> tag is an HTML tag, it really isn’t

interesting without JavaScript programming. The <canvas> tag provides a
graphics context, which is an area of the page that can be drawn upon with
JavaScript commands.

The <canvas> tag supplies a rich toolkit of drawing operations that may
very well revolutionize the web. Innovations in the <canvas> tag along
with advances in the speed of JavaScript engines may very well lead to new
uses of the web. A number of developers have developed games with the
<canvas> tag and JavaScript that would have required Flash or Java just a
few years ago. Also, the flexibility of <canvas> could lead to entirely new
visual tools and widgets that are not based on HTML, which could have pro-
found implications on usability and user interfaces.

The <canvas> tag is supported by all current browsers.

Although many of the features of the <canvas> element (shadows, trans-
formations, and images) are available through other parts of the HTML5
universe, the implementation of the various <canvas> elements is identical
on all browsers that support the platform. This universal support makes the
canvas ideal for animation applications.

Canvas Basics
Begin with a simple demonstration of the <canvas> tag. The canvas varia-
tion of “Hello World” creates a simple canvas and draws a rectangle on it.

Canvas Basics484

Setting up the canvas
To use the <canvas> tag, build a web page with a <canvas> element in it.
Typically you’ll provide width, height, and id parameters:

 <canvas id = "drawing"
 width = "200"
 height = "200">
 <p>Your browser does not support the canvas tag...</p>
 </canvas>

Inside the <canvas> tag, you can put any HTML code you wish. This code will
appear if the browser does not support the <canvas> tag. Typically, you’ll
just put some sort of message letting the user know what she’s missing.

Nothing interesting happens in a canvas without some kind of JavaScript
code. Often you’ll use a function to draw on the screen. Here’s my draw()
function, which is called by the body onload event:

 function draw(){
 //from basicCanvas.html
 var canvas = document.getElementById("surface");
 if (canvas.getContext){
 var con = canvas.getContext('2d');
 con.fillStyle = “rgb(255,255,0)”;
 con.fillRect(40,140,150,50);
 } // end if
 } // end draw

Figure 6-1 illustrates the page created with this code:

Figure 6-1:
This
rectangle
was created
through
code.

Book IV
Chapter 6

Draw
ing on the

Canvas
Canvas Basics 485

The draw() function illustrates all of the main ideas of working with the
canvas tag. Here’s how you build a basic drawing:

 ✦ Create a variable reference to the canvas: Use the standard getEle-
mentById() mechanism to create a variable referring to the canvas.

 ✦ Extract the graphics context from the canvas: Canvas elements have a
graphics context, which is a special object that encapsulates all the draw-
ing methods the canvas can perform. Most browsers support a 2D con-
text now, but 3D contexts are beginning to appear as well.

 ✦ Set the context’s fillStyle: The fillStyle indicates how you will
color filled-in areas (like rectangles). The basic approach is to supply a
CSS color value. See the section “Fill and Stroke Styles” for information
on how to fill with colors, gradients, or image patterns.

 ✦ Create a filled-in rectangle: The graphics context has a few built-in
shapes. The rectangle shape is pretty easy to build. It expects four
parameters: x, y, width, and height. The x and y parameters indi-
cate the position of the rectangle’s top left corner, and the width
and height parameters indicate the size of the rectangle. All mea-
surements are in pixels. See the “Drawing Essential Shapes” section
for more information on the various types of primitive shapes you
can build.

How <canvas> works
I go into detail throughout this chapter, but it’s helpful to begin with an
overview of the way <canvas> works and what it does in general.

There are really only two main drawing functions in <canvas>: fill and
stroke. Most drawing is done as a two-step process. First you define some
sort of shape (a rectangle, an arc, a series of lines) and then you tell the
canvas to draw with a stroke or a fill. A stroke simply draws a line, so if you
stroke a rectangle, you’ll see the outline of the rectangle, but it will not be
filled in. The fill draws the filled-in shape, so a filled rectangle will show the
interior of the rectangle.

You can specify a fillStyle, which specifies the color and pattern of sub-
sequent fill commands. You can also indicate a strokeStyle, which deter-
mines how subsequent stroke commands will be drawn.

More complex shapes are drawn with a mechanism called paths, which are
a series of line-drawing instructions. You can use paths to create strokes or
filled-in shapes.

You can draw images onto a canvas. You can draw an entire image, or part of
an image onto the canvas.

Fill and Stroke Styles486

You can also draw text directly onto the canvas in various fonts and colors.
You can add shadow effects to your text elements, or even images.

The canvas object gives you access to the underlying data of an image. This
allows you to perform any kind of transformation you wish on image data,
including color balancing, adjusting brightness, and so on.

It’s possible to add transformations to any of your objects. Transformations
allow you to move, resize, or rotate any element (text, drawing, image) you
place on the canvas.

Finally, you can use JavaScript’s animation and user interface tools to build
your own animations that move an element around in real time or under
user control.

Fill and Stroke Styles
Nearly every operation in the canvas implements a fill or stroke style. To get
the most out of canvas, you need to understand how they work. There are
three primary types of styles that can be used on fills and strokes: colors,
gradients, and patterns.

Colors
There are a number of places where you can indicate a color value in the
canvas API. In general, you can use the same color tools you use in CSS and
HTML:

 ✦ Six-digit hex values: The most common way to manage colors is with
the same six-digit hexadecimal scheme commonly used in CSS, with two
digits each for red, green, and blue. The value begins with a pound sign.
For example, #FF0000 is red, and #FFFF00 is yellow.

 ✦ Three-digit hex values: Hex color values often use repeating values, so
you can abbreviate these values as three-digit numbers. In this scheme,
red is #F00 and yellow is #FF0

 ✦ Color names: You can often use color names, like “red” or “yellow.”
Common color names usually work, but not all browsers support the
same list of color names, so “papaya whip” is not likely to be supported.
(It sounds more like a dessert recipe than a color to me anyway.)

 ✦ rgb and rgba values: You can use the rgb() function to create
colors using integers (0–255) or percentages (0%–100%). Red would
be rgb(255, 0, 0), and yellow is rgb(100%, 100%, 0%). Note

Book IV
Chapter 6

Draw
ing on the

Canvas
Fill and Stroke Styles 487

that the rgb function must go in quotes like any other color value. If
you want to include alpha, add a fourth parameter that is a 0–1 value.
Transparent red would be rgba(255, 0, 0, 0.5).

 ✦ hsl and hsla: The new hsl and hsla color formats are supposed to
be supported by the <canvas> element, but so far the support for these
features varies by browser.

Note that the various values for a color are always enclosed in quotes. The
color parameter is a string that can be interpreted as a CSS color.

Gradients
You can also fill a shape with a gradient. Canvas gradients are defined in
two steps:

 ✦ Create a gradient object: There are two methods built into the context
object for this. One builds linear gradients, and the other builds radial
gradients.

 ✦ Add color stops: A color stop is a special element that indicates a color to
be added to the gradient. You can add as many colors as you wish, and you
can also specify where along the gradient pattern the color will appear.

The following code builds a radial gradient and a linear gradient on a canvas.

 function draw(){
 //from gradient.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");

 //build a linear gradient
 lGrad = con.createLinearGradient(0,0,100,200);

 lGrad.addColorStop(0, "#FF0000");
 lGrad.addColorStop(.5, "#00FF00");
 lGrad.addColorStop(1, "#0000FF");

 con.fillStyle = lGrad;
 con.fillRect(0, 0, 100, 200);

 //build a radial gradient
 rGrad = con.createRadialGradient(150, 100,
 0, 150, 100, 100);
 rGrad.addColorStop(0, "#FF0000");
 rGrad.addColorStop(.5, "#00FF00");
 rGrad.addColorStop(1, "#0000FF");

 con.fillStyle = rGrad;
 con.fillRect(100,0, 200, 200);

 } // end draw

Fill and Stroke Styles488

The output of this code is shown in Figure 6-2.

Figure 6-2:
These
gradient
patterns
were
created by
code.

A linear gradient is a pattern of colors that blend into each other along a
straight-line path. To define a linear gradient:

 ✦ Create a variable to hold the gradient: Gradients are a little more com-
plex than simple colors, so they are stored in variables so they can be
re-used.

 ✦ Build the gradient: Use the createLinearGradient() method of the
context object to build a linear gradient.

 ✦ Define the gradient path: The createLinearGradient() method
expects four parameters. These define a line (x1, y1, x2, y2). The colors
are perpendicular to this line, so if you want horizontal color bands,
draw a vertical line. If you want vertical color bands, draw a horizontal
line. In my example, I drew a diagonal line for diagonal colors. The line
typically takes up the entire width or height of the element, but it does
not have to. If the line is smaller than the image, the excess area is auto-
matically assigned a color from the nearest end of the gradient.

 ✦ Add color stops: Gradients aren’t much fun without colors. The
addColorStop() method of the gradient object allows you to add a
color to the gradient. Each color stop has two parameters: position
and color. The position is a 0–1 value indicating where on the gradi-
ent line the color should be positioned. 0 is the beginning, 1 is the end,
and intermediate values are in the middle. The color parameter is a

Book IV
Chapter 6

Draw
ing on the

Canvas
Fill and Stroke Styles 489

text value that can be evaluated as a CSS color. You can use any of the
mechanisms described in the color section of this part. At a minimum,
you should define two color stops, one for the beginning, and one for
the end.

 ✦ Apply the gradient as a fill pattern: If you want to use the gradient as
a fill pattern, set the context’s fillStyle to the gradient variable you
just created. All subsequent fills will be done using the gradient pattern
until the fillStyle is changed to something else.

Radial gradients are similar. Rather than drawing a gradient in a straight line,
they draw a series of circular color bands. The first color is the center of the
circle, and the last color defines an outer radius. Building a radial gradient is
very similar to building a linear gradient. The only difference is the create
command.

Use the console object’s createRadialGradient() method to build a
radial gradient. This command actually takes six parameters:

 ✦ beginX: The X position of the starting point. This is often in the center
of your shape.

 ✦ beginY: Along with centerX, this determines the beginning position of
your gradient.

 ✦ beginRadius: The radius of your center circle. Usually this is 0, but you
can make it larger if you want to emphasize the center color more.

 ✦ endX: Describes the X position of the ending circle. Typically this is the
same as beginX.

 ✦ endY: Along with endX, endY defines the position of the ending circle.
If the beginning and ending circles have the same positions, you’ll get
a circular gradient. Change the ending position to make the gradient
stretch in a particular direction.

 ✦ endRadius: The ending radius defines where the last color gradient will
be placed. Smaller values for this radius will lead to a tightly grouped
gradient, and larger values will spread the gradient along a larger area.
After the gradient is defined, the addColorStops() method works
exactly like it does for linear gradients. The variable created through the
addRadialGradient() command is usually stored in a variable, where
it can be used for subsequent fillStyle() requests.

Patterns
A pattern is used to define an image to be used as a fill or stroke. You can
use any image as a pattern, but it’s generally best to find or create an image

Fill and Stroke Styles490

that is designed to be tiled. (See Book VIII, Chapter 4 for complete informa-
tion on how to build tiled patterns using free software.) Many sources of
tiled patterns exist on the web as well. After you’ve got an image you want to
use as a fill pattern, here’s how to implement it in the <canvas> tag:

 function draw(){
 //from pattern.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");
 var texture = document.getElementById("texture");

 pFill = con.createPattern(texture, "repeat");
 con.fillStyle = pFill;

 con.fillRect(10,150,190,150);

 con.font = "40px sans-serif";
 con.fillText("Pattern!", 20, 80);

 con.strokeStyle = pFill;
 con.lineWidth = 5;
 con.strokeRect(10, 10, 180, 100);

 } // end draw

You can see the results of this code in Figure 6-3.

Figure 6-3:
An image
pattern can
be applied
to text
and other
shapes.

Book IV
Chapter 6

Draw
ing on the

Canvas
Drawing Essential Shapes 491

A pattern is simply an image. Building a pattern is relatively straightforward:

 1. Get access to an image.

 You’ll need a JavaScript image object to serve as the basis of your pat-
tern. There’s a number of ways to do this, but the easiest is to create the
image somewhere in your HTML, hide it with the display:none style,
and use the standard document.getElementById() technique to get
access to your image. (See “Drawing an image on the canvas” toward the
end of this chapter for alternate ways to load images.)

 2. Create a variable for the pattern.

 Like gradients, pattern fills can be reused, so store the pattern in a vari-
able for later reuse.

 3. Build the pattern.

 The context’s createPattern() method creates a pattern from an
image.

 4. Specify the pattern’s repeat parameter.

 The second parameter indicates how the pattern will repeat. The default
value is repeat, which repeats the pattern in both the X and Y axis
indefinitely. If your pattern is not tiled, you will see a visible seam where
the pattern repeats. You can also set the repeat value to repeat-x,
repeat-y, and no-repeat.

 5. Apply the pattern variable to the fillStyle or strokeStyle.

 Assign the pattern variable to the context’s fillStyle and then per-
form any fill operation to draw in the pattern.

Drawing Essential Shapes
A few primitive shapes can be drawn directly onto the graphics context. The
most common shapes are rectangles and text.

Rectangle functions
You can draw three different types of rectangles:

 ✦ clearRect(x, y, w, h): Erases a rectangle with the upper-left
corner (x,y) and size (w,h). Generally, erasing draws in the background
color.

 ✦ fillRect(x, y, w, h): Draws a box with upper-left corner (x,y)
and size (w,h). The rectangle is filled in with the currently-defined
fillStyle.

Drawing Essential Shapes492

 ✦ strokeRect(x, y, w, h): Draws a box with upper-left corner (x,y)
and size (w,h). The box is not filled in, but the outline is drawn in the
currently-defined strokeStyle and using the current lineWidth.

Figure 6-4 illustrates a couple of rectangles.

Figure 6-4:
You can
easily draw
rectangles
on a canvas.

Here’s the code that generates Figure 6-4:

 function draw(){
 //from rectangle.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");

 con.fillStyle = "red";
 con.strokeStyle = "green";
 con.lineWidth = "5";

 con.fillRect(10, 10, 180, 80);
 con.strokeRect(10, 100, 180, 80);

 } // end draw

Drawing text
The <canvas> tag has complete support for text. You can add text any-
where on the canvas, using whichever font style and size you wish.

Book IV
Chapter 6

Draw
ing on the

Canvas
Drawing Essential Shapes 493

Figure 6-5 shows a canvas with embedded text.

Figure 6-5:
Text is
embedded
into the
canvas.

Text is drawn onto canvas much like a rectangle. The first step is to pick
the desired font. Canvas fonts are created by assigning a font to the con-
text’s font attribute. Fonts are defined like the single-string font assign-
ment in CSS. You can specify all of the font characteristics in the same
order you do when using the font shortcut: style, variant, weight, size,
and family.

When you’re ready to display actual text on the screen, use the fillText()
method, which accepts three parameters. The first parameter is the text to dis-
play. The last two parameters are the X and Y position of the left-hand side of
the text. The following code is used to produce the result shown in Figure 6-5.
When the strokeStyle is not explicitly set, the stroke is black by default.

 function draw(){
 //from text.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");

 //clear background
 con.fillStyle = "white";
 con.fillRect(0,0, 200, 200);

 // draw font in red
 con.fillStyle = "red";
 con.font = "20pt sans-serif";
 con.fillText("Canvas Rocks!", 5, 100);
 con.strokeText("Canvas Rocks!", 5, 130);

 } // end draw

Drawing Essential Shapes494

Adding shadows
You can add shadows to anything you draw on the canvas. Shadows are
quite easy to build. They require a number of methods of the context object:

 ✦ shadowOffsetX: Determines how much the shadow will be moved
along the X axis. Normally this will be a value between 0 and 5. A posi-
tive value moves the shadow to the right of an object. Change this value
and the shadowOffsetY value to alter where the light source appears
to be.

 ✦ shadowOffsetY: Determines how far the shadow is moved along the
Y axis. A positive value moves the shadow below the object. In general,
all shadows on a page should have the same X and Y offsets to indicate
consistent lighting. The size of the offset values implies how high the
element is “lifted” off the page.

 ✦ shadowColor: The shadow color indicates the color of the shadow.
Normally this is defined as black, but the color can be changed to other
values if you wish.

 ✦ shadowBlur: The shadowBlur effect determines how much the
shadow is softened. If this is set to 0, the shadow is extremely crisp and
sharp. A value of 5 leads to a much softer shadow. Shadow blur gener-
ally lightens the shadow color.

If you apply a shadow to text, be sure that the text is still readable. Large
simple fonts are preferred, and you may need to adjust the shadow color or
blur to ensure the main text is still readable. After you’ve applied shadow
characteristics, all subsequent drawing commands will incorporate the
shadow. If you want to turn shadows off, set the shadowColor to a transpar-
ent color using RGBA.

Here’s the code to produce text with a shadow:

 <!DOCTYPE HTML>
 <html lang = "en">
 <head>
 <title>shadow.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 body {
 background-color: #cccccc;
 }
 </style>
 <script type = "text/javascript">
 function draw(){
 //from shadow.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");

Book IV
Chapter 6

Draw
ing on the

Canvas
Drawing Essential Shapes 495

 //clear background
 con.fillStyle = "white";
 con.fillRect(0,0, 200, 200);

 // draw font in red
 con.fillStyle = "red";
 con.font = "18pt sans-serif";

 //add shadows
 con.shadowOffsetX = 3;
 con.shadowOffsetY = 3;
 con.shadowColor = "gray";
 con.shadowBlur = 5;
 con.fillText("Canvas Rocks!", 5, 100);

 } // end draw

 </script>
 </head>

 <body onload = "draw()">
 <h1>Shadows</h1>

 <canvas id = "drawing"
 height = "200"
 width = "200">
 <p>Canvas not supported!</p>
 </canvas>

 </body>
 </html>

An example of a shadow inside a <canvas> is shown in Figure 6-6.

Figure 6-6:
You can
apply a
shadow to
any canvas
drawing,
including
text.

Working with Paths496

Working with Paths
More complex shapes are created using the path mechanism. A path is
simply a series of commands “played back” by the graphics context. You
can think of it as a recording of pen motions. Here’s an example that draws a
blue triangle with a red border:

 function draw(){
 //from pathDemo.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");

 con.strokeStyle = "red";
 con.fillStyle = "blue";
 con.lineWidth = "5";

 con.beginPath();
 con.moveTo(100, 100);
 con.lineTo(200, 200);
 con.lineTo(200, 100);
 con.lineTo(100, 100);
 con.closePath();
 con.stroke();
 con.fill();
 } // end draw

The code shown here generates the output displayed in Figure 6-7.

Figure 6-7:
A path can
be used to
draw multi-
line shapes.

Book IV
Chapter 6

Draw
ing on the

Canvas
Working with Paths 497

The technique for drawing a path is not terribly complicated, but it does
involve new steps:

 1. Generate the graphics context.

 All <canvas> programs begin by creating a variable for the canvas and
another variable for the graphics context.

 2. Set the strokeStyle and fillStyle.

 strokeStyle indicates the color of lines. The lineWidth attribute
describes how wide the line will be (in pixels), and fillStyle indicates
the color that enclosed shapes will have.

 3. Begin the path.

 A path is a series of drawing commands. Use the beginPath() method
to start your path definition.

 4. Move the pen.

 The moveTo(x,y) command moves the pen to a particular point on the
screen without drawing.

 5. Draw lines.

 The lineTo(x, y) command draws a line from the current pen posi-
tion to the indicated (x, y) coordinates. See the “Drawing Essential
Shapes” section for information on other drawing commands for build-
ing arcs, circles, and more complex curves. (Note that the line will still
not be visible. See Step 7.)

 6. Close the path.

 When you’re finished with a path, use the closePath() function to
indicate you are finished defining the path.

 7. Stroke or fill the path.

 When you define a path, it is not immediately displayed! The stroke()
command draws a line using the current stroke style and line width
along the path. If you prefer, use the fill() command to draw a filled-
in shape defined by the path. If the path did not define a closed shape,
the fill() command draws a line from the ending point to the begin-
ning point. The fill() command fills in the path with the color, gradi-
ent, or pattern designated with fillStyle().

Note that the closePath() function draws a connecting line between the
first point of the path and the last point. This creates closed shapes. If you
want a path to remain open, use the stroke() command before the close-
Path() command. It is still necessary to call closePath() before creating
a new path.

Working with Paths498

 Remember, the lineTo() method doesn’t actually draw a line! It simply
indicates your path. The path is not visible until you execute a stroke(),
closePath(), or fill() command.

Line-drawing options
Whenever you are using stroke commands, you can modify the line width
and style with a number of interesting options. Figure 6-8 shows a few of
these choices.

Figure 6-8:
You can
modify
several
aspects of
the stroke.

The code used to create Figure 6-8 is here:

 function draw(){
 //from lineStyle.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");

 //change line width and color
 con.strokeStyle = "red";
 con.lineWidth = 10;

 con.lineJoin = "round"
 con.beginPath();
 con.moveTo(10, 40);
 con.lineTo(20, 10);
 con.lineTo(30, 40);
 con.stroke();
 con.closePath();

 con.strokeStyle = "blue";
 con.lineJoin = "bevel"
 con.beginPath();
 con.moveTo(40, 40);

Book IV
Chapter 6

Draw
ing on the

Canvas
Working with Paths 499

 con.lineTo(50, 10);
 con.lineTo(60, 40);
 con.stroke();
 con.closePath();

 con.lineJoin = "miter";
 con.strokeStyle = "green"
 con.beginPath();
 con.moveTo(70, 40);
 con.lineTo(80, 10);
 con.lineTo(90, 40);
 con.stroke();
 con.closePath();

 //line caps
 con.lineCap = "butt";
 con.strokeStyle = "red"
 con.beginPath();
 con.moveTo(10, 100);
 con.lineTo(90, 100);
 con.stroke();
 con.closePath();

 con.lineCap = "round";
 con.strokeStyle = "blue"
 con.beginPath();
 con.moveTo(10, 120);
 con.lineTo(90, 120);
 con.stroke();
 con.closePath();

 con.lineCap = "square";
 con.strokeStyle = "green"
 con.beginPath();
 con.moveTo(10, 140);
 con.lineTo(90, 140);
 con.stroke();
 con.closePath();

 } // end draw

While the code listing is long, it is quite repetitive. There are only a few new
elements:

 ✦ strokeStyle: Use any of the style options (color, gradient, or pattern)
to specify how your line will be drawn.

 ✦ linewidth: Specify the width of your line in pixels.

 ✦ lineJoin: The lineJoin property indicates how corners are rendered
in your paths. The default form is miter, which produces sharp cor-
ners. You can also choose round, which gives rounded corners, and
bevel, which squares off the corners.

 ✦ lineCap: You can also determine how the ends of the lines are ren-
dered. Use round to produce rounded edges, square to produce
squared-off edges, and butt to produce edges that are cut off exactly
at the line width. Square and butt look almost identical, but square
adds a small length to each line, and butt cuts off the line immediately.

Working with Paths500

Drawing arcs and circles
Arcs and circles are part of the path mechanism. They are created much like
lines, as they are executed as part of a path. After the path is complete, use
the stroke() or fill() command to actually draw the arc or circle.

Arcs and circles are both created with the arc() method.

To draw an arc or a circle:

 1. Set the stroke or fill style.

 Like all path-drawing commands, you’ll need to specify the fill or stroke
style before drawing the arc.

 2. Begin a path.

 Arcs, like lines, must be drawn as part of a path. Arcs can be combined
with lines if you wish.

 3. Specify the center of the circle.

 An arc is simply a partial circle, so you begin defining an arc by deter-
mining the center of a circle. The first two parameters of the arc()
method are the center of the circle.

 4. Indicate the radius of the circle.

 The third parameter is the radius of the circle that describes the arc.

 5. Define beginning and ending points.

 An arc is a part of a circle. To indicate which part of the circle you want
to draw, indicate the beginning and ending angles. These measurements
are the fourth and fifth parameters of the arc() method. Note that
angles are defined in radians.

 6. Indicate the direction to draw.

 The last parameter determines the drawing direction. Use true for
counter-clockwise, and false for clockwise.

The arc drawing functions are used in the following code:

 function draw(){
 //from arcCirc.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");

 con.strokeStyle = "green";
 con.fillStyle = "rgba(255,0,0,0.5)";
 con.lineWidth = "5";

 //half-circle stroked
 con.beginPath();
 con.arc(220, 140, 50, 0, Math.PI, false);

Book IV
Chapter 6

Draw
ing on the

Canvas
Working with Paths 501

 con.closePath();
 con.stroke();

 //full circle filled
 con.beginPath();
 con.arc(220, 220, 50, 0, Math.PI*2, true);
 con.closePath();
 con.fill();
 }

This code generates the image shown in Figure 6-9.

Figure 6-9:
Draw
circles and
arcs with
the arc()
command.

The angle measurements of the arc() command use radians as the unit
of angle measurement. Radians are frequently used in mathematics rather
than degrees. A radian is simply the angle described when you stretch the
radius of a circle around the circumference of that same circle. Radians are
normally expressed using the constant π, so there are 2 * π radians in a full
circle. JavaScript has the built-in constant Math.PI to simplify working with
pi. You can use Table 6-1 to determine the main angles. (See Table 6-1.)

Table 6-1 Angle Measurements in Radians
Direction Angle

North 3 * Math.PI/2

West Math.PI

South Math.PI/2

East 0

Working with Paths502

 If you’re familiar with radian measurement, you might think the angles are
upside down (typically, π /2 is north and 3* π /2 is south). The angles are
reversed because Y increases downwards in computer systems.

Drawing quadratic curves
The canvas element also supports two elegant curve-drawing mechanisms. A
quadratic curve is a special curve with a start and ending point. However, the
line between the beginning and ending point is influenced by a control point. As
an example, look at Figure 6-10. It shows a simple curve with a control point.

Figure 6-10:
Quadratic
curves have
a single
control
point.

If you examine the code for the quadratic curve, you’ll see it works much
like drawing lines and arcs:

 function draw(){
 //from quad.html
 drawing = document.getElementById("drawing");
 con = drawing.getContext("2d");

 con.strokeStyle = "black";
 con.lineWidth = "5";
 con.beginPath();
 con.moveTo(10,190);
 con.quadraticCurveTo(100, 10, 190, 190);
 con.stroke();
 con.closePath();

 //mark beginning and end with blue
 drawDot(10, 190, "blue");

Book IV
Chapter 6

Draw
ing on the

Canvas
Working with Paths 503

 drawDot(190, 190, "blue");

 //mark control points with red
 drawDot(100, 10, "red");

 } // end draw
 function drawDot(x, y, color){
 con.fillStyle = color;
 con.beginPath();
 con.arc(x, y, 10, 0, 2 * Math.PI, true);
 con.fill();
 con.closePath();
 } // end drawDot

The beginning and ending points of a quadratic curve are described explic-
itly, and the line begins and ends on these points. However, the control point
doesn’t usually lie on the curve. Instead, it influences the curve.

Here’s how to build a quadratic curve:

 1. Begin a path.

 Curves, like most drawing features, act in the context of a path.

 2. Move to the starting position.

 Use the moveTo() command to move to where you want the curve to
begin.

 3. Use the quadraticCurveTo()method to draw the curve.

 This method takes four parameters: the X and Y position of the control
point and the X and Y position of the end point.

 4. Draw another curve if you wish.

 Like most of the drawing commands, you can chain a series of qua-
draticCurveTo() calls together to build a more complex shape.

Note that for this example I called a custom function called drawDot to draw
the various points on the screen. See the complete code on my website. (For
more information on the website, see this book’s Introduction.)

Building a Bézier curve
The Bézier curve is another curve-drawing tool. It is similar to the quadratic
curve, except it requires two control points. Figure 6-11 illustrates a Bézier
curve.

Building a Bézier curve is almost exactly like building a quadratic curve. The
bezierCurveTo function takes six parameters, the X and Y position of con-
trol point one, control point two, and the ending point. Here’s the code for
the Bézier path shown in Figure 6-11.

Working with Paths504

Figure 6-11:
The Bézier
curve uses
two control
points.

 function draw(){

 //from bezier.html
 drawing = document.getElementById("drawing");
 con = drawing.getContext("2d");

 con.strokeStyle = "black";
 con.lineWidth = "5";
 con.beginPath();
 con.moveTo(10,10);
 con.bezierCurveTo(100, 10, 100, 190, 190, 190);
 con.stroke();
 con.closePath();

 //mark beginning and end with blue
 drawDot(10, 10, "blue");
 drawDot(190, 190, "blue");

 //mark control points with red
 drawDot(100, 10, "red");
 drawDot(100, 190, "red");

 } // end draw

 function drawDot(x, y, color){
 con.fillStyle = color;
 con.beginPath();
 con.arc(x, y, 10, 0, 2 * Math.PI, true);
 con.fill();
 con.closePath();
 } // end drawDot

Like the quadratic curve example, I used a custom drawDot() function to
draw circles for the control point. See the section “Drawing arcs and circles”
for information on how to draw these dots.

Book IV
Chapter 6

Draw
ing on the

Canvas
Images 505

Images
Although HTML has long had support for images, the canvas interface adds
new life to web images. Images can be displayed inside a canvas, where they
can be integrated with the vector-drawing techniques of the canvas API. You
can also select a portion of an image to display and apply the various trans-
formations to your image to create interesting compositions and animations.

Figure 6-12 shows a basic version of this technique, with an image drawn
twice on a canvas element.

Figure 6-12:
The canvas
element
has flexible
options for
drawing
images.

Drawing an image on the canvas
The easiest way to use an image in a <canvas> element is to use an image that
is already available on the web page. You can put an image on the page with the
ordinary tag and use the CSS display: none rule to make the image
invisible. An alternate approach is to create an Image object in JavaScript and
apply the src attribute to connect that image to a specific image file. For exam-
ples of both techniques, consider the following HTML code:

 <img class = "hidden"
 id = "goofyPic"
 src = "andyGoofy.gif"
 alt = "Goofy pic of me" />

 <canvas id = "drawing"
 height = "400"
 width = "400">
 <p>Canvas not supported</p>

Images506

The following JavaScript code displays the image in the canvas:

 function draw(){
 //from image.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");
 var goofyPic = document.getElementById("goofyPic");
 con.drawImage(goofyPic, 0, 0, 50, 50);

 var image2 = new Image();
 image2.src = "andyGoofy.gif";
 con.drawImage(image2, 100, 100, 70, 50);
 } // end draw

Here’s how it’s done:

 1. Create the image in the main page.

 The easiest way to access an image is to use ordinary HTML to embed
the image in the main page. If you wish, you can hide the tag with
CSS code (display: none) so that only the version in the canvas is
visible.

 2. Create a JavaScript variable for the image.

 Use the ordinary document.getElementByID() mechanism to create
a variable referring to the image.

 3. Draw the image on the canvas.

 The drawImage() function takes five parameters. The first is the name
of an image object (It must be the name of a JavaScript image object, not
just the filename of an image.) The next two parameters are the X and Y
values of the top-left corner of the image, and the last two parameters
are the size of the image (width and height.)

 4. Create a JavaScript Image object.

 If you don’t want to embed an image in the page, you can use JavaScript
to create an image dynamically. Use the new Image() constructor to
build a new image.

 5. Change the image’s src property.

 If you create a JavaScript image, you must specify the src attribute to
indicate the file associated with the image. It might take some time for
the image to load.

 The image won’t display until it has loaded from the server. In most cases,
this won’t be a problem, but sometimes you’ll find you need to delay your
program until the image has finished loading. The image object has an
onload property that accepts a callback function. Use this technique to wait
until your drawing finishes.

Book IV
Chapter 6

Draw
ing on the

Canvas
Images 507

image.onload = finishDrawing;
function finishDrawing(){
 //rest of drawing code goes here
}

Drawing part of an image
Sometimes you’ll want to draw a small part of the original image.
Figure 6-13 illustrates a program focusing in on the center of the
goofy face:

Figure 6-13:
This
image is a
zoomed-in
section of
the previous
image.

It’s quite easy to draw part of an image. Use the same drawImage() com-
mand, but this time use a version with nine parameters:

 con.drawImage(goofyPic, 60, 70, 90, 90, 0, 0, 150, 150);

Here’s what all these parameters mean:

 ✦ Image name: The first parameter is the name of the image (not the file-
name, but the name of the JavaScript Image object).

 ✦ Top left corner of source: The first job is to choose the part of the origi-
nal picture that will be displayed. The next two parameters indicate the
top left corner of a selection on the original picture. (You might use an
image editor like Gimp or IrfanView to determine the selection position
and size.)

 ✦ Height and width of source: The next two parameters indicate the
height and width of the source selection.

 ✦ Position of destination: The next two parameters are the position of the
picture’s top left corner on the canvas.

Manipulating Pixels508

 ✦ Size of destination: The last two parameters describe the size of the
destination image on the canvas.

The “draw only part of an image” technique described here is quite useful
because it allows you to combine several images into a single image (some-
times called a sprite sheet). This decreases the overhead for delivering the
image (one large image is faster to deliver than several small ones). It’s also
frequently used in games and animations where one entity might have sev-
eral images displayed in sequence to suggest walking or attacking.

Manipulating Pixels
The <canvas> tag has one more incredible trick up its sleeve. You can
extract the data of a <canvas> tag into the underlying pixel data. If you
know how to manipulate this data, you can have very extensive control of
your image in real time. You can use this data for color balancing, as well as
experimenting with your own blurs, sharpens, and chroma-key effects.

In order to understand how to have this much control of your images, you
need to have some knowledge of how pictures are stored in memory. No
matter what format an image is stored in on the file system, it is displayed
as a list of pixels. Each pixel is represented (in the standard 32-bit system,
anyway) by four integers: RGBA. The R value represents how much red is in
the current dot. G stands for green, and B stands for blue. The A stands for
alpha, which is a measure of the transparency of the image. Each of these
values can vary from 0 to 255. When you convert an image to the image-
Data, you get a huge array of integers. Each group of four integers repre-
sents a single pixel of color data.

Here’s an example that changes the color balance of an image:

 function draw(){
 //from pixel.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");
 var original = document.getElementById("original");

 CANV_WIDTH = 200;
 CANV_HEIGHT = 200;

 //draw the original on the canvas
 con.drawImage(original, 0, 0);

 //get the image data
 imgData = con.getImageData(0, 0, 200, 200);

 //loop through image data
 for (row = 0; row < CANV_HEIGHT; row++){
 for (col = 0; col < CANV_WIDTH; col++){
 //find current pixel
 index = (col + (row * imgData.width)) * 4;

 //separate into color values

Book IV
Chapter 6

Draw
ing on the

Canvas
Manipulating Pixels 509

 r = imgData.data[index];
 g = imgData.data[index + 1];
 b = imgData.data[index + 2];
 a = imgData.data[index + 3];

 //manipulate color values
 r -= 20;
 g += 50;
 b -= 30;
 a = a;

 //manage boundary conditions
 if (r > 255){
 r = 255;
 }
 if (r < 0){
 r = 0;
 }
 if (g > 255){
 g = 255;
 }
 if (g < 0){
 g = 0;
 }
 if (b > 255){
 r = 255;
 }
 if (b < 0){
 b = 0;
 }
 if (a > 255){
 a = 255;
 }
 if (a < 0){
 a = 0;
 }

 //return new values to data
 imgData.data[index] = r;
 imgData.data[index+1] = g;
 imgData.data[index+2] = b;
 imgData.data[index+3] = a;
 } // end col for loop
 } // end row for loop

 //draw new image onto canvas
 con.putImageData(imgData, 0, 0);

 } // end function

Although the code listing seems quite long, it really isn't too difficult to follow:

 1. Draw an original image.

 The technique you’ll use extracts data from a <canvas> element, so to
modify an image, first you need to draw it onto a canvas. I drew my goofy
face image on the canvas first with the ordinary drawImage() method.

 2. Extract the image data.

 The getImageData() method gets the picture displayed by the current
canvas and places it in a huge array of integers.

Manipulating Pixels510

 3. Make a loop to handle the rows.

 Image data is broken into rows and columns. Each row goes from 0 to
the height of the canvas, so make a for loop to iterate through the rows.

 4. Make another loop to handle the columns.

 Inside each row is data from 0 to the width of the canvas, so make a
second for loop inside the first. It’s very common to use a pair of nested
for loops to step through two-dimensional data like image information.

 5. Find the index in imageData for the current row and column.

 The imageData array contains four integers for each pixel, so we have
to do a little math to figure out where the first integer for each pixel is.
The easiest formula is to multiply the row number by the width of the
canvas, add that to the column number, and multiply the entire result by
four.

 6. Pull the corresponding color values from the index.

 The index also represents the red value of the current pixel. The next
int holds the green value, followed by the blue value, and finally the
alpha value.

 7. Manipulate the color values as you wish.

 If you’re going to do a color-balancing app (as I’m doing), you can simply
add or subtract values to change the overall color balance. In my exam-
ple, I add a bit to green and subtract a bit from red and blue. I chose to
leave the alpha alone. Of course, this is where you can do much more
elaborate work if you want to play around with pixel-level image manipu-
lation.

 8. Check for boundaries.

 A pixel value cannot be lower than 0 or higher than 255, so check for
both of these boundaries and adjust all pixel values to be within legal
limits.

 9. Return manipulated values back to the imgData array.

 You can copy values back to the array, and you should do so, to make
the changes visible.

 10. Draw the imageData back to the canvas.

 The putImageData() function draws the current image data back
to the canvas as an ordinary image. The new version of the image will
reflect the changes. In my case, I have a decidedly ill-looking image.

Color-balancing is too subtle an effect to display accurately in a black-and-
white screen shot, so please visit the book’s companion website to see this
program in its full glory. See the book’s Introduction for more on the website.

Chapter 7: Animation
with the Canvas

In This Chapter
✓ Working with images

✓ Managing transformations

✓ Handling keyboard input

✓ Building basic animations

T
he <canvas> tag (introduced in Chapter 6 of this minibook) adds some
long-needed graphical support to HTML. In this chapter, you see how to

extend these ideas to create interesting animations and even user interaction.

Transformations
Transformations are math operations that can be applied to any drawing or
image to change the appearance. There are three major transformations:

 ✦ translation: Move a particular amount in X and Y

 ✦ rotation: Rotate around a particular point

 ✦ scale:Change the size of the drawing in X and Y

The <canvas> element allows all these operations on any type of drawing.
However, the way the <canvas> element does this gets a little closer to math
than you may have gotten before. Transformations in the canvas element can
be hard to understand until you understand a little about how they really work.

In math, you don’t really transform objects. Instead, you modify the coor-
dinate system, and draw your image in the newly transformed coordinate
system. It’s common in a vector-drawing application to have several hidden
coordinate systems working at once. That’s important because it’s the
way canvas transformations work. Essentially when you want to perform
 transformations on an object, you’ll do the following:

 1. Announce the beginning of a temporary coordinate system.

 The main image already has its own coordinate system that won’t
change. Before you can transform anything, you need to build a new
coordinate system to hold those changes. The (poorly named) save()
command indicates the beginning of a new coordinate system definition.

Transformations512

 2. Move the center with translate().

 The origin (0, 0) starts in the upper-left corner of the canvas by
default. Normally you’ll build your transformed objects on the (new)
origin and move the origin to place the object. If you translate
(50, 50) and then draw an image at (0, 0), the image is drawn at the
origin of the temporary coordinate system, which is at (50, 50) in the
main canvas.

 3. Rotate the coordinate system with rotate().

 The rotate() command rotates the new coordinate system around its
origin. The rotation parameter is a degree in radians.

 4. Scale the coordinate system in X and Y.

 You can also alter the new coordinate system by applying X and Y scale
values. This allows you to create stretched and squashed images.

 5. Create elements in the new coordinate system.

 After you’ve applied all the transformations you want, you can use all
the ordinary canvas drawing techniques. However, these drawings will
be drawn in the “virtual” coordinate system you just made, not in the
canvas’s main coordinate system.

 6. Close the temporary coordinate system.

 Generally you’ll want to apply different transformations to different
parts of your canvas. When you’re finished with a particular transfor-
mation, use the restore() command to close out the new coordinate
system. All subsequent drawing commands will use the default coordi-
nate system of the <canvas> object.

Building a transformed image
A real example is easier to follow, so look at the code below:

 function draw(){
 //from transform.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");
 var goofyPic = document.getElementById("goofyPic");

 con.save();
 con.translate(100, 100);
 con.rotate(Math.PI / 4);
 con.scale(3.0, 1.5);
 con.drawImage(goofyPic, -25, -25, 50, 50);
 con.restore();

 //draw a rectangle using the ordinary coordinate system
 con.strokeStyle = "red";
 con.lineWidth = 5;
 con.strokeRect(0, 0, 200, 200);

 } // end draw

Book IV
Chapter 7

Anim
ation w

ith the
Canvas

Transformations 513

This program creates a new coordinate system containing a translation,
rotation, and scale. It draws an image in the new coordinate system. It then
reverts to the standard coordinate system and draws a rectangular frame.

This program will display like Figure 7-1.

Here’s how to build this type of image:

 1. Get access to an image object.

 Load the image from the main site as explained in Chapter 6 of this
 mini-book.

 2. Start the transformation with the save()method.

 The save() method has (if you ask me) a very confusing name. This
method does not save the canvas to a file. Instead, it saves the current
coordinate system settings in memory and allows you to define a new
coordinate system. I would have called this method beginTransform().

 3. Apply any translations you wish.

 Remember, translations move the entire coordinate system. If you
translate the coordinate system by (100, 100) as I did in this example,
that means any subsequent drawings at (0, 0) will actually appear in the
center of my 200×200 canvas.

 4. Rotate the coordinate system if you wish.

 You can apply a rotation to the coordinate system if you prefer. The
system will rotate around its origin. Typically, to get the behavior you
want, design your images so they are centered on the origin, and trans-
late the origin to move the image. Rotation angles are defined in radians.

Figure 7-1:
This canvas
features
several
transforma-
tions.

Transformations514

If you’re more comfortable with degrees, you can use this formula to
 convert: radians = degrees * (Math.PI / 180).

 5. Scale the coordinate system by X and Y.

 You can change the apparent width and height of your new coordinate
system by indicating new scale values. Scaling is a multiplication opera-
tion. If the scale is one, the element stays the same size. If the scale is
2, the element is double the original size, and .5 is half the original size.
You can even scale by a negative number to invert the image.

 6. Draw your image.

 Draw on the canvas after you’ve applied all the transformations. You
can use any canvas-drawing techniques you want: paths, rectangles,
images, text, or whatever. The drawing will be modified by the indicated
 transformations.

 7. End the transformation.

 The restore() method should be called endTransform(). (If you’re
listening, W3C, I’m available to help you come up with better names for
things. Let me know when the meetings are scheduled.) Regardless, this
method indicates that you’re done thinking about all the transforma-
tions that have been declared in this transform, and you’re ready to
return to the default coordinate system. The term restore really means
“return to the coordinate state that was saved with the save command
that was called to begin this transformation.”

 8. Subsequent drawings will use the default coordinates.

 In my example, I draw an ordinary rectangle around the image. This rect-
angle should use the regular coordinates of the canvas — I don’t want it
rotated or scaled like the image. Because these drawing commands exist
outside the context of the save()/restore() pair, they use the regular
coordinate system.

A few thoughts about transformations
Transformations are an incredibly powerful tool set, and they’re among the
most anticipated features of HTML5. However, they do hide a certain amount
of math. You can use them without understanding linear algebra (the under-
lying mathematical theory), but there’s still a few key ideas to keep in mind:

 ✦ Each transformation is stored as a matrix: There’s an underlying struc-
ture called a matrix (that’s even cooler than the movie) that stores all
the translations, rotations, and scales in a single mathematical structure.
You can work with the transformation matrix directly if you prefer, with
the context objects’ transform() method.

 ✦ The order of transformations makes a difference: Try this experiment.
Stand in the center of the room. Now go forward five steps and turn left
90 degrees. Look at where you are. Now go back to the same starting

Book IV
Chapter 7

Anim
ation w

ith the
Canvas

Animation 515

point. This time, turn left 90 degrees and then go forward five steps. Are
you in the same place? You might need to experiment a bit to get things
working the way you expect.

 ✦ Transform the system then draw on the origin: Most of the draw-
ing commands in canvas allow you to draw things anywhere on the
canvas. If you’re not using transformations, you can use this mecha-
nism to place things wherever you wish. However, if you’re using a
transformation, it’s much easier to transform the entire coordinate
system and then draw your elements at the origin (0, 0). Otherwise
you’ll get some very strange results (especially with combined rota-
tions and translations).

Animation
Of course, the big question about the HTML5 canvas tag is whether it can
replace Flash as a mechanism for implementing games and animations in
the browser. The answer is absolutely. I wrote a whole book about it: HTML5
Game Development For Dummies (published by John Wiley & Sons). Check
it out for much more on how to build games and animations including user
input collision-checking and instructions on building many types of games.

The key to games and animations is to use the animation features already
built into the browser.

Overview of the animation loop
An animation generally requires a special organization called an anima-
tion loop. The basic structure of the animation loop works the same in any
language:

 1. Initialization.

 Create the assets, including the background and any of the objects you
will be using. Objects that will be manipulated in real time are normally
called sprites. Generally this is done when the program first runs, to save
time during the main execution. You may also set constants for image
size, display size, frame rate, and other values that will not change
during the execution of the game.

 2. Determining a frame rate.

 Animations and games work by calling a function repeatedly at a pre-
scribed rate. In general, you’ll have some sort of function that is called
repeatedly. In JavaScript, you typically use the setInterval() func-
tion to specify a function that will be called repeatedly. The frame rate
indicates how often the specified function will be called. Games and
animations typically run at frame rates between 10 and 30 frames per
second. A faster frame rate is smoother, but may not be maintainable
with some hardware.

Animation516

 3. Evaluating the current state.

 Each sprite is really a data element. During every frame, determine if
anything important has happened: Did the user press a key? Is an ele-
ment supposed to move? Did a sprite leave the screen? Did two sprites
conk into each other?

 4. Modifying sprite data.

 Each sprite generally has position or rotation data that can be modi-
fied during each frame. Usually this is done through transformations
(translation, rotation, and scale), although sometimes you may switch
between images instead.

 5. Clearing the background.

 An animation is really a series of images drawn rapidly in the same
place. Usually you’ll need to clear the background at the beginning of
each frame to clear out the last frame’s image.

 6. Redrawing all sprites.

 Each sprite is redrawn using its new data. The sprites appear to move
because they’re drawn in a new location or orientation.

 Typically I would display a screen shot here, but a still image of an animation
won’t be fun to look at in this book. Please look at autoRotate.html on this
book’s companion website to see the program running in real time. While
you’re at it, check out all the other great stuff I’ve got on that site for you.
You can find out more about the book’s companion website in the
Introduction.

Setting up the constants
As an example, build a program that rotates an image inside a canvas. The
complete code is in several parts. I’ll use a basic image as a sprite. The
first job is to set up the various variables and constants that describe the
problem. The following code is created outside any functions because it
describes values that will be shared among functions:

 var drawing;
 var con;
 var goofyPic;
 var angle = 0;
 CANV_HEIGHT = 200;
 CANV_WIDTH = 200;
 SPR_HEIGHT = 50;
 SPR_WIDTH = 40;

The drawing variable will refer to the canvas element. The con variable
will be the drawing context, goofyPic is the image to be rotated, and
angle will be used to determine how much the image is currently rotated.
The other values are constants used to describe the height and width of the
canvas as well as the sprite.

Book IV
Chapter 7

Anim
ation w

ith the
Canvas

Animation 517

Initializing the animation
As usual, the body onload mechanism will be used to start up some code
as soon as the page has finished loading. However, the page now has two
functions. The init() function handles initialization, and the draw() func-
tion is called repeatedly to handle the actual animation. Here’s the code in
the init() function:

 function init(){
 drawing = document.getElementById("drawing");
 con = drawing.getContext("2d");
 goofyPic = document.getElementById("goofyPic");
 setInterval(draw, 100);
 } // end init

The job of the init() function is to initialize things. In this particular exam-
ple, I load up the various elements (the canvas, the context, and the image)
into JavaScript variables and set up the animation. The setInterval()
function is used to set up the main animation loop. It takes two parameters:

 ✦ A repeatable function: The first parameter is the name of a function
which will be called repeatedly. In this case, I will be calling the draw
function many times.

 ✦ A delay value: The second parameter indicates how often the function
should be called in milliseconds (one-thousandths of a second.) A delay
of 100 will create a frame rate of 10 frames per second. A delay of 50 will
cause a frame rate of 20 frames per second, and so on.

Animate the current frame
The draw() function will be called many times in succession. In general, its
task is to clear the frame, calculate new sprite states, and redraw the sprite.
Here’s the code:

 function draw(){

 //clear background
 con.fillStyle = "white";
 con.fillRect(0, 0, CANV_HEIGHT, CANV_WIDTH);

 //draw border
 con.strokeStyle = "red";
 con.lineWidth = "5";
 con.strokeRect(0, 0, CANV_WIDTH, CANV_HEIGHT);

 //change the rotation angle
 angle += .25;
 if (angle > Math.PI * 2){
 angle = 0;
 }

 //start a new transformation system
 con.save();
 con.translate(100, 100);
 con.rotate(angle);

Animation518

 //draw the image
 con.drawImage(goofyPic,
 SPR_WIDTH/-2, SPR_HEIGHT/-2,
 SPR_WIDTH, SPR_HEIGHT);
 con.restore();
 } // end draw

Although the code may seem a little involved, it doesn’t do really do any-
thing new. Here’s what it does, step by step:

 1. Clears the background.

 Remember that animation is repeated drawing. If you don’t clear the
background at the beginning of every frame, you’ll see the previous
frame drawings. Use the context’s clearRect() function to draw a
fresh background, or one of the other drawing tools to use a more com-
plex background image. You must clear the background first, so subse-
quent drawings will happen on a fresh palette.

 2. Draws any non-sprite content.

 In this example, I want a red border around the frame. Just use ordi-
nary canvas elements for this. I used strokeStyle, lineWidth, and
 strokeRect() to build a red rectangular frame around my canvas.
Note that I used the CANV_HEIGHT and CANV_WIDTH constants to refer
to the current canvas size.

 3. Modifies sprite state.

 In this example, I want to modify the rotation angle of the image. I
already created a variable called angle outside the function. (It’s impor-
tant that angle was created outside the function context so it can retain
its value between calls to the function.) I add a small amount to angle
every frame. Whenever you change a variable (especially in a virtually
endless loop like an animation), you should check for boundary condi-
tions. In this example, I’m changing angles. The largest permissible angle
value (in radians) is 2 * π. If the angle gets larger than 2 * π, it is reset
to zero.

 4. Builds a transformation.

 Many animations are really modifications of a transformation. That’s the
case here. I’m actually not changing the image at all, but the transforma-
tion which contains the image. Set up a new transformation with the
save() method, and use the rotate() and translate() functions
to transform a temporary coordinate system. (See the section called
“Transformations” at the beginning of this chapter for how transforma-
tions relate to temporary coordinate systems.

 5. Draws the image at the center of the new transformation.

 Remember, the drawImage() command draws the image based on the
top left corner of an image. If you draw the image at (0, 0) of the new
transformation, the image appears to rotate around its top left corner.
Usually you’ll want an image to rotate around its center point. Simply

Book IV
Chapter 7

Anim
ation w

ith the
Canvas

Animation 519

draw the image so its center is at the origin. Set X to zero minus half the
image’s width, and Y to zero minus half the image’s height.

 6. Closes the transformation.

 Use the restore() method to finish defining the temporary coordinate
system.

Moving an element
Often you’ll prefer to move an element. This process is actually very simi-
lar to the rotation mechanism. Here’s some code that moves an image and
wraps it to the other side when it leaves the canvas.

 //from wrap.html
 var drawing;
 var con;
 var goofyPic;
 CANV_HEIGHT = 200;
 CANV_WIDTH = 200;
 SPR_HEIGHT = 50;
 SPR_WIDTH = 40;

 var x = 0;
 var y = 100;
 var dx = 10;
 var dy = 7;

 function init(){
 drawing = document.getElementById("drawing");
 con = drawing.getContext("2d");
 goofyPic = document.getElementById("goofyPic");
 setInterval(draw, 100);
 }

 function draw(){
 //clear background
 con.clearRect(0, 0, 200, 200);

 //move the element
 x += dx;
 y += dy;

 //check for boundaries
 wrap();

 //draw the image
 con.drawImage(goofyPic, x, y, SPR_WIDTH, SPR_HEIGHT);

 //draw a rectangle
 con.strokeStyle = "red";
 con.lineWidth = 5;
 con.strokeRect(0, 0, CANV_WIDTH, CANV_HEIGHT);

 } // end draw

 function wrap(){
 if (x > CANV_WIDTH){
 x = 0;
 }

Animation520

 if (x < 0){
 x = CANV_WIDTH;
 }
 if (y > CANV_HEIGHT){
 y = 0;
 } // end if
 if (y < 0){
 y = CANV_HEIGHT;
 }
 } // end wrap

The wrap code is very similar to the rotation program. It has a few different
features. Here’s what it does:

 1. Keeps track of the sprite position.

 The sprite’s position will change now, so the important variables are X
and Y, used to track where the sprite is.

 2. Contains variables for the sprite’s motion.

 The dx variable stands for difference in x, and it is used to show how
much the x value changes each frame. Likewise, dy is used to show how
much the y value changes in each frame. x, y, dx, and dy are all created
outside the function context.

 3. Moves the element values.

 In every frame (in the draw() function), add dx to x and add dy to y.

 4. Checks for boundaries.

 I created a new function called wrap() to check for boundary
 conditions.

The code is pretty straightforward. If the sprite’s x value exceeds the width
of the canvas (meaning it has moved to the right border of the canvas), reset
the x value to 0 (moving it to the left). Use a similar calculation to check the
other borders and reset the image to the opposite side. A still image won’t do
justice to this animation. Please look at wrap.html on the companion website
to see an example. The bounce.html page shows the following example.

Bouncing off the walls
If you prefer to have your sprite bounce off the walls, just replace the
wrap() function with a bounce() function that works like this:

 function bounce(){
 //from bounce.html
 if (x > CANV_WIDTH - SPR_WIDTH){
 dx *= -1;
 }
 if (x < 0){
 dx *= -1;
 }
 if (y > CANV_HEIGHT - SPR_HEIGHT){
 dy *= -1;
 }

Book IV
Chapter 7

Anim
ation w

ith the
Canvas

Reading the Keyboard 521

 if (y < 0){
 dy *= -1;
 }
 } // end bounce

Reading the Keyboard
The keyboard is a primary input technology, especially for desktop
machines. The standard way to read the keyboard is to set up special func-
tions called event-handlers. JavaScript has a number of pre-defined event
handlers you can implement. The keyDemo.html program illustrates a basic
keyboard handler in action.

<!DOCTYPE HTML>
<html lang="en-US">
<head>
 <meta charset="UTF-8">
 <title>keyDemo.html</title>
 <script type="text/javascript">

 //var keysDown = new Array(256);
 var output;

 function init(){
 output = document.getElementById("output");
 document.onkeydown = updateKeys;
 } // end init

 updateKeys = function(e){
 //set current key
 currentKey = e.keyCode;
 output.innerHTML = "current key: " + currentKey;
 }

 //keyboard constants simplify working with the keyboard
 K_A = 65; K_B = 66; K_C = 67; K_D = 68; K_E = 69; K_F = 70; K_G = 71;
 K_H = 72; K_I = 73; K_J = 74; K_K = 75; K_L = 76; K_M = 77; K_N = 78;
 K_O = 79; K_P = 80; K_Q = 81; K_R = 82; K_S = 83; K_T = 84; K_U = 85;
 K_V = 86; K_W = 87; K_X = 88; K_Y = 89; K_Z = 90;
 K_LEFT = 37; K_RIGHT = 39; K_UP = 38;K_DOWN = 40; K_SPACE = 32;
 K_ESC = 27; K_PGUP = 33; K_PGDOWN = 34; K_HOME = 36; K_END = 35;
 K_0 = 48; K_1 = 49; K_2 = 50; K_3 = 51; K_4 = 52; K_5 = 53;
 K_6 = 54; K_7 = 55; K_8 = 56; K_9 = 57;
 </script>
</head>
<body onload = "init()">
 <div id = "output">
 Press a key to see its code
 </div>
</body>
</html>

Figure 7-2 illustrates basic keyboard input (but it’s interactive, so you should
really look at it on the companion website).

Reading the Keyboard522

Figure 7-2:
This page
reports
which
key you
pressed.

Managing basic keyboard input
This particular example demonstrates basic keyboard-checking as well as
the more sophisticated technique used in simpleGame. Here’s how the
basic version works:

 1. Assigns a function to onkeydown.

 The document.onkeydown attribute is a special property. If you assign
a function to this property, that function will be automatically called
each time the operating system recognizes a key press. In this example, I
assign the function updateKeys.

 2. Creates the function, including an event parameter.

 The updateKeys() function will automatically be given an event object
(normally called e).

 3. Determines which key was pressed.

 The e.keyCode property returns a numeric code indicating which key
was pressed. In the keyDemo program (as well as simpleGame), the
currentKey variable holds this numeric value.

 4. Compares the key to one of the keyboard constants.

 It’s hard to remember which keys are associated with which numeric
values, so keyDemo and simpleGame provide a list of keyboard con-
stants. They are easy to remember: K_A is the A key, and K_SPACE is
the space bar. Of course, you can add other keys if there’s some key you
want to use that isn’t available. Although I didn’t actually use the key-
board constants in this example, they are useful so you can easily deter-
mine which key was pressed.

Book IV
Chapter 7

Anim
ation w

ith the
Canvas

Reading the Keyboard 523

Moving an image with the keyboard
You can achieve a form of interactivity by having an image move in response
to keyboard motion. Figure 7-3 illustrates this technique, but it really isn’t sat-
isfying to see in a book. As usual, you need to play with this on the website.

Figure 7-3:
Move the
image
around with
the arrow
keys.

Essentially moving an image involves combining key ideas from keyDemo.
html (for keyboard input) and wrap.html (to set up the canvas and make the
object move under timer control). Here’s the code:

 <!DOCTYPE HTML>
 <html lang = "en">
 <head>
 <title>keyboar motion</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 .hidden{
 display: none;
 }
 </style>
 <script type = "text/javascript">
 //move based on keyboard input
 var drawing;
 var con;
 var goofyPic;
 CANV_HEIGHT = 200;
 CANV_WIDTH = 200;
 SPR_HEIGHT = 50;
 SPR_WIDTH = 40;
 var x = 0;
 var y = 100;
 var dx = 0;
 var dy = 0;
 var currentKey;

Reading the Keyboard524

 function init(){
 drawing = document.getElementById("drawing");
 con = drawing.getContext("2d");
 goofyPic = document.getElementById("goofyPic");
 document.onkeydown = updateKeys;
 setInterval(draw, 100);
 }

 function updateKeys(e){
 currentKey = e.keyCode;

 if (currentKey == K_LEFT){
 dx = -5;
 }

 if (currentKey == K_RIGHT){
 dx = 5;
 }

 if (currentKey == K_UP){
 dy = -5;
 }

 if (currentKey == K_DOWN){
 dy = 5;
 }

 if (currentKey == K_SPACE){
 dx = 0;
 dy = 0;
 }
 } // end updateKeys

 function draw(){
 //clear background
 con.clearRect(0, 0, 200, 200);

 currentKey = null;

 //move the element
 x += dx;
 y += dy;

 //check for boundaries
 wrap();

 //draw the image
 con.drawImage(goofyPic, x, y, SPR_WIDTH, SPR_HEIGHT);

 //draw a rectangle
 con.strokeStyle = "red";
 con.lineWidth = 5;
 con.strokeRect(0, 0, CANV_WIDTH, CANV_HEIGHT);

 } // end draw

 function wrap(){
 if (x > CANV_WIDTH){
 x = 0;
 }
 if (x < 0){
 x = CANV_WIDTH;

Book IV
Chapter 7

Anim
ation w

ith the
Canvas

Reading the Keyboard 525

 }
 if (y > CANV_HEIGHT){
 y = 0;
 } // end if
 if (y < 0){
 y = CANV_HEIGHT;
 }
 } // end wrap

 //keyboard constants
 K_LEFT = 37; K_RIGHT = 39; K_UP = 38;K_DOWN = 40; K_SPACE = 32;

 </script>
 </head>

 <body onload = "init()">
 <h1>Keyboard Motion</h1>

 <img class = "hidden"
 id = "goofyPic"
 src = "andyGoofy.gif"
 alt = "Goofy pic of me" />

 <canvas id = "drawing"
 height = "200"
 width = "200">
 <p>Canvas not supported</p>
 </canvas>

 <p>
 Use arrow keys to move image, space bar to stop motion.
 </p>

 </body>
 </html>

This program is essentially wrap.html with the following changes:

 1. Sets up updateKeys()as an event handler.

 Because this program reads the keyboard in real time, you have to
assign an event handler.

 2. Determines which key was pressed.

 Store the last key pressed in a variable called currentKey.

 3. Compares currentKey with keyboard constants.

 Use constants to compare currentKey with whatever keys you’re inter-
ested in — for now, the arrow keys and space bar.

 4. Changes dx and dy based on the current key value.

 When you know which key is pressed, use this information to modify the
dx and dy values, which determines how the image moves.

 5. The draw()function still does the drawing.

 The draw() function is called on a regular interval. It’s common to sepa-
rate input (keyPressed) from animation (draw).

Reading the Keyboard526

 This is a very simple keyboard input mechanism. It’s fine for basic user
input, but in gaming we use much more sophisticated input techniques
including a mechanism called polling, which allows multiple keys at a time.
In addition, the modern web includes mobile devices, which have interesting
new features including touch interface and tilt control. Please see my book
HTML5 Game Development For Dummies for information on these advanced
input techniques. You’ll also see other forms of animation including image-
swapping and sprite sheet animation.

 Visit www.dummies.com/extras/html5css3aio for more on using templates
with PHP.

Part V
Server-Side Programming

with PHP

http://www.dummies.com/extras/html5css3aio

Contents at a Glance

Contents at a Glance

Chapter 1: Getting Started on the Server .529
Introducing Server-Side Programming ...529
Installing Your Web Server ..532
Inspecting phpinfo() ...533
Building HTML with PHP ...536
Coding with Quotation Marks ...539
Working with Variables PHP-Style ..540
Building HTML Output ..543

Chapter 2: PHP and HTML Forms . .549
Exploring the Relationship between PHP and HTML ..549
Sending Data to a PHP Program ..552
Choosing the Method of Your Madness ..556
Retrieving Data from Other Form Elements ..563

Chapter 3: Using Control Structures .569
Introducing Conditions (Again) ...569
Building the Classic if Statement ...570
Making a switch ..578
Looping with for ..581
Looping with while ..584

Chapter 4: Working with Arrays .587
Using One-Dimensional Arrays ..587
Using Loops with Arrays ..590
Introducing Associative Arrays ..594
Introducing Multidimensional Arrays ..597
Breaking a String into an Array ..600

Chapter 5: Using Functions and Session Variables 605
Creating Your Own Functions ...605
Managing Persistence with Session Variables ...611

Chapter 6: Working with Files and Directories 617
Text File Manipulation ..617
Using Delimited Data ..626
Working with File and Directory Functions ..633

Chapter 7: Exceptions and Objects .639
Object-Oriented Programming in PHP ..639
You’ve Got Your Momma’s Eyes: Inheritance ...647
Catching Exceptions ...650

Chapter 1: Getting Started
on the Server

In This Chapter
✓ Introducing server-side programming

✓ Testing your installation

✓ Inspecting phpinfo()

✓ Writing HTML with embedded PHP

✓ Understanding various types of quotation

✓ Managing concatenation and interpolation

✓ Using heredocs to simplify coding

W
elcome to the server-side programming portion of the book. In this
minibook, you discover all the basics of PHP and how you can use

PHP to make your pages dynamic and relevant in today’s Internet.

In this chapter, you read about getting your server set up and ready to go.
I walk you through the process as painlessly as possible, and by the end,
you’ll be up and running, and ready to serve up your own web pages in
a test environment. (I talk about making them available to the rest of the
world in Book VIII.)

Introducing Server-Side Programming
I begin with an introduction to server-side programming. This is a bit
different than the client-side programming you may have done in JavaScript.

Programming on the server
Server-side programming is what you use to create pages dynamically on
the server before sending them to the client. Whereas client-side program-
ming is executed on the client’s machine, server-side programming all
happens on the server before the web page is even sent to the user.

Client-side programming (as done in JavaScript) does most of the work on
the individual user’s machine. This has advantages because those machines
have doohickeys such as mice and graphics cards. Client-side programs can
be interactive in real time.

Introducing Server-Side Programming530

The client has a big problem, though. Programs written on the client usually
have a form of forced amnesia (no long-term memory). For security reasons,
client-side applications can’t store information in files and can’t interact
with other programs on the computer. Also, you never know exactly what
kind of setup the user has, so you can’t really be sure whether your program
will work.

This is where server-side programming comes in. In a pure server-side
programming environment, all the action happens on the web server.
The user thinks she’s asking for a web page like normal, but the address
really goes to a computer program. The program does some magic and
produces a web page. The user sees a web page, perhaps never knowing
this wasn’t a regular web page, but a page that was produced instead by a
program.

A program running on a web server has some really nice advantages,
such as

 ✦ A server-side program can access the local file system. Asking a server
program to load and save files on the server is no problem at all.

 ✦ A server-side program can call external programs. This is a very big
deal because many web applications are really about working with data.
Database programs are very important to modern web development. See
Book VI for much more on this.

 ✦ All the user sees is ordinary HTML. You can set up your program to
do whatever you want, but the output is regular HTML. You don’t have
to worry about what browser the user has, or whether he has a Mac, or
what browser version he’s using. Any browser that can display HTML
can be used with PHP.

Serving your programs
When using a browser to retrieve web pages, you send a request to a
server. The server then looks at the extension (.HTML, .php, .js, and so
on) of your requested file and decides what to do. If the server sees .HTML
or .js, it says, “Cool. Nothing doing here. Just gotta send her back as is.”
When the server sees .php, it says, “Oh, boy. They need PHP to build
something here.”

The server takes the page and hollers for PHP to come along and construct
the requested web page on the fly. PHP goes through and looks at the
programmer’s blueprint and then constructs the working page out of HTML.

The server then takes that page from PHP and sends back plain HTML to the
client for the browser to display to the user.

When you write PHP programs, a web server must process the form before
the browser can see it. To test your PHP programs, you need to have a web

Book V
Chapter 1

Getting Started
on the Server

Introducing Server-Side Programming 531

server available and place the file in a specific place on your computer for
the server to serve it. You can’t run a PHP file directly from your desktop. It
must be placed in a special place — often, the htdocs or public_html
directory under the server.

Picking a language
There are all sorts of different ways to go about dynamically creating web
pages with server-side programming. Back in the day when the Internet
was still in diapers, people used things like Perl and CGI scripting to handle
all their server-side programming. Eventually, people placed more and
more demand on their websites, and soon these technologies just weren’t
enough.

The prevalent languages today are

 ✦ ASP.NET: Microsoft’s contender

 ✦ Java: The heavyweight offering from Sun Microsystems

 ✦ Python: Python is becoming a popular alternative, but it has not yet sur-
passed PHP in popularity as a server-side language.

 ✦ PHP: The popular language described in this minibook

ASP.NET
ASP.NET is event-driven, compiled, and object-oriented. ASP.NET replaced
the ’90s language ASP in 2002. Microsoft repurposed it for use with the
.NET framework to facilitate cross-compatibility with its desktop applica-
tions (apps) and integration into Visual Studio (although you can write
ASP.NET apps from any text editor). ASP.NET runs on Microsoft’s Internet
Information Services (IIS) web server, which typically requires more
expensive servers than most of the other technologies. Although ASP.NET
is an excellent technology, I don’t recommend it for cost-conscious users.

Java
Java has been a strong contender for a long time now. The language is
indeed named after coffee. If you work for a banking company or insurance
company, or need to build the next eBay or Amazon.com, you might want to
consider using Java. However, Java can consume a lot of time, and it’s hard
to figure out. You may have to write up to 16 lines of code to do in Java what
could take a mere 4 lines of code in PHP. Java is absolutely free, as is the
Apache Tomcat web server that it uses to serve its web components. Java
was originally created to write desktop applications and is still very good
at doing that. If you’re comfortable with C/C++, you’ll be very comfortable
with Java because it’s very similar. It’s fully object-oriented and it’s com-
piled. Java is powerful, but it can be challenging for beginners. It’d be a great
second language to work with.

Installing Your Web Server532

Python
The Python language is used in a number of contexts, including server-side
programming. Although Python has become much more popular as of late, it
still isn’t used as frequently as PHP for this purpose.

PHP
PHP was born from a collection of modifications for Perl and has boomed
ever since (in a way, replacing Perl, which was once considered the duct
tape and bubble gum that held the Internet together).

PHP works great for your server-side web development purposes. Media
Wiki (the engine that was written to run the popular Internet encyclopedia
Wikipedia) runs on PHP, as do many other popular large-, medium-, and
small-scale websites. PHP is a solid, easy-to-learn, well-established language
(it was introduced in 1994). PHP can be object-oriented or procedural: You
can take your pick. PHP is interpreted rather than compiled.

 The current stable version of PHP used in this book is PHP5.5. This might
confuse you because there are several references to PHP6 on the Internet.
There is indeed a PHP6, but it has been discontinued for several years, with
the most important improvements moved to the PHP5 engine. Examples in
this book will work on any version of PHP past PHP5.3, which is what’s most
likely to be on your server.

Installing Your Web Server
For PHP to work usefully, you have to have some other things installed on
your computer, such as

 ✦ A web server: This special program enables a computer to process files
and send them to web browsers. I use Apache because it’s free and pow-
erful and works very well with PHP.

What’s the difference between an interpreted
language and a compiled language? A com-
piled language is compiled one time into a
more computer-friendly format for faster
processing when called by the computer.
Compiled languages are typically very fast but
not very flexible. Interpreted languages have
to be interpreted on the spot by the server

every time they’re called, which is slower
but provides more flexibility. With blazing fast
servers these days, interpreted languages can
normally stand under the load, and the ability
to handle changes without recompiling can be
an advantage in the fast-paced world of web
development.

Compile versus interpret?

Book V
Chapter 1

Getting Started
on the Server

Inspecting phpinfo() 533

 ✦ A database backend: Modern websites rely heavily on data, so a pro-
gram that can manage your data needs is very important. I use MySQL (a
free and powerful tool) for this. Book VI is entirely dedicated to creating
data with MySQL and some related tools.

 ✦ A programming language: Server-side programming relies on a lan-
guage. I use PHP because it works great and it’s free.

There are two main ways to work with a web server:

 ✦ Install your own, using the free XAMPP software. Download from www.
apachefriends.org/en/xampp.html. Book VIII, Chapter 1 has com-
plete instructions on installing XAMPP.

 ✦ Work on a remote server that somebody has already set up. Most low-
cost web servers (and even some free ones) support PHP and MySQL
right out of the box.

Please check out Book VIII, Chapter 1 for complete information on both tech-
niques. After you have your machine set up or you have an account some-
where with PHP access, come back here. I’ll wait.

Inspecting phpinfo()
Using your shiny new server is really quite simple, but a lot of beginners can
get confused at this point.

One thing you have to remember is that anything you want the server to
serve must be located in the server’s file structure. If you have a PHP file
on your desktop and you want to view it in your browser, it won’t work
because it isn’t in your server. Although, yes, technically it might be on
the same machine as your server (if you’re using XAMPP), it is not in the
server.

So, to serve a file from the server, it must be located in the htdocs directory
of your server install. If you’ve installed XAMPP, go to the folder where you
installed XAMPP (probably either c:/xampp or c:/Program Files/xampp) and
locate the htdocs directory. This is where you’ll put all your PHP files. Make
note of it now.

If you’re using a remote server, you’ll need to use your host’s file manage-
ment tools or FTP (both described in Book VIII, Chapter 1) to transfer the
file. Often you’ll have specially designated folders for placing your web con-
tent, usually related to your domain name. You may need to check with your
server host to be certain.

To get the hang of placing your files in the correct place and accessing
them, create a test file that will display all your PHP, Apache, and MySQL
settings.

http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html

Inspecting phpinfo()534

To test everything, make the PHP version of the famous “Hello World!”
program. Follow these steps to make your first PHP program:

 1. Open a text editor to create a new file.

 PHP files are essentially plain text files, just like HTML and JavaScript.
You can use the same editors to create them.

 2. Build a standard web page.

 Generally, your PHP pages start out as standard web pages, using your
basic HTML template. However, start with a simpler example, so you can
begin with an empty text file.

 3. Add a PHP reference.

 Write a tag to indicate PHP. The starting tag looks like <?php, and the
ending tag looks like ?>. As far as HTML is concerned, all the PHP code
is embedded in a single HTML tag.

 4. Write a single line of PHP code.

 You’ll learn a lot more PHP soon, but one command is especially
useful for testing your configuration to see how it works. Type the line
phpinfo();. This powerful command supplies a huge amount of diag-
nostic information.

 5. Save the file to your server.

 A PHP file can’t be stored just anywhere. You need to place it under
an accessible directory of your web server. If you’re running XAMPP,
that’s the htdocs directory of your xampp directory. If you’re running
a remote server, you’ll need to move the file to that server, either with
your host’s file transfer mechanism, an FTP program, or automatically
through your editor. (See the nearby sidebar “Picking a PHP editor” for
information on remote editing in Komodo.)

 6. Preview your page in the browser.

 Use your web browser to look at the resulting page. Note that you
cannot simply load the file through the file menu or drag it to your
browser. If you have XAMPP installed, you need to refer to the file as
http://localhost/fileName.php. If the file is on a remote server,
use the full address of the file on that server: for example, http://
myhost.freehostia.com/fileName.php.

Your code from Steps 3 and 4 should look like this:

<?php
 phpinfo();
?>

Hmm. Only three lines of code, and it doesn’t seem to do much. There’s pre-
cious little HTML code there. Run it through the browser, though, and you’ll
see the page shown in Figure 1-1.

http://localhost/fileName.php
http://myhost.freehostia.com/fileName.php
http://myhost.freehostia.com/fileName.php

Book V
Chapter 1

Getting Started
on the Server

Inspecting phpinfo() 535

 If you see the actual PHP code rather than the results shown in Figure 1-1,
you probably didn’t refer to the page correctly. Please check the following:

 ✦ Is the file in the right place? Your file must be in htdocs or on a remote
server (or in a subdirectory of these places).

 ✦ Did you use the .php extension? The server won’t invoke PHP unless
the filename has a .php extension.

 ✦ Did you refer to the file correctly? If the URL in the address bar reads
file://, you bypassed the server, and PHP was not activated. Your
address must begin with http://. Either use http://localhost (for a
locally stored file in XAMPP) or the URL of your remote hosting service.

This phpinfo page of Figure 1-1 is critical in inspecting your server configu-
ration. It displays all the different settings for your server, describing what
version of PHP is running and what modules are active. This can be very
useful information.

 You generally should not have a page with all the phpinfo() information
running on a live server because it tells the bad guys information they might
use to do mischief.

This test.php program shows one of the most interesting things about
PHP. The program itself is just a few lines long, but when you run it, the
result is a complex web page. Take a look at the source of the web page, and
you’ll see a lot of code that you didn’t write. That’s the magic of PHP. You
write a program, and it creates a web page for you.

Don’t panic if you don’t understand anything in the page that gets produced
with the phpinfo() command. It contains many details about how PHP is

Figure 1-1:
That tiny
PHP pro-
gram sure
puts a lot of
information
on the
screen.

http://localhost

Building HTML with PHP536

configured on your server, which may not mean much now. If you have
trouble with PHP and ask me for help, however, it’s the first thing I’ll ask you
for. An experienced developer can do a lot of troubleshooting by looking
over a phpinfo so it’s a handy skill to know.

The basic flow of PHP programming works like this:

 1. You build a standard page, and you include PHP code inside it.

 2. When the server recognizes the PHP code, it calls the PHP interpreter
and passes that code to it.

PHP programs are almost always designed to create HTML code, which gets
passed back to the user. The user will never see PHP code because it will get
translated to HTML before it gets to the browser.

 By default, Apache will load index.HTML or index.php automatically if
you type a directory path into the web browser. If you’re using XAMPP,
there’s already a program in htdocs called index.php. Rename it index.
php.off. Now, if you navigate to http://localhost/, you’ll see a list of
directories and files your server can run, including test.php. When you
have a live site, you’ll typically name one file index.HTML or index.php so
the user doesn’t have to type the entire filename. See Book VIII, Chapter 1 for
more information on how to set up your server to make it easiest to use.

Building HTML with PHP
In PHP, you aren’t actually printing anything to the user. Instead, you’re
building an HTML document that will be sent to the browser, which will

In the previous edition of this book, I recom-
mend using Aptana for PHP editing. If you
already use Aptana for your other web editing,
you may also enjoy using it for PHP. However,
Aptana has changed, and PHP support is no
longer built into the standard version of Aptana.

I honestly prefer using Komodo Edit (also
mentioned in Book I, Chapter 3) for all my web
editing. It’s a little simpler than Aptana, and it
still has all the important features like syntax
completion and highlighting built in with no
plug-ins needed.

Komodo has another feature that can be a
lifesaver for PHP programmers. If you’re work-
ing on a remote web server, you can set up
a connection to that server (choose Edit ➪
Preferences ➪ Servers). Then you can use the
Save Remotely command to save the file
to the server directly. That way, you can use all
the features of Komodo without a local instal-
lation of Apache or PHP, and without having to
implement an extra file transfer step.

Picking a PHP editor

http://localhost/

Book V
Chapter 1

Getting Started
on the Server

Building HTML with PHP 537

interpret the HTML and then print that (the HTML) to the user. Therefore, all
your code gets interpreted twice: first on the server to generate the HTML
and then on the user’s machine to generate the output display.

If you’ve used HTML, CSS, and JavaScript, you might have been frustrated
because all these environments run on the client, and you have no control
of the client environment. You don’t know what browser the user will have,
and thus you don’t know exactly how HTML, CSS, and JavaScript will run
there. When you program in PHP, you’re working on a machine (the server)
that you actually control. You know exactly what the server’s capabilities are
because (in many cases) you configured it yourself.

It’s still not a perfect situation, though, because your PHP code will generate
HTML/CSS pages (sometimes even with JavaScript), and those pages still
have to contend with the wide array of client environments.

The first program you ever write in any language is invariably the “Hello
World!” program or some variant thereof. Follow these steps:

 1. Create a new PHP file in your editor.

 I prefer using Komodo Edit because it has great support for PHP and
remote file access.

 If you’re using some other text editor, just open a plain text file however
you normally do that (often File ➪ New) and be sure to save it under
htdocs with a .php extension. If you’re using a remote server, transfer
your file to that server before testing.

 2. Create your standard HTML page.

 PHP code is usually embedded into the context of an HTML page.
Begin with your standard HTML template. (See Book I, Chapter 2 for a
refresher on HTML.)

 3. Enter the following code in the body:
<?php
print “<h1>Hello World!</h1>”;
?>

 Depending on your installation of Apache, you may be able to use the
shorter <? ?> version of the PHP directive (instead of <?php ?>).
However, nearly all installations support the <?php ?> version, so
that’s probably the safest way to go.

 Note that you’re not just writing text, but creating an HTML tag. PHP cre-
ates HTML. That’s a really important idea.

 4. Save the file.

 Remember to save directly into htdocs or a subdirectory of htdocs. If
you’re using a remote server, save remotely to that server (with
Komodo) or save it locally and transfer it to the server to view it.

Building HTML with PHP538

 5. View the file in a web browser, as shown in Figure 1-2.

 The address of a web page begins with the http:// protocol and then
the server name. If the page is on the local machine, the server name is
localhost, which corresponds directly to your htdocs directory. If you
have a file named thing.php in the htdocs directory, the address would
be http://localhost/thing.php. Likewise, if it’s in a subdirectory
of htdocs called project, the address would be http://localhost/
project/thing.php. If the page is on a remote server, the address will
include the server’s name, like this:

 http://www.myserver.com/thing.php

Figure 1-2:
The “Hello
World!”
program
example.

So, what is it that you’ve done here? You’ve figured out how to use the
print statement. This allows you to spit out any text you want to
the user.

 Note that each line ends with a semicolon (;), just like JavaScript
code. PHP (unlike JavaScript) is pretty fussy about semicolons, and if
you forget, you’re likely to get a really strange error that can be hard to
figure out.

 For all the other examples in this book, you can look at the program running
on the companion website and view the source to see what is happening.
That won’t work with PHP code because the PHP is converted to HTML by
the time it gets to the browser. So on my website, I’ve provided a special
source listing for each PHP program so you can see the code before it is
passed through the interpreter.

echo is another way to generate your code
for the browser. In almost all circumstances,
you use echo exactly like you use print.
Everyone knows what print does, but echo
sounds like I should be making some sort of
dolphin noise.

The difference is that print returns a value,
and echo doesn’t. print can be used as

part of a complex expression, and echo
can’t. It really just comes down to the fact
that print is more dynamic, whereas echo
is slightly (and I’m talking very slightly here)
faster.

I prefer print because there’s nothing that
echo can do that print can’t, and print
makes more sense to my simple brain.

echo or print?

http://localhost/thing.php
http://localhost/project/thing.php
http://localhost/project/thing.php
http://www.myserver.com/thing.php

Book V
Chapter 1

Getting Started
on the Server

Coding with Quotation Marks 539

Coding with Quotation Marks
There are many different ways to use print. The following are all legal ways
to print text, but they have subtle differences:

 print ("<p>Hello World!</p>");
 print ("<p>Hello World!

 Hello Computer!</p>");
 print '<p>Hello Google!</p>';

Any way you cut it, you have to have some form of quotations around text
that you want printed. However, PHP is usually used to write HTML code,
and HTML code contains a lot of quote marks itself. All those quotations can
lead to headaches.

What if you want to print double quotation marks inside a print statement
surrounded by double quotation marks? You escape them (you tell PHP to
treat them as literal characters, rather than the end of the string) with a
backslash, like this:

 print "A Link";

This can get tedious, so a better solution is discussed in the “Generating
output with heredocs” section, later in this chapter.

 This backslash technique works only with text encased inside double
quotes. Single quotes tell PHP to take everything inside the quotes exactly as
is. Double quotes give PHP permission to analyze the text for special charac-
ters, like escaped quotes (and variables, which you learn about in the next
section of this chapter). Single quotes do not allow for this behavior, which
is why they are rarely used in PHP programming.

 5. View the file in a web browser, as shown in Figure 1-2.

 The address of a web page begins with the http:// protocol and then
the server name. If the page is on the local machine, the server name is
localhost, which corresponds directly to your htdocs directory. If you
have a file named thing.php in the htdocs directory, the address would
be http://localhost/thing.php. Likewise, if it’s in a subdirectory
of htdocs called project, the address would be http://localhost/
project/thing.php. If the page is on a remote server, the address will
include the server’s name, like this:

 http://www.myserver.com/thing.php

Figure 1-2:
The “Hello
World!”
program
example.

So, what is it that you’ve done here? You’ve figured out how to use the
print statement. This allows you to spit out any text you want to
the user.

 Note that each line ends with a semicolon (;), just like JavaScript
code. PHP (unlike JavaScript) is pretty fussy about semicolons, and if
you forget, you’re likely to get a really strange error that can be hard to
figure out.

 For all the other examples in this book, you can look at the program running
on the companion website and view the source to see what is happening.
That won’t work with PHP code because the PHP is converted to HTML by
the time it gets to the browser. So on my website, I’ve provided a special
source listing for each PHP program so you can see the code before it is
passed through the interpreter.

echo is another way to generate your code
for the browser. In almost all circumstances,
you use echo exactly like you use print.
Everyone knows what print does, but echo
sounds like I should be making some sort of
dolphin noise.

The difference is that print returns a value,
and echo doesn’t. print can be used as

part of a complex expression, and echo
can’t. It really just comes down to the fact
that print is more dynamic, whereas echo
is slightly (and I’m talking very slightly here)
faster.

I prefer print because there’s nothing that
echo can do that print can’t, and print
makes more sense to my simple brain.

echo or print?

http://localhost/thing.php
http://localhost/project/thing.php
http://localhost/project/thing.php
http://www.myserver.com/thing.php

Working with Variables PHP-Style540

Working with Variables PHP-Style
Variables are extremely important in any programming language and no less
so in PHP.

 A variable in PHP always begins with a $.

A PHP variable can be named almost anything. There are some reserved
words that you can’t name a variable (like print, which already has a mean-
ing in PHP), so if your program isn’t working and you can’t figure out why,
try changing some variable names or looking at the reserved words list (in
the online help at www.php.net) to find out whether your variable name is
one of these illegal words.

PHP is very forgiving about the type of data in a variable. When you
create a variable, you simply put content in it. PHP automatically makes
the variable whatever type it needs. This is called loose typing. The same
variable can hold numeric data, text, or other more complicated kinds of
data. PHP determines the type of data in a variable on the fly by examin-
ing the context.

Even though PHP is cavalier about data types, it’s important to understand
that data is still stored in one of several standard formats based on its
type. PHP supports several forms of integers and floating-point numbers.
PHP also has great support for text data. Programmers usually don’t say
“text,” but call text data string data. This is because the internal data repre-
sentation of text reminded the early programmers of beads on a string. You
rarely have to worry about what type of information you’re using in PHP,
but you do need to know that PHP is quietly converting data into formats
that it can use.

Quotation marks aren’t the only thing you can
escape, though. You can give a whole host of
other special escape directives to PHP.

The most common ones are

 ✓ \t: Creates a tab in the resulting HTML

 ✓ \n: Creates a new line in the resulting
HTML

 ✓ \$: Creates a dollar sign in the resulting
HTML

 ✓ \”: Creates a double quote in the resulting
HTML

 ✓ \’: Creates a single quote in the resulting
HTML

 ✓ \\: Creates a backslash in the resulting
HTML

PHP can take care of this for you automatically
if you’re receiving these values from a form. To
read more, go to http://us3.php.net/
types.string.

Escape sequences

http://www.php.net
http://us3.php.net/types.string
http://us3.php.net/types.string

Book V
Chapter 1

Getting Started
on the Server

Working with Variables PHP-Style 541

Concatenation
Concatenation is the process of joining smaller strings to form a larger string.
(See Book IV, Chapter 1 for a description of concatenation as it’s applied
in JavaScript.) PHP uses the period (·) symbol to concatenate two string
values. The following example code returns the phrase oogieboogie:

$word = "oogie ";
$dance = "boogie";

Print $word . $dance

 If you already know some JavaScript or another language, most of the ideas
transfer, but details can trip you up. JavaScript uses the + sign for concate-
nation, and PHP uses the period. These are annoying details, but with prac-
tice, you’ll be able to keep it straight.

When PHP sees a period, it treats the values on either side of the period
as strings (text) and concatenates (joins) them. If PHP sees a plus sign, it
treats the values on either side of the plus sign as numbers and attempts to
perform mathematical addition on them. The operation helps PHP figure out
what type of data it’s working with.

The following program illustrates the difference between concatenation and
addition (see Figure 1-3 for the output):

<?php
 //from helloVariable.php
 $output = "World!";
 print "<p>Hello " . $output . "</p>";
 print "<p>" . $output + 5 . "</p>";
?>

Figure 1-3:
The dif-
ference
between
addition
and concat-
enation.

Working with Variables PHP-Style542

The previous code takes the variable output with the value World and
concatenates it to Hello when printed. Next, it adds the variable output to
the number 5. When PHP sees the plus sign, it interprets the values on either
side of it as numbers. Because output has no logical numerical value, PHP
assigns it the value of 0, which it adds to 5, resulting in the output of
<p>5</p> being sent to the browser.

Interpolating variables into text
If you have a bunch of text to print with variables thrown in, it can get a
little tedious to use concatenation to add in the variables. Luckily, you don’t
have to!

With PHP, you can include the variables as follows (see Figure 1-4 for the
output):

<!DOCTYPE html>
<html lang = “en-US”>

<head>
 <meta charset = "UTF-8" />
 <title>helloInterpolation</title>
</head>
<body>
<?php
 $firstName = "John";
 $lastName = "Doe";
 print "<p>Hello $firstName $lastName!</p>";
?>
</body>
</html>

Figure 1-4:
The
variables
are printed
without
having to do
annoying
conca-
tenations.

Book V
Chapter 1

Getting Started
on the Server

Building HTML Output 543

This process is called interpolation. Because all PHP variables begin with
dollar signs, you can freely put variables right inside your string values, and
when PHP sees a variable, it will automatically replace that variable with its
value.

 Interpolation works only with double-quoted strings because double quotes
indicate PHP should process the string before passing it to the user.

Building HTML Output
The output of a PHP program is usually an HTML page. As far as PHP is
concerned, HTML is just string data, so your PHP program often has to do a
lot of string manipulation. You’ll often be writing long chunks of text (HTML
code) with several variables (generated by your PHP program) interspersed
throughout the code. This type of text (HTML output) will often stretch over
several lines, requires carriage returns to be preserved, and often contains
special characters like quotes and <> symbols. The ordinary quote symbols
are a little tedious if you want to use them to build a web page. Here’s an
example.

Say you wanted to create a program that could take the value of the $name
and $address variables and put them into a table like this:

<table style = "border: 1px solid black">
 <tr>
 <td>name</td>
 <td>John</td>
 </tr>
 <tr>
 <td>address</td>
 <td>123 Main St.</td>
 </tr>
</table>

There are a few ways to combine the PHP and HTML code as shown in the
following sections.

Using double quote interpolation
Using regular double quotes, the code would look something like this:

$name = "John";
$address = "123 Main St.";
$output = "";
$output .= "<table style = \"border: 1px solid black\"> \n";
$output .= " <tr> \n";
$output .= " <td>name</td> \n";
$output .= " <td>$name</td> \n";
$output .= " </tr> \n";
$output .= " <tr> \n";
$output .= " <td>address</td> \n";
$output .= " <td>$address</td> \n";

Building HTML Output544

$output .= " </tr> \n";
$output .= "</table> \n";

print $output

However, using quotes to generate HTML output is inconvenient for the fol-
lowing reasons:

 ✦ The $output variable must be initialized. Before adding anything to
the $output variable, give it an initial null value.

 ✦ You must repeatedly concatenate data onto the $output variable. The
.= operator allows me to append something to a string variable.

 ✦ All quotes must be escaped. Because double quotes indicate the end
of the string, all internal double quotes must be preceded with the
backslash (\).

 ✦ Every line must end with a newline (\n) sequence. PHP creates HTML
source code. Your PHP-derived code should look as good as what you
write by hand, so you need to preserve carriage returns. This means you
need to end each line with a newline.

 ✦ The HTML syntax is buried inside PHP syntax. The example shows
PHP code creating HTML code. Each line contains code from two lan-
guages interspersed. This can be disconcerting to a beginning
programmer.

Generating output with heredocs
PHP uses a clever solution called heredocs to resolve all these issues.
A heredoc is simply a type of multiline quote, usually beginning and ending
with the word HERE.

The best way to understand heredocs is to see one in action, so here’s the
same example written as a heredoc:

<?php
$name = "John";
$address = "123 Main St.";
print <<<HERE
<table style = "border: 1px solid black">
 <tr>
 <td>name</td>
 <td>$name</td>
 </tr>
 <tr>
 <td>address</td>
 <td>$address</td>
 </tr>
</table>
HERE;
?>

Figure 1-5 illustrates this code in action.

Book V
Chapter 1

Getting Started
on the Server

Building HTML Output 545

Figure 1-5:
This page
was created
with the
heredoc
mechanism.

Heredocs have some great advantages:

 ✦ All carriage returns are preserved. There’s no need to put in any
newline characters. Whatever carriage returns are in the original text
will stay in the output.

 ✦ Heredocs preserve quote symbols. There’s also no need to escape your
quotes because the double quote is not the end-of-string character for a
heredoc.

 ✦ Variable interpolation is supported. You can use variable names in a
heredoc, just like you do for an ordinary quoted string.

 ✦ The contents of a heredoc feel like ordinary HTML. When you’re work-
ing inside a heredoc, you can temporarily put your mind in HTML mode,
but with the ability to interpolate variables.

The following are some things to keep in mind about heredocs:

 ✦ A heredoc is opened with three less-than symbols (<<<) followed by
a heredoc symbol that will act as a “superquote” (instead of single or
double quotation marks, you make your own custom quotation mark
from any value that you want).

 ✦ A heredoc symbol can be denoted by almost any text, but HERE is the
most common delimiter (thus, heredoc). You can make absolutely any-
thing you want serve as a heredoc symbol. You probably should just
stick to HERE because that’s what other programmers are expecting.

 ✦ You need only one semicolon for the whole heredoc. Technically, the
entire heredoc counts as one line. That means that the only semicolon
you need is after the closing symbol.

Building HTML Output546

 ✦ A heredoc must be closed with the same word it was opened with.

 ✦ The closing word for the heredoc must be on its own line with no other
symbols or spaces, just the word followed by a semicolon.

 ✦ You can’t indent the closing word for the heredoc; there can’t be any
spaces or tabs preceding or following the closing word.

 By far, the most common problem with heredocs is indenting the closing
token. The HERE (or whatever other symbol you’re using) must be flush with
the left margin of your editor, or PHP won’t recognize it. This usually means
PHP interprets the rest of your program as part of a big string and never
finishes executing it.

Heredocs have one disadvantage: They tend to mess up your formatting
because you have to indent heredocs differently than the rest of the code.

 When writing a heredoc, don’t put a semicolon after the first <<<HERE. Also,
don’t forget that the last HERE; can’t have any whitespace before it — it
must be alone on a new line without any spaces preceding it. An editor that
understands the heredoc rules highlights all the code inside the heredoc and
saves you lots of grief. Komodo does this automatically, as does Aptana (if
you’ve installed the PHP plug-in). Notepad++ also has this feature.

Switching from PHP to HTML
There’s one more way to combine PHP and HTML code. The server treats
a PHP document mainly as an HTML document. Any code not inside the
<?php ?> symbols is treated as HTML, and anything inside the PHP
symbols is interpreted as PHP.

This means you can switch in and out of PHP, like the following example:

<?php
 $name = "John";
 $address = "123 Main St.";
 // switch 'out' of PHP temporarily
?>
<table style = "border: 1px solid black">
 <tr>
 <td>name</td>
 <td><?php print $name; ?></td>
 </tr>
 <tr>
 <td>address</td>
 <td><?php print $address; ?></td>
 </tr>
</table>
<?php
 //I'm back in PHP
?>

Book V
Chapter 1

Getting Started
on the Server

Building HTML Output 547

This option (switching back and forth) is generally used when you have a
lot of HTML code with only a few simple PHP variables. I prefer the heredoc
approach, but feel free to experiment and find out what system works for you.

When switching in and out of PHP, if you have
just one variable you want to print, depending
upon your server setup, you may be able to
print the variable like this:

<?= $name ?>

You don’t have to actually write print when
using this technique. Note that this trick doesn’t
work if you have to type php after the question
mark in the opening PHP tag.

Printing shortcut

548 Book V: Server-Side Programming with PHP

Chapter 2: PHP and HTML Forms

In This Chapter
✓ Understanding the relationship between HTML and PHP

✓ Using the date() function

✓ Formatting date and time information

✓ Creating HTML forms designed to work with PHP

✓ Choosing between get and post data transmission

✓ Retrieving data from your HTML forms

✓ Working with HTML form elements

P
HP is almost never used on its own. PHP is usually used in tight
conjunction with HTML. Many languages have features for creating input

forms and user interfaces, but with PHP, the entire user experience is based on
HTML. The user never really sees any PHP. Most of the input to PHP programs
comes from HTML forms, and the output of a PHP program is an HTML page.

In this chapter, you discover how to integrate PHP and HTML. You explore how
PHP code is embedded into HTML pages, how HTML forms can be written so
they will send information to a PHP program, how to write a PHP program to
read that data, and how to send an HTML response back to the user.

Exploring the Relationship between PHP and HTML
PHP is a different language than HTML, but the two are very closely related.
It may be best to think of PHP as an extension that allows you to do things
you cannot do easily in HTML. See Figure 2-1 for an example.

Every time you run getTime.php, it generates the current date and time and
returns these values to the user. This would not be possible in ordinary
HTML because the date and time (by definition) always change. While you
could make this page using JavaScript, the PHP approach is useful for dem-
onstrating how PHP works. First, take a look at the PHP code:

 <!DOCTYPE html>
 <html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>showDate.php</title>
 </head>
 <body>
 <h1>Getting the Time, PHP Style</h1>

Exploring the Relationship between PHP and HTML550

Embedding PHP inside HTML
The PHP code has some interesting characteristics:

 ✦ It’s structured mainly as an HTML document. The doctype definition,
document heading, and initial H1 heading are all ordinary HTML. Begin
your page as you do any HTML document. A PHP page can have as much
HTML code as you wish. (You might have no PHP at all!) The only thing
the PHP designation does is inform the server that PHP code may be
embedded into the document.

 ✦ PHP code is embedded into the page. You can switch from HTML to PHP
with the <?php tag. Signify the end of the PHP code with the ?> symbol.

 ✦ The PHP code creates HTML. PHP is usually used to create HTML code. In
effect, PHP takes over and prints out the part of the page that can’t be cre-
ated in static HTML. The result of a PHP fragment is usually HTML code.

 ✦ The date()function returns the current date with a specific format.
The format string indicates how the date should be displayed. (See the
sidebar “Exploring the date() format function,” in this chapter, for more
information about date formatting.)

 ✦ The result of the PHP code will be an HTML document. When the PHP
code is finished, it will be replaced by HTML code.

Figure 2-1:
This
program
gives me the
current date
and time.

 <?php
 print "<h2>Date: ";
 print date("m-d");
 print "</h2> \n";
 print " <h2>Time: ";
 print date("h:i");
 print "</h2>";
 ?>
 </body>
 </html>

Book V
Chapter 2

PHP and HTM
L

Form
s
Exploring the Relationship between PHP and HTML 551

Viewing the results
If you view showDate.php in your browser, you won’t see the PHP code.
Instead, you’ll see an HTML page. It’s even more interesting when you use
your browser to view the page source. Here’s what you’ll see:

 <!DOCTYPE html>
 <html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>showDate.php</title>
 </head>
 <body>
 <h1>Getting the Time, PHP Style</h1>
 <h2>Date: 07-05</h2>
 <h2>Time: 03:50</h2>
 </body>
 </html>

The remarkable thing is what you don’t see. When you look at the source of
showDate.php in your browser, the PHP is completely gone! This is one of
the most important points about PHP: The browser never sees any of the
PHP. The PHP code is converted completely to HTML before anything is sent
to the browser. This means that you don’t need to worry about whether
a user’s browser understands PHP. Because the user never sees your PHP
code (even if he views the HTML source), PHP code works on any browser,
and is a touch more secure than client-side code.

The showDate.php program takes advantage
of one of PHP’s many interesting and powerful
functions to display the date. The PHP date()
function returns the current date. Generally,
you’ll pass the date() function a special
format string that indicates how you want the
date to be formatted. Characters in the date
string indicate a special code. Here are a few
of the characters and their meanings:

 ✓ d: day of the month (numeric)

 ✓ D: three character abbreviation of week-
day (Wed)

 ✓ m: month (numeric)

 ✓ M: three-character abbreviation of month (Feb)

 ✓ F: text representation of month (February)

 ✓ y: two-digit representation of the year (08)

 ✓ Y: four-digit representation of the year (2008)

 ✓ h: hour (12 hours)

 ✓ H: hour (24 hours)

 ✓ i: minutes

 ✓ s: seconds

You can embed standard punctuation in the
format as well, so d/m/y will include the
slashes between each part of the date. There
are many more symbols available. Check the
PHP documentation at http://us3.php.
net/manual/en/function.date.
php for more information about date and time
formatting.

Exploring the date() format function

http://us3.php.net/manual/en/function.date.php
http://us3.php.net/manual/en/function.date.php
http://us3.php.net/manual/en/function.date.php

Sending Data to a PHP Program552

Sending Data to a PHP Program
You can send data to a PHP program from an HTML form. For an example of
this technique, see askName.html in Figure 2-2.

Figure 2-2:
This HTML
page has a
simple form.

HTML forms (described fully in Book I, Chapter 7) allow the user to enter
data onto a web page. However, HTML cannot respond to a form on its own.
You need some sort of program to respond to the form. Book IV describes
how to use JavaScript to respond to forms, but you can also write PHP code
to handle form-based input. When the user submits the form, the askName.
html disappears completely from the browser and is replaced with
greetUser.php, as shown in Figure 2-3.

The greetUser.php program retrieves the data from the previous page (ask-
Name.html, in this case) and returns an appropriate greeting.

Creating a form for PHP processing
The askName.html program is a standard HTML form, but it has a couple
of special features which make it suitable for PHP processing. (See Book I,
Chapter 7 for more information about how to build HTML forms.) Here is the
HTML code:

 <!DOCTYPE html>
 <html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>askName.html</title>
 </head>

Book V
Chapter 2

PHP and HTM
L

Form
s

Sending Data to a PHP Program 553

 <body>
 <form action = "greetUser.php"
 method = "get">
 <fieldset>
 <label>Please enter your name</label>
 <input type = "text"
 name = "userName" />
 <button type = "submit">
 submit
 </button>
 </fieldset>
 </form>
 </body>
 </html>

Figure 2-3:
This
program
uses the
entry from
the previous
form.

To build a form designed to work with PHP, there are a few special steps to
take:

 1. Write an HTML page as the framework.

 This page is a regular HTML page. Begin with the same HTML framework
you use for building your standard HTML pages. You can use CSS styles,
if you wish (but I’m leaving them out of this simple example).

 Normally, you can create an HTML document anywhere you want, but
this is not so when your page will be working with PHP. This page is
meant to be paired with a PHP document. PHP documents will run
only if they are in a server’s file space, so you should save your
HTML document under htdocs to be sure it will call the PHP form
correctly.

 2. Set the form’s action property to point to a PHP program.

 The form element has an attribute called action. The action attribute
is used to determine which program should receive the data transmitted

Sending Data to a PHP Program554

by the form. I want this data to be processed by a program called
greetUser.php, so I set greetUser.php as the action:

 <form action = "greetUser.php"
 method = "get">

 3. Set the form’s method attribute to get.

 The method attribute indicates how the form data will be sent to the
server. For now, use the get method. See the section “Choosing the
Method of Your Madness,” later in this chapter, for information on the
various methods available:

 <form action = "greetUser.php"
 method = "get">

 4. Add any input elements your form needs.

 The point of a form is to get information from the user and send it to
a program on the server. Devise a form to ask whatever questions you
want from the server. My form is as simple as possible, with one text
field, but you can use any HTML form elements you want:

 <form action = "greetUser.php"
 method = "get">
 <fieldset>
 <label>Please enter your name</label>
 <input type = "text"
 name = "userName" />
 <button type = "submit">
 submit
 </button>
 </fieldset>

 5. Give each element a name attribute.

 If you want a form element to be passed to the server, you must give it a
name attribute. Note: This is a different attribute than id, which is used
in client-side processing.

 <input type = "text"
 name = "userName" />

 The name attribute will be used by the PHP program to extract the
information from the form.

 A form element can have both a name and an ID, if you wish. The name
attribute will be used primarily by server-side programs, and the id
attribute is mainly used for CSS and JavaScript. The name and ID can
(and usually do) have the same value.

 6. Add a submit button to the page.

 The most important difference between a client-side form and a form des-
tined for processing on the server is the button. A special submit button
packages all the data in the form and passes it to the program indicated in
the action property. Submit buttons can be created in two forms:

Book V
Chapter 2

PHP and HTM
L

Form
s

Sending Data to a PHP Program 555

<input type = "submit" value = "click me"/>

 or

<button type = "submit">click me</button>

 Specify submit as the button’s type attribute to ensure the button
sends the data to the server.

 If your form has a submit button and a blank action attribute, the
current page will be reloaded.

Receiving data in PHP
PHP code is usually a two-step process. First, you create an HTML form, and
then you send that form to a PHP program for processing. Be sure to read
the previous section on “Creating a form for PHP processing” because now
I show you how to read that form with a PHP program.

The HTML form in the last section pointed to a program named greetUser.
php. This tells the server to go to the same directory that contained the
original HTML document (askName.html) and look for a program named
greetUser.php in that directory. Because greetUser is a PHP program, the
server passes it through PHP, which will extract data from the form. The
program then creates a greeting using data that came from the form. Look
over all the code for greetUser.php before I explain it in more detail:

 <!DOCTYPE html>
 <html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>greetUser.php</title>
 </head>
 <body>
 <?php
 $userName = filter_input(INPUT_GET, "userName");
 print "<h1>Hi, $userName!</h1>";
 ?>
 </body>
 </html>

greetUser.php is not a complex program, but it shows the most common use
of PHP: retrieving data from a form. Here’s how you build it:

 1. Build a new PHP program.

 This program should be in the same directory as askName.html, which
should be somewhere the server can find (usually under the htdocs or
public_html directory).

 2. Start with ordinary HTML.

 PHP programs are usually wrapped inside ordinary HTML, so begin the
document as if it were plain HTML. Use whatever CSS styling and ordinary

Choosing the Method of Your Madness556

HTML tags you want. (I’m keeping this example as simple as possible,
although I’d normally add some CSS styles to make the output less boring.)

 3. Add a PHP segment.

 Somewhere in the page, you’ll need to switch to PHP syntax so that you
can extract the data from the form. Use the <?php symbol to indicate
the beginning of your PHP code:

 <?php
 $userName = filter_input(INPUT_GET, "userName");
 print "<h1>Hi, $userName!</h1>";
 ?>

 4. Extract the username variable.

 All of the data that was sent from the form is stored in a special variable
in memory. There are a number of ways to extract that data, but the pre-
ferred method is to use the filter_input() function as I have done
here. This function takes two parameters: The first is a constant deter-
mining the type of input (I’m looking for input passed through the GET
mechanism here). The second parameter is the name associated with
the form element. Typically you’ll make a PHP variable with the same
name as the corresponding form element.

 See the upcoming section “Getting data from the form” for more informa-
tion on the filter_input() mechanism and some of the other tools
that are available for retrieving information.

 5. Print the greeting.

 Now, your PHP program has a variable containing the user’s name, so
you can print a greeting to the user. Remember that all output of a PHP
program is HTML code, so be sure to embed your output in a suitable
HTML tag. I’m putting the greeting inside a level-one heading:

 print "<h1>Hi, $userName!</h1>";

 The greetUser.php script is not meant to be run directly. It relies on askName.
html. If you provide a direct link to greetUser.php, the program will run, but it
will not be sent the username, so it will not work as expected. Do not place
links to your PHP scripts unless you designed them to work without input. On
this book’s companion website, you’ll find a link to the source code of each of
my PHP files, but most of them cannot be run directly, but must be called by
an HTML file. See this book’s Introduction for more on the website.

Choosing the Method of Your Madness
The key to server-side processing is adding method and action properties
to your HTML form. You have two primary choices for the method property:

 ✦ GET: The get method gathers the information in your form and appends
it to the URL. The PHP program extracts form data from the address.
The contents of the form are visible for anyone to see.

Book V
Chapter 2

PHP and HTM
L

Form
s

Choosing the Method of Your Madness 557

 ✦ POST: The post method passes the data to the server through a
mechanism called environment variables. This mechanism makes the
form elements slightly more secure because they aren’t displayed in
public as they are with the get method.

Using get to send data
The get method is easy to understand. View getRequest.php after it has
been called from askName.html in Figure 2-4. Pay careful attention to the
URL in the address bar.

Figure 2-4:
The address
has been
modified!

The address sent to the PHP program has additional material appended:

 http://localhost/haio/book_5/chap_2/greetUser.php?userName=Andy+Harris

Most of this address is the (admittedly convoluted) address of the
page on my test server. The interesting part is the section after
greetUser.php:

greetUser.php?userName=Andy+Harris

This line shows exactly how the get method passes information to the pro-
gram on the server:

 ✦ The URL is extracted from the form action property. When the submit
button is activated, the browser automatically creates a special URL
beginning with the action property of the form. The default address is
the same directory as the original HTML file.

 ✦ A question mark indicates form data is on the way. The browser
appends a question mark to the URL to indicate form data follows.

Choosing the Method of Your Madness558

 ✦ Each field/value pair is listed. The question mark is followed by each
field name and its associated value in the following format:

URL?field1=value1&field2=value2

 ✦ An equal sign (=) follows each field name. Each field name is separated
by the value of that field with an equal sign (and no spaces).

 ✦ The field value is listed immediately after the equal sign. The value of
each field follows the equal sign.

 ✦ Spaces are converted to hexadecimal symbols. get data is transmitted
through the URL, and URLS are not allowed to have spaces or other spe-
cial characters in them. The browser automatically converts all spaces
in field names or values to values it can manage, often converting spaces
to special characters. Fortunately, the decoding process removes these
special characters, so it’s not something you need to worry about.

 Sometimes, the spaces are converted to %20 symbols, rather than +
signs. It isn’t really that important because the conversion is done auto-
matically. Just know that URLs can’t contain spaces.

 ✦ An ampersand (&) is used to add a new field name/value pair. This
particular example (the URL created by askName.html) has only one
name/value pair. If the form had more elements, they would all be sepa-
rated by ampersands.

 You don’t have to do any of the URL formatting. It automatically happens
when the user clicks the submit button. You’ll also never have to decode all
this, as PHP will do it for you.

If you understand how the get method works, you can take advantage of it
to send data to programs without the original form. For example, take a look
at this address:

http://www.google.com/search?q=dramatic+chipmunk

If you type this code into your browser’s location bar, you’ll get the Google
search results for a classic five-second video. (If you haven’t seen this
video, it’s worth viewing.) If you know a particular server-side program (like
Google’s search engine) uses the get protocol, and you know which fields
are needed (q stands for the query in Google’s program), you can send a
request to a program as if that request came from a form.

You can also write a link with a preloaded search query in it:

Google search for the dramatic chipmunk

If a user clicks the resulting link, he would get the current Google search for
the dramatic chipmunk video. (Really, it’s a prairie dog, but “dramatic chip-
munk” just sounds better.)

Book V
Chapter 2

PHP and HTM
L

Form
s

Choosing the Method of Your Madness 559

You might wonder how I knew what fields the
Google engine expects. If the program uses
get, just use the intended form to make a
search and look at the resulting URL. Some
testing and experience told me that only the q
field is absolutely necessary.

This trick (bypassing the form) could be con-
sidered rude by some because it circumvents

safety features that may be built into the form.
Still, it can be helpful for certain very public
features, like preloaded Google searches, or
looking up weather data for a particular loca-
tion through a hard-coded link.

How did I know how to write the Google query?

 Of course, if you can send requests to a program without using the intended
form, others can do the same to you. You can never be 100 percent sure that
people are sending requests from your forms. This can cause some prob-
lems. Look at the next section for a technique to minimize this problem by
reading only data sent via the post method.

Using the post method to transmit form data
The GET method is easy to understand because it sends all data directly in
the URL. This makes it easy to see what’s going on, but there are some down-
sides to using get:

 ✦ The resulting URL can be very messy. Addresses on the web can
already be difficult without the added details of a get request. A form
with several fields can make the URL so long that it’s virtually impos-
sible to follow.

 ✦ All form information is user-readable. The get method displays form
data in the URL, where it can easily be read by the user. This may not be
desired, especially when the form sends potentially sensitive data.

 ✦ The amount of information that can be passed is limited. Some serv-
ers won’t accept URLs longer than 4,000 characters. If you have a form
with many fields or with fields that contain a lot of data, you will easily
exceed this limit.

The answer to the limitations of the get method is another form of data
transmission: the post method.

Here’s how it works:

 ✦ You specify that the form’s method will be POST. You create the HTML
form in exactly the same way. The only difference is the form method
attribute. Set it to post:

 <form action = "greetUser.php"
 method = "post">

Choosing the Method of Your Madness560

 ✦ Data is gathered and encoded, just like it is in the get method. When
the user clicks the submit button, the data is encoded in a format similar
to the get request, but it’s not attached to the URL.

 ✦ The form data is sent directly to the server. The PHP program can still
retrieve the data (usually through a mechanism called environment vari-
ables) even though the data is not encoded on the URL. Again, you won’t be
responsible for the details of extracting the data. PHP makes it pretty easy.

The post method is often preferable to get because

 ✦ The URL is not polluted with form data. The data is no longer passed
through the URL, so the resulting URL is a lot cleaner than one gener-
ated by the get method.

 ✦ The data is not visible to the user. Because the data isn’t presented in
the URL, it’s slightly more secure than get data.

 ✦ There is no practical size limit. The size of the URL isn’t a limiting
factor. If your page will be sending a large amount of data, the post
method is preferred.

 With all these advantages, you might wonder why anybody uses get at all.
Really, there are two good reasons. The get approach allows you to embed
requests in URLs (which can’t be done with post). Also, get is sometimes a
better choice for debugging because it’s easier to see what’s being passed to
the server.

Getting data from the form
The preferred way to extract data from the form is the filter_input()
function. This powerful tool not only extracts data from the form, but it also
protects against certain kinds of attacks and allows you to sanitize your data
before you use it. Filter input requires two or three parameters:

 ✦ The input type constant: The first parameter is a constant describing
where the data can be found. Most often, this value is INPUT_GET or
INPUT_POST. A few other values are available (INPUT_COOKIE and
INPUT_ENV) but they are rarely used. A couple of very useful values are
not yet implemented (INPUT_SESSION and INPUT_REQUEST).

 ✦ A variable name: This is the name attribute from the form which called
this program. If the name is misspelled or does not exist, the results will
be unpredictable (see Chapter 3 of this minibook on how to handle this
situation). The variable name must have the same case as the HTML
form element name, must be encased in quotes, and does not include the
dollar sign because this is an HTML variable rather than a PHP variable.
Typically you’ll pass the result of the filter_input() function to a
PHP variable with the same name as the form element.

 ✦ An optional filter: You can specify one of a number of filters to pass
input through before processing. These filters come in two main flavors:

Book V
Chapter 2

PHP and HTM
L

Form
s

Choosing the Method of Your Madness 561

 Sanitizing filters all begin with the phrase FILTER_SANITIZE, and they
are designed to strip off various types of characters. FILTER_SANITIZE_
STRING removes or converts any special characters, and FILTER_
SANITIZE_EMAIL removes any character not allowed in an e-mail
address. There are filters for all the main data types (int and float) as
well as special web-specific filters (e-mail, URL, special HTML characters).

 Validation filters do not actually load the value, but check to see that it
is in an acceptable format. They all begin with FILTER_VALIDATE and
return a Boolean expressing whether the variable passed the validation.
Typically you’ll validate a variable before you accept it to prevent hack-
ers from passing malicious code to your programs.

 If you don’t indicate a filter, the FILTER_SANITIZE_STRING filter is
automatically applied, which does give you one level of protection. A list
of the most commonly used filters is presented in Table 2-1.

Table 2-1 Standard PHP Filters
Filter Description

FILTER_SANITIZE_STRING Strips tags, encodes or removes special characters.

FILTER_SANITIZE_SPECIAL_
CHARS

Converts HTML special characters (<>&) with
ASCII equivalents.

FILTER_SANITIZE_EMAIL Removes any characters not allowed in an
e-mail address.

FILTER_SANITIZE_URL Removes any characters not allowed in a URL.

FILTER_SANITIZE_
NUMBER_INT

Removes all characters but numeric digits and
sign (+/-) symbols.

FILTER_SANITIZE_
NUMBER_INT

Removes all characters but numeric digits,
periods, commas, and sign (+/-) symbols.

FILTER_VALIDATE_INT True if input is an int.

FILTER_VALIDATE_FLOAT True if input is a floating point value.

FILTER_VALIDATE_BOOLEAN True if input can be read as a Boolean (true/
false, on/off, yes/no, 1/0). Returns NULL if input is
non-Boolean.

FILTER_VALIDATE_URL True if input is a legal URL (doesn’t check the
address).

FILTER_VALIDATE_EMAIL True if input is a legal e-mail address (doesn’t
check the address).

FILTER_VALIDATE_IP True if input is a valid IP address (doesn’t check
the address).

FILTER_VALIDATE_REGEXP True if input matches a given regular expression.
(See more about regular expressions in Book IV,
Chapter 5.)

Choosing the Method of Your Madness562

There are few more filters, and some have optional parameters, so you
may need to look at the online documentation to get all the details. Ninety
percent of the time, you’ll just stick with the default FILTER_SANITIZE_
STRING filter.

The filter_input technique described in
this chapter is the best way to get form input,
but it’s relatively new. For many years, other
approaches were used.

PHP includes a number of special built-in vari-
ables that give you access to loads of informa-
tion. Each variable is stored as an associative
array; see Chapter 4 of this minibook for more
on associative arrays. These special variables
are available anywhere in your PHP code, so
they’re called superglobals. Here’s a few of the
most important ones:

 ✓ $_GET: A list of variables sent to this pro-
gram through the get method

 ✓ $_POST: A list of variables sent to this pro-
gram through the post method

 ✓ $_REQUEST: A combination of $_GET
and $_POST

You can use these variables to look up infor-
mation posted in the form. For example, the
askName.html page contains a field called
userName. When the user views this page,
it sends a request to greetUser.php via the
get method. greetUser.php can then check its
$_GET variable to see whether a field named
userName exists:

 $userName = $_GET["userName"];

This line checks all the data sent via get, looks
for a field named userName, and copies the
contents of that field to the variable $user-
Name.

If you want to retrieve a value sent through the
post method, use this variation:

 $userName = $_POST["userName"];

If you don’t care whether the data was sent via
get or post, use $_REQUEST:

 $userName = $_REQUEST["userName"];

The $_REQUEST superglobal grabs data from
both get and post requests, so it works,
no matter how the form was encoded. Many
programmers use the $_REQUEST technique
because then they don’t have to worry about
the encoding mechanism.

The earliest forms of PHP had a feature called
register_globals that automatically did the $_
REQUEST extraction for you. If your program
comes from a userName field, the program
will “magically” just have a $userName vari-
able preloaded with the value of that field.
Although this was a very convenient option,
evildoers soon learned how to take advantage
of this behavior to cause all kinds of head-
aches. Convenient as it may be, the regis-
ter_globals feature is now turned off on
most servers and isn’t even available on the
next version of PHP.

The filter_input() mechanism
described in this chapter is the preferred way
to get input from a form, as it provides a nice
level of protection from malicious attackers,
but you will still see PHP code floating around
that uses the other techniques.

Kicking it old-school: Form input like Grandma
used to do it

Book V
Chapter 2

PHP and HTM
L

Form
s

Retrieving Data from Other Form Elements 563

Retrieving Data from Other Form Elements
It’s just as easy to get data from drop-down lists and radio buttons as it is to
get data from text fields. In PHP (unlike JavaScript), you use exactly the same
technique to extract data from any type of form element.

Building a form with complex elements
For an example of a more complex form, look over monty.html in Figure 2-5.
This program is a tribute to my favorite movie of all time. (You might just
have to rent this movie if you’re really going to call yourself a programmer.
It’s part of the culture.)

Figure 2-5:
The Monty
Python quiz
features a
drop-down
list, radio
buttons,
and check
boxes (and
a newt).

The HTML form poses the questions. (Check out Book I, Chapter 7 for a
refresher on HTML forms, if you need it.) Here’s the code:

 <!DOCTYPE html>
 <html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>monty.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "monty.css" />
 </head>
 <body>
 <h1>Monty Python Quiz</h1>
 <form action = "monty.php"
 method = "post">
 <fieldset>

Retrieving Data from Other Form Elements564

 <p>
 <label>What is your name?</label>
 <select name = "name">
 <option value = "Roger">
 Roger the Shrubber
 </option>
 <option value = "Arthur">
 Arthur, King of the Britons
 </option>
 <option value = "Tim">
 Tim the Enchanter
 </option>
 </select>
 </p>
 <p>
 <label>What is your quest?</label>

 <input type = "radio"
 name = "quest"
 value = "herring" />
 To chop down the mightiest tree in the forest
 with a herring

 <input type = "radio"
 name = "quest"
 value = "grail" />
 I seek the holy grail.

 <input type = "radio"
 name = "quest"
 value = "shrubbery" />
 I'm looking for a shrubbery.

 </p>
 <p>
 <label>How can you tell she's a witch?</label>

 <input type = "checkbox"
 name = "nose"
 value = "nose"/>
 She's got a witch nose.

 <input type = "checkbox"
 name = "hat"
 value = "hat"/>
 She has a witch hat.

 <input type = "checkbox"
 name = "newt"
 value = "newt" />
 She turned me into a newt.

 </p>
 <button type = "submit">
 Submit
 </button>
 </fieldset>
 </form>
 </body>
</html>

Book V
Chapter 2

PHP and HTM
L

Form
s

Retrieving Data from Other Form Elements 565

There’s nothing too crazy about this code. Please note the following
features:

 ✦ The action attribute is set to monty.php. This page (monty.html) will
send data to monty.php, which should be in the same directory on the
same server.

 ✦ The method attribute is set to post. All data on this page will be passed
to the server via the post method.

 ✦ Each form element has a name attribute. The name attributes will be
used to extract the data in the PHP program.

 ✦ All the radio buttons have the same name value. The way you get
radio buttons to work together is to give them all the same name. And
although they all have the same name, each has a different value. When
the PHP program receives the request, it will get only the value of the
selected radio button.

 ✦ Each check box has an individual name. Check boxes are a little bit
different. Each check box has its own name, but the value is sent to the
server only if the check box is checked.

 I don’t cover text areas, passwords fields, or hidden fields here because, to
PHP, they are just like text boxes. Retrieve data from these elements just like
you do for text fields.

Responding to a complex form
The monty.php program is designed to respond to monty.html. You
can see it respond when I submit the form in monty.html, as shown in
Figure 2-6.

Figure 2-6:
The monty.
php
program
responds to
the Monty
Python quiz.

Retrieving Data from Other Form Elements566

 It’s no coincidence that monty.html uses monty.css and calls monty.php. I
deliberately gave these files similar names so it will be easy to see how they
fit together.

This program works like most PHP programs: It loads data from the form
into variables and assembles output based on those variables. Here’s the
PHP code:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>monty.php</title>
 <!-- Meant to run from monty.html -->
 </head>
 <body>
 <h1>Monty Python quiz results</h1>
 <?php
 //gather the variables
 $name = filter_input(INPUT_POST, "name");
 $quest = filter_input(INPUT_POST, "quest");
 //don't worry about check boxes yet; they may not exist
 //send some output
 $reply = <<< HERE
 <p>
 Your name is $name.
 </p>
 <p>
 Your quest is $quest.
 </p>
HERE;
 print $reply;
 //determine if she's a witch
 $witch = false;
 //See if check boxes exist
 if (filter_has_var(INPUT_POST, "nose")){
 $witch = true;
 }
 if (filter_has_var(INPUT_POST, "hat")){
 $witch = true;
 }
 if (filter_has_var(INPUT_POST, "newt")){
 $witch = true;
 }

 if ($witch == true){
 print "<p>She's a witch!</p> \n";
 } // end if
 ?>
 </body>
</html>

If you want to respond to a form with multiple types of data, here’s how it’s
done:

 1. Begin with the HTML form.

 Be sure you know the names of all the fields in the form because your
PHP program will need this information.

Book V
Chapter 2

PHP and HTM
L

Form
s

Retrieving Data from Other Form Elements 567

 2. Embed your PHP inside an HTML framework.

 Use your standard HTML framework as the starting point for your PHP
documents, too. The results of your PHP code should still be standards-
compliant HTML. Use the <?php and ?> symbols to indicate the pres-
ence of PHP code.

 3. Create a variable for each form element.

 Use the $_REQUEST technique described in the “Receiving data in PHP”
section of this chapter to extract form data and store it in local
variables:

 //gather the variables
 $name = filter_input(INPUT_POST, "name");
 $quest = filter_input(INPUT_POST, "quest");

 Don’t worry about the check boxes yet. Later on, you’ll determine
whether they exist. You don’t really care about their values.

 4. Build your output in a heredoc.

 PHP programming almost always involves constructing an HTML docu-
ment influenced by the variables that were extracted from the previous
form. The heredoc method (described in Chapter 1 of this minibook) is
an ideal method for packaging output:

 //send some output
[$reply = <<< HERE
[<p>
 Your name is $name.
 </p>

 <p>
 Your quest is $quest.
 </p>

 [HERE;
[print $reply;

 5. Check for the existence of each check box.

 Check boxes are the one exception to the “treat all form elements the
same way” rule of PHP. The important part of a check box isn’t really
its value. What you really need to know is whether the check box is
checked. Here’s how it works: If the check box is checked, a name and
value are passed to the PHP program. If the check box is not checked,
it’s like the variable never existed:

 a. Create a variable called $witch set to false. Assume innocent until
proven guilty in this witch hunt.

 Each check box, if checked, would be proof that she’s a witch. The
filter_has_var() function is used to determine whether a partic-
ular variable exists. This function takes an input type and a variable
name (just like filter_input()) and returns true if the variable
exists and false if it doesn’t.

Retrieving Data from Other Form Elements568

 b. Check each check box variable. If it exists, the corresponding check box
was checked, so she must be a witch (and she must weigh the same as a
duck — you’ve really got to watch this movie).

 After testing for the existence of all the check boxes, the $witch vari-
able will still be false if none of the check boxes were checked. If any
combination of check boxes is checked, $witch will be true:

 //determine if she's a witch
 $witch = false;

 //See if check boxes exist
 if (filter_has_var(INPUT_POST, "nose")){
 $witch = true;
 }
 if (filter_has_var(INPUT_POST, "hat")){
 $witch = true;
 }
 if (filter_has_var(INPUT_POST, "newt")){
 $witch = true;
 }

 if ($witch == true){
 print "<p>She's a witch!</p> \n";
 } // end if

 Before the filter_has_var() mechanism became available, programmers
used another function called isset() to determine if a variable existed.
Either is fine, but for this book I stick with the filter mechanisms for
consistency.

Chapter 3: Using Control
Structures

In This Chapter
✓ Getting used to conditions

✓ Using if, else if, and else

✓ Using switch structures

✓ Working with while and for loops

✓ Using comparison operators

C
omputer programs are most interesting when they appear to make
decisions. PHP has many of the same decision-making structures as

JavaScript, so if you’ve already looked over Chapters 2 and 3 of Book IV, you
will find this chapter very familiar. In any case, take a look at conditions to
see the key to making the computer branch and loop.

Introducing Conditions (Again)
Computer programs make decisions. That’s part of what makes them inter-
esting. But all the decisions a computer seems to make were already deter-
mined by the programmer. The computer’s decision-making power is all
based on an idea called a condition. This little gem is an expression that can
be evaluated as true or false. (That sounds profound. I wonder if it will be on
the mid-term?)

Conditions can be comparisons of one variable to another, they can be
Boolean (true or false) variables, or they can be functions that return a true
or false value.

 If this talk of conditions is sounding like déjà vu, you’ve probably read about
conditions in Book IV, Chapters 2 and 3. You’ll find a lot of the same ideas
here; after all, conditions (and branches and loops, and lots of other stuff)
are bigger than one programming language. Even though this mini-book
covers a different language, you’ll see coverage of the same kinds of things.
If you haven’t read that minibook already, you might want to look it over
first so you can see how programming remains the same even when the lan-
guage changes.

Building the Classic if Statement570

Building the Classic if Statement
The if statement is the powerhouse of computer programming. Take a look
at Figure 3-1 to see it in action. This program might be familiar if you read
Book IV already. It rolls a standard six-sided die, and then displays that die
on the screen.

Figure 3-1:
This
program
rolls a die.
Try it again.

When it rolls a six, it displays an elaborate multimedia event, as shown
in Figure 3-2. (Okay, it just says Holy Guacamole! That’s a six! The dancing
hippos come later …)

Figure 3-2:
It’s a six!
Joy!

Book V
Chapter 3

Using Control
Structures

Building the Classic if Statement 571

This program is much like the if.html program in Book IV, Chapter 3. I do all
the same things here as in that program. However, PHP and JavaScript are a
little different, and that’s part of the game of programming. Appreciate the
concepts that flow between languages while noting those details that are
 different.

Rolling dice the PHP way
PHP has a random number generator, which works a little differently than
the one in JavaScript. The PHP version is actually easier for dice.

$variable = rand(a, b);

This code creates a random integer between a and b (inclusive), so if you
want a random 1–6 die, you can use a statement like this:

$die = rand(1,6);

It doesn’t get a lot easier than that.

Checking your six
The code for the if.php program rolls a die, displays an image, and cel-
ebrates the joyous occasion of a six.

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>if.php</title>
</head>
 <title>if.php</title>
 <meta http-equiv="Content-Type" content="text/

html;charset=UTF-8" />
</head>
<body>
 <h1>Try to roll a six</h1>
 <p>
 roll again
 </p>
 <?php
 //thanks to user rg1024 from openClipart.org for
 //the great dice images
 $roll = rand(1,6);
 print <<<HERE
<p>
 <img src = "images/dado_$roll.png"
 alt = "$roll"
 height = "100px"
 width = "100px" />
</p>
HERE;
 if ($roll == 6){
 print("<h1>Holy Guacamole! That's a six!</h1>\n");
 } // end if
 ?>
</body>
</html>

Building the Classic if Statement572

The process is eerily familiar:

 1. Begin with a standard HTML template.

 As always, PHP is encased in HTML. There’s no need to switch to PHP
until you get to the part that HTML can’t do: that is, rolling dice and
responding to the roll.

 2. Add a link to let the user roll again.

 Add a link that returns to the same page. When the user clicks the link,
the server refreshes the page and rolls a new number.

 3. Roll the rand() function to roll a die. Put the result in a variable
called $roll.

 4. Print out a graphic by creating the appropriate tag.

 I preloaded a bunch of die images into a directory called images. Each
image is carefully named dado_1.png through dado_6.png. (Dado is
Spanish for “die” — thanks to user rg1024 from openclipart.org for the
great images.) To display an image in PHP, just print out a standard img
tag. The URL is created by interpolating the variable $roll into the
image name. Don’t forget that HTML requires an alt attribute for the
img tag. I just use the $roll value as the alt. That way, the die roll will
be known even if the image doesn’t work.

 5. Check whether the die is a six.

 This is where the condition comes in. Use the if statement to see
whether the value of $roll is 6. If so, print out a message.

 The == (two equal sign) means “is equal to.” A single equal sign means
assignment. If you use the single equal sign in a condition, the code may not
crash, but it probably won’t do what you intended.

The else clause is used when you want to do one thing if a condition is
true and something else if the condition is false. The highLow.php program
shown in Figure 3-3 handles this kind of situation.

The code is very similar to the if.php program.

The bold code shows the only part of the program that’s new.

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>highLow.php</title>
</head>
<body>
 <h1>High or low?</h1>

Book V
Chapter 3

Using Control
Structures

Building the Classic if Statement 573

 <p>
 roll again
 </p>
 <?php
 $roll = rand(1,6);
 print <<<HERE
 <p>
 <img src = "images/dado_$roll.png"
 alt = "$roll"
 height = "100px"
 width = "100px" />
 </p>
HERE;
 if ($roll > 3){
 print "<h2>You rolled a high one</h2>\n";
 } else {
 print "<h2>That's pretty low</h2> \n";
 } // end if
 ?>
</body>
</html>

Figure 3-3:
This
program
tells
whether
the roll was
high or low.

Most of the code for this program is the same as the previous code example,
but the condition is slightly different:

 ✦ Now the condition is an inequality. I now use the greater-than symbol
(>) to compare the roll to the value 3. You can use any of the compari-
son operators in Table 3-1. If $roll is higher than 3, the condition will
evaluate as true, and the first batch of code will run.

Building the Classic if Statement574

Table 3-1 Comparison Operators
Comparison Discussion

A == B True if A is equal to B

A != B True if A is not equal to B

A < B True if A is less than B (if they are numeric) or earlier in the
alphabet (for strings)

A > B True if A is larger than B (numeric) or later in the alphabet
(string)

A >= B A is larger than or equal to B

A<= B A is less than or equal to B

 ✦ Add an else clause.

 The else clause is special because it handles the situation when the
condition is false. All it does is set up another block of code.

 ✦ Include code for the false condition.

 The code between else and the ending brace for if ending brace will
run only if the condition is evaluated false.

Understanding comparison operators
PHP uses many of the same comparison operators as JavaScript (and many
other languages based on C). Table 3-1 summarizes these operators.

Note that PHP determines the variable type dynamically, so comparisons
between numeric and string values may cause problems. It’s best to explic-
itly force variables to the type you want if you’re not sure. For example, if
you want to ensure that the variable $a is an integer before you compare it
to the value 4, you could use this condition:

(integer)$a == 4

This forces the variable $a to be read as an integer. You can also use this
technique (called typecasting) to force a variable to other types: float,
string, or boolean.

Taking the middle road
Another variation of the if structure allows you to check multiple
 conditions. As an example, look at the highMidLow.php page featured in
Figure 3-4.

Book V
Chapter 3

Using Control
Structures

Building the Classic if Statement 575

Figure 3-4:
Now there
are three
possible
comments,
thanks to
the else if
structure.

If the roll is 1 or 2, the program reports Low. If the roll is 3 or 4, it says
Middle; and if it’s 5 or 6, the result is High. This if has three branches. See
how it works; you can add as many branches as you wish.

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>highMidLow.php</title>
</head>
<body>
 <h1>High, middle, or low?</h1>
 <p>
 roll again
 </p>
 <?php
 $roll = rand(1,6);
 print <<<HERE
 <p>
 <img src = "images/dado_$roll.png"
 alt = "$roll"
 height = "100px"
 width = "100px" />
 </p>
HERE;
 if ($roll > 4){
 print "<h2>High!</h2>\n";
 } else if ($roll <= 2){
 print "<h2>Low</h2>\n";
 } else {
 print "<h2>Middle</h2> \n";
 } // end if
 ?>
</body>
</html>

Building the Classic if Statement576

The if statement is the only part of this program that’s new. It’s not terribly
shocking.

 1. Begin with a standard condition.

 Check whether the roll is greater than 4. If so, say High. If the first con-
dition is true, the computer evaluates the code in the first section and
then skips the rest of the while loop.

 2. Add a second condition.

 The else if section allows me to add a second condition. This second
condition (roll <= 2) is evaluated only if the first condition is false. If
this condition is true, the code inside this block will be executed (print-
ing the value Low). You can add as many else if sections as you want.
As soon as one is found to be true, the code block associated with that
condition executes, and the program leaves the whole else system.

 3. Include an else clause to catch stragglers.

 If none of the previous conditions are true, the code associated with the
else clause operates. In this case, the roll is lower than 4 and higher
than 2, so report that it’s in the Middle.

Building a program that makes its own form
An especially important application of the if structure is unique to server-
side programming. Up to now, many of your PHP programs required two
separate files: an HTML page to get information from the user and a PHP pro-
gram to respond to that code. Wouldn’t it be great if the PHP program could
determine whether it had the data or not? If it has data, it will process it. If
not, it just produces a form to handle the data. That would be pretty awe-
some, and that’s exactly what you can do with the help of the if statement.
Figure 3-5 shows the first pass of ownForm.php.

Figure 3-5:
On the
first pass,
ownForm.
php
produces an
HTML form.

Book V
Chapter 3

Using Control
Structures

Building the Classic if Statement 577

The interesting thing happens when the user submits the form. The program
calls itself! This time, though, ownForm recognizes that the user has sent
some data and processes that information, giving the result shown in
Figure 3-6.

Figure 3-6:
Now the
same
program
processes
the data!

This program doesn’t really require anything new, just a repurposing of some
tools you already know. Take a look at the following code:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>ownForm.php</title>
</head>
<body>
<?php
if (filter_has_var(INPUT_POST, "userName")){
 //the form exists - process it
 $userName = filter_input(INPUT_POST, "userName");
 print "<h1>Hi, $userName</h1>\n";
} else {
 //no form present, so give 'em one
 print <<<HERE
 <form action = ""
 method = "post">
 <fieldset>
 <label>Name</label>
 <input type = "text"
 name = "userName">
 <button type = "submit">
 submit
 </button>

Making a switch578

 </fieldset>
 </form>
HERE;
} // end if
?>
</body>
</html>

Making a program “do its own stunts” like this is pretty easy. The key is
using an if statement. However, begin by thinking about the behavior. In
this example, the program revolves around the $userName variable. If this
variable has a value, it can be processed. If the variable has not been set yet,
the user needs to see a form so she can enter the data.

 1. Check for the existence of a key variable.

 Use the isset() function to determine whether the variable in question
has been set. Check the $_REQUEST or one of the other superglobals
($_POST or $_GET) to determine whether the form has already been
submitted. You need to check the existence of only one variable, even if
the form has dozens.

 2. If the variable exists, process the form.

 If the variable exists, extract all the variables from the form and carry on
with your processing.

 3. If the variable does not exist, build the form.

 If the variable does not exist, you need to make the form that will ask the
user for that variable (and any others you need). Note that the action
attribute of the form element should be null (““). This tells the server to
re-call the same program.

 If you’re using an HTML5 validator, it will complain about the empty action
attribute. This is interesting because previous HTML and XHTML imple-
mentations required it in this situation. In this particular situation (a PHP
program creating a form that will call the PHP program again), many web
developers just live with the validator’s complaints because the empty
attribute explicitly defines what I want to do (call myself) and it does no
harm.

Making a switch
Often, you run across a situation where you have one expression that can
have many possible values. You can always use the if–else if structure
to manage this situation, but PHP supplies another interesting option, shown
in Figure 3-7.

Book V
Chapter 3

Using Control
Structures

Making a switch 579

Figure 3-7:
The Magic 8
Ball uses a
switch.

The code for this program uses the switch structure. Take a look at how it’s
done:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>switch.php</title>
</head>
<body>
<p>Ask the magic 8 ball a yes or no question!</p>
<?php
$yourNumber = rand(1,8);
switch($yourNumber){
 case 1:
 print "<p><img src=\"images/8ball1.png\" alt = \"fat chance\"

/></p>";
 break;
 case 2:
 print "<p></p> ";
 break;
 case 3:
 print "<p></p>";
 break;
 case 4:
 print "<p><img src=\"images/8ball4.png\" alt = \"You didn't say

please\" /></p>";
 break;
 case 5:
 print "<p><img src=\"images/8ball5.png\" alt = \"tell, then kill\"

/></p>";
 break;
 case 6:
 print "<p><img src=\"images/8ball6.png\" alt = \"Why trust me?\"

/></p>";
 break;

Making a switch580

 case 7:
 print "<p><img src=\"images/8ball7.png\" alt = \"Ask your mother\"

/></p>";
 break;
 case 8:
 print "<p><img src=\"images/8ball8.png\" alt = \"The answer is in

the question\" /></p>";
 break;
 default:
 print "<p>An error has occurred. Please try again, or contact

support@somesite.com for assistance. Error code: 8BIC:$yourNumber
</p>";

}
?>
<p>
 Ask another question!
</p>
</body>
</html>

The main (in fact nearly only) feature of this code is the switch statement.
Here’s how it works:

 1. Begin with the switch statement.

 This indicates that you will be building a switch structure.

 2. Put the expression in parentheses.

 Following the switch statement is a pair of parentheses. Put the expres-
sion (usually a variable) you wish to evaluate inside the parentheses. In
this case, I’m checking the value of the variable $yourNumber.

 3. Encase the entire switch in braces.

 Use squiggle braces to indicate the entire case. As in most blocking
structures, use indentation to help you remember how the structure is
organized.

 4. Establish the first case.

 Put the first value you want to check for. In this situation, I’m looking for
the value 1. Note that the type of data matters, so be sure you’re com-
paring against the same type of data you think the variable will contain.
Use a colon (:) to indicate the end of the case. This is one of the rare sit-
uations where you do not use a semicolon or brace at the end of a line.

 5. Write code that should happen if the expression matches the case.

 If the expression matches the case (for example, if $yourNumber is
equal to 1), the code you write here will execute.

 6. End the code with the break statement.

 When you use an if-else if structure to work with multiple condi-
tions, the interpreter jumps out of the system as soon as it encounters
the first true condition. Switches work differently. Unless you specify
(with the break statement), code will continue to evaluate even when
one of the expressions is matched. You almost always need the break
statement.

Book V
Chapter 3

Using Control
Structures

Looping with for 581

 7. Use the default clause to handle any unexpected behavior.

 The default section of the switch structure is used to handle any situ-
ation that wasn’t covered by one of the previously defined cases. It’s a
good idea to always include a default clause.

 It may seem odd to have a default clause in this example. After all, I
know how the rand() function works, and I know that I’ll get values only
between 1 and 8. It shouldn’t be possible to have a value that isn’t covered
by one of the cases, yet I have a default clause in place for exactly that
eventuality. Even though something shouldn’t ever happen, sometimes it
does. At the very least, I want a nice piece of code to explain what hap-
pened and send some kind of error message. If it’s an important problem,
I may have the code quietly e-mail me a message letting me know what
went wrong.

 You might wonder whether the switch is necessary at all. I could have used
the interpolation tricks shown in the dice example to get the necessary
images. However, remember that HTML requires all images to have alt tags.
With dice, the value of the roll is a perfectly acceptable alt value. The Magic
8 Ball needs to return text if the image doesn’t work properly. I used a switch
to ensure that I have the appropriate alt text available. (Extra points if you
think an array would be an even better way to handle this situation.)

Looping with for
Sometimes you want to repeat something. PHP (like most languages) sup-
ports a number of looping constructs. Begin with the humble but lovable
for loop, as shown in Figure 3-8.

Figure 3-8:
This page
prints a lot
of dice with
a for loop.

Looping with for582

As you can see, Figure 3-8 prints a lot of dice. In fact, it prints 100 dice. This
would be tedious to do by hand, but that’s exactly the kind of stuff comput-
ers are so good at.

The following code explains all:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>for.php</title>
 <style type="text/css">
 img{
 height: 40px;
 width: 50px;
 }
 </style>
</head>
<body>
 <h1>Dice Rolling Game</h1>
 <p>Welcome to the dice rolling game. Rolling 100 dice. How many

will be sixes?</p>
 <p>
 <?php
 $sixCount = 0;

 for ($i = 0; $i < 100; $i++){
 $userNumber = rand(1,6);
 print <<< HERE
 <img src="images/dado_$userNumber.png"
 alt = "$userNumber"
 width = "20px"
 height = "20px" />
HERE;

 if($userNumber == 6){
 $sixCount++;
 } // end if
 } // end for

 print "</p><p>You rolled $sixCount six(es)!</p>";
 ?>

 <p>Try Again!</p>

</body>
</html>

Most of the code is plain-old HTML. Note the lone print statement respon-
sible for printing out dice. That print statement (and a few supporting
characters) are repeated 100 times. for loops are extremely powerful ways
to get a lot of work done.

 1. Begin with the for keyword.

 This keyword indicates the beginning of the for structure.
for ($i = 0; $i < 100; $i++){

Book V
Chapter 3

Using Control
Structures

Looping with for 583

 2. Add an initializer.

 for loops usually center around a specific integer variable, sometimes
called the sentry variable. The first part of the for loop sets up the ini-
tial value of that variable. Often, the variable is initialized to 0 or 1.

for ($i = 0; $i < 100; $i++){

 3. Add a condition.

 The loop continues as long as the condition is true and exits as soon as
the condition is evaluated as false. Normally, the condition will check
whether the variable is larger than some value.

for ($i = 0; $i < 100; $i++){

 4. Add a modifier.

 Every time through the loop, you need to do something to change the
value of the sentry. Normally, you add 1 to the sentry variable (remem-
ber, ++ is a shortcut for “add one”).

for ($i = 0; $i < 100; $i++){

 5. Encase the body of the loop in braces.

 The code that will be repeated is placed inside braces({}). As usual,
indent all code inside braces so you understand that you’re inside a
structure.

 for loops are first described in Book IV, Chapter 3. Please look to that chap-
ter for more details on for loops, including how to build a loop that counts
backward and counts by fives. I don’t repeat that material here because for
loops work exactly the same in PHP and JavaScript.

This particular program has a few other features that make it suitable for
printing out 100 dice.

 ✦ It uses $i as a counting variable. When the sentry variable’s name isn’t
important, $i is often used. $i will vary from 0 to 99, giving 100 itera-
tions of the loop.

 ✦ Each time through the loop, roll a die. The familiar rand() function is
used to roll a random die value between 1 and 6. Because this code is
inside the loop, it is repeated.

$userNumber = rand(1,6);

 ✦ Print out an image related to the die roll. I use interpolation to deter-
mine which image to display. Note that I used code to resize my image
files to a smaller size.

 print <<< HERE
 <img src="images/dado_$userNumber.png"
 alt = "$userNumber"
 width = "20px"
 height = "20px" />
HERE;

Looping with while584

 ✦ Check whether you rolled a 6. For some strange reason, my obsession
with sixes continues. If the roll is a 6, add 1 to the $sixCount variable.
By the end of the loop, this will contain the total number of sixes rolled.

if($userNumber == 6){
 $sixCount++;
} // end if

 ✦ Print the value of $sixCount. After the loop is completed, report how
many sixes were rolled.

print “</p><p>You rolled $sixCount six(es)!</p>“;

Looping with while
The while loop is the other primary way of repeating code. Figure 3-9 shows
a variation of the dice-rolling game.

Figure 3-9:
This time,
the program
continues
until it gets
a 6.

while loops are much like for loops. They require the same thought:

 ✦ A sentry variable: This special variable controls access to the loop.
Unlike the int usually used in for loops, the sentry of a while loop can
be any type.

 ✦ Initialization: Set the initial value of the sentry variable before the loop
begins. Do not rely on default settings (because you don’t know what
they will be). Instead, set this value yourself.

 ✦ A condition: The while statement requires a condition. This condition
controls access to the loop. As long as the condition is true, the loop
continues. As soon as the condition is evaluated as false, the loop exits.

Book V
Chapter 3

Using Control
Structures

Looping with while 585

 ✦ A modifier: You must somehow modify the value of the sentry variable.
It’s important that the modification statement happen somewhere inside
the loop. In a for loop, you almost always add or subtract to modify a
variable. In a while loop, any kind of assignment statement can be used
to modify the variable.

 for loops are a little safer than while loops because the structure of the for
loop requires you to think about initialization, condition, and modification. All
three features are built into the for statement. The while statement requires
only the condition. This might make you think that you don’t need the other
parts, but that would be dangerous. In any kind of loop, you need to initialize
the sentry variable and modify its value. With the while loop, you’re responsi-
ble for adding these features yourself. Failure to do so will cause endless loops,
or loops that never happen. See much more about this in Book IV, Chapter 3.

Take a look at the following code for the while.php program to see how it
works:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>while.php</title>
 <style type="text/css">
 img {
 height: 40px;
 width: 50px;
 }
 </style>
</head>
<body>
 <h1>Dice Rolling Game 2</h1>
 <p>Welcome to the dice rolling game. See how many rolls it takes

to get a six!</p>
 <div id = "output">
 <?php
 $userNumber = 999;
 $counter = 0;
 while ($userNumber != 6){
 $userNumber = rand(1,6);
 print <<< HERE
 <img src = "images/dado_$userNumber.png"
 alt = "$userNumber"
 height = "100px"
 width = "100px" />
HERE;
 $counter++;
 }
 print "<p>It took $counter tries to get a six.</p>";
 ?>
 </div>
 <p>Try Again!</p>
</body>
</html>

This example illustrates how subtle while loops can be. All the key
 elements are there, but they don’t all look like part of the while loop.

Looping with while586

 1. Initialize $userNumber.

 For this loop, $userNumber is the sentry variable. The initialization
needs to guarantee that the loop runs exactly once. Because the condition
will be ($userNumber != 6), I need to give $userNumber a value that
clearly isn’t 6. 999 will do the job, and it’s wild enough to be clearly out
of range. Although the initialization step appears in the code before the
while loop, it’s often best to start with your condition and then back up a
line to initialize because the initialization step depends on the condition.

 2. Set up the condition.

 Think about what should cause the loop to continue or quit. Remember
that the condition explains when the loop continues. It’s often easier to
think about what causes the loop to exit. That’s fine; just reverse it. For
example, I want the loop to quit when $userNumber is equal to 6, so I’ll
have it continue as long as $userNumber != 6.

 3. Modify the sentry.

 This one is tricky. In this particular example, modify the sentry variable
by getting a new random number: $userNumber = rand(1,6). Often
in a while loop, the modification step is intrinsic to the problem you’re
solving. Sometimes you get the new value from the user, sometimes you
get it from a file or database, or sometimes you just add (just like a for
loop). The key here is to ensure you have a statement that modifies the
sentry variable and that the condition can trigger. For example, using
$userNumber = rand(1,5) would result in an endless loop because
$userNumber could never be 6.

 while loops can cause a lot of problems because they may cause logic
errors. That is, the syntax (structure and spelling of the code) may be fine,
but the program still doesn’t operate properly. Almost always, the problem
can be resolved by thinking about those three parts of a well-behaved loop:
Initialize the sentry, create a meaningful condition, and modify the sentry
appropriately. See Book IV, Chapter 3 for more on while loops.

In Book IV, you can see how to use a debugger
to check your code. This is especially handy for
the logic errors that tend to occur when you’re
writing while loops. It would be great if there
was a similar facility for PHP code. Unfortunately,
PHP debuggers are relatively rare and can be dif-
ficult to install and use. That’s because PHP is not
an interactive language, but it processes code in
batch mode on the server. The Chrome debugger

you use in Book IV is a client-side application,
and it doesn’t ever see the PHP code. The best
way to debug PHP is with good-old print state-
ments. If something doesn’t work correctly, print
out the sentry variable before, inside, and after
the loop to see whether you can find the pattern.
One reason why people are switching to AJAX
(see Book VII) is that more of the logic is done on
the client side, where it’s easier to debug.

Can I use a debugger for PHP?

Chapter 4: Working with Arrays

In This Chapter
✓ Creating one-dimensional arrays

✓ Making the most of multidimensional arrays

✓ Using foreach loops to simplify array management

✓ Breaking a string into an array

I
n time, arrays will become one of the most important tools in your tool-
box. They can be a bit hard to grasp for beginners, but don’t let that stop

you. Arrays are awesome because they allow you to quickly apply the same
instructions to a large number of items.

In PHP, an array is a variable that holds multiple values that are mapped to
keys. Think of a golfing scorecard. You have several scores, one for each hole
on the golf course. The hole number is the key, and the score for that hole
is the value. Keys are usually numeric, but values can be any type. You can
have an array of strings, numbers, or even objects. Any time you’re thinking
about a list of things, an array is the natural way to represent this list.

Using One-Dimensional Arrays
The most basic array is a one-dimensional array, which is basically just one
container with slots. Each slot has only one variable in it. In this section,
you find out how to create this type of array and fill it.

Creating an array
Array creation is pretty simple. First, you need to create a variable and then
tell PHP that you want that variable to be an array:

$theVar = array();

Now, $theVar is an array. However, it’s an empty array waiting for you to
come along and fill it.

 Technically, you can skip the variable creation step. It’s still a good idea
to explicitly define an array because it helps you remember the element is
an array, and there are a few special cases (such as passing an array into a
function) where the definition really matters.

Using One-Dimensional Arrays588

Filling an array
An array is a container, so it’s a lot more fun if you put something in it. You
can refer to an array element by adding an index (an integer) representing
which element of the array you’re talking about.

Say I have the following array:

$spanish = array();
$spanish[1] = "uno";
$spanish[2] = "dos";

What I did here is to add two elements to the array. Essentially, I said that
element 1 is uno, and element 2 is dos.

PHP has another interesting trick available. Take a look at the next line:

$spanish[] = "tres";

This seems a little odd because I didn’t specify an index. PHP is pretty help-
ful. If you don’t specify an index, it looks at the largest index already used in
the array and places the new value at the next spot. So, the value tres will
be placed in element 3 of the array.

 PHP is somewhat notorious for its array mechanism. Depending on how
you look at it, PHP is far more forgiving or far sloppier than most languages
when it comes to arrays. For example, you don’t have to specify the length
of an array. PHP just makes the array whatever size seems to work. In fact,
you don’t even have to explicitly create the array. When you start using an
array, PHP automatically just makes it if it isn’t already there. Although this
is pretty easy, I’ve seen enough science fiction movies to know what can
happen when we let computers make all the decisions for us.

Viewing the elements of an array
You can access the elements of an array in exactly the same way you created
them. Array elements are just variables; the only difference is the numeric
index. Here’s one way to print out the elements of the array:

print <<< HERE
One: $spanish[1]

Two: $spanish[2]

Three: $spanish[3]

HERE;

I can simply print out the array elements like any ordinary variable. Just
remember to add the index.

Another great way to print out arrays is particularly useful for debugging.
Take a look at this variation:

Book V
Chapter 4

W
orking w

ith
Arrays

Using One-Dimensional Arrays 589

print "<pre> \n";
print_r($spanish);
print "</pre> \n";

The print_r() function is a special debugging function. It allows you to
pass an entire array, and it prints out the array in an easy-to-read format. It’s
best to put the output of the print_r() function inside a <pre> element so
that the output is preserved.

 Of course, the results of the print_r() function mean something to you, but
your users don’t care about arrays. This is only a debugging tool. Typically,
you’ll use some other techniques for displaying arrays to your users.

To see what all the code in basicArray.php looks like, take a look at
Figure 4-1.

Figure 4-1:
Arrays are
pretty easy
to use in
PHP.

Preloading an array
Sometimes you’ll know the elements that go into an array right away. In
those cases, you can use a special version of the array() function to make
this work. Take a look at this code:

$english = array("zero", "one", "two", "three");

print "<pre> \n";
print_r($english);
print "<pre> \n";

This simple program allows you to load up the value of the array in one
swoop. Note that I started with zero. Computers tend to start counting at
zero, so if you don’t specify indices, the first element will be zero-indexed.

Using Loops with Arrays590

I use the print_r() function to quickly see the contents of the array. The
preloaded array is shown in Figure 4-2.

Figure 4-2:
This array
was
preloaded,
but the user
can’t tell the
difference.

Using Loops with Arrays
Arrays and loops are like peanut butter and jelly; they just go together. When
you start to use arrays, eventually, you’ll want to go through each element
in the array and do something with it. The for loop is the perfect way to do
this.

Look at the loopingArrays.php code to see how I step through an array
with a couple of variations of the for loop:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>loopingArrays.php</title>
</head>

<body>
 <h1>Looping through arrays</h1>
<div>
 <?php
 //first make an array of mini-book names
 $books = array("Creating the HTML Foundation",
 "Styling with CSS",
 "Using Positional CSS for Layout",
 "Client-Side Programming with JavaScript",
 "Server-Side Programming with PHP",
 "Databases with MySQL",
 "Into the Future with AJAX",
 "Moving From Pages to Web Sites");

Book V
Chapter 4

W
orking w

ith
Arrays

Using Loops with Arrays 591

 //just print them out with a loop
 print "<p> \n";
 for ($i = 0; $i < sizeof($books);$i++){
 print $books[$i] . "
\n";
 } // end for
 print "</p> \n";

 //use the foreach mechanism to simplify printing out the elements
 print "<p> \n";
 foreach ($books as $book){
 print $book . "
\n";
 } // end foreach
 print "</p> \n";
 ?>
</div>
</body>
</html>

The relationship between arrays and loops isn’t hard to see:

 1. Create your array.

 This example uses an array of minibook titles in a charming and lovable
book on web development. Note that I preloaded the array. There’s no
problem with the fact that the array statement (although a single line of
logic) actually takes up several lines in the editor.

 2. Build a for loop to step through the array.

 The loop needs to happen once for each element in the array; in this
case, that’s eight times. Set up a loop that repeats eight times. It will
start at 0 and end at 7.

 3. Use the sizeof()function to determine the ending point.

 Because you know that this array has eight elements, you could just set
the condition to $i < 8. The sizeof() function is preferred because
it will work even if the array size changes. Also, it’s easier to understand
what I meant. sizeof($books) means “the size of the $books array.”
The number 8 could mean anything.

 4. Print out each element.

 Inside the loop, I simply print out the current element of the array,
which will be $books[$i]. Don’t forget to add a
 tag if you want
a line break in the HTML output. Add the \n to keep the HTML source
code looking nice.

Simplifying loops with foreach
The relationship between loops and arrays is so close that many languages
provide a special version of the for loop just for arrays. Take a look at this
code fragment to see how cool it is:

//use the foreach mechanism to simplify printing out the elements
print "<p> \n";

Using Loops with Arrays592

foreach ($books as $book){
 print $book . "
\n";
} // end foreach
print "</p> \n";

The foreach loop is a special version of the for loop that simplifies
working with arrays. Here’s how it works:

 1. Use the foreach keyword to begin the loop.

 This tells PHP that you’re working with the foreach variation.

 2. The first parameter is the array name.

 The foreach loop is designed to work with an array, so the first param-
eter is the array you want to step through.

 3. Create a variable to hold each element of the array.

 On each pass through the loop, the $book variable will hold the current
element of the $books array. Most of the time, you use a loop for an
array because you want to deal with each element of the array. Using a
foreach loop makes this easier.

 4. Use the $book variable inside the loop.

 The $book variable is ready to go. The nice thing about using foreach
is you don’t have to worry about indices. The $book variable always
contains the current element of the array.

You can see the results of both of these loops in Figure 4-3. To the user,
there’s no difference. Both are simply text when it comes to output.

Figure 4-3:
Two kinds
of for loops
are used to
view these
arrays.

Book V
Chapter 4

W
orking w

ith
Arrays

Using Loops with Arrays 593

 Many languages have variations of the foreach loop, but they differ greatly
in the details. In PHP, the array comes first, then the scalar (non-array)
variable. In Python, the order is inverted. In most languages (like PHP), the
scalar variable is generated on each pass, but in JavaScript, the key is gener-
ated. Feel free to use the foreach loop, but be aware that it doesn’t trans-
late between languages quite as freely as most operations.

Arrays and HTML
Arrays are great because they’re used to hold lists of data in your program-
ming language. Of course, HTML already has other ways of working with
lists. The and tags are both used for visual representations of
lists, and the <select> object is used to let the user choose from a list. It’s
very common to build these HTML structures from arrays. Figure 4-4 illus-
trates exactly how this is done.

Figure 4-4:
This page
features
an ordered
list and
selection,
both based
on an array.

The code for the page is not too different than the previous examples. It just
adds some HTML formatting:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>arrayHTML.php</title>
</head>
<body>
 <h1>Arrays are useful in HTML</h1>
 <div>
 <?php
 //first make an array of mini-book names

Introducing Associative Arrays594

 $books = array("Creating the XHTML Foundation",
 "Styling with CSS",
 "Using Positional CSS for Layout",
 "Client-Side Programming with JavaScript",
 "Server-Side Programming with PHP",
 "Databases with MySQL",
 "Into the Future with AJAX",
 "Moving From Pages to Web Sites");

 //make the array into a numbered list
 print "\n";
 foreach ($books as $book){
 print " $book \n";
 } // end foreach
 print "\n";

 //make the array into a select object
 print "<select name = \"book\"> \n";
 foreach ($books as $book){
 print " <option value = \"$book\">$book</option> \n";
 } // end foreach
 print "</select> \n";
 ?>
 </div>
</body>
</html>

It’s a relatively simple matter to build HTML output based on arrays. To
create an ordered list or unordered list, just use a foreach loop, but add
HTML formatting to convert the array to a list formatted in HTML:

//make the array into a numbered list
print "\n";
foreach ($books as $book){
 print " $book \n";
} // end foreach
print "\n";

Likewise, if you want to allow the user to choose an element from an array,
it’s pretty easy to set up a <select> structure that displays the elements of
an array:

//make the array into a select object
print "<select name = \"book\"> \n";
foreach ($books as $book){
 print " <option value = \"$book\">$book</option> \n";
} // end foreach
print "</select> \n";

Introducing Associative Arrays
You can use string values as keys. For example, you might create an array
like this:

$myStuff = array();
$myStuff["name"] = "andy";

Book V
Chapter 4

W
orking w

ith
Arrays

Introducing Associative Arrays 595

$myStuff["email"] = "andy@aharrisbooks.net";

print $myStuff["name"];

Associative arrays are different than normal (numeric-indexed) arrays in
some subtle but important ways:

 ✦ The order is undefined. Regular arrays are always sorted based on the
numeric index. You don’t know what order an associative array will be
because the keys aren’t numeric.

 ✦ You must specify a key. If you’re building a numeric-indexed array, PHP
can always guess what key should be next. This isn’t possible with an
associative array.

 ✦ Associative arrays are best for name/value pairs. Associative arrays
are used when you want to work with data that comes in name/value
pairs. This comes up a lot in PHP and HTML. HTML attributes are often
in this format, as are CSS rules and form input elements.

 ✦ Some of PHP’s most important values are associative arrays. The
$_REQUEST variable (described in Chapter 3 of this minibook) is
an important associative array. So are $_GET, $_POST, and several
others.

 Make sure to include quotation marks if you’re using a string as an array
index. It will probably work if you don’t, but it’s bad programming practice
and may not work in the future.

Using foreach with associative arrays
It’s very common to have a large associative array that you want to evaluate.
For example, PHP includes a very useful array called $_SERVER that gives
you information about your server configuration (things like your hostname,
PHP version, and lots of other useful stuff). The following code snippet (from
serverInput.php) runs through the entire $_SERVER array and prints
each key/value pair:

<?php
print "<dl> \n";

foreach ($_SERVER as $key => $value){
 print <<<HERE
 <dt>$key</dt>
 <dd>$value</dd>

HERE;
} // end foreach
print "</dl> \n";
?>

You can see this program running on my work server in Figure 4-5.

Introducing Associative Arrays596

Figure 4-5:
This variable
stores
data in an
associative
array.

Here’s how it works:

 1. Begin the foreach loop as normal.

 The associative form of the foreach loop begins just like the regular one:
 foreach ($_SERVER as $key => $value){

 2. Identify the associative array.

 The first parameter is the array name:
 foreach ($_SERVER as $key => $value){

 3. Create a variable for the key.

 Each element of an associative array has a key and a value. I put the key
in a variable named $key:

 foreach ($_SERVER as $key => $value){

 4. Use the => symbol to indicate the associative relationship.

 This symbol helps PHP recognize you’re talking about an associative
array lookup:

 foreach ($_SERVER as $key => $value){

 5. Assign the value of the element to a variable.

 The $value variable holds the current value of the array item:
 foreach ($_SERVER as $key => $value){

 6. Use the variables inside your loop.

 Each time PHP goes through the loop, it pulls another element from the
array, puts that element’s key in the $key array, and puts the associ-
ated value in $value. You can then use these variables inside the loop

Book V
Chapter 4

W
orking w

ith
Arrays

Introducing Multidimensional Arrays 597

however you wish. I used a definition list because it’s a natural way to
display key/value pairs. A list of definitions is keys and values.

print <<<HERE
 <dt>$key</dt>
 <dd>$value</dd>

HERE;

 The $_SERVER variable is extremely useful for checking your environment,
but you shouldn’t make a program that displays this kind of information
available on a publicly accessible server. Doing so gives the bad guys infor-
mation they could use to cause you headaches. Use it for testing and debug-
ging, and then remove it. I have this example disabled on my live site as a
security precaution, but you can still look at the source code if you wish.

Introducing Multidimensional Arrays
Arrays in PHP can hold anything, even other arrays. This turns out to be an
extremely useful function. A multidimensional array is an array that holds
arrays. Multidimensional arrays are used when your data is arranged in
some sort of tabular form.

We’re going on a trip
Some uses for these are to group things or to use as lookup tables. See Book
IV, Chapter 4 for one possible use of lookup tables — using multidimensional
arrays to hold the distances between cities. You can do exactly the same
thing with PHP. Even though the syntax is somewhat different, the concept is
exactly the same. Figure 4-6 is an HTML page that lets the user choose what
city she is traveling from and to.

Figure 4-6:
The user
picks the
source and
destination
with
selections.

Introducing Multidimensional Arrays598

The following code shows the basic HTML form:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Distance.html</title>
 <style type="text/css">
 form {
 width: 600px;
 margin: auto;
 }
 label {
 width: 250px;
 float: left;
 clear: left;
 text-align: right;
 margin-right: 1em;
 }
 select {
 float: left;
 }
 button {
 display: block;
 clear: both;
 margin: auto;
 }
 </style>
</head>
<body>
 <h1>Distance Calculator, PHP Style</h1>
 <form action = "distance.php"
 method = "post">
 <fieldset>
 <legend>Distance calculator</legend>
 <label>From</label><p>
 <select name = "from">
 <option value="0">Indianapolis</option>
 <option value="1">New York</option>
 <option value="2">Tokyo</option>
 <option value="3">London</option>
 </select>
 <label>To</label><p>
 <select name = "to">
 <option value="0">Indianapolis</option>
 <option value="1">New York</option>
 <option value="2">Tokyo</option>
 <option value="3">London</option>
 </select>
 <button type = "submit">
 calculate
 </button>
 </fieldset>
 </form>
</body>
</html>

There’s nothing unfamiliar about this form:

 1. Set the form’s action to distance.php.

 That’s the program that will actually calculate the distance. Use the
post method, as usual.

Book V
Chapter 4

W
orking w

ith
Arrays

Introducing Multidimensional Arrays 599

 2. Create a select object to determine where the user is leaving.

 This form element will be called from because it represents the city the
user is coming from. Note that the value is an integer that will relate to
the various city numbers (0 for Indianapolis, and so on).

 3. Create a second select object for the destination.

 The second selection is much like the first, but it has the name to.

 4. Use CSS for beautification.

 A little CSS can go a long way to make this page look nicer.

Looking up the distance
When the user submits the form, she is rewarded with the display shown in
Figure 4-7.

Figure 4-7:
This clever
program
calculates
the
distance.

Of course, you could calculate the distance between cities with if state-
ments, switches, and the like, but this kind of problem is really a lookup
table. That means that the best way to solve it without a computer is
to build a table. To use the table, you would use the row to indicate the
source and the column to designate the destination, and then see where
they cross for a result. It’s very easy to get the computer to do exactly
the same thing by using a two-dimension array, as shown in the following
code:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Distance Results</title>

Breaking a String into an Array600

</head>
<body>
 <?php
 //get variables from form
 $cityName = array("Indianapolis", "New York", "Tokyo", "London");
 $from = filter_input(INPUT_POST, "from");
 $to = filter_input(INPUT_POST, "to");

 $distance = array(
 array(0, 648, 6476, 4000),
 array(648, 0, 6760, 3470),
 array(6476, 6760, 0, 5956),
 array(4000, 3470, 5956, 0));

 //calculate and display distance
 $result = $distance[$from][$to];
 print "<h1>Distance from $cityName[$from] to $cityName[$to] is $result

miles</h1>\n";
 ?>
</body>
</html>

The two-dimension array simplifies things greatly. Take a look at how the
program calculates the result:

 1. Create a standard array to handle city names.

 The cities all have numbers, so I use an array to help attach the names
to the numbers. It’s important that this array is in the correct order, so
city 0 is Indianapolis throughout.

 2. Retrieve to and from data from the form.

 These values were sent by the previous form, so get the data and place
them in variables.

 3. Build a 2D array to hold the distance data.

 The distance is stored in a table. A 2D array is a perfect way to hold this
data.

 4. Look up the distance in the distance array.

 A 2D array requires two indices. The first indicates the row, and the
second indicates the column.

 5. Print out the result.

 After you get the data, it’s pretty easy to print out.

Breaking a String into an Array
Many times, it can be useful to break a string into an array, especially when
reading input from a file.

Here are the two different ways of doing this:

Book V
Chapter 4

W
orking w

ith
Arrays

Breaking a String into an Array 601

 ✦ explode: explode takes one parameter as a delimiter and splits the
string into an array based upon that one parameter.

 ✦ preg_ split: If you require regular expressions, using preg_split
is the way to go. split allows you to take complicated chunks of text,
look for multiple different delimiters stored in a regular expression, and
break it into an array based on the delimiters you specify.

explode works well with comma-separated value (CSV) files and the like,
where all the parameters you wish to break the text on are the same. preg_
split works better for when there are many different parameters that you
wish to break the text on or when the parameter you’re looking for is complex.

Creating arrays with explode
Array creation with explode is very straightforward:

explode(" ", $theString);

The first value is the parameter on which you’re splitting up the string. The
second value is the string you would like to split into an array. In this exam-
ple, the string would be split up on each space. You can put anything you
want as the split parameter.

So, if you have the string that you want to store each word as a value in,
enter the following code (see Figure 4-8 for the output):

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>explode</title>
</head>
<body>
 <h1>Using explode</h1>
 <?php
 $theString = "Twas brillig and the slithy toves";
 $theArray = explode(" ", $theString);
 print "<pre> \n";
 print_r($theArray);
 print "</pre> \n";
 ?>
</body>
</html>

The delimiter can be anything you want. If you’re dealing with a CSV file,
where each value is separated by a comma, your explode method might
look like this:

$theArray = explode(",", $theString);

 You learn more about working with many types of files in Chapter 6 of this
minibook.

Breaking a String into an Array602

Figure 4-8:
A string
exploded
into an
array.

Creating arrays with preg_split
preg_split is a bit more complicated. preg_split uses regular expres-
sions to split a string into an array, which can make it a bit slower than
explode.

preg_split looks exactly like explode, but instead of one character inside
quotations, you can cram all the characters you want to split on into brack-
ets inside the quotations, or you can use a complicated regular expression
to determine how the values will split.

 If you need a refresher on regular expressions, check Book IV, Chapter 5.
Regular expressions work the same in JavaScript and in PHP because both
languages derived their regular expression tools from the older language
Perl. (The preg part of preg_split stands for “Perl regular expression.”)

An instance where you’d want to use preg_split instead of explode could
be when processing an e-mail address. A basic e-mail address has dots (.)
and an at sign (@). So, to split on either of these characters, you could do the
following (see Figure 4-9 for the output):

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>preg_split.html</title>
</head>
<body>
 <h1>Using preg_split</h1>
 <?php
 $theString = "joe@somewhere.net";
 $theArray = preg_split("/[@\.]/", $theString);

Book V
Chapter 4

W
orking w

ith
Arrays

Breaking a String into an Array 603

 print "<pre>\n";
 print_r($theArray);
 print "</pre>\n";
 ?>
 </body>
</html>

Figure 4-9:
The e-mail
address
split into an
array.

Recall that regular expressions are encased in the slash character, and the
square braces indicate one of a number of options. I want to split on either
the at sign or the period. Remember to specify the period with \. because
an ordinary period means “any character.”

preg_split works well for timestamps, e-mail addresses, and other things
where there’s more than just one unique delimiter that you wish to split the
string on.

 Earlier versions of PHP had a function called split. It was much like the
preg_split function, but it used a different regular expression syntax.
Hardly anybody used it, and it is no longer supported. Use explode for
simple patterns and preg_split when you need the power of regular
expressions.

604 Book V: Server-Side Programming with PHP

Chapter 5: Using Functions
and Session Variables

In This Chapter
✓ Creating functions to manage your code’s complexity

✓ Enhancing your code by using functions

✓ Working with variable scope

✓ Getting familiar with session variables

✓ Incorporating session variables into your code

P
HP programs are used to solve interesting problems, which can get
quite complex. In this chapter, you explore ways to manage this com-

plexity. You discover how to build functions to encapsulate your code. You
also learn how to use session variables to make your programs keep track of
their values, even when the program is called many times.

Creating Your Own Functions
It won’t take long before your code starts to get complex. Functions are
used to manage this complexity. As an example, take a look at Figure 5-1.

Figure 5-1:
This
program
rolls five
dice.

Creating Your Own Functions606

Rolling dice the old-fashioned way
Before I show you how to improve your code with functions, look at a pro-
gram that doesn’t use functions so you have something to compare with.

The following rollDice.php program creates five random numbers and dis-
plays a graphic for each die:

<!DOCTYPE html>
<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>rollDice1.php</title>
 </head>
 <body>
 <h1>RollDice 1</h1>
 <h2>Uses Sequential Programming</h2>
 <div>
 <?php
$roll = rand(1,6);
$image = "dado_$roll.png";
print <<< HERE
 <img src = "$image"
 alt = "roll: $roll"
 width = "100px"
 height = "100px" />
HERE;

$roll = rand(1,6);
$image = "dado_$roll.png";
print <<< HERE
 <img src = "$image"
 alt = "roll: $roll"
 width = "100px"
 height = "100px" />
HERE;

$roll = rand(1,6);
$image = "dado_$roll.png";
print <<< HERE
 <img src = "$image"
 alt = "roll: $roll"
 width = "100px"
 height = "100px" />
HERE;

$roll = rand(1,6);
$image = "dado_$roll.png";
print <<< HERE
 <img src = "$image"
 alt = "roll: $roll"
 width = "100px"
 height = "100px" />
HERE;

$roll = rand(1,6);
$image = "dado_$roll.png";
print <<< HERE
 <img src = "$image"
 alt = "roll: $roll"

Book V
Chapter 5

Using Functions and
Session Variables

Creating Your Own Functions 607

 width = "100px"
 height = "100px" />
HERE;

 ?>
 </div>
 </body>
</html>

Here are some interesting features of this code:

 ✦ The built-in rand()function rolls a random number. Whenever pos-
sible, try to find functions that can help you. The rand() function
produces a random integer. If you use two parameters, the resulting
number will be in the given range. To roll a standard six-sided die, use
rand(1,6):

$roll = rand(1,6);

 ✦ I created an image for each possible roll. To make this program more
visually appealing, I created an image for each possible die roll. The
images are called dado_1.png, dado_2.png, and so on. All these
images are stored in the same directory as the PHP program.

 ✦ Theimg tag is created based on the die roll. After I have a die roll, it’s
easy to create an image based on that roll:

 $image = "dado_$roll.png";
 print <<< HERE
 <img src = "$image"
 alt = "roll: $roll"
 height = "100px"
 width = "100px" />

HERE;

 ✦ The die-rolling code is repeated five times. If you can roll one die, you
can easily roll five. It’s as easy as copying and pasting the code. This
seems pretty easy, but it leads to problems. What if I want to change the
way I roll the dice? If so, I’ll have to change the code five times. What if I
want to roll 100 dice? The program will quickly become unwieldy. In gen-
eral, if you find yourself copying and pasting code, you can improve the
code by adding a function.

Improving code with functions
Functions are predefined code fragments. After you define a function, you
can use it as many times as you wish. As you can see in the following code,
the outward appearance of this program is identical to rollDice1.php, but
the internal organization is quite different:

<!DOCTYPE html>
<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>rollDice2.php</title>

Creating Your Own Functions608

 </head>
 <body>
 <h1>RollDice 2</h1>
 <h2>Uses Functions</h2>
 <?php
 function rollDie(){
 $roll = rand(1,6);
 $image = "dado_$roll.png";
 print <<< HERE
 <img src = "$image"
 alt = "roll: $roll"
 height = "100px"
 width = "100px" />
HERE;
 } // end rollDie

 for ($i = 0; $i < 5; $i++){
 rollDie();
 } // end for loop
 ?>
 </body>
</html>

Here’s how things have changed in this version:

 1. Use the function keyword to define a function.

 The function keyword indicates that a function definition will follow.
The code inside the definition won’t be run immediately, but instead,
PHP will “remember” the code inside the function definition and play it
back on demand:

function rollDie(){

 2. Give the function a name.

 The function name should indicate what the function does. I call my
function rollDie() because that’s what it does (rolls a die):

function rollDie(){

 3. Specify arguments with parentheses.

 You can send arguments (special variables for your function to work
with) by indicating them in the parentheses. This function doesn’t need
arguments, so I leave the parentheses empty:

function rollDie(){

 For more information on functions, arguments, and the return state-
ment, turn to Book IV, Chapter 4. Functions in PHP act almost exactly
like their cousins in JavaScript.

 4. Begin the function definition with a left brace ({).

 The left brace is used to indicate the beginning of the function code.

Book V
Chapter 5

Using Functions and
Session Variables

Creating Your Own Functions 609

 5. Indent the code that makes up your function.

 Use indentation to indicate which code is part of your function. In this
case, the function generates the random number and prints an image tag
based on that random number:

 function rollDie(){
 $roll = rand(1,6);
 $image = "dado_$roll.png";
 print <<< HERE
 <img src = "$image"
 alt = "roll: $roll"
 height = "100px"
 width = "100px" />
HERE;
 } // end rollDie

 6. Denote the end of the function with a right brace (}).

 7. Call the function by referring to it.

 After the function is defined, you can use it in your code as if it were
built into PHP. In this example, I call the function inside a loop:

for ($i = 0; $i < 5; $i++){
 rollDie();
} // end for loop

Because the code is defined in a function, it’s a simple matter to run it as
many times as I want. Functions also make your code easier to read because
the details of rolling the dice are hidden in the function.

It can be hard to come up with a good naming
scheme for your variables and functions. Doing
so is very important because when you come
back to your program, if you haven’t named
your functions and variables consistently,
you’ll have a hard time understanding what you
wrote. Here are two common naming schemes
to make this simple: using underscores (_)
between words or camel-casing.

Using underscores is as straightforward as
separating_each_word_with_an_
underscore. It’s readable, but it’s ugly and
can cause the variable names to get awfully
lengthy.

The method I prefer and use throughout this
book is camel-casing, where each new word
after the first word gets capitalized just-
LikeThis. It takes up less space than the
underscore method and makes reading the
code quicker — and after you get used to it,
you won’t even notice it anymore.

Tons of naming schemes are out there, and
even if you don’t use either of these, pick-
ing one and being consistent is important.
Searching for naming variables in Google
returns more than one million hits, so plenty of
resources are available.

Naming functions and variables

Creating Your Own Functions610

Managing variable scope
Two kinds of scope are in PHP: global and local.

If you define a variable outside a function, it has the potential to be used
inside any function. If you define a variable inside a function, you can access
it only from inside the function in which it was created. See Book IV, Chapter
4 for more on variable scope.

So, if you have a variable that you want to access and modify from within
the function, you either need to pass it through the parentheses or access it
with the global modifier.

The following code will print hello world! only once:

<?php
$output = "<p>hello world!</p>";

function helloWorld(){
 global $output;

 print $output;
}

function helloWorld2(){
 print $output;
}

helloWorld();
helloWorld2();
?>

I left the global keyword off in the helloWorld2() function, so it didn’t
print at all because inside the function, the local variable $output is unde-
fined. By putting the global keyword on in the helloWorld() function, I
let it know I was referring to a global variable defined outside the function.

 PHP defaults to local inside functions because it doesn’t want you to acci-
dentally access or overwrite other variables throughout the program. For
more information about global and local scoping, check out http://us3.
php.net/manual/en/language.variables.scope.php.

Returning data from functions
At the end of the function, you can tell the function to return one (and only
one) thing. The return statement should be the last statement of your func-
tion. The return statement isn’t required, but it can be handy.

The getName() function in the following code example will return "World"
to be used by the program. The program will print it once and store the text
in a variable to be printed multiple times later, as shown in the following
code and Figure 5-2:

<!DOCTYPE html>
<html lang="en">
<head>

http://us3.php.net/manual/en/language.variables.scope.php
http://us3.php.net/manual/en/language.variables.scope.php

Book V
Chapter 5

Using Functions and
Session Variables

Managing Persistence with Session Variables 611

 <meta charset="UTF-8">
 <title>helloFunction</title>
</head>
<body>
 <?php
 function getName(){
 return "World";
 }

 print "<h1>Hello, " . getName() . "!</h1>";
 $name = getName();
 print <<<HERE
 <p>$name, welcome to our site. We are so very happy to have you here.</p>
 <p>If you would like to contact us, $name, just use the form on the contact

page.</p>
HERE;
 ?>
</body>
</html>

Figure 5-2:
An example
of a function
with a return
statement.

 The example in Figure 5-2 is admittedly contrived. This function could easily
be replaced by a variable, but the program that uses the function doesn’t
know that the function has only one line. Later on, I could make the func-
tion much more complicated (maybe pulling the name from a database or
session variable). This points out a very important feature of functions that
return values: they can feel like variables when you use them.

Managing Persistence with Session Variables
Server-side programming is very handy, but it has one major flaw. Every con-
nection to the server is an entirely different transaction. Sometimes, you’ll
want to reuse a variable between several calls of the program. As an exam-
ple, take a look at rollDice3.php in Figure 5-3.

Managing Persistence with Session Variables612

Figure 5-3:
This page
displays
a roll, the
number of
rolls, and
the total
rolls so far.

The interesting feature of rollDice3.php happens when you reload the page.
Take a look at Figure 5-4. This is still rollDice3.php, after I refreshed the
browser a few times. Take a look at the total. It increases with each roll.

Figure 5-4:
The count
and total
values keep
on growing.

The rollDice3.php program is interesting because it defies normal server-
side programming behavior. In a normal PHP program, every time you
refresh the browser, the program starts over from scratch. Every variable
starts out new.

Book V
Chapter 5

Using Functions and
Session Variables

Managing Persistence with Session Variables 613

Understanding session variables
The rollDice3.php program acts differently. It has a mechanism for keeping
track of the total rolls and number of visits to the page.

When a visitor accesses your website, she’s automatically assigned a
unique session id. The session id is either stored in a cookie or in the URL.
Sessions allow you to keep track of things for that specific user during her
time on your site and during future visits if she’s not cleared her cache or
deleted her cookies.

 Any mundane hacker can sniff out your session ids if you allow them to
be stored in the URL. To keep this from happening, use the session.
use_only_cookies directive in your PHP configuration file. This may be
inconvenient to users who don’t want you to have a cookie stored on their
machine, but it’s necessary if you’re storing anything sensitive in their
 session.

Sessions are great because they are like a big box that the user carries
around with him that you can just throw stuff into. Even if the user comes
back to the site multiple times, the variables stored in the session retain
their values. If you have hundreds of users accessing your site at the same
time, each one will still have access to only their own versions of the
 variable.

 In this example I have one program that is run several times, but you can
also use sessions to pass data between programs. All programs coming
from the same domain have access to the same session information for each
user, so you can use sessions to manage data between programs in a larger
system.

Here’s the code for rollDice3.php:

{<?php
{ session_start();
{?>
{<!DOCTYPE html>
{<html lang = "en-US">

{ <head>
{ <meta charset = "UTF-8">
{ <title>rollDice3.php</title>
{ </head>
{ <body>
{ <h1>RollDice 3</h1>
{ <h2>Uses a Session Variable</h2>
{ <?php
{function init(){
{ global $count;
{ global $total;
{ //increment count if it exists
{ if (isset($_SESSION["count"])){
{ $count = $_SESSION["count"];

Managing Persistence with Session Variables614

{ $count++;
{ $_SESSION["count"] = $count;
{ } else {
{ //if count doesn't exist, this is our first pass,
{ //so initialize both session variables
{ $_SESSION["count"] = 1;
{ $_SESSION["total"] = 0;
{ $count = 1;
{ } // end if
{} // end init
{function rollDie(){
{ global $total;
{ $roll = rand(1,6);
{ $image = "dado_$roll.png";
{ print <<< HERE
{ <img src = "$image"
{ alt = "roll: $roll"
{ height = "100px"
{ width = "100px" />
{HERE;
{ $total = $_SESSION["total"];
{ $total += $roll;
{ $_SESSION["total"] = $total;
{} // end rollDie
{init();
{rollDie();
{print " <p>Rolls: $count</p> \n";
{print " <p>Total: $total</p> \n";
{ ?>
{ </body>
{</html>

This program rolls a die, but it uses session variables to keep track of the
number of rolls and total value rolled. The session variable is updated every
time the same user (using the same browser) visits the site.

Adding session variables to your code
Here’s how to incorporate sessions into your programs:

 1. Begin your code with a call to session_start().

 If you want to use session variables, your code must begin with a
 session_start() call, even before the DOCTYPE definition. I put a tiny
<?php ?> block at the beginning of the program to enable sessions:

<?php
 session_start();
?>

 The most common error with sessions is to not begin with session_
start(). Session variables use HTTP headers as part of the communi-
cation process, and any other code (even a blank line or innocent HTML
code) before the session_start will cause the header to be sent
without the session information. Every program that includes session
variables must begin with a session_start() call.

Book V
Chapter 5

Using Functions and
Session Variables

Managing Persistence with Session Variables 615

 2. Check for the existence of the session variables.

 Like form variables, session variables may or may not exist when the
program is executed. If this is the first pass through the program, the
session variables may not have been created yet. The init() function
checks whether the count session variable exists. If so, it will increment
the counter; if not, it will initialize the sessions. $_SESSION is a super-
global array (much like $_REQUEST).

 if (isset($_SESSION["count"])){

 3. Load session variables from the $_SESSION superglobal.

 Create a local variable and extract the current value from the $_
SESSION associative array:

$count = $_SESSION["count"];

 Note that this line may trigger an error if you haven’t already initialized
the variable. Some PHP configurations are set up to automatically assign
0 to a nonexistent session variable, and some trigger an error.

 4. Increment the counter.

 The $count variable is now an ordinary variable, so you can add a value
to it in the ordinary way:

 $count++;

 5. Store the value back into the $_SESSION superglobal.

 You can manipulate the local variable, but if you want to use the value
the next time the program runs for this user, you need to store the value
back into the session after you change it.

 For example, the following code loads the variable $count from the ses-
sion, adds 1 to it, and stores it back into the session:

$count = $_SESSION["count"];
$count++;
$_SESSION["count"] = $count;

 6. Initialize the session variables if they do not exist.

 Sometimes you need access to a session variable, but that session
doesn’t already exist. Usually, this will happen on the first pass of a
program meant to run multiple times. It will also happen if the user
jumps straight into a program without going through the appropriate
prior programs (say you have got a system with three PHP programs
and the user uses a bookmark to jump straight to program 3 without
going to program 1, which sets up the sessions). In these situations,
you’ll either want to pass an error message or quietly create new ses-
sion variables. In my example, I simply create a new session if it doesn’t
already exist. It’s an easy matter of assigning values to the $_SESSION
superglobal:

Managing Persistence with Session Variables616

 //if count doesn't exist, this is our first pass,

 //so initialize both session variables

 $_SESSION["count"] = 1;

 $_SESSION["total"] = 0;

 $count = 1;

 If you want to reset your sessions for testing purposes, you can write a quick
program to set the variables to 0, or you can clear the history. On most
browsers, clearing all history data will also clear cookies and session data,
but you may need to check additional options to ensure sessions are cleared
in your browser. Note that the session data itself isn’t stored in the cookie.
The cookie just contains a reference number so the server can look up the
session data in a file stored on the server.

The session mechanism is powerful and easy
to use. It isn’t quite foolproof, though. Sessions
are automatically handled through a browser
mechanism called cookies. Cookies aren’t
inherently good or evil, but they’ve gotten a bad
reputation because some programs use them
maliciously. You’ll occasionally run across a
user who’s turned off cookies, but this is not
a major problem because PHP can automati-
cally use other options when cookies are not
available. There’s rarely a need to work with
cookies directly in PHP because sessions are a
higher-level abstraction of the cookie concept.

Like all data passed through the HTTP proto-
col, session and cookie information is passed
entirely in the clear. A person with evil intent
can capture your session information and use
it to do bad things.

Generally, you should stay away from sensitive
information (credit card data, Social Security

numbers, and so on) unless you’re extremely
comfortable with security measures. If you
must pass potentially sensitive data in your
PHP program, investigate a technology called
TLS (Transport Layer Security), which auto-
matically encrypts all data transferred through
your site. TLS replaces the older SSL technol-
ogy and is available as a free plug-in to Apache
servers.

Also, session data does not (yet) go through
a filter like form input data. The filter_
input command is scheduled to also allow
INPUT_SESSION as an option, but it has
not yet been implemented, so session data is
manipulated through a superglobal with no
filtering protection. For this reason, don’t read
session variable from an untrusted program.
Only read session data stored by a program
you wrote or understand.

Sessions and security

Chapter 6: Working with
Files and Directories

In This Chapter
✓ Saving to text files

✓ Reading from text files

✓ Reading a file as an array

✓ Parsing delimited text data

✓ Working with file and directory functions

A
n important part of any programming language is file manipulations.
Whether you need to create a comma-separated value (CSV) file or

generate a dynamic list of files in a directory, or just need a semi-permanent
place to log records on the server, file manipulation functions are an indis-
pensable part of your PHP toolbox.

Text File Manipulation
Work with text files is split into two basic categories: writing and reading.
Writing and reading come down to six basic functions. See the following
bullet list for a brief explanation of the six basic file functions. Each function
has an entire subsection in the following “Writing text to files” and “Reading
from the file” sections:

 ✦ fopen(): Stores a connection to a file you specify in a variable you
specify

 ✦ fwrite(): Writes text you specify to a file you specify

 ✦ fclose(): Closes the connection to a file you specify that you created
with fopen()

 ✦ fgets(): Reads a line from a file you specify

 ✦ feof(): Checks whether you have hit the end of a file you specify
during a file read

 ✦ file(): Puts the entire contents of a file you specify into an array

Text File Manipulation618

Writing text to files
This section details the functions needed to access and write to a file, such
as how to request access to a file from PHP with the fopen() function, write
to the file using the fwrite() function, and let PHP know you are done with
the file with the fclose() function.

fopen()
To do any file manipulations, you must tell PHP about the file you would like
to manipulate and tell PHP how you would like to manipulate that file.

The fopen() function has two required parameters that you must pass to
it: the path to the file and the type of file manipulation you would like to per-
form (the mode).

The fopen() function returns a connection to the requested file if it’s
successful. (The connection is called a pointer — see the “Official file
manipulation terminology” sidebar for more information.) If there is an
error, the fopen() function returns False. Whatever the fopen() func-
tion returns (the connection or False), it should be assigned to a vari-
able (a stream).

Here is an example of the fopen() function; see the section “Storing data
in a CSV file” later in this chapter for an example of the fopen() function in
action:

$fileConnection = fopen($theFile, $theMode);

In the preceding example, the file connection returned by the fopen() func-
tion is assigned to the variable $fileConnection. The variable $theFile
would contain the path to a file; for example, both C:\\xampp\\htdocs\\
inc\\info.txt and /inc/log.txt are valid file paths. The file must be
in a place the server can access, meaning that you can put the file anywhere
you could put a PHP page for the server to serve.

 Although possible, you probably shouldn’t try to connect to a file in the My
Documents folder or its equivalent on your operating system. You’ll need the
actual file path, which can be quite convoluted. It’s also not necessary for
the files you open to be in the htdocs directory. This could be useful if you
want to access a file that will not be available except through your program.
Use a relative reference if the file will be in the same directory as your pro-
gram, or use an absolute reference if it will be somewhere else on your
system. If you move your program to a remote server, you can only access
files that reside on that server.

The variable $theMode would contain one of the values from the following list:

 ✦ r: Grants read-only access to the file

 ✦ w: Grants write access to the file

Book V
Chapter 6

W
orking w

ith Files
and Directories

Text File Manipulation 619

 Be careful, though, because if you specify this mode (w) for the fopen()
function and use the fwrite() function, you will completely overwrite any-
thing that may have been in the file. Don’t use w if there’s anything in the file
you want to keep.

 ✦ a: Grants the right to append text to the file. When you specify this
mode for the fopen() function and use the fwrite() function, the
fwrite() function appends whatever text you specify to the end of the
existing file.

 ✦ r+ or w+: Grants read and write access to the file. I don’t talk about r+
and w+ in this book, except to say that they’re a special way of accessing
the file, called random access. This allows you to simultaneously read and
write to the file. If you require this type of access, you probably should
be using something more simple and powerful, like relational databases.

fwrite()
After you open a file with the fopen() function and assign the file con-
nection to a variable (see the “fopen()” section, earlier in this chapter, for

If you look at the documentation for fopen(),
or any of the file manipulation functions, you
will see some funny terminology. To keep things
simple, I decided to use more recognizable,
easily understandable terms. I wanted you to
know that I switched things up a little bit to give
you a quick primer to help you out if you did
happen to look at the official documentation
or talk to a more seasoned programmer who
might use the official terms.

According to the official online PHP docu-
mentation, the fopen() function returns a
file pointer, and binds a named resource to a
stream.

What this means is that when you use the
fopen() function, it opens a file (much like
you would do if you opened the file in Notepad)
and returns a pointer to that file.

It’s as if you had put your mouse arrow at the
beginning of the file and clicked there to create
the little blinky-line cursor telling Notepad

where you are focusing (where you would like
to begin editing the text). The pointer is PHP’s
focus on the file.

With the fopen() function, PHP’s focus
is bound to a stream, which means that it is
attached to a variable. When you use the
fopen() function, you associate the file with
a variable of your choosing. This variable is
how PHP keeps track of the location of the file
and keeps track of where PHP’s cursor is in the
file. Normally, when you think of a stream, you
might think of a one-way flow. But, in this case,
the stream can either be read into the program
character by character, line by line, or you can
move the cursor around to any point in the file
that you want. So, rather than being just a one-
way flow, the stream is really an open connec-
tion to a file.

See http://us.php.net/manual/en/
function.fopen.php for more detail on
the fopen() function.

Official file manipulation terminology

http://us.php.net/manual/en/function.fopen.php
http://us.php.net/manual/en/function.fopen.php

Text File Manipulation620

more information), you can use the file in your PHP code. You can
either read from the file, or you can write to the file with the fwrite()
function.

Depending on what mode you specify when you opened the file with the
fopen() function, the fwrite() function either overwrites the entire con-
tents of the file (if you used the w mode) or it appends the text you specify to
the end of the file (if you used the a mode).

The fwrite() function has two required parameters you must pass to
it: the connection to the file that was established by the fopen()
function and the text you wish to write to the file. The fwrite() function
returns the number of bytes written to the file on success and False
on failure.

Here is an example of the fwrite() function (see the section “Storing data
in a CSV file” later in this chapter for an example of the fwrite() function
in action):

$writeResults = fwrite($fileConnection, $text);

 The fwrite() function can also be written fputs(). fwrite() and
fputs() both do the exact same thing. fputs() is just a different way of
writing fwrite(). fputs() is referred to as an alias of fwrite().

fclose()
After you finish working with the file, closing the file connection is
important.

To close the connection to a file you’ve been working with, you must pass
the connection to the file you wish to close to the fclose() function. The
fclose() function will return True if it is successful in closing the connec-
tion to the file and False if it is not successful in closing the connection to
the file.

Here is an example of the fclose() function:

fclose($fileConnection);

Writing a basic text file
Often, you’ll want to do something as simple as record information from a
form into a text file. Figure 6-1 illustrates a simple program that responds to
a form and passes the input to a text form.

Book V
Chapter 6

W
orking w

ith Files
and Directories

Text File Manipulation 621

Figure 6-1:
Here’s a
standard
form that
asks for
some
contact
information.

I didn’t reproduce the code for this form here because it’s basic HTML. Of
course, it’s available on the book’s companion website, and I encourage you
to look it over there. See this book’s Introduction for more on the companion
website.

When the user enters contact data into this form, it will be passed to a pro-
gram that reads the data, prints out a response, and stores the information
in a text file. The output of the program is shown in Figure 6-2.

The basic HTML form shown here is fine, but
you’ll find that when you start putting forms on
the web, you’ll eventually get attacked by robot
spam programs using your form to post (often
inappropriate) content through your form.

The best solution to this is a technique called
CAPTCHA, which is a mechanism for determin-
ing whether a form is submitted by a human or
a computer. When you fill out forms online and
have to type random words or letters from a
weird image, you’re using a form of CAPTCHA.

You can implement a very simple form of
CAPTCHA by converting your form to a PHP
page. Create a simple math problem and store
the answer in a session variable. Ask the user
to solve the problem and submit the response
as part of the form. Have your program check
the user’s answer against the session.

Although this will not prevent a concerted
attack, it is good enough for basic protection.

I’m being attacked by robots!

Text File Manipulation622

Figure 6-2:
This
program has
responded
to the file
input.

The more interesting behavior of the program is not visible to the user. The
program opens a file for output and prints the contents of the form to the
end of that file. Here are the contents of the data file after a few entries:

first: Andy
last: Harris
email: andy@aharrisbooks.net
phone: 111-1111

first: Bill
last: Gates
email: bill@Microsoft.com
phone: 222-2222

first: Steve
last: Jobs
email: steve@apple.com
phone: 333-3333

first: Linus
last: Torvalds
email: linus@linux.org
phone: 444-4444

first: Rasmus
last: Lerdorf
email: rasmus@php.org
phone: 123 456 7890

The program to handle this input is not complicated. It essentially grabs
data from the form, opens up a data file for output, and appends that data to
anything already in the file. Here’s the code for addContact.php:

<!DOCTYPE html>
<html lang=”en”>
<head>

Book V
Chapter 6

W
orking w

ith Files
and Directories

Text File Manipulation 623

 <meta charset=”UTF-8”>
 <title>addContact.html</title>
 <link rel = “stylesheet”
 type = “text/css”
 href = “contact.css” />
</head>
<body>
 <?php
 //read data from form
 $lName = filter_input(INPUT_POST, “lName”);
 $fName = filter_input(INPUT_POST, “fName”);
 $email = filter_input(INPUT_POST, “email”);
 $phone = filter_input(INPUT_POST, “phone”);

 //print form results to user
 print <<< HERE
 <h1>Thanks!</h1>
 <p>
 Your spam will be arriving shortly.
 </p>
 <p>
 first name: $fName

 last name: $lName

 email: $email

 phone: $phone
 </p>
HERE;

 //generate output for text file
 $output = <<< HERE
first: $fName
last: $lName
email: $email
phone: $phone

HERE;
 //open file for output
 $fp = fopen(“contacts.txt”, “a”);
 //write to the file
 fwrite($fp, $output);
 fclose($fp);
 ?>
</body>
</html>

The process is straightforward:

 1. Read data from the incoming form.

 Just use the filter_input mechanism to read variables from the form.

 2. Report what you’re doing.

 Let users know that something happened. As a minimum, report the
contents of the data and tell them that their data has been saved. This is
important because the file manipulation will be invisible to the user.

 3. Create a variable for output.

 In this simple example, I print nearly the same values to the text file
that I reported to the user. The text file does not have HTML formatting
because it’s intended to be read with a plain text editor. (Of course, you
could save HTML text, creating a basic HTML editor.)

Text File Manipulation624

 4. Open the file in append mode.

 You might have hundreds of entries. Using append mode ensures that
each entry goes at the end of the file, rather than overwriting the previ-
ous contents.

 5. Write the data to the file.

 Using the fwrite() or fputs() function writes the data to the file.

 6. Close the file.

 Don’t forget to close the file with the fclose() function.

 The file extension you use implies a lot about how the data is stored. If you
store data in a file with an .txt extension, the user will assume it can be read
by a plain text editor. The .dat extension implies some kind of formatted
data, and .csv implies comma-separated values (explained later in this chap-
ter). You can use any extension you want, but be aware you will confuse the
user if you give a text file an extension like .pdf or .doc.

 In this program, I joke about sending spam to the user, but of course I don’t
do it. If you really do want to send e-mails to people in a list, it’s not difficult
to do. Look up the mail(to, subject, message) function in the PHP
documentation. Of course just because you can do something doesn’t mean
you should. If you send e-mails to folks without their permission, they will
consider you a spammer, and often you can get kicked off of your server for
this behavior. The ability to send e-mails with PHP has been heavily abused
by spammers, so a number of servers have turned off this feature for the
cheaper hosting plans.

Your programs will be loading and storing files,
so you need to know a little about how this
works. If you’re using a Windows-based server,
you will probably have no problems because
Windows has a very simplistic file permission
system. However, your program will probably
be housed on a Unix-like system eventually,
so you need to understand a bit about how
file permission works on these systems. In the
Unix/Linux world, each file has an owner, and
that owner can designate who can do what
with a file. Typically, if your program creates a
file, it can write to it and read from it, but this
isn’t always the case. If you get a file-access

error when testing these programs, it’s likely
that the operating system is confused about
who the file’s owner is and what can be done
to the file. You should be able to change the
ownership of a file and its permissions through
the file management system of your server or
your FTP client (see Book VIII for more about
these tools). Begin by trying to set the permis-
sion of your data file to 777 (all permissions for
all users). If you cannot do this, you may need
to change ownership to yourself. Try right-
clicking the filename in your tool and looking
for a Properties dialog box for these options.

A note about file permissions

Book V
Chapter 6

W
orking w

ith Files
and Directories

Text File Manipulation 625

Reading from the file
If you can write data to a file, it would make sense that you could read from
that file as well. The readContact.php program displayed in Figure 6-3 pulls
the data saved in the previous program and displays it to the screen.

Figure 6-3:
This
program
reads the
text file and
displays it
onscreen.

It is not difficult to write a program to read a text file. Here’s the code:

<!DOCTYPE html>
<html lang=”en”
<head>
 <meta charset=”UTF-8”
 <title>readContact.php</title>
</head>
<body>
<h1>Contacts</h1>
<div>
 <?php
 //open up the contact file
 $fp = fopen(“contacts.txt”, “r”) or die(“error”);
 //print a line at a time
 while (!feof($fp)){
 $line = fgets($fp);
 print “$line
”;
 }

 //close the file
 fclose($fp);
 ?>
</div>
</body>
</html>

Using Delimited Data626

The procedure is similar to writing the file, but it uses a while loop.

 1. Open the file in read mode.

 Open the file just as you do when you write to it, but use the r designa-
tor to open the file for read mode. Now you can use the fgets() func-
tion on the file.

 2. Create a while loop for reading the data.

 Typically, you’ll read a file one line at a time. You’ll create a while loop
to control the action.

 3. Check for the end of the file with feof().

 You want the loop to continue as long as there are more lines in the file.
The feof() function returns the value true if you are at the end of the
file and false if there are more lines to read. You want to continue as
long as feof() returns false. The exclamation point (!) operator is a
logical not. The condition !feof($fp) is true when there is data left in
the file and false when there are no lines left, so this is the appropriate
condition to use here.

 4. Read the next line with the fgets()function.

 This function reads the next line from the file and passes that line into a
variable (in this case, $line).

 5. Print out the line.

 With the contents of the current line in a variable, you can do whatever
you want with it. In this case, I’ll simply print it out, but you could format
the contents, search for a particular value, or whatever else you want.

Using Delimited Data
This basic mechanism for storing data is great for small amounts of data, but
it will quickly become unwieldy if you’re working with a lot of information.
If you’re expecting hundreds or thousands of people to read your forms,

If this program just prints out the contents of
a text file, you might wonder why it’s neces-
sary at all. After all, you could just supply a
link to the text file. For this trivial example, that
might be true, but the process of reading the
file gives you many other options. For example,
you might want to add improved CSS format-

ting. You might also want to filter the contents:
for example, only matching the lines that relate
to a particular entry. Finally, you may want to
do more than print the contents of a file — say,
e-mail them or transfer them to another format.
When you read the contents into memory, you
can do anything to them.

Why not just link to the file?

Book V
Chapter 6

W
orking w

ith Files
and Directories

Using Delimited Data 627

you’ll need a more organized way to store the data. You can see how to use
relational databases for this type of task in Book VI, but for now, another
compromise is fine for simpler data tasks. You can store data in a very basic
text format that can be easily read by spreadsheets and databases. This has
the advantage of imposing some structure on the data and is still very easy
to manage.

The basic plan is to format the data in a way that it can be read back
into variables. Generally, you store all of the data for one form on a single
line, and you separate the values on that line with a delimiter, which is
simply some character intended to separate data points. Spreadsheets
have used this format for many years as a basic way to transport data.
In the spreadsheet world, this type of file is called a CSV (for comma-
separated values) file. However, the delimiter doesn’t need to be a
comma. It can be nearly any character. I typically use a tab character or
the pipe symbol (|) because they are unlikely to appear in the data I’m
trying to save and load.

Storing data in a CSV file
Here’s how you store data in a CSV file:

 1. You can use the same HTML form.

 The data is gathered in the same way regardless of the storage mecha-
nism. I did make a new page called addContactCSV.html, but the only
difference between this file and the addContact.html page is the action
property. I have the two pages send the data to different PHP programs,
but everything else is the same.

 2. Read the data as normal.

 In your PHP program, you begin by pulling data from the previous form.
 $lName = filter_input(INPUT_POST, “lName”);
 $fName = filter_input(INPUT_POST, “fName”);
 $email = filter_input(INPUT_POST, “email”);
 $phone = filter_input(INPUT_POST, “phone”);

 3. Store all the data in a single tab-separated line.

 Concatenate a large string containing all the data from the form. Place
a delimiter (I used the tab symbol \t) between variables and a newline
(\n) at the end.

//generate output for text file
$output = $fName . “\t”;
$output .= $lName . “\t”;
$output .= $email . “\t”;
$output .= $phone . “\n”;

 4. Open a file in append mode.

 This time, I name the file contacts.csv to help myself remember that the
contact form is now stored in a CSV format.

Using Delimited Data628

 5. Write the data to the file.

 The fwrite() function does this job with ease.

 6. Close the file.

 This part (like most of the program) is identical to the earlier version of
the code.

Here’s the code for addContactCSV.php in its entirety:

<!DOCTYPE html>
<html lang=”en”>
<head>
 <meta charset=”UTF-8”>
 <title>addContactCSV.php</title>
 <link rel = “stylesheet”

type = “text/css”
href = “contact.css” />

</head>
<body>
 <?php
 //read data from form
 $lName = filter_input(INPUT_POST, “lName”);
 $fName = filter_input(INPUT_POST, “fName”);
 $email = filter_input(INPUT_POST, “email”);
 $phone = filter_input(INPUT_POST, “phone”);

 //print form results to user
 print <<< HERE
 <h1>Thanks!</h1>
 <p>
 Your spam will be arriving shortly.
 </p>
 <p>
 first name: $fName

 last name: $lName

 email: $email

 phone: $phone
 </p>
HERE;
 //generate output for text file
 $output = $fName . "\t";
 $output .= $lName . "\t";
 $output .= $email . "\t";
 $output .= $phone . "\n";
 //open file for output
 $fp = fopen("contacts.csv", "a");
 //write to the file
 fwrite($fp, $output);
 fclose($fp);
 ?>
</body>
</html>

As you can see, this is not a terribly difficult way to store data.

Book V
Chapter 6

W
orking w

ith Files
and Directories

Using Delimited Data 629

Viewing CSV data directly
If you look at the resulting file in a plain text editor, it looks like Figure 6-4.

Figure 6-4:
The data is
separated
by tab
characters
and each
entry is on
its own line.

Of course, CSV data isn’t meant to be read as plain text. On most operat-
ing systems, the .csv file extension is automatically linked to the default
spreadsheet program. If you double-click the file, it will likely open in your
spreadsheet, which will look something like Figure 6-5.

Figure 6-5:
Most
spread-
sheets
can read
CSV data
directly.

Using Delimited Data630

This is an easy way to store large amounts of data because you can use
the spreadsheet to manipulate the data. Of course, relational databases
(described in Book VI) are even better, but this is a very easy approach for
relatively simple data sets. I’ve built many data entry systems by using this
general approach.

Reading the CSV data in PHP
Of course, you may also want to read in the CSV data yourself. It’s not too
difficult to do. Look over the following code for readContactCSV.php:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>readContactCSV.php</title>
</head>
<body>
 <h1>Contacts</h1>
 <div>
 <?php
 print <<< HERE
 <table border = "1">
 <tr>
 <th>First</th>
 <th>Last</th>
 <th>email</th>
 <th>phone</th>
 </tr>
HERE;
 $data = file("contacts.csv");
 foreach ($data as $line){
 $lineArray = explode("\t", $line);
 list($fName, $lName, $email, $phone) = $lineArray;
 print <<< HERE
 <tr>
 <td>$fName</td>
 <td>$lName</td>
 <td>$email</td>
 <td>$phone</td>
 </tr>
HERE;
 } // end foreach
 //print the bottom of the table
 print "</table> \n";
 ?>
 </div>
</body>
</html>

Figure 6-6 shows this program in action.

Book V
Chapter 6

W
orking w

ith Files
and Directories

Using Delimited Data 631

Figure 6-6:
This
program
creates an
HTML table
from the
data in the
file.

In this program, I read the contents of a CSV file and display it in an HTML
table. It’s not terribly different than reading any other text file, but there are
some new twists.

 1. Print the table heading.

 It’s easiest to manually print out the table heading with the field names,
because I know what they’ll be. A simple heredoc will do the job.

print <<< HERE
<table border = "1">
 <tr>
 <th>First</th>
 <th>Last</th>
 <th>email</th>
 <th>phone</th>
 </tr>
HERE;

 2. Load the data into an array.

 PHP has a marvelous tool called file. This function takes a filename
as its only input. It then opens that file and places all the contents in an
array, placing each line in its own element of the array. There’s no need
to make a file pointer, or to open or close the file. In this example, I load
all the contents of contacts.csv into an array called $data.

$data = file("contacts.csv");

 3. Use a foreach loop to step through the contents.

 Now I can walk through the contents of the file with a simple foreach
loop. I place the current line in a variable called (wait for it . . .) $line.

foreach ($data as $line){

Using Delimited Data632

 4. Explode each line into its own array.

 You have got to love a function with a violent name, especially when
it’s really useful. Use the explode command to separate the line
into its component parts. For this example, I break on the tab (\t)
character because that’s the delimiter I used when storing the
file.

 $lineArray = explode("\t", $line);

 5. Use the list()function to store each element of the array into its
own variable.

 I could just use the array, but I think it’s easier to pass the data back to
the same variable names I used when creating the program. The list()
construct does exactly that. Feed it a bunch of variable names and
assign an array to it, and now each element of the array will be assigned
to the corresponding variable.

 list($fName, $lName, $email, $phone) = $lineArray;

 6. Print the variables in an HTML table row.

 All the variables fit well in an HTML table, so just print out the current
row of the table.

 print <<< HERE
 <tr>
 <td>$fName</td>
 <td>$lName</td>
 <td>$email</td>
 <td>$phone</td>
 </tr>
HERE;

 7. Clean up your playthings.

 There’s a little housekeeping to do. Finish the loop and close up the
HTML table. There’s no need to close the file because that was automati-
cally done by the file() function.

 } // end foreach
//print the bottom of the table
print "</table> \n";

These shortcuts — the file() function and list() — make it very easy to
work with CSV data. That’s one reason this type of data is popular for basic
data problems.

 The list() construct works only on numerically indexed arrays and
assumes that the array index begins at 0. If you want to use the list()
function with associative arrays, surround the array variable with the
array_values() function. Technically, list() is not a function but a lan-
guage construct. (See http://us3.php.net/list for more information on
the list() function.)

http://us3.php.net/list

Book V
Chapter 6

W
orking w

ith Files
and Directories

Working with File and Directory Functions 633

 The file() function is appealing, but it isn’t perfect for every situation. It’s
great as long as the file size is relatively small, but if you try to load in a very
large file, you will run into memory limitations. The “line at a time” approach
used in readContact.php doesn’t have this problem because there’s only a
small amount of data in memory at any given time.

 HTML purists tend to freak out whenever they see an HTML table. It’s true
that HTML tables were once horribly abused as a layout technique, but that
doesn’t mean they should never be used. It’s perfectly suitable to use a table
tag to lay out tabular data, which is exactly what I’m doing in this program.

Working with File and Directory Functions
Sometimes, you may need PHP to work with files in a directory. Say you
have a reporting tool for a client. Each week, you generate a new report
for the client and place it in a directory. You don’t want to have to alter
the page each time you do this, so instead, make a page that automatically
generates a list of all the report files for the client to select from. This is the
kind of thing you can do with functions like openddir() and readdir().

opendir()
Using the opendir() function, you can create a variable (technically speak-
ing, this type of variable is called a handle) that allows you to work with a
particular directory.

The opendir() function takes one parameter: the path to the directory
you want to work with. The opendir() function returns a directory handle
(kind of like a connection to the directory) on success and False on failure.

If you’re planning on displaying the user’s input
to the screen, escape all the special charac-
ters before saving the user’s input to a file or
sending it to the browser. Otherwise, some
malicious user could use some simple CSS and
HTML to really mess up your page. Remember:
Paranoia is your friend. The simplest way to
guard against this is to use the htmlenti-
ties() function:

$userInput = htmlentities($userInput);

This function converts any HTML characters
the user may have entered into the character’s

HTML entities equivalent. That is, if the
user entered <div>, it’d be converted to
<div>. When you display it back to
the page, instead of creating a new HTML div,
the browser will simply output the literal string
<div> to the user.

If, for some reason, you want to decode these
entities, use the html_entity_decode()
function. This works exactly like its htmlen-
tities() counterpart, just in reverse.

Escaping with HTML entities

Working with File and Directory Functions634

Here is an example of the opendir() function (see the “Generating the list
of file links” section to see the opendir() function in action). This function
stores a directory handle to the C:\xampp\htdocs\XFD\xfd5.7 directory
in the $directoryHandle variable:

$directoryHandle = opendir("C:\xampp\htdocs\XFD\xfd5.7");

readdir()
After you open the directory with the opendir() function, you have a
cursor pointed at the first file. At this point, you can read the filenames one
by one with a while loop. To do this, use the readdir() function.

The readdir() function takes one parameter: the variable containing the
directory handle created with the opendir() function. The readdir()
function returns the name of a file currently being focused on by the cursor
on success and False on failure.

Here is an example of the readdir() function. This function iterates
through each file in the directory specified by $dp and assigns the filename
of the current file to a new index in $fileArray array:

while($currentFile !== false){
 $currentFile = readDir($dp);
 $filesArray[] = $currentFile;
}

The actual readdir() function itself is readdir($dp). For more on the
readdir() function, see the official PHP online documentation at http://
us.php.net/function.readdir.

 In some circumstances, the readdir() function might return non-Boolean
values which evaluate to False, such as 0 or ““. When testing the return
value of the readdir() function, use === or !==, instead of == or !=, to
accommodate these special cases.

chdir()
If you want to create a file in a directory other than the directory that the
PHP page creating the file is in, you need to change directories. You change
directories in PHP with the chdir() function.

 If you want to be absolutely sure that you’re in the right directory before
writing the file, you can use an if statement with the getcwd() function.
This is usually a bit of overkill, but it can be helpful.

The chdir() function takes one parameter: the path to the directory you
wish to work with. The chdir() function returns True on success and
False on failure.

http://us.php.net/function.readdir
http://us.php.net/function.readdir

Book V
Chapter 6

W
orking w

ith Files
and Directories

Working with File and Directory Functions 635

Here is an example of the chdir(). This function changes to the C:\
xampp\htdocs\XFD\xfd5.6 directory:

chdir("C:\xampp\htdocs\XFD\xfd5.6");

When you change to a directory, you’re then free to write to it with the
fwrite() function. See the “fwrite()” section, earlier in this chapter.

Generating the list of file links
Using the opendir() and readdir() functions, you can generate a list of
links to the files in a directory.

Take a look at the PHP code for the file links list example; see Figure 6-7 for
the HTML generated by this example:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>fileList.php</title>
</head>
<body>

 <?php
 $dp = opendir(".");
 $currentFile = "";
 while($currentFile !== false){
 $currentFile = readDir($dp);
 $filesArray[] = $currentFile;
 } // end while
 //sort the array in alpha order
 sort($filesArray);
 //write the output
 $output = "";
 foreach($filesArray as $aFile){
 $output .= " $aFile \n";
 } // end foreach
 print "$output";
 ?>

</body>
</html>

Here’s how the fileList.php program performs its magic:

 1. Open a directory pointer to the current directory.

 In all major operating systems, the period (.) character indicates the
current directory.

$dp = opendir(".");

 2. Build a loop that repeats until there are no files left.

 The special !== comparison is used to prevent rare problems, such as
files named false. (Yes, believe it or not, that sometimes happens.)

while($currentFile !== false){

Working with File and Directory Functions636

 3. Read the next file from the directory pointer.

 The readDir() function reads the next file in and stores it to a variable
($currentFile).

 $currentFile = readDir($dp);

 4. Append the current file to an array.

 If you simply assign a file to an array without an index, PHP places the
element in the next available space.

 $filesArray[] = $currentFile;

 5. Sort the array.

 The files won’t be in any particular order in the array, so use the sort()
function.

sort($filesArray);

 6. Print each element of the array.

 I use an unordered list of links to display each file. Make it a link so that
the user can click the file to view it directly.

foreach($filesArray as $aFile){
 $output .= " $aFile \n";
} // end foreach

 On a Windows server, you have to escape the backslashes in the file path.
You do this by adding a backslash before the backslashes in the file path.
(For example, you would write C:\\xampp\\htdocs\\XFD\\xfd5.7\\
instead of C:\xampp\htdocs\XFD\xfd5.7\.) On a Unix server, you don’t
have to do this because file paths use slashes (/) instead of backslashes (\).

Figure 6-7:
A list of
links to all
files in the
directory
specified
by the
opendir()
function.

Book V
Chapter 6

W
orking w

ith Files
and Directories

Working with File and Directory Functions 637

If you want just one particular file type, you can use regular expressions to
filter the files. If I had wanted only the .txt and .dat files from the direc-
tory, I could have run the file’s array through this filter to weed out the
unwanted file types:

$filesArray = preg_grep("/txt$|dat$/", $filesArray);

For more on regular expressions, check Book IV, Chapter 5 as well as
Chapter 4 of this book.

638 Book V: Server-Side Programming with PHP

Chapter 7: Exceptions and Objects

In This Chapter
✓ Introducing PHP objects

✓ Creating a constructor

✓ Adding properties and methods to objects

✓ Using access modifiers to protect data

✓ Building sub-classes with inheritance

✓ Trapping for errors with exception handling

P
HP has become a critically important part of web programming, and
it has undergone a number of important transformations. As PHP

becomes more mainstream, it is adopting a number of features from more
traditional languages. Two of these important features are object-oriented
programming (OOP) and exception handling. Objects are re-usable com-
ponents that encapsulate data and functions (first mentioned in Book IV,
Chapter 4). Exception handling is a mechanism used to detect and grace-
fully recover from errors. Both object-oriented programming and exception
handling are important parts of modern data programming, which is the
heart of most practical PHP coding.

Object-Oriented Programming in PHP
After you’ve written a few programs, you probably begin to notice a few
patterns:

 ✦ Programming is hard: Writing code that does what you want is not
easy.

 ✦ Code should be re-used when possible: After you get something work-
ing, you want to reuse that code as much as possible to avoid the pain
of writing completely new code all the time.

 ✦ Programs are about data and instructions: Programs are about both
data and the instructions needed to manipulate that data. Data are
stored in variables and instructions are stored in functions.

 ✦ Abstraction is a good thing: Functions are great because they hide
details and let you solve problems in a bigger way. An even higher level of
abstraction (which collects both functions and data) might be even better.

These ideas occurred to computer scientists, too, and the result is a style
of programming called object-oriented programming (OOP). OOP was first

Object-Oriented Programming in PHP640

described in Book IV, Chapter 4 as a feature of JavaScript. PHP also supports
object-oriented programming, but does it in a slightly different way.

 JavaScript and PHP both support object-oriented programming, but the
details are very different. If you’re comfortable with OOP in JavaScript, you
should still look closely at the way PHP does things. The PHP mechanisms
are actually very similar to those in C++, which is one of the most commonly
used multi-purpose programming languages, so learning the PHP technique
is a great idea. After you get past the differences in details, you’ll see that the
big ideas of OOP remain the same even when the language implementation
changes.

The PHP mechanisms for OOP are important to learn because many of the
advanced libraries you’re likely to use are object-oriented, and because
properly implemented OOP can tame complex programs in a big way.

Building a basic object
Start your experiments in OOP by looking over a simple PHP file:

<?php
//SimpleCritter.php
//meant to be included

class Critter{
 public $name;

 public function __construct($name = "Anonymous"){
 $this->name = $name;
 } // end constructor

 public function sayHi(){
 return "Hi. My name is $this->name.";
 } // end sayHi method

} // end critter def
?>

This is an interesting PHP file because it doesn’t follow the patterns you’ve
seen before. This code isn’t meant to be run directly, but to be reused by
other code. Here are the highlights:

 1. No HTML needed here.

 This file is pure PHP. It doesn’t need any HTML at all because it will be
called by another PHP program. Code reuse is the goal here, so this is
code designed to be reused.

 2. Define a class.

 Use the class keyword to define a class (that is, the recipe for making
the object). In this example, I’m defining the Critter class. Note that
class names are typically capitalized.

Object-Oriented Programming in PHP 641

Book V
Chapter 7

Exceptions and
Objects

 3. Define a property.

 If you define a variable inside a class, it becomes a property. Properties
are much like variables, but they live inside a class. The keyword
public indicates that the variable will be available to any code that
wants it. (Not a great idea, as it turns out, but let’s keep this first exam-
ple simple. See the section Protecting your data with access modifiers to
see the problems public properties can cause and how to resolve these
problems.) Properties are the characteristics of an object.

 4. Define a method.

 Skip ahead to the function sayHi(). For the most part, it looks just like
any other function. But when a function is defined inside an object, it
becomes a method. Methods are things the object can do. Most methods
are declared public. Methods, like other functions, can have parameters
and return values.

 5. Use $this to refer to the current object.

 Within an object definition, the special keyword $this refers to the object
currently being defined. The $this keyword is normally used to differentiate
properties and methods from ordinary variables and functions.

 6. $this->name refers to the name property.

 The special symbol -> is a dereference operator. Really that’s fancier than
it sounds. It simply indicates that name is part of the object. ($this-
>name in PHP works pretty much like this.name in JavaScript.)

 7. Build a constructor.

 In addition to ordinary methods, objects can have a special method called
a constructor. In PHP, the constructor is called __constructor (with two
preceding underscores). Constructors are special functions that are auto-
matically called when a class is being instantiated. (That is, you’re baking
a cookie from the recipe.) Constructors are normally used to initialize all
the properties and set up any housekeeping that might be necessary when
a new instance of the class is being created. Traditionally, the constructor
is listed as the first method in the class even if it isn’t always written first.

 8. The constructor takes a parameter.

 Like any function, a constructor can take one or more arguments. In this
case, I want the option to name a critter as soon as it’s built, so the con-
structor has a $name parameter.

 9. The parameter has a default argument.

 If the user doesn’t specify a parameter, the constructor will assign
“Anonymous” as a default value.

 10. End the class definition.

 The entire class definition goes inside a pair of squiggly braces, so don’t
forget to indent your code and comment on end quotes so it’s clear what
you’re ending.

Object-Oriented Programming in PHP642

Using your brand-new class
What you did in simpleCritter.php was create the definition of a class. It’s
like writing a recipe. This file contains the instructions for building a class,
but you’ll generally use a class in a different project (or many — if your class
is useful, you’ll use it many times).

Take a look at useCritter.php shown in Figure 7-1. The screenshot doesn’t
look like much, but there are a lot of interesting things happening behind the
scenes. Here’s the code:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>UseCritter</title>
</head>
<body>
 <?php

 require_once("simpleCritter.php");
 $a = new Critter("Jack");

 //referring to a property
 print "Name: $a->name
";

 print $a->sayHi();

 ?>
</body>
</html>

Figure 7-1:
This simple
page is the
result of
some fancy
object-
oriented
shenanigans.

Object-Oriented Programming in PHP 643

If simpleCritter.php was about defining the class (writing a recipe),
useCritter.php is about creating an instance (making cookies from the
recipe). Here’s how it works:

 1. Store useCritter.php and simpleCritter.php in the same directory.

 You can use complicated directory structures if you want, but when you’re
getting started, keep things as simple as you can by keeping everything
together. This program (useCritter.php) needs simpleCritter.php, so put
them in the same place until you’ve got a good reason to do otherwise.

 2. Require simpleCritter.php file.

 PHP has a number of tools that allow access to another file. The most
commonly used of these functions is require_once(). This function
will import an external file and is extremely handy for code reuse.

 require_once("simpleCritter.php");

 PHP has four different functions that all seem to do the same thing:
include(), include_once(), require(), and require_once().
The differences are subtle, and not terribly important for a beginner, but
you should still know what they are. If you use include() or include_
once() and the file is not there, the program will keep on going anyway
(but will probably crash because something you needed is not avail-
able). If you use one of the require functions and the file is not available,
the program stops immediately.

 I use require() instead of include() because if I’m calling an external
file and it’s not there, I want to know right away. The once directive adds
another security feature: if you’ve already required the file once, it won’t be
loaded into memory again. This seems silly unless you’ve done some C++
programming and you remember how awkward the mechanism for prevent-
ing multiple inclusions of the same file is. For now, stick with require_
once(). It almost always serves your needs for file inclusion in PHP.

 3. Create an instance of your new class.

 Make a variable (I called mine '$a') and use the new keyword to make
this variable an instance of the Critter class. Because the Critter
constructor takes a single string parameter, I pass a name to the Critter.

 $a = new Critter("Jack");

 4. Refer to properties as ordinary variables.

 Any public properties of a class can be manipulated like ordinary variables,
but use the full name ($a->name) to refer to the property. You can think
of a property as a sub-variable inside a larger variable (the class). You can
read from a property or write to it just like any other variable (although as
you see in the next section, this is often discouraged in real life).

 //referring to a property
 print "Name: $a->name
";

Book V
Chapter 7

Exceptions and
Objects

Object-Oriented Programming in PHP644

 5. Call a method just like a function call.

 Methods are very much like functions, except they are attached to a
class instance. Call a method just like you would a function, but use the
full name ($a->sayHi()).

 print $a->sayHi();

The object in this simple example is extremely simplistic, but the power of
objects comes when you have a lot of them and they become more complex.
Objects allow you to encapsulate the data and behavior of entities, which is a
very powerful concept.

Protecting your data with access modifiers
The simpleCritter class defined in the previous section does the job, but
it can be improved. As computer scientists began working with data, one of
the biggest problems they encountered was trustworthiness. How can you be
sure that the data in your program is what it’s supposed to be? The best way
to ensure good data is to have some sort of gatekeeping mechanism so that
data cannot be changed without going through some sort of filter. Objects
have exactly this sort of characteristic. Take a look at the improved Critter.
php file:

<?php
//Critter with access modifiers

class Critter{
 //now the property is protected
 protected $name;

 public function __construct($name = "Anonymous"){
 $this->name = $name;
 }

 public function setName($name){
 $this->name = $name;
 }

 public function getName(){
 return $this->name;
 }

 public function sayHi(){
 return "Hi. My name is $this->name.";
 }

} // end critter def
?>

This class definition is almost like the last one, but it has one key difference:
the name property cannot be changed directly. Here’s what the code does:

Object-Oriented Programming in PHP 645

 1. Defines properties as protected.

 There are three access modifiers you can use in PHP, which define the
accessibility of a property or method. In the SimpleCritter class,
you used public access throughout. The other modifiers you can use
are private (which means this element is available only to the current
class) and protected (for now, you can think of private and pro-
tected as the same). (I describe the difference in the section of this
chapter called “How to inherit the wind (and anything else).”)

 2. Adds a setter for each property.

 When you’ve set a property to private or protected, you’ve
 indicated that element cannot be modified from the outside. However,
there’s a loophole. You can (and should) write your own methods to
allow access to protected properties. A setter method is almost always
named something like setPropertyName() and it takes a single
 argument. A setter then might check the property for validity, and then
will pass it to the instance variable. In this simplistic example, I’ll allow
any string, but if I had (for example) an angle property that measures
in degrees, I might want to check that the input was a numeric value
between 0 and 360. A setter allows you to manage data input.

 3. Adds a getter for each property.

 A getter method is almost always named something like getProperty-
Name() and it doesn’t take any arguments. Usually it simply returns the
property value. Typically you’ll have both a getter and a setter for each
property.

Using access modifiers
When you’ve defined your objects with secure properties, all of the interac-
tions with that object tend to be with methods. Here’s an example:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Use Access Modifiers</title>
</head>
<body>
 <?php
 require_once("Critter.php");

 $a = new Critter("Nobody");
 //this line is no longer legal:
 // print $a->name;

 //Use the methods instead
 $a->setName("Brayden");

Book V
Chapter 7

Exceptions and
Objects

Object-Oriented Programming in PHP646

 print "Hi, " . $a->getName() . "!
";
 ?>

</body>
</html>

Figure 7-2 shows the (underwhelming) output of accessMod.php. A lot of
times in programming the most important changes are not obvious to the
user.

Figure 7-2:
This critter
is better-
behaved
than the last
one.

This example is similar to the useCritter.php demonstration, but now I’m
using the enhanced critter with protected data. Here are the differences:

 1. This example requires the enhanced Critter file.

 I stored the protected version of Critter in a file called Critter.php so
that’s the file I require for this example.

 2. You can no longer manipulate the property directly.

 Attempting to access the property directly (either reading from or writ-
ing to the property) will now result in an error.

 3. This example uses the access methods to interact with the property.

 Use setName() to change the name and getName() to get the name.

You’ve Got Your Momma’s Eyes: Inheritance 647

I hear you. The first object example (with
public properties) was easy to understand and
seems to work just fine. Then I suggest making
it a little more complicated by protecting the
properties, which makes you work a little
harder by adding new methods, which makes
you work a little harder yet by using those
methods. It all seems unnecessary and a bit
arbitrary, when the more basic object seems
to be working fine.

However, protecting data members as I’m
describing here is a really big deal, and it’s
worth doing (even though that isn’t obvious in
this very contrived example). Here’s why:

 ✓ It’s hard to repair data errors: Data errors
are notoriously hard to fix after the fact. It’s
much better to have a mechanism to pre-
vent these errors in the first place. That’s
what private properties are all about —
preventing bad data.

 ✓ Some data needs to fall within certain
parameters: Imagine you have some sort of
class that needs an angle in degrees. You’ll
want this to be a numeric value between 0
and 360. With an ordinary variable or public
property, there’s no way to be certain the
value is within the expected range. With

a setter method, you can guarantee that
the value will be in the expected range.

 ✓ Some “properties” aren’t properties at all:
Think about a class that defines a circle.
At first you probably think you’d want
properties for radius, circumference, and
area. However, what if you allowed the
user to change all these things? Should
we allow a circle with a radius of one and
an area of one? (Answer: only if we’re
extremely close to a black hole and the
laws of space and time are breaking down.)
Typically, you’d only store the radius, but
you supply getCircumference() and
getArea() methods that will calculate
these values based on the current radius. To
the user, circumference and area are “read-
only” properties because they can be read
but not changed directly. If you wanted to
allow the user to change the area, you could
do so, but you’d really reverse- engineer the
new radius and change that.

 ✓ It’s often the law: Most software shops
and computer science teachers are going
to require you to protect your data when-
ever possible, so you might as well learn
how to do so now.

Seriously? You want me to work harder
so I can . . . work harder?

You’ve Got Your Momma’s Eyes: Inheritance
Object-oriented programming has another feature which makes it very
useful for large projects. Many objects are related to each other, and you can
use a family tree relationship to simplify your programming. Consider the
following example, shown in Figure 7-3.

Book V
Chapter 7

Exceptions and
Objects

You’ve Got Your Momma’s Eyes: Inheritance648

Figure 7-3:
This critter
has an
attitude.

Building a critter based on another critter
There’s a new critter in town. This one has the same basic features, but a
worse attitude. Take a look at the code to see what’s going on:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>inherit.php</title>
</head>
<body>
 <?php
 require_once("Critter.php");

 class BitterCritter extends Critter{

 //all properties and methods inherited from Critter

 //You can add new properties and methods
 public function glower(){
 return "$this->name glowers at you without saying anything.";
 } // end glower

 //if you over-write an existing method, the behavior changes
 public function talk(){
 return "None of your business!";
 } // end talk

 } // end class def

 $a = new BitterCritter();

 print $a->glower() . "
";
 print $a->talk() . "
";

 ?>
</body>
</html>

You’ve Got Your Momma’s Eyes: Inheritance 649

This example is an illustration of a very common programming situation,
where I want a specialization of a previously defined class. I already have
a Critter class, but I want a new kind of Critter. My new critter (the
BitterCritter) begins with the same general characteristics of the
ordinary critter, but brings a new twist. (I could also develop others — the
GlitterCritter, SpitterCritter, and HitterCritter come to
mind . . .) The object-oriented idea of inheritance is a perfect way to handle
this situation.

 If you followed the conversation about object-oriented programming in
JavaScript, you might wonder why I didn’t talk much about inheritance in
Book IV. JavaScript supports a different form of object-oriented programming
based on an idea called prototyping rather than inheritance. People have long
and boring conversations about which technique is better, but ultimately it
doesn’t matter much. Most OOP languages support the form of inheritance
used in PHP, so you should really know how it works.

How to inherit the wind (and anything else)
Here’s how to implement inheritance:

 1. Begin with an existing class.

 For this example, I begin with the ordinary Critter class, which I
import with the require_once() function.

 2. Create your new class with the extends keyword.

 As you define the class, if you use the extends keyword to indicate
which class you are inheriting, your new class will begin with all the
properties and methods of the parent class.

 3. You can access public and protected elements of the parent, but not
private ones.

 If a property or method was defined as private in the original class, it’s
truly nobody else’s business. No other code fragments can access that
element. Generally though, when you inherit from a class, the new child
class should have access to the parent class’s elements. That’s why I
typically create properties as protected rather than private.

 4. Add new properties and methods.

 You can extend your new class with additional properties and meth-
ods that the parent did not have. The BitterCritter now features a
glower() method that ordinary critters do not have.

 5. You can also overwrite parent behavior.

 If you redefine a method that the parent class had, you are changing the
behavior of the new class. This allows you to modify existing behaviors
(a form of an object-oriented idea called polymorphism). In this example,
I modify the bitterCritter’s talk method to be more bitter.

Book V
Chapter 7

Exceptions and
Objects

Catching Exceptions650

 This demonstration is just the barest glimpse into object-oriented program-
ming. There is much more to this form of software development than I can
describe in this introductory chapter, but the basics are all here. Though
you might not immediately see the need to build your own objects from
scratch, you will definitely encounter object-oriented PHP code as you begin
exploring more complex ideas like data programming and content manage-
ment systems.

Catching Exceptions
Real-life programming is dangerous. Lots of things can go wrong. So the
smart way to program data is defensive programming. This practice involves
anticipating errors and trying to resolve them gracefully. PHP has some
advanced error-handling techniques available which are perfect for the task.

Imagine you wrote some code that looked like this:

print 5 / 0;

I know you wouldn’t do that, but sometimes bad code slips through. If
your server is set up to pass out error messages, you’ll see something like
Figure 7-4.

Figure 7-4:
PHP reports
a useful
error
message
(most of the
time).

Introducing exception handling
There’s actually a lot more going on in Figure 7-4 than you might appreci-
ate at first. The default behavior of many PHP installations is to hide errors.
(Denial: my favorite coping mechanism.) However, errors occur, especially if

Catching Exceptions 651

you allow user input. This code listing explicitly traps for errors and reports
them regardless of server settings:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>try.php</title>
</head>
<body>
 <p>
 <?php
 try {
 5 / 0;
 } catch (Exception $e){
 print $e->getMessage();
 } // end try

 ?>
 </p>
</body>
</html>

Here’s what’s happening:

 1. Use the try keyword to indicate potentially dangerous code.

 The try keyword opens up a block of code (like a loop or condition). All
the code between try and catch is considered potentially dangerous.

 2. Place dangerous code in the try block.

 Any code that might cause errors should be placed inside the try block.
In this (incredibly contrived) example, I put a line of code that would
cause any self-respecting math teacher’s head to explode. The most
dangerous code usually involves things the programmer can’t directly
control: access to external files, operations on user-defined data, or
exposure to external programs and processes.

 3. Use the catch clause to anticipate errors.

 The catch clause indicates the end of the dangerous code.

 4. Indicate the exception type.

 The parameter for the catch clause is an object of type Exception.
PHP has a number of built-in exceptions, and often a library or toolset
will include new exceptions (you can also build them yourself if you
want). In this generic case, I call the stock Exception, which triggers on
any kind of exception. (If you want, you can have multiple catch state-
ments, each triggering on a different kind of exception.)

 5. Manage the exception.

 The catch clause opens another block of code. Put the code in here that
will resolve the problem (or at least die with a little style and grace —
informing the user what went wrong before shuffling off this mortal coil).

Book V
Chapter 7

Exceptions and
Objects

Catching Exceptions652

The most common line here is to call print($e->getMessage()). All
exception objects have a getMessage() method, and this line reports
the current error message.

Knowing when to trap for exceptions
If your server is set up for debugging (as XAMPP is by default), it won’t usu-
ally be necessary to set up exception handling because the default behavior
of a debug setup is to report the exceptions anyway. There are a few times
you’ll still want explicit exception handling:

 ✦ You’re on a server without debug settings: You may not have access to
the server configuration, so you might not be able to turn on automatic
exception reports. Manual exception reports (as done in this unit) still
get through.

 ✦ You want to do something special: The automatic exception handler
simply reports the problem. If you want to do something else (say, use a
default file if a file is not found), you’ll need a custom exception handler
for that situation.

 ✦ You’re doing something exotic: Special libraries (like the PDO library
described in Book VI, Chapter 5) often come with their own custom
exceptions, and you’ll need an exception handler to cover these
 situations.

 Visit www.dummies.com/extras/html5css3aio for more on SQLite and
alternative data strategies.

Part VI
Managing Data with MySQL

http://www.dummies.com/extras/html5css3aio

Contents at a Glance

Contents at a Glance

Chapter 1: Getting Started with Data .655
Examining the Basic Structure of Data ...655
Introducing MySQL ..660
Setting Up phpMyAdmin ..663
Implementing a Database with phpMyAdmin ..674

Chapter 2: Managing Data with MySQL . .679
Writing SQL Code by Hand ..679
Running a Script with phpMyAdmin ..683
Using AUTO_INCREMENT for Primary Keys ..686
Selecting Data from Your Tables ..688
Editing Records ...696
Exporting Your Data and Structure ..697

Chapter 3: Normalizing Your Data .705
Recognizing Problems with Single-Table Data ..705
Introducing Entity-Relationship Diagrams ..709
Introducing Normalization ...713
Identifying Relationships in Your Data ..717

Chapter 4: Putting Data Together with Joins . .719
Calculating Virtual Fields ...719
Calculating Date Values...721
Creating a View ...726
Using an Inner Join to Combine Tables ..728
Managing Many-to-Many Joins ..733

Chapter 5: Connecting PHP to a MySQL Database741
PHP and MySQL: A Perfect (but Geeky) Romance ...741
Allowing User Interaction ...751

Chapter 1: Getting Started
with Data

In This Chapter
✓ Understanding databases, tables, records, and fields

✓ Introducing the relational data model

✓ Introducing a three-tier model

✓ Understanding MySQL data types

✓ Getting started with MySQL and phpMyAdmin

✓ Adding a password to your MySQL root account

✓ Creating new MySQL users

✓ Designing a simple table

✓ Adding data to the table

M
ost programs and websites are really about data. Data drives the
Internet, so you really need to understand how data works and how

to manage it well if you want to build high-powered, modern websites.

The trend in web development is to have a bunch of specialized languages
that work together. HTML describes page content, CSS manages visual layout,
JavaScript adds client-side interactivity, and PHP adds server-side capabili-
ties. You’re probably not surprised when I tell you that yet another language,
SQL (Structured Query Language), specializes in working with data.

In this minibook, you discover how to manage data. Specifically, you find
out how to create databases, add data, create queries to retrieve data, and
create complex data models to solve real-world problems. In this chapter, I
show you some tools that automate the process of creating a data structure
and adding data to it. In later chapters in this minibook, I show how to con-
trol the process directly through SQL and PHP code.

Examining the Basic Structure of Data
Data has been an important part of programming since computing began. Many
languages have special features for working with data, but through the years,
a few key ideas have evolved. A system called relational data modeling has

Examining the Basic Structure of Data656

become the primary method for data management, and a standard language for
this model, called SQL (Structured Query Language), has been developed.

SQL has two major components:

 ✦ Data Definition Language (DDL) is a subset of SQL that helps you create
and maintain databases. You use DDL to build your databases and add
data to them.

 ✦ Data Query Language (DQL) is used to pull data out of a database after
it’s been placed there. Generally, your user input is converted to queries
to get information from an existing database.

The easiest way to understand data is to simply look at some. The following
table contains some basic contact information:

Name Company E-mail

Bill Gates Microsoft bill@msBob.com

Steve Jobs Apple steve@rememberNewton.com

Linus Torvalds Linux Foundation linus@gnuWho.org

Andy Harris John Wiley & Sons andy@aharrisBooks.net

Note: All these e-mail addresses are completely made up (except mine). Bill
Gates hasn’t given me his actual e-mail address. He doesn’t answer my calls,
either . . . (sniff).

It’s very common to think of data in the form of tables. In fact, the fancy
official database programmer name for this structure is table. A table (in
database terms) is just a two-dimensional representation of data. Of course,
some fancy computer-science words describe what’s in a table:

 ✦ Each row is a record. A record describes a discrete entity. In this table,
each record is a person in an e-mail directory.

 ✦ A record is made of fields. All the records in this table have three
fields: name, company, and e-mail. Fields are a lot like variables in pro-
gramming languages; they can have a type and a value. Sometimes, fields
are also called columns.

 ✦ A collection of records is a table. All records in a table have the same
field definitions but can have different values in the fields.

 ✦ A bunch of tables makes a database. Real-world data doesn’t usually
fit well in one table. Often, you’ll make several different tables that work
together to describe complex information. The database is an aggregate
of a bunch of tables. Normally, you restrict access to a database through
a user and password system.

mailto://bill@msBob.com
mailto://steve@rememberNewton.com
mailto://linus@gnuWho.org
mailto://andy@aharrisBooks.net

Book VI
Chapter 1

Getting Started
w

ith Data
Examining the Basic Structure of Data 657

Determining the fields in a record
If you want to create a database, you need to think about what entity you’re
describing and what fields that entity contains. In the table in the preceding
section, I’m describing e-mail contacts. Each contact requires three pieces of
information:

 ✦ Name: Gives the name of the contact, in 50 characters or less

 ✦ Company: Describes which company the contact is associated with, in
30 characters or less

 ✦ E-mail: Lists the e-mail address of the contact, in 50 characters or less

Whenever you define a record, begin by thinking about what the table rep-
resents and then think of the details associated with that entity. The topic of
the table (the kind of thing the table represents) is the record. The fields are
the details of that record.

 Before you send me e-mails about my horrible data design, know that I’m
deliberately simplifying this first example. Sure, it should have separate
fields for first and last name, and it should also have a primary key. I talk
about these items later in this minibook, as well as in the section “Defining
a primary key,” later in this chapter. If you know about these items already,
you probably don’t need to read this section. For the rest of you, you should
start with a simple data model, and I promise to add all those goodies soon.

Introducing SQL data types
Each record contains a number of fields, which are much like variables in
ordinary languages. Unlike scripting languages, such as JavaScript and PHP
(which tend to be freewheeling about data types), databases are particular
about the type of data that goes in a record.

Table 1-1 illustrates several key data types in MySQL (the variant of SQL
used in this book).

Table 1-1 MySQL Data Types
Data Type Description Notes

INT (INTEGER) Positive or negative integer
(no decimal point)

Ranges from about –2 billion
to 2 billion. Use BIGINT for
larger integers.

DOUBLE Double-precision floating
point

Holds decimal numbers in
scientific notation. Use for
extremely large or extremely
small values.

(continued)

Examining the Basic Structure of Data658

Data Type Description Notes

DATE Date stored in YYYY-
MM-DD format

Can be displayed in various
formats.

TIME Time stored in HH:MM:SS
format

Can be displayed in various
formats.

CHAR(length) Fixed-length text Always same length. Shorter
text is padded with spaces.
Longer text is truncated.

VARCHAR(length) Variable-length text Still fixed length, but trailing
spaces are trimmed. Limit 256
characters.

TEXT Longer text Up to 64,000 (roughly) charac-
ters. Use LONGTEXT for more
space.

BLOB Binary data Up to 64K of binary data. Use
LONGBLOB for more space.

 I list only the most commonly used data types in Table 1-1. These data types
handle most situations, but check the documentation of your database pack-
age if you need some other type of data.

Specifying the length of a record
Data types are especially important when you’re defining a database.
Relational databases have an important structural rule: Each record in a
table must take up the same amount of memory. This rule seems arbitrary,
but it’s actually very useful.

Imagine that you’re looking up somebody’s name in a phone book, but
you’re required to go one entry at a time. If you’re looking for Aaron Adams,
things will be pretty good, but what if you’re looking for Zebulon Zoom?
This sequential search would be really slow because you’d have to go all the
way through the phone book to find Zebulon. Even knowing that Zeb was in
record number 5,379 wouldn’t help much because you don’t know exactly
when one record ends and another begins.

 If your name is really Zebulon Zoom, you have a very cool name — a good
sign in the open-source world, where names like Linus and Guido are really
popular. I figure the only reason I’m not famous is my name is too boring. I’m
thinking about switching to a dolphin name or something. (Hi, my name is
“Andy Squeeeeeeek! Click Click Harris.”)

Relational databases solve this problem by forcing each record to be the
same length. Just for the sake of argument, imagine that every record takes

Table 1-1 (continued)

Book VI
Chapter 1

Getting Started
w

ith Data
Examining the Basic Structure of Data 659

exactly 100 bytes. You would then be able to figure out where each record is
on the disk by multiplying the length of each record by the desired record’s
index. (Record 0 would be at byte 0, record 1 is at 100, record 342 is at 34200,
and so on.) This mechanism allows the computer to keep track of where all
the records are and jump immediately to a specific record, even if hundreds
or thousands of records are in the system.

 My description here is actually a major simplification of what’s going on, but
the foundation is correct. You should really investigate more sophisticated
database and data structures classes or books if you want more information.
It’s pretty cool stuff.

The length of the record is important because the data types of a record’s
fields determine its size. Numeric data (integers and floating-point values)
have a fixed size in the computer’s memory. Strings (as used in other pro-
gramming languages) typically have dynamic length. That is, the amount of
memory used depends on the length of the text. In a database application,
you rarely have dynamic length text. Instead, you generally determine the
number of characters for each text field.

Defining a primary key
When you turn the contact data into an actual database, you generally add
one more important field. Each table should have one field that acts as a pri-
mary key. A primary key is a special field that’s

 ✦ Unique: You can’t have two records in a table with the same
primary key.

 ✦ Guaranteed: Every record in the table has a value in the primary key.

Primary key fields are often (though not always) integers because you can
easily build a system for generating a new unique value. (Find the largest key
in the current database and add one.)

In this book, each table has a primary key. They are usually numeric and are
usually the first field in a record definition. I also end each key field with the
letters ID to help me remember it’s a primary key.

Primary keys are useful because they allow the database system to keep
a Table of Contents for quick access to the table. When you build mul-
titable data structures, you can see how you can use keys to link tables
together.

Defining the table structure
When you want to build a table, you begin with a definition of the structure of
the table. What are the field names? What is each field’s type? If it’s text, how
many characters will you specify?

Introducing MySQL660

The definition for the e-mail contacts table may look like this:

Field Name Type Length (Bytes)

ContactID INTEGER 11

Name VARCHAR 50

Company VARCHAR 30

E-mail VARCHAR 50

Look over the table definition, and you’ll notice some important ideas:

 ✦ There’s now a contactID field. This field serves as the primary key.
It’s an INTEGER field.

 ✦ INTEGERs are automatically assigned a length. It isn’t necessary to
specify the size of an INTEGER field (as all INTEGERs are exactly 11
bytes long in MySQL).

 ✦ The text fields are all VARCHARs. This particular table consists of a lot
of text. The text fields are all stored as VARCHAR types.

 ✦ Each VARCHAR has a specified length. Figuring out the best length can be
something of an art form. If you make the field too short, you aren’t able to
squeeze in all the data you want. If you make it too long, you waste space.

 VARCHAR isn’t quite variable length. The length is fixed, but extra spaces are
added. Imagine that I had a VARCHAR(10) field called userName. If I enter
the name 'Andy', the field contains 'Andy' (that is, 'Andy' followed by
six spaces). If I enter the value 'Rumplestiltskin', the field contains the
value 'Rumplestil' (the first 10 characters of 'Rumplestiltskin').

The difference between CHAR and VARCHAR is what happens to shorter
words. When you return the value of a CHAR field, all the padding spaces are
included. A VARCHAR automatically lops off any trailing spaces.

 In practice, programmers rarely use CHAR because VARCHAR provides the
behavior you almost always want.

Introducing MySQL
Programs that work with SQL are usually called relational database manage-
ment systems (RDBMS). A number of popular RDBMSs are available:

 ✦ Oracle is the big player. Many high-end commercial applications use the
advanced features of Oracle. It’s powerful, but the price tag makes it pri-
marily useful for large organizations.

 ✦ MS SQL Server is Microsoft’s entry in the high-end database market. It’s
usually featured in Microsoft-based systems integrated with .NET program-
ming languages and the Microsoft IIS server. It can also be quite expensive.

Book VI
Chapter 1

Getting Started
w

ith Data
Introducing MySQL 661

 ✦ MS Access is the entry-level database system installed with most ver-
sions of Microsoft Office. Although Access is a good tool for playing with
data design, it has some well-documented problems handling the large
number of requests typical of a web-based data tool.

 ✦ MySQL is an open-source database that has made a big splash in the
open-source world. While it’s not quite as robust as Oracle or SQL
Server, it’s getting closer all the time. The latest version has features and
capabilities that once belonged only to expensive proprietary systems.

 ✦ SQLite is another open-source database that’s really showing some
promise. This program is very small and fast, so it works well in places
you wouldn’t expect to see a full-fledged database (think cellphones and
tablets).

The great news is that almost all of these databases work in the same gen-
eral way. They all read fairly similar dialects of the SQL language. No matter
which database you choose, the basic operation is roughly the same.

Why use MySQL?
This book focuses on MySQL because this program is

 ✦ Very accessible: If you’ve already installed XAMPP (see Book VIII), you
already have access to MySQL. Many hosting accounts also have MySQL
access built in.

 ✦ Easy to use: You can use MySQL from the command line or from a spe-
cial program. Most people manipulate SQL through a program called
phpMyAdmin (introduced in the section “Setting Up phpMyAdmin,” later
in this chapter). This program provides a graphical interface to do most
of the critical tasks.

 ✦ Reasonably typical: MySQL supports all the basic SQL features and a
few enhancements. If you understand MySQL, you’ll be able to switch to
another RDBMS pretty easily.

 ✦ Very powerful: MySQL is powerful enough to handle typical web server
data processing for a small to mid-size company. Some extremely large
corporations even use it.

 ✦ Integrated with XAMPP and PHP: PHP has built-in support for MySQL,
so you can easily write PHP programs that work with MySQL databases.

 ✦ Free and open source: MySQL is available at no cost, which makes it
quite an attractive alternative. MySQL offers other advantages of open-
source software. Because the code is freely available, you can learn
exactly how it works. The open-source nature of the tool also means
there are likely to be add-ons or variations because it’s easy for develop-
ers to modify open-source tools.

Introducing MySQL662

Understanding the three-tier architecture
Modern web programming often uses what’s called the three-tiered architec-
ture, as shown in Table 1-2.

Table 1-2 The Three-Tiered Architecture
Tier Platform

(software)
Content Language

Client Web browser
(Chrome)

Web page HTML/CSS/JS

Server Web server
(Apache)

Business rules
and logic

PHP (or other similar
language)

Data Data server
(MySQL)

Data content SQL (through MySQL or
another data server)

The user talks to the system through a web browser, which manages
HTML code. CSS and JavaScript may also be at the user tier, but every-
thing is handled through the browser. The user then makes a request of
the server, which is sometimes passed through a server-side language
like PHP. This program then receives a request and processes it, return-
ing HTML back to the client. Many requests involve data, which brings
the third (data) tier into play. The web server can package up a request
to the data server through SQL. The data server manages the data and
prepares a response to the web server, which then makes HTML output
back for the user.

Figure 1-1 provides an overview of the three-tier system.

Practicing with MySQL
MySQL is a server, so it must be installed on a computer in order to work. To
practice with MySQL, you have a few options:

 ✦ Run your own copy of MySQL from the command line. If you have
MySQL installed on your own machine, you can go to the command
line and execute the program directly. This task isn’t difficult, but it is
tedious.

 ✦ Use phpMyAdmin to interact with your own copy of MySQL. This solution
is often the best. phpMyAdmin is a set of PHP programs that allows you to
access and manipulate your database through your web browser. If you’ve
set up XAMPP, you’ve got everything you need. (See Book VIII for more
information about XAMPP.) You can also install MySQL and phpMyAdmin

Book VI
Chapter 1

Getting Started
w

ith Data
Setting Up phpMyAdmin 663

without XAMPP, but you should really avoid the headaches of manual con-
figuration, if you can. In this chapter, I do all MySQL through phpMyAdmin,
but I show other alternatives in Chapters 2 and 5 of this minibook.

 ✦ Run MySQL from your hosting site. If you’re using Freehostia or some
other hosting service, you generally access MySQL through phpMyAdmin.

Setting Up phpMyAdmin
By far the most common way to interact with MySQL is through phpMy-
Admin. If you’ve installed XAMPP, you already have phpMyAdmin. Here’s
how you use it to get to MySQL:

 1. Turn on MySQL with the XAMPP Control Panel, shown in Figure 1-2.

 You also need Apache running (because XAMPP runs through the
server). You don’t need to run MySQL or Apache as a service, but you
must have them both running. (Turn on both programs by clicking the
start button next to the name of the program.)

Client
(browser)

HTML form

Server

PHP program

PHP program

SQL code

Database

SQL results

HTML results

Figure 1-1:
An overview
of the three-
tier data
model.

Setting Up phpMyAdmin664

Figure 1-2:
I’ve turned
on Apache
and MySQL
in the
XAMPP
control
panel using
the buttons.

 2. Go to the XAMPP main directory in your browser.

 If you used the default installation, you can just point your browser to
http://localhost/xampp. It should look like Figure 1-3.

Figure 1-3:
Locating
the XAMPP
subdirectory
through
localhost.

 Don’t just go through the regular file system to find the XAMPP direc-
tory. You must use the localhost mechanism so that the PHP code in
phpMyAdmin is activated.

http://localhost/xampp

Book VI
Chapter 1

Getting Started
w

ith Data
Setting Up phpMyAdmin 665

 3. Find phpMyAdmin in the Tools section of the menu.

 The phpMyAdmin page looks like Figure 1-4.

Figure 1-4:
The
phpMyAdmin
main page.

 4. Create a new database.

 Type the name for your database in the indicated text field. I call my
database haio. (HTML All in One — get it?)

Changing the root password
MySQL is a powerful system, which means it can cause a lot of damage in
the wrong hands. Unfortunately, the default installation of MySQL has a secu-
rity loophole you could drive an aircraft carrier through. The default user
is called root and has no password whatsoever. Although you don’t have to
worry about any pesky passwords, the KGB can also get to your data with-
out passwords.

 This section is a bit technical, and it’s pretty important if you’re running
your own data server with XAMPP. But if you’re using an online hosting ser-
vice, you won’t have to worry about the data security problems described
in this section. You can skip on to the section called “Using phpMyAdmin on
a remote server.” Still, you’ll eventually need this stuff, so don’t tear these
pages out of the book or anything.

Believe me, the bad guys know that root is the most powerful account on
MySQL and that it has no password by default. They’re glad to use that
information to do you harm (or worse, to do harm in your name). Obviously,
giving the root account a password is a very good idea. Fortunately, it’s not
difficult to do:

Setting Up phpMyAdmin666

 1. Log into phpMyAdmin as normal.

 The main screen looks like Figure 1-5. Your copy might have a scary
warning of gloom at the bottom. You’re about to fix that problem.

Figure 1-5:
Here’s the
main
phpMyAdmin
screen.

 2. Click the Privileges link to modify user privileges.

 The privileges tab along the top gives you access to change user privi-
leges. The new screen looks something like Figure 1-6.

Figure 1-6:
The various
users are
stored in a
table.

Book VI
Chapter 1

Getting Started
w

ith Data
Setting Up phpMyAdmin 667

 3. Edit the root user.

 Chances are good that you have only one user, called root (and maybe
another called pma which is the phpMyAdmin user). The root account’s
Password field says No. You’ll be adding a password to the root user.
The icon at the right allows you to edit this record. (Hover your mouse
over the small icon to see ToolTips if you can’t find it.) The edit screen
looks like Figure 1-7.

Figure 1-7:
You can use
this tool to
modify the
root user’s
permissions.

 4. Examine the awesome power of the root administrator.

 Even if you don’t know what all these things are, root can clearly do lots
of things, and you shouldn’t let this power go unchecked. (Consult any
James Bond movie for more information on what happens with unfet-
tered power.) You’re still going to let root do all these things, but you’re
going to set a password so that only you can be root on this system.
Scroll down a bit on the page until you see the segment that looks like
Figure 1-8.

 5. Assign a password.

 Simply enter the password in the Password box, and then reenter it in
the next box. Be sure that you type the same password twice. Follow
all your typical password rules (six or more characters long, no spaces,
case-sensitive).

 6. Hit the Go button.

 If all went well, the password changes.

 7. Recoil in horror.

Try to go back to the phpMyAdmin home (with the little house icon),
and something awful happens, as shown in Figure 1-9.

Setting Up phpMyAdmin668

Figure 1-9:
That
message
can’t be
good.
Maybe
I should
have left it
vulnerable.

Don’t panic about the error in Figure 1-9. Believe it or not, this error is good.
Up to now, phpMyAdmin was logging into your database as root without
a password (just like the baddies were going to do). Now, phpMyAdmin is
trying to do the same thing (log in as root without a password), but it can’t
because now root has a password.

What you have to do is tell phpMyAdmin that you just locked the door, and
give it the key. (Well, the password, but I was enjoying my metaphor.)

Figure 1-8:
This area
is where
you add the
password.

Book VI
Chapter 1

Getting Started
w

ith Data
Setting Up phpMyAdmin 669

 1. Find the phpMyAdmin configuration file.

 You have to let phpMyAdmin know that you’ve changed the password.
Look for a file in your phpMyAdmin directory called config.inc.php.
(If you used the default XAMPP installation under Windows, the file is in
C:\Program Files\xampp\phpMyAdmin\config.inc.php.)

 2. Find the root password setting.

 Using the text editor’s search function, I found it on line 70, but it may be
someplace else in your editor. In Notepad++, it looks like Figure 1-10.

Figure 1-10:
Here’s the
username and
configuration
information.

 3. Change the root setting to reflect your password.

 Enter your root password. For example, if your new password is myPass-
word, change the line so that it looks like

$cfg['Servers'][$i]['password'] = 'myPassword'; // MySQL password

 Of course, myPassword is just an example. It’s really a bad password.
Put your actual password in its place.

 4. Save the config.inc.php file.

 Save the configuration file and return to phpMyAdmin. You may need to
set the file’s permissions to 644 if you’re on a Mac or Linux machine.

 5. Try getting into phpMyAdmin again.

 This time, you don’t get the error, and nobody is able to get into your
database without your password. You shouldn’t have to worry about
this issue again, but whenever you connect to this database, you do
need to supply the username and password.

Setting Up phpMyAdmin670

Adding a user
Changing the root password is the absolute minimum security measure, but
it’s not the only one. You can add various virtual users to your system to
protect it further.

You’re able to log into your own copy of MySQL (and phpMyAdmin) as root
because you’re the root owner. (If not, then refer to the preceding section.)
It’s your database, so you should be allowed to do anything with it.

You probably don’t want your programs logging in as root because that can
allow malicious code to sneak into your system and do mischief. You’re
better off setting up a different user for each database and allowing that user
access only to the tables within that database.

 I’m really not kidding about the danger here. A user with root access can get
into your database and do anything, including creating more users or chang-
ing the root password so that you can no longer get into your own database!
You generally shouldn’t write any PHP programs that use root. Instead, have
a special user for that database. If the bad guys get in as anything but root,
they can’t blow up everything.

Fortunately, creating new users with phpMyAdmin isn’t a difficult procedure:

 1. Log into phpMyAdmin with root access.

 If you’re running XAMPP on your own server, you’ll automatically log in
as root.

 2. Activate the Privileges tab to view user privileges.

 3. Add a new user using the Add a New User link on the Privileges page.

 4. Fill in user information on the new user page (see Figure 1-11).

Figure 1-11:
Here’s the
new haio
user being
created.

Book VI
Chapter 1

Getting Started
w

ith Data
Setting Up phpMyAdmin 671

 Be sure to add a username and password. Typically, you use localhost
as the host.

 5. Create a database, if it doesn’t already exist.

 If you haven’t already made a database for this project, you can do so
automatically with the Create Database Automatically radio button.

 6. Do not assign global privileges.

 Only the root user should have global privileges. You want this user to
have the ability to work only within a specific database.

 7. Create the user by clicking the Go button.

 You see a new screen like Figure 1-12 (you need to scroll down a bit to
see this part of the page).

Figure 1-12:
You can
specify a
specific
database for
this user.

 8. Specify the user’s database.

 Select the database in the drop-down list. This user (haio) will have
access only to tables in the haio database. Note that you probably don’t
have many databases on your system when you start out.

 9. Apply most privileges.

 You generally want your programs to do nearly everything within their
own database so that you can apply almost all privileges (for now,
anyway). I typically select all privileges except Grant, which lets the user
allow access to other users. Figure 1-13 shows the Privileges page.

 As you’re starting out, your programs have access to one database and are
able to do plenty with it. As your data gets more critical, you’ll probably want
to create more restrictive user accounts so that those programs that should
only be reading your data don’t have the ability to modify or delete records.
This change makes it more difficult for the bad guys to mess up your day.

Setting Up phpMyAdmin672

 Your database users won’t usually be people. This idea is hard, particularly
if you haven’t used PHP or another server-side language yet. The database
users are usually programs you have written that access the database in
your name.

Using phpMyAdmin on a remote server
If you’re working on some remote system with your service provider, the
mechanism for managing and creating your databases may be a bit different.
Each host has its own quirks, but they’re all pretty similar. As an example,
here’s how I connect to the system on Freehostia at http://freehostia.
com (where I post the example pages for this book):

 1. Log onto your service provider using the server login.

 You usually see some sort of control panel with the various tools you
have as an administrator. These tools often look like Figure 1-14.

 2. Locate your database settings.

 Not all free hosting services provide database access, but most do have
free MySQL access. You usually can access some sort of tool for man-
aging your databases. (You’ll probably have a limited number of data-
bases available on free servers, but more with commercial accounts.)
Figure 1-15 shows the database administration tool in Free Hostia.

 3. Create a database according to the rules enforced by your system.

 Sometimes, you can create the database within phpMyAdmin (as I did in
the last section), but more often, you need to use a special tool like the
one shown in Figure 1-15 to create your databases. Free Hostia imposes
a couple of limits: The database name begins with the system username,
and it can’t be more than 16 characters long.

Figure 1-13:
The haio
user can do
everything
but grant
other
privileges
on this
database.

http://freehostia.com
http://freehostia.com

Book VI
Chapter 1

Getting Started
w

ith Data
Setting Up phpMyAdmin 673

 Don’t freak out if your screen looks a little different than Figure 1-15.
Different hosting companies have slightly different rules and systems, so
things won’t be just like this, but they’ll probably be similar. If you get stuck,
be sure to look at the hosting service’s Help system. You can also contact
the support system. They’re usually glad to help, but they’re (understand-
ably) much more helpful if you’ve paid for the hosting service. Even the free
hosting systems offer some online support, but if you’re going to be serious,
paying for online support is a good deal.

 4. Create a password for this database.

 You probably need a password (and sometimes another username) for
your databases to prevent unauthorized access to your data. Because
the database is a different server than the web server, it has its own

Figure 1-14:
The Free
Hostia site
shows a
number
of useful
adminis -
tration tools.

Figure 1-15:
The
database
adminis-
tration tool
lets me
create or edit
databases.

Implementing a Database with phpMyAdmin674

security system. On many hosting services, you must enter a password,
and the system automatically creates a MySQL username with the same
name as the database. Keep track of this information because you need
it later when you write a program to work with this data.

 5. Use phpMyAdmin to add tables to your database.

 After you’ve defined the database, you can usually use phpMyAdmin to
manipulate the data. With Free Hostia, you can simply click a database
name to log into phpMyAdmin as the administrator of that database.
Figure 1-16 shows the new database in phpMyAdmin, ready for action.

Figure 1-16:
Now I can
access the
database
in phpMy-
Admin.

 Typically, a remote server doesn’t give you root access, so you don’t have to
mess around with the whole root password mess described in the “Changing
the root password” section of this chapter. Instead, you often either have
one password you always use in phpMyAdmin or you have a different user
and password for each database.

Implementing a Database with phpMyAdmin
When you’ve got a database, you can build a table. When you’ve defined a
table, you can add data. When you’ve got data, you can look at it. Begin by
building a table to handle the contact data described in the first section of
this chapter, “Examining the Basic Structure of Data”:

 1. Be sure you’re logged into phpMyAdmin.

 The phpMyAdmin page should look something like Figure 1-17, with your
database name available in the left column.

Book VI
Chapter 1

Getting Started
w

ith Data
Implementing a Database with phpMyAdmin 675

Figure 1-17:
The main
screen of
the phpMy-
Admin
system.

 2. Activate the database by clicking the database name in the left
column.

 If the database is empty, an Add Table page, shown in Figure 1-18,
appears.

Figure 1-18:
Type a
table name
to begin
adding a
table.

 3. Create a new table using the phpMyAdmin tool.

 Now that you have a database, add the contacts table to it. The contacts
database has four fields, so type a 4 into the box and let ’er rip. A form
like Figure 1-19 appears.

Implementing a Database with phpMyAdmin676

Figure 1-19:
Creating the
contacts
table.

 4. Enter the field information.

 Type the field names into the grid to create the table. It should look like
Figure 1-20.

Figure 1-20:
Enter field
data on this
form.

 In Figure 1-20, you can’t see it, but you can select the index of contactID
as a primary key. Be sure to add this indicator. Also set the collation of
the entire table to ascii_general_ci.

 5. Click the Save button and watch the results.

 phpMyAdmin automatically writes some SQL code for you and executes
it. Figure 1-21 shows the code and the new table.

Book VI
Chapter 1

Getting Started
w

ith Data
Implementing a Database with phpMyAdmin 677

Figure 1-21:
phpMy-
Admin
created this
mysterious
code and
built a table.

Now, the left panel indicates that you’re in the xfd database, which has a
table called Contact.

After you define a table, you can add data. Click Contact in the left column,
and you see the screen for managing the contact table, as shown in
Figure 1-22.

Figure 1-22:
I’ve added
the fields.

You can add data with the Insert tab, which gives a form like Figure 1-23,
based on your table design.

Implementing a Database with phpMyAdmin678

Figure 1-23:
Adding a
record to
the table.

After you add the record, choose Insert Another Row and click the Go button.
Repeat until you’ve added all the contacts you want in your database.

After you add all the records you want to the database, you can use the
Browse tab to see all the data in the table. Figure 1-24 shows my table after I
added all my contacts to it and browsed.

Figure 1-24:
Viewing the
table data
in phpMy-
Admin.

Chapter 2: Managing
Data with MySQL

In This Chapter
✓ Working with SQL script files

✓ Using AUTO_INCREMENT to build primary key values

✓ Selecting a subset of fields

✓ Displaying a subset of records

✓ Modifying your data

✓ Deleting records

✓ Exporting your data

A
lthough we tend to think of the Internet as a series of interconnected
documents, the web is increasingly about data. The HTML and CSS

 languages are still used to manage web documents, but SQL (Structured
Query Language) — the language of data — is becoming increasingly
 central. In this chapter, you discover how SQL is used to define a data
 structure, add data to a database, and modify that data.

Writing SQL Code by Hand
Although you can use phpMyAdmin to build databases, all it really does
is write and execute SQL code for you. You should know how to write SQL
code yourself for many reasons:

 ✦ It’s pretty easy. SQL isn’t terribly difficult (at least, to begin with —
things do get involved later). Once you know how, I find writing the
code in SQL is faster and easier than creating the databases in
phpMyAdmin.

 ✦ You need to write code in your programs. You probably run your data-
base from within PHP programs. You need to be able to write SQL com-
mands from within your PHP code, and phpMyAdmin doesn’t help much
with that job.

 ✦ You can’t trust computers. You should understand any code that has
your name on it, even if you use a tool like phpMyAdmin to write the
code. If your program breaks, you have to fix it eventually, so you really
should know how it works.

Writing SQL Code by Hand680

 ✦ SQL scripts are portable. Moving an entire data structure to a new
server is difficult, but if you have a script that creates and populates the
database, that script is just an ASCII file. You can easily move a complete
database (including the data) to a new machine.

 ✦ SQL scripts allow you to quickly rebuild a corrupted database. As
you’re testing your system, you’ll commonly make mistakes that can
harm your data structure. It’s very nice to have a script that you can use
to quickly reset your data to some standard test state.

Understanding SQL syntax rules
SQL is a language (like XHTML, JavaScript, CSS, and PHP), so it has its own
syntax rules. The rules and traditions of SQL are a bit unique because this lan-
guage has a different purpose than more traditional programming languages:

 ✦ Keywords are in uppercase. Officially, SQL is not case-sensitive, but the tra-
dition is to make all reserved words in uppercase and the names of all your
custom elements camel-case (described in Book V, Chapter 6). Some varia-
tions of SQL are case-sensitive, so you’re safest assuming that they all are.

 ✦ One statement can take up more than one line in the editor. SQL state-
ments aren’t usually difficult, but they can get long. Having one state-
ment take up many lines in the editor is common.

 ✦ Logical lines end with semicolons. Like PHP and JavaScript, each state-
ment in SQL ends with a semicolon.

 ✦ White space is ignored. DBMS systems don’t pay attention to spaces
and carriage returns, so you can (and should) use these tools to help
you clarify your code meaning.

 ✦ Single quotes are used for text values. MySQL generally uses single
quotes to denote text values, rather than the double quotes used in
other languages. If you really want to enclose a single quote in your text,
backslash it.

Examining the buildContact.sql script
Take a look at the following code:

-- buildContact.sql

DROP TABLE IF EXISTS contact;

CREATE TABLE contact (
 contactID int PRIMARY KEY,
 name VARCHAR(50),
 company VARCHAR(30),
 email VARCHAR(50)
);

INSERT INTO contact VALUES
 (0, 'Bill Gates', 'Microsoft', 'bill@msBob.com');
INSERT INTO contact VALUES

Book VI
Chapter 2

M
anaging Data
w

ith M
ySQL

Writing SQL Code by Hand 681

 (1, 'Steve Jobs', 'Apple', 'steve@rememberNewton.com');
INSERT INTO contact VALUES
 (2, 'Linus Torvalds', 'Linux Foundation', 'linus@gnuWho.org');
INSERT INTO contact VALUES
 (3, 'Andy Harris', 'Wiley Press', 'andy@aharrisBooks.net');

SELECT * FROM contact;

This powerful code is written in SQL. I explain each segment in more detail
throughout the section, but here’s an overview:

 1. Delete the contact table, if it already exists.

 This script completely rebuilds the contact table, so if it already exists,
it is temporarily deleted to avoid duplication.

 2. Create a new table named contact.

 As you can see, the table creation syntax is spare but pretty straightfor-
ward. Each field name is followed by its type and length (at least, in the
case of VARCHARs).

 3. Add values to the table by using the INSERT command.

 Use a new INSERT statement for each record.

 4. View the table data using the SELECT command.

 This command displays the content of the table.

Dropping a table
It may seem odd to begin creating a table by deleting it, but there’s actually a
good reason. As you experiment with a data structure, you’ll often find your-
self building and rebuilding the tables.

The line

DROP TABLE IF EXISTS contact

means, “Look at the current database and see whether the table contact
appears in it. If so, delete it.” This syntax ensures that you start over fresh as
you are rebuilding the table in the succeeding lines. Typical SQL table creation
scripts begin by deleting any tables that will be overwritten to avoid confusion.

Creating a table
You create a table with the (aptly named) CREATE TABLE command. The spe-
cific table creation statement for the contact table looks like the following:

CREATE TABLE contact (
 contactID int PRIMARY KEY,
 name VARCHAR(50),
 company VARCHAR(30),
 email VARCHAR(50)
);

Writing SQL Code by Hand682

Creating a table involves several smaller tasks:

 1. Specify the table name.

 The CREATE TABLE statement requires a table name. Specify the table
name. Table names (like variables and filenames) should generally not
contain spaces or punctuation without good reason.

 2. Begin the field definition with a parenthesis.

 The left parenthesis indicates the beginning of the field list. You tradi-
tionally list one field per line, indented as in regular code, although that
format isn’t required.

 3. Begin each field with its name.

 Every field has a name and a type. Begin with the field name, which
should also be one word.

 4. Indicate the field type.

 The field type immediately follows the field name (with no punctuation).

 5. Indicate field length, if necessary.

 If the field is a VARCHAR or CHAR field, specify its length within paren-
theses. You can specify the length of numeric types, but I don’t recom-
mend it because MySQL automatically determines the length of numeric
fields.

 6. Add special modifiers.

 Some fields have special modifiers. For now, note that the primary key is
indicated on the contactID field.

 7. End the field definition with a comma.

 The comma character indicates the end of a field definition.

 8. End the table definition with a closing parenthesis and a semicolon.

 Close the parenthesis that started the table definition and end the entire
statement with a semicolon.

Adding records to the table
You add data to the table with the INSERT command. The way this com-
mand works isn’t too surprising:

INSERT INTO contact VALUES
 (0, 'Bill Gates', 'Microsoft', 'bill@msBob.com');

Follow these steps:

Book VI
Chapter 2

M
anaging Data
w

ith M
ySQL

Running a Script with phpMyAdmin 683

 1. Begin with the INSERT keyword.

 Use INSERT to clarify that this instruction is a data insertion command.

 2. Specify the table you want to add data to.

 In my example, I have only one table, so use INTO contact to specify
that’s where the table goes.

 3. (Optional) Specify field names.

 You can specify a list of field names, but this step is unnecessary if you
add data to all fields in their standard order. If you have a list of field
names, you’re expected to have exactly the same number of values in
the VALUES list, and they should be in the same order.

 4. Use the VALUES keyword to indicate that a list of field values is coming.

 5. Enclose the values within parentheses.

 Use parentheses to enclose the list of data values.

 6. Put all values in the right order.

 Place values in exactly the same order the fields were designated.

 7. Place text values within single quotes.

 MySQL uses single quotes to specify text values.

 8. End the statement with a semicolon, as you do with all SQL commands.

 9. Repeat with other data.

 Add as many INSERT commands as you want to populate the data table.

Viewing the sample data
After you’ve created and populated a table, you’ll want to look it over. SQL
provides the SELECT command for this purpose. SELECT is amazingly
powerful, but its basic form is simplicity itself:

SELECT * FROM contact;

This command simply returns all fields of all records from your database.

Running a Script with phpMyAdmin
phpMyAdmin provides terrific features for working with SQL scripts. You can
write your script directly in phpMyAdmin, or you can use any text editor.

 Once again, your editor can really help you. I recommend a text editor like
Notepad++ or Komodo Edit, which both support syntax coloring for SQL.
This can really help you find mistakes in your code.

If you’ve written a script in some other editor, you’ll need to save it as a text
file and import it into phpMyAdmin.

Running a Script with phpMyAdmin684

To run a script in phpMyAdmin, follow these steps:

 1. Connect to phpMyAdmin.

 Be sure that you’re logged in and connected to the system.

 2. Navigate to the correct database.

 Typically, you use a drop-down list to the left of the main screen to pick
the database. (If you haven’t created a database, see the instructions
in Chapter 1 of this minibook.) Figure 2-1 shows the main phpMyAdmin
screen with the haio database enabled.

Figure 2-1:
The haio
database is
created and
ready to go.

 3. Activate the SQL pop-up window.

 You can do so by clicking the small SQL icon in the left-hand navigation
menu. The resulting window looks like Figure 2-2.

Figure 2-2:
The SQL
script
window.

Book VI
Chapter 2

M
anaging Data
w

ith M
ySQL

Running a Script with phpMyAdmin 685

 4. (Optional) Type your SQL code directly into this dialog box.

 This shortcut is good for making quick queries about your data, but gen-
erally you create and initialize data with prewritten scripts.

 5. Move to the Import Files tab.

 In this tab, you can upload the file directly into the MySQL
server. Figure 2-3 shows the resulting page. Click the Choose
File button to locate your file and the Go button to load it into
MySQL.

Figure 2-3:
Importing an
externally
defined SQL
script.

 If you’ve already created the contact database by following the instruc-
tions in Chapter 1 of this minibook, you may be nervous that you’ll over-
write the data. You will, but for this stage in the process, that’s exactly
what you want. The point of a script is to help you build a database and
rebuild it quickly. After you have meaningful data in the table, you won’t
be rebuilding it so often, but during the test and creation stage, this skill
is critical.

 6. Examine your handiwork.

 Look back at the phpMyAdmin page, and you see something like
Figure 2-4. It shows your script and, if you ended with a SELECT state-
ment, an output of your table. (Later versions of phpMyAdmin display
only the last statement in the script, but all are executed unless there is
an error in your script.)

Using AUTO_INCREMENT for Primary Keys686

Figure 2-4:
Here’s
the script
results,
shown
in php
MyAdmin.

Using AUTO_INCREMENT for Primary Keys
Primary keys are important because you use them as a standard index for
the table. The job of a primary key is to uniquely identify each record in the
table. Remember that a primary key has a few important characteristics:

 ✦ It must exist. Every record must have a primary key.

 ✦ It must be unique. Two records in the same table can’t have the same key.

 ✦ It must not be null. There must be a value in each key.

When you initially create a table, you have all the values in front of you, but
what if you want to add a field later? Somehow, you have to ensure that the
primary key in every record is unique.

Over the years, database developers have discovered that integer values are
especially handy as primary keys. The great thing about integers is that you
can always find a unique one. Just look for the largest index in your table
and add one.

Fortunately, MySQL (like most database packages) has a wonderful feature
for automatically generating unique integer indices.

Take a look at this variation of the buildContact.sql script:

-- buildContactAutoIncrement.sql

DROP TABLE IF EXISTS contact;

CREATE TABLE contact (

Book VI
Chapter 2

M
anaging Data
w

ith M
ySQL

Using AUTO_INCREMENT for Primary Keys 687

 contactID int PRIMARY KEY AUTO_INCREMENT,
 name VARCHAR(50),
 company VARCHAR(30),
 email VARCHAR(50)
);

INSERT INTO contact VALUES
 (null, 'Bill Gates', 'Microsoft', 'bill@msBob.com');
INSERT INTO contact VALUES
 (null, 'Steve Jobs', 'Apple', 'steve@rememberNewton.com');
INSERT INTO contact VALUES
 (null, 'Linus Torvalds', 'Linux Foundation', 'linus@gnuWho.org');
INSERT INTO contact VALUES
 (null, 'Andy Harris', 'Wiley Press', 'andy@aharrisBooks.net');

SELECT * FROM contact;

Here are the changes in this script:

 ✦ Add the AUTO_INCREMENT tag to the primary key definition. This tag
indicates that the MySQL system will automatically generate a unique
integer for this field. You can apply the AUTO_INCREMENT tag to any
field, but you most commonly apply it to primary keys.

 ✦ Replace index values with null. When you define a table with AUTO_
INCREMENT, you should no longer specify values in the affected field.
Instead, just place the value null. When the SQL interpreter sees the
value null on an AUTO_INCREMENT field, it automatically finds the next
largest integer.

 You may wonder why I’m entering the value null when I said primary keys
should never be null. Well, I’m not really making them null. The null value is
simply a signal to the interpreter: “Hey, this field is AUTO_INCREMENT, and I
want you to find a value for it.”

phpMyAdmin is a wonderful tool, but it does
have one strange quirk. When you look over
your table design, you may find that the col-
lation is set to latin1_swedish_ci.
This syntax refers to the native character set
used by the internal data structure. Nothing
is terribly harmful about this set (Swedish
is a wonderful language), but I don’t want to
incorrectly imply that my database is written in
Swedish.

Fortunately, it’s an easy fix. In phpMyAdmin,
go to the Operations tab and look for Table

Options. You can then set your collation to
whatever you want. I typically use latin1_
general_ci as it works fine for American
English, which is the language used in most of
my data sets. (See the MySQL documentation
about internationalization if you’re working in a
language that needs the collation feature.)

I’ve only run into this problem with some ver
sions of phpMyAdmin. If you create your data
base directly from the MySQL interpreter or
from within PHP programs, the collation issue
doesn’t seem to be a problem.

Latin-Swedish?

Selecting Data from Your Tables688

Selecting Data from Your Tables
Creating a database is great, but the real point of a database is to
extract information from it. SQL provides an incredibly powerful
command for retrieving data from the database. The basic form looks
as follows:

SELECT * FROM contact;

The easiest way to practice SQL commands is to use phpMyAdmin.
Figure 2-5 shows phpMyAdmin with the SQL tab open.

Figure 2-5:
You can
easily test
queries
in php
MyAdmin.

Note that you can enter SQL code in multiple places. If you’re working
with a particular table, you can invoke that table’s SQL tab (as I do in
Figure 2-5). You can also always enter SQL code into your system with the
SQL button on the main phpMyAdmin panel (on the left panel of all phpMy-
Admin screens).

 If you have a particular table currently active, the SQL dialog box shows
you the fields of the current table, which can be handy when you write SQL
queries.

Try the SELECT * FROM contact; code in the SQL dialog box, and you
see the results shown in Figure 2-6.

Book VI
Chapter 2

M
anaging Data
w

ith M
ySQL

Selecting Data from Your Tables 689

Figure 2-6:
The
standard
SELECT
statement
returns the
entire table.

Selecting only a few fields
As databases get more complex, you’ll often find that you don’t want every-
thing. Sometimes, you only want to see a few fields at a time. You can replace
the asterisk (*) characters with field names. For example, if you want to see only
the names and e-mail addresses, use this variation of the SELECT statement:

SELECT name, email FROM contact;

Only the columns you specify appear, as you can see in Figure 2-7.

Figure 2-7:
Now, the
result is
only two
columns
wide.

Selecting Data from Your Tables690

Here’s another really nice trick you can do with fields. You can give each
column a new virtual field name:

SELECT
 name as 'Person',
 email as 'Address'
FROM contact;

This code also selects only two columns, but this time, it attaches the special
labels Person and Address to the columns. You can see this result in Figure 2-8.

Figure 2-8:
You can
create
virtual titles
for your
columns.

 The capability to add a virtual name for each column doesn’t seem like a big
deal now, but it becomes handy when your database contains multiple
tables. For example, you may have a table named pet and another table
named owner that both have a name field. The virtual title feature helps
keep you (and your users) from being confused.

Selecting a subset of records
One of the most important jobs in data work is returning a smaller set of the
database that meets some kind of criterion. For example, what if you want to
dash off a quick e-mail to Bill Gates? Use this query:

SELECT *
FROM contact
WHERE
 name = 'Bill Gates';

This query has a few key features:

 ✦ It selects all fields. This query selects all the fields (for now).

Book VI
Chapter 2

M
anaging Data
w

ith M
ySQL

Selecting Data from Your Tables 691

 ✦ A WHERE clause appears. The WHERE clause allows you to specify a
condition.

 ✦ It has a condition. SQL supports conditions, much like ordinary program-
ming languages. MySQL returns only the records that match this condition.

 ✦ The condition begins with a field name. SQL conditions usually com-
pare a field to a value (or to another field).

 ✦ Conditions use single equal signs. You can easily get confused on this
detail because SQL uses the single equal sign (=) in conditions, whereas
most programming languages use double equals (==) for the same purpose.

 ✦ All text values must be within single quotes. I’m looking for an exact
match on the text string 'Steve Jobs'.

 ✦ It assumes that searches are case-sensitive. Different databases have
different behavior when it comes to case-sensitivity in SELECT state-
ments, but you’re safest assuming that case matters.

Figure 2-9 shows the result of this query.

Figure 2-9:
Here’s a
query that
returns the
result of a
search.

SQL is pretty picky about the entire text string. The following query doesn’t
return any results in the contact database:

SELECT *
FROM contact
WHERE
 name = 'Bill';

The contact table doesn’t have any records with a name field containing Bill
(unless you added some records when I wasn’t looking). Bill Gates is not the
same as Bill, so this query returns no results.

Selecting Data from Your Tables692

Searching with partial information
Of course, sometimes all you have is partial information. Take a look at the
following variation to see how it works:

SELECT *
FROM contact
WHERE
 company LIKE 'W%';

This query looks at the company field and returns any records with a com-
pany field beginning with W. Figure 2-10 shows how it works.

Figure 2-10:
This query
returns
companies
that begin
with W.

The LIKE clause is pretty straightforward:

 ✦ The keyword LIKE indicates a partial match is coming. It’s still the
SELECT statement, but now it has the LIKE keyword to indicate an exact
match isn’t necessary.

 ✦ The search text is still within single quotes, just like the ordinary
SELECT statement.

 ✦ The percent sign (%) indicates a wildcard value. A search string of
‘W%’ looks for W followed by any number of characters.

 ✦ Any text followed by % indicates that you’re searching the beginning
of the field. So, if you’re looking for people named Steve, you can write
SELECT * FROM contact WHERE name LIKE ‘Steve%’;.

Book VI
Chapter 2

M
anaging Data
w

ith M
ySQL

Selecting Data from Your Tables 693

Searching for the ending value of a field
Likewise, you can find fields that end with a particular value. Say that
you want to send an e-mail to everyone in your contact book with a .com
address. This query does the trick:

SELECT *
FROM contact
WHERE
 email LIKE '%.com';

Figure 2-11 shows the results of this query.

Figure 2-11:
You can
build a
query to
check the
end of a
field.

Searching for any text in a field
One more variant of the LIKE clause allows you to find a phrase anywhere
in the field. Say that you remember somebody in your database writes
books, and you decide to search for e-mail addresses containing the phrase
book:

SELECT *
FROM contact
WHERE
 email LIKE '%book%';

The search phrase has percent signs at the beginning and the end, so if the
phrase “book” occurs anywhere in the specified field, you get a match. And
what do you know? Figure 2-12 shows this query matches on the record of a
humble, yet lovable author!

Selecting Data from Your Tables694

Figure 2-12:
This query
searched
for the
phrase
“book”
anywhere
in the email
string.

Searching with regular expressions
If you know how to use regular expressions, you know how great they can
be when you need a more involved search. MySQL has a special form of the
SELECT keyword that supports regular expressions:

SELECT *
FROM contact
WHERE
 company REGEXP '^.{9}$';

The REGEXP keyword lets you search using powerful regular expressions.
(Refer to Book IV, Chapter 5 for more information on regular expressions.) This
particular expression checks for a company field with exactly nine letters. In
this table, it returns only one value, shown in Figure 2-13.

 Unfortunately, not all database programs support the REGEXP feature, but
MySQL does, and it’s really powerful if you understand the (admittedly
arcane) syntax of regular expressions.

Book VI
Chapter 2

M
anaging Data
w

ith M
ySQL

Selecting Data from Your Tables 695

Sorting your responses
You can specify the order of your query results with the ORDER BY clause. It
works like this:

SELECT *
FROM contact
ORDER BY email;

The ORDER BY directive allows you to specify a field to sort by. In this
case, I want the records displayed in alphabetical order by e-mail address.
Figure 2-14 shows how it looks.

Figure 2-14:
Now, the
result is
sorted
by email
address.

Figure 2-13:
Regular
expressions
are even
more
powerful
than the
standard
LIKE clause.

Editing Records696

By default, records are sorted in ascending order. Numeric fields are sorted
from smallest to largest, and text fields are sorted in standard alphabetic
order.

 Well, not quite standard alphabetic order SQL isn’t as smart as a librar-
ian, who has special rules about skipping “the” and so on. SQL simply looks
at the ASCII values of the characters for sorting purposes.

You can also invert the order:

SELECT *
FROM contact
ORDER BY email DESC;

Inverting the order causes the records to be produced in reverse alphabetic
order by e-mail address. DESC stands for descending order. ASC stands for
ascending order, but because it’s the default, it isn’t usually specified.

Editing Records
Of course, the purpose of a database is to manage data. Sometimes, you
want to edit data after it’s already in the table. SQL includes handy com-
mands for this task: UPDATE and DELETE. The UPDATE command modifies
the value of an existing record, and the DELETE command removes a record
altogether.

Updating a record
Say that you decide to modify Bill Gates’s address to reinforce a recent mar-
keting triumph. The following SQL code does the trick:

UPDATE contact
SET email = 'bill@XBoxOneRocks.com'
WHERE name = 'Bill Gates';

The UPDATE command has a few parts:

 ✦ The UPDATE command. This indicates which table you will modify.

 ✦ The SET command. This indicates a new assignment.

 ✦ Assign a new value to a field. This uses a standard programming-style
assignment statement to attach a new value to the indicated field. You
can modify more than one field at a time. Just separate the field =
value pairs with commas.

 ✦ Specify a WHERE clause. You don’t want this change to happen to all the
records in your database. You want to change only the e-mail address in
records where the name is Bill Gates. Use the WHERE clause to specify
which records you intend to update.

Book VI
Chapter 2

M
anaging Data
w

ith M
ySQL

Exporting Your Data and Structure 697

More than one person in your database may be named Bill Gates. Names
aren’t guaranteed to be unique, so they aren’t really the best search criteria.
This situation is actually a very good reason to use primary keys. A better
version of this update looks as follows:

UPDATE contact
SET email = 'bill@XBoxOneRocks.com'
WHERE contactID = 1;

The contactID is guaranteed to be unique and present, so it makes an ideal
search criterion. Whenever possible, UPDATE (and DROP) commands should
use primary key searches so that you don’t accidentally change or delete the
wrong record.

Deleting a record
Sometimes, you need to delete records. SQL has a command for this eventu-
ality, and it’s pretty easy to use:

WHERE contactID = 1;

The preceding line deletes the entire record with a contactID of 1.

 Be very careful with the DELETE command — it’s destructive. Be absolutely
sure that you have a WHERE clause, or you may delete all the records in your
table with one quick command! Likewise, be sure that you understand the
WHERE clause so that you aren’t surprised by what gets deleted. You’re
better off running an ordinary SELECT using the WHERE clause before you
DELETE, just to be sure that you know exactly what you’re deleting.
Generally, you should DELETE based on only a primary key so that you don’t
produce any collateral damage.

Exporting Your Data and Structure
After you’ve built a wonderful data structure, you probably will want to
export it for a number of reasons:

 ✦ You want a backup. Just in case something goes wrong!

 ✦ You want to move to a production server. It’s smart to work on a local
(offline) server while you figure things out, but eventually you’ll need to
move to a live server. Moving the actual database files is tricky, but you
can easily move a script.

 ✦ You want to perform data analysis. You may want to put your data in a
spreadsheet for further analysis or in a comma-separated text file to be
read by programs without SQL access.

Exporting Your Data and Structure698

 ✦ You want to document the table structure. The structure of a data set is
extremely important when you start writing programs using that struc-
ture. Having the table structure available in a word-processing or PDF
format can be very useful.

MySQL (and thus phpMyAdmin) has some really nice tools for exporting
your data in a number of formats.

Figure 2-15 shows an overview of the Export tab, showing some of the
features.

Figure 2-15:
These are
some of
the various
output
techniques.

The different styles of output are used for different purposes:

 ✦ CSV (comma-separated value) format: A plain ASCII comma-separated
format. Each record is stored on its own line, and each field is sepa-
rated by a comma. CSV is nice because it’s universal. Most spreadsheet
programs can read CSV data natively, and it’s very easy to write a
program to read CSV data, even if your server doesn’t support MySQL.
If you want to back up your data to move to another server, CSV is a
good choice. Figure 2-16 shows some of the options for creating a
CSV file.

 The data file created using the specified options looks like the following:

"contactID","name","company","email"
"1","Bill Gates","Microsoft","bill@XBoxOneRocks.com"
"2","Steve Jobs","Apple","steve@rememberNewton.com"
"3","Linus Torvalds","Linux Foundation","linus@gnuWho.org"
"4","Andy Harris","Wiley Press","andy@aharrisBooks.net"

Book VI
Chapter 2

M
anaging Data
w

ith M
ySQL

Exporting Your Data and Structure 699

 The CSV format often uses commas and quotes, so if these characters
appear in your data, you may encounter problems. Be sure to test your data
and use some of the other delimiters if you have problems.

 ✦ MS Excel and Open Document Spreadsheet: These are the two
 currently supported spreadsheet formats. Exporting your data using
one of these formats gives you a spreadsheet file that you can easily
 manipulate, which is handy when you want to do charts or data analysis
based on your data. Figure 2-17 shows an Excel document featuring the
contact table.

Figure 2-17:
This Excel
spread sheet
was auto
matically
created.

Figure 2-16:
You have
several
options for
creating
CSV files.

Exporting Your Data and Structure700

 ✦ Word-processing formats: Several formats are available to create docu-
mentation for your project. Figure 2-18 shows a document created with
this feature. Typically, you use these formats to describe the format of
the data and the current contents. LaTeX and PDF are special formats
used for printing.

Figure 2-18:
Word
processing,
PDF, and
LaTeX
formats
are great
for docu
mentation.

Exporting SQL code
One of the neatest tricks is to have phpMyAdmin build an entire SQL script
for re-creating your database. Figure 2-19 shows the available options.

Figure 2-19:
You can
specify
several
options for
outputting
your SQL
code.

Book VI
Chapter 2

M
anaging Data
w

ith M
ySQL

Exporting Your Data and Structure 701

The resulting code is as follows:

-- phpMyAdmin SQL Dump
 -- version 3.3.9
 -- http://www.phpmyadmin.net
 --
 -- Host: localhost
 -- Generation Time: Jul 10, 2013 at 08:30 PM
 -- Server version: 5.5.8
 -- PHP Version: 5.3.5

 SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO";

 /*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
 /*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
 /*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
 /*!40101 SET NAMES utf8 */;

 --
 -- Database: 'haio'
 --

 -- --

 --
 -- Table structure for table 'contact'
 --

 DROP TABLE IF EXISTS contact;
 CREATE TABLE IF NOT EXISTS contact (
 contactID int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(50) DEFAULT NULL,
 company varchar(30) DEFAULT NULL,
 email varchar(50) DEFAULT NULL,
 PRIMARY KEY (contactID)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=5 ;

 --
 -- Dumping data for table 'contact'
 --

 INSERT INTO contact (contactID, `name`, company, email) VALUES
 (1, 'Bill Gates', 'Microsoft', 'bill@XBoxOneRocks.com'),
 (2, 'Steve Jobs', 'Apple', 'steve@rememberNewton.com'),
 (3, 'Linus Torvalds', 'Linux Foundation', 'linus@gnuWho.org'),
 (4, 'Andy Harris', 'Wiley Press', 'andy@aharrisBooks.net');

You can see that phpMyAdmin made a pretty decent script that you can use
to re-create this database. You can easily use this script to rebuild the data-
base if it gets corrupted or to copy the data structure to a different imple-
mentation of MySQL.

Generally, you use this feature for both purposes. Copy your data structure
and data every once in a while (just in case Godzilla attacks your server or
something).

Typically, you build your data on one server and want to migrate it to
another server. The easiest way to do so is by building the database on one

Exporting Your Data and Structure702

server. You can then export the script for building the SQL file and load it
into the second server.

Creating XML data
One more approach to saving data is through XML. phpMyAdmin creates
a standard form of XML encapsulating the data. The XML output looks like
this:

<<?xml version="1.0" encoding="utf-8"?>
<!--
- phpMyAdmin XML Dump
- version 3.3.9
- http://www.phpmyadmin.net
-
- Host: localhost
- Generation Time: Jul 10, 2013 at 08:32 PM
- Server version: 5.5.8
- PHP Version: 5.3.5
-->

<pma_xml_export version="1.0"

xmlns:pma="http://www.phpmyadmin.net/some_doc_url/">
 <!--
 - Structure schemas
 -->
 <pma:structure_schemas>
 <pma:database name="haio" collation="latin1_swedish_ci" charset="latin1">
 <pma:table name="contact">
 CREATE TABLE `contact` (
 `contactID` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(50) DEFAULT NULL,
 `company` varchar(30) DEFAULT NULL,
 `email` varchar(50) DEFAULT NULL,
 PRIMARY KEY (`contactID`)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=latin1;
 </pma:table>
 </pma:database>
 </pma:structure_schemas>

 <!--
 - Database: 'haio'
 -->
 <database name="haio">
 <!-- Table contact -->
 <table name="contact">
 <column name="contactID">1</column>
 <column name="name">Bill Gates</column>
 <column name="company">Microsoft</column>
 <column name="email">bill@XBoxOneRocks.com</column>
 </table>
 <table name="contact">
 <column name="contactID">2</column>
 <column name="name">Steve Jobs</column>
 <column name="company">Apple</column>
 <column name="email">steve@rememberNewton.com</column>
 </table>
 <table name="contact">
 <column name="contactID">3</column>
 <column name="name">Linus Torvalds</column>
 <column name="company">Linux Foundation</column>

Book VI
Chapter 2

M
anaging Data
w

ith M
ySQL

Exporting Your Data and Structure 703

 <column name="email">linus@gnuWho.org</column>
 </table>
 <table name="contact">
 <column name="contactID">4</column>
 <column name="name">Andy Harris</column>
 <column name="company">Wiley Press</column>
 <column name="email">andy@aharrisBooks.net</column>
 </table>
 </database>
</pma_xml_export>

XML is commonly used as a common data language, especially in AJAX
 applications.

704 Book VI: Managing Data with MySQL

Chapter 3: Normalizing Your Data

In This Chapter
✓ Understanding why single-table databases are inadequate

✓ Recognizing common data anomalies

✓ Creating entity-relationship diagrams

✓ Using MySQL Workbench to create data diagrams

✓ Understanding the first three normal forms

✓ Defining data relationships

D
atabases can be deceptive. Even though databases are pretty easy
to create, beginners usually run into problems as soon as they start

working with actual data.

Computer scientists (particularly a gentleman named E. F. Codd in the
1970s) have studied potential data problems and defined techniques for
organizing data. This scheme is called data normalization. In this chapter,
you discover why single-table databases rarely work for real-world data and
how to create a well-defined data structure according to basic normalization
rules.

 On the website, I include a script called buildHero.sql that builds all the
tables in this chapter. Feel free to load that script into your MySQL environ-
ment to see all these tables for yourself.

Recognizing Problems with Single-Table Data
Packing everything you’ve got into a single table is tempting. Although you
can do it pretty easily (especially with SQL), and it seems like a good solu-
tion, things can go wrong pretty quickly.

Table 3-1 shows a seemingly simple database describing some superheroes.

Recognizing Problems with Single-Table Data706

Table 3-1 A Sample Database
Name Powers Villain Plot Mission Age

The
Plumber

Sewer snake of
doom, unclog
ging, ability
to withstand
smells

Septic
Slime
Master

Overcome
Chicago
with slime

Stop the
Septic
Slime

37

Binary
Boy

Hexidecimation
beam,
 obfuscation

Octal Eliminate
the
numerals
8 and 9

Make
the
world
safe for
binary
repre
senta
tion

19

The
Janitor

Mighty Mop Septic
Slim
Master

Overcome
New York
with slime

Stop the
Septic
Slime

41

It seems that not much can go wrong here because the database is only
three records and six fields. The data is simple, and there isn’t that much of
it. Still, a lot of trouble is lurking just under the surface. The following sec-
tions outline potential problems.

The identity crisis
What’s Table 3-1 about? At first, it seems to be about superheroes, but some
of the information is really about things related to the superhero, such as vil-
lains and missions. This issue may not seem like a big deal, but it causes all
kinds of practical problems later on. A table should be about only one thing.
When it tries to be about more than that, it can’t do its job as well.

Every time a beginner (and, often, an advanced data developer) creates a
table, the table usually contains fields that don’t belong there. You have to
break things up into multiple tables so that each table is really about only
one thing. The process for doing so solves a bunch of other problems, as
well.

The listed powers
Take a look at the powers field. Each superhero can have more than one
power. Some heroes have tons of powers. The problem is, how do you
handle a situation where one field can have a lot of values? You frequently
see the following solutions:

Book VI
Chapter 3

N
orm

alizing Your
Data

Recognizing Problems with Single-Table Data 707

 ✦ One large text field: That’s what I did in this case. I built a massive (255
character) VARCHAR field and hoped it would be enough. The user just
has to type all the possible skills.

 ✦ Multiple fields: Sometimes, a data designer just makes a bunch of fields,
such as power1, power2, and so on.

Both these solutions have the same general flaw. You never know how much
room to designate because you never know exactly how many items will be
in the list. Say that you choose the large text field approach. You may have
a really clever hero with a lot of powers, so you fill up the entire field with
a list of powers. What happens if your hero learns one more power? Should
you delete something just to make things fit? Should you abbreviate?

If you choose to have multiple power fields, the problem doesn’t go away.
You still have to determine how many skills the hero can have. If you desig-
nate ten skill fields and one of your heroes learns an eleventh power, you’ve
got a problem.

The obvious solution is to provide far more room than anybody needs. If it’s
a text field, make it huge; and if it’s multiple fields, make hundreds of them.
Both solutions are wasteful. Remember, a database can often have hundreds
or thousands of records, and each one has to be the same size. If you make
your record definition bigger than it needs to be, this waste is multiplied
hundreds or thousands of times.

 You may argue that this is not the 1970s. Processor power and storage space
are really cheap today, so why am I worrying about saving a few bytes here
and there? Well, cheap is still not free. Programmers tend to be working with
much larger data sets than they did in the early days, so efficiency still mat-
ters. And here’s another important change. Today, data is much more likely
to be transmitted over the Internet. The big deal today isn’t really proces-
sor or storage efficiency. Today’s problem is transmission efficiency, which
comes down to the same principle: Don’t store unnecessary data.

When databases have listed fields, you tend to see other problems. If the
field doesn’t have enough room for all the data, people will start abbreviat-
ing. If you’re looking for a hero with invisibility, you can’t simply search for
“invisibility” in the powers field because it may be “inv,” “in,” or “invis” (or
even “can’t see”). If you desperately need an invisible hero, the search can
be frustrating, and you may miss a result because you didn’t guess all the
possible abbreviations. (I guess you can’t see the invisible hero.)

If the database uses the listed fields model, you have another problem.
Now, your search has to look through all ten (or hundreds of) power fields
because you don’t know which one holds the “invisible” power. This prob-
lem makes your search queries far more complicated and slower than they
would have been otherwise.

Recognizing Problems with Single-Table Data708

 Another so-called solution you sometimes see is to have a whole bunch of
Boolean fields: Invisibility, Super-speed, X-ray vision, and so on. This fix
solves part of the problem because Boolean data is small. It’s still trouble-
some, though, because now the data developer has to anticipate every
possible power. You may have an other field, but it then reintroduces the
problem of listed fields.

Listed fields are a nightmare.

Repetition and reliability
Another common problem with data comes with repetition. If you allow data
to be repeated in your database, you can have some really challenging side
effects. Refer to Table 3-1, earlier in this chapter, and get ready to answer
some questions about it. . . .

What is the Slime Master’s evil plot?

This question seems simple enough, but Table 3-1 provides an ambiguous
response. If you look at the first row (The Plumber), the plot is Overcome
Chicago with slime. If you look at The Janitor, you see that the plot is to
Overcome New York with slime. Which is it? Presumably, it’s the same plot,
but in one part of the database, New York is the target, and elsewhere, it’s
Chicago. From the database, you can’t really tell which is correct or if it
could be both. I was required to type in the plot in two different records. It’s
supposed to be the same plot, but I typed it differently. Now, the data has a
conflict, and you don’t know which record to trust.

 Is it possible the plots were supposed to be different? Sure, but you don’t
want to leave that assumption to chance. The point of data design is to ask
exactly these questions and to design your data scheme to reinforce the
rules of your organization.

Here’s a related question. What if you needed to get urgent information to
any hero fighting the Septic Slime Master? You’d probably write a query like

SELECT * FROM hero WHERE villain = 'Septic Slime Master'

That query is a pretty reasonable request, but it wouldn’t work. The villain in
The Janitor record is the Septic Slim Master. Somebody mistyped something
in the database, and now The Janitor doesn’t know how to defeat the Slime
Master.

 If your database allows duplication, this type of mistake will happen all the
time.

In general, you don’t want to enter anything into a database more than once.
If you have a way to enter the Septic Slime Master one time, that should
eliminate this type of problem.

Book VI
Chapter 3

N
orm

alizing Your
Data

Introducing Entity-Relationship Diagrams 709

Fields with changeable data
Another kind of problem is evident in the Age field. (See, even superheroes
have a mandatory retirement age.) Age is a good example of a field that
shouldn’t really be in a database because it changes all the time. If you have
age in your database, how are you going to account for people getting older?
Do you update the age on each hero’s birthday? (If so, you need to store that
birthday, and you need to run a script every day to see whether it’s some-
body’s birthday.) You could just age everybody once a year, but this solution
doesn’t seem like a good option, either.

 Whenever possible, you want to avoid fields that change regularly and instead
use a formula to generate the appropriate results when you need them.

Deletion problems
Another kind of problem is lurking right under the surface. Say that you have
to fire the Binary Boy. (With him, everything is black and white. You just
can’t compromise with that guy.) You delete his record, and then you want
to assign another hero to fight Octal. When you delete Binary Boy, you also
delete all the information about Octal and his nefarious scheme because the
only place Octal’s information was stored was in Binary Boy’s record.

In a related problem, what if you encounter a new villain and you haven’t yet
assigned a hero to this villain? The current data design doesn’t allow you to
add villains without heroes. You have to make up a fake hero, and that just
doesn’t seem right. Villains deserve their own table, and that’s exactly what
they will get.

Introducing Entity-Relationship Diagrams
You can solve all the problems with the database shown in Table 3-1 by
breaking the single table into a series of smaller, more specialized tables.

The typical way of working with data design is to use a concept called an Entity-
Relationship (ER) diagram. This form of diagram usually includes the following:

 ✦ Entities: Typically, a table is an entity, but you see other kinds of enti-
ties, too. An entity is usually drawn as a box with each field listed inside.

 ✦ Relationships: Relationships are drawn as lines between the boxes. As
you find out about various forms of relationships, I show you the par-
ticular symbols used to describe these relationship types.

Using MySQL Workbench to draw ER diagrams
You can create ER diagrams with anything (I typically use a whiteboard),
but some very nice free software can help. One particularly nice program

Introducing Entity-Relationship Diagrams710

is called MySQL Workbench (http://dev.mysql.com/downloads/
tools/). This software has a number of really handy features:

 ✦ Visual representation of database design: MySQL Workbench allows
you to define a table easily and then see how it looks in ER form. You
can create several tables and manipulate them visually to see how they
relate.

 ✦ An understanding of ER rules: MySQL Workbench is not simply a draw-
ing program. It’s specialized for drawing ER diagrams, so it creates a
standard design for each table and relationship. Other data administra-
tors can understand the ER diagrams you create with this tool.

 ✦ Integration with MySQL: After you’ve created a data design you like,
you can have MySQL Workbench create a MySQL script to create the
databases you’ve defined. In fact, you can even have Workbench look at
an existing MySQL database and create an ER diagram from it.

Creating a table definition in Workbench
Creating your tables in MySQL Workbench is a fairly easy task:

 1. Create a new model.

 Choose File ➪ New to create a new model. Figure 3-1 shows the MySQL
Workbench model screen.

Figure 3-1:
MySQL
Workbench
main
screen.

 2. Create a new table.

 Use the Add Table icon (near the top of the screen) to create a new
table. A new dialog box opens at the bottom of the screen, allowing

http://dev.mysql.com/downloads/tools/
http://dev.mysql.com/downloads/tools/

Book VI
Chapter 3

N
orm

alizing Your
Data

Introducing Entity-Relationship Diagrams 711

you to change the table name. You see a new table form like the one in
Figure 3-2. Change the table name to hero but leave the other values
blank for now.

Figure 3-2:
Now your
model has a
table in it.

 3. Edit the columns.

 Select the Columns tab at the bottom of the screen to edit the table’s
fields. You can add field names and types here. Create a table that looks
like the hero table shown in Figure 3-3. You can use the tab key to add a
new field.

Figure 3-3:
Editing
the table
definition.

Introducing Entity-Relationship Diagrams712

 4. Make a diagram of the table.

 So far, MySQL Workbench seems a lot like phpMyAdmin. The most useful
feature of Workbench is the way it lets you view your tables in diagram
form. You can view tables in a couple of ways, but the easiest way is to
select Create Diagram from Catalog Objects from the Model menu. When
you do so, you’ll see a screen, as shown in Figure 3-4.

Figure 3-4:
Now you
have a
diagram of
your table.

 The diagram doesn’t show the contents of the table, just the design. In
fact, MySQL Workbench doesn’t really care that much about what is in
the database. The key idea here is how the data is organized. This
matters because you will be creating several tables to manage your
superheroes.

 5. Extract the code.

 If you want, you can see the SQL code used to create the table you just
designed. Simply right-click the table and choose Copy SQL to Clipboard.
The CREATE statement for this table is copied to the Clipboard, and you
can paste it to your script. Here’s the code created by Workbench:

CREATE TABLE IF NOT EXISTS 'mydb'.'hero' (
 'heroID' INT NOT NULL ,
 'name' VARCHAR(50) NULL ,
 'birthDate' DATE NULL ,
 'missionID' INT NULL ,
 PRIMARY KEY (heroID))
ENGINE = InnoDB

The code generated is similar to the code described in Chapter 2 of this
minibook, with a few variations:

Book VI
Chapter 3

N
orm

alizing Your
Data

Introducing Normalization 713

 ✦ Default NULL values are indicated: Most fields are defined with a
default value of NULL. (Of course, the primary key can’t be NULL, and
it’s defined that way.)

 ✦ Field and table names are quoted: The auto-generated code uses single
quotes around all field and table names. Single quotes are needed when
identifiers have spaces in them. Because I rarely use spaces in the name
of anything, I tend not to use quotes because they complicate the code.

 ✦ The primary key notation is different: Rather than defining the primary
key in the field definition, the primary key is set up as a separate entry
in the table definition. This is simply a matter of style.

Introducing Normalization
Trying to cram all your data into a single table usually causes problems.
The process for solving these problems is called data normalization.
Normalization is really a set of rules. When your database follows the first
rule, it’s said to be in first normal form. For this introductory book, you get to
the third normal form, which is suitable for most applications.

But how do I work with an actual database?
MySQL Workbench is used to help you design
and understand complex databases. So far,
you’ve been working in a local system that
isn’t attached to a particular database. This is
actually a pretty good way to work. Eventually,
though, you’ll be settled on a design, and you’ll
want to build a real database from the model.
MySQL Workbench has a number of tools to
help you with this. First, use the Database –
Manage Connections dialog box to create a
connection to your database. Then you can
use the Forward Engineering option to commit
your design to the database, or the Reverse
Engineering option to extract a database
you’ve already created and build a diagram
from it.

While these options can be handy, they aren’t
really critical. To be honest, I don’t generally
use the code engineering features in MySQL

Workbench. In fact, I (like a lot of data develop
ers) do most of my initial data design on a white
board and then make cleaner versions of the
design with tools like MySQL Workbench. I’m
showing you the tool here because it may be
helpful to you, and it produces prettier artwork
than my white board scribblings.

The hard work is organizing the data. It’s pretty
easy to convert a diagram to SQL code. Use
a tool like MySQL to see how your data fits
together. Then if you want, you can either let
it build the code for you or simply use it as a
starting place to build the code by hand.

As you’ve seen with other languages, visual
tools can help you build code, but they don’t
absolve you of responsibility. If the code has
your name on it, you need to understand how it
works. That’s most easily done when you write
it by hand.

This is great and all . . .

Introducing Normalization714

First normal form
The official definitions of the normal forms sound like the offspring of a
lawyer and a mathematician. Here’s an official definition of the first normal
form:

A table is in first normal form if and only if it represents a relation. It does
not allow nulls or duplicate rows.

Yeah, whatever.

Here’s what it means in practical terms:

Eliminate listed fields.

A database is in first normal form if

 ✦ It has no repeating fields. Take any data that would be in a repeating
field and make it into a new table.

 ✦ It has a primary key. Add a primary key to each table. (Some would
argue that this requirement isn’t necessarily part of first normal form,
but it’ll be necessary in the next step, anyway.)

In a practical sense, the first normal form means getting rid of listed fields
and making a new table to contain powers. You’ll need to go back to the
model view to create a new table and then create the diagram again.
Figure 3-5 shows an ER diagram of the data in first normal form.

Figure 3-5:
Now I have
two tables.

Book VI
Chapter 3

N
orm

alizing Your
Data

Introducing Normalization 715

A couple of things happen here:

 1. Make a new table called power.

 This table contains nothing but a key and the power name.

 2. Take the power field away from the hero table.

 The hero table no longer has a power field.

 3. Add a primary key to both tables.

 Both tables now have an integer primary key. Looking over my tables,
there are no longer any listed fields, so I’m in first normal form.

 All this is well and good, but the user really wants this data connected, so
how do you join it back together? For that answer, see Chapter 4 of this
minibook.

Second normal form
The official terminology for the second normal form is just as baffling as the
first normal form:

A table is in second normal form (2NF) only if it is in 1NF and all nonkey fields
are dependant entirely on the entire candidate key, not just part of it.

Huh? You’ve gotta love these computer scientists.

In practical terms, second normal form is pretty easy, too. It really means

Eliminate repetition.

Look at all those places where you’ve got duplicated data and create new
tables to take care of them.

In the hero data (shown in Table 3-1, earlier in this chapter), you can elimi-
nate a lot of problems by breaking the hero data into three tables. Figure 3-6
illustrates one way to break up the data.

Many of the problems in the badHero design happen because apparently
more than one hero can be on a particular mission, and thus the mission
data gets repeated. By separating mission data into another table, I’ve guar-
anteed that the data for a mission is entered only once.

Note that each table has a primary key, and none of them has listed fields. The
same data won’t ever be entered twice. The solution is looking pretty good!

Notice that everything related to the mission has been moved to the mis-
sion table. I added one field to the hero table, which contains an integer.
This field is called a foreign key reference. You can find out much more about
how foreign key references work in Chapter 4 of this minibook.

Introducing Normalization716

Figure 3-6:
Now I have
three tables:
hero, power,
and mission.

Third normal form
The third normal form adds one more requirement. Here is the official
definition:

A table is in 3NF if it is in 2NF and has no transitive dependencies on the
candidate key.

Wow! These definitions get better and better. Once again, it’s really a lot
easier than it sounds:

Ensure functional dependency.

In other words, check each field of each table and ensure that it really
describes what the table is about. For example, is the plot related to the mis-
sion or the hero? What about the villain?

 The tricky thing about functional dependency is that you often don’t really
know how the data is supposed to be connected. Only the person who uses
the data really knows how it’s supposed to work. (Often, they don’t know,
either, as it turns out.) You have to work with the client to figure out exactly
what the business rules (the rules that describe how the data really works)
are. You can’t really tell from the data itself.

The good news is that, for simple structures like the hero data, you’re often
already in third normal form by the time you get to second normal form.
Still, you should check. After a database is in third normal form, you’ve
reduced the possibility of several kinds of anomalies, so your data is far
more reliable than it was in the past. Several other forms of normalization
exist, but third normal form is enough for most applications.

Book VI
Chapter 3

N
orm

alizing Your
Data

Identifying Relationships in Your Data 717

Identifying Relationships in Your Data
After you normalize the data (see the preceding section), you’ve created the
entities (tables). Now, you need to investigate the relationships among these
entities.

Three main types of data relationships exist (and of these, only two are
common):

 ✦ One-to-one relationship: Each element of table A is related to exactly
one element of table B. This type of relationship isn’t common because if
a one-to-one relationship exists between two tables, the information can
be combined safely into one table.

 ✦ One-to-many relationship: For each element of table A, there could be
many possible elements in table B. The relationship between mission
and hero is a one-to-many relationship, as each mission can have many
heroes, but each hero has only one mission. (My heroes have attention
issues and can’t multitask very well.) Note that hero and mission are not
a one-to-many relationship, but a many-to-one. The order matters.

 ✦ Many-to-many relationship: This type of relationship happens when an
element of A may have many values from B, and B may also have many
values of A. Usually, listed fields turn out to be many-to-many relation-
ships. In the hero data, the relationship between hero and power is a
many-to-many relationship because each hero can have many powers,
and each power can belong to multiple heroes.

You can use an ER tool to diagram the various relationship types. Figure 3-7
shows this addition to the hero design.

Figure 3-7:
Now I’ve
added
relation
ships.

Identifying Relationships in Your Data718

 Note that MySQL Workbench doesn’t actually allow you to draw many-to-
many joins. I drew that into Figure 3-7 to illustrate the point. In the next
chapter, I show how to emulate many-to-many relationships with a special
trick called a link table.

ER diagrams use special symbols to represent different kinds of relation-
ships. The line between tables indicates a join, or relationship, but the type
of join is indicated by the markings on the ends of the lines. In general,
the crow’s feet or filled-in circle indicate many, and the double lines
indicate one.

 ER diagrams get much more complex than the simple ones I show here,
but for this introduction, the one and many symbols are enough to get you
started.

Chapter 4: Putting Data
Together with Joins

In This Chapter
✓ Using SQL functions

✓ Creating calculated fields

✓ Working with date values

✓ Building views

✓ Creating inner joins and link tables

S
ingle tables aren’t sufficient for most data. If you understand the rules
of data normalization (see Chapter 3 of this minibook), you know how

to break your data into a series of smaller tables. The question remains,
though: How do you recombine all these broken-up tables to make some-
thing the user can actually use?

In this chapter, you discover several techniques for combining the data in
your tables to create useful results.

 I wrote a quick PHP script to help me with most of the figures in this
chapter. Each SQL query I intend to look at is stored in a separate SQL file,
and I can load up the file and look at it with the PHP code. Feel free to look
over the code for showQuery on the companion website. If you want to run
this code yourself, be sure to change the username and password to reflect
your data settings. Use queryDemo.html to see all the queries in action. I also
include a script called buildHero.sql that creates a database with all the
tables and views I mention in this chapter. Feel free to load that script into
your database so that you can play along at home. You learn more about writ-
ing your own PHP code for reading SQL data in Chapter 5 of this minibook.

Calculating Virtual Fields
Part of data normalization means that you eliminate fields that can be
calculated. In the hero database described in Chapter 3 of this minibook,
data normalization meant that you don’t store the hero’s age, but his or her
birthday instead. Of course, if you really want the age, you should be able
to find some way to calculate it. SQL includes support for calculating results
right in the query.

Calculating Virtual Fields720

Begin by looking over the improved hero table in Figure 4-1.

Figure 4-1:
The hero
table after
normal
ization.

The original idea for the database, introduced in Table 3-1 in Chapter 3
of this minibook, was to keep track of each hero’s age. This idea was bad
because the age changes every year. Instead, I stored the hero’s birthday.
But what if you really do want the age?

Introducing SQL functions
It turns out SQL supports a number of useful functions that you can use to
manipulate date and time data. Table 4-1 shows especially useful MySQL
functions. Many more functions are available, but these functions are the
most frequently used.

Table 4-1 Useful MySQL Functions
Function Description

CONCAT(A, B) Concatenates two string results. Can be used to
create a single entry from two or more fields. For
example, combine firstName and lastName fields.

FORMAT(X, D) Formats the number X to the number of digits D.

CURRDATE(), CURRTIME() Returns the current date or time.

NOW() Returns the current date and time.

MONTH(), DAY(), YEAR(),
WEEK(), WEEKDAY()

Extracts the particular value from a date value.

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Calculating Date Values 721

Function Description

HOUR(), MINUTE(),
SECOND()

Extracts the particular value from a time value.

DATEDIFF(A, B) Frequently used to find the time difference between
two events (age).

SUBTIMES(A, B) Determines the difference between two times.

FROMDAYS(INT) Converts an integer number of days into a date
value.

Typically, you use a programming language, such as PHP, to manage what
the user sees, and programming languages tend to have a much richer set of
functions than the database. Still, it’s often useful to do certain kinds of
functionality at the database level.

Knowing when to calculate virtual fields
You calculate data in these situations:

 ✦ You need to create a single field from multiple text fields. You might
need to combine first, middle, and last name fields to create a single
name value. You can also combine all the elements of an address to
create a single output.

 ✦ You want to do a mathematical operation on your data. Imagine that
you’re writing a database for a vegetable market and you want to
calculate the value from the costPerPound field plus the pounds-
Purchased field. You can include the mathematical operation in
your query.

 ✦ You need to convert data. Perhaps you stored weight information in
pounds and you want a query to return data in kilograms.

 ✦ You want to do date calculations. Often, you need to calculate ages
from specific days. Date calculations are especially useful on the data
side because databases and other languages often have different date
formats.

Calculating Date Values
The birthday value is stored in the hero table, but what you really want to
know is the hero’s age. It’s very common to have a date stored in a database.
You often need to calculate the time from that date to the current date in
years, or perhaps in years and months. Functions can help you do these
calculations.

Calculating Date Values722

Begin by looking at a simple function that tells you the current date and
time, as I do in Figure 4-2.

Figure 4-2:
The NOW()
function
returns the
current date
and time.

The current date and time by themselves aren’t that important, but you can
combine this information with other functions, described in the following
sections, to do some very interesting things.

Using DATEDIFF to determine age
The NOW() function is very handy when you combine it with the
DATEDIFF() function, as shown in Figure 4-3.

Figure 4-3:
The
DATEDIFF()
function
determines
the
difference
between
dates.

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Calculating Date Values 723

This query calculates the difference between the current date, NOW(), and
each hero’s birthday. The DATEDIFF() function works by converting both
dates into integers. It can then subtract the two integers, giving you the
result in number of days.

 You normally name the fields you calculate because otherwise, the formula
used to calculate the results becomes the virtual field’s name. The user
doesn’t care about the formula, so use the AS feature to give the virtual field
a more useful name.

Adding a calculation to get years
Of course, most people don’t think about age in terms of days. Age (unless
you’re talking about fruit flies or something) is typically measured in years.
One simple solution is to divide the age in days by 365 (the number of days
in a year). Figure 4-4 shows this type of query.

Figure 4-4:
You can
divide
by 365 to
determine
the number
of years.

This code is almost like the query shown in Figure 4-3, except it uses a math-
ematical operator. You can use most of the math operators in queries to do
quick conversions. Now, the age is specified in years, but the decimal part
is a bit odd. Normally, you either go with entire year measurements or work
with months, weeks, and days.

Converting the days integer into a date
The YEAR() function extracts only the years from a date, and the MONTH()
function pulls out the months, but both these functions require a date
value. The DATEDIFF() function creates an integer. Somehow, you need to
convert the integer value produced by DATEDIFF() back into a date value.

Calculating Date Values724

(For more on this function, see the section “Using DATEDIFF to determine
age,” earlier in this chapter.)

Figure 4-5 is another version of a query that expresses age in terms of years
and months.

Figure 4-5:
The age
is now
converted
back to a
date.

This query takes the DATEDIFF() value and converts it back to a date. The
actual date is useful, but it has some strange formatting. If you look carefully
at the dates, you’ll see that they have the age of each hero, but it’s coded as
if it were a particular date in the ancient world.

Using YEAR() and MONTH()
to get readable values
After you’ve determined the age in days, you can use the YEAR() and
MONTH() functions to pull out the hero’s age in a more readable way, as illus-
trated by Figure 4-6.

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Calculating Date Values 725

Figure 4-6:
The YEAR(),
MONTH(),
and DAY()
functions
return parts
of a date.

The query is beginning to look complex, but it’s producing some really nice
output. Still, it’s kind of awkward to have separate fields for year, month,
and day.

Concatenating to make one field
If you have year, month, and day values, it would be nice to combine some of
this information to get a custom field, as you can see in Figure 4-7.

Figure 4-7:
Now, the
age is back
in one field,
as originally
intended.

Creating a View726

This query uses the CONCAT() function to combine calculations and literal
values to make exactly the output the user is expecting. Even though the
birthday is the stored value, the output can be the age.

Creating a View
The query that converts a birthday into a formatted age is admittedly com-
plex. Normally, you’ll have this query predefined in your PHP code so that
you don’t have to think about it anymore. If you have MySQL 5.0 or later,
though, you have access to a wonderful tool called the VIEW. A view is
something like a virtual table.

The best way to understand a view is to see a sample of it in action. Take a
look at this SQL code:

CREATE VIEW heroAgeView AS
 SELECT
 name as 'hero',
 CONCAT(
 YEAR(FROM_DAYS(DATEDIFF(NOW(), birthday))),
 ' years, ',
 MONTH(FROM_DAYS(DATEDIFF(NOW(), birthday))),
 ' months'
) AS 'age'
 FROM
 hero;

If you look closely, it’s exactly the same query used to generate the age from
the birth date, just with a CREATE VIEW statement added. When you run
this code, nothing overt happens, but the database stores the query as a
view called heroView. Figure 4-8 shows the cool part.

I know what you’re thinking. All this fancy func
tion stuff is well and good, but there’s no stinkin’
way you’re going to do all those function gym
nastics every time you want to extract an age
out of the database. Here’s the good news:
You don’t have to. It’s okay that the queries are
getting a little tricky because you’ll write code
to do all the work for you. You write it only once,

and then your code does all the heavy lifting.
Generally, you write PHP code to manage each
query inside a function. After you’ve tested it,
you run that function and off you go. . . . You can
also use a little gem called the view, described
in the “Creating a View” section. Views allow
you to store complex queries right in your
database.

There’s no way I’m writing that every time . . .

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Creating a View 727

Figure 4-8:
This simple
query hides
a lot of
complexity.

This code doesn’t look really fancy, but look at the output. It’s just like you
had a table with all the information you wanted, but now the data is guaran-
teed to be in a decent format.

After you create a view, you can use it in subsequent SELECT statements
as if it were a table! Here are a couple of important things to know about
views:

 ✦ They aren’t stored in the database. The view isn’t really data; it’s just
a predefined query. It looks and feels like a table, but it’s created in real
time from the tables.

 ✦ You can’t write to a view. Because views don’t contain data (they
reflect data from other tables), you can’t write directly to them. You
don’t use the INSERT or UPDATE commands on views, as you do
ordinary tables.

 ✦ They’re a relatively new feature of MySQL. Useful as they are, views
weren’t added to MySQL until Version 5.0. If your server uses an earlier
version, you’ll have to do some workarounds, described in the sidebar
“So what if I’m stuck with MySQL 4.0?”

 ✦ You can treat views as tables in SELECT statements. You can build
SELECT statements using views as if they were regular tables.

 Some database packages make it appear as though you can update a view,
but that’s really an illusion. Such programs reverse-engineer views to update
each table. This approach is far from foolproof, and you should probably
avoid it.

Using an Inner Join to Combine Tables728

Views are so great that it’s hard to imagine
working with data without them. However,
your hosting service may not have MySQL 5.0
or later installed, which means you aren’t able
to use views. All is not lost. You can handle this
issue in two ways.

The most common approach is to store all the
queries you’re likely to need (the ones that
would be views) as strings in your PHP code.
Execute the query from PHP, and you’ve essen

tially executed the view. This method is how
most programmers did it before views were
available in MySQL.

Another approach is to create a new table
called something like storeQuery in your
database. Put the text of all your views inside
this table, and then you can extract the view
code from the database and execute it using a
second pass at the data server.

So what if I’m stuck with MySQL 4.0?

Using an Inner Join to Combine Tables
When I normalized the hero database in Chapter 3 of this minibook, I broke
it up into several tables. Take a quick look at the hero table in Figure 4-9.

Figure 4-9:
The hero
table has a
link to the
mission
table.

You probably noticed that most of the mission information is now
gone from this table, except one important field. The missionID field is
an integer field that contains the primary key of the mission table.
A foreign key is a field that contains the primary key of another table.

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Using an Inner Join to Combine Tables 729

Foreign keys are used to reconnect tables that have been broken apart by
normalization.

Look at the mission table in Figure 4-10, and the relationship between the
mission and hero tables begins to make sense.

Figure 4-10:
The mission
table
handles
mission data
but has no
link to the
hero.

The mission table doesn’t have a link back to the hero. It can’t, because
any mission can be connected to any number of heroes, and you can’t have
a listed field.

Building a Cartesian join and an inner join
Compare the hero and mission tables, and you see how they fit together.
The missionID field in the hero table identifies which mission the hero is
on. None of the actual mission data is in the hero field, just a link to which
mission the player is on.

Creating a query with both tables, as in Figure 4-11, is tempting. This query
appears to join the tables, but it obviously isn’t doing the right thing. You
have only three heroes and two missions, yet this query returns six rows!
What’s happened here is called a Cartesian join. It’s a combination of all the
possible values of hero and mission, which is obviously not what you want.

Using an Inner Join to Combine Tables730

Figure 4-11:
This query
joins both
tables, but
it doesn’t
seem right.

You don’t really want all these values to appear; you want to see only the
ones where the hero table’s missionID matches up to the missionID
field in the mission table. In other words, you want a query that says only
return rows where the two values of missionID are the same. That query
may look like Figure 4-12. It’s almost identical to the last query, except this
time, a WHERE clause indicates that the foreign key and primary key should
match up.

Figure 4-12:
Now, you
have an
inner join.

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Using an Inner Join to Combine Tables 731

This particular setup (using a foreign key reference to join up two tables) is
called an inner join. Sometimes, you see the syntax like

SELECT
 hero.name AS 'hero',
 hero.missionID AS 'heroMID',
 mission.missionID AS 'missMID',
 mission.description AS 'mission'
FROM
 hero INNER JOIN mission
ON
 hero.missionID = mission.missionID;

Some of Microsoft’s database offerings prefer this syntax, but it really does
the same thing: join up two tables.

Enforcing one-to-many relationships
Whenever your ER diagram indicates a many-to-one (or one-to-many) rela-
tionship, you generally use an inner join (see the preceding section). Here’s
how you do it:

 1. Start with the ER diagram.

 No way are you going to get this right in your head! Make a diagram. Use
a tool like MySQL Workbench, some other software, pencil and paper,
lipstick on a mirror, whatever. You need a sketch.

 2. Identify one-to-many relationships.

 You may have to talk with people who use the data to determine which
relationships are one-to-many. In the hero data, a hero can have only one
mission, but each mission can have many heroes. Thus, the hero is the
many side, and the mission is the one side.

 3. Find the primary key of the one table and the many table.

 Every table should have a primary key. (You’ll sometimes see advanced
alternatives like multifield keys, but wait until you’re a bit more
advanced for that stuff.)

 4. Make a foreign key reference to the one table in the many table.

 Add a field to the table on the many side of the relationship that
contains only the key to the table on the one side.

 You don’t need a foreign key in the table on the one side of the relationship.
This concept confuses most beginners. You don’t need (or want) a link back to
the many table because you don’t know how many links you’ll need. Multiple
links would be a listed field, which is exactly what you’re trying to avoid.

If the preceding steps are hard for you to understand, think back to the hero
example. Each hero (according to the business rules) can be on only one
mission. Thus, it makes sense to put a link to the mission in the hero table
because you have only one mission. Each mission can be related to many

Using an Inner Join to Combine Tables732

heroes, so if you try to link missions to heroes, you have listed fields in the
mission table, violating the first normal form. (For information on the types
of normal forms, see Chapter 3 of this minibook.) Figure 4-13 shows how it
works in action. The result of this join looks a lot like the original intention of
the database, but now it’s normalized.

Figure 4-13:
Here’s a
nice join
of the hero
and mission
tables.

 I’ve had people write to me about this example, saying heroes should be
allowed to go on multiple missions, or they’re not very good heroes. That’s a
great point, and it brings up one of the most significant issues in data
development. The data programmer’s job is to reflect the business rules in
place. I deliberately made up the business rules in this example to simplify
explaining things, so I’ve got a business rule in place (one mission per hero)
that may not be the best from a “saving the world” perspective. However, if
that’s the business rule you’ve got, your job is to implement it. There is a time
and place for changing the business rules, and a data developer can help with
this, but that’s a decision that really belongs to the client. For a few compa-
nies I’ve worked with, perhaps the most useful thing I did for them was help
them understand their data better and recognize when some of their business
rules could be improved. When the client changes the rules, you can imple-
ment the new ones, but you shouldn’t change the business rules yourself.

Counting the advantages of inner joins
Even though the table in Figure 4-13 contains everything in the original non-
normalized data set (except for the repeated field — that’s coming up soon),
the new version is considerably better for several reasons:

 ✦ No data is repeated. The plot is stored only one time in the database.
Even though it may appear several times in this output, each value is
stored only once.

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Managing Many-to-Many Joins 733

 ✦ Searching is much more efficient. Because the data is stored only one
time, you no longer have to worry about spelling and typing errors. If
the entry is wrong, it is universally wrong, and you can repair it in only
one place.

 ✦ The data is organized correctly. Although the user can’t see it from
this output, the tables are now separated so that each type of data goes
where it belongs.

 ✦ The output still looks like what the user wants. Users don’t care about
the third normal form. (For more on normalization, see Chapter 3 of this
minibook.) They just want to get to their data. This table gives them a
query that returns the data they’re looking for, even though the underly-
ing data structure has changed dramatically.

Building a view to encapsulate the join
The inner join query is so useful, it’s a dandy place for a view. I created a
view from it:

CREATE VIEW heroMissionView AS
 SELECT
 hero.name AS 'hero',
 mission.description AS 'mission',
 mission.villain AS 'villain',
 mission.plot AS 'plot'
 FROM hero, mission
 WHERE
 hero.missionID = mission.missionID;

Having a view means that you don’t have to re-create the query each time.
You can treat the view as a virtual table for new queries:

SELECT * FROM heroMissionView;

Managing Many-to-Many Joins
Inner joins are a perfect way to implement one-to-many relationships. If
you look at ER diagrams, you often see many-to-many relationships, too. Of
course, you also need to model them. Here’s the secret: You can’t really
do it. It’s true. The relational data model doesn’t really have a good way to
do many-to-many joins. Instead, you fake it out. It isn’t hard, but it’s a little
bit sneaky.

 You use many-to-many joins to handle listed data, such as the relationship
between hero and power. Each hero can have any number of powers,
and each power can belong to any number of heroes (see the table in
Figure 4-14).

Managing Many-to-Many Joins734

Figure 4-14:
The hero
table has no
reference to
powers.

The inner join was easy because you just put a foreign key reference to the
one side of the relationship in the many table. (See the section “Using an
Inner Join to Combine Tables,” earlier in this chapter.) In a many-to-many
join, there is no “one” side, so where do you put the reference? Leave it to
computer scientists to come up with a sneaky solution.

First, review the hero table in Figure 4-14.

Note that this table contains no reference to powers. Now, look at the power
table in Figure 4-15. You see a lot of powers, but no reference to heroes.

Figure 4-15:
The power
table has no
reference to
heroes.

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Managing Many-to-Many Joins 735

Here’s the tricky part. Take a look at a new table in Figure 4-16.

Figure 4-16:
This new
table
contains
only foreign
keys!

The results of this query may surprise you. The new table contains nothing
but foreign keys. It doesn’t make a lot of sense on its own, yet it represents
one of the most important ideas in data.

Understanding link tables
The hero_power table shown in Figure 4-16 is a brand new table, and it’s
admittedly an odd little duck:

 ✦ It contains no data of its own. Very little appears inside the table.

 ✦ It isn’t about an entity. All the tables shown earlier in this chapter are
about entities in your data. This one isn’t.

 ✦ It’s about a relationship. This table is actually about relationships between
hero and power. Each entry of this table is a link between hero and power.

 ✦ It contains two foreign key references. Each record in this table links
an entry in the hero table with one in the power table.

 ✦ It has a many-to-one join with each of the other two tables. This table
has a many-to-one relationship with the hero table. Each record of
hero_power connects to one record of hero. Likewise, each record of
hero_power connects to one record of power.

 ✦ The two many-to-one joins create a many-to-many join. Here’s the
magical part: By creating a table with two many-to-one joins, you
create a many-to-many join between the original tables!

 ✦ This type of structure is called a link table. Link tables are used to
create many-to-many relationships among entities.

Managing Many-to-Many Joins736

Using link tables to make many-to-many joins
Figure 4-17 displays a full-blown ER diagram of the hero data.

Figure 4-17:
Here’s the
ER diagram
of the hero
data.

Link tables aren’t really useful on their own because they contain no actual
data. Generally, you use a link table inside a query or view:

SELECT
 hero.name AS 'hero',
 power.name AS 'power'
FROM
 hero, power, hero_power
WHERE
 hero.heroID = hero_power.heroID
AND
 power.powerID = hero_power.powerID;

Here are some thoughts about this type of query:

 ✦ It combines three tables. That complexity seems scary at first, but
it’s really fine. The point of this query is to use the hero_power table
to identify relationships between hero and power. Note that the FROM
clause lists all three tables.

 ✦ The WHERE clause has two links. The first part of the WHERE clause links
up the hero_power table with the hero table with an inner join. The
second part links up the power table with another inner join.

 ✦ You can use another AND clause to further limit the results. Of course,
you can still add other parts to the AND clause to make the results solve
a particular problem, but I leave that alone for now.

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Managing Many-to-Many Joins 737

Figure 4-18 shows the result of this query. Now you have results you
can use.

Figure 4-18:
The Link
Query joins
up heroes
and powers.

Once again, this query is an obvious place for a view:

CREATE VIEW heroPowerView AS
 SELECT
 hero.name AS 'hero',
 power.name AS 'power'
 FROM
 hero, power, hero_power
 WHERE
 hero.heroID = hero_power.heroID
 AND
 power.powerID = hero_power.powerID;

Typically, you won’t do your results exactly like this view. Instead, you
display information for, say, Binary Boy, and you want a list of his powers. It
isn’t necessary to say Binary Boy three times, so you tend to use two queries
(both from views, if possible) to simplify the task. For example, look at these
two queries:

SELECT * FROM heroMissionView WHERE hero = 'binary boy';
SELECT power FROM heroPowerView WHERE hero = 'binary boy';

The combination of these queries gives you enough data to describe every-
thing in the original table. Typically, you attach all this data together in your
PHP code.

Managing Many-to-Many Joins738

The code is standard PHP data access, except it makes two passes to the
database:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>showDetails.php</title>
 <style type = "text/css">
 dt {
 float: left;
 width: 4em;
 clear: left;
 }

 dd {
 float: left;
 width: 20em;
 }
 </style>
</head>

<body>
<?php
//connect

 try {
 $con= new PDO('mysql:host=localhost;dbname=haio', "haio", "haio");
 $con->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 //get most information for requested hero
 $hero = "binary boy";

 $query = <<<HERE
SELECT
 *
FROM
 heroMissionView
WHERE
 hero = '$hero'

HERE;

 print "<dl> \n";
 $result = $con->query($query);
 $result->setFetchMode(PDO::FETCH_ASSOC);
 foreach ($result as $row){
 foreach ($row as $field => $value){
 print <<<HERE
 <dt>$field</dt>
 <dd>$value</dd>

HERE;

 } // end field foreach
 } // end row foreach
 print " <dt>powers</dt> \n";
 print " <dd> \n";

 //create another query to grab the powers
 $query = <<<HERE
SELECT
 power

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Managing Many-to-Many Joins 739

FROM
 heroPowerView
WHERE hero = '$hero'
HERE;

 //put powers in an unordered list
 $result = $con->query($query);
 print " \n";
 foreach ($result as $row){
 foreach ($row as $field => $value){
 print " $value \n";
 } // end foreach
 } // end while loop
 print " \n";
 print "</dd> \n";
 print "</dl> \n";

} catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
} // end try

?>
</body>
</html>

Refer to Chapter 5 of this minibook to read more on PHP and how it’s used to
access databases.

740 Book VI: Managing Data with MySQL

Chapter 5: Connecting PHP to a
MySQL Database

In This Chapter
✓ Building the connection string

✓ Sending queries to a database

✓ Retrieving data results

✓ Formatting data output

✓ Allowing user queries

✓ Cleaning user-submitted data requests

D
ata has become the prominent feature of the web. As you build more
sophisticated sites using HTML and CSS, you will eventually feel the

need to incorporate data into your websites. You can do a certain amount
of data work with the basic data structures built into PHP, but more sophis-
ticated data problems require more sophisticated tools. Likewise, MySQL
is great at data, but is not perfect for getting input from users or preparing
HTML output. PHP and MySQL are perfect partners, with very compatible
strengths and weaknesses.

 This chapter assumes you have a database available and also that you have
some basic knowledge of how SQL (Structured Query Language; the lan-
guage of databases) works. It also assumes you’re comfortable with PHP. If
you need a refresher on PHP, please check Book V. Book VI covers MySQL in
detail.

PHP and MySQL: A Perfect (but Geeky) Romance
PHP programmers frequently use MySQL as their preferred data back end
for a number of good reasons:

 ✦ MySQL is open source and free. Like PHP, MySQL is open source, so
PHP and MySQL can be used together (with Apache) to build a very
powerful low-cost data solution.

 ✦ MySQL is very powerful. MySQL’s capability as a data program has
improved steadily, and it is now nearly as capable as commercial tools

PHP and MySQL: A Perfect (but Geeky) Romance742

costing thousands of dollars. (And it is better than many that cost hun-
dreds of dollars.)

 ✦ PHP has built-in support for MySQL. PHP includes a number of func-
tions specifically designed to help programmers maintain MySQL
databases.

 ✦ You probably already have MySQL. If you installed XAMPP, you prob-
ably already have an installation of MySQL ready to go. Check Book VIII,
Chapter 1 for installation details.

 ✦ MySQL was designed with remote control in mind. MySQL is meant to
be managed from some other program (like the code you write in PHP).
It’s not designed with a user interface (like Access has), but it’s designed
from the beginning to be controlled through a programming language
like PHP.

Before diving into details, here’s an overview of how you get information to
and from a MySQL database:

 1. Establish a connection.

 Before you can work with a database, you must establish a relationship
between your PHP program and the database. This process involves
identifying where the database is and passing it a username and
password.

 2. Formulate a query.

 Most of the time, you’ll have some sort of query or request you want to
pass to the database. For example, you may want to see all the data in a
particular table, or you may want to update a record. In either case, you
use SQL to prepare a request to pass to the database.

 3. Submit the query.

 After you build the query, you pass it (through the connection) to the
database. Assuming that the query is properly formatted, the database
processes the request and returns a result.

 4. Process the result.

 The database returns a special variable containing the results of your
query. You’ll generally need to pick through this complex variable to find
all the data it contains. For example, it can contain hundreds of records.
(For more on records, see the upcoming section “Retrieving data from
the database.”)

 5. Display output to the user.

 Most of the time, you’ll process the query results and convert them to
some sort of HTML display that the user can view.

Book VI
Chapter 5

Connecting PHP to a
M

ySQL Database
PHP and MySQL: A Perfect (but Geeky) Romance 743

As an example, take a look at contact.php in Figure 5-1.

Figure 5-1:
This
program
gets all the
contact
data from a
database.

The contact.php program contains none of the actual contact information.
All the data was extracted from a database. Here’s an overview of the code:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>contact.php</title>
 </head>
 <body>
 <p>
 <?php
 try {
 $con= new PDO('mysql:host=localhost;dbname=dbName', "user", "pwd");
 $con->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $result = $con->query('SELECT * FROM contact');
 $result->setFetchMode(PDO::FETCH_ASSOC);

 foreach($result as $row){
 foreach ($row as $name=>$value){
 print "$name: $value
";
 } // end field loop
 print "
";
 } // end record loop

 } catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
 }

 ?>
 </p>
 </body>
</html>

PHP and MySQL: A Perfect (but Geeky) Romance744

 If you want to try this program at home, begin by running the build
ContactAutoIncrement.sql script (available in Book VI, Chapter 2) in your
copy of MySQL. Note that you’ll probably have to change the database,
username, and password values to make your examples work. This will
ensure you have the database created. See Book VI, Chapter 2 if you need
more information on creating databases.

Understanding data connections
The key to all database work is the connection. Database connections
remind me of the pneumatic tubes at some bank drive-through locations.
There’s a little container you can stick your request into. You press a button,
and the container shoots through a tube to the teller, who processes your
request and sends you the results back through the tube.

In data programming, the connection is like that tube: It’s the pipeline
between your program (your car) and the data (the bank). To establish a
data connection, you need to know four things:

 ✦ The hostname (where the server is): Often, the data server will be
housed on the same physical machine as the web server and PHP pro-
gram. In these cases, you can use localhost as the server name. Test
servers using XAMPP almost always use localhost connections. If
you’re working in a production environment, you may need to ask your
service provider for the server address of your database.

 ✦ Your database username: Database programs should always have some
type of security enabled. (See Book VI, Chapter 1 for information on setting
up database users and passwords.) Your program needs to know the user-
name it should use for accessing the data. (I often create a special user-
name simply for my programs. Book VI, Chapter 1 outlines this process.)

 When you first install MySQL through XAMPP, it allows root access with
no password. These settings allow anybody to do anything with your
data. Obviously, that’s not a good solution, security-wise. Be sure to set
up at least one username and password combination for your database.
If you’re using an online hosting service, you probably don’t have root
access. In this case, you typically have a new user created for each data-
base you build. Book VI explains all.

 ✦ A password for the database: The username isn’t secure without a
password. Your PHP program also needs a password. This is established
when you create the database.

 If you’re going to make your source code available (as I do on the com-
panion website), be sure to change the username and password so
people can’t use this information to hack your live data.

 ✦ The database name: A single installation of MySQL can have many data-
bases available. You’ll typically have a separate database designed for
each project you build. MySQL needs to know which particular database
houses the information you’re seeking.

Book VI
Chapter 5

Connecting PHP to a
M

ySQL Database
PHP and MySQL: A Perfect (but Geeky) Romance 745

Introducing PDO
PHP has used a number of mechanisms for connecting to databases over the
years. For a long time, the standard was a series of libraries for the various
database types. Many people used the mysql library, which was (stay with
me here) a library of functions for working with mySQL. If you wanted to use
a different database, you’d need a different library with different functions.

The other problem with the mysql library was security. The techniques
used in that library opened up a number of security holes. There are tech-
niques for closing these holes, but not every programmer used them.

The mysqli library (mysql improved) fixed a number of these problems, but
was still specific to a single database, and a bit more complex to use than
the older library.

PHP5.1 and later now includes a library called PDO (PHP Data Objects) and it’s
a significant improvement over the mysql library. Here are a few key features:

 ✦ It works with multiple backends: In the old days, changing a database
engine meant re-writing all your code. With PDO, you use exactly the
same mechanism with all databases, so it’s much easier to change data
engines.

 ✦ It uses object-oriented syntax: PHP supports object-oriented program-
ming, but it uses a slightly different syntax than JavaScript. Object-
oriented programming adds some nice features to data access, so this is
generally a good thing.

 ✦ It’s provides safer access to data: PDO uses a mechanism called pre-
pared statements which prevent the most challenging kinds of data
errors. More about this in the section called “Allowing User Interaction”
later in this chapter.

Building a connection
With PDO, the connection is an instance of the PDO object. When you make
a PDO object, you’re making a connection to the database. The data connec-
tion command is chock-full of details:

$con = new PDO('mysql:host=localhost;dbname=dbname', "username", "password");

There’s a lot of important stuff happening in this line:

 1. Set up a variable to hold the connection.

 The entire point of creating a PDO object is to have a connection object,
with various methods for modifying the data and making queries. So the
first part of the data connection process is to make a connection object.
I call mine $con.

$con = new PDO('mysql:host=localhost;dbname=dbname', "username",
"password");

PHP and MySQL: A Perfect (but Geeky) Romance746

 2. Build a new PDO object.

 Because PDO is object-oriented, use the new keyword to call the PDO
object constructor. (See Book V, Chapter 7 for more on objects and con-
structors in PHP.)

$con = new PDO('mysql:host=localhost;dbname=dbname', "username",
"password");

 3. Specify the database type.

 MySQL is the most commonly used database system for PHP program-
mers, so that’s what I specify. However, one of the advantages of PDO
is its flexibility. If you change to a different RDBMS, you (theoretically,
at least) only need to make one tiny change and the code will still
work.

$con = new PDO('mysql:host=localhost;dbname=dbname', "username",
"password");

 4. Indicate the host.

 When you’re working on a local XAMPP installation, the host will often
be localhost. If you’re on a remote server, you may need to investigate
where your databases are hosted. They may be on a completely different
machine with its own address.

$con = new PDO('mysql:host=localhost;dbname=dbname', "username",
"password");

 5. Specify the database name.

 Within a connection, you might have several databases. Use this part of
the connection to determine which database you’re using.

$con = new PDO('mysql:host=localhost;dbname=dbname', "username",
"password");

 6. Indicate the username.

 Each database will likely have a specific user determined to be that data-
base’s administrator. (See Chapter 1 of this mini-book for instructions on
setting up users and databases.)

$con = new PDO('mysql:host=localhost;dbname=dbname', "username",
"password");

 7. Provide the password.

 Your program is essentially logging in as the user. This is why it’s good
to build a specific user for each application. This allows you to tightly
control access to your database.

$con = new PDO('mysql:host=localhost;dbname=dbname', "username",
"password");

 If you are using the root user with no password, you’re setting up your com-
puter to be hacked. Please see my instructions in Chapter 1 of minibook VII
to set up a more secure installation.

Book VI
Chapter 5

Connecting PHP to a
M

ySQL Database
PHP and MySQL: A Perfect (but Geeky) Romance 747

Retrieving data from the database
After a PDO connection is set up, it’s pretty easy to use. Here’s the overall
plan for retrieving data from the PDO connection:

 1. Put all PDO code in an exception-handler.

 Data access is inherently dangerous. It’s a perfect place for things to
go wrong, so use an exception-handler to protect from potential errors.
Use the try clause to begin your exception-handler. You can learn more
about exceptions in Book V, Chapter 7.

 try {

 2. Set up your data connection.

 Create a PDO object, setting up your data connection.
 $con = new PDO('mysql:host=localhost;dbname=dbname', "userName",

"password");

 3. Turn on error-tracking.

 PDO has some features for tracking errors. These are especially useful
because the ordinary PHP error codes don’t help with PHP problems.
Turn on the PDO error-reporting mechanism with the setAttribute()
method of the PDO object.

 $con->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 4. Execute a query.

 The PDO object’s query() method allows you to apply a query to the
database and returns the result in a special variable.

 $result = $con->query('SELECT * FROM contact');

 The query() method is one of several techniques for getting data from
the database. It’s a shortcut meant to be used when you’re sending an
SQL request that’s expected to return a result (like a SELECT) statement.
Use execute() when you want to pass a command that will not return
a result (like a CREATE TABLE or UPDATE) statement.

 5. Set the fetch mode.

 You can tell PDO to return data in a number of formats. For now, choose
FETCH_ASSOC. This format returns each record as an associative array.
This is the easiest fetch mode to work with. (You can also return each
record as a numerically indexed array, both numeric and associative
arrays, and as a special object.)

 $result->setFetchMode(PDO::FETCH_ASSOC);

 6. Read the data a row at a time.

 The results of a data query are typically a table, so read the table
one row (record) at a time. The $result variable is an ordinary
array, so you can easily use a foreach loop to separate the data into
rows.

 foreach($result as $row){

PHP and MySQL: A Perfect (but Geeky) Romance748

 7. Each row is an associative array.

 Each row can also be thought of as an array. PDO has a number of ways
to extract the data, but you set the fetch mode to associative array in
Step 5. This means you can use the associative variant of the foreach
loop to very easily separate each row into its name/value pairs.

 foreach ($row as $name=>$value){

 8. Print the field’s name and value.

 Now you can simply print out the name and value of the field. Recall you
are building HTML output, so you can go with something simple (as I’m
doing in this example) or encode your output in something more sophis-
ticated like a definition list or a table.

 print "$name: $value
";

 9. End all your structures.

 This is a complicated set of instructions. It’s really easy to forget a closing
structure. Be sure to indent properly and label all your closing braces.

 } // end field loop
 print "
";
 } // end record loop

 10. Catch exceptions.

 Because all this code happens inside a try block, you need some sort of
catch mechanism. Mine simply reports errors.

 } catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();

 } // end try

Using HTML tables for output
The basic unit of structure in SQL is called a table because it’s usually dis-
played in a tabular format. HTML also has a table structure, which is ideal
for outputting SQL data. Figure 5-2 shows contactTable.php, which displays
the contact information inside an HTML table.

 Tables are a very common way to output SQL results. There’s one big difference
between table output and the basic version shown elsewhere in this chapter. In
a table, you have a separate row containing field names. Here’s the code:

Book VI
Chapter 5

Connecting PHP to a
M

ySQL Database
PHP and MySQL: A Perfect (but Geeky) Romance 749

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>contact.php</title>
 <style type = "text/css">
 table, th, td {border: 1px solid black};
 </style>
 </head>
 <body>
 <p>
 <?php
 try {
 $con= new PDO('mysql:host=localhost;dbname=dbName', "user", "pwd");
 $con->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $query = "SELECT * FROM contact";

 //first pass just gets the column names
 print "<table> \n";

 $result = $con->query($query);
 //return only the first row (we only need field names)
 $row = $result->fetch(PDO::FETCH_ASSOC);

 print " <tr> \n";
 foreach ($row as $field => $value){
 print " <th>$field</th> \n";
 } // end foreach
 print " </tr> \n";

 //second query gets the data
 $data = $con->query($query);
 $data->setFetchMode(PDO::FETCH_ASSOC);

 foreach($data as $row){
 print " <tr> \n";
 foreach ($row as $name=>$value){
 print " <td>$value</td> \n";
 } // end field loop

Figure 5-2:
The contact
information
displayed
in an HTML
table.

PHP and MySQL: A Perfect (but Geeky) Romance750

 print " </tr> \n";
 } // end record loop

 print "</table> \n";

 } catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
 } // end try

 ?>
 </p>
 </body>
</html>

 You might be confused that I’m using a table here, seeing as how I argue
pretty strongly against use of tables for page layout in the HTML and CSS
minibooks. Tables aren’t evil: They just aren’t designed to be a page layout
mechanism. Tables, however, are designed to display tabular data, and the
result of a data query is pretty much the definition of tabular data. You can
(and should) still use CSS for specific layout details of the table. Tables are
fine when used to present data, which is what I’m doing here.

This code is still very similar to the basic contact.php program. It extracts
data from the database exactly the same way. The main difference is how
field names are treated. The field names will go in table headings, and only
the values are printed from each row. To make this work, follow these steps:

 1. Build a normal MySQL connection.

 Begin with the standard connection. Don’t worry about formatting until
you’re reasonably certain that you can read data from the database.

 $con = new PDO('mysql:host=localhost;dbname=dbName', "user",
"pwd");

 $con->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 2. Determine your query.

 Create a query that will produce a table, view, or search result. Store it in a
variable so you can use it. (You’ll use the same query twice in this exercise.)

 $query = "SELECT * FROM contact";

 3. Print the table tag before extracting any results.

 All the query data will be displayed inside the table, so print the table
tag before you start printing anything that should go inside the table.

 print "<table> \n";

 4. Make a first pass to extract field names.

 You’re actually going to query the database twice. The first time, you
simply want the field names, which you’ll use to build the table headers,
so it only needs one row.

Book VI
Chapter 5

Connecting PHP to a
M

ySQL Database
Allowing User Interaction 751

 $result = $con->query($query);
 //return only the first row (we only need field names))
 $row = $result->fetch(PDO::FETCH_ASSOC);

 The fetch method pulls the next available record from the $result
variable. You want the record data in associative array format, so pass
the PDO::FETCH_ASSOC constant to indicate this.

 5. Print the field names as table headers.

 Now that you have a single record, walk through that record as an asso-
ciative array and use the $field values to print out field names.

 print " <tr> \n";
 foreach ($row as $field => $value){
 print " <th>$field</th> \n";
 } // end foreach
 print " </tr> \n";

 6. Make a second query.

 Now execute the query again with the $con->query() method. This
time, you’re doing an ordinary query with multiple results. Don’t forget
to set the fetch mode to associative array.

 //second query gets the data
 $data = $con->query($query);
 $data->setFetchMode(PDO::FETCH_ASSOC);

 7. Use nested loops to print out data elements.

 Use the ordinary nested-loops trick to print out all of the data elements
with each record taking up one row of the HTML table.

 foreach($data as $row){
 print " <tr> \n";
 foreach ($row as $name=>$value){
 print " <td>$value</td> \n";
 } // end field loop
 print " </tr> \n";
 } // end record loop

Allowing User Interaction
If you have a large database, you probably want to allow users to search the
database. For example, the form in Figure 5-3 allows the user to search the
My Contacts database.

Allowing User Interaction752

Figure 5-3:
The user
can check
for any
value in any
field.

Here are a couple of interesting things about the form in Figure 5-3:

 ✦ The search value can be anything. The first field is an ordinary text
field. The user can type absolutely anything here, so you should expect
some surprises.

 ✦ The user selects a field with a drop-down menu. You don’t expect the
user to know exactly what field names you are using in your database.
Whenever possible, supply this type of information in a format that’s
easier for the user and less prone to error.

 ✦ This form is built to fill in a query. The back-end program (search.php)
will be constructing a query from data gathered from this form. The
point of the form is to request two pieces of information from the user: a
field to search in and a value to look for in that field. search.php uses the
data gleaned from this form to construct and submit that query to the
database.

 ✦ The user doesn’t know SQL. Even if the user does know SQL, don’t let
him use it. The SQL query should always be built on the server side. Get
enough information to build an SQL query, but don’t send a query to the
PHP. Doing so exposes your database to significant abuse, such as the
SQL injection attack described later in this chapter.

 ✦ The form uses the post mechanism. From the HTML perspective, it
isn’t important whether the form uses get or post, but when you’re
using forms to construct SQL queries, using post is a bit safer because
it makes the bad guys work a little bit harder to spoof your site and send
bogus requests to your database.

Book VI
Chapter 5

Connecting PHP to a
M

ySQL Database
Allowing User Interaction 753

Building an HTML search form
This is what the HTML code for search.html looks like:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>search.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "search.css" />
 </head>
 <body>
 <h1>Search my contacts</h1>
 <form action = "search.php"
 method = "post">
 <fieldset>
 <label>Search for</label>
 <input type = "text"
 name = "srchVal" />
 <label>in</label>
 <select name = "srchField">
 <option value = "contactID">ID</option>
 <option value = "name">contact name</option>
 <option value = "company">company name</option>
 <option value = "email">email address</option>
 </select>
 <button type = "submit">submit request</button>
 </fieldset>
 </form>
 </body>
</html>

This is really a pretty basic form. The interesting stuff happens in the
search.php program that’s triggered when the user submits this form.

Responding to the search request
When the user submits search.html, a page like Figure 5-4 appears, created
by search.php.

The search.php program isn’t really terribly different from contactTable.
php. It takes an SQL query, sends it to a database, and returns the result
as an HTML table. The only new idea is how the SQL query is built.
Rather than preloading the entire query into a string variable, as I did in
all other examples in this chapter, I used input from the form to inform
the query.

At one level, this seems pretty easy because an SQL query is just a string,
and it’s easy to build strings based on input data. However, you should never
interpolate user input into an SQL string. If you directly include data from
a form into an SQL query, you’re opening yourself up to a nefarious type of
attack called SQL injection. Imagine somebody entering Andy; DROP TABLE
contact as the search value. This fake name could destroy parts of the
database if the programmer is unwary.

Allowing User Interaction754

Figure 5-4:
The
program
searches
the
database
according
to the
parameters
in search.
html.

 Never directly interpolate user input into an SQL statement. Use the sanitiz-
ing mechanisms described in the next section instead.

You can use input data to build custom queries, but you must do one of two
things first:

 ✦ Sanitize the data to ensure it’s legit: There’s a couple of ways to do this,
including the PDO::quote() method. I show another technique in the
next section that ensures the data is in a very specific pre-arranged set
of values.

 ✦ Use a prepared statement: Prepared statements are a powerful tool.
They not only sanitize your data, they can speed up data requests quite
a bit. Prepared statements are described in the next section.

Before going through all the details, here’s the general plan.

 1. Ensure the field name is a legitimate value.

 The user can enter a field name through a drop-down list. Theoretically
that should only allow legitimate field names (if I built the form correctly),
but an evildoer could build a spoof form with any values in there they
wanted. So I’ll ensure the field name value matches against a list of fields I
know are legit, and quit if they entered something that isn’t in my list.

 2. Build a prepared statement.

 A prepared statement is a special database structure. It’s like a query, but
it has some placeholders in it. For example, you could create the follow-
ing line:

 $stmt = $con->prepare("SELECT * FROM contact WHERE $field LIKE ?");

Book VI
Chapter 5

Connecting PHP to a
M

ySQL Database
Allowing User Interaction 755

 The database will compile the statement as-is, but will not execute it yet.
The question marks indicate values that will be provided later, and you
can have as many as you wish.

 3. Execute the prepared statement.

 When you have a prepared statement, you can execute it by sending it
an array of values (one per question mark in the prepared statement). I
still need an array even though it has only one value in it.

 $stmt->execute(array("j%"));

 4. The values are not considered SQL.

 One advantage to a prepared statement is the values passed (in this
case j%, which looks for a value beginning with J) are never compiled as
SQL, so most SQL injection attacks are prevented with this technique.

 5. The prepared statement can be reused.

 Although it’s not needed for this particular application, you can reuse
a prepared statement many times, and it’s only compiled by the
database the first time. This can be very useful because many web
applications involve reading data from a form and passing the results
into queries.

Theory is good, but an actual example is needed. As usual, I provide the
code in its entirety here, and then I point out specific features. Look at the
big picture first:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>search.php</title>
 </head>
 <body>
 <h1>My Contacts</h1>
 <?php
 try {
 $fieldName = array("contactID", "name", "company", "email");
 //get values from form

 $srchField = filter_input(INPUT_POST, "srchField");
 $srchValue = filter_input(INPUT_POST, "srchVal");

 //don't proceed unless it's a valid field name
 if (in_array($srchField, $fieldName)){
 $field = $srchField;
 //put value inside %% structure
 $value = "%$srchValue%";

 $con= new PDO('mysql:host=localhost;dbname=dbName', "user", "pwd");
 $con->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $stmt = $con->prepare("SELECT * FROM contact WHERE $field LIKE ?");
 $stmt->execute(array($value));

Allowing User Interaction756

 $result = $stmt->fetchAll(PDO::FETCH_ASSOC);

 if (empty($result)){
 print "No matches found";
 } else {
 foreach($result as $row){
 foreach ($row as $field => $value){
 print "$field: $value
";
 } // end field loop
 print "
";
 } // end row loop
 } // end 'empty results' if

 } else {
 print "That is not a valid field name";
 } // end if
 } catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
 } // end try
 ?>
 </body>
</html>

There’s quite a bit going on in this program, but most of it isn’t new.

 1. Enclose the whole thing in a try block.

 As usual, exception-handling is a big part of data access, so be sure to
add the standard try-catch block.

 try {
 ...
 } catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
 } // end try

 2. Create an array for the valid field names.

 The easiest way to check if something is within a range of values is to
build an array of the legitimate values. I use this array to check to see
that the field is legit in Step 4.

 $fieldName = array("contactID", "name", "company", "email");

 3. Get input from the user.

 Grab user input from the form using the normal filter_input mecha-
nism. Note that you won’t trust the data (yet) in your SQL, but you’ll still
need to extract the data.

 $srchField = filter_input(INPUT_POST, "srchField");
 $srchValue = filter_input(INPUT_POST, "srchVal");

 4. See if the field name is in your list.

 The in_array() function is really useful. If you feed it a value and an
array, it will return true if the value appears in the array and false if it
does not. (It’s kind of like a bouncer for the nightclub of SQL requests.) If
the field name is not on the “cool list,” code execution jumps to an error
message and nothing bad ever gets near the database.

Book VI
Chapter 5

Connecting PHP to a
M

ySQL Database
Allowing User Interaction 757

 if (in_array($srchField, $fieldName)){
 ..
 } else {
 print "That is not a valid field name";
 } // end if

 5. Create variables for $field and $value.

 The $field value is copied directly from the form (because you’ve
already established that it’s legitimate). The $value variable will be
protected with a different mechanism, so I simply add % to the begin-
ning and end. (Because this value will be used in a LIKE clause, the %
symbols indicate that the position of the search string doesn’t matter.)

 $field = $srchField;
 //put value inside %% structure
 $value = "%$srchValue%";

 6. Set up a PDO connection.

 Set up the PDO connection in the typical way.
 $con= new PDO('mysql:host=localhost;dbname=dbName', "user",

"pwd");
 $con->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 7. Prepare a statement.

 The main query will be a prepared statement, so set it up with the ques-
tion mark placeholder. You can include the $field variable directly in
the query because it’s already been validated.

 $stmt = $con->prepare("SELECT * FROM contact WHERE $field LIKE
?");

 8. Execute the statement.

 Send an array of values to the execute() method to execute the pre-
pared statement. The array should have the same number of entries as
question marks in the prepared statement.

 $stmt->execute(array($value));

 9. Fetch the results.

 Use the fetchAll() method to retrieve all the results from the query.
Set the result set to associative arrays with the familiar FETCH_ASSOC
constant.

 $result = $stmt->fetchAll(PDO::FETCH_ASSOC);

 10. Test for an empty result set.

 If the results of the fetchAll() method are empty, there was no match
to the query. Send some sort of message to the user so they know what
happened.

 if (empty($result)){
 print "No matches found";
 } else {
 ...
 } // end if

Allowing User Interaction758

You can use the same general techniques to control all SQL statements
needed to create and modify a database. In fact, this is exactly how most
data programs work on the Internet, maintaining databases and allowing the
user to indirectly modify the data.

If you’ve been following this example, you can
see that you should never directly include
content from user input into an SQL query.
Prepared statements are the best way to pro-
tect your database. So why didn’t I just do
something like this?

$stmt = $con->prepare("SELECT * FROM
contact WHERE ? LIKE ?");

$stmt->execute(array($field, $value));

In fact, I tried to do exactly that, but prepared
statements expect the placeholders to be field
values, not field names. So I went ahead and
interpolated the field name into the SQL, but not
until I had ensured it’s of a legal value. There
are other ways, but the key warning stays in
place: Be very careful not to use unsanitized
form input in SQL statements.

So why not put the field name in the
prepared statement?

 11. Print out results on success.

 If the result has a value in it, parse it for all the data and print it out as
usual.

 foreach($result as $row){
 foreach ($row as $field => $value){
 print "$field: $value
";
 } // end field loop
 print "
";
 } // end row loop

 Visit www.dummies.com/extras/html5css3aio for more on fun with jQuery
plug-ins.

Part VII
Integrating the Client and

Server with AJAX

http://www.dummies.com/extras/html5css3aio

Contents at a Glance

Contents at a Glance

Chapter 1: AJAX Essentials .761
AJAX Spelled Out ...762
Making a Basic AJAX Connection ...764
All Together Now — Making the Connection Asynchronous771

Chapter 2: Improving JavaScript and AJAX with jQuery 775
Introducing jQuery ..776
Your First jQuery App ..778
Creating an Initialization Function ...781
Investigating the jQuery Object ..783
Adding Events to Objects ..786
Making an AJAX Request with jQuery ..790

Chapter 3: Animating jQuery .795
Playing Hide and Seek ...795
Changing Position with jQuery ...802
Modifying Elements on the Fly ..808

Chapter 4: Using the jQuery User Interface Toolkit 819
What the jQuery User Interface Brings to the Table ..819
Resizing on a Theme ..827
Dragging, Dropping, and Calling Back ..834

Chapter 5: Improving Usability with jQuery .841
Multi-Element Designs ...841
Improving Usability ...849

Chapter 6: Working with AJAX Data . .859
Sending Requests AJAX Style ..859
Building a Multipass Application ...863
Working with XML Data ...870
Working with JSON Data ..876

Chapter 7: Going Mobile .883
Thinking in Mobile ..883
Building a Responsive Site ..885
Making Your Page Responsive ...888
Using jQuery Mobile to Build Mobile Interfaces ...894
Going from Site to App ...905

Chapter 1: AJAX Essentials

In This Chapter
✓ Understanding AJAX

✓ Using JavaScript to manage HTTP requests

✓ Creating an XMLHttpRequest object

✓ Building a synchronous AJAX request

✓ Retrieving data from an AJAX request

✓ Managing asynchronous AJAX requests

I
f you’ve been following web trends, you’ve no doubt heard of AJAX. This
technology has generated a lot of interest. In this chapter, I show you

what AJAX really is, how to use it, and how to use a particular AJAX library
to supercharge your web pages.

The first thing is to figure out exactly what AJAX is and what it isn’t. It isn’t

 ✦ A programming language: It isn’t one more language to learn along with
the many others you encounter.

 ✦ New: Most of the technology used in AJAX isn’t really all that new; it’s
the way the technology is being used that’s different.

 ✦ Remarkably different: For the most part, AJAX is about the same things
you’ll see in the rest of this book: building compliant web pages that
interact with the user.

So you have to be wondering why people are so excited about AJAX. It’s a
relatively simple thing, but it has the potential to change the way people
think about Internet development. Here’s what it really is:

 ✦ Direct control of client-server communication: Rather than the auto-
matic communication between client and server that happens with web
forms and server-side programs, AJAX is about managing this relation-
ship more directly.

 ✦ Use of the XMLHttpRequest object: This is a special object that’s been
built into the DOM of all major browsers for some time, but it wasn’t
used heavily. The real innovation of AJAX was finding creative (and per-
haps unintentional) uses for this heretofore virtually unknown utility.

 ✦ A closer relationship between client-side and server-side program-
ming: Up to now, client-side programs (usually JavaScript) did their
own thing, and server-side programs (PHP) operated without too much

AJAX Spelled Out762

knowledge of each other. AJAX helps these two types of programming
work together better.

 ✦ A series of libraries that facilitate this communication: AJAX isn’t that
hard, but it does have a lot of details. Several great libraries have sprung up
to simplify using AJAX technologies. You can find AJAX libraries for both
client-side languages, like JavaScript, and server-side languages, like PHP.

Perhaps you’re making an online purchase with a shopping-cart mechanism.

In a typical (pre-AJAX) system, an entire web page is downloaded to the
user’s computer. There may be a limited amount of JavaScript-based interac-
tivity, but anything that requires a data request needs to be sent back to the
server. For example, if you’re on a shopping site and you want more informa-
tion about that fur-lined fishbowl you’ve had your eye on, you might click
the More Information button. This causes a request to be sent to the server,
which builds an entirely new web page for you containing your new request.

Every time you make a request, the system builds a whole new page on the
fly. The client and server have a long-distance relationship.

In the old days when you wanted to manage your website’s content, you had
to refresh each web page — time-consuming to say the least. But with AJAX,
you can update the content on a page without refreshing the page. Instead of
the server sending an entire page response just to update a few words on the
page, the server just sends the content you want to update and nothing else.

If you’re using an AJAX-enabled shopping cart, you might still click the fish-
bowl image. An AJAX request goes to the server and gets information about
the fishbowl, which is immediately placed on the current page, without
requiring a complete page refresh.

AJAX technology allows you to send a request to the server, which can then
change just a small part of the page. With AJAX, you can have a whole bunch
of smaller requests happening all the time, rather than a few big ones that
rebuild the page in large, distracting flurries of activity.

 To the user, this makes the web page look more like traditional applications.
This is the big appeal of AJAX: It allows web applications to act more like
desktop applications, even if these web applications have complicated fea-
tures like remote database access.

Google’s Gmail was the first major application to use AJAX, and it blew people
away because it felt so much like a regular application inside a web browser.

AJAX Spelled Out
Technical people love snappy acronyms. Nothing is more intoxicating than
inventing a term. AJAX is one term that has taken on a life of its own. Like

Book VII
Chapter 1

AJAX
Essentials

AJAX Spelled Out 763

many computing acronyms, it may be fun to say, but it doesn’t really mean
much. AJAX stands for Asynchronous JavaScript And XML. Truthfully, these
terms were probably chosen to make a pronounceable acronym rather than
for their accuracy or relevance to how AJAX works.

A is for asynchronous
An asynchronous transaction (at least in AJAX terms) is one in which more
than one thing can happen at once. For example, you can make an AJAX
call process a request while the rest of your form is being processed.
AJAX requests do not absolutely have to be asynchronous, but they
usually are.

When it comes to web design, asynchronous means that you can indepen-
dently send and receive as many different requests as you want. Data may
start transmitting at any time without having any effect on other data trans-
missions. You could have a form that saves each field to the database as
soon as it’s filled out, or perhaps a series of drop-down lists that generate
the next drop-down list based on the value you just selected. (It’s okay if this
doesn’t make sense right now. It’s not an important part of understanding
AJAX, but vowels are always nice in an acronym.)

In this chapter, I show you how to do both synchronous and asynchronous
versions of AJAX.

J is for JavaScript
If you want to make an AJAX call, you simply write some JavaScript code
that simulates a form. You can then access a special object hidden in the
DOM (the XMLHttpRequest object) and use its methods to send that
request to the user. Your program acts like a form, even if there was no form
there. In that sense, when you’re writing AJAX code, you’re really using
JavaScript. Of course, you can also use any other client-side programming
language that can speak with the DOM, including Flash and (to a lesser
extent) Java. JavaScript is the dominant technology, so it’s in the acronym.

A lot of times, you also use JavaScript to decode the response from the AJAX
request.

A is for . . . and?
I think it’s a stretch to use And in an acronym, but AJX just isn’t as cool as
AJAX. They didn’t ask me.

And X is for . . . data
The X is for XML, which is one way to send the data back and forth from the
server. Because the object you’re using is the XMLHttpRequest object, it
makes sense that it requests XML. It can do that, but it can also get any kind
of text data. You can use AJAX to retrieve all kinds of things:

Making a Basic AJAX Connection764

 ✦ Plain old text: Sometimes you just want to grab some text from the
server. Maybe you have a text file with a daily quote in it or something.

 ✦ Formatted HTML: You can have text stored on the server as a snippet
of HTML/XHTML code and use AJAX to load this page snippet into your
browser. This gives you a powerful way to build a page from a series
of smaller segments. You can use this to reuse parts of your page (say,
headings or menus) without duplicating them on the server.

 ✦ XML data: XML is a great way to pass data around. (That’s what it was
invented for.) You might send a request to a program that goes to a data-
base, makes a request, and returns the result as XML.

 ✦ JSON data: A newer standard called JSON (JavaScript Object Notation)
is emerging as an alternative to XML for formatted data transfer. It has
some interesting advantages. You might have already built JSON objects
in Book IV, Chapter 4. You can read in a text file already formatted as a
JavaScript object.

Making a Basic AJAX Connection
 AJAX uses some pretty technical parts of the web in ways that may be unfa-

miliar to you. Read through the rest of this chapter so that you know what
AJAX is doing, but don’t get bogged down in the details. Nobody does it by
hand! (Except people who write AJAX libraries or books about using AJAX.) In
Chapter 2 of this minibook, I show a library that does all the work for you. If
all these details are making you misty-eyed, just skip ahead to the next chap-
ter and come back here when you’re ready to see how all the magic works.

The basicAJax.html program shown in Figure 1-1 illustrates AJAX at work.

Figure 1-1:
Click the
button and
you’ll see
some AJAX
magic.

Book VII
Chapter 1

AJAX
Essentials

Making a Basic AJAX Connection 765

When the user clicks the link, the small pop-up shown in Figure 1-2 appears.

Figure 1-2:
This text
came from
the server.

 If you don’t get the joke, you need to go rent Monty Python and the Holy
Grail. It’s part of the geek culture. Trust me. In fact, you should really own a
copy.

It’s very easy to make JavaScript pop up a dialog box, but the interesting
thing here is where that text comes from. The data is stored on a text file on
the server. Without AJAX, you don’t have an easy way to get data from the
server without reloading the entire page.

 You might claim that HTML frames allow you to pull data from the server,
but frames have been deprecated in modern versions of HTML because they
cause a lot of other problems. You can use a frame to load data from the
server, but you can’t do all the other cool things with frame-based data that
you can with AJAX. Even if frames were allowed, AJAX is a much better solu-
tion most of the time.

 You may not be able to run this program without a web server. Like PHP,
AJAX requires a server to work properly. If you want to run this program, put
it in a subdirectory of your server and run it through localhost as you do
for PHP programs.

This particular example uses a couple of shortcuts to make it easier to
understand:

 ✦ The program isn’t fully asynchronous. The program pauses while
it retrieves data. As a user, you probably won’t even notice this, but
as you’ll see, this can have a serious drawback. But the synchronous
approach is a bit simpler, so I start with this example and then extend it
to make the asynchronous version.

 ✦ This example isn’t completely cross-browser compatible. The AJAX
technique I use in this program works fine for IE 7 and later and all ver-
sions of Firefox (and most other standards-compliant browsers). It does
not work correctly in IE 6 and earlier. I recommend that you use jQuery
or another library (described in Chapter 2 of this minibook) for cross-
browser compatibility.

Making a Basic AJAX Connection766

Look over the following code, and you’ll find it reasonable enough:

<!DOCTYPE HTML>
<html lang="en";>
<head>
 <meta charset="UTF-8">
 <title>basicAJAX.html</title>
 <script type = "text/javascript">
 function getAJAX(){
 var request = new XMLHttpRequest();
 request.open("GET", "beast.txt", false);
 request.send(null);
 if (request.status == 200){
 //we got a response
 alert(request.responseText);
 } else {
 //something went wrong
 alert(“Error- " + request.status + ": " + request.statusText);
 } // end if
 } // end function
 </script>
</head>
<body>
<h1>Basic AJAX</h1>
<form action = "">
 <p>
 <button type = "button"
 onclick = "getAJAX()">
 Summon the vicious beast of Caerbannog
 </button>
 </p>
</form>
</body>
</html>

 Throughout this chapter, I explain exactly how to build an AJAX-enabled web
page by hand. It’s good to know how this works, but almost nobody does it this
way in the real world. Read this chapter to get the basic understanding, but
don’t worry if the details are a little foggy. The other chapters in this minibook
describe a powerful library that greatly simplifies AJAX programming. Feel free
to skip ahead if this chapter is too technical. Just come back when you’re ready.

Building the HTML form
You don’t absolutely need an HTML form for AJAX, but I have a simple one
here. Note that the form is not attached to the server in any way.

<form action = "">
 <p>
 <button type = "button"
 onclick = "getAJAX()">
 Summon the vicious beast of Caerbannog
 </button>
 </p>
</form>

This page is set up like a client-side (JavaScript) interaction. The form has an
empty action element. The code uses a button (not a submit element), and
the button is attached to a JavaScript function called getAJAX().

Book VII
Chapter 1

AJAX
Essentials

Making a Basic AJAX Connection 767

All you really need is some kind of structure that can trigger a JavaScript
function.

 AJAX isn’t a complex technology, but it does draw on several other technolo-
gies. You may need to look over the JavaScript chapters in Book IV if this
material is unfamiliar to you. Although these examples don’t require PHP,
they do involve server-side responses like PHP does, so AJAX is usually stud-
ied by people who are already familiar with both JavaScript and PHP as well
as the foundational XHTML and CSS environments. AJAX is most useful when
it also incorporates PHP, usually involving a database. So AJAX is one of those
tools that’s really best at integrating your other tools, and is best studied
after you have a basic grasp of these other technologies.

Creating an XMLHttpRequest object
The key to AJAX is a special object called XMLHttpRequest. All the major
browsers have it, and knowing how to use it in code is what makes AJAX
work. It’s pretty easy to create:

 var request = new XMLHttpRequest();

 Internet Explorer 5 and 6 had an entirely different way of invoking the
XMLHttpRequest object that involved a technology called ActiveX. If you
want to support these older browsers, use one of the libraries that I mention
in Chapter 2 of this minibook. I’ve decided not to worry about them in this
introductory chapter.

This line makes an instance of the XMLHttpRequest object. You use meth-
ods and properties of this object to control a request to the server.

AJAX is really nothing more than HTTP, the protocol that your browser
and server quietly use all the time to communicate with each other. You can
think of an AJAX request like this: Imagine that you have a basket with a bal-
loon tied to the handle and a long string. As you walk around the city, you
can release the basket under a particular window and let it rise. The window
(server) puts something in the basket, and you can then wind the string to
bring the basket back down and retrieve the contents. The various charac-
teristics of the XMLHttpRequest object are described in Table 1-1.

Table 1-1 Useful Members of the XMLHttpRequest Object
Member Description Basket Analogy

open(protocol, URL,
synchronization)

Opens a connection to
the indicated file on the
server.

Stand under a particular
window.

send(parameters) Initiates the transaction
with given parameters
(or null).

Release the basket but
hang on to the string.

(continued)

Making a Basic AJAX Connection768

status Returns the HTTP status
code returned by the
server (200 is success).

Check for error codes
(“window closed,” “bal-
loon popped,” “string
broken,” or “everything’s
great”).

statusText Text form of HTTP status. Text form of status code.

responseText Text of the transaction’s
response.

Get the contents of the
basket.

readyState Describes the current
status of the transaction
(4 is complete).

Is the basket empty,
going up, coming down,
or here and ready to get
contents?

onReadyStateChange Event handler. Attach a
function to this param-
eter, and when the
readyState changes, the
function will be called
automatically.

What should I do when
the state of the basket
changes? For example,
should I do something
when I’ve gotten the
basket back?

 Don’t worry about all the details in Table 1-1. I describe these things as you
need them in the text. Also, some of these elements only pertain to asyn-
chronous connections, so you won’t always need them all.

Opening a connection to the server
The XMLHttpRequest object has several useful methods. One of the most
important is the open() method:

 request.open("GET", "beast.txt", false);

The open() method opens a connection to the server. As far as the server
is concerned, this connection is identical to the connection made when the
user clicks a link or submits a form. The open() method takes the following
three parameters:

 ✦ Request method: The request method describes how the server should
process the request. The values are identical to the form method values
described in Book V, Chapter 3. Typical values are GET and POST.

 ✦ A file or program name: The second parameter is the name of a file
or program on the server. This is usually a program or file in the same
directory as the current page.

 ✦ A synchronization trigger: AJAX can be done in synchronous or asyn-
chronous mode. (Yeah, I know, then it would just be JAX, but stay with

Table 1-1 (continued)
Member Description Basket Analogy

Book VII
Chapter 1

AJAX
Essentials

Making a Basic AJAX Connection 769

me here.) The synchronous form is easier to understand, so I use it first.
The next example (and all the others in this book) uses the asynchro-
nous approach.

For this example, I use the GET mechanism to load a file called beast.txt from
the server in synchronized mode.

Sending the request and parameters
After you’ve opened a request, you need to pass that request to the server.
The send() method performs this task. It also provides you with a mecha-
nism for sending data to the server. This only makes sense if the request is
going to a PHP program (or some other program on the server). Because
I’m just requesting a regular text document, I send the value null to the
server. Chapter 6 of this minibook describes how to work with other kinds
of data.

 request.send(null);

This is a synchronous connection, so the program pauses here until the
server sends the requested file. If the server never responds, the page will
hang. (This is exactly why you usually use asynchronous connections.)
Because this is just a test program, assume that everything will work okay
and motor on.

Returning to the basket analogy, the send() method releases the basket,
which floats up to the window. In a synchronous connection, you assume
that the basket is filled and comes down automatically. The next step
doesn’t happen until the basket is back on earth. (But if something went
wrong, the next step may never happen because the basket will never come
back.)

Checking the status
 The next line of code doesn’t happen until the server passes some sort of

response. Any HTTP request is followed by a numeric code. Normally, your
browser checks these codes automatically, and you don’t see them.
Occasionally, you run across an HTTP error code, like 404 (file not found) or
500 (internal server error). If the server was able to respond to the request,
it passes a status code of 200.

The XMLHttpRequest object has a property called status that returns
the HTTP status code. If the status is 200, everything went fine and
you can proceed. If the status is some other value, some type of error
occurred.

Making a Basic AJAX Connection770

Just like the post office stamping success/
error messages on your envelope, the server
sends back status messages with your request.
You can see all the possible status codes on
the World Wide Web Consortium’s website at
www.w3.org/Protocols/rfc2616/
rfc2616-sec10.html, but the important
ones to get you started are as follows:

 ✓ 200 = OK: This is a success code.
Everything went okay, and your response
has been returned.

 ✓ 400 = Bad Request: This is a client
error code. It means that something went

wrong on the user side. The request was
poorly formed and couldn’t be understood.

 ✓ 404 = Not Found: This is a client error
code. The page the user requested doesn’t
exist or couldn’t be found.

 ✓ 408 = Request Timeout: This is
a client error code. The server gave up on
waiting for the user’s computer to finish
making its request.

 ✓ 500 = Internal Server Error:
This is a server error code. It means that
the server had an error and couldn’t fill the
request.

Fun with HTTP response codes

 Make sure that the status of the request is successful before you run the
code that depends on the request. (Don’t get anything out of the basket
unless the entire process worked.)

You can check for all the various status codes if you want, but for this simple
example, I’m just ensuring that the status is 200:

 if (request.status == 200){
 //we got a response
 alert(request.responseText);
 } else {
 //something went wrong
 alert("Error- " + request.status + ": " + request.statusText);
 } // end if

 The request.status property contains the server response. If this value is
200, I want to do something with the results. In this case, I simply display the
text in an alert box. If the request is anything but 200, I use the statusText
property to determine what went wrong and pass that information to the
user in an alert.

The status property is like looking at the basket after it returns. It might
have the requested data in it, or it might have some sort of note. (“Sorry, the
window was closed. I couldn’t fulfill your request.”) There’s not much point
in processing the data if it didn’t return successfully.

Of course, I could do a lot more with the data. If it’s already formatted as
HTML code, I can use the innerHTML DOM tricks described in Book IV to
display the code on any part of my page. It might also be some other type of

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Book VII
Chapter 1

AJAX
Essentials

All Together Now — Making the Connection Asynchronous 771

formatted data (XML or JSON) that I can manipulate with JavaScript and do
whatever I want with.

All Together Now — Making the Connection
Asynchronous

The synchronous AJAX connection described in the previous section is
easy to understand, but it has one major drawback: The client’s page stops
processing while waiting for a response from the server. This doesn’t seem
like a big problem, but it is. If aliens attack the web server, it won’t make
the connection, and the rest of the page will never be activated. The user’s
browser hangs indefinitely. In most cases, the user will have to shut down
the browser process by pressing Ctrl+Alt+Delete (or the similar procedure
on other OSs). Obviously, it would be best to prevent this kind of error.

 That’s why most AJAX calls use the asynchronous technique. Here’s the big
difference: When you send an asynchronous request, the client keeps on
processing the rest of the page. When the request is complete, an event han-
dler processes the event. If the server goes down, the browser will not hang
(although the page probably won’t do what you want).

In other words, the readyState property is like looking at the basket’s
progress. The basket could be sitting there empty because you haven’t
begun the process. It could be going up to the window, being filled, coming
back down, or it could be down and ready to use. You’re only concerned
with the last state because that means the data is ready.

 I didn’t include a figure of the asynchronous version because to the user, it
looks exactly the same as the synchronous connection. Be sure to put this
code on your own server and check it out for yourself.

The asynchronous version looks exactly the same on the front end, but the
code is structured a little differently:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>asynch.html</title>
 <script type = "text/javascript">
 var request; //make request object a global variable
 function getAJAX(){
 request = new XMLHttpRequest();
 request.open("GET", "beast.txt");
 request.onreadystatechange = checkData;
 request.send(null);
 } // end function
 function checkData(){
 if (request.readyState == 4) {
 // if state is finished
 if (request.status == 200) {
 // and if attempt was successful

All Together Now — Making the Connection Asynchronous772

 alert(request.responseText);
 } // end if
 } // end if
 } // end checkData
 </script>
</head>
<body>
<h1>Asynchronous AJAX transmission</h1>
<form action = "">
 <p>
 <button type = "button"
 onclick = "getAJAX()">
 Summon the beast of Caerbannogh
 </button>
 </p>
</form>
</body>
</html>

Setting up the program
The general setup of this program is just like the earlier AJAX example. The
HTML is a simple button that calls the getAJAX() function.

 The JavaScript code now has two functions. The getAJAX() function sets
up the request, but a separate function (checkData()) responds to the
request. In an asynchronous AJAX model, you typically separate the request
and the response in different functions.

Note that in the JavaScript code, I made the XMLHttpRequest object
(request) a global variable by declaring it outside any functions. I generally
avoid making global variables, but it makes sense in this case because I have
two different functions that require the request object.

Building the getAJAX() function
The getAJAX() function sets up and executes the communication with the
server:

function getAJAX(){
 request = new XMLHttpRequest();
 request.open("GET", "beast.txt");
 request.onreadystatechange = checkData;
 request.send(null);
} // end function

The code in this function is pretty straightforward:

 1. Create the request object.

 The request object is created exactly as it was in the first example in
the section “Creating an XMLHttpRequest object,” earlier in this chapter.

 2. Call request’s open()method to open a connection.

 Note that this time I left the synchronous parameter out, which creates
the (default) asynchronous connection.

Book VII
Chapter 1

AJAX
Essentials

All Together Now — Making the Connection Asynchronous 773

 3. Assign an event handler to catch responses.

 You can use event handlers much like the ones in the DOM. In this
particular case, I’m telling the request object to call a function called
checkData whenever the state of the request changes.

 You can’t easily send a parameter to a function when you call it using this
particular mechanism. That’s why I made request a global variable.

 4. Send the request.

 As before, the send() method begins the process. Because this is now
an asynchronous connection, the rest of the page continues to process.
As soon as the request’s state changes (hopefully because a successful
transfer has occurred), the checkData function is activated.

Reading the response
Of course, you now need a function to handle the response when it comes
back from the server. This works by checking the ready state of the response.
Any HTTP request has a ready state, which is a simple integer value that
describes what state the request is currently in. You find many ready states,
but the only one you’re concerned with is 4, meaning that the request is fin-
ished and ready to process.

The readyState property of the request
object indicates the ready state of the request.
It has five possible values:

 ✓ 0 = Uninitialized: The request object has
been created, but the open() method
hasn’t been called on.

 ✓ 1 = Loading: The request object has
been created, the open() method has
been called, but the send() method
hasn’t been called.

 ✓ 2 = Loaded: The request object has
been created, the open() method has
been called, the send() method has been
called, but the response isn’t yet available
from the server.

 ✓ 3 = Interactive: The request object has
been created, the open() method has

been called, the send() method has been
called, the response has started trickling
back from the server, but not everything
has been received yet.

 ✓ 4 = Completed: The request object has
been created, the open() method has
been called, the send() method has
been called, the response has been fully
received, and the request object is fin-
ished with all its request/response tasks.

Each time the readyState property of the
request changes, the function you map to
readyStateChanged is called. In a typi-
cal AJAX program, this happens four times
per transaction. There’s no point in reading the
data until the transaction is completed, which
will happen when readyState is equal to 4.

Ready, set, ready state!

All Together Now — Making the Connection Asynchronous774

The basic strategy for checking a response is to check the ready state in the
aptly named request.readyState property. If the ready state is 4, check the
status code to ensure that no error exists. If the ready state is 4 and the
status is 200, you’re in business, so you can process the form. Here’s the
code:

function checkData(){
 if (request.readyState == 4) {
 // if state is finished
 if (request.status == 200) {
 // and if attempt was successful
 alert(request.responseText);
 } // end if
 } // end if
} // end checkData

Once again, you can do anything you want with the text you receive. I’m just
alerting it, but the data can be incorporated into the page or processed in
any way you want.

Chapter 2: Improving JavaScript
and AJAX with jQuery

In This Chapter
✓ Downloading and including the jQuery library

✓ Making an AJAX request with jQuery

✓ Using component selectors

✓ Adding events to components

✓ Creating a simple content management system with jQuery

J
avaScript has amazing capabilities. It’s useful on its own, and when you
add AJAX, it becomes incredibly powerful. However, JavaScript can be

tedious. You have a lot to remember, and it can be a real pain to handle
multiplatform issues. Some tasks (like AJAX) are a bit complex and require a
lot of steps. Regardless of the task, you always have browser-compatibility
issues to deal with.

For these reasons, web programmers began to compile commonly used
functions into reusable libraries. These libraries became more powerful
over time, and some of them have now become fundamental to web
development.

As these libraries became more powerful, they not only added AJAX capabil-
ities, but many of them also added features to JavaScript/DOM programming
that were once available only in traditional programming languages. Many
of these libraries allow a new visual aesthetic as well as enhanced technical
capabilities.

A number of very powerful JavaScript/AJAX libraries are available. All make
basic JavaScript easier, and each has its own learning curve. No library
writes code for you, but a good library can handle some of the drudgery and
let you work instead on the creative aspects of your program. JavaScript
libraries can let you work at a higher level than plain JavaScript, writing
more elaborate pages in less time.

Several important JavaScript/AJAX libraries are available. Here are a few of
the most prominent:

 ✦ DOJO: A very powerful library that includes a series of user interface
widgets (like those in Visual Basic and Java) as well as AJAX features.

Introducing jQuery776

 ✦ Prototype: One of the first AJAX libraries to become popular. It includes
great support for AJAX and extensions for user interface objects
(through the scriptaculous extension).

 ✦ Yahoo User Interface (YUI): This is used by Yahoo! for all its AJAX appli-
cations. Yahoo! has released this impressive library as open source.

 ✦ jQuery: This has emerged as one of the more popular JavaScript and
AJAX libraries. It is the library emphasized in this book.

Introducing jQuery
This book focuses on the jQuery library. Although many outstanding AJAX/
JavaScript libraries are available, jQuery has quickly become one of the most
prominent. Here are some reasons for the popularity of jQuery:

 ✦ It’s a powerful library. The jQuery system is incredibly powerful. It can
do all kinds of impressive things to make your JavaScript easier to write.

 ✦ It’s lightweight. You need to include a reference to your library in every
file that needs it. The entire jQuery library fits in 55K, which is smaller
than many image files. It won’t have a significant impact on download
speed.

 ✦ It supports a flexible selection mechanism. jQuery greatly simplifies
and expands the document.getElementById mechanism that’s cen-
tral to DOM manipulation.

 ✦ It has great animation support. You can use jQuery to make elements
appear and fade, move and slide.

 ✦ It makes AJAX queries trivial. You’ll be shocked at how easy AJAX is
with jQuery.

 ✦ It has an enhanced event mechanism. JavaScript has very limited sup-
port for events. jQuery adds a very powerful tool for adding event han-
dlers to nearly any element.

 ✦ It provides cross-platform support. The jQuery library tries to manage
browser-compatibility issues for you, so you don’t have to stress so
much about exactly which browser is being used.

 ✦ It supports user interface widgets. jQuery comes with a powerful user
interface library, including tools HTML doesn’t have, like drag-and-drop
controls, sliders, and date pickers.

 ✦ It’s highly extensible. jQuery has a plug-in library that supports all
kinds of optional features, including new widgets and tools like audio
integration, image galleries, menus, and much more.

 ✦ It introduces powerful new programming ideas. jQuery is a great tool
for learning about some really interesting ideas like functional program-
ming and chainable objects. I explain these as you encounter them,
mainly in Chapter 4 of this minibook.

Book VII
Chapter 2

Im
proving

JavaScript and
AJAX w

ith jQuery
Introducing jQuery 777

 ✦ It’s free and open source. It’s available under an open-source license,
which means it costs nothing to use, and you can look it over and
change it if you wish.

 ✦ It’s reasonably typical. If you choose to use a different AJAX library, you
can still transfer the ideas you learned in jQuery.

Installing jQuery
The jQuery library is easy to install and use. Follow these steps:

 1. Go to jquery.com.

 2. Download the current version.

 As of this writing, the most current version is 1.10.2. There is a 2.X
series, but these versions do not support older browsers, so will not
be adopted until the older browsers (particularly IE 6 and less) are no
longer used at all.

 You may be able to choose from a number of versions of the file. I rec-
ommend the minimized version for actual use. To make this file as small
as possible, every unnecessary character (including spaces and carriage
returns) was removed. This file is very compact but difficult to read.
Download the nonminimized version if you want to actually read the
code, but it’s generally better to include the minimized version in your
programs.

 3. Store the resulting .js file to your working directory.

 jQuery-1.10.2.min.js is the current file.

To incorporate the library in your pages, simply link to it as an external
JavaScript file:

 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>

 Be sure to include the preceding code before you write or include other code
that refers to jQuery.

Importing jQuery from Google
 Easy as it is to add jQuery support, you have another great way to add

jQuery (and other AJAX library) support to your pages without downloading
anything. Google has a publicly available version of several important librar-
ies (including jQuery) that you can download from its servers.

This has a couple of interesting advantages:

 ✦ You don’t have to install any libraries. All the library files stay on the
Google server.

http://jquery.com

Your First jQuery App778

 ✦ The library is automatically updated. You always have access to
the latest version of the library without making any changes to your
code.

 ✦ The library may load faster. The first time one of your pages reads the
library from Google’s servers, you have to wait for the full download, but
then the library is stored in a cache (a form of browser memory) so that
subsequent requests are essentially immediate.

Here’s how you do it:

<script type = "text/javascript"
 src="http://www.google.com/jsapi"></script>
<script type = "text/javacript">
 // Load jQuery
 google.load("jquery", "1");

 //your code here

</script>

Essentially, loading jQuery from Google is a two-step process:

 1. Load the Google API from Google.

 Use the first <script> tag to refer to the Google AJAX API server. This
gives you access to the google.load() function.

 2. Invoke google.load()to load jQuery.

	 •	 The	first	parameter	is	the	name	of	the	library	you	want	to	load.

	 •	 The	second	parameter	is	the	version	number.	If	you	leave	this	param-
eter blank, you get the latest version. If you specify a number, Google
gives you the latest variation of that version. In my example, I want
the latest variation of version 1, but not version 2.

Note that you don’t need to install any files locally to use the Google
approach.

 All these options for managing jQuery can be dizzying. Use whichever tech-
nique works best for you. I prefer using the local code rather than the Google
solution because I find it easier, and this method works even if I’m offline.
For smaller projects (like the demonstrations in this chapter), I don’t like the
online requirement of Google. In this chapter, I simply refer to a local copy of
the jQuery file.

Your First jQuery App
As an introduction to jQuery, build an application that you can already
create in JavaScript/DOM. This introduces you to some powerful features of
jQuery. Figure 2-1 illustrates the change.html page at work, but the interest-
ing stuff (as usual) is under the hood.

Book VII
Chapter 2

Im
proving

JavaScript and
AJAX w

ith jQuery
Your First jQuery App 779

Figure 2-1:
The content
of this page
is modified
with jQuery.

Setting up the page
At first, the jQuery app doesn’t look much different than any other HTML/
JavaScript code you’ve already written, but the JavaScript code is a bit
different:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <title>change.html</title>
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 function changeMe(){
 $("#output").html("I changed");
 }
 </script>
</head>
<body onload = "changeMe()">
 <h1>Basic jQuery demo</h1>
 <div id = "output">
 Did this change?
 </div>
</body>
</html>

 If you’re already knowledgeable about jQuery, you may be horrified at my
use of body onload in this example. jQuery provides a wonderful alterna-
tive to the onload mechanism, but I want to introduce only one big, new
idea at a time. The next example illustrates the jQuery alternative to body
onload and explains why it is such an improvement.

Your First jQuery App780

The basic features of changeme.html are utterly unsurprising:

 ✦ The HTML has a div named output. This div initially says, “Did this
change?” The code should change the content to something else.

 ✦ The HTML calls a function called changeMe()when the body finishes
loading. This is a mechanism used frequently in DOM programming,
although you see a new way to call an initial function in the next section.

 ✦ There is a reference to the jQuery library. Any page that uses jQuery
must load it using one of the mechanisms described earlier in this chapter.

 ✦ The changeMe()function looks really crazy. When you run the pro-
gram, you can tell what it does. The code gets a reference to the output
div and changes its innerHTML property to reflect a new value (“I’ve
changed.”). However, the syntax is really new. All that functionality got
packed into one line of (funky-looking) code.

 $("#output").html("I changed");

Meet the jQuery node object
The secret behind jQuery’s power is the underlying data model. jQuery has
a unique way of looking at the DOM that’s more powerful than the standard
object model. Understanding the way this works is the key to powerful pro-
gramming with jQuery.

 The jQuery node is a special object that adds a lot of functionality to the
ordinary DOM element. Any element on the web page (any link, div, heading,
or whatever) can be defined as a jQuery node. You can also make a list of
jQuery nodes based on tag types, so you can have a jQuery object that
stores a list of all the paragraphs on the page or all the objects with a partic-
ular class name. The jQuery object has very useful methods like html(),
which is used to change the innerHTML property of an element.

 The jQuery node is based on the basic DOM node, so it can be created from
any DOM element. However, it also adds significant new features. This is a
good example of the object-oriented philosophy.

Creating a jQuery object
You have many ways to create a jQuery object, but the simplest is through
the special $() function. You can place an identifier (very similar to CSS
identifiers) inside the function to build a jQuery object based on an
element. For example,

var jQoutput = $("#output");

creates a variable called jQoutput, which contains a jQuery object-based
on the output element. It’s similar to the following:

var DOMoutput = document.getElementById("output");

Book VII
Chapter 2

Im
proving

JavaScript and
AJAX w

ith jQuery
Creating an Initialization Function 781

The jQuery approach is a little cleaner, and it doesn’t get a reference to a
DOM object (as the getElementById technique does), but it makes a new
jQuery object that is based on the DOM element. Don’t worry if this is a little
hard to understand. It gets easier as you get used to it.

Enjoying your new jQuery node object
Because jQoutput is a jQuery object, it has some powerful methods. For
example, you can change the content of the object with the html() method.
The following two lines are equivalent:

jQoutput.html("I've changed"); //jQuery version
DOMoutput.innerHTML = "I've changed"; //ordinary JS / DOM

jQuery doesn’t require you to create variables for each object, so the code in
the changeMe() function can look like this:

//build a variable and then modify it
var jQoutput = $("#output");
jQoutput.html("I've changed");

Or you can shorten it like this:

 $("#output").html("I've changed");

This last version is how the program is actually written. It’s very common
to refer to an object with the $() mechanism and immediately perform a
method on that object as I’ve done here.

Creating an Initialization Function
Many pages require an initialization function. This is a function that’s run
early to set up the rest of the page. The body onload mechanism is fre-
quently used in DOM/JavaScript to make pages load as soon as the docu-
ment has begun loading. This technique is described in Book IV, Chapter 7.
While body onload does this job well, a couple of problems exist with the
traditional technique:

 ✦ It requires making a change to the HTML. The JavaScript code should
be completely separated from HTML. You shouldn’t have to change your
HTML to make it work with JavaScript.

 ✦ The timing still isn’t quite right. The code specified in body onload
doesn’t execute until after the entire page is displayed. It would be
better if the code was registered after the DOM is loaded but before the
page displays.

Creating an Initialization Function782

Using $(document).ready()
jQuery has a great alternative to body onload that overcomes these short-
comings. Take a look at the code for ready.html to see how it works:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <title>ready.html</title>
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(document).ready(changeMe);
 function changeMe(){
 $("#output").html("I changed");
 }
 </script>
</head>
<body>
 <h1>Using the document.ready mechanism</h1>
 <div id = "output">
 Did this change?
 </div>
</body>
</html>

This code is much like change.html, but it uses the jQuery technique for run-
ning initialization code:

 ✦ The body tag no longer has an onload attribute. This is a common
feature of jQuery programming. The HTML no longer has direct links to
the JavaScript because jQuery lets the JavaScript code attach itself to
the web page.

 ✦ The initialization function is created with the $(document).
ready()function. This technique tells the browser to execute a func-
tion when the DOM has finished loading (so that it has access to all ele-
ments of the form) but before the page is displayed (so that any effects
of the form appear instantaneous to the user).

 ✦ $(document)makes a jQuery object from the whole document. The
entire document can be turned into a jQuery object by specifying docu-
ment inside the $() function. Note that you don’t use quotation marks
in this case.

 ✦ The function specified is automatically run. In this particular case,
I want to run the changeMe() function, so I place it in the parameter
of the ready() method. Note that I’m referring to changeMe as a
variable, so it has no quotation marks or parentheses. (Look at Book
IV, Chapter 7 for more discussion of referring to functions as
variables.)

Book VII
Chapter 2

Im
proving

JavaScript and
AJAX w

ith jQuery
Investigating the jQuery Object 783

 You see several other places (particularly in event handling) where jQuery
expects a function as a parameter. Such a function is frequently referred to
as a callback function because it’s called after some sort of event has
occurred. You also see callback functions that respond to keyboard events,
mouse motion, and the completion of an AJAX request.

Alternatives to document.ready
You sometimes see a couple of shortcuts because it’s so common to run ini-
tialization code. You can shorten

 $(document).ready(changeMe);

to the following code:

 $(changeMe);

If this code is not defined inside a function and changeMe is a function
defined on the page, jQuery automatically runs the function directly just like
the document.ready approach.

You can also create an anonymous function directly:

 $(document).ready(function(){
 $("#output").html("I changed");
 });

I think this (anonymous function) method is cumbersome, but you fre-
quently see jQuery code using this technique. Personally, I tend to create a
function called init() and call it with a line like this:

$(init);

I think this technique is simple and easy to understand but you may encoun-
ter the other variations as you examine code on the web.

Investigating the jQuery Object
The jQuery object is interesting because it is easy to create from a variety
of DOM elements, and because it adds wonderful, new features to these
elements.

Changing the style of an element
If you can dynamically change the CSS of an element, you can do quite a lot
to it. jQuery makes this process quite easy. After you have a jQuery object,
you can use the css() method to add or change any CSS attributes of the
object. Take a look at styleElements.html, shown in Figure 2-2, as an example.

Investigating the jQuery Object784

Figure 2-2:
All the
styles here
are applied
dynamically
by jQuery
functions.

The code displays a terseness common to jQuery code:

<!DOCTYPE html>
 <title>styleElements.html</title>
 <meta charset="UTF-8">
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(init);
 function init(){
 $("h1").css("backgroundColor", "yellow");
 $("#myParagraph").css({"backgroundColor":"black",
 "color":"white"});
 $(".bordered").css("border", "1px solid black");
 }
 </script>
</head>
<body>
 <h1>I'm a level one heading</h1>
 <p id = "myParagraph">
 I'm a paragraph with the id "myParagraph."
 </p>
 <h2 class = "bordered">
 I have a border.
 </h2>
 <p class = "bordered">
 I have a border too.
 </p>
</body>
</html>

You find a few interesting things in this program. First, take a look at the
HTML:

 ✦ It contains an H1 tag. I’m aware that’s not too exciting, but I use it to
show how to target elements by DOM type.

Book VII
Chapter 2

Im
proving

JavaScript and
AJAX w

ith jQuery
Investigating the jQuery Object 785

 ✦ There’s a paragraph with the ID myParagraph. This will be used to
illustrate how to target an element by ID.

 ✦ There are two elements with the class bordered. You have no easy
way in ordinary DOM work to apply code to all elements of a particular
class, but jQuery makes it easy.

 ✦ Several elements have custom CSS, but no CSS is defined. The jQuery
code changes all the CSS dynamically.

The init() function is identified as the function to be run when the docu-
ment is ready. In this function, I use the powerful CSS method to change each
element’s CSS dynamically. I come back to the CSS in a moment, but first
notice how the various elements are targeted.

Selecting jQuery objects
jQuery gives you several alternatives for creating jQuery objects from the
DOM elements. In general, you use the same rules to select objects in jQuery
as you do in CSS:

 ✦ DOM elements are targeted as is. You can include any DOM element
inside the $(““) mechanism to target all similar elements. For example,
use $(“h1”) to refer to all H1 objects or $(“p”) to refer to all paragraphs.

 ✦ Use the # identifier to target a particular ID. This works exactly the
same as in CSS. If you have an element with the ID myThing, use the
code $(“#myThing”).

 ✦ Use the . identifier to target members of a class. Again, this is the same
mechanism that you use in CSS, so all elements with the class bordered
attached to them can be modified with the code $(“.bordered”).

 ✦ You can even use complex identifiers. You can even use complex CSS
identifiers like $(“li img”);. This identifier only targets images inside
a list item.

These selection methods (all borrowed from familiar CSS notation) add
incredible flexibility to your code. You can now easily select elements in
your JavaScript code according to the same rules you use to identify ele-
ments in CSS.

Modifying the style
 After you’ve identified an object or a set of objects, you can apply jQuery

methods. One very powerful and easy method is the css() method. The
basic form of this method takes two parameters: a style rule and value.

For example, to make the background color of all H1 objects yellow, I use the
following code:

 $("h1").css("backgroundColor", "yellow");

Adding Events to Objects786

If you apply a style rule to a collection of objects (like all H1 objects or all
objects with the bordered class), the same rule is instantly applied to all
the objects.

A more powerful variation of the style rule exists that allows you to apply
several CSS styles at once. It takes a single object in JSON notation as its
argument:

 $("#myParagraph").css({"backgroundColor":"black",
 "color":"white"});

This example uses a JSON object defined as a series of rule/value pairs. If
you need a refresher on how JSON objects work, look at Book IV, Chapter 4.

Adding Events to Objects
The jQuery library adds another extremely powerful capability to JavaScript.
It allows you to easily attach events to any jQuery object. As an example,
take a look at hover.html, as shown in Figure 2-3.

Figure 2-3:
A border
appears
around each
list item
when your
cursor is
over it.

When you move your cursor over any list item, a border appears around
the item. This isn’t a difficult effect to achieve in ordinary CSS but it’s even
easier in jQuery.

Book VII
Chapter 2

Im
proving

JavaScript and
AJAX w

ith jQuery
Adding Events to Objects 787

Adding a hover event
Look at the code to see how it works:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>hover.html</title>
 <meta charset="UTF-8">
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(init);

 function init(){
 $("li").hover(border, noBorder);
 } // end init

 function border(){
 $(this).css("border", "1px solid black");
 }
 function noBorder(){
 $(this).css("border", "0px none black");
 }
 </script>
</head>
<body>
 <h1>Hover Demo</h1>

 alpha
 beta
 gamma
 delta

</body>
</html>

The HTML couldn’t be simpler. It’s simply an unordered list. The JavaScript
isn’t much more complex. It consists of three one-line functions:

 ✦ init()is called when the document is ready. It makes jQuery objects
of all list items and attaches the hover event to them. The hover()
function accepts two parameters:

	 •	 The	first	is	a	function	to	be	called	when	the	cursor	hovers	over	the	
object.

	 •	 The	second	is	a	function	to	be	called	when	the	cursor	leaves	the	object.

 ✦ border()draws a border around the current element. The $(this)
identifier is used to specify the current object. In this example, I use the
css function to draw a border around the object.

 ✦ noBorder()is a function that is very similar to the border()function,
but it removes a border from the current object.

In this example, I used three different functions. Many jQuery programmers
prefer to use anonymous functions (sometimes called lambda functions) to
enclose the entire functionality in one long line:

Adding Events to Objects788

 $("li").hover(
 function(){
 $(this).css("border", "1px solid black");
 },
 function(){
 $(this).css("border", "0px none black");
 }
);

Note that this is still technically a single line of code. Instead of referencing
two functions that have already been created, I build the functions immedi-
ately where they are needed. Each function definition is a parameter to the
hover() method.

 If you’re a computer scientist, you might argue that this is not a perfect
example of a lambda function, and you would be correct. The important
thing is to notice that some ideas of functional programming (such as
lambda functions) are creeping into mainstream AJAX programming, and
that’s an exciting development. If you just mutter “lambda” and then walk
away, people will assume that you’re some kind of geeky computer scientist.
What could be more fun than that?

Although I’m perfectly comfortable with anonymous functions, I often find
the named-function approach easier to read, so I tend to use complete named
functions more often. All those braces inside parentheses make me dizzy.

Changing classes on the fly
jQuery supports another wonderful feature. You can define a CSS style and
then add or remove that style from an element dynamically. Figure 2-4 shows
a page that can dynamically modify the border of any list item.

Figure 2-4:
Click list
items,
and their
borders
toggle on
and off.

Book VII
Chapter 2

Im
proving

JavaScript and
AJAX w

ith jQuery
Adding Events to Objects 789

The code shows how easy this kind of feature is to add:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>class.html</title>
 <meta charset="UTF-8">
 <style type = "text/css">
 .bordered {
 border: 1px solid black;
 }
 </style>
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(init);
 function init(){
 $("li").click(toggleBorder);
 } // end init
 function toggleBorder(){
 $(this).toggleClass("bordered");
 }
 </script>
</head>
<body>
 <h1>Class Demo</h1>

 alpha
 beta
 gamma
 delta

</body>
</html>

Here’s how to make this program:

 1. Begin with a basic HTML page.

 All the interesting stuff happens in CSS and JavaScript, so the actual con-
tents of the page aren’t that critical.

 2. Create a class you want to add and remove.

 I build a CSS class called bordered that simply draws a border around
the element. Of course, you can make a much more sophisticated CSS
class with all kinds of formatting if you prefer.

 3. Link an init()method.

 As you’re beginning to see, most jQuery applications require some sort
of initialization. I normally call the first function init().

 4. Call the toggleBorder()function whenever the user clicks a list
item.

 The init() method simply sets up an event handler. Whenever a list
item receives the click event (that is, it is clicked) the toggleBorder()
function should be activated. The toggleBorder() function, well,
toggles the border.

Making an AJAX Request with jQuery790

 jQuery has several methods for manipulating the class of an element:

	 •	 addClass() assigns a class to the element.

	 •	 removeClass() removes a class definition from an element.

	 •	 toggleClass() switches the class (adds it if it isn’t currently
attached or removes it otherwise).

Making an AJAX Request with jQuery
The primary purpose of an AJAX library like jQuery is to simplify AJAX
requests. It’s hard to believe how easy this can be with jQuery. Figure 2-5
shows ajax.html, a page with a basic AJAX query.

Figure 2-5:
The text file
is requested
with an
AJAX call.

jQuery supports a number of other events.
Any jQuery node can read any of the following
events:

 ✓ change: The content of the element
changes.

 ✓ click: The user clicks the element.

 ✓ dblClick: The user double-clicks the
element.

 ✓ focus: The user has selected the element.

 ✓ keydown: The user presses a key while
the element has the focus.

 ✓ hover: The cursor is over the element; a
second function is called when the cursor
leaves the element.

 ✓ mouseDown: A mouse button is clicked
over the element.

 ✓ select: The user has selected text in a
text-style input.

jQuery events

Book VII
Chapter 2

Im
proving

JavaScript and
AJAX w

ith jQuery
Making an AJAX Request with jQuery 791

Including a text file with AJAX
This program is very similar in function to the asynch.html program
described in Chapter 1 of this minibook, but the code is much cleaner:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>ajax.html</title>
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(document).ready(getAJAX);
 function getAJAX(){
 $("#output").load("hello.txt");
 }
 </script>
 </head>
 <body>
 <div id = "output"></div>
 </body>
</html>

The HTML is very clean (as you should be expecting from jQuery examples).
It simply creates an empty div called output.

The JavaScript code isn’t much more complex. A standard $(document).
ready function calls the getAJAX() function as soon as the document
is ready. The getAJAX() function simply creates a jQuery node based
on the output div and loads the hello.txt file through a basic AJAX
request.

 This example does use AJAX, so if it isn’t working, you might need to
remember some details about how AJAX works. A program using AJAX
should be run through a web server, not just from a local file. Also, the file
being read should be on the same server as the program making the AJAX
request.

The load() mechanism described here is suitable for a basic situation
where you want to load a plain-text or HTML code snippet into your pages.
You read about much more sophisticated AJAX techniques in Chapter 6 of
this minibook.

Building a poor man’s CMS with AJAX
AJAX and jQuery can be a very useful way to build efficient websites,
even without server-side programming. Frequently a website is based on
a series of smaller elements that can be swapped and reused. You can use
AJAX to build a framework that allows easy reuse and modification of web
content.

Making an AJAX Request with jQuery792

As an example, take a look at cmsAJAX, shown in Figure 2-6.

Figure 2-6:
This page
is created
dynamically
with AJAX
and jQuery.

Although nothing is all that shocking about the page from the user’s perspec-
tive, a look at the code can show some surprises:

<!DOCTYPE html>
<html lang = "en">
 <head>
 <meta charset = "UTF-8">
 <title>CMS Using AJAX</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "cmsStd.css" />
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(init);
 function init(){
 $("#heading").load("head.html");
 $("#menu").load("menu.html");
 $("#content1").load("story1.html");
 $("#content2").load("story2.html");
 $("#footer").load("footer.html");
 };
 </script>
 </head>
 <body>
 <div id = "all">
 <!-- This div centers a fixed-width layout -->
 <div id = "heading">
 </div><!-- end heading div -->
 <div id = "menu">
 </div> <!-- end menu div -->
 <div class = "content"
 id = "content1">
 </div> <!-- end content div -->

Book VII
Chapter 2

Im
proving

JavaScript and
AJAX w

ith jQuery
Making an AJAX Request with jQuery 793

 <div class = "content"
 id = "content2">
 </div> <!-- end content div -->
 <div id = "footer">
 </div> <!-- end footer div -->
 </div> <!-- end all div -->
 </body>
</html>

Look over the code, and you can see these interesting features:

 ✦ The page has no content! All the divs are empty. None of the text shown
in the screen shot is present in this document, but all is pulled from
smaller files dynamically.

 ✦ The page consists of empty named divs. Rather than any particular con-
tent, the page consists of placeholders with IDs.

 ✦ It uses jQuery. The jQuery library is used to vastly simplify loading data
through AJAX calls.

 ✦ All contents are in separate files. Look through the directory, and you
can see very simple HTML files that contain small parts of the page. For
example, story1.html looks like this:

<h2>Book I - Creating the HTML Foundation</h3>

 Sound HTML Foundations
 It's All About Validation
 Choosing your Tools
 Managing Information with Lists and Tables
 Making Connections with Links
 Adding Images
 Creating forms

 ✦ The init()method runs on document.ready. When the document is
ready, the page runs the init() method.

 ✦ The init()method uses AJAX calls to dynamically load content. It’s
nothing more than a series of jQuery load() methods.

This approach may seem like a lot of work, but it has some very interesting
characteristics:

 ✦ If you’re building a large site with several pages, you usually want to
design the visual appearance once and reuse the same general template
repeatedly.

 ✦ Also, you’ll probably have some elements (such as the menu and head-
ing) that will be consistent over several pages. You could simply create a
default document and copy and paste it for each page, but this approach
gets messy. What happens if you have created 100 pages according to
a template and then need to add something to the menu or change the
header? You need to make the change on 100 different pages. (In fact, this
happened. This is the third edition of this book, and the title has changed
slightly in each edition. I only needed to change the title one time.)

Making an AJAX Request with jQuery794

The advantage of the template-style approach is code reuse. Just like the use
of an external style allows you to multiply a style sheet across hundreds of
documents, designing a template without content allows you to store code
snippets in smaller files and reuse them. All 100 pages point to the same
menu file, so if you want to change the menu, you change one file and every-
thing changes with it.

Here’s how you use this sort of approach:

 1. Create a single template for your entire site.

 Build basic HTML and CSS to manage the overall look and feel for your
entire site. Don’t worry about content yet. Just build placeholders for
all the components of your page. Be sure to give each element an ID and
write the CSS to get things positioned as you want.

 2. Add jQuery support.

 Make a link to the jQuery library, and make a default init() method.
Put in code to handle populating those parts of the page that will always
be consistent. (I use the template shown here exactly as it is.)

 3. Duplicate the template.

 After you have a sense of how the template will work, make a copy for
each page of your site.

 4. Customize each page by changing the init()function.

 The only part of the template that changes is the init() function. All
your pages will be identical, except they have customized init() func-
tions that load different content.

 5. Load custom content into the divs with AJAX.

 Use the init() function to load content into each div. Build more con-
tent as small files to create new pages.

 This is a great way to manage content, but it isn’t quite a full-blown content-
management system. Even AJAX can’t quite allow you to store content on the
web. More complex content management systems also use databases rather
than files to handle content. You’ll need some sort of server-side program-
ming (like PHP, covered throughout Book V) and usually a database (like
mySQL, covered in Book VI) to handle this sort of work. Content-
management systems and complex site design are covered in Book VIII.

Chapter 3: Animating jQuery

In This Chapter
✓ Hiding and showing elements with jQuery

✓ Fading elements in and out

✓ Adding a callback function to a transition

✓ Element animation

✓ Object chaining

✓ Using selection filters

✓ Adding and removing elements

T
he jQuery library simplifies a lot of JavaScript coding. One of its best
features is how it adds features that would be difficult to achieve in

ordinary JavaScript and DOM programming. This chapter teaches you to
shake and bake your programs by identifying specific objects, moving them
around, and making them appear, slide, and fade.

Playing Hide and Seek
To get it all started, take a look at hideShow.html shown in Figure 3-1.

Figure 3-1:
This page
allows you
to hide
and show
elements.
At first, it
reveals
nothing
much.

Playing Hide and Seek796

The hideShow program looks simple at first, but it does some quite interest-
ing things. All of the level-two headings are actually buttons, so when you
click them, interesting things happen:

 ✦ The show button displays a previously hidden element. Figure 3-2 dem-
onstrates the revealed content.

Figure 3-2:
The content
element is
now visible.

 ✦ The hide button hides the content. The behavior of the hide button is
pretty obvious. If the content is showing, it disappears instantly.

 ✦ The toggle button swaps the visibility of the content. If the content is
currently visible, it is hidden. If it is hidden, it appears.

 ✦ The slide down button makes the content transition in. The slide
down transition acts like a window shade being pulled down to make the
content visible through a basic animation.

 ✦ The slide up button transitions the content out. This animation looks
like a window shade being pulled up to hide the content.

 ✦ The speed of the animation can be controlled. It’s possible to adjust
how quickly the transition animation plays. This example plays the slide
down animation slowly, and the slide up animation more quickly. It’s
possible to specify exactly how long the transition takes in milliseconds
(1/1000ths of a second).

 ✦ The fade in button allows the element to dissolve into visibility. This
looks much like a fade effect used in video. As in the sliding animations,
the speed of the animation can be controlled.

Book VII
Chapter 3

Anim
ating jQuery

Playing Hide and Seek 797

 ✦ The fade out button fades the element to the background color. This
technique gradually modifies the opacity of the element so that it even-
tually disappears.

You can adjust how quickly the transition animation plays. You can specify
exactly how long the transition takes in milliseconds (1/1000 of a second).
Also, any transition can have a callback function attached.

 Of course, this example relies on animation, which you can’t see in a static
book. Be sure to look at this and all other example pages on my website:
www.aharrisbooks.net. Better yet, install them on your own machine and
play around with my code until they make sense to you.

The animations shown in this example are useful when you want to selec-
tively hide and display parts of your page:

 ✦ Menus are one obvious use. You might choose to store your menu
structure as a series of nested lists and only display parts of the menu
when the parent is activated.

 ✦ Small teaser sentences expand to show more information when the
user clicks or hovers over them. This technique is commonly used on
blog and news sites to let users preview a large number of topics, kind of
like a text-based thumbnail image.

Getting transition support
The jQuery library has built-in support for transitions that make these
effects pretty easy to produce. Look over the entire program before digging
into the details:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <title>hideShow.html</title>
 <meta charset = "UTF-8">
 <style type = "text/css">
 #content {
 width: 400px;
 height: 200px;
 font-size: 200%;
 padding-left:1em;
 background-color: yellow;
 position: absolute;
 left: 300px;
 top: 100px;
 }
 h2 {
 width: 10em;
 border: 3px outset black;
 background-color: lightgray;
 text-align: center;
 font-family: sans-serif;
 border-radius: 5px;

http://www.aharrisbooks.net

Playing Hide and Seek798

 box-shadow: 5px 5px 5px gray;
 }
 </style>
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(init);
 function init(){
 //styleContent();
 $("#content").hide();
 $("#show").click(showContent);
 $("#hide").click(hideContent);
 $("#toggle").click(toggleContent);
 $("#slideDown").click(slideDown);
 $("#slideUp").click(slideUp);
 $("#fadeIn").click(fadeIn);
 $("#fadeOut").click(fadeOut);
 } // end init
 function showContent(){
 $("#content").show();
 } // end showContent
 function hideContent(){
 $("#content").hide();
 } // end hideContent
 function toggleContent(){
 $("#content").toggle();
 } // end toggleContent
 function slideDown(){
 $("#content").slideDown("medium");
 } // end slideDown
 function slideUp(){
 $("#content").slideUp(500);
 } // end slideUp
 function fadeIn(){
 $("#content").fadeIn("slow", present);
 } // end fadeIn
 function fadeOut(){
 $("#content").fadeOut("fast");
 } // end fadeOut.
 function present(){
 alert("I'm here");
 } // end present
 </script>
</head>
<body>
 <h1>Hide and show</h1>
 <h2 id = "show">Show</h2>
 <h2 id = "hide">Hide</h2>
 <h2 id = "toggle">Toggle</h2>
 <h2 id = "slideDown">Slide Down</h2>
 <h2 id = "slideUp">Slide Up</h2>
 <h2 id = "fadeIn">Fade In</h2>
 <h2 id = "fadeOut">Fade Out</h2>
 <p id = "content">
 This is the content. It is hidden at first, but it is hidden and
 shown with jQuery techniques.
 </p>
</body>
</html>

This example may look long and complicated when you view it all at once,
but it really isn’t hard to understand when you break it into pieces.

Book VII
Chapter 3

Anim
ating jQuery

Playing Hide and Seek 799

Writing the HTML and CSS foundation
The HTML used in this example is minimal, as is common in jQuery
development:

 ✦ A single level-one heading

 ✦ A series of level-two headings

 ✦ A paragraph

The level-two headings will be used as buttons in this example. I use a CSS
style to make the H2 tags look more like buttons (adding a border and back-
ground color). I added an ID attribute to every button so that I can add
jQuery events later.

 If I wanted the H2 elements to look and act like buttons, why didn’t I just
make them with button tags in the first place? In this example, I wanted to
focus on the jQuery and keep the HTML as simple as possible. jQuery
helps make any element act like a button easily, so that’s what I did. Users
don’t expect H2 elements to be clickable, so you need to do some styling
(as I did) to help them understand that the element can be clicked. For
comparison purposes, the other two examples in this chapter use actual
HTML buttons.

The other interesting part of the HTML is the content div. In this example,
the actual content isn’t really important, but I did add some CSS to make the
content easy to see when it pops up.

 The most critical part of the HTML from a programming perspective is the
inclusion of the ID attribute. This makes it easy for a jQuery script to manip-
ulate the component, making it hide and reappear in various ways. Note that
the HTML and CSS do nothing to hide the content. It will be hidden (and
revealed) entirely through jQuery code.

Well-rounded buttons
I used some sneaky CSS tricks to make the H2
elements look like buttons. First, I made them
gray (like most buttons are). I also gave them
an outset border to make them appear in 3D.

I added the border-radius element to get
rounded corners, and box shadow to add a
little depth.

Playing Hide and Seek800

Initializing the page
The initialization sequence simply sets the stage and assigns a series of
event handlers:

 $(init);

 function init(){
 //styleContent();
 $("#content").hide();
 $("#show").click(showContent);
 $("#hide").click(hideContent);
 $("#toggle").click(toggleContent);
 $("#slideDown").click(slideDown);
 $("#slideUp").click(slideUp);
 $("#fadeIn").click(fadeIn);
 $("#fadeOut").click(fadeOut);
 } // end init

 The pattern for working with jQuery should be familiar:

 1. Set up an initialization function.

 Use the $(document).ready() mechanism (described in Chapter 2 of
this minibook) or this cleaner shortcut to specify an initialization function.

 2. Hide the content div.

 When the user first encounters the page, the content div should be
hidden.

 3. Attach event handlers to each H2 button.

 This program is a series of small functions. The init() function attaches
each function to the corresponding button. Note how I carefully named
the functions and buttons to make all the connections easy to understand.

Hiding and showing the content
All the effects on this page are based on hiding and showing the content div.
The hide() and show() methods illustrate how jQuery animation works:

 function showContent(){
 $("#content").show();
 } // end showContent

 function hideContent(){
 $("#content").hide();
 } // end hideContent

Each of these functions works in the same basic manner:

 ✦ Identifies the content div: Creates a jQuery node based on the con-
tent div.

 ✦ Hides or shows the node: The jQuery object has built-in methods for
hiding and showing.

Book VII
Chapter 3

Anim
ating jQuery

Playing Hide and Seek 801

The hide and show methods act instantly. If the element is currently visible,
the show() method has no effect. Likewise, hide() has no effect on an ele-
ment that’s already hidden.

Toggling visibility
In addition to hide() and show(), the jQuery object supports a toggle()
method. This method takes a look at the current status of the element and
changes it. If the element is currently hidden, it becomes visible. If it’s cur-
rently visible, it is hidden. The toggleContent() function illustrates how
to use this method:

 function toggleContent(){
 $("#content").toggle();
 } // end toggleContent

Sliding an element
jQuery supports effects that allow you to animate the appearance and disap-
pearance of your element. The general approach is very similar to hide()
and show(), but you find one additional twist:

 function slideDown(){
 $("#content").slideDown("medium");
 } // end slideDown

 function slideUp(){
 $("#content").slideUp(500);
 } // end slideUp

The slideDown() method makes an element appear like a window shade
being pulled down. The slideUp() method makes an element disappear in
a similar manner.

These functions take a speed parameter that indicates how quickly the ani-
mation occurs. If you omit the speed parameter, the default value is medium.
The speed can be these string values:

 ✦ Fast

 ✦ Medium

 ✦ Slow

 ✦ A numeric value in milliseconds (1/1000 of a second; the value 500
means 500 milliseconds, or half a second)

 The show(), hide(), and toggle() methods also accept a speed parameter.
In these functions, the object shrinks and grows at the indicated speed.

A slideToggle() function is also available that toggles the visibility of the
element, but using the sliding animation technique.

Changing Position with jQuery802

Fading an element in and out
A third type of “now you see it” animation is provided by the fade methods.
These techniques adjust the opacity of the element. The code should look
quite familiar by now:

 function fadeIn(){
 $("#content").fadeIn("slow", present);
 } // end fadeIn

 function fadeOut(){
 $("#content").fadeOut("fast");
 } // end fadeOut.

 function present(){
 alert("I'm here");
 } // end present

fadeIn() and fadeout() work just like the hide() and slide() tech-
niques. The fading techniques adjust the opacity of the element and then
remove it, rather than dynamically changing the size of the element as the
slide and show techniques do.

 I’ve added one more element to the fadeIn() function. If you supply the
fadeIn() method (or indeed any of the animation methods described in
this section) with a function name as a second parameter, that function is
called upon completion of the animation. When you click the fade-in
button, the content div slowly fades in, and then when it is completely
visible, the present() function gets called. This function doesn’t do a lot in
this example but simply pops up an alert, but it could be used to handle
some sort of instructions after the element is visible. A function used in this
way is a callback function.

If the element is already visible, the callback method is triggered
immediately.

Changing Position with jQuery
The jQuery library also has interesting features for changing any of an ele-
ment’s characteristics, including its position. The animate.html page fea-
tured in Figure 3-3 illustrates a number of interesting animation techniques.

You know what I’m going to say, right? This program moves things around.
You can’t see that in a book. Be sure to look at the actual page. Trust me, it’s
a lot more fun than it looks in this screen shot.

This page illustrates how to move a jQuery element by modifying its CSS.
It also illustrates an important jQuery technique called object chaining and
a very useful animation method that allows you to create smooth motion
over time. As usual, look over the entire code first; I break it into sections for
more careful review.

Book VII
Chapter 3

Anim
ating jQuery

Changing Position with jQuery 803

Figure 3-3:
Click the
buttons, and
the element
moves.

<!DOCTYPE html>

<html lang = "en-US">

<head>
 <title>Animate.html</title>
 <meta charset="UTF-8">
 <style type = "text/css">
 #content {
 width: 300px;
 height: 200px;
 font-size: 200%;
 background-color: yellow;
 position: absolute;
 left: 300px;
 top: 100px;
 padding-left: .5em;
 }
 </style>
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(init);
 function init(){
 $("#move").click(move2);
 $("#glide").click(glide);
 $("#left").click(left);
 $("#right").click(right);
 } // end init
 function move2(){
 $("#content").css("left", "50px");
 $("#content").css("top", "100px");
 } // end move2
 function move(){
 $("#content").css("left", "50px")
 .css("top", "100px");
 } // end move
 function glide(){

Changing Position with jQuery804

 //move to initial spot
 $("#content").css("left", "50px")
 .css("top", "100px");
 //slide to new spot
 $("#content").animate({
 "left": "400px",
 "top": "200px"
 }, 2000);
 } // end glide
 function left(){
 $("#content").animate({"left": "-=10px"}, 100);
 } // end left
 function right(){
 $("#content").animate({"left": "+=10px"}, 100);
 } // end left
 </script>
</head>
<body>
<h1>Animation Demo</h1>
<form action = "">
 <fieldset>
 <button type = "button"
 id = "move">
 move
 </button>
 <button type = "button"
 id = "glide">
 glide
 </button>
 <button type = "button"
 id = "left">
 <--
 </button>
 <button type = "button"
 id = "right">
 -->
 </button>
 </fieldset>
</form>
<p id = "content">
 This content will move in response to the controls.
</p>
</body>
</html>

Creating the framework
The HTML always forms the foundation. This page is similar to the
hideShow page, but I decided to use a real form with buttons as the
control panel. Buttons are not difficult to use, but they are a little more
tedious to code because they must be inside a form element as well as
a block-level element, and they require more coding to produce than H2
 elements.

Note that I used < in one of the button captions. This HTML attribute
displays the less-than symbol. Had I used the actual symbol (<), the browser
would have thought I was beginning a new HTML tag and would have been
confused.

Book VII
Chapter 3

Anim
ating jQuery

Changing Position with jQuery 805

The buttons all have id attributes, but I didn’t attach functions to them with
the onclick attribute. After you’re using jQuery, it makes sense to commit
to a jQuery approach and use the jQuery event techniques.

 The only other important HTML element is the content div. Once again,
this element is simply a placeholder, but I added CSS styling to make it
obvious when it moves around. This element must be set to be abso-
lutely positioned because the position will be changed dynamically in the
code.

Setting up the events
The initialization is all about setting up the event handlers for the various
buttons. An init() function is called when the document is ready. That
function contains function pointers for the various events, directing traffic to
the right functions when a button is pressed:

 function init(){
 $("#move").click(move);
 $("#glide").click(glide);
 $("#left").click(left);
 $("#right").click(right);
 } // end init

As usual, naming conventions makes it easy to see what’s going on.

Don’t go chaining . . . okay, do it all you want
The move() function isn’t really that radical. All it does is use the css()
method described in Book VII, Chapter 2 to alter the position of the element.
After all, position is just a CSS attribute, right? Well, it’s a little more complex
than that.

 The position of an element is actually stored in two attributes, top and
left.

Your first attempt at a move() function would probably look like this:

 function move(){
 $("#content").css("left", "50px");
 $("#content").css("top", "100px");
 } // end move

 Although this approach certainly works, it has a subtle problem. It moves
the element in two separate steps. Although most browsers are fast enough
to avoid making this an issue, jQuery supports a really neat feature called
node chaining that allows you to combine many jQuery steps into a single
line.

Almost all jQuery methods return a jQuery object as a side effect. So, the line

 $("#content").text("changed");

Changing Position with jQuery806

not only changes the text of the content node but also makes a new node.
You can attach that node to a variable like this if you want:

 var newNode = $("#content").text("changed");

However, what most jQuery programmers do is simply attach new function-
ality onto the end of the previously defined node, like this:

 $("#content").text("changed").click(hiThere);

This new line takes the node created by $(“#content”) and changes its
text value. It then takes this new node (the one with changed text) and adds
a click event to it, calling the hiThere() function when the content ele-
ment is clicked. In this way, you build an ever-more complex node by chain-
ing nodes on top of each other.

These node chains can be hard to read because they can result in a lot of
code on one physical line. JavaScript doesn’t care about carriage returns,
though, because it uses the semicolon to determine the end of a logical line.
You can change the complex chained line so that it fits on several lines of the
text editor like this:

 $("#content")
 .text("changed")
 .click(hiThere);

Note that only the last line has a semicolon because it’s all one line of logic
even though it occurs on three lines in the editor.

Building the move() function with chaining
Object chaining makes it easy to build the move() function so that it shifts
the content’s left and top properties simultaneously:

 function move(){
 $("#content").css("left", "50px")
 .css("top", "100px");
 } // end move

This function uses the css() method to change the left property to 50px.
The resulting object is given a second css() method call to change the top
property to 100px. The top and left elements are changed at the same time
as far as the user is concerned.

Building time-based animation with animate()
Using the css() method is a great way to move an element around on the
screen, but the motion is instantaneous. jQuery supports a powerful method
called animate() that allows you to change any DOM characteristics over a

Book VII
Chapter 3

Anim
ating jQuery

Changing Position with jQuery 807

specified span of time. The glide button on animate.html smoothly moves
the content div from (50, 100) to (400, 200) over two seconds:

 function glide(){
 //move to initial spot
 $("#content").css("left", "50px")
 .css("top", "100px");

 //slide to new spot
 $("#content").animate({
 "left": "400px",
 "top": "200px"
 }, 2000);
 } // end glide

The function begins by moving the element immediately to its initial spot
with chained css() methods. It then uses the animate() method to con-
trol the animation. This method can have up to three parameters:

 ✦ A JSON object describing attributes to animate: The first parameter is
an object in JSON notation describing name/value attribute pairs. In this
example, I’m telling jQuery to change the left attribute from its cur-
rent value to 400px, and the top value to 200px. Any numeric value that
you can change through the DOM can be included in this JSON object.
Instead of a numerical value, you can use “hide,” “show,” or “toggle” to
specify an action. Review Book IV, Chapter 4 for more details on JSON
objects.

 ✦ A speed attribute: The speed parameter is defined in the same way
as the speed for fade and slide animations. You find three predefined
speeds: slow, medium, and fast. You can also indicate speed in millisec-
onds; for example, 2000 means two seconds.

 ✦ A callback function: This optional parameter describes a function to be
called when the animation is complete. The use of callback functions is
described earlier in this chapter in the section “Fading an element in
and out.”

If you recall from Book III, CSS3 has terrific
position and animation tools, so why bother
with jQuery if it can be done in plain CSS? That’s
a really good question. jQuery is actually using
CSS3 when it can, and defaulting to another
technique when it encounters a browser that
cannot use jQuery. There’s another advantage

to the jQuery approach: Because jQuery is
really JavaScript code, when you move stuff
around with jQuery, you’ve got all the flex-
ibility of a real programming language, with
variables, loops, functions, and all that power-
ful stuff that a markup language like CSS just
doesn’t have.

Couldn’t we just use CSS3?

Modifying Elements on the Fly808

Move a little bit: Relative motion
You can also use the animation mechanism to move an object relative to its
current position. The arrow buttons and their associated functions perform
this task:

 function left(){
 $("#content").animate({"left": "-=10px"}, 100);
 } // end left

 function right(){
 $("#content").animate({"left": "+=10px"}, 100);
 } // end left

These functions also use the animate() method, but you see a small dif-
ference in the position parameters. The += and –= modifiers indicate that I
want to add to or subtract from (respectively) the value rather than indicat-
ing an absolute position. Of course, you can add as many parameters to the
JSON object as you want, but these are a good start.

Note that because I’m moving a small amount (10 pixels), I want the motion
to be relatively quick. Each motion lasts 100 milliseconds, or 1/10 of a second.

Modifying Elements on the Fly
The jQuery library supports a third major way of modifying the page: the
ability to add and remove contents dynamically. This is a powerful way to
work with a page. The key to this feature is another of jQuery’s most capable
tools — its flexible selection engine. You can also use numerous attributes
to modify nodes. The changeContent.html page, shown in Figure 3-4, demon-
strates some of the power of these tools.

Easing on down
The jQuery animation() method supports
one more option: easing. The term refers to the
relative speed of the animation throughout its
lifespan. If you watch the animations on the
animate.html page carefully, you can see that
the motion begins slowly, builds speed, and
slows again at the end. This provides a natural-
feeling animation. By default, jQuery animations

use what’s called a swing easing style (slow
on the ends and fast in the middle, like a child
on a swing). If you want to have a more con-
sistent speed, you can specify “linear” as the
fourth parameter, and the animation works at a
constant speed. You can also install plug-ins for
more advanced easing techniques.

Book VII
Chapter 3

Anim
ating jQuery

Modifying Elements on the Fly 809

Figure 3-4:
The default
state of
change-
Content is a
little dull.

Of course, the buttons allow the user to make changes to the page dynami-
cally. Clicking the Add Text button adds more text to the content area, as
you can see in Figure 3-5.

Figure 3-5:
More text
can be
appended
inside any
content
area.

 ✦ The clone button is interesting because it allows you to make a copy
of an element and place it somewhere else in the document hierarchy.
Clicking the clone button a few times can give you a page like that
shown in Figure 3-6.

Modifying Elements on the Fly810

Figure 3-6:
I’ve made
several
clones of
the original
content.

 ✦ The Wrap in Div button lets you wrap an HTML element around any
existing element. The Wrap in Div button puts a div (with a red border)
around every cloned element. You can click this button multiple times to
add multiple wrappings to any element. Figure 3-7 shows what happens
after I wrap a few times.

Figure 3-7:
Now you
see a red-
bordered div
around all
the cloned
elements.

 ✦ The Change Alternate Paragraphs button increases readability;
Sometimes you want to be able to alternate styles of lists and tables.
jQuery has an easy way to select every other element in a group and
give it a style. The Change Alternate Paragraphs button activates some

Book VII
Chapter 3

Anim
ating jQuery

Modifying Elements on the Fly 811

code that turns all odd-numbered paragraphs into white text with a
green background. Look at Figure 3-8 for a demonstration.

Figure 3-8:
All odd-
numbered
paragraphs
have a new
style.

 ✦ The Reset button resets all the changes you made with the other
buttons.

The code for changeDocument.html seems complex, but it follows the same
general patterns you’ve seen in jQuery programming. As always, look over
the entire code first and then read how it breaks down:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <title>changeContent.html</title>
 <meta charset = "UTF-8">
 <style type = "text/css">
 #content {
 width: 300px;
 background-color: yellow;
 left: 300px;
 top: 100px;
 padding-left: .5em;
 border: 0px none black;
 }
 div {
 border: 3px solid red;
 padding: 2px;
 }
 </style>
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(init);
 function init(){
 $("#reset").click(reset);

Modifying Elements on the Fly812

 $("#addText").click(addText);
 $("#wrap").click(wrap);
 $("#clone").click(clone);
 $("#oddGreen").click(oddGreen);
 } // end init
 function reset(){
 //remove all but the original content
 $("p:gt(0)").remove();
 $("div:not(#content)").remove();
 //reset the text of the original content
 $("#content").html("<p>This is the original content</p>");
 } // end reset
 function addText(){
 $("p:first").append(" …and this was added later.");
 } // end addContent
 function wrap(){
 $("p:gt(0)").wrap("<div></div>");
 } // end wrap
 function clone(){
 $("p:first").clone()
 .insertAfter("p:last")
 .css("backgroundColor", "lightblue");
 } // end clone
 function oddGreen(){
 //turn alternate (odd numbered) paragraph elements green
 $("p:odd").css("backgroundColor", "green")
 .css("color", "white");
 } // end oddGreen
 </script>
</head>
<body>
 <h1>Adding Content Demo</h1>
 <form action = "">
 <fieldset>
 <button type = "button"
 id = "reset">
 reset
 </button>
 <button type = "button"
 id = "addText">
 add text
 </button>
 <button type = "button"
 id = "clone">
 clone
 </button>
 <button type = "button"
 id = "wrap">
 wrap in div
 </button>
 <button type = "button"
 id = "oddGreen">
 change alternate paragraphs
 </button>
 </fieldset>
 </form>
 <div id = "content">
 <p>
 This is the original content
 </p>
 </div>
</body>
</html>

Book VII
Chapter 3

Anim
ating jQuery

Modifying Elements on the Fly 813

Admittedly you see a lot of code here, but when you consider how much
functionality this page has, it really isn’t too bad. Look at it in smaller pieces,
and it all makes sense.

Building the basic page
As usual, begin by inspecting the HTML. The basic code for this page sets up
the playground:

 1. Create a form with buttons.

 This form will become the control panel. Add a button for each function
you want to add. Make sure that each button has an ID, but you don’t
need to specify an onclick() function because the init() function
takes care of that.

 2. Build a prototype content div.

 Build a div called content, and add a paragraph to the div.

 Be careful with your initial HTML structure. The manipulation and selection
tricks you experiment with in this chapter rely on a thorough understanding
of the beginning page structure. Be sure that you understand exactly how
the page is set up so that you understand how to manipulate it. If your stan-
dard HTML page (before any JavaScript/jQuery code is added) doesn’t vali-
date, it’s unlikely your code will work as expected.

Initializing the code
The initialization section is pretty straightforward. Set up an init() func-
tion, and use it to assign event handlers to all the buttons:

 $(init);

 function init(){

 $("#reset").click(reset);
 $("#addText").click(addText);
 $("#wrap").click(wrap);
 $("#clone").click(clone);
 $("#oddGreen").click(oddGreen);

 } // end init

Adding text
It’s pretty easy to add text to a component. The append() method attaches
text to the end of a jQuery node. Table 3-1 shows a number of other methods
for adding text to a node.

Modifying Elements on the Fly814

Table 3-1 Methods That Add Text to a Node
Method Description

append(text) Adds the text (or HTML) to the end of the selected element(s)

prepend(text) Adds the content at the beginning of the selected element(s)

insertAfter(text) Adds the text after the selected element (outside the element)

insertBefore(text) Adds the text before the selected element (outside the element)

More methods are available, but these are the ones I find most useful. Be
sure to check out the official documentation at http://docs.jquery.com
to see the other options.

 function addText(){
 $("p:first").append(" …and this was added later.");

 } // end addContent

The append() method adds text to the end of the element, but inside the
element (rather than after the end of the element). In this example, the text
will become part of the paragraph contained inside the content div. The
more interesting part of this code is the selector. It could read like this:

$("p").append(" …and this was added later.");

That would add the text to the end of the paragraph. The default text has
only one paragraph, so that makes lots of sense. If there are more para-
graphs (and there will be), the p selector can select them all, adding the
text to all the paragraphs simultaneously. By specifying p:first, I’m using
a special filter to determine exactly which paragraph should be affected.

Many of the examples on this page use jQuery filters, so I describe them else-
where in the following sections. For now, note that p:first means the first
paragraph. Of course, you also see p:last and many more. Read on. . . .

Attack of the clones
You can clone (copy) anything you can identify as a jQuery node. This makes
a copy of the node without changing the original. The cloned node isn’t imme-
diately visible on the screen. You need to place it somewhere, usually with an
append(), prepend(), insertBefore(), or insertAfter() method.

Take a look at the clone() function to see how it works:

 function clone(){
 $("p:first").clone()
 .insertAfter("p:last")
 .css("backgroundColor", "lightblue");
 } // end clone

http://docs.jquery.com

Book VII
Chapter 3

Anim
ating jQuery

Modifying Elements on the Fly 815

 1. Select the first paragraph.

 The first paragraph is the one I want to copy. (In the beginning, only one
exists, but that will change soon.)

 2. Use the clone()method to make a copy.

 Now you’ve made a copy, but it still isn’t visible. Use chaining to do
some interesting things to this copy.

 3. Add the new element to the page after the last paragraph.

 The p:last identifier is the last paragraph, so insertAfter(“p:last”)
means put the new paragraph after the last paragraph available in the
document.

 4. Change the CSS.

 Just for grins, chain the css() method onto the new element and
change the background color to light blue. This just reinforces the fact
that you can continue adding commands to a node through chaining.

 Note that the paragraphs are inside content. Of course, I could have
put them elsewhere with careful use of selectors, but I put them where I
want them.

It’s hard to keep track of changes to the page because a standard view
source command shows you the original source code, not the code that’s
been changed by your jQuery magic. jQuery changes the HTML of your page
in memory but doesn’t change the text file that contains your page. If your
page is not doing what you expect, you need to look at the script-generated
source code to see what’s really going on.

 The debugger tools in Chrome or Firebug are the key to debugging all kinds of
web coding, especially as things get complex with JavaScript and jQuery. Use
the Inspect Element tool to see the actual content of the page. If your jQuery
isn’t working, be sure to check the console to see if it has sent any error mes-
sages. Debugging with the debug tool is described in Book IV, Chapter 3.

Note that the content of the first paragraph is cloned with its current
content and style information copied to the new element. If you clone the
paragraph and then add content to it and clone it again, the first clone has
the default text and the second clone will contain the additional text. If you
modify the CSS style of an element and then clone it, the clone also inherits
any of the style characteristics of the original node.

It’s a wrap
Sometimes you want to embed an object inside another element (or two).
For example, the wrap button on the changeContent page surrounds each
cloned paragraph with a <div></div> pair. I’ve defined the div tag in my
CSS to include a red border. Repeatedly clicking the wrap button surrounds

Modifying Elements on the Fly816

all cloned paragraphs with red borders. This would be a very tedious effect
to achieve in ordinary DOM and JavaScript, but jQuery makes it pretty easy
to do:

 function wrap(){
 $("p:gt(0)").wrap("<div></div>");
 } // end wrap

The wrap() method is pretty easy to understand. If you feed it any con-
tainer tag, it wraps that container around the selected node. You can also
use multiple elements, so if you wanted to enclose a paragraph in a single
item list, you could do something like this:

 $("p").wrap("");

The resulting code would surround each paragraph with an unordered list
and list item.

Returning to the wrap() function, I’ve decided not to wrap every paragraph
with a div, just the ones that have been cloned. (Mainly I’m doing this so
that I can show you some other cool selection filters.) The p:gt(0) selector
means to select all paragraphs with an index greater than 0. In other words,
ignore the first paragraph, but apply the following methods to all other para-
graphs. You also find these filters:

 ✦ Less-than (:lt) isolates elements before a certain index.

 ✦ Equals (:eq) isolates an element with a certain index.

Alternating styles
It’s a common effect to alternate background colors on long lists or tables
of data, but this can be a tedious effect to achieve in ordinary CSS and
JavaScript. Not surprisingly, jQuery selectors make this a pretty easy job:

 function oddGreen(){
 //turn alternate (odd numbered) paragraph elements green
 $("p:odd").css("backgroundColor", "green")
 .css("color", "white");
 } // end oddGreen

The :odd selector only chooses elements with an odd index and returns a
jQuery node that can be further manipulated with chaining. Of course, you
also see an :even selector for handling the even-numbered nodes. The rest
of this code is simply CSS styling.

Resetting the page
You need to be able to restore the page to its pristine state. A quick jQuery
function can easily do the trick:

Book VII
Chapter 3

Anim
ating jQuery

Modifying Elements on the Fly 817

 function reset(){
 //remove all but the original content
 $("p:gt(0)").remove();
 $("div:not(#content)").remove();
 //reset the text of the original content
 $("#content").html("<p>This is the original content</p>");
 } // end reset

This function reviews many of the jQuery and selection tricks shown in this
chapter:

 1. Remove all but the first paragraph.

 Any paragraph with an index greater than 0 is a clone, so it needs to go
away. The remove() method removes all jQuery nodes associated with
the current selector.

 2. Remove all divs but the original content.

 I could have used the :gt selector again, but instead I use another inter-
esting selector — :not. This removes every div that isn’t the primary
content div. This removes all divs added through the wrap() function.

 3. Reset the original content div to its default text.

 Set the default text back to its original status so that the page is reset.

 All I really need here is the last line of code. Changing the HTML of the con-
tent div replaces the current contents with whatever is included, so the
first two lines aren’t entirely necessary in this particular context. Still, it’s
useful to know how to remove elements when you need to do so.

More fun with selectors and filters
The jQuery selectors and filters are really fun and powerful. Table 3-2
describes a few more filters and indicates how they might be used.

 Note that this is a representative list. Be sure to check out the official docu-
mentation at http://docs.jquery.com for a more complete list of filters.

Table 3-2 Selected jQuery Filters
Filter Description

:header Any header tag (H1, H2, H3).

:animated Any element that is currently being animated.

:contains(text) Any element that contains the indicated text.

:empty The element is empty.

:parent This element contains some other element.

:attribute=value The element has an attribute with the specified value.

http://docs.jquery.com

 818 Book VII: Integrating the Client and Server with AJAX

Chapter 4: Using the jQuery
User Interface Toolkit

In This Chapter
✓ Exploring the jQuery UI

✓ Installing the UI and templates

✓ Using UI template classes

✓ Dragging and dropping

✓ Binding events

✓ Resizing elements

T
he jQuery library is an incredible tool for simplifying JavaScript
 programming. It’s so popular and powerful that developers began

adding new features to make it even more useful. Among the most important
of these is a framework called jQuery UI (User Interface), sometimes also
called the UI toolkit. That’s what this chapter’s all about.

What the jQuery User Interface Brings to the Table
This tool adds some very welcome features to web development, including
new visual elements (widgets), a uniform icon set, and a mechanism for
easily generating attractive CSS styles:

 ✦ New user interface elements: As a modern user interface tool, HTML is
missing some important tools. Most modern visual languages include
built-in support for such devices as scroll bars, dedicated datepickers,
and multiple tab tools. Although HTML5 does promise some of these
 features, support varies greatly by browser. jQuery UI adds versions of
these features that work on older and newer browsers in a consistent way.

 ✦ Advanced user interaction: The jQuery widgets allow new and exciting
ways for the user to interact with your page. With the UI toolkit, you can
easily let users make selections by dragging and dropping elements, and
expand and contract parts of the page.

 ✦ Flexible theme templates: jQuery UI includes a template mechanism
that controls the visual look and feel of your elements. You can choose
from dozens of prebuilt themes or use a tool to build your own particu-
lar look. You can reuse this template library to manage the look of your
other page elements, too (not just the ones defined by the library).

What the jQuery User Interface Brings to the Table820

 ✦ A complete icon library: The jQuery UI has a library of icons for use in
your web development. It has arrows, buttons, and plenty of other doo-
dads that can be easily changed to fit your template.

 ✦ A very clean, modern look: It’s very easy to build forward-looking
visual designs with jQuery UI. It supports patterns, shadows, and plenty
of special visual effects.

 ✦ The power of jQuery: Because jQuery UI is an extension of jQuery, it
adds on to the incredible features of the jQuery language.

 ✦ Open-source values: The jQuery UI (like jQuery itself) is an open-source
project with a very active community. This means the library is free to
use and can be modified to suit your needs.

 The jQuery toolkit is pretty exciting. The best way to get an overview of it is
to see an example online. The jQuery website (http://jqueryui.com) is a
great place to get the latest information about jQuery.

It’s a theme park
One of the coolest tools in jQuery UI is a concept called a theme, which is
simply a visual rule-set. The theme is essentially a complex CSS document
designed to be used with the UI library.

Using the themeRoller to get an overview of jQuery
The jQuery website also features a marvelous tool called the themeRoller.
The themeRoller allows you to select and modify themes, so it’s a great place
to preview how themes work, as well as see the key features of the UI exten-
sion. Figure 4-1 shows this web page, which demonstrates many of the great
features of jQuery UI.

Figure 4-1:
The
themeRoller
lets you
review
many jQuery
UI elements
and modify
their look.

http://jqueryui.com

Book VII
Chapter 4

Using the jQuery
User Interface

Toolkit
What the jQuery User Interface Brings to the Table 821

Before you use themeRoller to change themes, use it to get acquainted with
the UI elements. Several useful tools are visible in Figure 4-1:

 ✦ Accordion: The upper-middle segment of the page has three segments
(section 1, section 2, and section 3). By clicking a section heading, the
user can expand that section and collapse the others.

 ✦ Slider: Sliders (or scroll bars) are an essential user interface element.
They allow the user to choose a numeric value with an easy visual tool.
jQuery sliders can be adjusted in many ways to allow easy and error-free
input.

 ✦ Datepicker: It’s very difficult to ensure that users enter dates properly.
The datepicker control automatically pops up a calendar into the page
and lets the user manipulate the calendar to pick a date. It’s a phenom-
enally useful tool.

 ✦ Tabs: It’s common to have a mechanism for hiding and showing parts
of your page. The accordion technique is one way to do so, but tabs are
another very popular technique. This mechanism allows you to build a
very powerful multitab document without much work.

Scrolling down the page, you see even more interesting tools. Figure 4-2
shows some of these widgets in action.

Figure 4-2:
Even more
exciting
widgets.

These widgets demonstrate even more of the power of the jQuery UI library:

 ✦ Progress bar: It’s always best to design your code so that little delay
exists, but if part of your program is taking some time, a progress bar is
a great reminder that something is happening.

What the jQuery User Interface Brings to the Table822

 ✦ Dialog: The open dialog button pops up what appears to be a dialog
box. It acts much like the JavaScript alert, but it’s much nicer looking,
and it has features that make it much more advanced. In Figure 4-2, the
dialog box has a clever title: Dialog Title.

 ✦ Formatting tools: The jQuery UI includes special tools for setting apart
certain parts of your page as warnings, as highlighted text, or with
added shadows and transparency. If you look carefully at Figure 4-2,
you’ll see several examples of special formatting, including the red alert
box, drop shadows, and the UI-highlight style.

 ✦ Icons: jQuery UI ships with a large collection of icons that you can use
on your page. Hover over each of the icons on the themeRoller to see a
description of the icon. These can be easily used to allow various user
interactions.

 This is just a quick preview of the visual elements. Read more about how to
implement the various elements in Chapter 5 of this minibook after you
understand the basics of how to install and work with jQuery UI in this
 chapter.

Look at the left column on the themeRoller page. If you click the gallery
tab (yep, it’s using a jQuery UI tab interface), you can see a list of prebuilt
themes. Figure 4-3 shows the themeRoller page with an entirely different
theme in place.

Figure 4-3:
Now
themeRoller
is using
the Le Frog
theme.

Book VII
Chapter 4

Using the jQuery
User Interface

Toolkit
What the jQuery User Interface Brings to the Table 823

The built-in themes are pretty impressive, but of course, you can make your
own. Although you’re always free to edit the CSS manually, the whole point
of the themeRoller application is to make this process easier.

If you go back to the Roll Your Own tab, you can see an accordion selection
that you can use to pick various theme options. You can change fonts, add
rounded corners, pick various color schemes, and much more. You can mess
around with these options all you want and create your own visual style. You
can then save that theme and use it in your own projects.

The themes and widgets are obvious features of the jQuery user interface
library, but they aren’t the only features. In addition to these more visible
tools, jQuery UI adds a number of new behaviors to jQuery nodes. These
new behaviors (drag and drop, resize, and more) are used to add functional-
ity to a web page, which is quite difficult to achieve in more traditional
programming.

Wanna drag? Making components draggable
The basic idea of this program is completely consistent with the jQuery
concepts described in Chapters 2 and 3 of this minibook. The page has very
simple HTML code. An initialization function creates a special jQuery node
and gives it functionality. That’s all there is to it.

Your first building example is a simple application that allows the user to
pick up a page element and move it with the mouse. While you do this with
JavaScript and DOM in Book IV, Chapter 7, you’ll find it’s quite easy to get
the same effect with jQuery UI. Figure 4-4 shows this page in action.

This example is a good starting place because it’s pretty easy. Often, the
hardest part of jQuery UI applications is attaching to the library. After that’s
done (and it’s not that hard), the rest of the programming is ridiculously
easy. Take a look at the code, and you can see what I’m talking about:

themeRoller is a great example for a number of
reasons. It offers a pretty good overview of the
jQuery UI library, but it’s also a great example
of where the web is going. It’s not really a web
page as much as an application that happens
to be written in web technologies. Notice that
the functionality of the page (the ability to
change styles dynamically) uses many jQuery
and jQuery UI tricks: tabs, accordions, dialog

boxes, and so on. This kind of programming
is almost certainly the direction web devel-
opment is heading, and may indeed be the
primary form of application in the future.
Certainly it appears that applications using this
style of user interface and AJAX for data com-
munication and storage are going to be impor-
tant for some time to come.

The themeRoller example

What the jQuery User Interface Brings to the Table824

<!DOCTYPE html>
<html lang = "en">

<head>
 <title>drag.html</title>
 <meta charset= "UTF-8" />
 <style type = "text/css">
 #dragMe {
 width: 100px;
 height: 100px;
 border: 1px solid blue;
 text-align: center;
 }
 </style>
 <script type = "text/javascript"
 src = "js/jquery-1.9.1.js"></script>
 <script type = "text/javascript"
 src = "js/jquery-ui-1.10.3.custom.min.js"></script>
 <script type = "text/javascript">
 $(init);
 function init(){
 $("#dragMe").draggable();
 }
 </script>
</head>
<body>
 <h1>Drag Demo</h1>
 <div id = "dragMe">
 Drag me
 </div>
</body>
</html>

Downloading the library
 Writing jQuery UI code isn’t difficult, but getting the right parts of the library can

be a bit confusing. The jQuery UI library is much larger than the standard jQuery
package, so you may not want to include the entire thing if you don’t need it.

Figure 4-4:
The user
can simply
drag the box
anywhere
on the page.

Book VII
Chapter 4

Using the jQuery
User Interface

Toolkit
What the jQuery User Interface Brings to the Table 825

 Previous versions of jQuery UI allowed you to download the entire package
but stored each of the various elements in a separate JavaScript file. It was
common to have a half-dozen different script tags active just to get the
various elements in place. Worse, some dependency issues existed, so you
needed to make sure that you had certain packages installed before you used
other packages. This made a simple library quite complex to actually use.

Fortunately, the latest versions of the jQuery UI make this process quite a bit
simpler:

 1. Pick (or create) your theme.

 Use the themeRoller site to pick a starting place from the template
library. You can then customize your theme exactly to make whatever
you want (changing colors, fonts, and other elements).

 2. Download the theme.

 The themeRoller has a download button. Click this when you’re ready to
download your theme.

 3. Pick the elements you want.

 When you’re first starting on a project, you’ll probably pick all the
 elements. If you find that the page is loading too slowly, you might build
a smaller version that contains only those elements you need. For now,
pick everything.

 4. Download the file.

 After you’ve chosen the elements you want, you can download them in a
zip file.

 5. Install the contents of the zip file to your working directory.

 The zip file contains a number of files and directories. Copy the css and
js directories into the directory where your web pages will be (often
the public_html or htdocs directory). You do not need to copy the
development-bundle directory or the index.html page.

 6. If you install multiple themes, copy only the theme information from
additional themes.

 All themes use the same JavaScript. Only the CSS (and related image
files) changes. If you want to have multiple themes in your project,
simply copy the CSS contents. Each theme will be a different subdirec-
tory of the main CSS directory.

 7. Link to the CSS files.

 Use the standard link technique to link to the CSS files created by jQuery
UI. You can also link to your own CSS files or use internal CSS in addition
to the custom CSS. Be sure that you get the path right. Normally, the path
looks something like css/themeName/jquery-ui-1.8.1.custom.
css. (Note I’m not linking to the CSS in this first example. The CSS is
explained in the upcoming section called “Resizing on a Theme.”

What the jQuery User Interface Brings to the Table826

 8. Link to the JavaScript files.

 The jQuery UI toolkit also installs two JavaScript files: the standard
jQuery library and the jQuery UI library. By default, both of these files
are installed in the js directory. You’ll need to link to both files. One
will be called something like jquery-1.9.1.js and the other will be called
something like jquery-ui-1.10.3.custom.min.js. Sometimes you will see
minimized files alongside ordinary versions. The minimized version will
have the term min embedded. Either version is fine, but the minimized
version will load faster.

 If something isn’t working right, check your file paths again. Almost always,
when the jQuery UI stuff isn’t working right, it’s because you haven’t linked
to all the right files. Also, note that the CSS files created by jQuery UI also
include images. Make sure that your theme has an associated images
 directory, or your project may not work correctly. If you copied the entire
CSS and JS directories from the download, you should be fine.

Writing the program
Here’s how you go about putting the program together:

 1. Create a basic HTML document.

 The standard document doesn’t have to be anything special. I created
one div with the ID dragMe. That’s the div I want to make draggable
(but of course you can apply dragging functionality to anything you can
select with jQuery).

 2. Add the standard jQuery library.

 The first script tag imports the standard jQuery library. The UI library
requires jQuery to be loaded first.

 3. Add a link to the jQuery UI library.

 A second script tag imports the jQuery UI library. (See the follow-
ing section on downloading and installing jQuery for details on how to
obtain this library.)

 4. Create an initialization function.

 Use the standard jQuery techniques to build an initialization function for
your page (as usual, I call mine init()).

 5. Build a draggable node.

 Use standard jQuery selection techniques to isolate the element(s) you
want to make draggable. Use the draggable() method to make the ele-
ment draggable.

 6. Test your application.

 Believe it or not, that’s all there is to it. As long as everything’s set up
properly, your element will be draggable! The user can drag it with the
mouse and place it anywhere on the screen.

Book VII
Chapter 4

Using the jQuery
User Interface

Toolkit
Resizing on a Theme 827

 If you’re really paying attention, you might notice that the jQuery version
that came with the UI is slightly older than the 10.2 version I used in the
 previous chapter. Really, it’s not a big deal because the differences are minor.
For UI examples, I go with the version of jQuery bundled with the UI library
because I know they’re tested to work together.

Resizing on a Theme
The next example demonstrates two important ideas in the jQuery UI
 package:

 ✦ It shows an element that is resizable. The user can drag on the bottom
or right border to change the size of the element. Making an element
resizable is very similar to making it draggable.

 ✦ It shows the use of a theme. Take a look at Figure 4-5 to see what’s
going on.

Figure 4-5:
The size of
this lovely
element can
be changed
by the user.

You can see from Figure 4-5 that the page has a definite visual style. The
elements have distinctive fonts and backgrounds, and the headers are in a
particular visual style. Although there’s nothing earth-shattering about this
(after all, it’s just CSS), the exciting thing is that these styles are defined
by the theme. The theme can easily be changed to another theme (created
by hand or via themeRoller), and the visual look of all these elements will
reflect the new theme.

 Themes provide a further level of abstraction to your websites that make
changing the overall visual style much easier.

Resizing on a Theme828

Figure 4-6 shows the page after the resize me element has changed sizes,
and you can see that the rest of the page reformats itself to fit the newly
resized element.

Figure 4-6:
When the
element
is resized,
the rest of
the page
adjusts.

The following code reveals that most of the interesting stuff is really CSS
coding, and the resizing is really just more jQuery UI magic:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta http-equiv="content-type" content="text/xml; charset=utf-8" />
 <link rel = "stylesheet"
 type = "text/css"
 href = "css/ui-lightness/jquery-ui-1.10.3.custom.css" />
 <style type = "text/css">
 h1 {
 text-align: center;
 }
 #resizeMe {
 width: 300px;
 height: 300px;
 text-align: center;
 }
 #sample {
 width: 200px;
 height: 200px;
 margin: 1em;
 }
 </style>
 <script type = "text/javascript"
 src = "js/jquery-1.9.1.js"></script>
 <script type = "text/javascript"
 src = "js/jquery-ui-1.10.3.custom.min.js"></script>
 <script type = "text/javascript">

Book VII
Chapter 4

Using the jQuery
User Interface

Toolkit
Resizing on a Theme 829

 $(init);

 function init(){
 $("#resizeMe").resizable();
 themify();
 } // end init

 function themify(){
 //add theme-based CSS to the elements
 $("div").addClass("ui-widget")
 .addClass("ui-widget-content")
 .addClass("ui-corner-all");
 $(":header").addClass("ui-widget-header")
 .addClass("ui-corner-all");
 $("#resizeMe").append('');
 }
 </script>
 <title>resize.htm</title>
</head>
<body>
 <h1>Resize Demo</h1>
 <div id = "resizeMe">
 <h2>Resize me</h2>
 <p>
 Drag the right or bottom to resize.
 </p>
 </div>
 <div id = "sample">
 <h2>Sample Widget</h2>
 <p>
 This is made to look like a widget
 with the theme css code.
 </p>
 </div>
</body>
</html>

Examining the HTML and standard CSS
As usual, the HTML is the foundation of the entire page. It’s very clean as
usual, and it shows the general structure of the page. The HTML consists of
only three primary elements: a heading and two divs. Each div contains its
own level-two heading and a paragraph. The divs are given IDs to make them
easier to style.

I also included a basic CSS section to handle the general layout of the page. I
wanted the widgets to have specified beginning sizes, so I used ordinary CSS
to get this effect.

Importing the files
jQuery applications require importation of JavaScript code libraries. In this
application (and most jQuery UI applications), I import three files:

 ✦ The main jQuery library: This file is the essential jQuery base library.
It is imported as described in Chapter 2 of this minibook, as an ordinary
JavaScript file.

Resizing on a Theme830

 ✦ The jQuery UI library: This file is also a standard JavaScript library.
Earlier in this chapter, I describe how to obtain a custom version of this
file.

 ✦ The theme CSS file: When you create a theme with themeRoller, you are
provided with a CSS file. This file is your theme. Because this is a CSS file
rather than JavaScript code, use the link tag to attach it to your page.

 Not all jQuery UI examples require a theme, but most do. As you see in the
following example, themes provide some other really great effects too, so it’s
worth it to include a theme CSS file whenever you want to use jQuery UI.

Making a resizable element
Surprisingly, the easiest part of the project is making the resizable
e lement have the resizable behavior. It’s a pretty standard jQuery UI trick:

 $(init);
 function init(){
 $("#resizeMe").resizable();
 themify();
 } // end init

 1. Begin with an initialization function.

 Like all good jQuery code, this example begins with standard
initialization.

 2. Make an element resizable.

 Identify the resizeMe div as a jQuery node, and use the resizable()
method to make it resizable. That’s all there is to it.

 3. Call a second function to add theming to the elements.

 Although the resizable() method doesn’t require use of jQuery
themes, the themes do improve the look of the element.

Adding themes to your elements
The jQuery theme tool makes it quite easy to decorate your elements
through CSS. The great thing about jQuery themes is that they are semantic;
that is, you specify the general purpose of the element and then let the
theme apply the appropriate specific CSS. You can use the themeRoller
application to easily create new themes or modify existing ones. In this way,
you can create a sophisticated look and feel for your site and write very little
CSS on your own. It’s a very powerful mechanism.

Many of the jQuery interface elements (such as the accordion and tab tools
described elsewhere in this chapter) automatically use the current CSS
theme. Of course, you can also apply them to any of your own elements to
get a consistent look.

Book VII
Chapter 4

Using the jQuery
User Interface

Toolkit
Resizing on a Theme 831

 Themes are simply CSS classes. To apply a CSS theme to an element, you can
just add a special class to the object.

For example, you can make a paragraph look like the current definition of
the ui-widget by adding this code to it:

<div class = "ui-widget">
My div now looks like a widget
</div>

Of course, adding classes into the HTML violates one of the principles of
semantic design (that is, separating the content from the layout), so it’s
better (and more efficient) to do the work in JavaScript with jQuery:

 function themify(){
 //add theme-based CSS to the elements
 $("div").addClass("ui-widget")
 .addClass("ui-widget-content")
 .addClass("ui-corner-all");
 $(":header").addClass("ui-widget-header")
 .addClass("ui-corner-all");
 $("#resizeMe")
 .append('');
 }

The themify() function adds all the themes to the elements on my page,
applying the pretty jQuery theme to it. I use jQuery tricks to simplify the
process:

 1. Identify all divs with jQuery.

 I want all the divs on my page to be styled like widgets, so I use jQuery
to identify all div elements.

 2. Add the ui-widget class to all divs.

 This class is defined in the theme. All jQuery themes have this class
defined, but the specifics (colors, font sizes, and so on) vary by theme.
In this way, you can swap out a theme to change the appearance, and the
code still works. The ui-widget class defines an element as a widget.

 3. Add ui-widget-content as well.

 The divs need to have two classes attached, so I use chaining to specify
that divs should also be members of the ui-widget-content class.
This class indicates that the contents of the widget (and not just the
class itself) should be styled.

 4. Specify rounded corners.

 Rounded corners have become a standard of the Web 2.0 visual design.
This effect is extremely easy to achieve with jQuery — just add the ui-
corner-all class to any element you want to have rounded corners.

 Rounded corners use CSS3, which is not yet supported by all browsers.
Your page will not show rounded corners in older browsers, but the
page will still work fine otherwise.

Resizing on a Theme832

 5. Make all headlines conform to the widget-header style.

 The jQuery themes include a nice headline style. You can easily make
all heading tags (H1 to H6) follow this theme. Use the :header filter to
identify all headings, and apply the ui-widget-header and ui-
corner-all classes to these headers.

The jQuery UI package supports a number of interesting classes, which are
described in Table 4-1.

Table 4-1 CSS Classes Defined by jQuery UI
Class Used On Description

ui-widget Outer container of
widget

Makes element look like a
widget.

ui-widget-header Heading element Applies distinctive heading
appearance.

ui-widget-content Widget Applies widget content style
to element and children.

ui-state-default Clickable elements Displays standard
(unclicked) state.

ui-state-hover Clickable elements Displays hover state.

ui-state-focus Clickable elements Displays focus state when
element has keyboard focus.

ui-state-active Clickable elements Displays active state
when mouse is clicked on
 element.

ui-state-highlight Any widget or
e lement

Specifies that an element is
currently highlighted.

ui-state-error Any widget or
 element

Specifies that an element
contains an error or warning
message.

ui-state-error text Text element Allows error highlighting
without changing other
elements (mainly used in
form validation).

ui-state-disabled Any widget or
 element

Demonstrates that a widget
is currently disabled.

ui-corner-all,
ui-corner-tl (etc)

Any widget or
 element

Adds current corner size to
an element. Specify specific
corners with tl, tr, bl, br, top,
bottom, left, right.

ui-widget-shadow Any widget Applies shadow effect to a
widget.

Book VII
Chapter 4

Using the jQuery
User Interface

Toolkit
Resizing on a Theme 833

A few other classes are defined in UI themes, but these are the most commonly
used. Refer to the current jQuery UI documentation for more details.

Adding an icon
Note the small start that appears inside the resizeMe element in Figure 4-6.
This element is an example of a jQuery UI icon. All jQuery themes support
a standard set of icons, which are small (16px square) images. The icon set
includes standard icons for arrows as well as images commonly used in
menus and toolbars (save and load, new file, and so on). Some jQuery UI
 elements use icons automatically, but you can also add them directly. To use
an icon in your programs, follow these steps:

 1. Include a jQuery UI theme.

 The icons are part of the theme package. Include the CSS style sheet that
corresponds with the theme (as you’ve already done in this example).

 2. Be sure that the images are accessible.

 When you download a theme package, it includes a directory of images.
The images included in this directory are used to create custom back-
grounds as well as icons. The CSS file expects a directory called images
to be in the same directory as the CSS. This directory should contain
several images that begin with ui-icons. These images contain all the
necessary icons. If the icon image files are not available, the icons will
not display. (Of course, you can edit these images in your graphics tool
to customize them if you want.)

 3. Create a span where you want the icon to appear.

 Place an empty span element wherever you want the icon to appear
in the HTML. You can place the span directly in the HTML if you want,
or you can add it through jQuery. I prefer to add UI elements through
jQuery to keep the HTML as pristine as possible.

 4. Attach the ui-icon class to the span.

 This tells jQuery to treat the span as an icon. The contents of the span
will be hidden, and the span will be resized to hold a 16-pixel square
icon image.

 5. Attach a second class to identify the specific icon.

 Look at the themeRoller page to see the available icons. When you hover
over an icon on this page, you can see the class name associated with
the icon.

You can add the code directly in your HTML like this:

<p id = "myPara">
 This is my text

</p>

Dragging, Dropping, and Calling Back834

Or, you can use jQuery to add the appropriate code to your element:

$("#myPara").append('');

Dragging, Dropping, and Calling Back
jQuery elements look good, but they also have interesting functionality. Most
jQuery UI objects have the ability to respond to specialized events. As an
example, look over the dragDrop.html page shown in Figure 4-7.

Figure 4-7:
The page
has a group
of draggable
elements
and a target.

When you drop an element onto the target, the color and content of the
target change, as shown in Figure 4-8.

Another interesting aspect of this program is the inclusion of several
 draggable elements. This program demonstrates how jQuery simplifies
working with a number of elements.

Take a look at the entire program before you see the smaller segments:

<!DOCTYPE html>
<html lang = "en">

<head>
 <title>dragDrop.html</title>
 <meta charset = "utf-8" />
 <link rel = "stylesheet"
 type = "text/css"
 href = "css/ui-lightness/jquery-ui-1.10.3.custom.css" />
 <style type = "text/css">
 .dragMe {

Book VII
Chapter 4

Using the jQuery
User Interface

Toolkit
Dragging, Dropping, and Calling Back 835

 width: 100px;
 height: 100px;
 border: 1px solid blue;
 text-align: center;
 background-color: white;
 position: absolute;
 z-index: 100;
 }
 #target {
 width: 200px;
 height: 200px;
 border: 1px solid red;
 text-align: center;
 position: absolute;
 left: 300px;
 top: 100px;
 z-index: 0;
 }
 </style>
 <script type = "text/javascript"
 src = "js/jquery-1.9.1.js"></script>
 <script type = "text/javascript"
 src = "js/jquery-ui-1.10.3.custom.min.js"></script>
 <script type = "text/javascript">
 $(init);

 function init(){
 // make some clones of dragMe
 cloneDragMe();
 //make all drag me elements draggable
 $(".dragMe").draggable();
 //set target as droppable
 $("#target").droppable();
 //bind events to target
 $("#target").bind("drop", changeTarget);
 $("#target").bind("dropout", resetTarget);
 } // end init

Figure 4-8:
The target
knows when
something
has been
dropped
onto it.

Dragging, Dropping, and Calling Back836

 function cloneDragMe(){
 for (i = 1; i <= 4; i++){
 zValue = (101 + i) + "";
 yPos = 100 + (i * 20) + "px";
 $("div:first").clone()
 .insertAfter("div:last")
 .css("top", yPos)
 .css("zIndex", zValue)
 .append(" #" + i);
 } // end for loop
 } // end cloneDragMe

 function changeTarget(event, ui)
 $("#target").addClass("ui-state-highlight")
 .html("Dropped ")
 .append(ui.draggable.text());
 } // end changeTarget

 function resetTarget(event, ui){
 $("#target").removeClass("ui-state-highlight")
 .html("Drop on me");
 } // end reset
 </script>
</head>
<body>
 <h1>Drag and Drop Demo</h1>
 <div class = "dragMe">
 Drag me
 </div>
 <div id = "target">
 Drop on me
 </div>
</body>
</html>

Building the basic page
As typical with jQuery, the HTML code is simple. It’s very striking that you
only see a single dragMe element. It turns out to be simpler to build a single
element in HTML and use jQuery and JavaScript to make as many copies as
you need. You also see a single target element. I added basic CSS to make
the element easy to see (borders) and set them as absolute positioned so
that I could control the initial position.

Note that I attached an ID to target (because there will be a single target
on the page) and made dragMe a class (because I want to be able to have
 several draggable elements on the page).

Initializing the page
The initialization is a bit more elaborate than some of the earlier examples
in this chapter, but it still isn’t too difficult to follow. The main addition is the
ability to respond to some specialty events:

 $(init);

 function init(){
 // make some clones of dragMe

Book VII
Chapter 4

Using the jQuery
User Interface

Toolkit
Dragging, Dropping, and Calling Back 837

 cloneDragMe();

 //make all drag me elements draggable
 $(".dragMe").draggable();

 //set target as droppable
 $("#target").droppable();

 //bind events to target
 $("#target").bind("drop", changeTarget);
 $("#target").bind("dropout", resetTarget);

 } // end init

The steps here aren’t hard to follow:

 1. Make copies of the dragme element.

 This part isn’t critical (in fact, I added it after testing with a single
 element). However, if you want to have multiple copies of the draggable
element, use a method to encapsulate the process.

 2. Make all dragme elements draggable.

 Use the jQuery draggable() method on all elements with the dragMe
class.

 3. Establish the target as a droppable element.

 The droppable() method sets up an element so that it can receive
events when a draggable element is dropped on it. Note that making
something droppable doesn’t have any particular effect on its own. The
interesting thing comes when you bind events to the element.

 4. Bind a drop event to the target.

 Droppable elements can have events attached to them just like any
jQuery object. However, the mechanism for attaching an event to a user
interface object is a little bit different than the standard jQuery event
mechanism (which involves a custom function for each event). Use the
bind() method to specify a function to be called when a particular
event occurs. When the user drops a node that has been made drag-
gable onto the target element, this triggers the drop event, so call the
changeTarget() function.

 5. Bind a dropout event to the target as well.

 You can bind another event to occur when the user removes all draggable
elements from the target. This event is called dropout, and I’ve told the
program to call the resetTarget() function when this event is triggered.

 You often see programmers using shortcuts for this process. Sometimes, the
functions are defined anonymously in the bind call, or sometimes the event
functions are attached as a JSON object directly in the droppable()
method assignment. Feel free to use these techniques if you are comfortable
with them. I’ve chosen the technique used here because I think it is the
clearest model to understand.

Dragging, Dropping, and Calling Back838

Handling the drop
When the user drags a dragMe element and drops it on the target, the tar-
get’s background color changes and the program reports the text of the ele-
ment that was dragged. The code is easy:

 function changeTarget(event, ui){
 $("#target").addClass("ui-state-highlight")
 .html("Dropped ")
 .append(ui.draggable.text());
 } // end changeTarget

Here’s how to put this together:

 1. Create a function to correspond to the drop event.

 The drop event is bound to a function called changeTarget, so I need
to create such a function.

 2. Include two parameters.

 Bound event functions require two parameters. The first is an object
that encapsulates the event (much like the one in regular DOM program-
ming) and a second element called ui, which encapsulates information
about the user interface. You can use the ui object to determine which
draggable element was dropped onto the target.

 3. Highlight the target.

 It’s a good idea to signal that the target’s state has changed. You can
change the CSS directly (with jQuery) or use jQuery theming to apply a
predefined highlight class. I chose to use the jQuery theme technique to
simply add the ui-state-highlight class to the target object.

 4. Change the text to indicate the new status.

 Normally you should do something to indicate what was dropped. (If it’s
a shopping application, you should add the element to an array so that
you can remember what the user wants to purchase, for example.) In
this example, I simply change the text of the target to indicate that the
element has been dropped.

 5. Use ui.draggable to get access to the element that was dropped.

 The ui object contains information about the user interface. ui.drag-
gable is a link to the draggable element that triggered the current func-
tion. It’s a jQuery element, so you can use whatever jQuery methods you
want on it. In this case, I extract the text from the draggable element and
append it to the end of the target’s text.

Beauty school dropout events
Another function is used to handle the dropout condition, which occurs
when draggable elements are no longer dropped on the target. I bind the
resetTarget() function to this event:

Book VII
Chapter 4

Using the jQuery
User Interface

Toolkit
Dragging, Dropping, and Calling Back 839

 function resetTarget(event, ui){
 $("#target").removeClass("ui-state-highlight")
 .html("Drop on me");
 } // end reset

All you have to do is this:

 1. Remove the highlight class from the target.

 One great thing about using the theme classes is how easy they are to
remove. Remove the highlight class, and the target reverts to its original
appearance.

 2. Reset the HTML text.

 Now that the target is empty, reset its HTML so that it prompts the user
to drop a new element.

Cloning the elements
You can simply run the program as it is (with a single copy of the dragMe
class), but more often, drag and drop is used with a number of elements. For
example, you might allow users to drag various icons from your catalog to a
shopping cart.

The basic jQuery library provides all the functionality necessary to make
as many copies of an element as you want. Copying an element is a simple
matter of using the jQuery clone() method.

The more elaborate code is used to ensure that the various elements display
properly:

 function cloneDragMe(){
 for (i = 1; i <=4; i++){
 zValue = (101 + i) + "";
 yPos = 100 + (i * 20) + "px";

 $("div:first").clone()
 .insertAfter("div:first")
 .css("top", yPos)
 .css("zIndex", zValue)
 .append(" #" + i);
 } // end for loop
 } // end cloneDragMe

Here are the steps:

 1. Create a for loop.

 Anytime you’re doing something repetitive, a for loop is a likely tool. In
this case, I want to make four clones numbered 1 through 4, so I have a
variable named i that can vary from 1 to 4.

Dragging, Dropping, and Calling Back840

 2. Create a zValue for the element.

 The CSS zIndex property is used to indicate the overlapping of ele-
ments. Higher values appear to be closer to the user. I give each element
a zOrder of over 100 to ensure that it appears over the target. (If you
don’t specify the zIndex, dragged elements might go under the target
and become invisible.) The zValue variable is mapped to the zIndex.

 3. Determine the y position of the element.

 I want each successive copy of the dragMe element to be a bit lower
than the previous one. Multiplying i by 20 ensures that each element is
separated from the previous one by 20 pixels. Add 100 pixels to move
the new stack of elements near the original.

 4. Make a clone of the first element.

 Use the clone() method to make a clone of the first div. (Use
the : first filter to specify which div you want to copy.)

 5. Remember to insert the newly cloned element.

 The cloned element exists only in memory until it is somehow added to
the page. I chose to add the element right after the first element.

 6. Set the top of the element with the yPos variable.

 Use the yPos variable you calculated earlier to set the vertical position
of the newly minted element. Use the css() method to apply the yPos
variable to the element’s left CSS rule.

 7. Set the zIndex.

 Like the y position, the zValue variable you created is mapped to a CSS
value. In this case, zValue is mapped to the zIndex property.

 8. Add the index to the element’s text.

 Use the append() method to add the value of i to the element’s HTML.
This way you can tell which element is which.

Chapter 5: Improving Usability
with jQuery

In This Chapter
✓ Working with scroll bars

✓ Building a sorting mechanism

✓ Managing selectable items

✓ Using the dialog box tool

✓ Creating an accordion page

✓ Building a tab-based interface

T
he jQuery UI adds some really great capabilities to your web pages.
Some of the most interesting tools are widgets, which are user interface

elements not supplied in standard HTML. Some of these elements supple-
ment HTML by providing easier input options. For example, it can be
quite difficult to get the user to enter a date in a predictable manner. The
datepicker widget provides an easy-to-use calendar for picking dates. The
 interface is easy for the programmer to add and makes it hard for the user
to enter the date incorrectly. Another important class of tools provided
by the jQuery UI helps manage complex pages by hiding content until it is
needed.

Multi-Element Designs
Handling page complexity has been a constant issue in web development.
As a page gets longer and more complex, navigating the page becomes more
difficult. The early versions of HTML had few solutions to this problem. The
use of frames was popular for a time because it allows the programmer to
place navigation information in one frame and content in another. However,
frames added additional usability problems and have fallen from favor.
Dynamic HTML and AJAX seem like perfect replacement technologies, but
they can be difficult to implement, especially in a reliable cross-browser
manner.

The jQuery UI provides two incredible tools for managing larger pages:

 ✦ The accordion tool allows you to create a large page but display only
smaller parts of it at a time.

Multi-Element Designs842

 ✦ The tabs tool allows you to easily turn a large page into a page with a tab
menu.

These tools are incredibly easy to use, and they add tremendously to
your page development options. Both of these tools automate and
simplify the DOM and AJAX work it takes to build a large page with
dynamic content.

Playing the accordion widget
Some of the most powerful jQuery tools are actually the easiest to use.
The accordion widget has become an extremely popular part of the
jQuery UI toolset. Take a look at accordion.html in Figure 5-1 to see how it
works.

Figure 5-1:
This page
shows
the first
minibook
outline of
a familiar-
sounding
book.

When you look at Figure 5-1, you see headings for the first three minibooks
of this book. The details for the first minibook are available, but the other
books’ details are hidden. If you click the heading for Book II, Book I is
 minimized and Book II is now expanded, as you can see Figure 5-2.

This marvelous effect allows the user to focus on a particular part of a larger
context while seeing the overall outline. It’s called an accordion because the
various pieces expand and contract to allow the user to focus on a part
 without losing place of its position in the whole. Collapsible content has
become an important usability tool made popular by the system bar in Mac
OS and other popular usability tools.

Book VII
Chapter 5

Im
proving Usability

w
ith jQuery

Multi-Element Designs 843

The accordion effect is strikingly easy to achieve with jQuery:

<!DOCTYPE html>
<html lang = "en-US">
<head>

 <title>accordion.html</title>
 <meta charset = "UTF-8" />
 <link rel = "stylesheet"
 type = "text/css"
 href = "css/ui-lightness/jquery-ui-1.10.3.custom.css" />
 <script type = "text/javascript"
 src = "js/jquery-1.9.1.js"></script>
 <script type = "text/javascript"
 src = "js/jquery-ui-1.10.3.custom.min.js"></script>
 <script type = "text/javascript">

 $(init);
 function init(){
 $("#accordion").accordion();
 }
 </script>
</head>
<body>
<h1>Accordion Demo</h1>
<div id = "accordion">
 <h2>Book I - Creating the HTML Foundation</h2>

 Sound HTML Foundations
 It's All About Validation
 Choosing your Tools
 Managing Information with Lists and Tables
 Making Connections with Links
 Adding Images
 Creating forms

Figure 5-2:
Book I is
minimized,
and Book
II is now
expanded.

 ✦ The tabs tool allows you to easily turn a large page into a page with a tab
menu.

These tools are incredibly easy to use, and they add tremendously to
your page development options. Both of these tools automate and
simplify the DOM and AJAX work it takes to build a large page with
dynamic content.

Playing the accordion widget
Some of the most powerful jQuery tools are actually the easiest to use.
The accordion widget has become an extremely popular part of the
jQuery UI toolset. Take a look at accordion.html in Figure 5-1 to see how it
works.

Figure 5-1:
This page
shows
the first
minibook
outline of
a familiar-
sounding
book.

When you look at Figure 5-1, you see headings for the first three minibooks
of this book. The details for the first minibook are available, but the other
books’ details are hidden. If you click the heading for Book II, Book I is
 minimized and Book II is now expanded, as you can see Figure 5-2.

This marvelous effect allows the user to focus on a particular part of a larger
context while seeing the overall outline. It’s called an accordion because the
various pieces expand and contract to allow the user to focus on a part
 without losing place of its position in the whole. Collapsible content has
become an important usability tool made popular by the system bar in Mac
OS and other popular usability tools.

Multi-Element Designs844

 <h2>Book II - Styling with CSS</h2>

 Coloring Your World
 Styling Text
 Selectors, Class, and Style
 Borders and Backgrounds
 Levels of CSS

 <h2>Book III - Using Positional CSS for Layout</h2>

 Fun with the Fabulous Float
 Building Floating Page Layouts
 Styling Lists and Menus
 Using alternative Positioning

</div>
</body>
</html>

As you can see by looking over the code, it’s mainly just HTML. The effect is
really easy to accomplish:

 1. Import all the usual suspects.

 You need to import the jQuery and jQuery UI JavaScript files, and a
theme CSS file. (See Book VII, Chapter 4 if you need a refresher on this
process.) You also need to make sure that the CSS has access to the
images directory with icons and backgrounds because it will use some
of these images automatically.

 2. Build your HTML page as normal.

 Build an HTML page as you would normally do. Pay attention to the sec-
tions that you want to collapse. There should normally be a heading tag
for each element, all at the same level (Level 2 headings in my case).

 3. Create a div that contains the entire collapsible content.

 Put all the collapsible content in a single div with an ID. You’ll be turning
this div into an accordion jQuery element.

 4. Add an anchor around each heading you want to specify as
collapsible.

 Place an empty anchor tag () around each
 heading that you want to use as a collapsible heading. The # sign
 indicates that the anchor will call the same page and is used as a
 placeholder by the jQuery UI engine. You can add the anchor directly in
the HTML or through jQuery code.

 5. Create a jQuery init()function.

 Use the normal techniques to build a jQuery initializer as shown in
Chapter 3 of this minibook.

Book VII
Chapter 5

Im
proving Usability

w
ith jQuery

Multi-Element Designs 845

 6. Apply the accordion()method to the div.

 Use jQuery to identify the div that contains collapsible content and
apply accordion() to it:

 function init(){
 $("#accordion").accordion();
 }

Building a tabbed interface
Another important technique in web development is the use of a tabbed
interface. This allows the user to change the contents of a segment by select-
ing one of a series of tabs. Figure 5-3 shows an example.

In a tabbed interface, only one element is visible at a time, but the tabs are
all visible. The tabbed interface is a little more predictable than the accor-
dion because the tabs (unlike the accordion’s headings) stay in the same
place. The tabs change colors to indicate which tab is currently highlighted,
and they also change state (normally by changing color) to indicate that
they are being hovered over. When you click another tab, the main content
area of the widget is replaced with the corresponding content. Figure 5-4
shows what happens when the user clicks the Book 3 tab.

Figure 5-3:
This is
another
way to
look at that
hauntingly
familiar
table of
contents.

Multi-Element Designs846

Figure 5-4:
Clicking a
tab changes
the main
content
and the
appearance
of the tabs.

Like the accordion, the tab effect is incredibly easy to achieve. Look over the
code:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8" />
 <link rel = "stylesheet"
 type = "text/css"
 href = "css/ui-lightness/jquery-ui-1.10.3.custom.css" />
 <script type = "text/javascript"
 src = "js/jquery-1.9.1.js"></script>
 <script type = "text/javascript"
 src = "js/jquery-ui-1.10.3.custom.min.js"></script>
 <script type = "text/javascript">

 $(init);
 function init(){
 $("#tabs").tabs();
 }

 </script>
 <title>tabs.html</title>
</head>
<body>
<h1 class = "ui-state-default">Tab Demo</h1>
<div id = "tabs">

 Book 1
 Book 2
 Book 3

 <div id = "book1">
 <h2>Book I - Creating the HTML Foundation</h2>

 Sound HTML Foundations
 It's All About Validation
 Choosing your Tools

Book VII
Chapter 5

Im
proving Usability

w
ith jQuery

Multi-Element Designs 847

 Managing Information with Lists and Tables
 Making Connections with Links
 Adding Images
 Creating forms

 </div>
 <div id = "book2">
 <h2>Book II - Styling with CSS</h2>

 Coloring Your World
 Styling Text
 Selectors, Class, and Style
 Borders and Backgrounds
 Levels of CSS

 </div>
 <div id = "book3">
 <h2>Book III - Using Positional CSS for Layout</h2>y<line><![CDATA[
 Fun with the Fabulous Float
 Building Floating Page Layouts
 Styling Lists and Menus
 Using alternative Positioning

 </div>
</div>
</body>
</html>

The mechanism for building a tab-based interface is very similar to the one
for accordions:

 1. Add all the appropriate files.

 Like most jQuery UI effects, you need jQuery, jQuery UI, and a theme
CSS file. You also need access to the images directory for the theme’s
background graphics.

 2. Build HTML as normal.

 If you’re building a well-organized web page anyway, you’re already
pretty close.

 3. Build a div that contains all the tabbed data.

 This is the element that you’ll be doing the jQuery magic on.

 4. Place main content areas in named divs.

 Each piece of content that will be displayed as a page should be placed
in a div with a descriptive ID. Each of these divs should be placed in the
tab div. (See my code for organization if you’re confused.)

 5. Add a list of local links to the content.

 Build a menu of links. Place this at the top of the tabbed div. Each link
should be a local link to one of the divs. For example, my index looks like
this:

 Book 1
 Book 2
 Book 3

Multi-Element Designs848

 6. Build an init()function as usual.

 Use the normal jQuery techniques.

 7. Call the tabs()method on the main div.

 Incredibly, one line of jQuery code does all the work.

Using tabs with AJAX
You have an even easier way to work with the jQuery tab interface. Rather
than placing all your code in a single file, place the HTML code for each
panel in a separate HTML file. You can then use a simplified form of the tab
mechanism to automatically import the various code snippets through AJAX
calls. Look at the AJAXtabs.html code for an example:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8" />
 <link rel = "stylesheet"
 type = "text/css"
 href = "css/ui-lightness/jquery-ui-1.10.3.custom.css" />
 <script type = "text/javascript"
 src = "js/jquery-1.9.1.js"></script>
 <script type = "text/javascript"
 src = "js/jquery-ui-1.10.3.custom.min.js"></script>
 <script type = "text/javascript">

 $(init);
 function init(){
 $("#tabs").tabs();
 }
 //
 </script>
 <title>AJAXtabs.html</title>
</head>
<body>
 <h1>AJAX tabs</h1>
 <div id = "tabs">

 Book 1
 Book 2
 Book 3

 </div>
</body>
</html>

Note: I didn’t provide a screen shot for the AJAXtabs.html page because it
looks exactly like tabs.html, shown in Figure 5-4.

This version of the code doesn’t contain any of the actual content! Instead,
jQuery builds the tab structure and then uses the links to make AJAX
requests to load the content. As a default, it finds the content specified by

Book VII
Chapter 5

Im
proving Usability

w
ith jQuery

Improving Usability 849

the first tab (chap1.html) and loads it into the display area. Here’s what
book1.html contains:

 <h2>Book I - Creating the HTML Foundation</h2>

 Sound HTML Foundations
 It's All About Validation
 Choosing your Tools
 Managing Information with Lists and Tables
 Making Connections with Links
 Adding Images
 Creating forms

As you can see, book1.html is simply a code snippet. It doesn’t need all the
complete trappings of a web page (like the doctype or header) because it’s
meant to be pulled in as part of a larger page. The AJAX trick is a marvelous
technique because it allows you to build a modular system quite easily. You
can build these code pages separately and include them easily into a larger
page. This is a good foundation for a content-management system.

Improving Usability
Although the UI widgets are good-looking and fun, another important aspect
is how they can improve usability. Web pages are often used to get informa-
tion from users. Certain kinds of information can be very difficult for the
user to enter correctly. The jQuery UI elements include a number of tools
to help you with this specific problem. The UItools.html page, shown in
Figure 5-5, illustrates some of these techniques.

Figure 5-5:
The UItools
page uses
a tabbed
interface to
demonstrate
many input
tools.

Improving Usability850

A lot is going on in this page, but the tabbed interface really cleans it up and
lets the user concentrate on one idea at a time. Using the tabbed interface
can really simplify your user’s life.

This page is a bit long because it has a number of sections. I demonstrate
the code in chunks to make it easier to manage. Be sure to look on the web-
site for the complete code.

Here’s the main HTML code so that you can see the general structure of the
page:

 <h1>UI tools</h1>
 <div id = "tabs">

 datePicker
 slider
 selectable
 sortable
 dialog

You see a main div named tabs. This contains a list of links to the various
divs that will contain the demonstrations. I describe each of these divs in the
section that demonstrates it. The page also imports jQuery, jQuery UI, and
the theme CSS. The init() method contains most of the jQuery code:

 $(init);

 function init(){
 $("h1").addClass("ui-widget-header");

 $("#tabs").tabs();
 $("#datePicker").datepicker();

 $("#slider").slider()
 .bind("slide", reportSlider);

 $("#selectable").selectable();

 $("#sortable").sortable();

 $("#dialog").dialog();

 //initially close dialog
 $("#dialog").dialog("close");

 } // end init

The init section initializes the various components. The details of the
init() function are described in each section as they are used.

Most of these special widgets require the standard jquery link, jqueryui,
and a template to be installed. Many of the widgets use features from the
template library. Of course, you can start with a default template and tune it
up later. You just have to have a template available to see all the effects.

Book VII
Chapter 5

Im
proving Usability

w
ith jQuery

Improving Usability 851

Playing the dating game
Imagine that you’re writing a program that requires a birth date. Getting
date information from the user can be an especially messy problem because
so many variations exist. Users might use numbers for the month, month
names, or abbreviations. Some people use month/day/year, and others use
day/month/year. They may enter the year as two or four characters. (That
silly Y2K thing hasn’t really died yet. I still have the bunker in the backyard.)
Worse, it’s really hard to pick a date without a calendar in front of you.

The datepicker dialog box is one of the coolest elements in the entire
jQuery UI library. When you add datepicker() functionality to a textbox,
that textbox becomes a datepicker. When the user selects the date box, a
 calendar automatically pops up, as shown in Figure 5-6.

Figure 5-6:
The
datePicker
element
turns any
text field
into a
calendar!

The user can select a date on the calendar, and it will be placed in the text-
box in a standard format. You have no better way to get date input from the
user. Building a datepicker can’t be much easier:

 1. Begin with a jQuery UI page.

 You need jQuery, jQuery UI, and a theme to use the datepicker.

 2. Build a form with a text field.

 Any standard text input element will do. Be sure to give the element an
ID so that you can refer to it in JavaScript:

 <div id = "datePickerTab">
 <h2>date picker</h2>
 <input type = "text"
 id = "datePicker" />
 </div>

Improving Usability852

 3. Isolate the text input element with jQuery.

 Build a standard jQuery node from the input element.

 4. Add the datepicker()functionality.

 Use the datePicker() method to convert the text node into a date-
picker. This is usually done in some type of init() function. The rest is
automatic!

 $("#datePicker").datepicker();

 5. Retrieve data from the form element in the normal way.

 When the user has selected the date, it is placed in the text field
 automatically. As far as your program is concerned, the text field is still
an ordinary text field. Retrieve the data in the ordinary way.

The datepicker is a powerful tool with a large number of additional options.
Look at the jQuery UI documentation to see how to use it to select date
ranges, produce specific date formats, and much more.

Picking numbers with the slider
Numeric input is another significant usability problem. When you want users
to enter numeric information, it can be quite difficult to ensure that the data
really is a number and that it’s in the range you want. Traditional program-
mers often use sliders (sometimes called scroll bars) to simplify accepting
numeric input. Figure 5-7 shows a slider.

Figure 5-7:
The user
can choose
a number
with the
mouse using
a slider.

Book VII
Chapter 5

Im
proving Usability

w
ith jQuery

Improving Usability 853

The slider is (like many jQuery UI objects) very easy to set up. Here’s the
 relevant chunk of HTML code:

 <div id = "sliderTab">
 <h2>slider</h2>
 <div id = "slider"></div>
 <div id = "slideOutput">0</div>
 </div>

The Slider tab is a basic div. It contains two other divs:

 ✦ The slider div is actually empty. It will be replaced by the slider ele-
ment when the jQuery is activated.

 ✦ The other div (slideOutput) in this section will be used to output the
current value of the slider.

Create the slider element in the init() function with some predictable
jQuery code:

 $("#slider").slider();

The slider() method turns any jQuery element into a slider, replacing the
contents with a visual slider.

Note that you can add a JSON object as a parameter to set up the slider with
various options. See rgbSlider.html on this book’s website for an example of
sliders with customization. For more on how to access this book’s website,
see the Introduction.

You can set up a callback method to be called whenever the slider is moved.
In my example, I chained this to the code that created the slider in the first
place:

 $("#slider").slider()
 .bind("slide", reportSlider);

Use the bind() method to bind the reportSlider() function (described
next) to the slide event.

The reportSlider() function reads the slider’s value and reports it in an
output div:

 function reportSlider(){
 var sliderVal = $("#slider").slider("value");
 $("#slideOutput").html(sliderVal);
 } // end reportSlider

To read the value of a slider, identify the jQuery node and invoke its
slider() method again. This time, pass the single word value, and you get
the value of the slider. You can pass the resulting value to a variable as I did
and then do anything you want with that variable.

Improving Usability854

Selectable elements
You may have a situation where you want the user to choose from a list of ele-
ments. The selectable widget is a great way to create this functionality from
an ordinary list. The user can drag or Ctrl+click items to select them. Special
CSS classes are automatically applied to indicate that the item is being consid-
ered for selecting or selected. Figure 5-8 illustrates the selection in process.

Follow these steps to make a selectable element:

 1. Begin with an unordered list.

 Build a standard unordered list in your HTML. Give the ul an ID so that
it can be identified as a jQuery node:

 <div id = "selectableTab">
 <h2>selectable</h2>
 <ul id = "selectable">
 alpha
 beta
 gamma
 delta

 </div>

 2. Add CSS classes for selecting and selected states.

 If you want the selectable items to change appearance when the items
are being selected or have been selected, add CSS classes as shown.
Some special classes (ui-selecting and ui-selected) are pre-
defined and will be added to the elements at the appropriate times:

 <style type = "text/css">
 h1 {
 text-align: center;

Figure 5-8:
Selectable
items are
easily
chosen with
the mouse.

Book VII
Chapter 5

Im
proving Usability

w
ith jQuery

Improving Usability 855

 }

 #selectable .ui-selecting {
 background-color: gray;
 }
 #selectable .ui-selected {
 background-color: black;
 color: white;
 }
 </style>

 3. In the init()function, specify the list as a selectable node.

 Use the standard jQuery syntax: selectable().

 $("#selectable").selectable();

The ui-selected class is attached to all elements when they have been
selected. Be sure to add some kind of CSS to this class, or you won’t be able
to tell that items have been selected.

If you want to do something with all the items that have been selected, just
create a jQuery group of elements with the ui-selected class:

var selectedItems = $(".ui-selected");

Building a sortable list
Sometimes you want the user to be able to change the order of a list. This is
easily done with the sortable widget. Figure 5-9 shows the sortable list in
its default configuration. Of course you’ll probably want to indicate some-
how that the list is sortable, because this feature is not obvious to the user.

Figure 5-9:
This looks
like an
ordinary list.

Improving Usability856

The user can grab members of the list and change their order, as shown in
Figure 5-10.

Making a sortable list is really easy. Follow these steps:

 1. Build a regular list.

 Sortable elements are usually lists. The list is a regular list, but with an ID:
 <div id = "sortableTab">
 <h2>sortable</h2>
 <ul id = "sortable">
 alpha
 beta
 gamma
 delta

 </div>

 2. Turn it into a sortable node.

 Add the following code to the init() method:

 $("#sortable").sortable();

Creating a custom dialog box
JavaScript supplies a few dialog boxes (the alert and prompt dialog boxes),
but these are quite ugly and relatively inflexible. The jQuery UI includes a
technique for turning any div into a virtual dialog box. The dialog box follows
the theme and is resizable and movable. Figure 5-11 shows a dialog box.

Figure 5-10:
The user
can drag the
elements
into a
different
order.

Book VII
Chapter 5

Im
proving Usability

w
ith jQuery

Improving Usability 857

Figure 5-11:
This dialog
box is
actually a
jQuery UI
node.

 Building the dialog box is not difficult, but you need to be able to turn it on
and off with code, or it will not act like a proper dialog box (which mimics a
window in the operating system):

 1. Create the div you intend to use as a dialog box.

 Create a div and give it an ID so that you can turn it into a dialog box
node. Add the title attribute, and the title shows up in the dialog box’s
title bar.

 <div id = "dialog"
 title = "my dialog">
 <p>
 The dialog class allows you to have a movable, sizable
 customized dialog box consistent with the installed
 page theme.
 </p>
 </div>

 2. Turn the div into a dialog box.

 Use the dialog() method to turn the div into a jQuery dialog box node
in the init() function:

 $("#dialog").dialog();

 3. Hide the dialog box by default.

 Usually you don’t want the dialog box visible until some sort of event
happens. In this particular example, I don’t want the dialog box to
appear until the user clicks a button. I put some code to close the dialog
box in the init() function so that the dialog box will not appear until it
is summoned.

Improving Usability858

 4. Close the dialog box.

 To close a dialog box, refer to the dialog box node and call the
dialog() method on it again. This time, send the single value “close”
as a parameter, and the dialog box will immediately close:

 //initially close dialog
 $("#dialog").dialog("close");

 5. Clicking the X automatically closes the dialog box.

 The dialog box has a small X that looks like the Close Window icon on
most windowing systems. The user can close the dialog box by clicking
this icon.

 6. You can open and close the dialog box with code.

 My Open Dialog and Close Dialog buttons call functions that control the
behavior of the dialog box. For example, here is the function attached to
the Open Dialog button:

 function openDialog(){
 $(“#dialog").dialog(“open");
 } // end openDialog

Chapter 6: Working
with AJAX Data

In This Chapter
✓ Understanding the advantages of server-side programming

✓ Getting to know PHP

✓ Writing a form for standard PHP processing

✓ Building virtual forms with AJAX

✓ Submitting interactive AJAX requests

✓ Working with XML data

✓ Responding to JSON data

A
JAX and jQuery are incredibly useful, but perhaps the most important
use of AJAX is to serve as a conduit between the web page and pro-

grams written on the server. In this chapter, you get an overview of how pro-
gramming works on the web server and how AJAX changes the relationship
between client-side and server-side programming. You read about the main
forms of data sent from the server, and you see how to interpret this data
with jQuery and JavaScript.

Sending Requests AJAX Style
AJAX work in other parts of this book involves importing a preformat-
ted HTML file. That’s a great use of AJAX, but the really exciting aspect
of AJAX is how it tightens the relationship between the client and server.
Figure 6-1 shows a page called AJAXtest.html, which uses a JavaScript
function to call a PHP program and incorporates the results into the
same page.

Sending the data
The AJAX version of this program is interesting because it has no form.
Normally an HTML page that makes a request of a PHP document has a
form, and the form requests the PHP page. This page has no form, but a
JavaScript function creates a “virtual form” and passes this form data to a
PHP page. Normally the result of a PHP program is a completely new page,

Sending Requests AJAX Style860

but in this example the results of the PHP program are integrated directly
onto the original HTML page. Begin by looking over the HTML/JavaScript
code:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <title>AJAXTest.html</title>
 <meta charset= "UTF-8" />
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(init);
 function init(){
 $.get("simpleGreet.php", { "userName": "Andy" }, processResult);
 }
 function processResult(data, textStatus){
 $("#output").html(data);
 }
 </script>
</head>
<body>
<h1>AJAX Test</h1>
<div id = "output">
 This is the default output
</div>
</body>
</html>

This program uses a jQuery function to simulate a form. It generates its own
virtual form and passes it directly to the PHP program. The PHP program
then processes the form data and produces text results, which are avail-
able for JavaScript to handle directly. In essence, JavaScript and jQuery are
directly managing the server request (rather than allowing the browser to do
it automatically) so that the programmer has more control over the process.

Figure 6-1:
This page
gets data
from PHP
with no
form!

Book VII
Chapter 6

W
orking w

ith AJAX
Data

Sending Requests AJAX Style 861

Here’s how it works:

 1. Begin with an HTML framework.

 As always, HTML forms the spine of any web program. The HTML here
is quite simple — a heading and a div for output. Note that this example
does not include a form.

 2. Include the jQuery library.

 You can do AJAX without jQuery, but you don’t have much reason to
do that. The jQuery library makes life much easier and manages cross-
browser issues to boot. You can also incorporate the jQuery UI and a
theme if you choose, but they aren’t absolutely necessary.

 3. Initialize as usual.

 As soon as this program runs, it’s going to get data from the server. (In
the next example, I show you how to make this process more interac-
tive.) Set up an init() function in the normal way to handle immediate
execution after the page has loaded.

 4. Use the.get()function to set up an AJAX call.

 jQuery has a number of interesting AJAX functions. The .ajax() func-
tion is a very powerful tool for managing all kinds of AJAX requests, but
jQuery also includes a number of utility functions that simplify particu-
lar kinds of requests. The get() function used here sets up a request
that looks to the server just like a form submitted with the get method.
(Yep, there’s also a post() function that acts like a post form.)

 5. Indicate the program to receive the request.

 Typically your AJAX requests specify a program that should respond to
the request. I’m using greetUser.php.

 6. Pass form data as a JSON object.

 Encapsulate all the data you want to send to the program as a JSON
object. (Check out Book IV, Chapter 4 for a refresher on JSON.) Typically
this will be a series of name/value pairs. In this example, I’m simply indi-
cating a field named userName with the value “Andy”.

 7. Specify a callback function.

 Normally you want to do something with the results of an AJAX call. Use
a callback function to indicate which function should execute when the
AJAX call is completed. In this example, I call the processResult()
function as soon as the server has finished returning the form data.

Simplifying PHP for AJAX
One of the nice things about AJAX is how it simplifies your server-side pro-
gramming. Most PHP programs create an entire page every time. (Check out

Sending Requests AJAX Style862

nameForm.html and greetUser.php on the companion website to compare a
more typical HTML/PHP solution. See this book’s Introduction for more on
the website.) That’s a lot of overhead, building an entire HTML page every
pass. A lot of material is repeated. However, because you’re using AJAX, the
PHP result doesn’t have to create an entire web page. The PHP can simply
create a small snippet of HTML.

Take a look at simpleGreet.php and you can see that it’s very stripped
down:

 <?php
 $userName = filter_input(INPUT_GET, "userName");
 print "<p>Hi, $userName!</p> ";
 ?>

 This is a lot simpler than most PHP programs. All it needs to do is grab the
username and print it back out. The JavaScript function takes care of making
the code go in the right place. When you’re using AJAX, the HTML page stays
on the client, and JavaScript makes smaller calls to the server. The PHP is
simpler, and the code transmission is generally smaller because there’s less
repeated structural information. Be sure if the data was sent through the
GET method, you extract it with INPUT_GET.

Back in the HTML, I need a function to process the results of the AJAX
request after it has returned from the server. The processResult() func-
tion has been designated as the callback function, so take another look at
that function:

 function processResult(data, textStatus){
 $("#output").html(data);
 }

This function is pretty simple with jQuery:

 1. Accept two parameters.

 AJAX callback functions always accept two parameters. The first is a
string that contains whatever output was sent by the server (in this
case, the greeting from processResult.php). The second parameter con-
tains the text version of the HTTP status result. The status is useful for
testing in case the AJAX request was unsuccessful.

 2. Identify an output area.

 Just make a jQuery node from the output div.

 3. Pass the data to the output.

 You sometimes do more elaborate work with AJAX results, but for now,
the results are plain HTML that you can just copy straight to the div.

Book VII
Chapter 6

W
orking w

ith AJAX
Data

Building a Multipass Application 863

Building a Multipass Application
 The most common use of AJAX is to build an application that hides the rela-

tionship between the client and the server. For example, look at the multiPass.
html page shown in Figure 6-2. This seems to be an ordinary HTML page. It fea-
tures a drop-down list that contains hero names. However, that list of names
comes directly from a database, which can’t be read directly in HTML/
JavaScript. When the user selects a hero from the list, the page is automatically
updated to display details about that hero. Again, this data comes directly
from the database. Figure 6-3 shows the page after a hero has been selected.

Figure 6-2:
The user
can choose
from a list of
heroes.

Figure 6-3:
Hero data is
automatically
updated from
the database.

Building a Multipass Application864

It’s certainly possible to get this behavior from PHP alone, but it’s interest-
ing to see an HTML/JavaScript page that can access data from a database. Of
course, some PHP is happening, but AJAX manages the process. Take a look
at the code for multiPass.html to see what’s happening:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>multiPass.html</title>
 <meta charset="UTF-8">
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">

 $(init);

 function init(){
 //load up list from database
 $("#heroList").load("loadList.php");
 } // end init

 function showHero(){
 //pass a hero id, retrieve all data about that hero
 heroID = $("#heroList").val();
 $("#output").load("showHero.php", {"heroID": heroID});
 } // end showHero
 </script>
</head>
<body>
 <h1>Multi - Pass Demo</h1>
 <form>
 <fieldset>
 <label>hero</label><p>
 <select id = "heroList"
 onchange = "showHero()">
 </select>
 <div id = "output">
 Please select a hero for more information...
 </div>
 </fieldset>
 </form>
</body>
</html>

Setting up the HTML framework
As always, the HTML page provides the central skeleton of the page. This
site is reasonably simple because it sets up some empty areas that will be
filled in with AJAX requests later:

 1. Import jQuery.

 The jQuery library makes AJAX really simple, so begin by importing
the library. Check out Chapter 2 of this minibook if you need a refresher
on importing jQuery. You can also include the jQuery UI modules if you
want, but it isn’t necessary for this simple example.

Book VII
Chapter 6

W
orking w

ith AJAX
Data

Building a Multipass Application 865

 2. Build a simple form.

 The page has a form, but this form is designed more for client-side inter-
action than server-side. Note that the form does not specify an action
parameter. That’s because the form won’t be directly contacting the PHP
program. Let AJAX functions do that.

 3. Don’t add a button.

 Traditional forms almost always have buttons (either standard buttons
in client-side coding or submit buttons for server-side). Although you
can still include buttons, one of the goals of AJAX is to simplify user
interaction. The page will update as soon as the user selects a new hero,
so you don’t need a button.

 4. Create an empty <select> object.

 Build an HTML select element that will contain all the hero names, but
don’t fill it yet. The hero names should come from the database. Give the
<select> object an id property so that it can be manipulated through
the code.

 5. Apply an onchange event to the <select> object.

 When the user chooses a new hero, call a JavaScript function to retrieve
data about that hero.

 6. Build a div for output.

 Create a placeholder for the output. Give it an id so that you can refer
to it later in code.

Loading the select element
The first task is to load the select element from the database. This should
be done as soon as the page is loaded, so the code will go in a standard
init() function:

 1. Write an initialization function.

 Use the standard jQuery technique for this. I just use the $(init) para-
digm because I think it’s easiest.

 2. Build a jQuery node based on the <select> object.

 Use jQuery selection techniques to build a jQuery node.

 3. Invoke the jQuery load()method.

 This method allows you to specify a server-side file to activate. Many
AJAX examples in this book use plain HTML files, but in this case, you
call a PHP program.

 The load() method works just like get() (used earlier in this chapter),
but it’s a bit easier to use load() when the purpose of the AJAX call is
to populate some element on your web page (as is the case here).

Building a Multipass Application866

 4. Call loadList.php.

 When you call a PHP program, you won’t be loading in the text of the
program. Instead, you’re asking that program to do whatever it does (in
this case, get a list of hero names and heroIDs) and place the results of
the program in the current element’s contents. In this situation, the PHP
program does a database lookup and returns the <option> elements
needed to flesh out the <select> object.

Writing the loadList.php program
Of course, you need to have a PHP program on the server to do the work.
AJAX makes PHP programming a lot simpler than the older techniques
because each PHP program typically solves only one small problem, rather
than having to build entire pages. The loadList.php program is a great
 example:

<?php
//connect to database
 try {
 $con= new PDO('mysql:host=host;dbname=dbName', "user", "pwd");
 $con->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $result = $con->query('SELECT * FROM hero');
 $result->setFetchMode(PDO::FETCH_ASSOC);

 foreach($result as $row){
 $id = $row["heroID"];
 $name = $row["name"];

 print <<< HERE
 <option value = "$id">$name</option>

HERE;

 } // end record loop
 } catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
 } // end try

?>

The code for loadList.php is typical of PHP programs using AJAX. It’s
small and focused and does a simple job cleanly. (I tend to think of PHP
programs in AJAX more like external functions than complete programs.)
The key to this particular program is understanding the output I’m trying
to create. Recall that this example has an empty select element on the
form. I want the program to add the following (bold) source code to the
page:

 <select id="heroList" onchange="showHero()">
 <option value="1">The Plumber</option>
 <option value="2">Binary Boy</option>
 <option value="3">The Janitor</option>
</select>

Book VII
Chapter 6

W
orking w

ith AJAX
Data

Building a Multipass Application 867

It should go to the database and find all the records in the hero table. It
should then assign heroID to the value attribute of each option, and
should display each hero’s name. After you know what you want to create, it
isn’t difficult to pull off:

 1. Make a database connection.

 In this example, PHP is used mainly for connecting to the database. It’s not
surprising that the first task is to make a data connection. Build a connec-
tion to your database using the techniques outlined in Book VI, Chapter 5.

 2. Create a query to get data from the database.

 The <option> elements I want to build need the heroID and name
fields from the hero database. It’s easiest to just use a SELECT * FROM
hero; query to get all the data I need.

 3. Apply the query to the database.

 Pass the query to the database and store the results in the $result
variable.

 4. Cycle through each record.

 Use the PDO associative array-fetching technique described in Book VI,
Chapter 5.

 5. Build an <option> element based on the current record.

 Because each record is stored as an associative array, it’s easy to build
an <option> element using fields from the current record.

 6. Print the results.

 Whatever you print from the PHP program becomes the contents of the
jQuery element that called the load() method. In this case, the
<option> elements are placed in the <select> object (where all good
<option> elements live).

Responding to selections
After the page has initialized, the <select> object contains a list of the
heroes. When the user selects a hero, the showHero() function is called by
the select element’s onchange event.

The showHero() function is another AJAX function. It gathers the details
needed to trigger another PHP program. This time, the PHP program needs a
parameter. The showHero() function simulates a form with a data element
in it and then passes that data to the PHP through the AJAX load() method:

function showHero(){
 //pass a hero id, retrieve all data about that hero
 heroID = $("#heroList").val();
 $("#output").load("showHero.php", {"heroID": heroID});
 } // end showHero

Building a Multipass Application868

If the user has selected a hero, you have the hero’s heroID as the value of
the <select> object. You can use this data to bundle a request to a PHP
program. That program uses the heroID to build a query and return data
about the requested hero:

 1. Extract the heroID from the select element.

 You’re building a JSON object which will act as a virtual form, so you
need access to all the data you want to send to the server. The only
information the PHP program needs is a heroID, so use the jQuery
val() method to extract the value from the <select> element.

 2. Use the load()method to update the output element.

 Once again, use the exceptionally handy load() method to invoke an
AJAX request. This time, load the results of showHero.php.

 3. Pass form data to the server.

 The showHero.php program thinks it’s getting information from a form.
In AJAX, the easiest way to simulate a form is to put all the data that
would have been in the form in a JSON object. In this case, only one
data element needs to be passed: {“heroID”: heroID}. This sends
a field called heroID that contains the contents of the JavaScript vari-
able heroID. See Book IV, Chapter 4 if you need a refresher on the JSON
format.

 The virtual form technique is a common AJAX idiom. It’s important because
it overcomes a serious usability limitation of ordinary HTML. In old-school
programming, the primary way to invoke a server-side program was through
an HTML form submission. With AJAX, you can respond to any JavaScript
event (like the onchange event used in this example) and use JavaScript
code to create any kind of fake form you want. You can use variables that
come from one or more forms, or you can send data from JavaScript vari-
ables. AJAX lets you use JavaScript to control precisely what data gets sent
to the server and when that data gets sent. This improves the user experi-
ence (as in this example). It’s also commonly used to allow form validation
in JavaScript before passing the data to the server.

Writing the showHero.php script
The showHero.php script is a simple PHP program that has a single task:
After being given a heroID, pass a query to the database based on that key,
and return an HTML snippet based on the query. The code is a standard
database access script:

<?php
//get heroID

$heroID = filter_input(INPUT_POST, 'heroID');

 try {
 $con= new PDO('mysql:host=localhost;dbname=dbName', "user", "pwd");

Book VII
Chapter 6

W
orking w

ith AJAX
Data

Building a Multipass Application 869

 $con->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $stmt = $con->prepare("SELECT * FROM hero WHERE heroID = ?");
 $stmt->execute(array($heroID));

 $result = $stmt->fetchAll(PDO::FETCH_ASSOC);
 foreach($result as $row){
 foreach ($row as $field => $value){
 print <<< HERE
 $field: $value

HERE;
 } // end field loop
 } // end record loop
 } catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
 } // end try

As far as the showQuery.php program is concerned, it got a request from an
ordinary form. Its job is to produce HTML output based on that input:

 1. Get the $heroID value from the form.

 Use the standard filter_input mechanism to extract data from the
form. (It doesn’t matter to the PHP program that this isn’t a normal form.
Note that the AJAX call is sending the data through the POST mecha-
nism, so that’s how you retrieve it.)

$heroID = filter_input(INPUT_POST, 'heroID');

 2. Build a standard data connection.

 Create your standard PDO connection, with an exception handler, the
PDO connection, and the exception attributes.

 try {
 $con= new PDO('mysql:host=host;dbname=dbName', "user", "pwd");
 $con->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 3. Build a prepared statement.

 This query will involve user input (the heroID comes from the user
form) so it should use a prepared statement to prevent SQL injection
attacks. (See Book VI, Chapter 5 for more about SQL injection and pre-
pared statements.)

 You only want data from the hero identified by $heroID, so build a
query that selects a single record.

 $stmt = $con->prepare("SELECT * FROM hero WHERE heroID = ?");
 $stmt->execute(array($heroID));

 4. Execute the statement with the heroID.

 Pass the heroID to the prepared statement, place this element in an
array, and pass it to the statement.

 $result = $stmt->fetchAll(PDO::FETCH_ASSOC);

Working with XML Data870

 5. Process the results.

 Use the ordinary foreach mechanism to print out the results of the
query. You can get as fancy as you want with the output, but I’m going
for a very standard “print all the contents” approach for now.

 foreach($result as $row){
 foreach ($row as $field => $value){
 print <<< HERE
 $field: $value

Xxxxx
HERE;
 } // end field loop
 } // end record loop

Working with XML Data
Server-side work normally involves storage of data because that’s one thing
that’s easy to do on the server and difficult to do on the client. Data can be
stored in many ways:

 ✦ In plain-text files

 ✦ In HTML

 ✦ In JSON

 ✦ In XML

 ✦ In a relational database

The database approach is most common because it’s incredibly powerful
and flexible. Normally programmers use an HTML page to request infor-
mation from the user, and then use this information in PHP to prepare a
request for the database in a special language called SQL (Structured Query
Language). The data request is passed to the database management system,
which returns some kind of result set to the PHP program. The PHP pro-
gram then typically builds an HTML page and passes the page back to the
browser.

The process can be easier when you use AJAX because the PHP program
doesn’t have to create an entire web page. All that really needs to be
passed back to the JavaScript program is the results of the data query. The
examples in this chapter have created HTML snippets as their output, but
you often want to make your server-side programs a little more generic so
that the data can be used in a number of different ways. Normally, the data
is returned using a special data format so that the JavaScript program can
easily manage the data.

 When a server-side program is designed to simply take some input and pro-
duce generic data for output, that program is sometimes called a web ser-
vice. Web services are very popular because they can simplify coding and be
re-used. These are good things.

Book VII
Chapter 6

W
orking w

ith AJAX
Data

Working with XML Data 871

Review of XML
The XML format has become an important tool for encapsulating data for
transfer between the client and the server. You might already be familiar
with XML because XHTML is simply HTML following the stricter XML
standard.

XML is much more than HTML. XML can actually be used to store any kind
of data. For example, take a look at the following file (pets.xml):

<?xml version="1.0" encoding="utf-8"?>
<pets>
 <pet>
 <animal>cat</animal>
 <name>Lucy</name>
 <breed>American Shorthair</breed>
 <note>She raised me</note>
 </pet>
 <pet>
 <animal>cat</animal>
 <name>Homer</name>
 <breed>unknown</breed>
 <note>Named after a world-famous bassoonist</note>
 </pet>
 <pet>
 <animal>dog</animal>
 <name>Jonas</name>
 <breed>Cairn Terrier</breed>
 <note>The dog that currently owns me</note>
 </pet>
 </pets>

If you look over pets.xml, you can see that it looks a lot like HTML. HTML
tags are very specific (only a few are legal), but XML tags can be anything, as
long as they follow a few simple (but familiar) rules:

 1. Begin with a doctype.

 Formal XML declarations often have very complex doctypes, but basic
XML data typically uses a much simpler definition:

 <?xml version="1.0" encoding="utf-8"?>

 Anytime you make your own XML format (as I’m doing in this example),
you can use this generic doctype.

 2. Create a container for all elements.

 The entire structure must have one container tag. I’m using pets as my
container. If you don’t have a single container, your programs will often
have trouble reading the XML data.

 3. Build your basic data nodes.

 In my simple example, each pet is contained inside a pet node. Each pet
has the same data elements (but that is not a requirement).

 Tags are case-sensitive. Be consistent in your tag names. Use camel-case
and single words for each element.

Working with XML Data872

 4. Add attributes as needed.

 You can add attributes to your XML elements just like the ones in HTML.
As in HTML, attributes are name/value pairs separated by an equal sign
(=), and the value must always be encased in quotes.

 5. Nest elements as you do in HTML.

 Be careful to carefully nest elements inside each other like you do with
HTML.

You can get an XML file in a number of ways:

	 •	 Most	databases	can	export	data	in	XML	format.

	 •	 More	often,	a	PHP	program	reads	data	from	a	database	and	creates	a	
long string of XML for output.

For this simple introduction, I just wrote the XML file in a text editor and
saved it as a file.

You manipulate XML in the same way with JavaScript, whether it comes
directly from a file or is passed from a PHP program.

Manipulating XML with jQuery
XML data is actually familiar because you can use the tools you used to work
with HTML. Better, the jQuery functions normally used to extract elements
from an HTML page work on XML data with few changes. All the standard
jQuery selectors and tools can be used to manage an XML file in the same
way that they manage parts of an HTML page.

The readXML.html page featured in Figure 6-4 shows a JavaScript/jQuery
program that reads the pets.xml file and does something interesting with the
data.

In this case, it extracts all the pet names and puts them in an unordered list.
Here’s the code:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8" />
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">

 $(init);
 function init(){
 $.get("pets.xml", processResult);
 } // end init

Book VII
Chapter 6

W
orking w

ith AJAX
Data

Working with XML Data 873

function processResult(data, textStatus){
 //clear the output
 $("#output").html("");
 //find the pet nodes...
 $(data).find("pet").each(printPetName);
 } // end processResult

 function printPetName(){
 //isolate the name text of the current node
 thePet = $(this).find("name").text();
 //add list item elements around it
 thePet = "" + thePet + "<\/li>";
 //add item to the list
 $("#output").append(thePet);
 } // end printPetName

 </script>
 <title>readXML.html</title>
</head>
<body>
<h1>Reading XML</h1>
<ul id = "output">
 This is the default output

</body>
</html>

Creating the HTML
Like most jQuery programs, this page begins with a basic HTML framework.
This one is especially simple: a heading and a list. The list has an ID (so that
it can be recognized through jQuery easily) and a single element (that will be
replaced by data from the XML file).

Figure 6-4:
The pet
names
came from
the XML file.

Working with XML Data874

Retrieving the data
The init() function sets up an AJAX request:

 $(init);

 function init(){
 $.get("pets.xml", processResult);
 } // end init

This function uses the get() function to request data:

 1. Use the jQuery get()mechanism to set up the request.

 Because I’m just requesting a static file (as opposed to a PHP program),
the get() function is the easiest AJAX tool to use for setting up the
request.

 2. Specify the file or program.

 Normally you call a PHP program to retrieve data, but for this example,
I pull data straight from the pets.xml file because it’s simpler and it
doesn’t really matter how the XML was generated. The get() mecha-
nism can be used to retrieve plain text, HTML, or XML data. My program
will be expecting XML data, so I should be calling an XML file or a pro-
gram that produces XML output.

 3. Set up a callback function.

 When the AJAX is complete, specify a function to call. My example calls
the processResult() function after the AJAX transmission is complete.

Processing the results
The processResult() function accepts two parameters: data and
textStatus:

 function processResult(data, textStatus){
 //clear the output
 $("#output").html("");
 //find the pet nodes...
 $(data).find("pet").each(printPetName);
 } // end processResult

The processResult() function does a few simple tasks:

 1. Clear the output ul.

 The output element is an unordered list. Use its html() method to
clear the default list item.

 2. Make a jQuery node from the data.

 The data (passed as a parameter) can be turned into a jQuery node.
Use $(data) for this process.

Book VII
Chapter 6

W
orking w

ith AJAX
Data

Working with XML Data 875

 3. Find each pet node.

 Use the find() method to identify the pet nodes within the data.

 4. Specify a command to operate on each element.

 Use the each() method to specify that you want to apply a function
separately to each of the pet elements. Essentially, this creates a loop
that calls the function once per element.

 The each mechanism is an example of a concept called an iterator,
which is a fundamental component of functional programming. (Drop
those little gems to sound like a hero at your next computer science
function. You’re welcome.)

 5. Run the printPetName function once for each element.

 The printPetName is a callback function.

Printing the pet name
The printPetName function is called once for each pet element in the XML
data. Within the function, the $(this) element refers to the current element
as a jQuery node:

 function printPetName(){
 //isolate the name text of the current node
 thePet = $(this).find("name").text();

 //add list item elements around it
 thePet = "" + thePet + "";

 //add item to the list
 $("#output").append(thePet);
 } // end printPetName

 1. Retrieve the pet’s name.

 Use the find() method to find the name element of the current pet
node.

 2. Pull the text from the node.

 The name is still a jQuery object. To find the actual text, use the text()
method.

 3. Turn the text into a list item.

 I just used string concatenation to convert the plain text of the pet name
into a list item.

 4. Append the pet name list item to the list.

 The append() method is perfect for this task.

Of course, you can do more complex things with the data, but it’s just a
matter of using jQuery to extract the data you want and then turning it into
HTML output.

Working with JSON Data876

Working with JSON Data
XML has been considered the standard way of working with data in AJAX (in
fact, the X in AJAX stands for XML). The truth is, another format is actually
becoming more popular. Although XML is easy for humans (and computer
programs) to read, it’s a little bit verbose. All those ending tags can get a bit
tedious and can add unnecessarily to the file size of the data block. Although
XML is not difficult to work with on the client, it does take some getting
used to. AJAX programmers are beginning to turn to JSON as a data trans-
fer mechanism. JSON is nothing more than the JavaScript object notation
described in Book IV, Chapter 4 and used throughout this minibook.

Knowing JSON’s pros
JSON has a number of very interesting advantages:

 ✦ Data is sent in plain text. Like XML, JSON data can be sent in a plain-text
format that’s easy to transmit, read, and interpret.

 ✦ The data is already usable. Client programs are usually written in
JavaScript. Because the data is already in a JavaScript format, it is ready
to use immediately, without the manipulation required by XML.

 ✦ The data is a bit more compact than XML. JavaScript notation doesn’t
have ending tags, so it’s a bit smaller. It can also be written to save even
more space (at the cost of some readability) if needed.

 ✦ Lots of languages can use it. Any language can send JSON data as a long
string of text. You can then apply the JavaScript eval() function on the
JSON data to turn it into a variable.

 ✦ PHP now has native support for JSON. PHP version 5.2 and later sup-
ports the json_encode() and json_decode() functions, which con-
vert PHP arrays (even very complex ones) into JSON objects and back.

 ✦ jQuery has a getJSON()method. This method works like the get() or
post() methods, but it’s optimized to receive a JSON value.

 If a program uses the eval() function to turn a result string into a JSON
object, there’s a potential security hazard: Any code in the string is treated
as JavaScript code, so bad guys could sneak some ugly code in there. Be
sure that you trust whoever you’re getting JSON data from.

The pet data described in pets.xml looks like this when it’s organized as a
JSON variable:

{
 "Lucy": { "animal": "Cat",
 "breed": "American Shorthair",
 "note": "She raised me"},
 "Homer": { "animal": "Cat",
 "breed": "unknown",
 "note": "Named after a world-famous bassoonist"},

Book VII
Chapter 6

W
orking w

ith AJAX
Data

Working with JSON Data 877

 "Jonas": { "animal": "Dog",
 "breed": "Cairn Terrier",
 "note": "The dog that currently owns me"}
}

Note a couple of things:

 ✦ The data is a bit more compact in JSON format than it is in XML.

 ✦ You don’t need an overarching variable type (like pets in the XML data)
because the entire entity is one variable (most likely called pets).

JSON takes advantages of JavaScript’s flexibility when it comes to objects:

 ✦ An object is encased in braces: { }. The main object is denoted by a
pair of braces.

 ✦ The object consists of key/value pairs. In my data, I used the animal
name as the node key. Note that the key is a string value.

 ✦ The contents of a node can be another node. Each animal contains
another JSON object, holding the data about that animal. JSON nodes
can be nested (like XML nodes), giving the potential for complex data
structures.

 ✦ The entire element is one big variable. JavaScript can see the entire
element as one big JavaScript object that can be stored in a single vari-
able. This makes it quite easy to work with JSON objects on the client.

Reading JSON data with jQuery
As you might expect, jQuery has some features for simplifying the (already
easy) process of managing JSON data.

Figure 6-5 shows readJSON.html, a program that reads JSON data and
returns the results in a nice format.

Here’s the complete code of readJSON.html:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <title>readJSON.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 dt {
 font-weight: bold;
 float: left;
 width: 5em;
 margin-left: 1em;
 clear: left;
 }
 </style>
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>

Working with JSON Data878

 <script type = "text/javascript">

 $(init);
 function init(){
 $.getJSON("pets.json", processResult);
 } // end init
 function processResult(data){
 $("#output").text("");
 for(petName in data){
 var pet = data[petName];
 $("#output").append("<h2>" + petName + "<h2>");
 $("#output").append("<dl>");
 for (detail in pet){
 $("#output").append(" <dt>" + detail + "<\/dt>");
 $("#output").append(" <dd>" + pet[detail] + "<\/dd>");
 } // end for
 $("#output").append("<\/dl>");
 } // end for
 } // end processResults
 </script>
</head>
<body>
<h1>Reading JSON</h1>
<div id = "output">
 This is the default output
</div>
</body>
</html>

Managing the framework
The foundation of this program is the standard XTML and CSS. Here are the
details:

 1. Build a basic HTML page.

 Much of the work will happen in JavaScript, so an H1 and an output div
are all you really need.

Figure 6-5:
This
program
got the
data from
a JSON
request.

Book VII
Chapter 6

W
orking w

ith AJAX
Data

Working with JSON Data 879

 2. Put default text in the output div.

 Put some kind of text in the output div. If the AJAX doesn’t work, you’ll
see this text. If the AJAX does work, the contents of the output div will
be replaced by a definition list.

 3. Add CSS for a definition list.

 I print out each pet’s information as a definition list, but I don’t like the
default formatting for <dl>. I add my own CSS to tighten up the appear-
ance of the definitions. (I like the <dt> and <dd> on the same line of
output.)

Retrieving the JSON data
The jQuery library has a special AJAX function for retrieving JSON data. The
getJSON() function makes an AJAX call and expects JSON data in return:

 $(init);

 function init(){
 $.getJSON("pets.json", processResult);
 } // end init

It isn’t difficult to get JSON data with jQuery:

 1. Set up the standard init()function.

 In this example, I’m pulling the JSON data in as soon as the page has fin-
ished loading.

 2. Use the getJSON()function.

 This tool gets JSON data from the server.

 3. Pull data from pets.json.

 Normally you make a request to a PHP program, which does some kind
of database request and returns the results as a JSON object. For this
simple example, I’m just grabbing data from a JSON file I wrote with a
text editor, so I don’t have to write a PHP program. The client-side pro-
cessing is identical whether the data came from a straight file or a
program.

 4. Specify a callback function.

 Like most AJAX methods, getJSON() allows you to specify a callback
function that is triggered when the data has finished transferring to the
client.

Processing the results
The data returned by a JSON request is already in a valid JavaScript format,
so all you need is some for loops to extract the data. Here’s the process:

Working with JSON Data880

 function processResult(data){
 $("#output").text("");
 for(petName in data){
 var pet = data[petName];
 $("#output").append("<h2>" + petName + "<h2>");
 $("#output").append("<dl>");
 for (detail in pet){
 $("#output").append(" <dt>" + detail + "<\/dt>");
 $("#output").append(" <dd>" + pet[detail] + "<\/dd>");
 } // end for
 $("#output").append("<\/dl>");

 } // end for
 } // end processResults

 1. Create the callback function.

 This function expects a data parameter (like most AJAX requests). In
this case, the data object contains a complete JSON object encapsulat-
ing all the data from the request.

 2. Clear the output.

 I replace the output with a series of definition lists. Of course, you can
format the output however you wish.

 $("#output").text("");

 3. Step through each petName in the list.

 This special form of the for loop finds each element in a list. In this
case, it gets each pet name found in the data element:

 for(petName in data){

 4. Extract the pet as a variable.

 The special form of for loop doesn’t retrieve the actual pets but rather
the key associated with each pet. Use that pet name to find a pet and
make it into a variable using an array lookup:

 var pet = data[petName];

 5. Build a heading with the pet’s name.

 Surround the pet name with <h2> tags to make a heading and append
this to the output:

 $("#output").append("<h2>" + petName + "<h2>");

 6. Create a definition list for each pet.

 Begin the list with a <dl> tag. Of course, you can use whichever format-
ting you prefer, but I like the definition list for this kind of name/value
data:

 $("#output").append("<dl>");

 7. Get the detail names from the pet.

 The pet is itself a JSON object, so use another for loop to extract each
of its detail names (animal, breed, note):

 for (detail in pet){

Book VII
Chapter 6

W
orking w

ith AJAX
Data

Working with JSON Data 881

 8. Set the detail name as the definition term.

 Surround each detail name with a <dt></dt> pair. (Don’t forget to
escape the slash character to avoid an HTML validation warning.)

 $("#output").append(" <dt>" + detail + "<\/dt>");

 9. Surround the definition value with <dd></dd>.

 This provides appropriate formatting to the definition value:
 $("#output").append(" <dd>" + pet[detail] + "<\/dd>");

 10. Close the definition list.

 After the inner for loop is complete, you’re done describing one pet, so
close the definition list:

 $("#output").append("<\/dl>");

882 Book VII: Integrating the Client and Server with AJAX

Chapter 7: Going Mobile

In This Chapter
✓ Improving mobile accessibility

✓ Using media queries to build responsive designs

✓ Working with the jQuery mobile library

✓ Building mobile-friendly interfaces

✓ Adding collapsible interface elements

✓ Building multi-page applications with jQuery mobile

✓ Turning mobile pages into iOS apps

M
obile devices are no longer becoming mainstream. They are
mainstream. Although people are still using traditional desktop

devices to view the web, mobile devices are more prevalent and important
than ever. For the most part, you can treat mobile devices like ordinary web
browsers, but they do have a few special considerations and tricks. In this
chapter you learn how to be sensitive to the needs of mobile users, and how
to do some really cool tricks to make a mobile site really stand out.

Thinking in Mobile
A few years back, mobile programming was completely different than ordi-
nary programming. You had to learn entirely different languages and visual
toolsets. Although you can still program in native mobile languages, much
of what people want to do with mobile devices can be done in HTML5 with
CSS and JavaScript. In fact, this was one of the major drivers of HTML5 and
CSS3 — making the web more mobile-friendly.

Virtually all mobile devices now ship with an HTML5-compliant browser, so
just by learning HTML5, you’re well on your way to mobile development.
Any of the pages or programs in this book should work fine on a mobile
client. (I tested all on an iPad and an Android phone.)

However, there are a few easy things you can do to improve the browsing
experience for those who visit your site on a tablet or mobile phone:

 ✦ Make text bigger: Tablets and phones tend to have smaller screens
with lower resolution. If your font size is tiny on an ordinary screen, it

Thinking in Mobile884

will but unreadable on a phone. Consider using a larger font size if you
expect mobile users.

 ✦ Make the user interface larger: It’s also a great idea to make buttons
larger because they will need to be pressed by thick fingers rather than
a tiny mouse. If you’re using check boxes or radio buttons, be sure to
use a related label to make the target larger. See the section “Using
jQuery Mobile to Build Mobile Interfaces” later in this chapter for some
great ways to improve your interface with a special version of jQuery UI
specifically designed for mobile devices.

 ✦ Consider turning off “helpful” features: Many phones and tablets come
with tools to automatically capitalize input and to autocorrect misspell-
ings. You can turn these elements off by adding these attributes to an
input element:

<input type = "text" autocorrect = "off" autocapitalize = "off">

 Think carefully about each input to ensure you’ve got the best option.
For example, a Last Name field would benefit from autocapitalize, but
not autocorrect.

 ✦ Use specialty input elements: HTML5 includes some excellent new input
types. Many of them were designed with mobile keyboards in mind. For
example, the <input type = “url”> field creates an ordinary-looking
textbox, but on many mobile devices, it pops up a custom keyboard con-
taining the special characters normally seen in a web address (/ and : are
more prominent, for example). Likewise, the <input type = “email”>
pops up a keyboard that includes the @ sign. Many of the other input ele-
ments (date, color, and time) pop up specialty elements designed to work
well without a keyboard. Any browser that cannot use these special input
types will revert to a standard text input, so this is a very safe tool to use.

 ✦ Avoid the : hover state: CSS3 gives nearly every element a : hover
state, which is activated when the mouse is hovered over an element
but has not been clicked. Touch screens don’t have a hover state! Most
touch screen events feel just like mouse input, but there’s no easy way
for a touch screen to replicate the : hover state. It’s fine to use this for
special effects, but don’t make it a major part of your page design if you
intend your project to be used by mobile users.

 ✦ Build with responsive CSS: Much of the time you can build a page once
and have it work pretty well on all browsers, but sometimes you really
need something different for different browser sizes and capabilities.
This is where media queries come in. Essentially, they allow you to apply
special rules based on the current screen size (typically the most impor-
tant variable). Please see the next section, “Building a Responsive Site,”
to get a feel for how to target specific screen sizes.

 ✦ Add a viewport indicator: The default behavior for many mobile
devices is to simply display the standard page on the smaller screen.

Book VII
Chapter 7

Going M
obile

Building a Responsive Site 885

Although this can work, it is often difficult to make the screen readable
for all screen sizes. If you create a customized layout as described in this
chapter, you can set the default behavior of the screen to respond to
your improved layout:

<meta name="viewport" content="width=device-width, user-
scalable=false;">

Building a Responsive Site
One way to make a site work well on multiple resolutions is to provide differ-
ent CSS rules based on the detected media type.

CSS3 has a marvelous new feature called the media query, which allows you
to specify a media type and determine various features of the display. You
can use this specification to build a subset of the CSS that should be used
when the browser detects a certain type or size of display.

Specifying a media type
The @media rule allows you to specify what type of output the included CSS
should modify. The most common media types are screen, print, speech,
handheld, projection, and tv. There are more, but only print and
screen are universally supported.

For example, the following code will specify the font size when the user
prints the document:

@media print {
 body {
 font-size: 10pt;
 }
}

This CSS can be embedded into a normal CSS document, but it should
typically be placed at the end of the document because it holds excep-
tions to the normal rules. You can place as much CSS code as you wish
inside the @media element, but you should only put CSS code that’s rel-
evant to the specific situation you’re interested in. For print output, for
example, I might turn off all the colors to save ink, and I might use points
(pt) for the character size, as points actually have meaning in printed
output.

Adding a qualifier
In addition to specifying the media type, the @media rule has another very
powerful trick. You can apply a special qualifying condition to the media. For
example, look at Figure 7-1.

Building a Responsive Site886

Figure 7-1:
When the
page is
wider than
500 pixels,
it shows
black text
on a white
background.

When the browser is wider than 500 pixels, you can see black text on a white
background. But make the screen narrower, and you see something interest-
ing, as shown in Figure 7-2.

Normally you would use this trick to change the layout, but start with this
simpler color-changing example. I show how to change the layout in the
“Making Your Page Responsive” section later in this chapter. Here’s the code
for this simpler example:

<!doctype html>
<html lang="en">
<head>
 <title>narrowBlack.html</title>
 <meta charset="UTF-8">
<meta name="viewport" content="width=device-width, user-scalable=false;">
 <style type = "text/css">
 body {
 color: black;
 background-color: white;
 }

 @media (max-width: 500px){
 body {
 color: white;
 background-color: black;
 }
 }
 </style>

</head>
<body>
 <h1>Qualifier Demo</h1>
 <p>
 Try resizing this page. When the page is

Book VII
Chapter 7

Going M
obile

Building a Responsive Site 887

 wider than 500 pixels, it shows black text on a
 white background.
 </p>

 <p>
 When the page is narrower than 500 pixels, the colors
 reverse, giving white text on a black background.
 </p>
</body>
</html>

Figure 7-2:
When the
screen is
narrower,
the colors
change!

Making Your Page Responsive888

Here’s how to build a page that adapts to the screen width:

 1. Build your site as usual.

 This is one place where that whole “separate content from layout” thing
really pays off. The same HTML will have two different styles.

 2. Apply a CSS style in the normal way.

 Build your standard style in the normal way — for now, embed the style
in the page with the <style> tag. Your main style should handle the
most common case. (Typically, a full-size desktop.)

 3. Build a @media rule.

 The @media CSS rule should go at the end of the normal CSS.

 4. Set a max-width: 500px qualifier.

 This qualifier indicates that the rules inside this segment will only be
used if the width of the screen is smaller than 500 pixels.

 5. Place special case rules inside the new style set.

 Any CSS rules you define inside the @media rule will be activated if the
qualifier is true. Use these rules to override the existing CSS. Note you
don’t have to redefine everything. Just supply rules that make sense in
your particular context. In this (trivial) example, I’m swapping the color
of the foreground and background, but you can do more interesting
things here, as you see in the “Making Your Page Responsive” section
later in this chapter.

 6. Add a viewport.

 Mobile browsers will sometimes try to rescale the page so it can all
be seen at once. This defeats the purpose of a special style, so use the
viewport metatag to indicate that the browser should report its true
width. It’s also often useful to turn off page-scaling because it should no
longer be necessary.

In this example, the browser always applies the main (black text on a white
background) style. Then it looks at the @media rule to see if the qualifier
is true. If the width is less than 500 pixels, the max-width:500px quali-
fier is evaluated to true, and all the CSS code inside the @media segment is
enabled. The browser then stores both sets of CSS and applies the correct
CSS based on the status of the rule.

Making Your Page Responsive
The most common use of the media query is to make dramatic changes in
the page layout when a smaller screen is encountered. The screen layouts
described throughout Book III are already somewhat sensitive to different

Book VII
Chapter 7

Going M
obile

Making Your Page Responsive 889

screen sizes, but true responsive design goes a step farther by recognizing
that the entire layout may need to be changed (not just shrunk) in certain
circumstances.

As an example, take a look at the page in Figure 7-3.

When viewed on a normal desktop display, it shows a two-column design,
which is a standard design for traditional monitors. However, take a look at
the same exact page when viewed on a smaller display (like the ones you
would encounter on a mobile phone). Figure 7-4 shows the smaller page.

Multiple-column layouts may look great on the desktop (especially with
the proliferation of widescreen monitors), but they can be very frustrating
to users with narrow browsers. This page detects when the browser is too
narrow to display columns, and automatically switches to a single-column
display. It also steps up the overall font size to compensate for the generally
weaker resolution of mobile screens, and could do more (resizing buttons,
for example, to make them easier to hit with fingers).

If the browser is resized again to a larger size, it will revert to the two-column
view.

The responsive technique is not difficult to achieve at all. Begin (as always)
by looking over the HTML code.

<!doctype html>
<html lang="en">
<head>
 <title>responsive.html</title>

Figure 7-3:
This is a
standard
two-column
page.

Making Your Page Responsive890

 <meta charset="UTF-8">
 <link rel = "stylesheet"
 type = "text/css"
 href = "responsiveWide.css" />
 <link rel = "stylesheet"
 type = "text/css"
 href = "responsiveNarrow.css" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0">

</head>
<body>
 <div id="all">
 <header>
 <h1>Responsive Layout Demo</h1>
 </header>
 <nav>

 one
 two
 three
 four
 five

 </nav>

Figure 7-4:
The same
page is now
in a single
column.

Book VII
Chapter 7

Going M
obile

Making Your Page Responsive 891

 <div id="content">
 <p>
 Try this page on different sizes of screens.
 </p>

 <p>
 On wider browsers, it will have a two-column layout.
 On a smaller screen (like a phone,) it will revert
 to a single-column format better for mobile browsers.
 </p>

 </div>
 <footer>
 This is my footer
 </footer>
 </div>
</body>
</html>

Really, the remarkable thing about this HTML is how unremarkable it is.
There’s absolutely nothing in the HTML to indicate it will do something spe-
cial when the page resizes. I do call two separate CSS files (although I could
have used just one, I think it’s nice to separate the rules).

As you look over the HTML, it seems pretty standard for an HTML5-based
two-column layout. I used native HTML5 elements when I could, and named
divs for features that don’t have an HTML5 semantic tag.

The one new element is the meta viewport attribute in the header. Some
mobile browsers automatically zoom into a smaller screen size, and some
act like larger browsers and make you zoom in by yourself. If you want the
browser to show the smaller size by default, add the meta viewport attri-
bute in the document header. This is especially useful for iOS devices.

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

Building the wide layout
If you look over the first CSS file for the responsive example, it will look very
much like the kind of two-column design described in Book III. Here’s the
code for responsiveWide.css:

body {
 background-color: red;
}

#all {
 background-color: white;
 width: 600px;
 margin-left: auto;
 margin-right: auto;
}

header {
 text-align: center;

Making Your Page Responsive892

}

nav {
 background-color: green;
 float: left;
 width: 150px;
 color: white;
 height: 400px;
}

#content {
 background-color: yellow;
 float: left;
 width: 440px;
 height: 400px;
 padding-left: 10px;
}

footer {
 color: white;
 background-color: gray;
 clear: both;
 text-align: center;
}

Once again, there’s absolutely nothing in this code that would indicate any-
thing special is going on. It looks just like the CSS you saw in Book II. That’s
again a big part of the beauty of responsive design. Build for the base case
just like you always do. In this case, I’m building a jello layout with a fixed
600-pixel layout floating in a larger screen. As long as the browser is wider
than 600 pixels, the layout will float in the center of the screen. As is typical
for this type of layout, I’ve specified heights for the main containers (nav
and #contents) to make everything look good.

 For the sake of visual clarity, I changed the background and foreground
colors so the size and position of each element would be obvious, even in a
black-and-white screen shot. Obviously these garish color values will need to
be changed in production. I don’t know, though. I’m kind of liking garish.

Adding the narrow CSS
The second CSS file is where the magic (such as it is) happens. It is also a
standard CSS file, except:

 ✦ The entire file is enclosed in a media query: This second file is entirely
based on the exceptions for a smaller browser.

 ✦ Trap for a screen less than 600 pixels wide: Since the standard view
expects the screen to be larger than 600 pixels, I will trap for any screen
narrower than 600 pixels. (You can try to trap for the size of the typical
smart phone, but this is a moving target, as there are too many devices
on the market to be certain what the width will be. I simply go for what
makes most sense for my design.)

 ✦ Overwrite any style rules that need to be changed: If the screen is nar-
rower than 600 pixels, I no longer want a jello layout. Instead, I want the

Book VII
Chapter 7

Going M
obile

Making Your Page Responsive 893

page to be in a single column taking up most of the screen width. I also
want to slightly increase the overall text size. Only change the CSS nec-
essary to make your page adapt to the narrower screen.

Here’s the code for the responsiveNarrow.css file:

@media (max-width: 600px) {
 /*special instructions for narrower screens */

 #all {
 display: block;
 width: 90%;
 font-size: 125%;
 }

 nav {
 display: block;
 width: 100%;
 height: auto;
 }

 #content{
 display: block;
 width: 95%;
 height: auto;
 padding-left: 5%;
 }

 footer {
 display: block;
 width: 100%;
 }
}

The specific rule changes simply override the style rules defined in respon-
siveWide.css.

 1. Set the all div to take up 90 percent of the screen width.

 The #all div was set to 600 pixels wide in the main CSS, but here I’m
overriding the width to be percentage-based, and to take up 90 percent
of whatever the screen width is. I also set the font size to be 125 percent of
the standard size, to make the text easier to read on the smaller screen.
I don’t change anything else about #all because I’m only interested in
the screen-width related changes here.

 2. Change the floated elements to display: block.

 The nav and #contents elements were floated in the wide presentation.
The easiest way to remove the floating behavior is to assign a new display.
Setting the display to block will make the elements act like default divs.

 3. Give each block a relative width.

 The blocks were assigned pixel-based exact widths in the wide layout.
This needs to be overridden with a more flexible scheme. I made every
element 100 percent of the parent container, which is 90 percent of the
overall screen size.

Using jQuery Mobile to Build Mobile Interfaces894

 4. Set the heights to automatic.

 In the wide presentation, it made sense to give each column a specific
height. That doesn’t make sense in the more fluid mobile presentation.
Set the height to automatic to override the heights indicated in the
wide CSS code.

 5. Season to taste.

 You’ll need to test your code to ensure it’s working right. One adjust-
ment is in the padding. In my fixed-width wide version, I specified the
padding of the #content div in pixels. In the narrower version, it makes
more sense to set this value in percentages.

 This is only a very brief introduction to the media query mechanism. There is
much more to this specification than I can show in this (already hefty) book.
Please check the W3 specification at www.w3.org/TR/css3-mediaqueries/
for more information on the various techniques you can use with media queries.

Using jQuery Mobile to Build Mobile Interfaces
There’s another very popular approach to building mobile-friendly websites,
and that’s to use an add-on library to jQuery called jQuery Mobile. Jquery
Mobile is a powerful combination of JavaScript and CSS code built on top of
the jQuery library.

Building a basic jQuery mobile page
Figure 7-5 shows a basic page using jQuery mobile.

The jQuery library works by taking a normal HTML5 page and modifying it in
ways that emulate a native look and feel. The code looks a lot like ordinary HTML:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Mobile Demo</title>
 <link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.css" />
 <script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.js">
 </script>
</head>
<body>
 <div data-role = "page" data-theme = "b">
 <div data-role = "header" data-position = "fixed">
 <h1>JQuery Mobile Demo</h1>
 </div>
 <div data-role = "content">
 <p>
 <a href = "http://jquerymobile.com/"
 data-role = "button">jQuery Mobile web site

http://www.w3.org/TR/css3-mediaqueries/

Book VII
Chapter 7

Going M
obile

Using jQuery Mobile to Build Mobile Interfaces 895

 </p>

 <ul data-role = "listview">
 This is an ordinary list
 Coded to look like
 a mobile list

 </div>
 <div data-role = "footer" data-position = "fixed">
 from HTML All in One for Dummies
 </div>
 </div>

</body>
</html>

A few details turn this page into a mobile wonder:

 1. Include the jQuery mobile CSS.

 This is a special CSS file designed to transform HTML elements into
their mobile counterparts. Although you can download it yourself, most
developers link straight to the jQuery site (as I do here).

Figure 7-5:
This looks
almost like
a native
mobile app,
but it’s just a
web page.

Using jQuery Mobile to Build Mobile Interfaces896

 2. Include the standard jQuery library.

 Much of the code is based on jQuery, so integrate the jQuery library as
well. Once again, I pull jQuery from the main jQuery website.

 3. Incorporate the jQuery mobile library.

 This is a JavaScript library that extends the jQuery library to add new
mobile-specific behavior.

 4. Add a data-role= “page” attribute to the main div.

 Create a main div in your page and provide the data-role attribute to
it. This is a custom attribute added by jQuery mobile. jQuery looks over
the data roles of the various elements and applies style and behavior
changes to these elements automatically. Assign your main div the
data role page. This tells the browser to treat the entire div as a page.
Look ahead to the “Building a multi-page document” section later in this
chapter for more on pages.

 5. Specify a data theme.

 You can apply a data theme to any element, but you almost always apply
a theme to the page. jquery mobile comes with a number of default
themes built in, called “a” through “e.” Experiment to find the one you
like, or you can build your own with the special mobile version of the
ThemeRoller found at http://jquerymobile.com/themeroller/
index.php.

 6. Add more divs inside your page.

 Add a few more divs inside your page div. Generally you’ll have three:
header, content, and footer.

 7. Specify the header div with data-role = “header”.

 By placing any of your header information inside a div with a “header”
data role, you’re telling jQuery to treat this element as a mobile header
and apply the appropriate styles. The header typically includes an <H1>
tag. Look to the section called “Building a multi-page document” for how
to add buttons to the header. Typically you’ll specify the header to be
fixed with the data-position = “fixed” attribute. This ensures the
header will stay in place if the rest of the content is scrolled, which is
typical behavior in a mobile application.

 8. Set up a content div.

 Add a div with data-role = “content” to set up the main content area of
your page. Any of the main body elements of your site should go in this segment.

 9. Any link can be converted to a button.

 The standard convention in web apps is to turn links into buttons that
have a larger target than mouse-based input. It’s easy to convert any
link to a button by adding the data-role = “button” attribute to the
anchor tag.

http://jquerymobile.com/themeroller/index.php
http://jquerymobile.com/themeroller/index.php

Book VII
Chapter 7

Going M
obile

Using jQuery Mobile to Build Mobile Interfaces 897

 10. Convert lists to mobile listviews.

 Lists also have special conventions in the mobile world. You can use the (sing
along with me now . . .) data-role attribute to turn any list into a listView.

 11. Build a footer.

 Add one more div with data-role set to “footer”. Normally,
the footer (like the header) is fixed with the data-position
attribute.

Working with collapsible content
The jQuery accordion element described earlier in this minibook is ideal
for mobile development because it allows you to place an overview of a lot
of text on the screen and allows the user to focus on one element at a time.
The jQuery mobile library makes this a very easy mechanism to build for
mobile devices.

Figure 7-6 shows a page hinting at my all-time favorite collapsible content.

Figure 7-6:
 I wonder
what’s in
Book 2?

Using jQuery Mobile to Build Mobile Interfaces898

As the user clicks on a book, the hidden content is revealed, as you can see
in Figure 7-7.

Figure 7-7:
The
selected
contents
expand,
and other
contents are
hidden.

The collapsible content trick is very similar to the standard jQuery mobile
example:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>collapsible.html</title>
 <link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.css" />
 <script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.js">
 </script>
</head>
<body>
 <div data-role = "page">
 <div data-role = "header" data-position = "fixed">
 <h1>Collapsible Content</h1>
 </div>

Book VII
Chapter 7

Going M
obile

Using jQuery Mobile to Build Mobile Interfaces 899

 <div data-role = "content">
 <div data-role = "collapsible-set"
 data-theme = "c" data-content-theme = "b">
 <div data-role = "collapsible">
 <h2>Book 1</h2>
 <p>
 Learn to build a basic site with HTML including new
 HTML5 features.
 </p>
 </div>
 <div data-role = "collapsible">
 <h2>Book 2</h2>
 <p>
 Add basic CSS to your sites to change colors and fonts, and
 to control backgrounds and images.
 </p>
 </div>
 <div data-role = "collapsible">
 <h2>Book 3</h2>
 <p>
 Use positional CSS to build attractive and flexible site layouts
 in a number of different ways.
 </p>
 </div>
 </div>
 </div>
 </div>
</body>
</html>

The code is mostly standard HTML, with a few new attributes in place.

 1. Import the standard jQuery mobile stuff.

 Import the CSS and JavaScript files from jQuery.com. Of course you can
also import your own CSS and JavaScript if you wish, but I keep it simple
in this example.

 2. Set up the data roles as normal.

 All jQuery mobile pages have the same general structure. Build a div for
the page, and add a header, content, and footer. Specify each of the seg-
ments with the data-role attribute.

 3. Set up a div as a collapsible set.

 If you want the accordion behavior, just build a div inside your content
with the data-role set to “collapsible-set”.

 4. Set up the data theme for the collapsed set.

 Specify a data theme for the collapsed set. It works best if you also
explicitly set a data-content-theme. (If you don’t, sometimes the
expanded content will not look like it is part of the main element.)

 5. Place one or more collapsible objects in the set.

 A collapsible object is simply a div with the data-role set to
collapsible.

Using jQuery Mobile to Build Mobile Interfaces900

 6. Add some sort of header in each collapsible.

 Any headline tag (<H1> through <H6>) will be used as the always-visible
handle for the collapsible element.

 7. Non-header content will be hidden.

 Any other content of the collapsible element will be hidden by default
and only disclosed when the element is selected.

Building a multi-page document
It’s great being able to pare down a web page so it fits on a mobile device,
but obviously if the page is smaller, you’ll need more of them. Mobile apps
often use a page-flipping metaphor to pack more data in a small piece of
screen real estate, and the jQuery mobile library has another wonderful tool
to make this easy. Take a look at Figure 7-8 to see how to break a single web
document into a number of pages.

Figure 7-8:
This is the
main page.
It has a
bunch of
buttons.

Book VII
Chapter 7

Going M
obile

Using jQuery Mobile to Build Mobile Interfaces 901

So far, this application looks just like the other jQuery mobile apps you’ve
seen so far. One thing is different, and that’s the button in the header. It’s
very common for mobile apps to have navigation buttons in the header.
Press the Next button, and you’ll see Figure 7-9.

Figure 7-9:
The second
page is
similar.

After a nifty fade transition, the next page appears. This one has two buttons
in the header. Pressing Next again takes the user to the third page, illustrated
in Figure 7-10.

The third page is once again very familiar, but this time it has a single button
on the left of the header, and another button in the main content area.

The interesting thing about these three pages is they aren’t three pages at
all! It’s all just one page, designed to act like three different pages. There’s a
couple of advantages to this arrangement.

Using jQuery Mobile to Build Mobile Interfaces902

 ✦ CSS and JavaScript resources only need to be loaded once: This keeps
the system consistent and improves load times slightly.

 ✦ There’s no lag time: When the document loads, the whole thing is in
memory, even if only one part is visible at a time. This allows you
to quickly move between pages without having to wait for server
access.

 Of course this mechanism doesn’t replace ordinary links taking you to new
pages. You’d normally implement this type of mechanism when you have a
large page you want to treat as several smaller pages so the user doesn’t
have to scroll.

Here’s the code for multiPage.html in its entirety. Of course, I explain each
new idea following the listing.

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>multiPage.html</title>

Figure 7-10:
I think this
is the third
page.

Book VII
Chapter 7

Going M
obile

Using jQuery Mobile to Build Mobile Interfaces 903

 <link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.css" />
 <script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.js">
 </script>
 <style type = "text/css">
 #foot {
 font-size: 75%;
 font-style: italic;
 text-align: center;
 }

 pre {
 margin-left: auto;
 margin-right: auto;
 background-color: white;
 width: 8em;
 }
 </style>
</head>

<body>
 <div id = "page1" data-role = "page" data-theme = "b">
 <div id="head" data-role = "header">
 <h1>Page One</h1>
 next
 </div>

 <div id="content" data-role = "content">
 <p>
 This is the index
 </p>

 <a data-role = "button" href = "#page1">page 1
 <a data-role = "button" href = "#page2">page 2
 <a data-role = "button" href = "#page3">page 3
 </div>

 <div id="foot" data-role = "footer" data-position = "fixed">
 from HTML All in One for Dummies
 </div>
 </div>

 <div id = "page2" data-role = "page" data-theme = "b">
 <div id="head" data-role = "header">
 prev
 <h1>Page Two</h1>
 next
 </div>

 <div id="content" data-role = "content">
 <p>
 The second page is much like the first, except
 it isn't the first, and it has text rather than
 buttons. It's the second page.
 If you like the first, I suppose you can
 go back, but you should really go to the next
 page, because I hear it's really nice.
 </p>

Using jQuery Mobile to Build Mobile Interfaces904

 </div>

 <div id="foot" data-role = "footer" data-position = "fixed">
 from HTML All in One for Dummies
 </div>
 </div>

 <div id = "page3" data-role = "page" data-theme = "b">
 <div id="head" data-role = "header">
 prev
 <h1>Page Three</h1>
 </div>

 <div id="content" data-role = "content">
 <pre>
 3333333
 3 3
 3
 33333
 3
 3 3
 3333333
 </pre>

 <p>

 Go to index

 </p>

 </div>

 <div id="foot" data-role = "footer" data-position = "fixed">
 from HTML All in One for Dummies
 </div>
 </div>

</body>
</html>

While the code for this example is long, it doesn’t break a lot of new ground.

 1. Load up the jQuery mobile content.

 Pull in the necessary CSS and JavaScript files from the jQuery.com site.

 2. Apply your own CSS.

 Even if you’re “borrowing” CSS code from jQuery, you’re still allowed to
add your own. I added CSS to make the footer and pre elements act the
way I want.

 3. Build your pages.

 You can build as many pages as you want, but they all follow the same
general jQuery mobile pattern: Create a page div with header, content,
and footer divs. Use the data-role attribute to indicate the role of
each div.

Book VII
Chapter 7

Going M
obile

Going from Site to App 905

 4. Name each of the page-level divs with the id attribute.

 Because the user will be flipping through the pages, each page needs
some sort of identifier. Give each page a unique id attribute. I went with
the rather uninspired page1, page2, and page3. You might think of
something more clever than that.

 5. Build buttons inside the headers.

 The only truly new part of this example (aside from the page-flipping
itself) is the buttons in the headers. Skip ahead to the page 2 header,
and you’ll see something really interesting:

 prev
 <h1>Page Two</h1>
 next

 If you define a link inside an element with the header data-role, that
link will automatically become a button. Furthermore, the first such link
defined will automatically be placed to the left of the header, and the
second will be placed to the right.

 6. Force a single button to the right.

 If you want a button to be on the right (as I do on the first page), add a
class to the button:

 <h1>Page One</h1>
 next

 7. Use internal anchors to skip between pages.

 Take a look at the URLs in all the buttons. They begin with a hash,
which indicates an internal link inside the document. Remember,
though this feels like three different pages to the user, it’s really all one
big web page.

 8. Experiment with transitions.

 Take a careful look at the button on page three:

 Go to index

 This button has a special data-transition attribute. By default, mobile
pages swap with a fade. You can set the transition to slide, slideup,
slidedown, pop, fade, or flip. You can also reverse the transition by
adding another attribute: data-direction = “reverse”.

Going from Site to App
Everybody wants to make mobile apps these days. Here’s the big secret.
Many apps are really written in HTML5, CSS, and JavaScript. You already

Going from Site to App906

know everything you need to make apps that work on mobile devices. Better
yet, you don’t need to learn a new language or get permission from the app
store or purchase a license, as you do for native apps.

There’s a couple of wonderful tricks you can do for iOS users. You can
design your program so the user can add an icon directly to the desktop.
The user can then start the program like any other app. You can also make
the browser hide the normal browser accoutrements so your program
doesn’t look like it’s running in a browser!

It turns out these effects are quite easy to do.

Adding an icon to your program
Modern versions of iOS (the iPhone/iPad operating system) already have
the ability to store any web page on the desktop. Just view the web page in
Safari and click the Share button. You’ll find an option to save the web page
to the desktop. You can instruct your users to do this, and they’ll be able to
launch your program like a normal app.

However, the default icon for a saved app is quite ugly. If you want a nice-looking
icon, you can save a small image as a .png file and put it in the same directory as
your program. Then, you can add this line to your page (in the header) and that
image will appear on the desktop when the user saves your program:

<link rel="apple-touch-icon" href="myImage.png" />

As an added bonus, the iPhone or iPad automatically adjust the image to
look like an Apple icon, adding the effects appropriate to the installed
version of iOS (rounded and glassy in iOS6, flat in iOS7.)

Of course, this icon trick is an Apple-only mechanism. With most versions
of Android, any bookmark you’ve designated with your main browser can
be added to the desktop, but there is no custom icon option. The apple-
touch-icon directive will simply be ignored if you’re using some other OS.

Removing the Safari toolbar
Although your program looks good from the main screen, when the user acti-
vates the program it’s still obvious that the program is part of the web browser.
You can easily hide the browser toolbar with another line in the header:

 <meta name="apple-mobile-web-app-capable" content="yes" />

This code will not do anything different unless the program is called from the
desktop. However, in that case, it hides the toolbar, making the program look
and feel like a full-blown app. As an added bonus, this runs the program in a
full-screen mode, giving you a little more room for game play.

Book VII
Chapter 7

Going M
obile

Going from Site to App 907

Again, this is an Apple-specific solution. There isn’t an easy way to achieve
the same effect on the Android devices.

Storing your program offline
Now your program is looking a lot like an app, except it only runs when
you’re connected to the Internet. HTML5 has a wonderful feature that allows
you to store an entire web page locally the first time it’s run. Then if the user
tries to access the program and the system can’t get online, the local copy of
the game is run instead. In essence, the program is downloaded the first time
it is activated and stays on the local device.

This is a relatively easy effect to achieve:

 ✦ Make your program stable: Before you can use the offline storage mech-
anism, you’ll want to make sure your program is close to release-ready.
At a minimum, you’ll need to ensure you know all of the external files
needed by the game.

 ✦ Use only local resources: For this kind of project, you can’t rely on the
external Internet, so you’ll need to have all your files local. This means
you can’t really use PHP or external files. You’ll need to have a local
copy of everything on the server.

 ✦ Build a cache.manifest file: Look at the directory containing your game,
and create a new text file called cache.manifest.

 ✦ Write the first line: The first line of the cache.manifest file should only
contain the text CACHE MANIFEST (all in capital letters).

 ✦ Make a list of every file in the directory: Write the name of every file
in the directory, one file per line. Be careful with your capitalization and
spelling.

 ✦ Add the manifest attribute: The <html> tag has a new attribute called
manifest. Use this to describe to the server where the cache manifest
can be found:

<html lang = "en"
 manifest = "cache.manifest">

 ✦ Load the page normally: You’ll need to load the web page once in the
normal way. If all is set up correctly, the browser will quietly make a
copy of the file.

 ✦ Test offline: The best way to test offline storage is to temporarily turn
off wireless access on your machine and then try to access the file. If
things worked out, you should be able to see your page as if you were
still online.

 ✦ Check server settings: If offline storage is not working, you might need
to check with your server administration. The text/manifest MIME

Going from Site to App908

type needs to be configured on the server. You might have to ask your
server administrator to set this option in the .htaccess file for your
account:

addtype text/cache-manifest .manifest

 Note that it can take the cache-manifest mechanism several hours to recog-
nize changes, so when you make changes to your page, these changes aren’t
automatically updated to the local browser. That’s why it’s best to save off-
line archiving for near the end of your project development cycle.

 Visit www.dummies.com/extras/html5css3aio for more on what’s next for
the web.

Part VIII
Moving from Pages to Sites

http://www.dummies.com/extras/html5css3aio

Contents at a Glance

Contents at a Glance

Chapter 1: Managing Your Servers .911
Understanding Clients and Servers ...911
Creating Your Own Server with XAMPP ...914
Choosing a Web Host ...920
Managing a Remote Site ...922
Naming Your Site ..928
Managing Data Remotely ..931

Chapter 2: Planning Your Sites. .933
Creating a Multipage Web Site ..933
Planning a Larger Site ..934
Understanding the Client ...934
Understanding the Audience ..937
Building a Site Plan ..939
Creating Page Templates ..943
Fleshing Out the Project ..950

Chapter 3: Introducing Content Management Systems.953
Overview of Content Management Systems ..954
Previewing Common CMSs ...955

Chapter 4: Editing Graphics .977
Using a Graphic Editor ...977
Choosing an Editor ..978
Introducing Gimp ..979
Understanding Layers ..986
Introducing Filters ...988
Solving Common Web Graphics Problems ...989

Chapter 5: Taking Control of Content .995

Building a “Poor Man’s CMS” with Your Own Code ...995
Creating Your Own Data-Based CMS ..1001

Chapter 1: Managing Your
Servers

In This Chapter
✓ Understanding the client/server relationship

✓ Reviewing tools for client-side development

✓ Gathering server-side development tools

✓ Installing a local server with XAMPP

✓ Setting essential security settings

✓ Choosing a remote server

✓ Managing the remote servers

✓ Choosing and registering a domain name

W
eb pages are a complex undertaking. The basic web page itself isn’t
too overwhelming, but web pages are unique because they have

meaning only in the context of the Internet — a vastly new undertaking with
unique rules.

Depending where you are on your web development journey, you may need
to understand the entire architecture, or you may be satisfied with a smaller
part. Still, you should have a basic idea of how the Internet works and how
the various technologies described in this book fit in.

Understanding Clients and Servers
A person using the web is a client. You can also think of the user’s computer
or browser as the client. Clients on the Internet have certain characteristics:

 ✦ Clients are controlled by individual users. You have no control over
what kind of connection or computer the user has. It may not even be a
computer but may be instead a cellphone or (I’m not kidding)
refrigerator.

 ✦ Clients have temporary connections. Clients typically don’t have per-
manent connections to the Internet. Even if a machine is on a perma-
nent network, most machines used as clients have temporarily assigned
addresses that can change.

Understanding Clients and Servers912

 ✦ Clients might have wonderful resources. Client machines may have mul-
timedia capabilities, a mouse, and real-time interactivity with the user.

 ✦ Clients are limited. Web browsers and other client-side software are
often limited so that programs accessed over the Internet can’t make
major changes to the local file system. For this reason, most client pro-
grams operate in a sort of “sandbox” to prevent malicious coding.

 ✦ Clients can be turned off without penalty. It doesn’t really cause any-
body else a problem if you turn off your computer. Generally, client
machines can be turned off or moved without any problems.

Servers are the machines that typically host web pages. They have a much
different set of characteristics:

 ✦ Servers are controlled by server administrators. A server administra-
tor is responsible for ensuring that all data on the server is secure.

 ✦ Servers have permanent connections. The purpose of a server is to
accept requests from clients. For this reason, a server needs to have an
IP number permanently assigned to it.

 ✦ Servers usually have names, too. To make things easier for users,
server administrators usually register domain names to make their serv-
ers easier to find.

 ✦ Servers can access other programs. Web servers often talk to other pro-
grams or computers (especially data servers).

 ✦ Servers must be reliable. If a web server stops working, anybody trying
to reach the pages on that server is out of luck. This is why web servers
frequently run Unix or Linux because these operating systems tend to be
especially stable.

 ✦ Servers must have specialized software. The element that truly makes
a computer a server is the presence of web server software. Although
several options are available, only two dominate the market: Apache and
Microsoft IIS.

Parts of a client-side development system
A development system is made up of several components. If you’re program-
ming on the client (using XHTML, CSS, and JavaScript), you need the follow-
ing tools:

 ✦ Web browsers: You need at least a couple of browsers so that you can
see how your programs behave in different ones. Chrome is especially
useful for web developers because of its extensive developer toolset.

Book VIII
Chapter 1

M
anaging Your

Servers
Understanding Clients and Servers 913

 ✦ Text editor: Almost all web development happens with plain-text files.
A standard text editor should be part of your standard toolkit. I prefer
Komodo Edit because it handles all the languages described in this book
and works well on all desktop operating systems, and it’s free. (I really
like Emacs too, but I won’t force that monster on anybody.)

For client-side development, you don’t necessarily need access to a server.
You can test all your programs directly on your own machine with no other
preparation. Of course, you’ll eventually want a server so that you can show
your pages to everyone.

 The client-side development tools listed here are described in more detail in
Book I, Chapter 3.

Parts of a server-side system
When you start working on the server side (with PHP, MySQL, and AJAX),
you need a somewhat more complex setup. In addition to everything you
need for client-side development, you also need these items:

 ✦ A web server: This piece of software allows users to request web pages
from your machine. You must either sign on to a hosting service and
use its server or install your own. (I show you both techniques in this
chapter.) By far the most common server in use is Apache. Web server
software usually runs all the time in the background because you never
know when a request will come in.

 ✦ A server-side language: Various languages can be connected to web
servers to allow server-side functionality. PHP is the language I chose
in this book because it has an excellent combination of power, speed,
price (free), and functionality. PHP needs to be installed on the server
machine, and the web server has to be configured to recognize it. See
Book VI, Chapter 1 for a review of other server-side languages.

 ✦ A data server: Many of your programs work with data, and they need
some sort of application to deal with that data. The most common data
server in the open-source world is MySQL. This data package is free,
powerful, and flexible. The data server is also running in the background
all the time. You have to configure PHP to know that it has access to
MySQL.

 ✦ A mail server: If your programs send and receive e-mail, you need some
sort of e-mail server. The most popular e-mail server in the Windows
world is Mercury Mail, and Sendmail is popular in the world of Unix and
Linux. You probably won’t bother with this item on a home server, but
you should know about it when you’re using a remote host.

Creating Your Own Server with XAMPP914

 ✦ An FTP server: Sometimes, you want the ability to send files to your
server remotely. The FTP server allows this capability. Again, you proba-
bly don’t need this item for your own machine, but you definitely should
know about it when you use a remote host.

 ✦ phpMyAdmin: There’s a command-line interface to MySQL, but it’s lim-
ited and awkward. The easiest way to access your MySQL databases is
to use the phpMyAdmin program. Because it’s a series of PHP programs,
it requires a complete installation of PHP, MySQL, and Apache (but, nor-
mally, you install all these things together anyway).

Creating Your Own Server with XAMPP
If the requirements for a web hosting solution seem intimidating, that’s
because they are. It’s much more difficult to set up a working server system
by hand than it is to start programming with it.

I don’t recommend setting up your own system by hand. It’s simply not
worth the frustration because very good options are available.

XAMPP is an absolutely wonderful open-source tool. It has the following
packages built in:

 ✦ Apache: The standard web server and the cornerstone of the package

 ✦ PHP: Configured and ready to start with Apache and MySQL

 ✦ MySQL: Also configured to work with Apache and PHP

 ✦ phpMyAdmin: A data management tool that’s ready to run

 ✦ Mercury Mail: A mail server

 ✦ FileZilla FTP server: An FTP server

 ✦ PHP libraries: A number of useful PHP add-ons, including GD (graphics
support), Ming (Flash support), and more

 ✦ Additional languages: Perl, another extremely popular scripting and
server language, and SQLite, another useful database package

 ✦ Control and configuration tools: A Control Panel that allows you to
easily turn various components on and off

 This list is a description of the Windows version. The Mac and Linux ver-
sions have all the same types of software, but the specific packages vary.

Considering the incredible amount of power in this system, the download is
remarkably small. The installer is only 34MB.

XAMPP installation is pretty painless: Simply download the installer and
respond to all the default values.

Book VIII
Chapter 1

M
anaging Your

Servers
Creating Your Own Server with XAMPP 915

 If you use Windows, you may want to change where the package is installed
because the program files directory causes problems for some users. I nor-
mally install XAMPP in root of the C:\ drive on Windows installations. The
default directory is fine for Mac and Linux.

Running XAMPP
After you install XAMPP, you can manage your new tools with the XAMPP
Control Panel. Figure 1-1 shows this program in action.

Figure 1-1:
XAMPP
Control
Panel
allows
you to turn
features on
and off.

Some components of XAMPP (PHP, for example) run only when they’re
needed. Some other components (Apache and MySQL) are meant to run con-
stantly in the background. Before you start working with your server, you
need to ensure that it’s turned on.

You can choose to run Apache and MySQL as a service, which means that
the program is always running in the background. This arrangement is con-
venient, but it slightly reduces the performance of your machine. I generally
turn both Apache and MySQL on and off as I need it.

 Leaving server programs open on your machine constitutes a security
hazard. Be sure to take adequate security precautions. See the section
“Setting the security level,” later in this chapter, for information on setting
up your security features.

Creating Your Own Server with XAMPP916

Testing your XAMPP configuration
Ensure that Apache and MySQL are running, and then open your web
browser. Set the address to http://localhost, and you see a screen like
the one shown in Figure 1-2.

Figure 1-2:
The XAMPP
main page.

This page indicates that XAMPP is installed and working. Feel free to experi-
ment with the various items in the Demos section. Even though you may not
know yet what they do, you should know what some of their capabilities are.

Adding your own files
Of course, the point of having a web server is to put your own files in it. Use
your file management tool to find the XAMPP directory in your file system.
Right under the XAMPP directory is the htdocs folder, the primary web
directory. Apache serves only files that are in this directory or under it.
(That way, you don’t have to worry about your love letters being distributed
over the Internet.)

 All the files you want Apache to serve must be in htdocs or in a subdirec-
tory of it.

When you specified http://localhost as the address in your browser,
you were telling the browser to look on your local machine in the main
htdocs directory. You didn’t specify a particular file to load. If Apache isn’t
given a filename and it sees the file named index.html or index.php, it dis-
plays that file, instead. So, in the default htdocs directory, the index.php

http://localhost
http://localhost

Book VIII
Chapter 1

M
anaging Your

Servers
Creating Your Own Server with XAMPP 917

program is immediately being called. Although this program displays the
XAMPP welcome page, you don’t usually want that to happen.

Rename index.php to index.php.old or something similar. It’s still there if you
want it, but now there’s no index page, and Apache simply gives you a list of
files and folders in the current directory. Figure 1-3 shows my localhost
directory as I see it through the browser.

Figure 1-3:
After
disabling
index.php,
I can see
a list of
files and
directories.

You typically don’t want users to see this ugly index in a production server,
but I prefer it in a development environment so that I can see exactly what’s
on my server. After everything is ready to go, I put together index.html or
index.php pages to generate more professional directories.

Generally, you want to have subdirectories to all your main projects. I added
a few others for my own use, including haio, which contains all the code for
this book.

 If you want to display the XAMPP welcome screen after you remove the
index.php program, simply point your browser to http://localhost/
xampp.

Setting the security level
When you have a web server and a data server running, you create some
major security holes. You should take a few precautions to ensure that
you’re reasonably safe:

http://localhost/xampp
http://localhost/xampp

Creating Your Own Server with XAMPP918

 ✦ Treat your server only as a local asset. Don’t run a home installation of
Apache as a production server. Use it only for testing purposes. Use a
remote host for the actual deployment of your files. It’s prepared for all
the security headaches.

 ✦ Run a firewall. You should run, at an absolute minimum, the Windows
firewall that comes with all recent versions of Windows (or the equiva-
lent for your OS). You might also consider an open-source or commercial
firewall. Block incoming access to all ports by default and open them
only when needed. There’s no real need to allow incoming access to
your web server. You only need to run it in localhost mode.

 The ports XAMPP uses for various tools are listed on the security screen
shown in Figure 1-4.

 ✦ Run basic security checks. The XAMPP package has a handy security
screen. Figure 1-4 shows the essential security measures. I’ve already
adjusted my security level, so you’ll probably have a few more “red
lights” than I do. Click the security link at the bottom of the page for
some easy-to-use security utilities.

Figure 1-4:
The XAMPP
Security
panel
shows a few
weaknesses.

 ✦ Change the MySQL root password. If you haven’t already done so, use the
security link to change the MySQL root password, as shown in Figure 1-5.
(I show an alternative way to change the password in Book VI, Chapter 1.)

 ✦ Add an XAMPP Directory password. Type a password into the lower
half of the security form to protect your XAMPP directory from unau-
thorized access. When you try to go to the XAMPP directory, you’re
prompted for this password.

Book VIII
Chapter 1

M
anaging Your

Servers
Creating Your Own Server with XAMPP 919

Figure 1-5:
Changing
the MySQL
root
password.

Security is always a compromise. When you add security, you often intro-
duce limits in functionality. For example, if you changed the root password
for MySQL, some of the examples (and phpMyAdmin) may not work any-
more because they’re assuming that the password is blank. You often have
to tweak. See Chapter 1 in Book VI for a complete discussion of password
issues in MySQL and phpMyAdmin.

Compromising between functionality and security
You may be shocked that my example still has a couple of security holes. It’s
true, but it’s not quite as bad as it looks:

 ✦ The firewall is the first line of defense. If your firewall blocks external
access to your servers, the only real danger your system faces is from
yourself. Begin with a solid firewall and ensure that you don’t allow
access to port 80 (Apache) or port 3306 (MySQL) unless you’re abso-
lutely sure that you have the appropriate security measures in place.

 ✦ I left phpMyAdmin open. phpMyAdmin needs root access to the MySQL
database, so if anybody can get to phpMyAdmin through the web server,
they can get to my data and do anything to it. Because my firewall is
blocking port 80 access, you can’t get to phpMyAdmin from anything
other than localhost access, and it’s not really a problem.

 ✦ I’m not running a mail or FTP server on this machine. The security
system isn’t sure whether my FTP or mail system is secure, but because
I’m not running them, it isn’t really a problem.

Choosing a Web Host920

 If you’re having troubles getting Apache to start, take a look at the other pro-
grams you have running. Sometimes other programs use the same ports that
XAMPP needs, and cause problems. Messaging programs (like Skype) are
notorious for this. If you can’t start Apache while Skype is running, turn off
Skype (or the other offending software) until Apache is turned on. Typically
you’ll be able to run Skype after Apache is running.

Choosing a Web Host
Creating a local server is useful for development purposes because you can
test your programs on a server you control, and you don’t need a live con-
nection to the Internet.

However, you should avoid running a production server on your own com-
puter, if you can. A typical home connection doesn’t have the guaranteed IP
number you need. Besides, you probably signed an agreement with your broad-
band provider that you won’t run a public web server from your account.

This situation isn’t really a problem because thousands of web hosting ser-
vices are available that let you easily host your files. You should consider an
external web host for these reasons:

 ✦ The host, not you, handles the security headaches. This reason alone
is sufficient. Security isn’t difficult, but it’s a never-ending problem
(because the bad guys keep finding new loopholes).

 ✦ The remote server is always up. Or, at least, it should be. The web server
isn’t doing anything other than serving web pages. Your web pages are
available, even if your computer is turned off or doing something else.

 ✦ A dedicated server has a permanent IP address. Unlike most home
connections, a dedicated server has an IP address permanently assigned
to it. You can easily connect a domain name to a permanent server so
that users can easily connect.

 ✦ Ancillary services usually exist. Many remote hosting services offer
other services, like databases, FTP, and e-mail hosting.

 ✦ The price can be quite reasonable. Hosting is a competitive market,
which means that some good deals are available. Decent hosting is avail-
able for free, and improved services are extremely reasonable.

You can find a number of free hosting services at sites like http://free-
webhosts.com.

Finding a hosting service
When looking for a hosting service, ask yourself these questions:

 ✦ Does the service have limitations on the types of pages you can host?
Some servers are strictly for personal use, and some allow commercial

http://free-webhosts.com
http://free-webhosts.com

Book VIII
Chapter 1

M
anaging Your

Servers
Choosing a Web Host 921

sites. Some have bandwidth restrictions and close your site if you draw
too many requests.

 ✦ How much space are you given? Ordinary web pages and databases
don’t require a huge amount of space, but if you do a lot of work with
images, audio, and video files, your space needs increase dramatically.

 ✦ Is advertising forced on you? Many free hosting services make money
by forcing advertisements on your pages. This practice can create a
problem because you might not always want to associate your page with
the company being advertised. (A page for a day care center probably
should not have advertisements for dating services, for example.)

 ✦ Which scripting languages (if any) are supported? Look for PHP support.

 ✦ Does the host offer prebuilt scripts? Many hosts offer a series of pre-
built and preinstalled scripts. These can often include content manage-
ment systems, message boards, and other extremely useful tools. If you
know that you’re going to need Moodle, for example (a course manage-
ment tool for teachers), you can look for hosting services that have it
built in. (If a tool you want isn’t there, make sure you have FTP access so
you can install it yourself.)

 ✦ Does the host provide access to a database? Is phpMyAdmin support
provided? How many databases do you get? What is the size limit?

 ✦ What sort of Control Panel does the service provide? Does it allow
easy access to all the features you need?

 ✦ What type of file management is used? For example, determine how
you upload files to the system. Most services use browser-based upload-
ing. This system is fine for small projects, but it’s quite inconvenient if
you have a large number of files you want to transfer. Look for FTP sup-
port to handle this.

 ✦ Does the host have an inactivity policy? Many free hosting services
automatically shut down your site if you don’t do anything with it (usu-
ally after 30 to 90 days of inactivity). Be sure you know about this policy.

 ✦ Do you have assurances that the server will remain online? Are back-
ups available? What sort of support is available? Note that these ser-
vices are much more likely on a paid server.

 ✦ How easily can you upgrade if you want? Does a particular hosting
plan meet your needs without being too expensive?

 ✦ Does the service offer you a subdomain, and can you register your
own? You may also want to redirect a domain that you didn’t get
through the service. (See the section “Naming Your Site,” later in this
chapter, for information on domain names.)

 ✦ What kind of support is available? Most hosting services have some
kind of support mechanism with e-mail or ticket systems. Some hosts
offer live chat, and some have telephone support. Talking to a real
human in real time can be extremely helpful, and this is often worth
paying for.

Managing a Remote Site922

Connecting to a hosting service
The sample pages for this book are hosted on Freehostia.com, an excellent,
low-cost hosting service. You can find many great hosting services, but the
rest of the examples in this chapter use Freehostia, where the examples for
this book are hosted.

Choose whichever hosting service works for you. If you find a free hosting
service that you really like, upgrade to a paid service. Hosting is a reason-
ably cheap commodity, and a quality hosting service is well worth the
investment.

Managing a Remote Site
Obviously, having a hosting service isn’t much fun if you don’t have pages
there. Fortunately, there are a lot of ways to work with your new site.

Using web-based file tools
Most of the time, your host has some sort of Control Panel that looks like the
one shown in Figure 1-6.

Figure 1-6:
This Control
Panel
allows you
to manage
your site
remotely.

There’s usually some sort of file management tool that might look like the
one shown in Figure 1-7.

Book VIII
Chapter 1

M
anaging Your

Servers
Managing a Remote Site 923

Figure 1-7:
This file
management
tool allows
you to
manipulate
the files on
your system.

In this particular case, all my web files are in the www/aharrisbooks.net
directory, so I click to see them. Figure 1-8 shows what you might see in an
actual directory.

Figure 1-8:
Now, you
can see
some files
here.

This page allows you to rename, upload, and edit existing files and change
file permissions.

http://www/aharrisbooks.net

Managing a Remote Site924

You can create or edit files with a simple integrated editor: Build a new file
with the Create File button. Type a filename into the text area and click the
button. You can also click the edit button next to a file, and the file will open
in the editor. In either case, the text editor shown in Figure 1-9 appears.

Figure 1-9:
The hosting
service has
a limited
text editor.

You can write an entire website using this type of editor, but the web-based
text editing isn’t helpful, and it’s kind of awkward. More often, you create
your files on your own XAMPP system and upload them to the server when
they’re basically complete. Use server-side editing features for quick fixes
only.

Understanding file permissions
Most hosting services use Linux or Unix. These operating systems have a
more sophisticated file permission mechanism than the Windows file system
does. At some point, you may need to manipulate file permissions.

Essentially, the universe is divided into three populations: Yourself, your group,
and everybody else. You can allow each group to have different kinds of per-
mission for each file. Each of the permissions is a Boolean (true or false) value:

 ✦ Read permission: The file can be read. Typically, you want everybody
to be able to read your files, or else you wouldn’t put them on the web
server.

 ✦ Write permission: The file can be written, changed, and deleted.
Obviously, only you should have the ability to write to your files.

 ✦ Execute permission: Indicates that the file is an executable program or
a directory that can be passed through. Normally, none of your files is
considered executable, although all your directories are.

Book VIII
Chapter 1

M
anaging Your

Servers
Managing a Remote Site 925

Using FTP to manage your site
Most of the work is done on a local machine and then sent to the server in
a big batch. (That’s how I did everything in this book.) The standard web-
based file management tools are pretty frustrating when you want to effi-
ciently upload a large number of files.

Fortunately, most hosts have the FTP (File Transfer Protocol) system avail-
able. FTP is a client/server mechanism for transferring files efficiently. To use
it, you may have to configure some sort of FTP server on the host to find out
which settings, username, and password you should use. Figure 1-10 shows
the Freehostia Control Panel with this information displayed.

Figure 1-10:
Configuring
the FTP
server.

You also need an FTP client. Fortunately, many free clients are available. I
like FileZilla, for a number of reasons:

Permissions are typically treated as binary
numbers: 111 means “read, write, execute.”
This (111 value) is also a 7 permission because
111 binary translates to 7 in base ten (or base
eight, but let’s skip that detail for now).

A permission is read as three digits, each one a
number indicating the permissions, so 644 per-
mission means rw- r– r–. This example can

be translated as “The owner should be able to
read and write this file. Everyone else can read
it. Nobody can execute it.”

If you don’t understand this concept, don’t
worry about it. The guidelines are very simple:
Make sure that each of your files has 644 per-
mission and that each directory has 755 per-
mission. That’s all you really need to know.

What’s with all the permissions?

Managing a Remote Site926

 ✦ It’s free and open source. That’s always a bonus.

 ✦ It works the same on every OS. If I’m on Windows, Linux, or Mac, it
works the same.

 ✦ It’s easy to use. It feels a lot like a file manager.

Figure 1-11 shows FileZilla running in my browser.

Figure 1-11:
FileZilla is
an excellent
free FTP
client.

Using an FTP client
FileZilla and other FTP programs all do pretty much the same thing. Here’s
how to use it:

 1. Download and install FileZilla.

 You can download FileZilla for free at http://download-filezilla-
ftp-free.com/. (There is also a link at my main page: www.
aharrisbooks.net.)

 2. Gather the login information.

 You’ll need to get your FTP login information from your service provider.
Normally this consists of a special address (like a URL, but it begins with
ftp://), a username, and a password. These are not necessarily the
same credentials used to log in to the server.

 3. Enter host information.

 Use the site manager (Ctrl+S or File➪Site Manager) to manage your site.
Select the New Site button to build a new connection.

http://download-filezilla-ftp-free.com/
http://download-filezilla-ftp-free.com/
http://www.aharrisbooks.net
http://www.aharrisbooks.net

Book VIII
Chapter 1

M
anaging Your

Servers
Managing a Remote Site 927

 There’s a place in the dialog box to enter your login information. Put
the address (which usually begins with ftp://) in the host box, with
your username and password in the other boxes. You can typically
leave the port box blank, as this information is normally determined
automatically. (If in doubt, try port 21 or 22.) If an ordinary FTP con-
nection doesn’t work, check with your server to see if you need to use
SFTP (a more secure variant) instead. If so, just select the appropriate
encryption method (provided by your server) in the Encryption field.
Once you’ve made the connection, SFTP acts almost exactly like FTP.
Figure 1-12 shows the Site Manager dialog box.

Figure 1-12:
Setting
up an FTP
account
with
FileZilla.

 4. Connect to the FTP server.

 Click Connect to make the connection. A flurry of obscure messages flies
through the top panel. In a few seconds (if all went well), you’ll see a
directory listing of the remote system in the right-hand panel.

 5. Use the left panel to manage local files.

 The left-hand panel controls the local file system. Use this to find files
on your local computer. It’s a normal file management system like My
Computer or Finder.

 6. Use the right panel for remote files.

 The right-hand panel controls the remote server file system. It works
exactly like the local system, except it allows you to manipulate files on
the remote system. Use this system to move to the appropriate direc-
tory on the remote system. You can also create a new directory or
rename files with the appropriate buttons on this screen.

Naming Your Site928

 7. Drag files to transfer them.

 To transfer files between machines simply drag them. Drag from the
local machine to the remote machine to upload, or in the other direction
to download them. You can move many files at a time in this manner.

 8. Watch for errors.

 Most of the time, everything works great, but sometimes there is a prob-
lem. The bottom panel shows potential error messages. If there is an
error, you may need to reload a file.

 Most remote servers run some variation of the Unix operating system. You
may not be familiar with Unix, but it really works a lot like the systems you
already know. However, it has one feature that may be new to you: file per-
missions. Most of the time, an FTP program automatically gets the file per-
missions right, but if the browser cannot see a file after you upload it to the
server, try right-clicking that file in FileZilla and look at its properties. Most
web files should have a permission set called 644 (which means you can
read and write the file, everyone else can read it, and nobody can run it on
the server). If it is set to something else, try changing it to 644. Web directo-
ries should typically have 755 permission, which is almost always the
default.

 FTP is a completely unsecure protocol. Anything you transfer with FTP is
completely visible to any bad guys sniffing the Internet. For this reason,
some servers use a different protocol: Secure FTP (SFTP). Filezilla supports
this and other protocols your server might use.

Naming Your Site
After you have a site up and running, you need to give it an address that
people can remember. The Domain Name System (DNS) is sort of an address
book of the entire Internet. DNS is the mechanism by which you assign a
name to your site.

Understanding domain names
Before creating a domain name, you should understand the basics of how
this system works:

 ✦ Every computer on the Internet has an IP (Internet Protocol) address.
When you connect to the Internet, a special number is assigned to
your computer. This IP address uniquely identifies your computer.
Client machines don’t need to keep the same address. For example,
my notebook has one address at home and another at work. The client
addresses are dynamically allocated, and that’s fine. But a server needs
a permanent address that doesn’t change.

Book VIII
Chapter 1

M
anaging Your

Servers
Naming Your Site 929

 ✦ IP addresses are used to find computers. Any time you request a web
page, you’re looking for a computer with a particular IP address. For
example, the Google IP address is 66.102.9.104. Type it into your
browser address bar, press Enter, and you see the Google main page.

 ✦ DNS names simplify addressing. IP numbers are too confusing for
human users. The Domain Name System (DNS) is a series of databases
connecting website names with their associated IP numbers. When you
type http://www.google.com, for example, the DNS system looks up
the text www.google.com and finds the computer with the associated IP.

 ✦ You have to register a DNS name. Of course, to ensure that a particular
name is associated with a page, you need to register that relationship.

Registering a domain name
In this section, I show you how to register a domain using Freehostia.com.
Check the documentation on your hosting service. Chances are that the
main technique is similar, even if the details are different.

To add a domain name to your site, follow these steps:

 1. Log in to the service.

 Log in to your hosting service administration panel. You usually see a
Control Panel something like the one shown in Figure 1-13.

Figure 1-13:
This Control
Panel
shows all
the options,
including
domain and
subdomain
tools.

 2. Find the domain manager.

 In Freehostia, the domain manager is part of the regular administration
panel.

http://www.google.com
http://www.google.com

Naming Your Site930

 3. Pick a subdomain.

 In a free hosting service, the main domain (freehostia.com, for
example) is often chosen for you. Sometimes, you can set a subdomain
(like mystuff.freehostia.com) for free. The page for managing this
process might look like Figure 1-14.

Figure 1-14:
Use this
page to
create a
subdomain
for your
account.

 4. Look for a domain search tool.

 Often, you have a tool, like the one shown in Figure 1-15, that allows you
to search for a domain.

 5. Search for the domain name you want.

 You can type a domain name to see whether it’s available.

Figure 1-15:
I’m
searching for
aharrisbooks.
net — it
seems
like a good
name!

http://freehostia.com
htt://mystuff.freehostia.com

Book VIII
Chapter 1

M
anaging Your

Servers
Managing Data Remotely 931

 6. If the domain name is available to register and you want to own it,
purchase it immediately.

 If a domain is available to transfer, it means that somebody else prob-
ably owns it.

 Don’t search for domains until you’re ready to buy them. Unscrupulous
people on the web look for domains that have been searched and then buy
them immediately, hoping to sell them back to you at a higher price. If you
search for a domain name and then go back the next day to buy it, you often
find that it’s no longer available and must be transferred. I’ve also seen
people offer to sell you a domain that’s currently available, then buy it up
only after you’ve agreed to purchase from them and sell it at a huge markup.

 7. Register the domain.

 The domain-purchase process involves registering yourself as the
domain owner. WHOIS information provides your information to people
inquiring about the domain name.

 8. Wait a day or two.

 Your new domain name won’t be available immediately. It takes a couple
of days for the name to be registered everywhere.

 9. Remember to renew your domain registration.

 Domain-name registration isn’t expensive (typically about $10 per year),
but you must renew it or risk losing the name.

Managing Data Remotely
Websites often work with databases. Your hosting service may have features
for working with MySQL databases remotely. You should understand how
this process works because it’s often slightly different from working with the
database on your local machine.

Creating your database
Often, a tool like the one shown in Figure 1-16 allows you to pick a defined
database or create a new one.

Figure 1-16:
You often
have to
create a
database
outside of
phpMy-
Admin.

Managing Data Remotely932

This database creation step happens because you don’t have root access
to MySQL. (If everybody had root access, chaos would ensue.) Instead,
you usually have an assigned username and database name enforced by the
server. On Freehostia, all database names begin with the username and an
underscore. To create a new database, you need to provide a database name
and a password. Usually, a MySQL user is created with the same name as the
database name.

After you create the database, you can select it to work with the data
in MySQL. Figure 1-17 shows the MySQL screen for my database on
Freehostia.

You can see from Figure 1-17 that phpMyAdmin is somewhat familiar if you
read Book VI. Often, public servers remove the Privileges section because
you aren’t logged in as root. Everything else is basically the same. See Book
VI for details on how to use phpMyAdmin to work with your databases.

Finding the MySQL server name
Throughout Book VI, I assume that the MySQL server is on the same physi-
cal machine as the web server. This situation is common in XAMPP installa-
tions, but commercial servers often have separate servers for data. You may
have to dig through the documentation or find a Server Statistics section to
discover how your PHP programs should refer to your server.

By far the biggest problem when moving your programs to a remote server
is figuring out the new connection. Make sure that you know the right combi-
nation of server name, username, and password. Test on a simple PHP appli-
cation before working on a complex one.

Figure 1-17:
phpMy-
Admin is
just like
the one on
your home
machine!

Chapter 2: Planning Your Sites

In This Chapter
✓ Planning multipage websites

✓ Working with the client

✓ Analyzing the audience

✓ Building a site plan

✓ Creating HTML and CSS templates

✓ Fleshing out the project

A
t some point, your web efforts begin to grow. Rather than think about
single web documents, you begin to build more complex systems.

Most real-life web problems require a lot more than a single page to do the
work. How do you make the transition to a site with many different but inter-
connected pages? How do you think through the process of creating a site
that serves a specific purpose?

You might even be thinking about doing commercial web development work.
If so, it’s definitely time to think about how to put together a plan for a
customer.

Creating a Multipage Website
A complete website has these characteristics:

 ✦ A consistent theme: All the pages in a website should be about some-
thing — a product, a shop, a hobby. It doesn’t matter much what the
theme is, but the pages should be unified around it.

 ✦ Consistent design: The site should have a unified color scheme. All
pages should have the same (or similar) layout, and the font choices
and images should all use a similar style.

 ✦ A navigation scheme: Users must have a clear mechanism to move
around from page to page. The organization of the pages and their rela-
tionships should be clear.

 ✦ A common address: Normally, all pages in a site are on the same server
and have a common DNS name so that they’re easy to distinguish.

Planning a Larger Site934

Obviously, the skills of web design are critical to building a website, but a
broader skill set is required when creating something larger than individual
pages.

If you’re starting to build a more complicated website, you need to have a
plan, or else you won’t succeed. This plan is even more important if you’re
building a site for somebody else.

Planning a Larger Site
Here are some questions you need to ask yourself when designing a larger
website:

 ✦ What’s the point of the site? The site doesn’t have to be serious, but it
does have to have a theme. If you don’t know what your site is about,
neither do your users (and they’ll leave in a hurry).

 ✦ Who am I talking to? Websites are a form of communication, and you
can’t communicate well if you don’t understand your audience. Who is
the primary target audience for this site?

 ✦ Which resources do I have available? Resources involve a lot more
than money (but it helps). How much time do you have? Do you have
access to a solid technical framework? Can you get help if you need it?
Do you have all the copy and raw materials?

 ✦ What am I trying to say? Believe it or not, this question often poses a
huge problem. Somebody says, “I need a website.” When you ask what
she wants on the site, she says, “Oh, lots of things.” When you try to
pin down the answers, though, people often don’t know what they want
their website to say.

 ✦ What are the visual design constraints? If you’re building a page for
a small business, it probably has some kind of visual identity (through
brochures or signage, for example). The business owner often wants you
to stick with the company’s current branding, which may involve negoti-
ating with graphic artists or advertisers the business has worked with.

 ✦ Where will I put this thing? Does the client already have a domain
name? Will moving the domain name cause a problem? Does content
that’s already on the web need to be moved? Do you already have host-
ing space and a DNS name in mind?

Understanding the Client
Often, a larger site is created at the behest of somebody else. Even if you’re
making a site for your own purposes, you should consider yourself a client.
If the project is going to be successful, you need to know a few things about
the client, as described in the following sections.

Book VIII
Chapter 2

Planning Your Sites

Understanding the Client 935

Ensuring that the client’s expectations are clear
The short answer to the question of whether a client’s expectations are clear
is, “Not usually.”

A client who truly understands the Internet and knows what it takes to real-
ize her vision for the site probably doesn’t need you. Most of the time, a
client’s own concepts of what should happen on the site are vague, at best.
Here are some introductory questions you can ask to get a sense of your cli-
ent’s expectations:

 ✦ What are you trying to say with this site? If the website has a single
message that can be boiled down to one phrase or sentence, find out
what that message is.

 ✦ Who are you trying to reach with this site? Determine who the
client expects to be the typical users of the site. Find out whether she
expects others and whether the site has more than one potential type
of user. (For example, customers and employees may need different
things.)

 ✦ What problem is this site trying to solve? Sometimes, a website is envi-
sioned as a solution to a particular problem (getting the schedule online
or keeping an online newsletter updated, for example.)

 ✦ What kind of design framework is already in place? Determine
whether the organization already has some sort of branding and design
strategy or whether you have freedom in this arena. If the client is
already working with a graphic designer or artist, you’ll need contact
information.

 ✦ What is the time constraint? Find out how quickly the client needs the
site completed. Does the client want the entire project at one time, or
can it be phased in?

 ✦ Do you already have a technical framework in place? Determine
whether the project needs to work with an existing database, web
server, website, or domain name and whether you have complete access
to those resources.

 ✦ Are there security concerns? First ask whether you will be asked
to post data (personal information, credit card numbers, or Social
Security numbers, for example) on the Internet that shouldn’t be there.
Run from any project that requires you to work with this potentially
dangerous data, unless you’re extremely comfortable with security
measures.

 ✦ How will you get the copy? Any professional web developer can tell you
that the client usually promises to make the copy available immediately
but rarely delivers it without a lot of pleading. If the content is available,
it’s often incomplete or incorrect. You need to have some plan for get-
ting the material from the client, or else you cannot proceed past a cer-
tain point.

Understanding the Client936

 ✦ Does the client have a remuneration strategy? If you will be paid for
your work, find out how you will be paid and whether it’s hourly or by
the project. If you have a business arrangement, treat it as such and
write out a contract. Even if the page is written for free for a friend, a
written contract is a good idea because you don’t want to ruin a friend-
ship over something as silly as a website.

Delineating the tasks
Building a website can involve a lot of different tasks. Your contract should
indicate which of these tasks is expected. This list describes the potential
scope of the project:

 ✦ Site layout: Determine which pages the site has and how they’re con-
nected to each other.

 ✦ HTML coding: Some projects simply require HTML coding and CSS.
Presumably, the copy has already been provided, and you simply need
to convert it to HTML format. This work isn’t difficult, but it’s tedious.
Use a text editor with macro capability — after you create an HTML
template.

 ✦ HTML template design: Devise an overall page design. The content
isn’t important here, but the general page design is the issue. This task
requires sample data and an editor. It’s normally done in conjunction
with CSS templating.

 ✦ CSS design: After you have an HTML template or two (so that you know
the logical structure of the pages), you can work on the visual design.
Start with sketches on paper and maybe images from a paint program.
After you have a layout approved, write the CSS to implement it.

 ✦ Data design: If the project will have a database component, take some
time to analyze (and, often, rebuild) the data structure to follow the nor-
malization rules. Data work is difficult because it doesn’t have a visual
result, yet it’s critical to the overall site. This step is usually put off until
the end, and that decision often dooms web projects. If you need data
design, start it early.

 ✦ Data implementation: If the project has a data component, write and
test the SQL code to build the database, including tables, views, and
sample queries. You need time to write PHP code to connect the data-
base to the HTML front end.

 ✦ Site integration and implementation: It takes some effort to fit all the
pieces back together and make them work. Usually, this process is ongo-
ing. The site needs to be set up on a production server and then tested
and launched.

 ✦ Testing: Testing your work with live users is critical. You can use formal
usability studies, but failing that, you still learn a lot by asking people to
use your system and watching them do it (with your mouth shut). This

Book VIII
Chapter 2

Planning Your Sites

Understanding the Audience 937

method is the best way to see whether your assumptions are correct
and the site is doing what it needs to do.

 For this discussion, I’m assuming you’re building the entire site manually. In
Chapter 3 of this minibook, I explain how to use content management sys-
tems to simplify the process of building large websites.

Understanding the Audience
Understanding your audience is one of the trickiest parts of web planning.
You need to anticipate the audience in a number of ways, as described in the
following sections.

Determining whom you want to reach
Before you make a lot of design decisions, you need to think carefully about
the type of person you’re trying to reach with the website.

Try to anticipate the mindset that people have when they use a particular
site. For example, one of my students simultaneously worked on two sites:
one for a graduate program at a university and another for a spa and salon.
She had to think quite differently about the users of the two sites, which had
implications for how she approached each step of the process.

The graduate program page was part of a website for a university. The uni-
versity already had its own style and branding guidelines, official colors,
and a number of (evolving) standards. The potential users of this site were
graduate students seeking online degrees. The focus of this site was all busi-
ness. People were there to learn about the graduate program and set up
their schedules. They wanted information about classes, instructors, and
schedules, but they didn’t want anything that interfered with the problem at
hand. The writing was efficient and official, the color scheme was standard,
and the layout was also official.

The spa and salon page had an entirely different feel. The owner loves design
and spent long hours picking exactly the right paint color for the walls in
the physical space. She’s really happy with her brochure, and although she’s
not sure exactly what she wants, she knows when something isn’t right. She
wants to give her customers information about the salon, but more impor-
tantly, she wants them to get a sense of how invigorating, relaxing, and femi-
nine the experience of visiting her salon can be.

These two sites, although they require the same general technical skills,
demand vastly different visual and technical designs because the clients and
their users are vastly different.

Of course, someone could simultaneously be a graduate student and a
patron of the salon, but the person would still have a different identity in

Understanding the Audience938

these different sites. If you’re going to a university site, in a student mindset,
you want quick, reliable information. If, after you sign up for classes, you’re
looking for a salon, you likely want to be pampered. Websites are experi-
ences. The design of the site should reflect the experience you’re trying to
give the user when he visits your site.

Finding out the user’s technical expertise
Understanding the user isn’t just an exercise in psychology. You also need to
estimate the users’ technical proficiency because it can have a major impact
on your site. Consider these issues for the typical user:

 ✦ Whether the user has broadband access: University students, hard-core
gamers, and web developers often have high-speed Internet access, so
they don’t mind a page with lots of video, multimedia assets, and large
file sizes. (In fact, they may expect a page like this.) Lots of people still
use dialup connections or mobile access with limited bandwidth. If your
audience has slower connections, every image creates a delay. Audio
and video assets are completely unavailable to this group — and even
make your site unattractive to them.

 ✦ Whether the user has a recent browser: You have no way to predict
which browser a user has, but think about whether your target audience
has a reason to install any of the current browsers. By and large, grand-
mothers use whichever browsers were on their machines when they
purchased them. (I do know some L337 H@XX0R grandmas, however.) If
most people in your audience are still using ancient browser — believe
it or not, they’re still used a lot — using advanced CSS and JavaScript
tricks on your page may not be the best choice.

 ✦ Whether the user has a recent computer: As technical people, we tend
to assume that everyone else keeps up-to-date on technology. That’s not
necessarily an accurate assumption.

 ✦ Whether the user has certain proficiencies: If you include a Flash ani-
mation, for example, the user might not have the right version of Flash
installed. You have to decide whether it’s reasonable to expect the user
to install a plug-in.

 ✦ Whether this will be a largely mobile application: These days, every
website should be considered a potential mobile site, but if a large per-
centage of your visitors will be using mobile devices to view your page,
this will have implications on your design.

This process isn’t about stereotyping, but you must consider the user while
you’re building a site. You want to match users’ expectations and capabili-
ties, if possible.

 Of course, you’re making assumptions here, and you may well be wrong. I
once did some work for a club for retired professors, and I based my expec-
tations on their being retired. I should have based my assumptions on their

Book VIII
Chapter 2

Planning Your Sites

Building a Site Plan 939

being professors. And they let me have it! Be willing to adjust your expecta-
tions after you meet real users. (For professional work, you must meet and
watch real users use your site.)

Building a Site Plan
Often, the initial work on a major site involves creating a plan for the site
design. I like to do this step early because it helps me see the true scope of
the project. A site plan is an overview of a website. Normally, it’s drawn as a
hierarchy chart.

I was asked to help design a website for an academic department at a major
university. The first question I asked was, “What do you want on the web-
site?” I wrote down everything on a whiteboard, with no thought of organiza-
tion. Figure 2-1 shows a (cleaned-up) version of that sketch.

Figure 2-1:
We need a
lot of stuff
on this site.
Good grief!

Course Info N100

Other classes

Sections

Sections

CS club

ACS MS

Key cards

Events calendar

Seminars
SPAN/AP

Alumni/Partners

Requirements

699

Sections

Advising

Requirements

Advising

Advising

Facilities

Staff

Faculty

System FAQ

Visiting us

Projects

Labs

Advising
Advising

PhD
BS

Requirements
Requirements

Internships

Work requests

DE support

Research

Networks

Intelligent systems

BioInformatics

Department Page Needs

 For all the sketches in this chapter, I used Dia, the open-source drawing tool.
An excellent tool for this kind of work, I’ve added a link on the website so
that you can play with it.

After all participants suggested everything they thought their site needed, I
shooed them out of the room. Using only paper and pencil, I created a more
organized sketch based on how I thought the information should be orga-
nized. My diagram looked like the one shown in Figure 2-2.

Building a Site Plan940

Figure 2-2:
This chart
shows an
organized
represen
tation of the
data.

Course Info Degree Info

N100

Sections

Other classes

Sections

Sections

699

ACS

Requirements

Advising

BS

Advising

Requirements

MS

Requirements

Advising

PhD

Requirements

Advising

People

Faculty

Facilities

Labs

System FAQ

Key cards

Work requests

DE support

Staff

Advising

CS Club

Alumni/partners

Projects/Internships

Events/opportunities

Projects

Internships

Visiting Us

Events calendar

Seminars

SPAN/AP

Research

Networks

Intellignet systems

Bioinformatics

Creating a site overview
Keep these suggestions in mind while creating a site overview diagram:

 ✦ Use the Law of Seven. This law suggests that people generally can’t
handle more than seven choices at a time. Try not to have more than
seven major segments of information at any level. Each of these can be
separated into as many as seven chunks, and each of these can have
seven chunks.

 Note: Even this book uses the Law of Seven! (Well, sorta — this book has
eight minibooks.) The monster you’re holding is too intimidating to look
at as just one book, but if you break it into smaller segments, it becomes
easier to manage. Clever, huh?

 ✦ Identify commonalities. While you look over the data, general group-
ings emerge. In the university example, I could easily see that we had a
lot of course data, degree information, information about faculty, and
research. I wanted to consider a few other topics that didn’t fit as well,
until I realized that they could be grouped as events and opportunities.

 ✦ Try to assign each topic to a group. I’m doing a form of data normal-
ization here. This data structure isn’t necessarily a formal one, but I’m
using the same sort of thinking, so it could be. Clearly, I’m using the prin-
ciple of functional dependency.

 ✦ Arrange a hierarchy. Group the topics from most general to most spe-
cific. For example, the term course info is very broad. N100 is a specific
course, and it may have many sections (specific date, time, and instruc-
tor combinations). Thus, it makes sense to group sections under N100
and to group N100 under courses.

Book VIII
Chapter 2

Planning Your Sites

Building a Site Plan 941

 ✦ Provide representative data. Not every single scrap of information is
necessary here. The point is to have enough data so you can see the
relationships among data.

 ✦ Keep in mind that this diagram does not represent the site design.
When I showed this diagram to people, many assumed that I was setting
up a menu structure, and they wanted a different kind of organization or
menu. That’s not the point yet. The purpose of this type of diagram is
to see how the data itself fits together. Of course, this diagram tends to
inform the page setup and the menu structure, but it doesn’t have to.

 ✦ Not each box is a page. It might be, but it doesn’t have to be. Later in
the process, you can decide how to organize the parts of the site. For
example, we decided to put all sections of N100 on one page with the
N100 information using AJAX.

Building this sort of site diagram is absolutely critical for larger sites, or else
you never really grasp the scope of the project. Have the major stakehold-
ers look it over to see whether it accurately reflects the information you’re
trying to convey.

Building the site diagram
The site diagram is a more specific version of the site overview. At this point,
you make a commitment about the particular pages you want in the system
and their organizational relationship. Figure 2-3 shows a site diagram for the
department site.

Figure 2-3:
Now you
have a site
diagram
for the
department
site.

Sections

Other classes

Sections

699

Sections

Main Page
News

greeting
(Main tplt)

Projects

Internships

Visiting Us

Events calendar

Seminars

SPAN/AP

Events/Opportunities

Course info
(Course tplt)

Degree info

N100
ACS

Requirements

Advising

Advising

BS

Requirements

MS

Requirements

Advising

Advising

PhD

Requirements

People
(People tplt)

Faculty

Staff

Advising

CS Club

Alumni/partners

Facilities

Labs

System FAQ

Key cards

Work requests

DE support

Research

Networks

Intelligent systems

Bioinformatics

Department Site Plan

All pages not otherwise indicated use std tplt

Building a Site Plan942

The site diagram is a bit different from the overview for these reasons:

 ✦ Each box represents a page. Now you have to make some decisions
about how the pages are organized. Determine at which level of the
overview you have separate pages. For example, are all the course sec-
tions on one page, or all the sections of N100? Does each section of each
course have a different page? These decisions will help you determine
which technologies to use in constructing the page.

 ✦ The site diagram still doesn’t need every page. If you have 30 classes,
you don’t need to account for each one if you know where they go and
they all have the same general purpose and design.

 ✦ The navigation structure should be clear. The hierarchy should give you
a clear navigation structure. (Of course, you can, and often should, add a
secondary navigation structure. See the sidebar “Semantic navigation.”)

 ✦ Name each box. Each page should have a name. These box names trans-
late to page titles and help you form a unified title system. This arrange-
ment is useful for your navigation scheme.

 ✦ Identify overall layout for each box. Generally, a site uses only a few lay-
outs. You have a standard layout for most pages. Often, the front page has
a different layout (for news and navigation information). You may have
specialty layouts, as well. For example, the faculty pages all have a specific
layout with a prominent image. Don’t plan the layout here — just identify it.

 ✦ Sort out the order. If the order of the pages matters, the site diagram
is the place to work it out. For example, I organized the degrees from
undergraduate to PhD programs.

The goal for this part of the site-planning process is to have a clear under-
standing of what each page requires. This information should make it easy
for you to complete the data and visual design steps. The site diagram is an
absolutely critical document. After you have it approved, print it and tape it
to your monitor. It’s your map for the rest of the project.

One idea that has been popular in web design
circles is the notion of semantic navigation,
where you set up your menu structure so that
it reflects the jobs people are trying to do,
rather than reflect the hierarchy of your sites.
For example, a university department site might
have a menu for common student activities,
alumni, and faculty.

This idea can be quite helpful if done properly,
but don’t try to set up your entire site this way

because it involves too much duplication of
data. (Students and faculty both need course
information, but you don’t want to post that
in two different places.) Instead, set up your
site in a normalized way, and then put another
menu system on your site that allows users to
choose the section of the site they want based
on problems they’re trying to solve. Then, you
create the best of both worlds.

Semantic navigation

Book VIII
Chapter 2

Planning Your Sites

Creating Page Templates 943

Creating Page Templates
If you’ve developed a site diagram, you should have a good feel for the over-
all requirements of the web development project. You should know how
many layouts you need and the general requirements for each one. Your next
task is to think about the visual design. Here are some guidelines:

 ✦ Get help if you need it. Visual design is a skill that requires insight and
experience. If you “design like a programmer” (I sure do!), don’t be afraid
to get help from a person who has design sensibility. You still need to
translate the design into code, however.

 ✦ Identify unifying design goals. All pages on the site have certain char-
acteristics in common. Find out the overall color scheme, whether you
will have a logo, and whether all pages will have the same header and
retain the same fonts throughout.

 ✦ Identify a primary layout. Generally, a website requires one major
layout that’s repeated throughout the site. Often, the main page does
not use this primary layout, but most internal pages do. Determine, for
example, which broad design elements can be shared by most of the
pages, whether every page has a headline, whether you need columns,
and how important images are.

 ✦ Identify specialty designs. The main page is often a bit different from
the other pages because it serves as an overview to the site. Likewise,
if you will be repeating certain kinds of pages (the course pages and
faculty pages in my university example), you have to know how these
designs differ from the primary layout. Keep design elements as consis-
tent as you can because unity makes your job easier and ties the site
pages together.

Sketching the page design
Do not write even a single line of code before sketching out some design
ideas. Figure 2-4 shows a page sketch for my sample site.

Your page sketch gives you enough information to create HTML and CSS
code. It needs to start showing some detail, such as the following details:

 ✦ Draw out each element on the page. Any major page element (head-
lines, menus, columns) must be delineated.

 ✦ Include the class or ID identifier for each element. If you have a seg-
ment that will be used as a menu, name it “menu,” for example. If you
have a content area, identify that name now. Write all names directly on
the diagram so that you’re clear about what belongs where.

 ✦ Include all relevant style information. Describe every font, the width of
every element (including measurement units), the foreground and back-
ground colors (with hex codes), the background images (including sizes),
and anything else you might need in order to code CSS styles for the page.

Creating Page Templates944

 ✦ Build a page sketch following these guidelines for each page template
in your site. If you have three page designs, for example, you need three
separate diagrams.

Standard template for CS site

All Div
Fixed width 800 px
Centered in browser

Font: double size
Color: White
Background-color: White

Heading div
Width: 100%
Background-color: #A11204
Color: #FFFFFF
Background image: header.jpg

Font-size: 2em
Text-align: left
Padding-left: 1em
Red circuit board background

Menu div
Float left
100px wide
Red circuit bg

Menu I
white text
on outset
red buttons
inset on
a:hover
a block
no underline

Content h2- right-justi�ed white text on red circuit bg

Content class
Can be more than one
margin-left: 110px
double red border
white background
black text

Content class
Can be more than one
margin-left: 110px
double red border
white background
black text

Footer - white centerd text on black bg

Content h2- right-justi�ed white text on red circuit bg

Figure 2-4:
Here’s a
sample
sketch for
the standard
template on
this site.

These diagrams are finished only if they give you everything you need to
build the HTML and CSS templates. The idea is to do all your design work
on paper and then implement and tweak your project with code. If you plan
well, the coding is easy.

 The design sketch isn’t a page mock-up. It’s not meant to look exactly like
the page. Instead, it’s a sketch that explains with text all the various details
you need to code in HTML and CSS. Often, designers produce beautiful
mock-ups that aren’t helpful in development because you need to know sizes
and colors, for example. If you want to produce a mock-up, by all means do
so, but also make a design sketch that includes things like actual font names
and hex color codes so that you can re-create the mock-up with live code.

Book VIII
Chapter 2

Planning Your Sites

Creating Page Templates 945

Building the HTML template framework
With a page layout in place, you can finally start writing some code. Begin
with your standard page layout diagram and create an HTML template to
implement the diagram in working code. The HTML template is quite simple
because most of the design should happen in the CSS. Keep these guidelines
in mind:

 ✦ Remember that the template is simply a framework. The HTML is
mainly blank. It’s meant to be duplicated and filled in with live data.

 ✦ It has a reference to the style sheet. External CSS is critical for large
web projects because many pages refer to the same style sheet. Make a
reference to the style sheet, even though it may not actually exist yet.

 ✦ Include all necessary elements. The elements themselves can be blank,
but if your page needs a list for a menu, add an empty list. If you need a
content div, put it in place.

 ✦ Create a prototype from the template. You’ll need sample data in order
to test the CSS. Build a prototype page that contains typical data. The
amount of data should be typical of the actual site so that you can antici-
pate formatting problems.

 It’s very possible that you’ll never manually put content in your template.
There are several options for automating this process, which can be found in
Chapter 4 of this minibook.

The HTML template should be easy to construct because everything you
need is in the page template diagram. Figure 2-5 shows an HTML prototype.

Figure 2-5:
An HTML
prototype
for my
site (with
no CSS
attached
yet).

Creating Page Templates946

Here’s the HTML code for my prototype:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>CS Standard Template</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "csStd.css" />
 </head>
 <body>
 <div id = "all">
 <!-- This div centers a fixed-width layout -->
 <div id = "heading">
 <h1>Heading</h1>
 </div><!-- end heading div -->
 <div id = "menu">
 menu

 one
 two
 three

 </div> <!-- end menu div -->
 <div class = "content">
 <h2>Content 1</h2>
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 </div> <!-- end content div -->
 <div class = "content">
 <h2>Content 2</h2>
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 </div> <!-- end content div -->
 <div id = "footer">
 contact and footer info
 </div> <!-- end footer div -->
 </div> <!-- end all div -->
 </body>
</html>

 People commonly start writing pages at this point, but that’s a dangerous
idea. Don’t use any real data until you’re certain of the general HTML struc-
ture. You can always change the style later, but if you create 100 pages and
then decide that each of them needs another <div> tag, you have to go back
and add 100 divs.

Book VIII
Chapter 2

Planning Your Sites

Creating Page Templates 947

Creating page styles
With an HTML framework in place, you can start working on the CSS. The
best way to incorporate CSS is by following these steps:

 1. Begin with the page template diagram.

 It should have all the information you need.

 2. Test your CSS in a browser.

 Begin with a simple CSS implementation that ensures you have the right
names for all the page elements. (I like to give each element a different
background color, for example.) Then modify each element according to
your design document, testing as you go.

 3. Implement the CSS from your diagram.

 You should be implementing the design you already created, not design-
ing the page. (That already happened in the diagramming process.)

 4. Save the design.

 For multi-page projects, external CSS in a separate file is definitely the
way to go. As you work, save the CSS in the normal way so the browser
will be able to read it. (See Book II for information on implementing
external style sheets.)

 5. Test and tweak.

 Things are never quite what they seem with CSS because browsers
don’t conform to standards equally. You need to test and tweak on other
browsers. If users with older technologies are a concern, you may have
to use a secondary style sheet for older versions of IE. You may also
want to make a mobile version.

 6. Repeat for other templates.

 Repeat this process for each of the other templates you identified in
your site diagram.

The result of this process should be a number of CSS files that you can read-
ily reuse across your site.

Here’s the CSS code for my primary page:

body {
 background-color: #000000;
}

h1 {
 text-align: center;
 font-family: sans-serif;
 color: white;
 text-shadow: 0 0 10px black;
}

Creating Page Templates948

#all {
 background-color: white;
 border: 1px solid black;
 width: 800px;
 margin-top:2em;
 margin-left: auto;
 margin-right: auto;
 min-height: 600px;
}

#heading {
 background-color: #A11204;
 background-image: url("cbBackground.png");
 color: #FFFFFF;
 height: 100px;
 font-size: 2em;
 padding-left: 1em;
 border-bottom: 3px solid black;
 margin-top: -1.5em;
}

#menu {
 background-image: url("cbBackground.png");
 background-color: #A11204;
 color: #FFFFFF;
 float: left;
 width: 100px;
 min-height: 500px;
}

#menu li {
 list-style-type: none;
 margin-left: -2em;
 margin-right: .5em;
 text-align: center;
}

#menu a {
 color: #FFFFFF;
 display: block;
 border: #A11204 3px outset;
 text-decoration: none;
}
#menu a:hover {
 border: #A11204 3px inset;
}

.content {
 border: 3px double #A11204;
 margin: 1em;
 margin-left: 110px;
 padding-left: 1em;
 padding-bottom: 1em;
 padding-right: 1em;
 border-radius: 5px;
 box-shadow: 5px 5px 5px gray;
}

.content h2 {
 background-color: #A11204;
 background-image: url("cbBackground.png");
 color: #FFFFFF;
 text-align: right;
}

Book VIII
Chapter 2

Planning Your Sites

Creating Page Templates 949

#footer {
 color: #FFFFFF;
 background-color: #000000;
 border: 1px solid #A11204;
 float: left;
 clear: both;
 width: 100%;
 text-align: center;
}

Figure 2-6 shows the standard template with the CSS attached.

Figure 2-6:
The HTML
template
looks
good with
the CSS
attached.

Building a data framework
The examples throughout this chapter assumed that a large web project can
be done in straight HTML and CSS. That’s always a good starting point, but if
your program needs data or interactivity, you probably have a data back end.

 Most data-enabled sites fail because they weren’t planned properly.

The reason is almost always that the data normalization wasn’t incorporated
into the plan early enough, and the other parts of the project inevitably
depend on a well-planned data back end.

If you suspect your project will involve a database, you should follow these
steps early in the process (during the early site-planning phase):

 1. Identify the true data problem to be solved.

 Data gets complicated in a hurry. Determine why exactly you need
the data on the site. Keep the data as simple as you can, or else you’ll
become overwhelmed.

Fleshing Out the Project950

 2. Identify data requirements in your site diagram.

 Find out where on the site diagram you’re getting data. Determine which
data you’re retrieving and record this information on the site diagram.

 3. Create a third normal form ER diagram.

 Don’t bother building a database until you’re sure that you can create an
ER diagram in third normal form. Check Book VI, Chapter 3 for details on
this process. If you’re spotty on data design, get help.

 4. Implement the data structure.

 Create an SQL script that creates all the necessary data structures
(including tables and views) and includes sample data. Implementing
the design is easy after you’ve made it. (That seems to be a theme,
doesn’t it?)

 5. Create PHP middleware.

 After the database is in place, you usually need PHP code to take
requests, pass them to the database, and return the results. Most of the
PHP code for the main site consists of simple queries from the database.
If you can use AJAX or SSI, it simplifies the process because your PHP
code doesn’t have to create entire pages — it simply creates snippets of
code.

 See Chapter 3 of this minibook for help on implementing these
technologies.

 6. Consider update capabilities.

 Usually, when you have a database, you need another part of the site to
allow the client to update information. It’s often an administrative site
with password access. An administrative site is much more complex
than the main site because it requires the ability to add, edit, and update
records.

Fleshing Out the Project
If you completed all the steps in the preceding section, it becomes relatively
easy to create the page: It’s simply a matter of forming the copy into the tem-
plates you created, tying it all together, and launching the site.

Making the site live
Typically, you do the primary development on a server that isn’t in public
view. Follow these steps to take the site to production:

 1. Test your design.

 Do some usability testing with real users. Watch people solve typical
problems on the site and see what problems they encounter.

Book VIII
Chapter 2

Planning Your Sites

Fleshing Out the Project 951

 2. Proofread everything.

 Almost nothing demolishes credibility as quickly as sloppy writing. Get a
quality proofreader or copy editor to look over everything on the site to
check for typos and spelling errors. If your page contains a specific type of
content (technical information or company policy, for example), have an
expert familiar with the subject check the site for factual or content errors.

 3. Prepare the online hosting environment.

 Be sure that you have the server space to handle your requirements.
Make a copy of your database and test it. Check the domain name to be
sure that you have no legal encumbrances.

 4. Move your site online.

 Move the files from your development server to the main server.

 5. Test everything again.

 Try a beta test, where your page is available to only a few people.
Get input and feedback from these testers and incorporate the best
suggestions.

 6. Ensure you have a maintenance agreement.

 Websites are complicated, and they will have a long lifespan. Make sure
you have an agreement in place that clearly indicates your ongoing rela-
tionship with the project. You should generally have the client sign off
that the project is complete and build in some kind of contract for on-
going support.

 7. Take a vacation. You earned it!

Contemplating efficiency
When you start working with the site, you’ll probably encounter repeated
code. For example, each page may have exactly the same title bar. You obvi-
ously don’t want to write exactly the same code for 100 different pages
because it might change, and you don’t want to make the change in 100 dif-
ferent places. You have three options in this case:

 ✦ Use AJAX to import the repeated code. Follow the AJAX instructions
in Chapter 3 of this minibook to import your header (or other repeated
code).

 ✦ Use Server-Side Includes (SSI) to import code on the server. If your
server allows it, you can use the SSI technology to import pages on the
server without using a language like PHP. SSI is explained in Chapter 3 of
this minibook.

 ✦ Build the pages with PHP. Put all segments in separate files and use a
PHP script to tie them together. When you do this, you’re creating a con-
tent management system, which is the topic of Chapters 3 and 5 of this
minibook.

952 Book VIII: Moving from Pages to Sites

Chapter 3: Introducing Content
Management Systems

In This Chapter
✓ Understanding the need for content management systems

✓ Previewing typical content management systems

✓ Installing a content management system

✓ Adding content to a content management system

✓ Setting up the navigation structure

✓ Adding new types of content

✓ Changing the appearance with themes

✓ Building a custom theme

I
f you’ve ever built a large website, you’ll probably agree that the process
can be improved. Experienced web developers have discovered the fol-

lowing maxims about larger projects:

 ✦ Duplication should be eliminated whenever possible. If you find
yourself repeatedly copying the same HTML code, you have a potential
problem. When (not if) that code needs to be changed, you have a lot of
copying and pasting to do.

 ✦ Content should be separated from layout. You’ve already heard this
statement, but it’s taken to a new level when you’re building a large
site. Separating all content from the layout would be helpful so that you
could create the layout only one time and change it in one location.

 ✦ Content is really data. At some point, the content of the website is
really just data. It’s important data, to be sure, but the data can — and
should — be separated from the layout code.

 ✦ Content belongs to the user. Developing a website for somebody can
become a long-term commitment. If the client becomes dependent on
the site, he frequently pesters you for changes. It would be helpful if the
client could change his own content and ask you only for changes in
structure or behavior.

 ✦ A website isn’t a collection of pages — it’s a framework. If you can
help the client own the data, you’re more concerned with the

Overview of Content Management Systems954

framework for manipulating and displaying that data. It’s a good deal for
you and the client.

A content management system (CMS) is designed to address exactly these
issues, as this chapter will show you.

Overview of Content Management Systems
CMSs are used in many of the sites you use every day. As you examine these
CMSs, you start to recognize them all over the web. If you have your own
server space, a little patience, and a little bit of knowledge, you can create
your own professional-looking site using a CMS.

This list describes the general characteristics of a CMS:

 ✦ It’s written in a server-side language. The language is usually PHP, but
CMSs are sometimes written in other languages. Stick with PHP for now
because it’s described in this book, it’s easy to use, and it’s the most fre-
quently used CMS language.

 ✦ All content is treated as data. Almost all the content of the CMS is
stored in text files or (more commonly) a MySQL database. A CMS usu-
ally has few HTML files.

 ✦ The layout consists of data, too. The CSS and HTML templates, and
everything else the CMS needs, are also stored as data, in either text
files or the database.

 ✦ All pages are created dynamically. When a user logs in to a CMS, she is
normally talking to a PHP program. This program analyzes the current
situation and generates an HTML document on the fly.

 ✦ There are different levels of access. Most CMSs allow anonymous access
(like regular web pages) but also allow users to log in for increased access,
and usually a special form of administrative access to modify the site.

 ✦ The content can be modified from within the system. Users with the
appropriate access can modify the content of the CMS without knowing
anything about PHP or databases. Often, you don’t even need to know
HTML or CSS.

 ✦ The layout can be modified from within the system, too. Many CMSs
allow you to change the layout and design from within the system,
although the process is usually more involved.

 ✦ CMSs can be expanded. Most CMSs are easily modified with hundreds of
visual themes, add-in modules, and new capabilities available for free. In
most cases, if you need something that isn’t there, you can make it yourself.

 ✦ Many of the best CMSs are open-source. CMSs are a shocking value.
When you consider how much they can contribute to your online pres-
ence, it’s amazing that most CMS programs are absolutely free.

Previewing Common CMSs 955

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

Previewing Common CMSs
To get a true feel for the power of CMSs, you should test-drive a few. The won-
derful resource www.opensourcecms.com allows you to log in to hundreds
of different CMSs as a user and as an administrator to see how they work. I
show you a few typical CMSs so that you can get a feel for how they work.

Moodle
Often, you have a special purpose in mind. For example, I wanted to teach
an online course without purchasing an expensive and complicated course
management system. I installed the special-purpose CMS Moodle. Figure 3-1
shows the Moodle screen for one of my courses.

Figure 3-1:
Moodle is
useful for
managing
online
courses.

Moodle has a lot of features that lend it to the educational setting:

 ✦ Student and instructor management: The system already understands
the roles of student and instructor and makes appropriate parts of the
system available.

 ✦ Online assignment creation and submission: One of the biggest prob-
lems with online courseware is getting assignments to and from stu-
dents. Moodle has a complete system for handling this problem.

 ✦ Online grade book: When a teacher grades an assignment (online
through Moodle), the student’s grades are automatically updated.

 ✦ Online testing support: Moodle has built-in modules for creating, man-
aging, and scoring online quizzes and exams.

 ✦ Communication tools: Moodle includes a wiki (a collaborative documen-
tation tool), online chat, and forum tools you can set up for improved
communication with your students.

http://www.opensourcecms.com

Previewing Common CMSs956

 ✦ Specialized educational content: Moodle was put together by hundreds
of passionate (and geeky) teachers, so it has all kinds of support for vari-
ous teaching methodologies.

Community-created software can be very good (as Moodle is) because it’s
built by people who know exactly what they want, and anybody with an idea
(and the skills to carry them out) can add or modify the features. The result
is an organic system that can often be better than the commercial offerings.

 I find Moodle easier to use and more reliable than the commercial course
management system that my university uses. I keep a Moodle backup for my
classes because when the “official” system goes down, I can always make
something available for my students.

WordPress
WordPress is another specialty CMS, meant primarily for blogging (short for
web logging, or keeping an online public diary). WordPress has become the dom-
inant blogging tool on the Internet. Figure 3-2 shows a typical WordPress page.

Figure 3-2:
Woot! I’m
blogging!

WordPress takes one simple idea (blogging) and pushes it to the limit.
Unregistered users see the blog output, but if you log in, you gain access to a
complete set of tools for managing your online musings.

Figure 3-3 illustrates the administrator view of WordPress.

Additionally, you can change the layout and colors, add new templates, and
do much more, as you can in a more traditional CMS.

Of course, hundreds of other specialized CMSs are out there. Before you
try to build your own CMS from the ground up, take a look at the other
available offerings and see whether you can start by using the work of
somebody else.

Previewing Common CMSs 957

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

Drupal
Drupal is one of the most popular multipurpose CMSs out there. Intended for
larger sites, it’s more involved than the specialty CMSs — although it can do
almost anything.

Figure 3-4 shows a basic site running Drupal.

Figure 3-4:
Drupal is
intended
to support
online
communities.

Drupal was designed primarily for managing community websites. It is com-
monly used in the following types of sites:

 ✦ Gaming sites: Many game communities are based around a CMS like
Drupal because it allows opportunities for users to share information,
opinions, news, and files.

Figure 3-3:
You can
easily get
started with
WordPress —
just start
writing.

Previewing Common CMSs958

 ✦ Software sites: A CMS like Drupal is an ideal place to post information about
your software, including downloads, documentation, and user support.

 ✦ Forums: Although you can find many dedicated forum packages, Drupal
supports several good forum tools.

 ✦ Blogging: You can also use Drupal as a news site and a location to post
your blog. You can add community features when you want or need them.

Drupal is powerful and extremely popular. However, this power has led to
increased complexity. Learning everything you can do with Drupal will take
some time and effort.

Building a CMS site with WebsiteBaker
For the rest of this chapter, I take you through the installation and custom-
ization of a complete website using the WebsiteBaker CMS. This is one of my
favorite CMSs for a number of reasons:

 ✦ It’s easy to understand: Systems like Drupal have gotten so complicated
that you often require entire books on how to use them. WebsiteBaker (as
you’ll see) is not complicated at all, even for somewhat advanced features.

 ✦ It’s easy to modify: WebsiteBaker uses a reasonably simple template
system that’s primarily HTML and CSS (with a few PHP functions thrown
in). This makes it very easy to adapt pages that were not designed in
WebsiteBaker to a CMS format.

 ✦ It’s easy to teach to clients: When you’re building a commercial site, it’s
critical that your customer learns how to manage the site. The easier
you can make managing the site for the customer, the easier your job is
down the road.

 ✦ It’s reasonably complete: The basic install of WebsiteBaker is not large,
but you can customize your installation with hundreds of modules and
templates to get exactly the look and behavior you want.

 ✦ It’s free and open source: Like almost all the software I recommend,
WebsiteBaker is entirely free and open source, even for commercial use.

 I focus on WebsiteBaker in the upcoming section, but it’s just a sample CMS.
Look over this section, but if you want to use a different CMS other than
WebsiteBaker, by all means do so. You’ll see the overall steps are pretty
much the same regardless of the particular package you use. (I used almost
exactly the same steps to install Drupal and WordPress on my demo server.)

Installing your CMS
A CMS package typically contains many different kinds of files. Most are
primarily PHP programs with HTML/HTML pages and CSS. Most CMSs also
include databases written in MySQL. To install a CMS, you need to download
these components and install them on your server.

Previewing Common CMSs 959

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

 1. Download the latest version of WebsiteBaker at www.website
baker2.org/en/home.

 Download the .zip file. (The CMS is all web code, so it doesn’t matter
which operating system you use.)

 2. Create a subdirectory on your web root.

 If you use a local server, create a new subdirectory under htdocs (or wher-
ever you save your web files). If you’re on a remote server, use FTP or the
file management tool to create the subdirectory you want the files to go in.

 3. Copy all WebsiteBaker files to the new directory.

 The .zip file you download from WebsiteBaker contains a wb directory.
Copy all files and folders in this directory to your new directory.

 4. Navigate to the new directory in your browser.

 Be sure you have Apache and MySQL turned on. If you’re on a local
machine, be sure to use the localhost mechanism to find the directory.

 If all is well, you see the WebsiteBaker Installation Wizard, as shown in
Figure 3-5.

Figure 3-5:
The Website-
Baker
Installation
Wizard
helps you
get started.

Most CMSs work in a similar way: You install a set of base files to the server,
and then the system helps you get the other systems configured. Here’s how
to install WebsiteBaker:

 1. Check system configuration.

 The Step 1 section of the installation wizard ensures all the needed com-
ponents are available on your server.

http://www.websitebaker2.org/en/home
http://www.websitebaker2.org/en/home

Previewing Common CMSs960

 2. Ensure folders are writable.

 The CMS will need to write files to the server. If you’re in a Unix-based
system, you may have to check the file permissions to ensure all files
and folders specified in this section can be written to. Each specified file
or folder can be set to 777 permission.

 See Chapter 1 of this minibook for more on changing Unix permissions.
(Even if you use a Windows or Mac at home, your web server might use
Linux or Unix.)

 3. Set default settings.

 Specify the path to the CMS, the default time zone, and the default
language.

 4. Specify your operating system.

 Windows has its own way of doing things, so let WebsiteBaker know
whether you’re using Windows or a Unix-based system. (Mac OSX and
Linux are both Unix-based.)

 5. Include database information.

 Supply the information needed so WebsiteBaker can get to your data-
base. Supply a database name as well as the username and password
you want to use to access the database. Check the Install Tables
option to have WebsiteBaker automatically build the database you
need.

 6. Enter the website name.

 This name appears on all the site’s pages (but you can change it later).

 7. Create an administrator account.

 The admin account will have the ability to change the site. Create a user
named admin with a password you can remember.

 8. Install the CMS.

 Press the Install WebsiteBaker button to install the CMS. Figure 3-6
shows the installation wizard after I filled in the contents.

 If all goes well, you’re greeted by the administration page shown in
Figure 3-7.

The final step of installing your CMS is to remove the install directory. This
directory contains the scripts and tools you used to install the CMS. If you
leave it in place, bad guys can reinstall your CMS from the web and destroy
your settings. Use your file management or FTP tool to delete the install
directory from your WebsiteBaker directory as soon as you’re satisfied the
installation went well. When you do this, the warning about the installation
directory will disappear.

Previewing Common CMSs 961

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

 Instead of installing the CMS manually, many hosting services have automated
installation scripts for popular CMSs that you can use. Freehostia has built-in
support for WebsiteBaker, but I find the automated systems tend to have older
versions of the software. You should still know how to set up the CMS by hand.

Figure 3-7:
Congrat-
ulations!
You now
own a
bouncing
baby CMS!

Figure 3-6:
The CMS
is ready to
install.

Previewing Common CMSs962

Getting an overview of WebsiteBaker
The administration page (refer to Figure 3-7) is the control panel you and
other administrators use to build the site. The administration page’s tools
are the foundation of the entire site:

 ✦ Pages: Where you add the primary content for the site. Each page is
built here. WebsiteBaker features a few standard page types, and you
can install hundreds more through the module feature.

 ✦ Add-ons: The core installation of WebsiteBaker is reasonably basic, but
you can customize it in many ways. The most important techniques
are to add new types of pages (modules) and new visual themes (tem-
plates). I describe both techniques later in this chapter.

 ✦ Settings: Allows you to change global settings for the site. You can
modify the site name, description, theme, and other settings from this
panel.

 ✦ Access: Allows you to add new users and groups and grant various users
access to different parts of the system. For example, if you’re setting up
a site for a church, you might want the children’s pastor to have access
to only the site’s children’s ministry parts.

 ✦ Media: You can add images and video to your site. This section allows
you to manage and upload the various media to your server.

 ✦ Preferences: Allows you to change a few more settings, including the
e-mail address and password of the admin account.

 ✦ Admin-Tools: Contains advanced options for improving the administra-
tion experience.

Adding your content
The point of a content management system is to manage some content, so
it’s time to add pages to the system.

 1. From the administration page, choose Pages.

 A screen similar to Figure 3-8 appears.

 2. Type main as the first page name.

 Each page you create needs to have a name.

 3. Keep the page type WYSIWYG.

 You can make many different kinds of pages, but most of your pages will
be the standard WYSIWYG format.

 4. Leave all other settings at their default.

 The other settings available here don’t mean much until you have mul-
tiple pages.

Previewing Common CMSs 963

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

 5. Click the Add button to add the page.

 A screen similar to Figure 3-9 appears.

Figure 3-9:
Now you’re
at a nice
page editor.

Using the WYSIWYG editor
The purpose of the CMS is to make editing a website without any techni-
cal skills easy. You can give admin access to an HTML novice, and he can
use the system to build web pages with no knowledge of HTML or CSS. The

Figure 3-8:
This page
allows you
to add,
modify,
and delete
pages.

Previewing Common CMSs964

editor has a number of useful tools that make creating and editing much like
working with a word processor.

 ✦ Predefined fonts and styles: The user can choose fonts and styles from
drop-down menus, unaware that these options are taking advantage of
predefined CSS styles.

 ✦ The ability to add lists, links, and images: The editor includes the abil-
ity to add lists, links, and images (and other types of content) without
any knowledge of HTML. If you add an image, the editor includes a
wizard that helps you upload the image to the server. If you add a link, a
wizard helps you specify the URL of the link.

 ✦ Multiple paste options: Many users create content in Microsoft Word.
A Paste from Word button attempts to delete all the excess junk Word
adds to a file and paste the content cleanly, which is a major lifesaver.

 ✦ A plain source editor: My favorite button on the WYSIWYG editor is the
one that turns off the WYSIWYG features. The Source button displays
the page as plain HTML/HTML text. The automated features are nice, but
I can usually build a page a lot faster and more accurately by hand. This
feature is especially useful when the visual tools aren’t doing what you
want.

When you finish building your page, click the Save button to save the con-
tents of the page.

Along the top of the editor is a series of icons: a house, a blue screen, a life
ring, and a lock. Click the blue screen (which is the View icon) to open your
new page and see it the way the user will see it. Figure 3-10 shows the results
of my simple page.

Figure 3-10:
This is how
the page
looks to the
user.

Previewing Common CMSs 965

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

The WYSIWYG page is the most commonly used page type (especially by
nontechnical users) but it’s not the only option. The standard edition of
WebsiteBaker also comes with a number of other default page types:

 ✦ Code: Interprets the page as PHP code. This is any easy way to enter any
PHP code you wish, including database lookups. The code is interpreted
as PHP, so if you want it to be HTML, you can just use a giant heredoc.
Figure 3-11 shows a PHP snippet being written, and Figure 3-12 shows
the results.

Figure 3-11:
The code
page allows
you to write
any PHP
code you
wish.

Figure 3-12:
How the
code page
looks to the
user.

Previewing Common CMSs966

 ✦ Form: Allows you to build a basic HTML form without knowing any
HTML. The administrator can add all the normal form elements.
Figure 3-13 shows the form editor in action. When the user enters form
data, the content is automatically e-mailed to the administrator and
stored in a database that can be retrieved via the CMS. This feature is
one of the most important factors of a CMS because it’s something that
plain HTML websites simply can’t do.

Figure 3-13:
The form
editor
simplifies
creating
forms and
collecting
form data.

 ✦ Menu Link: This placeholder (it isn’t really a page type) allows you
to create a menu item that helps organize other pages. Use the parent
attribute of a page to make it a child of a menu or an ordinary page. The
menu structure adapts automatically.

 ✦ News V3.5: A blog feature that allows the user to write blog articles. I
often use it for other things, such as sermon archives for church sites,
specials of the week for commercial sites, and so on. A blog feature is
good any time you’re working with repetitive, dated material. You can
add multiple blogs to the same site easily. Figure 3-14 shows the news
page in action.

 ✦ Wrapper: This incredibly versatile page type allows you to do all kinds
of interesting things. Essentially, it allows you to embed any page into
the CMS. Figure 3-15 shows the wrapper used to embed a Google search
into my site. The wrapper is handy when you want to access an external
ordering or newsgroup system but keep within the visual structure of
the CMS.

Previewing Common CMSs 967

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

 You are not limited to these page types. See the section “Adding new func-
tionality” later in this chapter for information on how to add additional page
types to your system.

Figure 3-14:
The news
page type
allows you
to build a
blog-like
document.

Figure 3-15:
Use the
wrapper
page type to
embed other
pages into
your system.

Previewing Common CMSs968

Changing the template
One of the primary goals of a CMS is to separate the visual layout from the
contents. So far, you’ve seen how to modify the contents, but you’ll also
want to change the appearance of the page. The visual settings of a site are
all based on a template concept. You can easily overlay a new template onto
the existing site without changing the contents at all.

 1. Log in as the administrator.

 Obviously, the administrator has the ability to change the template
(although you can allow individual users to change their own templates).

 2. Go to the system menu.

 Templates are set in the system menu.

 3. Change template under Default Settings.

 Don’t worry about the Backend Theme and Search Settings templates.
It’s best to leave these alone until you’re a bit more experienced because
they don’t have a major impact on the user experience.

 4. Choose a template from the drop-down list.

 All the templates installed in the system are available in a drop-down
list. For this example, I chose the All CSS template (the default). See the
section “Adding additional templates” for how to download and install
templates that aren’t already installed in the system.

 5. Preview the site with your new template in place.

 Figure 3-16 shows the contents of the site with the All CSS template in
place. The template essentially encapsulates core HTML code and the
CSS used to display each file.

Figure 3-16:
The same
site has a
new look!

Previewing Common CMSs 969

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

Adding additional templates
The standard installation of WebsiteBaker includes only a few templates.
Typically, you’ll want to work with additional templates. Fortunately, there
are hundreds of great templates available, and you can easily build your
own. Here’s how to add additional templates.

 1. Locate the template you want online.

 A number of web places offer great, free templates for WebsiteBaker. My
favorite is the Templates repository available at www.websitebaker2.
org/template/pages/templates.php. The templates in this archive
are approved by the WebsiteBaker community and meet minimum qual-
ity standards. (Note that many of these templates have been adopted
from other CMS systems so you can often get the same general look and
feel regardless of the CMS you choose.)

 2. Download a template or two that you like.

 When browsing templates, remember that you will be able to modify
them. If you don’t like the particular colors or images, you can change
them later. Save the downloaded .zip file somewhere on your local
machine.

 3. Log in to WebsiteBaker as admin.

 Only the administrator can add new templates to the system.

 4. Navigate to the Templates page of the Add-ons section.

 This is where you install and uninstall downloaded templates.

 5. Click the Browse button to locate the .zip file on your local system.

 Load the entire .zip file containing the template onto the server.

 6. Click the Install button to begin the process.

 You receive a notification when the installation is complete.

 7. Navigate to the Settings section.

 Installing a template does not apply the template automatically.

 8. In Settings, apply the new template.

 Specify the template to display from the drop-down list of templates.

 9. Preview your new look.

 Use the Preview button (or reload the currently showing version of the
CMS) to see the new look. Figure 3-17 shows my site with the Multiflex-3
template installed.

http://www.websitebaker2.org/template/pages/templates.php
http://www.websitebaker2.org/template/pages/templates.php

Previewing Common CMSs970

Figure 3-17:
You can
install any
template
onto your
existing
system.

 The Multiflex-3 template is one of the most commonly used templates on the
Internet. The original design (www.oswd.org/design/preview/id/3626)
was built with plain HTML/CSS implementation in mind but has been ported
to nearly every CMS including WebsiteBaker. The design is a solid and very
flexible starting place. I’ve used it as the foundation of dozens of sites. After
you get to know it, you’ll recognize it all over the place.

Adding new functionality
In addition to custom templates, you can add modules to your system. A
module is a new page type that adds additional functionality. Dozens of add-
ons are available at the WebsiteBaker AMASP (All Modules and Snippets
Project) at www.websitebakers.com.

The add-on modules include many new types of functionality, including
online shopping modules, image galleries, event calendars, and many more.
In addition to full-fledged modules, the AMASP also includes PHP snippets
you can copy into your code for advanced functionality and droplets, which
are small, self-contained PHP modules to add features to your site. It’s prob-
ably best you start with full modules because they require the least effort to
get working. As you become more proficient with WebsiteBaker, you’ll want
to investigate how to add more features.

Many of my clients like to have image galleries. I use them for a number of
things, including a simple form of an online catalog and for viewing sample
work for craft or artist sites. Here’s how to add a basic but full-featured
image gallery:

http://www.oswd.org/design/preview/id/3626
http://www.websitebakers.com

Building Custom Themes 971

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

 1. Find a module you wish to test.

 Go to the AMASP site and browse the various modules until you find
one you like; there’s about a dozen. For this example, I’m looking at
the (unimaginatively named) Image Gallery module. This one works
very well, looks pretty good, and is very easy for my clients to use, so I
almost always install it on commercial sites.

 2. Download the module.

 Modules are installed much like templates. Download the module, which
is usually PHP and HTML code in a .zip file, and then save the .zip file
somewhere on your local file system.

 3. Log in as admin.

 As usual, anything that involves changing the site requires administrator
access.

 4. Navigate to the Add-ons section.

 You add modules in the same section you add templates; that is, the
Modules page of the Add-ons section.

 5. Browse to find the .zip file you downloaded.

 Click the Browse button to look on your local system for the .zip file
containing the module. Click the Install button when you locate the file.
WebsiteBaker uploads the module to the server and places the files in
the correct location.

 6. A new page type will appear.

 When you go to the Pages section, you see a new type of page. In this
case, you can now add image galleries.

Building Custom Themes
WebsiteBaker is an outstanding way to build a complex and fully featured
website easily and quickly. With over a hundred templates, you’re bound to
find something you like. However, you almost never find something exactly
the way you want it. This is especially important if you’re developing for
somebody else. Usually, you find a template that is close, but you still need
to modify the colors and images. For that reason, it’s important to under-
stand the general structure of a WebsiteBaker template and how to make
your own.

Starting with a prebuilt template
Although it’s possible to build a WebsiteBaker template from scratch, it’s
generally not a good idea. It’s much smarter to begin with a template that’s
close and add those features you need to make it your own. That way the
general structure is already proven, and you only need to customize it to
your specifications.

Building Custom Themes972

 1. Find a starting template you like.

 Often I have clients look over the Templates repository (www.website
baker2.org/template/pages/templates.php) and tell me their
favorite three templates. I also like to have them explain what they like or
dislike about each template. I tell them we can change colors or banner
graphics in a template, so to focus more on the general look and feel.

 If you don’t have another place to start, I like the templates built into
the WebsiteBaker core (especially All CSS and Round). Blank Template
is especially designed for customizing. I often build commercial sites
based on Multiflex-3 because it’s well known throughout the web com-
munity and has some great features.

 2. Install the template on your local system.

 It’s much easier to work with a template on your local system than on a
remote server.

 3. Locate the local copy of the template.

 Normally, templates are stored in the wb/templates directory of your
server. Each template will have its own folder.

 4. Copy the folder of the template you want to modify.

 It’s generally smarter to work with a copy rather than the original. Paste
the copied folder in the templates directory.

 5. Rename the new folder to reflect your new template name.

 Your new template needs a different name than the original template.

At this point, you have a copy of the original template, but this copy will not be
reflected in the CMS yet. You need to make a few changes before the new tem-
plate is available. Before you do that, take a look at the file structure of a typical
WebsiteBaker template. Figure 3-18 shows my copy of the Multiflex-3 template.

Figure 3-18:
Typical file
structure
for Website-
Baker
templates.

http://www.websitebaker2.org/template/pages/templates.php
http://www.websitebaker2.org/template/pages/templates.php

Building Custom Themes 973

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

One of the reasons I like WebsiteBaker so much is how relatively simple the
template structure is compared to other CMSs. The directory contains a rela-
tively small number of files:

 ✦ index.php: This PHP file is the basic file that’s used as the foundation of
every page in the system. It’s essentially an HTML page with a few spe-
cial PHP functions built in. You can edit any of the HTML you wish, and
the resulting changes will be reflected in every page of the site.

 ✦ info.php: This simple PHP file contains a number of variables used to
control the overall behavior of the template. You’ll make a few changes
in this file to give your template an official name.

 ✦ layout_setup.css: This CSS file describes the CSS used for the overall
page design. You can change the contents of this CSS file to change font
colors or other big-picture CSS.

 ✦ layout_text.css: This CSS file is used to define the styles of the various
text elements in the site. If you’re looking for a class that isn’t defined in
layout_setup.css, you may find it here. Note: The names of the CSS files
may change in other templates, but there will be at least one CSS file.

 ✦ editor.css: This file is used to modify the internal WYSIWYG editor. It
describes how various elements are displayed in the editor.

 ✦ images directory: Often a template will include a number of images.
These are stored in a subdirectory for convenience. You may need to
change some of these images to create the look you’re going for.

Some templates are more complex, some less so. Really, you can have as many
or as few files as you want. You’ll always need to have index.php and info.php.
You’ll almost always have at least one CSS page. You can have anything else
you wish in the template, but nothing else is absolutely necessary.

Changing the info.php file
The info.php file contains a few PHP variables. You can modify these vari-
ables to identify this template as your own. You must change the template
name to a unique value, and you can also change such variables as the
developer name and version number. I typically claim any substantial
changes I make to a template, but I always give credit to the original devel-
oper. It’s great to stand on the shoulders of giants, and you should give them
their due in the documentation. Here’s the info.php file after I made a few
changes:

<?php

/*

 Website Baker Project <http://www.websitebaker.org/>
 Copyright (C) 2004-2006, Ryan Djurovich

 Website Baker is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by

Building Custom Themes974

 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 Website Baker is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with Website Baker; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

$template_directory = 'aio';
$template_name = 'aio';
$template_version = '1.1';
$template_platform = '2.x';
$template_author = 'Andy Harris, from Erik Coenjaerts (WB port)';
$template_license = 'Open Source</

a>';
$template_description = 'Original design from <a href="http://www.1234.info/

webtemplates/">1234.info. Ported to Website Baker by <a href="http://
www.coenjaerts.com">Erik Coenjaerts.';

$menu[1]='Main Menu';
$menu[2]='Top Menu';
$menu[3]='Extra Menu';
$block[2]='Sidebar';
$block[3]='News';

?>

Note that the template has the potential for three different types of menus
and three blocks of information. ($block[1] is the main content block and
is available by default.)

Modifying index.php
For the most part, you can leave index.php alone. However, there are a
few modifications you might make. If you look over the file, it’s basically
plain HTML/HTML with a few PHP functions thrown in. Generally, you can
change the HTML code without any worries, but be more careful about
the PHP code. The PHP code tends to call special functions defined in the
WebsiteBaker code base. Here are the functions and variables you’re likely
to run across:

 ✦ TEMPLATE_DIR: This constant contains the template directory. Use it to
make links to the template directory.

 ✦ WEBSITE_TITLE: Use this constant to display the website name any-
where in your template.

 ✦ PAGE_TITLE: The title of the current page as defined in the menu.

 ✦ WEBSITE_HEADER: This constant displays the header defined in the
admin panel.

Building Custom Themes 975

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

 ✦ show_menu(menuID): This is a powerhouse of a function. It analyzes
your site structure and uses it to build a navigation structure. It takes a
parameter, which is the level of menu. (Typically the left menu is level
1 and the top menu is level 2, but this can be changed.) Note: Some
templates use the more advanced show_menu_2() function, which has
additional parameters, like the ability to define template code for how
the menu displays.

 ✦ page_content(blockID): This function is used to display content
for the current page. The parameter describes which block of content
should display. Use 1 for the main page content, 2 for block 2, and so on.

 ✦ page_footer(): Display the page footer identified in the admin panel.

 WebsiteBaker features many more constants and functions, but these are
the basic ones used in nearly all templates. See the online documentation
at www.websitebaker2.org/ for complete documentation. Other CMS
systems use the same idea (HTML templates with PHP functions embedded),
but of course the function names are a bit different in a different CMS.

You may want to make other modifications of the default template. For
example, the Multiflex-3 template includes multilanguage support and a
large number of different “Post-it note” features. I generally remove the
multilanguage content (because I only speak one language) and change all
the “Post-it notes” to use the same CSS style (or remove them all).

Modifying the CSS files
Of course, the most powerful way to change the appearance of your pages is
to modify the CSS files. Here’s how:

 1. Make a backup first.

 You’re very likely to break things when you go mucking around in unfa-
miliar code, so make a backup first so when you (inevitably) destroy
something, you’ll be able to get back to a sensible starting place.

 2. Identify the class you want to modify.

 This can be surprisingly difficult in a system you didn’t create. Use the
Inspect feature of the Chrome or Firebug developer tools to quickly
identify which styles act on a particular element and what its class
hierarchy is.

 3. Find the class definition in the CSS sheets.

 Note that a system may have more than one CSS file, so find the one con-
taining the class information you’re interested in.

 4. Make incremental changes.

 Make small changes and test frequently.

http://www.websitebaker2.org/

Building Custom Themes976

 5. Test on a local server.

 You can make changes directly on the files in your local server. Just
reload the page after every change to make sure the changes are being
reflected. Of course, you need to have the template installed in your
system.

Packaging your template
A template is nothing more than a set of PHP and CSS files (and perhaps
some images and other files). It’s pretty easy to port a template for installa-
tion. Just follow these steps:

 1. Create a stable version of the template.

 It doesn’t have to be perfect before you package it, but at a minimum
you need to change the info.php page to reflect the new template’s
name.

 2. Package the entire directory into a .zip file.

 Use a utility like IZArc for Windows or the xip utility that comes installed
with Linux or Mac. Save the .zip file with the same name as your tem-
plate. Note: Don’t include the template directory itself in the template;
just include any contents of that directory (including subdirectories, if
you have them).

 3. Install the template into your copy of WebsiteBaker.

 Install your template the way you do any other template.

Chapter 4: Editing Graphics

In This Chapter
✓ Introducing Gimp

✓ Managing the main tools

✓ Selecting image elements

✓ Working with layers

✓ Understanding filters

✓ Creating a tiling background

✓ Building banner images

H
TML and CSS are powerful tools, but sometimes you still need to use a
graphics editor to get the look you want. In this chapter, you learn to

use Gimp, a free and powerful graphic editor.

Using a Graphics Editor
You’ll find using a graphics editor handy for a number of tasks:

 ✦ Modifying an image: The obvious use of a graphical tool is to modify or
create an image that will be used on your web page. This could involve
changing the image size, correcting the color balance, changing the file
type, or cropping the image.

 ✦ Preparing a background image: As I discuss in Book II, Chapter 4, back-
ground images can be distracting if you aren’t careful. Making a lower
contrast image (either lighter or darker than normal) might make sense
so the text is easier to read. You might also want to prepare a tiled
background.

 ✦ Building banners: Many websites include a special banner image that’s
prominent on every page. The banner image usually has a very specific
size requirement.

 ✦ Modifying existing graphics: You might be modifying a template from
the jQuery UI project (see Book VII, Chapter 4) or from a CMS (see
Chapter 3 in this minibook). In both cases, you often have images that
are close to, but not exactly, what you need.

 ✦ Changing colors: Frequently, you have the right pattern, but not the
right colors. Modifying colors with a modern graphical tool is surpris-
ingly easy.

Choosing an Editor978

Choosing an Editor
Fortunately, great programs that make all these tasks quite easy to perform
are available. Raster-based graphics editors are designed to solve exactly
this type of problem and many more. A number of important graphics tools
are used in web development:

 ✦ Adobe Photoshop: The industry standard for web graphics, and indeed
for all digital imagery, Photoshop is powerful and capable but quite
expensive. A slightly cheaper and less powerful version called Adobe
Photoshop Elements is available.

 ✦ Adobe Fireworks: Designed specifically for web developers, Fireworks
features the ability to slice an image to make a graphical web page from
an image — and it’s relatively inexpensive.

 ✦ Windows Paint: This simple image editor is available in all versions
of Microsoft Windows. Although easy to use and already available to
Windows users, Paint is relatively limited. It only supports a few image
formats and doesn’t have full support for transparent images or layers.

 ✦ Paint.net: A group of computer science students decided to create an
improvement to Microsoft Paint that evolved into a very robust image-
editing program. It is free (although, technically, not open source) and
has all the features you might need for editing web images. However, the
primary version is available only for Windows.

 ✦ Gimp: A popular alternative to Photoshop, Gimp has all the features you
might need for web image editing. It is completely free, open source, and
available for all major operating systems. For these reasons, I use Gimp
throughout this chapter (and indeed throughout the book — nearly
every graphic was created using Gimp).

 People are passionate about their graphics programs. If you love Photoshop,
you might find the Gimp interface strange and unfamiliar. I think learning
how Gimp works is worth the time, but if you prefer, you can download
GimpShop, a version of Gimp modified to use the same menus and keyboard
shortcuts as Photoshop.

Note that in this list I’m only considering full-blown graphics editors. I
describe image manipulation programs, such as IrfanView (which is simpler
and has fewer features), in Book II, Chapter 4.

I’m also confining the conversation to raster-based image editors, which use
a different mechanism for managing images than vector-based image editors.
The vector-based approach is slowly gaining popularity on the web, espe-
cially with the support for SVG in HTML5. However, most web graphics are in
a raster format, even those that were originally created in a vector format. If

Book VIII
Chapter 4

Editing Graphics

Introducing Gimp 979

you are interested in playing with vector graphics, I recommend looking into
the excellent free program Inkscape. It has native support for SVG, which is
the most universal vector standard for web browsers.

Introducing Gimp
If you haven’t already installed Gimp, get a recent copy from this book’s web-
site or www.gimp.org. Install the program and take a look at it. The Gimp
interface’s multiple windows are shown in Figure 4-1.

Figure 4-1:
Gimp uses
a multiple
window
model.

Gimp doesn’t reside in a single window like
most programs. Instead, it uses a number of
windows. Some find this jarring, but after you
get used to it, this can be a useful feature. You
can make any window as large or as small as
you wish and combine windows to get less
screen clutter. I configure Gimp in a way that
combines the most common windows into
the Toolbox, so I have one window showing
the Toolbox and most of the dialog boxes and
a separate window showing each picture I’m
working on.

If you click the Configure Tab button (a small
arrow at the top right of the tabs section), you
can add new tabs to the main Toolbox window.
I normally add my favorite tools (Navigation,
Layers, Tool Options, and Brushes) to the
Toolbox so the features are readily available
and appear here instead of in separate win-
dows.

Recent versions of Gimp have a single-window
mode you can use if you prefer. Just select
Single Window Mode from the Windows menu.

Gimp sure seems cluttered . . .

http://www.gimp.org

Introducing Gimp980

 I have the Change Foreground Color dialog open in Figure 4-1, and I simply
double-clicked the foreground color in the main toolbox to open this dialog.
Gimp tends to open a lot of dialogs, which might bother some people. Also, I
want to illustrate how powerful the color chooser is. Like most features in
Gimp, it has a lot of options.

The Toolbox is Gimp’s main control panel. It manages all the tools you use to
create images. Gimp also creates an image window, which contains the menu
elements, but no image (by default). You can load an image into the image
window or create a new image.

Creating an image
You choose the File ➪ New menu command to create a new image. After
you specify the size of your image, a new, blank image appears, as shown in
Figure 4-2.

Figure 4-2:
It’s easy to
create a
new, blank
image.

Of course, you can also load an existing image into Gimp. Gimp accepts
all major image formats (and dozens more with optional plug-ins). Use the
File ➪ Open menu command to open an image, or simply drag an image file
onto the Gimp Toolbox.

Painting tools
Gimp includes a number of useful tools to create or modify an image.
Figure 4-3 shows a few of these tools.

 ✦ Pencil: The Pencil tool is the standard drawing tool. It draws hard edges in
the exact shape of the pen. You can choose from many pen shapes in the Tool
Options panel (described in the next section).

Book VIII
Chapter 4

Editing Graphics

Introducing Gimp 981

 ✦ Paintbrush: The Paintbrush tool is similar to the Pencil tool, but it uses
a technique called anti-aliasing to make smoother edges. Like the Pencil
tool, the Brush tool can use many different pen shapes.

 ✦ Eraser: The Eraser tool is used to remove color from a drawing. If the
current layer has transparency enabled, the Eraser tool makes things
transparent. If transparency is not turned on, the Eraser tool “draws” in
the background color.

 ✦ Airbrush: The Airbrush tool allows you to paint with a virtual airbrush.
You can modify the flow and size of the paint. This tool is especially
effective with a pressure-sensitive drawing tablet.

 ✦ Ink: The Ink tool simulates a calligraphy brush. The speed of drawing
indicates the width of the stroke. It seems quite realistic because every-
thing I draw with it looks just as bad as what I create when I try real
calligraphy.

It’s very common in web development to work
with images that already exist. For example,
I’ve built a couple of sites for office supply
companies. It’s nice to sprinkle the site with
colorful images of staplers, Post-it notes, and
the like. The question is, how do you get these
graphics? If you’re a skilled photographer or
artist, you can create them yourself, but this
takes more time and talent than I typically
have. You could reuse images you find on the
web, but this is not respectful of these ele-
ments’ owners.

The best solution is to use an image-supply
site like www.freedigitalphotos.
net or www.istockphoto.com. Be sure
to search for royalty-free artwork, and check
the license to ensure you can use and modify
the work. I’m a big fan of stock art. Typically,
I can find a dozen images to spruce up a site
for less than $20, and I have the satisfaction
of knowing I’m completely legal. Often, stock
art is designed for both print and digital use.
Generally, you can purchase the smallest size
for digital work, which is economical and per-
fectly fine for use on the web. (Note: Monitors

have much less resolution than printed paper,
so you can get away with a smaller image.)

To reuse an image in a legitimate way, consider
the following:

 ✓ Acknowledge the source: Generally,
this acknowledgment isn’t necessary for
images you purchase, but it is polite if you
receive an image for free. You can place
the acknowledgment in the source code.

 ✓ Get permission if needed: It’s always best
to get permission from the original devel-
oper. Sometimes this isn’t possible or
necessary, but you should always try. Of
course if you’ve purchased a stock photo,
you’re also purchasing permission to use it.

 ✓ Make the image your own: Do something
to modify the image. If it’s a stock photo,
this isn’t necessary, but you might want to
change the colors, move things around,
and make the image fit the theme of your
project a little better. Modifying an image
does not make it legal if you did not have
permission.

Working with existing images

http://www.freedigitalphotos.net
http://www.freedigitalphotos.net
http://www.istockphoto.com

Introducing Gimp982

 ✦ Clone: The powerful Clone tool allows you to grab content from one part
of an image and copy it to another part of the image. This tool is often
used in photo retouching to remove scars and blemishes.

 ✦ Fill: The Fill tool is used to fill an area with a color or pattern. It has
multiple options that allow you to pick the pattern, the color, and the
method of filling. (You can fill the current selection or all areas with the
same color, for example.)

 ✦ Blend: This Blend tool allows you to fill an area with color patterns, sim-
ilar to the Fill tool. There are numerous options that allow you to deter-
mine what pattern is used and how it is distributed. (Many programs call
this the Gradient tool.)

 A complex program like Gimp deserves (and has) entire books written
about it. There’s no way I can describe everything in this brief introductory
chapter. Still, this should give you an indication of what you can do. Check
the many excellent user tutorials at www.gimp.org/tutorials and the
manual at www.gimp.org/docs.

Selection tools
Often, you’ll be working on specific parts of an image. It’s critical to have
tools to help you grab a particular part of an image and work with it in isola-
tion. Gimp (like any high-quality graphics tool) has a number of useful selec-
tion tools. Figure 4-4 shows where they are in the Toolbox.

Pencil

Airbrush

Ink

Fill

Clone

Brush

Eraser

Blend

Figure 4-3:
These tools
are used
to draw or
modify an
image.

http://www.gimp.org/tutorials
http://www.gimp.org/docs

Book VIII
Chapter 4

Editing Graphics

Introducing Gimp 983

Figure 4-4:
These tools
are used for
selecting
parts of an
image.

Rectangle

Bezier

Ellipse

Free

Foreground
Scissors

Select by color

Magic

 ✦ Rectangle Select: The Rectangle Select tool is used to (wait for it . . .)
select rectangles. Rectangle selections are easy, and they’re pretty
common, so this is a good, basic selection tool.

 ✦ Ellipse Select: The Ellipse Select tool is like the Rectangle Select tool,
but (you’re catching on here) it selects ellipses. You can set the aspect
ratio to 1:1 to select perfect circles.

 ✦ Free Select: Also called the Lasso tool, the Free Select tool allows you to
draw a selection by hand. It takes an incredibly steady hand to use well,
so it’s usually only used for rough selections that are fine-tuned using
other techniques.

 ✦ Magic Select: Also called the Fuzzy Select, the Magic Wand tool allows
you to grab contiguous sections of similar colors. It’s handy when you
have a large section of a single color that you want to select. (You might
want to select a white background and replace it with a pattern, for
example.) Hold down the Shift key and make further selections if you
want to select more than one color.

 ✦ Select by Color: Similar to the Fuzzy Select tool, the Select by Color
tool grabs all the pixels of a chosen color, whether they’re touching the
selected pixel or not, and removes them. (It’s ideal for use with a green
screen, for example.)

 ✦ Scissors Select: The Scissors Select tool uses image-processing tech-
niques to automatically select part of an image. Click along the edge of
an element you want to select, and (if you’re lucky) the selection will
follow the edge. This works fine for high-contrast elements, but condi-
tions have to be perfect.

Introducing Gimp984

 ✦ Foreground Select: The Foreground Select tool is a multipass tool that
simplifies pulling part of an image from the rest. On the first pass, use
the Lasso tool to choose the general part of the image you want to
select. The image will show a selection mask with selected parts in white
and nonselected parts blue. Click the colors you want to keep and then
press Enter to commit the selection.

 ✦ Bezier Select: The Bezier Select tool is my favorite. Click an image to create
a general outline of the selection. (You’re actually making a Bezier path,
which uses math formulas to draw a curved shape.) Modify the path until it’s
exactly how you want it and then you can convert it to a selection.

Modification tools
A number of tools are used to modify parts of an image. Figure 4-5 illustrates
the main modification tools:

 ✦ Move: This tool allows you to move a selection, a layer, or some other
element.

 ✦ Rotate, Scale, Shear, Perspective, and Flip: These tools all apply trans-
formations to a selection. Use them to rotate or resize a part of your
image, or to change the perspective of a section so it appears to be on
an angled surface, for example.

 ✦ Heal: This tool takes a sample area and applies it to other parts of an
image (much like the Clone tool). It is often used in photo retouching to
give skin a clean, unblemished look. It’s great for fixing the rectangular
artifacts that often appear in JPG images.

 ✦ Blur/Sharpen: This tool is used to blur (reduce contrast) or sharpen
(increase contrast) a small part of the image selectively with the current
pen. This tool is often used for quick touch-ups to remove scratches or
other blemishes.

 ✦ Smudge: This allows you to push a color into adjacent pixels to clean
up an image. I frequently use this tool when trying to build a tiled back-
ground to help line pixels up in a seamless way.

 ✦ Dodge/Burn: This tool is named after a photography darkroom tool. It’s
used to darken or lighten parts of an image and to remove unwanted
shadows.

Managing tool options
Most tools have options available. For example, when you choose the Pencil
or Brush tool, you can select which brush tip to use. When you use the Fill
tool, you can determine whether the tool fills with the current color or the
current selection. You can also determine whether the tool fills with a color
or a pattern.

Book VIII
Chapter 4

Editing Graphics

Introducing Gimp 985

You can see the Tool Options dialog box for any tool by double-clicking the
tool in the Toolbox. Generally, I dock the Tool Options dialog box to the main
Toolbox tabs because it’s so frequently used.

Utilities
Gimp also comes with a number of handy utilities. The tools highlighted in
Figure 4-6 have a variety of uses:

 ✦ Color Selector: The two overlapping rectangles show the current fore-
ground and background color. Click one of the rectangles to pick a new
color to work with. You can choose colors in a number of ways, using
RGB and HSV schemes, as well as prefilled color palettes and a very cool
watercolor tool.

 ✦ Color Picker: Allows you to determine the RGB value of any pixel on the
image and pick that color as the current drawing color. It’s very handy
when you want to match colors precisely.

 ✦ Zoom: Allows you to quickly zoom in and out of your image. Drag
around an area, and the selected area will fill the entire window. Hold
down the Ctrl key while dragging to zoom out. Hold the center mouse
button (often also the scroll wheel) to pan your zoomed-in view in any
direction. It’s very helpful to zoom in close when you’re doing detail
work.

 ✦ Measure: Drag the mouse on an image, and you can find the distance
and angle between any two points. The Move tool is useful for precise
placement.

 ✦ Move: Allows you to move a selection or layer.

Shear
Scale

Rotate
Perspective

Heal
Sharpen / blur

Move

Flip

Dodge / burn
Smudge

Figure 4-5:
These tools
modify the
existing
picture.

Understanding Layers986

 ✦ Align: The Align tool simplifies lining up various elements with each
other.

 ✦ Crop: Used to crop unwanted border areas from an image.

 ✦ Text: Adds editable text to the image. The Text tool works with layers,
so check the upcoming “Understanding Layers” section for more detail.

 ✦ Perspective Clone: This tool combines the Perspective tool and the
Clone tool. Although it’s cool, the applications are a bit rare, so I don’t
use it often in web development.

Figure 4-6:
These tools
often come
in handy.

Color Picker
Zoom

Move
Align

Crop
Text
Measure

Perspective Clone

Color Selector

Understanding Layers
Gimp has an astonishing variety of tools, but most of the interesting
things you can do with a raster graphics tool involve a concept called
layers. Layers are really pretty simple: Imagine the old animated movies
(before digital animation was possible). Painters would create a large
background, but the characters were drawn on transparent sheets (called
cels in animation). A single frame of an animation might contain a single
opaque background with a large number of mainly transparent layers on
top. Each layer could be manipulated individually, providing a great deal
of flexibility.

Any high-end graphics editor will support some form of layer mechanism.
(In fact, support for layers is a primary differentiator between basic and
advanced graphics tools.) Figure 4-7 shows the Layers panel in Gimp.

Book VIII
Chapter 4

Editing Graphics

Understanding Layers 987

Figure 4-7:
The Layers
panel allows
you to
manipulate
layers.

The primary area of the Layers panel is the window, showing a stack of
layers. The background is on the bottom of the stack, and any other layers
are on top. Anything on an upper layer obscures a lower layer. Imagine
a camera at the top of the stack pointing down at the stack of layers. If a
higher layer has transparency (as it usually does) the lower layer will show
through any transparent pixels.

 The Opacity slider in the Layers panel allows you to adjust the overall trans-
parency of the layer. This can be useful for quickly lightening or darkening a
layer, and for other effects, such as shadows.

Only one layer is active at a time. The current layer is highlighted in the
window at the bottom of the Layers panel. Most operations will occur on
the active layer only. Click a layer in the layers window to make that layer
active.

 Be sure you know which layer is active. Many times I try to draw on a layer
and nothing happens. I then typically scribble harder, thinking that will
help. Almost always when this happens, I’ve selected the wrong layer and
made a big mess somewhere. It’s possible (and common) to have a layer
active which is not visible. Fortunately, the Undo command (Ctrl+Z) is quite
powerful. If in doubt, keep the Layers panel visible so you can tell which
layer is active.

Introducing Filters988

Each layer has two icons next to it that you can activate. The eye icon toggles
the layer’s visibility. The link icon allows you to link two or more layers together.
Each layer also has a name. You can double-click the layer name to change it.
This is especially useful when you have a complex image with many layers.

The bottom of the Layers panel has the following buttons to help you
manage various layers:

 ✦ New Layer: This button creates a new layer. The default type is transpar-
ent, but you can also choose to have the layer appear in the foreground
or background color.

 ✦ Up and down buttons: Allow you to move a layer up or down in the
stack. The position of a layer in the stack is important because higher
layers have precedence.

 ✦ Duplicate Layer: Makes a copy of the currently active layer. If you’re
modifying a layer, working on a duplicate is a great idea because if you
mess up, you still have a backup.

 ✦ Anchor: When you copy and paste a part of an image, the pasted seg-
ment is placed into a temporary layer. Use the anchor button to nail
down the selection to the current layer.

 ✦ Delete: Allows you to delete the currently active layer. Be careful you
delete the correct layer.

Introducing Filters
Digital editors include a number of other very useful tools. Generally, these
tools apply mathematical filters to an image to change the image in some
way. The standard installation of Gimp comes with dozens of filters, but here
are a few most common to web developers:

 ✦ Blur filters: Blur filters reduce the contrast between adjacent pixels to
make the image less defined, and can often be used to hide imperfec-
tions or scratches. The most common blur is Gaussian blur, but there
are many others, including Motion blur, which simulates the blur seen in
a slow camera taking a picture of something moving quickly.

 ✦ Unsharp mask: A class of filters called sharpen filters are the opposite of
blur filters. They increase contrast between adjacent pixels. I don’t know
why the sharpen filter is called the “Unsharp mask,” but it is.

 Note: There is no “enhance” filter like the ones so common on crime
dramas. Sadly, you can’t just “zoom and enhance” endlessly to see the
killer’s eye color on the reflection of a spoon.

 ✦ Colorize: This marvelous tool allows you to keep the contrast of a layer
and change the color, which can be perfect for changing the color of
hair, eyes, or clothing.

Book VIII
Chapter 4

Editing Graphics

Solving Common Web Graphics Problems 989

 ✦ Brightness/Contrast: Lets you adjust the brightness (overall value) and
contrast of a particular layer.

 ✦ Color balance: Allows you to adjust the relative amounts of red, green, and
blue in a layer, which can be used to improve pictures with poor lighting.

Solving Common Web Graphics Problems
Gimp, and tools like it, can be used in many ways. The rest of this chapter is
a cookbook of sorts, showing how to build a number of graphics commonly
used in web development.

Changing a color
Frequently, you’ll have an image that’s good, but not the right color. For
example, you may want to change the color of a person’s clothing, or make
part of a logo fit the color scheme of the rest of your site. Gimp makes per-
forming this effect quite easy:

 1. Load your starting image into Gimp and make any other adaptations
you wish to the original image.

 2. Use the Fuzzy Select tool to select the part you want to modify.

 You might need to use the Shift key to add several variants of the color
to the selection.

 3. Use the Copy command (Ctrl+C) to copy the section of the image you
just selected.

 4. Use the Paste command (Ctrl+V) to paste the selected area into a new layer.

 The pasted area goes into a new “pseudo-layer” by default. In the Layers
panel you’ll see a layer called Floating Selection – Pasted Layer. Click the
New Layer button and you’ll create a new layer containing only the sec-
tion you need.

 5. Colorize the new layer by applying the Colorize filter (Colors ➪
Colorize).

 Play with the color sliders until you get the color you want. Because you
made the changes on a new layer, you can always remove or hide the
layer to return to the original. (Or have several different color layers so
you can play with various options.)

Figure 4-8 shows an example of this technique using an image of a glass of
orange juice by Graur Razvan Ionut I found at FreeDigitalPhotos.net. The
original image contained only the picture of orange juice, but I duplicated
the juice glass and changed the color of the second glass to look like coffee.
Of course you’ll need to see this effect online at the companion website
because the color change will not be apparent in this black-and-white book.
See the book’s Introduction for more on the companion site.

Solving Common Web Graphics Problems990

Building a banner graphic
Nearly every commercial website has a banner graphic — a special graphic,
usually with a set size (900×100 is common), that appears on every page.
Normally, if you’re modifying a CSS template, you have a default banner graphic.
You’ll want to copy this graphic in order to start with the right size and shape.

You can build a banner many ways, but here’s a simple technique you can
modify (Figure 4-9 shows the banner’s progression):

 1. Load or create the basic shape.

 If you have a starting graphic to use, load it into Gimp. If not, create a
new image of the size you need. Mine is 100 pixels tall by 900 pixels wide.

 2. Create a plasma background.

 Use the Plasma filter (Filters ➪ Render ➪ Clouds ➪ Plasma) to create
a semi-random pattern. Use the New Seed and Turbulence buttons to
change the overall feel. Don’t worry about the colors; you remove them
in the next step.

 3. After the plasma background is in place, use the Colorize filter to
apply a color to the background.

 Pick a color consistent with your theme. For this example, go for a
lighter color because you’re using shadows, which require a light back-
ground. Use the Lightness slider to make a relatively light color. (I’m
going for a cloudy sky look, so I set Hue to 215, Saturation to 100, and
Lightness to 75.)

 4. Create a text layer using the Text tool.

 Text in a graphic should be large and bold. The Text tool automatically
creates a new layer. After you type your text, specify the font and size.

Figure 4-8:
You can use
the Colorize
filter to
change
orange juice
into coffee.

Book VIII
Chapter 4

Editing Graphics

Solving Common Web Graphics Problems 991

 5. Duplicate the text layer.

 In the Layers panel, make a copy of the text layer. Select the lower of the
two text layers (which will become a shadow).

 6. Blur the shadow.

 With the shadow layer selected, apply the Gaussian blur (Filters ➪
Blur ➪ Gaussian Blur).

 7. Move the shadow.

 Use the Move tool to move the relative positions of the text and the
shadow. Typically, users expect a shadow to be slightly lower and
right of the text (simulating light coming from the top left). The far-
ther the shadow is from the text, the higher the text appears to be
floating.

 8. Make the shadow semitransparent.

 With the shadow layer still selected, adjust the Opacity slider to about
50 percent. This will make the shadows less pronounced and allow part
of the background to appear through the shadow layer.

 9. Season to taste; make additions based on your needs.

 For example, one client wanted a picture of his sign to appear on the
banner. I took a photo of the sign, brought it in as a layer, cleaned it up,
and rotated and scaled the image until it fit in place.

 10. Save in a reusable format.

 The native format for images in Gimp is XCF. (I have no clue what
XCF stands for, but every time I try to make up an acronym, it comes
out dirty. There must be something wrong with me.) XCF stores
everything — layers, settings, and all. If you need to modify the banner
later (and you will), you’ll have a good version to work from.

 Choose File ➪ Save As to save the file. If you specify the .xcf extension,
Gimp automatically saves in the full format.

 11. Export to a web-friendly format.

 Generally, I save banner graphics as PNG or GIF files. (Gimp supports
both formats.) I prefer PNG unless the bottom layer has transparency
(because some browsers still don’t support the advanced transparency
features of the PNG format). Do not save images containing text in JPG
format. The JPG compression scheme is notorious for adding artifacts
to text.

Solving Common Web Graphics Problems992

Figure 4-9:
The steps
for building
a banner.

 Normally, when you save to another format, a dialog box of options appears.
If in doubt, go with the default values.

Figure 4-10 shows the final banner image. I included the XCF and PNG files on
the website. Feel free to open my files in Gimp and experiment.

Figure 4-10:
This is a
simple but
reasonably
cool banner.

Building a tiled background
Often, you want a background image to cover the entire page. This can be
harder than it seems because you don’t know how large the page will be in
the user’s browser. Worse, large images can take a huge amount of space
and slow down the user’s experience. The common solution is to use a tiled
image that’s designed to repeat in the background. Gimp has some very
useful tools for building tiled images.

Recall that the background-repeat CSS property allows you to specify
how a background repeats. The default setting repeats the background

Book VIII
Chapter 4

Editing Graphics

Solving Common Web Graphics Problems 993

 infinitely in both the X and Y axes. You can also set the background to repeat
horizontally (repeat-x), vertically (repeat-y), or not at all (no-repeat).

The goal of a tiled background is to make a relatively small graphic fill the
entire page and look like a larger image. The secret is to create the image so
it’s difficult to see where the image repeats. Here’s one way to make a tiled
background in Gimp (Figure 4-11 shows the background’s progression). Of
course, you can adapt this technique for your own purposes.

Figure 4-11:
Building
a tiled
background
image.

 1. Create a new image.

 The size of your image is important. Smaller images are much more effi-
cient to download, but the pattern is much more obvious. Start with 256
by 256 pixels.

 2. Build a random pattern.

 You can use the Plasma filter technique described in the previous sec-
tion or try a similar technique by choosing Filters ➪ Render ➪ Clouds ➪
Difference Clouds. The Difference Clouds filter creates a grayscale image
but with a number of interesting options. The Tileable option creates a
pattern that’s ready to tile. Play with these options until you get some-
thing interesting.

 3. Adjust the contrast.

 For the best effect, you want a relatively even distribution of values from
light to dark. The easiest way to do this is through the automatic nor-
malization tool (Colors ➪ Auto ➪ Normalize).

 4. Pick a gradient.

 You’ll add colors to your pattern using a technique called gradient map-
ping. Use the Gradient dialog box (Windows ➪ Dockable Dialogs ➪
Gradients) to pick a gradient. Darker colors on your image map to colors

Solving Common Web Graphics Problems994

on the left of the gradient, and lighter colors map to the left. You can
adjust colors, so don’t worry if the colors aren’t exactly what you want.
(If you want, you can make your own gradient with the gradient editor
by clicking the Gradient dialog box’s New Gradient button.)

 5. Use the Gradient Map tool (Colors ➪ Map ➪ Gradient Map) to map the
colors of the gradient to your cloud pattern.

 6. Offset the image to check for tiling.

 The easiest way to see whether the image tiles well is to offset the
image. This puts the edges in the center so you can see how the image
will look when multiple copies are next to each other. Open the Offset
dialog by choosing Layer ➪ Transform ➪ Offset. The Offset dialog has a
handy x/2, y/2 button. Click the button to see how your image looks.

 7. Clean the image if necessary.

 If you chose the Tileable option when you built the cloud image, the new
image will look fine. If not, you may have some visible seams. Use the
Smudge and Clone tools to clean up these seams if necessary. Apply the
Offset tool a second time to check whether your seams look good.

 8. Apply filters to get the effect you want.

 You may want to colorize your image or blur it a bit to cover any artifacts
of your cleanup. Remember that background images should be extremely
dark or extremely light with very low contrast if you want readable text.

 9. Test the image by saving the image in XCF format and a web-friendly
format (like PNG), build a simple page using the image as a background,
and load the page into your browser to ensure it tiles the way you expect.

 Figure 4-12 shows a sample page containing my tiled image as the
background.

Figure 4-12:
This page
features my
new tiled
background.

Chapter 5: Taking Control
of Content

In This Chapter
✓ Approximating CMS with Server Side Includes (SSI)

✓ Reviewing client-side includes using AJAX

✓ Using PHP includes to build a basic CMS-style system

✓ Building a data-based CMS

✓ Creating a form for modifying content

C
ommercial sites today combine many skills and tools: HTML, CSS,
JavaScript, AJAX, databases, and PHP. This book covers many of these

techniques. In this chapter you combine all these techniques to build your
own content management systems. Some are very simple to build, and some
are quite sophisticated.

Building a “Poor Man’s CMS” with Your Own Code
The benefits of using a CMS are very real, but you may not want to make
the commitment to a full-blown CMS. For one thing, you have to learn each
CMS’s particular way of doing things, and most CMSs force you into a partic-
ular mindset. For example, you think differently about pages in Drupal than
you do in WebsiteBaker (both described in Chapter 3 of this minibook). You
can still get some of the benefits of a CMS with some simpler development
tricks, as described in the following sections.

 The examples in this chapter build on information from throughout the
entire book. All of the CMSs (and pseudo-CMSs) built in this chapter use the
design developed in Chapter 2 of this minibook.

Using Server Side Includes (SSIs)
Web developers have long used the simple SSI (Server Side Include) trick as
a quick and easy way to manage content. It involves breaking the code into
smaller code segments and a framework that can be copied. For example,
Figure 5-1 shows a variation of the website developed in Chapter 2 of this
minibook.

Building a “Poor Man’s CMS” with Your Own Code996

Figure 5-1:
This web
page
appears
to be a
standard
page.

Even if you view the source code in the browser, you don’t find anything
unusual about the page.

However, if you look at the code in a text editor, you find some interesting
discoveries:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>csSSI.shtml</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "csStd.css" />
 </head>
 <body>
 <div id = "all">
 <!-- This div centers a fixed-width layout -->
 <div id = "heading">
 <!--#include virtual = "head.html" -->
 </div><!-- end heading div -->

 <div id = "menu">
 <!--#include virtual = "menu.html" -->
 </div> <!-- end menu div -->

 <div class = "content">
 <!--#include virtual = "story1.html" -->
 </div> <!-- end content div -->

 <div class = "content">
 <!--#include virtual = "story2.html" -->
 </div> <!-- end content div -->

Book VIII
Chapter 5

Taking Control of
Content

Building a “Poor Man’s CMS” with Your Own Code 997

 <div id = "footer">
 <!--#include virtual = "footer.html" -->
 </div> <!-- end footer div -->
 </div> <!-- end all div -->
 </body>
</html>

Some interesting things are happening in this code snippet:

 ✦ The page has no content! All the actual content (the menus and the
book information) are gone. This page, which contains only structural
information, is the heart of any kind of CSS — the structure is divorced
from the content.

 ✦ A funky new tag is in place of the content. In each place that you
expect to see text, you see an <!–#include –> directive, instead. This
special instruction tells the server to go find the specified file and put it
here.

 ✦ The filename is unusual. The server doesn’t normally look for include
tags (because most pages don’t have them). Typically, you have to save
the file with the special extension .shtml to request that the server look
for include directives and perform them. (It’s possible to use special
server configurations to allow SSI with normal .html extensions.)

 ✦ Servers don’t always allow SSI technologies. Not every server is config-
ured for Server Side Includes. You may have to check with your server
administrator to make this work.

The nice thing about Server Side Includes is the way that it separates the
content from the structure. For example, look at the code for the first con-
tent block:

 <!--#include virtual = "story1.html" -->

This code notifies the server to look for the file story1.html in the current
directory and place the contents of the file there. The file is a vastly simpli-
fied HTML fragment:

<h2>Book I - Creating the HTML Foundation</h2>

 Sound HTML Foundations
 It's All About Validation
 Choosing your Tools
 Managing Information with Lists and Tables
 Making Connections with Links
 Adding Images
 Creating Forms

This approach makes it very easy to modify the page. If I want a new story, I
simply make a new file, story1.html, and put it in the directory. Writing a pro-
gram to do this automatically is easy.

Building a “Poor Man’s CMS” with Your Own Code998

 Like PHP code, SSI code doesn’t work if you simply open the file in the
browser or drag the file to the window. SSI requires active participation from
the server; to run an SSI page on your machine, therefore, you need to use
localhost, as you do for PHP code.

 If you view the source code of csSSI.shtml you won’t see the include lines;
they’ll be replaced with the included HTML snippets. I’ve placed a special
source view of this program on the website so you can see the source code
as I do for PHP programs.

Using AJAX and jQuery for client-side inclusion
If you don’t have access to Server Side Includes, you can use AJAX to get the
same effect.

Figure 5-2 shows what appears to be the same page, but all is not what it
appears to be.

 Figures 5-1 and 5-2 look identical, but they’re not. I used totally different
means to achieve exactly the same output, from the user’s point of view.

The code reveals what’s going on:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>csAJAX.html</title>
 <link rel = "stylesheet"
 type = "text/css"

Figure 5-2:
This time,
I grabbed
content
from the
client side
using AJAX.

Book VIII
Chapter 5

Taking Control of
Content

Building a “Poor Man’s CMS” with Your Own Code 999

 href = "csStd.css" />
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(document).ready(function() {
 $("#heading").load("head.html");
 $("#menu").load("menu.html");
 $("#content1").load("story1.html");
 $("#content2").load("story2.html");
 $("#footer").load("footer.html");
 });
 </script>
 </head>
 <body>
 <div id = "all">
 <!-- This div centers a fixed-width layout -->
 <div id = "heading">
 </div><!-- end heading div -->
 <div id = "menu">
 </div> <!-- end menu div -->
 <div class = "content"
 id = "content1">
 </div> <!-- end content div -->
 <div class = "content"
 id = "content2">
 </div> <!-- end content div -->
 <div id = "footer">
 </div> <!-- end footer div -->
 </div> <!-- end all div -->
 </body>
</html>

Once again, the page content is empty. All the contents are available in the
same text files as they were for the Server Side Includes example. This time,
though, I used a jQuery AJAX call to load each text file into the appropriate
element.

Here’s the plan:

 1. Import the jQuery library.

 The jQuery library is by far the easiest way to work with AJAX, so
import jQuery any time you want to work with AJAX. See Book VII,
Chapter 2 for more on importing the jQuery library.

 2. Add an initialization function.

 There are many ways to call initial functions in jQuery (discussed in
Book VII, Chapter 2). It doesn’t matter which mechanism you use as long
as it occurs after the page has loaded but before any other JavaScript. I
use the standard $(document).ready mechanism in this example.

 3. Load each div with the load() method.

 The jQuery library has a load() method that allows you to make an
AJAX call and place the document in the indicated element. Use this
mechanism on each element in your page.

Building a “Poor Man’s CMS” with Your Own Code1000

The same document structure can be used with very different content by
changing the JavaScript. If you can’t create a full-blown CMS (because the
server doesn’t allow SSI, for example) but you can do AJAX, this is an easy
way to separate content from layout. See Book VII, Chapter 2 for more infor-
mation on using jQuery and AJAX for page includes.

Building a page with PHP includes
Of course, if you have access to PHP, it’s quite easy to build pages
dynamically.

The csInclude.php program shows how this is done:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>CS PHP Includes</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "csStd.css" />
 </head>
 <body>
 <div id = "all">
 <!-- This div centers a fixed-width layout -->
 <div id = "heading">
 <?php include("head.html"); ?>
 </div><!-- end heading div -->
 <div id = "menu">
 <?php include("menu.html"); ?>
 </div> <!-- end menu div -->
 <div class = "content">
 <?php include("story1.html"); ?>
 </div> <!-- end content div -->
 <div class = "content">
 <?php include("story2.html"); ?>
 </div> <!-- end content div -->
 <div id = "footer">
 <?php include("footer.html"); ?>
 </div> <!-- end footer div -->
 </div> <!-- end all div -->
 </body>
</html>

As you can see, using PHP is almost the same as using the SSI and AJAX
approaches from the last two sections of this chapter:

 1. Start by building a template.

 The general template for all three styles of page inclusion is the same.
There’s no need to change the general design or the CSS.

 2. Create a small PHP segment for each inclusion.

 In this particular situation, it’s easiest to write HTML code for the main
site and write a small PHP section for each segment that needs to be
included.

Book VIII
Chapter 5

Taking Control of
Content

Creating Your Own Data-Based CMS 1001

 3. Include the HTML file.

 Each PHP snippet does nothing more than include the appropriate
HTML.

Creating Your Own Data-Based CMS
If you’ve come this far in the chapter, you ought to go all the way and see
how a relational database can add flexibility to a page-serving system. If
you really want to turn the corner and make a real CMS, you need a system
that stores all the data in a data structure and compiles the pages from that
structure dynamically. That sounds like a project. Actually, creating your
own CMS neatly ties together most of the skills used throughout this book:
HTML, CSS, PHP, and SQL. It’s not nearly as intimidating as it sounds, though.

Using a database to manage content
The first step is to move from storing data in files to storing in a relational
database. Each page in a content management system is often the same
structure, and only the data is different. What happens if you move away
from text files altogether and store all the content in a database?

The data structure might be defined like this in SQL:

DROP TABLE IF EXISTS cmsPage;
CREATE TABLE cmsPage (
 cmsPageID INTEGER PRIMARY KEY AUTO_INCREMENT,
 title VARCHAR(30)
);

DROP TABLE IF EXISTS cmsBlock;
CREATE TABLE cmsBlock (
 cmsBlockID INTEGER PRIMARY KEY AUTO_INCREMENT,
 blockTypeID INTEGER,
 title VARCHAR(50),
 content TEXT,
 pageID INTEGER

);

DROP TABLE IF EXISTS blockType;
CREATE TABLE blockType (
 blockTypeID INTEGER PRIMARY KEY AUTO_INCREMENT,
 name VARCHAR(30)
);

DROP VIEW IF EXISTS pageView;
CREATE VIEW pageView AS
 SELECT
 blockType.name as 'block',
 cmsBlock.title as 'title',
 cmsBlock.content as 'content',
 cmsBlock.pageID as 'pageID',
 cmsPage.title as 'page'
 FROM

Creating Your Own Data-Based CMS1002

 cmsBlock, blockType, cmsPage
 WHERE
 cmsBlock.blockTypeID = blockType.blockTypeID;

INSERT INTO cmsPage VALUES (
 null,
 'main page'
);

INSERT into blockType VALUES (null, 'head');
INSERT into blockType VALUES (null, 'menu');
INSERT into blockType VALUES (null, 'content1');
INSERT into blockType VALUES (null, 'content2');
INSERT into blockType VALUES (null, 'footer');

INSERT INTO cmsBlock VALUES (
 null,
 1,
 'it\'s a binary thing',
 null,
 1
);

INSERT INTO cmsBlock VALUES (
 null,
 2,
 'menu',
 '

 one
 two
 three

 ',
 1
);

INSERT INTO cmsBlock VALUES (
 null,
 3,
 'Book I - Creating the HTML Foundation',
 '

 Sound HTML Foundations
 It\'s All About Validation
 Choosing your Tools
 Managing Information with Lists and Tables
 Making Connections with Links
 Adding Images
 Creating forms

 ',
 1
);

INSERT INTO cmsBlock VALUES (
 null,
 4,
 'Book II - Styling with CSS',
 '

 Coloring Your World
 Styling Text

Book VIII
Chapter 5

Taking Control of
Content

Creating Your Own Data-Based CMS 1003

 Selectors, Class, and Style
 Borders and Backgrounds
 Levels of CSS

 ',
 1
);

INSERT INTO cmsBlock VALUES (
 null,
 5,
 null,
 'see aharrisbooks.net for more

information',
 1
);

This structure has three tables and a view:

 ✦ The cmsPage table: Represents the data about a page, which currently
isn’t much. A fuller version might put menu information in the page data
so that the page would “know” where it lives in a menu structure.

 ✦ The cmsBlock table: Represents a block of information. Each block is
the element that would be in a miniature HTML page in the other sys-
tems described in this chapter. This table is the key table in this struc-
ture because most of the content in the CMS is stored in this table.

 ✦ The blockType table: Lists the block types. This simple table describes
the various block types.

 ✦ The pageView view: Ties together all the other information. After all
the data is loaded, the pageView view ties it all together, as shown in
Figure 5-3.

Figure 5-3:
This view
describes
all the data
needed
to build a
page.

Creating Your Own Data-Based CMS1004

 Most of the data is being read as HTML, but it’s still text data. I included the
entire SQL file, including the INSERT statements, on the companion website
as buildCMS.sql.

Writing a PHP page to read from the table
The advantage of using a data-based approach is scalability. In using all the
other models in this chapter, I had to keep copying the template page. If you
decide to make a change in the template, you have to change hundreds of
pages. If you use data, you can write one PHP program that can produce any
page in the system. All this page needs is a page-number parameter. Using
that information, it can query the system, extract all the information needed
for the current page, and then display the page. Here’s the (simplified) PHP
code for such a system:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>CS Basic CMS</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "csStd.css" />
 </head>
<?php
//get pageID from request if possible
$pageID = filter_input(INPUT_POST, "pageID");

if ($pageID == ""){
 $pageID = 1;
} // end if

try {
 //connect to database
 $con= new PDO('mysql:host=host;dbname=dbName', "user", "pwd");
 $con->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 //read current page information from the db
 $stmt = $con->prepare("SELECT * FROM pageView WHERE PageID = ?");
 $stmt->execute(array($pageID));
 $result = $stmt->fetchAll(PDO::FETCH_ASSOC);

 //make page variables based on the current record
 foreach ($result as $row){
 if ($row["block"] == "head"){
 $head = $row["title"];
 } else if ($row["block"] == "menu"){
 $menu = $row["content"];
 } else if ($row["block"] == "content1"){
 $c1Title = $row["title"];
 $c1Text = $row["content"];
 } else if ($row["block"] == "content2"){
 $c2Title = $row["title"];
 $c2Text = $row["content"];
 } else if ($row["block"] == "footer"){
 $footer = $row["content"];
 } // end if

Book VIII
Chapter 5

Taking Control of
Content

Creating Your Own Data-Based CMS 1005

 } // end foreach
} catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
} // end try
?>

 <body>
 <div id = "all">
 <!-- This div centers a fixed-width layout -->
 <div id = "heading">
 <h1>
 <?php print $head; ?>
 </h1>
 </div><!-- end heading div -->
 <div id = "menu">
 <?php print $menu; ?>
 </div> <!-- end menu div -->
 <div class = "content">
 <h2>
 <?php print $c1Title; ?>
 </h2>
 <div>
 <?php print $c1Text; ?>
 </div>
 </div> <!-- end content div -->
 <div class = "content">
 <h2>
 <?php print $c2Title; ?>
 </h2>
 <div>
 <?php print $c2Text; ?>
 </div>
 </div> <!-- end content div -->
 <div id = "footer">
 <?php print $footer; ?>
 </div> <!-- end footer div -->
 </div> <!-- end all div -->
 </body>
</html>

Here’s the cool thing about dbCMS. This page is all you need! You won’t have
to copy it ever. The same PHP script is used to generate every page in the
system. If you want to change the style or layout, you do it in this one script,
and it works automatically in all the pages. This is exactly how CMS systems
work their magic!

Looking at all the code at one time may seem intimidating, but it’s quite easy
when you break it down, as explained in these steps:

 1. Pull the pageID number from the request.

 If possible, extract the pageID number from the GET request. If the user
has sent a particular page request, it has a value. If there’s no value, get
page number 1:

//get pageID from request if possible
//note this is a GET request, for flexibility
$pageID = filter_input(INPUT_GET, "pageID");

Creating Your Own Data-Based CMS1006

if ($pageID == ""){
 $pageID = 1;
} // end if

 Note that I’m using a sneaky trick to indicate the page. The menu links
will all call the same program, but with a different pageID:

 one
 two
 three

 2. Query pageView to get all the data for this page.

 The pageView view was designed to give you everything you need to
build a page with one query.

 3. Make a data connection.

 Build a standard PDO connection to the database. (Check Book VI,
Chapter 5 if you need more on building a PDO connection.) Don’t forget
to set up an exception handler and the appropriate error constants.

 try {
 //connect to database
 $con= new PDO('mysql:host=localhost;dbname=haio', "haio", "haio");
 $con->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 // OTHER CODE WILL GO HERE

} catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
} // end try

 4. Form and execute the query.

 Use the prepared statement mechanism to build a statement that will
return all records for the current page. Execute the statement and fetch
all the results in a variable called $results.

 //read current page information from the db
 $stmt = $con->prepare("SELECT * FROM pageView WHERE PageID = ?");
 $stmt->execute(array($pageID));
 $result = $stmt->fetchAll(PDO::FETCH_ASSOC);<Warning>

 Don’t simply interpolate the $pageID variable into the SQL query. Doing
so would open yourself up to SQL injection attacks. Use the prepare/
execute mechanism to prevent this type of attack.

 5. Use the entry to populate page variables.

 Each entry contains two fields: block and content. The block field
determines the type of content, and the content field shows what con-
tent is there. Use this data to populate the variables used to build the
page:

 //make page variables based on the current record
 foreach ($result as $row){
 if ($row["block"] == "head"){

Book VIII
Chapter 5

Taking Control of
Content

Creating Your Own Data-Based CMS 1007

 $head = $row["title"];
 } else if ($row["block"] == "menu"){
 $menu = $row["content"];
 } else if ($row["block"] == "content1"){
 $c1Title = $row["title"];
 $c1Text = $row["content"];
 } else if ($row["block"] == "content2"){
 $c2Title = $row["title"];
 $c2Text = $row["content"];
 } else if ($row["block"] == "footer"){
 $footer = $row["content"];
 } // end if

 } // end foreach

 6. Write out the page.

 Go back to HTML and generate the page, skipping into PHP to print the
necessary variables.

 <body>
 <div id = "all">
 <!-- This div centers a fixed-width layout -->
 <div id = "heading">
 <h1>
 <?php print $head; ?>
 </h1>
 </div><!-- end heading div -->
 <div id = "menu">
 <?php print $menu; ?>
 </div> <!-- end menu div -->
 <div class = "content">
 <h2>
 <?php print $c1Title; ?>
 </h2>
 <div>
 <?php print $c1Text; ?>
 </div>
 </div> <!-- end content div -->
 <div class = "content">
 <h2>
 <?php print $c2Title; ?>
 </h2>
 <div>
 <?php print $c2Text; ?>
 </div>
 </div> <!-- end content div -->
 <div id = "footer">
 <?php print $footer; ?>
 </div> <!-- end footer div -->
 </div> <!-- end all div -->
 </body>

Allowing user-generated content
The hallmark of a CMS is the ability of users with limited technical knowl-
edge to add content to the system. My very simple CMS illustrates a limited

Creating Your Own Data-Based CMS1008

way to add data to the CMS. Figure 5-4 shows the buildBlock.html page. This
page allows authorized users to add new blocks to the system and produces
the output shown in Figure 5-5.

Figure 5-4:
A user can
add content,
which
updates the
database.

After a few entries, a user can build a complete second page, which might
look similar to Figure 5-6.

Figure 5-5:
The result of
a successful
page
update.

Book VIII
Chapter 5

Taking Control of
Content

Creating Your Own Data-Based CMS 1009

Figure 5-6:
This page
is simply
another
set of page
blocks
added by
the user.

The system is simple but effective. The user builds blocks, and these blocks
are constructed into pages. First, look over the buildBlock.html page.

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Build new block</title>

 <link rel = "stylesheet"
 type = "text/css"
 href = "csStd.css" />

 <style type = "text/css">
 label {
 float: left;
 width: 10em;
 clear: left;
 text-align: right;
 padding-right: 1em;
 }

 input, select, textarea {
 float: left;
 width: 20em;
 }

 button {
 display: block;
 clear: both;
 margin: auto;
 }

 </style>
</head>
<body>

Creating Your Own Data-Based CMS1010

 <div id = "all">
 <div id = "heading">
 <h1>Build a new block</h1>
 </div>

 <div class = "content">
 <form action = "buildBlock.php"
 method = "post">
 <fieldset>

 <label>
 password
 </label>
 <input type = "password"
 name = "password" />

 <label>block type</label>
 <select name = "blockType">
 <option value = "1">head</option>
 <option value = "2">menu</option>
 <option value = "3">content1</option>
 <option value = "4">content2</option>
 <option value = "5">footer</option>
 </select>

 <label>title</label>
 <input type = "text"
 name = "title" />

 <label>content</label>
 <textarea name = "content"
 rows = "10"
 cols = "40"></textarea>

 <label>page</label>
 <select name = "pageID">
 <option value = "1">main page</option>
 <option value = "2">page 2</option>
 </select>

 <button type = "submit">
 submit
 </button>
 </fieldset>
 </form>
 </div>
 </div>
</body>
</html>

This code is a reasonably standard HTML form. Here are the highlights:

 ✦ Add CSS for consistency: It’s important that the user understands she is
still in a part of the system, so I include the same CSS used to display the
output. I also add local CSS to improve the form display.

 ✦ Build a form that calls buildBlock.php: The purpose of this form is to
generate the information needed to build an SQL INSERT statement. The
buildBlock.php program provides this vital service.

Book VIII
Chapter 5

Taking Control of
Content

Creating Your Own Data-Based CMS 1011

 ✦ Ask for a password: You don’t want just anybody modifying your forms.
Include a password to make sure only those who are authorized add
data.

 ✦ Get other data needed to build a block: Think about the INSERT query
you’ll be building. You’ll need to get all the data necessary to add a new
record to the cmsBlock table.

 Honestly, this page is a bit sloppy. I hard-coded the block types and page IDs.
In a real system, this data would be pulled from the database (ideally
through AJAX). However, I decided to go with this expedient to save space.

Adding a new block
When the page owner submits the buildBlock.html form, control is passed to
buildBlock.php. This program reads the data from the form, checks the pass-
word, creates an INSERT statement, and passes the query to the database.

Here’s the code and then the details:

<!doctype html>
<html lang="en">
<head>
 <title>buildBlock.php</title>
 <meta charset="UTF-8">
</head>
<body>
 <?php
 //retrieve data from form
 $password = filter_input(INPUT_POST, "password");
 $blockType = filter_input(INPUT_POST, "blockType");
 $title = filter_input(INPUT_POST, "title");
 $content = filter_input(INPUT_POST, "content");
 $pageID = filter_input(INPUT_POST, "pageID");

 //check password
 if ($password == "allInOne"){
 manageResults();
 } else {
 print "<h2>Unauthorized access...</h2>";
 } // end if

 function manageResults(){
 global $blockType, $title, $content, $pageID;

 //return output
 print <<<HERE
 <h2>Page input:</h2>
 <p>
 blockType: $blockType

 title: $title

 content: $content

 pageID: $pageID
 </p>
HERE;

 try {

Creating Your Own Data-Based CMS1012

 //connect to database
 $con= new PDO('mysql:host=host;dbname=dbName', "user", "pwd");
 $con->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 //create an INSERT statement based on input
 $stmt = $con->prepare('INSERT INTO cmsBlock VALUES(null, ?, ?, ?, ?)');
 $result = $stmt->execute(array($blockType, $title, $content, $pageID));

 //provide feedback
 if ($result){
 print "System updated";
 } else {
 print "There was an error";
 } // end if

 } catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
 } // end try
} // end function

 ?>
 <p>
 return to the CMS
 </p>
</body>
</html>

Here’s how you use the PHP code with the HTML form to update the
database:

 1. Retrieve data from the form.

 Use the filter_input or $_REQUEST mechanism to extract all data
from the previous form.

 2. Filter all input that’s used in the query.

 All form variables except the password are used in an SQL query, so
pass each variable through the mysql_filter_input() function to
prevent SQL injection attacks. (See Book VI, Chapter 5 for information
about SQL injection attacks and how to prevent them.)

 3. Check the password.

 You obviously don’t want just anybody to change your system. Check
the password and continue only if the user is authorized.

 4. Print the form contents.

 Ensure the form contents are what you expect before passing data to a
database.

 5. Connect to the database.

 Build a standard database connection so you can pass the query to the
database.

Book VIII
Chapter 5

Taking Control of
Content

Creating Your Own Data-Based CMS 1013

 6. Build and execute the query.

 Send the query to the database with the prepare/execute mechanism.
Note that an INSERT command doesn’t return a data result, so there’s
no need to do a fetch command. However, the $result variable will
still contain a true or false value, so compare this value to ensure the
insertion worked correctly.

Improving the dbCMS design
Although the simple PHP/MySQL combination described in the last section
is a suitable starting point, you probably want to do a bit more to make a
complete CMS because a better CMS might have the following features:

 ✦ Automatic menu generation: The menu system in dbCMS is too static
as it is. Your database should keep track of where each page is located
in the system, and your menu code should be dynamically generated
based on this information.

 ✦ Better flexibility: To keep the code simple, I made only one page type,
and the page always has exactly two content blocks. You’ll want a much
more flexible design.

 ✦ Error-checking: This program isn’t nearly robust enough for real use
(yet). It crashes if the data isn’t complete. Before you can use this
system in a real application, you need a way to improve its “crash-
worthiness.”

 ✦ Improved data input: The very basic input form described in this chap-
ter is fine, but it could certainly be improved. Loading the block type
and page data directly from the database would be better. It would also
be nice if the user could create new block types. Still, this basic CMS
shows how you can start building your own content systems.

1014 Book VIII: Moving from Pages to Sites

Index

Special Characters and
Numerics

-- operator, 412
<!– –> (comment) tag, 13
!= (not equal) conditional operator,

403, 574
!== comparison operator, 634, 636
identifier, 785
$() function, 780–782, 785
$ operator, 474
$ variable character, 540
% wildcard value, 692
& (ampersands), 558
&& (and) operator, 417
() (parenthesis), 383, 580
* operator, 474, 477–478
*= operator, 410
. (periods)

concatenation operator, 541
current directory, 636
matching characters with, 476
regular expression operator, 473
specifying classes, 181
for targeting class members, 785

.= operator, 544
/ (slashes), 12, 475
/ / comment pair, 358
/* */ comment pair, 230, 358
/= operator, 410
: (colons), 455
; (semicolons), 359, 538, 545–546, 680
? (question marks), 557
<? ?> PHP directive, 537
\ (backslashes), 477, 539, 544
\\ : escape directive, 540
\" escape directive, 540
\' escape directive, 540
\$ escape directive, 540
^ (caret) operator, 473, 476

_ (underscores), 609
{ } (braces)

conditions, 402
function definition, 382, 608–609
JSON notation, 455
for loops, 583
main objects, 877
style rules, 134
switch statements, 405, 580

| (pipes), 627
|| (or) operator, 417
~ (tildes), 71
+ (plus signs)

concatenation, 363, 371–372
mathematical addition, 541

+ operator, 474, 477
++ operator, 410–411
+= operator, 410
< (less than) conditional operator, 403, 574
< (less than) symbol, 802
< > (angle braces), 12
<= (less than or equal to) conditional

operator, 403, 574
= (equal signs), 558, 691, 872
-= operator, 410
== (equal) conditional operator, 401, 403,

572, 574, 691
=== comparison operator, 634
> (greater than) conditional operator, 403,

573
> (greater than) symbol, 319–320
-> deference operator, 641
>= (greater than or equal to) conditional

operator, 403, 574
, (commas), 455
" " (quotes)

attributes in, 21
double quote interpolation, 543–544
embedding quotes within quotes, 384
escaping, 539
multiple levels of, 228
regular expressions, 475

Index

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1016

' ' (single quotes), 384, 539, 680, 713
111 permission, 925
200 = OK response code, 770
400 = Bad Request response code, 770
404 = Not Found response code, 770
408 = Request Timeout response

code, 770
500 = Internal Server Error

response code, 770
644 permission, 925, 928
755 permission, 925, 928

A
<a> (anchor) tags

components of, 69–70
defined, 68
externally linked images, 78–79

absolute font measurement units
centimeters, 163
defined, 162
inches, 163
pixels, 163
points, 162

absolute positioning
code for, 334–335
default layout, 327–328
features of layouts with, 335–336
with flexibility

creating, 339
general discussion, 336–337
using percentage measurements,

337–338
flexible box layouts versus, 345, 351
general discussion, 351–352
height attribute, 330, 334
margins, 330
overlapping elements, 328–329, 332
padding, 334
page design, 333–334
position attribute, 330, 334
width attribute, 330, 334
z-index attribute, 331–332

absolute references, 73
abstraction, 616, 639, 827

Accented Analogic color scheme, 148
access modifiers, 644–646
accordion() method, 845
accordion pages, 821, 841–845, 897–900
action attribute, 107, 121, 565
action property, 553–554, 557
:active pseudo-class, 196
addClass() method, 790
addColorStops() method, 489
addRadialGradient() command, 489
address semantic tag, 295
Adobe Dreamweaver

features of, 33
problems with, 34

Adobe Fireworks, 978
Adobe Flash, 267–268
Adobe Photoshop, 97, 978
Airbrush tool, Gimp, 981–982
AJAX

animating with jQuery
adding text, 813–814
alternating styles, 816
cloning, 814–815
embedding objects, 815–816
fading effect, 802
general discussion, 795–797
hiding and showing effects, 800–801
HTML and CSS foundation for, 799
initializing page, 800
modifying elements, 807–817
positioning, 802–808
selectors and filters, 817
sliding effect, 801
toggling effect, 800–801
transitions, 797–798

asynchronous nature of, 763
building pseudo-CMSs, 998–1000
defined, 761–764
efficiency and, 951
establishing connections

building forms for, 766–767
checking status, 769–771
creating XMLHttpRequest object,

767–768
general discussion, 764–766

1016

Index 1017

opening connections to server, 768–769
sending request and parameters, 769

Google Chrome, 47
improving with jQuery

adding or removing styles, 788–790
AJAX requests with, 791–794
changing styles, 783–785
creating objects, 780–781
events, 786–788, 790
features of, 776–777
importing from Google, 777–778
initialization functions, 781–783
installing, 777
manipulating classes, 788–790
methods, 781
modifying styles, 785–786
node object, 780
selecting objects, 785
setting up page, 779–780

JavaScript and, 763
jQuery UI toolkit

adding icons, 833–834
building pages, 836
characteristics of, 819
cloning elements, 839–840
downloading library, 824–826
elements of, 821–822
icons, 820
importing files, 829–830
initializing pages, 836–837
resizing elements, 827–830
themeRoller tool, 820–823
themes, 819–820, 822–823, 830–833
writing programs, 826–827

making connections asynchronous
general discussion, 771–772
getAJAX() function, 772–773
reading response, 773–774
setting up for, 771–772

mobile accessibility
adding qualifiers, 885–888
app development, 905–908
improving user experience, 883–885
jQuery Mobile, 894–905
responsive layouts, 888–894
specifying media type, 885

multipass applications
general discussion, 863–864
HTML framework for, 864–865
loading select element, 865–866
responding to selections, 867–868
writing program, 866–870

sending requests, 859–861
simplifying PHP for, 861–862
tabbed interfaces, 848–849
XML and, 763–764

alert() method, 358–359, 361–362, 373
alert mechanism, 398
Align tool, Gimp, 985–986
alignment

of borders, 205–206
of text

horizontal, 169–170
vertical, 170

all element, 306–307, 339
alpha transparency, 89, 216, 247
alt (alternate text) attribute, 81–82
ampersands (&), 558
Analogic color scheme, 148
anchor (<a>) tags

components of, 69–70
defined, 68
externally linked images, 78–79

and (&&) operator, 417
AND clause, 736
angle braces (< >), 12
animate() function, 806–808
:animated filter, 817
animation

with CSS
jQuery versus, 807
using animation mechanism, 259–262
using transitions, 257–259

with JavaScript
animation loop, 515–516
bouncing motion, 520–521
constants, 516
of current frame, 517–519
frame rate, 515
initializing, 517
keyboard input, 521–526

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1018

moving elements, 519–520
sprites, 515

with jQuery
easing, 808
fading effect, 802
general discussion, 795–797
hiding and showing effects, 800–801
HTML and CSS foundation for, 799
initializing page, 800
modifying elements, 807–817
positioning, 802–808
sliding effect, 801
toggling effect, 800–801
transitions, 797–798

animation attribute, 259, 259–262
animation property parameter, 259
anonymous functions (lambda functions),

787–788
Apache, 532, 536, 663–664
app development

general discussion, 905–906
icons, 906
removing Safari toolbar, 906–907
storing program offline, 907–908

append() method, 813–814, 840, 875
append text access, 619–620
Apple Safari browser

debugging in, 420
features of, 47–48
general discussion, 10
hiding toolbar, 906–907
image borders, 208

apple-touch-icon directive, 906
Aptana, 536, 545–546
arc() method, 500
arcs, 500–502
arguments

defined, 383, 608
specifying, 608

array() function, 589
array_values() function, 632
arrays

accessing data, 440–441
associative
foreach loops and, 595–597
general discussion, 594–595

breaking strings into
with explode, 601–602
with preg_split, 602–603

containing elements of different
types, 440

for dealing with complexity, 447
defined, 429, 438–439
example of, 442–443
general discussion, 439–440
listed data as, 465
multidimensional

general discussion, 444–446, 597–600
main() function, 448–449
setting up, 446–447

one-dimensional
creating, 587
filling shapes with, 588
preloading, 589–590
viewing elements of, 588–589

using loops with
for, 441–442, 590–591
foreach, 591–593
HTML and, 593–594

<article> semantic tag, 294, 351
artifacts, 86
aside semantic tag, 295
associative arrays
foreach loops and, 595–597
general discussion, 594–595

:attribute=value filter, 817
attributes

defined, 60
in quotes, 21

audio
adding to web pages, 99–100
formats, 101

<audio></audio> tags, 100–101
auditory web browsers, 49
AUTO_INCREMENT tag, 686–687

animation (continued)

Index 1019

B
\b operator, 474
 (boldface) tag, 155, 179–180
back() function, 408, 411
background images

adding to web pages, 212–214
color adjustment, 216
contrast, 214, 217–218
gradients

creating complex, 220–221
creating simple, 220–221
general discussion, 219–220
radial, 222–223

problems with, 214
repeating, turning off, 218–219
size of, 214
tiled, 215–216, 977, 992–994
transparency, 216

background-color attribute, 134, 216
backgroundColor attribute, 379, 384
background-image attribute, 212–213
background-repeat attribute, 218–219,

992–993
backslashes (\), 477, 539, 544
banner graphics, 977
beginPath() method, 497
beginRadius parameter, 489
beginX parameter, 489
beginY parameter, 489
“Best viewed with” disclaimers, 237
beta testing, 951
Bézier curves, 503–504
Bezier Select tool, Gimp, 983–984
bezierCurveTo function, 503
big() method, 366
binary encoding schemes, 11
Blend tool, Gimp, 982
blink attribute, 169
<blink> tag, 169
blinking text, 169
BLOB data type, 658
block-level tags, 69, 184, 202–203, 235
blur parameter, 252

Blur/Sharpen tool, Gimp, 984–985
BMP format, 85, 90
<body></body> tags, 13
boldface () tag, 155, 179–180
boldface text, 81, 155, 166–167
Boolean operators, 417
Boolean values, 371
border() function, 787
border attribute, 60–61
border-bottom attribute, 202
border-color attribute, 200, 202
border-image attribute, 208
border-left attribute, 202
border-radius attribute, 209–210, 799
border-right attribute, 202
borders

attributes, 197–199
box model, 203–205
box shadow, 210–212
floating two-column design, 291–292
image, 207–209
partial, 201–202
rounded corners, 209–210
shading, 200
shortcut for defining, 200–201
styles, 199
table, making visible, 60–61

bounce() function, 520–521
box model

borders, 203–205
margins

general discussion, 203–205
positioning elements with, 205–206

overview, 202–203
padding

general discussion, 203–205
positioning elements with, 205–206

box shadow
borders, 210–212
buttons, 312

box-flex attribute, 345, 348
box-ordinal-group attribute, 346
box-orient attribute, 345, 347–348
box-shadow attribute, 210–212

 (break) tag, 410, 435

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1020

braces ({ })
conditions, 402
function definition, 382, 608–609
JSON notation, 455
for loops, 583
main objects, 877
style rules, 134
switch statements, 405, 580

break (
) tag, 410, 435
break statement, 406, 580
breakpoints, 418, 420
bugs (logic errors), 424–426, 586
bullets

removing, 311
in unordered lists, 51
using images as, 77, 223–224

business rules, 716, 732
<button></button> tag, 121–122
buttons

adding functionality
embedding quotes within quotes, 384
general discussion, 381–382
naming functions, 383
parameters, 383
parenthesis and braces, 382–383

<button> tag, 121–122
defined, 106
floating layouts, 278, 280
general discussion, 119–120, 379–381
horizontal bar of

hyperlinks, 313–314
menu systems, 324–326

input-style buttons, 120–121
jQuery and, 799
for multiple select lists, 463
onclick parameter, 379–380
Reset buttons, 121
rounded corners, 799
Submit buttons, 121, 554
vertical list of

hyperlinks, 309–310, 310–313
menu systems, 321–324

C
calendar controls

date and time format, 124
date type, 122–123

datetime type, 123
datetime-local type, 123–124
month type, 125
time type, 123
time zones, 125
week type, 124–125

callback functions, 457, 783, 802, 807, 861
camel-casing, 609
<canvas> tag

animation
animation loop, 515–516
bouncing motion, 520–521
constants, 516
of current frame, 517–519
initializing, 517
keyboard input, 521–526
moving elements, 519–520

capabilities of, 485–486
fills

colors, 486–487
defined, 485
gradients, 487–489
patterns, 489–491

general discussion, 483
images

color balance, 508–510
drawing, 505–507
drawing part of, 507–508
general discussion, 505

paths
arcs, 500–502
Bézier curves, 503–504
circles, 500–502
defined, 485
general discussion, 496–498
line width and style options, 498–499
quadratic curves, 502–503

rectangles, 491–492
setting up, 484–485
shadows, 494–495
strokes

colors, 486–487
defined, 485
gradients, 487–489
patterns, 489–491

text, 492–493
transformations

creating transformed images, 512–514
defined, 485–486, 511

Index 1021

general discussion, 511–512
strategies for, 514–515

CAPTCHA mechanism, 621
caret (^) operator, 473, 476
carriage returns, 14
Cartesian joins, 729–730
Cascading Style Sheets. See CSS3
case conversion, 170
case statement, 405
catch clause, 651
<center> (centering) tag, 155, 205
centered fixed-width layouts (jello layouts)

features of, 307
general discussion, 305
limitations of, 308
surrogate body, 306–307

centering (<center>) tag, 155, 205
centerX parameter, 489
change event, 790
[char range] operator, 474, 477
[characters] operator, 474, 476–477
CHAR(length) data type, 658, 660
chdir() function, 634–635
check boxes

checking for existence of, 567–568
creating, 116–117
creating form for, 466–467
defined, 106
overview, 465–466
responding to, 467

checkData function, 773
checked = "checked" attribute, 118
checked property, 467, 469–470
Chrome browser

console, 376–377, 420–423
CSS coding in, 142–143
debugging in, 418–422, 815
Developer Tools window, 376, 418–419
features of, 47–48
general discussion, 10
image borders, 208
viewing generated source code, 396–397

circles, 500–502
class attribute, 181
class keyword, 640
classes

adding to web pages, 181–182
combining, 182–184

creating, 452–453
defining, 640, 640–641
defining methods, 453
defining properties, 452–453
general discussion, 180–181
using, 642–644
using as new data types, 453
using element style with, 182
using ID style with, 184

clear attribute, 283–284
clearRect() function, 491
click event, 790
clients

characteristics of, 911–912
defined, 911

client-server integration
AJAX, defined, 761–764
animating with jQuery

adding text, 813–814
alternating styles, 816
cloning, 814–815
embedding objects, 815–816
fading effect, 802
general discussion, 795–797
hiding and showing effects, 800–801
HTML and CSS foundation for, 799
initializing page, 800
modifying elements, 807–817
positioning, 802–808
selectors and filters, 817
sliding effect, 801
toggling effect, 800–801
transitions, 797–798

establishing connections
building forms for, 766–767
checking status, 769–771
creating XMLHttpRequest object,

767–768
general discussion, 764–766
opening connections to server, 768–769
sending request and parameters, 769

improving with jQuery
adding or removing styles, 788–790
AJAX requests with, 791–794
changing styles, 783–785
creating objects, 780–781
events, 786–788, 790
features of, 776–777

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1022

importing from Google, 777–778
initialization functions, 781–783
installing, 777
manipulating classes, 788–790
methods, 781
modifying styles, 785–786
node object, 780
selecting objects, 785
setting up page, 779–780

jQuery UI toolkit
adding icons, 833–834
building pages, 836
characteristics of, 819
cloning elements, 839–840
downloading library, 824–826
elements of, 821–822
icons, 820
importing files, 829–830
initializing pages, 836–837
resizing elements, 827–830
themeRoller tool, 820–823
themes, 819–820, 822–823, 830–833
writing programs, 826–827

making connections asynchronous
general discussion, 771–772
getAJAX() function, 772–773
reading response, 773–774
setting up for, 771–772

mobile accessibility
adding qualifiers, 885–888
app development, 905–908
improving user experience, 883–885
jQuery Mobile, 894–905
responsive layouts, 888–894
specifying media type, 885

client-side programming
alert() method for output, 358
arrays

accessing data, 440–441
containing elements of different types,

440
for dealing with complexity, 447
defined, 429, 438–439
example of, 442–443
general discussion, 439–440

listed data as, 465
multidimensional, 444–449
using loops with, 441–442

basic Hello World program, 357–358
canvas, animation with

animation loop, 515–516
bouncing motion, 520–521
constants, 516
of current frame, 517–519
initializing, 517
keyboard input, 521–526
moving elements, 519–520

canvas, drawing on
capabilities of, 485–486
fills, 485–491
general discussion, 483
images, 505–510
paths, 485, 496–504
rectangles, 491–492
setting up, 484–485
shadows, 494–495
strokes, 485–491
text, 492–493
transformations, 485–486, 511–515

character location indices, 368
comments, 358
concatenation

comparing literals and variables, 363
extra spaces, 364
general discussion, 362–363

debugging
automatically, 427
with Chrome console, 420–422
with Chrome debugger, 418–420
logic errors, 424–426
syntax errors, 422–424

decision-making code
if statements, 399–405, 416–417
for loops, 406–413
switch statements, 405–406
while loops, 413–417

defined, 355–356
embedding code, 358
as first programming language, 356
forms

client-server integration (continued)

Index 1023

buttons, 379–384
check boxes, 465–467
drop-down lists, 459–461
hidden fields, 391–397
password fields, 391–397
radio buttons, 468–470
select lists (multiple select lists),

462–465
text boxes/fields, 384–391, 459

functions
anonymous, 451
assigning prebuilt to methods, 451
breaking code into, 429–432
button functionality, 381–383
defined, 429
global variables, 437
local variables, 437
naming, 383
parameters, 383, 435
parenthesis and braces, 382–383
passing data to and from, 432–437
for returning values, 434–435
separation between, 432
variable scope, 437–439

general discussion, 355
interpretation of dynamic data,

370–372
Java versus, 355–356
objects

adding methods to, 450–452
creating, 449–450
defined, 429
reusable, 452–453
using, 453–454

parts of system, 912
semicolons, 359
strings

defined, 364
length property, 365–366
methods, 366–368
object-oriented programming, 364–365

test browsers, 356–357
text editors, 356
validation, new simplifications for
:invalid pseudo-class, 479–480

patterns, 481
placeholder text, 481–482
required fields, 481

validation with regular expressions
defined, 473
general discussion, 472–473
marking beginning and end of lines, 476
operators, 473–474
pattern memory, 478
repetition operations, 477–478
using characters in, 475–476
using special characters in, 476–477

variables
assigning values to, 369
characteristics of, 361
converting to desired type, 372–374
defined, 361
general discussion, 359–360
numeric values, 369
program for adding numbers, 369–370
program for adding numbers provided

by user, 370
requesting user input, 361
responding to user input, 361–362

clone() function, 814–815, 839–840
Clone tool, Gimp, 982
closePath() function, 497
CMSs (content management systems)

building pseudo-CMSs
with PHP includes, 1000–1001
using AJAX and jQuery for client-side

inclusion, 998–1000
using SSIs, 995–998

building with AJAX, 791–794
building with WebsiteBaker

adding content, 962–963
adding functionality, 970–971
adding templates, 969–970
administration tools, 962
changing info.php file, 973–974
changing templates, 968
characteristics of, 958
creation and editing tools, 963–967
installing, 958–961
modifying CSS files, 975–976

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1024

modifying index.php file, 974–975
packaging templates, 976
prebuilt templates, 971–973

characteristics of, 953–954
commonly-used

Drupal, 957–958
Moodle, 955–956
WordPress, 956–957

data-based
adding new blocks, 1011–1013
allowing user-generated content,

1007–1011
improving design, 1013
using databases, 1001–1004
writing PHP pages to read from tables,

1004–1007
general discussion, 34–35
overview, 954

code completion, Komodo Edit, 41, 356
collapsing lists

menu system with
creating nested list for, 315–316
displaying inner lists by hovering over,

318–320
general discussion, 314–315
hiding inner lists, 317

menu system with horizontal button bar,
324–326

menu system with vertical button list
advantages of, 321–322
creating, 322–324

colons (:), 455
color

adding to web pages, 141–142
background

changing with JavaScript, 375–379
temporary, 288–290, 297

of background images, 216
background-color attribute, 134
color attribute, 134
Color Scheme Designer tool

basic schemes, 148
features of, 147

general discussion, 146–147
selecting base hue, 147–148

color schemes
Accented Analogic, 148
Analogic, 148
Complement, 148
HSB, 143
HSL, 143–146, 216, 487
HSV, 143
Mono, 148
RGB, 143, 216
selecting, 147–148
specifying colors with, 145–146
Tetrad, 148
Triad, 148

color values, 136–137
fills, 486–487
floating layouts, 279
general discussion, 131–133
gradients

creating complex, 220–221
creating simple, 220–221
general discussion, 219–220
radial, 222–223

hex codes, 115, 135–139, 486
modifying

general discussion, 141
in Google Chrome, 142–143

names, 486
specifying with color names, 135–136
specifying with hex codes, 135–138
strokes, 486–487
web-safe color palette, 139–141

color attribute, 134, 198, 488
color input type, 125
color parameter, 252
Color Picker, Gimp, 985–986
Color Scheme Designer tool

basic schemes, 148
features of, 147
general discussion, 146–147
selecting base hue, 147–148

color schemes
Accented Analogic, 148
Analogic, 148
Complement, 148

CMSs (content management systems)
(continued)

Index 1025

HSB, 143
HSL

alpha transparency, 216
fills and strokes, 487
overview, 143–144
specifying colors with, 145–146

HSV, 143
Mono, 148
RGB, 143, 216
selecting, 147–148
Tetrad, 148
Triad, 148

Color Selector, Gimp, 985–986
color stops, 222, 249, 487–488
colorChooser program, 137
cols attribute, 113
colspan attribute, 64–65
columns

centered fixed-width layout
features of, 307
general discussion, 305
limitations of, 308
surrogate body, 306–307

CSS3 support for, 308
fixed-width layout

general discussion, 302
HTML code for, 303
setting width, 303–305

fluid three-column layout
HTML code for, 295–296
overflow, 300–302
page design, 297
problems with, 298–299
specifying minimum height, 299–300
styling, 296–298
temporary background colors, 297

fluid two-column layout
borders, 291–292
floating columns, 290–291
HTML code for, 287–288
page design, 285–286
temporary background colors, 288–290

commas (,), 455
comment (<!– –>) tag, 13
comments

conditional, 238–240, 286

in CSS, 230
in JavaScript, 358
nested if statements, 405

comparison operators, 573–574
compiled languages, 532
Complement color scheme, 148
CONCAT(A, B) function, 720, 726
concatenation

addition versus, 541–542
comparing literals and variables, 363
converting date values, 725–726
extra spaces, 364
general discussion, 362–363

conditional comments, 238–240, 286
conditions

conditional operators, 403
defined, 401, 569
in if statements, 401–402

Console tab, Chrome, 376–377,
420–423

_constructor method, 641
constructor property, 366
constructors, 452, 641
:contains() filter, 817
content management systems (CMSs)

building pseudo-CMSs
with PHP includes, 1000–1001
using AJAX and jQuery for client-side

inclusion, 998–1000
using SSIs, 995–998

building with AJAX, 791–794
building with WebsiteBaker

adding content, 962–963
adding functionality, 970–971
adding templates, 969–970
administration tools, 962
changing info.php file, 973–974
changing templates, 968
characteristics of, 958
creation and editing tools, 963–967
installing, 958–961
modifying CSS files, 975–976
modifying index.php file, 974–975
packaging templates, 976
prebuilt templates, 971–973

characteristics of, 953–954

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1026

commonly-used
Drupal, 957–958
Moodle, 955–956
WordPress, 956–957

data-based
adding new blocks, 1011–1013
allowing user-generated content,

1007–1011
improving design, 1013
using databases, 1001–1004
writing PHP pages to read from tables,

1004–1007
general discussion, 34–35
overview, 954

control points, 502
control structures

comparison operators, 573–574
conditions, 569
if statements

checking conditions, 570–574
checking multiple conditions, 574–576
programs that make their own form,

576–578
switch statements, 578–581

controls = "controls" attribute, 101
cookies, 616
coordinate systems, 511–512
count() function, 408–409
crashes (syntax errors)

defined, 422
resolving, 422–424
resolving before handling logic errors,

425
CREATE TABLE command, 681–682, 712
CREATE VIEW statement, 726
createLinearGradient() method, 488
createPattern() method, 491
createRadialGradient() method, 489
Crop tool, Gimp, 985–986
css() method, 805–807
CSS3 (Cascading Style Sheets)

absolute positioning
code for, 334–335
default layout, 327–328

features of layouts with, 335–336
with flexibility, 336–339
general discussion, 351–352
height attribute, 330, 334
margins, 330
overlapping elements, 328–329, 332
padding, 334
page design, 333–334
position attribute, 330, 334
width attribute, 330, 334
z-index attribute, 331–332

backgrounds
adding to web pages, 212–214
color adjustment, 216
contrast, 214, 217–218
gradients, 219–223
problems with, 214
repeating, turning off, 218–219
size of, 214
tiled, 215–216
transparency, 216

borders
attributes, 197–199
box model, 203–205
box shadow, 210–212
floating two-column design, 291–292
image, 207–209
partial, 201–202
rounded corners, 209–210
shading, 200
shortcut for defining, 200–201
styles, 199

browser incompatibility
“Best viewed with” disclaimers, 237
conditional comments, 238–240
coping with, 237–238
CSS resets, 243
hacks, 238
Internet Explorer version, 242
Internet Explorer-specific code, 238–240
JavaScript-based browser detection,

238
parallel pages, 238

cascading nature of
hierarchy of styles, 234–235
inheriting styles, 233–234

content management systems (CMSs)
(continued)

Index 1027

overriding styles, 235–236
precedence of style definitions, 236–237

case sensitivity, 134
centered fixed-width layouts

features of, 307
general discussion, 305
limitations of, 308
surrogate body, 306–307

choosing, 351–352
color

adding to web pages, 141–142
of background images, 216
background-color attribute, 134
color attribute, 134
Color Scheme Designer tool, 146–148
color schemes, 143–148
color values, 136–137
floating layouts, 279
general discussion, 131–133
gradients, 219–223
modifying, 141–143
specifying with color names,

135–136
specifying with hex codes, 135–138
temporary background, 288–290, 297
web-safe color palette, 139–141

fixed positioning
fixed menu systems, 340–344
general discussion, 352
overview, 340

fixed-width layouts
centered, 305–308
general discussion, 302
HTML code for, 303
setting width, 303–305

flexible box layouts
absolute positioning versus, 345, 351
browser compatibility, 348–350
creating, 345–346
floating layouts versus, 344–345, 351
general discussion, 352
viewing, 346–348

floating layouts
adjusting width, 273–275
advantages of, 292

clear attribute, 283–284
fieldset width, 282–283
forms, 276–282
general discussion, 268–269, 351–352
images, 269–271
margins, 275–276
paragraphs, 271–276
semantic tags, 292–295
three-column design, 295–302
two-column design, 285–292

HTML5 versus, 132–133
levels of

external styles, 225, 228–232
local styles, 225–228
page-level styles, 225

lists
of hyperlinks, 309–314
menu system with collapsing horizontal

button bar, 324–326
menu system with collapsing list,

315–320
menu system with collapsing vertical

button list, 321–324
nested menu systems, 315–316, 321
using images as bullets, 223–224

purpose of, 131
relative positioning, 340, 352
rules, defined, 133
selectors

classes, 181–184
defined, 133, 175
div and span elements, 184–187
 tags, 177–180
general discussion, 175–176
new, 193–195
reason for many kinds of, 193
selecting in context, 190–191
 tags, 177–180
styling hyperlinks, 187–189
styling identified paragraphs, 176–177
styling multiple elements, 191–192

special effects
animation mechanism, 259–262
for images, 245–249
for text, 249–252

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1028

transformations, 252–257
transition animation, 257–259

style sheets
defined, 131
setting up, 133–134

text
alignment, 169–170
blinking, 169
bold, 166–167
case conversion, 170
creating in graphic editors, 267
creating list of fonts, 153–154
embedded fonts, 155–157
font families, 149–151
font rule shortcut, 171–172
font size, 160–164, 218
fonts, defined, 149
generic fonts, 151–153
indentation, 170
italics, 165–166
letter spacing, 170
line height, 171
overlining, 168
small caps, 170
special effects for, 249–252
strike-through (line-through),

168–169
subscripts, 172
superscripts, 172–173
underlining, 167–168
using images as, 158–160
web-based fonts, 154–155
word spacing, 170
wrapping, 269–271

.csv extension, 624
CSV files

defined, 627
exporting data and structure as, 698–699
reading data, 630–633
storing data in, 627–628
viewing data directly, 629–630

CURRDATE() function, 720
currentKey variable, 525
CURRTIME() function, 720
cursive fonts, 152

D
\d operator, 474, 477
dashed borders, 199
.dat extension, 624
Data Definition Language (DDL), 656
data normalization

data relationships, 717–718
defined, 713
entity-relationship diagrams

MySQL Workbench, 709–710
overview, 709
table definitions, 710–713

first normal form, 713–715
second normal form, 715–716
single-table data problems

deletion, 709
fields with changeable data, 709
fields with multiple values, 706–708
general discussion, 705–706
purpose of table, 706
repetition, 708

third normal form, 716
website planning, 940

data protection
with access modifiers, 644–646
reasons for, 647

Data Query Language (DQL), 656
data servers

as part of server-side system, 913
database management

connecting PHP to MySQL databases
establishing connections, 744
general discussion, 741–743
PDO library, 745–748
user interaction, 751–758
using tables for output, 748–751

data normalization
data relationships, 717–718
defined, 713
entity-relationship diagrams, 709–713
first normal form, 713–715
second normal form, 715–716
single-table data problems, 705–709
third normal form, 716

data types, 657–658

CSS3 (Cascading Style Sheets) (continued)

Index 1029

determining fields in records, 656
editing records

deleting, 697
updating, 696–697

exporting data and structure
creating XML data, 702–703
exporting SQL code, 700–702
output formats, 698–700
reasons for, 697–698

joins
calculating date values, 720–726
Cartesian, 729–730
creating views, 726–727
creating views to encapsulate joins, 733
defined, 718
enforcing one-to-many relationships,

731–732
inner, 728–730, 732–733
link tables, 735–739
many-to-many, 733–735
virtual fields, 719–721

phpMyAdmin
adding users, 670–672
implementing databases, 674–678
root password, changing, 665–670
running scripts with, 683–686
setting up, 663–665
using on remote servers, 670–672
using to interact with MySQL, 662–663

primary keys
general discussion, 659
using AUTO_INCREMENT tag for, 686–687

query process, 742
relational data modeling, 655–656
selecting table data

overview, 688–689
searching for any text in field, 693–694
searching for ending value of field, 693
searching with partial information, 692
searching with regular expressions,

694–695
sorting responses, 695–696
from specific fields, 689–690
subsets of records, 690–691

specifying length of records, 658–659

structure of data, 655–657
syntax rules, 680
table structure, 659–660
three-tiered architecture, 662–663
writing SQL manually

adding records to tables, 682–683
creating tables, 681–682
dropping tables, 681
reasons for, 679–680
viewing data, 683

data-based content management systems
(dbCMSs)

adding new blocks, 1011–1013
allowing user-generated content,

1007–1011
improving design, 1013
using databases, 1001–1004
writing PHP pages to read from tables,

1004–1007
databases, defined, 656
data-content-theme attribute, 899
data-role attribute, 896–897, 899, 904
date() function, 550–551
date and time data
date type, 122–123
datetime type, 123
datetime-local type, 123–124
format, 124
month type, 125
time type, 123
time zones, 125
week type, 124–125

DATE data type, 658
date input type, 122–123
DATEDIFF(A, B) function, 721, 722–724
datePicker() method, 851–852
datepickers, 821, 851–852
datetime input type, 123
datetime-local input type, 123–124
DAY() function, 720
dbCMSs (data-based content management

systems)
adding new blocks, 1011–1013
allowing user-generated content,

1007–1011

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1030

improving design, 1013
using databases, 1001–1004
writing PHP pages to read from tables,

1004–1007
dblClick event, 790
<dd></dd> (definition data) tags, 59,

879, 881
DDL (Data Definition Language), 656
debugging

automatically, 427
with Chrome console, 420–422
with Chrome debugger, 418–420
logic errors, 424–426
PHP programming, 586
syntax errors, 422–424

decision-making code
debugging

automatically, 427
with Chrome debugger, 418–420
with console, 420–422
logic errors, 424–426
syntax errors, 422–424

if statements
conditions, 401
general discussion, 399–401
if-else structure, 402
if-elseif structure, 402–403
nesting, 403–405
for passwords, 416–417

for loops
comparison, 409
counting by fives, 412
creating, 407
defined, 409
general discussion, 406–409
initialization, 409
sentry variables, 413
shortcut operators, 410–412
updating, 410

switch statements
problems with, 406
syntax, 405–406

while loops
creating, 413–414

for passwords, 414–417
troubleshooting, 415–416

default keyword, 406, 581
defensive programming, 650
definition data (<dd></dd>) tags, 59,

879, 881
definition descriptions

defined, 57
tags, 59

definition list (<dl></dl>) tags, 59, 879
definition lists

characteristics of, 57
code for, 58
defined, 51
elements of, 57
output as, 879–880
tag pairs, 59

definition term (<dt></dt>) tags, 59,
879, 881

definition terms
defined, 57
tag pair, 59

delay parameter, 259
DELETE command, 696–697
delimited data

delimiters, defined, 627
overview, 626–627
reading CSV data, 630–633
storing data in CSV files, 627–628
viewing CSV data directly, 629–630

Developer Tools window, Chrome, 376,
418–419

Dia drawing tool, 939
dialog() method, 857–858
dialog boxes, 821, 856–858
{digit} operator, 474, 478
display attribute, 317–319
div element

defined, 184
special, 191
tables versus, 186–187
usefulness of, 185–186

<dl></dl> (definition list) tags,
59, 879

DNS (Domain Name System),
928–929

dbCMSs (data-based content management
systems) (continued)

Index 1031

.doc extension, 624
doctype, 26
<!DOCTYPE HTML> tag, 12
Document Object Model (DOM)

changing page color with, 375–379
defined, 375
style element names, 379

document variable, 377
$(document).ready() function,

782–783
Dodge/Burn tool, Gimp, 984–985
DOJO library, 775
DOM (Document Object Model)

changing page color with, 375–379
defined, 375
style element names, 379

Domain Name System (DNS), 928–929
domain names

common, 71
general discussion, 928–929
as part of URL, 70
registering, 929–931

dot notation, 454, 456
dotted borders, 199
double borders, 199
DOUBLE data type, 657
DQL (Data Query Language), 656
draggable() method, 826, 837
draw() function, 484–485
drawImage() function, 506–507, 509
drawing

capabilities of <canvas> tag, 485–486
fills

colors, 486–487
defined, 485
gradients, 487–489
patterns, 489–491

general discussion, 483
images

color balance, 508–510
drawing, 505–507
drawing part of, 507–508
general discussion, 505

paths
arcs, 500–502

Bézier curves, 503–504
circles, 500–502
defined, 485
general discussion, 496–498
line width and style options, 498–499
quadratic curves, 502–503

rectangles, 491–492
setting up <canvas> tag, 484–485
shadows, 494–495
strokes

colors, 486–487
defined, 485
gradients, 487–489
patterns, 489–491

text, 492–493
transformations

creating transformed images, 512–514
defined, 485–486, 511
general discussion, 511–512
strategies for, 514–515

Dreamweaver
features of, 33
problems with, 34

drop event, 837–838
DROP TABLE command, 681
drop-down lists

creating, 114–116
creating form for, 460–461
defined, 106
reading, 461
text fields versus, 459

droppable() method, 837
Drupal, 957–958
<dt></dt> (definition term) tags, 59,

879, 881
duration parameter, 259
dynamic lists

menu system with
creating nested list for, 315–316
displaying inner lists by hovering over,

318–320
general discussion, 314–315
hiding inner lists, 317

menu system with horizontal button bar,
324–326

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1032

menu system with vertical button list
advantages of, 321–322
creating, 322–324

E
each() method, 875
ease-in-out attribute, 262
easing, 808
echo statements, 539
editor.css file, 973
element-level styles, 225
Ellipse Select tool, Gimp, 983
else clauses, 402, 572, 574, 576
 (emphasis) tags

general discussion, 81, 177–179
modifying display of, 179–180

Emacs text editor, 40–41
email input type, 127, 884
embedded fonts, 155–157
Emmet add-on, Komodo Edit, 43
emphasis () tags

general discussion, 81, 177–179
modifying display of, 179–180

:empty filter, 817
ems, 164
encapsulation, 375, 387, 605, 644
endless loops, 360, 415
endRadius parameter, 489
endX parameter, 489
endY parameter, 489
entity-relationship (ER) diagrams

enforcing one-to-many relationships,
731–732

MySQL Workbench, 709–710
overview, 709
relationship representation, 718
table definitions, 710–713

environment variables, 557, 560
EOT font format, 157
:eq (equals) filter, 816
equal (==) conditional operator, 401, 403,

572, 574, 691
equal signs (=), 558, 691, 872
equals (:eq) filter, 816

ER (entity-relationship) diagrams
enforcing one-to-many relationships,

731–732
MySQL Workbench, 709–710
overview, 709
relationship representation, 718
table definitions, 710–713

Eraser tool, Gimp, 981–982
escape sequences, 539–540, 633
eval() function, 372–373, 876
event-driven programming, 385–386
event-handlers, 521
events

defined, 364
jQuery, 786–788, 790

Excel, 699
execute() function, 757
execute permission, 924
explode method, 601–602, 632
Expression Web

features of, 33
problems with, 34

extends keyword, 649
eXtensible Markup Language. See XML
external styles

defined, 225
defining, 229–230
general discussion, 228–229
<link> tag, 231–232
order of precedence, 236–237
reusing, 230–231
specifying links, 232

F
F12 debugging tool, 420
fadeIn() method, 802
fadeOut() method, 802
fantasy fonts, 152
fclose() function, 617, 620, 624
feof() function, 617, 626
fetch method, 750
FETCH_ASSOC constant, 747, 750
fetchAll() function, 757
FFmpeg video conversion tool, 101

Index 1033

fgets() function, 617, 626
fields

defined, 656
determining in records, 657

<fieldset></fieldset> tags, 109
fieldsets

defined, 107–108, 386–387
floating layouts, 282–283
organizing forms with, 107–109, 278
width of, 282–283

figcaption semantic tag, 295
figure semantic tag, 295
file() function, 617, 631–633
file and directory functions
chdir() function, 634–635
generating lists of file links, 635–637
opendir() function, 633–634
readdir() function, 634

file extensions
.csv, 624
.dat, 624
defined, 15
displaying

in Windows 7, 15
in Windows 8, 15–16

.doc, 624

.html, 10

.pdf, 624

.php, 535

.txt, 15, 624
file permissions, 618–620, 624
File Transfer Protocol (FTP)

clients for, 926–928
remote site management with, 925–926

file uploads, submitting code to validators
via, 22

filenames, spaces in, 10
FileZilla, 925–926
fill() command, 497
Fill tool, Gimp, 982
fillRect() function, 491
fills

colors, 486–487
defined, 485
gradients, 487–489
patterns, 489–491

fillStyle attribute, 485, 489,
491, 497

fillText() function, 493
filter_has_var() function,

567–568
filter_input() function, 556, 560, 562,

616, 623, 756, 869, 1010–1011
FILTER_SANITIZE_EMAIL filter, 561
FILTER_SANITIZE_NUMBER_INT

filter, 561
FILTER_SANITIZE_SPECIAL_CHARS

filter, 561
FILTER_SANITIZE_STRING filter,

561–562
FILTER_SANITIZE_URL filter, 561
FILTER_VALIDATE_BOOLEAN filter, 561
FILTER_VALIDATE_EMAIL filter, 561
FILTER_VALIDATE_FLOAT filter, 561
FILTER_VALIDATE_INT filter, 561
FILTER_VALIDATE_IP filter, 561
FILTER_VALIDATE_REGEXP filter, 561
FILTER_VALIDATE_URL filter, 561
find() method, 875
Fire Vox browser, 49
Firebug extension, 397, 420, 815
Firefox browser

debugging in, 420
features of, 46–47
general discussion, 10
image borders, 208
origin of, 45
viewing generated source code, 397

firewalls, 918–919
Fireworks, 978
:first filter, 814, 840
first normal form, 713–715
first-child selector, 195
fixed menu systems

creating, 343–344
CSS code for, 342–343
HTML code for, 341–342
overview, 340–341

fixed positioning
fixed menu systems

creating, 343–344
CSS code for, 342–343

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1034

HTML code for, 341–342
overview, 340–341

general discussion, 352
overview, 340

fixed-width layouts
centered

features of, 307
general discussion, 305
limitations of, 308
surrogate body, 306–307

general discussion, 302
HTML code for, 303
setting width, 303–305

Flash, 267–268
flexible box layouts

absolute positioning versus, 345, 351
browser compatibility, 348–350
creating, 345–346
floating layouts versus, 344–345, 351
general discussion, 352
viewing, 346–348

Flip tool, Gimp, 984–985
float attribute

forms
buttons, 278, 280
clear attribute, 283–284
colors, 279
fieldset width, 282–283
general discussion, 276–278
labels, 278–280
neatness of layout, 279–282

images, wrapping text around, 269–271
paragraphs

adjusting width, 273–275
margins, 275–276
side-by-side, 271–273

floating layouts
advantages of, 292
flexible box layouts versus, 344–345, 351
general discussion, 351–352
semantic tags, 292–295
three-column design

HTML code for, 295–296
overflow, 300–302
page design, 297

problems with, 298–299
specifying minimum height, 299–300
styling, 296–298
temporary background colors, 297

two-column design
borders, 291–292
floating columns, 290–291
HTML code for, 287–288
page design, 285–286
temporary background colors, 288–290

floating point numbers, 371
fluid layouts

advantages of, 292
three-column design

HTML code for, 295–296
overflow, 300–302
page design, 297
problems with, 298–299
specifying minimum height, 299–300
styling, 296–298
temporary background colors, 297

two-column design
borders, 291–292
floating columns, 290–291
HTML code for, 287–288
page design, 285–286
temporary background colors, 288–290

focus event, 790
:focus pseudo-class, 196
font attribute, 493
font families

defined, 149
font-family attribute, 150–151
setting, 149–151

font rule, 171–172
font size

12-point rule, 161
absolute measurement units

centimeters, 163
defined, 162
inches, 163
pixels, 163
points, 162

background and, 218
font-size attribute, 161–162

fixed positioning (continued)

Index 1035

hyperlinks, 189
relative measurement units, 163–164

defined, 162
ems, 164
named sizes, 163
percentage, 164

specifying, 160–161
strategies for, 164

 tag, 155
fontColor() method, 366
@font-face style, 155–156
font-family attribute, 150–151, 156
fonts

blinking, 169
bold, 166–167
conversion tool, 157
creating list of, 153–154
defined, 149
embedded, 155–157
general discussion, 164–165
generic, 151–153
italics, 165–166
open-source, 157
overlining, 168
small caps, 170
strike-through (line-through), 168–169
subscripts, 172
superscripts, 172–173
underlining, 167–168
virtual, 151–153
web-based, 154–155

font-size attribute, 161
font-variant attribute, 170
font-weight attribute, 166–167
fontWeight attribute, 379
footer semantic tag, 292–294
<footer> semantic tag, 351
fopen() function, 617–620
for attribute, 467
for loops

cloning elements, 839
comparison, 409
counting by fives, 412
creating, 407
defined, 409

general discussion, 406–409
image manipulation, 510
initialization, 409
PHP programming, 581–584
sentry variables, 413
shortcut operators, 410–412
updating, 410
using with arrays, 441–442, 590–591
while loops versus, 585

foreach loops
associative arrays and, 595–597
reading CSV data, 631
retrieving data from PDO connections,

747–748
using with arrays, 591–593

Foreground Select tool, Gimp, 983–984
foreign key references, 715
foreign keys, 728–729, 731
<form></form> tags, 107, 109
FORMAT(X, D) function, 720
forms

buttons
adding functionality, 381–384
<button> tag, 121–122
floating layouts, 278, 280
general discussion, 119–120,

379–381
input-style buttons, 120–121
onclick parameter, 379–380
overview, 106
Reset buttons, 121
Submit buttons, 121

check boxes
checking for existence of, 567–568
creating, 116–117
creating form for, 466–467
overview, 106, 465–466
responding to, 467

drop-down lists
creating, 114–116
creating form for, 460–461
reading, 461
text fields versus, 459

fieldsets and legends
floating layouts, 282–283

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1036

organizing with, 107–109
overview, 107

floating layouts
buttons, 278, 280
clear attribute, 283–284
colors, 279
fieldset width, 282–283
general discussion, 276–278
labels, 278–280
neatness of layout, 279–282

general discussion, 105
hidden fields, 391–397
labels

floating layouts, 278–280
organizing with, 107–109
overview, 107

new input types
color, 125
date, 122–123
datetime, 123
datetime-local, 123–124
email, 127
month, 125
number, 125–126
range, 126
search, 126–127
tel, 127
time, 123
url, 127
week, 124–125

password fields
creating, 111–112
overview, 106, 391–397

radio buttons
creating, 117–119
grouping, 565
groups of, 468–469
interpreting, 469–470
overview, 106

select lists (multiple select lists)
HTML code for, 462–463
JavaScript code for, 463–465
overview, 106

text areas
creating, 112–113
overview, 106

text boxes/fields
changing text in, 387–388
creating, 109–111
creating forms, 552–555
drop-down lists versus, 459
extracting form data, 560–562
general discussion, 552
get method, 556–560
overview, 106
post method, 557, 559–560
receiving data, 555–556
retrieving data from, 384–387
sending data to page, 388–391

fputs() function, 620, 624
frames

defined, 265
problems with, 266

Free Select (Lasso) tool, Gimp, 983
Freehostia, 672–674, 922, 925, 929–930,

932, 961
FROMDAYS(INT) function, 721
FTP (File Transfer Protocol)

clients for, 926–928
as part of server-side system, 914
remote site management with, 925–926

function keyword, 382, 608
functional programming, 875
functions

anonymous, 451
assigning prebuilt to methods, 451
breaking code into

example of, 431–432
general discussion, 429–430
structure, 430–431

button functionality, 381–383
defined, 429, 607
global variables, 437
local variables, 437
naming, 383, 608–609
parameters, 383, 435
parenthesis and braces, 382–383
passing data to and from, 432–437
PHP

for complexity management, 605–607
improving code with, 607–609
naming, 609
returning data from, 610–611

forms (continued)

Index 1037

for returning values, 434–435
separation between, 432
variable scope, 437–439

Fuzzy Select (Magic Wand) tool, Gimp,
983, 989

fwrite() function, 617–620, 624, 628

G
gedit text editor, 38
generated source, 395–397
generic font names, 151–153
get() function, 861, 874, 876
get method, 556–560
$_GET superglobal array, 562, 578, 595
getAJAX() function, 766, 772–773, 791
getcwd() function, 634
getElementById() function, 387–388,

394, 461, 485, 506, 776
getElementsByName() function, 469
getImageData() method, 509
getMessage() method, 652
getter methods, 644–646
GIF format

animations, 87–88
color palette, 87
features of, 87–88
general discussion, 86, 90
run-length encoding, 87

Gimp
banner graphics, 977, 990–992
changing colors, 977, 989–990
creating images, 980
existing images, 981
filters, 988–989
general discussion, 97–98, 978–980
GIF format, 87
layers, 986–988
modification tools

Blur/Sharpen tool, 984–985
Dodge/Burn tool, 984–985
Flip tool, 984–985
Heal tool, 984–985
Move tool, 984–985, 991
Perspective tool, 984–985

Rotate tool, 984–985
Scale tool, 984–985
Shear tool, 984–985
Smudge tool, 984–985

organizing interface, 979
painting tools, 980–982

Airbrush tool, 981–982
Blend tool, 982
Clone tool, 982
Eraser tool, 981–982
Fill tool, 982
Ink tool, 981–982
Paintbrush tool, 981–982
Pencil tool, 980, 982

selection tools
Bezier Select tool, 983–984
Ellipse Select tool, 983
Foreground Select tool, 983–984
Free Select (Lasso) tool, 983
general discussion, 982
Magic Wand (Fuzzy Select) tool, 983, 989
Rectangle Select tool, 983
Scissors Select tool, 983
Select by Color tool, 983

tiled backgrounds, 977, 992–994
tool management, 984–985
using images as text, 159–160
utilities

Align tool, 985–986
Color Picker, 985–986
Color Selector, 985–986
Crop tool, 985–986
Measure tool, 985–986
Move tool, 985–986, 991
Perspective Clone tool, 985–986
Text tool, 985–986, 991
Zoom tool, 985–986

GimpShop, 85
global variables

defined, 437
variable scope, 438–439, 609–610

Google AJAX API server, 777–778
Google Chrome browser

console, 376–377, 420–423
CSS coding in, 142–143
debugging in, 418–422, 815

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1038

Developer Tools window, 376, 418–419
features of, 47–48
general discussion, 10
image borders, 208
viewing generated source code, 396–397

Google Fonts, 157
Google queries, 558–559
gradient mapping, 993–994
gradients

creating complex, 220–221
creating simple, 220–221
defined, 219
fills, 487–489
general discussion, 219–220
linear

defining, 488–489
filling shapes with, 487
reflection effects, 248

radial
defining, 222–223, 489
filling shapes with, 487
reflection effects, 248

reflection effects, 248
strokes, 487–489

graphics context, 483, 485
graphics editors

Adobe Fireworks, 978
Adobe Photoshop, 97, 978
Gimp

banner graphics, 977, 990–992
changing colors, 977, 989–990
creating images, 980
filters, 988–989
general discussion, 97–98, 978–980
GIF format, 87
layers, 986–988
modification tools, 984–985
organizing interface, 979
painting tools, 980–982
selection tools, 982–984
tiled backgrounds, 977, 992–994
tool management, 984–985
using images as text, 159–160
utilities, 985–986

GimpShop, 85

IrfanView
3D button effect, 97
batch processing, 98–99
blurring, 94–95
brightness, 92
color balance, 93
contrast, 93, 217
effects and filters, 93–98
embossing, 95–96
features of, 84–85
gamma correction, 93
general discussion, 84
GIF format, 87
oil painting effect, 96
red eye reduction, 97
resizing, 91–92
saturation, 93
saving to different formats, 90–91
sharpening, 94–95

Paint.NET, 85, 978
Pixia, 85
raster-based, 978
selecting, 978–979
uses for, 978
vector-based, 978
Windows Paint, 978
XnView, 85

greater than (>) conditional operator,
403, 573

greater than (>) symbol, 319–320
greater than (:gt) filter, 816–817
greater than or equal to (>=) conditional

operator, 403, 574
grooved borders, 199
:gt (greater than) filter, 816–817
GVIM text editor, 39

H
<h1></h1> (heading level one) tags, 13–14
H.264 format, 101
handles, 633
<head></head> tags

defined, 13
indenting code, 56

Google Chrome browser (continued)

Index 1039

:header filter, 817, 832
<header> semantic tag, 292–294, 351
headers, table, 61–62
heading level one (<h1></h1>) tags,

13–14
Heal tool, Gimp, 984–985
height attribute, 81, 330, 334
Hello World programs, 357
heredocs

advantages of, 545
example of, 544–545
packaging output, 567
problems with, 546
syntax, 545–546

hex codes
advantages of system, 139
Color Scheme Designer tool, 147
colors, 115, 135–139, 486
representation of base ten numbers,

137–138
spaces as, 558

hidden fields
creating forms with, 392–393
defined, 391
functions, 393–394
generated source, 395–397
overview, 391–397
security, 393

hide() method, 800–801
history variable, 377
host name, 70, 744
hosting services

connecting to, 922
finding, 920–921
general discussion, 920
reasons for using, 920
remote site management

file permissions, 924–925
with FTP, 925–928
web-based file tools, 922–924

HOUR() function, 721
hover event, 787–788, 790
hover link state

button depression effect, 313
collapsing lists, 318

defined, 187
styling, 189

:hover pseudo-class, 189, 195, 313, 318,
884

href (hypertext reference) attribute, 70,
78, 232

HSB color scheme, 143
HSL() function, 145
HSL color scheme

alpha transparency, 216
fills and strokes, 487
overview, 143–144
specifying colors with, 145–146

hsla color rule, 216, 487
HSV color scheme, 143
htdocs directory, 531, 533
HTML (earlier versions of)

frames
defined, 265
problems with, 266

problems with
dynamic web pages, 20
editing tools, 19–20
meaning versus layout, 19
table-based layout, 19
web browsers, 19
XHTML standards, 20

.html extension, 10, 71
html_entity_decode() function, 633
<html></html> tags

defined, 12
indenting code, 56
manifest attribute, 907

HTML5
audio

adding to web pages, 99–100
formats, 101

characteristics of
ease of writing, 12
free, 12
meaning versus layout, 12
plain text, 11–12
universality, 12

creating basic web pages, 9–11
forms

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1040

buttons, 106, 119–122
check boxes, 106, 116–117
drop-down lists, 114–116
fieldsets and legends, 107–109
general discussion, 105
labels, 107–109
new input types, 122–127
password fields, 106, 111–112
radio buttons, 106, 117–119
select lists (multiple select lists), 106
text areas, 106, 112–113
text boxes/fields, 106, 109–111

hyperlinks
absolute references, 73
anchor tags, 68–70
block-level tags, 69
changing appearance of, 68
characteristics of, 67–68
inline tags, 69
integration into text, 68, 70
lists of, 71–73
recognizability of, 67
relative references, 73–75
URLs, components of, 70–71

images
3D button effect, 97
background, 77
batch processing, 85, 98–99
blurring, 94–95
brightness, 92
in buttons, 122
color balance, 93
contrast, 93
cropping, 85
embedded, 77, 80–82
embossing, 95–96
externally linked, 77–80
filters, 85, 93–98
formats, 84–91
gamma correction, 93
manipulation programs, 83–85
oil painting effect, 96
pixels, 82
red eye reduction, 97
resizing, 83–84, 91–92

saturation, 93
sharpening, 94–95
using as bullets, 77
vector, 89

lists
characteristics of, 57
code for, 58
defined, 51
of hyperlinks, 71–73
meaning versus layout, 52
nested, 54–57
ordered, 51, 53–54
tag pairs, 59
unordered, 51–53
using images as bullets, 77

Second Browser War, 45
setting up system for

displaying file extensions, 15–16
downloading multiple browsers, 17
text editor icon, 16–17

tables
borders, 60–61
code for, 59–60
data rows, 61–62
defining in HTML versus word

processors, 60
defining in text editors, 61–62
general discussion, 59
header rows, 61–62
spanning columns, 63–65
spanning rows, 63, 65
tags, 59

tags
as containers, 14
defined, 12
list of, 12–14
lowercase, 14
repeatable, 14

validation
defined, 21
example of, 23–24, 26–30, 32
nested lists, 57
tables, 63
validators, 21–22, 25–32

video
embedding, 102

HTML5 (continued)

Index 1041

externally linked, 103
formats, 101

HTML5 Doctor CSS reset, 242
htmlentities() function, 633
HTTP (hypertext transfer protocol), 70
HTTP (hypertext transfer protocol)

response codes, 770
hue

defined, 144
selecting with Color Scheme Designer

tool, 147–148
specifying, 145

hyperlinks
absolute references, 73
anchor tags, 68–70
block-level tags, 69
changing appearance of, 68
characteristics of, 67–68
font size, 189
inline tags, 69
integration into text, 68, 70
lists of

converting to horizontal button bar,
313–314

converting to vertical list of buttons,
309–310, 310–313

general discussion, 71–73
HTML code for, 310

recognizability of, 67
relative references, 73–75
states

defined, 187
styling, 187–189

styling
standard, 187
states, 187–189
strategies for, 189

testing, 189
URLs, components of, 70–71

hypertext reference (href) attribute, 70,
78, 232

hypertext transfer protocol (HTTP), 70
hypertext transfer protocol (HTTP)

response codes, 770

I
<i> (italics) tag, 155, 179–180
id attribute, 110, 113, 115
id rule, 236
<!– [if IE]><![endif]–> tags, 239
if statements

checking conditions, 570–574
checking multiple conditions, 574–576
conditions, 401
general discussion, 399–401
if-else structure, 402–404, 406
if-else-if structure, 402–403,

436, 580
nesting, 403–405
for passwords, 416–417
programs that make their own form,

576–578
validation with, 471–472

if-else structure, 402–404, 406
if-elseif structure, 402, 436, 580
image () tag
alt attribute, 81–82
drawing images, 505
embedded images, 80–82
height attribute, 81
src attribute, 81
width attribute, 81

image manipulation programs
Adobe Fireworks, 978
Adobe Photoshop, 97, 978
Gimp

banner graphics, 977, 990–992
changing colors, 977, 989–990
creating images, 980
filters, 988–989
general discussion, 97–98, 978–980
GIF format, 87
layers, 986–988
modification tools, 984–985
organizing interface, 979
painting tools, 980–982
selection tools, 982–984
tiled backgrounds, 977, 992–994
tool management, 984–985

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1042

using images as text, 159–160
utilities, 985–986

GimpShop, 85
IrfanView

3D button effect, 97
batch processing, 98–99
blurring, 94–95
brightness, 92
color balance, 93
contrast, 93, 217
effects and filters, 93–98
embossing, 95–96
features of, 84–85
gamma correction, 93
general discussion, 84
GIF format, 87
oil painting effect, 96
red eye reduction, 97
resizing, 91–92
saturation, 93
saving to different formats, 90–91
sharpening, 94–95

Paint.NET, 85, 978
Pixia, 85
raster-based, 978
selecting, 978–979
uses for, 978
vector-based, 978
Windows Paint, 978
XnView, 85

images
3D button effect, 97
background

adding to web pages, 212–214
color adjustment, 216
contrast, 214, 217–218
defined, 77
gradients, 219–223
problems with, 214
repeating, turning off, 218–219
size of, 214
tiled, 215–216, 977, 992–994
transparency, 216

batch processing, 85, 98–99
blurring, 94–95

borders for, 207–209
brightness, 92
in buttons, 122
color balance, 93, 508–510
contrast, 93
cropping, 85
drawing, 505–507
drawing part of, 507–508
embedded

creating, 80–82
defined, 77
size of, 81
source of, 81
text description of, 81–82

embossing, 95–96
externally linked

creating, 78–79
defined, 77–78
problems with, 79–80

filters, 85, 93–98
formats

BMP, 85, 90
compressed, 84
GIF, 86–88, 90
JPG/JPEG, 86, 90
PNG, 88–90
saving to different, 84, 90–91
SVG, 89–90

gamma correction, 93
general discussion, 505
manipulation programs

features of, 84–85
reasons for using, 83–84

oil painting effect, 96
patterns for strokes and fills, 489–491
pixels, 82
problems with large, 267
red eye reduction, 97
resizing, 83–84, 91–92
saturation, 93
sharpening, 94–95
special effects for

reflections, 247–249
transparency, 245–247

using as bullets, 77, 223–224
using as text

image manipulation programs (continued)

Index 1043

advantages of, 160
problems with, 160
process for, 158–160

vector, 89
wrapping text around, 269–271

images directory, 973
 (image) tag
alt attribute, 81–82
drawing images, 505
embedded images, 80–82
height attribute, 81
src attribute, 81
width attribute, 81

in_array() function, 756
include() function, 643
<!–#include –> directive, 997
include_once() function, 643
indentation

of code, rules for, 56–57
functions, 608
lists

of hyperlinks, 73
nested, 56–57

multilevel lists, 316, 323–325
nested if statements, 405
of text, 170
text fields, 393

indexOf() method, 366, 368
index.php file, 973–975
info.php file, 973–974
inheritance

general discussion, 647–649
implementing, 649–650

init() function, 408–409
Ink tool, Gimp, 981–982
inline tags, 69, 184, 202–203
inner joins

advantages of, 732–733
building, 729–731
building views to encapsulate, 733
combining tables, 728–729

innerHTML property, 388–391, 398, 410,
770, 780

<input /> tag
buttons, 120–121

check boxes, 116–117
color type, 125
date type, 122–123
datetime type, 123
datetime-local type, 123–124
defined, 109
email type, 127
id attribute, 110
input elements, 109–113
maxlength attribute, 111
month type, 125
number type, 125–126
range type, 126
search type, 126–127
size attribute, 111
tel type, 127
time type, 123
type attribute, 110
url type, 127
value attribute, 111
week type, 124–125

input elements
creating

password boxes, 111–112
text areas, 112–113
text boxes, 109–111

defined, 107
INPUT_COOKIE value, 560
INPUT_ENV value, 560
INPUT_GET value, 560, 862
INPUT_POST value, 560
INPUT_REQUEST value, 560
INPUT_SESSION value, 560, 616
input-style buttons, 120–121
INSERT command, 681–683,

1010–1011, 1013
insertAfter() method, 814
insertBefore() method, 814
inset borders, 199
INT (INTEGER) data type, 657, 660
integers, defined, 371
Internet Explorer browser

black border shading, 200
conditional comments, 238–240

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1044

CSS incompatibility, 237
debugging in, 420
First Browser Wars, 44
general discussion, 10
HTML5 support in IE9, 46
HTML5 support in IE10, 46
image borders, 208
margins and padding, 298, 339
versions of, 242

Internet Protocol (IP) addresses,
928–929

interpolation
double quote, 543–544
of variables into text, 542–543

interpreted languages, 532
:invalid pseudo-class, 479
IP (Internet Protocol) addresses,

928–929
IrfanView

3D button effect, 97
batch processing, 98–99
blurring, 94–95
brightness, 92
color balance, 93
contrast, 93, 217
effects and filters, 93–98
embossing, 95–96
features of, 84–85
gamma correction, 93
general discussion, 84
GIF format, 87
oil painting effect, 96
red eye reduction, 97
resizing, 91–92
saturation, 93
saving to different formats, 90–91
sharpening, 94–95

isset() function, 578
italic value, 166
italicized text, 81, 155, 165–166
italics (<i>) tag, 155, 179–180
iterators, 875
IZArc utility, 976

J
Java, versus JavaScript, 355–356
JavaScript
alert() method for output, 358
arrays

accessing data, 440–441
containing elements of different types,

440
for dealing with complexity, 447
defined, 429, 438–439
example of, 442–443
general discussion, 439–440
listed data as, 465
multidimensional, 444–449
using loops with, 441–442

basic Hello World program, 357–358
canvas, animation with

animation loop, 515–516
bouncing motion, 520–521
constants, 516
of current frame, 517–519
initializing, 517
keyboard input, 521–526
moving elements, 519–520

canvas, drawing on
capabilities of, 485–486
fills, 485–491
general discussion, 483
images, 505–510
paths, 485, 496–504
rectangles, 491–492
setting up, 484–485
shadows, 494–495
strokes, 485–491
text, 492–493
transformations, 485–486, 511–515

character location indices, 368
comments, 358
concatenation

comparing literals and variables, 363
extra spaces, 364
general discussion, 362–363

debugging
automatically, 427

Internet Explorer browser (continued)

Index 1045

with Chrome console, 420–422
with Chrome debugger, 418–420
logic errors, 424–426
syntax errors, 422–424

decision-making code
if statements, 399–405, 416–417
for loops, 406–413
switch statements, 405–406
while loops, 413–417

defined, 355–356
embedding code, 358
as first programming language, 356
forms

buttons, 379–384
check boxes, 465–467
drop-down lists, 459–461
hidden fields, 391–397
password fields, 391–397
radio buttons, 468–470
select lists (multiple select lists),

462–465
text boxes/fields, 384–391, 459

functions
anonymous, 451
assigning prebuilt to methods, 451
breaking code into, 429-432
button functionality, 381–383
defined, 429
global variables, 437
local variables, 437
naming, 383
parameters, 383, 435
parenthesis and braces, 382–383
passing data to and from, 432–437
for returning values, 434–435
separation between, 432
variable scope, 437–439

general discussion, 355
improving with jQuery

adding or removing styles, 788–790
AJAX requests with, 791–794
changing styles, 783–785
creating objects, 780–781
events, 786–788, 790
features of, 776–777

importing from Google, 777–778
initialization functions, 781–783
installing, 777
manipulating classes, 788–790
methods, 781
modifying styles, 785–786
node object, 780
selecting objects, 785
setting up page, 779–780

interpretation of dynamic data, 370–372
Java versus, 355–356
objects

adding methods to, 450–452
creating, 449–450
defined, 429
reusable, 452–453
using, 453–454

semicolons, 359
strings

defined, 364
length property, 365–366
methods, 366–368
object-oriented programming,

364–365
test browsers, 356–357
text editors, 356
validation, new simplifications for
:invalid pseudo-class, 479–480
patterns, 481
placeholder text, 481–482
required fields, 481

validation with regular expressions
defined, 473
general discussion, 472–473
marking beginning and end of lines, 476
operators, 473–474
pattern memory, 478
repetition operations, 477–478
using characters in, 475–476
using special characters in, 476–477

variables
assigning values to, 369
characteristics of, 361
converting to desired type, 372–374
defined, 361

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1046

general discussion, 359–360
numeric values, 369
program for adding numbers, 369–370
program for adding numbers provided

by user, 370
requesting user input, 361
responding to user input, 361–362

javascript: identifier, 398
JavaScript Object Notation (JSON)

advantages of, 457, 876–877
AJAX and, 764
building complex structure, 455–457
defined, 454
describing attributes to animate, 807
framework for, 878–879
processing results, 879–881
reading, 877–878
retrieving, 879
storing data, 454–455

JavaScript-based browser detection, 238
jEdit text editor, 44
jello layouts (centered fixed-width layouts)

features of, 307
general discussion, 305
limitations of, 308
surrogate body, 306–307

joins
calculating date values

concatenation, 725–726
converting days to years, 723
DATEDIFF(A,B) function, 722–724
functions for, 720–721
general discussion, 721–722
MONTH() function, 724–725
YEAR() function, 724–725

Cartesian, 729–730
creating views, 726–727
creating views to encapsulate joins, 733
defined, 718
enforcing one-to-many relationships,

731–732
inner

advantages of, 732–733
building, 729–731

building views to encapsulate, 733
combining tables, 728–729

link tables, 735–739
many-to-many, 733–735
virtual fields, 719–721

JPG/JPEG (Joint Photographic Experts
Group) format, 86, 90

jQoutput variable, 780–781
jQuery

adding or removing styles, 788–790
AJAX requests with

building CMSs, 791–794
including text files, 791

building pseudo-CMSs, 998–1000
changing styles, 783–785
creating objects, 780–781
events

general discussion, 786
hover, 787–788
list of, 790

features of, 776–777
importing from Google, 777–778
initialization functions, 781–783
installing, 777
manipulating classes, 788–790
methods, 781
modifying styles, 785–786
node object, 780
selecting objects, 785
setting up page, 779–780
themes, choosing and downloading, 825
UI toolkit

adding icons, 833–834
building pages, 836
characteristics of, 819
cloning elements, 839–840
downloading library, 824–826
elements of, 821–822
icons, 820
importing files, 829–830
initializing pages, 836–837
resizing elements, 827–830
themeRoller tool, 820–823
themes, 819–820, 822–823, 830–833
writing programs, 826–827

JavaScript (continued)

Index 1047

widgets
accordion tool, 821, 841–845
classes used on, 831–832
datepicker controls, 821, 851–852
defined, 841
dialog boxes, 821, 856–858
icons, 822
progress bars, 821
selectable elements, 854–855
sliders (scroll bars), 821, 851–852
sortable lists, 855–856
tabs tool, 821, 842, 845–850

jQuery Mobile
building pages, 894–897
collapsible content, 897–900
multi-page documents, 900–905

JSON (JavaScript Object Notation)
advantages of, 457, 876–877
AJAX and, 764
building complex structure, 455–457
defined, 454
describing attributes to animate, 807
framework for, 878–879
processing results, 879–881
reading, 877–878
retrieving, 879
storing data, 454–455

json_decode() function, 876
json_encode() function, 876

K
keyboard input

general discussion, 521–522
managing, 522
moving images with, 523–525
polling, 526

keydown event, 790
@keyframes rule, 261
keys, 455–456
keywords, 680
Komodo Edit

color coding, 363
defined, 3
downloading, 9

Emmet add-on, 43
features of, 41–43, 356
heredocs and, 545–546
for PHP editing, 536

L
<label></label> tags, 109, 111
labels

defined, 107
floating layouts, 278–280
organizing forms with, 107–109
organizing with, 107–109

lambda functions (anonymous functions),
787–788

Lasso (Free Select) tool, Gimp, 983
:last filter, 814
last keyword, 194
last-child selector, 195
last-nth-of-type(N) selector, 195
LaTeX format, 700
latin1_swedish_ci syntax, 686–687
Law of Seven, 939
layout schemes

absolute positioning
code for, 334–335
default layout, 327–328
features of layouts with, 335–336
with flexibility, 336–339
general discussion, 351–352
height attribute, 330, 334
margins, 330
overlapping elements, 328–329, 332
padding, 334
page design, 333–334
position attribute, 330, 334
width attribute, 330, 334
z-index attribute, 331–332

centered fixed-width layouts
features of, 307
general discussion, 305
limitations of, 308
surrogate body, 306–307

choosing, 351–352
fixed positioning

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1048

fixed menu systems, 340–344
general discussion, 352
overview, 340

fixed-width layouts
general discussion, 302
HTML code for, 303
setting width, 303–305

flexible box layouts
absolute positioning versus, 345, 351
browser compatibility, 348–350
creating, 345–346
floating layouts versus, 344–345, 351
general discussion, 352
viewing, 346–348

floating layouts
advantages of, 292
general discussion, 351–352
semantic tags, 292–295
three-column design, 295–302
two-column design, 285–292

relative positioning, 340, 352
layout_setup.css file, 973
layout_text.css file, 973
lblOutput element, 401
<legend></legend> tags, 109
length property, 365–366
less than (<) conditional operator, 403, 574
less than (<) symbol, 802
less than (:lt) filter, 816
less than or equal to (<=) conditional

operator, 403, 574
letter spacing, 170
letter-height attribute, 171
letter-spacing attribute, 170
 (list item) tags, 52, 54, 56
lightness

defined, 144
specifying, 146

LIKE clause, 692–693
line height, 171
linear gradients

defining, 488–489
filling shapes with, 487–488
reflection effects, 248

linear-gradient function, 221
lineCap property, 499
lineJoin property, 499
line-through (strike-through) text, 168–169
lineTo() method, 497–498
lineWidth attribute, 497
linewidth element, 499
link tables

defined, 735
many-to-many joins, 736–739

<link> tag, 229, 231–232
list() function, 632
list item () tags, 52, 54, 56
lists

as arrays, 465
definition

characteristics of, 57
code for, 58
defined, 51
output as, 881
tag pairs, 59

of hyperlinks
converting to horizontal button bar,

313–314
converting to vertical list of buttons,

309–310, 310–313
general discussion, 71–73
HTML code for, 310

meaning versus layout, 52
menu system with collapsing horizontal

button bar, 324–326
menu system with collapsing list

creating nested list for, 315–316
displaying inner lists by hovering over,

318–320
general discussion, 314–315
hiding inner lists, 317

menu system with collapsing vertical
button list

advantages of, 321–322
creating, 322–324

nested
characteristics of, 55–56
code for, 55–56
creating, 57

layout schemes (continued)

Index 1049

general discussion, 54–55
indenting, 56–57
menu systems, 315–316, 321

ordered
code for, 54
creating, 54
defined, 51
general discussion, 53

unordered
characteristics of, 51–52
code for, 53
creating, 52–53
defined, 51
for multiple select list results, 464

using images as bullets, 77, 223–224
list-style-image attribute, 224
literals

comparing with variables, 363
defined, 363

load() function, 791, 793–794
load() method, 865, 867–868, 999
local styles

defined, 225
general discussion, 225–226
order of precedence, 237
problems with, 227–228
when to use, 227

local variables
defined, 437
variable scope, 438–439, 609–610

localhost mechanism, 664
location variable, 377
logic errors (bugs), 424–426, 586
LONGBLOB data type, 658
LONGTEXT data type, 658
lookup tables, 599
loops

with arrays
for, 590–591
foreach, 591–593

endless, 360, 415
for

cloning elements, 839
comparison, 409
counting by fives, 412

creating, 407
defined, 409
general discussion, 406–409
image manipulation, 510
initialization, 409
sentry variables, 413
shortcut operators, 410–412
updating, 410
using with arrays, 590–591

foreach
associative arrays and, 595–597
reading CSV data, 631–632
retrieving data from PDO connections,

747–748
using with arrays, 591–593

while
creating, 413–414
for passwords, 414–417
reading from text files, 626
troubleshooting, 415–416

loose typing, 540
Lorem Ipsum text, 288
lossless compression, 86, 88
lossy compression, 86
:lt (less than) filter, 816
< attribute, 802
lte keyword, 242
Lynx browser, 48

M
Mac TextEdit, 9–10, 36
macros

gedit text editor, 38
Komodo Edit, 42
Notepad++ text editor, 37

Magic Wand (Fuzzy Select) tool, Gimp,
983, 989

mail() function, 624
mail servers, 913
main() function, 434, 448–449
manifest attribute, 907
many-to-many relationships, 717, 733–739
margin-bottom attribute, 312
margin-left attribute, 206

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1050

margin-right attribute, 206
margins

absolute positioning, 330
box model

changing settings, 204–205
defined, 203–205
positioning elements with, 205–206

Internet Explorer and, 298, 339
match() method, 471, 473, 475
Math.ceil() function, 372–373
Math.floor() function, 372–373
Math.PI constant, 501
Math.round() function, 372–373
matrices, 514
max attribute, 125–126
maxlength attribute, 111
Measure tool, Gimp, 985–986
media query feature, 885–894
@media rule, 885, 888
menu systems

with collapsing horizontal button bar,
324–326

with collapsing list
creating nested list for, 315–316
displaying inner lists by hovering over,

318–320
general discussion, 314–315
hiding inner lists, 317

with collapsing vertical button list
advantages of, 321–322
creating, 322–324

fixed
creating, 343–344
CSS code for, 342–343
HTML code for, 341–342
overview, 340–341

menu/command semantic tag, 295
Mercury Mail, 913
<meta charset="UTF-8"> tag, 13
meter semantic tag, 295
method attribute, 565
method property, 554, 556–557
methods

adding to objects, 450–452
assigning prebuilt functions to, 451

defined, 364, 449
defining, 451, 641
getter, 644–646
setter, 645
for strings, 366–368

Microsoft Excel, 699
Microsoft Expression Web

features of, 33
problems with, 34

Microsoft Word, 10, 36
{min, max} operator, 474, 478
min attribute, 125–126
min-height property, 299–300
MINUTE() function, 721
mobile accessibility

adding qualifiers, 885–888
app development

general discussion, 905–906
icons, 906
removing Safari toolbar, 906–907
storing program offline, 907–908

improving user experience, 883–885
jQuery Mobile

building pages, 894–897
collapsible content, 897–900
multi-page documents, 900–905

responsive layouts, 888–894
specifying media type, 885

modal dialogs, 358–359
mode, 618–619
Mono (monochromatic) color scheme, 148
monospace fonts, 152
MONTH() function, 720, 723–725
month input type, 125
Moodle, 955–956
Mosaic browser, 44
mouseDown event, 790
move() function, 805–806
Move tool, Gimp, 984–986, 991
moveTo() command, 497, 503
-moz-border- image attribute, 208
Mozilla Firefox browser

debugging in, 420
features of, 46–47
general discussion, 10

Index 1051

image borders, 208
origin of, 45
viewing generated source code, 397

MP3 format, 100–101
MS Access, 661
MS SQL Server, 660
-ms-border- image attribute, 208
multidimensional arrays

general discussion, 444–446, 597–600
main() function, 448–449
setting up, 446–447

Multiflex-3 template, 970
multipass applications

general discussion, 863–864
HTML framework for, 864–865
loading select element, 865–866
responding to selections, 867–868
writing program, 866–870

multiple attribute, 463
multiple select lists (select lists)

creating, 114–116
defined, 106
HTML code for, 462–463
JavaScript code for, 463–465

My Documents folder, 618
MySQL

adding users, 670–672
characteristics of, 741–742
connecting PHP to

establishing connections, 744
general discussion, 741–743
PDO library, 745–748
user interaction, 751–758
using tables for output, 748–751

data normalization
data relationships, 717–718
defined, 713
entity-relationship diagrams, 709–713
first normal form, 713–715
second normal form, 715–716
single-table data problems, 705–709
third normal form, 716

data types, 657–658
defined, 661
determining fields in records, 656
editing records

deleting, 697
updating, 696–697

exporting data and structure
creating XML data, 702–703
exporting SQL code, 700–702
output formats, 698–700
reasons for, 697–698

joins
calculating date values, 720–726
Cartesian, 729–730
creating views, 726–727
creating views to encapsulate joins, 733
defined, 718
enforcing one-to-many relationships,

731–732
inner, 728–730, 732–733
link tables, 735–739
many-to-many, 733–735
virtual fields, 719–721

phpMyAdmin
adding users, 670–672
implementing databases, 674–678
root password, changing, 665–670
running scripts with, 683–686
setting up, 663–665
using on remote servers, 670–672
using to interact with MySQL, 662–663

practicing with, 662
primary keys

general discussion, 659
using AUTO_INCREMENT tag for, 686–687

query process, 742
reasons for using, 661
relational data modeling, 655–656
root password, changing, 665–670,

918–919
running from command line, 662
running from hosting site, 663
selecting table data

overview, 688–689
searching for any text in field, 693–694
searching for ending value of field, 693
searching with partial information, 692
searching with regular expressions,

694–695
sorting responses, 695–696

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1052

from specific fields, 689–690
subsets of records, 690–691

server name, 932
specifying length of records, 658–659
structure of data, 655–657
syntax rules, 680
table structure, 659–660
three-tiered architecture, 662–663
using phpMyAdmin to interact with,

662–663
writing SQL manually

adding records to tables, 682–683
creating tables, 681–682
dropping tables, 681
reasons for, 679–680
viewing data, 683

mysql library, 745
MySQL Workbench

code engineering features, 713
defining tables with, 710–713
overview, 709–710

mysqli library, 745

N
\n (newline) characters, 394–395, 442, 476,

540, 544, 627
name attribute, 469, 554, 560, 565
National Center for Supercomputing

Applications (NCSA), 44
nav semantic tag, 292–294
<nav> (navigation) semantic tag, 351
NCSA (National Center for Supercomputing

Applications), 44
nested lists

characteristics of, 55–56
code for, 55–56
creating, 57
general discussion, 54–55
indenting, 56–57
menu systems, 315–316, 321

Netscape browser, 44–45
new keyword, 453
new Object() syntax, 450

newline (\n) characters, 394–395, 442, 476,
540, 544, 627

noBorder() function, 787
node chaining, 805–806
node object, jQuery, 780
normal link state

defined, 187
styling, 189

normalization. See data normalization
not equal (!=) conditional operator,

403, 574
:not filter, 817
not selector, 194
Notepad++ text editor, 36–37, 545–546
novalidate attribute, 479
NOW() function, 720, 722
nth-child selector, 194–195
:nth-last-child(N) selector, 194
:nth-of-type(N) selector, 195
number attribute, 126
number input type, 125–126

O
object chaining, 802
object-oriented programming (OOP)

access modifiers, 644–646
creating objects, 640–641
defining classes, 640–641
inheritance

general discussion, 647–649
implementing, 649–650
JavaScript and, 453

overview, 364–365, 639–640
using classes, 642–644

objects
adding methods to, 450–452
creating, 449–450, 640–641
defined, 429
reusable, 452–453
using, 453–454

oblique value, 166
-o-border-image attribute, 208
:odd selector, 816
offset-x parameter, 252

MySQL (continued)

Index 1053

offset-y parameter, 252
Ogg format, 100–101
 (ordered list) tags, 54, 593
onclick parameter, 379–380, 384, 387
one-to-many relationships, 717, 731–732
one-to-one relationships, 717
onkeydown attribute, 522
onload property, 506
OOP (object-oriented programming)

access modifiers, 644–646
creating objects, 640–641
defining classes, 640–641
inheritance

general discussion, 647–649
implementing, 649–650
JavaScript and, 453

overview, 364–365, 639–640
using classes, 642–644

opacity attribute, 245–247
open() method, 767–768, 773
Open Document format, 699
Open Font Library, 157
opendir() function, 633–637
open-source fonts, 157
Opera browsers, 48, 208
<option></option> tags, 115
or (||) operator, 417
Oracle, 660
ORDER BY clause, 695
ordered list () tags, 54, 593
ordered lists

code for, 54
creating, 54
defined, 51
general discussion, 53

OTF font format, 157
output semantic tag, 295
output variable, 408, 448
$output variable, 544
outset borders, 199
overflow rule, 301–302
overline attribute, 168
overlined text, 168
overloaded operators, 372

P
<p></p> (paragraph) tags, 14
padding

absolute positioning, 334
box model

changing settings, 204–205
defined, 203–205
positioning elements with, 205–206

Internet Explorer and, 298
page_content(blockID)

function, 975
page_footer() function, 975
PAGE_TITLE constant, 974
page-level styles

defined, 225
order of precedence, 237

Paintbrush tool, Gimp, 981–982
Paint.NET, 85, 978
paragraph (<p></p>) tags, 14
parallel pages, 238
parameters

arguments versus, 383, 435
defined, 366, 383

:parent filter, 817
parenthesis (()), 383, 580
parseFloat() function, 372–373, 388
parseInt() function, 372–373, 388
partial borders, 201–202
password fields

creating, 111–112
creating forms with, 392–393
defined, 106, 391
functions, 393–394
generated source, 395–397
overview, 391–397
security, 393

pasting code, submitting to validators
via, 22

paths
arcs, 500–502
Bézier curves, 503–504
circles, 500–502
defined, 485
general discussion, 496–498

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1054

line width and style options, 498–499
quadratic curves, 502–503

pattern attribute, 481
pattern memory, 478
(pattern segment) operator, 474
patterns, 489–491
.pdf extension, 624
PDF files, exporting data and structure as,

700
PDO (PHP Data Objects) library

characteristics of, 745
establishing connections, 745–746
retrieving data from connections, 747–748

Pencil tool, Gimp, 980, 982
periods (.)

concatenation operator, 541
current directory, 636
matching characters with, 476
regular expression operator, 473
specifying classes, 181
for targeting class members, 785

persistence, managing with session
variables, 611–615

perspective attribute, 257
Perspective Clone tool, Gimp, 985–986
Perspective tool, Gimp, 984–985
Photoshop, 97, 978
PHP

advantages of, 530
arrays

associative, 594–597
breaking strings into, 601–603
multidimensional, 597–600
one-dimensional, 587–590
using loops with, 590–594

building HTML with
double quote interpolation, 543–544
heredocs, 544–546
overview, 536–538
switching from PHP to HTML, 546–547

building pseudo-CMSs, 1000–1001
client-side programming versus, 529–530
connecting to MySQL databases

establishing connections, 744

general discussion, 741–743
PDO library, 745–748
user interaction, 751–758
using tables for output, 748–751

control structures
comparison operators, 573–574
conditions, 569
if statements, 570–578
switch statements, 578–581

date() function, 551
debugging, 586
defined, 529
delimited data

overview, 626–627
reading CSV data, 630–633
storing data in CSV files, 627–628
viewing CSV data directly, 629–630

editors, 536
efficiency and, 951
e-mail, 624
embedding inside HTML, 550
exception handling, 650–652
file and directory functions
chdir() function, 634–635
generating lists of file links, 635–637
opendir() function, 633–634
readdir() function, 634

file placement, 533–535
filters, 560–561
functions

for complexity management, 605–607
improving code with, 607–609
naming, 609
returning data from, 610–611

Hello World test programs, 534, 537–538
languages for

ASP.NET, 531
Java, 531
PHP, 532
Python, 532

loops
for, 581–584
while, 584–586

object-oriented programming
access modifiers, 644–646

paths (continued)

Index 1055

creating objects, 640–641
defining classes, 640–641
inheritance, 647–650
overview, 639–640
using classes, 642–644

programming flow, 536
quotes, 539
relationship between HTML and, 549–551
sending data to PHP programs

creating forms, 552–555, 563–565
extracting form data, 560–562
general discussion, 552
receiving data, 555–556
responding to forms, 565–568
using get method, 556–560
using post method, 557, 559–560

as server-side language, 913
serving process, 530–531
session variables

adding to code, 614–616
advantages of, 613
defined, 612
general discussion, 611–612
resetting, 616
security, 616

superglobals, 562
text file manipulation

linking to files, 626
overview, 617
reading from files, 625–626
writing basic text files, 620–624
writing text to files, 618–620

variable scope, 609–610
variables

concatenation, 541–542
interpolating into text, 542–543
loose typing, 540
overview, 540

web servers
defined, 532
ways of working with, 533

<?php ?> directive, 537, 550, 567
PHP Data Objects (PDO) library

characteristics of, 745
establishing connections, 745–746

retrieving data from connections,
747–748

.php extension, 535
phpinfo() command, 534–536
phpMyAdmin

adding users, 670–672
implementing databases, 674–678
as part of server-side system, 914
root password, changing, 665–670
running scripts with, 683–686
setting up, 663–665
using on remote servers, 672–674
using to interact with MySQL, 662–663

pipes (|), 627
pixels (px), 82, 163
Pixia, 85
placeholder attribute, 481–482
plus signs (+)

concatenation, 363, 371–372
mathematical addition, 541

PNG (Portable Network Graphics) format,
88–90

pointers, 618–619
points (pts), 162
polling, 526
polymorphism, 649
Portable Network Graphics (PNG) format,

88–90
position attribute, 330, 334, 339, 343, 488
post() function, 861, 876
post method, 557, 559–560, 565, 752
$_POST superglobal array, 562, 578, 595
preg_split method, 602–603
prepared statements, 745, 754–755,

758, 869
prepend() method, 814
primary keys

characteristics of, 686
defining, 659
first normal form, 714
using AUTO_INCREMENT tag for, 686–687

print statements, 539, 546, 582, 586
print_r() function, 589–590
private keyword, 645
progress bars, 821

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1056

progress semantic tag, 295
prompt() command, 361
prompt() method, 434
proofs of program correctness, 427
properties

defined, 364, 449
defining, 641
purpose of, 366

protected keyword, 644–645
protocols

defined, 70
as part of absolute references, 73
as part of URL, 70

Prototype library, 776
prototype property, 366
prototyping, 453, 649
pseudo-classes

hyperlink styling
standard, 187
states, 187–189
strategies for, 189

new
:active, 196
:focus, 196
:hover, 195

pts (points), 162
public keyword, 641, 645
public_HTML directory, 531
putImageData() function, 510
px (pixels), 82, 163

Q
quadratic curves, 502–503
quadraticCurveTo() method, 503
query() method, 747, 751
question marks (?), 557
quote() method, 754
quotes (" ")

attributes in, 21
double quote interpolation, 543–544
embedding quotes within quotes, 384
escaping, 539
multiple levels of, 228
regular expressions, 475

R
radial gradients

defining, 222–223, 489
filling shapes with, 487–488

radial-gradient function, 222–223
radians, 501–502
radio buttons

creating, 117–119
defined, 106
grouping, 118, 565
groups of, 468–469
interpreting, 469–470

rand() function, 571–572, 581, 607
random access, 619
range input type, 126
raster-based image editors, 978
raster-based image formats, 89
RDBMS (relational database management

systems), 660–661
readdir() function, 634–637
read-only permission, 618, 924
ready() method, 782
readyState property, 771, 773–774
readyStateChanged property, 773
records

adding to tables, 682–683
defined, 656
determining fields in, 657
specifying length of, 658–659

Rectangle Select tool, Gimp, 983
rectangles, 491–492
references, defined, 387–388
reflect class, 248
REGEXP keyword, 692
register_globals feature, 562
regular expression parsing, 473
regular expressions

defined, 473
general discussion, 472–473
marking beginning and end of lines, 476
operators, 473–474
pattern memory, 478
repetition operations, 477–478
searching for table data with, 694–695

Index 1057

using characters in, 475–476
using special characters in, 476–477

rel attribute, 232
relational database management systems

(RDBMS), 660–661
relative font measurement units

defined, 162
ems, 164
named sizes, 163
percentage, 164

relative motion, 808
relative positioning, 340, 352
relative references, 73–75
remote data management

creating databases, 931–932
finding MySQL server name, 932

remote site management
file permissions, 924–925
with FTP, 925–928
web-based file tools, 922–924

remove() method, 817
removeClass() method, 790
repeat parameter, 491
replace() method, 366, 473
representative data, 939
$_REQUEST superglobal array, 562, 567,

578, 595, 1012
require() function, 643
require_once() function, 643
required attribute, 481
:required pseudo-class, 481
Reset buttons, creating, 121
resizable() method, 830
responseText property, 768
responsive design, 300
restore() command, 512, 514, 519
$result variable, 747
return statement, 435, 609–610
rgb() function, 486–487
RGB color scheme, 143, 216, 486–487
rgba color rule, 216, 486, 508–509
ridged borders, 199
rotate() function, 257, 511–512, 518
rotate parameter, 253
Rotate tool, Gimp, 984–985

rotate3d() function, 257
rounded corners

borders, 209–210
buttons, 312, 799

rows attribute, 113
rowspan attribute, 65
rules

defined, 133
naming, 134
values, 134

S
Safari browser

debugging in, 420
features of, 47–48
general discussion, 10
hiding toolbar, 906–907
image borders, 208

sanitizing filters, 560
sans serif fonts, 152
saturation

defined, 144
specifying, 146

save() method, 511, 513–514, 518
Scalable Vector Graphics (SVG) format,

89–90
scale() function, 511
scale parameter, 253
Scale tool, Gimp, 984–985
scale3d() function, 257
Scintilla text editor, 44
Scissors Select tool, Gimp, 983
<script></script> tags, 358
scroll bars (sliders), 821, 851–852
seamless textures (tiled background

images), 215–216, 977, 992–994
search() method, 366
search input type, 126–127
SECOND() function, 721
second normal form, 715–716
section semantic tag, 294
<section> semantic tag, 351
Secure Socket Layer (SSL) technology, 112
select boxes, creating, 116

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1058

Select by Color tool, Gimp, 983
SELECT command, 681, 683, 688–695, 727
select event, 790
select lists (multiple select lists)

creating, 114–116
defined, 106
HTML code for, 462–463
JavaScript code for, 463–465

select object, 460–464
<select></select> tags, 115, 593–594,

865
selectable elements, 854–855
selectors

animating with jQuery, 817
classes

adding to web pages, 181–182
combining, 182–184
general discussion, 180–181
using element style with, 182
using ID style with, 184

defined, 175
div and span elements

defined, 184
tables versus, 186–187
usefulness of, 185–186

 tags
general discussion, 177–179
modifying display of, 179–180

general discussion, 175–176
new

attribute selection, 193
not, 194
nth-child, 194–195

reason for many kinds of, 193
selecting in context, 190–191
 tags

general discussion, 177–179
modifying display of, 179–180

styling hyperlinks
standard, 187
states, 187–189
strategies for, 189

styling identified paragraphs, 176–177
styling multiple elements, 191–192

semantic navigation, 942
semantic tags, 292–295, 351
semantic themes, 830
semicolons (;), 359, 538, 545–546, 680
send() method, 767, 769, 773
Sendmail, 913
sentry variables, 413, 583–584, 586
serif fonts, 152
$_SERVER superglobal array, 595–597
servers

characteristics of, 912
creating with XAMPP

adding files, 916–917
general discussion, 914–915
running, 915
security levels, 917–919
security versus functionality, 919–920
testing configuration, 916

defined, 532, 912
as part of server-side system, 913
in three-tiered architecture, 662
ways of working with, 533

Server-Side Includes (SSIs), 951, 995–998
server-side programming

advantages of, 530
arrays

associative, 594–597
breaking strings into, 601–603
multidimensional, 597–600
one-dimensional, 587–590
using loops with, 590–594

building HTML with PHP, 536–538
double quote interpolation, 543–544
heredocs, 544–546
switching from PHP to HTML, 546–547

client-side programming versus, 529–530
control structures

comparison operators, 573–574
conditions, 569
if statements, 570–578
switch statements, 578–581

date() function, 551
debugging, 586
defined, 529

Index 1059

delimited data
overview, 626–627
reading CSV data, 630–633
storing data in CSV files, 627–628
viewing CSV data directly, 629–630

e-mail, 624
embedding PHP inside HTML, 550
exception handling, 650–652
file and directory functions
chdir() function, 634–635
generating lists of file links, 635–637
opendir() function, 633–634
readdir() function, 634

file placement, 533–535
filters, 560–561
functions

for complexity management, 605–607
improving code with, 607–609
naming, 609
returning data from, 610–611

Hello World test programs, 534,
537–538

languages for
ASP.NET, 531
Java, 531
PHP, 532
Python, 532

loops
for, 581–584
while, 584–586

object-oriented programming
access modifiers, 644–646
creating objects, 640–641
defining classes, 640–641
inheritance, 647–650
overview, 639–640
using classes, 642–644

parts of system, 913–914
PHP editors, 536
PHP programming flow, 536
quotes, 539
relationship between PHP and HTML,

549–551
sending data to PHP programs

creating forms, 552–555, 563–565

extracting form data, 560–562
general discussion, 552
receiving data, 555–556
responding to forms, 565–568
using get method, 556–560
using post method, 557, 559–560

serving process, 530–531
session variables

adding to code, 614–616
advantages of, 613
defined, 612
general discussion, 611–612
resetting, 616
security, 616

superglobals, 562
text file manipulation

linking to files, 626
overview, 617
reading from files, 625–626
writing basic text files, 620–624
writing text to files, 618–620

variable scope, 609–610
variables

concatenation, 541–542
interpolating into text, 542–543
loose typing, 540
overview, 540

web servers
defined, 532
ways of working with, 533

session ids, 612–613
$_SESSION superglobal array, 614–615
session variables

adding to code, 614–616
advantages of, 613
checking for existence of, 614
defined, 612
general discussion, 611–612
initializing, 615
resetting, 616
security, 616

session_start() function, 614
SET command, 696–697
setAttribute() method, 747
setInterval() function, 515, 517

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1060

setter methods, 645
shading, border, 200
shadow effect

for borders, 210–212
for text, 212, 251–252

shadowBlur method, 494
shadowColor method, 494
shadowOffsetX method, 494
shadowOffsetY method, 494
shadows, 494–495
Shakespearean insult generator, 175
Shear tool, Gimp, 984–985
show() method, 800–801
show_menu(menuID) function, 975
single quotes (' '), 384, 539, 680, 713
size attribute, 111
skew parameter, 253
slashes (/), 12, 475
slice() method, 366
slideDown() method, 801
slider() method, 853
sliders (scroll bars), 821, 851–852
slideUp() method, 801
small caps, 170
Smudge tool, Gimp, 984–985
solid borders, 199
sortable lists, 855–856
<sound> tags, 101
source (src) attribute, 81
<source> tags, 101
spaces

concatenation and, 364
filenames and, 10
as hex codes, 558
indenting code with, 56

span element
defined, 184
tables versus, 186–187
usefulness of, 185–186

special effects
for images

reflections, 247–249
transparency, 245–247

for text
shadow, 251–252
stroke color, 249–250

sprite sheets, 508
sprites

animating current frame, 517–518
defined, 515
modifying data, 516
redrawing, 516

SQL (Structured Query Language). See also
MySQL

data types, 657–658
date and time functions, 720–721
injection attacks, 753
overview, 656
syntax rules, 680
writing manually

adding records to tables, 682–683
creating tables, 681–682
dropping tables, 681
reasons for, 679–680
viewing data, 683

SQLite, 661
src (source) attribute, 81
SSIs (Server-Side Includes), 951,

995–998
SSL (Secure Socket Layer) technology, 112
status property, 768–770
status variable, 377
step attribute, 125–126
storing web pages offline, 907–908
streams, 618–619
strike-through (line-through) text,

168–169
strings

defined, 364
dynamic length, 659
length property, 365–366
methods, 366–368
object-oriented programming,

364–365
stroke() command, 497
strokeRect() function, 492
strokes

colors, 486–487
defined, 485
gradients, 487–489
patterns, 489–491

strokeStyle attribute, 491, 497, 499

Index 1061

 (strong emphasis)
tags

general discussion, 81, 177–179
modifying display of, 179–180

Structured Query Language. See MySQL
Structured Query Language (SQL). See also

MySQL
data types, 657–658
date and time functions, 720–721
injection attacks, 753
overview, 656
syntax rules, 680
writing manually

adding records to tables, 682–683
creating tables, 681–682
dropping tables, 681
reasons for, 679–680
viewing data, 683

style attribute, 198
style sheets

braces, 134
defined, 131
element definition, 133–134
rule names, 134
rule values, 134
setting up, 133–134
style type, 133

<style></style> tags, 133
subdomains

as part of URL, 71
registering, 921, 930

Submit buttons, creating, 121, 554
subscripts, 172
substring() method, 366, 368
SUBTIMES(A,B) function, 721
summary/detail semantic tag, 295
superglobals, 562
superscripts, 172–173
SVG (Scalable Vector Graphics) format,

89–90
svg semantic tag, 295
switch statements

PHP programming, 578–581
problems with, 406
syntax, 405–406

SynEdit text editor, 44

syntax errors (crashes)
defined, 422
resolving, 422–424
resolving before handling logic

errors, 425
syntax highlighting

gedit, 38
Komodo Edit, 41, 356
Notepad++, 37

T
\t (tab) escape directive, 540, 627
tabbed interfaces

creating, 845–848
improving usability with, 849–850
Mozilla Firefox browser, 45
overview, 821, 842
using with AJAX, 848–849

table data (<td></td>) tags, 59, 62–63
table header (<th></th>) tags, 59, 62
table row (<tr></tr>) tags, 59, 61
<table><> tags, 59–60
table-based layout, 19, 65–66
tables

adding records to, 682–683
borders, 60–61
code for, 59–60
creating, 681–682
defined, 656
defining

in HTML versus word processors, 60
in text editors, 61–62

defining with MySQL Workbench, 710–713
deleting records, 697
div and span elements versus, 186–187
dropping, 681
general discussion, 59
rows

data, 61–62
header, 61–62
spanning, 63, 65

selecting data from
overview, 688–689
searching for any text in field, 693–694
searching for ending value of field, 693

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1062

searching with partial information, 692
searching with regular expressions,

694–695
sorting responses, 695–696
from specific fields, 689–690
subsets of records, 690–691

single-table data problems
deletion, 709
fields with changeable data, 709
fields with multiple values, 706–708
general discussion, 705–706
purpose of table, 706
repetition, 708

spanning columns, 63–65
tags, 59
updating records, 696–697
using for layout, 266–267
viewing data, 683

tabs() method, 848
tags

block-level, 69
as containers, 14
defined, 12
inline, 69
list of, 12–14
lowercase, 14, 21
overlapping, 20, 29–30
repeatable, 14
XHTML standards, 20

<td></td> (table data) tags, 59, 62–63
tel input type, 127
TEMPLATE_DIR constant, 974
templates

Komodo Edit, 42
with web development editors, 33
web page

CSS styling for, 936, 947–949
data framework for, 936, 949–950
design sketches, 943–944
guidelines for, 943
HTML framework for, 936, 945–946

WebsiteBaker
adding, 969–970
changing, 968

packaging, 976
prebuilt, 971–973

Tetrad color scheme, 148
text

alignment
horizontal, 169–170
vertical, 170

case conversion, 170
creating in graphic editors, 267
drawing, 492–493
font characteristics

blinking, 169
bold, 166–167
general discussion, 164–165
italics, 165–166
overlining, 168
small caps, 170
strike-through (line-through), 168–169
subscripts, 172
superscripts, 172–173
underlining, 167–168

font families
defined, 149
font-family attribute, 150–151
setting, 149–151

font rule shortcut, 171–172
font size

absolute measurement units,
162–163

background and, 218
font-size attribute, 161–162
relative measurement units, 163–164
specifying, 160–161

fonts
creating list of, 153–154
defined, 149
embedded, 155–157
generic, 151–153
web-based, 154–155

indentation, 170
letter spacing, 170
line height, 171
shadow, 494–495
special effects for

shadow, 251–252
stroke color, 249–250

tables (continued)

Index 1063

using images as
advantages of, 160
problems with, 160
process for, 158–160

word spacing, 170
wrapping, 269–271

text areas
creating, 112–113
creating forms with, 392–393
defined, 106, 391
functions, 393–394
generated source, 395–397

text boxes/fields
changing text in, 387–388
creating, 109–111
defined, 106
drop-down lists versus, 459
retrieving data from

creating HTML framework for, 386–387
event-driven programming, 385–386
general discussion, 384–385

sending data to page
creating HTML framework for, 390
innerHTML property, 388–391
writing JavaScript for, 390–391

sending data to PHP programs
creating forms, 552–555
extracting form data, 560–562
general discussion, 552
receiving data, 555–556
using get method, 556–560
using post method, 557, 559–560

TEXT data type, 658
text editors

choosing, 9, 35, 44, 356
enhanced, 35
heredocs and, 545–546
Komodo Edit

color coding, 363
defined, 3
downloading, 9
Emmet add-on, 43
features of, 41–43, 356
heredocs and, 545–546
for PHP editing, 536

Notepad, 9, 36
Notepad++, 545–546
as part of client-side development

system, 913
placing icon on desktop, 16–17
suggested, 36–44
tables, creating with, 62
using with phpMyAdmin, 683
word processors versus, 10, 36

text files
including with AJAX requests, 791
linking to, 626
overview, 617
reading from, 625–626
writing basic, 620–624
writing text to
fclose() function, 620
fopen() function, 618–619
fwrite() function, 619–620

Text tool, Gimp, 985–986, 991
text variable, 435
text-align attribute, 169–170, 205–206
<textarea></textarea> tags, 112–113
"text/css" style type, 133
text-decoration attribute, 167–169
TextFX extension, Notepad++, 37
text-indent attribute, 170
text-only web browsers, 48–49
text-shadow attribute, 212, 251–252
text-stroke attribute, 249–250
text-transform attribute, 170
TextWrangler, 9
<th></th> (table header) tags, 59, 62
themeRoller tool, 820–823, 896
themes

consistency of, 933
jQuery

adding to elements, 830–833
general discussion, 819–820
prebuilt, 822–823
semantic, 830

$theMode variable, 618–619
third normal form, 716
this keyword, 451–453
$this keyword, 641

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1064

three-tiered architecture, 662–663
Tidy validator

fix suggestions, 31
problems with, 31–32
website for, 30

tildes (~), 71
tiled background images (seamless

textures), 215–216, 977, 992–994
TIME data type, 658
time input type, 123
time semantic tag, 295
time-based animation, 806–807
timing function parameter, 259
title attribute, 481
<title></title> tags, 13
TLS (Transport Layer Security), 616
toggle() method, 801
toggleClass() method, 790
toLowerCase() method, 366, 368
toString() function, 372–373
toUpperCase() method, 366, 368
<tr></tr> (table row) tags, 59, 61
transform attribute, 253
transformations

3D, 254–257
browser compatibility, 254, 257
combining multiple parameters, 253
creating transformed images, 512–514
defined, 485–486, 511
general discussion, 252–254, 511–512
matrix storage, 514
order of precedence, 514–515
strategies for, 514–515

transition animation
with CSS, 257–259
with jQuery, 797–798

transition attribute, 257–259
translate() function, 511–512, 518
translate parameter, 253
translate3d() function, 257
Transport Layer Security (TLS), 616
Triad color scheme, 148
TrueType (TTF) font format, 157
try keyword, 651
TTF (TrueType) font format, 157

.txt extension, 15, 624
txtInput element, 401
type attribute, 110, 120, 122
typecasting, 574
typefaces, 149. See also fonts

U
ui-corner-all class, 831–832
ui-corner-tl class, 832
ui-selected class, 854–855
ui-selecting class, 854
ui-state-active class, 832
ui-state-default class, 832
ui-state-disabled class, 832
ui-state-error class, 832
ui-state-error text class, 832
ui-state-focus class, 832
ui-state-highlight class, 832, 837
ui-state-hover class, 832
ui-widget class, 831–832
ui-widget-content class, 831–832
ui-widget-header class, 832
ui-widget-shadow class, 832
 (unordered list) tags, 52, 56,

593
underlined text, 167–168
underscores (_), 609
Uniform Resource Identifiers (URIs)

submitting code to validators via, 22
URLs versus, 70

Uniform Resource Locators (URLs), 70–71
unordered list () tags, 52, 56,

593
unordered lists

characteristics of, 51–52
code for, 53
creating, 52–53
defined, 51
for multiple select list results, 464

UPDATE command, 696–697
updateKeys() function, 522, 525
URIs (Uniform Resource Identifiers)

submitting code to validators via, 22
URLs versus, 70

Index 1065

url() keyword, 213–214
url input type, 127, 884
URLs (Uniform Resource Locators), 70–71
usernames, as part of URL, 71

V
validation

color names, 135
defined, 21
example of

end tag error, 32
overlapping tag error, 29–30
overview of errors, 26
sample page with errors, 23–24
strategies for working through errors,

26–27
title error, 27–29

of form-based input, 470–473
multilevel lists, 315
nested lists, 57
new simplifications for
:invalid pseudo-class, 479–480
patterns, 481
placeholder text, 481–482
required fields, 481

with regular expressions
defined, 473
general discussion, 472–473
marking beginning and end of lines, 476
operators, 473–474
pattern memory, 478
repetition operations, 477–478
using characters in, 475–476
using special characters in, 476–477

tables, 63
validators

defined, 21–22
reasons for using, 30
submitting code to, 22
Tidy, 30–32
W3C, 22, 25–30

validation filters, 560
validators

defined, 21–22
reasons for using, 30

submitting code to, 22
Tidy

fix suggestions, 31
problems with, 31–32
website for, 30

W3C
overlapping tag error, 29–30
overview of errors, 26
strategies for working through errors,

26–27
submitting code to, 22
title error, 27–29
website for, 25

value attribute, 111, 120–121, 125–126
value property, 388, 461, 463, 467
VALUES keyword, 683
var command, 361
VARCHAR(length) data type, 658, 660
variable scope, 408

defined, 437
implications of, 437–439
managing, 609–610

variables
arrays

accessing data, 440–441
associative, 594–597
breaking strings into, 601–603
containing elements of different

types, 440
for dealing with complexity, 447
defined, 429, 438–439
example of, 442–443
general discussion, 439–440
listed data as, 465
multidimensional, 444–449, 597–600
one-dimensional, 587–590
using loops with, 441–442, 590–594

assigning values to, 369
characteristics of, 361
comparing with literals, 363
concatenation, 541–542
converting to desired type, 372–374
defined, 361
general discussion, 359–360
interpolating into text, 542–543
loose typing, 540

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1066

naming, 609
numeric values, 369
overview, 540
program for adding numbers, 369–370
program for adding numbers provided by

user, 370
requesting user input, 361
responding to user input, 361–362

vector images, 89
vector-based image editors, 978
vertical-align attribute, 170
VI (Visual Editor) text editor, 39–40
video

embedding, 102
externally linked, 103
formats, 101

<video></video> tags, 101–102
view source command, 395–396, 815
viewport indicators, 884–885, 888
views

characteristics of, 727
creating, 726–727
defined, 726
for encapsulating joins, 733
MySQL 4.0 and, 728

VIM (Visual Editor Improved) text
editor, 39

virtual fields, 719–721
virtual fonts, 151–153
visited link state

defined, 187
styling, 189

:visited pseudo-class, 189
Visual Editor Improved (VIM) text

editor, 39
Visual Editor (VI) text editor, 39–40
VLC video conversion tool, 101

W
W3C (World Wide Web Consortium)

defined, 20
validator

overlapping tag error, 29–30
overview of errors, 26

strategies for working through
errors, 26–27

submitting code to, 22
title error, 27–29
website for, 25

XHTML standards, 20
watch expressions, 419
WAV format, 100
web browsers

animation, 261
Apple Safari

debugging in, 420
features of, 47–48
general discussion, 10
hiding toolbar, 906–907
image borders, 208

auditory, 49
calendar controls, 122–125
choosing, 49
color pickers, 125
CSS incompatibility

“Best viewed with” disclaimers, 237
conditional comments, 238–240
coping with, 237–238
CSS resets, 243
hacks, 238
Internet Explorer version, 242
Internet Explorer-specific code, 238–240
JavaScript-based browser detection, 238
parallel pages, 238

debugging in, 418–423
defined, 10
downloading multiple, 17
exclusive features, 19
Fire Vox, 49
flexible box layouts, 348–350
Google Chrome

console, 376–377, 420–423
CSS coding in, 142–143
debugging in, 418–422, 815
Developer Tools window, 376, 418–419
features of, 47–48
general discussion, 10
image borders, 208
viewing generated source code,

396–397

variables (continued)

Index 1067

history of, 44–46
HTML5 standards, 45–46
image borders, 208
Internet Explorer

black border shading, 200
conditional comments, 238–240
CSS incompatibility, 237
debugging in, 420
First Browser Wars, 44
general discussion, 10
HTML5 support in IE9, 46
HTML5 support in IE10, 46
image borders, 208
margins and padding, 298, 339
versions of, 242

JavaScript and, 356–357
loading pages into browser, 11
Lynx, 48
menu systems, 321
Mosaic, 44
Mozilla Firefox

debugging in, 420
features of, 46–47
general discussion, 10
image borders, 208
origin of, 45
viewing generated source code, 397

Netscape, 44–45
number input, 125–126
Opera, 48, 208
as part of client-side development

system, 912
reflection effects, 247–249
resizing images, 83
resizing text, 161
search input, 126–127
table borders, 60–61
text effects, 250
text-only, 48–49
in three-tiered architecture, 662
transformations, 254, 257
viewing generated source code, 395–398
WebKit rendering engine, 45, 47–48

web development tools
content management systems, 34–35
multimedia tools, 35

programming technologies, 35
text editors

choosing, 35, 44
enhanced, 35
suggested, 36–44
word processors versus, 36

web browser plug-ins, 35
web page editors

Adobe Dreamweaver, 33–34
Microsoft Expression Web, 33–34
problems with, 19–20

web hosts
connecting to hosting services, 922
finding hosting services, 920–921
general discussion, 920
reasons for using, 920
remote site management

file permissions, 924–925
with FTP, 925–928
web-based file tools, 922–924

Web Inspector tool, Safari, 420
web page editors

Adobe Dreamweaver
features of, 33
problems with, 34

Microsoft Expression Web
features of, 33
problems with, 34

problems with, 19–20
web page names, as part of URL, 71
web page templates

CSS styling for, 936, 947–949
data framework for, 936, 949–950
design sketches, 943–944
guidelines for, 943
HTML framework for, 936, 945–946

web pages
filenames, 10
loading page into browser, 11
saving file, 10
text editors, 9–10
typing code, 10
web browsers, 10

web servers
defined, 532
as part of server-side system, 913

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1068

in three-tiered architecture, 662
ways of working with, 533

web services, 870
web-based fonts, 154–155
WebKit rendering engine, 45, 47–48
-webkit-border-image attribute, 208
web-safe color palette, 139–141
website planning

audience
identifying, 937–938
technical expertise of, 938–939

characteristics of complete websites,
933–934

for clients
clear expectations, 935–936
general discussion, 934
task delineation, 936–937

efficiency, 951
large sites, 934, 953–954
launching sites, 950–951
page templates

CSS styling for, 936, 947–949
data framework for, 936, 949–950
design sketches, 943–944
guidelines for, 943
HTML framework for, 936, 945–946

semantic navigation, 942
site plans

defined, 939–940
diagrams, 940–942
strategies for, 940–941

testing, 936, 947, 950–951
WEBSITE_HEADER constant, 974
WEBSITE_TITLE constant, 974
WebsiteBaker

adding content, 962–963
adding functionality, 970–971
adding templates, 969–970
administration tools, 962
changing info.php file, 973–974
changing templates, 968
characteristics of, 958
creation and editing tools, 963–967
installing, 958–961

modifying CSS files, 975–976
modifying index.php file, 974–975
packaging templates, 976
page types

Code, 965
Form, 966
Menu Link, 966
News V3.5, 966–967
Wrapper, 966–967
WYSIWYG, 962, 965

prebuilt templates, 971–973
websites for further information

author’s, 6, 797
Cheat Sheet for book, 6
Color Scheme Designer tool, 146
companion to book, 6
content management systems, 955
CSS resets, 242
CSS3 column example, 308
Dummies.com online articles, 6
FileZilla, 926
Firebug extension, 420
font conversion tool, 157
Freehostia, 672
gedit text editor, 38
Gimp image manipulation program, 979
Gimp tutorials and manual, 982
hosting services, 920
HTTP response codes, 770
image supply sites, 981
IrfanView, 84
jQuery, 777, 820
jQuery methods, 814
Komodo Edit, 9, 41
media query specification, 894
mobile themeRoller tool, 896
Multiflex-3 template, 970
MySQL Workbench, 710
open-source fonts, 157
PHP date() function format, 551
PHP fopen() function, 619
PHP readdir() function, 634
Shakespearean insult generator, 175
SVG images, 90
TextWrangler, 9
Tidy validator, 30

web servers (continued)

Index 1069

updates for book, 6
W3C validator, 22, 25
WebsiteBaker AMASP, 970
WebsiteBaker documentation, 975
WebsiteBaker downloads, 959
WebsiteBaker templates, 969, 972
XAMPP server package, 533

WEEK() function, 720
week input type, 124–125
WEEKDAY() function, 720
WHERE clause, 691, 696–697, 736
while loops

creating, 413–414
for loops versus, 585
for passwords, 414–417
PHP programming, 584–586
problems with, 586
reading from text files, 626
troubleshooting, 415–416

widgets, jQuery
accordion tool, 821, 841–845
classes used on, 831–832
datepicker controls, 821, 851–852
defined, 841
dialog boxes, 821, 856–858
icons, 822
progress bars, 821
selectable elements, 854–855
sliders (scroll bars), 821, 851–852
sortable lists, 855–856
tabs tool, 821, 842

improving usability with, 849–850
tabbed interfaces, 845–848
using with AJAX, 848–849

width attribute, 81, 198, 330, 334
width property, 275
window object, 377
Windows Notepad, 9, 36
Windows Paint, 978
WOFF font format, 157
Word, 10, 36
word processors

defining tables in HTML versus, 60
text editors versus, 10, 36

word spacing, 170

WordPress, 956–957
word-spacing attribute, 170
World Wide Web Consortium (W3C)

defined, 20
validator

overlapping tag error, 29–30
overview of errors, 26
strategies for working through errors,

26–27
submitting code to, 22
title error, 27–29
website for, 25

XHTML standards, 20
wrap() function, 519–520
wrap() method, 816
write access, 619–620
write permission, 924
www. host name, 70
WYSIWYG technology, 17, 33–34, 62

X
XAMPP

components of, 914
creating servers with

adding files, 916–917
general discussion, 914–915
running, 915
security levels, 917–919
security versus functionality,

919–920
testing configuration, 916

defined, 3
installing, 533
phpMyAdmin, 663–664

XEmacs text editor, 40
XHTML standards

attributes in quotes, 21
end tags, 20
failure of, 20
layout separate from markup, 21
lowercase, 21
overlapping tags, 20
Tidy validator output, 32

xip utility, 976

HTML5 and CSS3 All-In-One For Dummies, 3rd Edition1070

XML (eXtensible Markup Language)
AJAX and, 763–764
exporting data and structure, 702–703
general discussion, 20, 870–871
HTML framework for, 873
JSON versus, 457
manipulating, 872–873
processing results, 874–875
retrieving, 874

XMLHttpRequest object, 761, 763,
767–768, 772

XnView, 85

Y
Yahoo User Interface (YUI) library, 776
YEAR() function, 720, 723, 724–725
YouTube, 103
YUI (Yahoo User Interface) library, 776

Z
z-index attribute, 331–332
zIndex property, 840
Zoom tool, Gimp, 985–986
zValue variable, 840

About the Author
Andy Harris began his teaching life as a special education teacher. As he was
teaching young adults with severe disabilities, he taught himself enough com-
puter programming to support his teaching habit with freelance program-
ming. Those were the exciting days when computers started to have hard
drives, and some computers began communicating with each other over an
arcane mechanism some were calling the Internet.

All this time Andy was teaching computer science part time. He joined the
faculty of the Indiana University-Purdue University Indianapolis Computer
Science department in 1995. He serves as a Senior Lecturer, teaching the
introductory course to freshmen as well as numerous courses on web
development, general programming, and game programming. As manager
of the Streaming Media Laboratory, he developed a number of online video-
based courses, and worked on a number of international distance education
projects including helping to start a computer science program in Tetevo,
Macedonia FYR, and collaboration with Sun-Yat-Sen University in Guangzhou,
China.

Andy is active in home schooling, and is the technology columnist for a
national homeschool magazine.

Andy is the author of several other computing books including HTML5
Game Development For Dummies, JavaScript/AJAX for Dummies, and Game
Programming: The L Line. He invites your comments and questions at
andy@aharrisbooks.net. You can visit his main site and find a blog,
forum, and links to other books at www.aharrisbooks.net.

Dedication
I dedicate this book to Jesus Christ, my personal savior, and to Heather, the
joy in my life. I also dedicate this project to Elizabeth, Matthew, Jacob, and
Benjamin. I love each of you.

Author’s Acknowledgments
Thank you first to Heather. Even though I type all the words, this book is a
real partnership, like the rest of our life. Thanks for being my best friend and
companion. Thanks also for doing all the work it takes for us to sustain a
family when I’m in writing mode.

mailto://andy@aharrisbooks.net
http://www.aharrisbooks.net

Thank you to Connie Santisteban. I’ve really enjoyed working with you on this
project.

Thank you to the copy and development editor, Linda Morris. I appreciate
your efforts to make my geeky mush turn into something readable. Thanks
for improving my writing.

A special thanks to Claudia Snell for technical editing. I appreciate your vigi-
lance. You have helped to make this book as technically accurate as possible.

Thank you to the many people at Wiley who contribute to a project like this.
The author only gets to meet a few people, but so many more are involved in
the process. Thank you very much for all you’ve done to help make this proj-
ect a reality.

A big thank you to the open-source community which has created so many
incredible tools and made them available to all. I’d especially like to thank
the creators of Firefox, Firebug, Aptana, HTML Validator, Komodo Edit,
Notepad++, PHP, Apache, jQuery, and the various jQuery plug-ins. This is an
amazing and generous community effort.

Thanks to those I’ve gotten to learn and teach with, from the graduate stu-
dents, to the math homework girls: Graciela and Vanesa.

I’d finally like to thank the IUPUI computer science family for years of support
on various projects. Thank you especially to all my students, current and
past. I’ve learned far more from you than the small amount I’ve taught. Thank
you for letting me be a part of your education.

Publisher’s Acknowledgments

Acquisitions Editor: Constance Santisteban

Project Editor: Linda Morris

Copy Editor: Linda Morris

Technical Editor: Claudia Snell

Editorial Assistant: Annie Sullivan

Sr. Editorial Assistant: Cherie Case

Project Coordinator: Sheree Montgomery

Cover Image: © iStockphoto.com/Marina
Strizhak

http://iStockphoto.com/MarinaStrizhak
http://istockphoto.com/MarinaStrizhak

Mobile	Apps

There’s a Dummies App for This and That
With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App. With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you’ll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

Start with FREE Cheat Sheets
Cheat Sheets include
	 •	Checklists
	 •	Charts
	 •	Common	Instructions
	 •	And	Other	Good	Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
	 •	Videos
	 •	Illustrated	Articles
	 •	Step-by-Step	Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
	 •	Digital	Photography
	 •	Microsoft	Windows	&	Office
	 •	Personal	Finance	&	Investing
	 •	Health	&	Wellness
	 •	Computing,	iPods	&	Cell	Phones
	 •	eBay
	 •	Internet
	 •	Food,	Home	&	Garden

Find	out	“HOW”	at	Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/html5css3aio

http://www.Dummies.com/go/mobile
http://www.Dummies.com/go/iphone/apps

	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Use Any Computer
	Don’t Buy Any Software
	How This Book Is Organized
	New for the Third Edition
	Icons Used in This Book
	Beyond the Book
	Where to Go from

	Part I: Creating the HTML Foundation
	Chapter 1: Sound HTML Foundations
	Creating a Basic Page
	Understanding the HTML in the Basic Page
	Meeting Your New Friends, the Tags
	Setting Up Your System

	Chapter 2: It’s All About Validation
	Somebody Stop the HTML Madness!
	Validating Your Page
	Using Tidy to repair pages

	Chapter 3: Choosing Your Tools
	What’s Wrong with the Big Boys: Expression Web and Adobe Dreamweaver
	How About Online Site Builders?
	Alternative Web Development Tools
	Picking a Text Editor
	Finding a Good Web Developer’s Browser

	Chapter 4: Managing Information with Lists and Tables
	Making a List and Checking It Twice
	Building Tables

	Chapter 5: Making Connections with Links
	Making Your Text Hyper
	Making Lists of Links
	Working with Absolute and Relative References

	Chapter 6: Adding Images, Sound, and Video
	Adding Images to Your Pages
	Choosing an Image Manipulation Tool
	Choosing an Image Format
	Manipulating Your Images
	Working with Audio

	Chapter 7: Creating Forms
	You Have Great Form
	Building Text-Style Inputs
	Making a standard text field
	Building a password field
	Creating Multiple Selection Elements
	Pressing Your Buttons
	New form input types

	Part II: Styling with CSS
	Chapter 1: Coloring Your World
	Now You Have an Element of Style
	Specifying Colors in CSS
	Choosing Your Colors
	Creating Your Own Color Scheme

	Chapter 2: Styling Text
	Setting the Font Family
	The Curse of Web-Based Fonts
	Specifying the Font Size
	Relative measurement units
	Determining Other Font Characteristics

	Chapter 3: Selectors: Coding with Class and Style
	Selecting Particular Segments
	Using Emphasis and Strong Emphasis
	Modifying the Display of em and strong
	Defining Classes
	Introducing div and span
	Using Pseudo-Classes to Style Links
	Selecting in Context
	Defining Styles for Multiple Elements
	Using New CSS3 Selectors

	Chapter 4: Borders and Backgrounds
	Joining the Border Patrol
	Introducing the Box Model
	New CSS3 Border Techniques
	Changing the Background Image
	Manipulating Background Images
	Using Images in Lists

	Chapter 5: Levels of CSS
	Managing Levels of Style
	Understanding the Cascading Part of Cascading Style Sheets
	Managing Browser Incompatibility

	Chapter 6: CSS Special Effects
	Image Effects
	Text Effects
	Transformations and Transitions

	Part III: Building Layouts with CSS
	Chapter 1: Fun with the Fabulous Float
	Avoiding Old-School Layout Pitfalls
	Introducing the Floating Layout Mechanism
	Using Float with Block-Level Elements
	Using Float to Style Forms

	Chapter 2: Building Floating Page Layouts
	Creating a Basic Two-Column Design
	Building a Three-Column Design
	Building a Fixed-Width Layout
	Building a Centered Fixed-Width Layout

	Chapter 3: Styling Lists and Menus
	Revisiting List Styles
	Creating Dynamic Lists
	Building a Basic Menu System

	Chapter 4: Using Alternative Positioning
	Working with Absolute Positioning
	Managing z-index
	Building a Page Layout with Absolute Positioning
	Creating a More Flexible Layout
	Exploring Other Types of Positioning
	Flexible Box Layout Model
	Determining Your Layout Scheme

	Part IV: Client-Side Programming with JavaScript
	Chapter 1: Getting Started with JavaScript
	Working in JavaScript
	Writing Your First JavaScript Program
	Introducing Variables
	Using Concatenation to Build Better Greetings
	Understanding the String Object
	Understanding Variable Types
	Changing Variables to the Desired Type

	Chapter 2: Talking to the Page
	Understanding the Document Object Model
	Managing Button Events
	Managing Text Input and Output
	Writing to the Document
	Working with Other Text Elements

	Chapter 3: Decisions and Debugging
	Making Choices with If
	Managing Repetition with for Loops
	Building While Loops
	Managing Errors with a Debugger

	Chapter 4: Functions, Arrays, and Objects
	Breaking Code into Functions
	Passing Data to and from Functions
	Managing Scope
	Building a Basic Array
	Working with Two-Dimension Arrays
	Creating Your Own Objects
	Introducing JSON

	Chapter 5: Getting Valid Input
	Getting Input from a Drop-Down List
	Managing Multiple Selections
	Check, Please: Reading Check Boxes
	Working with Radio Buttons
	Interpreting Radio Buttons
	Working with Regular Expressions
	New HTML5/CSS3 Tricks for Validation

	Chapter 6: Drawing on the Canvas
	Canvas Basics
	Fill and Stroke Styles
	Drawing Essential Shapes
	Working with Paths
	Images
	Manipulating Pixels

	Chapter 7: Animation with the Canvas
	Transformations
	Animation
	Reading the Keyboard

	Part V: Server-Side Programming with PHP
	Chapter 1: Getting Started on the Server
	Introducing Server-Side Programming
	Installing Your Web Server
	Inspecting phpinfo()
	Building HTML with PHP
	Coding with Quotation Marks
	Working with Variables PHP-Style
	Building HTML Output

	Chapter 2: PHP and HTML Forms
	Exploring the Relationship between PHP and HTML
	Sending Data to a PHP Program
	Choosing the Method of Your Madness
	Retrieving Data from Other Form Elements

	Chapter 3: Using Control Structures
	Introducing Conditions (Again)
	Building the Classic if Statement
	Making a switch
	Looping with for
	Looping with while

	Chapter 4: Working with Arrays
	Using One-Dimensional Arrays
	Using Loops with Arrays
	Introducing Associative Arrays
	Introducing Multidimensional Arrays
	Breaking a String into an Array

	Chapter 5: Using Functions and Session Variables
	Creating Your Own Functions
	Managing Persistence with Session Variables

	Chapter 6: Working with Files and Directories
	Text File Manipulation
	Using Delimited Data
	Working with File and Directory Functions

	Chapter 7: Exceptions and Objects
	Object-Oriented Programming in PHP
	You’ve Got Your Momma’s Eyes: Inheritance
	Catching Exceptions

	Part VI: Managing Data with MySQL
	Chapter 1: Getting Started with Data
	Examining the Basic Structure of Data
	Introducing MySQL
	Setting Up phpMyAdmin
	Implementing a Database with phpMyAdmin

	Chapter 2: Managing Data with MySQL
	Writing SQL Code by Hand
	Running a Script with phpMyAdmin
	Using AUTO_INCREMENT for Primary Keys
	Selecting Data from Your Tables
	Editing Records
	Exporting Your Data and Structure

	Chapter 3: Normalizing Your Data
	Recognizing Problems with Single-Table Data
	Introducing Entity-Relationship Diagrams
	Introducing Normalization
	Identifying Relationships in Your Data

	Chapter 4: Putting Data Together with Joins
	Calculating Virtual Fields
	Calculating Date Values
	Creating a View
	Using an Inner Join to Combine Tables
	Managing Many-to-Many Joins

	Chapter 5: Connecting PHP to a MySQL Database
	PHP and MySQL: A Perfect (but Geeky) Romance
	Allowing User Interaction

	Part VII: Integrating the Client and Server with AJAX
	Chapter 1: AJAX Essentials
	AJAX Spelled Out
	Making a Basic AJAX Connection
	All Together Now — Making the Connection Asynchronous

	Chapter 2: Improving JavaScript and AJAX with jQuery
	Introducing jQuery
	Your First jQuery App
	Creating an Initialization Function
	Investigating the jQuery Object
	Adding Events to Objects
	Making an AJAX Request with jQuery

	Chapter 3: Animating jQuery
	Playing Hide and Seek
	Changing Position with jQuery
	Modifying Elements on the Fly

	Chapter 4: Using the jQuery User Interface Toolkit
	What the jQuery User Interface Brings to the Table
	Resizing on a Theme
	Dragging, Dropping, and Calling Back

	Chapter 5: Improving Usability with jQuery
	Multi-Element Designs
	Improving Usability

	Chapter 6: Working with AJAX Data
	Sending Requests AJAX Style
	Building a Multipass Application
	Working with XML Data
	Working with JSON Data

	Chapter 7: Going Mobile
	Thinking in Mobile
	Building a Responsive Site
	Making Your Page Responsive
	Using jQuery Mobile to Build Mobile Interfaces
	Going from Site to App

	Part VIII: Moving from Pages to Sites
	Chapter 1: Managing Your Servers
	Understanding Clients and Servers
	Creating Your Own Server with XAMPP
	Choosing a Web Host
	Managing a Remote Site
	Naming Your Site
	Managing Data Remotely

	Chapter 2: Planning Your Sites
	Creating a Multipage Web Site
	Planning a Larger Site
	Understanding the Client
	Understanding the Audience
	Building a Site Plan
	Creating Page Templates
	Fleshing Out the Project

	Chapter 3: Introducing Content Management Systems
	Overview of Content Management Systems
	Previewing Common CMSs
	Building Custom Themes

	Chapter 4: Editing Graphics
	Using a Graphic Editor
	Choosing an Editor
	Introducing Gimp
	Understanding Layers
	Introducing Filters
	Solving Common Web Graphics Problems

	Chapter 5: Taking Control of Content
	Building a “Poor Man’s CMS” with Your Own Code
	Creating Your Own Data-Based CMS

	Index
	About the Author

