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Preface

“Record, Record, Record!”, “The oldest Olympic Record was beaten!”, “New
World Record result in high-jumping!”. Every day, we wait for such kind of
headlines in newspapers, on the Internet, in TV announcements.

We hurry to call our friends and tell them about a new record value of the
summer temperature in California, which was fixed yesterday, and about the highest
level of today’s earthquake somewhere in India.

We collect all editions of the Guinness Book of Records. Not only the Guinness
Book but all tables of record results in various domains of human activities which
are very popular among citizens all over the world.

Indeed, we regard any record result of known or unknown persons as the pro-
gress of all humankind (and, in particular, as our own progress).

It fell out that the record topic has become very popular among specialists in
probability and mathematical statistics. A lot of papers (beginning with Chandler
(1952)), in which various aspects of the mathematical theory of records were
considered, have appeared during the past 60 years. Some monographs have been
published on the records topic (see, for example, Ahsanullah (1995), Ahsanullah
and Nevzorov (2001a), Arnold, Balakrishnan and Nagaraja (1998), Nevzorov
(2000, 2001)).

Our readers can ask: “What is the reason for publishing a new book on records
when there are so many monographs on this topic?”

The matter is that each coming year gives many new results on record times and
record values. Some new record schemes have been suggested by various authors.
A number of new methods for studying records have been presented in new pub-
lications. That is why we offer to our readers a book, which includes, in particular,
some new materials about records. This monograph will help you to clear the
situation with the modern theory of record values. You will find a lot of examples
and exercises here, which will enable you to get a good experience of becoming
familiar with the theoretical part of this theory.

The theory of records is connected very closely with the theory of order sta-
tistics. In some sense our book can be considered as the continuation of the
Ahsanullah, Nevzorov, and Shakil (2013) edition, which provides an introduction
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viii Preface

to the world of order statistics. We suggest a lot of exercises, for which solutions are
given at the end of the corresponding chapters. These exercises will help our readers
to determine their level of comprehension of the material presented. Indeed, in order
to understand the definitions and results given in the book, it is not necessary to
read preliminarily any other book on order statistics. Some useful material from the
theory of order statistics is presented in the first part of our book.

You are welcome to open the world of records for yourself!

With great pleasure we recall our friends N. Balakrishnan, P. Deheuvels,
H.N. Nagaraja to whom we express our deep gratitude. The exchange of ideas and
the joint work with our above-mentioned colleagues are of great importance to our
scientific and publishing activities. We are also grateful to our family members for
their constant encouragement and support.

We wish to express our gratitude to Prof. Chris Tsokos for valuable suggestions
about the manuscript. The first author thanks Z. Karseen and K. Jones for inter-
esting discussions at a meeting in Athens, Greece, for the publication of this book.

The work of the first author was partially supported by a summer research grant
and sabbatical leave from Rider University. The work of the second author was
partially supported by Saint Petersburg State University grant N 6.38.672.2013.

Mohammad Ahsanullah
Valery B. Nevzorov
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Chapter 1

L
Introduction
Let x;, x5, ..., x,, denote results of n participants, which were registered in
some sport competition. These values can be presented in the increasing order as
Xt <Xon < X1 <X, Where xq, = min{xy, x,, ..., x,,} and x,,,, = max{xy, xp,

..., X,}. In some competitions (take, for example, any running distance) x; ,, X2,
and x3 , are correspondingly the results of the gold, silver and bronze prizewinners.
For other type of competitions (say, for high jumping or long jumping) x,, ., X,—1
and x,, , are the best results. Indeed, after finishing this competition we deal with
some concrete values xy, xp, ..., X, and X; ,, X2, ..., X, ,. Before the competition,
the future results of the participants are unknown to us, and we can consider these
results as random values X;, X, ..., X,,. Indeed, values X; , = min{X,, X5, ..., X}
and X, ,, = max{X,, X, ..., X,,}, as well as other ordered values X, < - < X, ,,
are random. Up to the beginning of the competition all sport newspapers will
discuss the probable realizations of random values X, , < - < X, , and the chances
of a particular participant to become the winner, i.e. his/her chances to reach the
result X, (or X,, ).

This simple example shows the necessity of knowing how to work with the
so-called order statistics X; , < - < X, , and their realizations x; , <--* <x,, .

Below some definitions connected with order statistics are given.

Let X;, X>, ..., X,, be initial random variables. The set of the observed values {x;,
X3, ..., X,,} of random variables X;, X>, ..., X,, is called a realization of these X’s. In
the most part of the book we suppose that X;, X,,..., X,, are independent identically
distributed (i.i.d.) random variables, or simply we can say in this situation that X,
X5, ..., X, present n independent observations on X where X is a random variable
having a certain distribution function (d.f.) F.

Then the combination X;, < X,, < -+ £ X,,,, denotes the variational series
based on random variables Xy, X5, ..., X,,. If X’s are independent and identically
distributed one can say that X , < Xo, < *** £ X,, , is the variational series based on
a sample X, X5, ..., X,,.

Elements Xy ,, 1 < k < n, are called order statistics (order statistics based on a
sample X\, X», ..., X,,; order statistics from d.f. F; ordered observations on X). We
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2 1 Introduction

denote the observed values of X1, Xop, -, Xy as above, Xy, X2,y .., Xy and
call them realizations of order statistics. Let us note that X, ,, = m(n) = min{X,, Xa,
e, Xp} and X,,,, = M(n) = max{Xy, X5, ..., X,,}, n =1, 2, .... Rather natural is the
following equality:

Xl,n +X2,n+"'+Xn,n :X1+X2+"'+Xn-

Together with the sample X\, X», ..., X, it is naturally to consider the empirical
(or sample) distribution function

. 1 n
Fn(x) = ;Z 1{ngx}.
k=1

Here 1x < ) is a random indicator, which equals to 1 if X < x and 10 0 if X > x.
Let us mention that F};(x) can be expressed in terms of order statistics X, as
follows:

Fi(x) =0, if x<Xi,
Fr(x) =k/n, if Xpn <x<Xprip, 1 <k<n—1,

and

Fi(x)=1,if x> Xy,

Usually a random sample X\, X», ..., X,, is accompanied by the corresponding
vector of ranks (R(1), R(2), ..., R(n)), where

R(m) = Z Lix,>x3,m=1,2,...,n
k=1

These ranks provide the following equalities for events:
{R(m) =k} = {Xm :Xk,n}, m=12,...nk=12,...,n.

Together with ranks we can use the so-called antiranks A(1), AQ2), ..., A(n),
which are defined by equalities

{4(k) =m} = {kan:Xm}, m=12...nk=12,...n

One more type of ranks is presented by sequential ranks. For any sequence of
random variables X1, X, ... we introduce sequential ranks p(1), p(2), ... as follows:

p(m) = Z l{XmZXk}’ m = 172) e
k=1
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Sequential rank p(m) shows the position of a new coming observation X,, among
its predecessors X1, X3, ..., Xjn—1. If independent random variables X, X5, ..., X
have the same continuous distribution then it is possible to see that foranym=1,2, ...

P{p(m) =k} =P{Xpm =Xym} =1/m, k=1,2,...,m.

Here we use the fact that if X’s are independent and have continuous distributions
then any two of them can coincide with zero probability and the situation of
symmetry, which provides that all m events {X,, = X1,,}, ..., {X,n = X, } have the
same probability.

The more complicate theory of order statistics and all types of ranks can be
found in Ahsanullah and Nevzorov (2001a, 2005), Ahsanullah, Nevzorov and
Shakil (2013), Arnold and Balakrishnan (1989). In Chap. 2 we will present some
results for order statistics, which our reader will recall working with record times
and record values.

Now let us come back to the results of the participants of some sport distance
(say, 100 m running). Each year hundreds of competitions are organized, in which
thousands of sportsmen run 100 m. Even the most serious lover of the field athletics
cannot get and investigate all the results. Indeed, it is possible to operate with the
results of participants of the Olympic Games and World championships but it is
impossible to have information about participants of all these competitions.

Meantime there are the most interesting results, which can be easily found in a
number of sport editions—world records, records of Olympic Games, continental
and countries record values. Indeed, sport records are very popular, but record
values in any domain of human activities are also interesting for millions of citizens
worldwide.

Let us come back to the sequence of random variables X;, X5, .... There are two
classical types of record values—upper and lower records. We say that X is the
upper record value if

X > M(k — 1) = max{Xl,Xz, .. -7Xk—1}7 k=23,...,
and X, is the lower record value if
Xk <m(k — 1) = min{Xl,Xz, .. .,Xk_l}, k= 2,3, .

In the both situations X; can be considered as the first record value (upper or lower).
In some sense the theory of lower records is analogous to the theory of upper
records. Really, if we can operate with upper records in the sequence X;, X5, ...,
then the corresponding results can be transformed easily for the sequence Y, = —Xj,
Y, = —X,, .... Really, in this situation the upper records for X’s are transformed to
the lower records for Y’s. Hence it is enough to investigate the upper records only.
The theory of upper records will be given below. Sometimes we will formulate the
corresponding results for the lower records.
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Usually when X’s have continuous distributions it is not necessary to take into
account the situations when a new coming observation coincides with the previous
record value. The matter is that in this case any two X’s can coincide with zero
probability. For the case when X’s have discrete distributions and some X’s can
coincide with nonzero probabilities, we will consider two options—strong records
and weak records. We deal with a strong record if a new coming X is more than the
last record value. In some schemes we announce as a record the observation, which
is more (or even equal!) than the previous record value. In such situation we deal
with the so-called weak records.

Note that the investigation of records in sequences of random variables having
continuous or discrete distributions requires different methods. The most part of the
book will be devoted to the situation when initial random variables have continuous
d.f.’s and in one chapter (Chap. 6) we will deal with discrete distributions of X’s.

Upper record values will be denoted as X(1), X(2), ..., X(n), ... and lower
records will be denoted as x(1), x(2), ..., x(n).

We will use indicators & such that & = 1, if X is an upper record value, and
& = 0 otherwise. Note that then N(n) = & + & + -+ + &, denote the number of the
upper records among random variables X, X5, ..., X,, n =1, 2, ....

Together with record values we will investigate record times. We use the
symbols L(n) and I{(n), n = 1, 2, ..., correspondingly for upper and lower record
times. Note that the following relations are valid for the upper record times:

L(1) = 1,{L(n) = m} = {N(m — 1)< n, N(m) = n},X;,) = M(L(n)) = X(n).

The analogous equalities are valid for lower record times I(n).

If we recall sequential ranks p(n), n = 1, 2, ..., then one can see that X,, is the
upper record value if p(n) = n and X, is the lower record value if p(n) = 1.

Hence it is not difficult to see that the subject of record values and record times is
tied very closely with the order and rank statistics.

See Chap. 2 for some useful definitions and results connected with order
statistics.

Definitions, distributions and moment characteristics of record values are given
in Chap. 3. In this chapter we also introduce some generalizations of the classical
records—the so-called k-th record values.

Different results for record times are presented in Chap. 4.

There are some continuous distributions being the most popular in the proba-
bility theory, such as normal, uniform, exponential, logistic, Weibull. We discuss
the behavior of record values in the sequences of random variables having these and
some other popular types of probability distributions in Chap. 5.

Indeed, we do not forget that when we operate with records for random variables
with discrete distributions we are to use a technique, which differs from the method
that helps to work with records in the case of continuous distributions. The cor-
responding methods for discrete distributions are discussed in Chap. 6. In particular,
our reader will find here some important formulae for records generated by
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geometrically distributed random variables. Also she/he will understand the dif-
ference between strong and weak record values.

As mentioned above, sometimes we can deal with some record values x(1) < x
(2) < *** < x(m) only (instead of all observations xy, X, ..., x,), and we must apply
this set of record observations to solve some statistical problems; for example, very
often we need estimating parameters of the sample distribution. This problem is
discussed in Chap. 7. Some useful methods which allow us to predict the values of
future records are also given there.

In one more part of the book (Chap. 8) our reader will find different charac-
terizations of distributions by properties of record values. Some characterizations
based on regression equalities for records, on independence properties of record
statistics, on some moment relations for record values are presented there.

Indeed, almost all formulae for distributions and moment characteristics of X(n),
L(n), N(n) are very complicate (especially under large values n). In this situation,
different limit theorems (when n tends to infinity) allow us to get the simple
asymptotic expressions for these distributions and the corresponding moments.
Different asymptotic results for distributions of records can be found in Chap. 9.

It was announced above that one of the reasons to write this book is to present
the new results for records. The great part of these results is connected with some
non-classical record schemes. We discuss the “fresh” record models in Chap. 10.
For example, records in the F”-scheme, records with restrictions, records with
confirmation and the so-called linear draft model are presented there.
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Chapter 2
Order Statistics

2.1 Order Statistics and Their Distributions

Let X}, X5,..., X,,, ... be some random variables and let X, , < X,, <--- <X, ,
denote the corresponding variational series based on random variables X, X>,. . ., X,,.
Elements X ,,, 1 <k <n, are called order statistics. Observed values of X; ,, X5 ... . .,
X, .- we denote xy ,,, X p,- - ., X, and call a realization of order statistics. Let us note
that

Xl,n = m(n) = mil’l{Xl,Xz, .. .,Xn}
and
Xon =M(@n) = max{X;,Xs,.. . Xu},n=1,2,...

In the classical theory of order statistics (see, for example, David and Nagaraja
(2003), Ahsanullah et al. (2013)) the initial X’s present independent and identically
distributed random variables. Below we in the most part of situations also will deal
with such types of random variables.

Hence consider now independent random variables X;, X,,..., X,, with some
common distribution function (d.f.) F. It enables us to consider the set {X;, X»,.. .,
X, } as a sample of size n taken from the population distribution F. The set of the
observed values {x;, x,... x,} of random variables X;, X5,..., X,, is called a
realization of the sample. In this case elements X ,, 1 < k < n, that is order statistics
based on sample

X1, <Xo,<... <X, , can be identified as order statistics from this d.f. F.

It follows from the definition of order statistics that

P{Xin<Xp,<---<X,,} =1 (2.1.1)
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8 2 Order Statistics

Moreover it is easy to show that if F'is a continuous d.f. then equality (2.1.1) can
be sharpened and written as

P{Xiy <Xon < -+ <Xpu} =1, (2.1.2)

Indeed, if X’s have a discrete d.f. then (2.1.2) is not true. Consider the corre-
sponding example in Exercises 2.1.1 and 2.1.2.
Exercise 2.1.1 Let X;, X5,..., X,, be independent random variables taking two
values 0 and 1 with probabilities 2. Find
Pn = P{Xl,n :X2Jl = :Xn,n}7 n= 172a---a

to convince yourself that p,, # 0.

Exercise 2.1.2 Let X;, X,, X5 be independent random variables, having the geo-
metric distribution, that is

P X=m}=(1-p)p",m=0,1,2,....
Find

P{X113 < X273 < X3_]3}.

As one sees there are two cases (F' is continuous and F is discrete) which need
different approach for writing distributions of order statistics.

Let us suppose below that X’s are independent random variables having a
common continuous d.f. F.

There are rather simple formulae for order statistics X, ,, and X,, .. Really,

Fua() = P{Xop < x} = P{Xi <x,.. X, <} (2.13)
= P{X; <x}...P{X, <x} =F"(x), 1.
where
F(x) = P{Xy <x}k=1,2,....n.

Analogously we obtain that

Fiu(x) = P{Xi, <x} =1-P{Xy, > x}
=1-P{X1, >x,..,.X, >x}=1—(1-F(x))".
(2.1.4)

Let us note that (2.1.3) and (2.1.4) are valid for any d.f. F (continuous and
discrete).
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Exercise 2.1.3 Find the joint d.f.

Fl,n,n(xvy) = P{Xl,n < X, an < y}

of order statistics X; , and X, ,,.

Exercise 2.1.4 Consider the case when X;, X,,..., X,, are independent random
variables with probably different d.f.’s F, F»,. .., F, and find in this case the d.f.’s
of m(n) = min{X;, X,..., X,,} and M(n) = max{X;, X>,..., X,}.

If our initial X’s have probability density function (pdf) fix) then it is the fol-
lowing method to write the pdf f; ,(x) and d.f. F; ,(x) of X, 1 < k < n. To find pdf
we must consider the situation, when one of our n X’s takes value x and exactly
k — 1 of the rest X’s are less than x. Thus we get easily that

N () - P ). (219)

Jeal) = G — s

Then
Fin(x) = /fkn(y)dy = n—'/ (F)) (1= F()" " f (y)dy
’ ’ (k—1Dl(n—k)!
0 0
= Ip(x)(k,n —k+1),
(2.1.6)
where
I(a,b) = ! /ﬂ*lu 0P dr
' B(a,b)
0
denotes the incomplete beta function.
Note that equality
Fk,n(x) = IF(X)(k,n—k—i—l), (2.1.7)

which is given here, was proved only for X’s having some pdf f{x).
What shall we do in the general situation? How to prove that (2.1.6) is valid for
any d.f. F? It appears that it is enough to take into account the following two facts.

(a) If we consider the uniform U(0,1) sample U,, Us,..., U, with

P{Uy<x} =x, 0<x<1,k=1,2,...,n,

and the corresponding order statistics U, ,, < U, < - -+ < U, ,, then it follows
from (2.1.7) that
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P{Uin < x} = L(k,n—k+1),0<x<1. (2.1.8)
(b) Now if we compare the uniform Uy, order statistics and the order statistics Xy ,
from any d.f. F(x), then it is known that X; ,, can be presented as follows:

G(Ux,n) = Xin(in distribution), (2.1.9)

where G is the inverse of F.

Hence it follows immediately from (a) and (b) that relation (2.1.7) is valid for
any d.f. F.

When we want to consider joint distributions of some order statistics we must
work with complicate expressions even in the case of small values of the sample
size n. There are rather simple formulae in the situations when the initial random
variables have some density function f(x). In this case the joint density function of
all order statistics X, ,,, X5 .- - ., X, has the following form:

n
f1o pn(X1, 22, -+, %) = n! Hf(xk), —0<X <X <. .. <x, <00 (2.1.10)
k=1
and
fiz, (X1, X2, ..., x,) = 0, otherwise.

It can be found from (2.1.10) that the joint pdf

of order statistics

where

n!
ﬁc(l)k(Z) ..... k(r):n(xtha ,)Cr) = +1
IT (k(m) —k(m — 1) — 1)!
m=1
r+1 r
[T F ) = Flona)) D T Gon),s
m=1 m=1
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ifxi<x<---<ux, andfk(l),k(z)’. -, k(r):n (xl, X2, . ., X,) = 0, otherwise.
In particular, if r =2, 1 <i<j <n, and x; < x,, then the joint pdf
fijn (X1, x2) of two order statistics is given by the following equality:

n!
Jun1%2) = G G S = i =)

(F(x1)) ™ (F(ox) = FOe)Y ™71 (1 = F(2))" 7f (1) (32).
(2.1.12)

To understand the level of complication of the formulae for the joint distribu-
tions in the general case we suggest our reader the corresponding expression for the
joint d.f. of two order statistics X,., and X;,, | <r <s < n (below x| < x,):

n n—i

Froalinnin) =Y. Y s () (Pl = F)) (1 = Pl
i=r j=max{0,s—i} ¥’ :

(2.1.13)

There are some situations when it is possible to get rather simple expressions for
joint distributions of order statistics. For example, if one considers probabilities

P{yl <Xl.n lea y2< XZ,n S)Cz, Tty yn< Xn,n an}
for any values
—0 <Y <X << < - Ly, <xy <00,

then it can be obtained that the corresponding equality has the form

P{yi <Xip <x1, 92 < Xop <X2yevy Yo < Xpp < X}
= ! [[ (F(s) = F(3).- (2.1.14)
k=1
Exercise 2.1.5 Let X, X,,..., X, be a sample of size n from a geometrically
distributed random variable X, such that
P X=m}=(1-p)p",m=0,1,2,....
Find

P{X1pn > r, Xpn <s}, r<s.
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2.2 The Classical Representations for Order Statistics

It was mentioned above that ordered random variables X; , < X,, <--- <X, , are
dependent. Indeed there exist essentially more methods in the probability theory to
work with independent variables than with dependent ones. Hence different pos-
sibilities to express dependent random variables in terms of independent values are
convenient for the future investigation. There are corresponding expressions for
some types of order statistics, which will be presented below. We give these results
without their proof, which can be found, for example in Ahsanullah et al. (2013).

In the sequel we will use the special notation U, < --- < U,,,n=1, 2,..., for
the standard uniform order statistics (the case when X’s have d.f. F(x) = x,
0 < x < 1) and the notation Z,, < --- < Z,,, n =1, 2,..., for the standard
exponential order statistics (here F(x) = 1 — exp(—x), x = 0).

Representation 1 The following expression is valid for the uniform order statistics
under any n =1, 2,.. .

(Ulﬁn,...,Unﬁn)i( S S”), (2.2.1)

SnJr]. ’Sn+1
where
Sp=vi+va+-Fv,n=12,...,

and vy, v,,... be independent random variables having the standard E(1) expo-
nential distribution.

Remark 2.2.1 Moreover, sometimes it can come in useful that for any n =1, 2,. ..

the vector
( 5 s, >
Sps1” 7 Su

and the sum S§,,,, are independent.

Remark 2.2.2 Representation 1 can be also rewritten in the following useful form:

(Ul,na U2,n - Ul,m sy Un.n - Unfl,n) é i P tn
' Vit Ve Vit Ve

(22.2)

Exercise 2.2.1 Show that the range
T(1,n) = M(n) —m(n) = Uy, — Uy p,

has the same distribution as the order statistic U,,— ,,.
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Representation 2 Using the same terms as above we can write that the equality

d
(Ulﬁn, ce U,”,) =(S1y. ., Sul S = 1), (2.2.3)
also holds, i.e., the distribution of the vector of uniform order statistics coincides
with the conditional distribution of the vector of sums S;,. .., S, given that S,.; = 1.

Representation 3 Let W;, W,,... be independent uniformly distributed on [0,1]
random variables. Then the next equality is true for any n = 1, 2,.. .

1/2

(Ul,m UZJI) s Un,n) é(‘/Vl W21/2 . -W,:K(ln_UW,l/”, W2 .. .W’:£<1n_1)W’;/”7 . Wil/n) .

(2.2.4)

Exercise 2.2.2 Show that for any n = 2, 3,.. ., ratios
k
Vk = (Uk,n/Uk+l,n> ) k= 1) 27 - N
where U, , = 1, are independent and have the same uniform distribution on [0,1].

Now we will show that the exponential order statistics Z; ,, also can be presented
in very convenient form.

Representation 4 Let again v;, va,. .., be independent random variables having
the standard E(1) exponential distribution. Then the following result holds for the
exponential order statistics and any n = 1, 2,...:

v v V. v V Vp—
(Zl,rnZZ,VH'-'aZn,n)i(_l;_l+ 2 7"'7_1+ 2 ++ l+vn)-
n n n—1 n n—1 2
(2.2.5)

Remark 2.2.3 1t follows from (2.2.5) that normalized differences
(l’l —k + 1)(2](’,, — Zk—l‘n)a k= 1,2, e n,

where Z;,, = 0, are independent and have the same exponential E(1) distribution.

Exercise 2.2.3 For exponential order statistics Z; ,,, Z5 p,,. - -, Z,,.,, Show that statistics
Z,, and

L= (n - I)Zn,n - ZlA,n - Z2,n — T Lp—-1n
are independent.
Our reader can ask if the useful representations exist for these two distributions

(standard uniform and standard exponential) only. Indeed, it is not difficult to
rewrite the corresponding relations for any representative of these families of
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distributions. The matter is that if X’s have some standard distribution (uniform or
exponential, as in our situations) then any Y’s which belong to the same family of
distributions can be expressed via X’s in the form Y = aX + b, where a > 0 and
—00 < b < 00, and the corresponding order statistics Y, can be presented as

YkA,n = an,n + b

It means that all these representations can be rewritten easily for any uniform or
exponential distributions.

Moreover the given results for Uy, and Z;, can be rewritten for order statistics
from arbitrary distribution.

For any d.f. F we determine the inverse function

G(s) = inf{x: F(x)>s}, 0<s<1. (2.2.6)

Exercise 2.2.4 Let F(x) be a continuous d.f. of a random variable X. Show that in
this case

F(G(x)) =x, 0<x<1, (2.2.7)

and it means that U = F(X) has the uniform distribution on interval [0,1].

Remark 2.2.4 Relation (2.2.7) above is true if F is any continuous d.f. Indeed, this
equality fails if F has jump points, since then the values of F(X), unlike U, do not
cover all interval [0,1]. But it is not difficult to show that the dual equality

G(F(x)) =x, 0<x<]l, (2.2.8)
holds for any x, where F(x) strongly increases. Thus, presentation

4

X=G(U), (2.2.9)

holds for any random variable, while the dual equality

4

F()%u (2.2.10)

is valid for random variables with continuous distribution functions only.

Taking into account equalities (2.2.9) and (2.2.10) one can obtain the corre-
sponding relations which allow to represent any order statistics X; , < --- <X, ,, via
the uniform order statistics U, < --- < U,

Since d.f. F and its inverse G are monotone they don’t disturb the ordering of the
initial X’s. It enables us to get the following presentations which correspond to
equalities (2.2.9) and (2.2.10).
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Representation 5 If F is a continuous d.f. then

(F(X1,),- o FXup)) Z(Ui s -, Uny). (2.2.11)

Representation 6 Let F be any d.f. and G be its inverse. Then the following
equality

Xt Xun) 2(G(UL), -, G(Uny)), (2.2.12)
is true.

Letnow X;,<---<X,,and Y, <--- <Y, be order statistics corresponding
to an arbitrary d.f. F and a continuous d.f. H. Let also G be as above the inverse of
F. Combining relations (2.2.11) for Y’s and (2.2.12) for X’s, one gets one more
important result.

Representation 7 The following equality ties two sets of order statistics:

(Xins - Xon) Z(G(H(Y1))s - - s G(H(Y)))- (2.2.13)

Example 2.2.1 For instance, if we compare arbitrary order statistics X ,,. .., X,
and exponential order statistics Z; ,,. .., Z, ,, then

H(x) =1—exp(—x), x >0,
and (2.2.13) can be rewritten as

Kinso Xun) £(G(1—exp(=Z1n)),- - G(1 —exp(=Z,0))).  (2.2.14)

Remark 2.2.5 Indeed, the results analogous to (2.2.13) are valid for any monotone
increasing function R(x) (no necessity to suppose that R is a distribution function).
Namely, if

Xk :R(Yk),kz 1,2,...,]’1,

then the following relation is true:

(Xl,rn .. ~7Xnn) % (R(Yl,n)a .. -aR(Yn n)) (2215)

y y

If R is a monotone decreasing function, then the transformation R(Y) changes the
ordering of the original ¥’s and we have the following equality:

Xins - Xun) £ (R(Ynn),- - R(Yi,))- (2.2.16)
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Thus, equalities (2.2.12) and (2.2.14) give opportunity to express any order
statistics via independent terms. The following example gives one of the possible
presentations.

Example 2.2.2 One can express distributions of arbitrary order statistics Xj,
(related to some d.f. F) as follows. If G is the inverse of F and v;, v,,... are
independent exponentially E(1) distributed random variables, then

d i+t d 4 V2 Vk
X, £l ———— )V ELgGl1= = AT, S
ko <v1+-~~+vn+1> < exp( (nJrn—lJr Jrn—k—i—l)))’

k=1,2,...,n.

(2.2.17)

Exercise 2.2.5 Let X} ,,.. .., X,,, be order statistics corresponding to the distribution
with the density

fx) =ax*'0<x<1,a>0. (2.2.18)

Express the product X,.,,, X;,, 1 < r < s < n, in terms of independent uniformly
distributed random variables.

2.3 Moment Characteristics of Order Statistics

Let us recall equality (2.1.7), which gives the expression for distribution functions
Fy.(x) of order statistics Xy ,,:

Fk‘n(x) = Ip(x)(k,l’l —k+ 1),

where

1 X
I(a,b) = 5 b)/r“‘l(l — 0" ar.
0

Taking into account this expression one can write immediately that formula for
moments

e = E(Xen)
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of order statistics Xj ,, related to a population with a d.f. F, is given as follows:

W= [ varuw

- (2.3.1)
n! k—1 n—k
= "(F 1—-F dF
eyl GO E R
If F is continuous then this equality can be expressed as
1
Mo = =i | (G @3
0

where G(u) is the inverse of F. For distributions with probability density function
f the RHS of (2.3.2) coincides with

#('nk)' / X (F ()N (1 = F(x)"f(x)dx. (23.3)

Similar relations are valid for joint (product) moments of order statistics. For the
sake of simplicity we consider joint moments

r(1 r(2
“1(<<(1)>k<<>>:)1 E(Xyn)0)" )(Xk<2>,n)()’1Sk(1)<k(2)§n7

of two order statistics only.
For absolutely continuous distributions one gets that

r(1),r(2 r r r(1)— r(2)—r(1)—
WS =@ [ [ 0y @@y o) - oy
—00 —00

(1= F())" " (x)f (y)duxdy,

where
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In the general case (for any d.f. F) we have the following expression:

WS = @) [ [ Oy @) (F ) - Py

(1= F(y))" " PdF (x)dF(y),
(2.3.6)

where coefficients c(r(1), n(2),n) are defined in (2.3.5). Below we will use the
following notations also:

Hie:n = EXk.n

will be applied for the sake of simplicity instead of ,u,ilz ; Mk k@yn = EXiyn Xkyn

will change /1]((}'11)),,((2):”;

2 2
Var (Xi,) = ‘ul(ar)L — ()
will denote the variance of X; ,;
coy (XVJHXSJ!) = iur,s:n — HrnMsn

will be used for the covariance between X,.,, and Xj,,.
It is interesting to find the corresponding conditions, which provide the existence
of different moments of order statistics.

Example 2.3.1 Let there exist the population moment «, = EX, i.e.,
E|X|'= / |x|"dF (x) < . (2.3.7)

Then due to (2.3.1) we obtain that

Bl < G | ) (- ooy ar )

(2.3.8)

n! r n! ,
= m / |x|"dF (x) :mE|X| <00.

—00
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It follows from (2.3.8) that the existence of the moment «, implies the existence
of all moments

E[Xia|  1<k<n,n=1.2,...
of order statistics Xy ,,.
Remark 2.3.1 1t is not difficult to prove that if
E|X|"= o0

for some r, then for any n = 1, 2,. .. there exists such order statistic X, that

E|Xi| = oo.
Remark 2.3.2 Since

P{Xsn < Xin < Xnn} = 1

for any s < k < m, one has the evident inequality

E|Xk,n |V S E(‘Xs,n’r+|xm,n ‘V) .

Hence, if E|X;,|” = oo, then at least one of equalities E|X;,|" = o or
E|X,,.|" = oo is valid. It means that if E|X; ,|" = 00, then at least one of the following
relations hold:

E[Xi,|' = E[X2n|'= ... = E|Xi14] = o0
or
|r

E[Xii10]) = E[Xison| = ... = E[Xyn| = 0.

Exercise 2.3.1 Let X’s have the Cauchy distribution with the density function

1
f(x) - 7'6(1 +x2)'
Show that for any r = 1, 2,.. ., relation

E|X,| <oo

holdsif r<k<mn-—r+1.
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Remark 2.3.3 The more general situation than one given in Exercise 2.3.1 was
considered by Sen (1959).
(r)

Let E|X|“ < oo. It appears that then moments g, exist for all k such that
rla<k<(@m-—r+1)/o.
Some useful relations for moments one can obtain from the evident identity
Xipnt -+ X=X+ +X, (2.3.9)
and related equalities. For instance, the simplest corollary of (2.3.9) is as follows:
EXip+ - +Xun) =EX + - +X,) = nEX. (2.3.10)

Natural generalizations of (2.3.10) have the form

g(ih(xk,») = g(ih(xk)) (2.3.11)
k=1 k=1

where g(x) and h(x) are arbitrary functions.

Example 2.3.2 The corresponding equalities based on (2.3.11) can be useful in
some situations:

E<ZX,’Z;> = E<Zx,§"> om=1,2,..,r=1,2,.... (2.3.12)
k=1 k=1

If r =1 we get from (2.3.12) that the equality
> EXp, = EX]'=nEX" (2.3.13)
k=1 k=1

holds for any m provided that the corresponding moment EX™ exists.

It is not difficult to understand that the representations of the uniform and
exponential order statistics via sums or products of independent random variables
given above allow us to find rather easily single and joint moments of these
statistics.

Consider the case of the uniform U([0,1]) distribution and the corresponding
order statistics Uy ,. From Representation 1 and Remark 2.2.1 we know that
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and S;/S,+1 is independent on the sum S,,,; = v| + Vo + ... + V.1, Where vy, vs,. ..
be independent random variables having the standard E(1) exponential distribution.

Then
s o
E(U,)'=E[=>—) .
( kA') (Sn+1>

Now due to the independence of Si/S,;; and S,,; we have the following
relation:

E(S))*= E(LS,,H> = E(S—k> E(Sp1)”.
Snt1 Snt1
Thus,

B(S) = B(s/ES )

n+1

Now we must recall that S,, has gamma distribution with parameter m and hence

oo

1 arm— —X
E(Sm)“:m/x+ le™dx = I'(a+m)/T(m),m =1,2,....
0

Here I1(s) denotes gamma function with parameter s.
Finally,

. Tla+kln+1) nlT (o + k)
E(Urn)"= FKC(a+n+1) (k—DIT(e+n+1) (2.3.14)

Note that (2.3.14) is true for any a > — k.

Now we can use Representation 3 to get joint (product) moments of the uniform
order statistics. It follows from this representation, where W, W,,... are inde-
pendent uniformly U([0,1]) distributed random variables, that

EU, Uy, = E(W‘/’W”(’“). LW W st/ .Wnl/")

= E(WH)E(W D) E (W) EWaa (W) 5 sy

= 1 d 1 (s+1)
= (1+1/k)H( 112/k) (n+DHn+2)

r

forany 1 <r<s <n.
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Remark 2.3.4 Indeed, Representation 3 allows us to get also more complicate joint
moments of any order for any number of the uniform order statistics. Taking into
account equality (2.3.14) we can fix the following important partial cases:

k

EUp, =——, 1<k<n; 23.16

g n+1 " ( )

E(1/Up,) = kﬁ—l 2<k<n; (2.3.17)
k(k+1)

E(Upn)’= 1<k<n. (2.3.18)

(n+1)(n+2)’
In general form, for r = 1, 2,..., we have

k(1) (k4 r—1)

E(Ury) = , 1<k<n. 2.3.19
(Ukn) (n+ D(n+2). (n+r) " (23.19)
It follows from (2.3.16) and (2.3.18) that
k(n—k+1
Var (Ur,) = % (2.3.20)
' (n+1)"(n+2)
Taking into account equality (2.3.15) one gets that
—s+1
Cov(Uyp, Uyy) = EU, Uy, — EU, ,EU,, = rin—st+l) <s. (2.321)

(n+1*n+2)

Now from (2.3.20) and (2.3.21) we obtain the corresponding expression for cor-
relation coefficients of the uniform order statistics:

rin—s+1) 172
U, Usp) = ———= , r<s. 2.3.22

p( ’ 3") <s(n—r+l)) r=s ( )
Exercise 2.3.2 Find the variance of 1/Uy,,.

Exercise 2.3.3 Find product moments

E(U*,UP ),0>0,5>0.

rn=sn

Let us consider now order statistics Z; ,, < Z,, <---<Z,, n=1,2,..., which
correspond to the standard E(1) exponential distribution with d.f.
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H(x) =1 —exp(—x), x > 0.

Let us recall Representation 4:

d (V1 V1 V2 Vi V2 V-1
Ziny, Zopy s Znp :(_7_ gy )
(l" 2 ) n'n n-—1 n+n—l+ 2
where vy, vs,..., v, are independent random variables having the standard E(1)
exponential distribution.
One immediately gets applying this result that
] Vo Vi k 1
EZ,, = E(— e ———— | = _ 2.3.23
- <n+n—l+ +n—k+1) ;n—r+l ( )

and

Var(Zy.,) ZVa (n = 1) zk: (2.3.24)

rln_r+

Exercise 2.3.4 Applying Representation 4 find now covariances between order
statistics Z,.,, and Zj,,.

Calculations of the integral

'/X l—e™* klfx(nk+l)dx
0

also allow us to get moments
E(Zi,)" k=1,2,....n
We obtain after the corresponding calculations that

n!

E(Ziy))'=——o Y (~Hhr 1 —k el
()= i 2 Y C O D=kt )
(2.3.25)
For instance, if k = 1, then
E(Z1,)"=T(a+1)/0% 0> —1. (2.3.26)

For k =2 and a > —1 we have
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E(Z20)"= n(n— DI (e + 1){(n = 1) —p=C+0), (2.3.27)

Indeed, one of the most important distributions in the probability theory is
normal. Let now X, X»,... be independent random variables having the standard
N(0,1) normal distribution and X; , < --- <X, , be the corresponding normal order
statistics.

One can write immediately that

B, = ey [ X000 - ew) elan (23.28)
where
1 2
w(X)zmexp(—x /2)
and

There are some effective numerical methods to compute integrals (2.3.28).
Unlike the uniform and exponential cases moments of the normal order statistics
have the explicit expressions for small sample sizes n only.

Example 2.3.3 Consider the case n = 2. We get that

3

EXyp =2 / x®(x)p(x)dx = =2 / & (x)d(p(x))

\
g 8

From the identity
E(Xi2+X22) =E(X; +X) =0

we obtain now that

EX1» = —EXp, = —

Bl
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Remark 2.3.5 If we have two samples X;, X5,..., X, (from the standard N(0,1)
normal distribution) and Y, Y,,..., Y, (from the normal N(a,az) distribution with
expectation a and variance ¢”, o > 0), then evidently

EYk,n =a-+ O-XkA,n-

Exercise 2.3.5 Let X;3 < X;3 < X33 be the order statistics corresponding to
the standard normal distribution. Find expectations EX; 3 and variances Var(Xy 3),
k=1,2,3.

The explicit expressions for moments of the normal order statistics are rather
complicated, although the normal distribution possesses a number of useful prop-
erties, which can simplify the computational schemes in some situations.

Example 2.3.4 A lot of statistical procedures for the normal distribution are based
on the independence property of vector

X1 — X, Xo — X, .., Xy — X)
and the sample mean
X=X +Xo+ - +X,)/n
This property yields also the independence of vector
Xip =X, Xo0 — X, .., Xpn — X)

and the sample mean X.

Let X;, X>,. .., X,, be a sample from the standard normal distribution. We see then
that

EXin — X)X =E(Xen —X)EX =0 (2.3.29)
and we obtain the following results:
EX; X =E(X*) =VarX = 1/n, k=1,2,...,n, (2.3.30)

and hence

ZExk,nxm =1, (2.3.31)
m=1
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as well as

EXk,nXm,n = 1. (2332)
1

m=

As corollaries of (2.3.31) one gets that
E(XinXn) = 1/n (2.3.33)
and
cov (X Xm) = E(XinXm) — EXknEXyy = 1/n (2.3.34)

forany k=1,2,..,n,m=1,2,..,nandn=1,2,...

Note that there are different tables (see, for example, Teichroew (1956) or
Tietjen et al. (1977)) which give expected values and some other moments of order
statistics for samples of large sizes from the normal distribution.

2.4 Extremes

For any person who wants to study records it is necessary to know the theory of the
extreme order statistics.

Order statistics Xy, , are said to be extreme if k = k(n) or n — k(n) + 1 is fixed, as
n — 0. The most popular are maximal order statistics X,,,, and minimal order
statistics X ;.

It is not difficult to see that if we have two sequences Y| = —X|,

Y, =—X,,... Y, = —X, then the following equalities hold for any k=1, 2,.. ., n:

d
ankJrl‘n = *Yk‘na (241)

and, in particular, in this case

Xyn=—Y1,. (2.4.2)

Due to these relationships between maximal and minimal order statistics we can
study one type of them only, say, maximal ones.

Very often we need to know asymptotic distributions of X;, and X, ,, as
n — 00,

Consider a sequence of order statistics M(n) = X,,,,, n = 1, 2,.. .. Let F(x) be the
distribution function of X and
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f =sup{x: F(x)<1}

be the right end point of the support of X. If f = 00, then for any finite x one gets
that F(x) < 1 and hence

P{M(n) <x} = (F(x))"— 0,asn — oo.

It means that M(n) converges to infinity. In the case, when f < 00, we need to
distinguish two situations. If

P{X=p}=p>0,
then
P{M(n) = B} =1 - P{M(n)<p} = 1-P"(X <) = 1 = (1 = p)"
and
P{M(n) = B} — 1, asn — . (2.4.3)

If P{X = B} =0, then we get that P{M(n) < f} = 1 for any n and M(n) — S in
distribution. Thus, we see that in all situations M(rn) — f in distribution. This result
can be sharpened if we consider the asymptotic distributions of the centered and
normalized order statistics X,, ,. Indeed, if f < 00 and P{X = f} > 0, then relation
(2.4.3) gives completed information on M(n) and in this case any centering and
normalizing can not improve our knowledge about the asymptotic behavior of M
(n). We have another situation if P{X = £} = 0. In this case one can try to solve the
following problem: if there exist any centering (a,) and norming (b,) constants,
such that the sequence (M(n) — a,)/b,, converges to some nondegenerate distribu-
tion? Let us solve firstly the following exercises.

Exercise 2.4.1 Consider the exponential distribution with d.f. F(x) = 1 — exp(—x),
x 2 0. Show that in this case M(n) — log n converges to some nondegenerate
distribution with d.f.
Hy(x) = exp(—exp(—x)). (2.4.4)
Exercise 2.4.2 Consider X’s with d.f.
Flx)=1—(—x)"-1<x<0,a >0,
and prove that the asymptotic distribution of n""*M(n) has the following form:

Hi,(x) = exp (—(—x)"),—0c0 <x <0,

and
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Hi,(x)=1,x>0. (2.4.5)
Exercise 2.4.3 Let X’s have Pareto distribution with d.f.

Fx)=1-x%x>1,0>0.

1/o

Prove that the asymptotic d.f. of M(n)/n " is of the form:

H,,(x) =0, x<0,
and
Hy 4 (x) = exp{—x""}, x> 0. (2.4.6)

Remark 2.4.1 Changing suitably the normalized constants a, and b,, for maximal
values considered in Exercises 2.4.1-2.4.3, one gets that any d.f. of the form
Ho(a + bx), Hy ,(a + bx), Hy,(a + bx), where a > 0, b > 0 and a are arbitrary
constants, can serve as the limit distribution for

(M(n)—ay,)/by.

Considering two d.f.’s, H(d + cx) and H(a + bx), where b > 0 and ¢ > 0, we say
that these d.f.’s belong to the same type of distributions. Any distribution of the
given type can be obtained from other distribution of the same type by some linear
transformation.

Usually one of distributions, say H(x), having the most simplest (or convenient)
form, is chosen to represent all the distributions of the given type, which we call
then H-type. As basic for their own types, we suggested above the following
distributions:

Ho(x) = exp(— exp(—x));
Hy ,(x) = exp (—(—x)"), —oo<x < 0, and Hj,(x) =1,x > 0;
Hj,(x) = 0,x <0, and Hp,(x) = exp{—x""*}, x > 0,

where a > 0.

Very often one can find that the types of distributions based on Hy(x),
H, ,(x) and H;,(x) are named correspondingly as Gumbel, Frechet and Weibull
types of the limiting extreme value distributions.

Note also that any two of d.f.’s H; , and H, 54 a # 5, do not belong to the same
type, as well as d.f.’s H,, and Hy 5 a # p.

There are considered above three situations when we can get d.f.’s (2.4.4)—
(2.4.6) as the limit d.f.’s for the normalized order statistics X, .

It is surprising that there are none of other non-degenerate distributions, besides
of Hy(x)-, Hy (x)- and H; ,(x)—types, which would be limit for the suitably cen-
tering and norming maximal values.
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Remark 2.4.2 Tt appeared that the set of all possible non-degenerate limit distri-
butions for maximal values includes only the types generated by d.f.’s Hy, H; , and
H, , only. Now it is important for us to know what d.f.’s F belong to the domains of
attraction (D(H,), D(H, ) and D(H, ,)) of the corresponding limit laws. We write
that F' € D(H), if the suitably normalized maximal values M(n), based on X’s with a
common d.f. F, have the limit d.f. H. For instance, it follows (from the results of
Exercises 2.4.1-2.4.3 and Remark 2.4.1) that if

F(x) =1—exp(—x), x >0,

then FED(H,);
if X’s are the uniformly U([a,b]) distributed random variables with

Flx)=(x—a)/(b—a),a<x<b,
then F € D(Hl,l)
and if

Fx)=1-x%*x>1

(Pareto distribution), then F € D(H, ).

There are necessary and sufficient conditions for F to belong D(H,), D(H, ,) and
D(H,,) but the form of these conditions is rather cumbersome. Hence, simple
sufficient conditions are more interesting for us. We present below some of them.

Theorem 2.4.1 Let d.f. F have positive derivative F' for all x > x,. If the following
relation is valid for some o > 0:
xF'(x)/(1 = F(x)) — o, (2.4.7)

as x — 0, then F € D(H,,,). The centering, a,, and normalizing, b,, constants can
be taken to satisfy relations a,, = 0 and F(b,) =1 — 1/n.
Theorem 2.4.2 Let d.f. F have positive derivative F' for x in some interval (x,, xo)
and F'(x) = 0 for x > xo. If

(xo —x)F'(x)/(1 — F(x)) — o, x — xo, (2.4.8)
then F € D(H, ,). The centering, a,, and normalizing, b,, constants can be taken to
satisfy relations a,, = xo and F(xo — b,) =1 — 1/n.
Theorem 2.4.3 Let d.f. F have negative second derivative F'(x) for x in some

interval (x;, xp), and let F'(x) = 0 for x > xo. If

F'(x) (1 - F(x))/(F'(x)) = 1, (24.9)
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then F € D(Hy). The centering, a,, and normalizing, b,, constants can be taken to
satisfy relations F(a,) = 1 — 1/n and b, = h(a,), where

h(x) = (1 = F(x))/F'(x).
Exercise 2.4.4 Let

1 1
F(x) = §+;arctan X

(the Cauchy distribution). Prove that in this situation

F € D(Hy,).

What normalizing constants, a,, and b, can be taken in this case?

Exercise 2.4.5 Let

F(x):\/% / exp(—1*/2)dt.

Show that
F € D(Hy)

and the normalizing constants can be taken as follows:

a, = (2log n—loglog n— log 47r)1/2andbn = (2log n)l/z.

Exercise 2.4.6 Use Theorem 2.4.2 and find the limit distribution and the corre-

sponding normalizing constants for gamma distribution with p.d.f.

f(x) = x*exp(—x)/I'(a),x > 0,0 > 0.

Returning to relations (2.4.1) and (2.4.2) one can find the possible types of limit
distributions for minimal values

m(n) = min{Xy,...,X,}.

It appears that the corresponding set of non-degenerate asymptotic d.f.’s for the
suitably normalized minimal values are defined by the following basic d.f.’s:

Lo(x) =1 —exp(—exp(x)); (2.4.10)
Ly ,(x) =0,x<0, and L 4(x) = 1 — exp (—x"), 0 <x<o0; (24.11)
Ly y(x) =1 —exp{—(—x)""},x<0, and Ly ,(x) = 1, x>0, (2.4.12)

where o > 0.
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Above we considered the situation with the asymptotic behavior of extremes X, ,
and X, ,,. Analogous methods can be applied to investigate the possible asymptotic
distributions of the kth extremes—order statistics X,,—z1, and Xi ,, when k = 2, 3,

.. is some fixed number and n tends to infinity. The following results are valid in
these situations.

Theorem 2.4.4 Let random variables X,, X,,... be independent and have a
common d.f. F and X, —1, n =k k+ 1,..., be the (n — k + 1)th order statistics. If
for some normalizing constants a, and b,,

P{ (X,”, —a,,) /by <x} — H(x)

in distribution, as n — 0, then the limit relation

>~
—

P{(Xu—t110—an) /ba<x} — H(x) ' —log H(x)Y /j! (2.4.13)

~
Il
(=}

holds for any x, as n — 00,

Theorem 2.4.5 Let random variables X,, X,,... be independent and have a
common d.f. F and Xy, n =k, k + 1,..., be the kth order statistics. If for some
normalizing constants a,, and b,,

P{ (Xlﬁn —an)/bn <x} — L(x), n — oo,

in distribution, then the limit relation

k—1
P{(Xen — an) /ba<x} — L(x) Y _ (~log L(x)) /]! (2.4.14)

J=0

is valid for any x, as n — 00,

2.5 Order Statistics and Ranks

In Chap. 1 we mentioned that a random sample X;, X5,. . ., X,, is accompanied by the
corresponding vector of ranks (R(1), R(2),..., R(n)), where

= lexpm=12,..n (2.5.1)
k=1
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The following relations are valid for ranks and order statistics:
{Rm) =k} = {Xn=Xen},m=1,2,..,n,k=1,2,...,n. (2.5.2)

If X’s are proposed to have a continuous distribution then different X’s can
coincide with zero probability and (2.5.1) can be rewritten in the following form:

R(m) =1+ 1, >x) (2.5.3)
k=1
These ranks show the location of X’s among the elements of the variational
series
Xin<X0, <. .<Xn.
We can write also that
X = Xgmy, m=1,2,...,n. (2.5.4)

Consider the case when X’s have a continuous distribution. Then any rank R(m),
m =1, 2,..., n, has the discrete uniform distribution on set {1, 2,..., n}. Really, we
know that random variables X, X,,. . ., X,, taken from a continuous distribution have
no coincidences with probability one. Hence, realizations (7(1),..., #(n)) of the
corresponding vector of ranks (R(1), R(2),..., R(n)) represent all permutations of
values 1, 2,..., n. Any realization (#(1),..., r(n)) corresponds to the event

(Xs(1) <Xs2) < - <Xsm)),

where d(r(k)) = k. Taking into account the symmetry of the sample X;, X5,. .., X,
one obtains that events

(Xs(1) <Xs2) < -+ <Xs(n))

have the same probabilities for any permutations (d(1),..., d(n)) of numbers 1,
2,..., n. Hence

P{R(1) = r(1),R(2) = r(2),...,R(n) =

-
(2.5.5)
=P{(Xs01) <Xs0) < -+ <Xim)} = 1/n!

for any permutation (r(1),..., r(n)) of numbers 1, 2,..., n. It follows now from
(2.5.5) that



2.5 Order Statistics and Ranks 33

P{R(m) =k} =1/n

for any fixed m=1,2,.., nand k=1, 2,..., n
Indeed, ranks R(1), R(2),..., R(n) are dependent random variables for any
n =2, 3,.... This dependence is approved by the evident equality

R()+R2)+ - +R(n)=142+---+n=n(n+1)/2,

but it follows from (2.5.5) that ranks present exchangeable random variables: for
any permutation (a(l), a(2),..., a(n)) of numbers 1, 2,..., n vectors (R(a(l)),.. .,
R(a(n))) and (R(1),..., R(n)) have the same distributions.

Exercise 2.5.1 Find expectations and variances of R(k), 1 < k < n, covariances
Cov(R(k), R(m)) and the correlation coefficients p(R(k), R(m)) between R(k) and
R(m), 1 £k <m=<n.

Above we mentioned that any realization (r(1),. . ., #(n)) of (R(1), R(2),.. ., R(n))
corresponds to the event

(X50) <Xs2) < -+ <Xsm))

where d(r(k)) = k. Here d(k) denotes the index of X, the rank of which for this
realization takes on the value k. For different realizations of the vector (R(1), R
(2),. . ., R(n)), d(k) can take on different values from the set {1, 2,. .., n} and we really
deal with new random variables, with realizations as d(r(1)), o(r(2)),. . ., o(r(n)).

Let as above X1, Xs.. . ., X,, be a random sample of size n taken from a continuous
distribution and X;,, X3,...., X,, be the corresponding order statistics. We
introduce random variables A(1), 4(2),..., A(n), which satisfy the following
equalities:

{A(m) =k} ={Xpn =X}, m=1,2,..,n, k=1,2,...,n. (2.5.6)

These random variables are said to be antiranks.

The same arguments, which we used for ranks, show that any realization (5(1),
0(2),..., o(n)) of the vector (4(1), 4(2),..., 4(n)) is a permutation of numbers
1, 2,..., n and all n! such realizations have equal probabilities, 1/n! each.

Indeed, vectors of antiranks are tied closely with the corresponding order sta-
tistics and vectors of ranks. In fact, for any k and m equalities

{4(k) =m} = {Xpn = Xu} = {R(m) =k} (2.5.7)

hold with probability one. One can write also the following relations for ranks
and antiranks:
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A(R(m)) =m (2.5.8)
and
R(4(m)) =m, (2.5.9)

which hold with probability one for any m =1, 2,.. ., n.
Exercise 2.5.2 Find the joint distribution of 4(1) and R(1).

While ranks and antiranks are associated with some random sample X;, X5,.. .,
X,, of some fixed size n, there are rank statistics (the so-called sequential ranks),
which characterize a sequence of random variables X, X, .. ..

Let X;, X5, ... be independent random variables, having continuous (not nec-
essary identical) distributions. Random variables p(1), p(2),. .. given by equalities:

pm) = L, sxpm=12,..., (2.5.10)
k=1

are said to be sequential ranks.

Any sequential rank p(m) shows the position of a new coming observation X,
among its predecessors X, X»,. .., X,,—. For instance, if p(m) = 1, then X,, is less
than X, ,,—; and it means that

Xn =Xim-
In general, p(m) = k implies that
X = X, m-

It is not difficult to see that p(m) can take on the values 1, 2,. . ., m. If independent
random variables X;, X,,..., X,, have the same continuous distribution then the
standard arguments used above enable us to see that for any m = 1, 2,. . .,

P{p(m) =k} = P{Xyy =Xi,m} = 1/m, k=1,2,...,m. (2.5.11)

Exercise 2.5.3 Let X;, X, ... be independent random variables with a common
continuous d.f. F. Prove that the corresponding sequential ranks p(1), p(2),... are
independent.

Note that if p(rm) = m than it means that X, = X,,,,,, and
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Xy > max{X;,Xp,.. ., X1} (2.5.12)

Some later it will stay clear that (2.5.12) defines that X, is the upper record value
in the sequence X, X, .. ..

2.6 Exercises (solutions)

Exercise 2.1.1 (solution) There are two situations here when X, , and X,,,, can be
equal: all X’s are equal O and all X’s are equal 1. Hence

m=P{Xi=X=...=X,=0}+P{X, =X, =...=X, =1} =1/2" +1/2"
:1/2}171

Exercise 2.1.2 (solution) In this situation the necessary probability can be written
as follows:

P{X13<X23<Xs3} =1-P{Xi =X # X3} —P{X1 = X3 £ X2} —P{Xa = X3 # X1} = P{ X1 = X, = X3}
=1-3P{X, =X, # X3} — P{X, = X» = X3}
=1-3(P{X; =X} —P{X, =X = X3}) - P{X) = X» = X3}
=1-3P{X, =X} +2P{X; =X = X3}.

It is not difficult to find that

P{X; =X} = (1 —p)*/(1 - p?)

and

PXi =X, = X3} = (1-p)*/(1-p).
Thus one gets the final expression:

P{Xi3<Xo3< X33} =6p° /(1 +p)(1 +p+p?).

Exercise 2.1.3 (solution) Indeed, if x >y, then

P{Xl,n Sxaxmn Sy} = P{Xn,ngy} = Fn(y)

If x <y, then
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P{Xl,n vaxn‘n Sy} = P{Xn,n Sy} _P{Xl,n >x7Xn,n Sy}

=F"(y) = (F(y) = F(x))".

Exercise 2.1.4 (solution) It is easy to see that

P{m(n) < x} =1—P{m(n) >x} = 1— P{X, > x}...P{X, > x}

= 1= (1= Fi(x)). ..(1 - F(x))

and

P{M(n) <x} = P{X; <x}...P{X, <x} = Fi(x)...F,(x)
Exercise 2.1.5 (solution) We see that

P{Y>r, Z<s} =P{r<Xy<s, k=1,2,...,n}

= (P{r<X<s})" = (P{X2r} —P{X=s})"=(p" —p")"
Exercise 2.2.1 (solution) It follows from (2.2.2) that

T(l,n) — Un,n _ Ul,n é u

Vit Vg

Indeed the ratio (vo + - -+ +v,)/(vi + « - - + vui1 ) coincides in distribution with the
ratio (v + - +vy—1)/(vi + -+ + vus1). Hence

T(1,py Lt d
) V1+"'+Vn+1 n—1,n

Exercise 2.2.2 (solution) The necessary statement follows immediately from
relation (2.2.4), which allows us to get the equality
d
(Vi, Vo, ooy V) = (W, Wa, .., W,),
where W’s are independent uniformly distributed random variables.
Exercise 2.2.3 (solution) It follows from (2.2.5) that

i H n
(Zin, L) (n 7;171(”1(),
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where
by=(k-1)/(n—k+1),k=2,3,....

Since v, k =1, 2,..., n, are independent random variables,

n
Vi
— and E bkl’lk
n =

are also independent. Hence, so are Z; ,, and L.

Exercise 2.2.4 (hint) It is enough to use definitions of d.f. F(x) and its inverse
function G(x).

Exercise 2.2.5 (solution) The corresponding d.f. and its inverse are given here by
equalities

F(x) =x% 0<x<l1.
and
G(x) =x"" 0<x<1.
It is possible to express X, and X, via the uniform order statistics as follows:

Xr,n i (Urﬂ) e andxsvn i([J‘Y’n) l/a.

Hence

Xy nXon L(UpnUs) .

Now it follows from presentation (2.2.4) that

X o X 2 Wy /0 gyl /6 ayy2fsayg2ftstla yy2/na

1 <r < s <n, where Wy, W,,..., W, are independent random variables with the
common uniform on [0,1] distribution.
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Exercise 2.3.1 (hint) Prove that

Glx) ~ - !

X))~ —mm X —

n(l—x)’ ’
1

Gx)~ —— 0

(x) n'x’x_) )

and use equality (2.3.2) to provide the necessary statement.

Exercise 2.3.2 (answer)

nn—k+1)

Var(l/Uk,,,) =m7

Exercise 2.3.3 (answer)

nll(r+o)l(s+ o+ f)

E(U‘“ Ut

Exercise 2.3.4 (solution) Let r < s. Due to (2.2.5),

2 Order Statistics

rn m,n) = (r _ 1)'F(S+ O()r(l’l + 140+ B) .

V1 V) Vr V1 V2 Vs
C ZrnuZAxn =C - y
OV(‘ ) Ov(n+n—l+ +n—r+1 n n—l+ +n—s+l)
\ y v \ y v
= Cov _1+ 2 et r 7_1+ 2 4+t r
n -1 n—r+1'n n-—1 n—r—+1
+ Cov ﬂ+ V2 +...+L’W+l +L .
n —1 n—r+1'n—r n—s+1
Since sums
V1 V2 v
MR 4. r
n n—1 n—r+1
and
Vrtl 4. Vs
n—r n—s—+1
are independent, we get that
Vi Vo Vr Vi V2 Vr
C Zrn Z\'n =C - y— .
OV( " ) Ov(n+n—1 n—r+1'n n—1+ +n—r+l)
r
Vi1 V2 Vr 1
=Var| —+ +---+ :VarZrn: .
(n n—1 n—r—i—l) ’ ;(n,kJrl)z
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Exercise 2.3.5 (solution) From symmetry of N(0,1) distribution (note that X has the
same distribution as —X) it follows that EX, 3 = 0 and EX; 3 = —EX;3 3. Thus, we
need to find EX; 3 only. One sees that

EX33 =3 x®?(x)(x)dx = 3 / O (x)do(x)

=6

/
/

Consider

We obtain that

1(0):% / P (x)d = - / exp(—)dx = 1/(4y/7)
and

1 2
_W / xexp{—xz(a +2)}dx:0.

It means that

(@) = 1/(4/7)

and, in particular,
[ v@istwas=10) = 1/,

Finally, we have that

3
N

Due to the symmetry of N(0,1) distribution, one obtains also that

EX33=61(1) =
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40
E(X1,3)2:E(X3.3)2
and
VarX, 3 = Var X3 3.
Now
E(X33)* =3 / PO (x)p(x)dx = =3 / x®? (x)do(x)
- / P()d(x(x)) = 3 / o(x) P2 ()dx + 6 / 02 (x)B(x)dx
= /d((b%x))—l—% / xexp(—x2)¢(x)dx:1—23—n / @(x)d(exp(—x?))
o0 oo \/_3.

3 2 3 2
= l+ﬂ / exp(—x")p(x)dx = 1+W / exp(—3x"/2)dx = l+§,

Taking into account that
we obtain that

Further,

K O(x)p(x)dx — 6 / K (x)p(x)dx

= / K P(x)p(x)dx — 2E(X3}3)2.

—00
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Now we obtain that

Hence,
2 2 \/§ \/§
E(ng) =3- 2E(X3’3) =3 2<1 +Z> =1
and
3
Var(s) = E() '~ (B '= 1 - 22,
so far as EX, 3 = 0. Thus,
3
E(Xl}})z - E(X313)2: 1 +2£7
i
3
E(X2,3)2 =1 —\/7—7
3 9
Var(Xl‘s) - Var(X3 3) - 1 +§ _E
and
3
Var(X,3) = E(Xa3)"— (EXp5)'= 1 - %

Exercise 2.4.1 (solution) It is evident that

P(M(n) —logn<x) = (1 —exp(—x —logn))"= (1 — exp(—x)/n)"
— exp(—exp(—x)),

as n — 0O,

41
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Exercise 2.4.2 (solution) In this case

P{n!/M(n) <x} = (1 = (—x/ n")")" = (1 = (=x)"/n)" — exp(~(—x)")
= HZ,a(x)7

as n — oo, for any x, —00 < x < 0.

Exercise 2.4.3 (solution) One can see that
P{M(n)/n"/* <x} = (1 — (xn/*)7*)" = (1 = x*/n)"— exp{—x""},

as n — oo, for any x = 0.

Exercise 2.4.4 (hint and answer) In this case
(1 — F(x))~1/nx and F'(x) ~ 1 /7x*, asx — oo.

Use the statement of Theorem 2.4.1 to see that a = 1, centering constants a,, = 0,
and normalizing constants b, can be taken from the equality F(b,, = 1 — 1/n, that is
possible to take b, = n/z.

Exercise 2.4.5 (hint) In this situation it is easy to show that

1 —F(x)~F(x)/x = x\/lﬁexp(—xzﬁ)7

F"(x) ~ — xF'(x), x — o0,

and then to use the statement of Theorem 2.4.3. To find constants a, one needs to
solve the equation

l/n=1-F(a,)~ exp(—(a,1)2/2)

1
a,V2n

or simply to check that the sequence

a, = (2log n—loglog n— log 471)1/2

satisfies this equation. Theorem 2.4.3 recommends to take b, ~ h(a,), where

h(x) = 1—F(x)/F'(x).

172

In this case one can obtain that b, ~ (2logn) '~ suits us.
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Exercise 2.4.6 (answer) It follows from Theorem 2.4.2 that in this case

F € D(Hy), a, =logn,b, = 1.
Exercise 2.5.1 (answers) Here

ER(k) = (n+1)/2,VarR(k) = (n — 1)*/12, 1 <k <n,
Cov(R(k),R(m)) = —(n—1)/12, 1 <k<m<n,

and
p(R(k),R(m)) = —=1/(n— 1), 1 <k<m<n.

Exercise 2.5.2 (answers) P{4(1) = 1, R(1) = 1} = 1/n,

P{A(1) = 1,R(1) = s} = P{A(1) =s,R(1) =1} =0, if s # 1,
and

P{A(1) =m,R(1) =s} = I/n(n—1),if s £ 1, m# 1.
Exercise 2.5.3 (solution) Since
P{p(m) =k} = 1/mk=1,2,...m

itis enough to show that for any n =1, 2,. . ., and any a(k), taking on values 1, 2,. . ., k,
1<k<n,

P{p(1) = a(1),p(2) = a(2),.. ., p(n) = a(n)} = 1/nl.

Fix n and consider ranks R(1), R(2),..., R(n). It is not difficult to see that a set
{a(1), a(2),..., a(n)} uniquely determines values r(1), r(2),..., r(n) of R(1),
R(2),. .., R(n). In fact, r(n) = a(n). Further,

r(n—1)=a(n—1),if a(n) >a(n—1), and r(n—1)
=a(n—1)+ L,if a(n) <a(n—1).

The value of R(n — 2) is analogously determined by values a(n), a(n — 1) and
a(n — 2) and so on. Hence, each of n! events
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coincides with one of n! events

For instance,
{p(1) =1,p(2) =1,...,p(n) =1} ={R(1) =n, R2) =n—1,..., R(n) = 1}.
Since
P{R(1) = r(1), R(2) = r(2),..., R(n) = r(n)} = 1/n!
for any permutation (r(1), A2)...., #(n)) of the numbers 1, 2...., n, one gets that
P{p(1) =a(1),p(2) = a(2),...,p(n) = a(n)} = 1/n!

for any set {a(1), a(2),..., a(n)}, where 1 <ak) <k, k=1, 2,..., n.



Chapter 3
Record Times

3.1 Introduction

Very close to order statistics are the so-called record times and record values. Beginning
from the Chandler’s (1952) pioneer paper records became very popular in the probability
theory and statistics.

Let Xi, X5,... be a sequence of random variables and X;, < --- <X, ,, n =
1,2,..., be the corresponding order statistics. Let us consider the increasing
sequence of the sequential maximal values

M()<M@)< - <Mn—1)<Mn)< - < -

and fix the times, when signs of the strong inequality appear in this sequence. Such
times correspond to the situations, when M(n) > M(n —1). It means that
X, > M(n — 1). The random variable X,,, which is more than all previous X’s, is
called the upper record value. Correctly speaking we deal here with the strong
upper record. The matter is that sometimes (say, in some sport competitions) the
repetition of the previous record value also is considered as a record. It means that
in such cases we have situations when X,, = M(n — 1) for some 7. In this situation
we deal with the so-called weak record value. In reality these types of records are
different only if distribution functions of X’s, have discontinuity points. If some X,
is a record value, then the corresponding index n is named as an upper record time.

One more situation is symmetrical to the previous. Itis the case when one considers
a sequence of minimal values m(1) > m(2) > --- > m(n — 1) > m(n) > ---. The
appearance of the sign of strong inequality in this sequence signifies the appearance of
the strong lower record. Analogously, if X,, = m(n — 1) for some n, one deals with a
weak lower record value. Note that in all options X is taken as the first (upper or
lower, strong or weak) record value.
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We mentioned above that these two constructions (upper and lower records) are
symmetrical in some sense. Really, if together with some sequence X;, X5,... one
considers the sequence Y| = —X;,Y, = —X5,..., Y, = —X,, ..., then it becomes
evident that the lower record times for Y’s coincide with the corresponding upper
record times for X’s and the lower record values Y(r) and the upper record values
X(r) satisfy the equality Y(r) = —=X(r), r = 1,2,.... It means that it is enough to
study in details only one of these record types. Below we will deal as a rule with the
upper record times and the upper record values.

Denote X(1) < X(2) < - - - the corresponding record values (strong upper record
values) in the sequence X;, X,,~- and let 1 = L(1)<L(2)< --- be the corre-
sponding record times. Introduce also record indicators &,,n = 1,2,. .., which take
values 0 and 1, and mark the appearance of record values, that is &, =1, if
X, >M(n— 1), and &, = 0, otherwise. As we agreed above, L(1) = 1,X(1) = X,
and ¢; = 1. Note that &,y = 1,n=1,2,....

3.2 Definitions of Record Values and Record Times

As it was mentioned above we will deal as a rule with the upper records. Let
X1, Xo, ... be a sequence of random variables and X; , < X5, <X, ,,n=1,2,..,
be the corresponding order statistics. For any n=1,2,... we have also that
Xy = M(n) = max{X;, X, ..., X,}. One can define the classical upper record
times L(n) and upper record values X (n) as follows:

L(1)=1,X(1) =X,
and then

Lin+1)=min{j: X; > X(n)},X(n+ 1) = Xp(us1),n = 1,2,... (3.2.1)

One can use the following alternative definitions:

L(1)=1,L(n+1) =min{j: X; > M(L(n))}, n=1,2,...,

and

Using the sign 2 in (3.2.1) instead of > we introduce weak upper records, when
any repetition of the previous record value is also considered as a new record.

One more definition—the definition of the so-called inter-record times
A(n),n=1,2,..., is closely connected with the record times. These random
variables for the strong upper records are defined as follows:
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A(l)=L(1)=1,A(n)=L(n)—Ln—1), n=2,3,....
Indeed, one immediately has the next equality:
Lin)=A(1)+AQ2)+ ---+An),n=1,2,....

Analogously it is possible to define inter-record times for lower records.
The kth records are a natural extension of the classical records. The kth record times
L(n, k) and the kth record values X (n, k) forany k = 1,2, ... are defined as follows:

L(1,k) =k,L(n+ 1,k) = min{j > L(n,k) : X; > X; -1}, n=1,2,...,
(3.2.2)

and
X(n,k) = XL(n,k)fkle,L(n,k), n = 17 2, e (323)

To be precise, (3.2.2) and (3.2.3) define the kth upper record times and the kth
upper record values respectively. Indeed, if we change in (3.2.2) equality
X; > Xj_j ;1 by relation X; > X; ;| we get the definitions of the kth weak record
times L(n, k) and the kth weak record values X(n, k).

If k = 1 then definitions of kth record values X (n, k) and kth record times L(n,
k) coincide with the definitions of X(n) and L(n) given in (3.2.1).

Exercise 3.2.1 Give the definitions of lower record times I(n),n =1,2,..., and
lower record values x(n),n = 1,2, ..., and the corresponding definitions of the kth
lower record times I(n, k) and the kth lower record values x(n, k).

Remark 3.2.1 Note that the theory of record values is very close to the theory of
extremal random variables. Really,

X(I’l) = XL(n).L(n) = M(L(n)), n = 1, 2, e (324)

and

x(n) = Xy am) = m(l(n)), n=1,2,.... (3.2.5)

Analogously,
X(l’l, k) = XL(11,k) —k+1,L(n,k), n= 1, 2, e (326)
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and
x(n,k) = XkJ(n,k). n—= 1, 2, e (327)

Hence the asymptotic distributions of record values (upper and lower) are close
in some sense to the corresponding distributions of maximal and minimal order
statistics.

3.3 Record Indicators

Let us introduce record indicators &,, n = 1, 2,..., which take values O and 1 and
mark the appearance of the strong upper record values, that is, &, = 1, if X, > M
(n — 1), and &, = 0, otherwise. As we agreed above, L(1) = 1, X(1) = X; and hence
fl = 1. Note that é:L(n) = 1, n= 1, 2,

Indeed, the corresponding indicators can be introduced analogously for the lower
records, as well as for the kth records (upper and lower). Consider the classical case
when the initial X’s are independent and have the same continuous distribution
function F(x). In this case the equality &, = 1 corresponds to the event {M(n) = X,,}.
For continuous F(x) some of X’s can coincide with the zero probability. In this
situation events {M(n) = X}, {M(n) = X3},..., {M(n) = X,,} must have equal
probabilities and we get immediately that

P{¢&, =1} =P{M0n)=X,} =1/n,n=1,2,.... (3.3.1)
Note also that in this situation

P& =1,6=1,..,§ =1} =PXi<Xp<---<X,}=1/nl,n=1,2,....
(33.2)

Exercise 3.3.1 Based on equalities (3.3.1), (3.3.2) and the analogous equalities for
any set of indicators show that if the initial X’s are independent and have the same
continuous distribution function F then &;, &,... are independent random variables.

Moreover, the following result (see Exercise 3.3.2) is also valid for record
indicators.

Exercise 3.3.2 Show that if X’s are independent and have the same continuous
distribution function F then for any n = 1, 2,... record indicators &, &,..., &, and
maximal value M(n) are independent random variables.

Now let N(n) denote the number of the strong upper record values among the
random variables X;, X5,...,X,,. It is evident that N(n) can be expressed as follows:
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Nn) =& +&+-+&,n=12,... (3.3.3)
Any information about the distribution of N(n) helps us to investigate the dis-

tribution properties of record times L(n). Really, the following evident equalities are
valid:

P{L(n) > m} = P{N(m)<n} (3.3.4)
and

P{L(n)=m} =P{N(m—1)=n—1,N(m) =n}. (3.3.5)

Hence any results for record indicators and for their sums N(n) are very
important.

Note that record indicators can be expressed also via sequential ranks of random
variables X, X,.... The definition of these ranks p(l), p(2),... was given by
equality (2.5.10). It was shown earlier that if X’s are independent random variables
having the same continuous distribution function then p(1), p(2),... are also inde-
pendent and

P{p(m) =k} =1/m, k=1,2,...,m.

It is evident, that events {£, = 1} and {p, = n} coincide for any n = 1, 2,....
Hence we have one more way to find distributions of random indicators:

P{én:1}:I_P{én:O}:P{pn:n}:l/nan:1727

Immediately we get that E¢, = 1/n and Var &, = (n — 1)/n*,n =1,2,....
Hence

EN(n)=1+1/2+--+1/n (3.3.6)

and
1
_k_2)’ n=12,... (3.3.7)

Note that

EN(n)~ logn, n— oo, (3.3.8)
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and
Var (N(n)) ~ logn, n — oo. (3.3.9)

Expression (3.3.3) implies that the generating function P,(s) of N(n) satisfies the
following equalities:

P.(s) = EsNM = HEsff
a (3.3.10)

n

H(l—|—(s—1)/j):s(1—|—s)(2+s)~--(n—1+s)/n!

and
Pu(=s)=(=1)"s(s=1)--- (s —n+1)/nl (3.3.11)

The expression (3.3.11) enables us to use Stirling numbers of the first kind,
which are defined by equalities

Xx—1)-(x—n+1)=>_ S (3.3.12)
k>0

Exercise 3.3.3 Show (taking into account (3.3.10)—(3.3.12)) that
P{N(n) =k} = (=1)*sk/n! = |$¥|/nt, n =1,2,..., k=1,2,...,n. (3.3.13)

Above (see (3.2.2)) the so-called kth record times L(n, k) were defined for any
k=1, 2,.... Indeed, the corresponding indicators &,(k) of the kth records also can be
defined as follows:

Ek)y =1, if X, > Xyt y—1, and &, (k) = 0, otherwise, n =k, k+1,....
(3.3.14)

Exercise 3.3.4 Give the alternative definition of indicators &,(k) via sequential
ranks p(1), p(2),... and prove that

P{&(k) =1} =k/n,n=k k+1,.... (3.3.15)

Indeed, if we consider now the numbers N(n, k) of the kth records among
random variables X|, X5, ..., X, then the following equality can be used:

N(n,k) = &(K) + Eer (k) + -+ Eu(K), n=kk+ 1 k= 1,2,....
(3.3.16)
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One more important situation in the classical record theory is connected with
sequences of independent identically distributed random variables having a discrete
distribution. Without loss of generality, we can suppose that X’s take nonnegative
integer values. For discrete distributions we introduce another type of record
indicators.

Let 5, = 1 if n is a record value in the sequence X;, X», ..., that is, there exists
such m =1, 2,... that X(m) = n, and #,, = 0 otherwise (compare with indicators &,!).
Analogously, for any k =1, 2,... we can introduce indicators #,,(k) for the kth record
values: #,(k) = 1, if n is a kth record value in the sequence X, X5,..., and #,(k) =0
otherwise. The following result is valid for such type of indicators.

Theorem 3.3.1 Let X, X;, Xo,... be a sequence of independent identically dis-
tributed random variables taking values 0, 1, 2,... with probabilities p, = P
{(X=n}>0,n=0,1,2,.... Then for any fixed k = 1, 2, ... indicators n,(k), n = 0, I,
2,..., are independent and

P{n,(k)=1}y=1—P{n,(k) =0} = (p,/ P{X>n})*, n=0,1,2,....
(3.3.17)

Exercise 3.3.5 Prove Theorem 3.3.1 for the simplest partial case kK = 1 and show
that record indicators #g, 71, #2,... are independent and

P{n,=1}=1— P{n,=0}=p,/P{X>n},n=0,1,2,.... (3.3.18)
It is easy to see that under conditions of Theorem 3.3.1 one can express dis-

tributions of the kth record values for discrete random variables via distributions of
sums of independent indicators:

P{X(n,k) > m} = P{ny(k) +---+n,(k)<n}, m=0,1,2,...,n=1,2,..,

and, in particular, under k = 1 we have equality

P{X(n) >m} =P{ng+---+n,<n},m=0,1,2,...,n=1,2,.... (3.3.20)

Exercise 3.3.6 Consider the case, when X’s have the geometric distribution with
some parameter 0 < p < 1, that is,

P{ijn} =(l-pp",n=0,1,2,...,

for j = 1, 2,..., and show that in this situation the sum (yy + *** + #,,) of record
indicators has the binomial B(m + 1, g)-distribution with a parameter g = (1 — p).
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It was mentioned above that for discrete distributions it is useful to introduce
weak records together with classical (strong) record values. Weak records may
arise, for example, in some sport competitions when any athlete who repeats the
previous record achievement is also declared as a record-holder. If we consider X’s
having a common discrete distribution it is useful to introduce one more type of
random variables which generalize the concept of record indicators %o, 71, #2,....
We define now random variables ug, gy, o,..., where y, denotes the number of
those weak records in the sequence X;, Xj,... that are equal to n. The following
result is valid.

Theorem 3.3.2 Let X, X;, X5,... be a sequence of independent identically dis-
tributed random variables taking values 0, 1, 2,... with probabilities p, = P
{X=n}>0,n=0, 1, 2,.... Then random variables 1, i, iz, ... are independent and

P{u,=m}=>10-rn)(rn)", n=0,1,2,..:;m=0,1,2,..., (3.3.21)
where
r(n) = po/P{X >n}.

Exercise 3.3.7 Show that equality (3.3.21) is valid for the partial case, when X’s have
the geometric distribution with some parameter 0 < p < 1, that is, consider the situation
with probabilities p,, = P{XJ = n} ={1-pp",n=0,1,2,..., forj=1,2,...

Let X,,(1), X,,(2),... denote the weak (upper) record values in the sequence Xj,
X>,.... Then for any n = 1, 2,... and m = 0, 1, 2,... the following relation is valid:

P{X,(n) >m} = P{ Ho +M1+M+ﬂm<n}.

Thus we see that there are some very convenient representations of record
values, record times, numbers of records, which allow us to impress these record
statistics in terms of sums of independent random variables.

3.4 Limit Theorems for Numbers of Records

Above we got some results for numbers of records N(n) among random variables
X1, Xo,.... X,,. For example, it was shown (see (3.3.13)) that the corresponding
distributions are expressed via Stirling numbers of the first kind:

P{N(n) =k} = (D)’ /nl, n=1,2,..., k=1,2,....

The expression given here is not very convenient to work with it under large
values n. Hence in such situations it is better to know the simple asymptotic
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formulae for these probabilities. The presentation of N(n) via the independent
indicators helps us to solve this problem. Applying to N(n) the classical limit
theorems for sums of independent random variables gives us the possibility to
obtain the following statements which describe the asymptotic behavior of N
(n) under the assumption that n — 00, The asymptotic results given below are
formulated for the independent X’s having any joint continuous distribution func-
tion F. One can get these limit (as n — ©0) theorems immediately, taking into
account relations (3.3.3), (3.3.8), (3.3.9).

(a) Central Limit theorem:

sup |P{N(n) —logn<xy/logn} —®(x)| — 0, (3.4.1)

®(x) = ﬁ | exp(—1*/2)dt being the distribution function of the standard
—00

normal law.
(b) Uniform estimate in Central Limit theorem:

sup |[P{N(n) — logn<xy/logn} — ®(x)| <C/+/logn,n=1,2,..., (3.4.2)

C being some absolute constant.
(c) Strong Law of Large Numbers:

P{lim(N(n)/logn) = 1} = 1. (3.4.3)

(d) Laws of Iterative Logarithm:

N(n) —1
P{limsup (n) — logn S=1}=1 (3.4.4)
(2logn logloglogn)
and
. N(n) —logn
P{liminf =—-1}=1. (3.4.5)

(2logn logloglog n)l/2 B

Exercise 3.4.1 Generalize relations (3.4.1) and (3.4.2) for numbers N(n, k) of the
kth record values in the sequences of independent random variables X, X»,....,
having a joint continuous distribution function F(x).
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3.5 Distributions of Record Times

Let us consider now the upper record times L(rn). These random variables are rather
close to numbers of records N(n). Really,

N(L(n))=n,n=1,2,...,

and recalling relations (3.3.4) and (3.3.5) one can write that

P{L(n) >m} =P{N(m)<n},n=1,2,...,m=1,2,...,
and

P{L(n)=m}=P{Nm—-1)=n—-1,¢, =1}
=P{Nm—-1)=n—1}/m, 1 <n<m. (3.5.1)

Since (see (3.3.13))
P{N(n) =k} = (—1)*S*/nl = || /nl, n=1,2,.., k=1,2,...,

we get the following expression (in terms of Stirling numbers of the first kind) for
record times:

P{L(n)=m} =|S"|/m,n=1,2,....m=nn+1,... (3.5.2)

m—1

Based on properties of Stirling numbers Westcott (1977a) showed that

P{L(n) = m} ~ (logm)"~* /m?(n — 2)! (3.5.3)

as m — OQ.

Relations (3.3.5) and (3.5.1) help us to find generating functions

On(s) = Es"™ n=1,2,...,
of record times. Since P{L(1) = 1} = 1, it is clear that
0i(s) =s.
Forn=2,3,...,|s| <1 and |z] < 1, one gets equalities
> 1

0n(s) = iP{L(n) =m}s" = Z%P{N(m —1)=n—1}s"
m=1

m=1



3.5 Distributions of Record Times 55

and
D 0.0 = YIS PN~ 1) = 1)2
:Zi:l%Pml(z):zi:% (142)--(m-2+2  (354)
e Er P eEE LR IR ]
Note that

U

i(_n;! (1—2)(=2)(-1-2)--2-m—z)=(1 -9

m=0 (355)
= (1 —s) exp{—z log(l —s)}
and then (3.5.4) and (3.5.5) imply that
(1=2) ) 0u(9)" " = —(1 = s) exp{—zlog(1 —5)} + 1. (3.5.6)
n=1
Transforming the LHS of (3.5.6) in
D0 ()" =D 0u(s)2 =5+ D (Qui(s) = Qul())?",
n=0 n=1 n=1
allows us to come to the following equality:
1=5=3 (@) - ) = (1-9 ) CEI=a s)

Let us denote that
R(s) = Qu(s) = Quyi(s), n=1,2,....

Then one can get from (3.5.7) that

R,(s) = (1_S)(—log(n+s))"’ n=12,...
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Hence

- (~log(1 —9))"

r!

On(s) = Qi(s) = (Ri(s) + -+ Rua(s)) =5 = (1 —s)

r=1
n—1 r
(—log(1 —))
=1y SR
(3.5.8)
Exercise 3.5.1 Prove that equality (3.5.8) can be rewritten as
—log(1—s)
1
On(s) = CES / V' lexp(—v)dv. (3.5.9)
0

The independence property of record indicators enables us to get joint distri-
butions of record times.

Theorem 3.5.3 Foranyn =1, 2,... and any integers 1 = j(1) < j(2) < -+ < j(n) the
following equality holds:
P{L(1) = 1,L(2) =(2),.. ., L(n) =j(n)}
= 1/((2) = DGB) = 1)...(j(n) = 1)j(n).

Proof Evidently, the event on the left side of (3.5.10) coincides with the event

(3.5.10)

Ay = {52 = Oa B éj(Z)—] = 07 61(2) = 17 éj(2)+1 = 07 cey

Ci3)-1=0,3) =1, Giu—1)—1 = 0, &1y
=1, Ej(nfl)Jrl =0..., fj(n)fl =0, 5j(n) = l}

The independence property of record indicators allows us to obtain now that

P{A.} = P{& = 0}.. .P{&a)1 = 0} P{&) = 1} P{&jar1 = 0}.. .P{&3-1 = O}
P{&iay = 1} .. P{&iu1)-1 = 0} P{&ju—1) = 1} P{&ju—1)11 = 0}.. .P{jy—1 = O} P{&igy = 1}
1 £ 1
OFEYORE

and this expression coincides with the LHS of (3.5.10).

Corollary 3.5.1 Indeed, one can get from (3.5.10) the following form (compare
with (3.5.2)) for distributions of record times:
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P{L(n) =m} =
Z (1/G2)-1)B) —1)---(j(n—1) —1)m—1)m),m=n,n+1,....

1<j(2) < <j(n—1)<m

(3.5.11)
In particular, for n = 2 we obtain that
P{L2)=m} =1/(m—1)mym=2,3,..., (3.5.12)
and hence
P{L2)>m}=1/mym=1,2,.... (3.5.13)

It is interesting to investigate the dependence structure of record times.
Taking into account equality (3.5.10) one gets immediately that for any 1 =
J()<j(2)< -+ <j(n — 1) <j(n) <m, the following equality holds:

P{L(n+1)=m|L(n) =jn), Ln—1)=jn—1),..., L(2) =j(2), L(1) = 1}

Jj(n)/m(m —1).
(3.5.14)

Also we obtain that

P{L(n+ 1) =m|L(n) =j} =j/m(m— 1)1 <j<m. (3.5.15)

Remark 3.5.1 Thus it follows from equalities (3.5.14) and (3.5.15) that the
sequence of record times L(1), L(2),... forms a Markov chain. Recall that we
consider the situation when the initial random variables X, X5,... are independent
and have a joint continuous distribution function.

Williams (1973) proved that the following presentation for record times is valid:

L(1)=1,Ln+1)= [L(n)exp(W,)] + 1, n=1,2,..., (3.5.16)

where Wy, W,,... are independent random variables having the standard exponential
distribution and [x] denotes the entire part of x. Evidently that this presentation can
be rewritten as follows:

L(l)=1,Ln+1)=[L(n)/U,)+1,n=1,2,..., (3.5.17)
where independent random variables U,,U,,... are uniformly distributed on [0, 1].

To prove (3.5.17) it suffices to show that L(1), L(2),..., defined by relations
(3.5.17), also form a Markov chain with transition probabilities given by (3.5.15).
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By construction, L(n), given in (3.5.17), depends on U, U,,...,U,— only and does
not depend on U,,. Then

P{L(n + 1) = m|L(n) = j} = P{[L(n)/U,) + 1 = m|L(n) = j} = P{[j/U,] + 1 = m|L(n) = j}
=P{[j/Us) + 1 =m} = P{j/m<U,<j/(m— 1)} =j/m(m — 1).

Thus, presentation (3.5.17), as well as result (3.5.16), is valid.

A very interesting result for record times was obtained in Galambos and Seneta
(1975). The integer-valued random variables 7(2), T(3),..., which were defined by
relations

T(n)—1<L(n)/L(n—1)<T(n),n=2,3,..., (3.5.18)

were considered there. It was shown that 7(2), T(3),... are independent and

P{T(n)=j} =1/j(i—1),j=2,3,....n=23,.... (3.5.19)

Exercise 3.5.2 Prove that equality (3.5.19) is valid.

3.6 Moment Characteristics of Record Times

Above the distributions of record times were investigated. Some problems appear
with moments of these random variables. It follows from (3.5.12) that EL(2) = 0o,
Hence EL(n) = oo for any n = 2, 3,..., and

E(L(n))"=o00,n=2,3,..., ifa>1.

In this situation the following expression for logarithmic moment may be useful:

ElogL(n) = n—C—2""" £ 0(3™), n — o, (3.6.1)

where C = 0.5772... is Euler’s constant.
Note also that the next analogous expression is valid for moments E(L(n))' 7,
p>0:

- 1 —n /3_1 —-n —-n
E(L(n))" ﬁzm{ﬁ + =B+ )"+ 0((f+2) ")} n— o0, (362)
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3.7 Exercises (solutions)

Exercise 3.2.1 (solution) The definitions of lower record times I(n), n = 1, 2,...,
and lower record values x(n), n = 1, 2,..., are given as follows (compare with the
corresponding definitions of upper record times and upper record values):

(1) =1, x(1) = X,
and
I(n+1)=min{j: X;<x(n)},x(n+1) = X1, n=1,2,.... (3.7.1)

Indeed, the following alternative definitions also can be used:

[(1)=1,1(n+1) =min{j: X;<m(l(n))}, n=1,2,...,
and
x(n) =m(l(n)),n=1,2,....

Using the sign < in (3.7.1) instead of < we get the definitions of the weak lower
record times and the weak lower record values.

The kth lower record times /(n, k) and the kth lower record values x(n, k) for any
k=1, 2,... are defined as follows:

l(l,k) = k,l(n+ l,k) = mm{] > l(n,k) : Xj<Xk.j—l}7 n—= 1,2,...,

and
x(n, k) = Xeinpp,n = 1,2,....
Exercise 3.3.1 (solution) It is enough to get that in this situation the following

equalities are valid for any n = 1, 2,..., k=1, 2,...,n and any configurations 1 < r
D <r2)< - <rk) <n:

P&y =1,... & =1}
= (X, > M(r(1) = 1), Xy > M(r(K) — 1)} = 1/r(1)r(2) ... r(k).
(3.7.2)

Note that in the partial case, when k = n, r(1) = 1, r(2) = 2,...,r(n) = n, this
equality coincides with (3.3.2). The simplest way to prove (3.7.2) is to use
sequential ranks p(m) = > ;" 1y, >x,3,m=1,2,....
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Equality (3.7.2) in our case can be rewritten in the terms of p(m) as follows:
P{&ay=1,...&p = 1} = P{p(r(1)) = r(1),...,p(r(k)) = r(k)}. (3.7.3)

From the independence property of sequential ranks (see, for example, Exercise
2.5.3 above) one gets that

PLa) = Leva = 1} = P{p(r(1)) = (D)} PLp(r(0) = r(k)}. (3.7.4)
We know also that
P{p(n) =m} =1/n

foranym=1,2,...nandn=1,2,....
Hence (3.7.2) immediately follows from (3.7.4).

Exercise 3.3.2 (solution) Since the probability integral transformation does not
affect the ordering of our random variables and preserves the distributions of record
indicators it is sufficient to prove the necessary result for F(x) = x, 0 < x < 1. In this
situation

P{M(n)<x} =x", 0<x<1,

and for any k=1, 2,....,nand 1 < (1) < r(2) £ - <r(k) < n we have the following
necessary relations:

P{ir(l) = 17§r(2) = lv”'aér(k) = 17 M(n)<x}

= 0 / vq(l)fldvl / vg(z)fldvz. . / v;;(k)fldvk =x"/r(1)r(2)---r(n)
0

Vi Vr-1

Exercise 3.3.3 (solution) From (3.3.10) and (3.3.11) one gets the expression for the
following generating function

E(—s)N"W= f[E(—s)ff: (—1)"s(s = 1)--- (s —n+1)/n!.

As we know, Stirling numbers of the first kind S’; are defined by equalities

s(s—l)-~-(s—n+1):ZSﬁsk.

k>0
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Hence it follows immediately that

P{N(n) =k} = (—1)"8/n!l = |$|/n!, n=1,2,..., k=1,2,...,n.

Exercise 3.3.4 (solution) It is evident that the event {,(k) = 1} can be expressed in
the terms of sequential ranks as {p(n) = n — k + 1}. Recalling that

P{p(n)=m}=1/n,m=1,2,...,n,
one immediately obtains that

P{¢(k)y=1}=k/n,n=k, k+1,....
Exercise 3.3.5 (solution) We get immediately that

P{ﬂn = l} = P{X1 = n} +P{X1 <n, X, = n} +P{X1 <n,Xp,<n, Xz = }’l} + -
= pu+ P{X<nlp, + P{X<n}p, + - = p,/(1 — P{X <n}) = p,/P{X >n}.

Analogous (but more complicated) proof allows to obtain for any r =2, 3,... and
0 < k(1) < k(2) < -+ <k(r) the following equalities:

P{ My =L My =1, My = 1} = H (Pr(my/P{X > k(m)}).
m=1

These equalities show that the indicators #o, 71, #2,... are independent.

Exercise 3.3.6 (solution) It follows from the previous exercise that record indi-
cators 7o, 41, %2,... are independent, take one of two values 0 and 1 and in the
considered case

P{n,=1}=1—-P{n,=0=(1-p),k=0,1,2,....

Hence the sum of (m + 1) two-valued independent identically distributed random
variables has the binomial B(m + 1, 1 — p) distribution.

Exercise 3.3.7 (solution) For this geometric distribution we have that
r(n) =p,/P{X>n}=(1-p),n=0,1,2,....

Consider n = 0. Then r(0) = (1 — p), 1 — r(0) = p. In this case one gets for m = 0,
1, 2,... that

P{ug=m}=P{X; =0,X,=0,.... X, =0,X,s1 >0} = (1 - p)"P{X,.; >0}
= (1=p)"p = (1=r(0)(r(0))".



62 3 Record Times
If n > 0, we can take off all X’s, which are less than n, from the sequence X, X5,
.... It means that now we begin to work with the new sequence Y1, Y>,..., where Y’s
are independent and
P{Y=kl=P{X=k|X>n}=(1-pp" " k=nn+1,...

Evidently, one can write now that

P{u,=m}=P{Yy,=nY,=n,...Y,=nY, 1 >n}=(1—p)"p

= (r(n)" (1 = r(n)).

Exercise 3.4.1 (answers) For numbers N(n, k) of the kth record values in the
sequences of independent random variables the following relations are valid:

sup |P{N(n,k) — klogn<xy/klogn} — ®(x)| — 0,n — oo,
and
sup |P{N(n) — klogn<xy/klogn} — ®(x)| < C(k)/+/logn, n=1,2,...,

where

@(x):\/%_n / exp(—2/2)dt

and the constant C(k) depends on k only.

Exercise 3.5.1 (hinf) It is enough to differentiate the RHS of (3.5.8) and the RHS
of (3.5.9) and to compare them.

Exercise 3.5.2 (hint) Use the fact that

P{T(n) =k} = P{(k — DL(n+ 1) <L(n) <KL(n + 1)}

and recall that

P{L(n+ 1) = m|L(n) = j} = j/m(m — 1), 1 <j <m,

as it was shown in (3.5.15).



Chapter 4
Record Values

4.1 Introduction

In the previous chapter together with record times we defined record values. Indeed,
there are different types of these random variables as well as different models of
record times. One can work with upper or lower, strong or weak record values. If L
(n), n=1, 2, ..., are the corresponding record times then X, n = 1, 2,... present
the associate record values. We will study below the most popular model of the
upper record values. It was shown in Chap. 3 that the classical upper record times L
(n) and upper record values X(n) are defined as follows:

L(1) =1, X(1) = X,
and then
Lin+1)=min{j: X; > X(n)}, X(n+1) =Xynp1), n=1,2,....  (41.1)

Indeed it is possible to use the following alternative definition for upper record
values:

X(n) = M(L(n)) = maX{Xl,Xz, .. .,XL(,,)} = XL(n)A,L(n)v n= 1, 2, cee (412)

Analogously we can define the lower record times /(n) and lower record values x

(n):
I(1)=1, l(n+ 1) =min{j : X;<m((n))}, n=1,2,..., (4.1.3)

and
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x(n) = m(l(n)) = min{Xl,Xz, .. 'aXl(n)} = Xl(,,w(n), n = 17 2, e (414)

It was mentioned earlier that there is a rather simple correspondence between
upper and lower records. Really, if we consider (together with our initial X’s) a new
sequence of random variables Y, = —X,, n = 1, 2,..., then the lower record values y
(n) in the sequence of Y’s can be expressed via upper record values X(n) as y
(n) = —X(n), n =1, 2,.... Indeed, if to change signs of strong equalities > and < in
(4.1.1) and (4.1.3) by signs = and <, one will deal (instead of strong records) with
weak upper and weak lower records accordingly.

4.2 Exact Distributions of Record Values

Let us consider the strong upper record values X(n), n = 1, 2,..., which are based on
the sequence of i.i.d. random variables X, X>,..., having a continuous distribution
function F(x). Using the definition X(n) = M(L(n)), one can write that

P{X(n)<x} = iP{M(L(n)) <x|L(n) = m}P{L(n) = m}
" (4.2.1)

= iP{M(m) <x|L(n) = m}P{L(n) = m}.

Since
{Ln)=m}={&+& +--+ &y =n—1,¢,=1}

and the vector of record indicators (&, &,..., &,—1, &) and maxima M(m) are inde-
pendent (see Exercise 3.2.2), we obtain that for any m = 1, 2,... the event {L(n) = m}
and the random variable M(m) are independent. Hence the RHS of (4.2.1) can be
transformed as follows:

iP{M(m) <x|L(n) = m}P{L(n) =m} = iP{M(m) <x}P{L(n) = m}

m=n m=n

zx:F’"(x)P{L(n) =m} = E(F(x))"".

m=n

(42.2)

Finally we get the relation


http://dx.doi.org/10.2991/978-94-6239-136-9_3

4.2 Exact Distributions of Record Values 65

P{X(n) <x} = E(F(x)"") = 0,(F(x)), (4.2.3)

where the corresponding expression for the generating function Q,(s) is given in
(3.5.9):

—log(1—s)
1 e
On(s) = CE / V'~ lexp(—v)dv
0
Thus, we obtain finally that
| —log(1-F(x))
P{X(n)<x} = CE] / v lexp(—v)dv, —co<x<oo, n=1,2,....

(=]

(4.2.4)

Exercise 4.2.1 Consider the case, when independent X;, X,,... have the standard E
(1)-exponential distribution with d.f. F(x) = 1 — exp(—x), x = 0, and prove that in
this situation the following relation in distribution holds for X(n):

X()EX, + -+ X, n=1,2,.... (4.2.5)

The joint distribution functions of record values have a rather complicate form.
Say, in the simplest case (n = 2) the following equalities hold:

o
P{X(1)<x1, X(2)<x} = ZP{XI <xi, max{Xa, ..., Xp-1} < X1, X1 <X, <x2}

m=2
min(x; x min(x; x2)
= F"2(u) ( —F(u)) dF(u) = (1 — F(u)))dF
Z/ ) (F () dF(u) Z ((F(xa) = F(u))/(1 — F(u)))dF(u)
F(min(x; x2))
= [ (R -0/ = e = (1= Fla)iog(1 — Flmin, ) + Flin x2).

It means that
P{X(1)<x1, X(2) <x2} = (1 — F(x;))log(1 — F(x))) + F(x1), if x; <xa,
and
P{X(1)<x1, X(2) <x2} = (1 — F(xy)) log(1 — F(x2)) + F(x2),

otherwise.
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The general expression (where n = 2, 3,...) for the joint distribution functions of
the record values corresponding to any continuous distribution function F is given
as follows:

n—1 )
P{X(1) <x1,X(2) <Xz, ... X(n) <x,} :/.../H%dF(un), (4.2.6)

where integration on the RHS of (4.2.6) holds over the set
B={u<x;, j=12,...,n, —co<u;<--- <u, <oo}.

A more simple expression is valid for the joint density functions of the record
values. Suppose that F is an absolutely continuous distribution function with a
density function f. Let us denote R(x) = fix)(1 — F(x)). Then the joint density
function of record values X(1), X(2),..., X(n) is given as

fioa(xi, 20, %) = R()R(x2). . R(xe—1)f (%), if X1 <o < -+ <y,
(4.2.7)

and fy, 5. a(X1, X2,..., X,) = 0, otherwise.

Exercise 4.2.2 Write the expressions for the joint density functions of record
values for the cases when X’s have the uniform U([0, 1]) and the exponential E(1)
distributions.

Let us consider now the sequence of independent exponentially E(1)—distrib-
uted random variables. For our convenience we denote these values as Z;, Z,,...
and the corresponding exponential record values as Z; = Z(1) < Z2) < - < Z
(n) < ---. Taking into account the result obtained in Exercise 4.2.2 we get that the
joint probability density function of Z(1), Z(2),..., Z(n) has the following form:

fio a(x,x, . x,) = exp{—x,}, if 0<x; <xp < -+ <Xy, (4.2.8)

and fi 2, . .(x1, x2,..., X,;) = 0, otherwise.

Exercise 4.2.3 Prove that the same (as (4.2.8)) joint probability density functions
have sums S = v; + vy +--- + W, k=1, 2,..., n, of independent exponentially £
(1)-distributed random variables vy, v, . . ..

Comparing (4.2.8) and the result, formulated in Exercise (4.2.3), one gets the
next result, which in some sense generalizes relation (4.2.5).

Representation 4.2.1 For any n =1, 2,... the following equality in distribution is
valid:
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{2(1),22), ..., Z(n)} £{S1, 55, ..., S}, (4.2.9)
where

Str=vi+v+--+w k=12,...n,
and vi,va, ... are independent random variables having the exponential E(1)-

distribution with the probability density function fix) = exp(—x), x = 0.

Corollary 4.2.1 It follows from (4.2.9) that the inter-record values Z(1), Z(2) — Z
),..., Z(n) — Z(n—1),... are mutually independent and have the standard expo-
nential distribution.

Are there such kind of simple representations as given in (4.2.9) for other
distributions of X’s? It is well-known that if a random variable X has a continuous
distribution function F, then the transformation U = F(X) produces the uniformly U
([0, 1])-distributed random variable U. This transformation does not change the
order of X’s and the vector {U(1),U(2),..., U(n)} of records in a sequence U;, U,
..., where U's are independent U([0,1])-distributed random variables, coincides in
distribution with the vector { F(X(1)), F(X(2)),....F(X(n))}.

Representation 4.2.2 Let F be a continuous distribution function and G be the
inverse of F. Then the following equality is also valid for any n = 1, 2,...

(X(1), X(2), ..., X()} 2{G(U(1)), GUQ)),....GUm)}.  (4.2.10)

Now let record values X(1) < X(2) < -+ and Y(1) < Y(2) < -** correspond to X’s
and Y’s with continuous distribution functions F and H respectively. Then it follows
from (4.2.10) that for any n = 1, 2,..., the next relation holds in distribution:

{X(1), X(2),.... X(n)} H{G(H(Y(1))), GH(Y(2)),.... GH(¥Y(n)))},
(4.2.11)

where G is the inverse function of F.
Combining (4.2.9) and (4.2.11) we come to the next equality:

e

{X l)a
1

(2),..., X(n)} i{H(vl), Hvi+v), ... Hvi+vw+---+vw)} n

LA |

2

)

(4.2.12)

where H(x) = G(1 — exp(—x)), G is the inverse of F and vy, v, ... are independent
exponentially E(1)-distributed random variables.

Taking into account Representations 4.2.1 and 4.2.2 one can mention that the
next relation for the uniform record values will be very convenient.
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Representation 4.2.3 Let Uy, U,,... be independent U([0, 1])-distributed random
variables and U(1) < U(2) < ... be the corresponding record values. Then the
following equality in distribution is valid for any n =1, 2,...

{U(1),U(2),...,U(n)} g{l -Uy, 1-UU,..,1-UU,...U,}. (4.2.13)
Exercise 4.2.4 Prove that equality (4.2.13) is true.

Corollary 4.2.2 From (4.2.13) it is possible for the lower record values u(1) > u
(2) >+ >u(n) > -+, based on the uniformly U([0, 1])-distributed random variables,
to get one simple representation. Since in this situation

{u(1),u(2), .. u(m)Y {1 —U(1), 1 —U2),...,1 - Un)},

one obtains that for any n = 1, 2,... the following equality holds:
{u(1),u(2), .. un)} £{U,, U,Us,...,UUs,.... Uy} (4.2.14)

It was mentioned above that we consider in general the records for X’s having
continuous distribution functions, but it is useful to mention here how to study
record values based on some discrete random variables.

Let now X;, X5,... be independent identically distributed random variables
taking nonnegative integer values and X(1) < X(2) < ... be the corresponding strong
record values.

For discrete distributions we introduce record indicators 7, n =0, 1, 2,..., such
that #,, = 1, if n is a record value in the sequence X, X»,..., and #,, = 0, otherwise. It
was shown (see Theorem 3.3.1 and Exercise 3.3.5) that these record indicators are
independent and

P{n,=1}=1—-P{n,=0} =p,/P{X>n}, n=0,1,2,....

Now one can get the simple expressions for distributions of record values X
(n) based on such type of discrete X’s. Really, in this situation it is possible to
obtain the following equalities:

P{X(n) =m} =P{nyg+n +---+n,,=n—1,n,=1}
=P{ng+n +- -+ 4, =n—1}p,/P{X>m}, (4.2.15)

and
P{X(n) >m} = P{ny+n + - +n,_<n}, (4.2.16)

which are valid for any m =0, 1, 2,... and n = 1, 2,....
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4.3 Distributions of Conditional Record Values

Let us consider the conditional distribution

ox|x1,x2, .. yxy) = P{IX(n+1) >xX(1) =x1, X(2) = x2,...,X(n)
=X}, X1 <Xy <...<X, <X.

The following result will be useful for us.

Exercise 4.3.1 Show that if L(n) is the nth record time in the sequence X, X,...,
then random variables X; ()41, Xp(my+2,--. are independent, have the same distri-
bution function F(x), as the initial X;, X5,..., and these elements don’t depend on the
X], Xz,. . -’XL(n)-

Taking into account the assumption of Exercise 4.3.1 and denoting Y| = X; )41,
Y, = X;(n)+2,- .., ONE gets that

O(xlxr,x2, .., x,) = P{Yy > x} + P{Y1 <x,, Yo >x} + - --
+P{Y1<xp, Yo<x4,.., Y1 <xp, Y, >x}+ -
— (1= F(x)) + Flan)(1 — F() + -
= (1 —=Fx))/(1 —F(x,)), X > Xq. (4.3.1)

In the case, when there exists the density function f(x) of X’s, one can write the
corresponding conditional density function f,1(x| x;, xa,..., x,) of X(n + 1) given
that X(1) = x1, X(2) = x,..., X(n) = x,,. It has the following form:

Jor1 (XX, %2, - x0) = () /(1 — F(x0)), x > x,. (4.3.2)

The result of Exercise 4.3.1 implies that the sequence of record values X(1) < X
(2) < ... forms a Markov chain.

4.4 Moments of Record Values

Let us consider exponential record values Z(1) < Z(2) < ... based on the independent
random variables Z,, Z,,... having the exponential E(1)-distribution. From (4.2.9)
we know that for any n =1, 2,...

(2(1),Z(2),....,Z(n)} 2{S1,S5,...,S:},

where Sy =vi+v+---+w, k=1, 2,..., n and v,v;,v,,... are independent
random variables also having the exponential E(1)-distribution.
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It follows immediately from this representation and from the independence
property of vy, vs,... that

EZ(n) = ES, = nEv =n, (4.4.1)
VarZ(n) = VarS,, = nVarv = n, (4.4.2)
Cov(Z(m),Z(n)) = cov(Sm, Su) = cov(Sp, Sn) = Var(S,) =m, if m<n,
(4.4.3)
and the correlation coefficients are given as follows:
p(Z(m),Z(n)) = (m/n)"/?, if m<n. (4.4.4)

Exercise 4.4.1 Use equalities (4.2.13) and (4.2.14) to find expectations EU(n) and
Eu(n), variances Var U(n) and Var u(n), covariances Cov (U(m), U(n)) and Cov(u
(m),u(n)) of the upper and lower uniform record values.

From (4.2.12) for any X’s with continuous d.f. F(x) we have the following
equalities in distribution:

{X(1), X(2),...,X(n)} i{H(vl), Hvi+v2),...Hvi+ v+ +v,)},
n=12,...,

where H(x) = G(1 — exp(—x)), G is the inverse of F and vy, v,, ..., as above, are
independent exponentially E(1)-distributed random variables. Note that sums

S, =vi+wv+--+v,n=12 ...,

have the Gamma distributions with parameters 1, 2,..., correspondingly. It allows
us to write that

EX(n)=EH(vi+v2+- - +v,) = / H(x) exp(—x)¥"'dx/(n — 1)!

:/ G(1 — exp(—x)) exp(—x)v"dx/(n — 1)! = / w(—In(1 — F(u)))"" dF(u)/(n — 1.
0 —00
(4.4.5)

Similarly one gets that

EX?(n) = / w*(—In(1 — F(u)))" 'dF (u)/(n — 1. (4.4.6)
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Exercise 4.4.2 Show that equality (4.4.6) is valid and write the expression for
variance of X(n), n =1, 2,....

Exercise 4.4.3 Generalize expressions (4.4.5) and (4.4.6) and write equalities for
moments EX'(n) for r =3,4,...and n=1, 2,....

The analogous method gives, in particular, the following equalities for the joint
moments E X(m) X(n).
Let m < n. Then we can get that

EX(m)X(n)://H(u)H(u+v)exp(—(u+v))u’"’1v"”"’1dudv/(m— Di(n—m— 1)L (4.4.7)
0 0

Based on equalities (4.4.5)—(4.4.7) it is possible to write the corresponding
formulae for covariances cov(X(m), X(n)) and correlation coefficients

p(X(m), X(n)) of any two record values X(m) and X(n). Indeed we don’t forget
every time that it is necessary to check preliminary the existence of the second
moments of these record values.

Remark 4.4.1 1t is interesting to know (see, for example, Nevzorov (2001), Lecture
22) that for any m < n and for any continuous d.f., such that

/ w*(—In(1 — F(u)))™ ' dF (1) < o0, / w*(—In(1 — F(u)))" ' dF (u) < o0,
(4.4.8)

the following inequality for the correlation coefficients holds:
p(X(m), X(n)) < (m/n)'"2. (44.9)

Thus, we obtain, recalling (4.4.4), that the maximal value of p(X(m), X(n)) is

attained for the exponential distributions and it is equal to (m/n)"’? if m < n.

4.5 Joint Distributions of Record Values and Record
Times

Above we discussed separately distributions and properties of record times and
record values. There are some useful results connected with the joint distributions
of these random variables. Lower we consider different results connected with the
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joint distributions of record values X(n), record times L(n) and inter-record times A
1) =LA)=1, A(n) = L(n) — L(n—1), n =2, 3,...

The joint distributions of the sets of record times and record values for any n,
any values xi, x,,..., x, and 1 = k(1) < k(2) < -** < k(n) are given as follows:

P{X(1) <x1,X(2) <x2,....X(n) <xn, L(1) = 1, L(2) = k(2),...,L(n) = k(n)}

= / / h(vi,va, .., vy)dF(v1)dF (v2)...dF(vy),
- h (4.5.1)

where

n—1

h(vi,vay ..o vp) = HFk(rH)fk(r)*l(vr),

r=1

if—00 < vy < vy <+ <y, < 0, and h(vy, vy,..., v,) = 0, otherwise.

In the case when X’s have a density function f{x), one can consider the function f
(X1, X25- -5 X, kK(1), k (2),..., k(n)), which presents a density function with respect to
the record values and a probability distribution with respect to our discrete record
times. To get flxy, Xa,..., X,,, k(1), k(2),..., k(n)) one must differentiate (4.5.1) n times
with respect to xj, X,..., X,. These differentiating allows to obtain rather simple
equality:

1, X2, oy Xy k(1),k(2), .. ., k(n))
= (F () @ O F () Y OO (F ()0 ) f ). f (),
(4.5.2)
if —oco<x<p<...<xy,<00, 1 =k(1)<k(2)<...<k(n)

and

FOe,x2, . %0, k(1),k(2), ..., k(n)) = 0, otherwise.

Exercise 4.5.1 Make the substitution m(r) = k(r) — k(r — 1), r = 2, 3,..., n, in
(4.5.2) and prove that the corresponding joint “density-distribution” function A(xy,
X2,..., Xp, m(1), m(2),..., m(n)) for record values X(1), X(2),..., X(n) and inter-record
times A(1), A(2),..., A(n) has the form

h(x1,x2, . %0, m(1),m(2),...,m(n))

453
= (F(x))" P (F ()" (F )™ f (e)f (). f (), (433)
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if —oo<x<xp<...<x,<oo, m(1)=1, m(2)>0,...,m(n) >0,
and

h(x1,x2, .., x5, m(1),m(2),...,m(n)) =0, otherwise.

Recalling (see (4.2.7)) that the joint density function of X(1), X(2),...,X(n) has
the form

Sz a(x,x2, . x) = R(x1)R(). . RO—1)f (%), If X1 <xa<...<Xy,

where R(x) = fix)(1 — F(x)), we can obtain from (4.5.3) the expression for the
conditional probabilities of the inter-record times:

P{A(D) = 1, A(2) = m(2),.. ., A(n) = m(n)| X(1) = x1, X(2) = x2,..., X(n) = xa}

= (F(x1))" 7' (1 = F(x1))(F(x2))"Y 7 (1 = F(x2)). . «(F(xa-1))" ™7 (1 = F(a-1)).
(4.5.4)

Remark 4.5.1 Thus, it was shown that inter-record times A(1), A(2),..., A(n) are
conditionally independent given the fixed record values X(1), X(2),..., X(n) and for
any r=2,3,....,m=1,2,...,n =2, 3,... the following equality holds:
P{A(r) = m|X(1) = x1,X(2) = x2, ..., X(n) = x,} = (1 = Fo,—))(F ()" .
(4.5.3)

4.6 Kth Record Values

As it was mentioned above the kth records are a natural extension of the classical
records. Recall that kth record times L(n, k) and the kth record values X(n, k) for any
k=1, 2,... are defined as follows:

L(1,k) =k, L(n+1,k) = min{j > L(n, k) : X; > X; ;1 }, n=1,2,...,
and
X(n,k) = Xpng) — ki1, Lni),n = 1,2,

Some results describing the probability structure of the kth record values and
their relationships with order statistics were given in Deheuvels (1984b). We are
going to consider here only the case when the parent distribution function F is
continuous, although some of the results discussed below are true under more
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general conditions. Note that relations for the kth records are rather close to the
corresponding results for the usual (when k = 1) records.

Let us denote as Z(1, k) < Z(2, k) < ... the kth record values for the case of the
standard exponential distribution with d.f. F(x) = 1 — exp(—x), x = 0.

Representation 4.6.1 For any n = 1, 2,... and any k = 1, 2,... the following
equality in distribution is valid:

(Z(1,6),Z(2,K), .. . Z(n, k)Y 2181 /K, Sa K, ..., Su/kD, (4.6.1)

where Sy =vi+ v+ ...+, k=1, 2,.., n,and vi,v,,.... are independent ran-
dom variables having the exponential E(1)-distribution.

Indeed if k = 1, one gets Representation (4.2.1) for the usual exponential record
values, as a partial case of (4.6.1).

Exercise 4.6.1 Describe (as it was done in Corollary 4.2.1) the structure of the kth
inter-record values Z(1, k), Z(2, k) — Z(1, k),..., Z(n, k) — Z(n — 1, k).

Exercise 4.6.2 Find moments EZ(n, k), VarZ(n, k) and cov(Z(m, k), Z(n, k)).

Taking into account (4.6.1) it is possible to investigate more general situations.
Let now kth record values X(1, k) < X(2, k) < ... correspond to X’s with a con-
tinuous distribution function F. Then it follows from (4.6.1) that for any n = 1, 2,...,
the next relation holds in distribution:

{X(1,k), X(2,k), ..., X(n, k) }

d (4.6.2)
={H1/k), H(vi + v2)/k),.. . H((vi +v2+ -+ v,)/k)},

where H(x) = G(1 — exp( — x)), G is the inverse of F and vy, v,,.. ., as above, are
independent E(1)-distributed random variables.
It is not difficult to find that for any continuous d.f. F, any k> 1,n 2 1, and x > u,

P{X(n+ 1,k) > x|X(n,k) = u} = (1 — F(x))/(1 — F(u)))~. (4.6.3)
Really, it follows from (4.6.2) that

PAX(n+1) > 21X (n, k) = u} = PLH((v1 +v2 + -+ Vi) /)
> X H((vi +v2+ -+ va)/k) = u)}
=P{(vi+vat- 4 vut1)
> —klog(1 — F(x))|(vi +va+ -+ +vn)
— —kog(1 — F(u))}
= P{v,y1 > —klog(1 — F(x))
 Hlog(1 = F(u))|(n + va + -+ v,)
= —klog(1 — F(u))}.
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Since v, and the sum v + v, + - - - + v, are independent one gets that

P{X(n+1) > x|X(n,k) = u}
= P{vup1 > —Klog(1 = F(x)) + kog(1 — F(u))} = (1 = F(x))/(1 - F(u)))".

Exercise 4.6.3 Consider two sequences of independent random variables:

X1,X,, ... with a continuous d.f. F and Y| = min{Xy, ..., X}, Y2 = min{X;y1,...,
Xot}, ..., having d.f. T(x) = 1 — (1 — F(x))*. Let also X(n, k) be the kth record values
based on X}, X5, ..., and Y(n, 1) be the usual (k = 1) record values constructed with
the help of the sequence Y1, V>, .. ..

Prove that for any k = 1, 2,... and any n = 1, 2,... the following equality in
distribution is valid:

X(n,K)LY(n, 1) (4.6.4)

This correspondence between the kth record values X(n, k) and the usual records
Y(n, 1) helps us to get immediately distribution functions for X(n, k). From relation
(4.2.3) we know that

~ log(1-F(x))

P{X(n,1)<x} = (n_l 0 / u" e "du. (4.6.5)

0

The only we need now to obtain P{Y(n, 1) <x} isto write T(x)=1— (1 — F(x))*in
(4.6.5) instead of F(x). Hence, for any k > 1 and n > 1 the following result is valid:

—klog(1—F(x))
1
P{X(n,k)<x} = CEE] / W le "du. (4.6.6)
0

4.7 Exercises (solutions)

Exercise 4.2.1 (hint) It is enough to consider (4.2.4) with F(x) = 1 — exp( — x),
x 2 0, and to see that in this case the RHS of (4.2.4) corresponds to the Gamma(n)-
distribution. Then it will be enough to recall that the sum X; + -+ + X, of inde-
pendent E(1)-distributed X’s has the same Gamma-distribution.
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Exercise 4.2.2 (answers)
(a) It follows from (4.2.7) for the uniformly U([0,1])-distributed X’s that
fl_’z,‘_”n(xl,x% .. .,x,,) = 1/(1 — xl)(l —)C2). ..

(I —xymp), fFO<x; <2 <...<x,<1,
and

fiz.n(x1,x2,. .., x,) = 0, otherwise.

(b) The joint density function of record values for the exponentially E(1)-dis-
tributed X’s was given in (4.2.8):

fljzw_,,,(xl,xz, .. .,x,l) = exp{—x,,}, if 0<x1 <X <...<Xp,
and

Sz, a(x1,x2,...,x,) = 0, otherwise.

Exercise 4.2.3 (solution) It is enough to recall that the joint density function g (u,
Us,...,u,) of independent E(1)—distributed random variables vy, v, .. .v, is given as

glur,up, .. yuy) =exp{—(us +ua+---+u,)}, 4 >0, uy >0,..., u, >0.
(4.7.1)

Changing uy, uy,....u, in (4.7.1) by x; =uy, Xo =uy + tp,... . Xy, =uy+ Uy + ... + u,
one immediately gets that

f1,2,.4.,n(x1;x2a .- 'axn) = eXP{—Xn}, §f 0<Xl <X < - <Xy

Exercise 4.2.4 (solution) In this situation equality (4.2.12) must be considered with
H(x) =1 — exp(— x), x 2 0. Then

(U(1), UQ2),...,Um)} £{1 —exp(—v1), 1 —exp(—(v; + W), ...,
I —exp(—(vi+va+---+w)}

It is not difficult to see that random variables exp(—v;), exp(—vz2),...,exp (—v,)
are independent and have the same uniform U([0,1]) distribution.

Exercise 4.3.1 (hint) Evidently, the sequence Yy = Xy )41, Y2 = X141)42,..., under
condition that L(n) = m, coincides in distribution with X,,,,,X,,.o,... and these Y’s
do not depend on X, X»,...,X,,. Moreover, for any m the event C,, ,, = {L(n) =m} is
determined by random variables X;, X5,...,X,, only and does not depend on X1,
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X402, .... Hence now if to consider arbitrary event B, generated by record values X
(1), X(2),..,X(n) (in particular, event {L(n) = m}), and any event

A= {Y1<X1,Y2<XZ7...,Yk<Xk}, k= 1,2,...,
one can get that
P{AB} = F(x)F(x2)...F(xx)P{B},

which proves the necessary assertion.

Exercise 4.4.1 (hints and answers) It is evident that

U(n)il —u(n), n=1,2,...
Hence

Eu(n) =1 —EU(n), Var u(n) = VarU(n), Cov(u(m),u(n)) = Cov(U(m),U(n)).

From (4.2.14) one immediately gets that
Eu(n) = (EU)" = 1/2", Ei®(n) = (EU*)" = 1/3", Var u(n) = 1/3" —1/4", n=1,2,...,

Eu(m)u(n) = (EU*)"(EU)"™™ = 1/3"2"" m<n,
Cov(u(m),u(n)) = 1/3m2""™ — 1/2™™ 'm<n.

Exercise 4.4.2 (solution) Analogously to (4.4.5) one gets that

EX*(n) = EH*(vi + vy 4 +v,) = / H?(x) exp(—x)x"'dx/(n — 1)!
0

= / w?(—In(1 = F(u)))" "dF (u)/(n — 1)!.

Thus,
Var X(n) = / u (= In(1 — F(u)))"'dF (u)/(n — 1)!

- /u(_ln(1_F(u)))"*ldF(u)/(n_1)!)2 :
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Exercise 4.4.3 (answer)

EX'(n)=EH (vi +va+--4w,) = / H"(x) exp(—x)x" 'dx/(n — 1)!
0

= / W (—=In(1 = F))" "dF(u)/n— 1), r=1,2,....,n=12,....

Exercise 4.5.1 (hint) The substitution m(r) = k(r) — k(r — 1), r = 2, 3,..., n, in
(4.5.2) immediately allows to obtain equality (4.5.3).

Exercise 4.6.1 (answer) It follows from (4.6.1) that for any k = 1, 2,... the
inter-record values Z(1, k), Z(2, k) — Z(1, k),..., Z(n, k) —=Z(n — 1, k),... are inde-
pendent and have the exponential E(1/k)-distribution with the density function
f(x) = kexp(—kx), x> 0.
Exercise 4.6.2 (answers) Immediately one gets from (4.6.1) that
EZ(n,k) = n/k, VarZ(n,k) =n/k*, Cov(Z(m,k),Z(n,k)) = min(m,n)/k>,
and the correlation coefficients do not depend on k and have the form
p(Z(m, k), Z(nk)) = (m/n)"?, if m<n, k=1,2,...

Exercise 4.6.3 (solution) It is enough to observe that the function W(x), inverse to
T(x), has the form W(x) = G(1 — (1 — x)"%), where G(x) is the inverse function to F
(x). Then the application of relation (4.6.2) with £ = 1 and

H(x) = W(1 — exp(—x)) = G(1 — exp(—x/k))

allows to get the equality

Y, )L H((v +va+-+w)/k), n=12,...,

which means that Y(n, 1) and Z(n, k) have the same distribution.



Chapter 5
Record Values of Some Well Known
Distributions

5.1 Exponential Distribution

5.1.1 Introduction

A continuous random variable X is said to be exponentially distributed with
parameters | and o, ¢ > 0, if its pdf is of the following form

fx) =0 'exp(—o'(x — ), —oco<pu<x<oo, s >0, (5.1.1.1)
=0, otherwise o

The corresponding distribution function F(x) and the hazard rate r(x) of the rv X
are respectively

F(x)=1 fexp(f(fl(xf ,u)), —co<pu<x<00,0 >0
and

r(x) =f(x)/(1 = F(x)) =" (5.1.1.2)

We will denote the exponential distribution with the pdf as given in (5.1.1.1) as
E(y, o). The graph of the pdf of E(0, 1) is given in Fig. 5.1.

The exponential distribution possesses the memory less property i.e. an item
whose lifetime is exponentially distributed, the residual life does not depend on the
past life. In terms of probability, we can write

PX >s+tX >t] = P[X > s] (5.1.1.3)
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Fig. 5.1 Pdf of E0, 1)

f(x) 05

In terms of the distribution function we can write (5.1.1.3) as

1 —F(s+1t) = [1 — F(s)] [1 — F(t)]. (5.1.1.4)

This property is utilized in many characterizations of the exponential distribution

5.1.2 Distribution of Record Values

o '(x — ), we have the pdf f,(x) of the nth

Using R(x) = —log(1 — F(x)) =

upper record X(n) as
x—p), —co<p<x<oo, >0

fl’l(x) = ra(n) (X - ‘u)"_lexp(_
=0, otherwise. (5.1.2.1)
The corresponding d.f. F,(x) is

n—1
1 e
par k'( o ) '

The joint pdf of X(m) and X(n), n > m is
_ " (x B :u)m71 n—m—1 —1
fm,n(xa y) - r(m) r(n _ m) (y 'x) exp( (x :u))>
(5.1.2.2)

—oo<u<x<y<oo,
=0, otherwise
X(m — 1) are identically

It is easy to see that X(n) — X(n— 1) and X(m) —
distributed for 1 < m < n < ©0. It can be shown that X(m)dX(m — 1) + U, m > 1

where U is independent of X(m) and X(rn — 1) and is identically distributed as X;’s
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The conditional pdf of X(n)||X(m) = x is

O.m—n

f(y|X(m) = X) = W (y _ x)nﬂn—l

exp(—a_l(y —X)), —oo<pu<x<y<oQ,

=0, otherwise.

(5.1.2.3)
It can be shown that if p = 0, then X(n) — X(m) is identically distributed as
X(n—m),n>m.

If we take p = 0 and 6 = 1 and W, = X(1) + X(2) + -+ X(n), then, the
characteristic function of ¢, (z) of W, can be written as

1 1 1

) = . . 5124
9u(t) l1—it 1-2it 1—nit ( )
Inverting (5.1.2.4), we obtain the pdf fw(w) of W, as
Z ™ e 2, (5.1.2.5)
F(] T(n—j+1)
Theorem 5.1.2.1 Let X;,i=1,2,... be independently and exponentially distributed
with p=0and 6 = 1. Suppose &; = +>1) i=1,2,m— 1 then &’s are independent.

Proof The joint pdf of X(1), X(2),...,X(m) is
f(x1, %0, 00 0 Xm) = €™, 0<x <Xy < -+ <Xy <00

Let us use the transformation

X(i)
=X(1 dé = —2 =2 —1
50 ( )7 an éz X(l—|— l)a 1 ) , M
The Jacobian of the transformation
A(X(1), X(2),...,X(m)) gmt

J=

a(éw él?"’afm—l) ‘ - érln 3171... 2

m—1

We can write the pdf of &,,1=0, 1,...... m— 1, as

€m71 _( e )
; e
fleo,e1,.. . em 1) = ——F——5—e m1)
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Now integrating the above expression with respect to e,, we obtain the joint pdf
of &,i=1,...... ,m—1, as

fler, . em1) =T (m)e,...er 72
Thus &;,i=1, 2,..., m — 1 are independent and
P(&<x)=x* 1<k<m-1.
Exercise 5.1.2.1 Let Wy = (6)%, k=1, 2,..., m — 1, then W, W,,...., W,,_; are

independent and identically distributed as uniform (over the interval (0, 1)) random
variable.

5.1.3 Moments

Without any loss of generality we will consider in this section the standard expo-
nential distribution, E(0, 1), with pdf f(x) = exp(—x), 0 <x< o0, in which case we
have f(x) = 1 — F(x).

For 1 <m<n,

e ¢]
1 1
_ q,—x . m+p—1, n*mfldd
//Fm)'l"(n—m)ue v (w—v) vdu
00

Substituting tu = v and simplifying we get

E(Xﬁ>X&m)
nAprq—1 —xmtp =l _ n—m—1 u
/ / ) Tn —m) u f (1—1) drd
M+pf(+p+®
CETD) (5.1.3.1)

It can easily be shown that if S, = X(1) + X(2) +--+ X(n) then

nn+1)

E(S,) = — and Var(S,) = w

6

Some simple recurrence relations satisfied by single and product moments of
record values are given in the following theorems.
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Theorem 5.1.3.1 Forn>1andr=0, 1, 2,...

E(X(m)") = E((X(n = 1)) + ( + DEX()") (5.13.2)

and consequently, for 0 <m < n — 1 we can write

n

EX(n)™"' = EX(m)™ + (r+1) Y E(X() 5.13)
i=r+11 .o,

withE((X(O)"“) — Oand E(X(n)") ~ 1.

Proof Forn>1andr =0, 1,..., we have

BX())) = 15 / Y RWY T (@

1 / > n—1
= v | KRG {1 = F(x)}dx,
L'(n) Jo
since f(x) = 1 — F(x).
Upon integrating by parts treating X" for integration and the rest of the integrand
for differentiation, we obtain

I ooxr X)) (x)dx

EX) = i | ¥ R0

! Ten L X))} (x)dx
T Ry

T+t

_ /Oooerﬁ{R(X)}"zf(x)dx}

—EX(n)™ - E(x(n - 1)”1),

which, when rewritten, gives the recurrence relation in (5.1.3.2). By repeatedly
applying the recurrence relation (5.1.3.2), we simply derive the recurrence relation
in (5.1.3.3).

Remark 5.1.3.1 The recurrence relation in (5.1.3.2) can be used in a simple way to
compute all the simple moments of all record values. Once again, using the property
that f(y) = 1 — F(y), we can derive some simple recurrence relations for the product
moments of record values.

Balakrishnan and Ahsanullah (1995) proved the following recurrence relations
of the product moments given in Theorem 5.1.3.2.
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Theorem 5.1.3.2 Form>1andr,s=0, 1, 2,...

E((X(m)) (X(m+ 1)) = E(X(m)) 1) 4 (s + DE((X(m)) (X(m + 1))
(5.1.3.4)
and forl <m<n-2,r,s=0,1,2,...
E((X(m)) (X (0))"™1) = E(X(m)) (X(n = 1)) )(s + DE(X(m))" (X (n))")
(5.1.3.5)

Remark 5.1.3.2 By repeated application of the recurrence relation in (5.1.3.5), with
the help of the relation in (5.1.3.4), we obtain for n > m + 1 that

n

E((X(m))" (X)) = E((X(m))™* + (s +1) Y E((X(m))"(X(n))")

p=m+1

(5.1.3.6)

Exercise 5.1.3.2 If X(n) is the nth upper record from an exponential distribution
with pdf f(x) = e™, x>0, then X(n)d X; 4+ Xz + - - - + X,,, where Xy, X5,....X,, are
independent and identically distributed with pdf f(x) = e, x > 0.

Exercise 5.1.3.3 How that the Shannon entropy E,, of X(n) of E(0, o)is
E,=n+logl'(n) —Ino — (n— 1)y(n),

where y/(n) is the digamma function, y(n) = < In I'(n).

5.2 Generalized Extreme Value Distributions

5.2.1 Introduction

A random variable X is said to have the generalized extreme value distribution if its
distribution function F(x) is of the following form:

F(x) = exp[—{1 —y0 ' (x —u)}'/"] (5.2.1.1)
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where 6 > 0, v # 0 and

X <p+ayt, fory>0

1

(5.2.1.2)
X >u+agy -, fory<O.

If y = 0 then
F(x) = exp[—exp{(x — u)/0}],0 > 0, —co <x < 00. (5.2.1.3)

We will write X € GEV(y, o, v) if X has the d.f. as given in (5.2.1.1).
Since

}irr(l){l —yo i (x— ,u)}l/y =exp{—o'(x — 1)}, we can take

lim GEV(pn, o,v) = GEV(u, ,0).

y—0

The pdf of GEV(y, o, v) is

f(x) = {1 —ya " (x— W} exp[—{1 —yo ' (x — W)}, 7 £0
x<1/y, fory>0,
x>1/y, fory<O0,

and
f(x) =e™ exp(—e %), for y = 0, for all x.
Figures 5.2 and 5.3 give the pdfs of GEV(0, 1, 1/2) and GEV(O0, 1, 0).
The extreme value distribution for y = 0, is also known Gumbel distribution.
The largest order statistic X,,,, when properly standardized tends to one of the
following three types of limiting distribution functions as n — ©o.

(1) Type 1: (Gumbel) F(x) = exp(—efx)‘, for all x,
(2) Type 2: (Frechet) F(x) = exp(—x ~ %), x>0,6>0
(3) Type 3: (Weibull) F(x) = exp (—(—x) 2’), x<0,06>0.

Fig. 5.2 Pdf of GEV(0, 1, 06 | |
172)
04 - -
f(x)
02 -
0 |
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Fig. 5.3 Pdf of GEV(0, 1, 0) 0.4 T T

f(x) 02

Since the smallest order statistic X; , = Yy, Where Y = —X, X, , when properly
standardized will also converge to one of the above three limiting distributions.
Gumbel (1958) has given various applications of these distributions. The Type 1
(Gumbel distribution) is the limiting distribution of X, , when F(x) is normal, log
normal, logistic, gamma etc. The generalized extreme value distribution (5.2.1.1)
has been discussed by Jenkinson (1955). It includes as special case the above three
well known extreme value distributions.

The type 2 and type 3 distributions can be transformed to Type 1 distribution by
the transformations V, = llog X and V; = —log X respectively.

These distributions were originally introduced by Fisher and Tippet (1928).
Extreme value distributions have been used in the analysis of data concerning
floods, extreme sea levels and air pollution Excercises; for details see Gumbel
(1958), Horwitz (1980), Jenkinson (1955) and Roberts (1979).

For a given set of n observations, let X;, << X,, be the associated order
statistics. Suppose that P{a, (X, , — b,) < x} — G(x) as n — ©0 for some suitable
constants a, and b,. Then it is known (see Leadbetter et al. 1983, p. 33) that

P{ay,(Xp—mn — )<x}—>G 2’": Flrslili]'

We have already seen that the right hand side of the above expression is the d.f.
of the mth lower record value from the distribution function G(x).

Thus the limiting distribution of the (n — m + 1)th order statistic (m finite) as
n — oo from the generalized extreme value distribution is the same as the mth
lower record value from the generalized extreme value distribution. In this chapter
we will study the lower record values of GEV (u, o, y).

5.2.2 Distributional Properties

If X € GEV (u, o, 7), then we can write for y # 0, the pdf f(m)(x) of the mth lower
record value x(n) as
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i (%) = {1 =90~ (x = )} "~ V7fr () (5:2.2.1)
where
vy A=y e — . 1y
fm(x) - G(m— 1)' exp{—(l — Yo (x—,u))}
and for y = 0,
e—ma’l (x—p) o )
From (5.2.2.1) and (5.2.2.2) it can be shown that
x(m)d p+ 6y~ {1 = (Wi + -+ W,)"}, fory #0 (5.2.2.3)
(% W,
X(m)dX — a(W) + 24 +—""2) fory =0, (5.2.2.4)

2 m—1

where Wy, W,,...,W,,, are independently distributed as exponential random vari-
ables with unit mean and d denotes the equality in distribution. It can easily be

shown that.

5.2.3 Moments

E(x(m)) = p+ oy~ {1 = T(m +7)/T(m)}.

Var(x(m)) = 6>y [B(Wi + -+ + Win) = {E(W1 + -+ + Win)y}’]
_ o o|Tm+2y)  [T(m+y) ?
- ['(m) { ['(m) } '
Forr <m
y262Cov(x(r i ZW )'E i

Z wi)
e—uur le—vvm r—1
(w+v) dudv

L(r) T(m—r)
r+?)r( +2y) T +y)Tim+7y)
LT (r+7) L(r)l(m) -
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since u and v are independent. We can write for r < m

Cov{x(r)x(m)} = o2a,by,

where

S}

Y :F(r—i—y) :F(m+2y)_r(m+y) and 2 = &
() 7 " D(m+y)  T(m) P

Using (5.2.2.4) we obtain for y = 0,

E(x() = -+ o
(x(r)) =V, r=1,2,...

Cov(x(r)x(m)) = Var(;((m)), r<m,

with
v} =0
= G-z,
Vf}l :n2/6,
* * . -2 .
Vii=Via—0-1)7"j=2

Here v (=0.57722...) is the Euler’s constant.
For X € GEV (y, o, 0), the joint pdf fy(y) of Y = H(x(m + 1))/H(x(m)) is

fr(y) =my™", 0 <y<oo (5.23.1)

Thus (Y)™ is distributed as uniform over the interval (0, 1). Consequently m
[-log H(x(m)) + log H(x(m + 1)) is distributed as exponential distribution with
mean unity. Tables 5.1 and 5.2 give the values of E(X(n)) and Var(Xy (n)) for
some selected values of n and y.

Table 5.1 Expected values n/y 0 0.5 1.0 15

of Xy 7
5 —1.5061 —2.3619 —4.0000 —5.6301
10 —2.2518 —4.2460 —9.0000 —21.1944
15 —2.6743 5.6817 —14.0000 —39.0221
20 —2.9705 —6.8886 —19.0000 —60.0718
25 —3.1987 —7.9501 —24.0000 —83.9094
30 —3.3844 —8.9089 —29.0000 —110.2405
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Table 5.2 Variances of Xj n\y y=0 y=05 y=10 y=15
5 0.2213 0.9738 5.0000 29.3843
10 0.1052 0.9872 10.0000 108.7898
15 0.0689 0.9915 15.0000 238.1350
20 0.0513 0.9937 20.0000 415.5101
25 0.4080 0.9950 25.0000 646.8852
30 0.0339 0.9958 30.0000 926.2602

We will derive the recurrence relation for the moments of standardized extreme
value distribution, GEV(0, 1, y). The distribution function of the standard gen-
eralized extreme value distribution can be written as

F(x) = e’{l’yx}l/?, x<1/y, wheny > 0,
x> 1/y,wheny<0

and
F(x) =e ° ,—0co<x<oo, wheny = 0
The corresponding pdfs are

flx) = 67{17”}1/7{1 — yx}%fl, when x <1/y, wheny >0
x > 1/ywheny<0

—e

=e ¢ ¥ —o<x<00,y=0
Note that for y # 0
F(x) = P(x).{1 =y}
= {1 —yx}f(x) = Fx){1 — px}"/" = —F(x) In F(x) (523.2)

(a) Let us consider the case y # 0

Let x(1), x(2),.... be the sequence of lower record values from the above gen-
eralized extreme value distribution when y # 0. Then, the pdf f,(x) of x(n)) (n > 1)
is given by

£ = ﬁ{— log F(x)}""'£(x), x<1/7, wheny > 0,

x > 1/y, wheny <0

(5.2.3.3)
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Theorem 5.2.3.1 Forn=1,2,...andr=0, 1, 2,...,

n

E(x(n+1))"" = {1 + @}E(x(n))rﬂ - ﬂE(x(n))’ (5.2.3.4)

Proof Forn>1andr =0, 1,

r r— 1 *© r N r+1 n—
Ea(m) = 3E() ' = s / = log P (s
—1 T —log F(x)Y' F(x)dx
:m)/,m“ log F(x)}" F(x)d

Upon integrating by parts, we obtain

B((n)) — B () ! = oo [ e log ) Y

W1 )
- [ty Was

=550 {EGm) ™ = E(x(n+ 1),

The relation in (5.2.3.4) is derived upon rewriting the above equation.

Remark 5.2.3.1 By starting with the first k raw moments of the generalized extreme
value distribution, Theorem 1 will enable one to determine the first k raw moments
of all the lower record values.

Corollary 5.2.3.1

Forn > 1,
5 5.2.3.5
E(x(n+ 1)) = (1+2) B(x(m) _% (5:23.5)

(b) Casey=0.

When y = 0, the generalized extreme value distribution is also known as the
Gumbel distribution or type I extreme value distribution. Let us consider the
standard type I extreme value distribution with the pdf as

—X

f(x) =e ™ e —co<x <00, (5.2.3.6)
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and the d.f. as

—x

F(x) =e™*, —co<x<00, (5.2.3.7)

It is easy to see from (5.2.3.6) and (5.2.3.7) that for the standard type I extreme
value distribution

f(x) = F(x){—log F(x)}, —oco<x<o0. (5.2.3.8)

We can make use of this property of the type I extreme distribution to derive
some recurrence relations for the single and product moments of lower record
values.

Exercise 5.2.3.1

Forn>1andr=0,1,2,...

r+1 r+1 - (5239)
n

E(x(n+1))"" = E(x(n)) E(x(n))

5.3 Generalized Pareto Distribution

5.3.1 Introduction

A random variable (rv) X is said to have the generalized Pareto distribution if its
probability density function (pdf) is of the following form:

o= L(a()

x>, for B >0,
p<x<p—o/B, for <0,
1 71
— o (x=p)o > it =0
Ge , x> ufor B ,
= 0, otherwise,

forc > 0. (5.3.1.1)

We will say that X € GP(u, o, B) if X has the pdf as given in (5.3.1.1). For
B > 0, GP(u, o, B) is known as Pareto type II or Lomax distribution. For = —1,
GP(u, o, B) coincide with the uniform distribution on (u, p + o). Figure 5.4 gives the
pdf of GP(0, 1, 1).

The generalized Pareto distribution was introduced by Pickands (1975). Some of
its applications include its uses in the analysis of the extreme events, in the mod-
eling of large insurance claims and to describe the annual maximum flood at river
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Fig. 5.4 Pdf of GP(0, 1, 1) 1 T

f(x) 05 —

gauging station. GP(y, o, B) has finite variance if f < 1/2. GP(y, o, B) for f = 0 is the
exponential distribution which is discussed here. In this chapter we will take B # 0.
If X € GP(u, o, B), then

L+ B — w1

[

r(x)

and

R(x) = glogl1 + Bx = ']

The hazard rate r(x) is monotonically increasing (decreasing) in x if f > (<) 0 and
r(x) is constant for f§ = 0.

5.3.2 Distributional Properties

We will consider the upper record values from GP(y, o, ). The pdf f,,(x) of the nth
upper record X(n) is

1 Ber— w1, B ]
0 =g e+ 0L oY
u<x<oo, f>0 (5.3.2.1)
We can write
X(n)gp—%+%:1 Ui, (5.3.2.2)
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where Uy, U,, U, are independent and identically distributed as

PlUi<x]=1—(x)""* x>1,8> 0,

(5.3.2.3)
=(x)""* 0<x<1,p<0.

5.3.3 Moments

Substituting % log [1 + M} = ¢, we have

a

E(X(n)) = F(ln) /0oo ! {u +%(eﬂf - 1)} e~'dt

=#+%{(1 ~ B -1} <1

Similarly

E(X(n))* = ﬁ/ooo " u +%(eﬁf —1)*e ldt

[

= (w ﬁ)z +2(u -

2

%)%(1 —p)" +%(1 —2B)", it p<1/2
Var(X(n) = @®f2{(1 = 26) " — (1= p)™, f<1/2,
and
Cov(X(m)X(n))aub,a* %, m<n, (5.3.3.1)

where

am = (1—B)"{(1-28)" — (1- )", p<1/2
b= (1—-p) " p#1

Example 5.3.3.1 If B = —1, i.e. when X is distributed uniformly in the interval
(W, u + o), then

EX(n))=u+(1-2"0
Var(X(n)) = (37" —4™")g*
Cov(X(m)X(n))= 2m_"Var(X(m)), m <n.
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Example 5.3.3.2 For the classical Pareto distribution with the cumulative distri-
bution function F(x), where

F(x)1 — (Q) ,0<0<x<o0,v>0,
X
E(X(n)) :e(ﬁ)”, ify>1

var(x(n) = | (25)"- ()] irv > 2

Cov(X(m)X(n)) = 02(

v

-~ 1)nimVar(X(m)), m<n.

We will consider in this section without any loss of generality p =0 and 6 = 1
ie.

F() = B+ px) D x>0, for p> 0,
O<x< — ! for <0
= e X, x>0for f=0,
0, otherwise.

(53.3.2)

It is also known that (5.3.3.2) is also the pdf of Lomax distribution.

In this section some recurrence relations satisfied by the single and product
moments of upper record values from the generalized Pareto distribution. These
recurrence relations will enable one to obtain all the single and product moments of
all record values in a simple recursive manner. It is shown here that the results for
the exponential distribution proved in Chap. 2 can be deduced from the results
established in this section by letting the shape parameter f tend to 0.

We will derive some recurrence relations between moments and product
moments of the record values. These results are given by Balakrishnan and
Ahsanullah (1994). (a) Relations for single moments

First of all, we may note that for the generalized Pareto distribution in (5.3.3.2)

FO)(1+ Br) = B(1 — F(x)). (5.3.3.3)

The relation in (5.3.3.3) will be exploited in this section to derive recurrence
relations for the moments of record values from the generalized Pareto distribution.
Let X(1), X(2),....... be the sequence of upper record values from (5.3.3.2). For
convenience, we shall also take X(0) = 0. The pdf of X(n), n =1, 2,..., is given by

fo(x) = {—log(1 - F(x)}" 'f(x) (5.3.3.4)

_
(-1

For the existence of the (r + 1)th moment (r + 1)  must be less than 1.
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Theorem 5.3.3.1 Forn>1andr=0,1, 2,....,

r+1 1 r r+1
EX)™' = =+ 1p {(V + 1>E(XU(n)) + E(XUYnfl)}

for f<(r+1)"".

(5.3.3.5)

Proof For n>1andr =0, 1, 2,...., we have from (5.3.3.3)

E(X(n)") + BEX(n)"") = / (x" + x"1)f, (x)dx

- / x’ﬁ{—log(l — F))Y"' (! + Br)fxydx

= ﬁ/x’{—log(l — Fx))}"' (1 — F(x))dx

X

Integrating now by parts treating x” for integration and the rest of the integrand
for differentiation, we get

E(Xm)) + BEX(n)"™)

B m o / X "H{~log(1 — F(0)}"feodx

X

+ / X1 —log(1 — F(x))}"f(x)dx

1
r+1

[E((X(n)‘“) — E(X(n _ 1)”1)]

The relation in (5.3.3.5) is derived simply by rewriting the above equation.

Remark 5.3.3.1 The recurrence relation in Theorem 5.3.3.1 can be used in a simple
recursive manner to compute all the single moments of all record values. By setting
r=01in (5.3.3.5), we get the relation

E(X(n)) zl%ﬁ{1+E(X(n—1))},n22,ﬁ<l. (5.3.3.6)
Repeated application of (5.3.3.6) will readily yield O.
E(X )—L+ Loy —1{ ! —1]
=B -y (—p" BLO-pT

an expression given by Ahsanullah (1992).
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Balakrishnan and Ahsanullah (1994a) proved the following recurrence relation
of the product moment.

Theorem 5.3.3.2 Form>1,r,s=0,1, 2,....,

E((Xm)) (X(m+1))""") = m [+ DE((Xm)) (X -+ 1)) + EX )]

(5.3.3.7)
for ﬁ<ﬁ;f0rl§m§n —2andr,s =0,1,2,...,
Exercise 5.3.3.1 Show that

! —= Var(X(m)). (5.3.3.8)

Cov(X(m)X(n)) = a—p

5.4 Logistic Distribution

5.4.1 Introduction

Let {X,, n > 1} be a sequence of i.i.d. rvs from the standard logistic distribution
with pdf and d.f., respectively as

—X

o=
(1 Jlrefx)z (5.4.1.1)
F(X) = m, —o0 <X <o0.

The Fig. 5.5 gives the pdf of the logistic distribution as given by (7.1.1). The pdf
is symmetric around zero.
Since, X(n) d — x(n) all n > 1. We will consider here the upper record values.

5.4.2 Moments

The pdf f,,(x) of the nth upper record value is given by

—X

e

(log(1 + &))"

————— . — 0o <x<00.
I'(n) (1+e)

Jn (x> =
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Fig. 5.5 pdf of Xi’s 0.3

f(x) 0151 —

Let p, = E(X(n)), fmn = E(X(m)X(n)), then

My = Koy +{(n),n > 1,p; =0,
Hn = NE(Xym)) + mE(Xy@m) + m{(m+ 1) + m{(n+ 1) —m(n + 1)

i 1 i 1
+ n—m n»
= k(k+ )" =11+ 1+ k)

where ( (.) is the Riemann zeta function.
Proof

o0 xe*X
p; = E(X :/ ——dx=0.
1 = E(X1) (1o

The conditional pdf of X(n)[X(n — 1) =y, forn > 1, is

e*(1+¢)

, —00 <y <Xx<00 54.2.1
Q1o y ( )

ﬁt,nfl,c(x|XU(n71) = y) =

The conditional expectation of X(n)|X(n — 1) =y is given by

xe (1 +¢)
E(Xu(m [Xom1) = ¥ :/ ¥e UTe)
(XuXu@-1) =) L rey

=y+ (1 +)n(l+e7)

Y+l e} e
I'h—1) (1+g*y)2dy

(5.4.2.2)

E(X(n) = E(X(n — 1)) + / (1+e)In(1 +¢7)
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Substituting 7 = ¢¥(1 4+ ¢) " and simplifying, we get

L= Inf)(=1In(1 — )" 2
E(XU(n)) = EXU(nfl) +/ ( (1t)_( I)F((I’l — ?)) d (5423)

o

E(Xu(-1)) +{(n)

where {(n) is the Riemann zeta function.
Since p; = 0, we have

=Y l(i),n>2. (5.4.2.4)
i=2
The expected values of the first ten upper record values are given in Table 5.3.

b = B0 = [ " 2 ()

Y (- )
L e

= /1 [logt — 10g(1 _ t)]Z {_ logg(’;) t)}"*l p

H—log(1 =} ! (logr){—log(1 —1)}"
o rw 2/0 ) a

' {log1}*{~ log(1 — 1)}""!
+ /0 T(n) dt

Table 5.3 E(xu(n)),

EXum
1<n<10 Ku)

0.0000
1.6449
2.8470
3.9293
4.9662
5.9836
6.9919
7.9960
8.9980
9.9990

O |0 X NN k| W=

—_
(=]
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Now

> {—llog(1 —r)}""! o [P Int{=In(1 = 1)}"
/0 = nla+ 1), /0 e

= n[EXygin ) = (0 +1)]

and
"{log1}*{—log1 —t}"" © (& et)’
_ . i 1 -t
/0 ) dt_/o {Z . } e 'dt
00 00 ) 1 x B:
= B; e’ e ldr = —
25, < 2 G+

2
. 00
where B; is the coefficient of e in { > ETIG} .

k=1
Thus
g =0(0+ 1)+ 20[E(X(n = 1)) = (04 1)] + 3=
=2nE(X(n—1)) —nn+1 7T
(X(n = 1) =+ 1)+ 37
n+1 00
=20 (i) —n(n+1 +Z fz
=2 1:2
where

2 i—1

n+1 00 n 2
Var(X —2nZC —nn+1 +Zlfll (Zf(i)>7

1=

/ / xyfmn YV, X dydx

// lnF " llog P(x) — log FO)I"™ () (),

m)

1 1 1
Bi:T(1+—+"'+. ),izz.
1

7oo<y<x<oo

where r(y) = (&)),F(y) =1-TF(y) and f(y) and F(y) are given by (7.1.1) and (7.1.2).

Substituting v H% and u = j +1,‘ and simplification, we get

|\

ol
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B 1 1 {—log(l _ u)}m—l o
o = [ /u T =y 1080 =) +log(1 )]

dvdu
u

[logu — log(1 — u)][lognv — log(1 — v)] 1 i

Let I, = ful [—log(1 — v) +log(1 — u)]" " '[logv — log(1 — v)]dv
Substituting w = log (1 — v) + log(1 — u), we have

I, = /OC w " log{l — (1 —u)e™} — {w +log1 — u}](1 — u)e "dw
= o0 eikw —w,, n—m—1
=(1-u) Lz_l:/o (—1)(1—u)k e dw

+F(n—m+1)—F(n—m)log(l—u)]

00 (l—u)k
=T(n—m)(l—u) —ZW+(n—m)—log(l—u)
k=1

Upon substituting I,,, we have

Popn = / {—log = n—m—log(l —u) — i (SJF 1)2, llogu — log(1 — u)]du

= (n—m)E(X(m)) + m E(X(m — 1)) — mi !

k(k+1)n+l
1
+Z k(k+1 "'"Zl(l+l+k)

(X(m)) +mE(X(n)) +m{(m+1)+m{(n+1) —m(n+1)

;kk+l"’”;ll+l+k
Cov(X(m)X(n)) = fin — E(X(m))E(X(n)).

Table 5.4 gives the variances and covariance of X(m)X(n), for I <m < n < 10.

5.5 Normal Distribution

5.5.1 Introduction

Let {X,, n > 1} be a sequence of i.i.d. random variables from standard normal
distribution (N(0, 1)) with pdf
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Table 5.4 Variances and covariances of the upper record values
m/n |1 2 3 4 5 6 7 8 9 10
1 3.2899
2 2.4426 |2.9882
3 1.9701 |2.6887 |3.5414
4 1.7913 |2.5310 |3.3885 |4.3096
5 1.7139 |2.4636 |3.3132 |4.2258 |5.1779
6 1.6782 |2.4327 |3.2788 |4.1853 |5.1311 |6.1016
7 1.6612 |2.4181 |3.2625 |4.1660 |5.1084 |6.0754 |7.0576
8 1.6530 |2.4110 |3.2546 |4.1567 |5.0974 |6.0625 |7.0429 |8.0323
9 1.6489 |2.4075 |3.2508 |4.1522 |5.0920 |6.0563 |7.0356 |8.0241 |9.0180
10 1.6469 |2.4058 |3.2489 |4.1500 |5.0893 |6.0532 |7.0321 |8.0200 |9.0134 | 10.0100
Fig. 5.6 Pdf of X;’s 0.4
f(x) 02 I
0 I
0
X
L ep
O(X) =—=¢ ,—oo<X <oo. (5.5.1.1)
V2n
and d.f.

O(x) = / _L gy

s V2T

The graph of ¢(x) is given in Fig. 5.6.
The pdf of the nth upper record X(n) is

£1(6) = —— (— log ®(x))" ' $(x) — 00, x<00,n > 1.

[(n)
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5.5.2 Moments

Theorem 5.5.2.1 Let i, =E(X(n)), i, = E(X (n))2 and iy, =E(X(m)X(n)), then

Hnp = 1 + “nfl«,m

= | TR0} (1 - (X)) (6(X)
and
1
o = o = / [ 0wy
{ lOg(ll_— M)} - lOg( ) lOg( )}n m—ldudv.
Proof

Since—x ¢(x) dx = dd(x). Integrating the above expression by parts and sim-
plifying, we have

o = % / " [ log{1 - ®(x))]" (¢ (x))dx

+7F(nl— ) [ :x[— logn{l — ®(x)}]""> Y (d(x))*dx

1 o0 n—
T / = logn{1 = 0" g (900

We can write

o) = [ " ¢ (y)dy = / " y(x)dy, thus
:unn
R E / / xy[—Togn{1 — ®(x)}]" (x)¢<x>¢<y>dx dy.

*l+un 1,n-

/ / / g el — 00}~ (og 1 = @O b(x).0(y)axdy
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On simplification, we get

Fmin = r<m>r<n —m) / / )

{=In(1 — u)}"

{log(

()} {®"

)}

—log(1 — )} 'dudv
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The means, variances and covariances of the upper record values were obtained
by numerical methods. The variances and covariances of the lower record values are
the same. The means of the lower record values are the negatives of the upper record
values. The following tables give the means, variances and covariance of Xym) and
X(n) for 1 <m < n < 10 (Tables 5.5 and 5.6).

Table 5.5 Mean of X(n)

E\X(n, n))

0.0000

0.9032

1.4990

1.9687

2.3667

2.7174

3.0339

3.3244

O I NNk |W|iN =3

3.5942

—_
(=]

3.8471

Table 5.6 Variances and Covariances of the upper record values X(m) and X(m), m < n

2

1

2

3

4

5

6

7

8

9

10

1.0000

0.5956

0.7799

0.4534

0.5953

0.7022

0.3775

0.4964

0.5859

0.6611

0.3292

0.4331

0.5115

0.5753

0.6353

0.2951

0.3885

0.4589

0.5181

0.5702

0.6174

0.2696

0.3550

0.4194

0.4735

0.5212

0.5643

0.6014

0.2495

0.3286

0.3883

0.4385

0.4827

0.5226

0.5595

0.5938
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5.6 Power Function Distribution

5.6.1 Introduction

A random variable (rv) X is said to have the three parameter power function
distribution if its probability density function (pdf) is of the following form:

o, By) =B (a4 B —x)'", for a<x<o+ B, > 0,7 >0,

k (5.6.1.1)
= 0, otherwise.

We will say a rv X € PF(a, B, v) if its pdf is given by (5.6.1.1). This is a
Pearson’s Type I distribution. If y = 1, then f(x, a, B, y) as given by (5.6.1.1)
coincides with the uniform distribution in the interval (a, o + ). If we take
Y = («+ B)’, the Y has the uniform distribution in (0, 1). The following Figs. 5.7
and 5.8 of f(x) and g(x) are the graphs of the pdfs of PF (a, B, y) fora =0, f =1,
y=1/2and a =0, B =1, y = 4 respectively.

5.6.2 Distributional Properties

The joint pdf of X(1), X(2),...,X(m) can be written as

Fig. 5.7 Pdf of GP(0, 1, 1/2) 2 T
1.5 I
f(x)
1 — p—
|
0.5
0 0.5 1
X
Fig. 5.8 Pdf of GP(0, 1, 4) 4 T
f(x) 2 -
0 |
0 0.5 1
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m—1
flrisr, . oorm) =" p(a+ f—rw) H (0 + p—r),

i=1

A< < <Fp<a+f

= 0, otherwise.

The pdf of X(m) is

7B (e f—x)

1) = Foms (1og f -

a<x<o+ f3,

=0, otherwise.

Now

(5.6.2.1)

-1

log(ot+ B —x))",

(5.6.2.2)

o+-p
EX(m) = / Xy (x)dx, letting o + ff — x = /7

= /OC ;tm*lefl(oc +B—pe!

I'(m)

= /:C ﬁtm%e*’(a +pB—Be!

/ m
+1)
Similarly

e

—t’" Le™!(a + f— t/')

.
.

~tee 0?2t () ()

and

Var(X(m)) = E(X(m))*~{ E(X(m))}>

s Lm_ 9
_ﬁ{(%+9 Q+l

The joint pdf of X(m) and X(n) is

fm,n(x7 Y) = Cmn"/nﬁiy(a + ﬂ - y)yil(logﬂ -
fora<x <y <o+,

= 0, otherwise,

)

log(et+ f —x)" " (log p —

(5.6.2.3)

log (o + f—x)" !

(5.6.2.4)
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where

1
mn — —, 1.
c T —m) n>m>

The conditional pdf of X(n)|X(m) = x is
f(y|XU(m) = X)

B ,ynfm Ot—!—ﬁ—y y—1 oc—|—[3—x n—m—1
CT(n—m) (otJrﬁx) {logotJrﬁy} ’

a<x<y<a+ f.

The conditional expectation of X(m)|X(m) = x is

E(y[X(m) = x)

_ /oc+/3 = <a+ﬁ_y)y—l{loga_'_ﬁ_x}n—m—ldy
« Tl—m)\o+pf—x o+ f—y

— OOL _ _ —t n—m—1 _—vt
/0 F(n—m)(oH_ﬂ (a+ f—xe "))t e dr

=u+ﬁ—(a+ﬁ—x)<yil>”m.

For m < n,

cW@mmmm=QjJ"ﬂmmw»

The correlation coefficient p,,, of X(m) and X(n) is given by

y2+2y+1) <y2+2y+1>”
= -1 — —1 5.6.2.5
- ¢(vﬂw == (5:6.25)

As Y o, pm,n - \/%'
Exercise 5.6.2.1 Show that if X has BF(0, f3, ), then

(- () (5%) - (57))

where X;Xo,...,X, are i.i.d with BF(0,f, y).
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5.6.3 Recurrence Relation Between Moments

The following theorem gives a recurrence relation of the single moments. We will
assume without any loss of generality o = 0 and § = 1.

Theorem 5.6.3.1 Forn>2,andr=0, 1, 2,......

r+1

TP o EX(n- 1)) (5.63.0)

EX(m)™" = T+

Proof We have

M1 = F(x)) = (1 - x)f(x) (5.6.3.2)

Using (5.6.2.2) forn>2 andr =0, 1,....,

E(X()" ~ EX(n)™) _ﬁ/ol (v =) (ylog(l — P11 — - lax
( o / ¥ {—ylog(l — 1)} {1 - x7}dx
+ { { plog(1 —x)}" 'y(1 —x)" 'dx
/ ~log(1 = F())" /(3|
= H 1 [E(x(n)’“) ~ E(X(n—1))"]

where the last but one step follows by integrating by parts. The recurrence relation
in Eq. (5.6.3.4) is derived simply by rewriting the above equation.

Corollary 5.6.3.1 By repeatedly applying the recurrence relation in (5.6.2.1), we
getforn>2, 1l<m<n—1landr=0,1,2,....

E(x()) = <V lji 1> "pmol (y Tl >pE(X(" ~m))

( > o r+1
y+r+1

Corollary 5.6.3.2 Write (r + 1)(-p) =1 forp=0and =(r + 1) r... (r — p + 2), for
p > 1. By repeated application of the recurrence relation in (5.2.4), we obtain for
n>2r=0,1,2,...

(5.6.3.3)
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) =S — D iy (5.63.4)
! - )}p:r) (y+1 +P)(p+l) " o

Next, we have the joint density function of X(m) and X(n), | < m < n, as

_ 1 1o _ X m—1 f(x)
fnalo) = G im0 B O T (56309)

-{~log(1 = F() +log(1 = F(x)}" ™" f (),

Once again, upon using the relation in (5.6.3.2), we can derive the following
recurrence relations for the product moments of record values.

Theorem 5.6.3.2 Form > 1 andr,s =0, 1, 2,...

r s+ _ s+ 1 r S\S
E((X(m)) (X + 1)) = WE((X(’")) (X(n)'))
r+s=1
andforl <m<n-—-2andr,s=0,1,2,..,
r s+ _ s+ 1 r 58
E(Xm) (x(n)"*) = @E«xw» (X(n)"))
r s+1
tore E((Xm)y = 1) (5.6.27)

Proof For <m<n—landr,s=0, 1, 2...

E((X(m))"(X(n))’ — (X(m))"(X(n))"*")
= / / (Y = XY fonn (x, y)dydx

0<x<y<l

' X
T m- 1)1(;11_ m— 1)1/0 ¥ {=log(l = F(x)}" -5 f(F)(x)z(x)dx

I(x) = / V(1= y){~log(1 = F(y) + log(1 = F(x))}" " 'f(y)dy

1
:v/>Hfbﬂ1fﬂw%H%UfF&DVW”UfF@HW

\ 1
=t {/ Yy fydy —x{1 —F(x)}}7 forn=m + 2

s+1|/,
Y

Tt U y {tog(1 — F() + log(1 — F)Y " f(v)dy

fmfmfn/>ﬁ%4%awayH%a—Fwn“W%@@,

forn > m+ 2.

(5.6.2.8)
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The last two equations are derived by integrating by parts. We obtain on sim-
plification for n = m + 1 that

E((X(m))"(X(m + 1)) = EX(m))" (X(m + 1))""")

- S—&—Ll {E(X(m))r(x(”))sﬂ — E(X(m))’ﬂﬂ }7

and when n — m > 2 that
E((X(m))" (X())" = E(X(m))" (X(m))"*")
LB ) (X)) = E(X(m))" (X = 1),

:s—f—l

(5.6.2.9)

The recurrence relations in (5.6.2.7) and (5.6.2.8) are derived simply by
rewriting the above equations.

Corollary 5.6.3.3 For m > 1

A

Cov(X(m)X(m -+ 1)) = - Var(X(m) (5.6.2.10)

Cov(X(m)X(n)) = 5 Cov(X(m)X(n — 1) (5.6.2.11)
Consequently, for 1 <m <n — 1

Cov(X(m)X (n)) = (yjr 1>anarX(m) (5.6.2.12)

5.7 Rayleigh Distribution

5.7.1 Introduction

Let {X,, n > 1} be a sequence of i.i.d random variables from standard Rayleigh
distribution with pdf as

f(x) =xe ¥/%, x>0 (5.7.1.1)
and d.f. as
F(x)=1-¢"?x>0. (57.1.2)

We say X € RH(0, 1) if the pdf of X is given by (7.3.1)" Fig. 7.3.1 gives the
graph of f(x).


http://dx.doi.org/10.2991/978-94-6239-136-9_7
http://dx.doi.org/10.2991/978-94-6239-136-9_7
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5.7.2 Distributional Property

The pdf of nth upper record value f,(x) of the nth upper record value is given by

1
Ja(x) =2 ()

X1 _7x>0n—12

r(x) = ]f(—?(x) = x. The mode of X(n) is at v/2n — 1.

Theorem 5.7.2.1 Let i, = E(X(n)), V., = Var(X(n)) and Vi, = Cov(X(m)X(n))

then
VL XURE VN WG (RS VE
=V Ve =2 (Y )]d
_ [Tm+1/2)][ T(n+1)  T(n+1/2)
Vm,n2|: T(m) ]{F(n—kl/Z)_ () }7f0rl<m<n.
Proof
1 [ .
b=y ort = Y (s
! h x—zn_lefxz/zxx
TR ¢
(1 \/—/ l/2n1 U
_ 3 (n+1/2).

[(n)

Similarly it can be shown that
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where

y X2 n—m—1 1 ,

with

I'(a)L'(b)

B(a,b):m.

On simplification we get
C(n+1/2)\°
n— 172
[(n)

C[Tm+1/2)][ Ti+1)  Tn+1/2)
Vm,n—2|: r(m) :| |:F(I’l—|—1/2)_ l_,(n) :|,f0r l<m<n.

- el

Table 5.7 gives the variances and covariances of Xy and Xyg, for
I <m<n<10.

Vi =2 and

The correlation coefficient py,, between X(m) and X(n) is

C(n) T(m+1/2)

_ nn
Prn = Tm) T+ 1/2) | Vi
_T(m+}) T(n) - (T Neme
m<n.
r n + r m F(n1+‘
m— ( l_(n)

Exercise 5.7.2.1 Show that the Shannon entropy H,,(X) of X(n) is

H,(X)=In(I'(n) —In2 + <; — n> Y(n) + n.

where W (n) is digamma function.
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5.8 Uniform Distribution

5.8.1 Introduction

Let {X,,, n> 1} be a sequence of i.i.d. random variables from a uniform distribution
with the following pdf

f(x) = oo, <<t (5.8.1.1)
and d.f.
X — 01
F(x) = , 01 <x<0,. (5.8.1.2)
0, — 6

We will say X € U(0, 0,) if the pdf of X is as given in (5.8.1.1).

5.8.2 Distributional Property

n
The pdf f,(x) of X(n) can be written as

11 0, — 0"
fa(x) = () 0> — 0, {log 0, —x} , 01 <x<0, (5.8.2.1)

P ()27XU(1) ~ 027Xl/(i)
Theorem 5.8.2.1 Let 51 = "g,-0, °% — B, —Xug-1)’
iid U, 1).

Proof The joint pdf of X(1), X(2),...,X(n) can be written as

i=2,..,n,thengy,...,q, are

o I 1 1
b —x1 Oh—xs Oy —x,10, -0’
0 <x1<x2<...<Xp <0,

f(X1,X2, ..+, Xn)

Let

(1) =0
X(2) =0, — (02 — 01),1&,
X(l) = 02 - (02 - 01)5152' . 'éia i= 37 -,
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The Jacobian of the transformation is

OXuy, Xu@)s - Xum)) 2 ene1 en2
J= = (0, — )" e e
6(61a§27"~75n) ( ? 1) ! ! 5 !

Thus s
f( €, el,...,en) =1,0<ei<l,i=1,2,...,n.
Using r the Theorem 5.8.2.1, it can be shown that

EX(n) =270, + (1 — 27™)0,

Val"(X(n)) = ( -n _ 4_n)(62 . 61)2, (5822)

The joint pdf of X(m) and X(n) is

o (xuy) 1 1 1 L fioap =00 m-l og 201 o=l
m,n{X, = ogn Y )
X ¥ I'(m)T(n—m)0, — 0,0, —x J 0 —x g92—y

for 0; <x<y<6,

(5.8.2.3)
Thus, it follows that
E(X(n)|X(m) =x) =2""x 4+ (1 = 2™,
and
Cov(XM)X(n) = 2™ "Var(X(m)). (5.8.2.4)

The following table gives the correlation coefficient between X(m) and X(n) for
1 <m <n< 10 (Table 5.8).

For fixed m, p,,, decreases as n increases. For fixed n, p,,, increases as n
increases.

Exercise 5.8.2.1 If X is distributed as uniform on (0, 1), then log(1 — x(n — 1)) and
log(1 — X(n))/(1 — X(n — 1)) are independent and log((1 — X(n))/1 — X(n — 1) is
distributed as E(0, 1).
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5.9 Weibull Distribution

5.9.1 |Introduction

Let {X,, n = 1} be a sequence of i.i.d random variables from standard Weibull
distribution with pdf

f(x) =x""le ™7 x>0,y >0, (5.9.1.1)

and g.f.
F(x)=1-e¢7,x>0,7>0, (5.9.1.2)
The pdf of the Weibull distribution as given by (5.9.1.1) becomes identical with
the pdf of Raleigh distribution as given in (7.1.1) for y = 2. The pdf of Weibull

distribution for y = 1 coincides with that of E(0, 1). Figure 5.9 gives the pdf of
Weibull distribution for y = 1.5 (Fig. 5.10).

Fig. 5.9 Pdf of RH(O, 1) 1 T T

f(_X) 0.5 ]
I I

0 2 4 6

X

Fig. 5.10 Pdf of X when 1 T

y=15

f(x) 05 =

0 I


http://dx.doi.org/10.2991/978-94-6239-136-9_7
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5.9.2 Distributional Property

Theorem 5.9.2.1 Leti=1,2,...m—1, ¢ =

are independent.

Proof The joint pdf of X(1), X(2),...,X(n) is

X()fsi)n then &, i=1,2,...,m~—1,

Fxn, X2, o dm) = 7" (X122 X)) e 0<xy <Xp < -+ <y <00

Let us use the transformation

X()
=X dé = =2,... — 1.
éo U(1), an él X(l—|— 1) ) 1 ) , M
The Jacobian of the transformation
A(X(1), X(2),...,X(n)) gmt

J=

0, Gronla) | G G2

“Sm—1

We can write the pdf of &, 1=0, 1,....m — 1, as

.
,ymelm _y @ ;
= 9 v 6162“1’7"71>
fleo e, em) Dyt 1 _(m-2l 41 € :
el 62 .. .em71

Now integrating the above expression with respect to e,, we obtain the joint pdf
of §,i=1,...m— 1, as

fler,...,em 1) = I(m)y™! eh'fl eg%l . ~e(m_11)7"_1.

m—

Thus &, 1 =1, 2,..., m — 1 are independent and
P(é<x)=x 1<k<m

We have already seen similar results for ratios of the record values of the
exponential distribution.

Theorem 5.9.2.2 Let p,, = E(X(n)), V., = Var(X(n))) and V., = Cov(X(m)X(n)),
then

(Tlaty) _ 2 T+3) T+
e =y e { I (n) _< I(n) ) }
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and

Vg = 0D T tD TOAI ot cmen

Proof The pdf f,(x) of X(n) can be written as

L[ ),
fu(x) = {);n_l }ex'/*',x>0, 3> 0. (5.9.2.1)

X
E(XU(n)) :/ F(n) ynfle (1/7) dx’

Substituting t = )‘7 we obtain

[e%¢} l/y 1
E(X(m)) = / l}(n)efz(t)nﬁl "

Similarly

S| xmurl }
E(X(n))* :/ — e~ WY gy
S Ok

Substituting t = %1, we get

The joint pdf of X(m) and X(n) can be written as

-1 P _xin—m—1_y_1 —(1/9)x
fm‘n(x,y) :m(%) ly} 1@ (1/})

for 0<x<y<ooand m<n,
E(X(m))(X(n

)
00 y xm'yfl
/ ) Fx(y S =y e U dyax
0 m)l(n =
Y
(n—m

I'( —m) y

o0

I
. it
'qnfzy ¢

)y

/ ~4" gy,

I'(m)l'
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where
L= [ X0/ )y
I ny—y+1
:/ Y tm+‘71(| l‘)nimildt
0 Y
ny—y+1
:y B(er—,nfm)
Thus
®B(m+1n—m)y Tl ,
E(X X — i =)y
(X(m)(x(0) = [ ey
Im+)I(n+3) 2%
 IT(m)T(n—m)
» [Tn+2)  (Tr+H\’
Var (X(n)) = _ '
ar (X(n)) = 7 { - (S
and

Exercise 5.9.2.1 Show that (X(i))” — (X(i — 1))?,1 2 1 with X(0) = 0 is identically
distributed.

5.10 Exercises (solutions)

Exercise 5.1.2.1 (hint) The joint pdf of &, 1= 1,......
fler,...,em—1) =I'(m) eze§ .- ~e$j e
Use the transformation Wy = (g“k)k, k=1,2,...,m—1,
Exercise 5.1.3.1 (solution (hint)) Using (5.1.3.1) with p = 1 and q = 0, we obtain

I'm+1)
I'(m)

B(X(1)) =
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Putting p = 1 and q = 1, we obtain (X(m)X(n)) — % —m(n_1),m<n

Putting p = 2 and q = 0, we obtain E(X(m))> = % =m(m+1)

Exercise 5.1.3.2 (solution) G(x) = F~!(x) = —In(1 —x), G(1 — e~¥) = x. Thus
by Representation 4, 3,

X(n)dXi+Xo 4+ X,

Exercise 5.1.3.3 (solution)

Xl A x0Tt x
Ex= | —1 - -
N / “(mwe )mwe *

_ /OOO (InL(n) +nlno+=— (1= 1) Inx) £

=InT(n) —Ino— (n— (n),

Exercise 5.2.3.1 (solution) Let us considern 2 1 andr=0, 1, 2,...,

B(n)) = 5 |-y o s
1 *© r n
. W)/_oo ¥ {—In F(x))"F(x)dx

Upon integrating by parts treating X for integration and the rest of the integrand
for differentiation. We simply obtain

E(x(n)) = mn /_ : P I FOY f(x)dx

— /fc KT —In F(x)}'f (x)dx

o0

n > xr+1 n—1
:H—llwm{—lnF(x)} F(x)dx

- /m Tt 1) In F(x)}"~f (x)dx

= (B — EX (D))

Upon rewriting the above equation, we obtain the recurrence relation.

Problem 5.3.3.1 (solution) The recurrence relations presented in Theorem 5.3.3.2
can be used in a simple recursive manner to compute all the product moments of all
record values. It is known that the generalized Pareto distribution in (5.3.3.1) has
finite variance if f < %. In Theorem 5.3.3.2 setting r = 1 and s = 0 we get
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We know E(X(m + 1)) = 1%,8(1 + E(X(m)))
Thus

On simplification

Cov(X(m)X(m+1) = - 1 ﬁVar(XU(m)).

Cov(X(m)X(n)) =

Problem 5.6.2. 1 (solution)

“1x) = — (1= uw)""Yand — In(1 — F(x :—nﬁ_x y‘
F () = ¢(1 — (1 — )y and — In(1 — F(x)) 1(%)

X(N) = F" (1 - e_[g";mu_nx,.))
=PI (5]

where X; are i.i.d with PF(0, S, y).

Exercise 5.7.2.1 (solution)

o 2 > ] K2 2
- In — e } 2xe " dx
/0 {F (n) ['(n)
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Exercise 5.8.2.1 (solution) The joint pdf f, , 1(x, y) of X(n — 1)and X(n) is

(=l -x)"" 1
fn—l7n(x7y) - r(n) 1_

,0<X<Y<1
X

Using the transformation U = —log(1 — X(n — 1)), V = log((! — X(m))/(1 — X
(n — 1)), we obtain the joint pdf of f(u,v) as

Mnfl

[(n)

(67(M+V)) , <u,v<o0.

f(u,v) -

Thus U and V are independent and V is distributed as E(0, 1).

Exercise 5.9.2.1 (solution) We have U = X" is distributed as (0, 1). The result
follows by Exercise 5.1.3.2.



Chapter 6
Records of Discrete Distributions

6.1 Introduction

Let Xy, X5,...,Xy,... be a sequence independent and identically distributed ran-
dom variables taking values on 0, 1,2, ... such that F(n) <1 for alln=0,1,2,...
We define the upper record times, U(n) as U(1) = 1,U(n + 1(= min{j > U(n),
Xj > XU(n)},n =1,2,.... The nth upper record value is defined as Xgy(n). Let
P = P(Xi = k). P(k) = 3 p(j), k >0 and P(k) = 1 — P(k) with and P(cc) = 1.
The joint probability mass function (pmf) of the Xq4(1)),Xd(2),...Xd(n), is
defined as

Plﬁ2,.“ﬁn(X17X2; . ) P(Xd( ) = X1, Xd(2)): X2, .. ..,Xd(l’l) = Xn)

_ plx) (X )
= ;(xll) 'zpr(m o Ii)’(x,, ‘]>p(xn)
0<x1 <X < -+ <X, <00,

=0, otherwise.

(6.1.1)

The marginal pmf’s of the upper record values are given as

pl(xl) = P(Xd(l) = Xl) = p(Xl), X1 = Oa 1a25 L)

P2(x2) = P(X4(2) = x2) = Ri(x2) p(x2),
where

_ _rx)
R, (k) = O<Z B(x;),B(x) = B 2= 1,2,...
<X <x2

P, (x,) = P(Xd(n)): xn) = Ry_1 (Xa) p(xn),

© Atlantis Press and the author(s) 2015 123

M. Ahsanullah and V.B. Nevzorov, Records via Probability Theory,
Atlantis Studies in Probability and Statistics 6,
DOI 10.2991/978-94-6239-136-9_6



124 6 Records of Discrete Distributions

where

Ry_i(Xn) = > B(x1) B(x2)...B(Xp_1),Xa =n— L,n,... (6.1.2)

0<x <0 <...<Xp_1 <Xp
The joint pmf of X4(m), and X4(n), m < n is given by
Ponn (X, Xn) = p(xd(m) — X, Xa(n),= xm)

= Ron— 1 (Xm) A(Xm)Rmet 1,0 (Xms Xn) p(Xn), m < Xp <Xp — N 4+ m <00,
(6.1.3)

where

Rniin(X,y) = > B(Xpi1) ... B(x,_1), m<n—1

X <Xl <Xpp2 <... <Xp

lif m=n-1

The conditional pmf of X4(n) given Xy4(m) = x,, is given by

Pojm (X[ Xa (M) = Xpn) = Rynn (i, %) POW) o —ntm<oo.  (6.14)

P(x)

Piinoi(XaXa(n = 1) =X4-1) = = , Xn_1 <Xp. (6.1.3)
P(xn—l)

Using (6.1.1) and (6.1.4) it follows that the sequence of upper record values
Xq4(1), X4(2)... forms a Markov chain. Let I, = 1 if n is a record value i.e.
Xg(m)=n, form=1, 2,... and In = 0 if it is not a record. The following Theorem is
due to Shorrock (1972).

Theorem 6.1.1 The random variables 1y, 1, ... are mutually independent and
P(X =n)
P(I, =1) =P{X =n|X>n) PX =) ,n=0,1,2,
Proof

P(I,= n) =P(X; =n) +P(X;<n,X; =n) + P(X; <n,Xp<n, X3 =n) +---
=P(X; =n)(P(X<n) +P*(X<n) + )
P(X =n) P(X =n)
T1-P(X<n) PX>n)

(6.1.6)
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Let OSO!(I)<OC(2), thenP(Ia(l) = 1, [o((2) = 1) = ZP(sz(l) =1, sz(Z) = 1),

t(1) = m), t(1) is time when a(l) occurs.

ZZP{I =1, 1(1) = m, Xpy1 > o ),Z}D{IM:1,z(k):m}ip(xm+1 > (1))

m r=1

o Xngr—1 > (1), X = 2(2)}
P(Xintr-1 > «(1))P(Xinsr = 2(2))

X =0o2
_ZP{I =1,1(k) = }7PEX2 a&;;
= P(I1) = 1)P(I,p) = 1), by (6.2.4).
(6.1.7)

By iteration the independence of I;, I,... follows.
The following result was proved by Aliev and Ahsanullah (2002).

Theorem 6.1.2 Let Xi, X, ... be a sequence of independent and identically
distributed random variables taking values on 0, 1, 2, . . . with common distribution
function F such that F(n) < 1 for all n and E(X?) < oo. Suppose that {By, k=0, 1,
.. | be a sequence of numbers such that 2 + 2B,,; — B — By» 2 0. If there exits F
(x) such that E{(Xq(2) — Xq(1)))Xa(1) =s} =B, s =0, 1, 2.
Then F(x) is unique.

Proof From (6.1.5), we obtain

E{(Xd(Z)—Xd(l))ZIXd(I) =s } :% (6.1.8)

Pj :P(X:J)v j:071727

Thus the condition E{(Xd(z) ~Xa()[Xa(1) = s } — B, implies

ngw = B, pr, for s > 0, (6.1.9)
=1 =1

Writing s = s + 1 in (6.1.9), we get from (6.1.8) and (6.1.9),

Z (e pS+ = Bs+1 ZpHH (6.1.10)
J=1

J=1
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Subtracting (6.1.10) from (6.1.9) we obtain

S G-, = BY e B Y pey (611
j=1 j=1 j=1
Now substituting s = s + 1 in (6.1.11), we will have
o0 o0 o0
)OICIINNETS NS o SRR (AR
j=1 Jj=1 j=1
Subtracting (6.1.12) from (6.1.11) and on simplification, we obtain
P » = 1+ 2]?#1 —Bsi2 Port

(6.1.13)

s+2

2+ 2B —B,—Bi» and 1+ 2B,., - B

Since the coefficients =2 are positive, it

s+2 s+2
means that P = s + 2 is increasing (decreasing) if ps + 1 increases(decreases) for all

s = 0. It means that for any p = 0, all probabilities p,, ps,... increases when p;
increases. Together with the condition >_°) p; = 1 we conclude that for any given
Po, we have only one F(x) which satisfy (6.1.1).

6.2 Geometric Distribution

A discrete random variable X is said to have geometric distribution if its probability
mass function (pmf) is of the following form:

p(k) =P(X =k) =pg* — 1,
O<p<l,g=1-p,keAg (6.2.1)
= 0, otherwise,

where A, = is the set of integers n + 1,n 4+ 2, ..., and n = 0. We say X € GE(p), if
the pmf of X is as given in (6.2.1). For k > 0, we define r(k) = P[X = k| X = k].

We choose to distinguish between GE(p) and the larger class of distributions
having geometric tail (GET). We write X € GET(s, p) if the pmf of X is as follows:

p(k) =PX=k] =cq*!,q=1—p, k € As,

= 0, otherwise, (6.22)
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where ¢ is such that >} . p(k) = 1. If s = 0, then GET(s, p) = GE(p) with
¢ = p. The geometric distribution like the exponential distribution possesses the
memory less property i.e.

p(r +s) = p(r) p(s), (6.2.3)

where 1 and s are positive integers and p(j) = >, | p(k).

Geometric distribution is said to a discrete analogue of the exponential
distribution.

If X € GE(p), then P(x) = ¢*and p(x) = pq*~!, for x € A,. Then substituting
the values of P(x;) and p(x;) in (6.2.1), we get pmf of Xy(1), X4(2),. . .Xa(m)

p(X1,X2, .. Xm) =p "¢ ", 1 <x <X <. .. <Xy <00 (6.2.4)
= 0, otherwise.

The conditional pmf of Xy | Xum-1y) = Xn—1 18
P(Xd(n) = Xp|Xa(n — 1)):xn,1) =pq 1 n— 1 <x,_; <xp <00,
=0, otherwise.
Thus X4(n), — X4(n — 1) is independent of X4(n — 1) and X4(n), — Xg(n — 1) €

GE(p),n=2, 3,....
Let

=<
|

= Xq(1)
X4(2 — Xq(1)

N
I

Vn = Xd(n) — Xd(n — 1)
Then V;’s are independent and V; € GE(p).
We have
Xd(n) :Vl +V2+"'+Vn. (625)

It is known that if X. €G E(p), then

EsY) = i spg ! =L qu. (6.2.6)
x=1

1
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Using (6.2.6), We obtain

E(SXd<i’l) _ E<Sv1+Vz+--»Vn) — <1 ps ) (6.2.7)

n
. . y et _
The coefficient of s* in (16—1”) is (XZ))p"g™, x> n.

Thus the marginal pmf of X4(m) can be written as

Pu(x) = p[Xa(m) = x] = ( ! )P’”ff'"’x € An-1,m21 (6.2.8)

m—1
0, otherwise.

We see that X4(m) has a negative binomial distribution with parameters m and p.
We can write

Xa(n)|Xa(m),= Xm & Vit + -+ Vi + X, n>m

and

o) B . s n—m
E(s%"|X;(m) = x) = s (1 — qs> .

y_-xm_l

n—m-—1

n—m
The coefficient of ¥ in s™ (lfsqs) is (

>pnmqyxmn+m’
Thus we obtain the conditional pmf of X4(n) given Xy(m) as
P |
P(Xa(n)= xa[Xa(m), = xn ) =

O0<m< Xy <Xy — N+ m<oo.

> pn—qun —Xp—hn+m ,

n—m-—1

But we know that the marginal pmf of X4(m) is

x — 1
m— 1

m@=pmmw=ﬂ:<

)p’” g, x € Ay, m>1
Thus the joint pmf of X4(m) and X4(n) is

—x—1
Pmn(x,y) = P[Xq(m) = x, X4(n) =y) = (arrayx20cx — Im — 1) (y 1)p"qy’”
n—m-—

m<x<y-—n+m<oo
= 0, otherwise.
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We have seen that

P[Xg(n + 1) — Xq(n) = uXg(m) = y] =pq“ ', u € A,

= p[Xk = Ll]
Thus
E[(X, (n+ 1) = X, ()X, (n) = ] = i Wpg!
_ L

Thus E[(X; (n + 1) — X4 (n))*| X4 (n) = y] is independent of y. If fact it can be
shown that E[(X,; (n+ 1) — X, (n) )| X4 (n) = y], for any positive integer k, is
independent of y.

Since X4(m) iVl +Vy+....4 Vpn, where Vy,...,V,, are independent and
identically distributed as GE(p), using this property, we get

E(Xq(m) = np~!, Var (Xd(m))) =np ’q. (6.2.9)

Cov(X4(n)Xg(m)) = Var(Xq(m)) = (n —m)p2q (6.2.10)

The following Theorem is due to Srivastava (1978).

Theorem 6.2.1 Suppose F(x) is the distribution function of the sequence of i.i.d.
random variables {X,, n 2 1} with positive mass function only at 1, 2,... Then
P[Xa(2) — X4(1) = 1] X4(1) =i]=P[Xq(2) — Xq(1) = I|1]fori=1,2,..., if
and only if X,, has the geometric distribution with pmf as given by

pi=P[X=j=cpl—p)2j=23,... (6.2.11)

and
o0
p=1-> pi=1-¢0<p<l,0<c<l.
j=2

Proof We give here the original proof of Srivastasva.

P[X4(2))—Xa(1) = 1|Xa(1) =1l
= P[X4(2),= i+ 1, X(1) =i /P[Xur) ]

— Pit1
=1+
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Since this conditional probability is independent of i, we must have

— Pi+ s
p—m,forj = 1,2,...
For j =1, we getp, = p(1 —p1) = cp,say.

For j =2,we getps =p(1 —p1 —p2) = (1 = p1)p(1 —p) = cp(l —p)

Similarly for j = k, we have

pe=cp(1—pY 2 k>3. (6.2.12)
If pj is as given by (6.2.11) then

P[ Xu) — Xuy = Xy = 1]
=P[ Xy — Xua) = 1].

A generalization of the Theorem 8.2.1 is the following theorem.

Theorem 6.2.2 Let {X,, n = 1} be a sequence of independent and identically
distributed discrete random variables with common distribution function F.
Suppose X is concentrated on the positive integers and a = sup {x|F(x) < 1} = oo,
Then X, € GET(n,p) for some fixed n, n = 1, if and only X4(n + 1) — X4(n) and
Xq(n) are independent.

Proof The ‘if” part follows immediately from the from Eq. (6.2.5), so we need to
established the ‘only if” part. For x € Ao, let

c(u) =P[Xq(n+ 1) — Xq(n) = u[Xypm = x]
_plutx)
p(x) (6.2.13)
:ﬁ(quxi;()x;p(qux),u €A, x €A,

Summing both sides of (6.2.13) with respect to u from 1 to u,, and writing

ci(u,) = Zc(u) andc, =1 — ¢1(u,). (6.2.14)
u=1
On simplification, we get
D(x 4+ upy) = ¢co (o) p (x), u € Ayyx € A, (6.2.15)
The general solution of (6.2.15) is
p(x) =cp', x € A, (6.2.16)

where c is independent of p.
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Using the boundary condition p (c0) = 0, we get
p(x) =cpt,x€A,,0<p<l,x€A,.
We have already seen that

P[Xa(n + 1)Xa(n) = uXa(n) = y] = ', u € Ao
:P[ Xk:u].

Does the above condition characterize the geometric distribution? As an answer
to that question we have the following theorem.

Theorem 6.2.3 Let {X,, n = 1} be a sequence of independent and identically
distributed random variables with common distribution function F. Suppose X is
concentrated on the positive integers with a = sup {x|F(x) < 1} = oo. Further if
PX4q(n+ 1) — X4(n) =u| Xg(n) =y) =P [X; = u] for two fixed ye Ay,
Y1,y relatively prime and all u € Ao, then X € GET(n,p).

Proof Suppose that

PXa(n+ 1) — Xg(n) = u|Xq(n) =y) =P[ X; =] (6.2.17)
then
PIPIXs(n+ 1) = Xo(n) = uXs(n) =) = “0 5 —ptw) (6218

for two relatively prime y;,y, € A,—; and all u € A,. Summing (6.2.18) with
respect to u from u, + 1 to 00, we get

1% — ), (6.2.19)

for two relatively prime y;, y» € A,—; and all u € Ao. The general solution of
(6.2.19) is

p(x) = cpxe A,
and since p (co0) = 0, we must have
px) =cp,0<p<l, x €A, (6.2.20)

Srivastava (1979) gave a characterization of the geometric distribution using the
condition E(X4(2)[X4(1) = y) = o + y Ahsanullah and Holland (1984) proved the
following theorem which is a generalization of Srivastava’s result.
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Exercise 6.2.1 Let {X;, n = 1} be a sequence of independent and identically
distributed discrete random variables with common distribution function F.
Suppose X is concentrated on the positive integers with a = sup{x|F(x) < 1} = 0o,
Further suppose E(Xy(n + 1))? < 00, If E(Xy4(n + DXim)=y)=y + p_l forally €
A,—1, then X; € GET(n,p) and O < p < 1.

6.3 Weak Records

Vervaat (1973) introduced the concept of weak records of discrete distribution. Let
X1, Xa,... be a sequence of independent and identically distributed random vari-
ables taking values on 0, 1,... with distribution function F such that F(n) < 1 for
any n. The weak record times Uy(n) and weak upper record values Xg, (1) are
defined as follows:
Uy(l) =1
UW(I’I + l) = mlﬂ{] > Lw(n),Xj > maX(Xl,Xz, .. .Xjfl)}

and the corresponding weak upper record value is defined as Xgy(n + 1). If in the
above expression if we replace = by >, then we obtain record times and record

values instead of weak record times and weak record values.
The joint pmf of Xgy (1), Xaw(2), ..., Xaw(n) is given by

n—1
p(xi)
PW (X, X250 X) Bro 1\ Xn
12,00 (X X2, ) (11:1[ B(x, — 1)>p( ) (6.3.1)

for 0 < x; <xp < -+ X, < 00.
For any m > 1 and n > m, we can write
P(Xaw(n) =X, ... Xaw(m + 1) = X1 | Xaw(m) = X, . ..

(6.3.2)

It follows easily from (6.3.1) and (6.3.2) that the weak records,
Xaw(1), Xaw(2), .. .., form a Markov chain.
The marginal pmf’s of the upper weak records are given by

P(Xaw(1) 1)
P(Xaw(2) 2)

p(x1),x; =0,1,2,....

x1) =Pyi(x)) =
x)="P =Ry (x2)p(x2),x2 =0,1,2,....

X
X

W;Z(
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where

(6.3.3)

where

O D D | ety (63.4)

The joint pmf of X, (m) and Xy,, (m) m < n, m < n is given by

Pw,m,n(xm7 Xn) = Rw,m(Xm)Aw(xm>me.+1,n(Xm» Xn)p(xn)>
m<Xp<X, —0 +m<oo,

where

RW,mJl (X7 y) = Z Ay, (xm+l ) """" A, (xn—l )7

Xm <Xl SXpg2eee Son
m<n—1=1

if m=n-1,

and Ay, (x) = P(l)]c(i)l) .

The conditional pmf of X,,(n) given Xy, (m) is given by

Pw,nlm(XdW(n) = Xn|Xaw (M) = Xm)

p(xa)
P(x, —1)’
for < xp < Xy < 00.

= Rw,m+1,n(xm7xn) (645)

Thus the pmf of Xy, (,) given Xy, (,—1) is

Pw.n|n71 (de(n) = xn|de(n - 1) = Xn—1
_ p(x,) (6.3.6)
ﬁ(xn—l)
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Theorem 6.3.1 Let {X;, i =1, 2,...} be sequence of independent and identically
distributed random variables taking values on 0, 1, 2,...,n, n £ 00, with distribution
F such that F(n) < 00 for n < 00 and E(X In(1 + X;) < 00. The for some continuous
Sfunction , the condition E(W(Xg, (n)| Xaw (n —1) =j) - g(G) determines the
distribution.

Proof We have from (6.3.6)

P(Xaw(n) = y[Xaw(n — 1) = x) = ?, (6.3.7)

where py, = P(X = y) and g, = P(X 2 x)
Now

E(W(Xaw(n)) [Xaw(n — 1) = Z v (k)
[y

Using the condition as given in the theorem, we can write the above expression as

) 4j = vk (6.3.8)
k=j
Taking first order difference, we obtain from (6.3.8)
g()g; — gl + Day = v ()p) (63.9)
Thus
g()q; — e+ 1)( ) Y ()p; (6.3.10)
ie.
gGi+1) —g()
== g 6.3.11
Since g; = il.q’—". .4 g0 =1, we have from (6.3.11)

qj-1 gj-2 9o

_ &G+ —8l) 7

o Gk+1
v e L) (6312

From (6.3.10)

g() qj — G + Dajs = ¥ () (¢ — g+1)
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i.e.
g1 80) =)
o s - 90 (6313)
From (6.3.13), we can write
5y £+ D) =20
Tgli+ 1) =)y

L gk — k)
@w+w—ww) (6.3.14)

i
o

6.3.1 Geometric Distribution

Suppose X, X,,. ... be a sequence of independent and identically random variables
with p(k) = pq* and I3(k -1)=4¢k=0,1,2,...
— )
Here Ry y(x2) = % = Xop.

1<x1<x

Thus
PW,Z(k) = RW,I(k)p(k) = kp2qk7 k= Oa la 2a DR

Since
Pryain 1 (o X (1 — 1) = 1) = _pbw) o,
' P(X,hl — 1)
Xn > Xp—1
we obtain

x3
Py3(x3) = > xp’qopgs ™

XZZO
X3 3
= > npq°
x=0
= x—3(X§+l)p3qx37X3 = O7 1,2, geen
By induction it can be proved that

Pw,n(xn) = x”(x” - 1(>l’l _(T;l—i_ "o 2) pnqxn

- (X”H_z)l’nlf”n >2andx, =0,1,2,...

n—1

E de(n)|de(n — 1) = xn,l)

o0

- q

Xn=Xn-1
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The conditional expectation of Xy, (1) |Xz(n —2) = x is

E(Xaw(n)[Xaw(n —2) = x,-2)

o0

B YRS
X=Xp—2
= X2+ Z [(X — Xn,z) (x — Xy_n + 1)]p2¢(*xn—z
X=Xp—2
2
= Xp-2 + —q

Wesolowski and Ahsanullah proved the following characterization theorem
using conditional expectation.

Theorem 6.3.2 Let {X;, i =1, 2,...} be sequence of independent and identically
distributed random variables taking values on 0, 1, 2,.., n, n < 00, with cdf F; Then
EXgw(n + 1)|X4e(n) = X) = X + b, where b is a constant characterized the geo-
metric distribution.

We have seen that

P[ Xa(n+1)) — Xq(n) = ulXy(n) =y] =pg"~", u € A,

= P[ Xk = ll].
Thus
E[X,(n+ 1) — X, ()X, ) =3] = 3 ipg™
u=1
_ 14+g¢g
e

Thus E[(X; (n + 1) — X4 (n))?| X4 (n) = y] is independent of y. If fact it can be
shown that E[(X,; (n+ 1) — X, (n) )| X4 (n) = y], for any positive integer k, is
independent of y.

Exercise 6.3.1 Suppose {X,, n > 1| be a sequence of i.i.d. random variables with
cdf F(x). We assume X, is concentrated on 0, 1, 2,. .. and F(x). O for all x > 0. Then
X € GE(p) if and only if Xq4w(2)d X; + Xz, where X; and X, are independent

copies of X,,.

Ahsanullah and Aliev (2011) extended the result of the above exercise to Xy (n).
They prove that under the same assumptions of the above exercise the condition
Xaw(m)d Xy + X5 + - - - + X, where X, Xy,..., X, are independent copies of X,
characterizes GE(p).

Ahsanullah and Hijab proved that the following theorem.
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Theorem 6.3.3 Suppose {X,, n > 1| be a sequence of i.i.d. random variables with
cdf F(x). We assume X, is concentrated on 0, 1, 2,. ... Then X € GE(p) if and only
if Xgw(n + 1)d Xdw(n) + W, where W has the same distribution as X’s.

Example 6.3.2 Beta—Binomial distribution.
Suppose X;, X,,... be a sequence of independent and identically random
variables having Beta—Binomial distribution, BB(N, ) with pmf as

; —1
p(j) =P(X=j) = (ﬁ,i?*/*l) (1[\3[+N) ,i=0,1,2,..., N (6.3.19)
and
N
Bli—1)=q = p;
Jj=k
N _ .,
:Z <1€/t_1,\-/7]71) <1[)‘V+N>
=
N—k _ .
= (}[3+N J 1) (1/3,+N>
=0
-1
=(A ()
Here
(x1) (/1’+N—x1—1)
p\x1 N—x,
Ry1x2) = ) \ N )
i <ot P —1) 1§; x (ﬂﬂl\\]l:il])
RS
ISxISX2N+n_x1
Thus

p(Xaw(2) =Jj) = Ryw.1(j) p()

O G [

0<x;<j

i=k..,N

EXaw (1) Xaw(n = 2) = m)

N N
= LS iy

m y=m Ir k=r

“() S o )

r=m k=r
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Now
N
N—k—1
PO ()
k=r
N—r
=Y =)
i=0
—r riol N—r P .
) -Ee)
=N - (R0
N(ﬂJerr) _ (N-=r)p (ﬁJerr)
N—r B"—l N—r
— N+ rﬁ ([5+N—1)
ﬁ+ 1 N—r
Thus
EX gy (n)[Xgw(n — 2) = m)
ﬁ ﬁ+N m zn: N+rﬁ ([)’+N r)
RS G = p+
Now

N

ZﬁN+”ﬁ <ﬁ+N r)+ZN+rﬁ(/J’+N — 1)

r=m

S -2

r=m

It can easily be shown that

N N | N—m
Sr(R5) =Y - ()
r=m =0

N N—m
=Ny =S
=0
_ N(ﬁJerm) _ (N —m) (ﬁJerni)
N—m ﬁ+1 N—m

N+mﬁ</i+Nm)
p+1 \N-m )
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Hence

EXgw (1) [Xaw(n = 2)[ = m)

() G751
S \B+1J\B B+1
(P (2

- <ﬁ+ 1) i ((ﬁ+ 1)2>N

Exercise 6.3.2 Suppose X;, X,... be a sequence of independent and identically
random variables having Beta Binomial distribution, BNB(f, y) with pmf as

p(j) = P(X = j) = y—i] () (fijf“)*l,j —0,1,2,..., (6.3.20)

where B > v > 0.
Show that

EXyum)| Xwum-2) = m)

6.4 Exercises (solutions)

Exercise 6.2.1 (solution) Suppose E(Xgq(n + D|Xqn) = y) =y + p_1 for all
y € A,—1, then we have

p(u+y)
()

P[XU(nH) =u+ y|XU(n) = y] = ,YE A1,

and hence

E[Xu(+1)Xum =] = ; et y)P(;(Jyr)y)

=p'+y,

which implies that

o)

= pW)
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Thus we have

p = -
()
Py i)
_j; p®)
J(y)

where J(y) = Z[)(y + i). Thus

Jy+1)=qJ(y),q=1-p (6.4.1)

forally € A—.
The general solution of (6.4.1) with the boundary condition, J(n)=0,0<0< 1, is

J(x) =0q"""x€Ayy.

Therefore

px)=Jx)—J(x+1)=0pq" ", x€A,_;.

ie. x € GET(n,p).
Exercise 6.3.1 (solution) We have already seen that if X & GE(p) then

Xaw(2)d X1 + Xs.
We will prove here the only if condition.

Hence




6.4 Exercises (solutions)
Putting x = 1, we obtain
(505 + 53 )p(1) = 20(0)p(1)
Let p(0) = p, then

P(1)=pq.q=1-p.
For x = 2, we have

(59 1 8 422 p(2) = 2p(0)p(2) + (p(1))?

Substituting p(0) = p. p(1) = q in the above equation, we obtain p(2)
Suppose p(u) = pg" for u < x, then we have for u = x + 1.

Exercise 6.3.2 (solution)

V(B (1)

G\ lar) ’
Y (ﬁ) (ﬁ+k+g’+1) -1

)} _|_ k _|_ l y+k+i

0
) xa

, ) (o)
Here Rw,l(,]) Z qu] = /;,+.xv,K1+1
0<x <j ! 0<x < (v-xl )
p—v+1
0<x|<Jﬁ+xl +1
Thus

P(de(z) :J) = RW,] (J)p(.])
— V +1 Y Bt -1
Z [3+x1 +1y4j (ﬁ)(yifﬁl)

0<x <j

i=0,1,...,

141

=Pq.
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Now

E@@(HXMM—ZM=m>

LSS

qmr o dr i=r

We have

=32
; =0 y+r+J
_v(r—l()
y+r N =
SO ) )
y+r R VA

ol (/)’—V—I)H](p
(y+nB-y) V

pAr+j+1
V+r+j

1 X . -1
Btr YT (Br [ttt
(’“) Zy + r+1<'+’) (Wﬂ' )
()

y+r

+

()
)

N—

Thus

E(Xaw (n)|Xaw(n — 2) = m)

LS (B=y+ Dolr(B—7 = 1)+ 91 (5 (pr) !
T (Bit+y1)(v+r;(/;_;)y(5)(5@)

L (f—y+1s yr -1
B T
=) >
gn | B—v Siv+r
i prri1) !
+ y+r

l(ﬁ + Dm(f—y+1)+9] q
m B-7) "

On simplifying we the obtain

— 1 1)|m(f — 1
E(qu<n>\XwU<n—2>:m):(ﬁ = )([ﬁ (—ﬁy)ZH )ﬂuﬁiv
:(ﬁ—v+l)2m+v{2( —n+1

(B—7)° (B=)°




Chapter 7
Estimation of Parameters and Predictions
of Records

7.1 Exponential Distribution

We will consider here the two parameter exponential distribution with pdf f(x) as
given by

f(x) :éexp(—a‘l(x—/l))a —00<pU<x<00, >0, (7.1.1)

= 0, otherwise.

7.1.1 Minimum Variance Linear Unbiased Estimates
(MVLUE) of u and o

Suppose that X(1), X(2), ..., X(m) are the m (upper) record values from E(u, o) with
pdf as given in (7.1.1)
Let

Y; =0 '(X(i) — n),i=1,2,...,m, then
E(Y) =i=Var(Y;),i=1,2,...,m,

and Cov(Y;, Y;) = min (i, j).

Let
X = (X(1),X(2),...,X(m)), then
E(X) = uL + 0o
Var(X) = a°V,
© Atlantis Press and the author(s) 2015 143
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where
L'=(1,1,...,.1),8=(1,2,..m)
V = (Vy), Vy = min(i, ), ij=1,2,...,m.
The inverse V(= V%) can be expressed as

2 ifi=j=1,2,...m—1

Vi = 1 fi=j=m
-1 ifli—-jl=1,i,j=1,2,...,m
0 otherwise.

The minimum variance linear unbiased estimates (MVLUE) 1,6 of p and o
respectively are
=0V LY — oL )V'X/A
6=LV (LS — oL )\V'X/A,

where

A= (LV'L) (8V'8) — (LVv's)

and
Var(jt) = *L'V-15/A
Var(¢) = a*L'V'L/A
Cov(jt,6) = —a*L'V'5/A.

It can be shown that
L'v='=(1,0,0,...,0),8V! =(0,0,0,...,1),
dV18=m and A=m-1.

On simplification, we get

o= (mX(1) — X(m))/m — 1)
& = (X(m) — X(1))/(m — 1) (7-1.11)

with
Var(i) = "“i/(m —1), Var(6)=0’/(m—1) and (7.1.1.2)
Cov(t,6) = —o~/(m — 1).
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Exercise 7.1.1.1 If x = 0, then the MVLUE 6 of @ is

7.1.2 Best Linear Invariant Estimators

The best linear invariant (in the sense of minimum mean squared error and
invariance with respect to the location parameter ) estimators (BLIE) [t & of p and

o are
== )
14+ Ex»n
and
G =36/(1+Ey),
where

{t and 6 are MVLUE of p and ¢ and

Var(f) — Cov(i,6)\ _ 2(En En
COV(,&,&) Var(& E12 E22

The mean squared errors of these estimators are
MSE(f) = o° (E” — (1 + Ezz)_l) and
MSE(G) = 6°Exp (1 + Ep) ™"
We have
E(fi—p)(6 —0) = °Ena(1 + En) ™.
Using the values of E;, E|, and E,, from (7.1.1.2), we obtain

U= ((m+ DX(1) = X(m))/m,
&= (X(m)) = X(1))/m

m+1

Var(ft) = o’and Var(6) = n
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7.1.3 Maximum Likelihood Estimate

The log likelihood equation based on the m upper X(1), X(2),..., X(m) can be
written as InL = —mlng — 2 (X(m) — p), u<X(1)<X(2)--- <X(m)<oo. The
maximum likelihood estimate ji,, and 6, of u and ¢ are respectively.

and

ot = - (X(m) = X(1)

E(laml) =H + g, Var(ﬂml) = 627

(m—1)a 5 (m—1)c?

E((A)'mz) = ,Var(@ml) =

2
and Cov(fl,;6,mj) =0

Exercise 7.1.3.1 Show that in the case of one parameter exponential with F(x) =
1 —e*? x>0, ¢ > 0. The maximum likelihood estimate ¢*, of ¢ based on m
upper records X(1),X(3),...,X(m) is
o= x(m) with

m

ml

2
. u . g
E(c%) = o+ and V. .
(o0) =0 and Var(a,,)

7.1.4 Prediction of Record Values

We will predict the sth upper record value based on the first m record values for

s >m.
Let W = (W, W, ..., W,,), where

@ W;Cov(X(i),X(j)),i=1,....,m and o =3a 'E(X(s) — p).
The best linear unbiased predictor of X(s) is X(s) where

X(s) = i+ 6o + W'V (X — il - 69),
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where [I,G are the MVLUE of p, o respectively. It can be shown that
W'V-I(X — AL —68) = 0.
X(s) = ((s = DX (m) + (m — )X (1)) /(m — 1)
) = u+s0 (7.1.4.1)
)) = (m+s>—2s)/(m—1).

E(s

X(
Var (X(s
Let X(s) be the best linear invariant predictor of X(s). Then it can be shown that
X(s) = X(s) - Cio(1 + ) "', (7.1.42)
where
Cip0” = Cov(6,(L— W'V L) i+ (o — W'V'8)5)
and

0’Ey = Var(6).

On simplification we get

m-—s

X(s) == X(1) + - X(m)
E(X(s)) = pu+ (%)0
Var(X(s)) = o*(m* + ms* — 5*) /m".

It is well known that the best (unrestricted) least squares predictor X of X(s)is

X() = EX(5)X(1), .., X(m) (7.143)

But )_(AU(S) depends on the unknown parameter ¢. If we substitute the minimum
A A
variance linear unbiased estimate ¢ for o, then X(s) becomes equal to X(s). Now

E(X(9) = i+ 50 = E(X(5))
X

Var(X(s)) = ma*
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7.2 Generalized Extreme Value Distribution

We will consider here the generalized extreme value distribution having d.f. F(x) as
F(x) = expl—{1 — 76~ (x — 10}1/7] (72.1)
where 6 > 0, y # 0,
x<p+oy! fory >0,
and
x> p+oy !t fory<o.
If y = 0 then
F(x) = exp[—exp —{—(x — u)/o}],0 > 0, — co <x <o0. (7.2.2)
We will write X € GEV(, 6,7) if X has the d.f. as given in (7.2.1).
Since
}yiil;l){l —yot(x - ,u)}w =exp{—0'(x— 1)}, we can take

lirr(l) GEV(w,0,y) = GEV(p,6.0).
y—
The density function of GEV(y, &, 7) is

f(x) =o '{1 —w"(x—u)}%ew[—{l —Va"(x—u)}l/"}7
x>1/y,7>0,
x<1/y, fory < 0,

x—it

and f(x) = () exp(—ef(%“)), fory = 0.

7.2.1 Minimum Variance Linear Unbiased Estimate
of u and o for Known y

Suppose y # 0 but y is known. Let x(1), x(2),... x(m) be the m (lower) record values
from GEV(u, o, y) with pdf as given in (7.2.1). Then the MVLUE i and 6, of p and
o, respectively, based on m upper record values, x(1), X(2), ... x(m), are:
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ft=D""{x(m)(1'V""a) — 0, 'V='R|
6=-D"{x(m)(I'V ') - 1'V'R}
where
'v-11 1
D:F(m-i—l)( T(m) —b—>,V (Vu) (ab) —(V”)
. R . TG . 2
N :F(zf/)’bi_l“(wzz) (z+'/) andaS:G_Z.
I'(i) Lii+y) I'(i) Y
2
vl — (1+7y) 1
2 T(142y)
i () L. 2, . . .
V":,—.—{ P24 =D(i—142 },;:2,...,mf1,
i (GURRRR G )

vi— i ity T+ 1) 7
2 T(i+2y)
VY =0,if [i —j| > 1, here

j=i+li=1,...m—1

'=(@1,...,1),
R = (x(1),x(2),...x(m),o = (a1, ..., 0%n),
. Ta+y) - m
=== L2,
Var(i) = ao{bm(l vt ) — 2+l"(£1(7’;11—)y)}/D
Var(69) = ogbu{(1'V"'1)} /D

and

Cov(it, 60) = 63{bw(1'V""'1) — 1}/D.

Let R = (x(1), x(2), ..., x(m)). Then we can write

E(R) = pl + opo

Var(R) = a2 V,
where

i+

o = (0. ty), op=1— (ll_(—’—)/),
l

U'=(1,...,1), V={Vi}, Vj= abj, 1<i, j<m
C@i+7y) b CT(i+2y) T(i+y) andaz_o_{

“TTTG T T+ IO 07

149
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Let V7! = (V¥), then

Vil — ar :ll"(1+y)2
ay(azb; —aiby)  ?T(1+2y)
Vil — aiv1bi—1 — ai—1bipy
(aibi—1 — ai1b;)(ait1b; — aibiyy)
I'(d) { . 2 . . .
=W i) - D)= 142 },1:2,..., m—1
D -1+
prm b1 1 _ by_1m+1— Y F(m)
by Aubu—_1 — Gn_1bm by 2 I(m—1+7y)’
Vi —yi — _ ! :—i+7}r(i+1)
aiy1b; — aibiy 7 T(i+2y)

j=i+1,i=12,...,m—1,
and
Vi=0,if |i—j>1.

It follows from the method of Lloyd (1952) that the MVLUE of p and co based
on the observed value r of R are, respectively,

'V (Ve — al ) VIR/A
6 =1Vv"'1d —al")R/A

=

where
A={U Ve V') = {1 V')

and

Cov(ft, 6,) = a5 (1'V"a) /A
It can be shown that, upon simplification,

U'V3ia=1'V' - 1/b,
Ve =1V~ 1/by +ap/by
VIR = I'V7'R — x(m) /by,
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and

vy 1

Suppose y = 0.

Then the MVLUE i, 6, of p and o respectively based on the lower record
values x(1), x(2), ..., x(m) are

Their corresponding variances and covariance are
Var(i) = a*{ (v, (m = 1) + V.|
Var(¢) = ¢*/(m — 1), and
where

v, = E(x(m)) and v}, = Var(x(m)).

Proof For vy = 0, we know (see Sect. 5.2.3).

E(x(r)) =pu+vio
Var(x(r)) = JZV:,.;,
Cov (x(r)x(j) = Var (x(j)),...1<j<J,j=1,2,...,...

with
vi=0v
oy =v,—(—-1),j=2,
2
T
Vii=—,
1,1 6
* * -1
Vii= Vi1 (j—=1)",j=2,

where v is the Euler’s constant.
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Let Q = V-! = (V¥), then

and

Vie?+(i-1%i=1,2,...,m—1
Vij = _min(i23j2)7i7éj7|i_j‘ =1
=0,if i—j| > 1

VI = (m— 1)%41/.
'V =(0,0,...,1/V: )0
AV = (L1, / V), — (m— 1))
oV =/ V5
o V0= () /Vy, +m— 1

A=(m—-1)/V,

m*

Substituting these values in the expression of jtand &, where

On simplification the results follow.

7.2.2 Best Linear Invariant Estimates (BLIE)

Suppose y # 0 but y is known. Then the best linear invariant (best in the sense of
minimum mean squared error and invariant with respect to the location parameter
W) estimators jtand 6, of p and o, are respectively

where

bu{ (U'V")by — 1}

T+ 29) /T + ) b (V1) — 1}
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and

D

Proof The BLIE jiand G, of p and o, are:

ﬂ = la - 6(){E12(1 + EZZ)_I}’

and

0y, = a-o<1 +E22)717

where

o — (En En
’ En Exn
defines the covariance matrix of the MVLUE:s of jiand 6,. The mean squares errors
(MSE) of jtand 6, are:
MSE(f) = o2{ En — EL(1 + Ex) ' |,
MSE(&U) = O'(%Ezz(l + Ezz)il,
E(ji = 1)(6, — 0) = ©2Enn(1 + Ex) '

Substituting the values of E;, Ej, and E;;, the results follow on simplification.
Suppose y = 0. Then the BLIE jiand 6 of p and o are:

:ﬂ, U;&/m

6=6(m—1)/m

MSE(f) = 02|V, + (v)* /]

=

and
MSE(G) = ¢*/m,

where jiand ¢ are the MVLUE of p and ¢ when y = 0.
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Proof We know

Since 1 + Epp = -2

—i, on simplification, we get the results.

7.2.3 Maximum Likelihood Estimates (MLE)

Suppose v # 0. But y is known. Then we can write the log likelihood function L
based on the record values x(1), x(2),..., x(m) are:

log L = 12],; ((i((];)))) +Inf(x(m)) (7.23.1)

Differentiating (7.2.3.1) with respect to p and equating to zero, we obtain
(=14+9 DD ye (1 =yo ' (x(i) — )™
12:1: (7.2.3.2)

_ 1
+y0 (1 =90 (x(m) — )2 =0

Differentiating (7.2.3.1) with respect to ¢ and equating to zero, we obtain

—mo ' 4 (=147 7(x o2 (L+yo (g —p) "
; (7.2.3.3)

_ _ _ pn—1
—90 2 (x(m) — (1 = yo~ " (x(m) — )~ =0.
From (7.2.3.2) and (7.2.3.3), we obtain the maximum likelihood estimators
Y;and a; of p and ¢ assuming 7y is known and not equal to zero.

Exercise 7.2.3.1 Show that if y = 0, then the maximum likelihood estimates of
o and pu are respectively

and



7.3 Generalized Pareto Distribution 155

7.3 Generalized Pareto Distribution

We will consider the generalized Pareto distribution with the following pdf f(x)

=L (1a(5)

x>, for > 0,
p<x<p—a/p, for <0, (7.3.1)
1 -
= e W 1, x>pforp=0,0>0
a

= 0, otherwise,

7.3.1 Minimum Variance Linear Unbiased Estimator
of u and c When f Is Known

Theorem 7.3.1.1 The minimum variance linear unbiased estimators ji and 6 of pu
and ¢ based on the observed upper record values X(1), X(2),..., X(m)

p=x(1),—(1-p'¢

6 =(1=B)(B—D'(1=28°X(1) + D7'B(1 = B) Y (1 = 25X (i)

i

3

||
2

+ D (1= B 28)" X (m)

where

D= i(l —28)" " andp<1/2.

=2

Proof We assume GP(u, o, B) with B # 0 and with finite variance. Let R be the
m X 1 vector corresponding to X(i), i = 1, 2,..., m, then we can write

E(R)=uL+o03d

where
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and
1 - .
=B " (1-B),i=1,2,...,m.

We can Write
V(R) =6>V,V= (Viy), Vij =B Za bj, 1 <i<j<mand V;;=V;; The inverse
( Vi) can be expressed as

o - 1 )
Vit =it = — = (128" (1-p), i=1,2,...,m—1

air1bi—1 — ai_1biy

Vi,i —
(aibiy — ai1bi)(aip1bi — aibiyr)’

i=1,2,...,n, V=0, forli—j|>1,
where a, = 0 = b,,,; and b, = 1 = a,,;.
On simplification, we obtain
Vil = (1 -2B)' (2 —4B+2p%),i=1,2,...,m—1
and
vem=(1—-28)"(1 - B).

The minimum variance linear unbiased estimators (MVLUE) i, ¢ of p and ¢ are
respectively based on the upper record values are

= -0V LS — L)V 'R/A,
and
6 =LV (LS — 5L )V 'R/A,
where
A= (L' VL) (3'V718) — (L V71§)°

On substituting the values for § and V™' and subsequent simplification, it can be
shown that

X()—6(1=p)"" and
(1= B)(B =D (1= 28X (1)ry) + DB = B) > (1= 28)"'X (i),

i
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where

Var(ft) = O'2£
Var(6) = o’ pr %7 25)
2 2
COV(ﬂ, 6) — 0_2 {(1 B 2ﬂ; +ﬁ T}
and
T= Y (1— 2[)’
i=2

Exercise 7.3.1.1 Find the MVLUE jiand ¢ of pand o based on n upper record
values X(1), X(2),..., X(n) of the Pareto Type II (Lomax) distribution with pdf f(x)
as

— —(v+1)
f(x):§(1+x H) , x>u, o>0andv >0,

7.3.2 Best Linear Invariant Estimators (BLIE)

Theorem 7.3.2.1 The best linear invariant (in the sense of minimum mean squared
error and invariance with respect to the location parameter |\) estimators i, G of L
and o are respectively

L BT-(1-2p)

S T

N D

o=—— awhere
T(1 - p)

m

D= Em: Bt T = ;1—2[3

i=2

and [t and ¢ are MVLUE of p and o.
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Proof The BLIE [t and ¢ can be written as

i=j E» 5
1+ Eyp
and
- |
o= G,
14+ Ex»
where

Var(it)  Cov(f, 6) _2(En En
Cov(ji,6)  Var() o En Ex»n )/’
The mean squared errors of jt and ¢ are

E2
MSE(ji) = 6*( E —‘2),
(1) ( U B

MSE(&)ZGZ( En )

Substituting the values of E;y, Ej, and E,, in terms of B, T and D, we get the
result.

7.3.3 Estimator of p for Known u and o

A Moment Estimator of f.
We have seen that for p =0 and ¢ = 1.
E(XX(m)) = ' {(1 = B)™ — 1}. Thus

E(X) = E{(X(1) + X(2) + -+ X(m)} /m} ZmLﬂz{(l -p)" =13 —%
:X(m) -m
mf

ﬁzX(l)+X(2)+...+x(m)7 for X(1) +X(2) +---+X(m) #0
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7.4 Power Function Distribution

We will consider the following pdf f(x) of power function distribution

f(X, o, ﬂv V) = yﬁi}y(d + ﬁ - x)”/*l’
fora<x<a+f,5>0,7>0, (7.4.1)
= 0, otherwise.

We will say arv X € PF(a, B, v) if its pdf is given by (7.4.1). This is a Pearson’s
Type I distribution. If y = 1, then f(x, a, B, y) as given by (7.4.1) coincides with the
uniform distribution in the interval (o, o + B). If we take ¥ = (a + B)’, the Y has the
uniform distribution in (0, 1).

7.4.1 The Minimum Variance Linear Unbiased Estimate
of a and f When y Is Known and y # 0

Suppose X(1), X(2),..., X(m) be the first m upper records from this distribution.
Let
Y

= e (X(h) — —— X (k(k — 1 —1.2....
Wi = cr(X (k) T (k(k=1)), k=1,2,....,m

) o\ K2
with X(0) = 0, andck:(erl)(’y) L k=1,2,...,m.
Now

1/2
B = (752) g+ D,

2\ /2
E(W,) = (%) (@t p). k=23 . .m

Var(W,) =%, k=1,2,....,m
Cov(W;W;) =0, i#j, 1<i,j<m.

Let W = (W[, W,,...,W,), then E(W) = X0, where

(G+2m'?) o (@r2m'

x| 02/ (y+2)/y | g[a}

(&+ z/~}>"/2) (6+ 2/%)"/2)
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We can write X'X as

XX — (r+2)° y+2+T
y+2+T T
T_ m (y+2>
=1 v
iyl _Dl( T (y+2+T>
C\=(+24T) (+2°+T

D,=(y+2)(0T—7-2)

)
Vs

Vi =y +2) Wy + v,

m +2 k/2
vey(5F)

k=1

Theorem 7.4.1.1 The minimum variance linear unbiased estimates of o and P

respectively based on Y,..., Y, (assuming y as known and y # 0 are)
[‘;] = (X'x)"'x'w

On simplification, we get

k=1

(m £ 22w, = 3 (5 + 2) /) )]

n

~(T+7+2)00+2)" "W+ +2)0+ 1Y (2 +2)/7)* W
k=1

The variances and covariance of are given by
Var(s) = 1D, ",
Var(B) = 8 (v +2)+7) D"
and

COV(&, is) = —f(y+2+T)D;"



7.4  Power Function Distribution 161

7.4.2 Minimum Variance Linear Invariance Estimators

Theorem 7.4.2.1 The best linear invariant (in the sense of minimum mean squared
error and invariance with respect to the location parameter o) estimators

o and B of w.and f§ are respectively

5 — 5 y+24+T -
G+ {0+ DT =@ +2)}
andﬁ D, B

TO+ G+ )T +2))

where

D, = +207 -+ =3 (2]

and &andﬁ are MVLUE s of a. and B.

Proof The BLIE aand ff of aand § can be written as

. . Ep
oa=a
1+ Ex»n
and
| R
B,
where

Var(a) COV(&7B> qZ(E“ EIZ)
Cov(&, 3) Var(ﬁ) Eo En/)

The mean squared errors of & and B of wand f are

2 EL
MSE(a) =y | E;; —
@)= ( " l-i-Ezz)7

MSE(B) = 7* (1 52222).

Substituting the values of E;;, E;, and E,; in terms of y, we get the results.
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7.4.3 Maximum Estimator of f for Known u and o

Without any loss of generality we will assume p = 0 and ¢ = 1. The log likelihood
function can be written as

m

1
logL =mlogy — Zl——x(z)Jr ylog(1 — x(m))
i=1

Differentiating with respect y and equating to zero, we get y as the maximum
likelihood estimator of y as

7= In(1 — x(m))

A moment Estimator of y.

Taking @ = 0 and B = 1, we get B(X(i)) = () ~1 and

5 m
BOX(1) + (X)) + -+ X(m) = (25) 1} -
Thus we can a moment estimator based on the m record values X(1), X(2),.., X
(m) is

X(l)—ﬁ-“-—l—X(m)-i—m.

A= xm)

7.5 Rayleigh Distribution

Let {Xn, n > 1} be a sequence of i.i.d random variables from standard Rayleigh
distribution with pdf

f(x) =xe /% x>0 (7.5.1)
and d.f.
F(x)=1-—¢"? x>0. (75.2)

We say X€ RH(O, 1) if the pdf of X is given by (7.5.1)
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Theorem 7.5.1 Let U = E(XU(n))a Vn,n = Var(XU(n)) and Vm,n = COV(XU(m) XU(n))a

then
My = \/51—‘5_,,1(:)%) 7Vn,n =2|\n— (1“(”;-(7;)/2)3] and
L [Tm+1/2)]1[ T(n+1)  T(n+1/2)
Vi 2{ T(m) } [F(n+ ) — () }, for1<m<n.
Proof

o0

o = % / x{~In(1 — F(x)}"f(x)dx

o

Lo 2/2
=— = " xd
r(n)/x(2> e xdx

o
:L\/i/ul/zu"qe*”du
['(n)

_ s+ 1/2)
=V2——-= OB

Similarly it can be shown that

T +1)
F()

et ] [ D) e

B 1 1 / )ﬁ n—m—1 e,y2/21d
T Tm(n—m)2n1 ) Y\ 2 Y ¥

o

102 E(Xz()) —2 —2n

where

y

m xz n—m—1
1y=/(x2) (1—y2> dx

o

1
= §y2m+!B(m +1/2,n—m),
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with
[(a)L'(b)
B(a,b) =
(a.b) I'(a+b)
On simplification we get
B C(n+1/2)\?
ann =2|n— (W) and

Yma =2 {F(”;E:)/z)} [ng(il:_ll/)z) - F(r;ﬁ(—ﬂl)/z)} ,forl<m<n.
[

We will consider the estimation of p and ¢ based on the m upper record values
X(1), X(2),..., X(m) of the two parameter Rayleigh distribution with the pdf

X — a-p)?
'ue W p<x<oo,a >0

f(x,n,0) =

7.5.1 Minimum Variance Linear Unbiased Estimators of u
and o

Theorem 7.5.1 The minimum variance linear unbiased estimators ftand ¢ of W and
6 based on the X(1), X(2),..., X(m) are

= i ,and & Z di X (k
k=1

where
3an1bm 1 O‘mbm
=3 i = 5 ) _2a3a' 9 - 17
“CT2p T2 D n
Sy w1 3by 1 by,
m_l_ 3 Nk dy = = dt T AT TN :2a33 ) _17
¢ w |° " ; i] 'Y 72D 2D "
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where
D = ob, T — 221 2m—1(b;” 1>]
F(k+3) F(k+ 1)k +Y)
=2 2 = aand by = V2 2
= V2 = wand by f{r(m%) Tk |
k=12, ....m

g Ly eeay

Proof Let R be the m x 1 vector corresponding to X(k), ki = 1, 2,..., m, then we
have

E(R)=pL+ o039
where

R = (X(1),X(2),...,X(m))
L'=(1,1,...,1), & = (o,00,...,0m)

Ci+1/2) .,

T, y Loy ooy ML

o = 2

We can write
V(R) = ¢V, V = (Vi), Vij = aib;, I <i<j<mandV;; = V;;.
The inverse V! (=Vi;) can be expressed as

1

Vi+1,i — Vi,i+l —
aip1b; — aibiyy

=—(2i+1),i=1,2,...,m—1,

ii ai1bi—y — ai_1biyy .
V= — Akt bl ,i=1,2,...,n,
(aibi—y — aj_1b;)(ais1b; — a;ibiy)

Vi =0, for|i —j| > 1,

where a, =0 = b,,; and b, = 1 = a,,,,.
On simplification, we obtain

8% +1

ii_ .
Vi = ST 32,0,

and
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The minimum variance linear unbiased estimates (MVLUE) [i, & of p and ©
respectively are

=3V LY —sL)VIX/A
6=—-LV (LS -V 'X/A,

where
A= (LV'L)(8V'8) — (LV1s)
and

Var(jt) = a*L'V'5/A,
Var(¢) = *L'V'L/A
Cov(ji,6) = —a*L'V'5/A.

On simplification, we obtain the MVLUE [i1, G of nu and . The corresponding
variances and the covariance of the estimates are

b
Ve oY 2 %nn
ar(i) = o 22
biT
Var(6) = * Z) (7.5.1.1)
b
Ay 20n
Cov(j,6) = —0 D

7.5.2 Best Linear Invariant Estimators (BLIEs) of u and ¢

Theorem 7.5.2.1 The best linear invariant (in the sense of minimum mean squared
error and invariance with respect to the location parameter ) estimators (BLIEs)

LG of wand o are
p= o0
I+ Ex

and
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where [t and 6 are MVLUEs of | and ¢ and

(Var([f) Cov(?&)):oz(En Elz)

Cov(ir,6) Var( En Ex

The mean squared errors of these estimators are
MSE(f) = o (E11 B4 (11 + Ezz)*l)
and
MSE(6) = 6°Exp(1 + Exn) ™.
Using the values of Ey1, Ei» and E,, from (7.3.4), we obtain

~ A A~ b’n
“_“+0(D+b2T>

m

and

D
D+b2T’

m

G=0

Exercise 7.5.2.1 Show that if p = 0, then MVLUE of ¢ based on upper records X
(1), X(2),..., X(m) is
= cX(m)

where

o 1 T(m
EXn) V2T (i +1)

CcC =

Exercise 7.5.2.2 Show that the minimum variance linear unbiased predictor X s)
of X(s) of X(s) based on X(1), X(2),..., X(m), s > m X(s) =t + o
where ji and ¢ are the MVLUEs of u and g, Respectively.
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7.6 Uniform Distribution

7.6.1 Two Parameter Uniform Distribution

Let {X,, n> 1} be a sequence of i.i.d. random variables from a uniform distribution
with the following pdf

1
f(x) = g, h<x<be (7.6.1.1)
and d.f.
X — 01
F(X) =, 01<x<92. (7612)
0, — 0,

We will say Xe U(84, 0,) if the pdf of X is as given in (7.6.1.1).
The pdf f,(x) of X(n) can be written as

f(x)—1 L [0 =0 He< <0 (7.6.1.3)
T 010, 0, —x ) TR

E(X(m)) =270, + (1 —27)6,

Var((X(m)) = (3*“ _ 47n)(92 . 91)2. (7614)

The joint pdf of X(m) and X(n) is

fo(y) = L 1 L1 f =" =0
mal%, Y S T(m)T(n—m)0, — 0,0, —x 0, —x 0, —y ’

for 6; <x<y<0,

(7.6.1.5)
We have t

E(X(n)[[X(m) = yp) = 27"y, + (1 =276,
and (7.6.1.6)
Cov(X(m)X(n)) = 2™ "Var(XUy)).
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7.6.2 Minimum Variance Linear Unbiased Estimate of 0,
and 6,

We will consider here the estimation of 8, and 6, based on m upper record values X
1), X(2)..., X(m).
Consider the following transformation

Wi =Xy
. 1 ) (7.6.2.1)
‘/I/l:(3)( l)/z(XU(i) _ZXU(i—l)>7 l:2737"'7m
It can easily be verified that
0, + 0
E(W;) = — ; =
0,
Wi :5,k:2,3,...,m. (7.6.2.2)
o2
Var(W;) =13 i= 1,2,....m

and
COV(Wi7Wj) = O,l 75]

Let W' = (W1, W2,...., W), then E(W) = H 0, where

-1 L i
2 2
1 1
5 (3)2 0
H=|0 2 o=
0,
0 +()" )
We have
_ 32 -1 _1
HH) '= 7|8 3
() 3(3"“—!){—% %}

Thus, expressing W’s in terms of the X(1), X(2),.., X(m) we obtain

0, =2X(1) — 0,
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and

3m=2 3 3
x(m—1)—--- _EX(Z) —EX(l)).

f 4 m—1
0, = m@ X(m) —

The variances covariance of these estimates are

Var(@)) 1ﬂ(02 - 91)27

T 93T
- 2 1
Var(02> = 63}1—17_1 (02 — 0])2
and
- - 2 1
Cov (02 — 01) = §ﬁ(02 — 01)2.

The generalized variance 3 (f) = varf); - vart, — (cov(0102))2) is

21 .
ﬁ'ﬁwz*@l) .

Exercise 7.6.2.1 Suppose X(1), X(2),..., X(m) are m upper record values from a
one parameter uniform distribution with pdf fyy(u) as fy(u) = %,0<x<0, 0> 0.

Then the MVLUE 0 of @ is

0= (23" 'X(n) = 3" 2X(n—1) = 3" 3X(n—2) —--- — X(1))

3n—1
Proof Let X" = (X(1), X(2),..., X(m)); We have E(X") = 60 and

Var(X) =0,V.V+ (Vij)
where 0" = (01,02,...,0,), 0i=1—%, i=1,2,..m

1 1
Viizi—z,iZI,Z,...,m and

Let V = (Vj),, then,
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Let V! — (V)), then Vi=73i=1,2,.,m— 1.

V=43 Vit = — 2 3 = vl and V= 0 for i — .
The MVLUE 6 of ¢ is

s _9VX
%Y
2
T (23" X (m) — 3" X (m — 1),... — —X(1))
R 252
Var(a) = m .

7.6.3 One Parameter Uniform Distribution

Suppose vy =1 and a = 0, i.e. when X is distributed uniformly in the interval (0, B),
We have in this case the pdf f,,(x) of X(n) as

fulx) = F(ln) {Ing} ”*1’ 0<x<p. (7.6.3.1)

Using (7.6.3.1), we obtain

E(X(n) = (1—27")p.
Var(X(n)) = (37 — 47"

The joint pdf of X(m) and X(n), n > m is

1 111 B B!
ﬁn,n(xay)*r(m) r(n_m)ﬁﬂ_x{lnﬂ_ :| |:1n/3—y:| ’ (7632)

n>m>0,0<x<y<B.
It follows from (7.6.6) that
E(X(n)|X(m) = xp) = 2™ "%y + (1 =277 ")B.
and
Cov(X(n)X(m)) = 2™ "Var(X(m)), m<n, | <m<n

The correlation coefficient py,, of X(m) and X(n) — s
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= (7)) e

7.6.3.1 Minimum Variance Unbiased Estimator of

We will consider here n upper records X(1), X(2),..., X(n).
Using the following transformation

We have
E(W;) = (1/2)(3)" VB
52
Var(Wi):E7
Cov(W;, W;) =0,i#j,i,j=1,2,...,n.
Let
11 1 1
A 12 - n—1
X = (5502500 500"
and

W/ = (Wl,Wz, .. .,VV‘I])7

then minimum variance linear unbiased estimator f§ of B based on the first n record
values is

B=(X'X)"'X'W

_ 4 (S a0y,
3n_1<2<3) zw,>

i=1

4 (o 32 33 1
- (3 X(n) — 3 X(n—1)— 7 X(H—Q)—"'—2X(1)>

3n—1

Since X'X = ¥ and Var(W;) = ¥ we have
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7.6.3.2 Minimum Mean Square Estimate of 8

If we drop the condition of unbiasedness, then the estimator [~3, where

33" — 1.

B:ﬁﬁ

has minimum mean squared error.

. B N 2
Biasof f =E(f) — B = _mﬁ
and

2
MSE(f) = %

Exercise 7.6.3.1 Find the maximum likelihood estimate of f.

7.6.3.3 Prediction of Record Values
Writing

1 1 1 1 1
Yn+x — Ipys 5 Yn+s—l + 5 (Yn+s—l E Yn+s—2) +---+ E Yn+s—2 <Y2 - 5 Yl)
1

ot

it can be shown that

Cov( Yyus, Wi) =, i=1,2,....n.
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It can be shown that the best linear unbiased predictor (BLUP) of Y, is f/nﬂ,
where

N 1 N “
fuve = (1= g )B4 VW = X)),
where

¢ = (c1, 2. 00), VT = (X'X)”" and ¢;Var(W;) = Cov(Yass, Wi), s> 1.

Thus

. 1\ 8 "o w B 1
Yoss = (1 o 2n+s>‘8 + 3n 1 [; Jnts—i ' 3(-1)/2 o 5 <1 o §>‘|

The best linear (unrestricted) least square predictor of Y, is 1~/,,+S, where

Yr+s - E(Y11+S|Yla Y23 S Yn)
Y, 1

Substituting B for B, we get the best linear least squares predictor as

Y, 1 4 1 1
n 1——]- 3y — —(3) Py — e — = .
23+< 2S> 3,,_1( o =5 (3)" e 2y1>

7.7 Weibull Distribution

Let {X,, n > 1} be a sequence of i.i.d random variables from standard Weibull
distribution with pdf

f(x) =x"1e ™/ x>0,7>0, (7.7.1)
and d.f.
F(x)=1—e",x>0,7>0, (7.7.2)

Let w, = E(X(n), Vn, n = Var(X(n)) and V,;;;, = Cov(X(m)X(n)), m < n, then
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and

, for l<m< n.

We will consider the following pdf fix, u, o), for Weibull distribution,
(="

. e_%(x;”#)l —oo<u<x<oo,a > 0.,
pe

fx,p,0) =
7.7.1 Minimum Variance Linear Unbiased Estimators

of u and o

Theorem 7.7.1 The minimum variance linear unbiased estimators fLand ¢ of W and
6 based on the record values X(1), X(2),.., X(n) are

m m
p=> aX(k),ande =" diX(k),
k=1 k=1
where
\ 2y j
mbm 1 ) mbm — r .
o = Gk T o v Z/V(«/_!)—(’) Li=2,3,...,m—1,
Por(i+) P r(i+2)
mbm — ) 1 m71 F [
e = 1 = 2mom.=2py L+()}_l) l’
D F(l—l—%) i I H—%)
o b(y + 1)y~ 2
1= -«
D
b, - (i
di=—""(p— 1)y 2/“/,i,1_2,3,. m—1,
D r(i+2)
bm B 1 m—1 T
dm* 2/)) y+ +('))_1) (l)
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D = b T — 1,

o m—1 .
T= 72”{ I ih-ny o, T )(mvv+1)(mvv+2)<bzml1)}

F(1+%) P F<i+%> r(er%
(m+1 r n+% r Vl+%
oy =71 <Iﬁ(m)(> andbm—ylf/{rgnJr%; <r(n)‘)}'

We can write
V(R) = O'ZV, V= (Vi_j), Vi,j = 4 bj, 1 SIS_] gmandVi_j = Vj,i~

The inverse V' (= Vi’j) can be expressed as

o . 1
V1+1,1 — V1,1+1 - _
air1bi — aibit
_ I'(i
=~y Piy(iy + 1)i, i=12,...,m—1,
F(i+%)
. ir1bi1 — ai_1b; . iy .
Vil = aj+1 1 a;—1Di41 —1.2 ...,H,VI’JZO, for |1_J‘>1,

b l b b
(aibi—y — ai—1b;)(aiy1b; — aibi)

where a, =0 = b, 1andb, = 1 = a,4,.
On simplification, we obtain

Vi = y—Z/V& [(27 =2i+1)+94i—2)+1],i=12...m—1
r(i+2)

F(n) bn,1

r(i+2) b

N [(ny =y + 1)(ny — 7+ 2)].

The minimum variance linear unbiased estimates (MVLUE) (1,6 of u and ¢
respectively are

==V LY — L YV'X/A
6=—-LV (LS —oL\V'X/A,
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where

A= (LV'L)(8V'8) — (LV's),
X' = ( X(1),X(2),...X(n)).

and
Var(j)) = a*L'V='5/A
Var(6) = a*L'V'L/A
Cov(jt,6) = —a*L'V7'5/A.

On simplification, we obtain the MVLUEs 1,6 of n and o. The corresponding
variances and the covariance of the estimates are

b
V. oy 2 %nbn
ar(i) = 2
biT

Var(¢) = ¢* Z) (7.7.4)
b
C ooy 20
ov(ft, &) 5

Best Linear Invariant Estimators (BLIEs) of n and o.

Theorem 7.7.2 The best linear invariant (in the sense of minimum mean squared
error and invariance with respect to the location parameter 1) estimators (BLIEs)

LG of wand o are
== o( )
1+Ex»

G =36/(1+Ey),

and

where [\ and & are MVLUEs of |\ and & and

(Var(,&) c@v(fa,&)>zaz<Eu E12)

Cov(f,6) Var( En Ex

The mean squared errors of these estimators are

MSE(it) = 0'2(E]l - E%z(l +E22)_1)
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and
MSE(6) = o’ (Ezz(l + Ezz)il).

Using the values of Eq1, Ei» and E, from (7.7.4), we obtain

~ ~ A b"‘l
= “+6<D+b,2nT)

and

_ ([ D
O=0\—"7"7"7""""F=)-
D+ p2T

Exercise 7.7.2.1 Show that if p = 0, then MVLUE estimator ¢ based on the record
values X(1), X(2),..., X(m) for known v is

o = coX(m),

7.8 Exercises (solutions)

Exercise 7.1.1.1 (hint) X(m) is the sufficient statistics and E(X(m) = mao.

Exercise 7.1.3.1 (solution) The log likelihood function logL is
x(m)
-

InL=mlIno —

Thus o, = @
Exercise 7.2.3.1 (hint)
_ (i) — ~1
lognL = —mlogo — ZT —exp(—a~ " (x(m) — u)
i=1

The solutions of the equations as given in (7.2.3.4) will give the MLE of p and ¢ as
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and
ity = x(m) + 651Inm
where
X=(x(1)+x(2)+---+x(m))/m

Exercise 7.3.1.1 (solution) We have

Ex(1)) = s — a—|—a(v_ 1)",n > 1,

Var(x(1)) = 02{ (V_Lz)—(v - 2)2"}, n>2

From the joint pdf of Xy and Xy, it can be derived that the

1%

Cov(Xugm Xum) = (=) VarXuq):

v—1
Let V;; =Cov(X([1)X(j)), V = (Vy)and Q =(V)~'= (V1) ij = 1,2,...,n, then
Vi'ri — (21}2 — 4y + I)Ci,i = 1727 o —1
Vi = (2 =3y 4+ 2)dd = Vi i=1,2,.. . n—1

Vo — (v2 —2v+1)c"
Vij =0, [i—j|>1

andc =

v—2"

Using Lloyd’s (1952) method we obtain the minimum variance linear unbiased
estimator (MVLUE), as

=" pX()

and
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where
p1=0v-1T—(v-=2)/(v(vI} —v+2))
pj = 7(V;2)j/(vT1 —v+2),j=2,..,n—1
2
q1 :pl—vT(lv—_vzl-Z
g=Ww—-Dp;,j=2,..,n
and

Further we have

T
Var(jt) = o —
ar(i) = 0"
R T1 + (V — 2)2
V - 2
ar(6) =0 T
T 2
Cov(ji, 6) = —a> = s
1,

where

To= (v = 2)(vT; — v+2)

Exercise 7.5.2.1 (hint) If if p = 0, then X(m) is the sufficient statistics for ¢ and

V20 (m+
E(X(m)) 21;((171)4—/)

Exercise 7.6.1.1 (solution) If if p = 0, X(m) is the sufficient statistics for ¢ and

V2L (m + %)

EX(m) =~ F0u
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Exercise 7.6.4.1 (solution) The log likelihood function logL is
N
log L =log p— ) log( — X(i))
i=1

Thus the maximum likelihood estimate Bm, of f§ is
and

Exercise 7.7.1.1 Solution (hinf) X(m) is a sufficient statistic for o, and

T(m+L m
E(X(m)) = %/Hence co = %



Chapter 8
Characterizations of Distributions

8.1 Characterizations Using Conditional Expectations

Suppose {Xj,1=1, 2,... } be a sequence of independent and identically distributed
random variables with d.f. F(x) and pdf f(x). We assume E(X;) exists. Let X(n),
n 2 1 be the corresponding upper records. We have the following theorem for the
determine F(x) based on the conditional expectation.

Theorem 8.1.1 The condition
E(y(X(k + 5)[X(k) = 2) = g(2)

where K, s 2 1 and y(xX) is a continuous function, determines the distribution F(x)
uniquely

Proof
o0 s—1
EWX(K + 5)|X(k) = z2) = / ‘“x)(R()g (_ RED™ ryax (8.1.1)
2)
where R(x) = —In F(x).
Cases=1
Using the Eq. (8.1.1), we obtain
[ vrea = @) (8.12)
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Differentiating both sides of (8.1.2) with respect to z and simplifying, we obtain

fz) §@
D=F0 50— (8.13)
where r(z) is the failure rate of the function. Hence the result.
If (x) = x and g(x) =ax +b, a, b>0, then
a
= 8.1.4

If a # 1, then F(x) — 1 — ((a — 1)x + b) @1, which is the power function dis-
tribution for a < 1 and the Pareto distribution with >1. For a = 1, (8.1.4) will give
exponential distribution. Nagaraja (1977) gave the following characterization
theorem.

Theorem 8.1.2 Let F be a continuous cumulative distribution function. If, for some
constants a and b, E(X(n)|X(n — 1) = x) = ax + b, then except for a change of
location and scale,

() Fx)=1-(=x)% x<0,if0<a<1

(i) Fx)=1-e%x20,ifa=1
(iii) Fx)=1=x" x> 1ifa> 1,
where 0 = a/(1-a). Here a > 0.

Proof of Theorem 8.1.1 for s =2
In this case, we obtain

/ Y (x)(R(x) = R(2)f (x)dx = g(2)F(z) (8.1.5)

Differentiating both sides of the equation with respect to z, e obtain

- / Y (Qdx = g(2) — 2)F() (8.1.6)

Differentiating both sides of (8.1.6) with respect to z and using the relation

% = % — r(z) we obtain on simplification

+2¢'(2)r(z) = £"(2) + (r(2))* (g(2) — ¥(2)) (8.1.7)

Thus 1'(z) is expressed in terms of r(z) and known functions. The solution of r(x)
is unique (for details see Gupta and Ahsanullah (2004a)).



8.1 Characterizations Using Conditional Expectations 185

Putting /(x) = x and g(x) = ax + b, we obtain from (8.1.7)

a:l((ZZ)) +2ar(z) = (r(z))*((a — 1)a + b) (8.1.8)

The solution of (8.1.8) is

1(x) = _atva
(a—1Dx+b
Thus X will have (i) exponentially distributed if a = 1, (ii) power function
distribution if a < 1 and (iii) Pareto distribution if a > 1.
Ahsanullah and Wesolowski (1998) extended the result Theorem 8.1.2 for non
adjacent record values. Their result is given in the following theorem.

Theorem 8.1.3
IfE(X(n+2)|X(n) =aX(n) +bu> 1.

where the constants a and b, then if:

() a=1 then X; has the exponential distribution,
(b) <1, then X has the power function distribution
(¢) a> 1 X; has the Pareto distribution

Proof of Theorem 8.1.1 for s > 2 In this case, the problem becomes more com-
plicated because of the nature of the resulting differential equation Lopez-Blazquez
and Moreno-Rebollo (1997) also gave characterizations of distributions by using
the following linear property

EX(k)X(k+s)=2)=az+b,1<k<s<n,

Ragab (2002) and Wu (2004) considered this problem for non-adjacent record
values under some stringent smoothness assumptions on the distribution function
F(.). Dembinska and Wesolowski (2000) characterized the distribution by means of
the relation

EX(s+k)||X(k) =z) =az+ b, forl <k<s<n.

They used a result of Rao and Shanbhag (1994) which deals with the solution of
extended version of integrated Cauchy functional equation. It can be pointed out
earlier that Rao and Shanbhag’s result is applicable only when the conditional
expectation is a linear function.

Bairamov et al. (2005) gave the following characterization.

Theorem 8.1.4 Let X be an absolutely continuous random variable with d.f. F(x)
with F(0) = 0 and F(x) > 0 for all x > 0 and pdf f(x), then
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(@ forl <k<n-1,

_u+kv

E(XIX(n— ) =9, X(n 1 1) = y)_= “* R

If and only if

O<u<v<oo

F(x)=1-¢"x>0,1>0,
(b) for 2 <k < n—I,

E(X(n)|X(n—k+1)=x),X(n+2)=y)_
_2u+ (k—1)v

1 O0<u<v<oo

If and only if
Fx)=1-¢™,x2>0,1>0, Yanev et al. (2007) extended these results for

general cases of nonadjacent record values. Under the conditions of Theorem
8.1.4, Akhundov and Nevzorov (2008) proved that

_u+v
2

X(2)_X(3) + -+ X(n) B B
E( - X(l)—u,X(n+1)—v)

characterizes the exponential distribution under mild condition on F(x).

Exercise 8.1.1 Let X be an absolutely continuous random variable with d.f. F(x)
with F(0) = 0 and F(x) > 0 for all x > 0 and pdf f{x) Suppose h(x) is a monotonic and

differentiable function with respect to x. We assume that lim_,, %X) =2,2>0and
lim_o A(x)F(x) = 0. Then for two values o r, s—1th. Then, for two values of r and
s, 1<r<s—1<n, (h(X(s) —h(X(r))|X(r)) = x) =~ if and I If and only if

Fx)=1—¢*x>0,2>0.

8.2 Characterization by Independence Property
of Record Statistics

Tata (1969) presented a characterization of the exponential distribution by the
independence of the random variables X(2) and X(2) — X(1) given in the following
theorem.

Theorem 8.2.1 Let {X,, n = 1} be an i.i.d. sequence of non-negative continuous
random variables with d.f. F(x) and pdf {(x). We assume F(0) = 0 and F(x) > 0 for
all x > 0. Then for X,, to have the d.f., F(x) =1 — e x>0,0>0, it is necessary
and sufficient that X(2) — X(1) and X(1) are independent.
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Proof The necessary condition is easy to establish, We give here the proof of the
sufficiency condition. The property of the independence of X(2) — X(1) and X(1)
will lead to the functional equation

FO)F(x+y)=F(x)F(y), 0<uxy<oo0. (8.2.1)

The continuous solution of this functional equation with the boundary condition
F) =0, is

1

Fx)=e™ ,x >0,0>0.

The following generalization theorem was given by Ahsanullah (1079)

Theorem 8.2.2 Let {X,, n = 1} be a sequence of i.i.d. random variables with
common distribution function F which is absolutely continuous with pdf f. Assume
that F(0) = 0 and F(x) > 0 for all x > 0. Then X, to have the d.f., Fx) =1 — ¢™",
x 20, >0, it is necessary and sufficient that X(n) — X(n—1) and X(n—1) are
independent.

Proof Tt is easy to establish that if X, has the d.f., F(x) =1 - e x20,0>0, then
X(n) — X(n—10) and X(n—1) are independent. Suppose that X(n + 1) — X(n) and X
(n), n = 1, are independent. Now the joint pdf f(z, u) of Z = X(n—1)(—X(n) and
U = X(n); can be written as

f(z,u) = Mr(u)f(u +2),0<u, z<;00.
['(n) (82.2)
= 0, otherwise.
But the pdf f, (u) of X(n) can be written as
Fo1(u) —Mf(u) O<u<oo
YT T ) ’ ’ (8.2.3)
=0, otherwise.
Since Z and U are independent, we get from (8.2.2) and (8.2.3)
flu+z)
— = , 8.2.4
o =80 (824)

where g(z) is the pdf of u. Integrating (8.3.4) with respect z from O to z;, we obtain
on simplification

F(u) — F(u+z1) = F(u)G(z1). (8.2.5)

Since G(z1) = [;' g(z)dz. Now u — 0" and using the boundary condition
F(0) = 1, we see that G(z;) = F(z;). Hence we get from (8.2.5)
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Flu+z1) = F(u)F(z). (8.2.6)
The only continuous solution of (8.2.6) with the boundary condition F(0) = 0, is
Flx)=e" *,x>0 (8.2.7)

where ¢ is an arbitrary positive real number.
The following theorem (Theorem 8.2.3) is a generalization of the Theorem 8.2.2.

Theorem 8.2.3 Let {X,, n = 1} be independent and identically distributed with
common distribution function F which is absolutely continuous and F(0) = 0 and F
x)<1forallx>0.Then X, has the d.f., F(x)=1-¢e 7, x>0, 0> 0, it is necessary
and sufficient that are independent X(n) — X(m) and X(m).

Proof The necessary condition is easy to establish. To proof the sufficient condi-
tion, we need the following lemma.
For proof of sufficiency we need the following lemma.

Lemma 8.2.1 Let F(x) be an absolutely continuous function and F(x) > 0, for all

x > 0. Suppose that F(u + v)(F(v)) ™' = exp{—q(u, v)} and h(u,v) = {q(u,v)}r exp

{=qu,v)} £ q(u,v), for r 2 0. Further if h(u,v) # 0, and £ q(u,v) # 0 for any

positive u and v. If h(u,v) is independent of v, then q(u,v) is a function of u only.
We refer to Ahsanullah () for the proof of the lemma.

Proof of the sufficiency pf Theorem 8.2.4.
The conditional pdf of Z = X(n) = X(m) given V(m) = X is

f(z|X(m) = x) = ﬁ [R(z +x)
—R(x)]”mlf(%(—:)x), 0<z <00,0 <x <o0.

Since Z and X(m) are independent, we will have for all z > 0,

nfmflf(Z + X)
as independent of x. Now let
R(z+x) —R(x) = — lnw = ¢(z,x), say.

F(x)
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Writing (8.2.9) in terms of q(z,x), we get

0" exp{—q(e0)} - a(z. ), (5.29)
as independent of x. Hence by the Lemma 8.2.1, we have
—1n{F(z+x)(F(x))*1} = gz +x) = c(2), (8.2.10)
where c(z) is a function of z only. Thus

F(z+x)(F(x) ™" =ci(z), (8.2.11)

and c,(z) is a function of z only.

The relation (8.2.11) is true for all z = 0 and any arbitrary fixed positive number
x. The continuous solution of (8.2.11) with the boundary conditions, F(0) =
1 and F(0o) = 0 is

F(x) = exp(—xo 1), (8.2.12)

for x 2 0 and any arbitrary positive real number c. The assumption of absolute
continuity of F(x) in the Theorem can be replaced by the continuity of F(x).

Cheng (2007) gave an interesting characterization of the Pareto distribution.
Unfortunately the statement and the proof of the theorem were wrong. Here we will
give a correct statement and proof of his theorem.

Theorem 8.2.4 Let {X,, n = 1} be independent and identically distributed with
common distribution function F which is absolutely continuous and F(1) = 0 and
F(x) < 1 for all x > 1. Then X, has the d.f., F(x) =1 — X0 x>21,0>0,itis

necessary and sufficient that ﬁ and X(m), n = 1 are independent.

Proof If F(x) = 1-x%x>1, 0 > 0, then the joint pdf f, ,,1(x,y) of X(n) and
Xn + 1) is

1 0 (nx)"!

Sunt1(x,y) = T i l<x<y<oo,0>0.
Using the transformation, U = X(n) and V = ﬁ The joint pdfyy f(u,v)

cab be written as

1 en+l (ln I/t)n71
1"(”) uf+3

v 0+1
<1 > Jl<u,v<oo, 0>0. (8.2.13)

fWA,V(W’ V) = T



190 8 Characterizations of Distributions

Thus U and are independent.
The proof of sufficiency
The joint pdf of W and V can be written as

(R()"""
I'(n)

1
fwlu,v) = r(u)f( + Vu) % 1 <u,v<oo, (8.2.14)
v
where R(x) = —Inx, r(x) = %R(x).
We have the pdf fy(u) od U as fy(u) = %f(u). Since U and V are inde-
pendent, we must the pdf fy(v) of V as

() =f<1tvu)%l_;(u),0<v<oo. (8.2.15)

Integrating the above pdf from v, to ©0, we obtain

1 — F(y
1 — F(vp) 1_(F(°u)) (8.2.16)

Since F(vy) is independent of U, we must have

- F (e

“ou)
- F—(u) = G(vy) (8.2.17)

where G(vq) is independent of u
Letting u — 1, we obtain G(vy) = 1 — F(lj—ov‘])

We can rewrite (8.2.17) as

1—F<1 tovo u) - (1 —F(l JVFOV(’)(l —F(u)) (8.2.18)

Since the above equation is true all u = 1 and almost all vo = 1, we must have
F(x) = 1 —x. Since F(1) = 0 and F(F(c0)) = 0, we must have

F(x) =1—-x"% x>1and0 > 0.

Example 8.2.1 Let {X,, n 2 1} be independent and identically distributed with
common distribution function F which is absolutely continuous and F(1) = 0 and F

(x) <1 forall x > 1. Then X, has the d.f., Fx) =1 -x %, x>1,0>0, it is necessary

(n+1)—X(n)

and sufficient that £ O and X(n),n = 1 are independent.
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The following theorem is a generalization of Chang’s (2007) result.

Theorem 8.2.5 Let {X,, n = 1} be independent and identically distributed with
common distribution function F which is absolutely continuous and F(1) = 0 and

F(x) < 1 for all x > 0. Then X,, has the d.f., F(x) = 1 — X% x>1,0>0,itis

necessary and sufficient that ﬁ, 1 < m < n and X(m) are independent.

Proof The joint pdf f,, , (x,y) of X(n) and X(m) is

(R))" ™" (R(y) = R(x))"™"!
I'(m) I'(n—m)

T (x,y) = r(x)f (y), (8.2.19)

We have F(x) =1 —x% R(x) = 01In x, r(x) = thus we obtain

@I x)" " (Iny—Inx)""" 1
I'(m) I'(n —m) xyf+L”

S (x,y) = (8.2.20)

where 1 <x<y<oo0,0 > 0.

Using the transformation U = X(m) and V = ﬁ, we obtain the pdf fyy
(u,v) of U and V as
o" (ln u)”il (111(%))”7”!71 v@,I

['(n) C(n—m)  ye0+1(] 4 )01

fU,V(uv V) =

Thus X(m) and % are independent.
Proof of sufficiency.
Using U=X(m) and V = X% we can obtain the pdf fy v o¢ U and V from

- X(m_
(8.2.19) as

(Ru)" " (R — R(u))"™ ' u(1+v)
[‘(m) r(n _ m) r(”)f( v

fuy(u,v) = ), (8.2.21)

We can write the conditional pdf fyy(v|u) of V|U as

R(u(lJrv)) N R(u))nfmfl uf(u(lJrV)

v

I'(n—m) Vv2F (u)

L l<u<oo, 0<v<oo. (8.2.22)

fv\UV(V|M) = (

Using the relation R(x) = —In F(x), we obtain from (8.2.22) that

F M n—m-—
(===

['(n—m) dv: F(u)

foo(vlu) = ), l<u<oo,0<v<oo. (8.2.23)
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—=u(14v)
Since V and U are independent, we must have F(f(,;) ) independent of U.
Let
F(u(l+v))
—— = G(v), 8.2.24
i~ oW (8224)

F<M> — F(u)F (ﬂ) (8.2.25)

Forallu, 1 <u<ooandall v, <v <00,
The continuous solution of (8.2.24) with the boundary condition F(0) O and F
() =11is

Fx)=1—x""x>1and0 > 0.

The following exercise is proved under the assumption of monotone hazard rate.
We will say F belongs to the class C, if r(x) is either monotone increasing or
decreasing.

Exercise 8.2.1 If X, k > 1 has an absolutely continuous distribution function F
with pdf f and F(0) = 0. If I, ,4; and I, ; 5, n 2 1, are identically distributed and F
belongs to C,, then X has the d.f. F(x) =1 — ¢ x>0,0 > 0. k> 1.

8.3 Characterizations Based on Identical Distribution
and Moment Properties

If F is the distribution function of a non-negative random variable, we will call F is
“new better than used” (NBU) if for x, y > 0, F(x +y) < F(x)F(y), and F is “new
worse than used” (NWU) if for x, y = 0, F(x+y) > F(x)F(y). We will say F
belongs to the class C, if either F is NBU or NWU. We will say F belongs to the

f(x)
1—F(x)

class C; if the hazard rate r(x) = increases monotonically increases or

decreases for all x.

Theorem 8.3.1 Let X, n = 1 be a sequence of i.i.d. random variables which has
absolutely continuous distribution function F with pdf f and F(0) = 0. Assume that F
(x) <1 forall x> 0. If X, belongs to the class C, and 1, 1 , = X(n) — X(n—-1),n > 1.,
has an identical distribution with Xy, k = 1, then Xy has the d.f.
F(x) =1—-e ", x>0,0>0.
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Proof The if condition is easy to establish. We will proof here the only if condition.
The pdf f,, ,n of I,_;, can be written as

oo
Foctnxy +2)du, z>0
b / uflut2) (8.3.1)
0
=0,

otherwise.

By the assumption of the identical distribution of I, ; , and X, we must have

/ ”:l Fu+2)du = f(2), forallz > o. (8.3.2)
0
Substituting
| R s = T, (833)
0
we have
/ [R(u)]"™" r(w)f (u + / "' (w)du, z > 0. (8.3.4)
0 0
Thus
/ [R()]" " f(w)lf (u + 2) (F(u) ™" = f(2)]du = 0, z > 0. (83.5)
0

Integrating the above expression with respect to z from z; to 00, we get from
(8.3.5)

/ [Fu+z)Fw) ' —=F(z))]du=0, z, > 0. (8.3.6)
0

If F(x) is NBU, then (8.3.6) is true if

Fu+2z)(Fu) " =F(z), z > 0. (8.3.7)

The only continuous solution of (8.3.7) with the boundary conditions F(0) = 1
and F(oo) = 0is F(x) = exp(0, '), where ¢ is an arbitrary real positive number.
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Similarly, if F is NWU then (8.3.6) is true if (8.3.7) is satisfied and X, has the d.f.
Fx)=1—e* x>0,0>0.k> 1.

Theorem 8.3.2 Ler X, n 2 1 be a sequence of independent and identically dis-
tributed non-negative random variables with absolutely continuous distribution
function F(x) with {(X) as the corresponding density function. If F € C, and for
some fixed nm, 1 <m<n< o, [,, =Xmn-m-1), then Xy has the d.f.
Fx)=1—e*,x>0,0 >0, k2= 1.

Proof The pdfs f;(x) of R, and f5(x) of I,, (= R, — Ry,)) can be written as

AR = ﬁ RO £(x), for0 < x < oo, (8.3.8)

and

« m l n—m—1
/ [R( x( R(x —|—llf)(n—_R,:C))] r)f(u + x)du, 0 < x <oco. (8.3.9)
0

Integrating (8.3.8) and (8.3.9) with respect to x from O to x,, we get

Fi(x0) =1 — g,(x0), (8.3.10)
where
— R(xo R)
201G ¢
and
3F2(x0) = 1 — g5(X04)s (8.3.11)
where

g2 (%0, u) = 'f = JrX(iz(j_) Rt exp{—(R(u +xo) — R(u))}.

Now equating (8.3.10) and (8.3.11), we get

/ [R( y() "= W)l (1 x0) — g (x0)]dit = 0, X0 > 0. (8.3.12)
0
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Now g>(x¢, 0) = g1(0) and

[R(u) — R(uw))"™"
I'(n—m)

0= exp{—(R(u + xo) — R(u) }[r(xo) — r(u+ x0)].

Thus if F € C,, then (8.3.12) is true if
r(u + xo) = r(u) (8.3.13)

for almost all u and any fixed xo = 0. Hence Xy has the d.f. F(x) =1 — ™%,
x>0, 06 >0. k 2 1. Here ¢ is an arbitrary positive real number. Substituting

d . .
m=n — 1, we get I,_;,=XI1 as a characteristic property of the exponential
distribution.

Theorem 8.3.3 Let {X,, n = 1} be a sequence of independent and identically
distributed non-negative random variables with absolutely continuous distribution
function F(x) and the corresponding density function {(x). If F belongs to C, and for
some m, m > 1, X(n) and X(n—1) + U are identically distributed, where U is
independent of X(n) and X(n—1) is distributed as X,’s, then X; has the d.f. F(x) =
l—e™ x>0,0>0.k=1.

Proof The pdf f,,(x) of R, m = 1, can be written as

) = pe g, o<y <oc,
2 m— y (8.3.14)
_d|_z [R(X) )
0 0
The pdf f5(y) of X(n—1) + U can be written as
. m—1
A0 = [E i - wrtay
0 , (8.3.15)
R TR
= | R FO =) e+ / Fo (0
Equating (8.3.14) and (8.3.15), we get on simplification
b m—1
/ %f(x)m (x,) dx =0, (8.3.16)
0
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where Hi(x,y) = F(y—x) —F())F(x))™', 0<x<y<oo. Since F € Cj,
therefore for (8.3.16) to be true, we must have

H,(x,y) =0, (8.3.17)

for almost all x, 0 < x <y < 00,
This implies that

F(y —x)F(x) = F(y), (8.3.18)

for almost all x, 0 < x <y < 00. The only continuous solution of (8.3.18) with the
boundary conditions F(0) = 1, and F(cc) = 0, is

Fx)=e™ (8.3.19)

where o is an arbitrary positive number.

Remark 8.3.1 The Theorem 8.3.4 can be used to obtain the following known
results of a two parameter exponential distribution (F(x) = exp{—c~'(x — u)}).

E(X(n)=p+no
Var(X(n)) = n ¢*
Cov(X(m)X(n)) = m ¢, m<n.
Theorem 8.3.4 Let X, X, ..., Xp,... be independent and identically distributed
random variables with probability density function f(x), x 2 0 and m is an integer

valued random variable independent of X’s and P(m = k) = p(1 — p)kfl, k=12,
., and O < p < 1. Then the following two properties are equivalent:

(a) X’s are distributed as E(0, o), where o is a positive real number

(b) p X:X]é w—1n, for some fixed n, n 2 2, X; € ¢, and E(X;) < 00,
j=1

Proof 1t is easy to verify (a) = (b). We will prove here that (b) = (a). Let ¢,(t) be
the characteristic function of of I, ; , then

(n

. [ 7 1 itx n—1 7
Jrzto/o/ (n)e [R(u)]"™ r(u)F(u + x)du dx

//rl) M R(w)]" ™ r(u)f (u + x)du dx
- (8.3.20)
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m
The characteristic function p ¢, () of p)_ X; can be written as
=1

itp ixj
Dy(t) = E(e )
o0
- 8.3.21
=" [@)]'p(1 - p) ", (83.21)
k=1
= p(@(tp))(1 —q®(p V) '.q=1-p,
where @(t) is the characteristic function of X’s.
Equating (8.3.20) and (8.3.21), we get on simplification
pt -11 it n 1 *
- e"[R F dud 8.3.22
i ] | E AFudeds (8322)
0 0
Now taking limit of both sides of (8.3.22) as t goes to zero, we have
= / / “Ur(u)F (u + x)du dx. (8.3.23)
0 0
Writing
o0
/ x)dx, we get from (8.3.24)
0
/ / w){F(u+x) — F(u)F(x)}du dx = 0. (8.3.25)
0 0
Since X’s belong to C;, we must have
F(u+ x) = F(x)F(u), (8.3.26)

for almost all x, u, 0 < u, x < 0 The only continuous solution of (8.3.26) with the
boundary condition F(0) = 1 and F(o0) = 0, is

F(x) = exp(—xa '), x>0, (8.3.27)

where 6 is an arbitrary positive real number.
We will prove the following characterization theorem under the assumption of
the finite first moment.
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Exercise 8.3.1 Let X,,, n = 1 be a sequence of independent and identically dis-
tributed non-negative random variables with absolutely continuous distribution
function F(x) and the corresponding density function f(x). Let a = inf{x|F
(x) >0} =0, F(x) < 1 for all x > 0. If F belongs to the class C; and E(Xy), k > 1 is
finite, then X\ € E(0,0), if and only if for some fixed n, n > 1, E(I,—; ,) = E(Xy).

The following theorem uses the property of homoscedasticity but does not use
NBU or NWU property.

Exercise 8.3.2 Let X, n = 1 be a sequence of independent and identically dis-
tributed random variables with common distribution function F which is absolutely
continuous and inf{x| F(x) > 0} = 0 and E(X2) < 0. Then Xy, k > 1 has the
exponential distribution if and only if Var(I,_; 4/X(n—1) = x) = b for all x, where b is
a positive constant independent of X and I,,_; .

Exercise 8.3.3 Let {X,, n = 1} be a sequence of independent and identically
distributed non negative random variables with continuous distribution function F
(x) and the corresponding density function f(x). Let a = inf{x|F(x) =0} = 0, F(x) < 1
for all x > 0 and F belongs to class C,. Then X, € E(0,0), if and only if for some
fixed n, n > 1, the hazard rate r; of I,,_; , = the hazard rate r of Xj.

Suppose that the random variables {X, j = 1,2,...} are from Gumbel distribution
with d.f. F(x) as follows:

—x

Fx)=e¢¢ ,—,,—00 <x <00
It is known that (see Ahsanullah and Holland (1994), p. 475) that

W, Wit Wy
X(n)'X — (W1+72+~~+ Lt m) m>1

m—1

where Wi, W, ...,W,,,_;, W, are independently distributed as negative exponential
with Fw) =1 —e ™™, w > 0. X(1) = X. Thus S¢;,) = m(X(m—1) — X(m), m = 2,...,
are identically distributed as exponential. Similarly if we consider the upper records
from the distribution, F(x) = ¢¢, —00 <x <oo, then for any m > 1, S;, = m(X(m
—1)—X(m), m = 2,.... are identically distributed as exponential distribution. It can
be shown that for one fixed m, S, or S, distributed as exponential does not
characterize the exponential distribution.

Arnold and Villasenor (1997) raised the question suppose that S; and 2 S, are i.i.
d. exponential with unit mean, can we consider that X;’s are (possibly translated)
Gumbel variables? Here, we will prove that for a fixed m > 1, the condition

X (n)iX(n— 1)+ % where W is distributed as exponential distribution with

mean unity characterizes the Gumbel distribution.

Theorem 8.3.5 Ler {X;, j = 1,...,} be a sequence of independent and identically
distributed random variables with absolutely continuous (with respect to Lebesgue
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measure) distribution function F(X). Then the following two statements are

identical.

(@) F(x)=e ¢, —00<x< o0,

(b) For a fixed m > 1, the condition X(m) iX(m — 1) +¥% where W is dis-

tributed as negative exponential mean unity.

Proof Tt is enough to show that (b) = (a). Suppose that for a fixed m > 1,

X(m)£X(m—1)+% then

X

Fi(x) = / P(W <m(x = y)fimsr)(v)dy

—00
X

/ (1= eIy ()dy

—0o0

X

— Fimen) (x) — / IS ().

Thus

e I'(m+1) = m!) ’
we obtain
FOHE)" [
mx _ my d
e r(m+ 1) / € f(m—‘-l)(y) Yy

(8.3.28)

(8.3.29)

(8.3.30)

(8.3.31)
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This implies that

% [emx FI(LIT%} F(x) = 0. (8.3.32)
Thus
% [emxm} =0. (8.3.33)
Hence
H(x) = c e, —00<x<00 (8.3.34)
Thus
F(x) = e %, 0o < X < 0. (8.3.35)

Since F(x) is a distribution function we must have c as positive. Assuming F
(0) = ¢!, we obtain

Fx)=e ¢, —0o<x<00. (8.3.36)

Ahsanullah and Malov (2004) proved the following characterization theorem.

Theorem 8.3.6 Let X, X, ..., be a sequence of independent and identically dis-
tributed r.v.’s with distribution function F(x). If X(m) éX(m —2)+ %y W
m > 2, for twice differentiable F(X), where W and W, are independent as expo-

nential distribution with unit mean then F(x) =1 —e™¢ ", —00 <X <00.

Ahsanullah and Kirmani (1991) gave the following result.

Exercise 8.3.5 Suppose {X,, n < 1} is a sequence of L.i.d. random variable with
h continuous d.f. F(x) with F(0) = 0 and X(x) > O for all x > 0. We assume
lim — 0@ = A, 4 > 0. We define the random variable N such that N = min{i > 1,
X; < X1}. Then the random variables NXy and X are identically distributed if and
only if F(x) =1 —e ™, x>0.
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8.4 Exercises (solutions)

Exercise 8.2.1 (solution)

P(Ilio1n > 2z) = / [R(u)]"™"! lr"(n) F(u+ z)du, for all z > 0,
0
0

Since I,pn1 and I,;, are identically distributed, we get using the above
equation,

o0 o0
/ F(u+z)d :n/ N r(u)F(u + 2)du,z > 0.
0 0

Substituting the identity

n/ ()F(u+ z)du / [R(u)]"f (u + z)du
0 0
in (8.3.8), we get on simplification
r r(u+z) B
n/ VF(u+ )[1— ) }du—o,z > 0.
0

Thus if F € C,, then the above equation is true: if for almost all u and any fixed
z >0,

r(u + z) = r(u).

The constant hazard rate is the well known characterization property of the
exponential distribution.

Exercise 8.3.1 (solution) If X, € E(0, o), then it can easily be seen that
E(I,_ 1) = E(Xy). Suppose that for some foxed n, n > 1, E(I,,_; ,) = E(Xy), then we

must have
oo 00 n l o0
[R( _
/ / ()] u)F(u 1dudx /
0 0 0
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But we know

I(n) = / (RG] (1)
0

0 m simplifying, we obtain

F(u+z) =F(u)F(z), (8.3.37)

for all u,z, 0 < u, z < ©0. Now the continuous solution of (8.3.3) with the boundary
conditions F(0) = 1 and F(cc) = 0, is F(x) = exp{—xc~!), wheres is an arbi-
trary real number.

Exercise 8.3.2 (solution) The “if” condition is easy to establish. We will prove
here the “only if” condition. Now

b=E(_,,[X0n — 1)] = [Ed,_;[X(n — 1) = %))°.

Also
B Xh—1)=x|= [ A[Fx)] 'dF(z+x) =2 [ Z[F(x)]'F(z +x)dz
/ /
and

E(ly 10X — 1) = x) = / 2(F(x)" dF(z+x) = / (F(x)"'F(z +x)dz
0 0

[o¢]

Substituting G(x) = [ zF(z + x)dz and denoting G(x) as the rth derivative of
0

G(x), we have on simplification
o0
GY(x) = / F(z 4 x)dz, G? (x) = F(x) and G® (x) = —f (x).
0

Writing in terms of G(x) and G(r)(x), we obtain

26(){GMx)} — 1 — { GV (x) (G<2> (x)) - 1}2 — b, for all x > 0.
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Differentiating the above equation with respect to x and simplifying, we obtain
2 -3 1 2 2
2G<3>(x){G< >(x)} - [(G< >(x)) ~ Gkx) G >(x)} =0
Since G® (x) # 0 for all x > 0, we must have

{G<‘>(x)}2—G(x) G (x) =0,

%{G(x) (G<1>(x)>71} — 0, for all x > 0.

The solution of the above equation is
Gx)=ae ™, x>0
where a and c are arbitrary constants. Hence
F(x) = G?(x) = ac’e™, x > 0.
Since F(x) is a distribution function with F(0) = 0, it follows that
Flx)=e"" |

where o is an arbitrary real positive number.
Exercise 8.3.4 (solution) If Xy € E(0, o), then it can easily be shown that r; =r.
Suppose r; = 1, then we can write the joint pdf of X(n) and X(n-1)_; as

1
I'(n)
= 0, otherwise.

Jo1a(x,y) = [R)]" ' r(x)f(y), 0 <x <y < oo,

Substituting I, ; , = X(n) — X(n—1); and U = X(n—1), we get the pdf of I, |,
and U as

f(eu) = % R r()f(u+32), 0<x<y<oo,

=0, otherwise.
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Thus we can write

for all z = 0. Since r{(z) = r(z) for all z, we must have

r(u)f(u + z)du

r(u)F(u+ z)du

J i
J

for all z 2 0. Now simplifying the above equation, we obtain

/ P () F@F (u + 2)r(u + 2) — r(@)}du = 0
0

for all z 2 0. Since F belongs to class C,, for the above equation to be true, we must
have

r(u + z) = r(u)

for all z > 0 and almost al u, u = 0.
Exercise 8.3.5 (solution) To proof the exercise we need the following two lemmas.

Lemma 8.3.1 Suppose {X,, n = 1} be a sequence of i.i.d. random variables with d.
f. Fand F(0) = 0. Let N is the r.v. defined as N = min {i > 1: X; < X;}. It can easily
be shown that PN = n) = n(nLW n=273,...,

Lemma 8.3.2

00 1 B
P(NXy > x) = 27(}7(2))"’ for all x > 0.
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Proof

00
P(NXy > x) = Y P(NXy > x,N > n)

3
|
N}

=Y / P(nX, > x,X,<y,X; > y)|X; = y)d f(y), foralli=2,3,...,n— 1,

:i/P (= <x, <y)(P(x; > y))" 2dF(y)

p LG

Exercise8.3.1 (solution) Define u(x) = — "7 ( ) x > 0; u(0) = u(0+) and suppose
that NXN é Xl
Then
Z e " (x/n) _ efxn(x)’ x> 0.
n(n

n=2
We shall show that the above holds iff u(x) is a constant, i.e. given any T > 0

in U(x) = min U(x).
i U = i, 0

Let

ap = min U(x),xy = inf{x € [0, T]|u(x) = ao},
x€[0,7T]

a; = min U(x),x; = inf{x € [0, T]|u(x) = a1 }.
x€[0,7]
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It is obvious that (8.3.25) will be proved if we show that x5 = 0 = x;. By
continuity of u, xo € [0,T] and u(xy) = ao.
Hence

u(xg) <u(xo/n) for all n > I.

If equality holds for all n = 2, then u(xy) = #(0) which by definition of xo = 0
Suppose now that xy > 0 (so that xo/n # xo for all n. Then, the strict inequality must
hold for at least one value of n > 1 = 2. Now

o0 o0 1
e oulx0) _ g Foulxo/n) — — poulx) _ pmxouln/m 5
;nn—l nz:;n(n—l)e ¢ >0,

which contradicts. Therefore x, = 0. Similarly x; = 0. Thus NXy 4
X; = u(x) = constant.



Chapter 9
Asymptotic Distributions of Records

9.1 Limit Behavior of Record Times

Above (see Chap. 3) it was described the asymptotic (as n — ©90) behavior of
numbers of records N(n) among random variables X;, X,,.... X,,. Don’t forget that
we suppose that X’s are independent and have the same continuous distribution
function F. It appears that applying to N(n) classical limit theorems for sums of
independent random variables immediately allows to obtain the following state-
ments (see relations (3.4.1)—(3.4.5)):

Sl;p |P{N(n) —logn < xy/logn} — ®(x)| — 0, (9.1.1)
where
1 X
O(x) = — —£2/2)dr;
(x) o / exp(—1-/2)dt;

sup

|P{N(n) — logn<x\/logn} — ®(x)| < C/+/logn,n=1,2,...,
x

C being some absolute constant;
P{lim(N(n)/logn) =1} = 1;

N(n) —logn T G
(210gnloglog10gn)1/2

P { limsup
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and

N(n) —1
P liminf (n) — logn =1 =1,
(2lognlogloglogn) /

To study the asymptotic behavior of record times L(n) one needs to recall that
random variables L(n) and N(m) are tied by the following equality:

P{L(n) > m} = P{N(m)<n}, (9.1.2)

which holds forany n =1,2, ... and m=1, 2, ....

Due to this equality the most part of the limit theorems given for N(n), were
overworked (see, for example, Renyi (1962)) into the corresponding theorems for
record times L(n).

(a) Central Limit Theorem (CLT) for L(n).
It appears that in this case CLT is formulated not for L(n) but for its logarithm
logL(n):

S‘;P |P{log L(n) — n < xv/n} — ®(x)| — 0,n — oo. (9.1.3)

Note that
P{log L(n) —n < xy/n} = P{L(n) < exp{n + xv/n}}.
For the sake of simplicity we will suppose that
R(n,x) = exp{n + x\/n}

is the entire number.
Then we get from (9.1.2) that

P{log L(n) —n<xyn} =1 — P{L(n) > R(n,x)} = | — P{N(R(n,x)) <n}
n

=1—P{N(R(n,x)) —log(R(n,x)) <n—log(R(n,x))}
=1 —P{N(R(n,x)) — log(R(n,x)) < — xy/n}
=1 - P{N(R(n,x)) — log(R(n,x)) < — x(log R(n,x))"/*(n'//(log R(n,x))"/*)}.

By noticing that (n'/?/(log R(n,x))l/z) — 1 for any fixed x, as n — 00, we see
that

P{N(R(n,x)) — log(R(n,x)) < — x(log R(n,x))"/*(n"/? / (log R(n, x))"/*)}
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(b)

©
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behaves as
P{N(R(n,x)) — log(R(n,x)) < — x(log R(n,x))"/*}.

Now, taking into account relation (9.1.1), one gets that these probabilities are
approximated by @ (—x). Finally it appears that

1 — P{N(R(n,x)) — log(R(n,x)) <n — log(R(n,x))}.

behaves asymptotically as 1 — @ (—x) = @ (x). It proves relation (9.1.3).
The same approach based on equality (9.1.2) allowed Renyi (1962) to work
over the corresponding limit theorems for N(n) into the following results for
record times L(n):

Strong Law of Large Numbers:

P{limlogL(n)/n=1} = 1;n — oo. (9.1.4)
Law of Iterative Logarithm:
log L(n) —
P limsup%nlzzl =1, n— oo, (9.1.5)
(2n loglogn) /
and
log L(n) —
P liminf%’b:—l =1, n— oo (9.1.6)
(2n loglogn) /

Let us recall now the kth record times L(n, k) and the numbers N(n, k) of the kth
records among random variables Xi, X»,..., X,, n=1,2,..., k=1, 2,..., which were
determined in Chap. 3.

Exercise 9.1.1 Write the generalization of equality (9.1.2), which will tie distri-
butions of N(n, k) and L(n, k).

Exercise 9.1.2 It was proved (see Exercise 3.4.1) that for r.v.’s N(n, k) the fol-
lowing relation is valid:

s‘;p \P{N(n, k) — klogn<xy/klogn} — ®(x)| — 0, n — oo, (9.1.7)

where ®(x) = \/% [ exp(—#2/2)dt.
—00

Based on (9.1.7) and on the result of Exercise (9.1.1) get the corresponding
generalization of relation (9.1.3) for the kth record times L(n, k).
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Remark 9.1.1 1Tt is interesting to recognize that relations (9.1.3)—(9.1.6) stay true if
to take there inter-record times A(n) = L(n) — L(n — 1),n = 2,3, ..., instead of L
(n). These surprising results are presented in Neuts (1967), Holmes and
Strawderman (1969), Strawderman and Holmes (1970).

There are some simple limit results for the ratios of the record times

T,=Ln+1)/L(n),n=1,2,...

One of them is formulated in the following exercise.

Exercise 9.1.3 Prove that for any x > 1

P{T, >x} — 1/x, n— oc. (9.1.8)

9.2 Limit Behavior of Record Values

Since X(n) = max{Xy,....Xrw} = M(L(n)), the limit distributions of record values
must be close to the analogous distributions of maximal order statistics. As it is
known (see Chap. 2) there are three types of asymptotic distributions for the
suitable centering and normalizing maxima

(M(n) = b(n))/a(n).

For the sake of simplicity denote the standard representatives of this distribution
types as

A(x) = exp(— exp(—x)),

8.(x) = {0, if x<0,

;0 a>0,
exp(—x7*), if x>0

and

_ Jexp(—=(—x)"), i x<0,
T“(x){h i x>0 o> 0.

Indeed, under the corresponding random centering and normalizing we will
obtain the same limit distributions for random variables

(X(n) = b(L(n)))/a(L(n)).
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The following question arises: what types of asymptotic distributions can one get
for nonrandomly normalized record values? That is, what types of the limit dis-
tribution functions 7(x), where

T(x) =limP{X(n) — B(n) < xA(n)},n — oo, (9.2.1)

can be obtained under the corresponding choice of the normalizing and centering
constants A(n) > 0 and B(n)?

Let us consider firstly the situation when X, X,, ... have the standard exponential
E(1)-distribution. In Exercise 2.4.1 it was obtained that in this case

P{X,, —logn<x} — A(x), n— occ. (9.2.2)

Hence, we also get that
lim P{X(n) —logL(n) < x} = A(x), n— oo. (9.2.3)
In the next exercise let us consider the asymptotic distribution for these X(n),

when they are nonrandomly normalized. Below, as usual, we will denote the
distribution function of the standard N(0, 1) normal distribution as

c1>(x)=\/L2_7r / exp(—£2/2)d.

Exercise 9.2.1 Taking into account Representation 4.2.1 for the exponential record
values X(n) show that

P{X(n) — n<xn'?} - ®(x), n— ooc. (9.2.4)

Now let us consider the general situation.
Tata (1969) (see also Resnick (1973a)) proved that all possible limit distribution
functions 7(x) in (9.2.1) have (up to linear transformations) the form

T(x) = ®(gr(x)), k =1,2,3, (9.2.3)
where

g1(x) =x;
g2(x) =ylogx, y > 0,if x > 0, and g,(x) = —o0, if x<0;
g3(X) = _Vlog(_x)7 Y > 07ifx<07 and gg,(X) = 090, lfx > 0.
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Remark 9.2.1 We see that in Exercise 9.2.1 the limit distribution function 7(x) can
be expressed as

T(x) = ®(g1(x)).

Let us recall now the kth record times X(n, k), which present the natural gen-
eralizations of the classical record values X(n) = X(n, 1). For the case, when X’s
have the standard E(1)-distribution, there is Representation 4.6.1, from which it
follows that in this situation

X(n, k)= (vi+va+-4w)/k, k=1,2,...n

where vy, v,,..., are independent random variables having the exponential E(1)-
distribution. From here one gets for the exponential X’s that

X(n, k) £X(n,1)/k = X(n) /k (9.2.6)

Exercise 9.2.2 Formulate and prove the analogue of Exercise 9.2.1 for the kth
records generating by the standard exponential E(1)-distribution.

Remark 9.2.2 In Chap. 4 (see Exercise 4.6.3) we considered two sequences of
independent random variables: X;, X5, ... with a continuous distribution function F,
and Y, = min{Xy,...,X;},Y> = min{Xy,1,...,Xn},..., having distribution
function T(x) = 1 — (1 — F(x))*. There were introduced the kth record values X(n,
k) based on X, X5, ..., and the usual (k = 1) record values Y(n), constructed with
the help of the sequence Y}, Y», ... . It was shown that for any k£ = 1, 2,... and any
n =1, 2,... the following equality in distribution is valid:

X(n, k)L Y(n,1). (9.2.7)

It follows from (9.2.7) that for any k = 2, 3,... the set of all possible limit
distributions for the suitably normalized kth record values also coincides with set
(9.2.5) of the limit distributions for the classical (k = 1) record values.

9.3 Asymptotic Behavior of Discrete Records

Let us discuss some problems connected with record values in the sequences of
discrete X’s. Practically, without loss of generality, we can deal only with sequences
of independent identically distributed X, X;, X5, ..., taking values 0, 1, 2, ... with
positive probabilities


http://dx.doi.org/10.2991/978-94-6239-136-9_4
http://dx.doi.org/10.2991/978-94-6239-136-9_4

9.3 Asymptotic Behavior of Discrete Records 213

pn=P{X=n},n=0,1,2,...
Denote
q,l:P{XZn},n:O,l,Z,...

and consider record values X(n) in the sequence X, Xs,....

Let us introduce also random indicators 7,, n =0, 1, 2,..., such that y,, = 1, if n is
a record value in our sequence, and 7,, = 0, if the sequence of records X(1), X(2), ...
does not contain this value. As it was showed in Shorrock (1972b), these indicators
are independent. Moreover the probabilities

ra = P{n, =1} = 1 - P{y, = 0}
are expressed as
Fp=pn/qn,n=0,1,2 ...
It is evident that in this situation

P{X(n)>m}=P{ng+n +...+n,<np,m=0,1,2,...,.n=1,2,....
(9.3.1)

Indeed, on the RHS of (9.3.1) one can see a sequence of independent indicators
with expectations E#,, = r, and variances Varn, = r,(1 —r,),n = 0,1,2... Hence,
under some specific conditions on probabilities ry ry,... one obtains the asymp-
totical normality of sums

(Mo +my + -+ 1y — am) /b, m — 00,
where

y =1ro+7r +...+ Fp,

b = (ro(1 = ro) + (1 =) + ... (1= 1) P m=0,1,2,...,  (9.32)

and then this result allows to prove the normality (under n — ©0) of the suitably
centered and normalized record values X(n). Indeed, since indicators 7,, are bounded
random variables, the condition b,, — ©0 provides the asymptotical normality of
sums (o + 41 + ... + 4, — a)/b,,. Then it is possible to state the asymptotical
normality of (X(n)—A(n))/B(n) under the suitable choice of constants A(n) and B(n).
The matter is that really in the general situation one can’t express A(n) and B(n) via
the initial probabilities r, ry,.... Hence the case of the geometric distributions is
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rather interesting and important because it allows to present the limit distribution of
X(n) in the simplest form.
Let us consider the situation of the geometric distribution with probabilities
pn=PX=n}=(1-pp"'n=12... (9.3.3)

In this case

m=(1-=-p),n=12,...

Exercise 9.3.1 Show that for X’s having geometric distribution (9.3.3) the fol-
lowing asymptotical relation holds for any —00 < x < co:

P{(1 = p)X(n) — n < x(np)'*} = ®(x),n — . (9.3.4)

9.4 Exercises (solutions)

Exercise 9.1.1 (answer) For any k =1, 2,..., n =1, 2,... and m = 1, 2,... the
following equality holds:

P{L(n,k) > m} = P{N(m,k) <n}.
Exercise 9.1.2 (answer) For any k = 1, 2,... the following limit relation is valid:
Sl;p |P{klog L(n,k) —n<x\/n} —®(x)| - 0, n— oo.

Exercise 9.1.3 (solution) We see that

P{T, >x} =P{L(n+1) >xL(n)} = iP{L(n + 1) > xL(n)|L(n) = i}P{L(n) = i}

i=n

- iP{L(n +1) > [xi]|L(n) = iYP{L(n) = i}.

Here [xi] denotes the entire part of xi. It follows from (3.5.15) that
P{Ln+1)>m|L(n) =i} =i/mm=1ii+1,...

Thus,
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o0
P{T, >x} = > _(i/[xi])P{L(n) = i}.
i=n
Taking into account relations

1/x <i/[xi]<1/x 4+ 1/x[xi]

and

f: P{L(n) =

one gets that

1/x< Z [xi])P{L(n) = i} <1/x + i(l/x[xi]) P{L(n) =i} <1/x + 1/x[xn],
. (9.4.1)
and it follows now from (9.4.1) that
P{T, >x} — 1/x, n— oc.
Exercise 9.2.1 (hint) In this situation (see Representation 4.2.1)
Sp=vi o+,
where vy, vy, ... are independent random variables, and
Evi=Varvi=1,k=1,2,...

Hence it is enough to apply the classical Central Limit Theorem for independent
identically distributed summands and to get that

P{X(n) — n<xn'?} - ®(x), n— .

Exercise 9.2.2 (hint and answer) It is enough to use equality (9.2.6) and the
corresponding result for X(n, 1) = X(n), which was obtained in the previous
Exercise 9.2.1. Then the final relation will have the following form:

P{kX(n,k) —n<xn'?} — ®(x),n — co.
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Exercise 9.3.1 (solution) It follows from (9.3.1) that in this case
P{X(n)>m}=P{m+---+n,<n},m=12,...n=12,...,
and
rm=P{n, =1} =1-P{n, =0} =pu/gn = (1 —p),n=1.2,...
Applying the classical Central Limit Theorem for independent identically dis-

tributed random variables having expectations (1 — p) and variances p(1 — p) we
obtain that

P{(m ety —m(1—p))/(mp(1 —p))”2<x} S O(x), n— oo (94.2)

Denote

a(n, x) = (n -+ x(mp) %)/ (1 - p).
We need to find the limit (under n — ©0) expression for
P{X(n) <a(n,x)} =1 = P{n + ...+ Ny <n}
Substituting [a(n, x)] instead of m to the LHS of (9.4.2) one gets that
P{n +...+ Nla(n.x)] <n} — ®(—x),n — 0.
Thus,

P{X(n)<a(n,x)} - 1—®(—x) = ®(x),n — oo.



Chapter 10
Nonclassical Record Schemes

10.1 Records in the F*-Scheme

Really the first record model for sequences of non-identically distributed X’s was
suggested by Yang (1975). In this scheme records are considered in the sequence

Y = max{ X1, ..., Xeaw b =1,2,...,

where {Xy;},j=1,2,..., nk), k=1, 2,...., are ii.d. random variables with a
common continuous distribution function F. Indeed here any Y, k=1, 2,.. ., has a
specific distribution function Fi(x) = F"'(k)(x), where n(k) is the corresponding
integer value. This partial model initiated the appearance of the more general the
so-called F*-scheme (see, for details, Nevzorov (1981, 1985) and books Nevzorov
(2000, 2001), Ahsanullah and Nevzorov (2001a)), where independent r.v.’s X,
k=1, 2,..., have distribution functions

Fie(x) = FPO(x),a(k) >0, k=1,2,..., (10.1.1)

and F is any continuous distribution function.

In this generalization of Yang’s model coefficients a(k) can take any positive
values. The most important property of this scheme is that the record indicators &,,
n=1,2,... (which mark the appearance of the strong upper record values), defined
in Chap. 3, save the independence property and the following equalities are valid:

P{&, =1} = a(n)/S(n),n=1,2,.... (10.1.2)

where S(n) = (a(1) + ... + a(n)).

Exercise 10.1.1 Let independent random variables X;, X»,... have distribution
functions of the form (10.1.1). Let &, = 1 if X, is a record value in the sequence Xj,
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X5,... and &, = 0, otherwise. Show that for any n = 2, 3,... indicators &, &,. . ., &,
are independent.

Really, the joint distributions of record indicators in the F*-scheme are given by
the following equality:

P{&ay =1 &o=1,...&mw =1} = S <k(1) <k(2) <...<k(n),

i Stk(m))™ —
(10.1.3)
It is interesting also to consider the relationship between record indicators in the
F?-scheme and the corresponding maximal values M(n) = max{X;, X>,..., X,,},
n=1,2, ..

Exercise 10.1.2 Show that for any n = 1, 2,. .. random indicators &, &,. . ., &, and
maximal value M(n) are independent.

The independence property of record indicators provided the possibility to
obtain for the F*-scheme a lot of results for record times and record values, which
are analogous to the corresponding results for the “classical” records.

For example, it follows from (10.1.2) that
Efn =Pn and Varén :pn(l _Pn)7 n= 1727 sy
where

pn=P{& =1} = a(n)/ S(n).

Hence it is easy to investigate (under some conditions on probabilities p,) the
limit behavior of numbers of records N(n) and record values L(n).

Exercise 10.1.3 Formulate for the numbers of records N(n) and the record times L
(n) in the F”-scheme the results analogous to relations (9.1.1) and (9.1.3), which are
valid for the classical records.

As to the asymptotic behavior of the record values in the F*-scheme, it was
proved (see, for example, Nevzorov (1995)), that the set of all possible asymptotic
distributions of the suitably normalized record values X(n) (under some rather mild
restrictions on coefficients a(l), a(2),...) consists of the same three (given in
Chap. 9.2) limit distributions

T(x) = &(ge(x)), k = 1,2,3,
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where

g1(x) = x;
g (x) =vlogx,7 >0, ifx >0, and g>(x) = —o0, if x < 0;
g3(x) = —ylog (—x), 7 > 0, if x<0, and g3(x) = oo, if x > 0.

10.2 Linear Draft Model

One more simplest way to get a nonstationary record scheme is to take a sequence
of independent X’s with any common distribution function F and then construct a
new sequence Y, = X,, + c(n), n = 1, 2,..., where constants c¢(n) provide a non-
random trend. The most natural in this construction is the situation when c(n) = cn,
n =1, 2,..., where c is some constant. Indeed, it is clear that if ¢ < O then the
number of records in the sequence Yy, Y5,. .. is finite with probability 1. If ¢ = 0 one
gets the well-known classical record model. Hence really this scheme is interesting
for ¢ > 0. This model is called the Linear Draft record model. This record scheme
and some its generalizations were investigated in many papers. See, for example,
the works by Foster and Teichroew (1955), Ballerini and Resnick (1985, 1987), de
Haan and Verkade (1987), Smith (1988), Nagaraja (1994a).
Let us consider the sequence

Y, =X, +cn,n=12,...,
where ¢ > 0. In this case the distributions of record indicators ¢, are given as

X a1
pn=P{&, =1} =1-P{{, =0} = / [ F @&+ cpar(x). (10.2.1)

J=1

Exercise 10.2.1 Let now F(x) in this model be the Gumbel distribution function:
F(x) =e* , —co<x<oo. (10.2.2)

Find for this case probabilities p,, n = 1, 2,.. ..
It is interesting that only for the case, when X'’s in the Linear Draft model have

the Gumbel distribution, record indicators &;, &, . .. are independent. Note also that
in this case

P{Y, < x} = (F(x))"", (10.2.3)
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where a(n) = exp(cn), n = 1, 2,. . .., that is we deal here with the partial case of F*-
scheme.

It is not difficult to see that probabilities p,, given in (10.2.1), decrease:
p1 > p2 > .... Hence there exists the limit

p = lim p,.
n—oo

This limit p is named the limiting record rate. For example, Ballerini and
Resnick (1985) showed that if ¢ = 1 and F(x) = @(x), then p = 0.72506. . ..
It was shown (see Nagaraja (1994a)) that if ¢ > 0, then p is positive if and only if

/ (1 — F(x))dx<oo.
0

Note also that the limiting record rate p in this model appears in some limit
theorems for the numbers of records N(n) (see, Ballerini and Resnick (1985)). For
example, the following relations are valid for the Linear Draft model:

E(N(n)/n) — p and E(N(n)/n—p)*— 0, asn — co.

10.3 o-Exceedance Record Scheme

This scheme was suggested by Balakrishnan et al. (1997). A new observation X; is
called o-exceedance upper record value if it is larger than the previous record by a
prefixed positive quantity J > 0. In this model L(1) = 1 and

L(n+ 1) =min {j|j > L(n), X; > Xy + 6},n=1,2,.. ..

The sequence {Xy(,),n=1,2,....} forms the J-exceedance upper record
scheme. If we have the sequence of i.i.d. X’s having some continuous distribution
function F(x) and probability density function (pdf) f{x), then the joint pdf of the
first m upper records X(1), X(2),. .., X(m) is given in this scheme by equalities

f(xl) f(xmfl) -
Xy) = —— Vx> x4 6,
fX(l),X(2) ‘‘‘‘‘ X(m)(x17 R ) 1 —F(X1 +5) 1 —F()Cm,l +5)f(x ) Xj > Xj—1 +
j=2,3,...,m.

(10.3.1)
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Exercise 10.3.1 Consider the exponential E(1) distribution with F(x) = 1 — exp
(—x), x 2 0 and write the expression for the joint pdf of X(1), X(2),. .., X(m). Show
that the marginal pdf of X(m), m = 1,2, ..., is given as

1
(m)

We can see from (10.3.2) that X(m)—mo has the gamma distribution.
Moreover, in this situation the form of the joint pdf allows us to state that for any
m =1, 2,... the vector {X(1), X(2),..., X(m)} have the same distribution as the
vector {Yy, Y1+ Yo,..., Y1 + Yo + ... +7,}, where Y;’s are independent and have
the exponential distribution with F(x) = 1 — e "9 x> §. From here it follows
that in this situation inter record values X(m) — X(m — 1), m = 2, 3,..., are
independent and have the same exponential distribution.

Sxm (x) = T (x —mo)" e M) x> mg. (10.3.2)

10.4 Records with Restrictions I

The next object of our consideration is the so-called records with restrictions,
which are rather close in some sense to the previous J-exceedance record scheme.
Consider the sequence of independent identically distributed random variables Xj,
X5, ... and fixed some positive constant C. We take X(1) = X; and L(1) = 1 as the
first record value and the first upper record time correspondingly. The next record
times L(n) and record values X(n) are defined as follows:

L(n)=min{j >L(n—1) : X(n—1) <X;< X(n—1)+C}, X(n) = Xy@m, n=2,3,....
(10.4.1)

It means that the new coming observation is ignored as a record, if it exceeds
essentially the previous record value.

Suppose that the initial r.v.’s have a common pdf f{x). It is not difficult to get the
expression for the conditional pdf f,(x,|x;, x5,..., x,—1), that is the expression
for the pdf of X(n) under condition that X(1) = x;, X(2) = xp,. . ., X,—1 = X,,—1, Where
0<x~xi—1 <C,j=2,3,..., n—1, are fixed. One obtains in this case that

Fonlxr, %25« oy x0—1) = f(60)/(F(xy—1 + C) — F(x4-1)), (10.4.2)

if x,_1 < x, £ x,—1 + C, and f,,(x,|x1, X2, - ., X,—1) = 0, otherwise.
These equalities allow us to find the corresponding relations for probability
density functions f,,—;(x) and f,,(x) of record values X(n—1) and X(n):

X

A =) / (For () (F(u+ C) — Fu))du, n =2,3,....  (10.4.3)

x—C
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From (10.4.3) one gets that the joint pdf f,,(x, x,. . ., X,,) of record values X(1), X
(2),. .., X(n) has the following form:

f(x) S (x)
(F(x1 +C) = F(x1)) " (F(xy—1 + C) = F(x-1))’
(10.4.4)

ﬁl(x17x27 .. .,Xn) :f(xl)

fxi<n<x+Cx<a<x+C,. . . 1<x,<x,1+ C,

and f,,(xy, xa,. . ., x,) = 0, otherwise.
These relations can be simplified essentially for the case of exponential distri-
butions of X’s.

Exercise 10.4.1 Let us consider the sequence of X’s having the standard expo-
nential E(1)-distribution function F(x) = max{0, 1 — exp(—x)}. Define also X
(0) = Xp =0. Apply (10.4.4) to obtain the joint pdf of record values X(1), X(2),..., X
(n) with some restriction value C > 0.

Show also that in this case the joint probability density function g(vy, vs,. .., v,,)
of the differences V; = X(1) — X(0), V> = X(2) — X(1),.. ., X, = X(n) — X(n — 1) has
the form

gvi,va, . uvy) = exp{—=(vi +va+ ...+ v)}/(1 —exp(-=C))", 0<y < C,...,0<y, < C.

(10.4.5)

Expression (10.4.5) allows us to state that inter record values Vi, V5, ..., V, are
independent and identically distributed with pdf g(x) given as follows:

g(x) = exp(—x)/(1 —exp(—C)), if 0<x < C, (10.4.6)

and g(x) = 0, otherwise.

It means that in this situation vectors {X(1), X(2),..., X(n)} and {V{, V| + V,,.. .,
Vi+ Vo + ...+ V,}, where independent r.v.’s Vi, V,,..., V,, have pdf (10.4.6), are
identically distributed. Thus exponential record value X(n) is presented as the sum
of n independent identically distributed random variables.

Note that the means and the variances of Vi, V,,... are given as

alc) =EVi=(1-(1+C)e /(1 —e ) k=1,2,..., (10.4.7)
and

) =VarVi=(1-2+Ce €+ )1 —e ) k=1,2,.... (104.8)
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It is possible now to obtain, in particular, different limit theorems for the
exponential record values with restrictions. For example, it follows immediately
that in this case random variables (X(n) — na(c))/a(c)n'/?, where a(c) and o(c) are
defined in (10.4.7) and (10.4.8), tend, as n — oo, to the standard normal
distribution.

10.5 Records with Restrictions 11

The next scheme is very close to the previous record models. Now we also fix some
constant C > 0, which determines the acceptable rate of exceeding of the previous
record value. The discrepancy of these two schemes is the following. In the second
case we do not ignore the observations, which are essentially greater than the
previous record value X(n). In this situation we simply determine the new record
value X(n + 1) as X(n) + C. In the case when the new coming observation belongs to
the interval (X(n), X(n) + C] it is announced as the record value X(n + 1).

If we again consider the initial independent E(1)—distributed random variables
(with pdf fix) = exp(—x), x =2 0) X}, X,. .. and denote the records with such type of
restrictions as 0 = X(0, C) < X(1, C) < X(2, C) < ..., then arguments analogous to
those, which are given in the previous model, show that differences (inter record
values)

Wi (C) =X(k,C) —X(k—1,C), k=1,2,...,
are also independent. In this case one gets that

P{Wi(C)<x} =1 —exp(—x),if 0<x<C, and P{V; < x} = 1,ifx > C.
(10.5.1)

In particular,
P{Wi(C) =C} =exp(—C),k=1,2,....

One can see that in this record scheme for any n = 1, 2,. .. the distribution of the
vector of record values {X(1, C), X(2, C),..., X(n, C)} coincides with the distri-
bution of the vector

W[(C), Wl(C) + WQ(C), ce Wl(C) + WQ(C) + ...+ "VH(C>7
where W{(C),W,(C),. .. are independent random variables having the same distri-

bution function (10.5.1).

Exercise 10.5.1 Find expressions for expectations and variances of summands
Wi (C), W5(C),... and formulate the Central Limit Theorem for the exponential
record values X(n, C).
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10.6 Records with Confirmation

One more nonclassical record scheme—the so called “records with confirmation”
(confirmed records), was considered in Saghatelyan (2008) and Nevzorov and
Saghatelyan (2009). Let us fix some k=1, 2,. . .. In the simple option of this scheme
to determine a new record value X(n + 1, k) one must wait for appearance of
k observations which will be greater than the previous record value X(n, k) and only
after this event it is possible to determine X(n + 1, k) as the maximal value among
these k observations. This scheme is useful in the situation when among X’s, which
have some fixed distribution, can appear an observation having another distribution
(the contamination of the original sample). Taking into account this situation we
need to find the distributions of the corresponding record times L(n, k), n =1, 2,. . ..
Note that L(1, k) = k.

Consider a random sample X, X, ..., X, of size n from a population with a
continuous distribution function F(x). It is easy to find that the distribution of the
minimal number R(n) of additional observations, which are needed to get the first
value exceeding X,,, = max{X,..., X,}, is given as follows:

P{R(n) > m} =n/(n+m). (10.6.1)

Let now R(n, k) denote the number of observations, which are needed to get
exactly k values exceeding X, ,,.

Exercise 10.6.1 Find the distribution of R(n, k), n=1,2,..., k=1, 2,....

Let us consider now more complicate situations, when a new record will coin-
cide with the mth (1 £ m < k) in order observation taken from k random variables,
which are greater than the previous record value. The reason why we consider here
the case when m can be less than k is rather simple. For example, imagine that we
know that the given sample can be contaminated with some outliers and we expect
that these outliers are presented in the sample by the “top” observations. Hence it is
naturally to delete these extraneous observations from the further consideration.

As above the most interesting case here is connected again with the exponential
distribution. The following result is valid for the corresponding exponential record
values X(n, k, m).

Theorem 10.6.1 Let F(x) = max{0,1 — exp(—x)}, and 1 < m < k, defined above, are
fixed. Then for any n = 1, 2,... the following equality holds:

X(n+ 1,k,m) X kom) + X"k + .+ X /(k—m+1),  (10.6.2)

where X(n, k,m), Xf"), .. .,X,<n">are independent and P{ Xj(") < x}= max{0,1 — exp
(=X)L, 1<j<m
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Corollary 10.6.1 It follows from Theorem 10.6.1, that

X(nk,m) L Jk+ ) (k— 1)+ ...+, /(k—m+ 1), (10.6.3)
where u;, Us,. .. are independent Gamma(n)-distributed r.v.’s.

From this theorem, which is formulated for the exponential record values, it can
be obtained (using the standard methods from the theory of records) that a set of all
possible types of the limit (as n — oo) distributions G(x) (under any fixed k = 1,
2,...and m = 1, 2,..., k) for the records with confirmations X(n, k, m) coincides
with the corresponding set for the classical records:

Gi(x) = ®(—In(=InH;(x))), i =1,2,3,
where

H,(x) = exp{—exp(—x)}, —00o <x < o0;
Hy(x) = 0,if x<0, and H>(x) = exp{—x"°}, ifx > 0,9 > 0;
Hs(x) = exp{—(—x)°},ifx< 0,8 > 0, and H3(x) = 1, if & > 0;

and @(x) is the normal N(0, 1)-distribution function.
Indeed, the centering and normalizing constants in this situation will differ from
the corresponding constants for the classical records and will depend on k and m.

10.7 The Record Scheme of Balabekyan-Nevzorov

One more nonstationary record model was suggested by Balabekyan and Nevzorov
(1986). Consider the following situation. Let m athletes of different skill have in
succession n starts each. In this case the distribution functions, which correspond to
their results X1, X, . .+, X, Xint 15 -+ - Xoms - - » X(n—1ym+15 - - +» Xnm, fOrm a sequence

Fi(x),Fa(x), ..., Fn(x), F1(x), .., Fu(x), .., F1(X), .. ., F(x),

that is, a group of m different distribution functions is repeated n times. Hence one
can see that this record scheme contains at the same time elements of stationarity
and nonstationarity.

Let N(nm) be the number of records in a sequence Xy, X.. . .,X,,,.. It appears that
comparing N(nm) with the number of the classical records in the sequence Y; = max
(X1, X2, . ., Xon}s- - o Yy = max{X,,;i—1)+15- - -» Ximn} allows us to obtain the following
result.
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Theorem 10.7.2 Let F;, F»,. .., F,, be continuous distribution functions. Then

sup P{N(nm) —logn <x(logn)l/2} - (D(x)’ — 0, n — oo. (10.7.1)

Remark 10.7.1 Note that in this theorem m need not to have some fixed value. It
may be permitted to increase to a certain degree with n, like

m=m(n) = o((logn)l/z), n— 0.

10.8 Exercises (solutions)

Exercise 10.1.1 (solution) Denote
S(n) = a(l) + a(2) + ...+ a(n), M(n) = max{X,,Xs,...,X,}

and

Gu(x) = P{M(n) < x} = F)(x)F3(x).. .Fo(x) = (F(x))*™,n = 1,2

g Ly oen

One can see that in this situation for any n = 2, 3,. .. the following equality holds:

Pla=1t= [ Graar,= [ (F6)*Va(F )

1 (10.8.1)
_ / SNd(x0) = a(n)/S(n).

0

Now in order to get the independence of the indicators it suffices to obtain that
for any 1 < k(1) < k(2) < .. .<k(r), r = 2, 3,..., we have relations

Pl =L&Goy=1,.., &un =1} = H% (10.8.2)

Recall that the probability integral transformation does not change the order of
random variables and hence it does not change the values of the record indicators.
Hence for simplicity (without loss of generality) we can take F(x) =x, 0 <x < 1, and

Fr(x) = x“(k), k=1, 2,.... Then, taking into account that
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P& =1, &Goy=1,.... &un =1}
=P{Xi) > M(K(1) = 1), Xig) > M((2) = 1)...... Xy > M(k(r) — D)},

one gets the relation

P{&uy =1, &oy=1,..., & =1}
1 1 1

_ / D=1 Ak / JSHD-D=SK) 4,2k / S 1) =S(K—1) g (100

0 Vi Vro1
(10.8.3)
Accurately continue the integration in (10.8.3.) we get relation (10.8.2.).

Exercise 10.1.2 (solution) This case is very close to the situation in Exercise
10.1.1. Instead of (10.8.2.) one can verify that for any 1 < k(1) <k(2) < ... <k
(r) £n,r=2,3,..., we have relations

P{&uy =1 4o =1,..., &y =1, M(n)<x} = H%F(X)S(n)~

(10.8.4)

Indeed, again it is possible to take F(x) = x, 0 < x < 1. Then the LHS of (10.8.4)
can be written as

Pl&ny =1L &p =1,..., &y = 1, M(n) <x}

:/'vf(k<1)—1>d(vT<k(1))> /Vg(k(z)—l)—s(k(l))d(V;(k(Z)))M / Vf(k(r)—l)—s(k(r—l))d(vi(k(r)))xs(n)

0 V1 Vet

Continue the integration in (10.8.5) one gets the necessary equality

r

P{ék(l) = 17 ék(2) = 1, ceey fk(,) = 1, M(n) <x} = l_[lS(o;((kk(znnz)))))CS(”>

Exercise 10.1.3 (answer) Denote
pn=P{&, =1} =1—- P{{, =0} = a(n)/S(n),n=1,2,....

Then
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A(n) = EN(n ZpkandB = VarN(n Zpk

k=1

In this case, if B, — ©0, then
sup\P{N n)<xy/B(n)} — d(x)] — 0, n — co.
Let additionally the following relation holds:
St =o(Yon) o
k=1 k=1

Then (10.8.6) can be simplified as follows:

Slip |P{(N(n) —logS(n)) <x(10gS(n))1/2} - &(x)] = 0,n — oo.

Taking into account the equality
P{L(n) > m} = P{N(m)<n},
it is possible to obtain from (10.8.7) that if

A(n) — oo, p, = a(n)/S(n) — 0

and

then

sup |P{(10gS(L(n)) “n) <xn1/2} — D) — 0, n— oo

(10.8.6)

(10.8.7)

(10.8.8)

The proof of relations (10.8.6)—(10.8.8) and some related results concerning the
Central Limit Theorem for N(n) and L(n) can be found in Nevzorov (1986¢, 1995).

Exercise 10.2.1 (solution) It is enough to see that

F,(x) = P{Y,<x} = F(x—cn) = (F(x))"™, n=1,2,...
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where a(n) = exp(cn). Thus random variables Y;, Y»,... in this case present the
F”-scheme. Hence, the distributions of record indicators &, are given as

pu =P{& =1} = 1— P{E, = 0} = exp(cn)/(exp(c) + exp(2¢) + ... + exp(nc))
= (1 —exp(c))exp(c(n —1))/(1 —exp(nc)), n=1,2,....

Exercise 10.3.1 (solution) Taking into account the general expression (10.3.1) and
substituting f{x) = exp(—x) and 1 — F(x) = exp(—x), x > 0, in (10.3.1) we get that

fX(l) ..... X(m)(xh <. .,Xm) = exp((s(m - 1)) eXp(ixm)axl > Oaxj > Xj—1 + 55.] = 27 37 BERTRE

(10.8.9)
By fixing any x,, > md and integrating the RHS of (10.8.9) over the domain
{x; >0, X, >X; +0,..., X2 + 0 < Xpp—1 < X — 0}, one obtains now that
Sxom) () = ! (X — md)" L™ Tm0) x> o
X(m)\Am F(m) m s Am .

Exercise 10.4.1 (answer) Substituting f(x) = exp(—x) and 1 — F(x) = exp(—x), x > 0,
in (10.4.4) one immediately gets that in this partial case

fulx1,x2, -, x,) = exp(—x,,) /(1 — exp(—c))", (10.8.10)
fxi<xun<x+ C n<ag<x+ C,..x1<x,<x,-1+ C,
and f,,(xy, xp,. .., x,) = 0, otherwise.

It immediately follows from (10.8.10) that the joint probability density function
of the differences

Vi=X(1)-X(0),V, =X2)—-X(1),.., X, =X(n) —X(n—1)
has the form (10.4.5).

Exercise 10.5.1 (answers) In this case

a(C) = EW,(C) = 1 - exp(~C),

2 (10.8.11)
06°(C) = VarWi(C) =1 —2Cexp(—C) —exp(-2C), k=1,2,....
Since Wi (0), k = 1, 2,... are independent identically distributed and restricted

random values one can state that the following asymptotical relation, where nor-

malizing coefficients are defined in (10.8.11), holds as n — 00 :
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sup [(P(X(n, C) — na(c)) < xa(c)n'/* — ®(x)| — 0.

Exercise 10.6.1 (answer) Forany n=1, 2,..., k=1, 2,..., the following equality
holds:

P{R(n,k) >m} =1 —ml(n+m—k)!/(m —k)/(n+ m)!, m>k.

Compare it with (10.6.1), where the corresponding relation for R(n) = R(n,1) is
given.
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