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Preface

The present volume contains the LINSTAT2016 conference proceedings held at
Istanbul, Turkey, 22–25 August 2016, at the Congress and Culture Center of
Istanbul University. The conference was organized by Marmara University.
Istanbul offered a beautiful, interesting, and inspiring environment. The conference
venue was close to the Taksim square, the heart of modern Istanbul, situated in the
European part of Istanbul.

LINSTAT2016 was organized and supported by Marmara University. The event
was sponsored by BAPKO (Scientific Research Projects Unit-FEN-L -110316-0099)
and cooperative partners were Istanbul University and Turkish airlines.

The Scientific Committee was chaired by Müjgan Tez, while the head of the
Organizing Committee was Birsen Eygi Erdoğan. The aim of the conference was to
bring together researchers sharing an interest in a variety of aspects of statistics and
its applications and offer them a possibility to discuss current developments in these
topics.

During the 4 days of conference, there were 6 invited lectures and 5 special
sessions. In total there were 17 sessions. LINSTAT2016 hosted more than 60
participants from 12 countries. The Scientific Committee awarded 3 talks and 1
poster presentation delivered by Ph.D. students or young scientists. The winners
were: first prize—Omer Altindag (Turkey); second prize—Huruy Debessay Asfha
(Turkey); third prize—Tugba Sokut Acar (Turkey); and the prize for best poster—
Ayca Pamukcu (Turkey). Winners of Young Scientists Awards will be Invited
Speakers at the next edition of LinStat. The conference was a continuation of earlier
international meetings, which provided a good occasion for a review of important
research in statistics. The next meeting in the LinStat series will be held at Bedlewo,
Poland, 2018.

This special volume contains selected articles from the LINSTAT2016 con-
ference. They are mainly concerned with estimation, prediction, and testing in
linear univariate and multivariate models, statistical inference in a mixed linear
model—estimation and testing of variance components, design and analysis of
experiments, including optimality and comparison of linear experiments. For those
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interested in linear statistical inference, we hope this book will be an interesting
contribution. In total, 13 articles were finally accepted for publication. Each article
was independently refereed by two anonymous referees.

We would like to offer our sincere thanks to all the contributors. The time spent
by numerous referees is also highly appreciated. On behalf of the Scientific
Committee, we express our special gratitude to the local organizers who created a
wonderful and very interesting conference.

We hope that this Special Issue will stimulate future research within the field of
linear statistical inference.

Istanbul, Turkey Müjgan Tez
Uppsala/Linköping, Sweden Dietrich von Rosen
November 2017
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Comparison of Estimation Methods
for Inverse Weibull Distribution

Fatma Gül Akgül and Birdal Şenoğlu

Abstract The aim of this chapter is to estimate unknown parameters of inverse
Weibull (IW) distribution using eight different estimation methods: maximum
likelihood (ML), least squares (LS), weighted least squares (WLS), percentile (PC),
maximum product of spacing (MPS), probability weighted moments (PWM),
Cramér–von Mises (CM), and Anderson-Darling (AD). The performances of these
estimation methods are compared via an extensive Monte Carlo simulation study.
Their robustness properties are also investigated. At the end of the study, two real
data sets are analyzed for illustration and comparison purposes.

Keywords Inverse Weibull distribution ⋅ Estimation methods
Efficiency ⋅ Monte Carlo simulation ⋅ Robustness

1 Introduction

The inverse Weibull (IW) distribution was introduced by Keller and Kamath (1982)
as a suitable model for describing the degeneration phenomena of mechanical
components, such as the dynamic components of diesel engines. Since then it has
common usage in many areas, such as survival analysis (Erto and Rapone 1984),
mechanics (Murthy et al. 2004), earthquake (Pasari and Dikshit 2014), and wind
speed (Akgül et al. 2016). Besides these studies, it has received considerable
attention in recent years particularly for modeling extreme events, since it has large
right tail probability, see Rinne (2009).
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Several methods have been used for estimating unknown parameters of IW
distribution. For example, Calabria and Pulcini (1990) considered estimation of the
parameters of IW distribution using the maximum likelihood (ML) and the least
squares (LS) methodologies. Singh et al. (2013) described the Bayes estimators of
the parameters of IW distribution for complete, type I and type II censored samples
under general entropy and squared loss functions. Akgül et al. (2016) obtained the
modified maximum likelihood (MML) estimators of the parameters of IW distri-
bution and compared them with the ML and the LS estimators.

In this study, we use eight different estimation methods to estimate unknown
parameters of IW distribution. They are ML, LS, weighted least squares (WLS),
percentile (PC), maximum product of spacing (MPS), probability weighted
moments (PWM), Cramér–von Mises (CM), and Anderson-Darling (AD). It can be
said that since IW distribution is a special case of generalized extreme value
(GEV) distribution, the MPS, the PWM, and the PC estimators of the parameters of
IW distribution are obtained across the entire GEV distribution, see Hosking et al.
(1985), Soukissian and Tsalis (2015) and Ashoori et al. (2017). However, to the
best of our knowledge, this is the first study using eight different estimation
methods for estimating the parameters of IW distribution in the same study. The
performance of all of these estimators is compared via an extensive Monte Carlo
simulation study. Their robustness properties are also investigated. At the end of the
study, two real data sets are analyzed for illustrative purposes.

The rest of the chapter is organized as follows: In Sect. 2, we give certain
distributional properties of IW distribution. Estimation methods are considered in
Sect. 3. A Monte Carlo simulation study is performed to compare the performance
of the proposed estimators in Sect. 4. The robustness properties of the estimators
are investigated in Sect. 5. In Sect. 6, two real data sets are used to show the
implementation of the estimation methods. Comments and conclusions are given in
the final section.

2 IW Distribution

Let X be a random variable from IW distribution with shape parameter α and scale
parameter β. The cumulative density function (cdf) and the probability density
function (pdf) of IW distribution are given below:

F x, α, βð Þ= e− x ̸βð Þ− α

, x > 0, α, β > 0 ð1Þ

and

f x, α, βð Þ= α
β

x
β

� �− α+1ð Þ
e− x ̸βð Þ− α

, x > 0, ð2Þ

2 F. G. Akgül and B. Şenoğlu



respectively. If the random variable X has an IW distribution with parameters α and
β, it is denoted by X ∼ IW α, βð Þ. It should be stated that IW distribution is known
by different names such as Fréchet (Fréchet 1927), complementary Weibull
(Drapella 1993), reciprocal Weibull (Mudholkar and Kollia 1994), or reverse
Weibull (Murthy et al. 2004) in literature.

The survival and hazard function of IW distribution are given by

S xð Þ=1− e− x ̸βð Þ− α

, x > 0 ð3Þ

and

h xð Þ=
α
β

x
βð Þ− α+ 1ð Þ

e− x ̸βð Þ− α

1− e− x ̸βð Þ− α , x > 0, ð4Þ

respectively. The k-th moment around zero is calculated as shown below:

E Xk� �
=
Z∞
0

xk
α

β

x
β

� �− α+1ð Þ
e− x ̸βð Þ− α

dx= βkΓ
α− k
k

� �
, ð5Þ

where α > k. Hence, the expected value of X is

E Xð Þ= βΓ
α− 1
α

� �

and the variance of X is

Fig. 1 Plots of the pdf of IW distribution for certain representative parameter values
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Var Xð Þ= β2 Γ
α− 2
α

� �
−Γ2 α− 1

α

� �� 	
.

The moment generating function and the cumulant generating function of X are
defined as follows:

MX tð Þ= ∑
n

k=0

tk

k!
βkΓ

α− k
k

� �
ð6Þ

Fig. 2 Plots of the survival function of IW distribution for certain representative parameter values

Fig. 3 Plots of the hazard function of IW distribution for certain representative parameter values
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and

KX tð Þ= log ∑
n

k=0

tk

k!
βkΓ

α− k
k

� �� 	
, ð7Þ

respectively. Here, tj j< 1.
Plots of the pdf, survival, and hazard functions of IW distribution for various

different parameter values are displayed in Figs. 1, 2, and 3.

3 Parameter Estimation Methods

Parameter estimation methods for estimating the shape parameter α and the scale
parameter β of IW distribution are described in the following subsections.

3.1 The Maximum Likelihood Method

Let x= x1, x2, . . . , xnð Þ be a random sample of size n from IW distribution with
parameters α, βð Þ. From Eq. (2), the likelihood and the log-likelihood functions are
written as follows:

L α, βjxð Þ= αn

βnα
∏
n

i=1
x− α+1ð Þ
i e

− ∑
n

i=1
xi ̸βð Þ− α

ð8Þ

and

l α, βjxð Þ= n ln α+ nα ln β− α+1ð Þ ∑
n

i=1
ln xi − βα ∑

n

i=1
x− α
i , ð9Þ

respectively. By taking the derivatives of (9) with respect to the unknown param-
eters α and β and equating them to zero, we obtain the following likelihood
equations:

∂l
∂α

=
n
α
+ n ln β− ∑

n

i=1
ln xi − βα ln β ∑

n

i=1
x− α
i + βα ∑

n

i=1
x− α
i ln xi =0, ð10Þ

∂l
∂β

=
nα
β

− αβα− 1 ∑
n

i=1
x− α
i =0. ð11Þ

From (11), we obtain

Comparison of Estimation Methods for Inverse Weibull Distribution 5



β αð Þ= n
∑n

i=1 x
− α
i

� �1 ̸α

. ð12Þ

By putting (12) into (10), we obtain

n
α
− ∑

n

i=1
ln xi +

n
∑n

i=1 x
− α
i

∑
n

i=1
x− α
i ln xi =0. ð13Þ

Hence, α ̂ can be obtained as a solution of the nonlinear equation of the form
h αð Þ= α where

h αð Þ= n∑n
i=1 x

− α
i

∑n
i=1 x

− α
i ∑n

i=1 ln xi − n∑n
i=1 x

− α
i ln xi

. ð14Þ

Note that (14) cannot be solved explicitly and therefore, we resort to iterative
methods. Here, the Newton–Raphson algorithm is used to solve (14).

3.2 The Least Squares Method

The LS estimators of the unknown parameters are obtained by minimizing the
following equation with respect to the parameters of interest:

∑
n

i=1
F x ið Þ
� �

−
i

n+1

� �2

. ð15Þ

Here, x1, . . . , xn is a random sample from the distribution function F .ð Þ,
x 1ð Þ ≤⋯≤ x nð Þ denotes the corresponding order statistics and i

n+1, i=1, . . . , nð Þ are
the expected values of F x ið Þ

� �
. Therefore, in the case of IW distribution, the LS

estimators of the unknown parameters are obtained by minimizing (15) with respect
to α and β. They are obtained by solving the following nonlinear equations:

∑
n

i=1
F x ið Þ, α, β
� �

−
i

n+1

� �
F

0
α x ið Þ, α, β
� �

=0, ð16Þ

∑
n

i=1
F x ið Þ, α, β
� �

−
i

n+1

� �
F

0
β x ið Þ, α, β
� �

=0. ð17Þ

Here, F x, α, βð Þ is given in (1),

6 F. G. Akgül and B. Şenoğlu



F
0
α x, α, βð Þ= x

β

� �− α

ln
x
β

� �
e− x ̸βð Þ− α ð18Þ

and

F
0
β x, α, βð Þ= −

α

β

� �
x
β

� �− α

e− x ̸βð Þ− α

. ð19Þ

3.3 The Weighted Least Squares Method

The WLS estimators of the unknown parameters are obtained by minimizing the
following equation with respect to the parameters of interest:

∑
n

i=1
wi F x ið Þ

� �
−

i
n+1

� �2

. ð20Þ

Here, wi, i=1, . . . , nð Þ are equal to 1 ̸V F x ið Þ
� �� �

= n+1ð Þ2 n+2ð Þ ̸i n− i+1ð Þ.
Therefore, in the case of IW distribution, the WLS estimators of the unknown
parameters are obtained by minimizing (20) with respect to α and β and they are the
solutions of the following equations:

∑
n

i=1
wi F x ið Þ, α, β

� �
−

i
n+1

� �
F

0
α x ið Þ, α, β
� �

=0, ð21Þ

∑
n

i=1
wi F x ið Þ, α, β

� �
−

i
n+1

� �
F

0
β x ið Þ, α, β
� �

=0, ð22Þ

where F
0
α x, α, βð Þ are F

0
β x, α, βð Þ are defined as in (18) and (19), respectively.

3.4 The Percentile Method

The PC estimators of the unknown parameters of IW distribution are obtained by
applying the method suggested by Kao (1958), since this distribution has an explicit
cdf. Let pi be an estimate of F x ið Þ

� �
and x pið Þ be the pi-th quantile of F x ið Þ

� �
, the PC

estimators of the unknown parameters are obtained by minimizing the following
equation with respect to the parameters of interest:

Comparison of Estimation Methods for Inverse Weibull Distribution 7



∑
n

i=1
x ið Þ − x pið Þ� �2. ð23Þ

Here, x ið Þ’s are ordered sample observations. There exist several estimators of
pi’s in the literature. In this study, pi are taken as i

n+1. Therefore, in case of IW
distribution, the PC estimators of the unknown parameters are obtained by
minimizing

∑
n

i=1
x ið Þ − − ln

i
n+1

� �� �− 1 ̸α

β

 !2

ð24Þ

with respect to α and β.

3.5 The Maximum Product of Spacing Method

The MPS estimators of the unknown parameters of IW distribution are obtained
using the methodology proposed by Cheng and Amin (1983). This method is based
on the idea of differences between the values of the cdf at consecutive data points.
The MPS estimators of the parameters are obtained by maximizing the following
geometric mean (GM) of the differences with respect to parameters of interest

GM = ∏
n+1

i=1
Di

� �1 ̸ n+1ð Þ
. ð25Þ

Here, Di is defined as

Di = ∫
x ið Þ

x i− 1ð Þ
f x, α, βð Þdx, i=1, . . . , n+1, ð26Þ

in other words Di =F x ið Þ, α, β
� �

−F x i− 1ð Þ, α, β
� �

where 0=F x 0ð Þ, α, β
� �

< F x 1ð Þ, α, β
� �

<⋯<F x nð Þ, α, β
� �

<F x n+1ð Þ, α, β
� �

=1. By taking a logarithm of
(25), we have

ln GM =
1

n+1
∑
n+1

i=1
ln F x ið Þ, α, β

� �
−F x i− 1ð Þ, α, β
� �
 �

. ð27Þ

The MPS estimators of α and β can be obtained by solving the following
equations:

8 F. G. Akgül and B. Şenoğlu



∂ ln GM
∂α

=
1

n+1
∑
n+1

i=1

F
0
α x ið Þ, α, β
� �

−F
0
α x i− 1ð Þ, α, β
� �

F x ið Þ, α, β
� �

−F x i− 1ð Þ, α, β
� �

" #
=0, ð28Þ

∂ ln GM
∂β

=
1

n+1
∑
n+1

i=1

F
0
β x ið Þ, α, β
� �

−F
0
β x i− 1ð Þ, α, β
� �

F x ið Þ, α, β
� �

−F x i− 1ð Þ, α, β
� �

" #
=0 ð29Þ

where F
0
α x, α, βð Þ and F

0
β x, α, βð Þ are defined as in (18) and (19), respectively.

3.6 The Probability Weighted Moments Method

The PWM estimators of the unknown parameters of IW distribution are obtained
using the methodology originated by Greenwood et al. (1979). If X is a random
variable from the distribution of F, then the general expression for the weighted
moments of i, r, and s is defined as

M i, r, sð Þ=E XiF Xð Þr 1−F Xð Þð Þs
 �
, ð30Þ

where i, r, and s are the integer numbers. For the special case i=1, s=0, the PWM
of IW distribution is calculated as given below:

νr =M 1, r, 0ð Þ=E XF Xð Þrð Þ= ∫
∞

0
xF xð Þrf xð Þdx

= β r+1ð Þ1 ̸α− 1Γ 1−
1
α

� �
.

ð31Þ

For an ordered sample x 1ð Þ ≤ x 2ð Þ ≤ . . . ≤ x nð Þ of size n, the unbiased estimator of
νr, say ν̂r, is obtained from the following equation:

ν ̂r =
1
n
∑
n

j=1

j− 1ð Þ j− 2ð Þ . . . j− rð Þ
n− 1ð Þ n− 2ð Þ . . . n− rð Þ x jð Þ, ð32Þ

see Landwehr et al. (1979). It should be noted that Eq. (32) can be called sample
PWM.

By equating the sample PWM to the population PWM, the PWM estimators of
the shape parameter α and the scale parameter β of IW distribution are obtained as
given below:

α ̂=
log 2

log 2ν ̂1 ̸ν̂0ð Þ and β=
ν ̂0

Γ 1− 1 ̸α̂ð Þ , ð33Þ

respectively.

Comparison of Estimation Methods for Inverse Weibull Distribution 9



3.7 The Minimum Distance Methods

Now, we obtain the estimators of the shape and scale parameters of IW distribution
based on minimizing empirical distribution function statistics. These methods can
be considered as an informal procedure to minimize the distance between the
empirical and estimated cdfs, see Luceño (2006, 2008). The estimators based on the
general class of minimum distance estimators were first considered by Wolfowitz
(1953, 1957). It should be noted that these estimators are also called as maximum
goodness of fit estimators by Luceño (2006, 2008) to avoid confusion with other
minimum distance methods which are not related to empirical distribution function.
Luceño (2006, 2008) used minimum distance methods to obtain the estimators of
unknown parameters of generalized Pareto and Weibull distributions, respectively.
In addition to these studies, Santo and Mazucheli (2015) and Louzada et al. (2016)
considered the estimation of the parameters of Marshall–Olkin extended Lindley
and extended exponential geometric distributions by using goodness of fit estima-
tors, respectively.

3.7.1 The Cramér–Von Mises Method

The CM estimators of the unknown parameters of IW distribution are obtained by
minimizing the following equation with respect to the parameters α and β:

C α, βjxð Þ= 1
12n

+ ∑
n

i=1
F x ið Þ, α, β
� �

−
2i− 1
2n

� �2

. ð34Þ

It is clear that the CM estimators of the parameters are obtained by solving the
following equations:

∑
n

i=1
F x ið Þ, α, β
� �

−
2i− 1
2n

� �
F

0
α x ið Þ, α, β
� �

=0 ð35Þ

and

∑
n

i=1
F x ið Þ, α, β
� �

−
2i− 1
2n

� �
F

0
β x ið Þ, α, β
� �

=0, ð36Þ

where F
0
α x, α, βð Þ and F

0
β x, α, βð Þ are defined as in (18) and (19), respectively.

3.7.2 The Anderson-Darling Method

The AD estimators of the unknown parameters of IW distribution are obtained by
minimizing the following equation with respect to the parameters α and β:
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A α, βjxð Þ= − n−
1
n
∑
n

i=1
2i− 1ð Þ log F x ið Þ, α, β

� �
1−F x n− i+1ð Þ, α, β

� �� �
 �
. ð37Þ

The AD estimators of the parameters are obtained by solving the following
equations:

∑
n

i=1
2i− 1ð Þ F

0
α x ið Þ, α, β
� �

F x ið Þ, α, β
� � −

F
0
α x n− i+1ð Þ, α, β
� �

1−F x n− i+1ð Þ, α, β
� �

" #
=0 ð38Þ

and

∑
n

i=1
2i− 1ð Þ F

0
β x ið Þ, α, β
� �

F x ið Þ, α, β
� � −

F
0
β x n− i+1ð Þ, α, β
� �

1−F x n− i+1ð Þ, α, β
� �

" #
=0, ð39Þ

where F
0
α x, α, βð Þ and F

0
β x, α, βð Þ are defined as in (18) and (19), respectively.

4 Simulation Study

In this section, we perform a Monte Carlo simulation study to compare the per-
formances of the ML, LS, WLS, PC, MPS, PWM, CM, and AD estimators of the
unknown parameters α and β. The comparisons are made based on bias and mean
square error (MSE) criteria. In addition, we use the deficiency (Def) criterion to
compare the efficiencies of estimators α and β simultaneously, see Tiku and Akkaya
(2004). Def is defined as given below:

Def α̂, βð Þ=MSE α̂ð Þ+MSE βð Þ.

In the simulation setup, we use different sample sizes and different parameter
settings shown below:

n=25, 50, 100, 200, 500, α=1.5, 3, 5 and β=2.

The means, MSEs, and Def values are calculated based on 100, 000 ̸n½ �½ � (integer
value) Monte Carlo runs. All computations are conducted using MATLAB2013a.
The results are reported in Tables 1, 2, and 3.

In the context of bias, the following conclusions can be made from the simu-
lation results. The PC and the PWM estimators of α do not perform well for all
sample sizes when α= 1.5 and 5. On the other hand, the PC estimator of β has
larger bias for all scenarios. The LS estimators of α and β outperform other esti-
mators for small and moderate sample sizes. Although the ML and the MPS esti-
mators produce larger bias for small sample sizes, their biases decrease with
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Table 1 Simulated mean, MSE, and Def values for the estimators of α and β; α= 1.5, β= 2

α ̂ β

n Method Mean MSE Mean MSE Def

25 ML 1.5878 0.0764 2.0468 0.0904 0.16683

LS 1.4960 0.0977 2.0247 0.0945 0.19225

WLS 1.5112 0.0854 2.0300 0.0914 0.17684

PC 1.3661 0.3031 1.8008 0.7457 1.04888

MPS 1.4119 0.0623 2.0182 0.0853 0.14761

PWM 1.6973 0.1309 1.9606 0.1025 0.23347

CM 1.5919 0.1236 2.0501 0.1001 0.22376

AD 1.5254 0.0712 2.0368 0.0908 0.16202

50 ML 1.5397 0.0327 2.0208 0.0431 0.07572

LS 1.4941 0.0431 2.0071 0.0473 0.09045

WLS 1.5055 0.0371 2.0116 0.0448 0.08194

PC 1.3324 0.2509 1.7230 0.7484 0.99938

MPS 1.4352 0.0313 2.0057 0.0418 0.07311

PWM 1.6418 0.0807 1.9896 0.0537 0.13447

CM 1.5404 0.0481 2.0194 0.0486 0.09666

AD 1.5081 0.0339 2.0138 0.0442 0.07803

100 ML 1.5186 0.0153 2.0127 0.0204 0.03572

LS 1.4967 0.0226 2.0076 0.0217 0.04435

WLS 1.5050 0.0184 2.0100 0.0208 0.03924

PC 1.3381 0.2069 1.6963 0.7319 0.93888

MPS 1.4570 0.0156 2.0045 0.0200 0.03571

PWM 1.6126 0.0515 2.0100 0.0286 0.08017

CM 1.5194 0.0238 2.0137 0.0220 0.04586

AD 1.5040 0.0175 2.0103 0.0207 0.03823

200 ML 1.5145 0.0074 1.9967 0.0110 0.01832

LS 1.5035 0.0110 1.9941 0.0117 0.02275

WLS 1.5087 0.0090 1.9951 0.0112 0.02024

PC 1.3172 0.2017 1.5914 0.8717 1.07348

MPS 1.4780 0.0072 1.9925 0.0110 0.01821

PWM 1.5816 0.0321 2.0003 0.0169 0.04917

CM 1.5148 0.0114 1.9971 0.0118 0.02316

AD 1.5074 0.0087 1.9953 0.0112 0.01993

500 ML 1.4959 0.0030 2.0011 0.0045 0.00751

LS 1.4854 0.0045 1.9986 0.0047 0.00926

WLS 1.4911 0.0034 2.0005 0.0045 0.00803

PC 1.3269 0.1683 1.6028 0.8672 1.03558

MPS 1.4786 0.0034 1.9993 0.0045 0.00782

PWM 1.5516 0.0171 2.0127 0.0080 0.02517

CM 1.4899 0.0044 1.9998 0.0047 0.00915

AD 1.4905 0.0035 2.0005 0.0045 0.00804
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Table 2 Simulated mean, MSE, and Def values for the estimators of α and β; α= 3, β= 2

α ̂ β

n Method Mean MSE Mean MSE Def

25 ML 3.1741 0.3102 2.0146 0.0216 0.33184

LS 2.9983 0.3939 2.0036 0.0230 0.41696

WLS 3.0257 0.3516 2.0062 0.0221 0.37365

PC 2.7252 0.7546 1.9088 0.1088 0.86348

MPS 2.8218 0.2534 2.0005 0.0209 0.27441

PWM 2.8744 0.2605 1.9085 0.0285 0.28902

CM 3.1911 0.5000 2.0161 0.0238 0.52387

AD 3.0526 0.2882 2.0096 0.0219 0.31013

50 ML 3.0844 0.1280 2.0104 0.0103 0.13832

LS 2.9995 0.1812 2.0046 0.0112 0.19246

WLS 3.0212 0.1507 2.0065 0.0106 0.16134

PC 2.7269 0.5388 1.9005 0.0890 0.62788

MPS 2.8751 0.1210 2.0028 0.0101 0.13111

PWM 2.9516 0.1723 1.9568 0.0119 0.18425

CM 3.0922 0.2041 2.0108 0.0114 0.21557

AD 3.0272 0.1369 2.0077 0.0105 0.14753

100 ML 3.0536 0.0614 2.0041 0.0048 0.06622

LS 3.0199 0.0877 2.0014 0.0054 0.09315

WLS 3.0316 0.0727 2.0026 0.0050 0.07774

PC 2.7732 0.3708 1.9102 0.0628 0.43358

MPS 2.9291 0.0593 2.0000 0.0048 0.06411

PWM 2.9979 0.1071 1.9774 0.0055 0.11257

CM 3.0658 0.0949 2.0045 0.0054 0.10046

AD 3.0308 0.0692 2.0030 0.0050 0.07423

200 ML 3.0186 0.0262 2.0005 0.0027 0.02891

LS 2.9920 0.0412 1.9985 0.0029 0.04415

WLS 3.0048 0.0327 1.9995 0.0027 0.03544

PC 2.7557 0.2973 1.8965 0.0690 0.36628

MPS 2.9465 0.0274 1.9984 0.0027 0.03012

PWM 2.9856 0.0569 1.9867 0.0029 0.05987

CM 3.0145 0.0421 2.0000 0.0029 0.04506

AD 3.0031 0.0320 1.9995 0.0027 0.03473

500 ML 3.0114 0.0131 2.0022 0.0011 0.01421

LS 3.0049 0.0183 2.0019 0.0012 0.01965

WLS 3.0086 0.0156 2.0021 0.0012 0.01674

PC 2.8140 0.1842 1.9170 0.0429 0.22718

MPS 2.9764 0.0133 2.0013 0.0011 0.01442

PWM 2.9973 0.0333 1.9965 0.0012 0.03467

CM 3.0139 0.0186 2.0025 0.0013 0.01996

AD 3.0069 0.0155 2.0020 0.0012 0.01663
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Table 3 Simulated mean, MSE, and Def values for the estimators of α and β; α= 5, β= 2

α ̂ β

n Method Mean MSE Mean MSE Def

25 ML 5.2883 0.8639 2.0072 0.0075 0.87143

LS 4.9859 1.0722 2.0006 0.0080 1.08026

WLS 5.0351 0.9454 2.0023 0.0077 0.95314

PC 4.6214 1.5396 1.9778 0.0145 1.55418

MPS 4.7026 0.7059 1.9987 0.0073 0.71321

PWM 4.2639 0.9512 1.9148 0.0141 0.96525

CM 5.3047 1.3531 2.0080 0.0082 1.36137

AD 5.0849 0.8105 2.0042 0.0076 0.81812

50 ML 5.1316 0.3595 2.0030 0.0037 0.36322

LS 4.9745 0.5037 1.9998 0.0040 0.50776

WLS 5.0193 0.4215 2.0010 0.0038 0.42524

PC 4.6602 0.9839 1.9769 0.0091 0.99298

MPS 4.7847 0.3439 1.9984 0.0037 0.34761

PWM 4.6131 0.4773 1.9572 0.0054 0.48275

CM 5.1281 0.5594 2.0035 0.0040 0.56347

AD 5.0291 0.3874 2.0016 0.0037 0.39113

100 ML 5.0731 0.1835 2.0012 0.0017 0.18522

LS 5.0011 0.2506 1.9995 0.0019 0.25255

WLS 5.0228 0.2075 2.0002 0.0018 0.20934

PC 4.7022 0.6314 1.9789 0.0042 0.63558

MPS 4.8677 0.1831 1.9988 0.0017 0.18481

PWM 4.8023 0.2556 1.9782 0.0022 0.25786

CM 5.0773 0.2662 2.0013 0.0019 0.26827

AD 5.0231 0.1983 2.0004 0.0018 0.20013

200 ML 5.0181 0.0755 2.0017 0.0009 0.07641

LS 4.9680 0.1152 2.0000 0.0010 0.11625

WLS 4.9924 0.0932 2.0010 0.0009 0.09414

PC 4.7506 0.3563 1.9848 0.0023 0.35878

MPS 4.8974 0.0819 2.0004 0.0009 0.08282

PWM 4.8829 0.1285 1.9901 0.0010 0.12947

CM 5.0053 0.1163 2.0009 0.0010 0.11736

AD 4.9889 0.0910 2.0010 0.0009 0.09193

500 ML 5.0406 0.0350 1.9994 0.0003 0.03532

LS 5.0257 0.0510 1.9989 0.0004 0.05146

WLS 5.0327 0.0410 1.9992 0.0004 0.04134

PC 4.8565 0.1879 1.9864 0.0013 0.18928

MPS 4.9825 0.0329 1.9989 0.0003 0.03331

PWM 4.9828 0.0491 1.9948 0.0004 0.04955

CM 5.0408 0.0524 1.9993 0.0004 0.05287

AD 5.0310 0.0402 1.9992 0.0004 0.04063
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increasing values of the sample sizes. It should also be stated that the WLS, CM,
and AD estimators have negligible bias for moderate and large sample sizes.

In view of the MSE, it is clear to say that the MPS estimators show the best
performance for all sample sizes and parameter settings. They are followed by the
ML and AD estimators. It should be noted that the MPS and ML estimators are
close to each other for moderate and large sample sizes. The WLS, CM, and LS
estimators demonstrate better performance when the sample size increases. How-
ever, the PC and PWM estimators do not perform well and the PC estimators show
the worst performance with the highest MSE values.

To compare the simultaneous efficiencies of the estimators, we use the Def
criterion. It can be seen from Tables 1, 2, and 3 that the Def values are ranked from
the smallest to the largest for each estimator. It is clear to say that the MPS and ML
estimators demonstrate the strongest performance with the lowest Def values. This
is followed by the AD estimators. Similar to the MSE criterion, the WLS, CM, and
LS estimators show better performance than the PC and PWM estimators with
smaller Def values. The PC estimators show the worst performance with the highest
Def values among the others.

5 Robustness Property

In this section, we compare the efficiencies of the ML, LS, WLS, PC, MPS, PWM,
CM, and AD estimators of α and β when the data contains outliers. To do this, we
assume that the underlying distribution is IW α=3, β=2ð Þ and add r outliers to the
observations in the true model. Here, r= 0.5+ 0.1n½ �½ � (integer value). Simulation
results are reported in Table 4, see also Table 2 in the context of no outliers.

It is clear from Table 4 that the PC and PWM estimators of the parameters are
the most sensitive estimators to the outliers. Despite being the most efficient esti-
mator under the true model, the MPS estimators lose their efficiency drastically
when the data set contains outliers. On the other hand, the ML and AD estimators
are resistant to outliers for small and moderate sample sizes. However, the WLS
estimator is more preferable than the others in terms of Def criterion for large
sample sizes.

6 Real Data Examples

In this section, we analyze two different data sets taken from the literature to
illustrate the modeling performance of IW distribution. We also compare the per-
formance of the proposed estimators of the unknown parameters.
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Table 4 Simulated mean, MSE, and Def values for the estimators of α and β with outliers; α= 3,
β= 2

α ̂ β

n Method Mean MSE Mean MSE Def

25 ML 2.7376 0.1866 2.0594 0.0243 0.21091

LS 2.9493 0.4185 2.0035 0.0224 0.44094

WLS 2.9177 0.3838 2.0098 0.0218 0.40563

PC 1.7649 1.6002 1.8287 0.1044 1.70468

MPS 2.4148 0.4318 2.0452 0.0224 0.45415

PWM 2.1742 0.7201 1.9064 0.0284 0.74857

CM 3.1402 0.4985 2.0162 0.0233 0.52186

AD 2.6942 0.2446 2.0192 0.0219 0.26662

50 ML 2.7652 0.1196 2.0425 0.0122 0.13171

LS 2.9729 0.1866 2.0033 0.0113 0.19794

WLS 2.9539 0.1649 2.0073 0.0108 0.17573

PC 1.9470 1.1907 1.8497 0.0870 1.27778

MPS 2.5709 0.2394 2.0350 0.0115 0.25096

PWM 2.2968 0.5281 1.9533 0.0124 0.54057

CM 3.0645 0.2034 2.0095 0.0116 0.21505

AD 2.7868 0.1343 2.0118 0.0109 0.14522

100 ML 2.7355 0.0999 2.0365 0.0063 0.10625

LS 2.9635 0.0851 1.9993 0.0054 0.09042

WLS 2.9461 0.0750 2.0030 0.0052 0.08021

PC 2.1260 0.8291 1.9476 0.0468 0.87598

MPS 2.6236 0.1693 2.0323 0.0060 0.17536

PWM 2.3288 0.4699 1.9792 0.0055 0.47547

CM 3.0081 0.0867 2.0023 0.0054 0.09213

AD 2.7747 0.0926 2.0070 0.0052 0.09784

200 ML 2.7254 0.0914 2.0338 0.0034 0.09475

LS 2.9805 0.0441 1.9990 0.0024 0.04652

WLS 2.9586 0.0387 2.0018 0.0023 0.04101

PC 2.2731 0.5810 2.0248 0.0270 0.60808

MPS 2.6612 0.1301 2.0315 0.0032 0.13336

PWM 2.3478 0.4372 1.9928 0.0023 0.43957

CM 3.0028 0.0445 2.0005 0.0024 0.04693

AD 2.7796 0.0711 2.0054 0.0023 0.07354

500 ML 2.7212 0.0830 2.0335 0.0021 0.08515

LS 2.9845 0.0171 1.9996 0.0010 0.01813

WLS 2.9592 0.0150 2.0016 0.0010 0.01601

PC 2.4136 0.3842 2.0995 0.0294 0.41367

MPS 2.6913 0.1004 2.0325 0.0020 0.10256

PWM 2.3513 0.4272 2.0012 0.0010 0.42828

CM 2.9934 0.0170 2.0002 0.0010 0.01812

AD 2.7801 0.0564 2.0052 0.0010 0.05744
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6.1 The Rainfall Data

We first analyze rainfall data taken from Asgharzadeh et al. (2016). This data set
concerns seasonal rainfall in inches recorded at Los Angeles Civic Center from
1962 to 2012. The data are as follows:

xi: 08.38 07.93 13.68 20.44 22.00 16.58 27.47 07.74 12.32 07.17 21.26 14.92 14.35
07.21 12.30 33.44 19.67 26.98 08.96 10.71 31.28 10.43 12.82 17.86 07.66 12.48
08.08 07.35 11.99 21.00 27.36 08.11 24.35 12.44 12.40 31.01 09.09 11.57 17.94
04.42 16.42 09.25 37.96 13.19 03.21 13.53 09.08 16.36 20.20 08.69

First, we want to ascertain whether or not this data set can be modeled with IW
distribution. To do this, we draw an IW Q-Q plot of 50 observations, see Fig. 4a. It
should be noted that the ML estimates of the parameters are used to construct the
IW Q-Q plot of the observations. We also draw the fitted distribution function and
empirical distribution for the rainfall data, see Fig. 4b. It is clear from these figures
that IW distribution provides a good fit for the rainfall data.

Fig. 4 Diagnostic plots for rainfall data
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Then, we estimate the unknown parameters of IW distribution using the
estimation methods defined in Sect. 3. Furthermore, to compare the performance of
these methods, we use model selection criteria. These are given below

Akaike information criterion: AIC= − 2 ln L θð Þ+2k,
Bayesian information criterion: BIC= − 2 ln L θð Þ+ k ln n,
Corrected AIC: AICc= − 2 ln L θð Þ+ 2kn

n− k− 1,
Hannan–Quinn criterion: HQC= − 2 ln L θð Þ+2k ln ln n.

Here, θ= α, βð Þ and k is the number of the unknown parameters. It is obvious
that smaller values of these criteria show better fit. For more detailed information
regarding these criteria, see Burnham and Anderson (2004) and Bagheri et al.
(2016). The results are reported in Table 5.

Besides the model selection criteria, we draw the histogram of the rainfall data
and the fitted pdfs of IW distribution based on the different estimation methods, see
Fig. 5.

It is clear from Table 5 and Fig. 5 that ML estimator is the best estimator with
the smallest values for all model selection criteria. It is followed by the MPS
estimator. However, the PWM and PC estimators show the worst performance.

6.2 The Failure Times Data

Our second data set concerns the times between failures of secondary reactor pumps
taken from Sharma et al. (2014). The data are given as follows:

xi: 2.160 0.150 4.082 0.746 0.358 0.199 0.402 0.101 0.605 0.954 1.359 0.273 0.491
3.465 0.070 6.560 1.060 0.062 4.992 0.614 5.320 0.347 1.921

Similar to the first example, Fig. 6a displays an IW Q-Q plot of 23 observations.
We also draw the fitted distribution function and empirical distribution for data set

Table 5 Parameter estimates and model selection criteria for rainfall data

Estimation
methods

α̂ β AIC BIC AICc HQC

ML 1.8519 10.2336 350.3042 354.1283 350.5595 351.7604
LS 2.0841 10.7484 353.4826 357.3066 353.7379 354.9388
WLS 2.2254 10.7368 357.1555 360.9796 357.4109 358.6118
PC 2.9199 11.7085 430.5924 434.4165 430.8477 432.0486
MPS 1.7312 10.1138 350.8805 354.7045 351.1358 352.3367
PWM 2.6127 10.4906 373.4062 377.2303 373.6615 374.8624
CM 2.1403 10.7917 354.9688 358.7928 355.2241 356.4250
AD 2.0923 10.6512 353.3070 357.1310 353.5623 354.7632
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Fig. 5 Histogram of rainfall data with fitted pdfs

Fig. 6 Diagnostic plots for failure times data
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in Fig. 6b. It is clear from these figures that this data set can be modeled by IW
distribution.

Estimates of the unknown parameters of IW distribution based on eight different
estimation methods and model selection criteria for these methods are reported in
Table 6.

The histogram of the failure times data with fitted pdfs is drawn in Fig. 7. It is
obvious from Fig. 7 and Table 6 that the ML estimator is the best estimator with the
smallest model selection criteria value. Similarly, as in the first application, the

Table 6 Parameter estimates and model selection criteria for failure times data

Estimation
methods

α ̂ β AIC BIC AICc HQC

ML 0.7832 0.3569 69.8834 72.1544 70.4834 70.4546
LS 0.7256 0.3889 70.1306 72.4016 70.7306 70.7017
WLS 0.7524 0.3718 69.9507 72.2217 70.5507 70.5219
PC 1.4535 0.8749 270.5572 272.8282 271.1572 271.1283
MPS 0.7045 0.3431 70.4238 72.6948 71.0238 70.9950
PWM 1.4028 0.5037 124.7133 126.9843 125.3133 125.2845
CM 0.7780 0.4023 70.0773 72.3483 70.6773 70.6485

AD 0.7457 0.3749 69.9831 72.2541 70.5831 70.5542

Fig. 7 Histogram of failure times data with fitted pdfs
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PWM and PC estimators show the worst performance. These results are also in
agreement with the simulation results.

7 Conclusion

In this chapter, we obtain the estimators of model parameters of IW distribution
using the ML, LS, WLS, PC, MPS, PWM, AD, and CM methods. We perform an
extensive Monte Carlo simulation study to compare the efficiencies of these esti-
mators. It is concluded that the ML and MPS estimators show the best performance
among the others. The PC and PWM estimators demonstrate the weakest perfor-
mance. Robustness properties are also investigated. The PC and PWM estimators
are found to be the most sensitive to the outliers. Moreover, it can be seen that the
MPS estimators are affected badly by the outliers. In terms of minimum distance
methods, the AD estimators perform well under the true model. However, the CM
estimators are more resistant to outliers than AD estimators. At the end of the study,
we use two different data sets to illustrate the modeling performance of IW dis-
tribution. It is concluded that IW distribution provides a good fit for modeling
rainfall and failure times data sets.

References

Akgül, F.G., Şenoğlu, B., Arslan, T.: An alternative distribution to Weibull for modeling the wind
speed data: Inverse Weibull distribution. Energy Convers. Manag. 114, 234–240 (2016)

Asgharzadeh, A., Abdi, M., Nadarajah, S.: Interval estimation for gumbel distribution using
climate records. Bull. Malays. Math. Sci. Soc. 39(1), 257–270 (2016)

Ashoori, F., Ebrahimpour, M., Bozorgnia, A.: Modeling of maximum prediction using maximal
generalized extreme value distribution. Commun. Stat. Theory Methods 46(6), 3025–3033
(2017)

Bagheri, S.F., Alizadeh, M., Nadarajah, S.: Efficient estimation of the pdf and the cdf of the
exponentiated gumbel distribution. Commun. Stat. Simul. Comput. 45, 339–361 (2016)

Burnham, K.P., Anderson, D.R.: Multimodel inference: understanding AIC and BIC in model
selection. Sociol. Methods Res. 33, 261–304 (2004)

Calabria, R., Pulcini, G.: On the maximum likelihood and least-squares estimation in the inverse
Weibull distribution. Stat. Appl. 2(1), 53–66 (1990)

Cheng, R.C.H., Amin, N.A.K.: Estimating parameters in continuous univariate distributions with a
shifted origin. Journal of Royal Statistical Society: Series B 45, 394–403 (1983)

Drapella, A.: The complementary Weibull distribution: unknown or just forgotten. Qual Reliab
Eng Inter 9(4), 383–385 (1993)

Erto, P., Rapone, M.: Non-informative and practical Bayesian confidence bounds for reliable life
in the Weibull model. Reliab. Eng. 7, 181–191 (1984)

Fréchet, M.: Sur la loi de probabilite de lecart maximum. Ann. Soc. Polon. Math. 6(93) (1927)
Greenwood, J.A., Landwehr, J.M., Matalas, N.C., Wallis, J.R.: Probability weighted moments:

definition and relation to parameters of several distributions expressable in inverse form. Water
Resour. Res. 15(5), 1049–1054 (1979)

Comparison of Estimation Methods for Inverse Weibull Distribution 21



Hosking, J.R.M., Wallis, J.R., Wood, E.F.: Estimation of the generalized extreme value
distribution by the method of probability weighted moment. J Technometr. 27(3), 251–261
(1985)

Kao, J.H.K.: Computer methods for estimating Weibull parameters in reliability studies. IRE
Trans. Reliab. Qual. Control 13, 15–22 (1958)

Keller, A.Z., Kamath, R.R.: Alternative reliability models for mechanical systems. In: 3rd
International Conference on Reliability and Maintainability, Toulouse (1982)

Landwehr, J.M., Matalas, N.C., Wallis, J.R.: Probability weighted moments compared with some
traditional techniques in estimating gumbel parameters and quantiles. Water Resour. Res. 15
(5), 1055–1064 (1979)

Louzada, F., Ramos, P.L., Perdona, G.S.C.: Different estimation procedures for the parameters of
the extended exponential geometric distribution for medical data. Comput. Math. Methods
Med. (2016). https://doi.org/10.1155/2016/8727951

Luceño, A.: Fitting the generalized Pareto distribution to data using maximum goodness-of-fit
estimators. Comput. Stat. Data Anal. 51(2), 904–917 (2006)

Luceño, A.: Maximum likelihood vs. maximum goodness of fit estimation of the three-parameter
Weibull distribution. J. Stat. Comput. Simul. 78(10), 941–949 (2008)

Mudholkar, G.S., Kollia, G.D.: Generalized Weibull family: a structural analysis. Commun. Stat.
Theory Methods 23(4), 1149–1171 (1994)

Murthy, D.N., Bulmer, M., Eccleston, J.A.: Weibull model selection for reliability modelling.
Reliab. Eng. Syst. 86, 257–267 (2004)

Pasari, S., Dikshit, O.: Impact of three-parameter models in probabilistic assessment of earthquake
hazards. Pure Appl. Geophys. 171, 1251–1281 (2014)

Rinne, H.: The Weibull Distribution: A Handbook. CRC Press, Boca Raton (2009)
Santo, A.P.J.E., Mazucheli, J.: Comparison of estimation methods for the Marshall-Olkin

expended Lindley distribution. J. Stat. Comput. Simul. 85(17), 3437–3450 (2015)
Sharma, V.K., Singh, S.K., Singh, U.: A new upside-down bathtub shaped hazard rate model for

survival data analysis. Appl. Math. Comput. 239, 242–253 (2014)
Singh, S.K., Singh, U., Kumar, D.: Bayesian estimation of parameters of inverse Weibull

distribution. J. Appl. Stat. 40(7), 1597–1607 (2013)
Soukissian, T.H., Tsalis, C.: The effect of the generalized extreme value distribution parameter

estimation methods in extreme wind speed prediction. Nat. Hazards 78, 1777–1809 (2015)
Tiku, M.L., Akkaya, A.D.: Robust Estimation and Hypothesis Testing. New Age International

(P) Limited, Publishers, New Delhi (2004)
Wolfowitz, J.: Estimation by the minimum distance method. Ann. Inst. Stat. Math. 5, 9–23 (1953)
Wolfowitz, J.: The minimum distance methods. Ann. Math. Stat. 28, 75–88 (1957)

22 F. G. Akgül and B. Şenoğlu

http://dx.doi.org/10.1155/2016/8727951


Liu-Type Negative Binomial Regression:
A Comparison of Recent Estimators and
Applications

Yasin Asar

Abstract This chapter introduces a new biased estimator, that is a generalization

of Liu-type estimator (Liu in Commun Stat Theory Methods 32:1009–1020 2003),

for the negative binomial regression model. Since the variance of the maximum

likelihood estimator (MLE) is inflated when there is multicollinearity between the

explanatory variables, a new biased estimator is proposed to solve the problem and

decrease the variance of MLE in order to make stable inferences. Moreover, we

obtain some theoretical comparisons between the new estimator and some other

existing estimators via matrix mean squared error criterion. Furthermore, a Monte

Carlo simulation study is designed to evaluate performance of the estimators in the

sense of mean squared error. Finally, real data applications are used to illustrate the

benefits of new estimator.

Keywords Liu-type estimator ⋅ Negative binomial regression

Multicollinearity ⋅ MSE ⋅ MLE

Mathematics Subjects Classification: Primary 62J07 ⋅ Secondary 62J02

1 Introduction

In real life contexts, the observations are not independent and identically distributed

(iid) all the time. The data often comes in the form of nonnegative integers or counts

which are not iid. A count refers to the number of times an event occurs. Therefore, it

is the realization of a nonnegative integer-valued random variable. The main interest

of a researcher may depend on the covariates which are assumed to affect the param-

eters of the conditional distribution of events, given the covariates. This is generally

achieved by a regression model of count (Cameron and Trivedi 2013). Thus, count
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regression models such as Poisson regression or negative binomial (NB) regression

is mostly used in the field of health, social, economic and physical sciences such that

the nonnegative and an integer-valued aspect of the outcome play an important role

in the analysis.

Although twenty-two different versions of NB model were mentioned by Hilbe

(2011), the traditional NB model which was symbolized as NB2 by Cameron and

Trivedi (1986) is the main topic of this chapter. When the dependent variable has

a greater variance than the mean, the so-called over-dispersion occurs in Poisson

models. If there is a positive correlation between the responses or an excess vari-

ation in the response counts, then over-dispersion may occur in data (Hilbe 2011,

Ch. 7). In these situations, NB2 model is more useful than Poisson regression model

since NB2 allows for random variation in the Poisson conditional mean, hi, by letting

hi = zi𝜇i where 𝜇i = exp(xi𝛽) such that xi is the ith ow of the data matrix X of order

n × (p + 1) with p explanatory variables, 𝛽 is the coefficient vector of

order (p + 1) × 1 with intercept and zi is a random variable following the gamma

distribution such that zi ∼ Γ(𝛿, 𝛿), i = 1, 2, ..., n.
The density function of the dependent variable yi is given by

Pr
(
y = yi|xi

)
=

Γ
(
𝜃
−1 + yi

)

Γ
(
𝜃−1

)
Γ
(
1 + yi

)
(

𝜃
−1

𝜃−1 + 𝜇i

)𝜃
−1 (

𝜇i

𝜃−1 + 𝜇i

)yi

where the over-dispersion parameter 𝜃 is given as 𝜃 = 1∕𝛿. The conditional mean

and variance of the distribution are given respectively as follows:

E
(
yi|xi

)
= 𝜇i,

Cov
(
yi|xi

)
= 𝜇i

(
1 + 𝜃𝜇i

)
.

The estimation of the coefficient vector 𝛽 is usually obtained by maximizing the

following log-likelihood function

L(𝜃, 𝛽) =
n∑

i=1

{[yi−1∑

j=0
log

(
j + 𝜃

−1)
]

− log
(
yi!

)
−
(
yi + 𝜃

−1) log
(
1 + 𝜃𝜇i

)
+ yi log (𝜃) + yi log

(
𝜇i
)
}

(1)

since log
(

Γ(𝜃−1+yi)
Γ(𝜃−1)

)
=
∑yi−1

j=0 log
(
j + 𝜃

−1)
. The estimation of the parameter 𝛽 is

usually obtained by the method of maximum likelihood estimation (MLE) which

can be obtained by maximizing the Eq. (1) with respect to 𝛽, namely, solving the

following equations

S(𝛽) = 𝜕L (𝜃, 𝛽)
𝜕𝛽

=
n∑

i=1

(
yi − 𝜇i

)

1 + 𝜃𝜇i
xi = 0. (2)

Since the Eq. (2) is nonlinear in 𝛽, one should use the following scoring method
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𝛽
(r) = 𝛽

(r−1) + I−1
(
𝛽
(r−1)) S

(
𝛽
(r−1))

(3)

where S
(
𝛽
(r−1))

is the first derivative of the log-likelihood function evaluated at

𝛽
(r−1)

and

I−1
(
𝛽
(r−1)) = E

(
𝜕
2L (X; 𝛽)
𝜕𝛽 𝜕𝛽′

)
= X′W

(
𝛽
(r−1))X,

W
(
𝛽
(r−1)) = diag

(
𝜇i(𝛽(r−1))

1+𝜃𝜇i(𝛽(r−1))
)

evaluated at 𝛽
(r−1)

. In the final step of the algorithm,

MLE of 𝛽 is obtained as follows:

𝛽MLE =
(
X′ŴX

)−1 X′ŴẐ

where Ẑ is a vector with the ith element equal to log
(
�̂�i
)
+ yi−�̂�i

�̂�i
, Ŵ and �̂�i are

the values of W
(
𝛽
(r−1))

and 𝜇i
(
𝛽
(r−1))

at the final step respectively, the hats show

the iterative nature of the algorithm. This method is also known as the iteratively

re-weighted least squares algorithm (IRLS), please see Månsson (2012),

Hilbe (2011), Myers et al. (2010) for extra details. Here, we give the steps of the

IRLS algorithm as follows:

(1) In the first step, one needs an initial vector of coefficients, say ordinary least

squares (OLS) estimator.

(2) Calculate 𝜇i = exp
(
xi𝛽

)
and than W.

(3) Get Z using 𝜇 and W obtained in the previous step.

(4) Calculate a new estimate of 𝛽 via Eq. (3).

(5) Terminate the algorithm until the convergence is achieved.

However, when the matrix X′ŴX is ill-conditioned, i.e., the correlation between

the explanatory variables are high, MLE becomes unstable and its variance is

inflated. This problem is called multicollinearity. In this situation, some of the eigen-

values of the matrix X′ŴX become small (see Månsson (2012), MacKinnon and Put-

erman (1989)). Moreover, Lesaffre and Marx (1993) discussed the ill-conditioned

nature of the weighted cross products matrix in generalized linear models in great

details. Also, the condition number being the ratio of the largest eigenvalue to the

smallest eigenvalue of the matrix X′ŴX is a measure of collinearity (see Smith and

Marx (1990), Weissfeld and Sereika (1991)) and therefore can be used to check the

existence of collinearity.

Although, applying shrinkage estimators is very popular in linear model to solve

the multicollinearity problem (see Hoerl et al. (1975), Kibria (2003), Liu (2003),

Lipovetsky and Conklin (2005) etc.), count models have not been investigated in the

presence of multicollinearity. Therefore, as an exception, Månsson (2012) proposed

to use the ridge regression (Hoerl and Kennard 1970) in negative binomial regres-

sion models. The negative binomial ridge regression estimator (RR) is obtained as

follows:

𝛽RR =
(
X′ŴX + kI

)−1 X′ŴẐ, k > 0
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where I is the (p + 1) × (p + 1) identity matrix. The author proposed to use some

existing ridge estimators to estimate the ridge parameter k.

Moreover, Liu estimator (Liu 1993) is generalized to the negative binomial regres-

sion model by Månsson (2013) and the following negative binomial Liu estimator

(LE) is obtained:

𝛽LE =
(
X′ŴX + I

)−1 (X′ŴX + dI
)
𝛽MLE, 0 < d < 1.

Finally, motivated by the idea that combining the two estimators might inherit the

advantages of both estimators, a two-parameter estimator which is a combination of

RR and LE has been proposed in Huang and Yang (2014).

The purpose of this chapter is to generalize Liu-type estimator (Liu 2003) to the

negative binomial regression and discusses some properties of the new estimator.

The organization of the chapter is as follows: In Sect. 2, Liu-type negative binomial

estimator (LT) is proposed, matrix mean squared error (MMSE) and mean squared

error (MSE) properties are investigated and selection of the shrinkage parameters is

discussed. In order to compare the performance of the estimators MLE, RR, LE, and

LT, a Monte Carlo simulation is designed and its results are discussed in Sect. 3. Real

data applications are demonstrated to illustrate the benefits of LT in Sect. 4. Finally,

a brief summary and conclusion are provided.

2 New Estimator and MSE Properties

2.1 Construction of LT

Consider the linear regression model Y = X𝛽 + 𝜀 where X is an n × p data matrix,

𝛽 is the p × 1 coefficient vector, 𝜀 is the n × 1 random error vector satisfying 𝜀i ∼
N
(
0, 𝜎2)

and Y is the n × 1 dependent variable. When there is multicollinearity, the

matrix X′X becomes ill-conditioned and some of the eigenvalues of the matrix X′X
becomes close to zero and the condition number 𝜅 =

(
𝜗max ∕𝜗min

)
becomes very

high such that 𝜗j, j = 1, 2, ..., p are the eigenvalues of X′X. Thus, the ordinary least

square estimator (OLS), 𝛽OLS =
(
X′X

)−1 X′Y becomes unstable. Therefore, Hoerl

and Kennard (1970) proposed ridge estimator 𝛽Ridge =
(
X′X + kI

)−1 X′Y which is

obtained by augmenting 0 = k1∕2𝛽 + 𝜀
′

to the original equation. However, large val-

ues of k make the distance between k1∕2𝛽 and 0 increase. One should use large values

of k which impose more bias to the ridge estimator and to control the condition num-

ber. Therefore, Liu (2003) proposed to augment
(
−d∕k1∕2

)
𝛽OLS = k1∕2𝛽 + 𝜀

′
to the

original equation and obtain Liu-type estimator 𝛽k,d =
(
X′X + kI

)−1 (X′X − dI
)
𝛽

where k > 0, −∞ < d < ∞ and 𝛽 is any estimator. The results showed that 𝛽k,d
has a better performance than OLS and ridge estimator in the sense of MSE. There-

fore, we define a generalization of Liu-type estimator in negative binomial model
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to solve the problem of multicollinearity. In this study, following Månsson (2012),

(Månsson, 2013) a generalization of Liu-type estimator (LT) to the negative binomial

regression model is proposed as follows

𝛽LT =
(
X′ŴX + kI

)−1 (X′ŴX − dI
)
𝛽MLE

where k > 0 and −∞ < d < ∞.

From the definition of LT, it is easy to see that LT is a general estimator including

MLE, RR and LE as follows, if d equals −k, then we have 𝛽LT = 𝛽MLE and if k = 1
with a minus sign in front of d, then 𝛽LT = 𝛽LE, and finally if d = 0 we have 𝛽LT =
𝛽RR.

In order to see the superiority of the estimator LT, MMSE containing all the rel-

evant information regarding the estimators can be used as a comparison criterion.

MMSE and MSE being the trace of MMSE of an estimator 𝛽 are respectively defined

by

MMSE(𝛽) = E
[
(𝛽 − 𝛽)(𝛽 − 𝛽)′

]
= Cov(𝛽) + bias(𝛽)bias(𝛽)′ ,

MSE(𝛽) = tr
(
MMSE(𝛽)

)
= E

[
(𝛽 − 𝛽)′ (𝛽 − 𝛽)

]

= tr
[
Cov(𝛽)

]
+ bias(𝛽)′bias(𝛽)

where Cov(𝛽) is the covariance matrix and bias(𝛽) = E(𝛽) − 𝛽 is the bias vector of

the estimator 𝛽.

Thus MSE and MMSE of MLE are given by the following equations respectively

MSE(MLE) = tr
(
X′WX

)−1 =
p+1∑

j=1

1
𝜆j
,

MMSE(MLE) =
(
X′WX

)−1

where 𝜆j is the jth eigenvalue of the matrix X′WX (see Månsson (2012)).

A transformation is constructed in order to present the explicit form of the

MMSE and MSE functions. Let Q′X′WXQ = Λ = diag
(
𝜆1, 𝜆2, ..., 𝜆p+1

)
and 𝛼 =

Q′
𝛽 where 𝜆1 ≥ 𝜆2 ≥ ... ≥ 𝜆p+1 > 0 and Q is the matrix whose columns are the

eigenvectors of the matrix X′WX.

The bias, covariance, MMSE and MSE functions of LT, RR, and LE are obtained

respectively as follows:
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(i) Characteristics of RR:

bRR = bias (RR) = −kQΛ−1
k 𝛼,

Cov (RR) = QΛ−1
k ΛΛ−1

k Q′
,

MMSE(RR) = QΛ−1
k ΛΛ−1

k Q′ + k2QΛ−1
k 𝛼𝛼

′Λ−1
k Q′

,

MSE (RR) =
p+1∑

j=1

𝜆j
(
𝜆j + k

)2 +
k2𝛼2

j
(
𝜆j + k

)2 ,

MSE (RR) was also computed in Månsson (2012).

(ii) Characteristics of LE:

bLE = bias (LE) = (d − 1)QΛ−1
1 𝛼,

Cov (LE) = QΛ−1
1 ΛdΛ−1ΛdΛ−1

1 Q′
,

MMSE (LE) = QΛ−1
1 ΛdΛ−1ΛdΛ−1

1 Q′ + (d − 1)2 QΛ−1
1 𝛼𝛼

′Λ−1
1 Q′

,

MSE (LE) =
p+1∑

j=1

(
𝜆j + d

)2

𝜆j
(
𝜆j + 1

)2 +
(d − 1)2 𝛼2

j
(
𝜆j + 1

)2 .

MSE (LE) was also computed in Månsson (2013).

(iii) Characteristics of LT:

bLT = bias (LT) = − (d + k)QΛ−1
k 𝛼,

Cov (LT) = QΛ−1
k Λ∗

dΛ
−1Λ∗

dΛ
−1
k Q′

,

MMSE (LT) = QΛ−1
k Λ∗

dΛ
−1Λ∗

dΛ
−1
k Q′ + (d + k)2 QΛ−1

k 𝛼𝛼
′Λ−1

k Q′
,

MSE (LT) =
p+1∑

j=1

(
𝜆j − d

)2

𝜆j
(
𝜆j + k

)2 +
(d + k)2 𝛼2

j
(
𝜆j + k

)2 . (4)

where Λk = Λ + kI, Λ∗
d = Λ − dI, Λ1 = Λ + I and Λd = Λ + dI.

After computing the MMSE and MSE functions, LT is compared to the other

estimators in the sense of MMSE in the following theorems by using the following

lemma:

Lemma 1 (Farebrother 1976) Let M be a positive definite (p.d.) matrix, 𝛼 be a vector
of nonzero constants and c be a positive constant. Then cM − 𝛼𝛼

′
> 0 if and only if

𝛼
′M𝛼 < c.
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2.2 Comparison of LT Versus MLE

The following theorem presents the condition that LT is superior to MLE:

Theorem 2 Let (d + k)
(
2𝜆j + k − d

)
> 0, j = 1, 2, ..., p + 1 and bLT = bias

(
𝛽LT

)
.

Then MMSE (MLE) − MMSE (LT) > 0 if and only if b′
LT

[
Λ−1 − Λ−1

k Λ∗
d Λ

−1Λ∗
dΛ

−1
k
]−1

bLT < 1.

Proof The difference between the MMSE functions of MLE and LT is obtained by

MMSE(MLE) − MMSE (LT) = Q
(
Λ−1 − Λ−1

k Λ∗
d Λ

−1Λ∗
dΛ

−1
k
)

Q′ − bLTb′LT

= Qdiag
⎧
⎪
⎨
⎪
⎩

1
𝜆j

−
(
𝜆j − d

)2

𝜆j
(
𝜆j + k

)2

⎫
⎪
⎬
⎪
⎭

p+1

j=1

Q′ − bLTb′LT

The matrix Λ−1 − Λ−1
k Λ∗

d Λ
−1Λ∗

dΛ
−1
k is p.d. if

(
𝜆j + k

)2 −
(
𝜆j − d

)2
> 0 which is

equivalent to
[(
𝜆j + k

)
−
(
𝜆j − d

)] [(
𝜆j + k

)
+
(
𝜆j − d

)]
> 0. Simplifying the last

inequality, one gets (d + k)
(
2𝜆j + k − d

)
> 0. The proof is finished by Lemma 1. ⊓⊔

2.3 Comparison of LT Versus RR

The following theorem gives the condition that LT is superior to RR:

Theorem 3 Let b = QΛ−1
k 𝛼 and d < 2min

(
𝜆j
)
. If

(
d2 + 2dk

)
b′

[
Λ−1

k ΛΛ−1
k − Λ−1

k Λ∗
dΛ

−1Λ∗
dΛ

−1
k

]−1 b < 1, then MMSE (RR) − MMSE (LT) > 0.

Proof The difference between the MMSE functions of RR and LT is obtained by

MMSE (RR) − MMSE (LT) = Q
(
Λ−1

k ΛΛ−1
k − Λ−1

k Λ∗
dΛ

−1Λ∗
dΛ

−1
k

)
Q′ + bRRb′

RR − bLT b′
LT

= Qdiag

{
𝜆j

(
𝜆j + k

)2 −
(
𝜆j − d

)2

𝜆j
(
𝜆j + k

)2

}p+1

j=1

Q′ −
(
d2 + 2dk

)
bb′

= Qdiag

{
2d𝜆j − d2

𝜆j
(
𝜆j + k

)2

}p+1

j=1

Q′ −
(
d2 + 2dk

)
bb′

.

Since
(
d2 + 2dk

)
bb′ is nonnegative definite, it is enough to prove that

Q
(
Λ−1

k ΛΛ−1
k − Λ−1

k Λ∗
dΛ

−1Λ∗
dΛ

−1
k

)
Q′ −

(
d2 + 2dk

)
bb′ is p.d. Now let d < 2min

(
𝜆j
)
,

then using Lemma 1, the proof is finished. ⊓⊔
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2.4 Comparison of LT Versus Le

The following theorem presents the condition that LT is superior to LE:

Theorem 4 If b′
LT

[
Λ−1

1 ΛdΛ−1ΛdΛ−1
1 − Λ−1

k Λ∗
d Λ

−1Λ∗
dΛ

−1
k

]−1 bLT < 1 and 𝜆j (k + 2d − 1) +
d (k + 1) > 0, 0 < d < 1, then MMSE (LE) − MMSE (LT) > 0.
Proof The difference between the MMSE functions of LE and LT is obtained by

MMSE (LE) − MMSE (LT) = Q
(
Λ−1

1 ΛdΛ−1ΛdΛ−1
1 − Λ−1

k Λ∗
dΛ

−1Λ∗
dΛ

−1
k
)

Q′ + bLEb′

LE − bLT b′
LT

= Qdiag
⎧
⎪
⎨
⎪
⎩

(
𝜆j − d

)2

𝜆j
(
𝜆j + 1

)2 −
(
𝜆j − d

)2

𝜆j
(
𝜆j + k

)2

⎫
⎪
⎬
⎪
⎭

p+1

j=1

Q′ + bLEb′

LE − bLT b′
LT

= Qdiag
⎧
⎪
⎨
⎪
⎩

𝜆j (k + 2d − 1) + d (k + 1)

𝜆j
(
𝜆j + k

)2

⎫
⎪
⎬
⎪
⎭

p+1

j=1

Q′ + bLEb′

LE − bLT b′
LT

Similarly, since bLEb′

LE is nonnegative definite, it is enough to prove that

Q
(
Λ−1

1 ΛdΛ−1ΛdΛ−1
1 − Λ−1

k Λ∗
dΛ

−1Λ∗
dΛ

−1
k

)
Q′ − bLTb′

LT is positive definite. Letting

𝜆j (k + 2d − 1) + d (k + 1) > 0, 0 < d < 1, it is easy to see that Lemma 1 leads to

the desired result. ⊓⊔

2.5 Estimating the Parameters k and d

The selection of shrinkage parameters in biased estimators has always been an impor-

tant issue. There are different types of estimation techniques of the ridge parame-

ter and Liu parameter in the literature (see Månsson (2012, 2013)). In this study,

motivated by the works of Hoerl and Kennard (1970); Kibria (2003); Månsson and

Shukur (2011), some methods to select the values of the parameters k and d are

proposed.

Following Hoerl and Kennard (1970), differentiating the Eq. (4) with respect to

the parameter k, it is easy to obtain the following equation:

𝜕MSE(𝛽LT )
𝜕k

=
p+1∑

j=1

⎛
⎜
⎜
⎝

−2𝜆j
(
𝜆j + k

) (
𝜆j − d

)2

𝜆
2
j

(
𝜆j + k

)4 +
2 (k + d)

(
𝜆j + k

)
�̂�
2
j − 2 (k + d)2

(
𝜆j + k

)
�̂�
2
j

(
𝜆j + k

)4

⎞
⎟
⎟
⎠
.

(5)

Simplifying the numerator of the Eq. (5) and solving for k, one can get the following

individual estimators

k̂j
LT =

𝜆j − d
(
1 + 𝜆j�̂�

2
j

)

𝜆j�̂�
2
j

, j = 1, 2, ..., p + 1.
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The condition 𝜆j − d
(
1 + 𝜆j�̂�

2
j

)
> 0 should hold to get a positive value of k̂j

LT . Thus,

the following restriction

d <

𝜆j

1 + 𝜆j�̂�
2
j

(6)

should be satisfied.

Now, following Kibria (2003), the following method is proposed to estimate the

parameter k using the mean function:

k̂AM = 1
p + 1

p+1∑

j=1

⎛
⎜
⎜
⎜
⎝

𝜆j − d
(
1 + 𝜆j�̂�

2
j

)

𝜆j�̂�
2
j

⎞
⎟
⎟
⎟
⎠

which is the arithmetic mean of k̂j
LT .

Moreover, following Alkhamisi et al. (2006), the maximum function is used to

obtain the following estimator:

k̂MAX = max
⎛
⎜
⎜
⎜
⎝

𝜆j − d
(
1 + 𝜆j�̂�

2
j

)

𝜆j�̂�
2
j

⎞
⎟
⎟
⎟
⎠

.

After choosing the parameter d using Eq. (6), one can estimate the value of k
using one of the methods proposed. By plugging-in these estimates in LT, a better

performance may be observed.

In the following section, a Monte Carlo simulation is designed to compare the

performance of the estimators for different scenarios.

To estimate the ridge parameter to be used in RR, Månsson (2012) proposed dif-

ferent methods. In this study, K5 = max
(√

�̂�
2
j

�̂�
2
j

)
was used in the simulation since

the author reported that K5 is the best estimator in most of the situations investigated.

Moreover, some methods were proposed by Månsson (2013) to choose the shrink-

age parameter d to be used in LE. However, D5 = max
(
0, min

(
�̂�
2
j

1∕𝜆j+�̂�2j

))
had the

lowest MSE value in most of the situations. Therefore D5 is used to estimate d in LE

in the simulation study.



32 Y. Asar

3 Monte Carlo Simulation Study

3.1 Design of the Simulation

In the previous section, some theoretical comparisons are provided. In this section,

an extensive Monte Carlo simulation study is designed to evaluate the performances

of the estimators. Here is the description of the simulation.

Firstly, the observations of the explanatory variables are generated using the fol-

lowing equation

xi j =
(
1 − 𝜌

2)1∕2 zi j + 𝜌zip

where i = 1, 2,… , n, j = 1, 2, ...p, and 𝜌
2

represents the correlation between the

explanatory variables and zij‘s which are independent random numbers obtained

from the standard normal distribution.

The dependent variable of the NB regression model is generated using random

numbers following the negative binomial distribution NB
(
𝜇i, 𝜇i + 𝜃𝜇

2
i

)
where 𝜇i =

exp
(
xi𝛽

)
, i = 1, 2, ..., n. The slope parameters are decided such that

∑p
j= 𝛽

2
j = 1,

which is a commonly used restriction in the field (see Kibria (2003)).

In the design of simulation, three different values of 𝜌 corresponding to 0.90,

0.95, 0.99 are considered. The value of 𝜃 is taken to be 1.0 and 2.0 due to Månsson

(2012). Moreover, the following small, moderate and large sample size values are

considered: 50, 100 and 200. The numbers of explanatory variables are taken to be

4 and 6.

The simulation is repeated 2000 times, convergence tolerance is taken to be 10−8
and the estimated MSE values of the estimators are computed as follows:

MSE(𝛽) =
∑2000

r=1 (𝛽 − 𝛽)′r(𝛽 − 𝛽)r
2000

, (7)

where 𝛽r is an estimator of 𝛽 at the rth replication.

3.2 Results of the Simulation

The estimated MSE values obtained from the Monte Carlo simulation are presented

in Tables 1 and 2. It is observed from tables that the factors affecting the performance

of the estimators are the value of 𝜃, the sample size n, the number of explanatory

variables p and the degree of correlation 𝜌.

According to Tables 1 and 2, when the value of 𝜃 increases, the estimated MSE

values increase. As the degree of correlation increases, MSE of MLE is inflated and

MSE of RR is affected negatively. LT with kAM and kMAX show better performance

than MLE and RR since an increase in the degree of correlation affects LT with
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Table 1 Estimated MSE values when p = 4
𝜃 = 1 𝜃 = 2
n 50 100 200 50 100 200

𝜌 = 0.90
LT(kAM) 0.2483 0.2095 0.1816 0.3782 0.2714 0.2446

LT(kMAX) 0.2632 0.2503 0.2444 0.3409 0.3242 0.3023

RR 1.3117 0.4823 0.2606 2.2441 0.8058 0.4131

LE 0.5761 0.3537 0.2164 0.7115 0.4952 0.3125

MLE 1.3640 0.4901 0.2629 2.4722 0.8298 0.4168

𝜌 = 0.95
LT(kAM) 0.3517 0.2468 0.1925 0.5141 0.3377 0.2435

LT(kMAX) 0.3025 0.2956 0.2581 0.3892 0.3611 0.3178

RR 2.1664 1.2658 0.5033 3.3184 1.8066 0.8421

LE 0.7008 0.5668 0.3534 0.7977 0.6843 0.4894

MLE 2.2329 1.6571 0.5176 3.7717 2.8076 0.8691

𝜌 = 0.99
LT(kAM) 0.7346 0.4317 0.2866 1.0059 0.7081 0.4235

LT(kMAX) 0.3556 0.3018 0.2635 0.3948 0.3743 0.3335

RR 4.9866 3.2202 2.5914 5.5368 3.5991 3.3719

LE 0.7128 0.7048 0.6975 0.8280 0.7363 0.7144

MLE 10.0215 6.1448 2.8633 18.1536 10.0081 4.7138

kMAX slightly, i.e., LT with kMAX is the most stable estimator in the study. LE has also

better performance than MLE and RR, however, LT with kAMand kMAX has the best

performance in most of the situations considered.

Moreover, increasing the number of explanatory variables also affects the estima-

tors negatively, i.e., their estimated MSE increases. Although high correlation makes

an increase in the MSE of LT with kMAX when p = 4, it becomes robust to the corre-

lation when p = 6. According to the results of the simulation, LT with kMAX has the

best performance among the estimators.

4 Real Data Applications

4.1 Sweden Traffic Data

In this subsection, we illustrate the benefits of the new estimator LT using a real

dataset. The dataset is taken from the official website of the Department of Transport
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Table 2 Estimated MSE values when p = 6
𝜃 = 1 𝜃 = 2
n 50 100 200 50 100 200

𝜌 = 0.90
LT(kAM) 0.3374 0.2339 0.1961 0.4678 0.2971 0.2497

LT(kMAX) 0.4309 0.3663 0.3056 0.4800 0.4148 0.3522

RR 2.1804 0.9271 0.4479 3.3428 1.4560 0.7134

LE 0.9627 0.5997 0.3586 1.2341 0.7702 0.5113

MLE 2.4655 0.9289 0.4501 4.3043 1.4674 0.7199

𝜌 = 0.95
LT(kAM) 0.3933 0.2514 0.2020 0.5808 0.3451 0.2470

LT(kMAX) 0.3792 0.3271 0.2730 0.4477 0.3953 0.3411

RR 3.8504 1.8333 0.8282 5.2209 3.0453 1.5874

LE 1.0414 0.8734 0.5688 1.2917 1.1277 0.8297

MLE 5.1537 1.9955 0.8319 8.9456 3.5382 1.6650

𝜌 = 0.99
LT(kAM) 0.7928 0.4866 0.2976 1.5414 0.7228 0.4800

LT(kMAX) 0.3701 0.3170 0.2655 0.5113 0.3851 0.3402

RR 10.3993 8.9291 3.9404 12.3918 11.8867 6.7377

LE 1.0980 1.0196 1.0905 1.5306 1.2021 1.1914

MLE 19.1744 10.6314 5.4518 36.6638 17.7556 8.4051

Analysis in Sweden.
1

A similar dataset is used by Månsson (2013). The dependent

variable is the number of pedestrians killed and the explanatory variables are the

number of kilometers driven by cars X1 and trucks X2. In this application, we try

to investigate the effect of changing the usage of cars and trucks on the number of

pedestrians killed. There are 21 different counties in Sweden and the data are pooled

during the year 2013 for different counties. The condition number is approximately

210.9146 showing that there is a moderate multicollinearity. The negative binomial

regression model with intercept is estimated using IRLS algorithm for different esti-

mators considered in this study. The results are reported in Table 3.

According to Table 3, considering the coefficients of MLE, the effect of increasing

X1 has a negative impact on the number of pedestrian killed which is not expected. It

is known that the signs of coefficients may be wrong when there is multicollinearity.

Moreover, the effect of increasing X1 is low while the effect of increasing X2 is high.

If we use biased estimators, the effect of increasing X1 becomes positive which

is expected and the effect of increasing is lower when compared to MLE. When

we compare the standard errors of estimators, it is observed that LT with kAM and

kMAX have lower standard errors than other estimators which makes them more

1
www.trafa.se, accessed January 10, 2016.

www.trafa.se
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Table 3 Coefficients, standard errors and MSE values of estimators for Sweden traffic data

LT(kAM) LT(kMAX) RR LE MLE

MSE
0.9493 0.6002 1.8975 1.2069 22.3520

Coefficients
𝛽0 2.3135 2.2615 2.3352 2.1943 2.3731

𝛽1 0.6031 0.5395 0.4826 0.2423 −0.6003

𝛽2 0.9121 0.7123 1.1791 0.8522 2.5690

Standard errors
𝛽0 0.3081 0.3010 0.3111 0.2920 0.3165

𝛽1 0.6515 0.5017 0.9493 0.7479 3.3505

𝛽2 0.6551 0.5055 0.9483 0.7451 3.3205

stable. Thus, the estimator LT should be preferred since it has lower standard errors

compared to other estimators and meaningful coefficients compared to MLE.

Moreover, LT with kAM and kMAX have less MSE values than the other estimators.

We also plot the MSE values of the estimators LT and RR for 0 < k < 1 and LE for

0 < d < 1. We estimate the parameter d using (6) for LT. According to Fig. 1, we

observe that when 0 < d < 0.16 MSE of LE is smaller than MSE of LT. Otherwise

LT has the least MSE value.

Finally, we provide some information to justify the theorems given in Sect. 2. The

estimated parameter values of LT are as follows: kAM = 0.2489, kMAX = 0.4901 and

d = 0.0192. To justify Theorem 2, we consider the followings:

min
[
(d + k)

(
2𝜆j + k − d

)]
= 0.2881 > 0 and b′

LT

[
Λ−1 − Λ−1

k Λ∗
dΛ

−1Λ∗
dΛ

−1
k

]−1

bLT = 2.8459 × 10−5 < 1 and the eigenvalues of the difference matrix

MMSE (MLE) − MMSE (LT) are 0.0071, 0.6927 and 21.0520 which are positive.

Hence MMSE (MLE) − MMSE (LT) is positive definite. Thus, Theorem 2 is

satisfied.

Similarly, we compute the followings to justify Theorem 3, 2min
(
𝜆j
)
= 0.0947 >

d = 0.0192 and

(
d2 + 2dk

)
b′ [Λ−1

k ΛΛ−1
k − Λ−1

k Λ∗
dΛ

−1Λ∗
dΛ

−1
k
]−1 b = 7.2232 × 10−8 < 1

using kMAX = 0.4901 for both RR and LT. The eigenvalues of the difference

MMSE (RR) − MMSE (LT) are 0.0002, 0.0203 and 0.1058 which are all positive,

showing that the difference is positive definite.

(
d2 + 2dk

)
b′ [Λ−1

k ΛΛ−1
k − Λ−1

k Λ∗
dΛ

−1Λ∗
dΛ

−1
k
]−1 b = 4.0861 × 10−8 < 1

for both RR and LT and again the difference is positive definite (the eigenvalues are

0.0003, 0.0346 and 0.6454). Thus Theorem 3 is satisfied.
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Fig. 1 Plot of MSE versus the parameters for Sweden traffic data

Again, we consider the following computations to justify Theorem 4. We let

k = kAM = 0.2489 and d are computed using (6) as 0.0192 for both LE and LT. How-

ever,min
[
𝜆j (k + 2d − 1) + d (k + 1)

]
becomes negative and does not satisfy the pre-

condition of Theorem 4. Thus, we try using D5 in both LE and LT to estimate the

parameter d which is computed as 0.1528 and set k = 1.1. Now,

min
[
𝜆j (k + 2d − 1) + d (k + 1)

]
= 0.0192 > 0 which satisfies the precondition of

Theorem 4.

b′

LT
[
Λ−1

1 ΛdΛ−1ΛdΛ−1
1 − Λ−1

k Λ∗
dΛ

−1Λ∗
dΛ

−1
k
]−1 bLT = 8.7066 × 10−5 < 1.

The eigenvalues of the difference matrix MMSE (LE) − MMSE (LT) are 0.0007,

0.1905 and 0.5929 which are all positive. Hence the difference matrix is positive

definite.

Thus, we observe that Theorems given in Sect. 2 are satisfied.
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Table 4 The correlation matrix of the data

NWM NRC NS NOG NCG NGR1 NGR2

NWM 1.0000 0.0337 0.1362 −0.2257 0.5069 0.6062 0.6987

NRC 0.0337 1.0000 0.1695 −0.0580 0.2391 0.2801 −0.1531

NS 0.1362 0.1695 1.0000 −0.3151 −0.2254 −0.0989 0.0048

NOG −0.2257 −0.0580 −0.3151 1.0000 0.3382 0.4597 −0.0653

NCG 0.5069 0.2391 −0.2254 0.3382 1.0000 0.7620 0.2858

NGR1 0.6062 0.2801 −0.0989 0.4597 0.7620 1.0000 0.5579

NGR2 0.6987 −0.1531 0.0048 −0.0653 0.2858 0.5579 1.0000

4.2 Football Teams Data

In this subsection, another data set
2

regarding the football teams competing in the

2014–2015 Super League Season in Turkey is considered. A similar data set is also

analyzed by Türkan and Özel (2016) for the season 2012–2013. According to Türkan

and Özel (2016), the data is appropriate for the Poisson regression model. However,

we try to fit a negative binomial regression model because the variance (9.76) of the

dependent variable is larger than the mean (7.33). Similar to their study, we have

selected the number of won matches (NWM) as the dependent variable and the fol-

lowings are the explanatory variables: the number of red cards (NRC), the number

of substitutions (NS), the number of matches ending over 2.5 goals (NOG), the num-

ber of matches completed with goals (NCG), the ratio of the goals scored in number

of matches [NGR1 = NGS/NM], and the ratio of goals scored in the sum of goals

conceded and goals scored [NGR2 = NGS/(NGC + NGS)].

The correlation matrix of the data is given in Table 4. It is seen from Table 4 that,

the dependent variable NWM has a negative correlation with NOG. It seems that the

only high correlation between the variables NRG1 and NCG is 0.76 and the other

bivariate correlations are not that high. However, the bivariate correlations may not

have higher correlations in the case of collinearity, see Montgomery et al. (2015).

Moreover, the eigenvalues of the matrix X′ŴX are 8.3623, 1.1082, 0.6132, 0.5473,

0.3134, 0.1856 and 0.0391. The condition number is computed as 213.6088 which

shows that there is a moderate multicollinearity problem.

In Table 5 we present the MSE values, coefficients and the standard errors of

estimators. According to Table 5, it is observed that the estimated MSE value of LT

with kAM and kMAX are smaller than the others. Although, the variables NRC and

NOG have negative impacts on NWM when MLE is used, only NOG has a negative

coefficient when the biased estimators LT, RR, and LE are used. This may happen

when there is collinearity problem (Montgomery et al. (2015)).

Moreover, the estimator LT has the least standard error values among others

which also shows the superiority of LT over the others.

2
Please see http://www.tff.org and http://www.sahadan.com, accessed November 15, 2016.

http://www.tff.org
http://www.sahadan.com
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Table 5 Coefficients, standard errors and MSE values of estimators for football teams data

MSE LT(kAM) LT(kMAX) RR LE MLE

0.2768 0.4396 1.0537 1.1735 38.6024

Coefficients
Intercept 1.3052 0.6908 1.7109 1.7275 1.9292

NRC 0.0114 0.0042 0.0107 0.0097 −0.3409

NS 0.0370 0.0110 0.1069 0.1133 0.2597

NOG −0.0472 −0.0133 −0.1642 −0.1760 −1.0072

NCG 0.0740 0.0239 0.1788 0.1875 0.2244

NGR1 0.0901 0.0292 0.2318 0.2433 1.2479

NGR2 0.1136 0.0357 0.2850 0.2992 0.2431

Standard errors
Intercept 0.2331 0.1233 0.3059 0.3089 0.3459

NRC 0.1445 0.0424 0.4226 0.4484 1.8995

NS 0.1430 0.0418 0.4244 0.4510 1.6376

NOG 0.1400 0.0416 0.4071 0.4320 2.2249

NCG 0.1350 0.0413 0.3785 0.4012 2.4855

NGR1 0.1304 0.0410 0.3380 0.3556 3.8594

NGR2 0.1419 0.0422 0.4059 0.4301 2.4839

5 Conclusion

In this study, a new biased estimator which is a generalization of Liu-type estimator

is proposed for the negative binomial regression models. We also review some exist-

ing estimators namely, negative binomial Liu estimator and negative binomial ridge

estimator. We obtain some theoretical comparisons between the estimators using

MMSE and some conditions showing that LT is superior to the others.

Moreover, we design a Monte Carlo simulation to understand the effects of the

degree of correlation among the explanatory variables, the sample size and the num-

ber of explanatory variables. LT has a better performance than the others in the sense

of MSE criterion in most of the cases considered in the simulation. Finally, we show

that LT is a better choice and all the theoretical derivations are satisfied in real data

applications and it is recommended to the researchers.



Liu-Type Negative Binomial Regression: A Comparison of Recent Estimators . . . 39

References

Alkhamisi, M., Khalaf, G., Shukur, G.: Some modifications for choosing ridge parameters. Com-

mun. Stat. Theory Methods 35, 2005–2020 (2006)

Cameron, A.C., Trivedi, P.K.: Econometric models based on count data. Comparisons and appli-

cations of some estimators and tests. J. Appl. Econom. 1, 29–53 (1986)

Cameron, A.C., Trivedi, P.K.: Regression Analysis of Count Data, vol. 53. Cambridge University

Press (2013)

Farebrother, R.: Further results on the mean square error of ridge regression. J. R. Stat. Soc. Ser. B

(Methodol.) 248–250 (1976)

Hilbe, J.: Negative Binomial Regression. Cambridge University Press (2011)

Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Tech-

nometrics 12, 55–67 (1970)

Hoerl, A.E., Kennard, R.W., Baldwin, K.F.: Ridge regression: some simulations. Commun. Stat.

Theory Methods 4, 105–123 (1975)

Huang, J., Yang, H.: A two-parameter estimator in the negative binomial regression model. J. Stat.

Comput. Simul. 84, 124–134 (2014)

Kibria, B.M.G.: Performance of some new ridge regression estimators. Commun. Stat. Simul. Com-

put. 32, 419–435 (2003)

Lesaffre, E., Marx, B.D.: Collinearity in generalized linear regression. Commun. Stat. Theory

Methods 22(7), 1933–1952 (1993)

Lipovetsky, S., Conklin, W.M.: Ridge regression in two-parameter solution. Appl. Stoch. Models

Bus. Ind. 21, 525–540 (2005)

Liu, K.: A new class of biased estimate in linear regression. Commun. Stat. Theory Methods 22,

393–402 (1993)

Liu, K.: Using Liu-type estimator to combat collinearity. Commun. Stat. Theory Methods 32, 1009–

1020 (2003)

MacKinnon, M.J., Puterman, M.L.: Collinearity in generalized linear models. Commun. Stat. The-

ory Methods 18, 3463–3472 (1989)

Månsson, K.: On ridge estimators for the negative binomial regression model. Econ. Model. 29,

178–184 (2012)

Månsson, K.: Developing a Liu estimator for the negative binomial regression model: method and

application. J. Stat. Comput. Simul. 83, 1773–1780 (2013)

Månsson, K., Shukur, G.: A Poisson ridge regression estimator. Econ. Model. 28, 1475–1481 (2011)

Montgomery, D.C., Peck, E.A., Vining, G.G.: Introduction to Linear Regression Analysis. Wiley

(2015)

Myers, R.H., Montgomery, D.C., Vining, G.G., Robinson, T.J.: Generalized Linear Models with

Applications in Engineering and the Sciences. Wiley, New Jersey (2010)

Smith, E.P., Marx, B.D.: Ill-conditioned information matrices, generalized linear models and esti-

mation of the effects of acid rain. Environmetrics 1(1), 57–71 (1990)

Türkan, S., Özel, G.: A new modified Jackknifed estimator for the Poisson regression model. J.

Appl. Stat. 43(10), 1892–1905 (2016)

Weissfeld, L.A., Sereika, S.M.: A multicollinearity diagnostic for generalized linear models. Com-

mun. Stat. Theory Methods 20(4), 1183–1198 (1991)



Appraisal of Performance of Three
Tree-Based Classification Methods

Huruy Debessay Asfha and Betul Kan Kilinc

Abstract Classification methods use different algorithms to get better performance

in research fields such as statistics, machine learning and computational analysis.

This study reviews the traditional method, recursive partitioning, as well as newer

classification algorithms, conditional inference tree and evolutionary tree. Variations

and improvements in algorithms, data types with or without missing values, and

special applications are widely used in this field. Although classification algorithms

have been studied often and performed reasonably well, there is no existing one

that performs best among the others. Using a real dataset, the classification methods

under consideration are applied and the results are compared.

Keywords Classification ⋅ Decision tree ⋅ Missing values ⋅ Tree-based

1 Introduction

Building accurate and efficient classifiers for large data are one of the essential tasks

of data mining and machine learning researches. Classification and regression trees

(CART) by Breiman et al. (1984) are among the common data mining techniques

used to explore and model complex datasets with strong nonlinear associations and

different variable types. CART uses recursive partitioning method to build classi-

fication and regression trees for predicting categorical and continuous dependent

variables respectively. Therneau (1983) first used the recursive partitioning method,

which implements many of the ideas found in Breiman et al. (1984) while writing

a Stanford University technical report which was later modified in a report of Mayo

Clinic Division of Biostatistics in 1997 (Therneau and Atkinson 1997). Recursive
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partitioning method performs an exhaustive search over all possible splits in maxi-

mizing an information gain of nodes and selects the covariate showing the best split.

Entropy-based measures of information gain such as Gini gain or information gain

are used as a criterion to select the best split. Variable selection is however, biased in

favor of variables with more potential splits when these criteria are used (Breiman

et al. 1984; Hothorn et al. 2014). Categorical covariate variables with the higher

number of categories are more likely to be selected. Moreover, variable selection

bias can occur due to the difference in the number of missing values in covariate

variables (Strobl et al. 2007).

To deal with the variable selection problem of the classical recursive methods,

Hothorn et al. (2006) introduced an unbiased recursive partitioning method, the con-

ditional inference trees, which is based on conditional distributions. The basic idea

of this approach is to measure the association between response and covariate vari-

ables and then determine how significant this relationship is. The algorithm selects

the variable with the highest association for splitting, however, if the association is

found to be not significant, the process of splitting stops (Hothorn et al. 2006, 2014).

In recursive partitioning, the split at each internal node is selected to maximize

the homogeneity of the next step (homogeneity of daughter nodes) without any con-

sideration of nodes further down the tree. This yields to only locally optimal trees

which could be far from a globally optimal solution. Furthermore, a tree fitted by

recursive partitioning tends to overfit the data which, however, can be addressed by

pruning or cross-validation mechanisms in order to obtain an optimal tree (Breiman

et al. 1984; Grubinger et al. 2015; Therneau and Atkinson 1997).

As an alternative to the classical classification and regression methods, Grubinger

et al. (2014) proposed an evolutionary method which uses a global search over the

tree parameters in order to obtain a globally optimal tree rather than locally optimal

one. This approach has a good balance between predictive accuracy and complexity

of the tree, but nevertheless it is computationally demanding (Grubinger et al. 2014,

2015).

The aim of this study is to evaluate the performance of three tree-based classifi-

cation methods: recursive partitioning, conditional inference tree, and evolutionary

learning tree in determining outcomes (injured or uninjured) of vehicle accidents.

Different performance indicators of classification methods are used for comparison

of the classifiers. Furthermore, the effect of the missing values in covariates in the

evaluated models are discussed.

1.1 Recursive Partitioning

Recursive partitioning (rpart) is a classification and/or regression method developed

by Therneau (1983), which basically implements the concepts in Breiman et al.

(1984); Therneau (1983). It constructs a decision tree by splitting each node on the

tree into two daughter nodes. Rpart uses an impurity measure to choose the variable,

which best splits the data into two groups.
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Suppose, the response variable to be classified has a total of C categories, which

are represented by the indexes 1, 2,… ,C. The impurity measure of a given node,

say A, is then given by

Q(A) =
C∑

i=1
f (piA), (1)

where f is impurity function and piA is the proportion of observations in node A
which belong to category i. Q(A) = 0 indicates that node A contains observations of

only one category, hence, A is pure.

The impurity function, f , can either be Gini index or entropy (information index)

which are given as follows:

Gini − index∶ f (p) = p × (1 − p), (2)

Information − index∶ f (p) = −p × log(p). (3)

By default Rpart employs the Gini index impurity function (Venables and Ripley

2002). For a two-class problem, the measures differ only slightly and will nearly

always choose the same split point (Therneau and Atkinson 1997). To split node A
into its two daughter nodes, AL and AR (left and right daughter nodes), the split with

maximal impurity reduction, 𝛥Q is used.

𝛥Q = p(A) × Q(A) − [p(AL) × Q(AL) + p(AR) × Q(AR)]. (4)

After finding the variable which best splits the data into two groups, the data will

be separated accordingly. The same process will be applied to each subgroup and

will continue recursively until the subgroups either reach a minimum size or until no

improvement can be made (Therneau and Atkinson 1997). Generally, the recursively

built model using rpart is more complex than needed and the resulting tree overfits

the data. Thereafter, the second stage of the procedure in rpart is then trimming

back the constructed tree using cross-validation rule in order to avoid complexity,

and hence finds the optimal tree.

1.2 Conditional Inference Trees

Conditional inference trees (ctree) modify the exhaustive search of split variable

and split point in rpart by using statistical significance tests in selecting the variable

and subsequently selecting the optimal split point for that particular variable. To

accomplish this, Hothorn et al. (2006), constructed unified tests for the independence

by means of the conditional distribution of linear statistics in the permutation test

framework (Hothorn et al. 2006).

Let D(Y∕Xj) denote the conditional distribution of Y given the jth covariate, Xj
. A

partial hypothesis for independence of Y on Xj
can then be written as
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Hj
0∶D(Y ∣ Xj) = D(Y), where D(Y) is the distribution of Y . A global null hypoth-

esis of independence between the covariates and the response variable formulated

using the partial hypotheses is then given by

H0 ∶ ∩m
j=1H

j
0, (5)

where m is the number of covariates and Hj
0, are the partial hypotheses.

In order to find the optimal split variable, the global null hypothesis is first tested.

Failure to reject H0 stops the recursion indicating that the response variable, Y , is

independent of the covariates. However, if H0 is rejected, the association between

the response and each of the covariates is measured by test statistics or p-values

indicating the deviation from the partial hypotheses (Hj
0).

The algorithm will choose the covariate which has the strongest association with

the response and a split point will be chosen from that variable in order to split

the space into two disjoint groups. Recursively, these procedures will be repeated.

While selecting a variable for classifying the dataset into the daughter branches, the

approach of ctree algorithm avoids the selection of variables with many potential

splits more often than those with fewer potential splits. Furthermore, a statistically

motivated stopping criteria, not rejecting the global null hypothesis of independence

is implemented (Hothorn et al. 2014).

1.3 Evolutionary Learning Trees

As presented in Breiman et al. (1984), if the complexity of a tree is measured by a

function of the number of terminal nodes, without further considering the depth or

the shape of the trees, then the goal of the classifiers is to find that classification and

regression tree which optimizes some trade-off between prediction performance and

complexity which is given by

̂
𝜃 = argmin

𝜃∈𝛩loss{Y , f (X, 𝜃)} + comp(𝜃), (6)

where Y and f (X, 𝜃) represents the actual and predicted values of the response vari-

able respectively. The function loss(...) is equivalent to misclassification rate (MC)

in the case of classification and mean square error (MSE) for regression.

The function comp(.) is monotonically non-decreasing in the number of termi-

nal nodes of the tree 𝜃, thus penalizing more complex models in the tree selection

process (Grubinger et al. 2014, 2015). Since 𝜃 is subset of 𝛩, the overall parameter

space, finding ̂
𝜃 requires a search over all 𝛩 which is computationally unmanage-

able. Forward search recursive partitioning methods only search each pair of split

variable and split point once, and independently of the subsequent split rules, hence

typically leading to a globally sub-optimal solution ̂
𝜃.
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In evolutionary learning trees (evtree), a split rule is randomly generated to ini-

tialize each of the individual trees of the population in the root node. For numeric

or ordinal split variables, uniform probability is used to select split point, whereas

for nominal, each of the categories has 50% chance to be assigned to the left or the

right daughter nodes. However, considering that nodes should not be empty, if all

the categories are assigned to one side, at least one category has to be assigned to

the other side (Grubinger et al. 2014, 2015).

In every iteration, each tree is selected once to be modified by one of the variation

operators, which will randomly be selected from the four types of mutation opera-

tors and one crossover operator. For the next generation (iteration), survivor trees

are selected based on the evaluation function defined in Grubinger et al. (2014). The

modification procedure of the trees continues until some defined termination condi-

tion is fulfilled. The tree with the minimum evaluation function will then be returned

as optimal tree (Grubinger et al. 2014, 2015).

2 Comparison Measures

In this study, the accuracy measures used to compare the performance of the models

were predictive accuracy, misclassification rate, evaluation function, kappa, sensi-

tivity, specificity, positive prediction value, and negative prediction value.

Misclassification rate (MC) for a classification model is defined as the proportion

of misclassified observations by the model during prediction process (Hastie et al.

2009) and it is given by

MC = 1
N

N∑

i=1
I(Yi ≠ f (X, 𝜃)), (7)

where N is the total number of observations and I(w), for an arbitrary logical argu-

ment w is an indicator function which takes a value 1 when w is true and 0 otherwise.

From Table 1, the total number of misclassified observations is obtained by summing

up the number of false positives (B) and false negatives (C), hence, the misclassi-

Table 1 Relationship between observed accident outcome and predicted values

Accident outcome

injured (+) Non-injured (−) Total

Predicted values Injured (+) A B E = A + B

Non-injured (−) C D F = C + D

Total G = A + C H = B + D T = A + B +

C + D



46 H. D. Asfha and B. Kan Kilinc

fication rate is computed as MC = B+C
T

. Furthermore, accuracy, the proportion of

correctly predicted values by the model, is given by 1 −MC = A+D
T

.

An evaluation function, a measure of the quality of a classification tree, is com-

monly expressed as a function of the misclassification rate (MC) and the complexity

of the tree (Grubinger et al. 2014, 2015). The evaluation function used and given

by Eq. 6 is adopted from Grubinger et al. (2015). For a classification tree with M
terminal nodes and a misclassification rate, MC, the loss(.) function is a function of

the total number of observations, N and MC and is written as

loss(Y , f (X, 𝜃)) = 2N ×MC(Y , f (X, 𝜃)) = 2
N∑

i=1
I(Yi ≠ f (X, 𝜃)) (8)

whereas, the comp(.) function which is a measure of the complexity of the tree, is

expressed in terms of the number of terminal nodes weighted by a user-defined con-

stant, 𝛼, and log N (Grubinger et al. 2014, 2015).

comp(𝜃) = 𝛼 ×M × log N (9)

Cohen’s Kappa coefficient (Kappa) is a statistic which measures the inter-rater

agreement or concordance between the predicted and the observed counts of the

categories and is given by

k =
P0 − Pe

1 − Pe
= 1 −

1 − P0
1 − Pe

, (10)

whereP0 =
A+D
T

is the relative observed agreement between the predicted and actual,

and Pe =
G
T
× E

T
+ H

T
× F

T
= G.E+H.F

T2 is the hypothetical probability of chance agree-

ment (Hoehler 2000; Nelson 2015; Tang et al. 2015). k = 1 indicates that the classi-

fied values are in complete agreement with the actual responses, on the other hand,

if there is no agreement other than what would be expected by chance, k ≤ 0.

Sensitivity and specificity are ways of measuring how good a classification model

is. Sensitivity is defined as the proportion of true positives that are correctly classified

by the model and is given by
A
G

, and, specificity which is given by
D
H

is the proportion

of true negatives which are correctly predicted. The terms positive and negative are

used to refer to presence or absence of a condition of interest, here injury of a person

(Altman and Bland 1994).

Another approach of diagnosing model performance is using predictive values

which help to know the probabilities that the model will give correct identification

of the observations (Altman and Bland 1994). Positive predictive value (PPV) is the

proportion of accident outcomes predicted as injured by the model which are actually

injured, and negative predictive value (NPV) is the proportion of accident outcomes

predicted as uninjured by the model who are actually noninjured (Altman and Bland

1994; Kuhn et al. 2016).
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PPV = Sens × Prev
(Sens × Prev) + (1 − Spec) × (1 − Prev)

= A
E

(11)

NPV =
Spec × (1 − Prev)

(1 − Sens) × Prev + Spec × (1 − Prev)
= D

F
(12)

where Sens = Sensitivity, Spec = Specificity and Prev = Prevalence which is given

by
G
T

.

3 Data Description

The data set used for comparison is obtained from a district police department from

2014 to 2015 for rural highways for the city of Aydin in Turkey. Traffic accident

data contain 195 records with several missing values among variables. The names

and the labels of the variables are summarized in Table 2. The missing values exist-

ing in covariates are listed in Table 3. As the dependent variable that is the acci-

dent outcome has only 3 invalid observations, totally 192 observations are taken into

Table 2 Variable description

Variable name Labels Variable name Labels

Road type Dual carriageway Motorbikes and

motorcycles

One-way road Vehicle type Cars

Two-way road Bus and Minibus

Trucks and Others

Road paving Asphalt

Surface treatment Driver’s Primary level

Education level Middle level

Place characteristics Urban High school

Interurban University

Unknown

Time of day Daytime

Nighttime Traffic lights Exist

Out of order

Atmospheric factors Dry Non exist

Wet

Lamps Exist

Road characteristics Dry Out of order

Wet Non exist

Gender Male Driver’s age 12–81 years old

Female
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Table 3 Number of missing values in each covariate variable (only covariates which contain

missing value are included)

Variable name n p

Accident outcome 3 0.016

Place characteristics 1 0.005

Traffic lights 14 0.073

Lamps 20 0.104

Age 2 0.010

Vehicle type 1 0.005

Driver’s education level 15 0.078

Gender 2 0.010

n: number of missing values; p: proportion of missing values

consideration for analysis. Both categorical and numerical variables are used to build

a classification model for the response variable. The response variable, Accident out-
come, is binary with 0 representing for ‘injured’ and 1 for ‘uninjured’. The only con-

tinuous variable used is ‘Driver’s Age’.

Variables which contain missing values are given in Table 3 along with the num-

ber and proportion of missing values exist in each variable. It should be noted that

covariates which do not contain missing values are not included in the table.

4 Results and Discussion

Model performance was assessed in two different scenarios depending on whether

there exists a missing value in covariate variables or not. In the first scenario, data

which contain missing values in the covariate variables were used, whereas, in the

second, missing values in all the covariates were assigned a value using simple impu-

tation method. In both scenarios, however, since ctree algorithm does not support

missing value (it stops execution) in response variable, a simple imputation method

was used to replenish those in the ‘Accident outcome’ variable. Moreover, 70% of

the data were used for training and the remaining 30% were used for validating or

testing the model.

The classification methods considered in this study vary the way they handle miss-

ing values in the covariate variables. In rpart and ctree, surrogate splits are estab-

lished if the chosen splitting variable contains missing values (Hothorn et al. 2014;

Therneau and Atkinson 1997). An evtree model however, removes them if there are

any for it does not support missing values (Grubinger et al. 2015).

A cross-tabulation of model outputs and the observed results for the two scenar-

ios, using data with missing values and data free of missing values, are given in

Table 4. The predictions are made based on the testing set which is made up of 40

injured and 19 uninjured observations. It can be seen that evtree models show greater
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Table 4 Cross-tabulation of the actual data and predicted values

Using data comprising missing values in covariates

rpart ctree evtree

I NI Total I NI Total I NI Total

Predicted I 35 12 47 40 19 59 29 12 41

Values NI 5 7 12 0 0 0 11 7 18

Using data free of missing values

rpart ctree evtree

I NI Total I NI Total I NI Total

Predicted I 36 13 49 40 19 59 36 12 48

Values NI 4 6 10 0 0 0 4 7 11

I: injured(+); NI: noninjured(−)

improvement in classifying testing set correctly when complete data is used. Ctree

algorithm however, is found to classify the observations in the testing set to the group

of injured which is the majority of the two. It produced the same results regardless

of the existence or nonexistence of missing values in the covariate variable.

Rpart trees are pruned based on their respective optimal complexity parameter

(cp) and the optimal trees are shown in Figs. 1 and 2. It is important to note that

in both scenarios, rpart algorithm picked vehicle type and lamp as splitting vari-

ables. As provided in Table 3, both splitting variables comprise missing values which

means that in node 1 and node 3, a surrogate split was established on the process of

discriminating the data. Even though it is not a guarantee that useful surrogates can

always be found, in this application, it was effective for it resulted to a tree with a

more or less the same to that with no missing values (Figs. 3 and 4).

Fig. 1 Rpart tree for vehicle accident data which comprises missing values
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Fig. 2 Rpart tree for vehicle accident data which is free of missing values

Fig. 3 Ctree tree for vehicle accident data which has missing values

The effect of deletion of incomplete observations in the case of evtree algorithm

can be seen in Figs. 5 and 6, in which ‘Lamp’ was the split variable in the first,

whereas in the later, the variable ‘age’ was selected prior to ‘Lamp’. In addition to

this, it can be seen in Fig. 5 that only 113 observations were used by the algorithm

instead of the total 133 which shows that the algorithm removes incomplete entries

in the training stage.

Table 5 shows the performance measures of the models when applied to the

incomplete data. It can be noted that the pruned rpart model shows a better result

in most of the indicators; it produced a less complex model with better prediction

accuracy. The most complex tree was achieved by evtree algorithm which had also
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Fig. 4 Ctree tree for vehicle accident data which is free of missing values

Fig. 5 Evtree tree for data which comprises missing values

the least accurate. Referring to the interpretations of Cohen’s Kappa c oefficient pre-

sented in (Mary 2012), there exists a fair agreement between the actual data and the

prediction s made by rpart whereas that of evtree have got a slight agreement. For

ctree however, this indicator is zero which indicates an absence of agreement.

In addition to comparing classifiers based on their prediction performance, it is

also important to look at the type of errors made by each model. In classifying obser-

vations like accidents, models which commit less ‘type-II error’ are more preferable

for they are minimizing the proportion of wrongly classifying ‘injured’ as ‘unin-

jured’. While ctree was found to have a zero type-II error (1- sensitivity), the 100%

type-I error (1- specificity) committed is of great concern in which the model might

be regarded as inadequate classifier in this case. Rpart has the upper hand when sensi-
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Fig. 6 Evtree tree for data which is free of missing values

Table 5 Performance of tree-based models using data which comprises missing values in the

covariate variables

Performance measures Classification methods

rpart ctree evtree

Evaluation function 91.32 95.44 113.48

Accuracy 0.71 0.68 0.61

Kappa 0.27 0 0.1

Sensitivity 0.88 1 0.73

Specificity 0.37 0 0.37

PPV 0.74 0.68 0.71

NPV 0.58 – 0.39

Prevalence 0.68 0.68 0.68

tivity is taken into consideration. Nonetheless, evtree made a slight balance between

the two types of errors when compared to that of rpart.

Performance indicators of the three models when the classification methods were

applied to data without missing values are provided in Table 6. Compared to the

results in Table 5, the performance of evtree has improved greatly. On the contrast,

rpart showed slight decrement in most of the performance measures, whereas, ctree

has showed no difference. Furthermore, a better agreement between the actual and

predicted values was obtained using the evtree model unlike scenario one where a

better agreement was obtained from the rpart model. The improvement in the perfor-

mance of evtree could be due to the increase in sample size used in the evtree model

construction when incomplete observations are replenished.
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Table 6 Performance of tree-based models using data which is free of missing values

Performance measures Classification methods

rpart ctree evtree

Evaluation function 91.31 95.44 91.7

Accuracy 0.71 0.68 0.73

Kappa 0.27 0 0.30

Sensitivity 0.90 1 0.90

Specificity 0.32 0 0.37

PPV 0.73 0.68 0.75

NPV 0.60 – 0.64

Prevalence 0.68 0.68 0.68

Fig. 7 ROC curve for

tree-based classifiers in the

presence of missing values

Fig. 8 ROC curve for

tree-based classifiers in the

absense of missing values

Below are the ROC curves with missing values and without missing values pre-

sented by Figs. 7 and 8, respectively. Furthermore, the corresponding area under the

curve (AUC) value was tabulated in Table 7. In Figs.7 and 8, the y-axis denotes the

true positive rate (or sensitivity) and x-axis denotes the true negative rate (or speci-

ficity). The better the classification models, the more quickly the true positive rate

nears 1 (or 100%). This curve and the AUC show that rpart has predictive ability to

discriminate the accident outcome.
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Table 7 AUC areas of the ROC curves for the tree-based classifiers using data with and without

missing values

AUC area

WM WO

rpart 0.724 0.711

ctree 0.650 0.650

evtree 0.598 0.607

WM: withmissing values WO: without missing values

5 Conclusion

In this study, three machine learning models; rpart, ctree, and evtree were used to

classify a data of vehicle accident outcomes and compare their performance. The

comparison of the algorithms was taken under two different scenarios. In the first

scenario, data which includes missing values in covariate variables was used and in

the second, the missing values were replenished using imputation method. In this

study, two interesting points can be mentioned;

(i) Ctree method was found to be the least best performer in both the scenarios when

overall performance measures are considered. Moreover, it was found to stop

classifying the dataset at the second stage of the tree-building process, which

could somehow be because of the structure of the dataset.

(ii) Evtree algorithm looks sensitive to missing values. When data free of missing

values was used, the algorithm was found to outperform the others.

With the quick-emergence of a number of new algorithms to the family of clas-

sifiers, their performance in various applications should be assessed well. For a par-

ticular application like the ‘Vehicle accident’, only when a more comprehensive data

is used can we make more appropriate selection of algorithms. Therefore, such kind

of studies is recommended to figure out why the above-mentioned points came to

happen.
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High-Dimensional CLTs for Individual
Mahalanobis Distances

D. Dai and T. Holgersson

Abstract Statistical analysis frequently involves methods for reducing high-

dimensional data to new variates of lower dimension for the purpose of assessing

distributional properties, identification of hidden patterns, for discriminant analy-

sis, etc. In classical multivariate analysis such matters are usually analysed by either

using principal components (PC) or the Mahalanobis distance (MD). While the dis-

tributional properties of PC’s are fairly well established in high-dimensional cases,

no explicit results appear to be available for the MD under such cases. The purpose of

this chapter is to bridge that gap by deriving weak limits for the MD in cases where

the dimension of the random vector of interest is proportional to the sample size

(n, p-asymptotics). The limiting distributions allow for normality-based inference in

cases when the traditional low-dimensional approximations do not apply.

Keywords Mahalanobis distance ⋅ Increasing dimension ⋅ Weak

convergence ⋅ Marchenko-Pastur distribution ⋅ Outliers ⋅ Pearson family

distributions

1 Mahalanobis Distances

Mahalanobis distance is considered to be one of the most fundamental concepts in

multivariate analysis since its introduction in 1930 by Mahalanobis (1930), Ander-

son 2003, (Mardia 1977). It is used in a wide range of applications, including graph-

ical analysis (Healy 1968; Andrews et al. 1973), outlier detection (Wilks 1963),

discriminant analysis (Pavlenko 2003), multivariate calibration (De Maesschalck

et al. 2000), non-normality testing (Mardia 1974), covariate matching (Frölich 2012),

chemometrics (Todeschini et al. 2013) and construction of multivariate process con-

trol charts (Montgomery and Woodall 1999) to mention a few. These methods have

mainly been developed in a finite dimension framework (i.e. when the dimension p
of the random vector of interest is a fixed number, independent of the sample size n),
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and are usually not directly applicable under more general asymptotics. During the

last decades, much of the research in multivariate analysis has shifted focus from

classical fixed-dimension asymptotics where p∕n → 0 as n → ∞ to settings where

p∕n → c > 0 as n, p → ∞ since many real-world applications are argued to be bet-

ter described by this case. Bai and Silverstein (2010) report an almost exponential

growth in the number of publications concerning analysis of high-dimensional data.

While most of this research has been concerned with core matters such as develop-

ment of efficient point estimators or tests of covariance structures etc., few results

are available for diagnostic analysis or distance measures. In particular, the asymp-

totic distributions of individual MD distances appear to be unknown under a gen-

eral high-dimensional setting, and plain applications of standard methods, such as

those described in Wilks (1963), may lead to erratic conclusions unless p∕n is very

close to zero. Moreover, asymptotic normality is important not only in empirical

applications, but also in theoretical perspectives since normality implies many other

important properties such as uniform integrability, stability, unimodality, finiteness

of exponential moments, etc. This chapter derives weak limits of two common MD

estimates under increasing dimension asymptotics. It is shown that the so-called

leave-one-out version of the MD, which is commonly used in outlier analysis, limits a

different point than the traditional MD estimate and has a different convergence rate.

Hence, while the choice between the two MD estimates is unimportant in low dimen-

sions, some care needs to be taken otherwise. We will start by introducing some def-

initions and symbolism, state some finite-dimensional distributions and then pass

onto increasing dimension settings.

Definition 1 Let 𝐗i ∶ p × 1 be a random vector such that E
[
𝐗i
]
= 𝝁 and

𝚺 = E
[(
𝐗i − 𝝁

) (
𝐗i − 𝝁

)′]
for i = 1,… , n. Then,

Dii ∶=
(
𝐗i − 𝝁

)′𝚺−1 (𝐗i − 𝝁
)
.

The Dii statistic is a measure of the scaled distance between an individual obser-

vation 𝐗i and its expected value 𝝁. Estimators of Dii may be obtained by simply

replacing the unknown parameters with appropriate estimators. In case both 𝝁 and

𝚺 are unknown and replaced by the standard estimators, we obtain the well-known

sample MD defined below.

Definition 2 Let ̄𝐗 = n−1𝐗′𝟏 where 𝟏 is a vector of ones of appropriate dimension

and 𝐒 = n−1
∑n

i=1
(
𝐗i − ̄𝐗

)(
𝐗i − ̄𝐗

)′
. Then, we define an estimator of Dii by

dii ∶=
(
𝐗i − ̄𝐗

)′𝐒−1
(
𝐗i − ̄𝐗

)
.

Further discussions of the aforementioned statistic dii are available in Mardia (1977)

and Mardia et al. (1980). Note that although the inverse sample covariance matrix

is sometimes expressed using a different divisor (for example, n − p − 1 instead of

n), the statistic dii is unbiased in the sense that E
[
dii
]
= E

[
Dii

]
= p. Alternative
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estimators are available as leave-one-out estimators, obtained by omitting a specific

observation from the estimation of the sample mean vector and covariance matrix,

thereby avoiding correlations among the components within the MD estimator. For-

mally, this is performed as follows:

Definition 3 Let 𝐒(i) ∶= (n − 1)−1
∑n

k=1,k≠i
(
𝐗k − ̄𝐗(i)

) (
𝐗k − ̄𝐗(i)

)′
where

̄𝐗(i) ∶= (n − 1)−1
∑n

k=1,k≠i 𝐗k. Then, an estimator of Dii is defined as follows:

d(ii) ∶=
(
𝐗i − ̄𝐗(i)

)′𝐒−1(i)
(
𝐗i − ̄𝐗(i)

)
.

The sample mean vector and the sample covariance matrix are independent when

sampling from a normal distribution; hence, all components within the estimator d(ii)
will be mutually independent, resulting in estimators with distributional properties

different from those of dii. Furthermore, these estimators are robust to the effect of

a single outlier in the sense of not contaminating the estimators of 𝝁 and 𝚺−1
.

Few, if any, results are available regarding the limiting distributions of dii and d(ii)
in high-dimensional settings. The remainder of this chapter is, therefore, concerned

with the asymptotic distributions of dii and d(ii) in such cases.

Proposition 1 Let
{

Xij
}

, i = 1,… , n, j = 1,… , p, be a row-wise i.i.d. double array
of normally distributed variables and p ≤ n − 1. Then, for any i, as p∕n → c ∈ (0, 1),
the following holds:

√
p

√
2

(
p−1Dii − 1

) 𝓁
→N (0, 1) as n → ∞, p → ∞.

Proof Since Dii is invariant to affine transformations we may assume Xij
i.i.d.∼ N (0, 1)

and hence Dii ∼ 𝜒

2
(p) for any i, independently of j. The asymptotic normality of chi-

square variables with increasing degrees of freedom is well known Anderson (2003),

and Proposition 1 is derived. ■

The asymptotic distribution obtained in Proposition 1 may easily be derived under

some general moment restrictions of the parent variable 𝐗i and relaxation of the nor-

mality assumption. However, in real applications, the (inverse) covariance matrix is

unknown and has to be estimated. As a consequence, the distribution of Dii depends

on that of 𝐗i. We will, therefore, retain the normality assumption of Proposition 1

in the derivation of the asymptotic properties of sample MDs to access known finite

sample properties and subsequently relax this assumption.

Theorem 1 Let
{

Xij
}

, i = 1,… , n, j = 1,… , p, be distributed as in Proposition 1
and p ≤ n − 2. Then,

√
p

√
2

(
p−1dii − 1

)

√
(1 − c)

𝓁
→N (0, 1) as n → ∞, p → ∞.
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Proof Let 𝐆 =
(
dij
)
, i, j = 1,… , n be the matrix of sample MDs as specified in

Definition 2 where dij =
(
𝐗i − ̄𝐗

)′𝐒−1
(
𝐗j − ̄𝐗

)
and let 𝐇 = 𝐈 − n−1𝟏𝟏′. Following

Mardia (1977) we have, for any p and p ≤ n − 1, that

n−1𝐇−1∕2
r 𝐆r𝐇−1∕2

r ∼ 𝐁r

(1
2

p, 1
2
(n − p − 1)

)
,

where 𝐆r and 𝐇r are principal sub-matrices of order r from 𝐆 and 𝐇 respec-

tively, 𝐁r has a matrix r × r beta type I distribution. Then, n−1𝐇−1∕2
1 𝐆1𝐇

−1∕2
1 =

n−1
(
1 − n−1

)−1∕2g11
(
1 − n−1

)−1∕2 = g11∕(n − 1) = M11, which is distributed as a

univariate beta type I distribution. Hence, Mii ∼ BI (𝛼, 𝛽) where 𝛼 = p∕2 and

𝛽 = (n − p − 1)∕2. It may be shown that the asymptotic skewness and kurtosis

coefficients of
√

p
(
p−1dii − 1

)/√
2 (1 − c) are given by lim

n,p→∞
𝛾1 = 0, lim

n,p→∞
𝛾2 = 0

(details omitted) and hence the beta-distributed Mii limits a normal distribution in

the Pearson chart determined by the plane of 𝛾
2
1 and 𝛾

2
2 (Ord 1972), which completes

the proof. ■

Below we derive a CLT for the leave-one-out MD, which is seen to behave rather

different than dii.

Theorem 2 Let
{

Xij
}

i = 1,… , n, j = 1,… , p, be distributed as in Proposition 1
and p ≤ n − 1. Then,

√
p

√
2

√
(1 − c)

(
p−1 (1 − c) d(ii) − 1

) 𝓁
→N (0, 1) as n → ∞, p → ∞.

Proof First, we note that d(ii) is invariant to affine transformations and we may

hence assume that Xij
i.i.d.∼ N (0, 1) and therefore

(
𝐗i − ̄𝐗(i)

)
∼ N

(
𝟎p×1,

(
n

n−1

)
𝐈p×p

)

for any p ≤ n − 1, and (n − 1)𝐒(i) ∼ Wishart (n − 2, 𝐈). It then follows that p−1d(ii) ∼[
(n − 2)∕(n − p − 1)

]
F(p,n−p−1) (Mardia et al. 1980). The F-distribution is well

known to be a particular parameterization of the beta prime distribution (Ord 1972),

which, in turn, is a special case of the Pearson type VI distribution. It may be shown

that the skewness and excess kurtosis both limit zero as n → ∞, p → ∞, and hence

the standardized d(ii) asymptotically converges to a normal distribution within the

Pearson plane, and Theorem 2 is established. ■

Although Theorems 1 and 2 assume a Gaussian distribution of the parent variable

Xij, one may expect a limiting Gaussian distribution to be valid under more general

distributions of Xij. We will show that this is indeed the case.

Theorem 3 Let
{

Xij
}

, i = 1,… , n, j = 1,… , p, be a row-wise i.i.d. double array

and E
[(

X1j − E
[
X1j

])/
𝜎j

]4
= 3 with p ≤ n − 1. Then,
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√
p

√
2
(1 − c)3∕2

(
p−1d(ii) − (1 − c)−1

) 𝓁
→N (0, 1) as n → ∞, p → ∞.

Proof Let 𝐒 =
{

Sjj′
}

, Sjj′ = n−1
∑n

i=1
(
Xij − ̄Xj

) (
Xij′ − ̄Xj′

)
, ̄Xj = n−1

∑n
i=1 Xij, j, j′ =

1… p. From Jonsson (1982) and Bai et al. (2007) we then have that√
p∕2

(
p−1tr

(
𝐒−1(i)

)
− (1 − c)−1

)
converges to a zero mean normal distribution with

variance ∫ z−2dFc (z), where dFc (z) = (2𝜋zc)−1
√

((1 +
√

c)
2
− z)(z − (1 −

√
c)

2
)

is the standard Marchenko-Pastur distribution (1967), Bai et al. (2007), Arharov

(1971). It may be shown that ∫ z−2dFc (z) = (1 − c)−3 (Arharov 1971; Serdobol-

skii 2000; Glombek 2014). By using Bai et al. (2007)’s Corollary 2, we have that{
p−1d(ii) − p−1tr

(
𝐒−1(i)

)} a.s.
→ 0, which completes the proof. ■

Before deriving the CLT for the estimator dii, we will establish an important identity.

Proposition 2
(
1 − n−1dii

) ((
1 + d(ii)n−1

)/(
1 + d(ii)n−2

))
= 1.

Proof Set 𝐖 = n𝐒 and 𝐖−i = (n − 1)𝐒−i =
∑n

k=1,k≠i 𝐘k𝐘k
′

where 𝐘k =
(
𝐗k − ̄𝐗

)
.

Let d−ii = y′i𝐒
−1
−i yi. Then ||𝐖−i + 𝐘i𝐘′

i
|| = ||𝐖−i

||
(
1 + 𝐘′

i𝐖−1
−i 𝐘i

)
and ||𝐖 − 𝐘i𝐘′

i
||

= |𝐖|
(
1 − 𝐘′

i𝐖−1𝐘i
)

and so ||𝐖−i + 𝐘i𝐘′
i
||
/||𝐖−i

|| = 1 + (n − 1)−1d−ii and

||𝐖 − 𝐘i𝐘′
i
||
/
|𝐖| = 1 − n−1dii. Hence

(
1 − cp−1dii

) (
1 + cp−1d−ii

)
= 1. Now d−ii

is not independent of observation i, since 𝐗i is included in the sample mean vec-

tor ̄𝐗, and does hence not fully represent the leave-one-out estimator of Dii. How-

ever, using the identity
(
𝐗1 − ̄𝐗

)
= ((n − 1)∕n)

(
𝐗1 − ̄𝐗(i)

)
and substituting it in the

above expressions we find that
(
1 − n−1dii

) (1+d(ii)n−1)
(1+d(ii)n−2) = 1. This is an exact identity,

independent of distributional properties of the parent variable 𝐗, and can be used to

derive properties of dii as a function of d(ii), and vice versa. ■

Since 1 ≤
{(

1 + d(ii)n−1
)/(

1 + d(ii)n−2
)}

, it follows that 0 ≤ n−1dii ≤ 1. For exam-

ple, if c = p∕n, then as n, p → ∞, 0 ≤ p−1dii ≤ c−1, which explicitly shows how the

range of p−1dii is restricted by c. In particular, p−1dii will have too low a range rel-

ative to p−1Dii for large values of c (for example, if 𝐗i is normally distributed, then

p−1Dii ∼ p−1
𝜒

2
(p), which is not bounded).

Theorem 4 Let
{

Xij
}

, i = 1,… , n, j = 1,… , p, be distributed as in Theorem 3.
Then √

p
√
2

1
√
1 − c

(
p−1dii − 1

) 𝓁
→N (0, 1) as n → ∞, p → ∞.

Proof From Theorem 3, we know that

√
p

√
2
(1 − c)3∕2

(
p−1d(ii) − (1 − c)−1

) 𝓁
→N (0, 1)

as n, p → ∞. Using the identity from Proposition 2, we may write p−1dii = k1p−1d(ii)
/
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(
1 + pn−1p−1d(ii)

)
where k1 = (n − 1)∕n. Since dii is a measurable function of d(ii),

we can apply Cramer’s theorem (Ferguson 1996; Birke and Dette 2005) to obtain the

asymptotic distribution of dii as
(
g
(
p−1d(ii)

)
− g (𝜇)

) 𝓁
→N

(
0, ġ2 (𝜇)

)
. Since g (𝜇) =

k1𝜇
/(

1 + pn−1𝜇
)
, its first derivative is ġ (𝜇) = k1

/(
1 + pn−1𝜇

)2
where

𝜇 = (1 − c)−1. Thus, it follows that
√

p
/√

2(1 − c)
(
p−1dii − 1

) 𝓁
→N (0, 1) as

n p → ∞. ■

Note that, although Theorems 3 and 4 are more general in the sense that they do not

require a normal distribution of the parent variable 𝐗i, or even the assumption of all

moments to be finite, Theorems 1 and 2 are still relevant as they provide a little more

information than Theorems 3 and 4, namely that the normalized MD distribution

limits the normal distribution within the Pearson
(
𝛾1, 𝛾2

)
plane, and hence possesses

all Pearson family properties in its path to the normal distribution.

2 Finite Sample Distributions

Proposition 1 and Theorems 1–4 above establish asymptotic normality of Dii, dii and

d(ii) as p → ∞. In this section, we pay some attention to the rates of convergence and

also to the relations between Dii, dii and d(ii). In particular, since the two MD esti-

mates dii and d(ii) differ only in that observation Xi is void in the covariance matrix

used in d(ii), one may expect them to behave similarly when n is large. This is, how-

ever, not the case when p is proportional to n. Some demonstrations of this are given

below.

Proposition 3 Let the skewness coefficient of some random variable x be defined
by 𝛾1 (x) ∶= E[x − E [x]]3

/(
E[x − E [x]]2

)3∕2. Then the skewness of Dii, dii and d(ii)
are, under sampling from normal distributions, given as follows:

(i) 𝛾1
(
Dii

)
=

√
8

√
p
.

(ii) 𝛾1
(
dii
)
=

4 (n − 2p − 1)
√

n + 1
(n + 3)

√
2p (n − p − 1)

.

(iii) 𝛾1
(
d(ii)

)
=

(p + n − 3)
√
8 (n − p − 5)

(n − p − 7)
√

p (n − 3)
.

Proof When sampling from a normal distribution with i.i.d. variables

𝐙′
i =

(
Zi1,… ,Zip

)
, the distributions of the sample MDs are, as explained on pages

3–4 above, determined by Dii ∼ 𝜒

2
(p), M11 =

d11
(n−1)

∼ B (𝛼 = p∕2, 𝛽 = (n − p − 1)∕2),
and the leave-one-out MD p−1d(11) ∼ {(n − 2)∕(n − p − 1)}F(d1=p,d2=n−p−1).
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Fig. 1 Skewness of Dii, dii and d(ii) w.r.t the ratio values c = 0.2; 0.75

The skewness coefficients of the chi-square, beta, and F distributions are available

in Johnson et al. (1995), from where we have, using a slight abuse of notations,

𝛾1

(
𝜒

2
(p)

)
=
√
8∕p, 𝛾1

(
B(𝛼,𝛽)

)
= 2(𝛽−𝛼)

√
𝛼+𝛽+1

(𝛼+𝛽+2)
√
𝛼𝛽

, 𝛾1

(
F(d1,d2)

)
= (2d1+d2−2)

√
8(d2−4)

(d2−6)
√

d1(d1+d2−2)
.

Substituting for the appropriate degrees of freedom and simplifying,

we reach (i–iii).

The denominator of 𝛾1
(
dii
)

is always non-zero while the denominator of 𝛾1
(
d(ii)

)
is

zero when (n − p) = 7. It may be shown in a similar manner that the denominator of

the coefficient of kurtosis of d(ii) is zero for (n − p) ≤ 8. Hence the first four moments

are only finite when n > 8, and d(ii) may behave unexpectedly when (n − p) assigns

values in the neighbourhood of 8+. Although the order of the skewness is O
(
p−1∕2)

for each of Dii, dii and d(ii) the exact skewnesses are functions of different powers of

(p∕n), and hence the actual skewness for a given {n, p} pairing may be quite different

for the three MDs. This is demonstrated in Fig. 1, where the skewness is displayed

for two values of (p∕n) as p increases. When (p∕n) = 0.2, the skewness coefficients

almost coincide, contrary to the case when (p∕n) = 0.75, where the skewness of d(ii)
is seen to have a discontinuity point when p is low and then to assign a very high

value and slowly approach zero. It is also noteworthy that dii and d(ii) are skewed in

different directions. It is, in fact, possible to show that the distribution of d(ii) is in

general very different from that of dii: suppose, with no loss of generality, that the

mean of the parent variable X is known. Then the identity in Proposition 2 simplifies

to
(
1 + n−1d(ii)

) (
1 − n−1dii

)
= 1 and we may express the difference between the two

estimators as 𝛿ii ∶=
{

n−1dii − n−1d(ii)
}
= −(n−1d(ii))2

1+n−1d(ii)
. Whenever n−1d(ii) has a non-

degenerate distribution then so has 𝛿ii by the continuous mapping theorem (Davidson

1994).

Another matter of concern is the rate of convergence to normality. For this pur-

pose, a Monte Carlo simulation is conducted. The closeness between the actual
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Table 1 Factors varied in the simulation

Factor Symbol Value

Distribution of parent variable X
{

N (0, 1) , t(6),K3
}

Sample-to-dimension quotient c {0.20, 0.75, 0.95, 0.98}
Dimension of random vector X p {10, 20, … , 200}
Support of evaluated

distributions

x {−6, − 5.98,… , 5.98, 6}

distributions and the normal distribution is measured by the maximum discrepancy,

also known as the Kolmogorov distance (Shiryayev 1992), while varying relevant

quantities. Since each of the statistics Dii, dii and d(ii) of Definitions 1–3 are invariant

to affine transformations, the mean values and covariances need not concern us. On

the other hand, the higher moments of the parent variable Xij are likely to affect the

convergence rates. Three different marginal distributions are, therefore, included: (i)

the standard normal distribution, representing the ideal case, (ii) a Khintchine type

of non-normal distribution with kurtosis equal to 3 (details are available in Appen-

dix) and (iii) a t-distribution with six degrees of freedom, which violates the moment

assumptions of Theorems 3–4. Further, two different values of the quotient p∕n = c
are used; c = 1∕5 represents an ‘almost low-dimensional case’, while c = 0.75 repre-

sents a genuine high-dimensional setting, where the dimension p is about the same

as n. For the normal distribution the values c = 0.95 and c = 0.98 are included to

investigate the behaviour close to singularity of S. The Kolmogorov distance is esti-

mated by max
x∈(−6,6)

|||Fp (x) − F (x)||| where Fp (x) is the empirical CDF of the statistics in

Theorems 3–4 and F (x) is the CDF of the standard normal distribution, over incre-

ments x, x + h with h = 0.02, using r = 104 replicates for each x. The factors varied

in the simulation are summarized in Table 1.

From Figs. 2, 3, 4 and 5, some interesting properties are shown. It is seen that the

convergence rate depends on the distribution of the parent variable in the way that

MDs calculated from a normal distribution of the parent variable converge faster than

those calculated from a Kinthchine distribution, even though they both satisfy the

assumptions of Theorems 3–4. On the other hand, the t(6) distribution has a kurtosis

equal to 5, which violate the assumptions of Theorems 3 and 4, and the limiting

distributions of the MD estimates consequently do not limit a normal distribution. It

is also seen that high values of the p∕n ratio slow down the convergence rate. While

this effect is in line with what may be expected, it is somewhat surprising to see that

the leave-one-out estimator of Definition 3 converges more slowly than the more

commonly used estimator dii, specified in Definition 2. Although the d(ii) estimator

may still be preferred because of its robustness to a single influential value, it seems

less favourable in analyses where data are expected to be i.i.d., due to the slower

convergence rate.
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Fig. 2 Kolmogorov distances for MD when sampled from a normal distribution

Fig. 3 Kolmogorov distances for MD when sampled from a normal distribution

3 Summary

In this chapter, central limit theorems are derived for two types of individual MDs

in cases where the dimension of data increases proportionally with the sample size.

These limiting distributions can be applied directly for inference of an individual

Mahalanobis distance but also ensure asymptotic normality of functions of the MDs,

which in turn are common in applications such as normality testing. They also serve

as a basis for deriving asymptotic multivariate normality of vectors or even matrices

of MD’s. Furthermore, an explicit link between the leave-one-out estimator, obtained

by omitting one observation from the estimation of mean vectors and the covari-

ance matrix on which the MD depends, and the standard estimator is derived. This

link is one-to-one and can be used to derive distributional properties of one type of
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Fig. 4 Kolmogorov distances for MD when sampled from a Khintchine distribution

Fig. 5 Kolmogorov distances for MD when sampled from a t-distribution with df = 6

estimator as a function of the other. A Monte Carlo simulation is included, which

shows the dependence of the convergence rates on the distribution of the population

sampled from. It is also seen that the leave-one-out estimator converges more slowly

than the traditional estimator, which is a somewhat unexpected finding. Although the

proposed weak limits are useful in their own right, further research should involve

uniform convergence in n, in order to explore properties of statistics based on the

full set of n Mahalanobis distances resulting from a sample.
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Fig. 6 Histogram of a Kinthchine distribution

Appendix

A family of distributions, discussed in Johnson (1987), is defined as Xij = 𝜋ijRijUij
where all components are individually and mutually i.i.d., where p

(
𝜋ij = 1

)
=

p
(
𝜋ij = −1

)
= 0.5, Uij ∼ U (0, 1), Rij ∼ (Gamma(𝜆, q))𝜏 , where U (0, 1) is the stan-

dard uniform distribution and Gamma(𝜆, q) denotes the location-scale parametriza-

tion of the gamma distribution. The parameters are set to 𝜆 = 0.000028, q = 012757
and 𝜏 = 3.5. This yields a symmetric distribution, labelled as K3 in Sect. 2, with mar-

ginal kurtosis equal to 3. A histogram of 50 000 drawings from this distribution is

displayed (Fig. 6).
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Bootstrap Type-1 Fuzzy Functions
Approach for Time Series Forecasting

Ali Zafer Dalar and Erol Eğrioğlu

Abstract In this study, we proposed an alternative approach for time series fore-
casting. Many approaches have been developed and applied for forecasting in the
literature. In the past years, most of these approaches are fuzzy system modelling
approaches. Fuzzy functions approaches were proposed by Turksen (Appl Soft
Comput 8:1178–1188 2008) because traditional fuzzy system modelling approa-
ches are generally based on the fuzzy rule base. Fuzzy functions approaches do not
need to use the rule base. Fuzzy functions approaches should employ randomness,
and their values change randomly from sample to sample. Taking into consideration
this change, researchers need to obtain estimators, but this process for nonlinear
models is not an easy task to carry out. Thus, bootstrap methods can be used in
order to overcome this problem. In this chapter, we proposed a new approach that
uses fuzzy c-means techniques for clustering, type-1 fuzzy functions approach for
fuzzy system modelling and subsampling bootstrap method for probabilistic
inference. By means of the proposed method, researchers can obtain forecast dis-
tribution, forecasts can be obtained from the distribution of forecasts as a measure
of central tendency, and combine many different forecast results. For experimental
study, we used Istanbul Stock Exchange 100 indices as data sets. For comparison of
the results obtained from the proposed method, some other methods that are well
known in the literature are used.
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1 Introduction

In recent years, there has been growing interest in the development of new alter-
native methods that provide more accurate forecasts for time series. These methods
are generally based on artificial neural networks (ANNs) or fuzzy set theory. While
applying ANNs to the time series, they do not comprise any approximations to
uncertainty. The methods based on fuzzy set theory comprise fuzzy approximation
to uncertainty. These methods can be classified as fuzzy regression methods, fuzzy
time series (FTS) methods, fuzzy inference systems (FIS) and fuzzy functions
(FF) approaches for time series forecasting. The aims of these methods are to obtain
more accurate interval and point predictions. In addition to this, these methods have
not often been used in literature because of using linear models and requiring
computations of complex mathematical programming problems.

FTS approach was initially proposed by Song and Chissom (1993a, b). FTS
approaches that work with membership values are like FF approaches. FTS
methods have populously been used for time series forecasting in recent years.
These methods do not comprise any restrictions, unlike classical time series
methods. The main problem of FIS is to take no account of membership values of
FTS methods. Many of the FTS methods are rule based. Determining of the rules is
a significant problem in FIS, and also this is one of the important factors which
effect the performance of methods. The most common used FIS for time series
forecasting is adaptive neuro-fuzzy inference system (ANFIS) that was proposed by
Jang (1993). Traditional fuzzy system modelling methods are generally based on
fuzzy rule bases. This is an important disadvantage situation, therefore, FF
approaches were introduced.

Fuzzy functions approach was introduced by Turksen in 2005 (Turksen 2008).
According to Turksen (2008), FF approaches have emerged from the idea of rep-
resenting each unique rule of a fuzzy rule base system. After introducing FF
approaches to the literature, these approaches are developed by using different kinds
of artificial intelligent systems and fuzzy sets (Celikyilmaz and Turksen 2008a, b,
2009; Turksen 2009). Beyhan and Alci (2010) adapted FF to time series forecasting
and used an embedded model. In Zarandi et al. (2013), a hybrid FF approach was
proposed, and lagged variables were not used like in regression analysis. Aladag
et al. (2016) proposed a type-1 fuzzy functions approach. In this approach, inputs of
the system are lagged variables of time series, and these variables are determined by
binary particle swarm optimisation. In Dalar et al. (2015), FF approach used for
forecasting Turkey Electric Consumption time series data.

Randomness is a well-known expediency for uncertainty because of the human
incapability of understanding. FF approaches should employ randomness, and their
values change randomly from sample to sample. In order to consider this change,
one needs to obtain estimators, but obtaining of estimators for nonlinear models is
not easy. In order to overcome this problem, bootstrap methods can be used.

In linear statistical models, it is possible to obtain the probability distributions of
estimators by means of an assumed probability distribution of error. However, the
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pre-assumed probability distribution of error term can cause problems. It is quite
difficult to obtain the probability distribution of estimators with an assumption on
error term in nonlinear and data-based methods like ANNs and FIS. Efron (1979)
proposed an approach which is called as bootstrap. By means of Efron’s method,
one can obtain a sample for distribution of estimators, and also expected value,
variance and confidence intervals of estimator through these samples.

Bootstrap methods for dependent data have been implemented in different ways.
One can divide these methods in two, model-based and non-model-based methods.
The non-model-based methods are moving block bootstrap method which was
proposed by Künsch (1989) and Liu and Singh (1992), independently, and different
versions of it. These methods are moving block bootstrap (MBB), non-overlapping
block bootstrap (NBB), circular block bootstrap (CBB) which was proposed by
Politis and Romano (1992), stationary block bootstrap (SBB) which was proposed
by Politis and Romano (1994b), and subsampling moving block bootstrap
(Sub-MBB) which discussed in Politis and Romano (1994a), Hall and Jing (1996)
and Bickel et al. (1997). There exist several books about bootstrap and subsam-
pling, e.g. Efron (1982), Hall (1992a, b), Efron and Tibshirani (1993), Shao and Tu
(1995), Davison and Hinkley (1997), Politis et al. (1999), Lahiri (2003), Good et al.
(2005), Chernick (2008) and Chernick and LaBudde (2011). Besides, several
papers give overviews of various aspects of bootstrapping time series. Among them
are Berkowitz and Kilian (2000), Bose and Politis (1995), Bühlmann (1997), Carey
(2005), Hӓrdle et al. (2003), Li and Maddala (1996), Politis (2003), Kreiss and
Paparoditis (2011), Kreiss and Lahiri (2012), Jin et al. (2013), Hwang and Shin
(2014), Cavaliere et al. (2015), Costa et al. (2015) and Pan and Politis (2016).

The chapter is organised as follows. The fundamental knowledge of T1FF
approach and bootstrap methods are briefly summarised in the 2nd and 3rd sections.
The proposed method is introduced in Sect. 4. In the 5th section, the results
obtained from the implementation of the proposed method which was examined by
ISE time series. Finally, in Sect. 6, conclusions are discussed.

2 Type-1 Fuzzy Functions Approach

Turksen (2008) proposed fuzzy functions approach instead of rule-based FIS. While
a relation between inputs and output is established in rule-based FIS, a function is
generated instead of a relation in FF approach. There is no need to determine any
rules in FF approach. This is an important advantage of the T1FF approach.

Algorithm of Turksen (2008)’s T1FF approach is given below step by step.

Step 1. Inputs are lagged variables of time series. Matrix Z comprises of inputs
and output of the system. Inputs and output of the system are clustered
using fuzzy c-means (Bezdek 1981) clustering method.
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Fuzzy c-means (FCM) clustering method can be applied by using the formulas
given below.

vi =
∑n

k=1ðμikÞfizk
∑n

k=1ðμikÞfi
, i=1, 2, . . . , c ð2:1Þ

μik = ∑
c

j=1

d zk , við Þ
d zk , vj
� �

 ! 2
fi− 1

2
4

3
5

− 1

, i=1, 2, . . . , c; k=1, 2, . . . , n ð2:2Þ

where d(z, v) is Euclidian distance and is computed by using the formula (2.3).
Also, zk is a vector whose elements are the elements compose of kth row of Z. μik is
the degree of belongingness of kth observation to the ith cluster.

d zk, við Þ= zk − vik k ð2:3Þ

Step 2. Membership values of the input space are constituted as below.

μik = ∑
n

j=1

d xk, við Þ
d xk, vj
� �

 ! 2
fi− 1

2
4

3
5

− 1

, i=1, 2, . . . , c; k=1, 2, . . . , n ð2:4Þ

Step 3. For each cluster i, membership values of each input data sample, μik and
original inputs are gathered together, and ith fuzzy function is obtained
from predicting Y ið Þ =X ið Þβ ið Þ + ε ið Þ regression model. When the number
of inputs is p, X ið Þ and Y ið Þ matrices are as follows:

XðiÞ =

μi1 x11 ⋯ xp1
μi2 x12 ⋯ xp2
⋮ ⋮ ⋱ ⋮
μin x1n ⋯ xpn

2
664

3
775,Y ðiÞ =

y1
y2
⋮
yn

2
664

3
775 ð2:5Þ

Step 4. Output values are calculated by using the results obtained from fuzzy
functions as follow:

yî =
∑c

i=1 yîkμik
∑c

i=1 μik
, k=1, 2, . . . , n ð2:6Þ

Those who want more information can look the study of Turksen (2008).
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3 Bootstrap Methods

The bootstrap method, initially introduced by Efron (1979) for independent vari-
ables and later extended to deal with more complex dependent variables by several
authors, is a class of non-parametric methods that allow the statisticians to carry out
statistical inference on a wide range of problems without imposing many structural
assumptions on the underlying data-generating random process (Kreiss and Lahiri
2012). In this study, we used SBB in subsampling.

3.1 Subsampling

Before and after the development of non-parametric bootstrap methods,
subsamples-based methods were developed to deal with special problems (Davison
and Hinkley 1997). Subsampling has been applied for confidence intervals and
variance estimates in both i.i.d. and dependent situations. Politis et al. (1999)
summarise results on subsampling and compare it to the bootstrap. They include
applications to i.i.d. samples, stationary and non-stationary time series (Chernick
2008).

3.2 Stationary Block Bootstrap

Stationary block bootstrap, which was proposed by Politis and Romano (1994b), is
a special case of block bootstrap with random block length, and the length of each
block is approximated by the geometric distribution. Instead of the assumption of
the geometric distribution for i.i.d. variables, one can consider other forms of data
distribution for the bootstrap procedure. In this study, we used the uniform distri-
bution for this procedure. When applying SBB to the time series, unlike other block
bootstrap methods (MBB, NBB and CBB), the new samples of time series are
stationary.

4 The Proposed Method

In this study, subsampling stationary block bootstrap fuzzy functions approach
(SSBFF) which use type-1 fuzzy functions (T1FF) based on subsampling bootstrap
method is proposed. Algorithm of the proposed method is given below, step by
step.
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Algorithm. T1FF based on subsampling bootstrap method

Step 1. The lengths of the training and test sets (ntrain and ntest), the number of
fuzzy clusters (cn) which will be used in fuzzy functions approach, fuzzy
index value (fi) used in fuzzy c-means method, the number of lagged
variables (p) and the number of bootstrap repetitions (nbst) are
determined.

Step 2. For each bootstrap sample, the steps from Step 2.1 to Step 2.6 are
repeated. Bootstrap samples are taken from the training set. The forecast
results for the test set are obtained from optimised fuzzy functions
approach by using the bootstrap sample. As a result of this, the test set is
fixed for all bootstrap repetitions.

Step 2:1. The inputs of the system are determined according to number of lagged
variables. Matrix Z, composed of both inputs and output of the system, is
generated. Then, elements of the matrix are clustered by using FCM
technique. FCM can be applied using the formulas given below.

vi =
∑n

k=1ðμikÞfizk
∑n

k =1ðμikÞfi
, i=1, 2, . . . , c ð4:1Þ

μik = ∑
c

j=1

d zk , við Þ
d zk , vj
� �

 ! 2
fi− 1

2
4

3
5

− 1

, i=1, 2, . . . , c; k=1, 2, . . . , ntrain

ð4:2Þ

where d(z, v) is Euclidian distance and is computed by using the formula
(2.3).

Step 2:2. Membership values of the input space are found as follows:

μik = ∑
n

j=1

d xk, við Þ
d xk, vj
� �

 ! 2
fi− 1

2
4

3
5

− 1

, i=1, 2, . . . , c; k=1, 2, . . . , ntrain

ð4:3Þ

where x is an input matrix which is generated for lagged variables.

Celikyilmaz and Turksen (2009) used mathematical transformations of mem-
bership values. Their research indicated that the exponential and various logarith-
mic transformations of membership values can improve the performance of the
system models.

In this study, for each cluster i by using membership values, μ2i1 and exp μi1ð Þ are
taken.

Step 2:3. For each cluster i, membership values of each input data sample, μik
and original inputs are gathered together, and ith fuzzy function is
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obtained from predicting Y ið Þ =X ið Þβ ið Þ + ε ið Þ regression model. When the
number of inputs is p, X ið Þ and Y ið Þ matrices are as follows:

X ið Þ =

1 μi1 μ2i1 exp μi1ð Þ x11 ⋯ xp1
1 μi2 μ2i2 exp μi2ð Þ x12 ⋯ xp2
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 μi, ntrain μ2i, ntrain exp μi, ntrain

� �
x1, ntrain ⋯ xp, ntrain

2
664

3
775, Y ið Þ =

y1
y2
⋮

yntrain

2
664

3
775

ð4:4Þ

The parameters and predictions of the linear model are estimated by using
following formulas:

β ̂ ið Þ = ðX ið Þ′X ið ÞÞ− 1X ið Þ′Y ið Þ ð4:5Þ

Y ̂ ið Þ =X ið Þβ ̂ ið Þ ð4:6Þ

Step 2:4. By using the results obtained from fuzzy functions, prediction values
for training set are calculated as follow:

yî =
∑c

k=1 yîkμik
∑c

k=1 μik
, i=1, 2, . . . , ntrain ð4:7Þ

Step 2:5. The membership values are obtained for test set inputs according to
precalculated cluster centres. X ið Þ and Y ið Þ matrices are constituted for
the test set as follows:

XðiÞ =

1 μi, ntrain+1 μ2i, ntrain+1 exp(μi, ntrain+1) xi, ntrain+1 ⋯ xp, ntrain+1

1 μi, ntrain+2 μ2i, ntrain+2 exp(μi, ntrain+2) xi, ntrain+2 ⋯ xp, ntrain+2

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 μi, ntrain+ ntest μ2i, ntrain+ ntest exp(μi, ntrain+ ntest) xi, ntrain+ ntest ⋯ xp, ntrain+ ntest

2
66664

3
77775

Y ðiÞ =

yntrain+1

yntrain+2

⋮
yntrain+ ntest

2
6664

3
7775

Y ̂ ið Þ =X ið Þβ ̂ ið Þ

ð4:8Þ

Step 2:6. Forecasts of fuzzy functions for the test set are obtained as follow:

y ̂ ji =
∑c

k=1 yîkμik
∑c

k=1 μik
, i= ntrain+1, ntrain+2, . . . , ntrain+ ntest, j=1, 2, . . . , nbst

ð4:9Þ
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Step 3. The bootstrap forecasts are calculated by using median statistic as
follow, and template of the bootstrap forecasts is given in Table 1.

y ̂i =median y ̂ ji
� �

, j=1, 2, . . . , nbst, i=1, 2, . . . , ntest ð4:10Þ

Step 4. Calculate root mean square error (RMSE) and mean absolute percent-
age error (MAPE) values for test set.

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T
∑
T

t=1
yt − yt̂ð Þ2

s
ð4:11Þ

MAPE=
1
T
∑
T

t=1

yt − yt̂
yt

����
���� ð4:12Þ

5 Implementation

In the implementation, the proposed method was applied to Istanbul Stock
Exchange (ISE) data sets. Details of data sets are given below:

Set 1. It is daily observed between 02/01/2009 and 29/05/2009 dates, and consist
of 103 observations.

Set 2. It is daily observed between 04/01/2010 and 31/05/2010 dates, and consist
of 104 observations.

Set 3. It is daily observed between 03/01/2011 and 31/05/2011 dates, and consist
of 106 observations.

Set 4. It is daily observed between 02/01/2012 and 31/05/2012 dates, and consist
of 106 observations.

Set 5. It is daily observed between 02/01/2013 and 29/05/2013 dates, and consist
of 106 observations.

The test sets are taken as the last 7 observations of each ISE data sets. All ISE
data sets are forecasted by using the methods are listed below.

ARIMA: Autoregressive Integrated Moving Average Model, The best model
was determined Box–Jenkins Procedure.

Table 1 The bootstrap
forecasts

ŷj1 y ̂j2 ⋯ ŷjntest

ŷ11 y1̂2 ⋯ ŷ1ntest
ŷ21 y2̂2 ⋯ ŷ2ntest
⋮ ⋮ ⋯ ⋮
ŷnbst1 yn̂bst2 ⋯ ŷnbstntest

ŷ1 y2̂ ⋯ ŷntest
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ES: Exponential Smoothing, Simple, Holt and winters exponential smoothing
methods were applied and the best model was selected.

Song–Chissom: Song and Chissom time-invariant fuzzy time series method
(Song and Chissom 1993a, b), the numbers of fuzzy sets were changed from 5 to 15
and the best numbers of fuzzy sets were selected.

T1FF: Type-1 fuzzy functions approach (Turksen 2008), the model order and the
number of fuzzy sets were changed from 1 to 5 and from 5 to 15, respectively, and
α-cut was taken 0 and 0.1.

In the proposed approach, we determined the number of lagged variables
(m) between 1 and 5, with an increment of 1. The number of fuzzy clusters (cn)
experienced between 3 and 7, with an increment of 1. The number of bootstrap
repetitions is taken as 50, 75 and 100. RMSE and MAPE performance measures,
whose formulas given in 4.11 and 4.12, are calculated for each method.

5.1 Analysis of Set 1 Time Series

The graph and analysis result of Set 1 time series is given in Fig. 1 and in Table 2,
respectively.

As seen in Table 2, the best RMSE and MAPE values are obtained from the
SSBFF approach. The best model for ARIMA was obtained as ARIMA(0, 1, 0).
Alpha value of Simple-ES was obtained as 0.99993. The result of T1FF was
obtained when cn, m and α-cut are taken as 7, 5 and 0, respectively. In the SSBFF
approach, the best result was obtained when cn, m and nbst are taken as 4, 2 and 50,
respectively.

Fig. 1 The graph of Set 1 time series
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The forecasting performance of SSBFF approach is also examined visually. The
graph of the real observations together with the forecasts obtained from the SSBFF
method for Set 1 time series is given in Fig. 2.

5.2 Analysis of Set 2 Time Series

The graph and analysis result of Set 2 time series is given in Fig. 3 and in Table 3,
respectively.

Table 2 RMSE and MAPE values for test data of Set 1 time series

Date Test data ARIMA ES Song–Chissom ANFIS T1FF SSBFF

21.05.2009 34721 35140 35140 33641 34981 35218 35067

22.05.2009 35015 34721 34721 33641 34501 35039 34693

25.05.2009 35408 35015 35014 33641 34932 35127 34957

26.05.2009 34861 35408 35408 33641 35363 35733 35303

27.05.2009 35169 34861 34861 33641 34707 35191 34820

28.05.2009 35021 35169 35169 33641 35127 35401 35092

29.05.2009 35003 35021 35021 33641 34929 35399 34962

RMSE 344,910 344,930 1402,400 385,639 445,515 327,425*

MAPE 0,0087 0,0087 0,0396 0,0169 0,0101 0,0082*

The best RMSE and MAPE values are marked with ‘*’

Fig. 2 The graph of the real observations together with the forecasts obtained from the SSBFF
method for Set 1 time series
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As seen in Table 3, the best RMSE and MAPE values are obtained from the
Song–Chissom and ANFIS methods, respectively. The best model for ARIMA was
obtained as ARIMA(0, 1, 0). Alpha value of Simple-ES was obtained as 0.971991.
The result of T1FF was obtained when cn, m and α-cut are taken as 6, 3 and 0,
respectively. In the SSBFF approach, the best result was obtained when cn, m and
nbst are taken as 3, 2 and 50, respectively.

The forecasting performance of SSBFF approach is also examined visually. The
graph of the real observations together with the forecasts obtained from the SSBFF
method for Set 2 time series is given in Fig. 4.

Fig. 3 The graph of Set 2 time series

Table 3 RMSE and MAPE values for test data of Set 2 time series

Date Test
data

ARIMA ES Song–
Chissom

ANFIS T1FF SSBFF

21.05.2010 54112 54450 54520 53278 53924 54349 54424

24.05.2010 54558 54112 54123 53278 54901 54032 54101

25.05.2010 52257 54558 54546 53278 54519 54602 54528

26.05.2010 54104 52257 52321 53897 52037 52430 52410

27.05.2010 54498 54104 54054 53278 55253 54111 54094

28.05.2010 55234 54498 54486 53278 53616 54561 54470

31.05.2010 54385 55234 55213 54791 55403 55100 55198

RMSE 1221,000 1208,100 1127,500* 1402,219 1179,900 1179,634

MAPE 0,0183 0,0185 0,0182 0,0145* 0,0179 0,0178

The best RMSE and MAPE values are marked with ‘*’

Bootstrap Type-1 Fuzzy Functions Approach … 79



5.3 Analysis of Set 3 Time Series

The graph and analysis result of Set 3 time series is given in Fig. 5 and in Table 4,
respectively.

Fig. 4 The graph of the real observations together with the forecasts obtained from the SSBFF
method for Set 2 time series

Fig. 5 The graph of Set 3 time series
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As seen in Table 4, the best RMSE value is obtained from the SSBFF. The best
model for ARIMA was obtained as ARIMA(0, 1, 0). Alpha value of Simple-ES was
obtained as 0.99999. The result of T1FF was obtained when cn, m and α-cut are
taken as 7, 5 and 0, respectively. In the SSBFF approach, the best result was
obtained when cn, m and nbst are taken as 3, 4 and 50, respectively.

The forecasting performance of SSBFF approach is also examined visually. The
graph of the real observations together with the forecasts obtained from the SSBFF
method for Set 3 time series is given in Fig. 6.

Table 4 RMSE and MAPE values for test data of Set 3 time series

Date Test
data

ARIMA ES Song–
Chissom

ANFIS T1FF SSBFF

23.05.2011 63210 63299 63300 62738 63192 63467 63504
24.05.2011 64561 63210 63210 62738 63897 63120 63354
25.05.2011 63609 64561 64557 64368 64553 64592 64662
26.05.2011 63755 63609 63613 64368 65336 63495 63539
27.05.2011 62407 63755 63755 64368 63462 64038 63898
30.05.2011 61492 62407 62412 62738 63685 62458 62476
31.05.2011 63046 61492 61495 61109 62184 61845 61799

RMSE 1057,600 1057,000 1396,400 1224,672 1083,200 1031,546*
MAPE 0,0144* 0,0144* 0,0200 0,0162 0,0153 0,0147

The best RMSE and MAPE values are marked with ‘*’

Fig. 6 The graph of the real observations together with the forecasts obtained from the SSBFF
method for Set 3 time series
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5.4 Analysis of Set 4 Time Series

The graph and analysis result of Set 4 time series is given in Fig. 7 and in Table 5,
respectively.

As seen in Table 5, the best RMSE and MAPE values are obtained from the
SSBFF. The best model for ARIMA was obtained as ARIMA(0, 1, 0). Alpha value
of Simple-ES was obtained as 0.99993. The result of T1FF was obtained when cn,
m and α-cut are taken as 7, 5 and 0, respectively. In the SSBFF approach, the best
result was obtained when cn, m and nbst are taken as 4, 5 and 50, respectively.

Fig. 7 The graph of Set 4 time series

Table 5 RMSE and MAPE values for test data of Set 4 time series

Date Test
data

ARIMA ES Song–
Chissom

ANFIS T1FF SSBFF

23.05.2012 55734 57079 57079 57522 56020 57614 57004
24.05.2012 54917 55734 55734 57522 55434 56209 55456
25.05.2012 54810 54917 54917 55600 55271 55546 54855
28.05.2012 54844 54810 54810 55600 53612 55578 55110
29.05.2012 55450 54844 54844 55600 53540 55557 54960
30.05.2012 55125 55450 55449 55600 54550 56044 55465
31.05.2012 55099 55125 55125 55600 54805 55690 55027

RMSE 650,560 650,739 1291,500 937,030 1034,200 577,970*
MAPE 0,0084 0,0084 0,0183 0,0148 0,0162 0,0078*

The best RMSE and MAPE values are marked with ‘*’
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The forecasting performance of SSBFF approach is also examined visually. The
graph of the real observations together with the forecasts obtained from the SSBFF
method for Set 4 time series is given in Fig. 8.

Fig. 8 The graph of the real observations together with the forecasts obtained from the SSBFF
method for Set 4 time series

Fig. 9 The graph of Set 5 time series
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5.5 Analysis of Set 5 Time Series

The graph and analysis result of Set 5 time series is given in Fig. 9 and in Table 6,
respectively.

As seen in Table 6, the best RMSE and MAPE values are obtained from the
SSBFF. The best model for ARIMA was obtained as ARIMA(0, 1, 0). Alpha value
of Simple-ES was obtained as 0.99993. The result of T1FF was obtained when cn,
m and α-cut are taken as 7, 5 and 0, respectively. In the SSBFF approach, the best
result was obtained when cn, m and nbst are taken as 6, 2 and 50, respectively.

Table 6 RMSE and MAPE values for test data of Set 5 time series

Date Test
data

ARIMA ES Song–
Chissom

ANFIS T1FF SSBFF

23.05.2013 91351 93179 93179 90710 94507 93691 92021
24.05.2013 91016 91351 91351 90710 90138 91551 90007
27.05.2013 90547 91016 91016 90710 89376 91026 89851
28.05.2013 89916 90547 90547 90710 91672 90740 89557
29.05.2013 87175 89916 89916 90710 88091 90092 87515
30.05.2013 87170 87175 87175 87008 85637 86997 86728
31.05.2013 85990 87170 87170 87008 85162 86876 86725

RMSE 1361,600 1361,600 1450,300 1649,960 1511,600 647,300*
MAPE 0,0116 0,0116 0,0108 0,0124 0,0131 0,0068*

The best RMSE and MAPE values are marked with ‘*’

Fig. 10 The graph of the real observations together with the forecasts obtained from the SSBFF
method for Set 5 time series
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The forecasting performance of SSBFF approach is also examined visually. The
graph of the real observations together with the forecasts obtained from the SSBFF
method for Set 5 time series is given in Fig. 10.

It can be seen from the graphs of real observations together with forecasts,
forecasts of the proposed method for all data sets are very close to the original
observations. Although the result for Set 1 time series is the second best, forecasts
of the proposed methods are good.

6 Conclusions

In this study, a subsampling stationary block bootstrap fuzzy functions approach
which uses T1FF approach based on subsampling bootstrap method is proposed.
And besides, the proposed approach is implemented to five different ISE time
series. The performance of proposed method has been compared with some recent
methods such as fuzzy functions approach and fuzzy time series methods available
in the literature. As a result of the comparison, the proposed method obtained better
forecasts compare to the other methods, for the time series that are used in this study
except for Set 2 time series. By means of the proposed method, one can obtain
forecast distribution, and forecasts can be obtained from the distribution of forecasts
as a measure of central tendency, and combine many different forecast results.
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A Weighted Ensemble Learning by SVM
for Longitudinal Data: Turkish Bank
Bankruptcy

Birsen Eygi Erdogan and Süreyya Özöğür Akyüz

Abstract Support Vector Machines (SVMs) are one of the most popular classifi-
cation methods developed in recent years which have various application fields of
research with diverse types of data sets. Longitudinal type of data is one of these
types where a great deal of attention should be paid before applying SVMs. In this
study, we modeled the decision maker with the idea of ensemble learning on
longitudinal financial ratios to discriminate between weak and strong banks
validated on Turkish commercial banks data where SVM is considered to be the
base learner. We used the success status of the banks as the dependent variable and
the financial ratios as independent variables. The results are compared in terms of
the modeling performances and sensitivity measures which show the robustness of
the model for finding positive instances, i.e. weak banks. The results show that
ensemble learning performs better than a single learner. Moreover, we also vali-
dated that applying an appropriate normalization technique has strong effects on the
performance of the learning step, especially when dealing with longitudinal data.

Keywords Bankruptcy ⋅ Kernel learning ⋅ Ensemble learning
Longitudinal data ⋅ Normalization ⋅ Support vector machines (SVM)

1 Introduction

One of the main goals of the classification techniques is to build a mathematical
model which predicts the classes of the objects with a higher accuracy than a
random guess. It has been shown that the decision of the community of learners

B. E. Erdogan (✉)
Department of Statistics, Marmara University, Istanbul, Turkey
e-mail: birsene@marmara.edu.tr

S. Ö. Akyüz
Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Turkey
e-mail: sureyya.akyuz@eng.bau.edu.tr

© Springer International Publishing AG 2018
M. Tez and D. von Rosen (eds.), Trends and Perspectives
in Linear Statistical Inference, Contributions to Statistics,
https://doi.org/10.1007/978-3-319-73241-1_6

89



gives better results than a single one (Hansen and Salomon 1990; Utami et al.
2014). The community of learners, namely ensembles, can be constructed in dif-
ferent ways, such as bagging (bootstrap aggregating) or boosting which use a
resampling approach to minimize the classification error.

The main idea of bagging is based on bootstrap and aggregation (Breiman 1996).
In the bootstrap stage, a bootstrap sample is uniformly drawn with a replacement
and the base learner (decision trees, neural networks, support vector machines
(SVM) etc.) is trained for each learner. In the aggregation stage, a final classifier is
built up using majority voting.

In boosting, the selection of the bootstrap samples is different where the sample
is drawn based on the information obtained from the previous sample drawn. In a
boosted sample, incorrectly predicted observations are chosen more often than the
correctly predicted ones by former classifiers. This approach is especially useful for
unbalanced data, where samples in one or more group of data are rare in the rest of
the groups. Different boosting algorithms have been developed for binary classi-
fication problems subsequent to the most well-known boosting algorithm AdaBoost
(Freund and Schapire 1997).

In this study, we have developed an ensemble learning model which aggregates
the decision of multiple classifiers by a weighted combination. One of the novelties
of the proposed model in this study is constructed on the idea of an ensemble of
learners arising from the annual information of each bank. In other words, each
classifier in the ensemble is trained for different time intervals so that the annual
information is preserved by its decision maker for future prediction. As it is stated
before that SVM is chosen as a base classifier when constructing the set of
ensemble and the results of each classifier are aggregated by the proposed opti-
mization model in Sect. 3.2

2 Bankruptcy Prediction

The banking sector is one the most important sectors to create more wealth and it
has a major share in the financial field which needs to be tracked constantly.
Sometimes the bankruptcy of a single bank may collapse the world’s financial
system. For this reason, besides the investors, ordinary people need to know the
performance of the banks for their future plans. Therefore the prediction of the
bankruptcy probability of a bank is a very important task.

Researchers from different disciplines have begun to focus their work on
financial failure prediction models since the mid-1970s. In order to see the diversity
and the development of the models made between 1970 and 2005 one can refer to
Balcaen and Ooghe (2006). It is concluded that for the time period included in the
study of Balcaen and Ooghe (2006), the researchers focused only on the classical
statistical models (discriminant analysis, logit, probit, etc.) and it is stated that
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alternative methods (survival analysis, machine learning decision trees, expert
system, and neural networks) must be compared with the classic statistical models.
Hossari (2006) reviewed the latest studies focusing on corporate collapse over the
period 1966–2004 where he concluded that in the last few decades beside the
various statistical techniques several new methods have been proposed (ID3, rough
sets analysis, tabu search, neural networks, etc.) on developing failure models to
compare predictive power with those classical statistical models. Kumar and Ravi
(2007) did comprehensive research with overlapping times between 1968 and 2005
and ended up almost in the same conclusion with Hossari stating that intelligent
techniques such as neural networks, support vector machines and fuzzy logic can be
utilized. In the study of Demyanyk and Hasan (2010) which reviews bank bank-
ruptcy starting from 1968 up to date concludes that operations research techniques
can be exploited in financial failure studies. For instance, in another bank bank-
ruptcy study by Fethi and Pasiouras (2010) both operational research and artificial
intelligence techniques are included over the period of 1998 to 2009.

There exist few types of research dealing with the prediction of financial failure
focusing on the bankruptcy of Turkish banks. These studies are important for
understanding the fatal consequences of the global financial crises in the case of
Turkish financial failures, which were easily triggered by the global financial crises
that peaked both in 2001 and in 2008. Important contributions to this literature
include Canbas et al. (2005), Celik and Karatepe (2007), Boyacıoğlu et al. (2009),
Erdogan (2013, 2016).

It can be seen from the literature mentioned above that in the last few decades
artificial intelligence techniques have become more prevalent because of their
advantages of not having strict theoretical statistical assumptions such as normality,
linearity, homoscedasticity etc. Neural networks were the most preferred tools until
a more advanced method SVMs have been reported as being superior among all.
The advantages of SVMs are listed by Härdle and Moro (2004), Auria and Moro
(2008) as well as by Vapnik (1998) who pioneered the construction of SVMs. In a
comparison of Artificial Neural Network, the main advantages of SVMs are having
a global solution and the opportunity of using a kernel function in case of nonlinear
data sets.

In this study, our aim is to build a model that maps financial ratios (input) to the
position of the bank (output variable) by labeling the output values either “failed” or
“successful”. The bank is defined to be failed if it is transferred to Savings and
Deposits Insurance Fund (SDIF) which is a governmental body works for fund
management and insurance in the Turkish banking system.

The next section summarizes theoretical aspects of SVMs and ensemble models
which are followed by Sect. 4 with the details of the implementation of the pro-
posed method and finally, Sect. 5 presents the conclusion and discussion.
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3 Theoretical Background

3.1 Support Vector Machines

Support Vector Machines which have been proven for their success in classification
problems have begun to be used in a variety of fields such as text categorization,
face recognition, image processing, loan deficiency and bankruptcy prediction since
the early 1990s.

SVM is a supervised learning which learns the rule of classification for a given
input–output pairs xi, yið Þ. Mathematically speaking, it constructs a hyperplane
f = ⟨w, x⟩+ b that maps the input (sample points), xi ∈Rn to the output (classes/
labels), yi ∈ +1, − 1f g in case of a binary classification problem. Here, ⟨., .⟩ stands
for dot product, w ∈Rn refers to the normal vector of the hyperplane and b refers to
the bias term, Cristianini and Shawe-Taylor (2000).

The hyperplane defined above is a linear decision surface which separates the
class of objects as best as possible by using the idea of maximum margin principle,
Cristianini and Shawe-Taylor (2000). The maximum margin principle is defined by
finding the maximum distance between the class boundaries. This approach reduces
the probability of misclassification, Hamel (2009). The solution of the problem
referring to finding a separating hyperplane is sparse i.e. depends only on the
training points that have heavier constraints on the class boundaries so-called
support vectors.

Mathematically, finding the maximum margin is calculated by maximizing the
distance between two supporting hyperplanes determined by a formula 2

wj j. As the
norm of w becomes smaller, the margin becomes larger. When fitting a model
usually a regularization parameter is added to the model as a penalty term to avoid
overfitting. In SVM this is achieved by using a regularization parameter C corre-
sponding to the error term ξi. A large C produces a small margin and a small C
produces a large margin. The objective function can be expressed as a minimization
problem given by Eq. (1), Hamel (2009),

min
w, ξ

w ⋅ w+C ∑
l

i=1
ξi ð1Þ

For a given training set, D= x1, y1ð Þ, x2, y2ð Þ, . . . , xl, ylð Þf g⊆ℝn × +1, − 1f g,
the primal optimization problem is formulated with the objective function given by
Eq. (1) and the constraints constructed by supporting hyperplanes written in Eq. (2)
below

yi w ⋅ xi − bð Þ+ ξi − 1≥ 0 for all xi, yið Þ∈D s.t. yi ∈ +1, − 1f g, ð2Þ

ξi ≥ 0, C>0.
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By using the theory of constrained optimization, the minimization problem given
by Eqs. (1) and (2) is equivalent to maximize the Lagrangian function in (3):

L α,w, γ, ξ, bð Þ= 1
2
w ⋅ w+C ∑

l

i=1
ξi − ∑

l

i=1
αi yi w ⋅ xi − bð Þ+ ξi − 1ð Þ− ∑

l

i=1
γξi ð3Þ

Therefore the primal problem of SVM is turned into the following dual problem

max
α, γ

min
w, ξ, b

L α,w, γ, ξ, bð Þ,

subject to αi ≥ 0, γi ≥ 0, i=1, . . . , l ð4Þ

where α and γ are l × 1 vectors corresponding Lagrangian multipliers for the
constraints.

Based on the requirements of Necessary and Optimality Conditions of the
constrained optimization theory when Karush Kuhn Tucker (KKT) conditions are
applied to the problem (4), the dual problem can be written as:

α* = argmax
∝

∑
l

i=1
αi −

1
2
∑
l

i=1
∑
l

j=1
αiαjyiyjxi ⋅ xj

 !

subject to ∑
l

i=1
αiyi =0,

C≥ αi ≥ 0 i=1, . . . , l.

ð5Þ

The Solution of the dual problem above are the indicators of support vectors
which allows to write the equation of optimum separating hyperplane with the
normal vector below:

w* = ∑
i∈ SV

α*i yixi, ð6Þ

where the offset term b* of the hyperplane is computed by:

b* =
1

NSVj j ∑
i∈ SV

yi − ∑
N

j=1
α*j yjxi ⋅ xj

 !
. ð7Þ

Here, SV represents the set of support vectors. By using Eqs. (6) and (7), the
linear decision function can be written by:

f ̂ xð Þ= sign ∑
i∈ SV

α*i yixi ⋅ x+ b*
� �

. ð8Þ
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The dot product of the inputs in the Eq. (8) leads to a very nice property of
SVMs, called the kernel trick. In real-world problems, data can not generally be
separated linearly. In this case, these data points can be transformed into a higher
dimensional feature space by a nonlinear mapping ϕ xð Þ where the new data points
become linearly separable in this new space so-called feature space. The new data
points ϕ xð Þ in the feature space can be infinite dimensional in some cases where the
computational cost becomes large and finding the nonlinear mapping ϕ xð Þ
explicitly can be difficult. Kernel functions associated with these transformations by
dot products in the feature space can be easily calculated in the input space.

The kernel trick is formulated by a dot product between the two data points in
feature space F where the data points are transformed from the input space X to the
feature space F by a mapping function φ: X → F. Then the dot product in the input
space in Eq. (8) is replaced by the dot product in the feature space F.

A kernel function K: X × X → ℝ which measures the similarity between two
points is defined by a dot product: K xi, xj

� �
=φ xið Þ ⋅ φ xj

� �
. If the dot product in

Eq. (8) is replaced by K xi, xj
� �

, w* and b* can be written as:

w* ⋅ φ xð Þ= ∑
i∈ SV

α*i yiK xi, xð Þ, ð9Þ

b* =
1

NSVj j ∑
i∈ SV

yi − ∑
N

j=1
α*j yjK xi, xð Þ

 !
, ð10Þ

and hence the classification rule becomes:

f ̂ xð Þ= sign w* ⋅ φ xð Þ+ b*
� �

. ð11Þ

Among all of the proposed functions in the literature, the most common kernel
functions used for SVMs are polynomial, Gaussian, and sigmoid functions (Motai
2015). In this study, all of the three kernels are tested and the best training accuracy
is obtained by the combination of Gaussian kernel and the linear kernel. In the rest
of the chapter, all calculations and the models are based on the Gaussian and the
linear kernel functions which are given in the following formulas respectively:

Gaussian K xi, xj
� �

=exp − 1
2σ2 xTi − xj
�� ��2� �

; σ: kernel width

Linear K xi, xj
� �

= xTi xj.

3.2 Weighted Ensemble Learning for Longitudinal Data

Ensemble learning is a method of combining decisions of different learning models
which has been widely used in machine learning because of its performance in
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classification problems (Zhang et al. 2006). In the literature, it has been empirically
shown that the decision of the community of classifiers gives better accuracy than
the decision of a single classifier (Kuncheva 2004). As it is stated before, a number
of methods have been proposed over the decades such as bagging (Breiman 1996)
and boosting (Freund and Schapire 1996). It has not gone beyond the empirical
validation of ensemble learners since there is not any theoretically consistent
explanation in the literature. Despite these negative expressions, there exist three
theories which explain the success of ensemble learners. The first theory is founded
on large margin classifiers (Mason et al. 2000) where ensemble classifiers enlarge
the margins and enhance the generalization performance of output coding (Allwein
et al. 2000). The second theory is based on the bias-variance decomposition of the
error where ensemble classifiers reduce the variance or both bias and variance
(Breiman 2008; Kong and Dietterich 1995; Schapire 1999). The last theory is
developed by a set theoretical point of view in which the classifiers are considered
as a set of points to remove all algorithmic details of classifiers and training pro-
cedures (Kleinberg 1996, 2000).

The effectiveness of ensemble methods depends highly on the diversity and the
accuracy of the learning models within the ensemble set. The set of ensembles can
be generated in different ways such as including different learning algorithms,
changing the parameters of the base learner or changing the features of the data set
in order to satisfy the accuracy and diversity dilemma. Following the selection of
the best candidate solutions (classifier models), the ensemble enters into the process
of aggregation of these solutions. The aggregation of the various classifier functions
is combined by so-called consensus function which can be written in two different
ways; by using optimization models and cluster-based representation. Developing
optimization models for the aggregation of classifiers is based on minimizing the
error within the training error by means of a loss function. On the other hand,
cluster-based representation is founded on graph theoretical approach which takes
into account of the similarity of points defined by a similarity matrix in terms of
so-called co-association matrices.

In this study, we implemented a consensus function by using a weighted convex
combination for longitudinal data. Each classifier is trained by SVM within a
predefined time interval and tested on the data of the consecutive years. The per-
formance of each classifier is then recorded to be used as corresponding weights.
The weight vector β= β1, β2, β3ð ÞT is normalized with respect to the Euclidean
norm. The consensus function of the model is formulated by

F xð Þ= ∑
3

i=1
βi f î xð Þ ð12Þ

where f î xð Þ is the classifier function that is obtained from each year. The sign of the
consensus function which is tested on data of year 2001 will give the aggregated
decision of each classifier.

As it is stated before, the selection of the best candidates of learners among the
ensemble is another problem in this field of research (Özöğür-Akyüz 2015). In fact,
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we do not need such selection in our problem since the ensemble is constructed by
different time intervals where each classifier represents the corresponding year and
therefore none of them needs to be eliminated from the ensemble. The imple-
mentation of our ensemble model is introduced in the next section.

4 Implementation and Results

4.1 Datasets

As mentioned earlier, in this research, a longitudinal classification study will be
carried out with the help of long-term financial ratios of the banks with respect to
the success status of the banks. For this purpose, we have used annual financial data
of the Turkish commercial banks. In this study, the data set includes 41 banks
operating in Turkey which is collected from The Banks Association of Turkey
(BAT) web site (http://www.tbb.org.tr/english/) (Banks Association of Turkey).
Banks in Turkey (1998–2002).

According to the Banks Association of Turkey’s records, 4 of 41 operating
banks went bankrupt in 1998, 9 in 1999, 14 in 2000 and 20 in 2001. The banks
which were not transferred to SDIF are defined as “successful”. As a training set,
we have used the longitudinal data set between 1998 and 2000. With the aim of
making a priori bankruptcy prediction, the test set is chosen as the data belonging to
the year 2001. Therefore, there are 27 failed banks in the training set and 20 failed
banks in the test set. In this study, the financial status of the bank is considered as
the dependent variable with the labels −1 for successful and 1 for the failed banks.
Annual financial ratios are used as independent variables. For more explanation
about the data set, one can refer to Erdogan (2013). The failed banks list of Erdogan
(2013) study has been updated using the following idea: if a bank was taken by
SDIF in the first six month its failure comes from the previous year. For example,
Ulusal Bank was taken over by SDIF at February 28, 2001, so the bank is coded as
failed since 2000.

4.2 Normalization

As it is discussed by Moeller (2015), there are some risks of normalization in
longitudinal studies. To examine the possible risks closely, we considered the
original pooled data without normalization where the results show that whichever
method is used the process failed to find the positive instances. In our second
approach, vertical normalization is performed by omitting the panel structure of the
data which also failed to catch the banks that are bankrupted. Therefore we carried
out double normalization in order to cope with this problem.
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The first normalization is performed on the same bank block individually (for
example Akbank data from 1998 to 2001 is scaled separately, the same thing is
done for every bank) and the second normalization is performed within the pooled
data to bring all the data to the same metric reflecting the panel structure. For the
same bank block, we used the Proportion of Maximum Scaling (“POMS”) method
(Moeller 2015), which transforms each scale to a metric from 0 to 1, by first making
the scale range from 0 to the highest value, and then dividing the scores by the
highest value (x = (observed-minimum)/(maximum-minimum)). We did not prefer
to use the standardizing (Z score) repeated measures within individuals since this
approach prevents examining mean-level differences between individuals since
each individual’s mean score becomes zero. For the normalization within pooled
data, the input vector x is divided with its norm xk k2.

4.3 Parameter Estimation and Classification Performance
Measures

The power of the SVM technique depends on the selection of a suitable kernel and
the kernel parameters. Moreover, it is well known that the choice of regularization
parameter C which controls the misclassification error, affects the classification
performance. If C is too large, we have a high penalty for non-separable points and
we may store many support vectors which cause an overfitting. If C is too small, we
may have an underfitting.

In order to find the best parameters, 5 fold cross validation is performed on the
training set. The regularization term C and Gaussian kernel width σ are chosen
among the values given by: C = [2^−5, 2^−3, 2^−1, 2, 2^3, 2^5, 2^7, 2^9, 2^11,
2^13, 2^15]; σ = [2^−5, 2^−13, 2^−11, 2^−9, 2^−7, 2^−5, 2^−3, 2^−1, 2, 2^3].
The rest of the parameters are left as default values of libsvm (Chang 2011).

In this study, for the evaluation of the models, several classification performance
measures such as Correct Classification Rate (CCR), Sensitivity (SEN) and
Specificity (SPE) are used. All these measures are defined by using a confusion
matrix. A confusion matrix of a standard classification problem is given in Table 1.

Here, “True Positive” is defined by the number of the models that classify a
failed bank as failed and “False Positive” is given by the number of the banks
classified as failed when, in fact, they are non-failed. “False Negative” occurs when
the model classifies a failed bank as non-failed, and “True Negative” is the number
of the banks classified correctly as non-failed.

Table 1 The results for the
train/test set

Predicted

Observed +1 –1
+1 True Positive False Negative

–1 False Positive True Negative
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Generally, the most frequently used metric for model performance is CCR. It is
defined by the percentage of correct classifications among the whole test samples.
Specificity reflects how good a model is at finding negative instances and it is
defined by the True Negative divided by the sum of all negatives. Sensitivity is
another important metric for model performance, and it is determined by the ratio of
True Positive among of all positives. When using unbalanced data, the value of
sensitivity plays an important role in determining the robustness of the model since
the number of correct prediction of the observations that are rare in a class reflects
how model accurately predicts. For this reason, in this study, we preferred to focus
on sensitivity. Furthermore, with a skeptical approach, we aim to find a model with
a high sensitivity and a relatively low specificity. With this approach, the model
correctly finds the failed banks, but mistakenly labels some banks as “failed”. These
mistakenly labeled banks may be monitored in the future to see if they will go to the
bankrupt, even though they are not bankrupt at the time of the test year.

4.4 Implementation of Proposed Weighted Ensemble
Method

The performance of the proposed model in this study is tested on Turkish Bank data
which covers the time interval between 1998 and 2001. The set of the ensemble is
created by including the longitudinal data of years 1998, 1999, and 2000 per
classifier and tested on the data of the year 2001. Therefore, 3 classifiers exist in our
ensemble.

The classifier construction process has two stages. In the first stage, a cross
validation is performed within corresponding training sets to select the best regu-
larization parameter using the Gaussian kernel based SVMs. There are similar
studies in the literature which use separate kernels to determine regularization and
kernel parameters (Hastie et al. 2009; Keerthi and Lin 2003). Once the optimum
parameter C is determined, in the second stage, each year is trained on its own year
using the linear kernel and tested on the following consecutive years from which the
performances on each test are recorded to be weights for the overall ensemble
model. If there is more than one test year and hence their corresponding weight, the
mean of weights are considered as a single weight referring to that classifier. For
instance, the first classifier trained in 1998 has two weights obtained from the test
performances during 1999 and 2000. Therefore the weight of a model for 1998 data
is the mean of these two weights. The second model which is trained on 1999 data
has only one weight coming from the test performance on 2000 data. The third
classifier is trained on 70% of the year 2000 and tested on 30% of the year 2000.
The reason for the partitioning the data of the year 2000 is that it is the last year
before the data to be predicted. In this study, data of the year 2001 is used only for
testing performance of our model and is not considered in any of the training set of
any classifier.
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The overall testing for the year 2001 is determined by using the Eq. (12). The
flow chart of the algorithm is given in Fig. 1.

We compared the performance of the proposed ensemble learning in this study
with a single classifier constructed by SVMs with Gaussian and linear kernels
separately in which a pooled 3-year information (1998–2000) is used for training
purposes and tested in the year of 2001 data.

4.5 Results

Before evaluating the proposed ensemble method, we have implemented standard
SVM procedures on the pooled data set to compare the results with the proposed
method putting some emphasis on the effect of different standardization procedures.
The performance measures are presented in Table 2. In Table 2, it is obvious that
just by aggregation of the 3 years data in the training set, neither Gaussian nor linear
kernel based SVMs give a better predictive results than the method proposed in this
study. Correct classification rate (0.51) is not different from a random guess and
sensitivity is zero.

Fig. 1 Training and test algorithm flowchart

Table 2 The prediction performance using simply pooled data without second round normal-
ization (1998–2000 pooled training set, 2001 test set)

Kernel type CCR SPE SEN

Gaussian 0.51 1.00 0.00
Linear 0.51 1.00 0.00
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When we implemented a second round normalization, i.e. within pooled data,
after POMS is used for bank blocks individually, better performance is achieved for
both Gaussian and linear kernel based SVMs which are presented in Table 3. It
should be noted that in Table 3, linear kernel based SVMs classify all the solid
banks as “successful” while specification ended up with 1 and the sensitivity
measures are more meaningful now for both kernel types.

Finally, we have constructed our proposed ensemble classifier using the method
explained in Sect. 4.4 and we achieved the results given in Table 4.

It is interesting to see from Table 4 that linear kernel based weighted ensemble
and from Table 3 linear kernel based pooled data models have given the same
performance values. The models are good at finding successful banks but not very
good at finding the failed banks. According to Table 4, the Gaussian-based
weighted ensemble model is unsuccessful in the same sense.

When we have used a combination of different kernel functions for our weighted
ensemble model we have managed to improve the sensitivity measure up to 0.80,
revealing the weights as β1 = 0.26, β2 = 0.20, and β3 = 0.54 corresponding to the
years 1998, 1999 and 2000. This improvement means that we have managed to
foresee several more banks which are going to go bankrupt before the failure time.
Besides, in accordance with our skeptical approach, i.e., seeking high sensitivity
and low specificity, the specificity was found as 0.33. Since it is more important for
us to identify a bank that is likely to fail than to identify a successful bank,
incorrectly identifying some banks as unsuccessful is not a mistake, but rather a
chance to assess the future performance of the banks.

In the light of the findings, we have examined the banking activities of the banks
which were labeled as unsuccessful for the following years. We have seen that
among those who were incorrectly identified as “failed”; Imar Bank was taken over
by SDIF in 2003, Pamukbank, Sekerbank were transferred to other state banks.
Kocbank merged with Yapi Kredi Bank. Turk Dis Ticaret Bank, Turk Ekonomi
Bank, and Garanti Bank were at least partly sold (BAT 2017).

Table 3 The prediction performance using two step normalization in the training set (1998–2000
pooled training set, 2001 test set)

Kernel type CCR SPE SEN

Gaussian 0.73 0.67 0.80
Linear 0.80 1.00 0.60

Table 4 The prediction performance using two step normalization in the training set (1998–2000
training set, 2001 test set) for the proposed weighted ensemble model

Kernel type CCR SPE SEN

Gaussian 0.78 0.95 0.60
Linear 0.80 1.00 0.60
Gaussian and Linear 0.56 0.33 0.80
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(https://www.tbb.org.tr/Content/Upload/Dokuman/1362/Faaliyeti_Sona_Eren_
Bankalar.xls, 11.10.2017)

5 Conclusions

In this study, we have proposed a weighted ensemble approach which generates an
ensemble of decision functions from annual data to analyze longitudinal bank
financial ratios. A combination of Gaussian and linear kernels are used for our
proposed weighted ensemble of SVMs. The results show that using a weighted
panel structure of 3 years results in better performance on longitudinal data set to
extract useful information when comparing the simply pooled data.

As a classification measure, we have focused on sensitivity which reflects the
ability of the model of predicting failed banks, and hence robustness of the model.
The results show that using a double normalization for the longitudinal data
structure gives more reasonable sensitivity measure.

In this study, we have chosen SVMs as a base classifier and as a future work,
including other classifiers would provide valuable information by extending our
ensemble approach in new comparative ways.
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The Complementary Exponential
Phase Type Distribution

Serkan Eryilmaz

Abstract In this chapter, the distribution which is called the complementary expo-

nential phase type distribution is studied. This distribution appears as the distribution

of the random maxima defined bymax(X1,X2, ...,XN), where X1,X2, ... is a sequence

of independent and identically distributed random variables having exponential dis-

tribution, and independently N has a discrete phase-type distribution. Bivariate

extension of the distribution is also presented.

Keywords Bivariate distribution ⋅ Exponential distribution ⋅Maximum

likelihood estimation ⋅ Phase-type distributions

1 Introduction

Let X1,X2, ... be a sequence of independent and identically distributed (iid) random

variables having exponential distribution. Independently, let N have a geometric dis-

tribution. The distribution of the random variable T = max(X1,X2, ...,XN) has been
called a complementary exponential geometric distribution by Louzada et al. (2011).

Such a random variable is useful in several fields including actuarial science, and

reliability. As stated by Louzada et al. (2011), in the latent complementary risk sce-

nario, the number of causes N and the lifetime Xi corresponding to a particular cause

are not observable, and only the maximum lifetime value T among all causes is ob-

served. If Xi denotes the lifetime of a component in a system, then T corresponds

to the lifetime of a parallel system having random number of components (Eryilmaz

2017).

Louzada et al. (2013) studied the random variable T when the common distri-

bution of X1,X2, ... is exponentiated exponential and N has geometric distribution.

In this chapter, we study the distribution of T when Xis have common exponential
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distribution, and independently N has a discrete phase-type distribution. Assuming

a phase-type distribution for N enables us to obtain a more general distribution than

the one obtained by Louzada et al. (2011) since geometric distribution is the simplest

phase-type distribution. Eryilmaz (2016) introduced a new class of lifetime distribu-

tions by considering the distribution of random minima min(X1, ...,XN) when N has

a phase-type distribution. Therefore the present work can be seen as complementary

to that of Eryilmaz (2016).

A discrete phase type distribution can be seen as the distribution of the time to

absorption in an absorbing Markov chain with d transient states and one absorbing

state. If a random variable N has a discrete phase-type distribution of order d, then
its probability mass function (pmf) is given by

P {N = n} = 𝐚𝐐n−1𝐭′, (1)

for n ∈ ℕ, where𝐐 =
(
qij
)
d×d is a matrix which includes the transition probabilities

among the d transient states, and 𝐭′ = (𝐈 −𝐐)𝐞′ is a vector which includes the tran-

sition probabilities from transient states to the absorbing state, 𝐚 = (a1, ..., ad) is the
initial probability vector with the entry corresponding to the absorption

state removed,
∑d

i=1 ai = 1, 𝐈 is the identity matrix, and 𝐞 = (1, ..., 1)1×d (see, e.g.

He (2014)). We will use the notation PHd(𝐚,𝐐) to represent a discrete phase-type

distribution of order d which has pmf given by (1).

The simplest discrete phase-type distribution is geometric distribution which can

be defined by PH1(1, 1 − p), where p is the parameter of the geometric distribution.

If N ∼ PHd(𝐚,𝐐), then the probability generating function of N is given by

𝜙N(z) = 1 − 𝐚𝐞′ + 𝐚z (𝐈 − z𝐐)−1 𝐭′, (2)

0 < z < 1 (see, e.g. He (2014)).

The chapter is organized as follows. In Sect. 2, the new distribution is introduced

and some of its properties are presented. Section 3 contains extension of the new

distribution to the bivariate case.

2 The Distribution and Its Properties

For a sequenceX1,X2, ... of independent and identically distributed (iid) random vari-

ables having common cumulative distribution function (cdf) F(x) = 1 − e−𝜆x, x ≥ 0,
define

T = max(X1,X2, ...,XN),

where N is independent of Xis and N ∼ PHd(𝐚,𝐐).
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The cdf of the random variable T can be written as

G(x) = P
{
max(X1,X2, ...,XN) ≤ x

}

=
∑

n
Fn(x)P {N = n}

= E(FN(x))
= 𝜙N(F(x))

which is, in fact, the probability generating function of N at F(x). Thus, from (2), the

cdf of the random variable T is obtained as

G(x) = 1 − 𝐚𝐞′ + 𝐚F(x) (𝐈 − F(x)𝐐)−1 𝐭′

= 1 − 𝐚𝐞′ + 𝐚(1 − e−𝜆x)
(
𝐈 − (1 − e−𝜆x)𝐐

)−1 𝐭′ (3)

The random variable whose cdf is given by (3) will be said to have a complemen-

tary exponential phase-type distribution. From (3), the probability density function

of T is found to be

g(x) = f (x) 𝐚 (𝐈 − F(x)𝐐)−2 𝐭′

= 𝜆e−𝜆x𝐚
(
𝐈 − (1 − e−𝜆x)𝐐

)−2 𝐭′. (4)

From (3), various distributions can be obtained for a phase random variable hav-

ing representation PHd(𝐚,𝐐). For an illustration, let N have a geometric distrib-

ution of order k which has phase representation PHk(𝐚,𝐐) with 𝐚 = (1, 0, ..., 0),
𝐭 = (0, 0, ..., p), and the k × k matrix

𝐐 =
⎡
⎢
⎢
⎢
⎣

1 − p p 0 ⋯ 0
1 − p 0 p ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

1 − p 0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎦

(see, e.g. Tank and Eryilmaz (2015)). It should be noted that the random variable

N has a geometric distribution of order k if it denotes the number of trials to get k
consecutive successes in a sequence of binary trials having two possible outcomes

as either success or failure with respective probabilities p and 1 − p. For k = 1, the
random variable N has a geometric distribution. In this case from (4), the pdf of the

distribution is obtained as

g(x) =
p𝜆e−𝜆x

[
1 − (1 − p)(1 − e−𝜆x)

]2 (5)

which has been introduced and studied by Louzada et al. (2011). Let k = 2, then
from (4) we obtain the following new distribution
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Fig. 1 Plots of the pdf of

the distribution given by (6)

g(x) =
𝜆e−𝜆x(1 − e−𝜆x)p2

[
1 + e−𝜆x + p(1 − e−𝜆x)

]

[
1 − (1 − e−𝜆x) + p(1 − e−𝜆x) − p(1 − e−𝜆x)2 + p2(1 − e−𝜆x)2

]2 , (6)

for 0 < p < 1, and x ≥ 0.
In Fig. 1, we plot the pdf given by (6) for selected values of the parameter p when

𝜆 = 1. The larger p the more right skewed distribution. The distribution becomes

symmetric when p tends to zero. Such a flexible distributionmight be useful to model

various real life data sets.

2.1 Inference

Suppose x1, x2, ..., xn is a random sample from the distribution with pdf (4). Assume

that the phase-type random variable N has only one unknown parameter, say p. Then
the log-likelihood function of the two parameters is given by

l(𝜆, p) = n log (𝜆) − 𝜆

n∑

i=1
xi +

n∑

i=1
log(𝐚

(
𝐈 − (1 − e−𝜆xi )𝐐

)−2 𝐭′). (7)

The maximum likelihood estimators of the parameters p and 𝜆 can be obtained by

solving

𝜕l(𝜆, p)
𝜕𝜆

= 0 ,

𝜕l(𝜆, p)
𝜕p

= 0.

The maximum likelihood estimators of p and 𝜆 must be derived numerically. The

EM algorithm is suitable for this purpose. EM algorithm based estimators of p and

𝜆 can be obtained following the similar steps in Eryilmaz (2016).
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3 Extension to the Bivariate Case

For a sequence (X1,Y1), (X2,Y2), ... of iid random vectors having common bivariate

cdf F(x, y) = P
{
Xi ≤ x,Yi ≤ y

}
, i ≥ 1, define

T1 = max(X1,X2, ...,XN),
T2 = max(Y1,Y2, ...,YN),

whereN is independent of (Xi,Yi)s and N ∼ PHd(𝐚,𝐐).Manifestly, the random vari-

ables T1 and T2 are dependent.
The joint cdf of the random variables T1 and T2 is obtained as

H(x, y) = P
{
max(X1,X2, ...,XN) ≤ x,max(Y1,Y2, ...,YN) ≤ y

}

=
∑

n
Fn(x, y)P {N = n}

= 𝜙N(F(x, y))
= 1 − 𝐚𝐞′ + 𝐚F(x, y) (𝐈 − F(x, y)𝐐)−1 𝐭′. (8)

For particular choices of F(x, y), various bivariate distributions can be generated

from (8). Let

F(x, y) = (1 − e−𝜆x)(1 − e−𝜃y)
[
1 + 𝛼e−𝜆xe−𝜃y

]
, (9)

for x, y ≥ 0 and −1 ≤ 𝛼 ≤ 1. That is, the joint distribution of Xi and Yi is bivariate
exponential of FGM type.

For an illustration, let N have a geometric distribution, i.e. N ∼ PH1(1, 1 − p).
Then from (8) and (9),

H(x, y) =
pF(x, y)

1 − (1 − p)F(x, y)

=
p(1 − e−𝜆x)(1 − e−𝜃y)

[
1 + 𝛼e−𝜆xe−𝜃y

]

1 − (1 − p)(1 − e−𝜆x)(1 − e−𝜃y)
[
1 + 𝛼e−𝜆xe−𝜃y

] , (10)

for 0 < p < 1; −1 ≤ 𝛼 ≤ 1; x, y ≥ 0. The marginals of H(x, y) are both have comple-

mentary exponential geometric distributions.

Clearly, inferential issues become more complicated for the bivariate case. How-

ever, it is worthy of investigation. Estimation of unknown parameters p, 𝛼, 𝜆, and 𝜃

which are included in the model (10) will be among our future research problems.
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Some Properties of Linear Prediction
Sufficiency in the Linear Model

Jarkko Isotalo, Augustyn Markiewicz and Simo Puntanen

Abstract A linear statistic 𝐅𝐲 is called linearly prediction sufficient, or shortly

BLUP-sufficient, for the new observation 𝐲∗, say, if there exists a matrix 𝐀 such

that 𝐀𝐅𝐲 is the best linear unbiased predictor, BLUP, for 𝐲∗. We review some prop-

erties of linear prediction sufficiency that have not been received much attention in

the literature and provide some clarifying comments. In particular, we consider the

best linear unbiased prediction of the error term related to 𝐲∗. We also explore some

interesting properties of mixed linear models including the connection between a

particular extended linear model and its transformed version.

Keywords Best linear unbiased estimator ⋅ BLUE ⋅ Best linear unbiased

predictor ⋅ BLUP ⋅ Linear sufficiency ⋅ Orthogonal projector ⋅ Transformed linear

model

MSC: 62J05 ⋅ 62J10

1 Introduction

To make the article more self-readable, we go through some basic concepts related

to linear sufficiency. So, let us get started with the general linear model 𝐲 = 𝐗𝜷 + 𝜺,

shortly denoted as a triplet

M = {𝐲,𝐗𝜷,𝐕} ,
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where 𝐗n×p is a known model matrix, the vector 𝐲 is an observable n-dimensional

random vector, 𝜷 is a p × 1 vector of unknown parameters, and 𝜺 is an unobserv-

able vector of random errors with expectation E(𝜺) = 𝟎, and covariance matrix

cov(𝜺) = 𝐕, where the nonnegative definite matrix 𝐕 is known and can be singu-

lar. Premultiplying the model M by 𝐅f×n yields the transformed model

Mt = {𝐅𝐲,𝐅𝐗𝜷,𝐅𝐕𝐅′} ,

which will have a crucial role in our considerations.

Let 𝐲∗ denote a q × 1 unobservable random vector containing new future obser-

vations. The new observations are assumed to follow the linear model

𝐲∗ = 𝐗∗𝜷 + 𝜺∗ ,

where 𝐗∗ is a known q × p matrix, 𝜷 is the same vector of unknown parameters

as in M , and 𝜺∗ is a q-dimensional random error vector. The expectation and the

covariance matrix are

E
(
𝐲
𝐲∗

)
=
(
𝐗𝜷
𝐗∗𝜷

)
=
(
𝐗
𝐗∗

)
𝜷 , cov

(
𝐲
𝐲∗

)
=
(

𝐕 𝐕12
𝐕21 𝐕22

)
= 𝚪,

where the covariance matrix matrix𝚪 is assumed to be known. For brevity, we denote

the linear model with new observations as

M∗ =
{(

𝐲
𝐲∗

)
,

(
𝐗
𝐗∗

)
𝜷,

(
𝐕 𝐕12
𝐕21 𝐕22

)}
.

Our main interest in M∗ lies in predicting 𝐲∗ on the basis of observable 𝐲.

Suppose we transform M into Mt and do the prediction in this situation. Corre-

sponding to M∗ we have now the following setup:

Mt∗ =
{(

𝐅𝐲
𝐲∗

)
,

(
𝐅𝐗
𝐗∗

)
𝜷,

(
𝐅𝐕𝐅′ 𝐅𝐕12
𝐕21𝐅′ 𝐕22

)}
.

As for notation, let ℝm×n
denote the set of m × n real matrices. The symbols

𝐀′
, 𝐀−

, 𝐀+
, C (𝐀), and C (𝐀)⊥, denote, respectively, the transpose, a generalized

inverse, the Moore–Penrose inverse, the column space, and the orthogonal comple-

ment of the column space of the matrix 𝐀. By (𝐀 ∶ 𝐁) we denote the partitioned

matrix with 𝐀m×n and 𝐁m×k as submatrices. By 𝐀⊥

we denote any matrix satisfying

C (𝐀⊥) = C (𝐀)⊥. Furthermore, we will write 𝐏𝐀 = 𝐀𝐀+ = 𝐀(𝐀′𝐀)−𝐀′
to denote

the orthogonal projector (with respect to the standard inner product) onto C (𝐀), and

𝐐𝐀 = 𝐈 − 𝐏𝐀. In particular, we denote 𝐌 = 𝐈n − 𝐏𝐗. One choice for 𝐗⊥

is of course

𝐌.

The linear estimator 𝐆𝐲 is the best linear unbiased estimator, BLUE, of 𝐗𝜷 when-

ever 𝐆𝐲 is unbiased and it has the smallest covariance matrix (in the Löwner sense)
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among all linear unbiased estimators of 𝐗𝜷. The following lemma characterizes the

BLUE; see, e.g., Drygas (1970, p. 55), Rao (1973, p. 282) and more recently Bak-

salary and Trenkler (2009).

Lemma 1.1 Consider the general linear model M = {𝐲,𝐗𝜷,𝐕}. Then, the estima-
tor 𝐆𝐲 is the BLUE for 𝐗𝜷 if and only if 𝐆 satisfies the equation

𝐆(𝐗 ∶ 𝐕𝐗⊥) = (𝐗 ∶ 𝟎) . (1.1)

The corresponding condition for 𝐀𝐲 to be the BLUE of an estimable parametric
function 𝐊𝜷, i.e., C (𝐊′) ⊂ C (𝐗′), is

𝐀(𝐗 ∶ 𝐕𝐗⊥) = (𝐊 ∶ 𝟎) .

We assume the model M to be consistent in the sense that the observed value of

𝐲 lies in C (𝐗 ∶ 𝐕) with probability 1. Hence, we assume that under M

𝐲 ∈ C (𝐗 ∶ 𝐕) = C (𝐗 ∶ 𝐕𝐗⊥) = C (𝐗 ∶ 𝐕𝐌) .

The corresponding consistency is assumed in all models that we will consider. More-

over, in the consistent linear model M , the estimators 𝐆1𝐲 and 𝐆2𝐲 are said to be

equal with probability 1 if

𝐆1𝐲 = 𝐆2𝐲 for all 𝐲 ∈ C (𝐗 ∶ 𝐕) .

The linear predictor 𝐁𝐲 is said to be unbiased for 𝐲∗ if E(𝐲∗ − 𝐁𝐲) = 𝟎 for all

𝜷 ∈ ℝp
. This is equivalent to 𝐗′

∗ = 𝐗′𝐁′
. The inclusion C (𝐗′

∗) ⊂ C (𝐗′) is the well-

known condition for the estimability of 𝐗∗𝜷 under M . When C (𝐗′
∗) ⊂ C (𝐗′) holds,

we say that 𝐲∗ is predictable under M∗. Now a linear unbiased predictor 𝐁𝐲 is the

best linear unbiased predictor, BLUP, for 𝐲∗, if the Löwner ordering

cov(𝐲∗ − 𝐁𝐲) ≤
L
cov(𝐲∗ − 𝐂𝐲)

holds for all 𝐂 such that 𝐂𝐲 is an unbiased linear predictor for 𝐲∗.

The following lemma characterizes theBLUP; for the proof, see, e.g., Christensen

(2011, p. 294) and Isotalo and Puntanen (2006, p. 1015).

Lemma 1.2 Consider the linear model M∗, where C (𝐗′
∗) ⊂ C (𝐗′), i.e., 𝐲∗ is pre-

dictable. The linear predictor 𝐁𝐲 is the best linear unbiased predictor (BLUP) for
𝐲∗ if and only if 𝐁 satisfies the equation

𝐁(𝐗 ∶ 𝐕𝐗⊥) = (𝐗∗ ∶ 𝐕21𝐗⊥) = (𝐗∗ ∶ cov(𝐲∗, 𝐲)𝐗⊥) .

We will frequently utilize Lemma 2.2.4 of Rao and Mitra (1971), which says that

for nonnull matrices 𝐀 and 𝐂 the following holds:
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𝐀𝐁−𝐂 = 𝐀𝐁+𝐂 ⟺ C (𝐂) ⊂ C (𝐁) & C (𝐀′) ⊂ C (𝐁′) . (1.2)

One well-known solution for 𝐆 in (1.1) (which is always solvable) is

𝐏𝐗;𝐖− ∶= 𝐗(𝐗′𝐖−𝐗)−𝐗′𝐖−
,

where 𝐖 is a matrix belonging to the set of nonnegative definite matrices defined as

W =
{
𝐖 ∈ ℝn×n ∶ 𝐖 = 𝐕 + 𝐗𝐔𝐔′𝐗′

, C (𝐖) = C (𝐗 ∶ 𝐕)
}
.

Denoting

𝐏𝐗;𝐖+ ∶= 𝐗(𝐗′𝐖−𝐗)−𝐗′𝐖+
,

we observe, in view of (1.2), that 𝐏𝐗;𝐖−𝐲 = 𝐏𝐗;𝐖+𝐲 for all 𝐲 ∈ C (𝐖).
The structure of this contribution is as follows. In Sect. 2 we recall some well-

known conditions for the BLUE- and BLUP-sufficiency and in particular clarify and

extend some concepts related to BLUP-sufficiency. In Sect. 3 we introduce some

representations for the BLUPs and explore the corresponding sufficiency relations.

Section 4 provides some representations for the BLUPs and BLUEs and in Sect. 5

we apply our results to the linear mixed models. While writing this contribution, our

attempt has been to call well-known (or pretty well-known) results Lemmas, while

Theorems refer to our own contributions or clarifications.

2 Conditions for Linear Sufficiency and Linear Prediction
Sufficiency

A linear statistic 𝐅𝐲, where 𝐅 ∈ ℝf×n
, is called linearly sufficient for 𝐗𝜷 under the

modelM = {𝐲,𝐗𝜷,𝐕}, if there exists a matrix𝐀 ∈ ℝn×f
such that𝐀𝐅𝐲 is theBLUE

for𝐗𝜷. Correspondingly,𝐅𝐲 is linearly sufficient for estimable𝐊𝜷, where𝐊 ∈ ℝk×p
,

if there exists a matrix 𝐀 ∈ ℝk×f
such that 𝐀𝐅𝐲 is the BLUE for 𝐊𝜷. To have a

slightly shorter terminology, we often will use the phrase “BLUE-sufficient” and the

notation 𝐅𝐲 ∈ S (𝐊𝜷).
For the following Lemma 2.1 and Lemma 2.2, see, e.g., Baksalary and Kala (1981,

1986), Drygas (1983), Tian and Puntanen (2009, Th. 2.8), and Kala et al. (2017,

Th. 2).

Lemma 2.1 The statistic 𝐅𝐲 is BLUE-sufficient for 𝐗𝜷 under the model M =
{𝐲,𝐗𝜷,𝐕} if and only if any of the following equivalent statements holds:

(a) C

(
𝐗′

𝟎

)
⊂ C

(
𝐗′𝐅′

𝐌𝐕𝐅′

)
,

(b) C (𝐗) ⊂ C (𝐖𝐅′), where 𝐖 ∈ W ,
(c) C (𝐗′𝐅′) = C (𝐗′) and C (𝐅𝐗) ∩ C (𝐅𝐕𝐗⊥) = {𝟎}.
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Let 𝐊𝜷 be estimable under M . Then, 𝐅𝐲 is BLUE-sufficient for 𝐊𝜷 if and only if

(d) C

(
𝐊′

𝟎

)
⊂ C

(
𝐗′𝐅′

𝐌𝐕𝐅′

)
.

Let 𝐅0 be a matrix with property C (𝐅′
0) = C (𝐅′). Then, Lemma 2.1 immediately

implies the following:

𝐅𝐲 ∈ S (𝐊𝜷) ⟺ 𝐅0𝐲 ∈ S (𝐊𝜷). (2.1)

If C (𝐅′
0) ⊂ C (𝐅′), then the implication “⟸” is holding in (2.1).

Lemma 2.2 Consider the modelM = {𝐲,𝐗𝜷,𝐕} and its transformed versionMt =
{𝐅𝐲,𝐅𝐗𝜷,𝐅𝐕𝐅′}, and let 𝐊𝜷 be estimable under M and Mt. Then, the following
statements are equivalent:

(a) 𝐅𝐲 is BLUE-sufficient for 𝐊𝜷.
(b) BLUE(𝐊𝜷 ∣ M ) = BLUE(𝐊𝜷 ∣ Mt) with probability 1.
(c) There exists at least one representation of BLUE of 𝐊𝜷 under M which is the

BLUE also under the transformed model Mt.

Notice that the parametric function 𝐊𝜷 is estimable under M as well as under

Mt if and only if

C (𝐊′) ⊂ C (𝐗′) ∩ C (𝐗′𝐅′) = C (𝐗′𝐅′) , (2.2)

while 𝐗𝜷 is estimable under Mt whenever

C (𝐗′) = C (𝐗′𝐅′) , i.e., rank(𝐗) = rank(𝐅𝐗) .

The concept of linear prediction sufficiency is defined analogically as follows:

Let 𝐲∗ be predictable under the model M∗, i.e., C (𝐗′
∗) ⊂ C (𝐗′). Then, 𝐅𝐲 is called

linearly prediction sufficient for 𝐲∗ if there exists a matrix 𝐀 such that 𝐀𝐅𝐲 is the

BLUP for 𝐲∗; that is, there exists a matrix 𝐀 such that

𝐀𝐅(𝐗 ∶ 𝐕𝐌) = (𝐗∗ ∶ 𝐕21𝐌) . (2.3)

Corresponding to the phrase “BLUE-sufficient”, we may use the term “BLUP-

sufficient” and the notation 𝐅𝐲 ∈ S (𝐲∗).
The following theorem collects together some important properties of the linear

prediction sufficiency.

Theorem 2.1 Suppose that 𝐲∗ is predictable under M∗ and Mt∗. Then:

(a) If 𝐅𝐲 is BLUP-sufficient for 𝐲∗, then every representation of the BLUP for 𝐲∗
under the transformed model Mt∗ is BLUP also under the original model M∗.
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Moreover, the following statements are equivalent:

(b) 𝐅𝐲 is BLUP-sufficient for 𝐲∗, or shortly 𝐅𝐲 ∈ S (𝐲∗).

(c) C

(
𝐗′

∗
𝐌𝐕12

)
⊂ C

(
𝐗′𝐅′

𝐌𝐕𝐅′

)
.

(d) BLUP(𝐲∗ ∣ M∗) = BLUP(𝐲∗ ∣ Mt∗) with probability 1.
(e) There exists at least one representation of BLUP of 𝐲∗ under M∗ which is BLUP

also under the transformed model Mt∗.

Proof The claim (a) was proved by Isotalo and Puntanen (2006, Th. 3.2); see also

Remark 2.1 below. The equivalence of (b) and (c) is obvious because (b) means that

there exists a matrix 𝐀 such that (2.3) holds. Suppose that (2.3) holds for some 𝐀.

Then, the same multiplier 𝐀𝐅 gives the BLUP for 𝐲∗ under the transformed model

Mt∗ if and only if

𝐀(𝐅𝐗 ∶ 𝐅𝐕𝐅′𝐐𝐅𝐗) = (𝐗∗ ∶ 𝐕21𝐅′𝐐𝐅𝐗) . (2.4)

In view of Markiewicz and Puntanen (2017, Lemma 5) and Rao and Mitra (1971,

Compl. 7, p. 118), the following holds:

C (𝐅′𝐐𝐅𝐗) = C (𝐅′) ∩ C (𝐌) , (2.5a)

𝐅′𝐐𝐅𝐗 = 𝐌𝐅′𝐐𝐅𝐗 . (2.5b)

Substituting (2.5b) into (2.4), we immediately see that (2.3) implies (2.4) i.e., (b)

implies (e). The statement (d) means that we have the equality

𝐁(𝐗 ∶ 𝐕) = 𝐂𝐅(𝐗 ∶ 𝐕) (2.6)

for some 𝐁 and 𝐂 satisfying

𝐁(𝐗 ∶ 𝐕𝐌) = (𝐗∗ ∶ 𝐕21𝐌) ,
𝐂(𝐅𝐗 ∶ 𝐅𝐕𝐅′𝐐𝐅𝐗) = (𝐗∗ ∶ 𝐕21𝐅′𝐐𝐅𝐗) .

Now, 𝐁𝐲 is BLUP for 𝐲∗ under M∗ and and hence, in light of (2.6), 𝐂𝐅𝐲 is also

BLUP for 𝐲∗ under M∗, and thus by definition, 𝐅𝐲 is BLUP-sufficient for 𝐲∗. Hence,

we have shown that (d) implies (b). It is obvious that (e) implies (d) and thereby the

proof is completed. □

The above proof is parallel to that of Kala et al. (2017, Th. 2) concerning

Lemma 2.2.

Remark 2.1 Regarding the claim (a) in Theorem 2.1, (Isotalo and Puntanen 2006,

Th. 3.2) state the following: “Every representation of the BLUP for 𝐲∗ under the

transformed model Mt∗ is BLUP also under the original model M∗ and vice versa.”

Stated in this way, the vice versa part is not quite correct and may result in wrong
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or confusing interpretations. Hence, we will clarify the meaning of the vice versa

part below. The corresponding considerations for the BLUE of estimable parametric

function are done in Kala et al. (2017, Sec. 4) and here we proceed along their lines.

To do this, we take a look at the multipliers of the response vector 𝐲 when obtain-

ing the BLUPs. Let 𝐲∗ be predictable under the models M∗ and Mt∗ and denote

A =
{
𝐀 ∶ 𝐀𝐅𝐲 = BLUP(𝐲∗ ∣ M∗)

}
=
{
𝐀 ∶ 𝐀𝐅(𝐗 ∶ 𝐕𝐌) = (𝐗∗ ∶ 𝐕21𝐌)

}
,

C =
{
𝐂 ∶ 𝐂𝐅𝐲 = BLUP(𝐲∗ ∣ Mt∗)

}
=
{
𝐂 ∶ 𝐂(𝐅𝐗 ∶ 𝐅𝐕𝐅′𝐐𝐅𝐗) = (𝐗∗ ∶ 𝐕21𝐅′𝐐𝐅𝐗)

}
.

Proceeding along the same lines as (Kala et al. 2017, Th. 3) in their BLUE consid-

erations, we can obtain the following result.

Theorem 2.2 Suppose that 𝐅𝐲 is BLUP-sufficient for the predictable 𝐲∗ under the
model M∗, and let the sets of matrices A and C be defined as above. Then A = C .

To describe more statistically the meaning of Theorem 2.2, let 𝐅𝐲 be BLUP-

sufficient for 𝐲∗ under M∗. Then, for each matrix 𝐂 such that 𝐂𝐅𝐲 is the BLUP
of 𝐲∗ in the transformed model Mt∗, the statistic 𝐂𝐅𝐲 is also the BLUP of 𝐲∗ in the

original model M∗, and vice versa. Notice that in this statement the “vice versa”

means that we consider such 𝐂 for which 𝐂𝐅𝐲 is BLUP under M∗, not the set of

matrices 𝐁 such that 𝐁𝐲 is BLUP under M∗. □

3 Some Representations for the BLUPs

Let us start by considering the BLUP for 𝜺∗ which offers interesting views. Theo-

rem 3.1 below could be proved directly using Lemma 1.2 by choosing 𝜺∗ as the “new

future observations”. However, we find it illustrative to give an alternative proof.

Theorem 3.1 Under the model M∗, the statistic 𝐂𝐲 is the BLUP for 𝜺∗ if and only
if

𝐂(𝐗 ∶ 𝐕𝐌) = (𝟎 ∶ 𝐕21𝐌) ,

or, equivalently, 𝐂 = 𝐀𝐌 for some matrix 𝐀 such that

𝐀𝐌𝐕𝐌 = 𝐕21𝐌 . (3.1)

Proof The predictor 𝐂𝐲 is unbiased for 𝜺∗ if and only if E(𝜺∗ − 𝐂𝐲) = 𝟎 and so

𝐂𝐗 = 𝟎 and hence necessarily 𝐂 = 𝐀𝐌 for some matrix 𝐀. Now 𝐀𝐌𝐲 is the BLUP
for 𝜺∗ if 𝐀 is such that the covariance matrix of the prediction error 𝜺∗ − 𝐀𝐌𝐲 is
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minimal in the Löwner sense. We recall that for any matrix 𝐀, we have the Löwner

ordering

cov(𝜺∗ − 𝐀𝐌𝐲) ≥
L
cov[𝜺∗ − 𝐕21𝐌(𝐌𝐕𝐌)−𝐌𝐲] , (3.2)

where

cov(𝜺∗,𝐌𝐲)[cov(𝐌𝐲)]− = 𝐕21𝐌(𝐌𝐕𝐌)−.

For the Löwner inequality in (3.2), see Puntanen et al. (2011, Th. 9). We have thus

found that BLUP(𝜺∗) has a representation

BLUP(𝜺∗) = 𝐕21𝐌(𝐌𝐕𝐌)−𝐌𝐲.

On the other hand, according to Puntanen et al. (2011, Cor. 9.1), for any matrix 𝐀,

cov(𝜺∗ − 𝐀𝐌𝐲) ≥
L
cov(𝜺∗ − 𝐀1𝐌𝐲)

if and only if 𝐀1 is a solution to (3.1). □

In view of the identity, see Haslett et al. (2014, Sec. 2),

𝐏𝐗;𝐖+ = 𝐗(𝐗′𝐖−𝐗)−𝐗′𝐖+

= 𝐏𝐖 − 𝐕𝐌(𝐌𝐕𝐌)−𝐌𝐏𝐖 , (3.3)

the BLUP(𝜺∗) can be expressed, for example, as follows:

BLUP(𝜺∗) = 𝐕21𝐌(𝐌𝐕𝐌)−𝐌𝐲
= 𝐕21𝐖−(𝐈n −𝐆)𝐲
= 𝐕21𝐕−(𝐈n −𝐆)𝐲,

where 𝐖 ∈ W , 𝐲 ∈ C (𝐖), and 𝐆 = 𝐗(𝐗′𝐖−𝐗)−𝐗′𝐖− = 𝐏𝐗;𝐖− .

It is well known that the general solution to 𝐀(𝐗 ∶ 𝐕𝐌) = (𝐗∗ ∶ 𝟎) can be writ-

ten, for example, as

𝐀0 = (𝐗∗ ∶ 𝟎)(𝐗 ∶ 𝐕𝐌)+ + 𝐍1𝐐𝐖 ∶= 𝐀1 + 𝐍1𝐐𝐖 ,

where 𝐍1 ∈ ℝq×n
is free to vary and 𝐐𝐖 = 𝐈n − 𝐏𝐖, 𝐖 ∈ W . Similarly, the general

solution to 𝐁(𝐗 ∶ 𝐕𝐌) = (𝐗∗ ∶ 𝐕21𝐌) can be written as

𝐁0 = (𝐗∗ ∶ 𝐕21𝐌)(𝐗 ∶ 𝐕𝐌)+ + 𝐍2𝐐𝐖 ∶= 𝐁1 + 𝐍2𝐐𝐖 ,

where the matrix 𝐍2 ∈ ℝq×n
is free to vary. Consider then the equation

𝐂(𝐗 ∶ 𝐕𝐌) = (𝟎 ∶ 𝐕21𝐌) ,
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for which the general solution is

𝐂0 = (𝟎 ∶ 𝐕21𝐌)(𝐗 ∶ 𝐕𝐌)+ + 𝐍3𝐐𝐖 ∶= 𝐂1 + 𝐍3𝐐𝐖 ,

where the matrix 𝐍3 ∈ ℝq×n
is free to vary. Then 𝐁1 = 𝐀1 + 𝐂1 and

𝐁0 = 𝐀0 + 𝐂0 + 𝐍0𝐐𝐖 ,

where 𝐍0 is free to vary. In other words, if

(
𝐀
𝐂

)
(𝐗 ∶ 𝐕𝐌) =

(
𝐗∗ 𝟎
𝟎 𝐕21𝐌

)
,

then

(𝐀 + 𝐂)(𝐗 ∶ 𝐕𝐌) = (𝐗∗ ∶ 𝐕21𝐌) ,

and so

(𝐀 + 𝐂)𝐲 = BLUP(𝐲∗) .

Of course,

𝐀𝐲 = BLUE(𝐗∗𝜷) , 𝐂𝐲 = BLUP(𝜺∗) ,

so that we have obtained the following result:

Theorem 3.2 Under the linear model M∗, where 𝐲∗ is predictable, the following
decomposition holds (with probability 1):

BLUP(𝐲∗) = BLUE(𝐗∗𝜷) + BLUP(𝜺∗) .

Next, we consider the BLUP-sufficiency of 𝐅𝐲 for 𝜺∗.

Theorem 3.3 The statistic 𝐅𝐲 is BLUP-sufficient for 𝜺∗ under M∗ if and only if any
of the following equivalent conditions holds:

(a) C

(
𝟎

𝐌𝐕12

)
⊂ C

(
𝐗′𝐅′

𝐌𝐕𝐅′

)
.

(b) C (𝐌𝐕12) ⊂ C (𝐌𝐕𝐅′𝐐𝐅𝐗) = C (𝐌𝐕𝐌𝐅′𝐐𝐅𝐗) .
(c) BLUP(𝜺∗ ∣ M∗) = BLUP(𝜺∗ ∣ Mt∗) with probability 1.
(d) There exists at least one representation of BLUP of 𝜺∗ under M∗ which is BLUP

also under the transformed model Mt∗.

In particular, if 𝐅𝐲 is BLUE-sufficient for 𝐗𝜷, then (b) becomes

(e) C (𝐌𝐕12) ⊂ C (𝐌𝐕𝐅′) .

Proof The statistic 𝐅𝐲 is BLUP-sufficient for 𝜺∗ under M∗ if the equation

𝐀𝐅(𝐗 ∶ 𝐕𝐌) = (𝟎 ∶ 𝐕21𝐌) (3.4)
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has a solution for 𝐀 which obviously happens if and only if (a) holds. The condition

(a) means that there exists a matrix 𝐍 such that

𝟎 = 𝐗′𝐅′𝐍, 𝐌𝐕12 = 𝐌𝐕𝐅′𝐍 .

Hence, 𝐍 = 𝐐𝐅𝐗𝐍1 for some matrix 𝐍1 and

𝐌𝐕12 = 𝐌𝐕𝐅′𝐐𝐅𝐗𝐍1 . (3.5)

The equality (3.5) holds for some matrix 𝐍1 if and only if

C (𝐌𝐕12) ⊂ C (𝐌𝐕𝐅′𝐐𝐅𝐗) = C (𝐌𝐕𝐌𝐅′𝐐𝐅𝐗) ,

where we have used (2.5b).

Suppose that (a) holds so that there exists some matrix 𝐀 such that (3.4) holds.

Then, the same multiplier 𝐀𝐅 gives the BLUP for 𝜺∗ under the transformed model

Mt∗ if and only if 𝐀 satisfies the equation

𝐀(𝐅𝐗 ∶ 𝐅𝐕𝐅′𝐐𝐅𝐗) = (𝟎 ∶ 𝐕21𝐅′𝐐𝐅𝐗) .

Proceeding onwards as in the proof of Theorem 2.1, the equivalence between (a), (c)

and (d) can be shown.

To prove (e), let us assume that 𝐅𝐲 is BLUE-sufficient for 𝐗𝜷. It is clear that

C (𝐌𝐕𝐅′𝐐𝐅𝐗) ⊂ C (𝐌𝐕𝐅′) . (3.6)

Using the rank rule of the matrix product, see Marsaglia and Styan (1974, Cor. 6.2),

rank(𝐌𝐕𝐅′𝐐𝐅𝐗) = rank(𝐌𝐕𝐅′) − dimC (𝐅𝐕𝐌) ∩ C (𝐅𝐗)
= rank(𝐌𝐕𝐅′) , (3.7)

because in view of part (c) of Lemma 2.1, we have dimC (𝐅𝐕𝐌) ∩ C (𝐅𝐗) = {𝟎}.

This means that we get equality in (3.6) and so the proof of (e) is completed.

It is of course clear that the corresponding property as (a) in Theorem 2.1, holds

as well for the BLUP(𝜺∗).

Theorem 3.4 Consider the following three statements:

(a) 𝐅𝐲 is BLUE-sufficient for 𝐗∗𝜷.
(b) 𝐅𝐲 is BLUP-sufficient for 𝜺∗.
(c) 𝐅𝐲 is BLUP-sufficient for 𝐲∗.

Then above, any two conditions together imply the third one. Moreover, if

C (𝐗∗) ∩ C (𝐕21𝐌) = {𝟎} ,
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then
(c) ⟹ (a) and (b) .

Proof Denote

𝐀 =
(
𝐗∗
𝟎

)
, 𝐁 =

(
𝟎

𝐌𝐕12

)
𝐂 =

(
𝐗′𝐅′

𝐌𝐕𝐅′

)
.

Now (c) holds if and only if

𝐏𝐂(𝐀 + 𝐁) = 𝐀 + 𝐁 , (3.8)

which is equivalent to

𝐏𝐂𝐀 − 𝐀 = −(𝐏𝐂𝐁 − 𝐁) ,

from which the first part of the theorem follows. To prove the second part, we have

to show that if

C (𝐀′) ∩ C (𝐁′) = {𝟎} , (3.9)

then

C (𝐀 + 𝐁) ⊂ C (𝐂) ⟹ C (𝐀) ⊂ C (𝐂) . (3.10)

Postmultiplying (3.8) by 𝐐𝐁′ yields

𝐏𝐂𝐀𝐐𝐁′ = 𝐀𝐐𝐁′ . (3.11)

If rank(𝐀𝐐𝐁′ ) = rank(𝐀), which happens if and only if (3.9) holds, we can, in light

of the rank cancellation rule of Marsaglia and Styan (1974, Th. 2), cancel the right-

most 𝐐𝐁′ in each side of (3.11) and obtain 𝐏𝐂𝐀 = 𝐀 as claimed in (3.10). □

Remark 3.1 The notion of linear error-sufficiency was introduced by Groß (1998),

while considering linear sufficient statistics for the prediction of the random error

term 𝜺 in the general linear model. This is nothing but the BLUP-sufficiency of 𝜺.

Proceeding along the lines of Theorem 3.1, we can conclude that under the model

M , the statistic 𝐂𝐲 is the BLUP for 𝜺 if and only if

𝐂(𝐗 ∶ 𝐕𝐌) = (𝟎 ∶ 𝐕𝐌) ,

and one explicit solution is

BLUP(𝜺 ∣ M ) = 𝐕𝐌(𝐌𝐕𝐌)−𝐌𝐲 = 𝐲 − BLUE(𝐗𝜷 ∣ M ) .
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Obviously, 𝐅𝐲 is BLUP-sufficient for 𝜺 if and only if

N (𝐅𝐗 ∶ 𝐅𝐕𝐌) ⊂ N (𝟎 ∶ 𝐕𝐌) .

For the BLUP of 𝜺, see also Arendacká and Puntanen (2015, Lemma 1). □

4 Representations for the BLUP in the Transformed Model

When doing the “BLUP-hunting” in models M∗ and Mt∗ we assume that the para-

metric function 𝐗∗𝜷 is estimable under M as well as under Mt, which, in light of

(2.2), happens if and only if C (𝐗′
∗) ⊂ C (𝐗′𝐅′), so that

𝐗∗ = 𝐋𝐅𝐗 for some matrix 𝐋 . (4.1)

Similarly, 𝐗𝜷 is required to be estimable under Mt so that C (𝐗′) = C (𝐗′𝐅′).
Denote

𝐆 = 𝐗(𝐗′𝐖−𝐗)−𝐗′𝐖− = 𝐏𝐗;𝐖− ,

𝐏𝐅𝐗;(𝐅𝐖𝐅′)− = 𝐅𝐗[𝐗′𝐅′(𝐅𝐖𝐅′)−𝐅𝐗]−𝐗′𝐅′(𝐅𝐖𝐅′)−,
𝐆t = 𝐗[𝐗′𝐅′(𝐅𝐖𝐅′)−𝐅𝐗]−𝐗′𝐅′(𝐅𝐖𝐅′)−𝐅 ,

so that 𝐅𝐆t = 𝐏𝐅𝐗;(𝐅𝐖𝐅′)−𝐅.
Estimator 𝐁𝐅𝐲 is the BLUE(𝐅𝐗𝜷 ∣ Mt) if and only if 𝐁 satisfies

𝐁(𝐅𝐗 ∶ 𝐅𝐕𝐅′𝐐𝐅𝐗) = (𝐅𝐗 ∶ 𝟎) ,

so that one expression for 𝐁 is 𝐁 = 𝐏𝐅𝐗;(𝐅𝐖𝐅′)− ∶= 𝐅𝐗𝐀 and then

𝐅𝐗𝐀(𝐅𝐗 ∶ 𝐅𝐕𝐅′𝐐𝐅𝐗) = (𝐅𝐗 ∶ 𝟎) . (4.2)

Because rank(𝐅𝐗) = rank(𝐗), we can cancel the left-most 𝐅 from both sides of (4.2)

resulting

𝐗[𝐗′𝐅′(𝐅𝐖𝐅′)−𝐅𝐗]−𝐗′𝐅′(𝐅𝐖𝐅′)−(𝐅𝐗 ∶ 𝐅𝐕𝐅′𝐐𝐅𝐗) = (𝐗 ∶ 𝟎) .

Thus, 𝐆t𝐲 is the BLUE for 𝐗𝜷 under Mt and

𝐆t(𝐗 ∶ 𝐕𝐅′𝐐𝐅𝐗) = (𝐗 ∶ 𝟎) . (4.3)

An alternative expression for BLUE(𝐅𝐗𝜷 ∣ Mt) can be obtained using the corre-

sponding identity as in (3.3):
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𝐏𝐅𝐗;(𝐅𝐖𝐅′)+ = 𝐅𝐗[𝐗′𝐅′(𝐅𝐖𝐅′)−𝐅𝐗]−𝐗′𝐅′(𝐅𝐖𝐅′)+

= 𝐏𝐅𝐖 − 𝐅𝐕𝐅′𝐐𝐅𝐗(𝐐𝐅𝐗𝐅𝐕𝐅′𝐐𝐅𝐗)−𝐐𝐅𝐗𝐏𝐅𝐖 .

Namely, for 𝐲 ∈ C (𝐖) and, noting that 𝐏𝐅𝐖𝐅𝐲 = 𝐅𝐲, we get

BLUE(𝐅𝐗𝜷 ∣ Mt) = 𝐅𝐆t𝐲
= 𝐏𝐅𝐗;(𝐅𝐖𝐅′)+𝐅𝐲
= 𝐅𝐲 − 𝐅𝐕𝐅′𝐐𝐅𝐗(𝐐𝐅𝐗𝐅𝐕𝐅′𝐐𝐅𝐗)−𝐐𝐅𝐗𝐅𝐲.

It is interesting to observe that the matrix

𝐆# = 𝐈n − 𝐕𝐅′𝐐𝐅𝐗(𝐐𝐅𝐗𝐅𝐕𝐅′𝐐𝐅𝐗)−𝐐𝐅𝐗𝐅

satisfies (4.3), i.e.,

𝐆#(𝐗 ∶ 𝐕𝐅′𝐐𝐅𝐗) = (𝐗 ∶ 𝟎) .

However, 𝐆# and 𝐆t are not necessarily equal; their difference is

𝐆t −𝐆# = 𝐍𝐐(𝐗∶𝐕𝐅′𝐐𝐅𝐗)

for some matrix 𝐍.

Consider then the expressions for the BLUP of 𝜺∗ under the transformed model

Mt∗. One way to do this is to use Theorem 3.1, which says that 𝐃𝐅𝐲 is the BLUP(𝜺∗ ∣
Mt∗) if 𝐃 is a solution to

𝐃(𝐅𝐗 ∶ 𝐅𝐕𝐅′𝐐𝐅𝐗) = (𝟎 ∶ 𝐕21𝐅′𝐐𝐅𝐗) .

Thus, the BLUP of 𝜺∗ under Mt∗ can be expressed as

BLUP(𝜺∗ ∣ Mt∗) = 𝐕21𝐅′𝐐𝐅𝐗(𝐐𝐅𝐗𝐅𝐕𝐅′𝐐𝐅𝐗)−𝐐𝐅𝐗𝐅𝐲. (4.4)

Recall that in (4.4),𝐅′𝐐𝐅𝐗 can be replaced with𝐌𝐅′𝐐𝐅𝐗. One alternative expression

is

BLUP(𝜺∗ ∣ Mt∗) = 𝐕21𝐅′(𝐅𝐕𝐅′)−𝐅(𝐈n −𝐆t)𝐲.

We complete this section by giving some alternative expressions for the BLUP of

𝐲∗. Using (4.1), let us denote

𝝁∗ = 𝐗∗𝜷 = 𝐋𝐅𝐗𝜷, 𝝁 = 𝐗𝜷 .



124 J. Isotalo et al.

The BLUP(𝐲∗) under M∗ can be written as

BLUP(𝐲∗ ∣ M∗) = BLUE(𝝁∗ ∣ M ) + 𝐕21𝐕−[𝐲 − BLUE(𝝁 ∣ M )]
= 𝐋𝐅𝐆𝐲 + 𝐕21𝐕−(𝐈n −𝐆)𝐲
= 𝐋𝐅𝐆𝐲 + 𝐕21𝐌(𝐌𝐕𝐌)−𝐌𝐲
= BLUE(𝝁∗ ∣ M ) + BLUP(𝜺∗ ∣ M∗) , (4.5)

or shortly,

�̃�∗ = �̃�∗ + �̃�∗ .

Under the transformed model, we have

BLUP(𝐲∗ ∣ Mt∗) = BLUE(𝝁∗ ∣ Mt) + 𝐕21𝐅′(𝐅𝐕𝐅′)−𝐅[𝐲 − BLUE(𝝁 ∣ Mt)]
= 𝐋𝐅𝐆t𝐲 + 𝐕21𝐅′(𝐅𝐕𝐅′)−𝐅(𝐈n −𝐆t)𝐲
= 𝐋𝐅𝐆t𝐲 + 𝐕21𝐅′𝐐𝐅𝐗(𝐐𝐅𝐗𝐅𝐕𝐅′𝐐𝐅𝐗)−𝐐𝐅𝐗𝐅𝐲
= BLUE(𝝁∗ ∣ Mt) + BLUP(𝜺∗ ∣ Mt∗) , (4.6)

or shortly,

�̃�t∗ = �̃�t∗ + �̃�t∗ . (4.7)

In (4.5) and (4.6), the matrix 𝐕 can be replaced with 𝐖 ∈ W . In passing we may

notice that under M∗, �̃�∗ and �̃�∗ are uncorrelated, and hence cov(�̃�∗) = cov(�̃�∗) +
cov(�̃�∗). The corresponding property holds also for the terms of (4.7). For further

representations for the BLUP(𝐲∗ ∣ M∗), we refer to Haslett et al. (2014).

5 Linear Mixed Model

One application of the model M∗ is the linear mixed model

𝐲 = 𝐗𝜷 + 𝐙𝐮 + 𝜺, or shortly, L = {𝐲,𝐗𝜷 + 𝐙𝐮,𝐃,𝐑,𝐒},

where 𝐗n×p and 𝐙n×q are known matrices, 𝜷 ∈ ℝp
is a vector of unknown fixed

effects, 𝐮 is an unobservable vector (q elements) of random effects with E(𝐮) = 𝟎 ,
cov(𝐮) = 𝐃q×q , cov(𝜺,𝐮) = 𝐒n×q , and E(𝜺) = 𝟎, cov(𝜺) = 𝐑n×n. In this situation

cov
(
𝜺

𝐮

)
=
(
𝐑 𝐒
𝐒′ 𝐃

)
,

and

cov(𝐲) = 𝐙𝐃𝐙′ + 𝐑 + 𝐙𝐒′ + 𝐒𝐙′ ∶= 𝚺.
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The mixed model can be expressed as a version of the model with “new observa-

tions”, the new observations being now in 𝐮:

{(
𝐲
𝐮

)
,

(
𝐗
𝟎

)
𝜷,

(
𝚺 𝐙𝐃 + 𝐒

𝐃𝐙′ + 𝐒′ 𝐃

)}
.

Moreover, choosing the “new observations” as 𝐠 = 𝐗𝜷 + 𝐙𝐮, we get

{(
𝐲
𝐠

)
,

(
𝐗
𝐗

)
𝜷,

(
𝚺 (𝐙𝐃 + 𝐒)𝐙′

𝐙(𝐃𝐙′ + 𝐒′) 𝐙𝐃𝐙′

)}
.

Thus, see, e.g., Haslett et al. (2015), under the mixed model L the following state-

ments hold:

(a) 𝐀𝐲 is the BLUE for 𝐗𝜷 if and only if

𝐀(𝐗 ∶ 𝚺𝐌) = (𝐗 ∶ 𝟎) . (5.1)

(b) 𝐁𝐲 is the BLUP for 𝐮 if and only if

𝐁(𝐗 ∶ 𝚺𝐌) =
[
𝟎 ∶ (𝐃𝐙′ + 𝐒′)𝐌

]
=
[
𝟎 ∶ cov(𝐮, 𝐲)𝐌

]
.

(c) 𝐂𝐲 is the BLUP for 𝐠 = 𝐗𝜷 + 𝐙𝐮 if and only if

𝐂(𝐗 ∶ 𝚺𝐌) =
[
𝐗 ∶ 𝐙(𝐃𝐙′ + 𝐒′)𝐌

]
=
[
𝐗 ∶ cov(𝐠, 𝐲)𝐌

]
. (5.2)

Thus, we have, corresponding to Theorem 3.2,

BLUP(𝐗𝜷 + 𝐙𝐮 ∣ L ) = BLUE(𝐗𝜷 ∣ L ) + BLUP(𝐙𝐮 ∣ L ) ,

so that one representation for the BLUP of 𝐠 under L is

BLUP(𝐠) = 𝐓𝐲 + 𝐙(𝐃𝐙′ + 𝐒′)𝐖−
𝚺(𝐲 − 𝐓𝐲)

= 𝐓𝐲 + 𝐙(𝐃𝐙′ + 𝐒′)𝐌(𝐌𝚺𝐌)−𝐌𝐲,

where 𝐓 = 𝐗(𝐗′𝐖−
𝚺𝐗)

−𝐗′𝐖−
𝚺 and

𝐖𝚺 = 𝚺 + 𝐗𝐔𝐔′𝐗′
, C (𝐖𝚺) = C (𝐗 ∶ 𝚺) .

Conditions for 𝐅𝐲 being linearly sufficient or linearly prediction sufficient for 𝐗𝜷,

𝐮, and 𝐠 = 𝐗𝜷 + 𝐙𝐮, respectively, can be straightforwardly derived from (5.1)–(5.2).

For example, 𝐅𝐲 is BLUP-sufficient for 𝐠 if and only if

C

(
𝐗′

𝐌(𝐙𝐃 + 𝐒)𝐙′

)
⊂ C

(
𝐗′𝐅′

𝐌𝚺𝐅′

)
. (5.3)
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Corresponding properties as under M∗ in Theorem 3.4 for 𝐗∗𝜷, 𝜺∗, and 𝐲∗ hold also

under L for 𝐗𝜷, 𝐙𝐮, and 𝐠.

For the linear sufficiency in the mixed model, see also Liu et al. (2008, Sec. 3).

They defined the BLUP-sufficiency in a slightly different manner which we will not

handle here. Inspired by their Theorem 3.1, we will now show that 𝐅𝐲 is BLUP-

sufficient for 𝐠 = 𝐗𝜷 + 𝐙𝐮 if

C (𝐗 ∶ 𝐙𝐃 + 𝐒) ⊂ C (𝐖𝚺𝐅′) . (5.4)

In view of part (b) of Lemma 2.1, the “first part” of (5.4), C (𝐗) ⊂ C (𝐖𝚺𝐅′), is

equivalent to

C

(
𝐗′

𝟎

)
⊂ C

(
𝐗′𝐅′

𝐌𝚺𝐅′

)
, (5.5)

which means that 𝐅𝐲 ∈ S (𝐗𝜷). If 𝐅𝐲 would be also BLUP-sufficient for 𝐙𝐮, that

is,

C

(
𝟎

𝐌(𝐙𝐃 + 𝐒)𝐙′

)
⊂ C

(
𝐗′𝐅′

𝐌𝚺𝐅′

)
, (5.6)

then (5.3) would hold. Now (5.6) can be equivalently expressed as

C [𝐌(𝐙𝐃 + 𝐒)𝐙′] ⊂ C (𝐌𝚺𝐅′𝐐𝐅𝐗) = C (𝐌𝚺𝐅′) = C (𝐌𝐖𝚺𝐅′) , (5.7)

where the equality follows from (3.7). Premultiplying (5.4) by 𝐌 gives (5.7) at once.

Thus, we have proved that (5.4) implies (5.3). Notice that in the light of the second

part of Theorem 3.4 the implication (5.3) ⟹ (5.5) holds in the situation when

C (𝐗) ∩ C [𝐙(𝐃𝐙′ + 𝐒′)𝐌] = {𝟎} .

There is one further interesting link connecting the mixed model and the following

extended partitioned model:

A = {�̇�, ̇𝐗𝝅, ̇𝐕}

=
{(

𝐲
𝐲0

)
,

(
𝐗 𝐙
𝟎 −𝐈q

)(
𝜷

𝜸

)
,

(
𝐑 𝐒
𝐒′ 𝐃

)}
,

where both 𝜷 and 𝜸 are fixed effects parameters. Expressed in error terms we have

𝐲 = 𝐗𝜷 + 𝐙𝜸 + 𝜺 ,

𝐲0 = −𝜸 + 𝜺0 ,

where cov
( 𝐲
𝐲0

)
= cov

( 𝜺

𝜺0

)
= ̇𝐕. Premultiplying the model A by the matrix
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𝐓 = (𝐈n ∶ 𝐙) ,

as in Arendacká and Puntanen (2015, Sec. 2), yields the equation

𝐲 + 𝐙𝐲0 = 𝐗𝜷 + 𝐙𝜺0 + 𝜺 . (5.8)

We see that (5.8) defines a mixed model, say B, where the observable response is

𝐰 = 𝐲 + 𝐙𝐲0 and 𝜺0 is the unobservable random effect, and

cov(𝐲 + 𝐙𝐲0) = cov(𝐙𝜺0 + 𝜺) = 𝐙𝐃𝐙′ + 𝐑 + 𝐙𝐒′ + 𝐒𝐙′ = 𝚺 .

We can denote the resulting mixed model as

B = {𝐲 + 𝐙𝐲0, 𝐗𝜷 + 𝐙𝜺0, 𝐃, 𝐑, 𝐒} .

We can also interpret B as a fixed effect model and write it as B = {𝐰,𝐗𝜷,𝚺},

where the random effect is not written up explicitly.

It is now interesting to know whether the BLUEs of 𝐗𝜷 under A and B are

equal. We answer to this question using the linear sufficiency concept, while Haslett

et al. (2015) and Arendacká and Puntanen (2015) solved this problem using different

approaches. To do this, we write A as

A = {�̇�, ̇𝐗𝝅, ̇𝐕} = {�̇�, ̇𝐗1𝜷 + ̇𝐗2𝜸,
̇𝐕} .

First, we notice that ̇𝐗1𝜷 (and thereby 𝐗𝜷) is estimable because C ( ̇𝐗1) and C ( ̇𝐗2)
are disjoint. Then, we observe that

𝐓′ =
(
𝐈n
𝐙′

)
∈

{(
𝐙
−𝐈q

)
⊥

}
= { ̇𝐗⊥

2 },

i.e., 𝐓 ̇𝐗2 = 𝟎 and rank(𝐓) = rank( ̇𝐗⊥

2 ). It is well known by Frisch–Waugh–Lowell

theorem that premultiplying A by orthogonal projector ̇𝐌2 = 𝐈n+q − 𝐏 ̇𝐗2
yields the

reduced model under which the BLUE of ̇𝐗1𝜷 is the same as in A , that is, ̇𝐌2�̇� is

linearly sufficient for ̇𝐗1𝜷. Now C (𝐓′) = C ( ̇𝐌2) and hence, in view of (2.1), 𝐓�̇� is

also linearly sufficient for ̇𝐗1𝜷 and thereby

BLUE(𝐗𝜷 ∣ A ) = BLUE(𝐗𝜷 ∣ B) .

For the linear sufficiency in the partitioned model, see also Kala et al. (2017, Sec. 5).

Haslett et al. (2015) and Arendacká and Puntanen (2015) also showed the

following:

BLUP(𝜺0 ∣ A ) = BLUP(𝜺0 ∣ B) = BLUE(𝜸 ∣ A ) + 𝐲0 .
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The connection between the models A and B can be used as a tool to calculate

the BLUEs and BLUPs in mixed model and it is often referred to as a Henderson’s

method; see, e.g., Henderson et al. (1959) and McCulloch et al. (2008, Ch. 8).
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A Note on Circular
m-consecutive-k-out-of-n:F Systems

Cihangir Kan

Abstract In this chapter, more generalized version of m-consecutive-k-out-of-n:F
system is introduced in circular case, that is named as circular m-consecutive-k,l-
out-of-n:F system. This system consists of n circularly ordered components such

that the system fails if and only if there are at least m l-overlapping runs of k con-

secutive failed components. The parameter l is a leverage in this system which pro-

vides that the reliability of this system is bounded by overlapping (0 < l < k, k > 1)
and nonoverlapping (l = 0) cases. The main aim of this contribution is finding ri(n)
which denotes the number of path sets of circular m-consecutive-k,l-out-of-n:F sys-

tem including i working components. A combinatorial formula, which calculates the

exact reliability of this system, is given. Signature-based analysis are illustrated and

numerics are provided.

Keywords System signature ⋅ Reliability ⋅ Combinatorial method ⋅ Survival

function

Notation

k
𝜙

minimum number of failed components that may cause system failure

z
𝜙

maximum number of failed components such that system functions

ri(n) number of path sets including i working components

T (l)
k,m∶n lifetime of circular m-consecutive-k,l-out-of-n:F system
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1 Introduction

If the ordered components are arranged in a line then the system is called linear

whereas if they are arranged to form a circle then it is called a circular system. In

words, n components can be ordered linearly or circularly (where first component and

nth components are adjacent). A circular m-consecutive-k-out-of-n:F system with

nonoverlapping runs consists of n components which are circularly ordered such that

system fails iff there are at least m nonoverlapping runs of k consecutive failed com-

ponents. This system has been introduced by Griffith (1986) in 1986. Later, Boland

and Papastavridis (1999), Papastavridis (1990), Makri and Philippou (1996), Agar-

wal et al. (2007), and Eryilmaz et al. (2011b) studied on this system. Similarly, a

circularm-consecutive-k-out-of-n:F system with overlapping runs consists of n com-

ponents, which are circularly ordered, such that the system fails iff there are at leastm
overlapping runs of k consecutive failed components. This system has been studied

by Agarwal and Mohan (2008) and Eryilmaz (2012a). Overlapping means that runs

have common components. These linear and circular system models generalize the

consecutive-k-out-of-n:F system which is first introduced by Chiang and Niu (1981)

in 1981 and then studied by Bollinger and Salvia (1982), Shanthikumar (1982), Der-

man et al. (1982). Recent discussions on such systems are in Gera (2011), Levitin and

Dai (2011), Eryilmaz (2012b), and Cui et al. (2015). The application areas of such

system are oil pipeline systems, vacuum system in an electron accelerator, computer

ring networks, and microwave stations of a telecom network. For instance, consider

a microwave signal transmitting system combined of many stations which are or-

dered linearly or circularly. The system fails iff at least k adjacent stations fail in the

system. This chapter mentions a more generalized version of m-consecutive-k-out-

of-n:F system in circular cases, that is named as circular m-consecutive-k, l-out-of-

n:F system where the linear case is introduced by Eryilmaz and Mahmoud (2012).

For l = 0 and l = k − 1, this system turns into circular m-consecutive-k-out-of-n:F

system with nonoverlapping runs and circular m-consecutive-k-out-of-n:F system

with overlapping runs, respectively. For m = 1, ordinary consecutive-k-out-of-n:F
system is obtained. The circular m-consecutive-k,l-out-of-n:F system combined of

n circularly ordered components such that the system fails iff there are at least m l-
overlapping runs of k consecutive components (n ≥ m(k − l) + l, l < k). This system

has wider applications in specific areas such as infrared detecting and bank automatic

payment systems. For instance, consider a system which is constructed by the cir-

cularly arranged identical and independent transmitters. The main principle of the

given system is collecting the sufficient amount of information and transferring it.

Basic functioning principle for the system can be defined as follows:

The information is gathered by the k consecutive transmitters. New information

can be provided with the reuse of the given number of these transmitters which is

denoted by “l”. When at least m blocks of k consecutive working transmitters collect

information then it is transferred. This is an example forG-system. On the other hand,
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Fig. 1 Circularly ordered

transmitters
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for F systems, the system fails iff there are at least m blocks of length k consecutive

disfunctioning transmitters, consisting l reused ones.

In Fig. 1, the system contains 16 transmitters that are circularly ordered (where

first component and 16th components are adjacent) and 0s and 1s represent function-

ing and disfunctioning transmitters respectively. For m = 3 and k = 4 the following

line up 1111101111110110 will function for l = 0, 1 and will fail for l = 2, 3.

In this work, the number of path sets including a certain number of working com-

ponents in a circular arrangement is obtained by using the binomial distribution of

order k for l-overlapping runs of length k, studied by Aki and Hirano (2000) and

Makri and Philippou (2005). After derivation of this formula, reliability and system

signature of this system has been computed. All proofs can be found in the Appendix.

The statistical inference procedure can be done based on a random sample of life-

times of independent circular m-consecutive-k,l-out-of-n:F systems. The problem of

estimating the parameter of the common distribution of components’ lifetimes from

system’s lifetime data can be studied similarly as Eryilmaz (2011a) did.

2 Reliability Evaluation

Assume that a system contains independent and identically distributed components

having common reliability p, then the reliability of whole system can be computed

as

R =
n∑

i=n−z
𝜙

ri(n)pi(1 − p)n−i (1)

where ri(n) denotes the number of path sets of a system including i working compo-

nents and z
𝜙

is the minimum number of working components such that the system

can still work successfully.

Lemma 1 For a circular m-consecutive-k,l-out-of-n:F system,
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k
𝜙
= k + (m − 1)(k − l)

and
z
𝜙
= n − 2 −

⌊
n − k − (m − 1)(k − l) − 1

k

⌋

where n ≥ m(k − l) + l, l < k and ⌊x⌋ denotes the integer part of x.

Lemma 2 (Makri et al. (2007)) Let C(𝛽; 𝛼, r − 𝛼;m1 − 1,m2 − 1) be the number of
allocations of 𝛽 indistinguishable balls into r distinguishable cells, 𝛼 specified of
which have capacity m1 − 1 and each of the rest r − 𝛼 has capacity m2 − 1. Then

C(𝛽; 𝛼, r − 𝛼;m1 − 1,m2 − 1)

=

⌊
𝛽

m1

⌋

∑

j1=0

⌊
𝛽−m1 j1

m2

⌋

∑

j2=0
(−1)j1+j2

(
𝛼

j1

)(
r − 𝛼

j2

)(
𝛽 − m1j1 − m2j2 + r − 1

r − 1

)

Note that C(n − i; i; k − 1) represents the number of ways of n − i success can be

placed into i linear cells with no cell receiving more than k − 1. Considering cyclic

arrangement, each such arrangements gives n arrangements by rotation. But the set

of the nC(n − i; i; k − 1) arrangements is partitioned into sets of i like arrangements.

So, in circular case

Cc(n − i; i; k − 1) = n
i
C(n − i; i; k − 1)

where Cc(n − i, i, k − 1) denotes the number of cyclic arrangement of n − i successes

and i cells such that each cell contains at most k − 1 consecutive success. Now, by

using Lemma 2, ri(n) can be calculated for the circular m-consecutive-k,l-out-of-n:F
system.

Theorem 3 The number of path sets of circular m-consecutive-k,l-out-of-n:F
system including i working components is

ri(n) =
n
i
[C(n − i; i, 0; k − 1, k − 1)

+
m−1∑

s=1

min(i, s)∑

a=1

(
i
a

)(
s − 1
a − 1

)
C(n − i − al − s(k − l); a, i − a; k − l − 1, k − 1)

]

for n − z
𝜙
≤ i ≤ n.

By using Theorem, one can compute the reliability of the circular m-consecutive-

k,l-out-of-n:F system.

In Fig. 2, it can be easily seen that the reliability of the circular 2-consecutive-

3,l-out-of-10:F system decreases by l and it is bounded by circular 2-consecutive-

3,l-out-of-10:F system with overlapping and nonoverlapping runs for l = 0, 1, 2. For
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Fig. 2 The reliability of the circular 2-consecutive-3, l-out-of-10:F system for l = 0, 1 and 2

Table 1 All possible binary sequences for l = 0 and l = 1
Number of working components

l = 0 1 2 3 4 5
− 00111 00011 00001 00000

01011 00101 00010
10011 01001 00100
01101 10001 01000
10101 00110 10000
11001 01010
01110 10010
10110 01100
11010 10100
11100 11000

ri(5) 0 10 10 5 1
l = 1 1 2 3 4 5

− 01011 00011 00001 00000
01101 00101 00010
10101 01001 00100
10110 10001 01000
11010 00110 10000

01010
10010
01100
10100
11000

ri(5) 0 5 10 5 1
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example, one can illustrate the computation of reliability not only by using ri(n) but

also by hand for the values n = 5, m = 2, and k = 2. In Table 1, the possible binary

states are listed for both l = 0 and l = 1.
For l = 0, the reliability of circular 2-consecutive-2,0-out-of-5:F system is

R = 10p2(1 − p)3 + 10p3(1 − p)2 + 5p4(1 − p) + p5

which can also be computed by using Eq. (1) for ri(5) = (0, 10, 10, 5, 1).
By using the same way, we can calculate the reliability of circular 2-consecutive-

2,1-out-of-5:F system. The functioning states are shown in Table 1, therefore the

reliability of circular 2-consecutive-2 ,1-out-of-5:F system is

R = 5p2(1 − p)3 + 10p3(1 − p)2 + 5p4(1 − p) + p5

which can verify that the computations are true with the corresponding ri(5) =
(0, 5, 10, 5, 1) for l = 1.

3 System Signature

Let Ti denote the lifetime of the ith component in a coherent system with the structure

function and lifetime T . Then

T = 𝜙(T1,T2,… ,Tn)

If Ti’s are s-independent and have common absolutely continuous distribution func-

tion, then the survival function can be stated as

P(T > t) =
n∑

i=1
piP(Ti∶n > t) (2)

where T1∶n ≤ T2∶n ≤ ⋯ ≤ Tn∶n is the order statistics associated with T1,T2,… ,Tn
and pi = P(T = Ti∶n), in other words,

pi =
The number of orderings for which the ith failure causes the system failure

n!

for i = 1, 2,… , n. which is well known as Samaniego’s Signature (Samaniego 2007).

The ith element of the signature vector can be easily computed from

pi =
rn−i+1(n)(

n
n − i + 1

) −
rn−i(n)(

n
n − i

) , for i = 1, 2,… , n.
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(Boland 2001). Hence, applying the formula (2) for the structure of circular m-

consecutive-k,l-out-of-n∶F system, we can restate it as follows

P(T > t) =
z
𝜙
+1∑

i=k
𝜙

piP(Ti∶n > t) (3)

In Table 2, the signatures of circular m-consecutive-k,l-out-of-n :F system for some

values are presented

By using the formula (3), the reliability of circular 2-consecutive-3,l-out-of-10:F
system can be written as

P(T0
3,2∶10 > t) = 0.0119P(T6∶10 > t) + 0.381P(T7∶10 > t) + 0.5P(T8∶10 > t)

P(T1
3,2∶10 > t) = 0.0397P(T5∶10 > t) + 0.2222P(T6∶10 > t) + 0.4881P(T7∶10 > t)

+ 0.25P(T8∶10 > t)
P(T2

3,2∶10 > t) = 0.476P(T4∶10 > t) + 0.1508P(T5∶10 > t) + 0.3492P(T6∶10 > t)
+ 0.3690P(T7∶10 > t) + 0.0833P(T8∶10 > t)

and mean time to failure (MTTF) of the system are as

Table 2 The signatures of circular m-consecutive-k ,l-out-of-n:F system for some values

n m k l 𝐩
10 2 3 0 (0, 0, 0, 0, 0, 0.119, 0.381, 0.5, 0, 0)

1 (0, 0, 0, 0, 0.0397, 0.2222, 0.4881, 0.25, 0, 0)
2 (0, 0, 0, 0.476, 0.1508, 0.3492, 0.3690, 0.0833, 0, 0)

10 3 3 0 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0)
1 (0, 0, 0, 0, 0, 0, 0.0833, 0.5833, 0.3333, 0)
2 (0, 0, 0, 0, 0.0397, 0.1508, 0.4762, 0.3333, 0, 0)

10 2 4 0 (0, 0, 0, 0, 0, 0, 0, 0.3333, 0.6667, 0)
1 (0, 0, 0, 0, 0, 0, 0.0833, 0.4722, 0.4444, 0)
2 (0, 0, 0, 0, 0, 0.0476, 0.2024, 0.5278, 0.2222, 0)
3 (0, 0, 0, 0, 0.0397, 0.1518, 0.3095, 0.5, 0, 0)

12 2 4 0 (0, 0, 0, 0, 0, 0, 0, 0.0606, 0.2667, 0.4909, 0.1818, 0)
1 (0, 0, 0, 0, 0, 0, 0.0152, 0.1182, 0.3576, 0.5091, 0, 0)
2 (0, 0, 0, 0, 0, 0.013, 0.0628, 0.203, 0.4303, 0.2909, 0, 0)
3 (0, 0, 0, 0, 0.0152, 0.0628, 0.1494, 0.2939, 0.3515, 0.1273, 0, 0)

12 3 3 0 (0, 0, 0, 0, 0, 0, 0, 0, 0.1818, 0.5455, 0.2727, 0)
1 (0, 0, 0, 0, 0, 0, 0.0152, 0.1545, 0.5030, 0.3273, 0, 0)
2 (0, 0, 0, 0, 0.0152, 0.0628, 0.21, 0.3788, 0.3333, 0, 0, 0)
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E(T0
3,2∶10) = 0.0119E(T6∶10) + 0.381E(T7∶10) + 0.5E(T8∶10)

E(T1
3,2∶10) = 0.0397E(T5∶10) + 0.2222E(T6∶10) + 0.4881E(T7∶10) + 0.25E(T8∶10)

E(T2
3,2∶10) = 0.476E(T4∶10) + 0.1508E(T5∶10) + 0.3492E(T6∶10) + 0.3690E(T7∶10)

+ 0.0833E(T8∶10)

The signature of a system has been found to be useful for comparing systems in

terms of various stochastic orderings. Let X and Y be two independent random vari-

ables having cumulative distribution F and G. X is said to be smaller than Y in sto-

chastic ordering (denoted by X
st
≤ Y) if their respective survival functions satisfy the

inequality P(X > x) ≤ P(Y > x) for all x, or equivalently E(𝜓(X)) ≤ E(𝜓(Y)) for all

increasing functions 𝜓 for which the expectation exists. Let 𝐩 = (p1,… , pn) and 𝐪 =
(q1,… , qn) be, respectively, the signatures of coherent systems T = 𝜙(T1,… ,Tn)
and Z = 𝜓(T1,… ,Tn), both used on n i.i.d. components. In 1999, Kochar et al.

(1999) proved that if 𝐩 ≤st𝐪, then T ≤st Z. By using Table 2, it is easy to see that

signature of circular m-consecutive-k ,l-out-of-n:F system is stochastically less or

equal than the signature of circular m-consecutive-k,l − 1-out-of-n:F system for

l = 1,… , k − 1.Assuming lifetime distributions of system components are same and

only changing the l parameter it can be expected that

T (l)
k,m∶n ≤st T

(l−1)
k,m∶n for l = 1,… , k − 1.

Table 3 MTTF of circular m-consecutive-k,l-out-of-n:F system for some values of n, m, k, and l
n m k l MTTF
10 2 3 0 1.2325

1 1.1056
2 0.9389

10 3 3 0 1.9290
1 1.5679
2 1.1512

10 2 4 0 1.7623
1 1.6234
2 1.4448
3 1.2067

12 2 4 0 1.5699
1 1.4032
2 1.2798
3 1.1224

12 3 3 0 1.6790
1 1.3335
2 1.0305
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Assuming Ti’s are s-independent and have common exponential distribution function

with mean 1, the expected value of the ith smallest component is equal to

E(Ti∶n) =
i∑

j=1

1
n − j + 1

for i = 1, 2,… , n. By using this expectation one can easily compute the MTTF of

circular m-consecutive-k,l-out-of-n:F system for some values of n,m, k, and l as fol-

lows:

In Table 3, we see that the MTTF is increasing in m and k and decreasing in n and

l which is consistent with Fig. 2.

4 Summary and Conclusions

In this chapter, more generalized version of m-consecutive-k-out-of-n:F
system is introduced in circular case, that is named as circularm-consecutive-k,l-out-

of-n:F system. The parameter l is a leverage in this system which provides that the

reliability of this system is bounded by overlapping (0 < l < k, k > 1) and nonover-

lapping (l = 0) cases. The main aim of this contribution is finding ri(n)which denotes

the number of path sets of circular m-consecutive-k,l-out-of-n:F system including i
working components. A combinatorial formula, which calculates the exact reliabil-

ity of this system, is given. Signature-based analysis are illustrated and numerics are

provided.
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comments and suggestions, which have significantly improved the contribution.

Appendix

Proof of Lemma 2. A circular m-consecutive-k,l-out-of-n:F system combined of

n circularly ordered components such that the system fails iff there are at least

m l-overlapping runs of k consecutive components (n ≥ m(k − l) + l, l < k). So, the

minimum number of failed components such that system fails can be found as

k
𝜙
= k + (m − 1)(k − l)

For finding the maximum number of failed components such that system still func-

tions, which is denoted by z
𝜙

, we can consider a binary sequence of runs which are

cyclically arranged as follows
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011…1
⏟⏟⏟

x

0 11…
⏟⏟⏟

n−x−2

where x denotes the number of failed components such that total number of l-
overlapping runs is m − 1, and the remaining part n − x − 2 runs can obtain a maxi-

mum of

n − x − 2 −
⌊n − x − 2

k

⌋

failures. The maximum value of x is k + (m − 1)(k − l) − 1 so

z
𝜙
= n − k − (m − 1)(k − l) + 1 − 2 −

⌊
n−k−(m−1)(k−l)+1−2

k

⌋

= n − 2 −
⌊
n−1−m(k−l)−l

k

⌋

■
Proof of Theorem 3. Consider a binary sequence of runs which are cyclically

arranged as follows

11…1
⏟⏟⏟

x1

0 1…1
⏟⏟⏟

x2

0…0 1…1
⏟⏟⏟

xi

0

such that for s = 0, 1,… ,m − 1,

x1 + x2 +⋯ + xi = n − i (4)

where ⌊
x1 − l
k − l

⌋
+⋯ +

⌊
xa − l
k − l

⌋
= s

for a of xj × s ≥ k and i − a of xj × s < k. and

⌊
xi−l
k−l

⌋
denotes the number of l-

overlapping runs of length k in the ith failure run.

By using Theorem 4.1 of Makri et al. (2007), the number of path sets of a circular

m-consecutive-k, l-out-of-n system can be calculated as follows

ri(n) =
n
i

m−1∑

s=0

∑

a

(
i
a

)
N(i, a, k, l, s, n)

where N(i, a, k, l, s, n) denotes the number of integer solution to (4). Let yj = xj − l
for j = 1, 2,… , a and yj = xj for j = a + 1, a + 2,… , i.

Then (4) is equivalent to

y1 + y2 +⋯ + yi = n − i − al (5)

st
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⌊ y1
k − l

⌋
+⋯ +

⌊ ya
k − l

⌋
= s

y1, y2,… , ya ≥ k − l and 0 ≤ ya+1, ya+2,… , yi < k.
Let

⌊
yj
k−l

⌋
= zj for j = 1, 2,⋯ , a. Then (5) is equivalent to

y1 + y2 +⋯ + yi = n − i − al (6)

st

zj(k − l) ≤ yj < zj(k − l) + k − l for j = 1, 2,… , a
0 ≤ yj < k for j = a + 1, a + 2,… , i

and

z1 + z2 +⋯ + za = s (7)

st

zi > 0 for i = 1, 2,… , a.

The number of integer solutions to (7) is

(
s − 1
a − 1

)
and by using Lemma 2.1 of Makri

et al. (2007) and taking uj = yj − (k − l)zj for j = 1, 2,… , awe can obtain the number

of integer solutions to (6) asN(i, a, k, l, s, n) =
(
s − 1
a − 1

)
C(n − i − al − s(k − l); a, i −

a; k − l − 1, k − 1) for s = 1, 2,… ,m − 1. For s = 0, the number of integer solutions

can be obtained as N(i, a, k, l, s, n) = C(n − i; i, 0; k − 1, k − 1). ■
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A Categorical Principal Component
Regression on Computer-Assisted
Instruction in Probability Domain

Tuğba Kapucu, Ozlem Ilk and İnci Batmaz

Abstract The purpose of this study is to examine the effects of computer-assisted
instructional material (CAIM) prepared in R program on eighth grade students’
permutation–combination and probability achievement and their attitudes toward
computer-assisted learning. In the study, we collect survey data from 74 conve-
niently selected students and their schools; data consists of 45 highly correlated
explanatory variables with different measurement levels. To deal with the multi-
collinearity problem among mixed type of explanatory variables, first, we apply
categorical principal components analysis (CATPCA), and hence, reduce the
dimension of data. In the following, we use uncorrelated components instead of the
original correlated variables to fit the multiple linear regression (MLR) model in
order to question whether CAIM has been effective in teaching probability domain.
Results show that the general success of the students and basic socioeconomic and
technological factors affecting this situation and interaction of those factors with the
secondary social situation of the student’s family have statistically significant
effects on the probability achievement of the students. Instruction method is also
found as a statistically significant factor in explaining students’ achievement in
permutation–combination subjects. However, none of the explanatory variables
considered in the study are found statistically significant in explaining the attitudes
of students toward computer-assisted instruction (CAI).
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Keywords Categorical principal components analysis ⋅ Computer-assisted
instruction ⋅ Linear models ⋅ Multicollinearity ⋅ R software
Teaching probability

1 Introduction

Probability is an old branch of mathematics dealing with calculating probability of a
variety of events (HodnikČadež and Škrbec 2011). With the change of world
conditions, the importance of probability knowledge has also gained importance.
As Lopes and Moura (2002) indicated, knowledge of facts of probability is sig-
nificant not only to make decisions and predictions but also to provide an earlier
accession of population to social and economical arguments in which tables and
graphics synthesize studies and analysis, and comparison of indexes is done to
support ideas. Due to the fact that teaching of probability and statistics advances
students’ ability of collecting, organizing, interpreting, and comparing data to
acquire and support conclusions, it is appropriate to be placed in mathematics
curriculum in the Elementary Education (Lopes and Moura 2002).

Even though lack of people’s ability in learning the concepts encompassing
judgement under uncertainness is mentioned so much over the last three decades,
the research on solutions is insufficient (Keeler and Steinhorst 2001). Another
research done by Batanero et al. (2005) showed that teachers have lack of expe-
rience in probability and transport their probabilistic misconceptions to their stu-
dents. Most teachers find it difficult to teach probability. They do not rely on their
ability of teaching probability, and they are unconfident in the activity of proba-
bility including uncertainty (Stohl 2005).

Garfield and Ahlgren (1988) stated that students dislike probability due to
exposure of a highly abstract study in a formal way. So, they suggested introducing
probability through activities and simulations for overcoming difficulties in teach-
ing probability. Simulation is a new and fundamental tool in all aspects of education
today. Chance and Rossman (2006), as reported in Zieffler and Garfield (2007), said
that the use of simulation in probability and statistics course as a supportive of
instructional efforts is highly recommended by statisticians and researchers. Sim-
ulation is a powerful instrument giving the opportunity of repetition of a study
many times (Burrill 2002). Using simulation provides students to perceive active
processes, rather than stable configurations and representations (Zieffler and Gar-
field 2007). Using probabilistic simulations and games by teachers in their lectures
can be very beneficial for students, thus, students can learn how to make a statement
based on evidence and enlightened decisions on data which may cause a smaller
chance of error (Souza 2015).

Probability and statistics have been involved in curriculum of school mathe-
matics for less than 40 years and they supplement the traditional topics of arith-
metic, algebra, and geometry (Borovcnik and Kapadia 2010). Although almost all
countries accept statistics as an inseparable part of mathematics curriculum, the
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concept of probability is just introduced to older students (Borovcnik and Kapadia
2010). According to Ferreira et al. (2014), students are required to show more
advanced skills while learning probability concepts compared to traditional school
tasks, because as Borovcnik and Kapadia (2010) indicated that conceptual errors in
probability affect all aspects of people’s decisions such as assessment, medical tests,
etc. Therefore, it is important that probability should be a vital part of elementary
school mathematics and effective teaching strategies and materials should be uti-
lized while teaching probability concepts. In the current elementary school math-
ematics curriculum in Turkey, however, probability is included only in the eighth
grade. Besides, students do not show success in questions related to probability
both in national and international exams. For instance, Turkey ranked 30th among
38 countries in terms of probability and data analysis subject’s score (TIMSS 1999).
Furthermore, students have low scores in mathematics in the examination of
transition to secondary education from primary education (TEOG).

There are a number of difficulties that confronted in teaching and learning the
concept of probability (Gürbüz 2008). According to him, the lack of suitable
teaching materials is among the reasons of these difficulties, and computer tech-
nology can provide a solution to these problems by developing materials that
influence students’ learning, positively by simulation and animation (Gürbüz 2008).
However, the number of research studies conducted to examine the effectiveness of
simulation on mathematics achievement is not sufficient both in Turkey and abroad.
Furthermore, there are only a few research studies conducted to examine the effects
of simulation in probability instruction (e.g., Garfield and Zieffler 2007; Braun et al.
2013). One of the purposes of the present study is to examine the effect of CAIM
prepared in R program on elementary school students’ probability achievement.
Another concern of the present study is to investigate how students’ attitudes
toward CAI change while animation and simulation are used as a material in the
mathematics education.

In order to accomplish our aims, we set up experiments in four district schools.
Two of them are the state schools located in the villages of Mardin, a city in
southeastern Turkey. The other two are private schools located in the city centers of
Mardin and Ankara (the capital of Turkey). These schools are particularly selected
to consider the effects of socioeconomic and cultural differences in the analysis.
Data obtained from the experiments conducted on 74 students contain several
exploratory variables with different measurement levels. To inquire about our
research questions mentioned above, we intend to develop a multiple linear
regression (MLR) model between variables in our study. MLR assumes that
exploratory variables in the model are independent of each other. However, in
high-dimensional data, such as the one that we work on here, multicollinearity
among the variables is unavoidable. Hence, the first step is to reduce the data
dimension. We achieve this by applying the categorical principal components
analysis (CATPCA).

The chapter is organized as follows. In Sect. 2, literature review on CAI is
presented. The CATPCA is described in Sect. 3. In Sect. 4, the application and its
findings are given. Concluding remarks are stated in the last section.
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2 Literature Review

Educational technology has the meaning of the media intention which concentrates
on materials and equipment, i.e., delivery systems (Ely and Plomp 1986). Tickton
(1970), as reported in Ely and Plomp (1986), defined the educational technology as
“the media born of the communications revolution which can be used for
instructional purposes alongside the teacher, textbook and blackboard.” The pieces
that make up instructional technology are television, films, overhead projectors,
computers, and the other items of “hardware” and “software”. Instructional tech-
nology is a component of educational technology. While educational technology is
a broader concept, instructional technology is a more specific concept that contains
mechanism of learning and instruction. Computers and computer software are
among the most known teaching materials but instructional technology is not
limited to these tools.

Computer-assisted instruction (CAI) is a teaching method in which computer is
used as a supportive tool for teacher in lectures. CAI strengthens teaching process
and students’ motivations by making possible for students to learn with respect to
their learning speed (Şahin and Yildirim 1999). It is vital to improve and use
instructional materials and activities that evoke students’ visual and intellectual
frame. By extension of technological advances, technological devices, especially
computers are started to be used in educational environments to develop audiovi-
sual materials such as animation and simulation. The use of simulations and ani-
mations associated with abstract concepts enables students to participate in learning
process and to structure the concepts easily in their minds (Karamustafaoğlu et al.
2005).

In the literature, there are some research studies conducted to examine the
effectiveness of CAI methods on students’ probability achievement. In one of these
studies, Gürbüz (2008) presented CAIM for teaching probability topic at primary
school. In the light of this study, CAIM including simulations and animations was
developed through the instrument of Dreamweaver MX 2004 and Flash MX 2004.
In another study, Ferreira et al. (2014) discussed aspects of high school students’
learning of probability in a context where they were supported by the statistical
software R. In a study carried out by Braun et al. (2013), how to introduce young
students to the ideas of randomness and uncertainty by using statistical program R
in elementary schools was investigated.

In the light of these researches, it was found that CAI was more effective than
traditional instruction for teaching probability concepts, and CAIMs would be
effective in teaching and learning of probability topics. In the present study, a CAI
material including a sequence of animation and simulation activities to illustrate
basic probabilistic concepts is improved by using statistical program R. It aims to
investigate the effect of CAI method compared to traditional instructional method
on students’ probability achievement. In addition, unlike the other studies, this
study also examines how the socioeconomic and cultural factors affect the
achievement.
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3 The Method

3.1 Categorical Principal Components Analysis (CATPCA)

In the study, there are a large number of correlated categorical variables, which we
wish to reduce to a small number of dimensions with as little loss of information as
possible. Principal component analysis (PCA) or factor analysis is considered to be
appropriate ways to be executed in such a data reduction process. The aim of PCA
or factor analysis is to reduce the number of m variables to smaller number of
p uncorrelated linear combinations of these variables, called principal components,
while maximizing the amount of variance in the data as much as possible (Everitt
and Hothorn 2011). However, traditional PCA is not a suitable method of data
reduction for categorical variables, since variables in PCA are assumed to be scaled
at numeric level (interval or ratio level of measurement) and also linear relationship
among variables is required. Alternative to traditional PCA, categorical (also known
as nonlinear) principal components analysis (CATPCA/NLPCA), which overcomes
limitations of PCA, is used in this study.

CATPCA is an alternative data reduction technique to PCA concerned with
identifying fundamental components of a set of variables while maximizing the
amount of variance accounted for by the principal components, for the variables
which are categorical (e.g., nominal, ordinal, and even numeric). The purpose of
CATPCA is equivalent to that of PCA, namely to reduce a dataset consisting of
many correlated variables to a smaller number of uncorrelated summary variables
(principal components) that represent the observed data as closely as possible. The
main difference between the methods is that, while PCA detects a linear relationship
between variables, CATPCA can also detect nonlinear relationships by quantifying
categorical or nonlinearly related variables in an optimal way to achieve the PCA
goal (Linting and Van der Kooji 2012). It is important to underline the fact that
when all variables in the dataset are continuous and the linearity assumption
between the variables is satisfied, CATPCA and PCA give exactly the same
solutions.

Gifi (1990), as cited in Mair and Leeuw (2010), proposed a wide collection of
nonlinear multivariate methods based on “optimal quantification”. NLPCA/
CATPCA uses optimal quantification (also known as optimal scaling, or optimal
scoring) approach to assign numeric values to categories of variables (Linting and
Van der Kooji 2012). Optimal quantification is a process which converts the cat-
egory labels into category quantifications by maximizing the variance accounted for
among the quantified variables (Linting and Van der Kooji 2012). A 0–1 dummy
matrix based on the data consisting of categorical variables is the starting point of
the analysis. Afterward, a loss function, L, comprising the (unknown) object and the
category scores are constituted. These variables are stretched during the iterations
and category scores are computed in such a way that they are optimal in terms of a
minimal loss function. In the Gifi model, the transformations compared to that of
regression such as exponential, logarithmic, or square root transformations are
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unknown: The categories are quantified according to a certain criterion. In the given
approach, an objective function is selected and then examined how the target
function alters the overall possible transformations of the variables, and eventually,
quantifies the categories accordingly (Mair and Leeuw 2010).

Suppose we have measurements of n objects or individuals on m variables
collected in an n×m observed score matrix X, where each variable is denoted by
Xj, j=1, 2, . . . ,m, that is the jth column of X. If the variables Xj are nominal or
ordinal, then a nonlinear transformation, namely optimal quantification, is required
to transform observed scores into category quantification, qj, given by

qj =φj Xj
� �

. ð1Þ

Thus, Q= q1, q2, . . . , qmð Þ is the matrix of category quantification with qj as the
vector of computed category scores.

As mentioned above, we should determine the optimal quantification of cate-
gorical variables. For this purpose, an “aspect”, ϕ, a function of the correlational
matrix R, is defined as the criterion to be optimized. Broadly, the optimization
problem can be formulated as

Maxϕ R Xð Þð Þ. ð2Þ

In other words, the observed variables (categories) are scaled in such a way that
the correlation matrix based on these scores is maximized (Mair and Leeuw 2010).
At this point, we specify “eigenvalue aspects”, which aim to maximize the largest
eigenvalue λ of R. Here, the aim of the optimal quantification is to optimize the first
p eigenvalues of the correlation matrix of the quantified variables, where p repre-
sents the number of components defined by the user in the analysis.

Let S be the n× p matrix of object scores, which are the scores of the individuals
on the principal components obtained by the CATPCA. The object scores are
multiplied by a set of optimal weights, named as “component loadings”. Also, let
A be an m× p matrix of the component loadings, where the jth column is denoted
by aj. Then the loss function, L, for minimization of difference between the original
data and principal components is obtained as

L Q,A, Sð Þ= n− 1 ∑
m

j=1
tr qjaTj − S
� �T

qjaTj − S
� �

, ð3Þ

where tr is the trace function, that is, for any matrix A, tr ATA
� �

= ∑i ∑j a
2
ij.

As a result, the CATPCA is carried out by minimizing the least squares (LS) loss
function L given in (3), in which the matrix X is replaced by the matrix Q. Here, the
loss function L is exposed to some limitations. First, the transformed variables are
standardized to overcome the indeterminacy between qj and aj, that is qTj qj = n. This
standardization implies that qj contains z-scores and as a result, the component
loadings in aj are correlations among transformed variables and principal
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components. Also, the object scores are restricted to avoid the trivial solution by
STS= nI, where I is the identity matrix. However, the object scores are centered,
i.e., 1TS=0, where 1 is a vector of ones. Linting et al. (2007a) stated that these
restrictions imply the columns of S to be orthogonal z-scores (as cited in Kemalbay
and Korkmazoğlu 2014). According to Gifi (1990), as cited in Kemalbay and
Korkmazoğlu (2014), the minimization of restricted loss function given in (3) is
obtained by means of an alternating LS (ALS) algorithm.

Consequently, CATPCA converts categories into numeric values as mentioned
above. The most important issues to be considered in this regard are that the
correlation matrix in CATPCA is not fixed as opposed to the correlation matrix in
the PCA; rather, “analysis level” that is chosen for each of the variables in the active
CATPCA process determines the type of quantification. The specified analysis level
also decides the amounting freedom permitted in converting the category values
into category quantifications (Linting and Kooji, 2012).

3.2 Sample Size Consideration in Data Reduction

Sample size is an important consideration in data reduction methods such as
principal component analysis (PCA) or factor analysis (FA), because small sample
may lead to erroneous conclusions, and thus, unreliable results (Osborne and
Costello 2004). Some guidelines to determine an adequate sample size suggested in
literature depend on either absolute minimum size or number of observations to
variables ratio (Arrindell and Van der Ende 1985; Guadagnoli and Velicer 1988;
Osborne and Costello 2004). It is also noted that more observations are needed to
analyze binary data than those needed for continuous data (Pearson and Mundfrom
2008). In some other studies, however, it is stated that setting a minimum sample
size is not “valid or useful”, and according to some others, “no absolute rules” can
exist on this matter but simply, “more is better (Osborne and Costello 2004)”.
However, in another studies, it is indicated that how “strong” the data is more
important than the size of the sample studied (Costello and Osborne 2005). It is
even said that “If factors stay the same, more variables could lead to better results,
with small number of observations (Preacher and MacCallum 2002).” Depending
on these statements, we may say that there has not been an agreement on this matter
yet among researchers. Moreover, according to same papers reviewed (Lingard and
Rowlinson 2006), almost half of studies considered use much less observations or
smaller number of observations to variables ratio than suggested in literature.

To the best of our knowledge, there are no suggestions regarding minimum size
requirements, particularly, for CATPCA, in literature. However, there are few
studies on how to determine if the sample size is large enough for this analysis. One
suggestion is to use KMO statistic, which measures if we can factorize original
variables efficiently (Mendes and Ganga 2013). The other one is measuring
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“instability” resulted from not having enough sample size by using bootstrapping
technique (Linting et al. 2007b).

4 Application and Results

4.1 Experimental Setup

In this study, quasi-experimental research design is conducted in order to investi-
gate the impacts of the simulation–animation activities prepared in R program on
the eighth grade students’ achievement and attitudes on CAI. During the study, in
the experimental group, CAI based on animation–simulation prepared in R program
is used as a supplementary teaching tool. On the other hand, the control group is
instructed through traditional teaching method during the study.

The subjects of this study are (N = 74) eighth grade students from four distinct
schools in two different regions of Turkey in the spring semester of the academic
year 2015–2016. Two of the schools, “Dereyani Ortaokulu” and “Şehit Öğretmen
Fasih Söğüt”, are state village elementary schools in Mardin; the third one,
“Bahçeşehir College”, is a private elementary school in Mardin, and the last one,
“Ihsan Doğramaci Foundation Bilkent College”, is a private elementary school in
Ankara. In order to investigate the effectiveness of the CAIM including a sequence
of simulation–animation activities to illustrate basic probabilistic concepts,
improved by the authors, “Dereyani Elementary State School” is conveniently
assigned to experimental group while “Şehit Öğretmen Fasih Söğüt Elementary
State School” is assigned to the control group. However, it is difficult to determine
the effectiveness of CAIM, because these two schools do not have enough tech-
nological equipment, and the students are not familiar with technology. Despite the
possible deviations that may occur, two private schools, “Bahçeşehir” and “Bilk-
ent” Colleges, are included in the study to examine the cultural impact. Only CAI is
given to both of these private elementary schools to identify potential cultural
impact.

4.2 Description of Variables

There are five groups of variables in this study. Three of them are independent
variables and two groups are dependent variables. Independent variables consist of
1. Treatment (Traditional method versus CAI with R program), 2. Students’
demographic characteristics such as gender, income, parents’ education level,
number of siblings, city they live in, type of the computer equipment used at home,
computer/Internet usage time per day, and purpose of computer/technology usage,
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and 3. Technological equipment such as type of technological equipment in class,
school environment in terms of technology, and attitude of school administrator
toward CAI. The first group is collected according to an experimental plan. The
second and the third groups are collected through demographic surveys of students
and technology equipment survey of schools. Dependent variables, on the other
hand, contain 1. Achievement in permutation–combination and probability subjects
and 2. Computer-assisted learning attitude. Achievements of students are measured
by Objective Comprehension Tests: posttests (OCT1 and OCT2) whereas their
attitudes are measured by Computer-Assisted Learning Attitude Scale (CALAS).

As a result, data consist of 45 explanatory variables with different measurement
levels (nominal, ordinal and numeric), which we wish to reduce to a small number
of dimension with as little loss of information as possible.

4.3 Categorical Principal Components Analysis

Clearly, the number of explanatory variables is quite many to build a MLR model.
Therefore, we reduce the dimension of the mixed type dataset by using CATPCA to
construct a new set of variables, called principal components. Then, a MLR model
is developed to investigate the effects of CAI to mathematical achievement and
attitude of students.

“Gender” and “City” variables are not included in CATPCA, because they are
included in regression model directly to see their effects on the response of interest.
Therefore, a total of 43 variables obtained from surveys are used for CATPCA.
Description of variables that are included in CATPCA is given in Table 1. The
variables “Projection School”, “Desktop Computer in Class”, “Smartphone in
Class”, and “Projection in Class” have zero variance since they are never selected in
the survey. Hence, they are excluded from the analysis leaving 39 variables in total.
In the following, we give a step-by-step description of the data reduction method by
using the program CATPCA available in SPSS 20 (IBM Corp 2011).

CATPCA Step 1: Determination of Appropriateness of CATPCA

Bartlett’s test of sphericity (BTS) and Kaiser–Meyer–Olkin (KMO) criteria are
checked to determine the appropriateness of traditional PCA. Bartlett’s test of
sphericity is used to check whether the correlation matrix between variables is an
identity matrix, which means the variables are uncorrelated. Rejecting the null
hypothesis means that there are dependent variables for PCA to group, and hence
PCA is appropriate. KMO is the indicator of sample adequacy and measures the
degree of correlation between variables. Small values of KMO indicate that cor-
relations between variables cannot be explained accurately by other variables and
therefore PCA may not be suitable. However, high values (between 0.5 and 1.0)
indicate that
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PCA is useful as a means of data reduction. The same criteria to develop the
traditional PCA can be used in the CATPCA (Mendes and Ganga 2013). In the light
of the information, we apply those methods for the implementation of CATPCA.
We apply Bartlett’s test of sphericity and KMO to the original data. However, SPSS
20 (IBM Corp 2011) do not provide the results of those methods, rather give the
error of “This matrix is not positive definite.” It is likely the case that correlation
matrix of the data is nonpositive definite, i.e., some of the eigenvalues of correlation
matrix are nonpositive numbers. Eigenvalues might take negative values due to
linear dependencies among variables. As a result of this analysis, we check cor-
relation between variables. Two things are significant with respect to correlation
matrix: the variables have to be intercorrelated, but they cannot correlate too highly
since this causes multicollinearity (Field 2009). Therefore, we use Spearman rank
correlation coefficients to determine which variables are highly correlated, and then
use only one in the analysis. A cutoff for highly correlated variables is determined
as 0.90 according to literature (Abbott 2004). Some variables are found to be highly

Table 1 Description of the 43 variables used in the analysis

Variables: Name (Description)

1. Settlement 25. Math Average Grade (over 100)
2. Mother Education Level 26. Overall GPA (over 100)
3. Father Education Level 27. Location of School
4. Sibling Number 28. School Type
5. Sibling Training 29. Computer Lab in School (Yes/No)
6. Income 30. Net in Computer Lab (Yes/No)
7. Computer Use (Yes/No) 31. Projection in School (Yes/No)

8. Laptop Use (Yes/No) 32. Smart board in School (Yes/No)
9. Desktop Use (Yes/No) 33. Tablet in School (Yes/No)
10. Tablet Use (Yes/No) 34. Computer Teacher in School
11. Smartphone (Yes/No) 35. Computer Lesson (Yes/No)
12. PS3 (Yes/No) 36. Desktop Computer in Class (Yes/No)

13. Internet Home (Yes/No) 37. Laptop in Class (Yes/No)
14. Internet Work (Yes/No) 38. Tablet in Class (Yes/No)
15. Internet School (Yes/No) 39. Smartphone in Class (Yes/No)

16. Internet Dormitory (Yes/No) 40. Projection in Class (Yes/No)

17. Internet Cafe (Yes/No) 41. School Environment
18. Internet Everywhere (Yes/No) 42. School Attitude (toward CAI)
19. Net Use Time 43. Schools (4 category)
20. Net for Fun (Yes/No)
21. Net for Academic Affairs (Yes/No)
22. Net for Routine Works (Yes/No)
23. Net for Office Program (Yes/No)
24. Net for PS3 (Yes/No)
Note Variables shown in italics are not selected for the analyses
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correlated, and in fact correlation coefficients between some of them are 1 or −1.
Therefore, it is useless to include those variables to the analysis at the same time. As
a result, “Location School”, “School Type”, “Computer Lab”, “Net Computer
Lab”, “Computer Teacher”, “Computer Lesson”, “School Environment”, “Tablet
School”, “Schools”, and “Smart board School” variables are eliminated from the
analysis due to linear dependency. After these 10 variables are excluded, remaining
number of variables for CATPCA analysis is 29. We apply the Bartlett’s test of
sphericity and KMO with the remaining variables. Considering Table 2, KMO
index is 0.786 (that is, between 0.5 and 1) and Bartlett’s test of sphericity rejects the
existence of an identity matrix. Based on those results, the data sample with 29
variables is considered adequate for the implementation of the CATPCA.

CATPCA Step 2: Specifying Analysis Levels

In the present dataset, we do not wish to assume linearity, and the number of the
categories is small compared to the number of individuals. Therefore, we treat all
variables ordinally. Since some of the variables such as “Mother/Father Education
Level” have numerous categories compared to the others, it might have been useful
to apply a monotonic spline analysis level to those variables; however, a spline
analysis level is more restrictive than ordinal analysis level and thus gives lower
Variance Accounted For (VAF). In summary, we specify an ordinal analysis level
for the 29 variables.

CATPCA Step 3: Missing Values

The number of missing values in the data is considerably small: Three students have
missing values only in “Overall GPA” scores. Therefore, the missing values are
treated passively, which is the default option for the treatment of missing data in
CATPCA. That means, students with missing values are deleted only for those
variables on which they have missing values.

CATPCA Step 4: Discretizing

The theory of nonlinear PCA is based on categorical variables with integer values
(Linting et al. 2007a). Therefore, (positive) integer-valued data is required in
CATPCA. This is not the feature of CATPCA, but just a technical requirement in
SPSS 20 (IBM Corp 2011) for the analysis. In the data, we have two variables that
are continuous; “Math Average Grade” and “Overall GPA”. We have to discretize
these variables for the analysis by CATPCA. Since sample is not very large, we
want small number of categories of those variables to increase stability of results, so

Table 2 KMO and Bartlett’s
test results

Kaiser–Meyer–Olkin measure of sampling
adequacy

0.786

Bartlett’s test of
sphericity

Approx.
Chi-Square

1612.907

df 406
p-value <0.0001
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grouping option is used as a discretizing option. When the number of categories is
chosen as seven for both “Math Average Grade” and “Overall GPA” variables, ties
occur for Overall GPA, so the number of categories for that variable is changed to
six.

CATPCA Step 5: Evaluating the Number of Components

We have to determine the sufficient number of components/dimensions to retain in
the analysis. The survey instruments measure socioeconomic and cultural factors of
students, technology ownership of the students, and the purpose of using tech-
nology, in addition to technological equipment and environment of the school.
Therefore, it seems reasonable to assume that six components/dimensions are called
for. Since CATPCA solutions are not nested, it is required to look at scree plots in
different dimensions to compare different solutions. Therefore, we generate scree
plots of the eigenvalues in four-, five-, six-, and seven-dimensional solutions.
Figure 1 shows scree plots for these four solutions. Due to the lack of inter-
pretability of the seventh dimension, and due to the small differences among the
graphs of 7-6-5 dimensions, we try the six-dimensional and five-dimensional
solutions.

CATPCA Step 6: Preliminary Analysis

After the selection of variables and the decision on the number of dimensions, we
apply CATPCA. All six dimensions account for a substantial percentage of

Fig. 1 Scree plots with lines denoting the eigenvalues for a four-, five-, six-, and
seven-dimensional CATPCA solutions on 29 variables analyzed at an ordinal analysis level
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72.431% of the total variance in transformed variables. According to
six-dimensional CATPCA solution, “No Computer”, “Laptop Use”, “Desktop
Use”, “Smartphone Use”, “PS3”, “Internet Work”, “Internet School”, “Internet
Everywhere”, and “Routine Works” variables have very small mean coordinate,
very close to or below 0.1. Those variables are considered to be excluded from the
analysis. Since we could not assign meaningful interpretations to dimensions with
the result of this analysis, those variables are excluded from the analysis. CATPCA
with six-dimensional solution is repeated with the remaining 20 variables.

We can see in the model summary table, Table 3, that the internal consistency
coefficient increases from 0.986 with all 29 variables to 0.991 with only 20 vari-
ables. Moreover, 85.52% of the variance is accounted for by these 20 variables. In
other words, there are fewer variables, but we are accounting for more of the
variance with those 20 items than the amount of variance accounted for by the 29
variables. However, the eigenvalue for the sixth dimension decreases below 1.
Therefore, we also apply CATPCA with five dimensions and later decide which one
to use in data reduction.

After deciding on the number of dimensions and the number of variables in
six-dimensional solution, we check if we could simplify the structure of the solution
by rotating the results. Rotation options are not available within CATPCA in SPSS
20 (IBM Corp 2011). However, rotation can be performed by saving the trans-
formed variables and applying them in a linear PCA (Linting and Kooji 2012). As a
result, we use VARIMAX rotation as an orthogonal rotation within traditional PCA
in SPSS 20 (IBM Corp 2011) to rotate the transformed variables (Table 4).

Since six-dimensional solution with 20 variables involve an eigenvalue smaller
than 1, five-dimensional CATPCA is also applied to determine the final analysis.
The same procedure is applied. Variance accounted for by the five-dimensional
CATPCA with all 29 variables is founded as 68.237%. The variables “No Com-
puter”, “Laptop Use”, “Desktop Use”, “Tablet Use”, “Smartphone Use”, “PS3”,
“Internet Work”, and “Routine Works”, whose mean coordinates are around or
below 0.1 are excluded from the analysis, and then CATPCA is repeated with the
remaining variables. As a result, the model with five dimensions accounts for
79.80% of the total variance in the optimally scaled variables.

Table 3 Model summary of CATPCA for 6-dimensional solution with 20 variables

Dimension Variance Accounted For (VAF)
Cronbach’s Alpha Total (Eigenvalue) Percentage of variance

1 0.929 8.539 42.695
2 0.709 3.066 15.330
3 0.512 1.948 9.740
4 0.436 1.707 8.535
5 0.012 1.011 5.055
6 −0.211 0.833 4.165
Total 0.991a 17.104 85.520

Note aTotal Cronbach’s Alpha is based on the total eigenvalue
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CATPCA Step 7: Final Analysis and Interpretation

In order to decide on which dimensional solution to use in the categorical data
reduction, we compare six-dimensional and five-dimensional solutions with respect
to VAF. Six-dimensional solution accounts for 85.52% of the total variance, while
five-dimensional solution accounts for 79.80% of the total variance. Although the
eigenvalue of the sixth dimension in the first solution is below 1, the total variance
explained in that model is higher compared to five-dimensional solution. Extracting
too many factors may cause undesired error variance, so selecting the most suitable
criterion for study when deciding on the number of factors to extract is very
important (Young and Pearce 2013). Joliffe’s criterion which suggests retaining
factors with eigenvalues above 0.70 (Jolliffe 2002) and scree plots are used to decide
on how many factors to retain in the study. In conclusion, we decide to use
six-dimensional CATPCA solution on 20 variables, with all variables analyzed
ordinally (See Table 3). The total VAF across the six dimensions is 85.52%, with
clearly dominant first dimension (VAF: Dimension 1 = 42.69%, Dimension
2 = 15.33%, Dimension 3 = 9.74%, Dimension 4 = 8.53%, Dimension 5 = 5.05%,

Table 4 Rotated component loadings from a six-dimensional CATPCA on 20 variables, with all
variables analyzed ordinally

Components
1 2 3 4 5 6

Overall GPA 0.886
Tablet use in class −0.873
Settlement 0.868
Income 0.865
School attitude −0.865
Mathematical average grade 0.858
Father education level 0.706
Sibling number 0.858
Use of office program 0.842

Sibling training 0.796
Mother education level 0.559 −0.662
Tablet use 0.819
Net use time −0.671
Internet cafe 0.880
Laptop class −0.711
Internet home 0.528 −0.615
Net for Ps3 0.898
Internet dormitory 0.855
Academic 0.852
Fun −0.730
Notes 1 Extraction Method: Principal component analysis; 2 Rotation Method: Varimax with
Kaiser Normalization; 3 Rotation converged in six iterations
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Dimension 6 = 4.16%). That implies that the six selected dimensions/components
explain about 86% of the variance in the 20 ordinally quantified variables, which
indicates a good fit.

Dimension-1 (PC1) includes the variables: Overall GPA, Math Average Grade,
Father Education Level, Income, Settlement, School Attitude, and Tablet Use in
class. We name this factor as “The general success of the students and basic
socio-economic and technological factors affecting this situation.” Dimension-2
(PC2) includes the variables: Sibling Number, Sibling Training, Mother Education
Level, and Use of Office Program. This dimension is named as “the secondary
social situation of the family.” Net Use Time and Tablet Use variables are involved
in Dimension-3 (PC3), while Internet Cafe, Internet Home, and Laptop Class
constitute Dimension-4 (PC4). Dimension-5 (PC5) includes the variables: Net for
PS3 and Internet Dormitory. Lastly, Dimension-6 (PC6) includes the variables of
use of technology for Academic and Fun. As it is seen, Dimension-3 through
Dimension-6 are related with Internet ownership and use, so name like that.

4.4 Multiple Linear Regression Analysis (MLR)

The method of this chapter is focused on narrowing down the data containing many
mixed type of variables compared to the number of observations in order to see
relevant patterns and relationships between variables. Therefore, we initially reduce
the dimension of the covariates in the MLR model to avoid multicollinearity. Six
principal components are achieved as the explanatory variables after performing the
CATPCA. The data for regression model consist of 74 observations of the fol-
lowing variables: gender, city, instruction method, and six principal components—
PC1, PC2, PC3, PC4, PC5, and PC6.

First, an MLR model is fitted on the scores of Objective Comprehension Test 1
(OCT1) with the variables: gender, instruction method, and six principal compo-
nents (Montgomery et al. 2015). OCT1 scores are obtained just for the students
having education in Mardin. Therefore, the city variable is essentially constant here,
and therefore it is not included into the model. Forward stepwise selection method
is used whereby the independent variables with largest absolute correlation with
OCT1 are chosen as explanatory variables. As a result, only “instructional method”
is found statistically significant. Therefore, instructional method is included in the
model as the only major factor explaining success in OCT1, and the final model is
fit as given below.

OCT1= 26.32+ 12.75 Instruction Method. ð4Þ

Residual plots in Fig. 2 indicate the validity of the LS regression assumptions.
Regression output is displayed in Table 5. The p-value of the ANOVA F-test is
approximately zero, which is smaller than the predetermined significance level,
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α=0.05; so we can say that there is a statistically significant relationship between
the OCT1 score and the instruction method.

Secondly, an MLR model is fitted on OCT2 score with the following variables:
gender, city, instruction method, and six principal components (Montgomery et al.
2015). Before making any comments on the model fit, assumptions for the
regression are examined. Interaction term is added to overcome the lack-of-fit
problem in the model, and the final regression equation is fitted as follows:

OCT2= 52.37+ 17.97 PC1+ 3.32 PC2+ 6.41 PC1*PC2. ð5Þ

Residual analysis indicates no violation of assumptions (See Fig. 3). The results
of the regression are displayed in Table 6. According to the ANOVA F-test, whose
p-value is approximately zero, fitted model in Eq. (5) is a statistically significant
model.

Lastly, an MLR model is fitted on the Computer-Assisted Learning Attitude
Scale (CALAS) score with the variables: gender, city, instruction method, and six
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Fig. 2 a Normal probability plot of standardized residuals for OCT1. b Plot of standardized
residuals versus fits for OCT1

Table 5 Regression output of the model given in (4)

Source SS df MS F p-value

Regression 1411 1 1411.13 15.25 0.000
Residual error 3053 33 92.51
Total 4464 34
s = 9.61798 R-sq = 31.61% R-sq(adj) = 29.54%
Coefficients

Term Coef SE Coef t-value p-value VIF

Constant 26.32 2.21 11.93 0.000

Ins. Mth. 12.75 3.26 3.91 0.000 1.00
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principal components to understand which factors contributed to students’ attitude
toward CAI (Montgomery et al. 2015). Since normality assumption is not satisfied
(See Fig. 4a), we perform Box-Cox transformation on the response variable
CALAS as a remedial measure. The optimal value for lambda is found as −3.31
(See Fig. 4b), and hence 1 ̸CALAS3.31 transformation is applied. Then, the
regression procedure is repeated by taking the transformed variable as the response.
The LS regression assumption checks on the final fitted model show no violation
(See Fig. 5). However, F-test does not indicate a statistically significant relationship
between the variables (p-value = 0.537). According to the regression outputs given
in Table 7, none of the explanatory variables involved in the analysis are signifi-
cant. As a result of the analysis, we can say that those independent variables would
not explain the variation in the CALAS variable at all.
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Fig. 3 a Normal probability plot of standardized residuals for OCT2. b Plot of standardized
residuals versus fits for OCT2

Table 6 Regression output of the model given in (5)

Source SS df MS F p-value

Regression 24070.6 3 8023.5 32.55 0.000
Residual error 17253.8 70 246.5
Total 41324.4 73
s = 15.6998 R-sq = 58.25% R-sq(adj) = 56.46%
Coefficients

Term Coef SE Coef t-value p-value VIF

Constant 52.37 1.83 28.69 0.000
PC1 17.97 2.10 8.57 0.000 1.33
PC2 3.32 2.71 1.22 0.226 2.23

PC1 * PC2 6.41 2.67 2.40 0.019 2.56
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4.5 Validation of Sample Adequacy

In Sect. 3.2, we emphasize the importance of sample size consideration in
dimension reduction procedures such as PCA. In this study, with the available
resources, we could only afford data having 74 observations which is relatively
small. So, to determine the adequacy of the sample, we utilized the KMO statistic as
stated in Sect. 3.2. In addition, in order to validate the results obtained from
CATPCA regression presented in Sects. 4.3 and 4.4, we adopt an alternative
approach for reducing data dimension. First, we conduct pairwise comparisons
between the schools with respect to all characteristics that we measure. Depending
on the results, we treat the two village elementary schools as if they are one “state
school”. Following, in developing MLR models, we apply stepwise regression
method for variable selection. Both approaches result in the same conclusions (See
Kapucu (2016) for details of this comparison study).
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5 Conclusion

The aim of this study is to examine how a CAIM, designed for teaching “proba-
bility” topics for eighth grade level students, the socioeconomic and cultural factors
affect the achievement of the students. For this purpose, we have developed CAIMs
consisting of animations and simulations by using R language. In order to achieve
our aims, we set up a quasi-experiment involving four elementary schools in two
districts of Turkey. Two of the state schools and a private school are in Mardin, a
city located in southern Turkey. The other one is a private school in the capital city,
Ankara. In the study, both demographic and socioeconomic peculiarities of the
students and the competence of the schools with respect to technological equipment
are evaluated by surveys. The data collected are analyzed by CATPCA regression,
in which, mixed type of data is first reduced in dimension by using CATPCA, and
then, MLR models are developed between the response and exploratory variables of
interests. The advantage of CATPCA method used in dimension reduction is that
the correlated variables are contained in principal components, thereby all the
relevant factors are included in the analysis.

In the light of the findings obtained from the CATPCA regression analysis, the
following results could be stated:

• “Instruction method” is a significant factor in explaining students’ achievement
in OCT1 of probability and statistics learning area of eighth grade mathematics
curriculum. This test includes the sub-learning area, namely identifying possible
cases, which is one of the focused topics in the developed CAIM.

Table 7 Regression output of the model for CALAS

Source SS df MS F p-value

Regression 0.000917 9 0.000102 0.89 0.537
Residual error 0.007307 64 0.000114
Total 0.008224 73
s = 0.0106853 R-sq = 11.15% R-sq(adj) = 0.00%
Coefficients

Term Coef SE Coef t-value p-value VIF

Constant 0.03658 0.00947 3.86 0.000
Gender −0.00186 0.00304 −0.61 0.542 1.47
City 0.00008 0.00019 0.43 0.668 6.29
Ins. Mth. 0.00053 0.00792 0.07 0.946 7.77
PC1 0.00165 0.00337 0.49 0.627 7.41
PC2 0.00085 0.00246 0.34 0.732 3.94
PC3 0.00178 0.00253 0.70 0.484 4.15
PC4 0.00068 0.00131 0.52 0.607 1.12
PC5 −0.00201 0.00134 −1.50 0.138 1.16
PC6 0.00152 0.00158 0.96 0.342 1.63
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• “Instruction method” is not a significant factor in explaining students’
achievement in OCT2 of probability and statistics learning area of eighth grade
mathematics curriculum. This test includes the sub-learning area, namely
probability and event types, focused by our CAIM. Nevertheless, the first-term
mathematics grade as well as socioeconomic and technological factors signifi-
cantly influence a student’s ability to succeed.

• None of the variables included in the analysis contribute to the students’ attitude
toward CAI. Therefore, it can be concluded that we do not have enough evi-
dence to state a relationship between the CAIM prepared in R program and
students’ attitude toward the CAI.

This study reveals the importance of using CAI in teaching probability domain.
However, there are some limitations of the study such as sample size, content
covered, time considerations, and the capability of R for developing animations,
which prevent us to generalize our results. As a further study, we are planning to
improve the CAIM developed using R program, and repeat a similar study using
more content coverage with a larger sample.
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Contemporary Robust Optimal Design
Strategies

Timothy E. O’Brien

Abstract Researchers often find that nonlinear regression models are more
applicable for modeling various biological, physical, and chemical processes than
the linear ones since they tend to fit the data well and since these models (and model
parameters) are more scientifically meaningful. These researchers are thus often in a
position of requiring optimal or near-optimal designs for a given nonlinear model.
A common shortcoming of most optimal designs for nonlinear models used in
practical settings, however, is that these designs typically focus only on (first-order)
parameter variance or predicted variance, and thus ignore the inherent nonlinear of
the assumed model function. Another shortcoming of optimal designs is that they
often have only p support points, where p is the number of model parameters.
Measures of marginal curvature, first introduced in Clarke (1987) and further
developed in Haines et al. (2004), provide a useful means of assessing this non-
linearity. Other relevant developments are the second-order volume design criterion
introduced in Hamilton and Watts (1985) and extended in O’Brien (1992) and
O’Brien et al. (2010), and the second-order MSE criterion developed and illustrated
in Clarke and Haines (1995). This chapter underscores and highlights various
robust design criteria and those based on second-order (curvature) considerations.
These techniques, easily coded in the R and SAS/IML software packages, are
illustrated here with several key examples.
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1 Introduction

In the context of univariate regression, we let Y denote the dependent random
variable, y denote its realization, and x denote the independent variable (or
x1, x2 . . . xk in the case of several independent variables). Following convention,
we use the term “model” to include (a) the assumed distribution for the response
variable—often chosen from the exponential family, (b) the link function con-
necting μ=E Yð Þ with the explanatory variable(s) and with the model parameters in
the p-dimensional vector θ, (c) the (mean) model function η x, θð Þ, which combines
the explanatory variable(s) and the model parameters, (d) the variance (denoted σ2)
or variance function (perhaps depending on θ and/or additional parameters such as
σ2), and (e) the nature of the observations, such as independent or correlated (e.g.,
nested) measurements.

Linear models are ubiquitous in the statistical literature. In matrix form, simple
and multiple linear models are written as

y= η x, θð Þ+ ε=Xθ+ ε ð1Þ

In this expression, y, η x, θð Þ, and ε are of dimension n×1, θ is p×1 for
p= k+1, and X is n× p and is the design matrix comprised of the first derivatives
of the model function with respect to the model parameters. In situations where the

parameter p-vector θ is meaningfully partitioned as θ=
θ1
θ2

� �
where θ1 is p1 × 1

and θ2 is p2 × 1 with p1 + p2 = p, in matrix form this model becomes

y=Xθ+ ε= X1jX2½ � θ1
θ2

� �
+ ε=X1θ1 +X2θ2 + ε ð2Þ

In the case of (normal) nonlinear models, the Jacobian matrix (X) in expressions
(1) and (2), now denoted V, is again of dimension n× p and is such that the ith
column is the derivative of η x, θð Þ with respect to the ith model function parameter,
θi. In the applied literature, researchers often find nonlinear models to more
meaningfully model their processes.

Parameter estimation is typically achieved by maximizing the corresponding
likelihood (and obtaining maximum likelihood estimates, denoted MLEs), and in
standard-independent normal nonlinear situations, this corresponds to least-squares
estimation (and LSEs). To wit, in the case of linear models, the p× p covariance

matrix for θ ̂ is proportional to XTX
� �− 1

; for nonlinear models (omitting constants)

the covariance matrix, VTV
� �− 1

, is approximated by V ̂TV ̂
� �− 1

with V ̂=V θ ̂
� �

.

Optimal design theory for linear and nonlinear models is discussed in Silvey
(1980), Pukelsheim (1993), and Atkinson et al. (2007), as well as the references
contained therein. It is not common, however, that model misspecification is
incorporated into the design criteria, and so the resulting designs often provide no
ability to test for model adequacy, thereby limiting their usefulness. Although
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Studden (1982) and some related works do address model robustness, this is only
achieved in the case of polynomial models. In the current work, we address the
larger class of nonlinear models and in a more direct manner.

2 Confidence Regions and Intervals and Optimal Design

For normal nonlinear models, 1− αð Þ100% Wald confidence regions for θ are of the

form, θ∈Θ: θ− θ ̂
� �TV ̂TV ̂ θ− θ ̂

� �
≤ ps2Fα

n o
. Here, as noted above θ ̂ is the

least-squares (and maximum likelihood) estimate of θ, V ̂ is the n× p Jacobian
matrix of first derivatives evaluated at θ ̂, s2 is the mean square error (estimator of
σ2), and Fα is a tabled F percentile with p and n− p degrees of freedom with tail
probability of α. In contrast with the above, the 1− αð Þ100% likelihood-based
confidence region here is θ∈Θ: S θð Þ− S θ ̂

� �
≤ ps2Fα

� 	
, with S θð Þ= y− η x, θð Þð ÞT

y− η x, θð Þð Þ= εTε—i.e., the sum of squares. These two regions are nearly equiv-
alent depending upon the degree to which the model function, η x, θð Þ, is
well-approximated by the affine representation, η x, θ ̂

� �
+V ̂ θ− θ ̂

� �
. In normal linear

models, this result is exactly met, and only approximately so for normal nonlinear,
generalized linear, and generalized nonlinear models. Wald and likelihood confi-
dence intervals can be obtained from these regions by conditioning or profiling;
further details are given in Seber and Wild (1989) and Pawitan (2013). Often
practitioners wish to choose an experimental design to reduce the length of the
resulting confidence interval or the volume of the resulting confidence region.

An n-point design measure, denoted here by ξ, is written as

ξ=
x1 x2 . . . xn
ω1 ω2 . . . ωn


 �
ð3Þ

In this expression, the ωi are nonnegative design weights which sum to one, and
the xi are design points (or vectors in the multivariate case) that belong to the design
space; these points are not necessarily distinct. Writing Ω= diag ω1,ω2, . . . ,ωnf g,
the p× p Fisher information matrix is therefore given by

M ξ, θð Þ=VTΩV ð4Þ

As noted at the end of the previous section, the (asymptotic) variance of θ ̂ is
proportional to M − 1 ξ, θð Þ; thus, in many regression settings, designs are often
chosen to minimize some convex function of M − 1 ξ, θð Þ. Designs which minimize
its determinant are called D-optimal, and these designs minimize the volume of the
Wald confidence region given in the previous section. Designs which minimize the
trace of M − 1 are called A-optimal, and important connections are given in Kiefer
(1974) and Dette and O’Brien (1999). Since for nonlinear/logistic models, M
depends upon θ, so-called local (or Bayesian) designs are typically obtained.
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The (first-order approximation) variance of the predicted response at the value x
is

d x, ξ, θð Þ= ∂η x, θð Þ
∂θT

M − 1 ξð Þ ∂η x, θð Þ
∂θ

ð5Þ

Designs which minimize (over the space of designs ξ) the maximum (over x) of
d x, ξ, θð Þ in (5) are called G-optimal; note that these designs are chosen to minimize
the worse-case (largest) predicted variance. As in the case described above, since
this predicted variance depends upon θ for nonlinear and non-normal models,
researchers often seek optimal designs either using a “best guess” for θ (called a
local optimal design) or by assuming a plausible prior distribution on θ and by
finding a Bayesian optimal design.

The celebrated General Equivalence Theorem (GET) of Kiefer and Wolfowitz
(1960) establishes that D- and G-optimal designs are equivalent in the case of linear
models; these results were extended to nonlinear models in White (1973). This
theorem also demonstrates that the variance function (5) evaluated using the D-/
G-optimal design does not exceed the line y= p (where p is the number of model
function parameters)—but that it will exceed this line for all other designs.
A corollary of the GET establishes that the maximum of the variance function is
achieved for the D-/G-optimal design at the support points of this design. This
result is quite useful in demonstrating optimality of a given design by substituting it
into (5) and plotting the resulting variance function.

3 Key Illustrations

The following examples demonstrate the estimation methods discussed above and
serve to exemplify design strategies given in Sect. 4.

3.1 The Ratio of Two Normal Mean

Cook and Witmer (1985) discusses the Fieller-Creasy problem and model function,
written a η x, θð Þ= θ1x+ θ1θ2 1− xð Þ. With constant variance, n1 experimental units
receive one treatment with mean μ1, n2 cases receive a second treatment with mean
μ2, θ1 = μ1 and θ2 =

μ2
μ1
, and x is an indicator variable associated with the first

treatment group. Hence, for the first treatment group (i.e., for i=1, 2, . . . n1),
η x, θð Þ= θ1, and η x, θð Þ= θ1θ2 for subjects in the second treatment group (i.e., for
i= n1 + 1, n1 + 2, . . . n1 + n2 = n). The key parameter here is θ2 which corresponds
to the ratio of the treatment means.
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Regarding the partial derivatives in the Jacobian matrix, for subjects receiving
treatment one, ∂η xi , θð Þ

∂θ1
= 1 and ∂η xi, θð Þ

∂θ2
= 0, and for subjects receiving treatment two,

∂η xi , θð Þ
∂θ1

= θ2 and ∂η xi , θð Þ
∂θ2

= θ1. Thus, letting 1n1 and 1n2 denote vectors of one’s of
lengths n1 and n2, respectively, and 0n1 a vector of zeros of length n1, the corre-
sponding Jacobian matrix is

V =
1n1 0n1
θ21n2 θ11n2

� 
ð6Þ

Nonlinear is demonstrated by noting the dependence in (6) upon θ. Further,

VTV = n1 + n2θ22 n2θ1θ2
n2θ1θ2 n2θ21

� 
, VTV
� �− 1

=
1

n1n2θ21

n2θ21 − n2θ1θ2
− n2θ1θ2 n1 + n2θ22

� 
ð7Þ

In terms of design, the only adjustable quantities for this model are the sample
sizes (n1 and n2). As such, a more transparent manner of framing the Fieller-Creasy
problem is in terms of the design (probability) measure

ξ=
1 0
ω 1−ω


 �
ð8Þ

Since x=1 corresponds here to the first treatment and ω∈ 0, 1½ � is the (perhaps
irrational) proportion of the total experimental units devoted to this first treatment,
ω takes the place of n1

n1 + n2
in the above notation. The 2× 2 Jacobian is

V =
1 0
θ2 θ1

� 
and the information matrix is

M ξ, θð Þ=VTΩV =
1 θ2
0 θ1

� 
ω 0
0 1−ω

� 
1 0
θ2 θ1

� 
= ω+ θ22 1−ωð Þ θ1θ2 1−ωð Þ

θ1θ2 1−ωð Þ θ21 1−ωð Þ
� 

ð9Þ

Clearly, Mj j is proportional to ω 1−ωð Þ, and it follows the D-optimal design is
the balanced design with ω= 1

2 (i.e., n1 = n2).
To demonstrate differences here between the 95% Wald and likelihood-based

confidence regions for nonlinear models given in the last section, consider the
Fieller-Creasy setup with n1 = 3 observations in the first group and responses
y=3, 4, 5, and n2 = 8 observations in the second group with responses
y=6, 6, 7, 8, 8, 9, 10, 10. The LSE/MLE parameter estimates are then θ ̂1 = y1̄ = 4
and θ2̂ = y2̄ ̸y ̄1 = 8 ̸4= 2, and this point is plotted in Fig. 1 along with the 95%
Wald (dashed ellipse) and 95% likelihood-based (solid) confidence regions. It is
useful to note that the spans of these confidence regions in the horizontal direction
(corresponding to θ1) are the same since θ1 is a linear parameter here, and so the
corresponding confidence intervals, obtained by projection, are identical. On the
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other hand, the projected intervals for θ2 are quite different: the 95% Wald interval
is 0.982, 3.018ð Þ, whereas the 95% likelihood-based interval is 1.302, 3.943ð Þ.

Key advantages of likelihood-based regions and intervals for nonlinear models
are given in Bates and Watts (1988), Seber and Wild (1989), and Pawitan (2013).
The difference between these regions and intervals is important in the current
context since although D-optimal designs minimize the volume of Wald regions,
curvature-adjusted methods suggested in Sect. 4.1 minimize a second-order volume
approximation to the likelihood region. Furthermore, this example provides the
opportunity to highlight the connection between differences between Wald and
likelihood-based confidence intervals and measures of curvature or nonlinearity.
Detailed discussions of curvature are given in Beale (1960), Ratkowsky (1983),
Clarke (1987), Bates and Watts (1988), and Seber and Wild (1989). The model
function maps the p-dimensional parameter space onto a p-dimensional expectation
surface (i.e., manifold) in the n-dimensional sample space (with n≥ p). Intrinsic
curvature measures the deviation of the expectation surface from a p-dimensional
hyperplane, whereas parameter-effects curvatures measure the degree to which
straight, parallel, equi-spaced lines in the parameter space remain straight, parallel
and equally spaced on the expectation surface.

Fig. 1 Wald (dashed) and likelihood-based (solid) 95% confidence region
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3.2 The Two-Parameter Log-Logistic Model

Dose–response models provide a useful tool in biostatistical modeling, and popular
two-parameter dose–response model functions are the log-logistic (LL2) and the
Weibull (WEIB2) functions given by the respective expressions

ηLL2 x, θð Þ= 1

1+ x ̸θ1ð Þθ2 ηWEIB2 x, θð Þ= e− x ̸θ1ð Þθ2 ð10Þ

Here, the response variables are assumed independent and normally distributed,
although extensions to correlated data and other distributions are straightforward.
The LL2 model function is often preferred since the LD50, θ1, is a model parameter
and is easily interpreted by the practitioner since the point θ1, 1

2

� �
can readily be

estimated by a plot of the data. The data used here is given in Table 1 and plotted in
Fig. 2.

Table 1 Data used in dose–
response illustration

x 0.5 1.0 2.0 3.0 4.0 5.0
y 1.076 0.944 0.939 0.743 0.627 0.463

Fig. 2 Log-logistic (LL2) model fit to dose–response data
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Although both model functions in (10) provide very similar fits to these data, we
model these data using the LL2 function, and in this case the parameter estimates
are θ1 = 4.7475 and θ2 = 2.6544. In this instance, the columns of the 6 × 2 Jacobian
matrix correspond to ∂η

∂θ1
= θ2

θ1
t

1+ tð Þ2 and
∂η
∂θ2

= − 1
θ2

tlog tð Þ
1+ tð Þ2 for t= x ̸θ1ð Þθ2 evaluated at

each of the six observations. The fitted model function is also plotted in Fig. 2.
This latter example illustrates that since several (nonlinear) model functions may

exist to adequately model a given process, researchers desire designs to estimate
model parameters and to distinguish the best-fitting model; these issues are
addressed in Sect. 4.2.

4 Robust Design Approaches

A common shortcoming of optimal designs for models involving p model
parameters is that these designs may contain only p support points, thereby pro-
viding no ability to test for model goodness-of-fit. For example, for the LL2 model
function and parameter estimates given in Sect. 3.2, the D-optimal design contains
only the two support points, x=3.204 and x=7.034. Here, we introduce several
means to obtain so-called robust (near-optimal) designs which are efficient for
parameter estimation yet which provide extra support points to test for model
adequacy. Key references include Atkinson (1972) and O’Brien (1994) and those
given below. Suggestions on which robust design criterion to choose are given in
Sect. 5.

The design measure in (3) is expressed in terms of the sample size (n), and
whenever each ωi =1 ̸n, the design is called a discrete design; when this condition
is not met for at least one ωi, the design is called continuous. Sample size
notwithstanding, optimal designs often have a fewer number of actual support
points (with some replication), and the design measure in (3) can also be expressed
in terms of these r≤ n support points (si) as

ξ=
s1 s2 . . . sr
λ1 λ2 . . . λr


 �
ð11Þ

Thus, in terms of (11), discrete designs are those for which λi = ni ̸n for all λi.
Thus, continuous designs are more general than discrete designs (i.e., discrete
designs are a special case of continuous designs).

4.1 A Quadratic Design Strategy

In terms of discrete designs and a given nonlinear model, D-optimal designs
minimize the volume of the Wald confidence region given in Sect. 2, and thus the
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first-order approximation to volume of the actual likelihood-based region. A sec-
ond-order approximation to this likelihood region volume, given in Hamilton and
Watts (1985), is

vol2 = c VTV
�� ��− 1 ̸2

Dj j− 1 ̸2 1 + k2 × tr D− 1C
� �� 	 ð12Þ

In this expression, c and k are constants relative to the design, C (of size p× p) is
a function of the parameter-effects curvature, and D (also of size p× p) measures the
intrinsic curvature in the direction of the residual vector. We can write D= Ip −B
with B=LT eT½ � W½ �L, and bracket multiplication of arrays is discussed in Seber and
Wild (1989).

Claiming that this volume approximation cannot be used as a design criterion
since the residual vector (e) is not known at the design stage, Hamilton and Watts
(1985) suggests obtaining designs to minimize the modified volume approximation,

vol′2 = c VTV
�� ��− 1 ̸2

1 + k2 × tr Cð Þ� 	
, obtained by assuming e= 0. These designs are

called Q′-optimal here. Also, these authors also note that for all their examples, the
(local) Q′-optimal designs have only n= p support points—thereby providing no
ability to test for lack-of-fit.

This claim notwithstanding, since the residual vector is always orthogonal to the
tangent plane at the least-squares estimate, O’Brien (1992) points out that the
residual vector can be written as e=Nα since N spans this orthogonal space. From
the QR decomposition, we write V =QR= ½UjN�R=UL− 1. It follows that when
the sample size (n) equals p+1, α is a scalar, and we can then restrict the expected
squared length of e to equal σ2. The design procedure given in O’Brien (1992)
yields so-called Q-optimal designs or designs which minimize the original
second-order volume approximation of Hamilton and Watts (1985) given in (12).

To illustrate, we use the two-parameter intermediate product (IP2) model
function used in pharmacokinetic modeling and given by the expression

η x, θð Þ= θ1
θ1 − θ2

e− θ2x − e− θ1x
� 	 ð13Þ

For initial parameter estimates θ1 = 0.70, θ2 = 0.20, σ =0.10, the (local)
D-optimal design comprises the two points x=1.23, 6.86, whereas the three-point
(local) Q-optimal design consists of the support points x=1.02, 4.72, 6.81.

These results are extended in O’Brien et al. (2010) by allowing both for discrete
designs with n= p+ s (for s>1) support points and for continuous designs. In these
cases, Q-optimal designs minimize the expected volume, E vol2ð Þ, and use polar or
spherical coordinates. For the IP2 case given above, the four-point discrete
Q-optimal design has support points x=1.00, 1.23, 5.35, 6.72, and the continuous
Q-optimal design associates the weights λ=0.46, 0.28, 0.26 with the respective
support points s=1.06, 5.02, 6.78. The additional support points given by these
designs provide the means to test for model misspecification.
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The second example demonstrating the Q-optimality procedure involves the
Fieller-Creasy (ratio of two normal means) illustration discussed in Sect. 3.1, where
it was noted that regardless of the parameter values, the D-optimal design is the
balanced design with ω=1 ̸2; here, ω is the proportion of the participants in the
first treatment group. Further, since by definition the design is a two-point design
(so n= p), B= 0 and D= Ip in (12). O’Brien et al. (2010) demonstrate that due to
the curvature captured in the C term in (12), the Q-optimal value of ω varies
between 0.50 and 0.75 as the noise (σ) increases from zero to infinity. Note that the
original design used in this illustration employed ω= 3

11 = 0.27. However, with
fixed sample size of n=11, the optimal sample size of participants given the first
treatment group should have been closer to n1 = 6, 7 or 8—depending upon the
anticipated level of noise.

4.2 An Estimation–Discrimination Strategy

Suppose that several model functions, η1 x, θ1ð Þ, η2 x, θ2ð Þ . . . ηm x, θmð Þ, can be used
to describe a given process, each with associated information matrices,
M1,M2 . . . Mm. The parameter vectors (θi) contain pi model parameters, respec-
tively. A combined estimation measure is E ξð Þ= ∑ πk ̸pkð Þlog Mk ξð Þj j; the weights
(π1, π2 . . . πm, which sum to one) here control the emphasis placed upon each of
the m rival model functions. O’Brien and Rawlings (1996) use this and an analo-
gous discrimination measure, D ξð Þ, useful to highlight which model best fits the
data, by combining these two terms into a single estimation/discrimination design
objective function:

B ξð Þ= αE ξð Þ+ 1− αð ÞD ξð Þ ð14Þ

In this expression, α∈ 0, 1½ � controls relative weight placed on estimation versus
discrimination, and designs which maximize the criteria function B ξð Þ are called
(locally) DB-optimal.

To illustrate this estimation/discrimination technique, consider again the LL2
model function discussed in Sect. 3.2, given in Eq. (10), and graphed in Fig. 2; for

the given data, the estimated parameter vector is θ ̂1 =
4.7475
2.6544

� �
. Given these

preliminary results, a researcher wishes to obtain a robust near-optimal design
where it is felt the data follow the LL2 model, but a possible rival function is the
two-parameter Weibull (WEIB2) model function given in (10). For these data, the

estimated parameters for the WEIB2 function are θ2̂ =
5.5999
2.2008

� �
, and we now use

the DB-optimality criterion in (14). To emphasize the LL2 model function over the
WEIB2 function, we choose π1 = 0.95 (and so π2 = 0.05), and to emphasize esti-
mation over discrimination, we choose α=0.75. This gives the four-point design

174 T. E. O’Brien



(ξ*) which associates the weights ω=0.344, 0.245, 0.251, 0.161, respectively, with
the support points x=3.137, 5.584, 8.269, 12.441. Continuous designs of this sort
can be approximated by discrete designs using the rounding technique given in
Pukelsheim and Rieder (1992). Furthermore, O’Brien and Rawlings (1996) provide
a variation of the General Equivalence Theorem and variance function, and the plot
of this function in Fig. 3 demonstrates optimality since the variance function does
not exceed the cut line y=1 and is equal to unity at the support points of the DB-
optimal design—thereby confirming DB-optimality.

Although helpful in terms of checking for model misspecification, the addition
of two extra design support points comes at a loss in terms of estimating the LL2
model parameters, and this is captured in the D-efficiency:

M1 ξ*
� ��� ��

M1 ξDð Þj j

 !1 ̸2

= 0.8601 ð15Þ

As noted in Atkinson et al. (2007) and as used here, D-efficiency serves to
measure the distance (and information loss) between the DB-optimal design ξ* and
the D-optimal design ξD (as noted above comprises the two support points x=3.204
and x=7.034); note that the exponent in (15) is 1 ̸p where p is the number of model
parameters in the base model function. Thus, the loss in choosing the DB-optimal

Fig. 3 Plot of variance function for DB-optimal design
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design over the D-optimal design here is approximately 14%, and the gain is the
information regarding discrimination/estimation departures from the LL2 model
function in the direction of the WEIB2 model function as captured in the two
additional design support points. Clearly, in general, the derived DB-optimal design
and D-efficiency can be adjusted by choosing the tuning parameters
(α, π1, π2 . . . πm) in (14) to suit a specific situation.

4.3 Model Nesting and Geometric Designs

In the context of linear models, one can envisage that the true model for a given
situation is η1 x, θ1ð Þ=X1θ1, but we wish to check for departures in the direction of
the larger model—the so-called supermodel—η2 x, θð Þ=X1θ1 +X2θ2, with

θ=
θ1
θ2

� �
. We seek a design that is efficient for η1 but which can be used to check

for departures in the direction of the larger η2. To illustrate this in the context of
response surface modeling, let X1θ1 represent the hyperplane, whereas X2θ2
includes the additional interaction and quadratic terms. In this case and based on the
partition given in Eq. (2) where θ1 and θ2 contain p1 and p2 parameters, respec-
tively, Atkinson (1972) introduced and illustrated the compound nesting design
criterion function

ϕ ξ, θð Þ= κ

p1
log M11j j+ 1− κ

p2
log M22 −M21M − 1

11 M12
�� �� ð16Þ

In Eq. (16), Mij =XT
i ΩXj for i, j=1, 2. Also, κ∈ 0, 1½ � controls the emphasis

placed on the original parameters versus the additional parameters. As in previously
discussed situations, Dϕ-optimality is confirmed by plotting the corresponding
variance function plot and confirming that this graph does not exceed the horizontal
cut line.

Since the case of nonlinear models is more complicated, as in O’Brien (1994),
we restrict our attention here to sigmoidal models, and these models are typically
chosen from the Richards, Weibull, and log-logistic classes or families. A super-
model which generalizes and connects the LL2 and WEIB2 model functions given
in Eq. (10) is our so-called three-parameter Eclectic (EC3) model function

ηEC3 x, θð Þ= 1

1+ x ̸θ1ð Þθ2
θ3

� �θ3 ð17Þ

The LL2 model function is obtained in this expression when θ3 = 1, and the
WEIB2 model function results for θ3 →∞, thereby demonstrating that EC3
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generalizes both these two-parameter model functions. Other important general-
izations of these model functions and Richards, Weibull, and log-logistic dose–
response families are given in O’Brien (1994). When for example it is felt that the
LL2 model function is the true model function, but a design is obtained by nesting
the LL2 model in the EC3 model, the researcher is then protected against departures
from the LL2 model in the direction of all other models in the larger EC3 class.

To illustrate, consider again the LL2 model function and the parameter estimates
given in the previous section, recalling that the D-optimal design comprises only
the two support points x=3.204 and x=7.034 (thereby providing no ability to
check for goodness-of-fit). When this model is nested in the EC3 model using the
nesting criteria function in (16) with κ=0.93, we obtain the design that associates
the weights ω=0.420, 0.258, 0.322 with the support points x=2.978, 5.369, 8.308.
Since the D-efficiency of this latter design exceeds 93.7%, the nested design rep-
resents only a modest loss in efficiency (6.3%) but provides the extra support point.

In the spirit of O’Brien et al. (2009), this nesting procedure is further extended
here by allowing for (discrete) geometric nesting designs where the design support
points have the form x= a, ab, ab2 . . . abK − 1. For a given value of K, the values of
a and b in this expression are chosen to optimize the criteria function in (16). For
the LL2 model, the geometric design support points are x=2.716, 3.998, 5.883,
8.659, for K =4 and x=2.626, 3.568, 4.847, 6.586, 8.947 for K =5; the respective
D-efficiencies are indeed quite high—90.4% and 90.1%, respectively. Additional
applications of geometric and uniform robust designs are given in O’Brien (2016)
in the context of assessing relative potency of similar compounds.

4.4 A General Departure Procedure

The final robust design strategy discussed here is the general departure criterion
originally introduced and illustrated in O’Brien (1995), which is akin to so-called
space-filling designs popular in software packages such as JMP

®

. For a given model
function with p model parameters, this method entails obtaining the D-optimal
design (ξD) and corresponding variance function, and adding to the D-optimal
design the t additional points where the variance function intersects the cut line

y= p p+1ð Þδ
p

h ip
− 1

n o
with say δ=0.90; here δ∈ 0, p

p+1 2
1 ̸p

h i
is chosen to control

the final efficiency.
To illustrate, for the IP2 model function given in (13) discussed in Sect. 4.1 and

initial parameter values θ1 = 0.70 and θ2 = 0.20, the (local) D-optimal design com-
prises the two points x=1.23 and x=6.86. The variance function is plotted in Fig. 4
along with (dashed) cut line y=2 to demonstrate D-optimality of this design; taking

δ=0.90, also plotted in this figure is the (dotted) cut line y=2 3 0.90ð Þ
2

h i2
− 1


 �
=

1.645. In this case, the t=4 additional intersection points are x=0.761,
1.909, 4.890, 9.366.
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To motivate the above procedure, let ξx denote the one-point design which puts
all mass at the single support point x. Then, the design ξN = p

p+1 ξD + 1
p+1 ξx

associates the weight 1 ̸ p+1ð Þ with each of the p D-optimal support points and x.

Then, the D-efficiency (δ= M ξNð Þj j
M ξDð Þj j
h i1 ̸p

) is equal to p
p+1 1+ 1

p d x, ξDð Þ
h i1 ̸p

; when

this is solved for d x, ξDð Þ, we get the above cut line. If the final design includes r1
replicates of the D-optimal design and r2 replicates of the additional t intersection

points, the final D-efficiency is DEF =
r1pð Þ1− t ̸p

r1p+ r2t
r1pIt + r2D x, ξDð Þj j1 ̸p.

For the IP2 illustration, with r1 = 1 replicate of the D-optimal design and r2 = 1
replicate of the additional t=4 intersection points (i.e., for the six-point design
x=1.229, 6.858; 0.761, 1.909, 4.890, 9.366), the final D-efficiency is 87.9%. With
r1 = 3 replicates of the D-optimal design and r2 = 1 replicates of the additional t=4
intersection points (i.e., a 10-point design x=3× 1.229, 3 × 6.858; 0.761, 1.909,
4.890, 9.366), the final D-efficiency increases to 92.8%.

Fig. 4 Plot of variance function for D-optimal design and IP2 model function
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5 Summary

Govaerts (1996), O’Brien and Funk (2003), and others have highlighted the
inadequacy of theoretical optimal designs especially those comprised of only p
support points for models containing p model parameters. This has motivated our
search for viable robust near-optimal design strategies such as those given here. Of
the four methods given in Sect. 4, choice of the specific design approach should be
dictated by the researcher’s belief in the assumed model function. For example,
when this belief is quite high and an additional support point or two is desired to
augment the usual design, the Q-optimality procedure is recommended. When two
or three model functions form a reasonable set of contending model functions, the
estimation–discrimination strategy can be used. Model nesting is useful when
protection is desired from the assumed model function in the direction of a whole
class of model functions—such as sigmoidal dose–response functions useful in
bioassay modeling. Finally, the general departures procedure is useful when one
wishes to guard against departures from the assumed function in all directions.

All designs discussed here have been obtained using SAS/IML software, and
optimality of the respective design was confirmed using the corresponding variance
function (when appropriate). A challenge for the practicing statistician is to make
these designs and design algorithms available to the practitioner. Providing statis-
tical consulting clients with robust optimal designs affords statisticians the oppor-
tunity to engage in consulting at the planning/design phase with an eye to more
efficient use of scarce resources.
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Alternative Approaches for the Use
of Uncertain Prior Information
to Overcome the Rank-Deficiency
of a Linear Model

Burkhard Schaffrin, Kyle Snow and Xing Fang

Abstract The rank-deficiency of a linear model indicates some information deficit

that may be covered by “prior information” (p.i.) in spite of its uncertainty. There

are several ways of introducing such p.i., which may be characterized as hierarchi-

cal or simultaneous. Here, three hierarchical methods will be compared with four

simultaneous methods; in particular, the question of rescaling the p.i. itself or only

its dispersion matrix will be investigated. A small (surveying) leveling network will

serve as a numerical example for the comparison.

Keywords Hierarchical versus simultaneous methods ⋅ Rank-deficiency

Rescaling prior information itself versus its dispersion matrix ⋅ Uncertain prior

information

1 Introduction

Oftentimes, the linear(ized) model for a weighted least-squares adjustment problem

turns out to be rank-deficient, in which case additional information has to be intro-

duced to guarantee a unique solution for the parameter estimates. This can be done

by a certain “datum choice” following Baarda (1967), or by integrating (stochas-

tic) prior information (p.i.), which may lead to a Mixed Model in accordance with

Moritz (1970) or, alternatively, to the Extended Gauss-Markov Model proposed by

Wolf (1977).

In both of the latter cases, scaling the prior information may be advised, either

directly by applying a scale factor to the (given) expected p.i. vector, or indirectly by

allowing a different variance component to govern the uncertainty of the p.i. While
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the direct approach has been investigated in much detail by Schaffrin (1985, 1986)

under the name of “robust collocation,” the indirect approach may be traced as far

back as Helmert (1907), with modern presentations by Schaffrin (1983) and in a par-

ticularly comprehensive fashion by Rao and Kleffe (1988), resp. Searle et al. (1992).

In a paper by Schaffrin (1987) that was concerned with the estimation of point

heights from leveling data, four different methods were compared on a purely the-

oretical basis; two of them can be characterized as “hierarchical” (fixed datum vs.

inner datum), whereas the other two turn out to be “simultaneous” in nature (least-

squares collocation or inhomBLIP vs. robust collocation or homBLUP). The use of

variance component estimation (i.e., the “indirect approach”) had not been part of

the investigation at the time, nor did the BLIMPBE (Best LInear Minimum Partial
Bias Estimate) principle exist then, which would be another hierarchical procedure

of choice; for more details we refer to Schaffrin and Iz (2002) and to Snow and Schaf-

frin (2007) where it is emphasized that, in general, the BLIMPBE does not belong

to the LEast-Squares Solutions (LESS). Further options are provided by Schaffrin

(2003), Fok et al. (2009), and Schaffrin and Navratil (2012).

The present contribution is so organized that we begin with a typical geodetic
case study involving leveling data without any absolute height information. We found

this example in the book by Niemeier (2008) and shall introduce it in the following

Sect. 2. Afterwards, the three relevant hierarchical procedures will be analyzed in

Sect. 3, while Sect. 4 will be devoted to the four simultaneous procedures that we

believe to be most relevant. Finally, we shall present both an overview of leveling
networks in general and our numerical results in Sect. 5 before drawing some con-

clusions and providing an outlook on further research.

2 The Problem at Hand: A Leveling Network (Four Loops)

The following problem of a leveling network with four loops was found in the book

by Niemeier (2008). There, in Fig. 1, the four loops are sketched out which would

allow a “free adjustment” by using four condition equations, one for each loop.

Since we are interested in the study of the impact that uncertain (and some-

times unreliable) prior information may have on the adjustment, the use of a Gauss-
Markov Model (GMM) with stochastic constraints appears to be suitable. The model

is defined by:

y = A
n×m

𝝃 + e, e ∼ (𝟎,𝚺), “ new data,” (2.1a)

z0 = K
l×m

𝝃 + e0, e0 ∼ (𝟎,𝚺0), “ prior information,” (2.1b)

C{e0, e} = 𝟎, “no correlation,” (2.1c)

l ∶= rk K ≤ m = rk
[
AT ∣ KT]

< n, “rank relations,” (2.1d)

r ∶= n − q, for q ∶= rk A “redundancy.” (2.1e)

The variables are defined so that
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y1

y2

y3

y4

y5

y6

y7

y8

y9

P3

P6

P2

P4

P5

P1

Fig. 1 A 4-loop leveling network with two fiducial points (P1 and P3)

y denotes the n × 1 vector of observed height differences;

A is the n × m coefficient matrix with q ∶= rk A < m < n;

𝝃 is the (unknown) m × 1 parameter vector of heights;

e is the (unknown) n × 1 vector of random observational noise;

𝚺 is the (given) symmetric positive-definite n × n dispersion matrix of e.

Similarly,

z0 denotes the l × 1 vector of previously estimated heights;

K ∶= [Il ∣ 𝟎] is the (given) constraining matrix with l ∶= rk K;

e0 is the (unknown) l × 1 vector of random estimation noise;

𝚺0 is the (given) symmetric nonnegative-definite l × l dispersion matrix

of e0;

C{e0, e} = 𝟎, assuming no correlation between e and e0.

Two fiducial points were added to Niemeier’s network, indicated by triangle sym-

bols in Fig. 1. Fiducial points come with previous estimates, often of poorer quality,

along with variances and covariances.

Thus, l = 2 < m = 6 < n = 9, and r = n − q = 9 − 5 = 4, in view of the

coefficient matrix A ∶= [A1
9×2

| A2
9×4

] defined by
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A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 +1 0 0 0
−1 +1 0 0 0 0
0 +1 −1 0 0 0
0 0 −1 +1 0 0
0 −1 0 +1 0 0
0 −1 0 0 +1 0
0 −1 0 0 0 +1
0 0 0 −1 +1 0
0 0 0 0 −1 +1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, rk A = 5, (2.2a)

and the parameter vector 𝝃
6×1

∶= [𝝃T
1

1×2
∣ 𝝃T

2
1×4

]T of heights defined by

𝝃 ∶=
[

H1,H3 H2,H4,H5,H6
]T

. (2.2b)

Note the order of heights in 𝝃 that starts with the heights of those two points, P1
and P3, for which prior estimates are available, namely

z0 ∶=

[
z01
z02

]

= 𝝃1 + e0 =
[
I2 𝟎

] [𝝃1
𝝃2

]
+ e0, (2.2c)

so that K = [I2 ∣ 𝟎] with rk K = 2 = l.
Also note that

rk A1 = 2, rk A2 = 4, but rk A = 5 < m (2.2d)

since A𝝉 = 𝟎 for 𝝉
m×1

∶= [1,… , 1]T . (2.2e)

For the data themselves (both y and z0) as well as for their dispersion matrices (𝚺
and 𝚺0), we refer to the later Sect. 5.

3 Three Hierarchical Procedures

Here we distinguish between two cases, depending on the perceived quality of the

prior information; it may either be assumed superior (case 1) or inferior (cases 2a

and 2b) in comparison to the new data.

3.1 Case 1: Prior Information Superior to New Dataset

In this case, highest priority is given to the prior information by the objective
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min
𝝃1

= (z0 − 𝝃1)T𝚺−1
0 (z0 − 𝝃1), (3.1a)

which immediately leads to the “reproducing estimate”

̂𝝃1 = z0, E{ ̂𝝃1} = 𝝃1, D{ ̂𝝃1} = 𝚺0. (3.1b)

In a second step, the new data are adjusted subject to (3.1a) and (3.1b) by follow-

ing the objective

(y − A1z0 − A2𝝃2)TP(y − A1z0 − A2𝝃2) = min
𝝃2

forP ∶= 𝜎

2
0 ⋅ 𝚺

−1
, (3.2a)

which provides the (weighted) least-squares solution

̂𝝃2 = N−1
22 (c2 − N21z0) where

[
N21 N22 c2

]
∶= AT

2P
[
A1 A2 y

]
, (3.2b)

with

E{ ̂𝝃2} = N−1
22
(
N21𝝃1 + N22𝝃2 − N21𝝃1

)
= 𝝃2, (3.2c)

and

D{ ̂𝝃2} = 𝜎

2
0 ⋅ N

−1
22 + N−1

22N21𝚺0NT
21N

−1
22 since C{y, z0} = 𝟎. (3.2d)

If also P0 ∶= 𝜎

2
0 ⋅𝚺

−1
0 is introduced with a common variance component 𝜎

2
0 , then:

(n − m + l)⋅�̂�2
0 = ẽT

0P0ẽ0 + ẽTPẽ (3.3a)

for

ẽ0 = z0 − ̂𝝃1 = 𝟎 and ẽ = y − A1z0 − A2
̂𝝃2, (3.3b)

respectively

�̂�

2
0 = (n − m + l)−1 ⋅ (y − A1z0)TPred(y − A1z0) (3.4a)

with the “reduced weight matrix”

Pred ∶= P − PA2N−1
22A

T
2P, (3.4b)

which happens to be singular.
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The above solution was employed to define the National Geodetic Vertical Datum
of 1929 (U.S. and Canada), which was used for over half a century. Nevertheless, it

does not even represent the “optimal reproducing estimate” of type repro-BLUUE

as was eventually found out by Schaffrin and Navratil (2012).

3.2 Case 2a: Dataset Superior to Prior Information
(S-weighted MINOLESS)

In this case the objective functions from case 1 are applied in reverse order, starting

with the objective:

(y − A𝝃)TP(y − A𝝃) = min
𝝃

forP ∶= 𝜎

2
0 ⋅ 𝚺

−1
, (3.5a)

which produces the (singular) “normal equations”

N ̂𝝃 =
[
N11 N12
N21 N22

]
⋅
[
̂𝝃1
̂𝝃2

]
=
[
c1
c2

]
= c (3.5b)

with a multitude of (weighted) least-squares solutions. Uniqueness is now achieved

by introducing the objective:

(z′0 − ̂𝝃)TS(z′0 − ̂𝝃) = min
̂𝝃

s.t.N( ̂𝝃 − z′0) = c − Nz′0, (3.6a)

with

z′0 ∶= [z01, z02, 0, … , 0]T , P0 ∶= 𝜎

2
0 ⋅ 𝚺

−1
0 , and (3.6b)

S ∶= KTP0K =
[
P0 𝟎
𝟎 𝟎

]
as “selection matrix,” (3.6c)

leading to the system of equations

[
S N
N 𝟎

][
̂
̂𝝃 − z′0
̂𝝀

]

=
[

𝟎
c − Nz′0

]
. (3.7)

By adding the rows of (3.7) together, while assuming the invertibility of (S+N),
we obtain:

̂
̂𝝃 − z′0 = (S + N)−1(c − Nz′0) − (S + N)−1N ⋅ ̂𝝀 (3.8a)

and with the second row of (3.7) again:
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c − Nz′0 = N( ̂̂𝝃 − z′0) = N(S + N)−1(c − Nz′0) − N(S + N)−1N ⋅ ̂𝝀 (3.8b)

from which the vector −N ̂𝝀 can be derived via

−N ̂𝝀 = −N[N(S + N)−1N]−⋅N(S + N)−1N ⋅ ̂𝝀 =
= N[N(S + N)−1N]− ⋅ [(c − Nz′0) − N(S + N)−1N ⋅ N− ⋅ (c − Nz′0)] =

= N[N(S + N)−1N]− ⋅ (c − Nz′0) − (c − Nz′0)
(3.8c)

using various g-inverse matrices. By implementing (3.8c) into (3.8a), the final solu-

tion of type S-weighted MINOLESS can be represented by:

̂
̂𝝃 = z′0 + (S + N)−1N[N(S + N)−1N]− ⋅ (c − Nz′0). (3.8d)

It is not an unbiased estimate since the “normal equations” (3.5b) happen to be

singular, even though both diagonal blocks N11 and N22 are invertible.

Now, by simple error propagation and exploiting the fact that C{y, z′0} = 𝟎, the

dispersion matrix of
̂
̂𝝃 can be obtained via

D{ ̂̂𝝃} = 𝜎

2
0 ⋅(S+N)

−1⋅N⋅[N(S+N)−1N]−N[N(S+N)−1N]−N(S+N)−1

+{Im − (S + N)−1N[N(S + N)−1N]−N} ⋅
[
𝚺0 𝟎
𝟎 𝟎

]

⋅{Im − (S + N)−1N[N(S + N)−1N]−N}T

(3.9)

and the estimated variance component via

̂
�̂�

2
0 = (n − q)−1 ⋅ (̃ẽTP̃ẽ) for ̃ẽ = y − A1

̂
̂𝝃1 − A2

̂
̂𝝃2. (3.10)

Unfortunately, the S-weighted MINOLESS does not minimize the bias uniformly,

in contrast to the full (Im-weighted) MINOLESS, which is the only LESS that does

so according to Snow and Schaffrin (2007). Thus, for better bias control, we may

prefer to follow the approach proposed by Schaffrin and Iz (2002), called BLIMPBE

(which stands for Best LInear Minimum Partial Biased Estimate).

3.3 Case 2b: Dataset Superior to Prior Information
(S̄-BLIMPBE)

According to the acronym of BLIMPBE, now the estimator has to be linear, should

minimize the relevant part of the bias, and in this class show the smallest Mean

Squared Error (MSE). This means that, firstly,
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̄𝝃 = L
m×n

y, where L is to be determined, (3.11)

and, secondly, a certain part of the bias vector

𝜷 ∶= E{ ̄𝝃} − 𝝃 = −(Im − LA)𝝃 =∶ B ⋅ 𝝃 (3.12a)

is to be minimized, with B as “bias matrix.” Thus, the squared norm 𝜷T𝜷 =
tr(B𝝃𝝃TB) is replaced by

tr(B ̄SBT ) = tr(LA ̄SATLT ) − 2 tr(LA ̄S) + tr ̄S = min
LT

(3.12b)

with

̄S ∶=
[
P0

−1 𝟎
𝟎 𝟎

]
= S+ (i.e., the “Moore-Penrose inverse” of S), (3.12c)

leading to the constraints

A ̄SAT ⋅ LT = A ̄S. (3.12d)

Thirdly, under the constraints (3.12d), we minimize the trace of the Mean Squared

Error matrix of ̄𝝃, namely

tr MSE{ ̄𝝃 = Ly}∕𝜎2
0 ≈ tr(LP−1LT ) + tr(B ̄SBT ) = min

LT
, (3.13a)

where tr(B ̄SBT ) is now constant, as a consequence of (3.12b), so that (3.13a) can be

replaced by

tr(LP−1LT ) = min
LT

s.t. A ̄SAT ⋅ LT = A ̄S, (3.13b)

which ultimately leads to the unique solution

LT = PA ⋅ ̄SN(N ̄SN ̄SN)−N ̄S (3.13c)

respectively

̄𝝃 = Ly = ̄SN(N ̄SN ̄SN)−N ̄S ⋅ c. (3.14a)

Obviously

̄𝝃 ≠ ̄SN(N ̄SN)− ⋅ c unless rk ̄SN = q = rkN, (3.14b)

and, thus, the ̄S-BLIMPBE ̄𝝃 will not belong to the LEast-Squares Solutions (LESS),

in general.

For the same reason, we obtain
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E{ ̄𝝃} = ̄SN(N ̄SN ̄SN)−N ̄SN ⋅ 𝝃 ≠ 𝝃 (even if rk ̄SN = q < m), (3.15a)

thus establishing a certain (unavoidable) bias for ̄𝝃, with

B ∶= ̄SN(N ̄SN ̄SN)−N ̄SN − Im (3.15b)

as the “bias matrix” for ̄𝝃. The corresponding dispersion matrix now results in

D{ ̄𝝃} = 𝜎

2
0 ⋅

̄SN(N ̄SN ̄SN)−N ̄S (3.16)

with a still unknown variance component 𝜎
2
0 . An ad-hoc estimate may use the resid-

ual vector
ē = y − A ̄𝝃 = y − A1

̄𝝃1 − A2
̄𝝃2, (3.17a)

which will, however, not be (weakly) unbiased according to

E{ē} = A𝝃 − A ⋅ E{ ̄𝝃} = −A ⋅ B𝝃 ≠ 𝟎 unless rk ̄SN = q = rkN. (3.17b)

Nonetheless, 𝜎
2
0 may be estimated in analogy to (3.10) by

�̄�

2
0 = (n − q)−1 ⋅ (ēTPē) (3.18)

before more rigorous estimates are developed.

4 Four Simultaneous Procedures

In this section, the original Gauss-Markov Model with stochastic constraints in (2.1)

is given the equivalent form of a Mixed Linear Model, using “Helmert’s knack”

(Helmert 1907). It consists of stripping z0 of its randomness while preserving its

numerical values, which can be formalized by writing

𝜿0
l×1

∶= z0 − 𝟎
̃

= (𝝃1 − 𝟎
̃

) + e0, e0 ∼ (𝟎,𝚺0 = 𝜎

2
0P

−1
0 ), (4.1a)

where 𝟎
̃

is an l × 1 “stochastic zero vector” with

𝟎
̃

∼ (K𝝃 − 𝜿0,𝚺0 = 𝜎

2
0P

−1
0 ), C{e, 𝟎

̃

} = 𝟎, (4.1b)

and

x1 ∶= 𝝃1 − 𝟎
̃

= 𝜿0 − e0 ∼ (𝜿0,𝚺0 = 𝜎

2
0P

−1
0 ), C{e, e0} = 𝟎, (4.2a)
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as a new (unknown) l×1 vector of “random effects.” By further introducing the new

observation vector

y
̃

∶= y − A1 ⋅ 𝟎
̃

= A1x1 + A2𝝃2 + e, e ∼ (𝟎,𝚺 = 𝜎

2
0P

−1), (4.2b)

the Mixed Linear Model (4.2) is formed, which can be transformed into the equiva-
lent model of condition equations (or Gauss-Helmert Model)

y
̃

− A1𝜿0 = A2𝝃2 + (e − A1e0) =∶ A2𝝃2 + e′ (4.3a)

with

e′ ∼ (𝟎,𝚺 + A1𝚺0AT
1 = 𝜎

2
0(P

−1 + A1P−1
0 AT

1 )). (4.3b)

The models (4.2) and (4.3) are the basis for the first simultaneous procedure that,

through the weighted least-squares principle, will generate an optimal estimate of 𝝃2
(BLUUE) and an optimal prediction of x1 (inhomBLIP).

On the other hand, the prior information in (4.2a) may not only be uncertain, but

also unreliable. In such a case, the introduction of (unknown) scale factors for both

𝜿0 and 𝚺0 may be advised, either separately as in the cases 2 and 3, or together as in

case 4.

Thus case 2 will result in the Weak Mixed Model, defined by the condition equa-

tions

y
̃

= (A1𝜿0) ⋅ 𝜔 + A2𝝃2 + e′, e′ ∼ (𝟎, 𝜎2
0(P

−1 + A1P−1
0 AT

1 )), (4.4a)

with 𝜔 as an additional scale factor. After a weighted least-squares adjustment, opti-

mal estimates of type BLUUE are obtained for 𝝃2 and𝜔, which will lead to an optimal

prediction of x1 of type homBLUP via

̃x̃1 = 𝜿0 ⋅ �̂� − ̃ẽ0. (4.4b)

In contrast, a scale factor for 𝚺0, as in case 3, will lead to a Variance Component
Model (VCM), where the characterization (4.3b) for e′ in (4.3a) is replaced by

e′ ∼ (𝟎, 𝜎2
0(P

−1 + 𝛼 ⋅ A1P−1
0 AT

1 ) = 𝜎

2
0P

−1 + 𝜎

2
1 ⋅ A1P−1

0 AT
1 ). (4.5)

The weighted least-squares solution will be unbiased if e′ follows a symmetric p.d.f.,

but will not represent BLUUE (as it is a nonlinear estimate).

Finally, cases 2 and 3 can be combined to the Weak Mixed Model with Variance
Components, represented by a combination of (4.4a) with (4.5). However, for this

model to work the number l of components in the vector 𝜿0 has to be 3 or larger.

Since this is not fulfilled here, no numerical results will be presented for case 4 in

Sect. 5.
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4.1 Case 1: The Mixed Linear Model, resp. Condition
Equations

Here, the weighted least-squares approach as applied to the Mixed Linear Model

(4.3) will lead to the normal equations

[
N11 + P0 N12

N21 N22

] [
x̃1
̂𝝃2

]
=
[
c
̃

1 + P0𝜿0
c
̃

2

]
, (4.6a)

where ̂𝝃2 represents the BLUUE (Best Linear Uniformly Unbiased Estimate) of 𝝃2
and x̃1 the nhomBLIP (Best inhomogeneously LInear Prediction) of x1. Since both

turn out to be unbiased, due to

E{ ̂𝝃2} = 𝝃2 for all 𝝃2 ∈ ℝm−l
, and E{x̃1} = 𝜿0 = E{x1}, (4.6b)

the Mean Squared Error matrix can be represented by

MSE{
[
x̃1
̂𝝃2

]
} = D{

[
x̃1 − x1

̂𝝃2

]
} = 𝜎

2
0

[
N11 + P0 N12

N21 N22

]−1
, (4.6c)

where the variance component 𝜎
2
0 may be estimated unbiasedly through

�̂�

2
0 = (n − m + l)−1(ẽT

0P0ẽ0 + ẽTPẽ) (4.7a)

for

ẽ0 ∶= 𝜿0 − x̃1, and ẽ ∶= y
̃

− A1x̃1 − A2
̂𝝃2. (4.7b)

Alternatively, model (4.4) may be exploited in which case the weighted least-

squares principle

(e′)T (𝚺 + A1𝚺0AT
1 )

−1e′ ⋅ 𝜎2
0 =

= (e′)T [P − PA1(P0 + N11)−1AT
1P]e

′ = min
e′

(4.8)

leads to the normal equations

[
AT
2 (P

−1 + A1P−1
0 AT

1 )
−1A2

]
⋅ ̂𝝃2 = AT

2 (P
−1 + A1P−1

0 AT
1 )

−1(y
̃

− A1𝜿0) (4.9a)

with ̂𝝃2 as the very same BLUUE of 𝝃2 as in (4.6a) and with the same dispersion,

resp. MSE-matrix
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MSE{ ̂𝝃2} = D{ ̂𝝃2 − 𝝃2} = D{ ̂𝝃2} = 𝜎

2
0
[
AT
2 (P

−1 + A1P−1
0 AT

1 )
−1A2

]−1 =

= 𝜎

2
0
[
N22 − N21(P0 + N11)−1N12

]−1
(4.9b)

as in (4.6c), followed by the residual vectors

[
ẽ
ẽ0

]
=
[

C{e, e′}
C{e0, e′}

]
⋅
[
D{e′}

]−1
⋅ (y
̃

− A1𝜿0 − A2
̂𝝃2), (4.10a)

and

x̃1 = 𝜿0 − ẽ0 (4.10b)

as inhomBLIP of x1 with

MSE{x̃1} = 𝜎

2
0(P0 + N11 − N12N−1

22N21)−1 (4.10c)

as its MSE-matrix, and with �̂�

2
0 from (4.7a) as its variance component estimate.

4.2 Case 2: Condition Equations for the Weak Mixed Model

Here, the relevant model is defined by (4.4a) and shows an additional (unknown)

scale factor for 𝜿0. Consequently, the weighted least-squares principle (4.8) as

applied to (4.4a) will generate the “normal equations”

[
N11 + P0 N12

N21 N22

] [
g1 𝜸1
g2 𝜸2

]
=
[
c
̃

1 N11𝜿0
c
̃

2 N21𝜿0

]
, (4.11)

from which the estimated scale factor �̂�, the homBLUP (Best Homogeneous Linear

(weakly) Unbiased Predictor) ̃x̃1 of x1, and the corresponding unbiased estimate
̂
̂𝝃2

of 𝝃2 will result as follows:

�̂� = (𝜿T
0P0g1)∕(𝜿T

0P0𝜸1) ∼ (𝜔, 𝜎2
0∕(𝜿

T
0P0𝜸1)), (4.12a)

̃x̃1 = 𝜿0 ⋅ �̂� + (g1 − 𝜸1 ⋅ �̂�),
̂
̂𝝃2 = g2 − 𝜸2 ⋅ �̂�, (4.12b)

along with the MSE-matrix of ̃x̃1
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MSE{̃x̃1} = D{̃x̃1 − x1} = 𝜎

2
0(P0 + N11 − N12N−1

22N21)−1+
+ (P0 + N11 − N12N−1

22N21)−1P0𝜿0⋅(𝜿T
0P0𝜸1)−1⋅𝜿T

0P0(P0 + N11 − N12N−1
22N21)−1,

(4.12c)

and the variance component estimate

̂
�̂�

2
0 = (n − m + l − 1)−1 ⋅ (̃ẽT

0P0 ̃ẽ0 + ̃ẽTP̃ẽ) (4.13a)

for

̃ẽ0 = 𝜿0 ⋅ �̂� − ̃x̃1 = −(g1 − 𝜸1 ⋅ �̂�) (4.13b)

and

̃ẽ = y
̃

− A1 ̃x̃1 − A2
̂
̂𝝃2 (4.13c)

as residual vectors; for more details, see Schaffrin (1985).

4.3 Case 3: The Variance Component Model (VCM)

In this model, defined by (4.3a) in conjunction with (4.5), the vector𝝑 ∶= [𝜗1, 𝜗2]T =
[𝜎2

0 , 𝜎
2
1]

T
needs to be estimated along with both x1 and 𝝃2. For this we rewrite (4.5)

as

e′ ∼ (𝟎, 𝜎2
0P

−1 + 𝜎

2
1 ⋅ A1P−1

0 AT
1 =∶ 𝜗1 ⋅ Q1 + 𝜗2 ⋅ Q2 =∶ 𝚺′(𝝑)) (4.14)

and find the repro-BIQUUE (reproducing Best Invariant Quadratic Uniformly Unbi-

ased Estimate) of the vector 𝝑 from the (nonlinear) “normal equations”

[
tr(Q1

̂WQ1
̂W) tr(Q1

̂WQ2
̂W)

tr(Q2
̂WQ1

̂W) tr(Q2
̂WQ2

̂W)

]
⋅
[
̂
𝜗1
̂
𝜗2

]
=

[
(y
̃

−A1𝜿0)T ̂WQ1
̂W(y
̃

−A1𝜿0)
(y
̃

−A1𝜿0)T ̂WQ2
̂W(y
̃

−A1𝜿0)

]

(4.15a)

with

̂W ∶= (𝚺′( ̂𝝑))−1 − (𝚺′( ̂𝝑))−1A2
[
AT
2 ⋅ (𝚺′( ̂𝝑))−1 ⋅ A2

]−1AT
2 ⋅ (𝚺′( ̂𝝑))−1, (4.15b)

followed by the—oftentimes unbiased—estimate

̂
̂𝝃2 = [AT

2 (𝚺
′( ̂𝝑))−1A2]−1 ⋅ AT

2 (𝚺
′( ̂𝝑))−1(y

̃

− A1𝜿0) (4.16a)

of 𝝃2, the residual vectors
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[
̃ẽ
̃ẽ0

]
=
[

̂
𝜗1 ⋅ P−1

− ̂
𝜗2 ⋅ P−1

0 AT
1

]
⋅ (𝚺′( ̂𝝑))−1(y

̃

− A1𝜿0 − A2
̂
̂𝝃2), (4.16b)

and the corresponding prediction of x1, namely

̃x̃1 = 𝜿0 − ̃ẽ0. (4.16c)

For more details, we refer to Schaffrin (1983).

4.4 Case 4: The Weak Mixed Model with Variance
Components

Here, the two cases 2 and 3 are combined by considering (4.4a) in conjunction with

(4.5). This can be done successfully as soon as the prior information vector 𝜿0 has

more than three components (l ≥ 3). We decided to present the necessary formulas

although, in our example, we only have l = 2.

After introducing (4.14) for 𝝑 ∶= [𝜎2
0 , 𝜎

2
1 = 𝜎

2
0 ⋅ 𝛼]T , the repro-BIQUUE of 𝝑

can now be taken from the (nonlinear) normal equations

[
tr(Q1

̂
̂WQ1

̂
̂W) tr(Q1

̂
̂WQ2

̂
̂W)

tr(Q2
̂
̂WQ1

̂
̂W) tr(Q2

̂
̂WQ2

̂
̂W)

][
̂
̂
𝜗1
̂
̂
𝜗2

]

=
⎡
⎢
⎢
⎣

y
̃

T ̂
̂WQ1

̂
̂Wy
̃y

̃

T ̂
̂WQ2

̂
̂Wy
̃

⎤
⎥
⎥
⎦

(4.17a)

with

̂
̂W ∶= (𝚺′( ̂̂𝝑))−1 − (𝚺′( ̂̂𝝑))−1

[
A1𝜿0 |A2

]
⋅

⋅

[
𝜿T
0A

T
1 ⋅ (𝚺′( ̂̂𝝑))−1 ⋅ A1𝜿0 𝜿T

0A
T
1 ⋅ (𝚺′( ̂̂𝝑))−1 ⋅ A2

AT
2 ⋅ (𝚺′( ̂̂𝝑))−1 ⋅ A1𝜿0 AT

2 ⋅ (𝚺′( ̂̂𝝑))−1 ⋅ A2

]−1 [
𝜿T
0A

T
1

AT
2

]
(𝚺′( ̂̂𝝑))−1 (4.17b)

followed by the—oftentimes unbiased—estimates

[
̂
�̂�

̄
̄𝝃2

]
=

[
𝜿T
0A

T
1 ⋅(𝚺

′( ̂̂𝝑))−1⋅A1𝜿0 𝜿T
0A

T
1 ⋅ (𝚺′( ̂̂𝝑))−1⋅A2

AT
2 ⋅(𝚺

′( ̂̂𝝑))−1⋅A1𝜿0 AT
2 ⋅(𝚺

′( ̂̂𝝑))−1⋅A2

]−1 [
𝜿T
0A

T
1

AT
2

]
⋅ (𝚺′( ̂̂𝝑))−1⋅y

̃

(4.18a)

of 𝜔 and 𝝃2, the residual vectors

[
̄ē
̄ē0

]
=

[
̂
̂
𝜗1 ⋅ P−1

− ̂
̂
𝜗2 ⋅ P−1

0 AT
1

]

⋅ (𝚺′( ̂̂𝝑))−1(y
̃

− A1𝜿0 ⋅ ̂�̂� − A2
̄
̄𝝃2), (4.19)
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and the corresponding prediction of x1, namely

̄x̄1 = 𝜿0 ⋅ ̂�̂� − ̄ē0. (4.20)

As in case 3, the various dispersion, resp. MSE-matrices still need to be developed

in full detail. But, unlike case 3, case 4 could not be investigated numerically in our

small-size example from Sect. 2.

5 Numerical Results

Some comments on leveling networks
A leveling network in surveying and geodesy is a set of points that have been “con-

nected” by a series of spirit-level observations. When such a series of observations

returns back to the starting point, it is said to form a circuit (or closed loop). Such

observations are then “adjusted” by one of the methods described above, for instance,

in order to estimate orthometric heights of the benchmarks, where the model redun-

dancy is equal to the number of observational circuits in the network. However,

spirit-leveling only provides information about height differences between bench-

marks, and thus some other source of data (e.g., prior information on one or more

benchmark heights) must also be specified in the model (e.g., via (2.1b)) to avoid a

rank-deficiency (of one).

Because spirit-leveling is a relatively time consuming (but precise) way of deter-

mining height differences between points, now-a-days relative GPS positioning

methods are also employed to supply height information for one or more points

within the leveling network. Depending on the approach used, GPS-derived heights

have the added advantage of supplying a “height datum” for the model (e.g., via

(2.1b)), thereby overcoming the rank-deficiency mentioned in the preceding para-

graph.

In the numerical experiments that follow, we use both orthometric heights derived

from GPS (and geoid undulations), e.g., HA for height at point A, and orthometric

height differences from spirit-leveling (and gravity data), e.g., HAB = HB − HA, as

observational data in model (2.1).

5.1 Description of New Data and Prior Information

In the following experiments we use height differences from spirit leveling as “new

data” and GPS-derived heights of two points as prior information. The spirit-leveling

data are the same as that used by Niemeier (2008). The GPS-derived heights are

simulated.



196 B. Schaffrin et al.

Table 1 Spirit-leveling data corresponding to Fig. 1

yi Pj to Pk Hjk(m) Di (km) 𝜎

2
i ⋅𝜎

2
0 (mm

2)
y1 P1 to P2 −8.206 0.62 5.58

y2 P1 to P3 −5.734 1.20 10.8

y3 P2 to P3 2.481 0.45 4.05

y4 P2 to P4 −4.433 0.80 7.20

y5 P3 to P4 −6.909 1.00 9.00

y6 P3 to P5 18.872 1.10 9.90

y7 P3 to P6 4.035 0.44 3.96

y8 P4 to P5 11.962 0.72 6.48

y9 P5 to P6 22.904 0.83 7.47

Table 2 Prior information for points P1 and P2 shown in Fig. 1

Point z0(m) Element of Diag𝚺0 (mm
2)

P1 H1 = 68.951 𝜎

2
H1

= 502⋅𝜎2
0

P3 H3 = 63.201 𝜎

2
H3

= 102⋅𝜎2
0

It is common to weight spirit-leveling data as a function of the length of path

associated with the observed height difference Hjk, j, k ∈ {1,… , 6}. Instead of

weights, we rather compute observational variances 𝜎
2
i , i = 1,… , 9, using the for-

mula 𝜎
2
i = 𝜎

2
0 ⋅ (0.003m)2⋅Djk, where Djk is the distance of the path between points Pj

and Pk. The weight matrix used in the model is then computed as a scaled inverse

covariance matrix viz. P ∶= 𝜎

2
0𝚺

−1 = 𝜎

2
0[Diag(𝜎

2
1 ,… , 𝜎

2
9)]

−1
. The observed Hjk

and their associated variances 𝜎

2
i are listed in Table 1, and the leveling network is

depicted in Fig. 1.

As mentioned earlier, the heights derived from “GPS leveling” are simulated for

this study. The values adopted are shown in the second column of Table 2. The empir-

ical standard deviations of heights derived from relative GPS positioning often range

in the level of ±1 to ±5 cm depending on the length of the observation session and

the observational standards and specifications adhered to. The values adopted for

this study are shown in the last column of Table 2, which indicate that the standard

deviation of the height H1 is assumed to be five times greater than that of H3.

The data from Tables 1 and 2 were used in all the numerical estimations discussed

herein; the results are presented in the following sections.
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5.2 Description of Parameter Estimates and Predictions

The following quantities are shown in the tables below for each of the six cases

investigated:

∙ Estimated and predicted parameters (orthometric heights)

∙ Prior information residuals

∙ Measurement residuals

∙ Model redundancy

∙ Estimated variance component(s)

The number of significant digits shown in Tables 3, 4, 5, 6, 7 and 8 is greater than

what the precision of the data would warrant. We only show so many digits for the

benefit of readers who might want to replicate our work.

Hierarchical—Case 1: Prior information reproduced
The parameter estimates determined according to Sect. 3.1 are listed in Table 3. As

explained in Sect. 3.1, the prior information will be reproduced, which can be con-

firmed by comparing the numerical values for heights H1 and H3 in Tables 2 and

3. As noted earlier, this reproducing estimator is not optimal, which appears to be

reflected in its relatively large estimated variance component �̂�
2
0 = 18.196779 shown

in the table. Thus we would not recommend this estimator in practice, but merely

have included it here for comparative purposes.

Hierarchical—Case 2a: S-weighted MINOLESS
The parameter estimates determined according to Sect. 3.2 are listed in Table 4. As

explained in Sect. 3.2, the estimates are of type S-weighted MINOLESS, which has

the following properties:

1. The change in prior information is minimized (in terms of the S-weighted L2-

norm) for the selected parameters (here H1 and H3).

Table 3 Hierarchical—Case 1: 𝝃1 reproduced, r = 5, �̂�
2
0 = 18.196779

̂𝝃 (m) ẽ0 (mm) ẽ (mm)

H1 ∶ 68.9510 0.0 15.3

H3 ∶ 63.2010 0.0 16.0

H2 ∶ 60.7297 9.7

H4 ∶ 56.2940 2.6

H5 ∶ 44.3311 −2.0
H6 ∶ 67.2357 −2.1

0.3

0.9

−0.6
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Table 4 Hierarchical—Case 2a: S-weighted MINOLESS, r = 4, ̂�̂�
2
0 = 1.282825

̂
̂𝝃 (m) Δz0 (mm) ̃ẽ (mm)

H1 ∶ 68.9315 19.5 2.2

H3 ∶ 63.2018 −0.8 −4.3

H2 ∶ 60.7233 2.5

H4 ∶ 56.2918 −1.6

H5 ∶ 44.3306 0.9

H6 ∶ 67.2360 −0.8

0.8

−0.7

−1.4

2. The trace of the respective subblock of the dispersion matrix D{ ̂̂𝝃}, shown in

(3.9), is minimized.

3. The residuals ̃ẽ, shown in (3.10), are unique, i.e., they are not affected by the

specification of the selection matrix S.

4. The parameter estimates
̂
̂𝝃 are biased by the selection matrix S.

Note that in Table 4 the term Δz0 denotes the change in prior information and

is defined by Δz0 ∶= z0 −
̂
̂𝝃1. It turns out that the prior information for height H1

changed more significantly than that for H3, which is somewhat expected considering

the larger variance of H1 shown in Table 2.

Hierarchical—Case 2b: ̄S-BLIMPBE
The parameter estimates determined according to Sect. 3.3 are listed in Table 5. As

explained in Sect. 3.3, the estimates are of type ̄S-BLIMPBE. The numerical algo-

rithm linearizes the problem such that ci = ATP(y − A ⋅ ̄𝝃i−1) for the i-th iteration,

thereby requiring an initial approximation ̄𝝃0 for the parameters. It turns out that

for this particular implementation of BLIMPBE, the “non-selected” parameters (H2,

H4, H5, and H6) are reproduced. This is consistent with the fact that the (Im − ̄S)-
BLIMPBE coincides with the standard least-squares solution in the overconstrained

model as shown in Snow and Schaffrin (2007, Theorem 9).

Note that in Table 5 the term Δz0 denotes the change in prior information and is

defined by Δz0 ∶= z0 − ̄𝝃1.

Simultaneous—Case 1: BLUUE of 𝝃2 and inhomBLIP of x1
The parameter estimates determined according to Sect. 4.1 are listed in Table 6.

As explained in Sect. 4.1, the estimates and predictions are BLUUE of 𝝃2 and

inhomBLIP of x1, respectively.

Comparison of Tables 4 and 6 show identical results for the parameters and resid-

uals to the precisions listed. However, this is suspected to be an artifact of the dataset

rather than indicative of the general case, as the two different estimators associated

with these solutions have different statistical properties in general.
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Table 5 Hierarchical—Case 2b: ̄S-BLIMPBE, r = 4, �̄�
2
0 = 1.283321

̄𝝃 (m) Δz0 (mm) ̃ē (mm)

H1 ∶ 68.9234 27.6 2.2

H3 ∶ 63.1937 7.3 −4.3

H2 ∶ 60.7152 2.5

H4 ∶ 56.2838 −1.6

H5 ∶ 44.3226 0.9

H6 ∶ 67.2280 −0.9

0.7

−0.8

−1.4

Table 6 Simultaneous—Case 1: inhomBLIP of x1, BLUUE of 𝝃2, r = 5, �̂�
2
0 = 1.057875

x̃1, ̂𝝃2 (m) ẽ0 (mm) ẽ (mm)

H1 ∶ 68.9315 19.5 2.2

H3 ∶ 63.2018 −0.8 −4.3

H2 ∶ 60.7233 2.5

H4 ∶ 56.2918 −1.6

H5 ∶ 44.3306 0.9

H6 ∶ 67.2360 −0.8

0.8

−0.7

−1.4

Simultaneous—Case 2: BLUUE of 𝝃2 and homBLUP of x1
The parameter estimates determined according to Sect. 4.2 are listed in Table 7. As

explained in Sect. 4.2, the estimates and predictions are BLUUE of 𝝃2 and homBLUP

of x1, respectively.

The table lists both the formal residual vector ̃ẽ0 = 𝜿0⋅�̂�− ̃x̃1 (Eq. (4.13b)) for the

prior information and the change in prior information Δ𝜿0 ∶= 𝜿0 − ̃x̃1. Apparently

the estimated scale factor �̂� results in an unexpectedly large shift in the prior infor-

mation, though the observation residuals ̃ẽ turn out to be the same as the residuals

listed in Table 4, which may be due to an artifact of the dataset.

Simultaneous—Case 3: repro-BIQUUE of 𝝑
The parameter estimates determined according to Sect. 4.3 are listed in Table 8. As

explained in Sect. 4.3, the estimates of the variance components are repro-BIQUUE.

The fact that the estimate of the first variance component ̂
𝜗1 turns out to be greater

than 1, suggests that the variances of the prior information (from Table 2) might have

been too small. Likewise, the fact that the estimate of the second variance component

̂
𝜗2 turns out to be less than 1, suggests that the variances of the observations (from
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Table 7 Simultaneous—Case 2: homBLUP of x1, BLUUE of 𝝃2, �̂� = 0.99647103, r = 4, ̂�̂�
2
0 =

1.282825
̃x̃1,

̂
̂𝝃2 (m) ̃ẽ0, Δ𝜿0 (mm) ̃ẽ (mm)

H1 ∶ 68.7077 0.0, 243.3 2.2

H3 ∶ 62.9780 0.0, 223.0 −4.3

H2 ∶ 60.4995 2.5

H4 ∶ 56.0680 −1.6

H5 ∶ 44.1068 0.9

H6 ∶ 67.0122 −0.8

0.8

−0.7

−1.4

Table 8 Simultaneous—Case 3: repro-BIQUUE of 𝝑, ̂𝜗1 = 1.28282530, ̂𝜗2 = 0.15599792, r = 5,

�̂� = �̂�

2
0∕�̂�

2
1 = 8.22334888

̃x̃1,
̂
̂𝝃2 (m) ̃ẽ0 (mm) ̃ẽ (mm)

H1 ∶ 68.9318 19.2 2.4

H3 ∶ 63.2018 −0.8 −4.0

H2 ∶ 60.7234 2.6

H4 ∶ 56.2919 −1.5

H5 ∶ 44.3306 0.9

H6 ∶ 67.2360 −0.8

0.8

−0.7

−1.4

Table 1) might have been too large. Nevertheless, the ratio �̂� turned out to be greater

than 8, which is consistent with our assumption that the leveling observations are

more precise than the GPS-derived heights comprising the prior information.

6 Conclusions and Outlook

Our research has investigated various ways to combine prior information on a subset

of unknown parameters with newer observational data to be used for estimating the

full set of unknown parameters within certain linear models.

While the particular application of our work is from geodetic science and survey-

ing, it is expected that the theory can be applied to a variety of estimation problems

in other fields as well.



Alternative Approaches for the Use of Uncertain Prior Information . . . 201

The relative superiority or inferiority of the prior information versus that of the

observational data must be considered when choosing which one of the various mod-

els and associated least-squares solutions are best to be used.

The simultaneous case 4 described in Sect. 4.4 could not be included in our

numerical example due to the prior information vector 𝜿0 only having two elements.

However, studies are planned for the near future that involve larger networks with

more prior information. These studies will provide opportunities to experiment with

case 4, too, and the findings are expected to be published in the geodetic literature

once the experiments are completed.
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Exact Likelihood-Based Point and Interval
Estimation for Lifetime Characteristics
of Laplace Distribution Based on hybrid
Type-I and Type-II Censored Data

Feng Su, N. Balakrishnan and Xiaojun Zhu

Abstract In this chapter, we first derive explicit expressions for the Maximum likeli-

hood estimators (MLEs) of the parameters of Laplace distribution-based on a hybrid

Type-I censored sample (Type-I HCS). We then derive the conditional moment gen-

erating functions (MGF) of the MLEs, and then use them to obtain the means, vari-

ances, and covariance of the MLEs. From the conditional MGFs, we also derive the

exact conditional distributions of the MLEs, which are then used to develop exact

conditional confidence intervals (CIs) for the parameters. Proceeding similarly, we

obtain the MLEs of quantile, reliability, and cumulative hazard functions, and dis-

cuss the construction of exact CIs for these functions as well. By using the relation-

ships between Type-I, Type-II, Type-I HCS, and hybrid Type-II censored samples

(Type-II HCS), we develop exact inferential methods based on a Type-II HCS as

well. Then, a Monte Carlo simulation study is carried out to evaluate the perfor-

mance of the developed inferential results. Finally, a numerical example is presented

to illustrate the point and interval estimation methods developed here under both

Type-I HCS and Type-II HCS.
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1 Introduction

The Laplace (𝜇, 𝜎) distribution has its cumulative distribution function (CDF) as

F(x) =

{
1
2
e−

𝜇−x
𝜎 , x < 𝜇,

1 − 1
2
e−

x−𝜇
𝜎 , x ≥ 𝜇,

(1)

where 𝜇 and 𝜎 are the location and scale parameters, respectively. The probability

density function (PDF) corresponding to (1) is

f (x) = 1
2𝜎

e−
|x−𝜇|
𝜎 , −∞ < x < ∞. (2)

One may refer to Johnson et al. (1995) and Kotz et al. (2001) for detailed

overviews on several inferential results for Laplace distribution based on the com-

plete and censored data. For the case of complete sample, Bain and Engelhardt

(1973), and Kappenman (1975, 1977) derived approximate CIs, tolerance

intervals, and conditional CIs. For the case of censored data, Balakrishnan and Cutler

(1995) first derived the MLEs based on general Type-II censored samples in closed

form. These explicit expressions were then used by Childs and Balakrishnan (1996,

1997, 2000) to construct conditional inferential results based on the Type-II and pro-

gressively Type-II censored samples. Recently, several exact likelihood inferential

procedures have been developed. For example, Iliopoulos and Balakrishnan (2011)

developed exact likelihood inference and exact distributions of some pivotal quan-

tities. Iliopoulos and MirMostafaee (2014) developed prediction intervals based on

the exact distributions of the MLEs under Type-II censored samples. Zhu and Bal-

akrishnan (2016, 2017) developed exact MLE-based inferential procedures for the

parameters as well as quantile, reliability, and cumulative hazard functions based on

the Type-I and Type-II censored samples. However, no work has been developed for

the case when the life-testing experiment is of a hybrid form resulting in a hybrid

censored sample. We, therefore, focus our attention here on this situation and derive

the MLEs of Laplace parameters based on the Type-I HCS and Type-II HCS. For

a detailed review of this form of censoring and associated developments, interested

readers may refer to Balakrishnan and Kundu (2013).

The rest of this chapter is organized as follows. In Sect. 2, we first derive explicit

expressions for the MLEs based on the Type-I HCS. In Sect. 3, we derive the con-

ditional joint MGF of the MLEs, and use it to determine the conditional means,

variances, and covariance of the MLEs. From this conditional joint MGF, we also

derive the exact conditional marginal and joint density functions of the MLEs,

which are then used to develop exact conditional CIs for the parameters 𝜇 and 𝜎. In

Sect. 4, we derive the exact conditional distribution of the MLE of a quantile, which

is then used to develop exact conditional CIs for population quantiles. In Sects. 5

and 6, we briefly discuss the construction of exact conditional CIs for reliability

and cumulative hazard functions, respectively. In Sect. 7, by using the relationships



Exact Likelihood-Based Point and Interval Estimation for Lifetime Characteristics . . . 205

between Type-II HCS, Type-I HCS, and Type-I and Type-II censoring schemes, we

develop exact inference for a Type-II HCS. A Monte Carlo simulation study is then

carried out in Sect. 8 to evaluate the performance of the MLEs. In Sect. 9, we present

an example to illustrate all the methods of inference developed here. Finally, some

concluding comments are made in Sect. 10.

2 MLEs from Type-I HCS

Epstein (1954) proposed Type-I HCS as a compromise between Type-I and Type-II

censoring schemes. This life-test would get terminated at the kth failure or a pre-fixed

time T , whichever occurs first; that is, the termination time is T∗ = min{Xk∶n,T},

where k (2 ≤ k ≤ n) is a fixed value. Now, let D denote the number of failures up to

time T∗
. Obviously, the MLEs of 𝜇 and 𝜎 exist only when D ≥ 1, and so all sub-

sequent results developed here are based on this condition of observing at least one

failure. We then have the following lemma.

Lemma 2.1 The probability mass function (PMF) of D is

P(D = d) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
1−p0

n!
d!(n−d)!

(
1 − 1

2 e
𝜇−T
𝜎

)d (
1
2 e

𝜇−T
𝜎

)n−d
T ≥ 𝜇, 1 ≤ d ≤ k − 1

1
1−p0

n∑
i=k

n!
i!(n−i)!

(
1 − 1

2 e
𝜇−T
𝜎

)i (
1
2 e

𝜇−T
𝜎

)n−i
T ≥ 𝜇, d = k,

1
1−q0

n!
d!(n−d)!

(
1
2 e

T−𝜇
𝜎

)d (
1 − 1

2 e
T−𝜇
𝜎

)n−d
T < 𝜇, 1 ≤ d ≤ k − 1,

1
1−q0

n∑
i=k

n!
i!(n−i)!

(
1
2 e

T−𝜇
𝜎

)i (
1 − 1

2 e
T−𝜇
𝜎

)n−i
T < 𝜇, d = k,

(3)

where p0 =
(

1
2
e

𝜇−T
𝜎

)n
and q0 =

(
1 − 1

2
e

T−𝜇
𝜎

)n
.

Moreover, we have

P(T∗ = T) =
k−1∑
d=1

P(D = d). (4)

Proof By considering the fact that the number of failures up to time T follows a

B(n,F(T)), we readily obtain this lemma. ■

The likelihood function in this case is given by (see Balakrishnan and Cohen

1991; Arnold et al. 1992)

L = n!
(n − d)!

d∏
i=1

f (xi∶n)
[
1 − F(T∗)

]n−d
, −∞ < x1∶n < ⋯ < xd∶n ≤ T∗

. (5)
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Theorem 2.1 By maximizing the likelihood function in (5), the MLEs of 𝜇 and 𝜎

are obtained as

�̂� =

⎧⎪⎪⎨⎪⎪⎩

[Xm∶n,Xm+1∶n], n = 2m, d ≥ m + 1,
Xm+1∶n, n = 2m + 1, d ≥ m + 1,
[Xm∶n,T∗], n = 2m, d = m,

T∗ + �̂� log( n
2d
), d <

n
2
;

(6)

�̂� =

⎧⎪⎪⎨⎪⎪⎩

1
d

[
(n − d)T∗ +

∑d
i=m+1 Xi∶n −

∑m
i=1 Xi∶n

]
, n = 2m, d ≥ m,

1
d

[
(n − d)T∗ +

∑d
i=m+2 Xi∶n −

∑m
i=1 Xi∶n

]
, n = 2m + 1, d ≥ m + 1,

1
d

∑d
i=1

(
T∗ − Xi∶n

)
, d <

n
2
.

(7)

Proof The proof can be provided by proceeding along the lines of Zhu and Balakr-

ishnan (2017) for the Type-I censoring case and is therefore omitted for the sake of

brevity. ■

We observe that in (6), in some cases, �̂� can be any value in a specific interval

with equal likelihood. In these cases, as done usually, we take the midpoints of the

intervals to obtain

�̂� =

⎧⎪⎪⎨⎪⎪⎩

1
2
(Xm∶n + Xm+1∶n) n = 2m, d ≥ m + 1,

Xm+1∶n n = 2m + 1, d ≥ m + 1,
1
2
(Xm∶n + T∗) n = 2m, d = m,

T∗ + �̂� log( n
2d
) d <

n
2
.

(8)

3 Exact Conditional MGF and Density Function
of the MLEs

To derive the exact joint density function of the MLEs, we first need the following

lemma.

Lemma 3.1 The expectation of any function g(𝐗), conditioned on D > 0, where

g(𝐗) =
{

g1(𝐗), Xk∶n < T ,
g2(𝐗), Xk∶n > T ,

based on a Type-I HCS can be readily obtained from the expectation of Type-I cen-
sored samples along with 1 ≤ d ≤ k − 1 and a Type-I HCS along with Xk∶n < T, that
is,
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E[g(𝐗)|D > 0] =
k−1∑
d=1

E[g2(𝐗),D = d,Xk∶n > T|D > 0]

+E[g1(𝐗),D = k,Xk∶n < T|D > 0]. (9)

Proof The proof is straightforward and is therefore omitted. ■

For obtaining the exact conditional joint distribution of the MLEs from the con-

ditional joint MGF, we also need the following lemma.

Lemma 3.2 Let Y1, Y2, Z1 and Z2 be independent random variables, where Y1 ∼
Γ(𝛼1, 𝛽1), Y2 ∼ NΓ(𝛼2, 𝛽2), Z1 ∼ E(1) and Z2 ∼ E(1), with 𝛽1, 𝛽2 > 0. Here, NΓ
denotes the negative gamma distribution, i.e., if Y ∼ NΓ(𝛼, 𝛽) then −Y ∼ Γ(𝛼, 𝛽).
Now, let W1 = Y1 + Y2 + a∗

1Z1 + a∗
2Z2 and W2 = b∗1Z1 + b∗2Z2, where a∗

1, a∗
2, b∗1 and

b∗2 are any real values. Then, the joint MGF of W1 and W2 is given by

E
(
etW1+sW2

)
=
(
1 − t𝛽1

)−𝛼1 (1 + t𝛽2
)−𝛼2 (1 − a∗

1t − b∗1s
)−1 (1 − a∗

2t − b∗2s
)−1

.

(10)

Here and in what follows, we will denote

W1
d
= Γ(𝛼1, 𝛽1) + NΓ(𝛼2, 𝛽2) + a1E1 + a2E2,

W2
d
= b1E1 + b2E2.

Proof The required result is readily obtained from well-known properties of expo-

nential and gamma distributions; see Johnson et al. (1994). Zhu and Balakrishnan

(2017) have provided explicit expressions for the exact joint and marginal CDFs of

W1 and W2. ■

Moreover, Zhu and Balakrishnan (2017) have derived the exact joint and marginal

conditional distributions of �̂� and �̂�. By using their results, we directly arrive at

an expression for
∑k−1

d=1 E[et�̂�+s�̂�
,D = d,Xk∶n > T|D > 0] (say, E1) as given in the

following lemma.

Lemma 3.3 If the sample size is even, i.e., n = 2m, then

E1 = 1{T>𝜇,k≤m}

{k−1∑
d=1

d∑
j=0

d−j∑
l=0

p1MZ(1)
p1 ,Z

(2)
p1
(t, s)

}

+1{T>𝜇,k>m+1}

{m−1∑
d=1

d∑
j=0

d−j∑
l=0

p1MZ(1)
p1 ,Z

(2)
p1
(t, s) +

m−1∑
j=0

m−1−j∑
l=0

[
p4,a,eMZ(1)

p4,a,e,Z
(2)
p4,a,e

(t, s)

+ p4,b,eMZ(1)
p4,b,e,Z

(2)
p4,b,e

(t, s)
]
+ p5,eMZ(1)

p5,e,Z
(2)
p5,e
(t, s)

+
k−1∑

d=m+1

m−1∑
j=0

m−1−j∑
l1=0

d−m−1∑
l2=0

[
p10,a,eMZ(1)

p10,a,e,Z
(2)
p10,a,e

(t, s) + p10,b,eMZ(1)
p10,b,e,Z

(2)
p10,b,e

(t, s)
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+ p10,c,eMZ(1)
p10,c,e,Z

(2)
p10,c,e

(t, s) + p10,d,eMZ(1)
p10,d,e,Z

(2)
p10,d,e

(t, s)
]

+
k−1∑

d=m+1

d−m−1∑
l=0

[
p11,a,eMZ(1)

p11,a,e,Z
(2)
p11,a,e

(t, s) + p11,b,eMZ(1)
p11,b,e,Z

(2)
p11,b,e

(t, s)
]

+
k−1∑

d=m+1

d∑
j=m+1

j−m−1∑
l1=0

d−j∑
l2=0

p12,eMZ(1)
p12,e,Z

(2)
p12,e

(t, s)

}

+1{T≤𝜇,k≤m}

{k−1∑
d=1

q1MZ(2)
q1 ,Z

(2)
q1
(t, s)

}

+1{T≤𝜇,k≥m+1}

{m−1∑
d=1

q1MZ(2)
q1 ,Z

(2)
q1
(t, s) + q3,eMZ(1)

q3,e,Z
(2)
q3,e
(t, s)

+
k−1∑

d=m+1

d−m−1∑
l=0

q5MZ(1)
q5,e,Z

(2)
q5,e
(t, s)

}
.

If the sample size is odd, i.e., n = 2m + 1, then

E1 = 1{T>𝜇}

{min(m,k−1)∑
d=1

d∑
j=0

d−j∑
l=0

p1MZ(1)
p1 ,Z

(2)
p1
(t, s)

+
k−1∑

d=m+1

m∑
j=0

m−j∑
l1=0

d−m−1∑
l2=0

[
p4,a,oMZ(1)

p4,a,o,Z
(2)
p4,a,o

(t, s) + p4,b,oMZ(1)
p4,b,o,Z

(2)
p4,b,o

(t, s)
]

+
k−1∑

d=m+1

d∑
j=m+1

j−m−1∑
l1=0

d−j∑
l2=0

p5,oMZ(1)
p5,o,Z

(2)
p5,o
(t, s)

}

+1{T≤𝜇,k≤m+1}

{ m∑
d=1

q1MZ(1)
q1 ,Z

(2)
q1
(t, s)

}

+1{T≤𝜇,k>m+1}

{ m∑
d=1

q1MZ(1)
q1 ,Z

(2)
q1
(t, s) + q3,oMZ(1)

q3,o,Z
(2)
q3,o
(t, s)

+
k−1∑

d=m+2

d−m−1∑
l=0

q5MZ(1)
q5,o,Z

(2)
q5,o
(t, s)

}
,

where all the coefficients and variables involved here are presented in the Appendix.

Here and in the rest of this chapter, we will use
n∑

i=1
PXi

Xi to denote the generalized

mixture of distributions of variables X1,⋯ ,Xn with probabilities PX1
,⋯ ,PXn

, such
that

∑n
i=1 PXi

= 1, but PXi
’s need not necessarily be non-negative.
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To derive the joint MGF of (�̂�, �̂�), we then only need to derive E[et�̂�+s�̂�
,D =

k,Xk∶n < T|D > 0], (say, E2). Due to the two forms of the density function in (2), we

need to consider the cases of 𝜇 ≥ T∗
and 𝜇 < T∗

separately. In the case, when 𝜇 <

T∗
, we will use the conditional approach and let J (0 ≤ J ≤ D) denote the number

of observations in the Type-I HCS that are smaller than 𝜇.

Lemma 3.4 If the sample size is even, i.e., n = 2m, we have

E2 = 1{T>𝜇,k<m}

{k−1∑
j=0

k−1−j∑
l=0

[
p2,aMZ(1)

p2,a,Z
(2)
p2,a
(t, s) + p2,bMZ(1)

p2,b,Z
(2)
p2,b
(t, s)

]

+
n−k∑
l=0

p3MZ(1)
p3 ,Z

(2)
p3
(t, s)

}

+1{T>𝜇,k=m}

{k−1∑
j=0

k−1−j∑
l=0

[
p2,aMZ(1)

p2,a,Z
(3)
p2,a
(t, s) + p2,bMZ(1)

p2,b,Z
(3)
p2,b
(t, s)

]

+
n−k∑
l=0

p3MZ(1)
p3 ,Z

(3)
p3
(t, s)

}

+1{T>𝜇,k=m+1}

{m−1∑
j=0

m−1−j∑
l=0

[
p6,a,eMZ(1)

6,a,e,Z
(2)
6,a,e

(t, s) + p6,b,eMZ(1)
6,b,e,Z

(2)
p6,b,e

(t, s)

+ p6,c,eMZ(1)
p6,c,e,Z

(2)
p6,c,e

(t, s) + p6,d,eMZ(1)
p6,d,e,Z

(2)
p6,d,e

(t, s)
]
+

[
p7,a,eMZ(1)

p7,a,e,Z
(2)
p7,a,e

(t, s)

+ p7,b,eMZ(1)
7,b,e,Z

(2)
7,b,e

(t, s)
]
+

n−k∑
l=0

p9,eMZ(1)
p9,e,Z

(2)
p9,e
(t, s)

}

+ 1{T>𝜇,k>m+1}

{m−1∑
j=0

m−1−j∑
l1=0

d−m−2∑
l2=0

[
p13,aMZ(1)

p13,a,Z
(2)
p13,a

(t, s) + p13,bMZ(1)
p13,b,Z

(2)
p13,b

(t, s)

+ p13,cMZ(1)
p13,c,Z

(2)
p13,c

(t, s) + p13,dMZ(1)
p13,d ,Z

(2)
p13,d

(t, s) + p13,eMZ(1)
p13,e,Z

(2)
p13,e

(t, s)

+ p13,f MZ(1)
p13,f ,Z

(2)
p13,f

(t, s) + p13,gMZ(1)
p13,g,Z

(2)
p13,g

(t, s) + p13,hMZ(1)
p13,h,Z

(2)
p13,h

(t, s)
]

+
k−m−2∑

l=0

[
p14,aMZ(1)

p14,a,Z
(2)
p14,a

(t, s) + p14,bMZ(1)
p14,b,Z

(2)
p14,b

(t, s) + p14,cMZ(1)
p14,c,Z

(2)
p14,c

(t, s)

+ p14,dMZ(1)
p14,d ,Z

(2)
p14,d

(t, s)
]
+

k−1∑
j=m+1

j−m−1∑
l1=0

k−1−j∑
l2=0

[
p15,aMZ(1)

p15,a,Z
(2)
p15,a

(t, s)

+ p15,bMZ(1)
p15,b,Z

(2)
p15,b

(t, s)
]

+
k−m−2∑

l1=0

n−k∑
l2=0

[
p16,aMZ(1)

p16,a,Z
(2)
p16,a

(t, s) + p16,bMZ(1)
p16,b,Z

(2)
p16,b

(t, s)
]}
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+1{T≤𝜇,k<m}

{n−k∑
l=0

q2MZ(1)
q2,a,Z

(2)
q2,a
(t, s)

}
+ 1{T≤𝜇,k=m}

{n−k∑
l=0

q2MZ(1)
q2,b,Z

(2)
q2,b
(t, s)

}

+1{T≤𝜇,k≤m+1}

{n−k∑
l=0

q4,eMZ(1)
q4,e,Z

(2)
q4,e
(t, s)

}

+1{T≤𝜇,k>m+1}

{k−m−2∑
l1=0

n−k∑
l2=0

q6MZ(2)
q6,e,Z

(2)
q6,e
(t, s)

}
.

If the sample size is odd, i.e., n = 2m + 1, we have

E2 = 1{T>𝜇,k<m+1}

{k−1∑
j=0

k−1−j∑
l=0

[
p2,aMZ(1)

p2,a,Z
(2)
p2,a
(t, s) + p2,bMZ(1)

p2,b,Z
(2)
p2,b
(t, s)

]

+
n−k∑
l=0

p3MZ(1)
p3 ,Z

(2)
p3
(t, s)

}

1{T>𝜇,k=m+1}

{k−1∑
j=0

k−1−j∑
l=0

[
p2,aMZ(1)

p2,a,Z
(3)
p2,a
(t, s) + p2,bMZ(1)

p2,b,Z
(3)
p2,b
(t, s)

]

+
n−k∑
l=0

p3MZ(1)
p3 ,Z

(2)
p3
(t, s)

}

1{T>𝜇,k>m+1}

{ m∑
j=0

m−j∑
l1=0

d−m−2∑
l2=0

[
p6,a,oMZ(1)

p6,a,o,Z
(2)
p6,a,o

(t, s) + p6,b,oMZ(1)
p6,b,o,Z

(2)
p6,b,o

(t, s)

+ p6,c,oMZ(1)
p6,c,o,Z

(2)
p6,c,o

(t, s) + p6,d,oMZ(1)
p6,d,o,Z

(2)
p6,d,o

(t, s)
]

+
k−1∑

j=m+1

j−m−1∑
l1=0

k−1−j∑
l2=0

[
p7,a,oMZ(1)

p7,a,o,Z
(2)
p7,a,o

(t, s) + p7,b,oMZ(1)
p7,b,o,Z

(2)
p7,b,o

(t, s)
]

+
k−m−2∑

l1=0

n−k∑
l2=0

[
p8,a,oMZ(1)

p8,a,o,Z
(2)
p8,a,o

(t, s) + p8,b,oMZ(1)
p8,b,o,Z

(2)
p8,b,o

(t, s)
]}

+1{T≤𝜇,k<m+1}

{n−k∑
l=0

q2MZ(1)
q2,a,Z

(2)
q2,a
(t, s)

}

+1{T≤𝜇,k=m+1}

{n−k∑
l=0

q2MZ(1)
q2,b,Z

(2)
q2,b
(t, s)

}

+1{T≤𝜇,k>m+1}

{k−m−2∑
l1=0

n−k∑
l2=0

q6MZ(2)
q6,o,Z

(2)
q6,o
(t, s)

}
,

where the coefficients and variables involved are all as presented in the Appendix.
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Proof See the Appendix. ■

Theorem 3.1 The exact conditional joint MGF of (�̂�, �̂�) is given by

E
[
et�̂�+s�̂�|D > 0

]
= E1 + E2. (11)

Proof It is straightforward with the use of Lemma 3.1. ■

Remark 3.1 Balakrishnan and Zhu (2016) have derived an explicit expression for

the exact CDF of the variable having the form Γ
(
𝛼1, 𝛽1

)
+ NΓ(𝛼2, 𝛽2) + E(𝜃). Here,

all the conditional mixture marginal distributions of �̂� and most of the conditional

mixture marginal distributions of �̂� take on this form. We can then directly apply the

results of Balakrishnan and Zhu (2016). The only variable that does not have this

form is Zp16,a corresponding to the case when Xk∶n < 𝜇 < T , k > m + 1 and n = 2m.

If we are only interested in the distribution of �̂�, we can then replace p16,aZp16,a +
p16,bZp16,b by p∗

16Z∗
p16, which follows this form. If we are only interested in finding

the exact distribution of one of the MLEs, then some simplifications are possible;

for example,

m−1∑
j=0

m−1−j∑
l1=0

d−m−2∑
l2=0

[
p13,aZ(1)

p13,a + p13,bZ(1)
p13,b + p13,cZ(1)

p13,c + p13,dZ(1)
p13,d + p13,eZ(1)

p13,e

+p13,f Z
(1)
p13,f +p13,gZ(1)

p13,g + p13,hZ(1)
p13,h

]

=
m∑

j=0

m−j∑
l1=0

k−2−m∑
l2=0

[
p∗
13,aZ∗

p13,a + p∗
13,bZ∗

p13,b + p∗
13,cZ∗

p13,c + p∗
13,dZ∗

p13,d

]
. (12)

Here, we do not list all the simplifications for the sake of brevity. From the exact

conditional distributions of �̂� and �̂�, we can readily obtain the exact conditional CIs

for 𝜇 and 𝜎.

Remark 3.2 From Theorem 3.1, we can also readily obtain the conditional moments

of �̂� and �̂� as well as the correlation coefficient between �̂� and �̂�; but, we refrain from

presenting them here.

4 Conditional MLE of Population Quantile and Its Exact
Distribution

The MLE of the q-quantile of a standard Laplace distribution (0, 1) is given by

Q̂q = q�̂� + �̂�. (13)

We then readily obtain the exact conditional MGF of Q̂q to be
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M(t) = E
(

etQ̂q

)
= E

(
etq�̂�+t�̂�)

, (14)

where the exact conditional MGF of (�̂�, �̂�) is as presented in Theorem 3.1. So, from

the exact conditional joint distribution �̂� and �̂� derived above, we can readily obtain

the exact conditional distribution of Q̂q, which can then be used to develop exact

conditional CI for any particular quantile of interest. These CIs can be then used as

bounds in a Q–Q plot; see the details for the example presented later.

5 Conditional MLE of Reliability and Associated
Confidence Interval

Balakrishnan and Chandramouleeswaran (1996) discussed the BLUE of reliability

function. Zhu and Balakrishnan (2016, 2017) developed exact CIs based on the Type-

II and Type-I censored samples for the reliability function. Here, we consider the

MLE of the reliability function based on a Type-I HCS sample. A natural estimator

for the reliability at mission time t is

Ŝ(t) =
⎧⎪⎨⎪⎩
1 − 1

2
e−

(
�̂�−t
�̂�

)
if t < �̂�,

1
2
e−

(
t−�̂�
�̂�

)
if t ≥ �̂�.

(15)

The distribution function of Ŝ(t) can be obtained as

P
(
Ŝ(t) ≤ s

)
=

{
P (�̂� + log(2(1 − s))�̂� ≤ t) if t < �̂�, s < 1

2
,

P (�̂� − log(2s)�̂� ≤ t) if t ≥ �̂�, s ≥ 1
2
.

(16)

To construct an exact equi-tailed 100(1 − 𝛼)% CI for S(t) is equivalent to find a s
such that {

P (�̂� + log(2(1 − s))�̂� ≤ t) = 𝛼

2
if t < �̂�, s < 1

2
,

P (�̂� − log(2s)�̂� ≤ t) = 𝛼

2
if t ≥ �̂�, s ≥ 1

2
,

(17)

and {
P (�̂� + log(2(1 − s))�̂� ≤ t) = 1 − 𝛼

2
if t < �̂�, s < 1

2
,

P (�̂� − log 2s�̂� ≤ t) = 1 − 𝛼

2
if t ≥ �̂�, s ≥ 1

2
.

(18)

To obtain the exact distribution of �̂� + log(2(1 − s))�̂� and �̂� − log(2s)�̂�, we can use

the results of the exact distribution of the quantile by setting q = log(2(1 − s)) or
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q = − log(2s). These CIs can then be used as bounds in the P–P plot or Kaplan–

Meier curve.

6 Conditional MLE of Cumulative Hazard and Associated
Exact Confidence Interval

The cumulative hazard function, denoted by Λ, is defined as

Λ(t) = − ln(S(t)). (19)

As mission time t, a natural estimator for the cumulative hazard function is

Λ̂(t) = − ln(Ŝ(t)), (20)

where Ŝ(t) is as defined in (15). Now, the distribution function of Λ̂(t) can be

expressed as

P(Λ̂(t) ≤ h) = P(Ŝ(t) ≥ e−h) = 1 − P(Ŝ(t) < e−h). (21)

So, if an exact equi-tailed 100(1 − 𝛼)% CI for S(t) is (sl, su), then an exact equi-tailed

100(1 − 𝛼)% CI for Λ(t) is simply (− log(su),− log(sl)).

7 MLEs from Type-II HCS

Epstein (1954) and Childs et al. (2003) proposed the Type-II HCS in which the life-

test would be terminated at T∗ = max{Xk∶n,T}, where k (2 ≤ k ≤ n) and T are pre-

fixed.

In this case, the MLEs have the same expression as presented in (6) and (8).

Remark 7.1 When k = 1, the MLEs exist only if Xk∶n < T . For convenience, we will

consider here only the case when k ≥ 2.

To develop the exact inference based on (�̂�, �̂�), we need the following lemma.

Lemma 7.1 The expectation of any function g(𝐗), where

g(𝐗) =
{

g1(𝐗), Xk∶n > T ,
g2(𝐗), Xk∶n < T ,

based on a Type-II HCS, can be readily obtained from the expectation from a Type-II

censored sample based on k observations, Type-I HSC together with Xk∶n < T , and

Type-I censored sample together with d ≥ k, as
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E[g(𝐗)] = E[g1(𝐗),D = k,Xk∶n < ∞] − E[g1(𝐗),D = k,Xk∶n < T]

+
n∑

d=k
E[g2(𝐗),D = d].

Proof We have

E[g(𝐗)] = E[g1(𝐗),D = k,Xk∶n > T] +
n∑

d=k
E[g2(𝐗),D = d]

= E[g1(𝐗),D = k,Xk∶n < ∞] − E[g1(𝐗),D = k,Xk∶n < T]

+
n∑

d=k
E[g2(𝐗),D = d],

as required. ■

By using this lemma, we readily obtain the joint and marginal distributions of �̂�

and �̂�. The results of Type-I HSC along with Xk∶n < T is presented in Lemma 3.4.

Note that, in this case, we don’t need to condition on D > 0, and so all the mixture

probabilities presented in the Appendix should be multiplied by (1 − p0) and (1 − q0)
corresponding to the cases when T > 𝜇 and T < 𝜇, respectively.

For
∑n

d=k E[g2(𝐗),D = d] (say E1) and E[g1(𝐗),D = k,Xk∶n < ∞] (say E3), we

can directly apply the results of Balakrishnan and Zhu (2016), Zhu and Balakrishnan

(2016, 2017). Here, we give their results for the sake of completeness.

Lemma 7.2 If the sample size is even, i.e., n = 2m, then

E1 = 1{T>𝜇,k≤m}

{m−1∑
d=k

d∑
j=0

d−j∑
l=0

p1MZ(1)
p1 ,Z

(2)
p1
(t, s) +

m−1∑
j=0

m−1−j∑
l=0

[
p4,a,eMZ(1)

p4,a,e,Z
(2)
p4,a,e

(t, s)

+ p4,b,eMZ(1)
p4,b,e,Z

(2)
p4,b,e

(t, s)
]
+ p5,eMZ(1)

p5,e,Z
(2)
p5,e
(t, s)

+
n∑

d=m+1

m−1∑
j=0

m−1−j∑
l1=0

d−m−1∑
l2=0

[
p10,a,eMZ(1)

p10,a,e,Z
(2)
p10,a,e

(t, s) + p10,b,eMZ(1)
p10,b,e,Z

(2)
p10,b,e

(t, s)

+ p10,c,eMZ(1)
p10,c,e,Z

(2)
p10,c,e

(t, s) + p10,dMZ(1)
p10,d,e,Z

(2)
p10,d,e

(t, s)
]

+
k−1∑

d=m+1

d−m−1∑
l=0

[
p11,a,eMZ(1)

p11,a,e,Z
(2)
p11,a,e

(t, s) + p11,b,eMZ(1)
p11,b,e,Z

(2)
p11,b,e

(t, s)
]

+
k−1∑

d=m+1

d∑
j=m+1

j−m−1∑
l1=0

d−j∑
l2=0

p12,eMZ(1)
p12,e,Z

(2)
p12,e

(t, s)

}

1{T>𝜇,k≥m+1}

{ n∑
d=k

m−1∑
j=0

m−1−j∑
l1=0

d−m−1∑
l2=0

[
p10,a,eMZ(1)

p10,a,e,Z
(2)
p10,a,e

(t, s)
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+ p10,b,eMZ(1)
p10,b,e,Z

(2)
p10,b,e

(t, s) + p10,c,eMZ(1)
p10,c,e,Z

(2)
p10,c,e

(t, s) + p10,d,eMZ(1)
p10,d,e,Z

(2)
p10,d,e

(t, s)
]

+
k−1∑

d=m+1

d−m−1∑
l=0

[
p11,a,eMZ(1)

p11,a,e,Z
(2)
p11,a,e

(t, s) + p11,b,eMZ(1)
p11,b,e,Z

(2)
p11,b,e

(t, s)
]

+
k−1∑

d=m+1

d∑
j=m+1

j−m−1∑
l1=0

d−j∑
l2=0

p12,eMZ(1)
p12,e,Z

(2)
p12,e

(t, s)

}

+1{T≤𝜇,k≤m}

{m−1∑
d=k

q1MZ(2)
q1 ,Z

(2)
q1
(t, s) + q3MZ(1)

q3,e,Z
(2)
q3,e
(t, s)

+
n∑

d=m+1

d−m−1∑
l=0

q5MZ(1)
q5,e,Z

(2)
q5,e
(t, s)

}

+ 1{T≤𝜇,k≥m+1}

{ n∑
d=k

d−m−1∑
l=0

q5MZ(1)
q5,e,Z

(2)
q5,e
(t, s)

}
. (22)

If the sample size is odd, i.e., n = 2m + 1, then

E1 = 1{T>𝜇}

{ m∑
d=k

d∑
j=0

d−j∑
l=0

p1MZ(1)
p1 ,Z

(2)
p1
(t, s)

+
n∑

d=max(m+1,k)

m∑
j=0

m−j∑
l1=0

d−m−1∑
l2=0

[
p4,a,oMZ(1)

p4,a,o,Z
(2)
p4,a,o

(t, s) + p4,b,oMZ(1)
p4,b,o,Z

(2)
p4,b,o

(t, s)
]

+
n∑

d=max(m+1,k)

d∑
j=m+1

j−m−1∑
l1=0

d−j∑
l2=0

p5,oMZ(1)
p5,o,Z

(2)
p5,o
(t, s)

}

+1{T≤𝜇,k≤m+1}

{ m∑
d=k

q1MZ(1)
q1 ,Z

(2)
q1
(t, s) + q3,oMZ(1)

q3,o,Z
(2)
q3,o
(t, s)

+
n∑

d=m+2

d−m−1∑
l=0

q5MZ(1)
q5,o,Z

(2)
q5,o
(t, s)

}

+1{T≤𝜇,k>m+1}

{ n∑
d=k

d−m−1∑
l=0

q5MZ(1)
q5,o,Z

(2)
q5,o
(t, s)

}
, (23)

where the coefficients and the variables involved are all as presented in the Appendix,
but the coefficients need to be multiplied by (1 − p0) and (1 − q0) corresponding to
the cases T > 𝜇 and T < 𝜇, respectively.
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Lemma 7.3 If the sample size is even, i.e., n = 2m, we have

E3 = 1{k<m}

{k−1∑
j=0

k−1−j∑
l=0

pa1MZ(1)
a1 ,Z

(2)
a1
(t, s) +

n−k∑
l=0

pa2MZ(1)
a2 ,Z

(2)
a2
(t, s)

}

+1{k=m}

{k−1∑
j=0

k−1−j∑
l=0

pb1,eMZ(1)
b1,e,Z

(2)
b1,e
(t, s) +

n−k∑
l=0

pb2MZ(1)
b2 ,Z

(2)
b2
(t, s)

}

+1{k=m+1}

{m−1∑
j=0

m−1−j∑
l=0

pc1MZ(1)
c1 ,Z

(2)
c1
(t, s) + pc2MZ(1)

c2 ,Z
(2)
c2
(t, s)

+
n−k∑
l=0

pc3MZ(1)
c3 ,Z

(2)
c3
(t, s)

}

+ 1{k>m+1}

{m−1∑
j=0

m−1−j∑
l1=0

k−2−m∑
l2=0

pd1,eMZ(1)
d1,e,Z

(2)
d1,e
(t, s) +

k−2−m∑
l=0

pd2MZ(1)
d2 ,Z

(2)
d2
(t, s)

+
k−1∑

j=m+1

j−m−1∑
l1=0

k−j−1∑
l2=0

pd3MZ(1)
d3,e,Z

(2)
d3,e
(t, s) +

n−k∑
l1=0

k−m−2∑
l2=0

pd4MZ(1)
d4,e,Z

(2)
d4,e
(t, s)

}
.

(24)

Table 1 Simulated values of the first, second, and cross moments of �̂� and �̂� based on the Type-

I HCS when 𝜇 = 0, 𝜎 = 1 and n = 20, while the corresponding exact values are reported within

parentheses

k F(T) �̂� �̂�
2

�̂� �̂�
2

�̂��̂�

8 0.4 −0.0440 0.1827 0.9269 1.0003 0.0367

(−0.0425) (0.1879) (0.9270) (1.0012) (0.0398)

0.6 −0.1103 0.1109 0.8802 0.8858 −0.0679
(−0.1106) (0.1102) (0.8793) (0.8840) (−0.0689)

10 0.4 0.0167 0.1449 0.9753 1.0886 0.0774

(0.0183) (0.1504) (0.9755) (1.0900) (0.0809)

0.6 −0.0521 0.0799 0.9211 0.9447 −0.0353
(−0.0521) (0.0795) (0.9205) (0.9436) (−0.0358)

11 0.4 0.0302 0.1415 0.9898 1.1181 0.0876

(0.0305) (0.1395) (0.9884) (1.1146) (0.0871)

0.6 −0.0056 0.0653 0.9450 0.9858 0.0042

(−0.0055) (0.0650) (0.9446) (0.9850) (0.0039)

15 0.4 0.0302 0.1415 0.9969 1.1311 0.0838

(0.0305) (0.1395) (0.9954) (1.1276) (0.0833)

0.6 −0.0056 0.0653 0.9700 1.0262 −0.0023
(−0.0055) (0.0650) (0.9695) (1.0246) (−0.0026)
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Table 2 Simulated values of the first, second and cross moments of �̂� and �̂� based on the Type-

I HCS when 𝜇 = 0, 𝜎 = 1 and n = 15, while the corresponding exact values are reported within

parentheses

k F(T) �̂� �̂�
2

�̂� �̂�
2

�̂��̂�

6 0.4 −0.0580 0.3071 0.9016 1.0095 0.0781

(−0.0573) (0.3017) (0.9005) (1.0062) (0.0761)

0.6 −0.1463 0.1630 0.8409 0.8496 −0.0831
(−0.1447) (0.1632) (0.8412) (0.8507) (−0.0813)

8 0.4 0.0426 0.2187 0.9719 1.1333 0.1381

(0.0453) (0.2239) (0.9733) (1.1388) (0.1443)

0.6 −0.0043 0.0966 0.9116 0.9553 0.0177

(−0.0018) (0.0971) (0.9129) (0.9584) (0.0205)

10 0.4 0.0426 0.2187 0.9893 1.1658 0.1281

(0.0453) (0.2239) (0.9901) (1.1685) (0.1346)

0.6 −0.0043 0.0966 0.9504 1.0192 0.0049

(−0.0018) (0.0971) (0.9507) (1.0200) (0.0081)

Table 3 Simulated values of the first, second, and cross moments of �̂� and �̂� based on the Type-

II HCS when 𝜇 = 0, 𝜎 = 1 and n = 20, while the corresponding exact values are reported within

parentheses

k F(T) �̂� �̂�
2

�̂� �̂�
2

�̂��̂�

8 0.4 −0.0398 0.0584 0.9466 1.0070 −0.0294
(−0.0401) (0.0580) (0.9457) (1.0056) (−0.0300)

0.6 −0.0081 0.0616 0.9691 1.0230 −0.0071
(−0.0081) (0.0612) (0.9686) (1.0213) (−0.0074)

10 0.4 −0.0467 0.0625 0.9343 0.9651 −0.0450
(−0.0466) (0.0624) (0.9339) (0.9645) (−0.0450)

0.6 −0.0125 0.0590 0.9644 1.0105 −0.0146
(−0.0122) (0.0588) (0.9640) (1.0094) (−0.0145)

11 0.4 0.0006 0.0664 0.9465 0.9825 0.0021

(0.0000) (0.0666) (0.9448) (0.9787) (0.0019)

0.6 −0.0003 0.0667 0.9640 1.0076 −0.0013
(0.0000) (0.0666) (0.9638) (1.0067) (−0.0011)

15 0.4 −0.0009 0.0667 0.9648 0.9954 −0.0008
(0.0000) (0.0666) (0.9637) (0.9930) (0.0000)

0.6 −0.0003 0.0667 0.9653 0.9961 −0.0005
(0.0000) (0.0666) (0.9647) (0.9945) (−0.0003)
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Table 4 Simulated values of the first, second, and cross moments of �̂� and �̂� based on the Type-

II HCS when 𝜇 = 0, 𝜎 = 1 and n = 15, while the corresponding exact values are reported within

parentheses

k F(T) �̂� �̂�
2

�̂� �̂�
2

�̂��̂�

6 0.4 −0.0496 0.0757 0.9275 1.0045 −0.0368
(−0.0480) (0.0755) (0.9275) (1.0037) (−0.0347)

0.6 −0.0099 0.0873 0.9544 1.0207 −0.0082
(−0.0077) (0.0872) (0.9545) (1.0210) (−0.0055)

8 0.4 −0.0025 0.0962 0.9181 0.9561 −0.0003
(0.0000) (0.0963) (0.9187) (0.9562) (0.0026)

0.6 −0.0025 0.0962 0.9467 0.9981 −0.0048
(0.0000) (0.0963) (0.9469) (0.9983) (−0.0019)

10 0.4 −0.0025 0.0962 0.9404 0.9779 −0.0023
(0.0000) (0.0963) (0.9403) (0.9782) (0.0005)

0.6 −0.0025 0.0962 0.9475 0.9883 −0.0040
(0.0000) (0.0963) (0.9474) (0.9884) (−0.0013)

Table 5 Data from an accelerated life test of 16 integrated circuit chips taken from Devore (2015)

11.6 26.5 82.8 179.7 204.6 212.6 229.9 242.0

244.8 304.3 307.8 359.5 366.7 379.1 502.5 558.9

If the sample size is odd, i.e., n = 2m + 1, we have

E3 = 1{k≤m}

{k−1∑
j=0

k−1−j∑
l=0

pa1MZ(1)
a1 ,Z

(2)
a1
(t, s) +

n−k∑
l=0

pa2MZ(1)
a2 ,Z

(2)
a2
(t, s)

}

+ 1{k=m+1}

{k−1∑
j=0

k−1−j∑
l=0

pb1,oMZ(1)
b1,o ,Z

(2)
b1,o
(t, s) +

n−k∑
l=0

pb2MZ(1)
b2 ,Z

(2)
b2
(t, s)

}

+ 1{k>m+1}

{ m∑
j=0

m−j∑
l1=0

k−2−m∑
l2=0

pd1,oMZ(1)
d1,o ,Z

(2)
d1,o

(t, s) +
k−1∑

j=m+1

j−m−1∑
l1=0

k−1−j∑
l2=0

pd3MZ(1)
d3,o ,Z

(2)
d3,o

(t, s)

+
n−k∑
l1=0

k−2−m∑
l2=0

pd4MZ(1)
d4,o ,Z

(2)
d4,o

(t, s)

}
, (25)

where the coefficients and the variables involved are all as presented in the Appendix.

Remark 7.2 It is of interest to mention here that we can rewrite one of their results

as
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Fig. 1 P–P and Q–Q plots with 95% confidence bounds based on the complete data from Table 5

n−k∑
l1=0

k−m−2∑
l2=0

pd4MZ(1)
d4,e ,Z

(2)
d4,e
(t, s) =

k−m−2∑
l1=0

n−k∑
l2=0

[
p∗
16,aMZ(1)

p16,a ,Z
(2)
p16,a

(t, s) + p∗
16,bMZ(1)

p16,b ,Z
(2)
p16,b

(t, s)
]
,

n−k∑
l1=0

k−2−m∑
l2=0

pd4MZ(1)
d4,o ,Z

(2)
d4,o

(t, s) =
k−m−2∑

l1=0

n−k∑
l2=0

[
p∗
8,a,oMZ(1)

p8,a,o ,Z
(2)
p8,a,o

(t, s) + p∗
8,b,oMZ(1)

p8,b,o ,Z
(2)
p8,b,o

(t, s)
]
,

(26)

where p∗
16,a = (1 − p0)p16,a, p∗

16,b = (1 − p0)p16,b, p∗
8,a,o = (1 − p0)p8,a,o and p∗

8,b,o =
(1 − p0)p8,b,o. Then, the joint distribution can be easily obtained by the use of Lemma

3.2.

Remark 7.3 From the exact distribution of (�̂�, �̂�), we can readily obtain the moments

of �̂� and �̂� as well as the correlation coefficient between them.

Remark 7.4 Based on (�̂�, �̂�), we can propose a plug-in estimator of quantile, reliabil-

ity function R(t), and cumulative hazard function Λ(t) at mission time t, as described

in Sects. 4–7. These can in turn be used to produce exact 100(1 − 𝛼)% CIs for popu-

lation quantile, R(t), and Λ(t). However, the details for these are not presented here

for the sake of conciseness.
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Fig. 2 P–P and Q–Q plots with 95% confidence bounds based on the Type-I HCS with k = 6 and

T = 230 from Table 5
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Fig. 3 P–P and Q–Q plots with 95% confidence bounds based on the Type-I HCS with k = 12 and

T = 230 from Table 5
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Fig. 4 P–P and Q–Q plots with 95% confidence bounds based on the Type-I HCS with k = 6 and

T = 400 from Table 5

0 50 150 250 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Su
rv

ia
l P

ro
b

KM−Curve                      
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Fig. 5 P–P and Q–Q plots with 95% confidence bounds based on the Type-I HCS with k = 12 and

T = 400 from Table 5
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Fig. 6 P–P and Q–Q plots with 95% confidence bounds based on the Type-II HCS with k = 6 and

T = 230 from Table 5

8 Monte Carlo Simulation Study

We carried out a Monte Carlo simulation study for Type-I HCS and Type-II HCS

based on n = 15, 20 and by taking 𝜇 = 0 and 𝜎 = 1, without loss of any general-

ity. The values of k were chosen as 8, 10, 11, 15 for n = 20, and 7, 10 for n = 15,

respectively, while the values of T were chosen so as to make F(T) = 0.4, 0.6. We

then computed the first, second, and cross moments of �̂� and �̂� through simulation as

well as by the use of exact formulas established here. All these results are presented

in Tables 1, 2, 3 and 4, and we observe that in all cases, �̂� is negatively biased with

the bias decreasing as k increases in general. We further observe that the exact values

are in close agreement with the corresponding simulated values.

9 Illustrative Example

In this section, we illustrate the results established in the preceding sections with one

real dataset taken from the reliability literature.
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Fig. 7 P–P and Q–Q plots with 95% confidence bounds based on the Type-II HCS with k = 12
and T = 230 from Table 5

Example 9.1 The following failure time observations (in thousands of hours) are

obtained by Devore (2015) from an accelerated life testing of 16 integrated circuit

chips. For illustrative purpose, we analyze these data here by assuming a Laplace

distribution and compute the MLEs based on complete, Type-I HCS and Type-II

HCS for different choices of T and k, and the MSEs and the correlation coefficient

of the MLEs based on the exact formulas as well as by the bootstrap method. The

corresponding results are all presented in Table 6. In all the cases considered, the

bias is negligible, and so all further computations are based on the MLEs without

a bias-reduction. The 95% CIs, constructed from the exact conditional CDFs, are

presented in Table 7, and are compared with the results obtained from the bootstrap

approach. We note that these two sets of results are quite close. Finally, we have pre-

sented the Q–Q and P–P plots in Figs. 1, 2, 3, 4, 5, 6, 7, 8, and 9 with corresponding

95% confidence bounds, which do support the assumption of Laplace distribution

for these data.
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Fig. 8 P–P and Q–Q plots with 95% confidence bounds based on the Type-II HCS with k = 6 and

T = 400 from Table 5

10 Discussion and Concluding Remarks

In this chapter, we have derived the MLEs of the location and scale parameters of

the Laplace distribution under Type-I HCS and Type-II HCS. We have then derived

the exact distributions of the MLEs, and the estimates of quantile, reliability, and

cumulative hazard functions of Laplace (𝜇, 𝜎) distribution. These exact distribu-

tions have then been used to determine the bias and variances of the estimates as

well as exact CIs. These exact CIs have been further utilized to develop exact con-

fidence bounds for Q–Q plot and K–M curves. It will naturally be of interest to

develop goodness-of-fit tests based on the Type-I HCS and Type-II HCS by uti-

lizing the results established here; see Puig and Stephens (2000) for a discussion on

goodness-of-fit tests for the Laplace model based on a complete sample. Work is cur-

rently under progress on this problem and we hope to report the findings in a future

article.
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Fig. 9 P–P and Q–Q plots with 95% confidence bounds based on the Type-II HCS with k = 12
and T = 400 from Table 5

Acknowledgements This research was partially supported by the National Natural Science Foun-

dation of China (No. 11571263) and by the National Sciences and Engineering Research Council

of Canada.

Appendix

List of notation used throughout

p1 = (−1)ln!e−
(T−𝜇)(n+l−d)

𝜎

2n(n − d)!j!(d − j − l)!l!(1 − p0)
,

p2,a = (−1)ln!
2n(n − k)!j!(k − j − 1 − l)!l!(n − k)!(n − k + l + 1)(1 − p0)

,

p2,b = −p2,ae−
(T−𝜇)(n−k+l+1)

𝜎 ,
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p3 = (−1)ln!
2k+l(k − 1)!(n − k − l)!l!(k + l)(1 − p0)

,

p4,a,e = (−1)ln!e−
(T−𝜇)m

𝜎

2nj!(m − 1 − j − l)!(l + 1)!m!(1 − p0)
,

p4,b,e = −p4,a,ee−
(T−𝜇)(l+1)

𝜎 ,

p5,e = n!e−
(T−𝜇)m

𝜎

2n(n − m)!m!(1 − p0)
,

p6,a,e = (−1)ln!
2nj!(m − 1 − j − l)!m!(l + 1)!(1 − p0)

,

p6,b,e = −p6,a,ee−
(T−𝜇)m

𝜎 ,

p6,c,e = (−1)l+1n!
2nj!(m − 1 − j − l)!(m − 1)!(l + 1)!(m + l + 1)(1 − p0)

,

p6,d,e = −p6,c,ee−
(T−𝜇)(m+l+1)

𝜎 ,

p7,a,e = n!
2nm!m!(1 − p0)

,

p7,b,e = −p7,a,ee−
m(T−𝜇)

𝜎 ,

p9,e = (−1)ln!
m!(n − k − l)!l!2k+l(m + k + l)(1 − p0)

,

p10,a,e = (−1)l1+d−m−1−l2 n!e−
(T−𝜇)(m−1−l2)

𝜎

2nj!(m − 1 − j − l1)!(d − m − 1 − l2)!(l2 + 1)!(n − d)!(l1 + 1)!(1 − p0)
,

p10,b,e = −p10,a,ee−
(T−𝜇)(l2+1)

𝜎 ,

p10,c,e = −
p10,a,e

l1 + l2 + 2
,

p10,d,e = −p10,c,ee−
(T−𝜇)(l1+l2+2)

𝜎 ,

p11,a,e = (−1)d−m−l−1n!e−
(T−𝜇)(m−l−1)

𝜎

2nm!(d − m − l − 1)!(l + 1)!(n − d)!(1 − p0)
,

p11,b,e = −p11,a,ee−
(T−𝜇)(l+1)

𝜎 ,

p12,e = (−1)l1+l2 n!e−
(T−𝜇)(n−d+l2)

𝜎

2nm!(j − m − l1 − 1)!l1!(d − j − l2)!l2!(n − d)!(m + l1 + 1)(1 − p0)
,

p13,a = (−1)l1+l2 n!
2nj!(m − 1 − j − l1)!(l1 + 1)!(k − m − 2 − l2)!l2!(n − k)!(n − k + l2 + 1)m(1 − p0)

,

p13,b = −p13,ae−
(T−𝜇)m

𝜎 ,

p13,c = (−1)l1+l2+1n!e−
(T−𝜇)(n−k+l2+1)

𝜎

2nj!(m − 1 − j − l1)!(l1 + 1)!(k − m − l2 − 1)!l2!(n − k)!(n − k + l2 + 1)(1 − p0)
,

p13,d = −p13,ce−
(T−𝜇)(k−m−l2−1)

𝜎 ,

p13,e = (−1)l1+l2+1n!
2nj!(m − 1 − j − l1)!(l1 + 1)!(k − m − 2 − l2)!l2!(n − k)!(n − k + l2 + 1)(m + l1 + 1)(1 − p0)

,

p13,f = −p13,ee−
(T−𝜇)(m+l1+1)

𝜎 ,

p13,g = (−1)l1+l2 n!e−
n−k+l2+1

𝜎

2nj!(m − 1 − j − l1)!(l1 + 1)!(k − m − 2 − l2)!l2!(n − k)!(n − k + l2 + 1)(k − m − l2 + l1)(1 − p0)
,

p13,h = −p13,ge−
(T−𝜇)(k−m−l2+l1)

𝜎 ,
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p∗
13,a = (−1)l1+k−m−l2 n!

2nj!(m − j − l1)!l1!(k − m − 2 − l2)!l2!(n − k)!(m − l2 − 1)(m + l1)
,

p∗
13,b = −p∗

13,ae−
(T−𝜇)(m+l1)

𝜎 ,

p∗
13,c = (−1)l1+k−m−1−l2 n!e−

(T−𝜇)(m−l2−1)
𝜎

2nj!(m − j − l1)!l1!(k − m − 2 − l2)!l2!(n − k)!(m − l2 − 1)(l1 + l2 + 1)
,

p∗
13,d = −p∗

13,ce−
(T−𝜇)(l1+l2+1)

𝜎 ,

p14,a = (−1)ln!
2nm!(k − m − 2 − l)!l!(n − k + l + 1)m(1 − p0)

,

p14,b = −p14,ae−
(T−𝜇)m

𝜎 ,

p14,c = (−1)l+1n!e−
(T−𝜇)(n−k+l+1)

𝜎

2nm!(k − m − 1 − l)!l!(n − k + l + 1)(1 − p0)
,

p14,d = −p14,ce−
(T−𝜇)(k−m−1−l)

𝜎 ,

p15,a =
n!(−1)l1+l2 (m + l1 + 1)−1

2nm!(j − m − 1 − l1)!l1!(k − 1 − j − l2)!l2!(n − k)!(n − k + l2 + 1)(1 − p0)
,

p15,b = −p15,ae−
(T−𝜇)(n−k+l2+1)

𝜎 ,

p16,a = (−1)l1+l2 n!
2l2+dm!(k − m − 2 − l1)!l1!(n − k − l2)!l2!(k − m − 1 − l1 + l2)(m + l1 + 1)(1 − p0)

,

p16,b = (−1)l1+l2+1n!
2l2+dm!(k − m − 2 − l1)!l1!(n − k − l2)!l2!(k − m − 1 − l1 + l2)(k + l2)(1 − p0)

,

q1 = P(D = d),

q2 = (−1)le
(T−𝜇)(k+l)

𝜎 n!
2k+l(k − 1)!l!(n − k − l)!(k + l)(1 − q0)

,

q3,e = P(D = m),

q4,e = (−1)ln!e
(T−𝜇)(m+l+1)

𝜎

2k+lm!l!(m − 1 − l)!(m + l + 1)(1 − q0)
,

q5 =
(−1)l

(
1 − 1

2
e−

𝜇−T
𝜎

)n−d ( 1
2

e−
(𝜇−T)

𝜎

)d
n!

(l + m + 1)m!l!(d − m − 1 − l)!(n − d)!(1 − q0)

q6 = (−1)l1+l2 e
(T−𝜇)(k+l2)

𝜎 n!
2k+l2 (l1 + m + 1)(k + l2)m!l1!(k − m − 2 − l1)!l2!(n − k − l2)!(1 − q0)

p4,a,o = (−1)l1+d−m−1−l2 n!e−
(T−𝜇)(m−l2)

𝜎

(1 − p0)2n(l1 + l2 + 1)l1!l2!j!(n − d)!(m − j − l1)!(d − m − 1 − l2)!
,

p4,b,o = −p4,a,oe−
(T−𝜇)(l1+l2+1)

𝜎 ,

p5,o = (−1)l1+l2 n!e−
(T−𝜇)(n−d+l2)

𝜎

2nm!(j − m − l1 − 1)!l1!(d − j − l2)!l2!(n − d)!(m + l1 + 1)(1 − p0)
,

p6,a,o = (−1)l1+l2 n!
2nj!(m − j − l1)!l1!(k − m − 2 − l2)!l2!(n − k)!(n − k + l2 + 1)(m + l1 + 1)(1 − p0)

,

p6,b,o = −p6,a,oe−
(T−𝜇)(m+l1+1)

𝜎 ,

p6,c,o = (−1)l1+l2+1n!e−
(T−𝜇)(n−d+l2+1)

𝜎

(1 − p0)2nj!(m − j − l1)!l1!(k − m − 2 − l2)!l2!(n − k)!(n − k + l2 + 1)(k − m − l2 + l1 − 1)
,

p6,d,o = −p6,c,oe−
(T−𝜇)(d−m+l1−l2−1)

𝜎 ,
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p7,a,o = (−1)l1+l2 n!
2nm!(j − m − 1 − l1)!l1!(k − 1 − j − l2)!l2!(n − k)!(m + l1 + 1)(n − k + l2 + 1)(1 − p0)

,

p7,b,o = −p7,a,oe−
(T−𝜇)(n−k+l2+1)

𝜎 ,

p8,a,o = (−1)k−m−2−l1+l2 n!
2k+l2 m!(k − m − 2 − l1)!l1!(n − k − l2)!l2!(l1 + l2 + 1)(k − l1 − 1)(1 − p0)

,

p8,b,o = (−1)k−m−1−l1+l2 n!
2k+l2 m!(k − m − 2 − l1)!l1!(n − k − l2)!l2!(l1 + l2 + 1)(k + l2)(1 − p0)

,

q3,o = P(D = m + 1),

p∗
16 =

(−1)l1+l2 n!
m!(k − m − 2 − l1)!l1!(n − k − l2)!l2!(m + 1 + l1)(k + l2)(1 − p0)

,

Z(1)
p1

d
= Γ

(
j, 𝜎

d

)
+ NΓ

(
d − j, 𝜎

d

)
+ (T − 𝜇)(d − l)

d
,

Z(2)
p1

d
= log

( n
2d

)
Z(1)

p1 + T ,

Z(1)
p2,a

d
= ΓA

(
j, 𝜎

k

)
+ NΓA

(
k − 1 − j, 𝜎

k

)
+ (k − l − 1)𝜎

(n − k + l + 1)k
E1,

Z(2)
p2,a

d
= log

( n
2k

) [
ΓA

(
j, 𝜎

k

)
+ NΓA

(
k − 1 − j, 𝜎

k

)]
+
[
log

( n
2k

) k − l − 1
n − k + l + 1

+ k
n − k + l + 1

]
𝜎

k
E1 + 𝜇,

Z(3)
p2,a

d
= 𝜎

n − k + l + 1
E1 + 𝜇,

Z(1)
p2,b

d
= ΓA

(
j, 𝜎

k

)
+ NΓA

(
k − 1 − j, 𝜎

k

)
+ (k − l − 1)𝜎

(n − k + l + 1)k
E2 +

(T − 𝜇)(k − l − 1)
k

,

Z(2)
p2,b

d
= log

( n
2k

)[
ΓA

(
j, 𝜎

k

)
+ NΓA

(
k − 1 − j, 𝜎

k

)
+ (T − 𝜇)(k − l − 1)

k

]

+
[
log

( n
2k

) k − l − 1
n − k + l + 1

+ k
n − k + l + 1

]
𝜎

k
E1 + T ,

Z(3)
p2,b

d
= 𝜎

n − k + l + 1
E1 + T

Z(1)
p3

d
= Γ

(
k − 1, 𝜎

k

)
,

Z(2)
p3

d
= log

( n
2k

)
Z(1)

p3 + NE
(

𝜎

k + l

)
+ 𝜇,

Z(3)
p3

d
= NE

(
𝜎

k + l

)
+ 𝜇,

Z(1)
p4,a,e

d
= Γ

(
j, 𝜎

m

)
+ NΓ

(
m − 1 − j, 𝜎

m

)
− 𝜎

m
E + (T − 𝜇),

Z(2)
p4,a,e

d
= 𝜎

2(l + 1)
E + T + 𝜇

2
,

Z(1)
p4,b,e

d
= Γ

(
j, 𝜎

m

)
+ NΓ

(
m − 1 − j, 𝜎

m

)
− 𝜎

m
E + (T − 𝜇)(m − l − 1)

m
,

Z(2)
p4,b,e

d
= 𝜎

2(l + 1)
E + T ,

Z(1)
p5,e

d
= Γ

(
m − 1, 𝜎

m

)
+ 𝜎

m
E + (T − 𝜇),

Z(2)
p5,e

d
= −𝜎

n
E + T + 𝜇

2
,

Z(1)
p6,a,e

d
= Γ

(
j, 𝜎

m + 1

)
+ NΓ

(
m − 1 − j, 𝜎

m + 1

)
− 𝜎

m + 1
E1 +

𝜎

m + 1
E2,

Z(2)
p6,a,e

d
= 𝜎

2(l + 1)
E1 +

𝜎

n
E2 + 𝜇,
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Z(1)
p6,b,e

d
= Γ

(
j, 𝜎

m + 1

)
+ NΓ

(
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𝜎
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,
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𝜎
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2
,
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d
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= 𝜎
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𝜎
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,
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𝜎
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,
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d

)
+ 𝜎

d
E1 +

𝜎

d
E2 +

(T − 𝜇)m
d

,

Z(2)
p11,b,e

d
= −𝜎

n
E1 +

𝜎

2(l + 1)
E2 +

T + 𝜇

2
,

Z(1)
p12,e

d
= Γ

(
d − j + m − 1, 𝜎

d

)
+ NΓ

(
j − m − 1, 𝜎

d

)
+ 𝜎

d
E1 +

(m − l1 − 1)𝜎
(m + l1 + 1)d

E2 +
(T − 𝜇)(n − d + l2)

d
,
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Z(2)
p12,e

d
= −𝜎

n
E1 −

𝜎

m + l1 + 1
E2 + 𝜇,

Z(1)
p13,a

d
= Γ

(
k − m − 1 + j, 𝜎

k

)
+ NΓ

(
m − 1 − j, 𝜎

k

)
− 𝜎

k
E1 +

𝜎

k
E2,

Z(2)
p13,a

d
= 𝜎

2(l1 + 1)
E1 +

𝜎

n
E2 + 𝜇,

Z(1)
p13,b

d
= Γ

(
k − m − 1 + j, 𝜎

k

)
+ NΓ

(
m − 1 − j, 𝜎

k

)
− 𝜎

k
E1 +

𝜎

k
E2 +

m(T − 𝜇)
k

,

Z(2)
p13,b

d
= 𝜎

2(l1 + 1)
E1 +

𝜎

n
E2 +

T + 𝜇

2
,

Z(1)
p13,c

d
= Γ

(
k − m − 1 + j, 𝜎

k

)
+ NΓ

(
m − 1 − j, 𝜎

k

)
− 𝜎

k
E1 +

𝜎

k
E2 +

(n − k + l2 + 1)(T − 𝜇)
k

,

Z(2)
p13,c

d
= 𝜎

2(l1 + 1)
E1 +

𝜎

2(k − m − l2 − 1)
E2 + 𝜇,

Z(1)
p13,d

d
= Γ

(
k − m − 1 + j, 𝜎

k

)
+ NΓ

(
m − 1 − j, 𝜎

k

)
− 𝜎

k
E1 +

𝜎

k
E2 +

m(T − 𝜇)
k

,

Z(2)
p13,d

d
= 𝜎

2(l1 + 1)
E1 +

𝜎

2(k − m − l2 − 1)
E2 +

T + 𝜇

2
,

Z(1)
p13,e

d
= Γ

(
k − m − 1 + j, 𝜎

k

)
+ NΓ

(
m − 1 − j, 𝜎

k

)
− 𝜎

k
E1 +

(m − l1 − 1)𝜎
(m + l1 + 1)k

E2,

Z(2)
p13,e

d
= 𝜎

2(l1 + 1)
E1 +

𝜎

m + l1 + 1
E2 + 𝜇,

Z(1)
p13,f

d
= Γ

(
k − m − 1 + j, 𝜎

k

)
+ NΓ

(
m − 1 − j, 𝜎

k

)
− 𝜎

k
E1 +

(m − l1 − 1)𝜎
(m + l1 + 1)k

E2 +
(m − l1 − 1)(T − 𝜇)

k
,

Z(2)
p13,f

d
= 𝜎

2(l1 + 1)
E1 +

𝜎

m + l1 + 1
E2 + T ,

Z(1)
p13,g

d
= Γ

(
k − m − 1 + j, 𝜎

k

)
+ NΓ

(
m − 1 − j, 𝜎

k

)
− 𝜎

k
E1 +

(k − m − l1 − l2 − 2)𝜎
(k − m − l2 + l1)k

E2

+
(n − k + l2 + 1)(T − 𝜇)

k
,

Z(2)
p13,g

d
= 𝜎

2(l1 + 1)
E1 +

𝜎

k − m − l2 + l1
E2 + 𝜇,

Z(1)
p13,h

d
= Γ

(
k − m − 1 + j, 𝜎

k

)
+ NΓ

(
m − 1 − j, 𝜎

k

)
− 𝜎

k
E1 +

(k − m − l1 − l2 − 2)𝜎
(k − m − l2 + l1)k

E2

+
(m − l1 − 1)(T − 𝜇)

k
,

Z(2)
p13,h

d
= 𝜎

2(l1 + 1)
E1 +

𝜎

k − m − l2 + l1
E2 + T ,

Z∗
p13,a

d
= Γ

(
k − 1 − m + j, 𝜎

k

)
+ NΓ

(
m − j, 𝜎

k

)
+ E

(
(m − l1)𝜎
(m + l1)k

)
,

Z∗
p13,b

d
= Γ

(
k − 1 − m + j, 𝜎

k

)
+ NΓ

(
m − j, 𝜎

k

)
+ E

(
(m − l1)𝜎
(m + l1)k

)
+

(T − 𝜇)(m − l1)
k

,

Z∗
p13,c

d
= Γ

(
k − 1 − m + j, 𝜎

k

)
+ NΓ

(
m − j, 𝜎

k

)
+ E

(
(l2 − l1 + 1)𝜎
(l1 + l2 + 1)k

)
+

(T − 𝜇)(m − l2 − 1)
k

,

Z∗
p13,d

d
= Γ

(
k − 1 − m + j, 𝜎

k

)
+ NΓ

(
m − j, 𝜎

k

)
+ E

(
(l2 − l1 + 1)𝜎
(l1 + l2 + 1)k

)
+

(T − 𝜇)(m − l1)
k

,

Z(1)
p14,a

d
= Γ

(
k − 2, 𝜎

k

)
+ 𝜎

k
E1 +

𝜎

k
E2,

Z(2)
p14,a

d
= −𝜎

n
E1 +

𝜎

n
E2 + 𝜇,
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Z(1)
p14,b

d
= Γ

(
k − 2, 𝜎

k

)
+ 𝜎

k
E1 +

𝜎

k
E2 +

m(T − 𝜇)
k

,

Z(2)
p14,b

d
= −𝜎

n
E1 +

𝜎

n
E2 +

T + 𝜇

2
,

Z(1)
p14,c

d
= Γ

(
k − 2, 𝜎

k

)
+ 𝜎

k
E1 +

𝜎

k
E2 +

(T − 𝜇)(n − k + l + 1)
k

,

Z(2)
p14,c

d
= −𝜎

n
E1 +

𝜎

2(k − m − l − 1)
E2 + 𝜇,

Z(1)
p14,d

d
= Γ

(
k − 2, 𝜎

k

)
+ 𝜎

k
E1 +

𝜎

k
E2 +

(T − 𝜇)m
k

,

Z(2)
p14,d

d
= −𝜎

n
E1 +

𝜎

2(k − m − l − 1)
E2 +

T + 𝜇

2
,

Z(1)
p15,a

d
= Γ

(
m − 1 + k − j, 𝜎

k

)
+ NΓ

(
j − m − 1, 𝜎

k

)
+ 𝜎

k
E1 +

(m − l1 − 1)𝜎
(m + l1 + 1)k

E2,

Z(2)
p15,a

d
= −𝜎

n
E1 −

𝜎

m + l1 + 1
E2 + 𝜇,

Z(1)
p15,b

d
= Γ

(
m − 1 + k − j, 𝜎

k

)
+ NΓ

(
j − m − 1, 𝜎

k

)
+ 𝜎

k
E1 +

(m − l1 − 1)𝜎
(m + l1 + 1)k

E2 +
(T − 𝜇)(n − k + l2 + 1)

k
,

Z(2)
p15,b

d
= −𝜎

n
E1 −

𝜎

m + l1 + 1
E2 + 𝜇,

Z(1)
p16,a

d
= Γ

(
m − 1, 𝜎

k

)
+ NΓ

(
d − m − 2, 𝜎

k

)
+ NE

(
(m − l1 − 1)𝜎

(k − m − 1 − l1 + l2)k

)
+ 𝜎

k
E1 +

(m − l1 − 1)𝜎
(m + l1 + 1)k

E2,

Z(2)
p16,a

d
= −𝜎

n
E1 −

𝜎

m + l1 + 1
E2 + 𝜇,

Z(1)
p16,b

d
= Γ

(
m − 1, 𝜎

k

)
+ NΓ

(
d − m − 2, 𝜎

k

)
+ NE

(
(m − l1 − 1)𝜎

(k − m − 1 − l1 + l2)k

)
+ 𝜎

k
E,

Z(2)
p16,b

d
= −𝜎

n
E + NE

(
𝜎

k + l2

)
+ 𝜇,

Z(1)
q1

d
= Γ

(
d, 𝜎

d

)
,

Z(2)
q1

d
= log

( n
2d

)
Z(1)

q1 + T ,

Z(1)
q2,a

d
= Γ

(
k − 1, 𝜎

k

)
,

Z(2)
q2,a

d
= log

( n
2k

)
Z(1)

q2,a + NE
(

𝜎

k + l

)
+ T ,

Z(1)
q2,b

d
= Γ

(
k − 1, 𝜎

k

)
,

Z(2)
q2,b

d
= NE

(
𝜎

k + l

)
+ T ,

Z(1)
q3,e

d
= Γ

(
m − 1, 𝜎

m

)
+ 𝜎

m
E,

Z(2)
q3,e

d
= −𝜎

n
E + T ,

Z(1)
q4,e

d
= Γ

(
m − 1, 𝜎

k

)
+ 𝜎

k
E,

Z(2)
q4,e

d
= −𝜎

n
E + NE

(
𝜎

m + l + 1

)
+ T ,

Z(1)
q5,e

d
= Γ

(
m − 1, 𝜎

d

)
+ NΓ

(
d − m − 1, 𝜎

d

)
+ 𝜎

d
E1 +

(m − l − 1)𝜎
(m + l + 1)d

E2,

Z(2)
q5,e

d
= −𝜎

n
E1 −

𝜎

m + l + 1
E2 + T ,
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Z(1)
q6,e

d
= Γ

(
m − 1, 𝜎

k

)
+ NΓ

(
k − m − 2, 𝜎

k

)
+ 𝜎

k
E1 +

(m − l1 − 1)𝜎
(m + l1 + 1)k

E2,

Z(2)
q6,e

d
= −𝜎

n
E1 −

𝜎

m + l1 + 1
E2 + NE

(
𝜎

k + l2

)
+ T ,

Z(1)
p4,a,o

d
= Γ

(
j + d − m − 1, 𝜎

d

)
+ NΓ

(
m − j, 𝜎

d

)
+

(l2 − l1)𝜎
(l2 + l1 + 1)d

E +
(T − 𝜇)(m − l2)

d
,

Z(2)
p4,a,o

d
= 𝜎

l2 + l1 + 1
E + 𝜇,

Z(1)
p4,b,o

d
= Γ

(
j + d − m − 1, 𝜎

d

)
+ NΓ

(
m − j, 𝜎

d

)
+

(l2 − l1)𝜎
(l2 + l1 + 1)d

E +
(T − 𝜇)(m − l1)

d
,

Z(2)
p4,b,o

d
= 𝜎

l2 + l1 + 1
E + T ,

Z(1)
p5,o

d
= Γ

(
d − j + m,

𝜎

d

)
+ NΓ

(
j − m − 1, 𝜎

d

)
+

(m − l1)𝜎
(m + l1 + 1)d

E +
(T − 𝜇)(n − d + l2)

d
,

Z(2)
p5,o

d
= − 𝜎

m + l1 + 1
E + 𝜇,

Z(1)
p6,a,o

d
= Γ

(
j + k − m − 1, 𝜎

k

)
+ NΓ

(
m − j, 𝜎

k

)
+

(m − l1)𝜎
(m + l1 + 1)k

E,

Z(2)
p6,a,o

d
= 𝜎

m + l1 + 1
E + 𝜇,

Z(1)
p6,b,o

d
= Γ

(
j + k − m − 1, 𝜎

k

)
+ NΓ

(
m − j, 𝜎

k

)
+

(m − l1)𝜎
(m + l1 + 1)k

E +
(m − l1)(T − 𝜇)

k
,

Z(2)
p6,b,o

d
= 𝜎

m + l1 + 1
E + T ,

Z(1)
p6,c,o

d
= Γ

(
j + k − m − 1, 𝜎

k

)
+ NΓ

(
m − j, 𝜎

k

)
+ +

(k − m − l1 − l2 − 2)𝜎
(k − m + l1 − l2 − 1)k

E +
(n − k + l2 + 1)(T − 𝜇)

k
,

Z(2)
p6,c,o

d
= 𝜎

k − m − l2 + l1 − 1
E + 𝜇,

Z(1)
p6,d,o

d
= Γ

(
j + k − m − 1, 𝜎

k

)
+ NΓ

(
m − j, 𝜎

k

)
+

(k − m − l1 − l2 − 2)𝜎
(k − m + l1 − l2 − 1)k

E +
(m − l1)(T − 𝜇)

k
,

Z(2)
p6,d,o

d
= 𝜎

k − m + l1 − l2 − 1
E + T ,

Z(1)
p7,a,o

d
= Γ

(
m + k − j, 𝜎

k

)
+ NΓ

(
j − m − 1, 𝜎

k

)
+

(m − l1)𝜎
(m + l1 + 1)k

E,

Z(2)
p7,a,o

d
= − 𝜎

m + l1 + 1
E + 𝜇,

Z(1)
p7,b,o

d
= Γ

(
m + k − j, 𝜎

k

)
+ NΓ

(
j − m − 1, 𝜎

k

)
+

(m − l1)𝜎
(m + l1 + 1)k

E +
(n − k + 1 + l2)(T − 𝜇)

k
,

Z(2)
p7,b,o

d
= − 𝜎

m + l1 + 1
E + 𝜇,

Z(1)
p8,a,o

d
= Γ

(
m,

𝜎

k

)
+ NΓ

(
k − m − 2, 𝜎

k

)
+ NE

(
n − k + l1 + 1
(l1 + l2 + 1)k

)
+

n + 1 + l1 − k
(k − l1 − 1)k

E,

Z(2)
p8,a,o

d
= − 𝜎

k − l1 − 1
E + 𝜇,

Z(1)
p8,b,o

d
= Γ

(
m,

𝜎

k

)
+ NΓ

(
k − m − 2, 𝜎

k

)
+ NE

(
n − k + l1 + 1
(l1 + l2 + 1)k

)
,

Z(2)
p8,b,o

d
= NE

(
𝜎

k + l2

)
+ 𝜇,

Z(1)
q3,o

d
= Γ

(
m,

𝜎

m + 1

)
+ 𝜎

m + 1
E,
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Z(2)
q3,o

d
= − 𝜎

m + 1
E + T ,

Z(1)
q5,o

d
= Γ

(
m,

𝜎

d

)
+ NΓ

(
d − m − 1, 𝜎

d

)
+ (m − l)𝜎

(m + l + 1)d
E,

Z(2)
q5,o

d
= − 𝜎

m + l + 1
E + T ,

Z(1)
q6,o

d
= Γ

(
m,

𝜎

k

)
+ NΓ

(
k − m − 2, 𝜎

k

)
+

(m − l1)𝜎
(m + l1 + 1)k

E,

Z(2)
q6,o

d
= − 𝜎

m + l1 + 1
E + NE

(
𝜎

k + l2

)
+ T ,

Z∗
p16

d
= Γ

(
m,

𝜎

k

)
+ NΓ

(
k − 2 − m,

𝜎

m

)
+ E

(
(m − l1 − 1)𝜎
k(m + l1 + 1)

)
.

List of notation used in Lemma 7.3

pa1 =
(−1)ln!

2nj!(k − 1 − j − l)!l!(n − k)!(n − k + l + 1)
,

pa2 =
(−1)ln!

2k+l(k − 1)!l!(n − k − l)!(k + l)
,

pb1,e =
(−1)ln!

2nj!(k − 1 − j − l)!l!(n − k)!(k + l + 1)
,

pb2 =
(−1)ln!

2k+l(k − 1)!(n − k − l)!l!(k + l)
,

pb1,o = (−1)ln!
2nj!(k − 1 − j − l)!l!(n − k)!(k + l)

,

pc1 =
(−1)ln!

2nj!(m − j − 1 − l)!l!(n − k + 1)!(n − k + l + 2)
,

pc2 =
n!

2nm!(n − k + 1)!
,

pc3 =
(−1)ln!

2k+lm!(n − k − l)!l!(l + m + 1)
,

pd1,e =
(−1)l1+l2n!

2nj!(m − 1 − j − l1)!l1!(k − 2 − m − l2)!l2!(n − k)!m(m + l1 + 1)(n − k + l2 + 1)
,

pd1,o = (−1)l1+l2n!
2nj!(m − j − l1)!l1!(k − 2 − m − l2)!l2!(n − k)!(m + l1 + 1)(n − k + l2 + 1)

,

pd2 =
(−1)ln!

2nm!(k − 2 − m − l)!l!(n − k)!(n − r + l + 1)m
,

pd3 =
(−1)l1+l2n!

2nm!(j − 1 − m − l1)!l1!(k − 1 − j − l2)!l2!(n − k)!(l1 + m + 1)(n − k + 1 + l2)
,

pd4 =
(−1)l1+l2n!

2k+l1m!(k − 2 − m − l2)!l2!(n − k − l1)!l1!(k + l1)(m + l2 + 1)
,

Z(1)
a1

d
= Γ

(
j, 𝜎

k

)
+ NΓ

(
k − 1 − j, 𝜎

k

)
+ k − 1 − l

k(n − r + l + 1)
E,

Z(2)
a1

d
= ln

( n
2k

)
Z(1)

a1 + 𝜎

(n − r + l + 1)
E + 𝜇,
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Z(1)
a2

d
= Γ

(
k − 1, 𝜎

k

)
,

Z(2)
a2

d
= ln

( n
2k

)
Z(1)

a2 + NE
( 1

l + k

)
+ 𝜇,

Z(1)
b1,e

d
= Γ

(
j, 𝜎

k

)
+ NΓ

(
k − 1 − j, 𝜎

k

)
+ (k − l − 1)𝜎

k(k + l + 1)
E,

Z(2)
b1,e

d
= 𝜎

(k + l + 1)
E + 𝜇,

Z(1)
b1,o

d
= Γ

(
j, 𝜎

k

)
+ NΓ

(
k − 1 − j, 𝜎

k

)
+ (k − 1 − l)𝜎

k(k + l)
E,

Z(2)
b1,o

d
= 𝜎

k + l
E + 𝜇,

Z(1)
b2

d
= Γ

(
k − 1, 𝜎

k

)
,

Z(2)
b2

d
= NE

(
𝜎

k + l

)
+ 𝜇,

Z(1)
c1

d
= Γ

(
j, 𝜎

k

)
+ NΓ

(
m − j − 1, 𝜎

k

)
+ 𝜎

k
E1 +

(n − k − l)𝜎
k(n − k + l + 2)

E2,

Z(2)
c1

d
= 𝜎

n
E1 +

1
n − k + l + 2

E2 + 𝜇,

Z(1)
c2

d
= Γ

(
m − 1, 𝜎

k

)
+ 𝜎

k
E1 +

𝜎

k
E2,

Z(2)
c2

d
= −𝜎

n
E1 +

𝜎

n
E2 + 𝜇,

Z(1)
c3

d
= Γ

(
m − 1, 𝜎

k

)
+ 𝜎

k
E,

Z(2)
c3

d
= −𝜎

n
E + NE

(
𝜎

m + l + 1

)
+ 𝜇,

Z(1)
d1,e

d
= Γ

(
k + j − m − 1, 𝜎

k

)
+ NΓ

(
m − 1 − j, 𝜎

k

)
+ 𝜎

k
E1 +

(m − l1 − 1)𝜎
k(m + l1 + 1)

E2,

Z(2)
d1,e

d
= 𝜎

n
E1 +

𝜎

m + l1 + 1
E2 + 𝜇,

Z(1)
d1,o

d
= Γ

(
k + j − m − 1, 𝜎

k

)
+ NΓ

(
m − j, 𝜎

k

)
+

(m − l1)𝜎
k(m + l1 + 1)

E2,

Z(2)
d1,o

d
= 𝜎

m + l1 + 1
E + 𝜇,

Z(1)
d2

d
= Γ

(
k − 2, 𝜎

k

)
+ 𝜎

k
E1 +

𝜎

k
E2,

Z(2)
d2

d
= −𝜎

n
E1 +

𝜎

n
E2 + 𝜇,

Z(1)
d3,e

d
= Γ

(
k + m − j − 1, 𝜎

k

)
+ NΓ

(
j − m − 1, 𝜎

k

)
+ 𝜎

k
E1 +

(m − l1 − 1)𝜎
k(m + l1 + 1)

E2,

Z(2)
d3,e

d
= −𝜎

n
E1 −

𝜎

m + l1 + 1
E2 + 𝜇,

Z(1)
d3,o

d
= Γ

(
k + m − j, 𝜎

k

)
+ NΓ

(
j − m − 1, 𝜎

k

)
+

(m − l1)𝜎
k(m + l1 + 1)

E,
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Z(2)
d3,o

d
= − 𝜎

m + l1 + 1
E + 𝜇,

Z(1)
d4,e

d
= Γ

(
m − 1, 𝜎

k

)
+ NΓ

(
k − 2 − m,

𝜎

k

)
+ 𝜎

k
E1 +

(m − l2 − 1)𝜎
k(m + l2 + 1)

E2,

Z(2)
d4,e

d
= −𝜎

n
E1 −

𝜎

m + l2 + 1
E2 + NE

(
𝜎

k + l1

)
+ 𝜇,

Z(1)
d4,o

d
= Γ

(
m,

𝜎

k

)
+ NΓ

(
k − 2 − m,

𝜎

k

)
+

(m − l2)𝜎
k(m + l2 + 1)

E,

Z(2)
d4,o

d
= − 𝜎

m + l2 + 1
E + NE

(
𝜎

k + l1

)
+ 𝜇.

Proof of Lemma 3.4 Here, we will only give the proof for the case when k > m + 1,

and all other cases can all be proved similarly. We have

E
(
et�̂�+s�̂�

,D = k|D > 0
)
=

m−1∑
j=0

E
(
et�̂�+s�̂�

,D = k, J = j|D > 0
)

+E
(
et�̂�+s�̂�

,D = k, J = m|D > 0
)

+
k−1∑

j=m+1
E
(
et�̂�+s�̂�

,D = k, J = j|D > 0
)

+E
(
et�̂�+s�̂�

,D = k, J = k|D > 0
)
,

where J is the number of X’s less than 𝜇 as defined earlier in Sect. 3. As the derivation

of these four expectations are quite similar, we only derive the last one and omit oth-

ers for the sake of brevity. In this case, we only need to focus on three order statistics

Xm∶n, Xm+1∶n and Xk∶n, and then consider that there exists m − 1 i.i.d. observations

less than Xm∶n, and k − m − 2 i.i.d. observations are between Xm+1∶n and Xk∶n. We

then have

E
(
et�̂�+s�̂�

,D = k, J = k|D > 0
)
= n!

(m − 1)!(k − m − 2)!(n − k)!(1 − p0) ∫

𝜇

−∞ ∫

Xm+1∶n

−∞ ∫

𝜇

Xm+1∶n

×
[
∫

Xm∶n

−∞
e−tx 1

2𝜎
e

x−𝜇
𝜎

]m−1 [
∫

Xk∶n

Xm+1∶n

etx 1
2𝜎

e
x−𝜇
𝜎

]k−m−2

× et(n−k+1)xk∶n 1
2𝜎

e
xk∶n−𝜇

𝜎

(
1 − 1

2
e

xk∶n−𝜇
𝜎

)n−k
dxk∶n

× e
(

s
2 −t

)
xm∶n 1

2𝜎
e

xm∶n−𝜇
𝜎 dxm∶n

× e
(

s
2 +t

)
xm+1∶n 1

2𝜎
e

xm+1∶n−𝜇
𝜎 dxm+1∶n

=
k−m−2∑

l1=0

n−k∑
l2=0

[
p16,aMZ(1)

p16,a ,Z
(2)
p16,a

(t, s) + p16,bMZ(1)
p16,b ,Z

(2)
p16,b

(t, s)
]
.
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The last equation is obtained by using the binomial expansion.

In this case, if we are only interested in the marginal distribution of �̂�, we can then

focus only on Xm+1∶n and Xd∶n and consider that there exists m i.i.d. observations less

then Xm+1∶n and k − m − 2 i.i.d. observations between Xm+1∶n and Xk∶n. We then have

E
(
et�̂�

,D = k, J = k|D > 0
)
= n!

m!(k − m − 2)!(n − k)!(1 − p0) ∫

𝜇

−∞ ∫

Xk∶n

−∞

×
[
∫

Xm+1∶n

−∞
e−tx 1

2𝜎
e

x−𝜇
𝜎

]m [
∫

Xk∶n

Xm+1∶n

etx 1
2𝜎

e
x−𝜇
𝜎

]k−m−2

× etxm+1∶n
1
2𝜎

e
xm+1∶n−𝜇

𝜎 dxm+1∶n

× et(n−k+1)xk∶n
1
2𝜎

e
xk∶n−𝜇

𝜎

(
1 − 1

2
e

xk∶n−𝜇
𝜎

)n−k
dxk∶n

=
k−m−2∑

l1=0

n−k∑
l2=0

p∗
16MZ∗

p16
(t),

as required. ■
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Statistical Inference
for Two-Compartment Model Parameters
with Bootstrap Method and Genetic
Algorithm

Özlem Türkşen and Müjgan Tez

Abstract Two-compartment model has common usage in modeling stage of
dynamical systems. It is possible to consider the two-compartment model as a
regression model which is intrinsically nonlinear in parameters. Evaluation of the
nonlinear model parameters in statistical perspective will help to improve the
compartmental system. In this study, statistical inference of two-compartment
model parameters is achieved in respect to point estimation and interval estimation.
The point estimates of compartment model parameters are obtained according to the
nonlinear least squares (NLS) approach. Genetic algorithm (GA), a well-known
population-based evolutionary algorithm, is preferred as an optimization tool. The
main contribution of the study is obtaining bias-corrected point estimates and
bias-corrected accelerated confidence interval (CI) estimates of compartment
parameters. In order to obtain the CIs, sampling distribution of parameter estimates
is defined with the application of fixed-X nonlinear bootstrap method which pre-
serves the fixed nature of predictor variable. Two bootstrap methods are used for CI
calculations: (i) Percentile and (ii) bias-corrected accelerated (BCa). A simulated
data set and a real data set from the pharmacokinetic (PK) literature are chosen for
application purpose. It is seen from the results that bias-reduced point estimates and
sampling distribution of parameter estimates can be obtained by preserving the
time-dependent nature of the dynamical system by using fixed-X bootstrapping.
Besides, BCa method gives more realistic interval estimates than percentile method.
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1 Introduction

Compartment models are generally used for modeling of dynamical systems in
applied science, e.g., biomedicine, engineering, information science, and pharma-
cokinetics (PK). Among all, one of the mostly used fields of science is PK which is
defined as the study of the time course of drug absorption, distribution, metabolism,
and excretion. The compartment models are analytically proper to explain how the
concentration of a drug in blood plasma declines over time. In general, a com-
partment model is described in the analytic form of a system of ordinary differential
equations which leads to be poly-exponential form. From this point of view, a
compartment model can be considered as a nonlinear regression model which is
intrinsically nonlinear in parameters similar to studies of Wagner (1975), Lai
(1985), Seber and Wild (1989), Bonate (2011). The most common used approach
for parameter estimation of nonlinear regression model is nonlinear least squares
(NLS) approach which is based on the minimization of sum of squares error (SSE).
However, it is hard to obtain the estimates of compartment model parameters
analytically by using NLS approach since the normal equations become nonlinear
and typically intractable. In this case, compartment model parameter estimation
should be achieved numerically which simply means that the SSE is calculated for
many combinations of parameter values, and the combination that yields the least
sum of squares is selected as the solution.

In order to minimize the SSE, population-based derivative-free optimization
algorithm should be preferred as an optimization tool, e.g., genetic algorithm (GA),
particle swarm optimization (PSO), ant colony, and bee colony. These algorithms
are also called nature-inspired optimization algorithms in the literature (Yang
2014). The most popular of these algorithms is genetic algorithm (GA), developed
by Holland (1975), essentially forms the foundations of modern evolutionary
computing. The GA is a population-based heuristic algorithm which uses stochastic
search process to make exploration.

It is possible to obtain that the point estimates of compartment model parameters
by minimizing the SSE through GA in the event of nonlinear model assumptions
are satisfied, e.g., zero mean for errors, a finite constant variance, and uncorrelated
errors. However, in order to obtain interval estimation of parameters, it is necessary
to know sampling distributions of parameter estimates. Bootstrapping, first intro-
duced by Efron (1979), is mainly recommended for estimating sampling distribu-
tion. Its working principle is related to the Monte Carlo simulation-based statistical
inference. There are two types of bootstrapping: (i) parametric and (ii) nonpara-
metric. For nonlinear models, parametric bootstrapping is not recommended since
the distribution of errors is generally difficult to characterize. In contrast, the
nonparametric bootstrap method makes no assumptions concerning the distribution
of sample or model for the data. In nonparametric bootstrap, we assume that data
has empirical distribution and sampling distribution is estimated by selecting
resamples with replacement from the original sample. It should be noted that these
samples are assumed to be independent and identically (iid) distributed. The most
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useful reference about theory and applications of bootstrap is Efron and Tibshirani
(1994).

Wu (1986) and Midi (2000) explained how to use bootstrap methods in
regression models. In general, two methods exist for bootstrap resampling of
regression models. These are called random-X bootstrapping (paired bootstrapping)
and fixed-X bootstrapping (residual bootstrapping). In random-X bootstrapping, the
predictor variables are random and not under the control of experimenter. Bootstrap
samples are selected directly using the paired data. However, in fixed-X bootstrap-
ping, the predictor variables are fixed and under the control of experimenter.
Residuals are resampled with replacement to obtain bootstrap samples which pre-
serve the fixed nature of predictor variables. In PK studies, generally, time is
considered as predictor variable and treated as fixed in compartmental model.
Bootstrapping on residuals provides bias-reduced point estimation and more real-
istic confidence interval (CI) estimation for compartment model parameters by
preserving the fixed nature of predictor variable in PK field.

There are some different approaches for calculating the CI by using bootstrap-
ping. These approaches can be classified into three groups: nonpivotal, pivotal, and
test inversion. The simplest and the most common form is the nonpivotal method.
These methods are (i) percentile method, (ii) bias-corrected (BC) method, and
(iii) bias-corrected accelerated (BCa) method. The percentile method is the most
common method used to estimate the CI. It involves sorting the bootstrap estimates
from the smallest to largest and then finding the B α ̸2ð Þth and B 1− α ̸2ð Þth
observations. These values are declared the lower and upper bounds of CIs. Here, α
denotes the first type error probability. This method is criticized when the bootstrap
distribution is asymmetrical. The BC method was developed by Efron (1987) to
overcome some of the shortcomings of the percentile method. The BC method
offers better coverage if the bootstrap distribution is asymmetrical. While the BC
method corrects for bias, it does not correct for skewness. The skewness and bias
are both considered for CI estimation by the application of BCa method which is
proposed by Efron (1992).

In the literature, there are some studies for application of bootstrapping to PK
problems. Kundu and Mitra (1998) considered the estimation procedure of linear
compartment model parameters and they also applied two bootstrap CIs, percentile
and bootstrap-t methods, for interval calculations. Hunt et al. (1998) used boot-
strapping methods to obtain a measure of reliability of parameter predictions for a PK
model. Contreras and Walter (2000) presented three parameter estimation methods
for compartment models. They also bootstrapped the weighted residuals and used
BCa approach to obtain CI of parameters. Honda et al. (2008) used bootstrap method
for validity of PK model. Ogden and Jiang (2010) presented an application of
bootstrap algorithm to compartment model for parameter estimation. Some brief
examples about bootstrap application in PK field can be found in Bonate (2011).
Thompson (2012) presented bootstrap interval estimation including BCa for
two-compartment models with parameters estimated by iteratively reweighted non-
linear least squares. Burns et al. (2014) applied nonparametric bootstrap analysis to
estimate the CI of PK parameters without symmetric assumption. Thai et al. (2014)
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evaluated the performance of three bootstrap methods (case bootstrap, nonparametric
residual bootstrap, and parametric bootstrap) by a simulation study in nonlinear
mixed effects models with heteroscedastic error.

One of the main aims of the study is presenting the applicability of fixed-
X bootstrapping to obtain bias-corrected point estimates. The other aim is obtaining
unbiased CIs with the application of BCa through fixed-X bootstrapping to present
how important to consider skewness and bias for CI estimation. The rest of the
chapter is organized as follows: Some basic information about two-compartment
model is given and parameter estimation with GA is explained in Sect. 2. In Sect. 3,
bootstrap method is explained and bootstrap CI types are given in detail. A simu-
lated data set and a real data set from the PK literature are used for application
purpose in Sect. 4. In Sect. 5, conclusion is given with future work.

2 Analysis of Two-Compartment Model

Compartment models are commonly used modeling approaches which provide
good insight into the underlying behavior of most drugs in PK studies. The
two-compartment PK model with elimination from the central compartment is the
most common model used to define what the body does to the drugs. A block
diagram of two-compartment PK model is presented in Fig. 1.

In Fig. 1, the block diagram represents the two-compartment PK model with
first-order transport between the central and peripheral compartments. The
first-order drug elimination happens from the central compartment. Here, k12 is the
first-order transfer rate constant from the central compartment to the peripheral
compartment and has units of time−1, k21 is the first-order transfer rate constant
from the peripheral compartment to the central compartment and has units of
time−1, and kel is the first-order elimination rate constant from the central com-
partment and has units of time−1. After the drug injection to the central compart-
ment, based on the model given in Fig. 1, the rate of change of the amount of the
drug in the central compartment (Y) at any time is equal to the rate of drug transfer

Fig. 1 Block diagram of
two-compartment PK model
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from the peripheral compartment to the central compartment minus the rate of drug
transfer from the central compartment to the peripheral compartment, minus the rate
of drug elimination. This rate is described by the following differential equation:

dY
dt

= k21X − k12Y − kelY , ð1Þ

where X is the amount of the drug in the peripheral compartment. The integrated
equation of Eq. (1) is defined as a function of time

Y =
δ λ1 − k21ð Þ
λ1 − λ2ð Þ e− λ1t +

δ k21 − λ2ð Þ
λ1 − λ2ð Þ e− λ2t ð2Þ

Equation (2) contains two exponents. One exponent describes the distribution
process with the hybrid rate constant, λ1, and the another describes the elimination
process with the hybrid rate constant, λ2. As a result of integration process, the
following two relationships were obtained:

λ1 + λ2 = k12 + k21 + kel ð3Þ

λ1λ2 = k21kel, ð4Þ

where

λ1 =
1
2

k12 + k21 + kelð Þ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k12 + k21 + kelð Þ2 − 4k21kel

q� �
ð5Þ

λ2 =
1
2

k12 + k21 + kelð Þ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k12 + k21 + kelð Þ2 − 4k21kel

q� �
ð6Þ

Equation (2) can be simplified to

Y =Ae− λ1t +Be− λ2t, ð7Þ

where

A=
δ λ1 − k21ð Þ
λ1 − λ2ð Þ ð8Þ

and

B=
δ k21 − λ2ð Þ
λ1 − λ2ð Þ ð9Þ

in which δ is a constant related to ratio of the dose of the drug and volume of the
central compartment. The two-exponential model, given in Eq. (7) with the
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simplest form, is consistent with the theory of two-compartment model in which the
terms of exponential equations are directly translated to PK parameters.

2.1 Modeling Stage for Two-Compartment System

The two-exponential compartment model can be represented as a nonlinear
regression model as follows:

Yi = f ti, θð Þ+ εi, i=1, 2, . . . , n. ð10Þ

Here f is a nonlinear function, defined in Eq. (7); ti is the time; Yi is the drug
concentration in central compartment; θ is a vector of unknown compartment model
parameters denoted as θ= k12 k21 kel½ �′, and εi are random errors, assumed
εi ∼ iid 0, σ2ε

� �
, i=1, 2, . . . , n.

It is well known that the parameter estimates are reliable if the assumptions on
error terms are satisfied. In this study, it is assumed that the assumptions of error
terms are satisfied to apply the ordinary NLS approach. The estimation of com-
partment model parameter vector θ is obtained by minimizing the SSE given below:

φ θð Þ= ∑
n

i=1
Yi − f ti, θð Þ½ �2 = ∑

n

i=1
Yi − Ae− λ1ti +Be− λ2ti

� �� �2 ð11Þ

which is considered as objective function. In order to optimize the objective
function, given in Eq. (11), derivative-free optimization algorithms should be
preferred because of the nonlinearity.

2.2 Optimization Stage for Two-Compartment System

In optimization stage, GA, a well-known population-based metaheuristic algorithm,
is preferred to use. It has also been used for estimation of compartment model
parameters in the study of Türkşen and Tez (2016). The GA represents an intelli-
gent exploration of random search used to solve many nonlinear problems. It starts
with an initial population of artificial chromosomes with the size, npop. In each
generation, the fitness value or the objective function value of every individual in
the population is calculated and current population is composed. The best fitness
values in the population are selected by using selection operators, e.g., roulette
wheel selection and stochastic uniform, for reproduction. The selected individuals
are modified by using genetic operators, e.g., crossover and mutation. The cross-
over and the mutation operators are used with the crossover probability (Prcr) and
mutation probability (Prmut), respectively. Then, the current population is replaced

246 Ö. Türkşen and M. Tez



with the new population. The algorithm runs until the stopping condition, which
can be considered as maximum number of generations (maxgen), is satisfied. It
should be noted that the solution of the optimization problem with GA highly
depends on how the tuneable parameters, e.g., npop, Prcr, Prmut, and maxgen, are
chosen.

3 Application of Bootstrap Method
to Two-Compartment Model

3.1 The Nonparametric Bootstrap for Nonlinear
Regression Model

Briefly, the nonparametric bootstrap allows a researcher to make statistical infer-
ence without making assumptions about the form the population and without
deriving the sampling distribution explicitly. Therefore, the nonparametric boot-
strap method is more proper to apply for the two-compartment model which is
considered as a nonlinear regression model given in Eq. (10). It is clear from
Eq. (10) that predictor variable is time which is under the experimenter’s control. In
this case, application of fixed-X bootstrapping is more proper to obtain sampling
distribution of compartment model parameters’ estimates. Basically, the algorithmic
steps of the fixed-X bootstrapping can be given as follows:

Step 1: Fit the nonlinear model

Yi = f ti, θð Þ+ εi =Ae− λ1ti +Be− λ2ti + εi, i=1, 2, . . . , n ð12Þ

to the original sample of observations to obtain NLS estimate of θ denoted
as θ ̂.

Step 2: Calculate the observed residuals

ei = Yi − f ti, θ ̂
� �

, i=1, 2, . . . , n ð13Þ

Step 3: Resample the residuals ei, i=1, 2, . . . , nf g with replacement to obtain a
bootstrap sample e*i , i=1, 2, . . . , n

	 

. Then, by holding the predictor

variables as fixed, generate the bootstrap dependent variable as

Y*
i = f ti, θ ̂

� �
+ e*i , i=1, 2, . . . , n ð14Þ

It should be noted here that correcting for the mean is necessary in non-
linear case since the mean of the residuals is not guaranteed to be equal to
zero. Therefore, ei’s are resampled from the centered residuals
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e1 − e ̄, e2 − e ̄, . . . , en − e ̄f g instead of resampling from the observed
residuals e1, e2, . . . , enf g.

Step 4: Calculate the estimate of model parameters based on the bootstrap sample

Xi, Y*
i

� �
, i=1, 2, . . . , n which is denoted as θ*̂.

Step 5: Repeat the Steps 3 and 4 B times to obtain the bootstrap replications

θ*̂1, θ
*̂
2, . . . , θ ̂

*
B and bootstrap distribution of parameter estimates. Then, the

bias, variance, and mean squared error (MSE) of the parameter estimates
can be calculated by

ðiÞ dBias θ ̂
� �

= θ*̂ − θ ̂, θ*̂ =
1
B

∑
B

b=1
θ*̂b ð15Þ

ðiiÞ dVar θ ̂
� �

=
1
B

∑
B

b=1
θ*̂b − θ*̂

� �2
ð16Þ

ðiiiÞ dMSE θ ̂
� �

=dVar θ ̂
� �

+ dBias2 θ ̂
� �

=
1
B

∑
B

b=1
θ*̂b − θ ̂

� �2
ð17Þ

where θ*̂ denotes the bootstrap estimate of model parameters. The square root of
Eq. (16) is the estimate for the standard error of the parameter estimates. It is clear
that the bootstrap is a useful tool to obtain the estimates of some statistics, e.g., bias,
variance, and MSE. However, the bootstrap should not be used to compute point
estimates themselves. The computing point estimates may reflect biased estimation
from the samples since the sampling distribution of the bootstrap statistics is fre-
quently not symmetric. The bias-corrected point estimates of parameters, θãdj, can
be obtained as

θãdj = θ ̂− dBias θ ̂
� �

=2θ ̂− θ*̂. ð18Þ

In bootstrapping, a key question that often arises is how large B should be
chosen to be valid (Bonate 2011). All the researchers agree on that the larger B
leads to more accuracy, e.g., B should be at least 1000 for interval estimation.

3.2 Bootstrap Confidence Interval

The BCa method is proposed by Efron (1992) as a modification of percentile
method to adjust the percentiles for bias and skewness. This is achieved by using
two coefficients called bias correction and acceleration. The bias correction
coefficient adjusts for the skewness in the bootstrap sampling distribution.
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The acceleration coefficient adjusts for nonconstant variances within the resampled
data sets (Haukoos and Lewis 2005). The advantages of BCa method can be found
in Beyaztas et al. (2014) in detail. The algorithmic steps of the BCa method can be
given as follows:

Step 1: Let us assume that the bootstrap replicated estimates θ ̂*1, θ
*̂
2, . . . , θ ̂

*
B are

calculated.
Step 2: Count the number of member of B bootstrap estimates that are less than θ ̂,

calculated from the original data. Call this number r and set b=ϕ− 1 r ̸Bð Þ
where ϕ− 1 .ð Þ is the inversion of the standard normal distribution.

Step 3: Calculate the acceleration constant, denoted as a, based on jackknifing the

original data set, a=
∑n

i= 1 θ̂ − ið Þ − θ ̂̄ð Þ3
6 ∑n

i=1 θ ̂ − ið Þ − θ̄̂ð Þ2
� �3 ̸2 where θ ̂̄= ∑n

i=1 θ̂ − ið Þ
n . θ ̂ − ið Þ repre-

sents the value of θ ̂ produced when the ith observation is deleted from the
sample, called jackknife values of θ ̂.

Step 4: Compute the a1 =ϕ b− Zα ̸2 + b
1− a Zα ̸2 + bð Þ

� �
and a2 =ϕ b+ Zα ̸2 + b

1− a Zα ̸2 + bð Þ
� �

, where

ϕ is the standard normal cumulative distribution function.
Step 5: Locate the endpoints of the CIas lower* = B× a1½ �½ � and upper* = B× a2½ �½ �.

Here, the square brackets indicate rounding the nearest integer.

4 Application

In this section, a simulated data set (Wagner 1975) and a real data set (Ağabeyoğlu
1999) are used to present the bootstrap application for point estimation and interval
estimation of compartment model parameters. The estimates of the parameters are
obtained by minimizing the objective function φ, given in Eq. (11), via the GA. The
tuneable parameters of GA are given in Table 1.

Table 1 Tuneable parameter values of GA

Parameters Values

Population size (npop) 50
Maximum number of generation (maxgen) 100
Probability of crossover (Prcr) 0.90
Probability of mutation (Prmut) 0.01
Selection operator Roulette wheel selection

Crossover operator Single point crossover
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Matlab 7.9 is used for all calculations. In order to evaluate the prediction per-
formance of predicted models, root-mean-square error (RMSE) and mean absolute
percentage error (MAPE) metrics are used. These are defined as

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑n

i=1 Yi −Y ̂i
� �2r

ð19Þ

MAPE=
1
n
∑
n

i=1

Yi − Yî

Yi


. ð20Þ

In order to obtain the sampling distribution of parameter estimates, fixed-
X bootstrapping is applied. The CI of compartment model parameters is obtained by
using BCa method. The bootstrap sample size, B, is chosen equal to 1000 for
simulated and real data sets.

4.1 Simulated Data Set

Wagner (1975) studied on a simulated intravenous data set in order to see the effect
of bias on the estimates of k12, k21, and kel parameters. In this study, we use the
same data set as Wagner (1975) for the application of fixed-X bootstrapping to
obtain point estimates and interval estimates of parameters. For generating the
intravenous data set, the parameter values k12 = 1.162, k21 = 0.515, kel =0.038 and
δ=100 were used at times (in hour) 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 9, 11, 15,
18, 24. The appropriate statistical model can be written as

Yi =70.2419e− 1.7035t +29.758e− 0.0115t + εi, i=1, 2, . . . , 17 ð21Þ

where the error term, εi, is assumed independently distributed with zero mean and
0.05 standard deviation, denoted as εi ∼ 0, 0.05ð Þ. The generated drug concentration
values are obtained by using Eq. (21) and these values are assumed to be inde-
pendent. The drug concentration–time plot can be seen in Fig. 2.

The model parameters are estimated by applying the GA with the tuneable
parameters given in Table 1. The lower and upper bounds of the compartment
parameters are given in Table 2.

The parameter estimates obtained by GA and NONLIN, denoted as θ ̂ and
θN̂ONLIN, respectively, are given in Table 3.

In Table 3, the bias values of the parameter estimates are presented in paren-
thesis. It can be easily seen from Table 3 that the parameter estimates, obtained by
using GA, are quite unbiased than the estimates obtained by NONLIN method. It is
possible to say that the GA can be a preferable optimization tool. The main
advantage of using GA is that it does not need to define the initial values of
parameters as NONLIN in the beginning of the optimization process.
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In order to obtain bias-reduced point estimates of parameters and to get CIs of
parameter estimates, sampling distribution of parameter estimates is needed. It is
achieved by applying resampling to the sample with fixed-X bootstrapping. The
histograms for sampling distribution of parameter estimates obtained by fixed-
X bootstrapping are presented in Fig. 3a–c.

It can be seen from Fig. 3a–c that the sampling distributions are not normally
distributed. The point estimates, θ ̂, and bias-corrected point estimates, θãdj, are
presented in Table 4 with the estimates of bias, standard error, and MSE. The
presented results are averaged over 100 runs. Table 4 also includes the performance
metrics of the predicted model, denoted as RMSE and MAPE, for θ ̂ and θãdj.

It can be easily seen from Table 4 that model prediction performance is better
with the θãdj than θ ̂. Furthermore, bias, standard error, andMSE estimates of θ ̃adj are
smaller than the θ ̂’s.

Fig. 2 The drug
concentration–time plot

Table 2 Bounds of the
compartment parameters

Parameters k12 k21 kel
Lower bounds 0 0 0
Upper bounds 2 1 1

Table 3 Point estimates and
bias values of parameters

Parameters Point estimates
θ θ ̂ θ ̂NONLIN
k12 1.1893 (0.0273) 1.853 (0.691)
k21 0.5372 (0.0222) 0.797 (0.282)
kel 0.0409 (0.0029) 0.068 (0.03)
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For interval estimation of the θ ̂, percentile and BCa methods are applied. The
percent coverage and average width of intervals are presented in Table 5. It is seen
from Table 5 that the BCa method is more preferable than the percentile method for
interval estimation of compartment model parameters due to having higher percent
of coverage and smaller average width.

4.2 Real Data Set

The data set, also studied by Türkşen and Tez (2016), is about the amount of the
drug concentration in plasma given by Ağabeyoğlu (1999). The time–concentration
values are given in Table 6. It should be noted here that the Cp values are assumed
to be independent.

(a) (b) (c)
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Fig. 3 Histograms of the sampling distributions of two-compartment model parameters estimates:
a k1̂2, b k2̂1, and c kêl

Table 4 Point estimations and the estimates of bias, standard error, and MSE

Point estimates Estimated statistics for θ̂
θ θ̂ θ̃adj Bias SE MSE

θ ̂ θ ̃adj θ ̂ θ ̃adj θ ̂ θ̃adj
k12 1.1893 1.1567 0.0273 0.0053 0.0356 0.0330 0.0020 0.0011
k21 0.5372 0.5120 0.0222 0.0030 0.0285 0.0273 0.0013 0.0008
kel 0.0409 0.0382 0.0029 0.0002 0.0035 0.0036 ∼0 ∼0
RMSE 0.2268 0.0593
MAPE 0.0056 0.0016

Table 5 Percent coverage
and average width of CIs

Parameters Percent coverage Average width
θ Percentile BCa Percentile BCa

k12 0.14 0.35 0.1795 0.1344
k21 0.30 0.55 0.1347 0.0362
kel 0.60 0.95 0.0145 0.0063
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According to the drug concentration–time plot in Fig. 4, the concentration
values are not linearly dependent on time.

The lower and upper bounds for the two-compartment model parameters are
given in Table 7.

By applying the fixed-X bootstrapping to the data set given in Table 6, the
bias-corrected point estimates, θãdj, with the estimation of bias, standard error, MSE
values of parameter estimates, θ ̂, and sampling distribution of the estimates are
obtained. The obtained point estimates and estimated statistics for θ ̂ are presented in
Table 8. Table 8 also includes the performance metrics, RMSE, and MAPE, of the
predicted model for θ ̂ and θãdj. It can be easily seen from Table 8 that MAPE values
are equal and RMSE values are similar for point estimates. Even though one can
prefer to use one of the point estimates according to the model prediction perfor-
mance metrics, θãdj is preferred for point estimates of compartment model
parameters since the unbiased point estimates are the most preferable in PK studies.

The histogram of the sampling distribution for the estimates of parameters is
shown in Fig. 5. Figure 5a–c represents the histograms of the parameter estimates,

Table 6 Drug concentration–time values (Ağabeyoğlu 1999)

No 1 2 3 4 5 6 7 8 9 10 11 12 13

t (hr) 0 0.25 0.50 0.75 1 2 3 4 6 8 12 16 24

Cp (mg/ml) 16.4 14.2 12.53 11.17 10.09 7.56 6.44 5.85 5.16 4.65 3.18 3.12 2.09
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Fig. 4 The drug
concentration–time plot

Table 7 Bounds of the
compartment parameters

Parameters k12 k21 kel
Lower bounds 0 0 0

Upper bounds 1 1 1
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k1̂2, k2̂1, and kêl, respectively. The normality test results of sampling distributions
are presented in the bottom of Fig. 5a–c. It can be easily said from the test results
that the distribution of parameter estimates is not normal. Here, p and α represent
the calculated probability and nominal significance level, respectively.

The bootstrap CI, obtained by the application of BCa, for parameter estimates is
given in Table 9. From Table 9, it is clear that the CI of BCa gives more realistic
results than percentile method since the bias and skewness are considered during
the calculations.

Table 8 Point estimations and estimates of bias, standard error, and MSE

Point estimates Estimated statistics for θ ̂
θ θ ̂ θ ̂adj Bias SE MSE

k12 0.5056 0.5010 0.0046 0.0186 0.000368
k21 0.4773 0.4654 0.0119 0.0351 0.00137
kel 0.12 0.1191 0.0009 0.0048 0.0000242
RMSE 0.174 0.175
MAPE 0.028 0.028
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Fig. 5 Histograms of the sampling distributions of two-compartment model parameters estimates:
a k1̂2, b k2̂1, and c kêl

Table 9 CIs and widths for
parameter estimates with
percentile and BCa methods

Confidence interval Width
θ Percentile BCa Percentile BCa

k12 [0.1134 0.1315] [0.1134 0.1311] 0.0181 0.0177
k21 [0.4803 0.5528] [0.4774 0.5481] 0.0725 0.0707

kel [0.4202 0.5683] [0.4075 0.5403] 0.1481 0.1328
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5 Conclusion

In this study, we have considered the two-compartment model as a nonlinear
regression model. The point estimates of parameters are obtained according to the
NLS approach via GA, assuming that the model assumptions are satisfied. In order
to obtain bias-corrected point estimates and sampling distribution of parameter
estimates, fixed-X bootstrapping is applied by preserving the fixed nature of the
predictor variable in nonlinear regression model. Percentile and BCa methods are
used for CI calculations. We have performed numerical study on simulated and real
data sets. The results of the numerical studies can be summarized as below:

(i) GA is a convenient optimization tool for nonlinear problems;
(ii) If the data is time-dependent and small-sized, fixed-X bootstrapping should

be preferred to obtain sampling distribution of estimates;
(iii) BCa is a proper method which gives more realistic CI by adjusting the

skewness in the sampling distribution and nonconstant variances within the
resampled data sets.

For future work, it will be more suitable to consider the correlation structure of
response measurements during the modeling stage of nonlinear problems. Besides,
in compartmental modeling, nonlinear mixed effects models (NLMEM) should be
applied for modeling of more than one response measurements to get more realistic
point estimation and interval estimation of parameters by using the bootstrap
methods.
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