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Preface

“Record, Record, Record!”, “The oldest Olympic Record was beaten!”, “New
World Record result in high-jumping!”. Every day, we wait for such kind of
headlines in newspapers, on the Internet, in TV announcements.

We hurry to call our friends and tell them about a new record value of the
summer temperature in California, which was fixed yesterday, and about the highest
level of today’s earthquake somewhere in India.

We collect all editions of the Guinness Book of Records. Not only the Guinness
Book but all tables of record results in various domains of human activities which
are very popular among citizens all over the world.

Indeed, we regard any record result of known or unknown persons as the pro-
gress of all humankind (and, in particular, as our own progress).

It fell out that the record topic has become very popular among specialists in
probability and mathematical statistics. A lot of papers (beginning with Chandler
(1952)), in which various aspects of the mathematical theory of records were
considered, have appeared during the past 60 years. Some monographs have been
published on the records topic (see, for example, Ahsanullah (1995), Ahsanullah
and Nevzorov (2001a), Arnold, Balakrishnan and Nagaraja (1998), Nevzorov
(2000, 2001)).

Our readers can ask: “What is the reason for publishing a new book on records
when there are so many monographs on this topic?”

The matter is that each coming year gives many new results on record times and
record values. Some new record schemes have been suggested by various authors.
A number of new methods for studying records have been presented in new pub-
lications. That is why we offer to our readers a book, which includes, in particular,
some new materials about records. This monograph will help you to clear the
situation with the modern theory of record values. You will find a lot of examples
and exercises here, which will enable you to get a good experience of becoming
familiar with the theoretical part of this theory.

The theory of records is connected very closely with the theory of order sta-
tistics. In some sense our book can be considered as the continuation of the
Ahsanullah, Nevzorov, and Shakil (2013) edition, which provides an introduction
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to the world of order statistics. We suggest a lot of exercises, for which solutions are
given at the end of the corresponding chapters. These exercises will help our readers
to determine their level of comprehension of the material presented. Indeed, in order
to understand the definitions and results given in the book, it is not necessary to
read preliminarily any other book on order statistics. Some useful material from the
theory of order statistics is presented in the first part of our book.

You are welcome to open the world of records for yourself!
With great pleasure we recall our friends N. Balakrishnan, P. Deheuvels,

H.N. Nagaraja to whom we express our deep gratitude. The exchange of ideas and
the joint work with our above-mentioned colleagues are of great importance to our
scientific and publishing activities. We are also grateful to our family members for
their constant encouragement and support.

We wish to express our gratitude to Prof. Chris Tsokos for valuable suggestions
about the manuscript. The first author thanks Z. Karseen and K. Jones for inter-
esting discussions at a meeting in Athens, Greece, for the publication of this book.

The work of the first author was partially supported by a summer research grant
and sabbatical leave from Rider University. The work of the second author was
partially supported by Saint Petersburg State University grant N 6.38.672.2013.

Mohammad Ahsanullah
Valery B. Nevzorov
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Chapter 1
Introduction

Let x1, x2, …, xn denote results of n participants, which were registered in
some sport competition. These values can be presented in the increasing order as
x1,n ≤ x2,n ≤ ⋯ ≤xn−1,n ≤xn,n, where x1,n = min{x1, x2, …, xn} and xn,n = max{x1, x2,
…, xn}. In some competitions (take, for example, any running distance) x1,n, x2,n
and x3,n are correspondingly the results of the gold, silver and bronze prizewinners.
For other type of competitions (say, for high jumping or long jumping) xn,n, xn−1,n
and xn−2,n are the best results. Indeed, after finishing this competition we deal with
some concrete values x1, x2, …, xn and x1,n, x2,n, …, xn,n. Before the competition,
the future results of the participants are unknown to us, and we can consider these
results as random values X1, X2, …, Xn. Indeed, values X1,n = min{X1, X2, …, Xn}
and Xn,n = max{X1, X2, …, Xn}, as well as other ordered values X2,n ≤ ⋯ ≤ Xn−1,n,
are random. Up to the beginning of the competition all sport newspapers will
discuss the probable realizations of random values X1,n ≤ ⋯ ≤ Xn,n and the chances
of a particular participant to become the winner, i.e. his/her chances to reach the
result X1,n (or Xn,n).

This simple example shows the necessity of knowing how to work with the
so-called order statistics X1,n ≤ ⋯ ≤ Xn,n and their realizations x1,n ≤⋯ ≤xn,n.

Below some definitions connected with order statistics are given.
Let X1, X2,…, Xn be initial random variables. The set of the observed values {x1,

x2, …, xn} of random variables X1, X2, …, Xn is called a realization of these X’s. In
the most part of the book we suppose that X1, X2,…, Xn are independent identically
distributed (i.i.d.) random variables, or simply we can say in this situation that X1,
X2, …, Xn present n independent observations on X where X is a random variable
having a certain distribution function (d.f.) F.

Then the combination X1,n ≤ X2,n ≤ ⋯ ≤ Xn,n denotes the variational series
based on random variables X1, X2, …, Xn. If X’s are independent and identically
distributed one can say that X1,n ≤ X2,n ≤ ⋯ ≤ Xn,n is the variational series based on
a sample X1, X2,…, Xn.

Elements Xk,n, 1 ≤ k ≤ n, are called order statistics (order statistics based on a
sample X1, X2, …, Xn; order statistics from d.f. F; ordered observations on X). We
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denote the observed values of X1,n, X2,n, …, Xn,n as above, x1,n, x2,n, …, xn,n, and
call them realizations of order statistics. Let us note that X1,n = m(n) = min{X1, X2,
…, Xn} and Xn,n = M(n) = max{X1, X2, …, Xn}, n = 1, 2, …. Rather natural is the
following equality:

X1;n þ X2;n þ � � � þ Xn;n ¼ X1 þ X2 þ � � � þ Xn:

Together with the sample X1, X2, …, Xn it is naturally to consider the empirical
(or sample) distribution function

F�
nðxÞ ¼

1
n

Xn

k¼1

1fXk � xg:

Here 1fX � xg is a random indicator, which equals to 1 if X ≤ x and to 0 if X > x.
Let us mention that F�

n xð Þ can be expressed in terms of order statistics Xk,n as
follows:

F�
n xð Þ ¼ 0; if x\X1;n;

F�
n xð Þ ¼ k=n; if Xk;n � x\Xkþ1;n; 1� k� n� 1;

and

F�
n xð Þ ¼ 1; if x�Xn;n:

Usually a random sample X1, X2, …, Xn is accompanied by the corresponding
vector of ranks (R(1), R(2), …, R(n)), where

R mð Þ ¼
Xn

k¼1

1fXm �Xkg; m ¼ 1; 2; . . .; n:

These ranks provide the following equalities for events:

R mð Þ ¼ kf g ¼ Xm ¼ Xk;n
� �

; m ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; n:

Together with ranks we can use the so-called antiranks Δ(1), Δ(2), …, Δ(n),
which are defined by equalities

fD kð Þ ¼ mg ¼ Xk;n ¼ Xm
� �

; m ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; n:

One more type of ranks is presented by sequential ranks. For any sequence of
random variables X1, X2,… we introduce sequential ranks ρ(1), ρ(2),… as follows:

q mð Þ ¼
Xm

k¼1

1fXm �Xkg; m ¼ 1; 2; . . .:
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Sequential rank ρ(m) shows the position of a new coming observation Xm among
its predecessors X1, X2, …, Xm−1. If independent random variables X1, X2, …, Xm

have the same continuous distribution then it is possible to see that for anym = 1, 2,…

Pfq mð Þ ¼ kg ¼ P Xm ¼ Xk;m
� � ¼ 1=m; k ¼ 1; 2; . . .;m:

Here we use the fact that if X’s are independent and have continuous distributions
then any two of them can coincide with zero probability and the situation of
symmetry, which provides that all m events {Xm = X1,m}, …, {Xm = Xm,m} have the
same probability.

The more complicate theory of order statistics and all types of ranks can be
found in Ahsanullah and Nevzorov (2001a, 2005), Ahsanullah, Nevzorov and
Shakil (2013), Arnold and Balakrishnan (1989). In Chap. 2 we will present some
results for order statistics, which our reader will recall working with record times
and record values.

Now let us come back to the results of the participants of some sport distance
(say, 100 m running). Each year hundreds of competitions are organized, in which
thousands of sportsmen run 100 m. Even the most serious lover of the field athletics
cannot get and investigate all the results. Indeed, it is possible to operate with the
results of participants of the Olympic Games and World championships but it is
impossible to have information about participants of all these competitions.

Meantime there are the most interesting results, which can be easily found in a
number of sport editions—world records, records of Olympic Games, continental
and countries record values. Indeed, sport records are very popular, but record
values in any domain of human activities are also interesting for millions of citizens
worldwide.

Let us come back to the sequence of random variables X1, X2, …. There are two
classical types of record values—upper and lower records. We say that Xk is the
upper record value if

Xk [M k � 1ð Þ ¼ max X1;X2; . . .;Xk�1f g; k ¼ 2; 3; . . .;

and Xk is the lower record value if

Xk\m k � 1ð Þ ¼ min X1;X2; . . .;Xk�1f g; k ¼ 2; 3; . . .:

In the both situations X1 can be considered as the first record value (upper or lower).
In some sense the theory of lower records is analogous to the theory of upper
records. Really, if we can operate with upper records in the sequence X1, X2, …,
then the corresponding results can be transformed easily for the sequence Y1 = −X1,
Y2 = −X2, …. Really, in this situation the upper records for X’s are transformed to
the lower records for Y’s. Hence it is enough to investigate the upper records only.
The theory of upper records will be given below. Sometimes we will formulate the
corresponding results for the lower records.
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Usually when X’s have continuous distributions it is not necessary to take into
account the situations when a new coming observation coincides with the previous
record value. The matter is that in this case any two X’s can coincide with zero
probability. For the case when X’s have discrete distributions and some X’s can
coincide with nonzero probabilities, we will consider two options—strong records
and weak records. We deal with a strong record if a new coming X is more than the
last record value. In some schemes we announce as a record the observation, which
is more (or even equal!) than the previous record value. In such situation we deal
with the so-called weak records.

Note that the investigation of records in sequences of random variables having
continuous or discrete distributions requires different methods. The most part of the
book will be devoted to the situation when initial random variables have continuous
d.f.’s and in one chapter (Chap. 6) we will deal with discrete distributions of X’s.

Upper record values will be denoted as X(1), X(2), …, X(n), … and lower
records will be denoted as x(1), x(2), …, x(n).

We will use indicators ξk, such that ξk = 1, if Xk is an upper record value, and
ξk = 0 otherwise. Note that then N(n) = ξ1 + ξ2 + ⋯ + ξn denote the number of the
upper records among random variables X1, X2, …, Xn, n = 1, 2, ….

Together with record values we will investigate record times. We use the
symbols L(n) and l(n), n = 1, 2, …, correspondingly for upper and lower record
times. Note that the following relations are valid for the upper record times:

L 1ð Þ ¼ 1; L nð Þ ¼ mf g ¼ N m� 1ð Þ\ n; N mð Þ ¼ nf g;XLðnÞ ¼ M L nð Þð Þ ¼ X nð Þ:

The analogous equalities are valid for lower record times l(n).
If we recall sequential ranks ρ(n), n = 1, 2, …, then one can see that Xn is the

upper record value if ρ(n) = n and Xn is the lower record value if ρ(n) = 1.
Hence it is not difficult to see that the subject of record values and record times is

tied very closely with the order and rank statistics.
See Chap. 2 for some useful definitions and results connected with order

statistics.
Definitions, distributions and moment characteristics of record values are given

in Chap. 3. In this chapter we also introduce some generalizations of the classical
records—the so-called k-th record values.

Different results for record times are presented in Chap. 4.
There are some continuous distributions being the most popular in the proba-

bility theory, such as normal, uniform, exponential, logistic, Weibull. We discuss
the behavior of record values in the sequences of random variables having these and
some other popular types of probability distributions in Chap. 5.

Indeed, we do not forget that when we operate with records for random variables
with discrete distributions we are to use a technique, which differs from the method
that helps to work with records in the case of continuous distributions. The cor-
responding methods for discrete distributions are discussed in Chap. 6. In particular,
our reader will find here some important formulae for records generated by
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geometrically distributed random variables. Also she/he will understand the dif-
ference between strong and weak record values.

As mentioned above, sometimes we can deal with some record values x(1) < x
(2) < ⋯ < x(m) only (instead of all observations x1, x2, …, xn), and we must apply
this set of record observations to solve some statistical problems; for example, very
often we need estimating parameters of the sample distribution. This problem is
discussed in Chap. 7. Some useful methods which allow us to predict the values of
future records are also given there.

In one more part of the book (Chap. 8) our reader will find different charac-
terizations of distributions by properties of record values. Some characterizations
based on regression equalities for records, on independence properties of record
statistics, on some moment relations for record values are presented there.

Indeed, almost all formulae for distributions and moment characteristics of X(n),
L(n), N(n) are very complicate (especially under large values n). In this situation,
different limit theorems (when n tends to infinity) allow us to get the simple
asymptotic expressions for these distributions and the corresponding moments.
Different asymptotic results for distributions of records can be found in Chap. 9.

It was announced above that one of the reasons to write this book is to present
the new results for records. The great part of these results is connected with some
non-classical record schemes. We discuss the “fresh” record models in Chap. 10.
For example, records in the Fα

–scheme, records with restrictions, records with
confirmation and the so-called linear draft model are presented there.
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Chapter 2
Order Statistics

2.1 Order Statistics and Their Distributions

Let X1, X2,. . ., Xn, . . . be some random variables and let X1,n ≤ X2,n ≤ � � � ≤ Xn,n

denote the corresponding variational series based on random variables X1, X2,. . ., Xn.
Elements Xk,n, 1 ≤ k ≤ n, are called order statistics. Observed values of X1,n, X2,n,. . .,
Xn,n. we denote x1,n, x2,n,. . ., xn,n and call a realization of order statistics. Let us note
that

X1;n ¼ m nð Þ ¼ min X1;X2; . . .;Xnf g

and

Xn;n ¼ M nð Þ ¼ max X1;X2; . . .;Xnf g; n ¼ 1; 2; . . .:

In the classical theory of order statistics (see, for example, David and Nagaraja
(2003), Ahsanullah et al. (2013)) the initial X’s present independent and identically
distributed random variables. Below we in the most part of situations also will deal
with such types of random variables.

Hence consider now independent random variables X1, X2,. . ., Xn with some
common distribution function (d.f.) F. It enables us to consider the set {X1, X2,. . .,
Xn} as a sample of size n taken from the population distribution F. The set of the
observed values {x1, x2,. . ., xn} of random variables X1, X2,. . ., Xn is called a
realization of the sample. In this case elements Xk,n, 1 ≤ k ≤ n, that is order statistics
based on sample

X1; n �X2; n � . . . � Xn; n can be identified as order statistics from this d.f. F.
It follows from the definition of order statistics that

PfX1;n �X2;n � � � � �Xn;ng ¼ 1: ð2:1:1Þ

© Atlantis Press and the author(s) 2015
M. Ahsanullah and V.B. Nevzorov, Records via Probability Theory,
Atlantis Studies in Probability and Statistics 6,
DOI 10.2991/978-94-6239-136-9_2
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Moreover it is easy to show that if F is a continuous d.f. then equality (2.1.1) can
be sharpened and written as

P X1;n \X2;n \ � � � \Xn;n
� � ¼ 1: ð2:1:2Þ

Indeed, if X’s have a discrete d.f. then (2.1.2) is not true. Consider the corre-
sponding example in Exercises 2.1.1 and 2.1.2.

Exercise 2.1.1 Let X1, X2,. . ., Xn be independent random variables taking two
values 0 and 1 with probabilities ½. Find

pn ¼ P X1;n ¼ X2;n ¼ � � � ¼ Xn;n
� �

; n ¼ 1; 2; . . .;

to convince yourself that pn ≠ 0.

Exercise 2.1.2 Let X1, X2, X3 be independent random variables, having the geo-
metric distribution, that is

P X ¼ mf g ¼ 1� pð Þpm; m ¼ 0; 1; 2; . . . :

Find

P X1;3 \X2;3 \X3;3
� �

:

As one sees there are two cases (F is continuous and F is discrete) which need
different approach for writing distributions of order statistics.

Let us suppose below that X’s are independent random variables having a
common continuous d.f. F.

There are rather simple formulae for order statistics X1,n and Xn,n. Really,

Fn;n xð Þ ¼ P Xn;n � x
� � ¼ P X1 � x; . . .;Xn � xf g

¼ P X1 � xf g. . .P Xn � xf g ¼ Fn xð Þ; ð2:1:3Þ

where

F xð Þ ¼ P Xk � xf g; k ¼ 1; 2; . . .; n:

Analogously we obtain that

F1;n xð Þ ¼ P X1;n � x
� � ¼ 1� P X1;n [ x

� �
¼ 1� P X1 n [ x; . . .; Xn [ xf g ¼ 1� 1� F xð Þð Þn:

ð2:1:4Þ

Let us note that (2.1.3) and (2.1.4) are valid for any d.f. F (continuous and
discrete).
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Exercise 2.1.3 Find the joint d.f.

F1;n;n x; yð Þ ¼ P X1;n � x;Xn;n � y
� �

of order statistics X1,n and Xn,n.

Exercise 2.1.4 Consider the case when X1, X2,. . ., Xn are independent random
variables with probably different d.f.’s F1, F2,. . ., Fn and find in this case the d.f.’s
of m(n) = min{X1, X2,. . ., Xn} and M(n) = max{X1, X2,. . ., Xn}.

If our initial X’s have probability density function (pdf) f(x) then it is the fol-
lowing method to write the pdf fk,n(x) and d.f. Fk,n(x) of Xk,n, 1 ≤ k ≤ n. To find pdf
we must consider the situation, when one of our n X’s takes value x and exactly
k − 1 of the rest X’s are less than x. Thus we get easily that

fk;n xð Þ ¼ n!
ðk � 1Þ!ðn� kÞ! F xð Þð Þk�1 1� F xð Þð Þn�kf xð Þ: ð2:1:5Þ

Then

Fk;n xð Þ ¼
Zx
0

fk;n yð Þdy ¼ n!
ðk � 1Þ!ðn� kÞ!

Zx
0

F yð Þð Þk�1 1� F yð Þð Þn�kf yð Þdy

¼ IFðxÞ k; n� k þ 1ð Þ;
ð2:1:6Þ

where

Ix a; bð Þ ¼ 1
Bða; bÞ

Zx
0

ta�1 1� tð Þb�1dt

denotes the incomplete beta function.
Note that equality

Fk;n xð Þ ¼ IFðxÞ k; n� k þ 1ð Þ; ð2:1:7Þ

which is given here, was proved only for X’s having some pdf f(x).
What shall we do in the general situation? How to prove that (2.1.6) is valid for

any d.f. F? It appears that it is enough to take into account the following two facts.

(a) If we consider the uniform U(0,1) sample U1, U2,. . ., Un with

PfUk � xg ¼ x; 0\x\1; k ¼ 1; 2; . . .; n;
and the corresponding order statistics U1,n ≤ U2,n ≤ � � � ≤ Un,n, then it follows
from (2.1.7) that

2.1 Order Statistics and Their Distributions 9



P Uk;n � x
� � ¼ Ix k; n� k þ 1ð Þ; 0\x\1: ð2:1:8Þ

(b) Now if we compare the uniform Uk,n order statistics and the order statistics Xk,n

from any d.f. F(x), then it is known that Xk,n can be presented as follows:

G Uk;n
� � ¼ Xk;n in distributionð Þ; ð2:1:9Þ

where G is the inverse of F.
Hence it follows immediately from (a) and (b) that relation (2.1.7) is valid for

any d.f. F.
When we want to consider joint distributions of some order statistics we must

work with complicate expressions even in the case of small values of the sample
size n. There are rather simple formulae in the situations when the initial random
variables have some density function f(x). In this case the joint density function of
all order statistics X1,n, X2,n,. . ., Xn,n has the following form:

f1;2;...;n:n x1; x2; � � � ; xnð Þ ¼ n!
Yn
k¼1

f xkð Þ; �1\x1\x2\. . .\xn\1 ð2:1:10Þ

and

f1;2;...;n:n x1; x2; . . .; xnð Þ ¼ 0; otherwise:

It can be found from (2.1.10) that the joint pdf

fk 1ð Þ;k 2ð Þ;...;k rð Þ:n x1; x2; . . .; xrð Þ

of order statistics

Xk 1ð Þ;n; Xk 2ð Þ;n; . . .;Xk rð Þ;n;

where

1� k 1ð Þ\k 2ð Þ\ � � �\k rð Þ� n ;

is of the form

fk 1ð Þ;k 2ð Þ;...;k rð Þ:n x1; x2; . . .; xrð Þ ¼ n!Qrþ1

m¼1
ðkðmÞ � kðm� 1Þ � 1Þ!
Yrþ1

m¼1

F xmð Þ � F xm�1ð Þð Þk mð Þ�k m�1ð Þ�1
Yr
m¼1

f xmð Þ;

ð2:1:11Þ
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if x1 < x2 < � � � < xr, and fk(1),k(2),. . ., k(r):n (x1, x2,. . ., xr) = 0, otherwise.
In particular, if r = 2, 1 ≤ i < j ≤ n, and x1 < x2, then the joint pdf
fi,j:n (x1, x2) of two order statistics is given by the following equality:

fi;j:n x1; x2ð Þ ¼ n!
ði� 1Þ!ðj� i� 1Þ!ðn� jÞ!

F x1ð Þð Þi�1 F x2ð Þ � F x1ð Þð Þj�i�1 1� F x2ð Þð Þn�jf x1ð Þf x2ð Þ:
ð2:1:12Þ

To understand the level of complication of the formulae for the joint distribu-
tions in the general case we suggest our reader the corresponding expression for the
joint d.f. of two order statistics Xr,n and Xs,n, 1 ≤ r < s ≤ n (below x1 < x2):

Fr;s:n x1; x2ð Þ ¼
Xn
i¼r

Xn�i

j¼maxf0;s�ig

n!
i!j!ðn� i� jÞ! F x1ð Þð Þi F x2ð Þ � F x1ð Þð Þj 1� F x2ð Þð Þn�i�j:

ð2:1:13Þ

There are some situations when it is possible to get rather simple expressions for
joint distributions of order statistics. For example, if one considers probabilities

Pfy1\X1;n � x1; y2\X2;n � x2; � � � ; yn\Xn;n � xng

for any values

�1\ y1 \ x1 � y2 \ x2 � � � � � yn \ xn \1;

then it can be obtained that the corresponding equality has the form

Pfy1 \X1;n � x1; y2 \ X2;n � x2; . . .; yn \ Xn;n � xng
¼ n!

Yn
k¼1

F xkð Þ � F ykð Þð Þ: ð2:1:14Þ

Exercise 2.1.5 Let X1, X2,. . ., Xn be a sample of size n from a geometrically
distributed random variable X, such that

P X ¼ mf g ¼ 1� pð Þpm; m ¼ 0; 1; 2; . . .:

Find

PfX1;n � r; Xn;n \ sg; r\ s:
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2.2 The Classical Representations for Order Statistics

It was mentioned above that ordered random variables X1,n ≤ X2,n ≤ � � � ≤ Xn,n are
dependent. Indeed there exist essentially more methods in the probability theory to
work with independent variables than with dependent ones. Hence different pos-
sibilities to express dependent random variables in terms of independent values are
convenient for the future investigation. There are corresponding expressions for
some types of order statistics, which will be presented below. We give these results
without their proof, which can be found, for example in Ahsanullah et al. (2013).

In the sequel we will use the special notation U1,n ≤ � � � ≤ Un,n, n = 1, 2,. . ., for
the standard uniform order statistics (the case when X’s have d.f. F(x) = x,
0 ≤ x ≤ 1) and the notation Z1,n ≤ � � � ≤ Zn,n, n = 1, 2,. . ., for the standard
exponential order statistics (here F(x) = 1 − exp(−x), x ≥ 0).

Representation 1 The following expression is valid for the uniform order statistics
under any n = 1, 2,. . .:

U1;n; . . .;Un;n
� �¼d S1

Snþ1
. . .;

Sn
Snþ1

� �
; ð2:2:1Þ

where

Sn ¼ v1 þ v2 þ � � � þ vn; n ¼ 1; 2; . . .: ;

and ν1, ν2,. . . be independent random variables having the standard E(1) expo-
nential distribution.

Remark 2.2.1 Moreover, sometimes it can come in useful that for any n = 1, 2,. . .
the vector

S1

Snþ1
; . . .;

Sn

Snþ1

� �

and the sum Sn+1 are independent.

Remark 2.2.2 Representation 1 can be also rewritten in the following useful form:

U1;n; U2;n � U1;n; . . .;Un;n � Un�1;n
� �¼d v1

v1 þ � � � þ vnþ1
; . . .;

vn
v1 þ � � � þ vnþ1

� �
ð2:2:2Þ

Exercise 2.2.1 Show that the range

T 1; nð Þ ¼ M nð Þ � m nð Þ ¼ Un;n � U1;n;

has the same distribution as the order statistic Un−1,n.
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Representation 2 Using the same terms as above we can write that the equality

U1;n; . . .;Un;n
� �¼d S1; . . .; Snj Snþ1 ¼ 1ð Þ; ð2:2:3Þ

also holds, i.e., the distribution of the vector of uniform order statistics coincides
with the conditional distribution of the vector of sums S1,. . ., Sn given that Sn+1 = 1.

Representation 3 Let W1, W2,. . . be independent uniformly distributed on [0,1]
random variables. Then the next equality is true for any n = 1, 2,. . .:

U1;n;U2;n; . . .;Un;n
� �¼d W1W

1=2
2 . . .W1=ðn�1Þ

n�1 W1=n
n ; W1=2

2 . . .W1=ðn�1Þ
n�1 W1=n

n ; . . .; W1=n
n

� 	
:

ð2:2:4Þ
Exercise 2.2.2 Show that for any n = 2, 3,. . ., ratios

Vk ¼ Uk;n=Ukþ1;n
� �k

; k ¼ 1; 2; . . .; n;

where Un+1, n = 1, are independent and have the same uniform distribution on [0,1].

Now we will show that the exponential order statistics Zk,n also can be presented
in very convenient form.

Representation 4 Let again ν1, ν2,. . ., be independent random variables having
the standard E(1) exponential distribution. Then the following result holds for the
exponential order statistics and any n = 1, 2,. . .:

Z1;n; Z2;n; . . .; Zn;n
� �¼d m1

n
;
m1
n
þ m2
n� 1

; . . .;
m1
n
þ m2
n� 1

þ � � � þ mn�1

2
þ vn

� 	
:

ð2:2:5Þ
Remark 2.2.3 It follows from (2.2.5) that normalized differences

n� k þ 1ð Þ Zk;n � Zk�1;n
� �

; k ¼ 1; 2; . . .; n;

where Z0,n = 0, are independent and have the same exponential E(1) distribution.

Exercise 2.2.3 For exponential order statistics Z1,n, Z2,n,. . ., Zn,n show that statistics
Z1,n and

L ¼ n� 1ð ÞZn;n � Z1;n � Z2;n � � � � � Zn�1;n

are independent.

Our reader can ask if the useful representations exist for these two distributions
(standard uniform and standard exponential) only. Indeed, it is not difficult to
rewrite the corresponding relations for any representative of these families of
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distributions. The matter is that if X’s have some standard distribution (uniform or
exponential, as in our situations) then any Y’s which belong to the same family of
distributions can be expressed via X’s in the form Y = aX + b, where a > 0 and
−∞ < b < ∞, and the corresponding order statistics Yk,n can be presented as

Yk;n ¼ aXk;n þ b:

It means that all these representations can be rewritten easily for any uniform or
exponential distributions.

Moreover the given results for Uk,n and Zk,n can be rewritten for order statistics
from arbitrary distribution.

For any d.f. F we determine the inverse function

G sð Þ ¼ inf fx : F xð Þ� sg; 0\s\1: ð2:2:6Þ

Exercise 2.2.4 Let F(x) be a continuous d.f. of a random variable X. Show that in
this case

F G xð Þð Þ ¼ x; 0\x\1; ð2:2:7Þ

and it means that U = F(X) has the uniform distribution on interval [0,1].

Remark 2.2.4 Relation (2.2.7) above is true if F is any continuous d.f. Indeed, this
equality fails if F has jump points, since then the values of F(X), unlike U, do not
cover all interval [0,1]. But it is not difficult to show that the dual equality

G F xð Þð Þ ¼ x; 0\x\1; ð2:2:8Þ

holds for any x, where F(x) strongly increases. Thus, presentation

X¼d G Uð Þ; ð2:2:9Þ

holds for any random variable, while the dual equality

F Xð Þ¼d U ð2:2:10Þ

is valid for random variables with continuous distribution functions only.

Taking into account equalities (2.2.9) and (2.2.10) one can obtain the corre-
sponding relations which allow to represent any order statistics X1,n ≤ � � � ≤ Xn,n via
the uniform order statistics U1,n ≤ � � � ≤ Un,n.

Since d.f. F and its inverse G are monotone they don’t disturb the ordering of the
initial X’s. It enables us to get the following presentations which correspond to
equalities (2.2.9) and (2.2.10).
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Representation 5 If F is a continuous d.f. then

F X1;n
� �

; . . .; FðXn;nÞ
� �¼d U1;n; . . .;Un;n

� �
: ð2:2:11Þ

Representation 6 Let F be any d.f. and G be its inverse. Then the following
equality

X1;n; . . .;Xn;n
� �¼d G U1;n

� �
; . . .;G Un;n

� �� �
; ð2:2:12Þ

is true.

Let now X1,n ≤ � � � ≤ Xn,n and Y1,n ≤ � � � ≤ Yn,n be order statistics corresponding
to an arbitrary d.f. F and a continuous d.f. H. Let also G be as above the inverse of
F. Combining relations (2.2.11) for Y’s and (2.2.12) for X’s, one gets one more
important result.

Representation 7 The following equality ties two sets of order statistics:

X1;n; . . .;Xn;n
� �¼d G H Y1;n

� �� �
; . . .;G H Yn;n

� �� �� �
: ð2:2:13Þ

Example 2.2.1 For instance, if we compare arbitrary order statistics X1,n,. . ., Xn,n

and exponential order statistics Z1,n,. . ., Zn,n, then

H xð Þ ¼ 1� exp �xð Þ; x[ 0;

and (2.2.13) can be rewritten as

X1;n; . . .;Xn;n
� � ¼d G 1� exp �Z1;n

� �� �
; . . .;G 1� exp �Zn;n

� �� �� �
: ð2:2:14Þ

Remark 2.2.5 Indeed, the results analogous to (2.2.13) are valid for any monotone
increasing function R(x) (no necessity to suppose that R is a distribution function).
Namely, if

Xk ¼ R Ykð Þ; k ¼ 1; 2; . . .; n;

then the following relation is true:

X1;n; . . .;Xn;n
� � ¼d R Y1;n

� �
; . . .;R Yn;n

� �� �
: ð2:2:15Þ

If R is a monotone decreasing function, then the transformation R(Y) changes the
ordering of the original Y’s and we have the following equality:

X1;n; . . .;Xn;n
� � ¼d R Yn;n

� �
; . . .;R Y1;n

� �� �
: ð2:2:16Þ

2.2 The Classical Representations for Order Statistics 15



Thus, equalities (2.2.12) and (2.2.14) give opportunity to express any order
statistics via independent terms. The following example gives one of the possible
presentations.

Example 2.2.2 One can express distributions of arbitrary order statistics Xk,n

(related to some d.f. F) as follows. If G is the inverse of F and ν1, ν2,. . . are
independent exponentially E(1) distributed random variables, then

Xk;n ¼d G
v1 þ � � � þ vk
v1 þ � � � þ vnþ1

� �
¼d G 1� exp � v1

n
þ v2
n� 1

þ � � � þ vk
n� k þ 1

� �� �� �
;

k ¼ 1; 2; . . .; n:

ð2:2:17Þ
Exercise 2.2.5 Let X1,n,. . ., Xn,n be order statistics corresponding to the distribution
with the density

f xð Þ ¼ axa�1; 0\x\1; a[ 0: ð2:2:18Þ

Express the product Xr,n, Xs,n, 1 ≤ r < s ≤ n, in terms of independent uniformly
distributed random variables.

2.3 Moment Characteristics of Order Statistics

Let us recall equality (2.1.7), which gives the expression for distribution functions
Fk,n(x) of order statistics Xk,n:

Fk;n xð Þ ¼ IFðxÞ k; n� k þ 1ð Þ;

where

Ix a; bð Þ ¼ 1
Bða; bÞ

Zx
0

ta�1 1� tð Þb�1dt:

Taking into account this expression one can write immediately that formula for
moments

lðrÞk:n ¼ E Xk;n
� �r
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of order statistics Xk,n, related to a population with a d.f. F, is given as follows:

lðrÞk:n ¼
Z1
�1

xrdFk:n xð Þ

¼ n!
ðk � 1Þ!ðn� kÞ!

Z1
�1

xr F xð Þð Þk�1 1� F xð Þð Þn�kdF xð Þ
: ð2:3:1Þ

If F is continuous then this equality can be expressed as

lðrÞk:n ¼
n!

ðk � 1Þ!ðn� kÞ!
Z1
0

G uð Þð Þruk�1 1� uð Þn�kdu; ð2:3:2Þ

where G(u) is the inverse of F. For distributions with probability density function
f the RHS of (2.3.2) coincides with

n!
ðk � 1Þ!ðn� kÞ!

Z1
�1

xr F xð Þð Þk�1 1� F xð Þð Þn�kf xð Þdx: ð2:3:3Þ

Similar relations are valid for joint (product) moments of order statistics. For the
sake of simplicity we consider joint moments

lðrð1Þ;rð2ÞÞkð1Þ;kð2Þ:n ¼ E Xk 1ð Þ;n
� �rð1Þ

Xk 2ð Þ;n
� �rð2Þ

; 1� k 1ð Þ\k 2ð Þ� n;

of two order statistics only.
For absolutely continuous distributions one gets that

lðrð1Þ;rð2ÞÞkð1Þ;kð2Þ:n ¼ cðr 1ð Þ; r 2ð Þ; nÞ
Z1
�1

Z1
�1

xrð1Þyrð2Þ F xð Þð Þr 1ð Þ�1 F yð Þ � F xð Þð Þr 2ð Þ�r 1ð Þ�1

1� F yð Þð Þn�rð2Þf xð Þf yð Þdxdy;
ð2:3:4Þ

where

c r 1ð Þ; r 2ð Þ; nð Þ ¼ n!
ðrð1Þ � 1Þ!ðrð2Þ � rð1Þ � 1Þ!ðn� rð2ÞÞ! : ð2:3:5Þ
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In the general case (for any d.f. F) we have the following expression:

lðrð1Þ;rð2ÞÞkð1Þ;kð2Þ:n ¼ cðr 1ð Þ; r 2ð Þ; nÞ
Z1
�1

Z1
�1

xrð1Þyrð2Þ F xð Þð Þr 1ð Þ�1 F yð Þ � F xð Þð Þr 2ð Þ�r 1ð Þ�1

1� F yð Þð Þn�rð2ÞdF xð ÞdF yð Þ;
ð2:3:6Þ

where coefficients c(r(1), r(2),n) are defined in (2.3.5). Below we will use the
following notations also:

lk:n ¼ EXk:n

will be applied for the sake of simplicity instead of lð1Þk:n; μk(1),k(2):n = EXk(1),n Xk(2),n

will change lð1;1Þkð1Þ;kð2Þ:n;

Var Xk;n
� � ¼ lð2Þk:n � ðlk:nÞ2

will denote the variance of Xk,n;

cov Xr;n;Xs;n
� � ¼ lr;s:n � lr:nls:n

will be used for the covariance between Xr,n and Xs,n.
It is interesting to find the corresponding conditions, which provide the existence

of different moments of order statistics.

Example 2.3.1 Let there exist the population moment αr = EXr, i.e.,

E Xj jr¼
Z1
�1

xj jrdF xð Þ\1: ð2:3:7Þ

Then due to (2.3.1) we obtain that

E Xk;n



 

r � n!
ðk � 1Þ!ðn� kÞ!

Z1
�1

xj jr F xð Þð Þk�1 1� F xð Þð Þn�kdF xð Þ

� n!
ðk � 1Þ!ðn� kÞ!

Z1
�1

xj jrdF xð Þ ¼ n!
ðk � 1Þ!ðn� kÞ!E Xj jr\1:

ð2:3:8Þ
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It follows from (2.3.8) that the existence of the moment αr implies the existence
of all moments

E Xk;n



 

r; 1� k� n; n ¼ 1; 2; . . .

of order statistics Xk,n.

Remark 2.3.1 It is not difficult to prove that if

E Xj jr¼ 1

for some r, then for any n = 1, 2,. . . there exists such order statistic Xk,n that

E Xk;n



 

r¼ 1:

Remark 2.3.2 Since

PfXs;n �Xk;n �Xm;ng ¼ 1

for any s < k < m, one has the evident inequality

E Xk;n



 

r �E Xs;n



 

rþ Xm;n



 

r� �
:

Hence, if E|Xk,n|
r = ∞, then at least one of equalities E|Xs,n|

r = ∞ or
E|Xm,n|

r =∞ is valid. It means that if E|Xk,n|
r =∞, then at least one of the following

relations hold:

E X1;n


 

r¼ E X2;n



 

r¼ . . . ¼ E Xk�1;n


 

r¼ 1

or

E Xkþ1;n


 

r¼ E Xkþ2;n



 

r¼ . . . ¼ E Xn;n



 

r¼ 1:

Exercise 2.3.1 Let X’s have the Cauchy distribution with the density function

f xð Þ ¼ 1
pð1þ x2Þ :

Show that for any r = 1, 2,. . ., relation

E Xk;n



 

r\1

holds if r < k < n − r + 1.
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Remark 2.3.3 The more general situation than one given in Exercise 2.3.1 was
considered by Sen (1959).

Let E|X|α < ∞. It appears that then moments lðrÞk:n exist for all k such that

r=a� k� n� r þ 1ð Þ=a:

Some useful relations for moments one can obtain from the evident identity

X1;n þ � � � þ Xn;n ¼ X1 þ � � � þ Xn ð2:3:9Þ

and related equalities. For instance, the simplest corollary of (2.3.9) is as follows:

E X1;n þ � � � þ Xn;n
� � ¼ E X1 þ � � � þ Xnð Þ ¼ nEX: ð2:3:10Þ

Natural generalizations of (2.3.10) have the form

g
Xn
k¼1

h Xk;n
� � !

¼ g
Xn
k¼1

h Xkð Þ
 !

; ð2:3:11Þ

where g(x) and h(x) are arbitrary functions.

Example 2.3.2 The corresponding equalities based on (2.3.11) can be useful in
some situations:

E
Xn
k¼1

Xm
k;n

 !r

¼ E
Xn
k¼1

Xm
k

 !r

; m ¼ 1; 2; . . .; r ¼ 1; 2; . . .: ð2:3:12Þ

If r = 1 we get from (2.3.12) that the equality

Xn
k¼1

EXm
k;n ¼

Xn
k¼1

EXm
k ¼ nEXm ð2:3:13Þ

holds for any m provided that the corresponding moment EXm exists.

It is not difficult to understand that the representations of the uniform and
exponential order statistics via sums or products of independent random variables
given above allow us to find rather easily single and joint moments of these
statistics.

Consider the case of the uniform U([0,1]) distribution and the corresponding
order statistics Uk,n. From Representation 1 and Remark 2.2.1 we know that

Uk;n ¼d Sk

Snþ1
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and Sk=Snþ1 is independent on the sum Sn+1 = ν1 + ν2 + . . . + νn+1,where ν1, ν2,. . .
be independent random variables having the standard E(1) exponential distribution.

Then

E Uk;n
� �a¼ E Sk

Snþ1

� �a

:

Now due to the independence of Sk=Snþ1 and Sn+1 we have the following
relation:

E Skð Þa¼ E Sk

Snþ1
Snþ1

� �a

¼ E Sk

Snþ1

� �a

EðSnþ1Þa:

Thus,

E Sk

Snþ1

� �a

¼ EðSkÞa=EðSnþ1Þa:

Now we must recall that Sm has gamma distribution with parameter m and hence

E Smð Þa¼ 1
ðm� 1Þ!

Z1
0

xaþm�1e�xdx ¼ Cðaþ mÞ=C mð Þ;m ¼ 1; 2; . . . :

Here Γ(s) denotes gamma function with parameter s.
Finally,

E Uk;n
� �a¼ Cðaþ kÞCðnþ 1Þ

CðkÞCðaþ nþ 1Þ ¼
n!Cðaþ kÞ

ðk � 1Þ!Cðaþ nþ 1Þ ð2:3:14Þ

Note that (2.3.14) is true for any α > − k.
Now we can use Representation 3 to get joint (product) moments of the uniform

order statistics. It follows from this representation, where W1, W2,. . . are inde-
pendent uniformly U([0,1]) distributed random variables, that

EUr;nUs;n ¼ E W1=r
r W1=ðrþ1Þ

rþ1 . . .W1=n
n W1=s

s W1=ðsþ1Þ
sþ1 . . .W1=n

n

� 	
¼ E W1=r

r

� 	
E W1=ðrþ1Þ

rþ1

� 	
. . .E W2=s

s

� 	
E Wsþ1ð Þ2=ðsþ1Þ. . .E W2=n

n

� 	

¼
Ys�1

k¼r

1
ð1þ 1=kÞ

Yn
k¼s

1
ð1þ 2=kÞ ¼

rðsþ 1Þ
ðnþ 1Þðnþ 2Þ :

ð2:3:15Þ

for any 1 ≤ r < s ≤ n.
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Remark 2.3.4 Indeed, Representation 3 allows us to get also more complicate joint
moments of any order for any number of the uniform order statistics. Taking into
account equality (2.3.14) we can fix the following important partial cases:

EUk;n ¼ k
nþ 1

; 1� k� n; ð2:3:16Þ

E 1=Uk;n
� � ¼ n

k � 1
; 2� k� n; ð2:3:17Þ

E Uk;n
� �2¼ kðk þ 1Þ

ðnþ 1Þðnþ 2Þ ; 1� k� n: ð2:3:18Þ

In general form, for r = 1, 2,. . ., we have

E Uk;n
� �r¼ kðk þ 1Þ. . .ðk þ r � 1Þ

ðnþ 1Þðnþ 2Þ. . .ðnþ rÞ ; 1� k� n: ð2:3:19Þ

It follows from (2.3.16) and (2.3.18) that

Var Uk;n
� � ¼ kðn� k þ 1Þ

ðnþ 1Þ2ðnþ 2Þ ; 1� k� n: ð2:3:20Þ

Taking into account equality (2.3.15) one gets that

Cov Ur;n;Us;n
� � ¼ EUr;nUs;n � EUr;nEUs;n ¼ rðn� sþ 1Þ

ðnþ 1Þ2ðnþ 2Þ ; r� s: ð2:3:21Þ

Now from (2.3.20) and (2.3.21) we obtain the corresponding expression for cor-
relation coefficients of the uniform order statistics:

q Ur;n;Us;n
� � ¼ rðn� sþ 1Þ

sðn� r þ 1Þ
� �1=2

; r� s: ð2:3:22Þ

Exercise 2.3.2 Find the variance of 1/Uk,n.

Exercise 2.3.3 Find product moments

EðUa
r;nU

b
s;nÞ; a� 0; b� 0:

Let us consider now order statistics Z1,n ≤ Z2,n ≤ � � � ≤ Zn,n, n = 1, 2,. . ., which
correspond to the standard E(1) exponential distribution with d.f.
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H xð Þ ¼ 1� exp �xð Þ; x[ 0:

Let us recall Representation 4:

Z1;n; Z2;n; . . .; Zn;n
� �¼d m1

n
;
m1
n
þ m2
n� 1

; . . .;
m1
n
þ m2
n� 1

þ � � � þ mn�1

2
þ mn

� 	
;

where ν1, ν2,. . ., νn are independent random variables having the standard E(1)
exponential distribution.

One immediately gets applying this result that

EZk;n ¼ E
m1
n
þ m2
n� 1

þ � � � þ mk
n� k þ 1

� �
¼
Xk
r¼1

1
n� r þ 1

ð2:3:23Þ

and

Var Zk;n
� � ¼Xk

r¼1

Var
mr

n� r þ 1

� �
¼
Xk
r¼1

1

ðn� r þ 1Þ2: ð2:3:24Þ

Exercise 2.3.4 Applying Representation 4 find now covariances between order
statistics Zr,n and Zs,n.

Calculations of the integral

n!
ðk � 1Þ!ðn� kÞ!

Z1
0

xa 1� e�xð Þk�1e�xðn�kþ1Þdx

also allow us to get moments

E Zk;n
� �a

; k ¼ 1; 2; . . .; n:

We obtain after the corresponding calculations that

E Zk;n
� �a¼ n!

ðk � 1Þ!ðn� kÞ!
Xk�1

r¼0

�1ð Þr k�1
r

� �
Cðaþ 1Þ= n� k þ r þ 1ð Þðaþ1Þ:

ð2:3:25Þ

For instance, if k = 1, then

E Z1;n
� �a¼ Cðaþ 1Þ=na; a[�1: ð2:3:26Þ

For k = 2 and α > −1 we have
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E Z2;n
� �a¼ n n� 1ð ÞCðaþ 1Þf n� 1ð Þ�ðaþ1Þ�n�ðaþ1Þg: ð2:3:27Þ

Indeed, one of the most important distributions in the probability theory is
normal. Let now X1, X2,. . . be independent random variables having the standard
N(0,1) normal distribution and X1,n ≤ � � � ≤ Xn,n be the corresponding normal order
statistics.

One can write immediately that

EXr
k;n ¼

n!
ðk � 1Þ!ðn� kÞ!

Z1
�1

xrUk�1 xð Þð1� U xð ÞÞn�ku xð Þdx; ð2:3:28Þ

where

u xð Þ ¼ 1ffiffiffiffiffiffi
2p

p exp �x2=2
� �

and

U xð Þ ¼
Zx
�1

u tð Þdt:

There are some effective numerical methods to compute integrals (2.3.28).
Unlike the uniform and exponential cases moments of the normal order statistics
have the explicit expressions for small sample sizes n only.

Example 2.3.3 Consider the case n = 2. We get that

EX2;2 ¼ 2
Z1
�1

xU xð Þu xð Þdx ¼ �2
Z1
�1

U xð Þdðu xð ÞÞ

¼ 2
Z1
�1

u2 xð Þdx ¼ 1
p

Z1
�1

exp �x2
� �

dx ¼ 1ffiffiffi
p

p :

From the identity

E X1;2 þ X2;2
� � ¼ E X1 þ X2ð Þ ¼ 0

we obtain now that

EX1;2 ¼ �EX2;2 ¼ � 1ffiffiffi
p

p :
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Remark 2.3.5 If we have two samples X1, X2,. . ., Xn (from the standard N(0,1)
normal distribution) and Y1, Y2,. . ., Yn (from the normal N(a,σ2) distribution with
expectation a and variance σ2, σ > 0), then evidently

EYk;n ¼ aþ rXk;n:

Exercise 2.3.5 Let X1,3 ≤ X2,3 ≤ X3,3 be the order statistics corresponding to
the standard normal distribution. Find expectations EXk,3 and variances Var(Xk,3),
k = 1, 2, 3.

The explicit expressions for moments of the normal order statistics are rather
complicated, although the normal distribution possesses a number of useful prop-
erties, which can simplify the computational schemes in some situations.

Example 2.3.4 A lot of statistical procedures for the normal distribution are based
on the independence property of vector

ðX1 � �X;X2 � �X; . . .;Xn � �XÞ

and the sample mean

�X ¼ X1 þ X2 þ � � � þ Xnð Þ=n:

This property yields also the independence of vector

ðX1;n � �X;X2;n � �X; . . .;Xn;n � �XÞ

and the sample mean �X.

Let X1, X2,. . ., Xn be a sample from the standard normal distribution. We see then
that

EðXk;n � �XÞ�X ¼ EðXk;n � �XÞE�X ¼ 0 ð2:3:29Þ

and we obtain the following results:

EXk;n�X ¼ Eð�X2Þ ¼ Var �X ¼ 1=n; k ¼ 1; 2; . . .; n; ð2:3:30Þ

and hence

Xn
m¼1

EXk;nXm ¼ 1; ð2:3:31Þ
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as well as

Xn
m¼1

EXk;nXm;n ¼ 1: ð2:3:32Þ

As corollaries of (2.3.31) one gets that

E Xk;nXm
� � ¼ 1=n ð2:3:33Þ

and

cov Xk;n;Xm
� � ¼ E Xk;nXm

� �� EXk;nEXm ¼ 1=n ð2:3:34Þ

for any k = 1, 2,. . ., n, m = 1, 2,. . ., n and n = 1, 2,. . ..
Note that there are different tables (see, for example, Teichroew (1956) or

Tietjen et al. (1977)) which give expected values and some other moments of order
statistics for samples of large sizes from the normal distribution.

2.4 Extremes

For any person who wants to study records it is necessary to know the theory of the
extreme order statistics.

Order statistics Xk(n),n are said to be extreme if k = k(n) or n − k(n) + 1 is fixed, as
n → ∞. The most popular are maximal order statistics Xn,n and minimal order
statistics X1,n.

It is not difficult to see that if we have two sequences Y1 = −X1,
Y2 = −X2,. . ., Yn = −Xn then the following equalities hold for any k = 1, 2,. . ., n:

Xn�kþ1;n ¼d �Yk;n; ð2:4:1Þ

and, in particular, in this case

Xn;n ¼d �Y1;n: ð2:4:2Þ

Due to these relationships between maximal and minimal order statistics we can
study one type of them only, say, maximal ones.

Very often we need to know asymptotic distributions of X1,n and Xn,n, as
n → ∞.

Consider a sequence of order statistics M(n) = Xn,n, n = 1, 2,. . .. Let F(x) be the
distribution function of X and
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b ¼ sup x : F xð Þ\1f g

be the right end point of the support of X. If β = ∞, then for any finite x one gets
that F(x) < 1 and hence

PfM nð Þ� xg ¼ F xð Þð Þn! 0; as n ! 1:

It means that M(n) converges to infinity. In the case, when β < ∞, we need to
distinguish two situations. If

PfX ¼ bg ¼ p[ 0;

then

PfM nð Þ ¼ bg ¼ 1� PfM nð Þ\bg ¼ 1�PnðX\bÞ ¼ 1� 1� pð Þn

and

PfM nð Þ ¼ bg ! 1; as n ! 1: ð2:4:3Þ

If P{X = β} = 0, then we get that P{M(n) < β} = 1 for any n and M(n) → β in
distribution. Thus, we see that in all situations M(n) → β in distribution. This result
can be sharpened if we consider the asymptotic distributions of the centered and
normalized order statistics Xn,n. Indeed, if β < ∞ and P{X = β} > 0, then relation
(2.4.3) gives completed information on M(n) and in this case any centering and
normalizing can not improve our knowledge about the asymptotic behavior of M
(n). We have another situation if P{X = β} = 0. In this case one can try to solve the
following problem: if there exist any centering (an) and norming (bn) constants,
such that the sequence (M(n) − an)/bn converges to some nondegenerate distribu-
tion? Let us solve firstly the following exercises.

Exercise 2.4.1 Consider the exponential distribution with d.f. F(x) = 1 − exp(−x),
x ≥ 0. Show that in this case M(n) − log n converges to some nondegenerate
distribution with d.f.

H0 xð Þ ¼ exp � exp �xð Þð Þ: ð2:4:4Þ
Exercise 2.4.2 Consider X’s with d.f.

F xð Þ ¼ 1� �xð Þa;�1\ x\ 0; a [ 0;

and prove that the asymptotic distribution of n1/αM(n) has the following form:

H1;a xð Þ ¼ exp ð� �xð ÞaÞ;�1\ x � 0;

and
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H1;a xð Þ ¼ 1; x [ 0: ð2:4:5Þ
Exercise 2.4.3 Let X’s have Pareto distribution with d.f.

F xð Þ ¼ 1� x�a; x[ 1; a[ 0:

Prove that the asymptotic d.f. of M(n)/n1/α is of the form:

H2;a xð Þ ¼ 0; x\0;

and

H2;a xð Þ ¼ exp �x�af g; x� 0: ð2:4:6Þ
Remark 2.4.1 Changing suitably the normalized constants an and bn for maximal
values considered in Exercises 2.4.1–2.4.3, one gets that any d.f. of the form
H0(a + bx), H1,α(a + bx), H2,α(a + bx), where α > 0, b > 0 and a are arbitrary
constants, can serve as the limit distribution for

M nð Þ�anð Þ=bn:

Considering two d.f.’s, H(d + cx) and H(a + bx), where b > 0 and c > 0, we say
that these d.f.’s belong to the same type of distributions. Any distribution of the
given type can be obtained from other distribution of the same type by some linear
transformation.

Usually one of distributions, say H(x), having the most simplest (or convenient)
form, is chosen to represent all the distributions of the given type, which we call
then H-type. As basic for their own types, we suggested above the following
distributions:

H0 xð Þ ¼ exp � exp �xð Þð Þ;
H1;a xð Þ ¼ exp ð� �xð ÞaÞ; �1\x � 0; and H1;a xð Þ ¼ 1; x [ 0;

H2;a xð Þ ¼ 0; x\ 0; and H2;a xð Þ ¼ expf�x�ag; x � 0;

where α > 0.
Very often one can find that the types of distributions based on H0(x),

H1,α(x) and H2,α(x) are named correspondingly as Gumbel, Frechet and Weibull
types of the limiting extreme value distributions.

Note also that any two of d.f.’s H1,α and H1,β, α ≠ β, do not belong to the same
type, as well as d.f.’s H2,α and H2,β, α ≠ β.

There are considered above three situations when we can get d.f.’s (2.4.4)–
(2.4.6) as the limit d.f.’s for the normalized order statistics Xn,n.

It is surprising that there are none of other non-degenerate distributions, besides
of H0(x)-, H1,α(x)- and H2,α(x)—types, which would be limit for the suitably cen-
tering and norming maximal values.
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Remark 2.4.2 It appeared that the set of all possible non-degenerate limit distri-
butions for maximal values includes only the types generated by d.f.’s H0, H1,α and
H2,α only. Now it is important for us to know what d.f.’s F belong to the domains of
attraction (D(H0), D(H1,α) and D(H2,α)) of the corresponding limit laws. We write
that F 2 D(H), if the suitably normalized maximal values M(n), based on X’s with a
common d.f. F, have the limit d.f. H. For instance, it follows (from the results of
Exercises 2.4.1–2.4.3 and Remark 2.4.1) that if

F xð Þ ¼ 1� exp �xð Þ; x[ 0;

then F2D(H0);
if X’s are the uniformly U([a,b]) distributed random variables with

F xð Þ ¼ x� að Þ= b� að Þ; a\x\b;

then F 2 D(H1,1)
and if

F xð Þ ¼ 1� x�a; x[ 1

(Pareto distribution), then F 2 D(H2,α).

There are necessary and sufficient conditions for F to belong D(H0), D(H1,α) and
D(H2,α) but the form of these conditions is rather cumbersome. Hence, simple
sufficient conditions are more interesting for us. We present below some of them.

Theorem 2.4.1 Let d.f. F have positive derivative F′ for all x > x0. If the following
relation is valid for some α > 0:

xF 0 xð Þ= 1� F xð Þð Þ ! a; ð2:4:7Þ

as x → ∞, then F 2 D(H2,α). The centering, an, and normalizing, bn, constants can
be taken to satisfy relations an = 0 and F(bn) = 1 − 1/n.

Theorem 2.4.2 Let d.f. F have positive derivative F′ for x in some interval (x1, x0)
and F′(x) = 0 for x > x0. If

x0 � xð ÞF0 xð Þ= 1� F xð Þð Þ ! a; x ! x0; ð2:4:8Þ

then F 2 D(H1,α). The centering, an, and normalizing, bn, constants can be taken to
satisfy relations an = x0 and F(x0 − bn) = 1 − 1/n.

Theorem 2.4.3 Let d.f. F have negative second derivative F′′(x) for x in some
interval (x1, x0), and let F′(x) = 0 for x > x0. If

F00 xð Þ 1� F xð Þð Þ=ðF0 xð ÞÞ2 ¼ �1; ð2:4:9Þ
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then F 2 D(H0). The centering, an, and normalizing, bn, constants can be taken to
satisfy relations F(an) = 1 − 1/n and bn = h(an), where

h xð Þ ¼ 1� F xð Þð Þ=F0 xð Þ:
Exercise 2.4.4 Let

F xð Þ ¼ 1
2
þ 1
p
arctan x

(the Cauchy distribution). Prove that in this situation

F 2 D H2;1
� �

:

What normalizing constants, an and bn, can be taken in this case?

Exercise 2.4.5 Let

F xð Þ ¼ 1ffiffiffiffiffiffi
2p

p
Zx
�1

exp �t2=2
� �

dt:

Show that
F 2 D H0ð Þ

and the normalizing constants can be taken as follows:

an ¼ ð2 log n� log log n� log 4pÞ1=2and bn ¼ 2 log nð Þ1=2:
Exercise 2.4.6 Use Theorem 2.4.2 and find the limit distribution and the corre-
sponding normalizing constants for gamma distribution with p.d.f.

f xð Þ ¼ xa�1 exp �xð Þ=C að Þ; x[ 0; a[ 0:

Returning to relations (2.4.1) and (2.4.2) one can find the possible types of limit
distributions for minimal values

m nð Þ ¼ min X1; . . .;Xnf g:

It appears that the corresponding set of non-degenerate asymptotic d.f.’s for the
suitably normalized minimal values are defined by the following basic d.f.’s:

L0 xð Þ ¼ 1� exp � exp xð Þð Þ; ð2:4:10Þ

L1;a xð Þ ¼ 0; x\0; and L1;a xð Þ ¼ 1� exp ð�xaÞ; 0� x\1; ð2:4:11Þ

L2;a xð Þ ¼ 1� expf� �xð Þ�ag; x\0; and L2;a xð Þ ¼ 1; x� 0; ð2:4:12Þ

where α > 0.
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Above we considered the situation with the asymptotic behavior of extremes Xn,n

and X1,n. Analogous methods can be applied to investigate the possible asymptotic
distributions of the kth extremes—order statistics Xn−k+1,n and Xk,n, when k = 2, 3,
. . . is some fixed number and n tends to infinity. The following results are valid in
these situations.

Theorem 2.4.4 Let random variables X1, X2,. . . be independent and have a
common d.f. F and Xn−k+1,n, n = k, k + 1,. . ., be the (n − k + 1)th order statistics. If
for some normalizing constants an and bn,

P Xn;n�an
� �

=bn\x
� �! H xð Þ

in distribution, as n → ∞, then the limit relation

P Xn�kþ1;n�an
� �

=bn\x
� �! H xð Þ

Xk�1

j¼0

� log H xð Þð Þj=j! ð2:4:13Þ

holds for any x, as n → ∞.

Theorem 2.4.5 Let random variables X1, X2,. . . be independent and have a
common d.f. F and Xk,n, n = k, k + 1,. . ., be the kth order statistics. If for some
normalizing constants an and bn,

P X1;n � an
� �

=bn\x
� �! L xð Þ; n ! 1;

in distribution, then the limit relation

P Xk;n � an
� �

=bn\x
� �! L xð Þ

Xk�1

j¼0

� log L xð Þð Þj=j! ð2:4:14Þ

is valid for any x, as n → ∞.

2.5 Order Statistics and Ranks

In Chap. 1 we mentioned that a random sample X1, X2,. . ., Xn is accompanied by the
corresponding vector of ranks (R(1), R(2),. . ., R(n)), where

R mð Þ ¼
Xn
k¼1

1fXm �Xkg;m ¼ 1; 2; . . .; n: ð2:5:1Þ
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The following relations are valid for ranks and order statistics:

R mð Þ ¼ kf g ¼ Xm ¼ Xk;n
� �

; m ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; n: ð2:5:2Þ

If X’s are proposed to have a continuous distribution then different X’s can
coincide with zero probability and (2.5.1) can be rewritten in the following form:

R mð Þ ¼ 1þ
Xn
k¼1

1fXm [Xkg: ð2:5:3Þ

These ranks show the location of X’s among the elements of the variational
series

X1;n �X2;n � . . .�Xn;n:

We can write also that

Xm ¼ XR mð Þ;n; m ¼ 1; 2; . . .; n: ð2:5:4Þ

Consider the case when X’s have a continuous distribution. Then any rank R(m),
m = 1, 2,. . ., n, has the discrete uniform distribution on set {1, 2,. . ., n}. Really, we
know that random variables X1, X2,. . ., Xn taken from a continuous distribution have
no coincidences with probability one. Hence, realizations (r(1),. . ., r(n)) of the
corresponding vector of ranks (R(1), R(2),. . ., R(n)) represent all permutations of
values 1, 2,. . ., n. Any realization (r(1),. . ., r(n)) corresponds to the event

ðXd 1ð Þ\Xd 2ð Þ\ � � �\Xd nð ÞÞ;

where δ(r(k)) = k. Taking into account the symmetry of the sample X1, X2,. . ., Xn,
one obtains that events

ðXd 1ð Þ\Xd 2ð Þ\ � � �\Xd nð ÞÞ

have the same probabilities for any permutations (δ(1),. . ., δ(n)) of numbers 1,
2,. . ., n. Hence

P R 1ð Þ ¼ r 1ð Þ;R 2ð Þ ¼ r 2ð Þ; . . .;R nð Þ ¼ r nð Þf g
¼ PfðXd 1ð Þ \Xd 2ð Þ \ � � � \Xd nð ÞÞg ¼ 1=n!

ð2:5:5Þ

for any permutation (r(1),. . ., r(n)) of numbers 1, 2,. . ., n. It follows now from
(2.5.5) that
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P R mð Þ ¼ kf g ¼ 1=n

for any fixed m = 1, 2,. . ., n and k = 1, 2,. . ., n.
Indeed, ranks R(1), R(2),. . ., R(n) are dependent random variables for any

n = 2, 3,. . .. This dependence is approved by the evident equality

R 1ð Þ þ R 2ð Þ þ � � � þ R nð Þ ¼ 1þ 2þ � � � þ n ¼ n nþ 1ð Þ=2;

but it follows from (2.5.5) that ranks present exchangeable random variables: for
any permutation (α(1), α(2),. . ., α(n)) of numbers 1, 2,. . ., n vectors (R(α(1)),. . .,
R(α(n))) and (R(1),. . ., R(n)) have the same distributions.

Exercise 2.5.1 Find expectations and variances of R(k), 1 ≤ k ≤ n, covariances
Cov(R(k), R(m)) and the correlation coefficients ρ(R(k), R(m)) between R(k) and
R(m), 1 ≤ k < m ≤ n.

Above we mentioned that any realization (r(1),. . ., r(n)) of (R(1), R(2),. . ., R(n))
corresponds to the event

ðXd 1ð Þ\Xd 2ð Þ\ � � �\Xd nð ÞÞ;

where δ(r(k)) = k. Here δ(k) denotes the index of X, the rank of which for this
realization takes on the value k. For different realizations of the vector (R(1), R
(2),. . ., R(n)), δ(k) can take on different values from the set {1, 2,. . ., n} and we really
deal with new random variables, with realizations as δ(r(1)), δ(r(2)),. . ., δ(r(n)).

Let as above X1, X2,. . ., Xn be a random sample of size n taken from a continuous
distribution and X1,n, X2,n,. . ., Xn,n be the corresponding order statistics. We
introduce random variables Δ(1), Δ(2),. . ., Δ(n), which satisfy the following
equalities:

fD mð Þ ¼ kg ¼ Xm; n ¼ Xk
� �

;m ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; n: ð2:5:6Þ

These random variables are said to be antiranks.
The same arguments, which we used for ranks, show that any realization (δ(1),

δ(2),. . ., δ(n)) of the vector (Δ(1), Δ(2),. . ., Δ(n)) is a permutation of numbers
1, 2,. . ., n and all n! such realizations have equal probabilities, 1/n! each.

Indeed, vectors of antiranks are tied closely with the corresponding order sta-
tistics and vectors of ranks. In fact, for any k and m equalities

fD kð Þ ¼ mg ¼ Xk; n ¼ Xm
� � ¼ R mð Þ ¼ kf g ð2:5:7Þ

hold with probability one. One can write also the following relations for ranks
and antiranks:
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D R mð Þð Þ ¼ m ð2:5:8Þ

and

RðD mð ÞÞ ¼ m; ð2:5:9Þ

which hold with probability one for any m = 1, 2,. . ., n.

Exercise 2.5.2 Find the joint distribution of Δ(1) and R(1).

While ranks and antiranks are associated with some random sample X1, X2,. . .,
Xn of some fixed size n, there are rank statistics (the so-called sequential ranks),
which characterize a sequence of random variables X1, X2, . . ..

Let X1, X2, . . . be independent random variables, having continuous (not nec-
essary identical) distributions. Random variables ρ(1), ρ(2),. . . given by equalities:

q mð Þ ¼
Xm
k¼1

1fXm �Xkg;m ¼ 1; 2; . . .; ð2:5:10Þ

are said to be sequential ranks.
Any sequential rank ρ(m) shows the position of a new coming observation Xm

among its predecessors X1, X2,. . ., Xm−1. For instance, if ρ(m) = 1, then Xm is less
than X1, m−1 and it means that

Xm ¼ X1;m:

In general, ρ(m) = k implies that

Xm ¼ Xk;m:

It is not difficult to see that ρ(m) can take on the values 1, 2,. . ., m. If independent
random variables X1, X2,. . ., Xm have the same continuous distribution then the
standard arguments used above enable us to see that for any m = 1, 2,. . .,

Pfq mð Þ ¼ kg ¼ P Xm ¼ Xk;m
� � ¼ 1=m; k ¼ 1; 2; . . .;m: ð2:5:11Þ

Exercise 2.5.3 Let X1, X2, . . . be independent random variables with a common
continuous d.f. F. Prove that the corresponding sequential ranks ρ(1), ρ(2),. . . are
independent.

Note that if ρ(m) = m than it means that Xm = Xm,m and
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Xm [max X1;X2; . . .;Xm�1f g: ð2:5:12Þ

Some later it will stay clear that (2.5.12) defines that Xm is the upper record value
in the sequence X1, X2, . . ..

2.6 Exercises (solutions)

Exercise 2.1.1 (solution) There are two situations here when X1,n and Xn,n can be
equal: all X’s are equal 0 and all X’s are equal 1. Hence

pn ¼ P X1 ¼ X2 ¼ . . . ¼ Xn ¼ 0f g þ P X1 ¼ X2 ¼ . . . ¼ Xn ¼ 1f g ¼ 1=2n þ 1=2n

¼ 1=2n�1

Exercise 2.1.2 (solution) In this situation the necessary probability can be written
as follows:

P X1;3\X2;3\X3;3
� � ¼ 1� P X1 ¼ X2 6¼ X3f g � P X1 ¼ X3 6¼ X2f g � P X2 ¼ X3 6¼ X1f g � P X1 ¼ X2 ¼ X3f g

¼ 1� 3P X1 ¼ X2 6¼ X3f g � P X1 ¼ X2 ¼ X3f g
¼ 1� 3 P X1 ¼ X2f g � PfX1 ¼ X2 ¼ X3gð Þ � P X1 ¼ X2 ¼ X3f g
¼ 1� 3P X1 ¼ X2f g þ 2P X1 ¼ X2 ¼ X3f g:

It is not difficult to find that

P X1 ¼ X2f g ¼ 1� pð Þ2= 1� p2
� �

and

P X1 ¼ X2 ¼ X3f g ¼ 1� pð Þ3= 1� p3
� �

:

Thus one gets the final expression:

P X1;3\X2;3\X3;3
� � ¼ 6p3= 1þ pð Þ 1þ pþ p2

� �
:

Exercise 2.1.3 (solution) Indeed, if x ≥ y, then

P X1;n � x;Xn;n � y
� � ¼ P Xn;n � y

� � ¼ Fn yð Þ:

If x < y, then
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P X1;n � x;Xn;n � y
� � ¼ P Xn;n � y

� �� P X1;n [ x;Xn;n � y
� �

¼ Fn yð Þ � F yð Þ � F xð Þð Þn:

Exercise 2.1.4 (solution) It is easy to see that

P m nð Þ � xf g ¼ 1� P m nð Þ[ xf g ¼ 1� P X1 [ xf g. . .P Xn [ xf g
¼ 1� 1� F1 xð Þð Þ. . . 1� Fn xð Þð Þ

and

P M nð Þ � xf g ¼ P X1 � xf g. . .P Xn � xf g ¼ F1 xð Þ. . .Fn xð Þ:
Exercise 2.1.5 (solution) We see that

PfY � r; Z\sg ¼ Pfr�Xk\s; k ¼ 1; 2; . . .; ng
¼ ðPfr�X\sgÞn ¼ ðPfX� rg � PfX� sgÞn ¼ ðpr � psÞn:

Exercise 2.2.1 (solution) It follows from (2.2.2) that

T 1; nð Þ ¼ Un;n � U1;n ¼d m2 þ � � � þ vn
v1 þ � � � þ vnþ1

:

Indeed the ratio ðm2 þ � � � þ vnÞ=ðv1 þ � � � þ vnþ1Þ coincides in distribution with the
ratio ðm1 þ � � � þ vn�1Þ=ðv1 þ � � � þ vnþ1Þ. Hence

T 1; nð Þ¼d m1 þ � � � þ vn�1

v1 þ � � � þ vnþ1
¼d Un�1;n

Exercise 2.2.2 (solution) The necessary statement follows immediately from
relation (2.2.4), which allows us to get the equality

V1;V2; . . .;Vnð Þ ¼d W1;W2; . . .;Wnð Þ;

where W’s are independent uniformly distributed random variables.

Exercise 2.2.3 (solution) It follows from (2.2.5) that

Z1;n; L
� �¼d m1

n
;
Xn
k¼2

bknk

 !
;
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where

bk ¼ k � 1ð Þ= n� k þ 1ð Þ; k ¼ 2; 3; . . .:

Since νk, k = 1, 2,. . ., n, are independent random variables,

m1
n

and
Xn
k¼2

bknk

are also independent. Hence, so are Z1,n and L.

Exercise 2.2.4 (hint) It is enough to use definitions of d.f. F(x) and its inverse
function G(x).

Exercise 2.2.5 (solution) The corresponding d.f. and its inverse are given here by
equalities

F xð Þ ¼ xa; 0\x\1:

and

G xð Þ ¼ x1=a; 0\x\1:

It is possible to express Xr,n and Xs,n via the uniform order statistics as follows:

Xr;n ¼d Ur;n
� �1=a

andXs;n ¼d Us;n
� �1=a

:

Hence

Xr;nXs;n ¼d Ur;nUs;n
� �1=a

:

Now it follows from presentation (2.2.4) that

Xr;nXs;n ¼d W1=ra
r W1= rþ1ð Þa

rþ1 . . .W1= s�1ð Þa
s�1 W2=sa

s W2= sþ1ð Þa
sþ1 . . .W2=na

n ;

1 ≤ r < s ≤ n, where W1, W2,. . ., Wn are independent random variables with the
common uniform on [0,1] distribution.
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Exercise 2.3.1 (hint) Prove that

G xð Þ� 1
pð1� xÞ ; x ! 1;

G xð Þ� � 1
px

; x ! 0;

and use equality (2.3.2) to provide the necessary statement.

Exercise 2.3.2 (answer)

Var 1=Uk;n
� � ¼ nðn� k þ 1Þ

ðk � 1Þ2ðk � 2Þ ; 3� k� n:

Exercise 2.3.3 (answer)

E Ua
r;nU

b
s;n

� 	
¼ n!Cðr þ aÞCðsþ aþ bÞ

ðr � 1Þ!Cðsþ aÞCðnþ 1þ aþ bÞ :

Exercise 2.3.4 (solution) Let r ≤ s. Due to (2.2.5),

Cov Zr;n; Zs;n
� � ¼ Cov

m1
n
þ m2
n� 1

þ � � � þ mr
n� r þ 1

;
m1
n
þ m2
n� 1

þ � � � þ ms
n� sþ 1

� �

¼ Cov
m1
n
þ m2
n� 1

þ � � � þ mr
n� r þ 1

;
m1
n
þ m2
n� 1

þ � � � þ mr
n� r þ 1

� �

þ Cov
m1
n
þ m2
n� 1

þ � � � þ mr
n� r þ 1

;
mrþ1

n� r
þ � � � þ ms

n� sþ 1

� �
:

Since sums

m1
n
þ m2
n� 1

þ � � � þ mr
n� r þ 1

and

mrþ1

n� r
þ � � � þ ms

n� sþ 1

are independent, we get that

Cov Zr;n; Zs;n
� � ¼ Cov

m1
n
þ m2
n� 1

þ � � � þ mr
n� r þ 1

;
m1
n
þ m2
n� 1

þ � � � þ mr
n� r þ 1

� �

¼ Var
m1
n
þ m2
n� 1

þ � � � þ mr
n� r þ 1

� �
¼ VarZr;n ¼

Xr
k¼1

1

ðn� k þ 1Þ2:
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Exercise 2.3.5 (solution) From symmetry of N(0,1) distribution (note that X has the
same distribution as −X) it follows that EX2,3 = 0 and EX1,3 = −EX3,3. Thus, we
need to find EX3,3 only. One sees that

EX3;3 ¼ 3
Z1
�1

xU2 xð Þu xð Þdx ¼ 3
Z1
�1

U2 xð Þdu xð Þ

¼ 6
Z1
�1

U xð Þu2 xð Þdx:

Consider

I að Þ ¼
Z1
�1

U axð Þu2 xð Þdx:

We obtain that

I 0ð Þ ¼ 1
2

Z1
�1

u2 xð Þdx ¼ 1
4p

Z1
�1

exp �x2
� �

dx ¼ 1=ð4 ffiffiffi
p

p Þ

and

I 0 að Þ ¼
Z1
�1

xu axð Þu2 xð Þdx ¼ 1

ð2pÞ3=2
Z1
�1

x exp �x2 a2 þ 2
� �� �

dx ¼ 0:

It means that

I að Þ ¼ 1=ð4 ffiffiffi
p

p Þ

and, in particular,

Z1
�1

U axð Þu2 xð Þdx ¼ I 1ð Þ ¼ 1=ð4 ffiffiffi
p

p Þ:

Finally, we have that

EX3;3 ¼ 6 I 1ð Þ ¼ 3
2
ffiffiffi
p

p :

Due to the symmetry of N(0,1) distribution, one obtains also that
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E X1;3
� �2¼ E X3;3

� �2
and

VarX1;3 ¼ Var X3;3:

Now

EðX3;3Þ2 ¼ 3
Z1
�1

x2U2ðxÞuðxÞdx ¼ �3
Z1
�1

xU2ðxÞduðxÞ

¼ 3
Z1
�1

uðxÞdðxU2ðxÞÞ ¼ 3
Z1
�1

uðxÞU2ðxÞdxþ 6
Z1
�1

xu2ðxÞUðxÞdx

¼
Z1
�1

dðU3ðxÞÞ þ 3
p

Z1
�1

x expð�x2ÞUðxÞdx ¼ 1� 3
2p

Z1
�1

UðxÞdðexpð�x2ÞÞ

¼ 1þ 3
2p

Z1
�1

expð�x2ÞuðxÞdx ¼ 1þ 3

ð2pÞ3=2
Z1
�1

expð�3x2=2Þdx ¼ 1þ
ffiffiffi
3

p

2p
:

Taking into account that

EX3;3 ¼ 3
2
ffiffiffi
p

p ;

we obtain that

Var X3;3
� � ¼ E X3;3

� �2� EX3;3
� �2¼ 1þ

ffiffiffi
3

p

2p
� 9
4p

:

Further,

E X2;3
� �2 ¼ 6

Z1
�1

x2U xð Þð1� U xð ÞÞu xð Þdx

¼ 6
Z1
�1

x2U xð Þu xð Þdx� 6
Z1
�1

x2U2 xð Þu xð Þdx

¼ 6
Z1
�1

x2U xð Þu xð Þdx� 2E X3;3
� �2

:
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Now we obtain that

Z1
�1

x2U xð Þu xð Þdx¼ �
Z1
�1

xU xð Þdu xð Þ

¼
Z1
�1

u xð ÞdðxU xð ÞÞ ¼
Z1
�1

u xð ÞU xð Þdxþ
Z1
�1

xu2 xð Þdx

¼ 1
2

Z1
�1

d U2 xð Þ� � þ 1
2p

Z1
�1

x exp �x2
� �

dx ¼ 1
2
:

Hence,

E X2;3
� �2¼ 3� 2E X3;3

� �2¼ 3� 2 1þ
ffiffiffi
3

p

2p

� �
¼ 1�

ffiffiffi
3

p

p

and

Var X2; 3
� � ¼ E X2;3

� �2� EX2;3
� �2¼ 1�

ffiffiffi
3

p

p
;

so far as EX2,3 = 0. Thus,

E X1;3
� �2 ¼ E X3;3

� �2¼ 1þ
ffiffiffi
3

p

2p
;

E X2;3
� �2 ¼ 1�

ffiffiffi
3

p

p
;

Var X1;3
� � ¼ Var X3;3

� � ¼ 1þ
ffiffiffi
3

p

2p
� 9
4p

and

Var X2;3
� � ¼ E X2;3

� �2� EX2;3
� �2¼ 1�

ffiffiffi
3

p

p
:

Exercise 2.4.1 (solution) It is evident that

P M nð Þ � log n\xð Þ ¼ 1� exp �x� log nð Þð Þn¼ 1� exp �xð Þ=nð Þn
! exp � exp �xð Þð Þ;

as n → ∞.
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Exercise 2.4.2 (solution) In this case

Pfn1=aM nð Þ\xg ¼ ð1� ð�x= n1=aÞaÞn ¼ ð1� �xð Þa=nÞn ! expð� �xð ÞaÞ
¼ H2;a xð Þ;

as n → ∞, for any x, −∞ < x ≤ 0.

Exercise 2.4.3 (solution) One can see that

PfM nð Þ=n1=a\xg ¼ ð1� ðx n1=aÞ�aÞn ¼ 1� x�a=nð Þn! exp �x�af g;

as n → ∞, for any x ≥ 0.

Exercise 2.4.4 (hint and answer) In this case

1� F xð Þð Þ� 1=px andF0 xð Þ� 1=px2; as x ! 1:

Use the statement of Theorem 2.4.1 to see that α = 1, centering constants an = 0,
and normalizing constants bn can be taken from the equality F(bn) = 1 − 1/n, that is
possible to take bn = n/π.

Exercise 2.4.5 (hint) In this situation it is easy to show that

1� F xð Þ�F0 xð Þ=x ¼ 1

x
ffiffiffiffiffiffi
2p

p exp �x2=2
� �

;

F00 xð Þ� � xF0 xð Þ; x ! 1;

and then to use the statement of Theorem 2.4.3. To find constants an one needs to
solve the equation

1=n ¼ 1� F anð Þ� 1

an
ffiffiffiffiffiffi
2p

p exp � anð Þ2=2
� 	

or simply to check that the sequence

an ¼ ð2 log n� log log n� log 4pÞ1=2

satisfies this equation. Theorem 2.4.3 recommends to take bn * h(an), where

h xð Þ ¼ 1� F xð Þ=F0 xð Þ:

In this case one can obtain that bn * (2logn)1/2 suits us.
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Exercise 2.4.6 (answer) It follows from Theorem 2.4.2 that in this case

F 2 D H1ð Þ; an ¼ log n; bn ¼ 1:

Exercise 2.5.1 (answers) Here

ER kð Þ ¼ nþ 1ð Þ=2;Var R kð Þ ¼ n� 1ð Þ2=12; 1� k� n;

Cov R kð Þ;R mð Þð Þ ¼ � n� 1ð Þ=12; 1� k\m� n;

and

q R kð Þ;R mð Þð Þ ¼ �1= n� 1ð Þ; 1� k\m� n:

Exercise 2.5.2 (answers) P{Δ(1) = 1, R(1) = 1} = 1/n,

PfD 1ð Þ ¼ 1;R 1ð Þ ¼ sg ¼ PfD 1ð Þ ¼ s;R 1ð Þ ¼ 1g ¼ 0; if s 6¼ 1;

and

PfD 1ð Þ ¼ m;R 1ð Þ ¼ sg ¼ 1=n n� 1ð Þ; if s 6¼ 1; m 6¼ 1:

Exercise 2.5.3 (solution) Since

Pfq mð Þ ¼ kg ¼ 1=m; k ¼ 1; 2; . . .m;

it is enough to show that for any n = 1, 2,. . ., and any a(k), taking on values 1, 2,. . ., k,
1 ≤ k ≤ n,

Pfq 1ð Þ ¼ a 1ð Þ; q 2ð Þ ¼ a 2ð Þ; . . .; q nð Þ ¼ a nð Þg ¼ 1=n!:

Fix n and consider ranks R(1), R(2),. . ., R(n). It is not difficult to see that a set
{a(1), a(2),. . ., a(n)} uniquely determines values r(1), r(2),. . ., r(n) of R(1),
R(2),. . ., R(n). In fact, r(n) = a(n). Further,

r n� 1ð Þ ¼ a n� 1ð Þ; if a nð Þ[ a n� 1ð Þ; and r n� 1ð Þ
¼ a n� 1ð Þ þ 1; if a nð Þ� a n� 1ð Þ:

The value of R(n − 2) is analogously determined by values a(n), a(n − 1) and
a(n − 2) and so on. Hence, each of n! events

fq 1ð Þ ¼ a 1ð Þ; q 2ð Þ ¼ a 2ð Þ; . . .; q nð Þ ¼ a nð Þg
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coincides with one of n! events

R 1ð Þ ¼ r 1ð Þ;R 2ð Þ ¼ r 2ð Þ; . . .;R nð Þ ¼ r nð Þf g:

For instance,

fq 1ð Þ ¼ 1; q 2ð Þ ¼ 1; . . .; q nð Þ ¼ 1g ¼ R 1ð Þ ¼ n; R 2ð Þ ¼ n� 1; . . .; R nð Þ ¼ 1f g:

Since

P R 1ð Þ ¼ r 1ð Þ; R 2ð Þ ¼ r 2ð Þ; . . .; R nð Þ ¼ r nð Þf g ¼ 1=n!

for any permutation (r(1), r(2),. . ., r(n)) of the numbers 1, 2,. . ., n, one gets that

Pfq 1ð Þ ¼ a 1ð Þ; q 2ð Þ ¼ a 2ð Þ; . . .; q nð Þ ¼ a nð Þg ¼ 1=n!

for any set {a(1), a(2),. . ., a(n)}, where 1 ≤ a(k) ≤ k, k = 1, 2,. . ., n.

44 2 Order Statistics



Chapter 3
Record Times

3.1 Introduction

Very close to order statistics are the so-called record times and record values. Beginning
from the Chandler’s (1952) pioneer paper records became very popular in the probability
theory and statistics.

Let X1; X2; . . . be a sequence of random variables and X1;n � � � � �Xn;n; n ¼
1; 2; . . .; be the corresponding order statistics. Let us consider the increasing
sequence of the sequential maximal values

Mð1Þ�Mð2Þ� � � � �Mðn� 1Þ�MðnÞ� � � � � � � �

and fix the times, when signs of the strong inequality appear in this sequence. Such
times correspond to the situations, when M nð Þ[M n� 1ð Þ: It means that
Xn [M n� 1ð Þ. The random variable Xn; which is more than all previous X’s, is
called the upper record value. Correctly speaking we deal here with the strong
upper record. The matter is that sometimes (say, in some sport competitions) the
repetition of the previous record value also is considered as a record. It means that
in such cases we have situations when Xn ¼ M n� 1ð Þ for some n. In this situation
we deal with the so-called weak record value. In reality these types of records are
different only if distribution functions of X’s, have discontinuity points. If some Xn

is a record value, then the corresponding index n is named as an upper record time.
Onemore situation is symmetrical to the previous. It is the casewhen one considers

a sequence of minimal values m 1ð Þ � m 2ð Þ � � � � � m n� 1ð Þ � m nð Þ � � � �. The
appearance of the sign of strong inequality in this sequence signifies the appearance of
the strong lower record. Analogously, if Xn ¼ m n� 1ð Þ for some n, one deals with a
weak lower record value. Note that in all options X1 is taken as the first (upper or
lower, strong or weak) record value.
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We mentioned above that these two constructions (upper and lower records) are
symmetrical in some sense. Really, if together with some sequence X1, X2,… one
considers the sequence Y1 ¼ �X1; Y2 ¼ �X2; . . .; Yn ¼ �Xn; . . .; then it becomes
evident that the lower record times for Y’s coincide with the corresponding upper
record times for X’s and the lower record values Y(r) and the upper record values
X(r) satisfy the equality Y rð Þ ¼ �X rð Þ; r ¼ 1; 2; . . .. It means that it is enough to
study in details only one of these record types. Below we will deal as a rule with the
upper record times and the upper record values.

Denote X 1ð Þ\X 2ð Þ\ � � � the corresponding record values (strong upper record
values) in the sequence X1, X2,··· and let 1 ¼ L 1ð Þ\L 2ð Þ\ � � � be the corre-
sponding record times. Introduce also record indicators nn; n ¼ 1; 2; . . .; which take
values 0 and 1, and mark the appearance of record values, that is nn ¼ 1, if
Xn [M n� 1ð Þ; and nn ¼ 0; otherwise. As we agreed above, L 1ð Þ ¼ 1;X 1ð Þ ¼ X1

and n1 ¼ 1. Note that nL nð Þ ¼ 1; n ¼ 1; 2; . . .:

3.2 Definitions of Record Values and Record Times

As it was mentioned above we will deal as a rule with the upper records. Let
X1; X2; . . . be a sequence of random variables and X1;n � X2;n �Xn;n; n ¼ 1; 2; . . .;
be the corresponding order statistics. For any n ¼ 1; 2; . . . we have also that
Xn;n ¼ M nð Þ ¼ max X1; X2; . . .; Xnf g. One can define the classical upper record
times L nð Þ and upper record values X nð Þ as follows:

L 1ð Þ ¼ 1; X 1ð Þ ¼ X1

and then

L nþ 1ð Þ ¼ min j : Xj [X nð Þ� �
;X nþ 1ð Þ ¼ XLðnþ1Þ; n ¼ 1; 2; . . . ð3:2:1Þ

One can use the following alternative definitions:

L 1ð Þ ¼ 1; L nþ 1ð Þ ¼ min j : Xj [M L nð Þð Þ� �
; n ¼ 1; 2; . . .;

and

X nð Þ ¼ M L nð Þð Þ; n ¼ 1; 2; . . .:

Using the sign ≥ in (3.2.1) instead of > we introduce weak upper records, when
any repetition of the previous record value is also considered as a new record.

One more definition—the definition of the so-called inter-record times
D nð Þ; n ¼ 1; 2; . . .; is closely connected with the record times. These random
variables for the strong upper records are defined as follows:
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D 1ð Þ ¼ L 1ð Þ ¼ 1;D nð Þ ¼ L nð Þ � L n� 1ð Þ; n ¼ 2; 3; . . .:

Indeed, one immediately has the next equality:

L nð Þ ¼ D 1ð Þ þ D 2ð Þ þ � � � þ D nð Þ; n ¼ 1; 2; . . .:

Analogously it is possible to define inter-record times for lower records.
The kth records are a natural extension of the classical records. The kth record times

L n; kð Þ and the kth record values X n; kð Þ for any k ¼ 1; 2; . . . are defined as follows:

L 1; kð Þ ¼ k; L nþ 1; kð Þ ¼ min j[ L n; kð Þ : Xj [Xj�k;j�1
� �

; n ¼ 1; 2; . . .;

ð3:2:2Þ

and

X n; kð Þ ¼ XL n;kð Þ�kþ1;L n;kð Þ; n ¼ 1; 2; . . .: ð3:2:3Þ

To be precise, (3.2.2) and (3.2.3) define the kth upper record times and the kth
upper record values respectively. Indeed, if we change in (3.2.2) equality
Xj [Xj�k;j�1 by relation Xj �Xj�k;j�1 we get the definitions of the kth weak record
times L(n, k) and the kth weak record values X n; kð Þ.

If k = 1 then definitions of kth record values X n; kð Þ and kth record times L(n,
k) coincide with the definitions of X nð Þ and L nð Þ given in (3.2.1).

Exercise 3.2.1 Give the definitions of lower record times l nð Þ; n ¼ 1; 2; . . .; and
lower record values x nð Þ; n ¼ 1; 2; . . .; and the corresponding definitions of the kth
lower record times l n; kð Þ and the kth lower record values x n; kð Þ.
Remark 3.2.1 Note that the theory of record values is very close to the theory of
extremal random variables. Really,

X nð Þ ¼ XL nð Þ;LðnÞ ¼ M L nð Þð Þ; n ¼ 1; 2; . . . ð3:2:4Þ

and

x nð Þ ¼ Xl nð Þ;lðnÞ ¼ m l nð Þð Þ; n ¼ 1; 2; . . .: ð3:2:5Þ

Analogously,

X n; kð Þ ¼ XL n;kð Þ� kþ1;L n;kð Þ; n ¼ 1; 2; . . . ð3:2:6Þ
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and

x n; kð Þ ¼ Xk; l n;kð Þ; n ¼ 1; 2; . . .: ð3:2:7Þ

Hence the asymptotic distributions of record values (upper and lower) are close
in some sense to the corresponding distributions of maximal and minimal order
statistics.

3.3 Record Indicators

Let us introduce record indicators ξn, n = 1, 2,…, which take values 0 and 1 and
mark the appearance of the strong upper record values, that is, ξn = 1, if Xn > M
(n − 1), and ξn = 0, otherwise. As we agreed above, L(1) = 1, X(1) = X1 and hence
ξ1 = 1. Note that ξL(n) = 1, n = 1, 2,….

Indeed, the corresponding indicators can be introduced analogously for the lower
records, as well as for the kth records (upper and lower). Consider the classical case
when the initial X’s are independent and have the same continuous distribution
function F(x). In this case the equality ξn = 1 corresponds to the event {M(n) = Xn}.
For continuous F(x) some of X’s can coincide with the zero probability. In this
situation events {M(n) = X1}, {M(n) = X2},…, {M(n) = Xn} must have equal
probabilities and we get immediately that

P nn ¼ 1f g ¼ P MðnÞ ¼ Xnf g ¼ 1=n; n ¼ 1; 2; . . .: ð3:3:1Þ

Note also that in this situation

Pfn1 ¼ 1; n2 ¼ 1; . . .; nn ¼ 1g ¼ P X1\X2\ � � �\Xnf g ¼ 1=n!; n ¼ 1; 2; . . .:

ð3:3:2Þ

Exercise 3.3.1 Based on equalities (3.3.1), (3.3.2) and the analogous equalities for
any set of indicators show that if the initial X’s are independent and have the same
continuous distribution function F then ξ1, ξ2,… are independent random variables.

Moreover, the following result (see Exercise 3.3.2) is also valid for record
indicators.

Exercise 3.3.2 Show that if X’s are independent and have the same continuous
distribution function F then for any n = 1, 2,… record indicators ξ1, ξ2,…, ξn and
maximal value M(n) are independent random variables.

Now let N(n) denote the number of the strong upper record values among the
random variables X1, X2,…,Xn. It is evident that N(n) can be expressed as follows:
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N nð Þ ¼ n1 þ n2 þ � � � þ nn; n ¼ 1; 2; . . .: ð3:3:3Þ

Any information about the distribution of N(n) helps us to investigate the dis-
tribution properties of record times L(n). Really, the following evident equalities are
valid:

P L nð Þ[mf g ¼ P N mð Þ\nf g ð3:3:4Þ

and

P L nð Þ ¼ mf g ¼ P N m� 1ð Þ ¼ n� 1;N mð Þ ¼ nf g: ð3:3:5Þ

Hence any results for record indicators and for their sums N(n) are very
important.

Note that record indicators can be expressed also via sequential ranks of random
variables X1, X2,…. The definition of these ranks ρ(1), ρ(2),… was given by
equality (2.5.10). It was shown earlier that if X’s are independent random variables
having the same continuous distribution function then ρ(1), ρ(2),… are also inde-
pendent and

Pfq mð Þ ¼ kg ¼ 1=m; k ¼ 1; 2; . . .;m:

It is evident, that events fnn ¼ 1g and fqn ¼ ng coincide for any n = 1, 2,….
Hence we have one more way to find distributions of random indicators:

Pfnn ¼ 1g ¼ 1� Pfnn ¼ 0g ¼ Pfqn ¼ ng ¼ 1=n; n ¼ 1; 2; . . .:

Immediately we get that Enn ¼ 1=n and Var nn ¼ n� 1ð Þ=n2; n ¼ 1; 2; . . .:
Hence

EN nð Þ ¼ 1þ 1=2þ � � � þ 1=n ð3:3:6Þ

and

Var N nð Þð Þ ¼
Xn

k¼1

ð1
k
� 1
k2
Þ; n ¼ 1; 2; . . .: ð3:3:7Þ

Note that

EN nð Þ� log n; n ! 1; ð3:3:8Þ
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and

Var N nð Þð Þ� log n; n ! 1: ð3:3:9Þ

Expression (3.3.3) implies that the generating function Pn(s) of N(n) satisfies the
following equalities:

Pn sð Þ ¼ EsNðnÞ ¼
Yn

j¼1

Esnj

¼
Yn

j¼1

1þ s� 1ð Þ=jð Þ ¼ s 1þ sð Þ 2þ sð Þ � � � n� 1þ sð Þ=n!
ð3:3:10Þ

and

Pn �sð Þ ¼ �1ð Þns s� 1ð Þ � � � s� nþ 1ð Þ=n!: ð3:3:11Þ

The expression (3.3.11) enables us to use Stirling numbers of the first kind,
which are defined by equalities

x x� 1ð Þ � � � x� nþ 1ð Þ ¼
X

k� 0

Sknx
k: ð3:3:12Þ

Exercise 3.3.3 Show (taking into account (3.3.10)–(3.3.12)) that

P N nð Þ ¼ kf g ¼ �1ð ÞkSkn=n! ¼ jSknj=n!; n ¼ 1; 2; . . .; k ¼ 1; 2; . . .; n: ð3:3:13Þ

Above (see (3.2.2)) the so-called kth record times L(n, k) were defined for any
k = 1, 2,…. Indeed, the corresponding indicators ξn(k) of the kth records also can be
defined as follows:

nn kð Þ ¼ 1; if Xn [Xn�k;n�1; and nn kð Þ ¼ 0; otherwise; n ¼ k; k þ 1; . . .:

ð3:3:14Þ
Exercise 3.3.4 Give the alternative definition of indicators ξn(k) via sequential
ranks q 1ð Þ; q 2ð Þ; . . . and prove that

Pfnn kð Þ ¼ 1g ¼ k=n; n ¼ k; k þ 1; . . .: ð3:3:15Þ

Indeed, if we consider now the numbers N(n, k) of the kth records among
random variables X1;X2; . . .; Xn; then the following equality can be used:

N n; kð Þ ¼ nk kð Þ þ nkþ1 kð Þ þ � � � þ nn kð Þ; n ¼ k; k þ 1; . . .; k ¼ 1; 2; . . .:

ð3:3:16Þ
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One more important situation in the classical record theory is connected with
sequences of independent identically distributed random variables having a discrete
distribution. Without loss of generality, we can suppose that X’s take nonnegative
integer values. For discrete distributions we introduce another type of record
indicators.

Let ηn = 1 if n is a record value in the sequence X1; X2; . . ., that is, there exists
such m = 1, 2,… that X(m) = n, and ηn = 0 otherwise (compare with indicators ξn!).
Analogously, for any k = 1, 2,… we can introduce indicators ηn(k) for the kth record
values: ηn(k) = 1, if n is a kth record value in the sequence X1, X2,…, and ηn(k) = 0
otherwise. The following result is valid for such type of indicators.

Theorem 3.3.1 Let X, X1, X2,… be a sequence of independent identically dis-
tributed random variables taking values 0, 1, 2,… with probabilities pn = P
{X = n} > 0 , n = 0, 1, 2,…. Then for any fixed k = 1, 2,… indicators ηn(k), n = 0, 1,
2,…, are independent and

P gn kð Þ ¼ 1f g ¼ 1� P gn kð Þ ¼ 0f g ¼ pn=PfX� ngð Þk; n ¼ 0; 1; 2; . . .:

ð3:3:17Þ
Exercise 3.3.5 Prove Theorem 3.3.1 for the simplest partial case k = 1 and show
that record indicators η0, η1, η2,… are independent and

P gn ¼ 1f g ¼ 1� P gn ¼ 0f g ¼ pn=P X � nf g; n ¼ 0; 1; 2; . . .: ð3:3:18Þ

It is easy to see that under conditions of Theorem 3.3.1 one can express dis-
tributions of the kth record values for discrete random variables via distributions of
sums of independent indicators:

P X n; kð Þ[mf g ¼ P g0 kð Þ þ � � � þ gm kð Þ\nf g; m ¼ 0; 1; 2; . . .; n ¼ 1; 2; . . .;

ð3:3:19Þ

and, in particular, under k = 1 we have equality

P X nð Þ[mf g ¼ P g0 þ � � � þ gm\nf g; m ¼ 0; 1; 2; . . .; n ¼ 1; 2; . . .: ð3:3:20Þ

Exercise 3.3.6 Consider the case, when X’s have the geometric distribution with
some parameter 0 < p < 1, that is,

P Xj ¼ n
� � ¼ 1� pð Þpn; n ¼ 0; 1; 2; . . .;

for j = 1, 2,…, and show that in this situation the sum (η0 + ⋯ + ηm) of record
indicators has the binomial B(m + 1, q)-distribution with a parameter q = (1 − p).
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It was mentioned above that for discrete distributions it is useful to introduce
weak records together with classical (strong) record values. Weak records may
arise, for example, in some sport competitions when any athlete who repeats the
previous record achievement is also declared as a record-holder. If we consider X’s
having a common discrete distribution it is useful to introduce one more type of
random variables which generalize the concept of record indicators η0, η1, η2,….
We define now random variables μ0, μ1, μ2,…, where μn denotes the number of
those weak records in the sequence X1, X2,… that are equal to n. The following
result is valid.

Theorem 3.3.2 Let X, X1, X2,… be a sequence of independent identically dis-
tributed random variables taking values 0, 1, 2,… with probabilities pn = P
{X = n} > 0, n = 0, 1, 2,…. Then random variables μ0, μ1, μ2,… are independent and

P ln ¼ mf g ¼ 1� r nð Þð Þ r nð Þð Þm; n ¼ 0; 1; 2; . . .; m ¼ 0; 1; 2; . . .; ð3:3:21Þ

where

r nð Þ ¼ pn=P X� nf g:
Exercise 3.3.7 Show that equality (3.3.21) is valid for the partial case, when X’s have
the geometric distributionwith some parameter 0<p< 1, that is, consider the situation
with probabilities pn ¼ P Xj ¼ n

� � ¼ 1� pð Þpn; n ¼ 0; 1; 2; . . .; for j ¼ 1; 2; . . .:

Let Xω(1), Xω(2),… denote the weak (upper) record values in the sequence X1,
X2,…. Then for any n = 1, 2,… and m = 0, 1, 2,… the following relation is valid:

P Xx nð Þ[mf g ¼ P l0 þ l1þ���þlm\n
� �

:

Thus we see that there are some very convenient representations of record
values, record times, numbers of records, which allow us to impress these record
statistics in terms of sums of independent random variables.

3.4 Limit Theorems for Numbers of Records

Above we got some results for numbers of records N(n) among random variables
X1, X2,…. Xn. For example, it was shown (see (3.3.13)) that the corresponding
distributions are expressed via Stirling numbers of the first kind:

P N nð Þ ¼ kf g ¼ �1ð ÞkSkn=n! ; n ¼ 1; 2; . . .; k ¼ 1; 2; . . .:

The expression given here is not very convenient to work with it under large
values n. Hence in such situations it is better to know the simple asymptotic
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formulae for these probabilities. The presentation of N(n) via the independent
indicators helps us to solve this problem. Applying to N(n) the classical limit
theorems for sums of independent random variables gives us the possibility to
obtain the following statements which describe the asymptotic behavior of N
(n) under the assumption that n → ∞. The asymptotic results given below are
formulated for the independent X’s having any joint continuous distribution func-
tion F. One can get these limit (as n → ∞) theorems immediately, taking into
account relations (3.3.3), (3.3.8), (3.3.9).

(a) Central Limit theorem:

sup
x

jPfN nð Þ � log n\x
ffiffiffiffiffiffiffiffiffiffi
log n

p
g � U ðxÞ j ! 0; ð3:4:1Þ

UðxÞ ¼ 1ffiffiffiffi
2p

p
Rx

�1
expð�t2=2Þdt being the distribution function of the standard

normal law.
(b) Uniform estimate in Central Limit theorem:

sup
x

jPfN nð Þ � log n\x
ffiffiffiffiffiffiffiffiffiffi
log n

p
g � U xð Þj �C=

ffiffiffiffiffiffiffiffiffiffi
log n

p
; n ¼ 1; 2; . . .; ð3:4:2Þ

C being some absolute constant.
(c) Strong Law of Large Numbers:

P lim N nð Þ= log nð Þ ¼ 1f g ¼ 1: ð3:4:3Þ

(d) Laws of Iterative Logarithm:

Pflimsup NðnÞ � log n

ð2 log n log log log nÞ1=2
¼ 1g ¼ 1 ð3:4:4Þ

and

Pfliminf NðnÞ � log n

ð2 log n log log log nÞ1=2
¼ �1g ¼ 1: ð3:4:5Þ

Exercise 3.4.1 Generalize relations (3.4.1) and (3.4.2) for numbers N(n, k) of the
kth record values in the sequences of independent random variables X1, X2,….,
having a joint continuous distribution function F(x).
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3.5 Distributions of Record Times

Let us consider now the upper record times L(n). These random variables are rather
close to numbers of records N(n). Really,

N L nð Þð Þ ¼ n; n ¼ 1; 2; . . .;

and recalling relations (3.3.4) and (3.3.5) one can write that

P L nð Þ[mf g ¼ P N mð Þ\nf g; n ¼ 1; 2; . . .; m ¼ 1; 2; . . .;

and

P L nð Þ ¼ mf g ¼ PfN m� 1ð Þ ¼ n� 1; nm ¼ 1g
¼ P N m� 1ð Þ ¼ n� 1f g=m; 1� n�m: ð3:5:1Þ

Since (see (3.3.13))

P N nð Þ ¼ kf g ¼ �1ð ÞkSkn=n! ¼ jSknj = n!; n ¼ 1; 2; . . .; k ¼ 1; 2; . . .;

we get the following expression (in terms of Stirling numbers of the first kind) for
record times:

P L nð Þ ¼ mf g ¼ jSn�1
m�1j=m!; n ¼ 1; 2; . . .; m ¼ n; nþ 1; . . .: ð3:5:2Þ

Based on properties of Stirling numbers Westcott (1977a) showed that

P L nð Þ ¼ mf g� logmð Þn�2=m2 n� 2ð Þ! ð3:5:3Þ

as m ! 1.
Relations (3.3.5) and (3.5.1) help us to find generating functions

Qn sð Þ ¼ EsLðnÞ; n ¼ 1; 2; . . .;

of record times. Since P{L(1) = 1} = 1, it is clear that

Q1 sð Þ ¼ s:

For n = 2, 3,…, |s| < 1 and |z| < 1, one gets equalities

Qn sð Þ ¼
X1

m¼1

P L nð Þ ¼ mf gsm ¼
X1

m¼1

1
m
P N m� 1ð Þ ¼ n� 1f gsm
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and

X1

n¼1

Qn sð Þzn ¼
X1

m¼1

sm

m

X1

n¼1

P N m� 1ð Þ ¼ n� 1f gzn

¼ z
X1

m¼1

sm

m
Pm�1ðzÞ ¼ z

X1

m¼1

sm

m!
zð1þ zÞ � � � ðm� 2þ zÞ

¼ � z
1� z

X1

m¼1

ð�sÞm
m!

ð1� zÞð�zÞð�1� zÞ � � � ð2� m� zÞ:

ð3:5:4Þ

Note that

X1

m¼0

ð�sÞm
m!

ð1� zÞð�zÞð�1� zÞ � � � ð2� m� zÞ ¼ ð1� s)1�z

¼ ð1� sÞ expf�z logð1� sÞg
ð3:5:5Þ

and then (3.5.4) and (3.5.5) imply that

ð1� zÞ
X1

n¼1

QnðsÞzn�1 ¼ �ð1� sÞ expf�z logð1� sÞg þ 1: ð3:5:6Þ

Transforming the LHS of (3.5.6) in

X1

n¼0

Qnþ1 ðsÞn �
X1

n¼1

Qn sð Þzn ¼ sþ
X1

n¼1

Qnþ1 sð Þ � Qn sð Þð Þzn;

allows us to come to the following equality:

1� s�
X1

n¼1

Qnþ1 sð Þ � Qn sð Þð Þzn ¼ 1� sð Þ
X1

n¼0

ð� logð1� sÞÞn
n!

zn: ð3:5:7Þ

Let us denote that

Rn sð Þ ¼ Qn sð Þ � Qnþ1 sð Þ; n ¼ 1; 2; . . .:

Then one can get from (3.5.7) that

Rn sð Þ ¼ 1� sð Þ ð� logð1� sÞÞn
n!

; n ¼ 1; 2; . . .:
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Hence

Qn sð Þ ¼ Q1 sð Þ � R1 sð Þ þ � � � þ Rn�1 sð Þð Þ ¼ s� 1� sð Þ
Xn�1

r¼1

ð� logð1� sÞÞr
r!

¼ 1� 1� sð Þ
Xn�1

r¼0

ð� logð1� sÞÞr
r!

:

ð3:5:8Þ

Exercise 3.5.1 Prove that equality (3.5.8) can be rewritten as

Qn sð Þ ¼ 1
ðn� 1Þ!

Z� logð1�sÞ

0

vn�1 exp �vð Þdv: ð3:5:9Þ

The independence property of record indicators enables us to get joint distri-
butions of record times.

Theorem 3.5.3 For any n = 1, 2,… and any integers 1 = j(1) < j(2) < ··· < j(n) the
following equality holds:

P L 1ð Þf ¼ 1; L 2ð Þ ¼ j 2ð Þ; . . .; L nð Þ ¼ j nð Þg
¼ 1= j 2ð Þ � 1ð Þ j 3ð Þ � 1ð Þ. . . j nð Þ � 1ð Þj nð Þ: ð3:5:10Þ

Proof Evidently, the event on the left side of (3.5.10) coincides with the event

An ¼ fn2 ¼ 0; . . .; nj 2ð Þ�1 ¼ 0; nj 2ð Þ ¼ 1; nj 2ð Þþ1 ¼ 0; . . .;

nj 3ð Þ�1 ¼ 0; nj 3ð Þ ¼ 1; . . .; nj n�1ð Þ�1 ¼ 0; nj ðn�1Þ
¼ 1; nj n�1ð Þþ1 ¼ 0. . .; nj nð Þ�1 ¼ 0; nj nð Þ ¼ 1g:

The independence property of record indicators allows us to obtain now that

P Anf g ¼ Pfn2 ¼ 0g. . .Pfnj 2ð Þ�1 ¼ 0gPfnj 2ð Þ ¼ 1gPfnj 2ð Þþ1 ¼ 0g. . .Pfnj 3ð Þ�1 ¼ 0g
Pfnj 3ð Þ ¼ 1g. . .Pfni n�1ð Þ�1 ¼ 0gPfnj n�1ð Þ ¼ 1gPfnj n�1ð Þþ1 ¼ 0g. . .Pfnj nð Þ�1 ¼ 0gPfni nð Þ ¼ 1g

¼ 1
jðnÞ

Yn

t¼2

1
jðtÞ � 1

;

and this expression coincides with the LHS of (3.5.10).

Corollary 3.5.1 Indeed, one can get from (3.5.10) the following form (compare
with (3.5.2)) for distributions of record times:
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P L nð Þ ¼ mf g ¼
X

1\jð2Þ\���\jðn�1Þ\m

1= j 2ð Þ � 1ð Þ j 3ð Þ � 1ð Þ � � � j n� 1ð Þ � 1ð Þ m� 1ð Þmð Þ; m ¼ n; nþ 1; . . .:

ð3:5:11Þ

In particular, for n = 2 we obtain that

P L 2ð Þ ¼ mf g ¼ 1= m� 1ð Þm;m ¼ 2; 3; . . . ; ð3:5:12Þ

and hence

P L 2ð Þ[mf g ¼ 1=m; m ¼ 1; 2; . . .: ð3:5:13Þ

It is interesting to investigate the dependence structure of record times.
Taking into account equality (3.5.10) one gets immediately that for any 1 ¼

j 1ð Þ\j 2ð Þ\ � � �\j n� 1ð Þ\j nð Þ\m; the following equality holds:

P L nþ 1ð Þ ¼ mjL nð Þ ¼ j nð Þ; L n� 1ð Þ ¼ j n� 1ð Þ; . . .; L 2ð Þ ¼ j 2ð Þ; L 1ð Þ ¼ 1f g
¼ j nð Þ=m m� 1ð Þ:

ð3:5:14Þ

Also we obtain that

P L nþ 1ð Þ ¼ mjL nð Þ ¼ jf g ¼ j=m m� 1ð Þ1� j\m: ð3:5:15Þ

Remark 3.5.1 Thus it follows from equalities (3.5.14) and (3.5.15) that the
sequence of record times L(1), L(2),… forms a Markov chain. Recall that we
consider the situation when the initial random variables X1, X2,… are independent
and have a joint continuous distribution function.

Williams (1973) proved that the following presentation for record times is valid:

L 1ð Þ ¼ 1; L nþ 1ð Þ ¼ L nð Þ exp Wnð Þ½ � þ 1; n ¼ 1; 2; . . .; ð3:5:16Þ

where W1, W2,… are independent random variables having the standard exponential
distribution and [x] denotes the entire part of x. Evidently that this presentation can
be rewritten as follows:

L 1ð Þ ¼ 1; L nþ 1ð Þ ¼ L nð Þ=Un½ � þ 1; n ¼ 1; 2; . . .; ð3:5:17Þ

where independent random variables U1,U2,… are uniformly distributed on [0, 1].
To prove (3.5.17) it suffices to show that L(1), L(2),…, defined by relations

(3.5.17), also form a Markov chain with transition probabilities given by (3.5.15).
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By construction, L(n), given in (3.5.17), depends on U1, U2,…,Un−1 only and does
not depend on Un. Then

P L nþ 1ð Þ ¼ mjL nð Þ ¼ jf g ¼ P L nð Þ=Un½ � þ 1 ¼ mjL nð Þ ¼ jf g ¼ P j=Un½ � þ 1 ¼ mjL nð Þ ¼ jf g
¼ P j=Un½ � þ 1 ¼ mf g ¼ Pfj=m\Un� j= m� 1ð Þg ¼ j=m m� 1ð Þ:

Thus, presentation (3.5.17), as well as result (3.5.16), is valid.
A very interesting result for record times was obtained in Galambos and Seneta

(1975). The integer-valued random variables T(2), T(3),…, which were defined by
relations

T nð Þ � 1\L nð Þ=L n� 1ð Þ� T nð Þ; n ¼ 2; 3; . . .; ð3:5:18Þ

were considered there. It was shown that T(2), T(3),… are independent and

P T nð Þ ¼ jf g ¼ 1=j j� 1ð Þ; j ¼ 2; 3; . . .; n ¼ 2; 3; . . .: ð3:5:19Þ

Exercise 3.5.2 Prove that equality (3.5.19) is valid.

3.6 Moment Characteristics of Record Times

Above the distributions of record times were investigated. Some problems appear
with moments of these random variables. It follows from (3.5.12) that EL(2) = ∞.
Hence EL(n) = ∞ for any n = 2, 3,…, and

E L nð Þð Þa¼ 1; n ¼ 2; 3; . . .; if a� 1:

In this situation the following expression for logarithmic moment may be useful:

E log L nð Þ ¼ n� C � 2�ðnþ1Þ þ O 3�nð Þ; n ! 1; ð3:6:1Þ

where C = 0.5772… is Euler’s constant.
Note also that the next analogous expression is valid for moments E(L(n))1−β,

β > 0:

E L nð Þð Þ1�b¼ 1
CðbÞ fb

�n þ b� 1
2

ðbþ 1Þ�n þ Oððbþ 2Þ�nÞg; n ! 1: ð3:6:2Þ
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3.7 Exercises (solutions)

Exercise 3.2.1 (solution) The definitions of lower record times l(n), n = 1, 2,…,
and lower record values x(n), n = 1, 2,…, are given as follows (compare with the
corresponding definitions of upper record times and upper record values):

l(1) = 1, x(1) = X1

and

l nþ 1ð Þ ¼ min j : Xj\x nð Þ� �
; x nþ 1ð Þ ¼ Xlðnþ1Þ; n ¼ 1; 2; . . . : ð3:7:1Þ

Indeed, the following alternative definitions also can be used:

l 1ð Þ ¼ 1; l nþ 1ð Þ ¼ min j : Xj\m l nð Þð Þ� �
; n ¼ 1; 2; . . .;

and

x nð Þ ¼ m l nð Þð Þ; n ¼ 1; 2; . . .:

Using the sign ≤ in (3.7.1) instead of < we get the definitions of the weak lower
record times and the weak lower record values.

The kth lower record times l(n, k) and the kth lower record values x(n, k) for any
k = 1, 2,… are defined as follows:

l 1; kð Þ ¼ k; l nþ 1; kð Þ ¼ min j[ l n; kð Þ : Xj\Xk;j�1
� �

; n ¼ 1; 2; . . .;

and

x n; kð Þ ¼ Xk; l n;kð Þ;n ¼ 1; 2; . . . :

Exercise 3.3.1 (solution) It is enough to get that in this situation the following
equalities are valid for any n = 1, 2,…, k = 1, 2,…,n and any configurations 1 < r
(1) < r(2) < ··· < r(k) ≤ n:

Pfnr 1ð Þ ¼ 1; . . .; nr kð Þ ¼ 1g
¼ P Xrð1Þ [M r 1ð Þ � 1ð Þ; . . .; XrðkÞ [M r kð Þ � 1ð Þ� � ¼ 1=r 1ð Þr 2ð Þ . . . r kð Þ:

ð3:7:2Þ

Note that in the partial case, when k = n, r(1) = 1, r(2) = 2,…,r(n) = n, this
equality coincides with (3.3.2). The simplest way to prove (3.7.2) is to use
sequential ranks q mð Þ ¼ Pm

k¼1 1fXm �Xkg;m ¼ 1; 2; . . .:
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Equality (3.7.2) in our case can be rewritten in the terms of ρ(m) as follows:

Pfnr 1ð Þ ¼ 1; . . .; nr kð Þ ¼ 1g ¼ Pfq r 1ð Þð Þ ¼ r 1ð Þ; . . .; q r kð Þð Þ ¼ r kð Þg: ð3:7:3Þ

From the independence property of sequential ranks (see, for example, Exercise
2.5.3 above) one gets that

Pfnr 1ð Þ ¼ 1; . . .; nr kð Þ ¼ 1g ¼ Pfq r 1ð Þð Þ ¼ r 1ð Þg. . .Pfq r kð Þð Þ ¼ r kð Þg: ð3:7:4Þ

We know also that

Pfq nð Þ ¼ mg ¼ 1=n

for any m = 1, 2,…,n and n = 1, 2,….
Hence (3.7.2) immediately follows from (3.7.4).

Exercise 3.3.2 (solution) Since the probability integral transformation does not
affect the ordering of our random variables and preserves the distributions of record
indicators it is sufficient to prove the necessary result for F(x) = x, 0 < x < 1. In this
situation

P M nð Þ\xf g ¼ xn; 0\x\1;

and for any k = 1, 2,…,n and 1 ≤ r(1) < r(2) ≤ ··· ≤r(k) ≤ n we have the following
necessary relations:

Pfnr 1ð Þ ¼ 1; nr 2ð Þ ¼ 1; . . .; nr kð Þ ¼ 1; M nð Þ\xg

¼ xn�rðkÞ
Zx

0

vrð1Þ�1
1 dv1

Zx

v1

vrð2Þ�1
2 dv2. . .

Zx

vr�1

vrðkÞ�1
k dvk ¼ xn=r 1ð Þr 2ð Þ � � � r nð Þ

¼ P M nð Þ\xf gPfnr 1ð Þ ¼ 1gPfnr 2ð Þ ¼ 1g. . .P fnr kð Þ ¼ 1g:

Exercise 3.3.3 (solution) From (3.3.10) and (3.3.11) one gets the expression for the
following generating function

E �sð ÞNðnÞ¼
Yn

j¼1

E �sð Þnj¼ �1ð Þns s� 1ð Þ � � � s� nþ 1ð Þ=n! :

As we know, Stirling numbers of the first kind Skn are defined by equalities

s s� 1ð Þ � � � s� nþ 1ð Þ ¼
X

k� 0

Skns
k:
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Hence it follows immediately that

P N nð Þ ¼ kf g ¼ �1ð ÞkSkn=n! ¼ j Sknj=n!; n ¼ 1; 2; . . .; k ¼ 1; 2; . . .; n:

Exercise 3.3.4 (solution) It is evident that the event {ξn(k) = 1} can be expressed in
the terms of sequential ranks as {ρ(n) ≥ n − k + 1}. Recalling that

Pfq nð Þ ¼ mg ¼ 1=n; m ¼ 1; 2; . . .; n;

one immediately obtains that

Pfnn kð Þ ¼ 1g ¼ k=n; n ¼ k; k þ 1; . . .:

Exercise 3.3.5 (solution) We get immediately that

P gn ¼ 1f g ¼ P X1 ¼ nf g þ P X1\n;X2 ¼ nf g þ P X1\n;X2\n;X3 ¼ nf g þ � � �
¼ pn þ P X\nf gpn þ P2 X\nf gpn þ � � � ¼ pn= 1� PfX\ngð Þ ¼ pn=P X� nf g:

Analogous (but more complicated) proof allows to obtain for any r = 2, 3,… and
0 ≤ k(1) < k(2) < ··· <k(r) the following equalities:

P gkð1Þ ¼ 1; gkð2Þ ¼ 1; . . .; gkðrÞ ¼ 1
n o

¼
Yr

m¼1

ðpkðmÞ=PfX� k mð ÞgÞ:

These equalities show that the indicators η0, η1, η2,… are independent.

Exercise 3.3.6 (solution) It follows from the previous exercise that record indi-
cators η0, η1, η2,… are independent, take one of two values 0 and 1 and in the
considered case

P gk ¼ 1f g ¼ 1� P gk ¼ 0f g ¼ 1� pð Þ; k ¼ 0; 1; 2; . . .:

Hence the sum of (m + 1) two-valued independent identically distributed random
variables has the binomial B(m + 1, 1 − p) distribution.

Exercise 3.3.7 (solution) For this geometric distribution we have that

r nð Þ ¼ pn=P X � nf g ¼ 1� pð Þ; n ¼ 0; 1; 2; . . .:

Consider n = 0. Then r(0) = (1 − p), 1 − r(0) = p. In this case one gets for m = 0,
1, 2,… that

P l0 ¼ mf g ¼ P X1 ¼ 0;X2 ¼ 0; . . .;Xm ¼ 0;Xmþ1 [ 0f g ¼ 1� pð ÞmP Xmþ1 [ 0f g
¼ 1� pð Þmp ¼ 1� r 0ð Þð Þ r 0ð Þð Þm:
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If n > 0, we can take off all X’s, which are less than n, from the sequence X1, X2,
…. It means that now we begin to work with the new sequence Y1, Y2,…, where Y’s
are independent and

P Y ¼ kf g ¼ PfX ¼ k jX � ng ¼ 1� pð Þpk�n; k ¼ n; nþ 1; . . .:

Evidently, one can write now that

P ln ¼ mf g ¼ P Y1 ¼ n; Y2 ¼ n; . . .; Ym ¼ n; Ymþ1 [ nf g ¼ 1� pð Þmp
¼ r nð Þð Þm 1� r nð Þð Þ:

Exercise 3.4.1 (answers) For numbers N(n, k) of the kth record values in the
sequences of independent random variables the following relations are valid:

sup
x

jPfN n; kð Þ � k log n\x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k log n

p
g � U xð Þj ! 0; n ! 1;

and

sup
x

jPfN nð Þ � k log n\x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k log n

p
g � U xð Þj �C kð Þ=

ffiffiffiffiffiffiffiffiffiffi
log n

p
; n ¼ 1; 2; . . .;

where

U xð Þ ¼ 1ffiffiffiffiffiffi
2p

p
Zx

�1
expð�t2=2Þdt

and the constant C(k) depends on k only.

Exercise 3.5.1 (hint) It is enough to differentiate the RHS of (3.5.8) and the RHS
of (3.5.9) and to compare them.

Exercise 3.5.2 (hint) Use the fact that

P T nð Þ ¼ kf g ¼ Pf k � 1ð ÞL nþ 1ð Þ\L nð Þ� kL nþ 1ð Þg

and recall that

P L nþ 1ð Þ ¼ mjL nð Þ ¼ jf g ¼ j=m m� 1ð Þ; 1� j\m;

as it was shown in (3.5.15).
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Chapter 4
Record Values

4.1 Introduction

In the previous chapter together with record times we defined record values. Indeed,
there are different types of these random variables as well as different models of
record times. One can work with upper or lower, strong or weak record values. If L
(n), n = 1, 2, …, are the corresponding record times then XL(n), n = 1, 2,… present
the associate record values. We will study below the most popular model of the
upper record values. It was shown in Chap. 3 that the classical upper record times L
(n) and upper record values X(n) are defined as follows:

Lð1Þ ¼ 1; Xð1Þ ¼ X1

and then

Lðnþ 1Þ ¼ min j : Xj [XðnÞ� �
; X nþ 1ð Þ ¼ XLðnþ1Þ; n ¼ 1; 2; . . .: ð4:1:1Þ

Indeed it is possible to use the following alternative definition for upper record
values:

XðnÞ ¼ MðLðnÞÞ ¼ max X1;X2; . . .;XLðnÞ
� � ¼ XLðnÞ;LðnÞ; n ¼ 1; 2; . . .: ð4:1:2Þ

Analogously we can define the lower record times l(n) and lower record values x
(n):

lð1Þ ¼ 1; lðnþ 1Þ ¼ min j : Xj\mðlðnÞÞ� �
; n ¼ 1; 2; . . .; ð4:1:3Þ

and
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xðnÞ ¼ mðlðnÞÞ ¼ minfX1;X2; . . .;XlðnÞg ¼ XlðnÞ;lðnÞ; n ¼ 1; 2; . . .: ð4:1:4Þ

It was mentioned earlier that there is a rather simple correspondence between
upper and lower records. Really, if we consider (together with our initial X’s) a new
sequence of random variables Yn = −Xn, n = 1, 2,…, then the lower record values y
(n) in the sequence of Y’s can be expressed via upper record values X(n) as y
(n) = −X(n), n = 1, 2,…. Indeed, if to change signs of strong equalities > and < in
(4.1.1) and (4.1.3) by signs ≥ and ≤, one will deal (instead of strong records) with
weak upper and weak lower records accordingly.

4.2 Exact Distributions of Record Values

Let us consider the strong upper record values X(n), n = 1, 2,…, which are based on
the sequence of i.i.d. random variables X1, X2,…, having a continuous distribution
function F(x). Using the definition X(n) = M(L(n)), one can write that

PfXðnÞ\xg ¼
X1

m¼n

PfMðLðnÞÞ\xjLðnÞ ¼ mgPfLðnÞ ¼ mg

¼
X1

m¼n

PfMðmÞ\xjLðnÞ ¼ mgPfLðnÞ ¼ mg:
ð4:2:1Þ

Since

fLðnÞ ¼ mg ¼ fn1 þ n2 þ � � � þ nm�1 ¼ n� 1; nm ¼ 1g

and the vector of record indicators (ξ1, ξ2,…, ξm−1, ξm) and maxima M(m) are inde-
pendent (see Exercise 3.2.2), we obtain that for any m = 1, 2,… the event {L(n) = m}
and the random variable M(m) are independent. Hence the RHS of (4.2.1) can be
transformed as follows:

X1

m¼n

PfMðmÞ\xjLðnÞ ¼ mgPfLðnÞ ¼ mg ¼
X1

m¼n

PfMðmÞ\xgPfLðnÞ ¼ mg

¼
X1

m¼n

FmðxÞPfLðnÞ ¼ mg ¼ EðFðxÞÞLðnÞ:

ð4:2:2Þ

Finally we get the relation
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PfXðnÞ\xg ¼ EðFðxÞÞLðnÞ ¼ QnðFðxÞÞ; ð4:2:3Þ

where the corresponding expression for the generating function Qn(s) is given in
(3.5.9):

QnðsÞ ¼ 1
ðn� 1Þ!

Z� logð1�sÞ

0

vn�1expð�vÞdv:

Thus, we obtain finally that

PfXðnÞ\xg ¼ 1
ðn� 1Þ!

Z� logð1�FðxÞÞ

0

vn�1expð�vÞdv; �1\x\1; n ¼ 1; 2; . . .:

ð4:2:4Þ

Exercise 4.2.1 Consider the case, when independent X1, X2,… have the standard E
(1)-exponential distribution with d.f. F(x) = 1 − exp(−x), x ≥ 0, and prove that in
this situation the following relation in distribution holds for X(n):

XðnÞ¼d X1 þ � � � þ Xn; n ¼ 1; 2; . . .: ð4:2:5Þ

The joint distribution functions of record values have a rather complicate form.
Say, in the simplest case (n = 2) the following equalities hold:

PfXð1Þ\x1; Xð2Þ\x2g ¼
X1

m¼2

PfX1\x1; maxfX2; . . .;Xm�1g�X1; X1\Xm\x2g

¼
X1

m¼2

Zminðx1;x2Þ

�1
Fm�2ðuÞ ðFðx2Þ � FðuÞÞ dFðuÞ ¼

Zminðx1;x2Þ

�1
ððFðx2Þ � FðuÞÞ=ð1� FðuÞÞÞdFðuÞ

¼
ZFðminðx1;x2ÞÞ

0

ððFðx2Þ � uÞ=ð1� uÞÞdu ¼ ð1� Fðx2ÞÞlogð1� Fðminðx1; x2ÞÞÞ þ Fðminðx1; x2ÞÞ:

It means that

PfXð1Þ\x1; Xð2Þ\x2g ¼ ð1� Fðx2ÞÞlogð1� Fðx1ÞÞ þ Fðx1Þ; if x1\x2;

and

PfXð1Þ\x1; Xð2Þ\x2g ¼ ð1� Fðx2ÞÞ logð1� Fðx2ÞÞ þ Fðx2Þ;

otherwise.
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The general expression (where n = 2, 3,…) for the joint distribution functions of
the record values corresponding to any continuous distribution function F is given
as follows:

PfX 1ð Þ\x1;X 2ð Þ\x2; . . .;X nð Þ\xng ¼
Z

. . .

Z Yn�1

j¼1

dFðujÞ
1� FðujÞ dFðunÞ; ð4:2:6Þ

where integration on the RHS of (4.2.6) holds over the set

B ¼ fuj\xj; j ¼ 1; 2; . . .; n; �1\u1\ � � �\un\1g:

A more simple expression is valid for the joint density functions of the record
values. Suppose that F is an absolutely continuous distribution function with a
density function f. Let us denote R(x) = f(x)/(1 − F(x)). Then the joint density
function of record values X(1), X(2),…, X(n) is given as

f1; 2;...; n x1; x2; . . .; xnð Þ ¼ Rðx1ÞRðx2Þ. . .Rðxn�1Þf ðxnÞ; if x1\x2\ � � �\xn;

ð4:2:7Þ

and f1, 2,…, n(x1, x2,…, xn) = 0, otherwise.

Exercise 4.2.2 Write the expressions for the joint density functions of record
values for the cases when X’s have the uniform U([0, 1]) and the exponential E(1)
distributions.

Let us consider now the sequence of independent exponentially E(1)—distrib-
uted random variables. For our convenience we denote these values as Z1, Z2,…
and the corresponding exponential record values as Z1 = Z(1) < Z(2) < ⋯ < Z
(n) < ⋯. Taking into account the result obtained in Exercise 4.2.2 we get that the
joint probability density function of Z(1), Z(2),…, Z(n) has the following form:

f1;2;...;nðx1; x2; . . .; xnÞ ¼ expf�xng; if 0\x1\x2\ � � �\xn; ð4:2:8Þ

and f1, 2, …, n(x1, x2,…, xn) = 0, otherwise.

Exercise 4.2.3 Prove that the same (as (4.2.8)) joint probability density functions
have sums Sk ¼ m1 þ m2 þ � � � þ mk , k = 1, 2,…, n, of independent exponentially E
(1)-distributed random variables m1; m2; . . ..

Comparing (4.2.8) and the result, formulated in Exercise (4.2.3), one gets the
next result, which in some sense generalizes relation (4.2.5).

Representation 4.2.1 For any n = 1, 2,… the following equality in distribution is
valid:
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fZð1Þ; Zð2Þ; . . .; ZðnÞg¼d fS1; S2; . . .; Sng; ð4:2:9Þ

where

Sk ¼ m1 þ m2 þ � � � þ mk; k ¼ 1; 2; . . .; n;

and m1; m2; . . . are independent random variables having the exponential E(1)-
distribution with the probability density function f(x) = exp(−x), x ≥ 0.

Corollary 4.2.1 It follows from (4.2.9) that the inter-record values Z(1), Z(2) − Z
(1),…, Z(n) − Z(n−1),… are mutually independent and have the standard expo-
nential distribution.

Are there such kind of simple representations as given in (4.2.9) for other
distributions of X’s? It is well-known that if a random variable X has a continuous
distribution function F, then the transformation U = F(X) produces the uniformly U
([0, 1])-distributed random variable U. This transformation does not change the
order of X’s and the vector {U(1),U(2),…, U(n)} of records in a sequence U1, U2,
…, where U’s are independent U([0,1])-distributed random variables, coincides in
distribution with the vector {F(X(1)), F(X(2)),…,F(X(n))}.

Representation 4.2.2 Let F be a continuous distribution function and G be the
inverse of F. Then the following equality is also valid for any n = 1, 2,…

fXð1Þ; Xð2Þ; . . .; XðnÞg¼d fGðUð1ÞÞ; GðUð2ÞÞ; . . .;GðUðnÞÞg: ð4:2:10Þ

Now let record values X(1) < X(2) < ⋯ and Y(1) < Y(2) < ⋯ correspond to X’s
and Y’s with continuous distribution functions F and H respectively. Then it follows
from (4.2.10) that for any n = 1, 2,…, the next relation holds in distribution:

fXð1Þ; Xð2Þ; . . .;XðnÞg¼d fGðHðYð1ÞÞÞ; GðHðYð2ÞÞÞ; . . .; GðHðYðnÞÞÞg;
ð4:2:11Þ

where G is the inverse function of F.
Combining (4.2.9) and (4.2.11) we come to the next equality:

fXð1Þ; Xð2Þ; . . .; XðnÞg ¼d fHðm1Þ; Hðm1 þ m2Þ; . . .;Hðm1 þ m2 þ � � � þ mnÞg; n
¼ 1; 2; . . .;

ð4:2:12Þ

where H(x) = G(1 − exp(−x)), G is the inverse of F and m1; m2; . . . are independent
exponentially E(1)-distributed random variables.

Taking into account Representations 4.2.1 and 4.2.2 one can mention that the
next relation for the uniform record values will be very convenient.
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Representation 4.2.3 Let U1, U2,… be independent U([0, 1])-distributed random
variables and U(1) < U(2) < … be the corresponding record values. Then the
following equality in distribution is valid for any n = 1, 2,…

fUð1Þ;Uð2Þ; . . .;UðnÞg¼d f1� U1; 1� U1U2; . . .; 1� U1U2. . .Ung: ð4:2:13Þ
Exercise 4.2.4 Prove that equality (4.2.13) is true.

Corollary 4.2.2 From (4.2.13) it is possible for the lower record values u(1) > u
(2) > ⋯ > u(n) > ⋯, based on the uniformly U([0, 1])-distributed random variables,
to get one simple representation. Since in this situation

fuð1Þ; uð2Þ; . . .; uðnÞg¼d f1� Uð1Þ; 1� Uð2Þ; . . .; 1� UðnÞg;

one obtains that for any n = 1, 2,… the following equality holds:

fuð1Þ; uð2Þ; . . .; uðnÞg ¼d fU1; U1U2; . . .;U1U2; . . .;Ung: ð4:2:14Þ

It was mentioned above that we consider in general the records for X’s having
continuous distribution functions, but it is useful to mention here how to study
record values based on some discrete random variables.

Let now X1, X2,… be independent identically distributed random variables
taking nonnegative integer values and X(1) < X(2) < … be the corresponding strong
record values.

For discrete distributions we introduce record indicators ηn, n = 0, 1, 2,…, such
that ηn = 1, if n is a record value in the sequence X1, X2,…, and ηn = 0, otherwise. It
was shown (see Theorem 3.3.1 and Exercise 3.3.5) that these record indicators are
independent and

Pfgn ¼ 1g ¼ 1� Pfgn ¼ 0g ¼ pn=PfX � ng; n ¼ 0; 1; 2; . . .:

Now one can get the simple expressions for distributions of record values X
(n) based on such type of discrete X’s. Really, in this situation it is possible to
obtain the following equalities:

PfXðnÞ ¼ mg ¼ Pfg0 þ g1 þ � � � þ gm�1 ¼ n� 1; gm ¼ 1g
¼ Pfg0 þ g1 þ � � � þ gm�1 ¼ n� 1gpm=PfX�mg; ð4:2:15Þ

and

PfXðnÞ[mg ¼ Pfg0 þ g1 þ � � � þ gm�1\ng; ð4:2:16Þ

which are valid for any m = 0, 1, 2,… and n = 1, 2,….
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4.3 Distributions of Conditional Record Values

Let us consider the conditional distribution

uðxjx1; x2; . . .; xnÞ ¼ PfXðnþ 1Þ[ xjXð1Þ ¼ x1; Xð2Þ ¼ x2; . . .;XðnÞ
¼ xng; x1\x2\. . .\xn\x:

The following result will be useful for us.

Exercise 4.3.1 Show that if L(n) is the nth record time in the sequence X1, X2,…,
then random variables XL(n)+1, XL(n)+2,… are independent, have the same distri-
bution function F(x), as the initial X1, X2,…, and these elements don’t depend on the
X1, X2,…,XL(n).

Taking into account the assumption of Exercise 4.3.1 and denoting Y1 = XL(n)+1,
Y2 = XL(n)+2,…, one gets that

uðxjx1; x2; . . .; xnÞ ¼ PfY1 [ xg þ PfY1 � xn; Y2 [ xg þ � � �
þ PfY1 � xn; Y2 � xn; . . .; Yr�1 � xn; Yr [ xg þ � � �

¼ ð1� FðxÞÞ þ FðxnÞð1� FðxÞÞ þ � � �
¼ ð1� F(x)Þ=ð1� F(xnÞÞ; x[ xn: ð4:3:1Þ

In the case, when there exists the density function f(x) of X’s, one can write the
corresponding conditional density function fn+1(x| x1, x2,…, xn) of X(n + 1) given
that X(1) = x1, X(2) = x2,…, X(n) = xn. It has the following form:

fnþ1ðxjx1; x2; . . .; xnÞ ¼ f ðxÞ=ð1� FðxnÞÞ; x[ xn: ð4:3:2Þ

The result of Exercise 4.3.1 implies that the sequence of record values X(1) < X
(2) < … forms a Markov chain.

4.4 Moments of Record Values

Let us consider exponential record values Z(1) < Z(2) <… based on the independent
random variables Z1, Z2,… having the exponential E(1)-distribution. From (4.2.9)
we know that for any n = 1, 2,…

fZð1Þ; Zð2Þ; . . .; ZðnÞg ¼d fS1; S2; . . .; Sng;

where Sk ¼ m1 þ m2 þ � � � þ mk , k = 1, 2,…, n and m; m1; m2; . . . are independent
random variables also having the exponential E(1)-distribution.
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It follows immediately from this representation and from the independence
property of m1; m2; . . . that

EZðnÞ ¼ ESn ¼ nEm ¼ n; ð4:4:1Þ

VarZðnÞ ¼ VarSn ¼ nVarm ¼ n; ð4:4:2Þ

CovðZðmÞ; ZðnÞÞ ¼ covðSm; SnÞ ¼ covðSm; SmÞ ¼ VarðSmÞ ¼ m; if m� n;

ð4:4:3Þ

and the correlation coefficients are given as follows:

qðZðmÞ; ZðnÞÞ ¼ ðm=nÞ1=2; if m� n: ð4:4:4Þ

Exercise 4.4.1 Use equalities (4.2.13) and (4.2.14) to find expectations EU(n) and
Eu(n), variances Var U(n) and Var u(n), covariances Cov (U(m), U(n)) and Cov(u
(m),u(n)) of the upper and lower uniform record values.

From (4.2.12) for any X’s with continuous d.f. F(x) we have the following
equalities in distribution:

fXð1Þ; Xð2Þ; . . .;XðnÞg ¼d fHðm1Þ; Hðm1 þ m2Þ; . . .;Hðm1 þ m2 þ � � � þ mnÞg;
n ¼ 1; 2; . . .;

where H(x) = G(1 − exp(−x)), G is the inverse of F and m1; m2; . . ., as above, are
independent exponentially E(1)-distributed random variables. Note that sums

Sn ¼ m1 þ m2 þ � � � þ mn; n ¼ 1; 2; . . .;

have the Gamma distributions with parameters 1, 2,…, correspondingly. It allows
us to write that

EXðnÞ ¼ EHðm1 þ m2 þ � � � þ mnÞ ¼
Z1

0

HðxÞ expð�xÞxn�1dx=ðn� 1Þ!

¼
Z1

0

Gð1� expð�xÞÞ expð�xÞxn�1dx=ðn� 1Þ! ¼
Z1

�1
uð� lnð1� FðuÞÞÞn�1dFðuÞ=ðn� 1Þ!:

ð4:4:5Þ

Similarly one gets that

EX2ðnÞ ¼
Z1

�1
u2ð� lnð1� FðuÞÞÞn�1dFðuÞ=ðn� 1Þ!: ð4:4:6Þ
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Exercise 4.4.2 Show that equality (4.4.6) is valid and write the expression for
variance of X(n), n = 1, 2,….

Exercise 4.4.3 Generalize expressions (4.4.5) and (4.4.6) and write equalities for
moments EXr(n) for r = 3, 4,… and n = 1, 2,….

The analogous method gives, in particular, the following equalities for the joint
moments E X(m) X(n).

Let m ≤ n. Then we can get that

E XðmÞXðnÞ ¼
Z1

0

Z1

0

HðuÞHðuþ vÞ expð�ðuþ vÞÞum�1vn�m�1dudv=ðm� 1Þ!ðn� m� 1Þ!: ð4:4:7Þ

Based on equalities (4.4.5)−(4.4.7) it is possible to write the corresponding
formulae for covariances cov(X(m), X(n)) and correlation coefficients

ρ(X(m), X(n)) of any two record values X(m) and X(n). Indeed we don’t forget
every time that it is necessary to check preliminary the existence of the second
moments of these record values.

Remark 4.4.1 It is interesting to know (see, for example, Nevzorov (2001), Lecture
22) that for any m ≤ n and for any continuous d.f., such that

Z1

�1
u2ð� lnð1� FðuÞÞÞm�1dFðuÞ\1;

Z1

�1
u2ð� lnð1� FðuÞÞÞn�1dFðuÞ\1;

ð4:4:8Þ

the following inequality for the correlation coefficients holds:

qðXðmÞ;XðnÞÞ� ðm=nÞ1=2: ð4:4:9Þ

Thus, we obtain, recalling (4.4.4), that the maximal value of q(X(m), X(n)) is
attained for the exponential distributions and it is equal to (m/n)1/2 if m ≤ n.

4.5 Joint Distributions of Record Values and Record
Times

Above we discussed separately distributions and properties of record times and
record values. There are some useful results connected with the joint distributions
of these random variables. Lower we consider different results connected with the
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joint distributions of record values X(n), record times L(n) and inter-record times Δ
(1) = L(1) = 1, Δ(n) = L(n) − L(n−1), n = 2, 3,…

The joint distributions of the sets of record times and record values for any n,
any values x1, x2,…, xn and 1 = k(1) < k(2) < ⋯ < k(n) are given as follows:

PfXð1Þ\x1;Xð2Þ\x2; . . .;XðnÞ\xn; Lð1Þ ¼ 1; Lð2Þ ¼ kð2Þ; . . .; LðnÞ ¼ kðnÞg

¼
Zx1

�1
. . .

Zxn

�1
hðv1; v2; . . .; vnÞdFðv1ÞdFðv2Þ. . .dFðvnÞ;

ð4:5:1Þ

where

hðv1; v2; . . .; vnÞ ¼
Yn�1

r¼1

Fk rþ1ð Þ�k rð Þ�1ðvrÞ;

if—∞ < v1 < v2 < ⋯ <vn < ∞, and h(v1, v2,…, vn) = 0, otherwise.
In the case when X’s have a density function f(x), one can consider the function f

(x1, x2,…, xn, k(1), k (2),…, k(n)), which presents a density function with respect to
the record values and a probability distribution with respect to our discrete record
times. To get f(x1, x2,…, xn, k(1), k(2),…, k(n)) one must differentiate (4.5.1) n times
with respect to x1, x2,…, xn. These differentiating allows to obtain rather simple
equality:

f ðx1; x2; . . .; xn; kð1Þ; kð2Þ; . . .; kðnÞÞ
¼ ðFðx1ÞÞkð2Þ�kð1Þ�1 Fðx2Þð Þkð3Þ�kð2Þ�1. . .ðFðxnÞÞkðnÞ�kðn�1Þ�1f ðx1Þ f ðx2Þ. . .f ðxnÞ;

ð4:5:2Þ

if �1\x1\x2\. . .\xn\1; 1 ¼ kð1Þ\kð2Þ\. . .\kðnÞ

and

f ðx1; x2; . . .; xn; kð1Þ; kð2Þ; . . .; kðnÞÞ ¼ 0; otherwise:

Exercise 4.5.1 Make the substitution m(r) = k(r) − k(r − 1), r = 2, 3,…, n, in
(4.5.2) and prove that the corresponding joint “density-distribution” function h(x1,
x2,…, xn, m(1), m(2),…, m(n)) for record values X(1), X(2),…, X(n) and inter-record
times Δ(1), Δ(2),…, Δ(n) has the form

hðx1; x2; . . .; xn; mð1Þ;mð2Þ; . . .;mðnÞÞ
¼ ðFðx1ÞÞmð2Þ�1ðFðx2ÞÞmð3Þ�1. . .ðFðxnÞÞmðnÞ�1f ðx1Þf ðx2Þ. . .f ðxnÞ;

ð4:5:3Þ
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if �1\x1\x2\. . .\xn\1; mð1Þ ¼ 1; mð2Þ[ 0; . . .;mðnÞ[ 0;

and

hðx1; x2; . . .; xn;mð1Þ;mð2Þ; . . .;mðnÞÞ ¼ 0; otherwise:

Recalling (see (4.2.7)) that the joint density function of X(1), X(2),…,X(n) has
the form

f1;2;...;nðx1; x2; . . .; xnÞ ¼ Rðx1ÞRðx2Þ. . .Rðxn�1Þf ðxnÞ; if x1\x2\. . .\xn;

where R(x) = f(x)/(1 − F(x)), we can obtain from (4.5.3) the expression for the
conditional probabilities of the inter-record times:

PfDð1) ¼ 1; Dð2) ¼ mð2Þ; . . .;Dðn) ¼ mðnÞjXð1Þ ¼ x1; Xð2Þ ¼ x2; . . .; XðnÞ ¼ xng
¼ ðFðx1ÞÞmð2Þ�1ð1� Fðx1ÞÞðFðx2ÞÞmð3Þ�1ð1� Fðx2ÞÞ. . .ðFðxn�1ÞÞmðnÞ�1ð1� Fðxn�1ÞÞ:

ð4:5:4Þ

Remark 4.5.1 Thus, it was shown that inter-record times Δ(1), Δ(2),…, Δ(n) are
conditionally independent given the fixed record values X(1), X(2),…, X(n) and for
any r = 2, 3,…, m = 1, 2,…, n = 2, 3,… the following equality holds:

PfDðr) ¼ mjX(1) ¼ x1;X(2) ¼ x2; . . .;X(n) ¼ xng ¼ (1� F(xr�1))(F(xr�1))m�1:

ð4:5:5Þ

4.6 Kth Record Values

As it was mentioned above the kth records are a natural extension of the classical
records. Recall that kth record times L(n, k) and the kth record values X(n, k) for any
k = 1, 2,… are defined as follows:

Lð1; kÞ ¼ k; Lðnþ 1; kÞ ¼ minfj[ L n; kð Þ : Xj [Xj�k;j�1g; n ¼ 1; 2; . . .;

and

Xðn; kÞ ¼ XLðn;kÞ � kþ1; Lðn;kÞ; n ¼ 1; 2; . . .

Some results describing the probability structure of the kth record values and
their relationships with order statistics were given in Deheuvels (1984b). We are
going to consider here only the case when the parent distribution function F is
continuous, although some of the results discussed below are true under more
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general conditions. Note that relations for the kth records are rather close to the
corresponding results for the usual (when k = 1) records.

Let us denote as Z(1, k) < Z(2, k) < … the kth record values for the case of the
standard exponential distribution with d.f. F(x) = 1 − exp(−x), x ≥ 0.

Representation 4.6.1 For any n = 1, 2,… and any k = 1, 2,… the following
equality in distribution is valid:

fZð1; kÞ; Zð2; kÞ; . . .; Zðn; kÞg¼d fS1=k; S2=k; . . .; Sn=kg; ð4:6:1Þ

where Sk ¼ m1 þ m2 þ . . .þ mk, k = 1, 2,.., n, and m1; m2; . . .: are independent ran-
dom variables having the exponential E(1)-distribution.

Indeed if k = 1, one gets Representation (4.2.1) for the usual exponential record
values, as a partial case of (4.6.1).

Exercise 4.6.1 Describe (as it was done in Corollary 4.2.1) the structure of the kth
inter-record values Z(1, k), Z(2, k) − Z(1, k),…, Z(n, k) − Z(n − 1, k).

Exercise 4.6.2 Find moments EZ(n, k), VarZ(n, k) and cov(Z(m, k), Z(n, k)).

Taking into account (4.6.1) it is possible to investigate more general situations.
Let now kth record values X(1, k) < X(2, k) < … correspond to X’s with a con-
tinuous distribution function F. Then it follows from (4.6.1) that for any n = 1, 2,…,
the next relation holds in distribution:

fXð1; kÞ; Xð2; kÞ; . . .;Xðn; kÞg
¼d fHðm1=kÞ; Hððm1 þ m2Þ=kÞ; . . .;Hððm1 þ m2 þ � � � þ mnÞ=kÞg;

ð4:6:2Þ

where H(x) = G(1 − exp( − x)), G is the inverse of F and m1; m2; . . ., as above, are
independent E(1)-distributed random variables.

It is not difficult to find that for any continuous d.f. F, any k ≥ 1, n ≥ 1, and x > u,

PfXðnþ 1; kÞ[ xjXðn; kÞ ¼ ug ¼ ðð1� FðxÞÞ=ð1� FðuÞÞÞk: ð4:6:3Þ

Really, it follows from (4.6.2) that

PfXðnþ 1Þ[ xjXðn; kÞ ¼ ug ¼ PfHððm1 þ m2 þ � � � þ mnþ1Þ=k Þ
[ xjHððm1 þ m2 þ � � � þ mnÞ=kÞ ¼ uÞg

¼ Pfðm1 þ m2 þ � � � þ mnþ1Þ
[ � klogð1� FðxÞÞjðm1 þ m2 þ � � � þ mnÞ

¼ �klogð1� FðuÞÞg
¼ Pfmnþ1[ � klogð1� FðxÞÞ

þ klogð1� FðuÞÞjðm1 þ m2 þ � � � þ mnÞ
¼ �klogð1� FðuÞÞg:
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Since mnþ1 and the sum m1 þ m2 þ � � � þ mn are independent one gets that

PfXðnþ 1Þ[ xjXðn; kÞ ¼ ug
¼ Pfmnþ1 [ � klogð1� FðxÞÞ þ klogð1� FðuÞÞg ¼ ðð1� FðxÞÞ=ð1� FðuÞÞÞk:

Exercise 4.6.3 Consider two sequences of independent random variables:
X1;X2; . . . with a continuous d.f. F and Y1 ¼ minfX1; . . .;Xkg, Y2 ¼ minfXkþ1; . . .;

X2kg; . . ., having d.f. TðxÞ ¼ 1� ð1� FðxÞÞk. Let also X(n, k) be the kth record values
based on X1;X2; . . ., and Y(n, 1) be the usual (k = 1) record values constructed with
the help of the sequence Y1; Y2; . . ..

Prove that for any k = 1, 2,… and any n = 1, 2,… the following equality in
distribution is valid:

Xðn; kÞ¼d Yðn; 1Þ ð4:6:4Þ

This correspondence between the kth record values X(n, k) and the usual records
Y(n, 1) helps us to get immediately distribution functions for X(n, k). From relation
(4.2.3) we know that

PfXðn; 1Þ\xg ¼ 1
ðn� 1Þ!

Z� logð1�FðxÞÞ

0

un�1e�udu: ð4:6:5Þ

The only we need now to obtain P{Y(n, 1) < x} is to write T(x) = 1 − (1 − F(x))k in
(4.6.5) instead of F(x). Hence, for any k ≥ 1 and n ≥ 1 the following result is valid:

PfXðn; kÞ\xg ¼ 1
ðn� 1Þ!

Z�k logð1�FðxÞÞ

0

un�1e�udu: ð4:6:6Þ

4.7 Exercises (solutions)

Exercise 4.2.1 (hint) It is enough to consider (4.2.4) with F(x) = 1 − exp( − x),
x ≥ 0, and to see that in this case the RHS of (4.2.4) corresponds to the Gamma(n)-
distribution. Then it will be enough to recall that the sum X1 + ⋯ + Xn of inde-
pendent E(1)-distributed X’s has the same Gamma-distribution.
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Exercise 4.2.2 (answers)

(a) It follows from (4.2.7) for the uniformly U([0,1])-distributed X’s that

f1;2;...;nðx1; x2; . . .; xnÞ ¼ 1=ð1� x1Þð1� x2Þ. . .
ð1� xn�1Þ; if 0\x1\x2\. . .\xn\1;

and

f1;2;...;nðx1; x2; . . .; xnÞ ¼ 0; otherwise:

(b) The joint density function of record values for the exponentially E(1)-dis-
tributed X’s was given in (4.2.8):

f1;2;...;nðx1; x2; . . .; xnÞ ¼ expf�xng; if 0\x1\x2\. . .\xn;
and

f1;2;...;nðx1; x2; . . .; xnÞ ¼ 0; otherwise:

Exercise 4.2.3 (solution) It is enough to recall that the joint density function g (u1,
u2,…,un) of independent E(1)—distributed random variables m1; m2; . . .mn is given as

gðu1; u2; . . .; unÞ ¼ expf�ðu1 þ u2 þ � � � þ unÞg; u1 � 0; u1 � 0; . . .; un � 0:

ð4:7:1Þ

Changing u1, u2,…,un in (4.7.1) by x1 = u1, x2 = u1 + u2,…,xn = u1 + u2 +… + un
one immediately gets that

f1;2;...;nðx1; x2; . . .; xnÞ ¼ expf�xng; if 0\x1\x2\ � � �\xn:

Exercise 4.2.4 (solution) In this situation equality (4.2.12) must be considered with
H(x) = 1 − exp(− x), x ≥ 0. Then

fUð1Þ; Uð2Þ; . . .;UðnÞg ¼d f1� expð�m1Þ; 1� expð�ðm1 þ m2ÞÞ; . . .;
1� expð�ðm1 þ m2 þ � � � þ mnÞÞg:

It is not difficult to see that random variables expð�m1Þ; expð�m2Þ; . . .; exp ð�mnÞ
are independent and have the same uniform U([0,1]) distribution.

Exercise 4.3.1 (hint) Evidently, the sequence Y1 = XL(n)+1, Y2 = XL(n)+2,…, under
condition that L(n) = m, coincides in distribution with Xm+1,Xm+2,… and these Y’s
do not depend on X1, X2,…,Xm. Moreover, for any m the event Cn, m = {L(n) = m} is
determined by random variables X1, X2,…,Xm only and does not depend on Xm+1,
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Xm+2,…. Hence now if to consider arbitrary event B, generated by record values X
(1), X(2),..,X(n) (in particular, event {L(n) = m}), and any event

A ¼ f Y1\x1; Y2\x2; . . .; Yk\xkg; k ¼ 1; 2; . . .;

one can get that

PfABg ¼ Fðx1ÞFðx2Þ. . .FðxkÞPfBg;

which proves the necessary assertion.

Exercise 4.4.1 (hints and answers) It is evident that

UðnÞ¼d 1� uðnÞ; n ¼ 1; 2; . . .

Hence

EuðnÞ ¼ 1� EUðnÞ; Var uðnÞ ¼ VarUðnÞ; CovðuðmÞ; uðnÞÞ ¼ CovðUðmÞ;UðnÞÞ:

From (4.2.14) one immediately gets that

EuðnÞ ¼ ðEUÞn ¼ 1=2n; Eu2ðnÞ ¼ ðEU2Þn ¼ 1=3n; Var uðnÞ ¼ 1=3n � 1=4n; n ¼ 1; 2; . . .;

EuðmÞuðnÞ ¼ ðEU2ÞmðEUÞn�m ¼ 1=3m2n�m; m� n;

Covðu(m); u(n)Þ ¼ 1=3m2n�m � 1=2nþm; m� n:

Exercise 4.4.2 (solution) Analogously to (4.4.5) one gets that

EX2ðnÞ ¼ EH2ðm1 þ m2 þ � � � þ mnÞ ¼
Z1

0

H2ðxÞ expð�xÞxn�1dx=ðn� 1Þ!

¼
Z1

�1
u2ð� lnð1� FðuÞÞÞn�1dFðuÞ=ðn� 1Þ!:

Thus,

Var XðnÞ ¼
Z1

�1
u2ð� lnð1� FðuÞÞÞn�1dFðuÞ=ðn� 1Þ!

�
Z1

�1
uð� lnð1� FðuÞÞÞn�1dFðuÞ=ðn� 1Þ!Þ2

0

@

1

A:
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Exercise 4.4.3 (answer)

EXrðnÞ ¼ E Hrðm1 þ m2 þ � � � þ mnÞ ¼
Z1

0

HrðxÞ expð�xÞxn�1dx=ðn� 1Þ!

¼
Z1

�1
urð� lnð1� FðuÞÞÞn�1dFðuÞ=ðn� 1Þ!; r ¼ 1; 2; . . .; n ¼ 1:2; . . .:

Exercise 4.5.1 (hint) The substitution m(r) = k(r) − k(r − 1), r = 2, 3,…, n, in
(4.5.2) immediately allows to obtain equality (4.5.3).

Exercise 4.6.1 (answer) It follows from (4.6.1) that for any k = 1, 2,… the
inter-record values Z(1, k), Z(2, k) − Z(1, k),…, Z(n, k) −Z(n − 1, k),… are inde-
pendent and have the exponential E(1/k)-distribution with the density function

f ðxÞ ¼ kexpð�kxÞ; x� 0:

Exercise 4.6.2 (answers) Immediately one gets from (4.6.1) that

EZðn; kÞ ¼ n=k; VarZðn; kÞ ¼ n=k2; CovðZðm; kÞ; Zðn; kÞÞ ¼ minðm; nÞ=k2;

and the correlation coefficients do not depend on k and have the form

qðZðm; kÞ; Zðn:kÞÞ ¼ ðm=nÞ1=2; if m� n; k ¼ 1; 2; . . .

Exercise 4.6.3 (solution) It is enough to observe that the function W(x), inverse to
T(x), has the form W(x) = G(1 − (1 − x)1/k), where G(x) is the inverse function to F
(x). Then the application of relation (4.6.2) with k = 1 and

HðxÞ ¼ Wð1� expð�xÞÞ ¼ Gð1� expð�x=kÞÞ

allows to get the equality

Yðn; 1Þ¼d Hððm1 þ m2 þ � � � þ mnÞ=kÞ; n ¼ 1; 2; . . .;

which means that Y(n, 1) and Z(n, k) have the same distribution.
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Chapter 5
Record Values of Some Well Known
Distributions

5.1 Exponential Distribution

5.1.1 Introduction

A continuous random variable X is said to be exponentially distributed with
parameters l and r, r[ 0, if its pdf is of the following form

f xð Þ ¼ r�1 exp �r�1 x� lð Þ� �
; �1\l\x\1; r[ 0;

¼ 0; otherwise
ð5:1:1:1Þ

The corresponding distribution function F(x) and the hazard rate r(x) of the rv X
are respectively

F xð Þ ¼ 1� exp �r�1 x� lð Þ� �
;�1\l\x\1; r[ 0

and

r xð Þ ¼ f xð Þ= 1� F xð Þð Þ ¼ r�1: ð5:1:1:2Þ

We will denote the exponential distribution with the pdf as given in (5.1.1.1) as
E l;rð Þ. The graph of the pdf of E(0, 1) is given in Fig. 5.1.

The exponential distribution possesses the memory less property i.e. an item
whose lifetime is exponentially distributed, the residual life does not depend on the
past life. In terms of probability, we can write

P X[ sþ t X[ tj½ � = P X[ s½ � ð5:1:1:3Þ
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In terms of the distribution function we can write (5.1.1.3) as

1� F sþ tð Þ ¼ 1� F sð Þ½ � 1� F tð Þ½ �: ð5:1:1:4Þ

This property is utilized in many characterizations of the exponential distribution.

5.1.2 Distribution of Record Values

Using R xð Þ ¼ �log 1� F xð Þð Þ ¼ r�1 x� lð Þ, we have the pdf fn(x) of the nth
upper record X(n) as

fn xð Þ ¼ r�n

C nð Þ x� lð Þn�1exp �r�1 x� lð Þ� �
; �1\l\x\1; r[ 0

¼ 0; otherwise: ð5:1:2:1Þ

The corresponding d.f. Fn(x) is

FnðxÞ ¼ 1�
Xn�1

k¼0

1
k!

x� l
r

� �k
e�

x�l
r :

The joint pdf of XðmÞ and X(n), n [m is

fm;n x; yð Þ ¼ r�n

C mð Þ �
x� lð Þm�1

C n� mð Þ y� xð Þn�m�1exp �r�1 x� lð Þ� �
;

�1\l� x\y\1;

¼ 0; otherwise

: ð5:1:2:2Þ

It is easy to see that XðnÞ � Xðn� 1Þ and X(m)� X(m� 1Þ are identically
distributed for 1 < m < n < ∞. It can be shown that XðmÞdXðm� 1Þ þ U; m[ 1
where U is independent of X(m) and X(m − 1) and is identically distributed as Xi’s.

0 2 4 6
0

0.5

1

f x( )

x

Fig. 5.1 Pdf of E(0, 1)
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The conditional pdf of XðnÞjjXðmÞ ¼ x is

f y XðmÞ ¼ xjð Þ ¼ rm�n

Cðn� mÞ ðy� xÞn�m�1 expð�r�1ðy� xÞÞ; �1\l� x\y\1;

¼ 0; otherwise:

ð5:1:2:3Þ

It can be shown that if μ = 0, then XðnÞ � XðmÞ is identically distributed as
Xðn� mÞ; n[m:

If we take μ = 0 and σ = 1 and Wn = X(1) + X(2) +⋯+ X(n), then, the
characteristic function of /nðtÞ of Wn can be written as

/nðtÞ ¼
1

1� it
� 1
1� 2it

� � � 1
1� nit

: ð5:1:2:4Þ

Inverting (5.1.2.4), we obtain the pdf fW(w) of Wn as

fW wð Þ ¼
Xn
j¼1

1
CðjÞ �

ð�1Þn�j

Cðn� jþ 1Þ � e
�w=jjn�2: ð5:1:2:5Þ

Theorem 5.1.2.1 Let Xj, i = 1, 2,… be independently and exponentially distributed

with μ = 0and σ = 1. Suppose ni ¼ XðiÞ
Xðiþ 1Þ i = 1, 2, m − 1 then ni’s are independent.

Proof The joint pdf of X(1), X(2),…,X(m) is

fðx1; x2; . . .; xmÞ ¼ e�xm ; 0\x1\x2\ � � �\xm\1:

Let us use the transformation

n0 ¼ Xð1Þ; and ni ¼ XðiÞ
Xðiþ 1Þ ; i ¼ 2; . . .;m� 1:

The Jacobian of the transformation

J ¼ @ðXð1Þ; Xð2Þ; . . .;XðmÞÞ
@ðno; n1; . . .; nm�1Þ

����
���� ¼ nm�1

o

nm1 nm�1
2 . . .n2m�1

We can write the pdf of ni, i = 0, 1,……,m − 1, as

fðeo; e1; . . .; em�1Þ ¼ em�1
o

em1 e
m�1
2 . . .e2m�1

e
� eo

e1 ...em�1

� �
:
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Now integrating the above expression with respect to eo, we obtain the joint pdf
of ni, i = 1,……, m − 1, as

f ðe1; . . .; em�1Þ ¼ C mð Þe2. . .em�2
m�1:

Thus ni, i = 1, 2,…, m − 1 are independent and

Pðnk � xÞ ¼ xk; 1� k�m� 1:

Exercise 5.1.2.1 Let Wk = (nk)
k, k = 1, 2,…, m − 1, then W1, W2,…., Wm−1 are

independent and identically distributed as uniform (over the interval (0, 1)) random
variable.

5.1.3 Moments

Without any loss of generality we will consider in this section the standard expo-
nential distribution, E(0, 1), with pdf f(x) = exp(−x), 0� x\1, in which case we
have f(x) = 1 − F(x).

For 1 < m < n,

EðXððnÞÞpðXðmÞÞÞq

¼
Z1
0

Zu
0

1
CðmÞ :

1
Cðn� mÞ u

qe�xvmþp�1ðu� vÞn�m�1dvdu

Substituting tu = v and simplifying we get

E Xp
UðnÞX

q
UðmÞ

� �
¼
Z 1

0

Z 1

0

1
CðmÞ

1
Cðn� mÞ u

nþpþq�1e�xtmþp�1ð1� tÞn�m�1 dtdu

¼ Cðmþ pÞCðnþ pþ qÞ
CðmÞCðnþ pÞ ð5:1:3:1Þ

It can easily be shown that if Sn = X(1) + X(2) +⋯+ X(n) then

E Snð Þ ¼ nðnþ 1Þ
2

and Var Snð Þ ¼ nðnþ 1Þð2nþ 1Þ
6

:

Some simple recurrence relations satisfied by single and product moments of
record values are given in the following theorems.
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Theorem 5.1.3.1 For n > 1 and r = 0, 1, 2,…

E XðnÞÞrþ1
� �

¼ E ðXðn� 1ÞÞrþ1
� �

þ r þ 1ð ÞE XðnÞÞrð Þ ð5:1:3:2Þ

and consequently, for 0 < m < n − 1 we can write

EðXðnÞÞrþ1 ¼ EðXðmÞÞrþ1 þ ðr þ 1Þ
Xn

i¼rþ11

EðXðiÞÞr

withE ðXð0Þrþ1
� �

¼ 0 and E XðnÞ0
� �

¼ 1:

ð5:1:3:3Þ

Proof For n > 1 and r = 0, 1,…, we have

EðXðnÞÞrÞ ¼ 1
CðnÞ

Z 1

0
xrfRðxÞgn�1f ðxÞdx

¼ 1
CðnÞ

Z 1

0
xrfRðxÞgn�1f1� FðxÞgdx;

since f(x) = 1 − F(x).
Upon integrating by parts treating xr for integration and the rest of the integrand

for differentiation, we obtain

EðXðnÞÞr ¼ 1
ðr ¼ 1ÞCðnÞ

Z 1

0
xrðRðxÞÞn�1f ðxÞdx

¼ 1
r þ 1

Z 1

0
xrþ1 1

C nð Þ R xð Þf gn�1f xð Þdx
�

�
Z 1

0
xrþ1 1

C n� 1ð Þ R xð Þf gn�2f xð Þdx
�

¼ EðXðnÞrþ1 � E Xðn� 1Þrþ1
� �

;

which, when rewritten, gives the recurrence relation in (5.1.3.2). By repeatedly
applying the recurrence relation (5.1.3.2), we simply derive the recurrence relation
in (5.1.3.3).

Remark 5.1.3.1 The recurrence relation in (5.1.3.2) can be used in a simple way to
compute all the simple moments of all record values. Once again, using the property
that f(y) = 1 − F(y), we can derive some simple recurrence relations for the product
moments of record values.

Balakrishnan and Ahsanullah (1995) proved the following recurrence relations
of the product moments given in Theorem 5.1.3.2.
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Theorem 5.1.3.2 For m > 1 and r, s = 0, 1, 2,…

EððXðmÞÞrðXðmþ 1ÞÞsþ1Þ ¼ E XðmÞÞrþsþ1
� �

þ sþ 1ð ÞEððXðmÞÞrðXðmþ 1ÞÞsÞ
ð5:1:3:4Þ

and for 1 < m < n − 2, r, s = 0, 1, 2,…

EððXðmÞÞrðXðnÞÞsþ1Þ ¼ EððXðmÞÞrðXðn� 1ÞÞsþ1Þ sþ 1ð ÞEððXðmÞÞrðXðnÞÞsÞ
ð5:1:3:5Þ

Remark 5.1.3.2 By repeated application of the recurrence relation in (5.1.3.5), with
the help of the relation in (5.1.3.4), we obtain for n > m + 1 that

EððXðmÞÞrðXðnÞÞsþ1Þ ¼ EððXðmÞÞrþsþ1 þ sþ 1ð Þ
Xn

p¼mþ1

EððXðmÞÞrðXðnÞÞpÞ

ð5:1:3:6Þ
Exercise 5.1.3.2 If X(n) is the nth upper record from an exponential distribution
with pdf f xð Þ ¼ e�x; x� 0; then XðnÞd X1 þ X2 þ � � � þ Xn, where X1, X2,…,Xn are
independent and identically distributed with pdf f(x) ¼ e�x; x� 0.

Exercise 5.1.3.3 How that the Shannon entropy En of X(n) of E(0, σ)is

En ¼ nþ logCðnÞ � ln r� ðn� 1ÞwðnÞ;

where wðnÞ is the digamma function, wðnÞ ¼ d
dn ln CðnÞ:

5.2 Generalized Extreme Value Distributions

5.2.1 Introduction

A random variable X is said to have the generalized extreme value distribution if its
distribution function F(x) is of the following form:

F xð Þ ¼ exp½�f1� c r�1ðx � lÞg1=c� ð5:2:1:1Þ
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where σ > 0, γ ≠ 0 and

x \lþ rc�1; for c[ 0

x [ lþ rc�1; for c\0:
ð5:2:1:2Þ

If γ = 0 then

F xð Þ ¼ exp½�expfðx� lÞ=rg�; r[ 0;�1\x\1: ð5:2:1:3Þ

We will write X 2 GEV(μ, σ, γ) if X has the d.f. as given in (5.2.1.1).
Since

lim
c!0

f1� c r�1ðx� lÞg1=c ¼ expf�r�1ðx� lÞg, we can take

lim
c!0

GEVðl;r; cÞ ¼ GEVðl;r; 0Þ:

The pdf of GEV(μ, σ, γ) is

f xð Þ ¼ r�1f1� c r�1 ðx� lÞgð1�cÞ=cexp½�f1� c r�1ðx� lÞg1=c�; c 6¼ 0

x\1=c; for c[ 0;

x[ 1=c; for c\ 0;

and
f xð Þ ¼ e �x expð�e� xÞ, for γ = 0, for all x.
Figures 5.2 and 5.3 give the pdfs of GEV(0, 1, 1/2) and GEV(0, 1, 0).
The extreme value distribution for γ = 0, is also known Gumbel distribution.
The largest order statistic Xn,n when properly standardized tends to one of the

following three types of limiting distribution functions as n → ∞.

(1) Type 1: (Gumbel) F(x) = exp(−e−x), for all x,
(2) Type 2: (Frechet) F(x) = exp(−x − δ), x > 0, δ > 0
(3) Type 3: (Weibull) F(x) = exp (−(−x) δ), x < 0, δ > 0.

5 0 5 10
0

0.2

0.4

0.6

f x( )

x

Fig. 5.2 Pdf of GEV(0, 1,
1/2)
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Since the smallest order statistic X1,n = Yn,n, where Y = −X, X1,n when properly
standardized will also converge to one of the above three limiting distributions.
Gumbel (1958) has given various applications of these distributions. The Type 1
(Gumbel distribution) is the limiting distribution of Xn,n when F(x) is normal, log
normal, logistic, gamma etc. The generalized extreme value distribution (5.2.1.1)
has been discussed by Jenkinson (1955). It includes as special case the above three
well known extreme value distributions.

The type 2 and type 3 distributions can be transformed to Type 1 distribution by
the transformations V2 = llog X and V3 = −log X respectively.

These distributions were originally introduced by Fisher and Tippet (1928).
Extreme value distributions have been used in the analysis of data concerning
floods, extreme sea levels and air pollution Excercises; for details see Gumbel
(1958), Horwitz (1980), Jenkinson (1955) and Roberts (1979).

For a given set of n observations, let X1,n <⋯< Xn,n be the associated order
statistics. Suppose that P{an (Xn,n − bn) < x} → G(x) as n → ∞ for some suitable
constants an and bn. Then it is known (see Leadbetter et al. 1983, p. 33) that

PfanðXn�m;n � bnÞ� xg�!d GðxÞ
Xm
s¼0

½� lnGðxÞ�s
Cðsþ 1Þ :

We have already seen that the right hand side of the above expression is the d.f.
of the mth lower record value from the distribution function G(x).

Thus the limiting distribution of the (n − m + 1)th order statistic (m finite) as
n → ∞ from the generalized extreme value distribution is the same as the mth
lower record value from the generalized extreme value distribution. In this chapter
we will study the lower record values of GEV (μ, σ, γ).

5.2.2 Distributional Properties

If X 2 GEV (μ, σ, γ), then we can write for γ ≠ 0, the pdf f(m)(x) of the mth lower
record value x(n) as

5 0 5 10
0

0.2

0.4

f x( )

x

Fig. 5.3 Pdf of GEV(0, 1, 0)
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f mð Þ xð Þ ¼ f1� cr�1ðx� lÞgðm�1Þ=cf �mðxÞ ð5:2:2:1Þ

where

f �mðxÞ ¼
f1� c r�1ðx� lÞgð1�cÞ=c

rðm� 1Þ! expf�ð1� cr�1ðx� lÞÞg1=c

and for γ = 0,

f mð Þ xð Þ ¼ e�mr�1ðx�lÞ

rðm� 1Þ! expf�e�r�1ðx�lÞg;m ¼ 1; 2; . . . ð5:2:2:2Þ

From (5.2.2.1) and (5.2.2.2) it can be shown that

x mð Þd lþ rc�1f1� ðW1 þ � � � þWmÞcg; for c 6¼ 0 ð5:2:2:3Þ

X mð Þd X � rðW1 þW2

2
þ � � � þ Wm�1

m� 1
Þ; for c ¼ 0; ð5:2:2:4Þ

where W1, W2,…,Wm are independently distributed as exponential random vari-
ables with unit mean and d denotes the equality in distribution. It can easily be
shown that.

5.2.3 Moments

E x mð Þð Þ ¼ lþ rc�1f1� Cðm þ cÞ=C mð Þg:
Var x mð Þð Þ ¼ r2c�2½E W1 þ � � � þWmð Þ2c�fE W1 þ � � � þWmð Þcg2�

¼ r2c�2 Cðmþ 2cÞ
CðmÞ � Cðmþ cÞ

CðmÞ
	 
2

" #
:

For r < m

c2r�2Cov x rð Þx mð Þð Þ ¼ Eð
Xr
j¼1

WjÞcð
Xm
j¼1

WjÞc � Eð
Xr
j¼1

WjÞcEð
Xm
j¼1

WjÞc

¼
Z 1

0

Z 1

0
ucðuþ vÞc e

�uur�1

CðrÞ
e�vvm�r�1

Cðm� rÞ du dv

¼ Cðr þ cÞCðr þ 2cÞ
CðrÞCðr þ cÞ � Cðr þ cÞCðmþ cÞ

CðrÞCðmÞ ;
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since u and v are independent. We can write for r < m

Cov x rð Þx mð Þf g ¼ r2oarbm;

where

ar ¼ Cðr þ cÞ
CðrÞ ; bm ¼ Cðmþ 2cÞ

Cðmþ cÞ � Cðmþ cÞ
CðmÞ and r2o ¼

r2

c2
:

Using (5.2.2.4) we obtain for γ = 0,

E x rð Þð Þ ¼ lþ t�rr

Var x rð Þð Þ ¼ r2V�
r;r; r ¼ 1; 2; . . .

Cov x rð Þx mð Þð Þ ¼ Var x mð Þð Þ; r\m;

with

t�1 ¼ t

t�j ¼ t�j�1 � ðj� 1Þ�1; j� 2;

V�
1;1 ¼ p2=6;

. . .. . .. . .. . .. . .. . .. . .. . .. . .

V�
j;j ¼ V�

j�1;j�1 � ðj� 1Þ�2; j� 2

Here υ (=0.57722...) is the Euler’s constant.
For X 2 GEV (μ, σ, 0), the joint pdf fYðyÞ of Y = H(x(m + 1))/H(x(m)) is

fYðyÞ ¼ mym�1; 0 \y\1 ð5:2:3:1Þ

Thus (Y)m is distributed as uniform over the interval (0, 1). Consequently m
[−log H(x(m)) + log H(x(m + 1)) is distributed as exponential distribution with
mean unity. Tables 5.1 and 5.2 give the values of E(XL(n)) and Var(XL(n)) for
some selected values of n and γ.

Table 5.1 Expected values
of XL(n) c

n=c 0 0.5 1.0 1.5

5 −1.5061 −2.3619 −4.0000 −5.6301

10 −2.2518 −4.2460 −9.0000 −21.1944

15 −2.6743 5.6817 −14.0000 −39.0221

20 −2.9705 −6.8886 −19.0000 −60.0718

25 −3.1987 −7.9501 −24.0000 −83.9094

30 −3.3844 −8.9089 −29.0000 −110.2405
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We will derive the recurrence relation for the moments of standardized extreme
value distribution, GEV(0, 1, γ). The distribution function of the standard gen-
eralized extreme value distribution can be written as

FðxÞ ¼ e�f1�cxg1=c ; x\1=c; when c[ 0;

x[ 1=c;when c\0

and

FðxÞ ¼ e� e�x
;�1\x\1; when c ¼ 0

The corresponding pdfs are

f ðxÞ ¼ e�f1�cxg1=cf1� cxg1
c�1; when x \1/c; when c[ 0

x[ 1=cwhen c\0

¼ e�e�x
e�x;�1\x\1; c ¼ 0

Note that for c 6¼ 0

f ðxÞ ¼ FðxÞ:f1� cxg1
c�1

) f1� c xg f ðxÞ ¼ FðxÞf1� c xg1=c ¼ �FðxÞ lnFðxÞ ð5:2:3:2Þ

(a) Let us consider the case c 6¼ 0

Let x(1), x(2),…. be the sequence of lower record values from the above gen-
eralized extreme value distribution when c 6¼ 0. Then, the pdf fn(x) of x(n)) (n > 1)
is given by

fnðxÞ ¼ 1
CðnÞ f� logFðxÞgn�1f ðxÞ; x\1=c; when c[ 0;

x [ 1/c; when c\0
ð5:2:3:3Þ

Table 5.2 Variances of XL(n) n\γ γ = 0 γ = 0.5 γ = 1.0 γ = 1.5

5 0.2213 0.9738 5.0000 29.3843

10 0.1052 0.9872 10.0000 108.7898

15 0.0689 0.9915 15.0000 238.1350

20 0.0513 0.9937 20.0000 415.5101

25 0.4080 0.9950 25.0000 646.8852

30 0.0339 0.9958 30.0000 926.2602
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Theorem 5.2.3.1 For n = 1, 2,… and r = 0, 1, 2,…,

Eðxðnþ 1ÞÞrþ1 ¼ 1þ cðr þ 1Þ
n

	 

EðxðnÞÞrþ1 � r þ 1

n
EðxðnÞÞr ð5:2:3:4Þ

Proof For n > 1 and r = 0, 1,

EðxðnÞÞr � cEðxðnÞÞr�1 ¼ 1
CðnÞ

Z 1

�1
ðxr � cxrþ1Þf� logFðxÞgn�1f ðxÞdx

¼ 1
CðnÞ

Z 1

�1
xrf� logFðxÞgn FðxÞdx

Upon integrating by parts, we obtain

EððxðnÞÞrÞ � cEðxðnÞÞr�1 ¼ 1
CðnÞðr þ 1Þ

Z 1

�1
nxrþ1f� logFðxÞgn�1f ðxÞdx

�
Z 1

�1
xrþ1f� logFðxÞgnf ðxÞdx

¼ n
ðr þ 1Þ EðxðnÞÞrþ1 � Eðxðnþ 1ÞÞrþ1

n o
:

The relation in (5.2.3.4) is derived upon rewriting the above equation.

Remark 5.2.3.1 By starting with the first k raw moments of the generalized extreme
value distribution, Theorem 1 will enable one to determine the first k raw moments
of all the lower record values.

Corollary 5.2.3.1

For n [ 1;

Eðxðnþ 1ÞÞ ¼ 1þ c
n

� �
EðxðnÞÞ � 1

n

ð5:2:3:5Þ

(b) Case γ = 0.

When γ = 0, the generalized extreme value distribution is also known as the
Gumbel distribution or type I extreme value distribution. Let us consider the
standard type I extreme value distribution with the pdf as

f xð Þ ¼ e�e�x
e�x;�1\x\1; ð5:2:3:6Þ
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and the d.f. as

F xð Þ ¼ e�e�x
; �1\x\1; ð5:2:3:7Þ

It is easy to see from (5.2.3.6) and (5.2.3.7) that for the standard type I extreme
value distribution

f xð Þ ¼ F xð Þ �log F xð Þf g; �1\x\1: ð5:2:3:8Þ

We can make use of this property of the type I extreme distribution to derive
some recurrence relations for the single and product moments of lower record
values.

Exercise 5.2.3.1

For n� 1 and r ¼ 0; 1; 2; . . .

Eðxðnþ 1ÞÞrþ1 ¼ EðxðnÞÞrþ1 � r þ 1
n

EðxðnÞÞr
ð5:2:3:9Þ

5.3 Generalized Pareto Distribution

5.3.1 Introduction

A random variable (rv) X is said to have the generalized Pareto distribution if its
probability density function (pdf) is of the following form:

fðxÞ ¼ 1
r

1þ b
x� l
r

� �� ��ð1þb�1Þ

x� l; for b[ 0;

l\x\l� r=b; for b\0;

¼ 1
r
e�ðx�lÞr�1

; x� l for b ¼ 0;

¼ 0; otherwise;

forr[ 0: ð5:3:1:1Þ

We will say that X 2 GP(μ, σ, β) if X has the pdf as given in (5.3.1.1). For
β > 0, GP(μ, σ, β) is known as Pareto type II or Lomax distribution. For β = −1,
GP(μ, σ, β) coincide with the uniform distribution on (μ, μ + σ). Figure 5.4 gives the
pdf of GP(0, 1, 1).

The generalized Pareto distribution was introduced by Pickands (1975). Some of
its applications include its uses in the analysis of the extreme events, in the mod-
eling of large insurance claims and to describe the annual maximum flood at river
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gauging station. GP(μ, σ, β) has finite variance if β < 1/2. GP(μ, σ, β) for β = 0 is the
exponential distribution which is discussed here. In this chapter we will take β ≠ 0.

If X 2 GP(μ, σ, β), then

r xð Þ ¼ 1
r
½1þ bðx� lÞr�1��1

and

R xð Þ ¼ 1
b
log½1þ bðx� lÞr�1�:

The hazard rate r(x) is monotonically increasing (decreasing) in x if β > (<) 0 and
r(x) is constant for β = 0.

5.3.2 Distributional Properties

We will consider the upper record values from GP(μ, σ, β). The pdf fn(x) of the nth
upper record X(n) is

fnðxÞ ¼ 1
CðnÞ

1
b
log 1þ bðx� lÞ

r

� �	 
n�11
r

1þ bðx� lÞ
r

� ��ð1þb�1Þ

l\x\1; b[ 0 ð5:3:2:1Þ

We can write

X nð Þd l� r
b
þ r
b

Yn
i¼1

Ui; ð5:3:2:2Þ

0 5 10
0

0.5

1

f x( )

x

Fig. 5.4 Pdf of GP(0, 1, 1)
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where U1, U2, Un are independent and identically distributed as

P½Ui\x� ¼ 1� xð Þ�1=b; x� 1; b[ 0;

¼ xð Þ�1=b; 0\x\1; b\0:
ð5:3:2:3Þ

5.3.3 Moments

Substituting 1
b log 1þ bðx�lÞ

r

h i
¼ t, we have

E X nð Þð Þ ¼ 1
CðnÞ

Z 1

0
tn�1 lþ r

b
ðeb t � 1Þ

� �
e� tdt

¼ lþ r
b

ð1� bÞ�n � 1f g; if b\1

Similarly

EðX nð ÞÞ2 ¼ 1
CðnÞ

Z 1

0
tn�1½lþ r

b
ðeb t � 1Þ�2e� tdt

¼ ðl� r
b
Þ2 þ 2ðl� r

b
Þ r
b
ð1� bÞ�n þ r2

b2
ð1� 2bÞ�n; if b\1=2

Var X nð Þð Þ ¼ r2b�2fð1� 2bÞ�n � ð1� bÞ2n; b\1=2;

and

Cov X mð ÞX nð Þð Þambnr2b�2; m\n; ð5:3:3:1Þ

where

am ¼ ð1� bÞmfð1� 2bÞ�m � ð1� bÞ�2m; b\1=2

bn¼ ð1� bÞ�n; b 6¼ 1

Example 5.3.3.1 If β = −1, i.e. when X is distributed uniformly in the interval
(μ, μ + σ), then

E X nð Þð Þ ¼ lþ ð1� 2�nÞr
Var X nð Þð Þ ¼ ð3�n � 4�nÞr2

Cov(X(m)X(n))¼ 2m�nVar(XðmÞÞ; m \n:
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Example 5.3.3.2 For the classical Pareto distribution with the cumulative distri-
bution function F(x), where

F xð Þ1� h
x

� �m

; 0\h� x\1; m[ 0;

E X nð Þð Þ ¼ h
m

m� 1

� �n
; if v[ 1

Var X nð Þð Þ ¼ h2
m

m� 2

� �n
� m

m� 1

� �2n� �
; if v[ 2

Cov X mð ÞX nð Þð Þ ¼ h2
m

m� 1

� �n�m
Var X mð Þð Þ; m\n:

We will consider in this section without any loss of generality μ = 0 and σ = 1
i.e.

f ðxÞ ¼ bð1þ bxÞ�ð1þb�1Þ; x� 0; for b[ 0;

0\x\� b�1 for b\0

¼ e�x; x� 0 for b¼ 0;

¼ 0; otherwise:

ð5:3:3:2Þ

It is also known that (5.3.3.2) is also the pdf of Lomax distribution.
In this section some recurrence relations satisfied by the single and product

moments of upper record values from the generalized Pareto distribution. These
recurrence relations will enable one to obtain all the single and product moments of
all record values in a simple recursive manner. It is shown here that the results for
the exponential distribution proved in Chap. 2 can be deduced from the results
established in this section by letting the shape parameter β tend to 0.

We will derive some recurrence relations between moments and product
moments of the record values. These results are given by Balakrishnan and
Ahsanullah (1994). (a) Relations for single moments

First of all, we may note that for the generalized Pareto distribution in (5.3.3.2)

f xð Þ 1þ bxð Þ ¼ bð1� F xð ÞÞ: ð5:3:3:3Þ

The relation in (5.3.3.3) will be exploited in this section to derive recurrence
relations for the moments of record values from the generalized Pareto distribution.

Let X(1), X(2),……. be the sequence of upper record values from (5.3.3.2). For
convenience, we shall also take X(0) = 0. The pdf of X(n), n = 1, 2,…, is given by

fnðxÞ ¼ 1
ðn� 1Þ! � log 1� FðxÞð Þf gn�1fðxÞ ð5:3:3:4Þ

For the existence of the (r + 1)th moment (r + 1) β must be less than 1.
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Theorem 5.3.3.1 For n > 1 and r = 0, 1, 2,….,

E(X(n))rþ1 ¼ 1
1� ðr þ 1Þb ðr þ 1ÞE Xr

UðnÞ
� �

þ E(Xrþ1
Uðn�1Þ

n o
for b\ðr þ 1Þ�1:

ð5:3:3:5Þ

Proof For n� 1 and r = 0, 1, 2,…., we have from (5.3.3.3)

E(X(n)rÞ þ bE(XðnÞrþ1Þ ¼
Z

ðxr þ bxrþ1ÞfnðxÞdx

¼
Z
x

xr
1

ðn� 1Þ! � log 1� F(x)ð Þf gn�1ð!þ bxÞf(x)dx

¼ 1
ðn� 1Þ!

Z
x

xr � log 1� F(x)ð Þf gn�1 1� FðxÞð Þdx

Integrating now by parts treating xr for integration and the rest of the integrand
for differentiation, we get

E(X(n)rÞ þ bE(XðnÞrþ1Þ

¼ 1
ðr þ 1Þðn� 1Þ! �ðn� 1Þ

Z
x

xrþ1 � log 1� F(x)ð Þf gn�2f(x)dx

2
4

þ
Z
x

xrþ1 � log 1� F(x)ð Þf gn�2f(x)dx

3
5

1
r þ 1

E ðX(n)rþ1� �� E X(n� 1Þrþ1
� �h i

The relation in (5.3.3.5) is derived simply by rewriting the above equation.

Remark 5.3.3.1 The recurrence relation in Theorem 5.3.3.1 can be used in a simple
recursive manner to compute all the single moments of all record values. By setting
r = 0 in (5.3.3.5), we get the relation

E XðnÞð Þ ¼ 1
1� b

1þ E Xðn� 1Þð Þf g; n� 2; b\1: ð5:3:3:6Þ

Repeated application of (5.3.3.6) will readily yield 0.

E XUðnÞ
� � ¼ 1

1� b
þ 1

ð1� bÞ2 þ � � � þ 1

ð1� bÞn�1 ¼
1
b

1
ð1� bÞn � 1
� �

an expression given by Ahsanullah (1992).
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Balakrishnan and Ahsanullah (1994a) proved the following recurrence relation
of the product moment.

Theorem 5.3.3.2 For m > 1, r, s = 0, 1, 2,….,

E ðXðmÞÞrðXðmþ 1ÞÞsþ1
� �

¼ 1
1� ðsþ 1Þb ðsþ 1ÞE ðXðmÞÞrðXðmþ 1ÞÞs

� �
þ EðXðmÞÞrþsþ1

h i
ð5:3:3:7Þ

for b\ 1
sþ1 ; for 1�m� n� 2 and r; s ¼ 0; 1; 2; . . .;

Exercise 5.3.3.1 Show that

Cov XðmÞXðnÞð Þ ¼ 1
1� bð Þn�m VarðXðmÞÞ: ð5:3:3:8Þ

5.4 Logistic Distribution

5.4.1 Introduction

Let {Xn, n > 1} be a sequence of i.i.d. rvs from the standard logistic distribution
with pdf and d.f., respectively as

f ðxÞ ¼ e�x

ð1þ e�xÞ2

F xð Þ ¼ 1
1þ e�x ;�1\x\1:

ð5:4:1:1Þ

The Fig. 5.5 gives the pdf of the logistic distribution as given by (7.1.1). The pdf
is symmetric around zero.

Since, X(n) d � x nð Þ all n > 1. We will consider here the upper record values.

5.4.2 Moments

The pdf fn(x) of the nth upper record value is given by

fnðxÞ ¼ 1
CðnÞ ðlogð1þ exÞÞn�1 e�x

ð1þ e�xÞ2 :�1\x\1:
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Let μn = E(X(n)), μm,n = E(X(m)X(n)), then

ln ¼ ln�1 þ f nð Þ; n[ 1; l1 ¼ 0;

lm;n ¼ nE XU mð Þ
� �þmE XUðnÞ

� �þmf mþ 1ð Þ þmf nþ 1ð Þ �m nþ 1ð Þ

þ
X1
k¼1

1
kðk þ 1Þn�m

X1
l¼1

1
lðlþ 1þ kÞm;

where ζ (.) is the Riemann zeta function.

Proof

l1 = E X1ð Þ ¼
Z 1

�1

xe�x

ð1þ e�xÞ2 dx ¼ 0:

The conditional pdf of X(n)|X(n − 1) = y, for n > 1, is

fn;n�1;cðxjXUðn�1Þ ¼ yÞ ¼ e�xð1þ eyÞ
ð1þ e�xÞ2 ;�1\y\x\1 ð5:4:2:1Þ

The conditional expectation of X(n)|X(n − 1) = y is given by

E XUðnÞjXU n�1ð Þ ¼ y
� � ¼ Z 1

y

x e�xð1þ eyÞ
ð1þ e�xÞ2 dx

¼ yþ ð1þ eyÞ lnð1þ e�yÞ

Thus

EðX nð Þ ¼ E X n� 1ð Þð Þ þ
Z1
�1

ð1þ eyÞ lnð1þ e�yÞ fyþ lnð1þ e�yÞgn�2

Cðn� 1Þ
e�y

ð1þ e�yÞ2 dy

ð5:4:2:2Þ

5 0 5
0

0.15

0.3

f x( )

x

Fig. 5.5 pdf of Xi’s
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Substituting t ¼ e�yð1þ e�yÞ�1 and simplifying, we get

E XU nð Þ
� � ¼ EXU n�1ð Þ þ

Z 1

o

ð� ln tÞð� lnð1� tÞÞn�2

ð1� tÞCðn� 1Þ dt

E XU n�1ð Þ
� �þ fðnÞ

ð5:4:2:3Þ

where ζ(n) is the Riemann zeta function.
Since μ1 = 0, we have

ln ¼
Xn
i¼2

f ið Þ; n� 2: ð5:4:2:4Þ

The expected values of the first ten upper record values are given in Table 5.3.

ln;n ¼ EðXðnÞÞ2 ¼
Z 1

�1
x2fnðxÞdx

¼
Z 1

�1
x2

ðlogð1þ exÞÞn�1

CðnÞ
e�x

ð1þ e�xÞ2 dx

¼
Z 1

o
½log t � logð1� tÞ�2 f� logð1� tÞgn�1

CðnÞ dt

¼
Z 1

0

f� logð1� tÞgnþ1

CðnÞ dt � 2
Z 1

o

ðlog tÞf� logð1� tÞgn
CðnÞ dt

þ
Z 1

0

flog tg2f� logð1� tÞgn�1

CðnÞ dt

Table 5.3 E(XU(n)),
1 < n < 10

n E(XU(n))

1 0.0000

2 1.6449

3 2.8470

4 3.9293

5 4.9662

6 5.9836

7 6.9919

8 7.9960

9 8.9980

10 9.9990
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Now

Z 1

0

f�l logð1� tÞgnþ1

CðnÞ dt ¼ nðnþ 1Þ;�
Z 1

0

ln tf� lnð1� tÞgn
CðnÞ dt�

¼ n E XUðnþ1Þ
� �� n þ 1ð Þ
 �

and

Z 1

0

flog tg2f� log 1� tgn�1

CðnÞ dt ¼
Z 1

0

X1
k¼1

e�tk

k

( )2
1

CðnÞ t
n�1e�tdt

¼
X1
j¼ 2

Bj

Z 1

0
e�jt 1

CðnÞ t
n�1e�tdt ¼

X1
jþ2

Bj

ðjþ 1Þn ;

where Bj is the coefficient of e−jt in
P1
k¼1

e�kt

k

	 
2

.

Thus

ln;n =n nþ 1ð Þ þ 2n E X n� 1ð Þð Þ � nþ 1ð Þ½ � þ
X1
jþ2

Bj

ðjþ 1Þn

¼ 2nE X n� 1ð Þð Þ � nðnþ 1Þ þ
X1
l¼2

Bl

ðlþ 1Þn;

¼ 2n
Xnþ1

i¼2

fðiÞ � nðnþ 1Þ þ
X1
l¼2

Bl

ðlþ 1Þn;

where

Bi ¼ 1
i

1þ 1
2
þ � � � þ 1

i� 1

� �
; i� 2:

Var X nð Þð Þ ¼ 2n
Xnþ1

i¼2

fðiÞ � nðnþ 1Þ þ
X1
l¼2

Bl

ðlþ 1Þn �
Xn
i¼2

nðiÞ
 !2

;

lm;n ¼
Z 1

�1

Z 1

y
xyfm;nðy; xÞdydx

¼
ZZ

�1\y\x\1

ð� ln �FðyÞÞm�1

CðmÞCðn� mÞ ½log
�FðxÞ � log �FðyÞ�n�m�1rðyÞf ðxÞdydx;

where rðyÞ ¼ f ðyÞ
�FðyÞ, �FðyÞ = 1− F(y) and f(y) and F(y) are given by (7.1.1) and (7.1.2).

Substituting v ¼ 1
1 þ e� x and u ¼ 1

1 þ e� y and simplification, we get
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lm;n ¼
Z 1

o

Z 1

u

f� logð1� uÞgm�1

CðmÞCðn� mÞ ½� logð1� vÞ þ logð1� uÞ�n�m�1

½log u� logð1� uÞ�½log nv� logð1� vÞ� 1
1� u

dvdu

Let Iu ¼
R 1
u ½� logð1� vÞ þ logð1� uÞ�n�m�1½log v� logð1� vÞ�dv

Substituting w = log (1 − v) + log(1 − u), we have

Iu ¼
Z 1

o
wn�m�1½logf1� ð1� uÞe�wg � fwþ log 1� ug�ð1� uÞe�wdw

¼ ð1� uÞ
X1
k¼1

Z 1

o
ð�1Þð1� uÞk e

�kw

k
e�wwn�m�1dw

"

þCðn� mþ 1Þ � Cðn� mÞ logð1� uÞ
#

¼ Cðn� mÞð1� uÞ �
X1
k¼1

ð1� uÞk
kðk þ 1Þn�m þ ðn� mÞ � logð1� uÞ

" #

Upon substituting Iu, we have

lm;n ¼
Z 1

o

f� logð1� uÞgm�1

CðmÞ n� m� logð1� uÞ �
X1
k¼1

ð1� uÞk
kðk þ 1Þn�m½log u� logð1� uÞ�du

¼ n�mð ÞE X mð Þð Þ þm EðX m� 1Þð Þ �m
X1
k¼1

1

kðk þ 1Þnþ1

þ
X1
k¼1

1
kðk þ 1Þn�m

X1
l¼1

1
lðlþ 1þ kÞm

¼ nE X mð Þð Þ þm E X nð Þð Þ þmf mþ 1ð Þ þmf nþ 1ð Þ �m nþ 1ð Þ

þ
X1
k¼1

1
kðk þ 1Þn�m

X1
l¼1

1
lðlþ 1þ kÞm

Cov X mð ÞX nð Þð Þ ¼ lm;n � E X mð Þð ÞE X nð Þð Þ:

Table 5.4 gives the variances and covariance of X(m)X(n), for 1 < m < n < 10.

5.5 Normal Distribution

5.5.1 Introduction

Let {Xn, n > 1} be a sequence of i.i.d. random variables from standard normal
distribution (N(0, 1)) with pdf
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/ðXÞ ¼ 1ffiffiffiffiffiffi
2p

p e�x2=2;�1\X \1: ð5:5:1:1Þ

and d.f.

UðxÞ ¼
Z x

�1

1ffiffiffiffiffiffi
2p

p e�x2=2dx:

The graph of ϕ(x) is given in Fig. 5.6.
The pdf of the nth upper record X(n) is

fnðxÞ ¼ 1
CðnÞ ð� logUðxÞÞn�1/ðxÞ �1; x\1; n� 1:

Table 5.4 Variances and covariances of the upper record values

m/n 1 2 3 4 5 6 7 8 9 10

1 3.2899

2 2.4426 2.9882

3 1.9701 2.6887 3.5414

4 1.7913 2.5310 3.3885 4.3096

5 1.7139 2.4636 3.3132 4.2258 5.1779

6 1.6782 2.4327 3.2788 4.1853 5.1311 6.1016

7 1.6612 2.4181 3.2625 4.1660 5.1084 6.0754 7.0576

8 1.6530 2.4110 3.2546 4.1567 5.0974 6.0625 7.0429 8.0323

9 1.6489 2.4075 3.2508 4.1522 5.0920 6.0563 7.0356 8.0241 9.0180

10 1.6469 2.4058 3.2489 4.1500 5.0893 6.0532 7.0321 8.0200 9.0134 10.0100

0
0

0.2

0.4

f x( )

x

Fig. 5.6 Pdf of Xi’s
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5.5.2 Moments

Theorem 5.5.2.1 Let ln =E(X(n)), ln;n ¼ EðXðnÞÞ2 and μm, n = E(X(m)X(n)), then

ln;n ¼ 1þ ln�1;n;

l
n
¼ 1

Cðn� 1Þ
Z 1

�1
f� logð1�UðXÞÞgn�2ð1� UðXÞÞ�1ð/ðXÞÞ2dx

and

lm;n ¼
1

CðmÞCðn� mÞ
Z 1

0

Z 1

�1
fU�1ðuÞgfU�1ðvÞg

f� logð1� uÞgm�1

1� u
logð1� uÞ � logð1� vÞgn�m�1dudv:

Proof

ln;n ¼
1

CðnÞ
Z1
�1

x2½� log nf1� UðxÞg�n�1/ xð Þdx

¼ � 1
CðnÞ

Z1
�1

x½� logf1� UðxÞg�n�1d/ xð Þ

Since—x ϕ(x) dx = dϕ(x). Integrating the above expression by parts and sim-
plifying, we have

ln;n ¼
1

CðnÞ
Z 1

�1
½� logf1� UðxÞg�n�1ð/ xð ÞÞdx

þ 1
Cðn� 1Þ

Z 1

�1
x½� log nf1� UðxÞg�n�2 1

1� UðxÞ ð/ xð ÞÞ2dx

¼ 1þ 1
Cðn� 1Þ

Z 1

�1
x½� log nf1� UðxÞg�n�2 1

1� UðxÞ ð/ xð ÞÞ2dx:

We can write

/ðxÞ ¼
Z 1

x
�/0ðyÞdy ¼

Z 1

x
y/ðxÞdy, thus

ln;n

¼ 1þ 1
Cðn� 1Þ

Z 1

�1

Z 1

x
xy½� log nf1� UðxÞg�n�2 1

1� UðxÞ/ xð Þ/ yð Þdx dy:

¼ 1þ ln�1; n:

lm;n

Z1
�1

c
Zy
0

Z
0

y
1� UðyÞ

x
1� UðxÞ ½logf1� UðxÞg � flog 1� UðyÞg�n�m�1 / xð Þ:/ yð Þdxdy
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On simplification, we get

lm;n ¼
1

CðmÞCðn� mÞ
Z 1

0

Z U�1

o
fU�1ðuÞgfU�1ðvÞg

f� lnð1� uÞgm�1

1� u
flogð1� uÞ � logð1� vÞgn�m�1dudv

The means, variances and covariances of the upper record values were obtained
by numerical methods. The variances and covariances of the lower record values are
the same. The means of the lower record values are the negatives of the upper record
values. The following tables give the means, variances and covariance of XU(m) and
X(n) for 1 < m < n < 10 (Tables 5.5 and 5.6).

Table 5.5 Mean of X(n)

n E\(X(n, n))

1 0.0000

2 0.9032

3 1.4990

4 1.9687

5 2.3667

6 2.7174

7 3.0339

8 3.3244

9 3.5942

10 3.8471

Table 5.6 Variances and Covariances of the upper record values X(m) and X(m), m < n

m/n 1 2 3 4 5 6 7 8 9 10

1 1.0000
2 0.5956 0.7799
3 0.4534 0.5953 0.7022
4 0.3775 0.4964 0.5859 0.6611
5 0.3292 0.4331 0.5115 0.5753 0.6353
6 0.2951 0.3885 0.4589 0.5181 0.5702 0.6174
7 0.2696 0.3550 0.4194 0.4735 0.5212 0.5643 0.6014
8 0.2495 0.3286 0.3883 0.4385 0.4827 0.5226 0.5595 0.5938
9 0.2332 0.3073 0.3631 0.4100 0.4514 0.4888 0.5233 0.5554 0.5856
10 0.2197 0.2895 0.3421 0.3864 0.4253 0.4606 0.4931 0.5234 0.5519 0.5788
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5.6 Power Function Distribution

5.6.1 Introduction

A random variable (rv) X is said to have the three parameter power function
distribution if its probability density function (pdf) is of the following form:

f ðx; a; b; cÞ ¼ cb�cðaþ b� xÞc�1; for a\x\aþ b; b[ 0; c[ 0;

¼ 0; otherwise:
ð5:6:1:1Þ

We will say a rv X 2 PF(α, β, γ) if its pdf is given by (5.6.1.1). This is a
Pearson’s Type I distribution. If γ = 1, then f(x, α, β, γ) as given by (5.6.1.1)
coincides with the uniform distribution in the interval (α, α + β). If we take
Y ¼ ðaþ bÞc, the Y has the uniform distribution in (0, 1). The following Figs. 5.7
and 5.8 of f(x) and g(x) are the graphs of the pdfs of PF (α, β, γ) for α = 0, β = 1,
γ = 1/2 and α = 0, β = 1, γ = 4 respectively.

5.6.2 Distributional Properties

The joint pdf of X(1), X(2),…,X(m) can be written as

0 0.5 1
0.5

1

1.5

2

f x( )

x

Fig. 5.7 Pdf of GP(0, 1, 1/2)

0 0.5 1
0

2

4

f x( )

x

Fig. 5.8 Pdf of GP(0, 1, 4)
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f ðr1; r2; . . .; rmÞ ¼ b�mccðaþ b� rmÞ
Ym�1

i¼1

ðaþ b� riÞ;

a\r1\ � � �\rm\aþ b

¼ 0; otherwise: ð5:6:2:1Þ

The pdf of X(m) is

fmðxÞ ¼ 1
CðmÞ c

nb�cðaþ b� xÞc�1ðlog b� logðaþ b� xÞÞm�1;

a\x\aþ b;

¼ 0; otherwise: ð5:6:2:2Þ

Now

EX mð Þ ¼
Z aþb

a
xfmðxÞdx; letting aþ b� x ¼ be�t=c;

¼
Z 1

o

1
CðmÞt

m�1e�tðaþ b� be�t=cÞdt:

¼
Z 1

o

1
CðmÞt

m�1e�tðaþ b� be�t=cÞdt:

aþ b� b
c

cþ 1

� �m

:

Similarly

E X mð Þð Þ2 ¼
Z 1

o

1
CðmÞt

m�1e�tðaþ b��t=cÞ2dt

¼ ðaþ bÞ2 � 2bðaþ bÞ c
cþ 1

� �m

þb2
c

cþ 1

� �m

and

VarðX mð ÞÞ ¼ E X mð Þð Þ2� EðX mÞð Þf g2

¼ b2
c

cþ 2

� �m

� c
cþ 1

� �2m
( )

:
ð5:6:2:3Þ

The joint pdf of X(m) and X(n) is

fm;nðx; yÞ ¼ cmnc
nb�cðaþ b� yÞc�1ðlog b� logðaþ b� xÞm�1ðlog b� log ðaþ b� xÞn�m�1

for a\x \ y \aþ b;

¼ 0; otherwise;

ð5:6:2:4Þ
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where

cmn ¼ 1
CðmÞCðn� mÞ ; n[m[ 1:

The conditional pdf of X(n)|X(m) = x is

f ðyjXUðmÞ ¼ xÞ

¼ cn�m

Cðn� mÞ
aþ b� y
aþ b� x

� �c�1

log
aþ b� x
aþ b� y

	 
n�m�1

;

a\x\y\aþ b:

The conditional expectation of X(m)|X(m) = x is

EðyjXðmÞ ¼ xÞ

¼
Z aþb

a

cn�m

Cðn� mÞ
aþ b� y
aþ b� x

� �c�1

log
aþ b� x
aþ b� y

	 
n�m�1

dy

¼
Z 1

0

cn�m

Cðn� mÞðaþ b� ðaþ b� xe�tÞÞtn�m�1e�ctdt

¼ aþ b� ðaþ b� xÞ c
cþ 1

� �n�m

:

For m < n,

Cov X mð Þ;X nð Þð Þ ¼ c
cþ 1

� �n�m

VarðXðmÞÞ:

The correlation coefficient ρm.n of X(m) and X(n) is given by

qm;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 2cþ 1

c2 þ c

� �
� 1

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 2cþ 1

c2 þ c

� �n

�1

s" #
ð5:6:2:5Þ

As γ → ∞, qm;n !
ffiffiffiffiffi
m
n :

p
Exercise 5.6.2.1 Show that if X has BF(0, b; v), then

XðnÞd b 1� b� X1

b

� �c b� X2

b

� �c

. . .
b� Xn

b

� �c� �

where X1X2,…,Xn are i.i.d with BF(0,b; v).
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5.6.3 Recurrence Relation Between Moments

The following theorem gives a recurrence relation of the single moments. We will
assume without any loss of generality a ¼ 0 and b ¼ 1:

Theorem 5.6.3.1 For n ≥ 2, and r = 0, 1, 2,……

EðXðnÞÞrþ1 ¼ r þ 1
cþ r þ 1

EðXðnÞÞr þ c
cþ r þ 1

EðXðn� 1Þrþ1Þ ð5:6:3:1Þ

Proof We have

kð1� FðxÞÞ ¼ ð1� xÞf ðxÞ ð5:6:3:2Þ

Using (5.6.2.2) for n > 2 and r = 0, 1,….,

E XðnÞrr � EðXðnÞÞrþ1
� �

¼ 1
CðnÞ

Z 1

o
xr � xrþ1� �ð�c logð1� x))n�1 cð1� x)k�1dx

¼ c
n� 1ð Þ!

Z 1

0
xr �c log 1� xð Þf gn�1 1� xcf gdx

¼ c
r þ 1

Z 1

0
xrþ1 1

ðn� 1Þ! �c log 1� xð Þf gn�1cð1� xÞc�1dx

�

�
Z 1

0
xrþ1 1

ðn� 2Þ! � log 1� FðxÞð Þf gn�2f ðxÞdx
�

¼ c
r þ 1

E XðnÞrþ1
� �

� EðXðn� 1ÞÞrþ1
h i

where the last but one step follows by integrating by parts. The recurrence relation
in Eq. (5.6.3.4) is derived simply by rewriting the above equation.

Corollary 5.6.3.1 By repeatedly applying the recurrence relation in (5.6.2.1), we
get for n > 2, 1 < m < n − 1 and r = 0, 1, 2,….

E XðnÞÞrþ1
� �

¼ r þ 1
cþ r � 1

� � Xn�m�1

p¼0

c
cþ r þ 1

� �p

E Xðn� mÞÞrð Þ

þ c
cþ r þ 1

� �n�m

EðXðmÞÞrþ1

ð5:6:3:3Þ

Corollary 5.6.3.2 Write (r + 1)(−p) = 1 for p = 0 and =(r + 1) r… (r − p + 2), for
p > 1. By repeated application of the recurrence relation in (5.2.4), we obtain for
n > 2, r = 0, 1, 2,…
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EðXðnÞÞrþ1 ¼ c
Xrþ1

p¼0

ðr þ 1ÞðpÞ
ðcþ 1þ pÞðpþ1ÞEðXðn� 1ÞÞr¼1�p ð5:6:3:4Þ

Next, we have the joint density function of X(m) and X(n), 1 < m < n, as

fm;nðx; yÞ ¼ 1
ðm� 1Þ!ðn� m� 1Þ! � log 1� FðxÞð Þf gm�1 f ðxÞ

1� FðxÞ
� � log 1� FðyÞð Þ þ log 1� FðxÞð Þf gn�m�1f ðyÞ;

ð5:6:3:5Þ

Once again, upon using the relation in (5.6.3.2), we can derive the following
recurrence relations for the product moments of record values.

Theorem 5.6.3.2 For m > 1 and r, s = 0, 1, 2,...

E ðXðmÞÞrðXðmþ 1ÞÞsþ1
� �

¼ sþ 1
cþ sþ 1

E ðXðmÞÞrðXðnÞsÞsð Þ
þ c
cþ sþ 1

E XðmÞð Þrþs¼1 ð5:6:2:6Þ

and for 1 < m < n − 2 and r, s = 0, 1, 2,...,

E XðmÞrðXðnÞÞsþ1
� �

¼ sþ 1
cþ sþ 1

E XðmÞÞrðXðnÞssð Þð Þ
þ c
cþ sþ 1

E ðXðmÞÞrðXn� 1Þsþ1
� �

ð5:6:2:7Þ

Proof For 1 < m < n − 1 and r, s = 0, 1, 2…

EððXðmÞÞrðXðnÞÞs � ðXðmÞÞrðXðnÞÞsþ1Þ
¼
ZZ

0� x\y\1

xrys � xrysþ1
� �

fm;nðx; yÞdydx

¼ 1
ðm� 1Þ!ðn� m� 1Þ!

Z 1

o
xr � log 1� FðxÞð Þf gm�1� f ðxÞ

1� FðxÞ IðxÞdx

IðxÞ ¼
Z 1

x
ysð1� yÞ � log 1� FðyÞð Þ þ log 1� FðxÞð Þf gn�m�1f ðyÞdy

¼ c
Z 1

x
ys � log 1� FðyÞð Þ þ log 1� FðxÞð Þf gn�m�1 1� FðyÞf gdy

¼ c
sþ 1

Z 1

x
ysþ1 f(y)dy � xsþ1 1� FðxÞf g

� �
; for n = m + 2

¼ c
sþ 1

Z 1

x
ysþ1 �l log 1� FðyÞð Þ þ log 1� FðxÞð Þf gn�m�1f ðyÞdy

�

�ðn�m� 1Þ
Z 1

x
ysþ1 � log 1� FðyÞð Þ þ log 1� FðxÞð Þf gn�m�2f ðyÞdy

�
;

for n[mþ 2:

ð5:6:2:8Þ
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The last two equations are derived by integrating by parts. We obtain on sim-
plification for n = m + 1 that

EððXðmÞÞrðXðmþ 1ÞÞs � EðXðmÞÞrðXðmþ 1ÞÞsþ1Þ
¼ c

sþ 1
EðXðmÞÞrðXðnÞÞsþ1 � EðXðmÞÞrþsþ1
n o

;

and when n − m > 2 that

EððXðmÞÞrðXðnÞÞs � EðXðmÞÞrðXðnÞÞsþ1Þ
¼ c

sþ 1
EðXðmÞÞrðXðnÞÞsþ1 � Eð XðmÞÞrðXðn� 1Þð Þsþ1
n o

;
ð5:6:2:9Þ

The recurrence relations in (5.6.2.7) and (5.6.2.8) are derived simply by
rewriting the above equations.

Corollary 5.6.3.3 For m > 1

Cov XðmÞXðmþ 1Þð Þ ¼ c
cþ 1

Var XðmÞð Þ ð5:6:2:10Þ

CovðXðmÞXðnÞÞ ¼ c
cþ 1

CovðXðmÞXðn� 1ÞÞ ð5:6:2:11Þ

Consequently, for 1 < m < n − 1

Cov XðmÞXðnÞð Þ ¼ c
cþ 1

� �n�m

Var XðmÞ ð5:6:2:12Þ

5.7 Rayleigh Distribution

5.7.1 Introduction

Let {Xn, n > 1} be a sequence of i.i.d random variables from standard Rayleigh
distribution with pdf as

f xð Þ ¼ xe�x2=2; x[ 0 ð5:7:1:1Þ

and d.f. as

F xð Þ ¼ 1� e�x2=2; x[ 0: ð5:7:1:2Þ

We say X € RH(0, 1) if the pdf of X is given by (7.3.1)’ Fig. 7.3.1 gives the
graph of f(x).
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5.7.2 Distributional Property

The pdf of nth upper record value fn(x) of the nth upper record value is given by

fnðxÞ ¼ 1
2n�1CðnÞ x

2n�1e�
x2
2 ; x� 0; n ¼ 1; 2; . . .

rðxÞ ¼ f ðxÞ
1�FðxÞ ¼ x: The mode of X(n) is at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� 1

p
.

Theorem 5.7.2.1 Let μn = E(X(n)), Vn,n = Var(X(n)) and Vm,n = Cov(X(m)X(n))
then

ln ¼
ffiffiffi
2

p Cðnþ 1
2Þ

CðnÞ ;Vn;n ¼ 2 n� Cðnþ 1=2Þ
CðnÞ

� �2
" #

and

Vm;n ¼ 2
Cðmþ 1=2Þ

CðmÞ
� �

Cðnþ 1Þ
Cðnþ 1=2Þ �

Cðnþ 1=2Þ
CðnÞ

� �
; for 1\m\n:

Proof

ln ¼
1

CðnÞ
Z 1

o
x � log 1� FðxÞf gn�1f ðxÞdx

¼ 1
CðnÞ

Z 1

o
x

x2

2

� �n�1

e�x2=2xdx

¼ 1
CðnÞ

ffiffiffi
2

p Z 1

o
u1=2un�1e�udu

¼
ffiffiffi
2

p Cðnþ 1=2Þ
CðnÞ :

Similarly it can be shown that

l2n ¼ EðX2
UðnÞÞ ¼ 2

Cðnþ 1Þ
CðnÞ ¼ 2n

lm;n ¼
1

CðmÞCðn� mÞ
Z 1

o

Z y

o
xy

x2

2

� �m�1

x
y2

2
� x2

2

� �n�m�1

ye�y
2
=2dxdy

¼ 1
CðmÞCðn� mÞ

1
2m�1

Z 1

o
y

y2

2

� �n�m�1

ye�y
2
=2Iydy;
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where

Iy ¼
Z y

o
ðx2Þm 1� x2

y2

� �n�m�1

dx ¼ 1
2
y2mþ!Bðmþ 1=2; n� mÞ;

with

B a; bð Þ ¼ CðaÞCðbÞ
Cðaþ bÞ :

On simplification we get

Vn;n ¼ 2 n� Cðnþ 1=2Þ
CðnÞ

� �2
" #

and

Vm;n ¼ 2
Cðmþ 1=2Þ

CðmÞ
� �

Cðnþ 1Þ
Cðnþ 1=2Þ �

Cðnþ 1=2Þ
CðnÞ

� �
; for 1\m\n:

¼ Cðmþ 1=2
CðmÞ

� �
CðnÞ

Cðnþ 1=2

� �
Vn;n

Table 5.7 gives the variances and covariances of XU(m) and XU(n) for
1 < m < n < 10.

The correlation coefficient ρm,n between X(m) and X(n) is

qm;n ¼
CðnÞ
CðmÞ �

Cðmþ 1=2Þ
Cðnþ 1=2Þ �

ffiffiffiffiffiffiffiffiffi
Vn;n

Vm;m

s

¼ Cðmþ 1
2Þ

Cðnþ 1
2Þ
:
CðnÞ
CðmÞ :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� ðCðnþ1

2Þ
CðnÞ Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� ðCðmþ1

2Þ
CðnÞ Þ2

q ; 1\m\n:

Exercise 5.7.2.1 Show that the Shannon entropy Hn(X) of X(n) is

HnðXÞ ¼ lnðCðnÞ � ln 2þ 1
2
� n

� �
WðnÞ þ n:

where WðnÞ is digamma function.
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5.8 Uniform Distribution

5.8.1 Introduction

Let {Xn, n > 1} be a sequence of i.i.d. random variables from a uniform distribution
with the following pdf

f xð Þ ¼ 1
h1 � h2

; h1\x\h2 ð5:8:1:1Þ

and d.f.

F xð Þ ¼ x� h1
h2 � h1

; h1\x\h2: ð5:8:1:2Þ

We will say X 2 U(θ1, θ2) if the pdf of X is as given in (5.8.1.1).

5.8.2 Distributional Property

n
The pdf fn(x) of X(n) can be written as

fn xð Þ ¼ 1
CðnÞ

1
h2 � h1

log
h2 � h1
h2 � x

	 
n�1

; h1\x\h2 ð5:8:2:1Þ

Theorem 5.8.2.1 Let 11 ¼ h2 �XUð1Þ
h2 � h1

; 1i ¼ h2 �XUðiÞ
h2 �XUði�1Þ

; i ¼ 2; . . .; n, then 11; . . .; 1n are

i.i.d. U(0, 1).

Proof The joint pdf of X(1), X(2),…,X(n) can be written as

f x1; x2; . . .; xnð Þ ¼ 1
h2 � x1

:
1

h2 � x2
� � � 1

h2 � xn�1

1
h2 � h1

;

h1\x1\x2\. . .\xn\h2:

Let

X 1ð Þ ¼ h2 � ðh2 � h1Þn1
X 2ð Þ ¼ h2 � ðh2 � h1Þn1n2
X ið Þ ¼ h2 � ðh2 � h1Þn1n2. . .ni; i ¼ 3; . . .;m
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The Jacobian of the transformation is

J ¼ @ðXUð1Þ;XUð2Þ; . . .;XUðnÞÞ
@ðn1; n2; . . .; nnÞ

¼ ðh2 � h1Þnnn�1
1 nn�2

1 . . .nn�1:

Thus s

f e1; e1; . . .; enð Þ ¼ 1; 0\ei\1; i ¼ 1; 2; . . .; n:

Using r the Theorem 5.8.2.1, it can be shown that

EX nð Þ ¼ 2�nh1 þ 1� 2�nð Þh2
Var X nð Þð Þ ¼ 3�n � 4�nð Þðh2 � h1Þ2:

ð5:8:2:2Þ

The joint pdf of X(m) and X(n) is

fm;n x; yð Þ ¼ 1
CðmÞ

1
Cðn� mÞ

1
h2 � h1

1
h2 � x

log n
h2 � h1
h2 � x

	 
m�1

log
h2 � h1
h2 � y

	 
n�m�1

;

for h1\x\y\h2

ð5:8:2:3Þ

Thus, it follows that

E X nð ÞjX mð Þ ¼ xð Þ ¼ 2m�nxþ ð1� 2m�nÞh2
and

Cov XMð ÞX nð Þ ¼ 2m�nVar X mð Þð Þ: ð5:8:2:4Þ

The following table gives the correlation coefficient between X(m) and X(n) for
1 < m < n < 10 (Table 5.8).

For fixed m, qm;n decreases as n increases. For fixed n, qm;n increases as n
increases.

Exercise 5.8.2.1 If X is distributed as uniform on (0, 1), then log(1 − x(n − 1)) and
log(1 − X(n))/(1 − X(n − 1)) are independent and log((1 − X(n))/1 − X(n − 1) is
distributed as E(0, 1).
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5.9 Weibull Distribution

5.9.1 Introduction

Let {Xn, n ≥ 1} be a sequence of i.i.d random variables from standard Weibull
distribution with pdf

fðxÞ ¼ xc�1e�xc=c; x[ 0; c[ 0; ð5:9:1:1Þ

and g.f.

FðxÞ ¼ 1� e�
1
cx

c

; x[ 0; c[ 0; ð5:9:1:2Þ

The pdf of the Weibull distribution as given by (5.9.1.1) becomes identical with
the pdf of Raleigh distribution as given in (7.1.1) for γ = 2. The pdf of Weibull
distribution for γ = 1 coincides with that of E(0, 1). Figure 5.9 gives the pdf of
Weibull distribution for γ = 1.5 (Fig. 5.10).

0

0.5

1

0 2 4 6

f(x)

x

Fig. 5.9 Pdf of RH(0, 1)

0 2 4
0

0.5

1

f x( )

x

Fig. 5.10 Pdf of X when
γ = 1.5
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5.9.2 Distributional Property

Theorem 5.9.2.1 Let i = 1, 2,…,m − 1, ni ¼ XðiÞ
Xðiþ 1Þ then ξi, i = 1, 2,…, m − 1,

are independent.

Proof The joint pdf of X(1), X(2),…,X(n) is

fðx1; x2; . . .; xmÞ ¼ cmðx1x2. . .xmÞc�1e�xcm ; 0\x1\x2\ � � �\xm\1:

Let us use the transformation

no ¼ XUð1Þ; and ni ¼
XðiÞ

Xðiþ 1Þ ; i ¼ 2; . . .; m� 1:

The Jacobian of the transformation

J ¼ @ðXð1Þ; Xð2Þ; . . .;XðnÞÞ
@ðno ; n1; . . .; nm�1Þ

����
���� ¼ nm�1

o

nm1 nm�1
2 . . .n2m�1

We can write the pdf of ξi, i = 0, 1,…,m − 1, as

fðeo; e1; . . .; em�1Þ ¼ cmemc�1
o

eðm�1Þcþ 1
1 eðm�2Þcþ1

2 . . .ecþ1
m�1

e�
1
c ð

e0
e1 e2 ���em�1

Þc
:

Now integrating the above expression with respect to eo, we obtain the joint pdf
of ξi, i = 1,…,m − 1, as

fðe1; . . .; em�1Þ ¼ CðmÞ cm�1 ec�1
1 e2c�1

2 � � � eðm�1Þc�1
m�1 :

Thus ξi, i = 1, 2,…, m − 1 are independent and

Pðnk\x Þ ¼ xkc; 1� k�m

We have already seen similar results for ratios of the record values of the
exponential distribution.

Theorem 5.9.2.2 Let μn = E(X(n)), Vn,n = Var(X(n))) and Vm,n = Cov(X(m)X(n)),
then

ln¼ ¼ c
1
c

Cðnþ 1
cÞ

CðnÞ ;Vn;n¼ ¼ c
2=c Cðnþ 2

cÞ
CðnÞ � Cðnþ 1

cÞ
CðnÞ

� �2
( )
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and

Vm;n ¼
Cðmþ 1

cÞ
CðmÞ :c2=c

Cðnþ 2
cÞ

Cðnþ 1
cÞ
� Cðnþ 1

cÞ
CðnÞ

( )
; for1�m� n:

Proof The pdf fn(x) of X(n) can be written as

fnðxÞ ¼ 1
CðnÞ

xcn�1

cn�1

	 

e�xc=c; x[ 0; c[ 0: ð5:9:2:1Þ

EðXU nð ÞÞ ¼
Z 1

o

1
CðnÞ

xnc

cn�1 e
�ð1=cÞxcdx;

Substituting t ¼ xc
c , we obtain

EðXðmÞÞ ¼
Z 1

o

c1=c

CðnÞe
�tðtÞnþ1

c�1dt

¼ c
1
c

Cðnþ 1
cÞ

CðnÞ

Similarly

EðXðnÞÞ2 ¼
Z 1

o

1
CðnÞ

xncþ1

cn�1 e�ð1=cÞxcdx;

Substituting t = xc
c , we get

EðXðnÞÞ2 ¼
Z 1

o

c2=c

CðnÞ e
�tðtÞnþ2

c�1dt

¼ c
2=c Cðnþ 2

cÞ
CðnÞ

The joint pdf of X(m) and X(n) can be written as

fm;nðx; yÞ ¼ xc�1

CðmÞCðn�mÞ ðy
c�xc

c Þn�m�1yc�1e�ð1=cÞxc

for 0\x\y\1 and m\n;

EðX mÞð Þ X nð Þð Þ

¼
Z 1

o

Z y

0

xy
CðmÞCðn� mÞ :

xmc�1

cn�2 ½yc � xc�n�m�1yc�1e�ð1=cÞycdydx

¼
Z 1

o

y
CðmÞCðn� mÞ :

Iy
cn�2 y

c�1e�ð1=cÞycdy;
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where

Iy ¼
Z y

o
xmcðyc � xcÞn�m�1dx

¼
Z 1

o

ync�cþ1

c
tmþ

1
c�1ð!� tÞn�m�1dt

¼ ync�cþ1

c
B mþ 1

c
; n� m

� �

Thus

EðX mð ÞÞ X nð Þð Þ ¼
Z 1

o

Bðmþ 1
c; n� mÞ

CðmÞCðn� mÞ
yncþ 1

cn�1 e�ð1=cÞycdy

¼ Cðmþ 1
cÞCðnþ 2

cÞ
CðmÞCðn� mÞ :c2=c

Var X nð Þð Þ ¼ c
2=c Cðnþ 2

cÞ
CðnÞ � Cðnþ 1

cÞ
CðnÞ

� �2
( )

and

Cov X mð ÞX nð Þð Þ ¼ Cðmþ 1
cÞ

CðmÞ :c2=c
Cðnþ 2

cÞ
Cðnþ 1

cÞ
� Cðnþ 1

cÞ
CðnÞ

( )
; 1�m� n:

Exercise 5.9.2.1 Show that ðXðiÞÞc � ðXði� 1ÞÞc; i ≥ 1 with X(0) = 0 is identically
distributed.

5.10 Exercises (solutions)

Exercise 5.1.2.1 (hint) The joint pdf of ξi, i = 1,……, m − 1, is

f(e1; . . .; em�1Þ ¼ CðmÞ e2e23 � � � em�2
m�1 � � �

Use the transformation Wk = (ξk)
k, k = 1, 2,…, m − 1,

Exercise 5.1.3.1 (solution (hint)) Using (5.1.3.1) with p = 1 and q = 0, we obtain

EðXð1ÞÞ ¼ Cðmþ 1Þ
CðmÞ ¼ m:
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Putting p = 1 and q = 1, we obtain ðXðmÞXðnÞÞ � Cðmþ1ÞCðnþ2Þ
CðmÞCðnþ1Þ � mðn 1Þ;m\n

Putting p = 2 and q = o, we obtain EðXðmÞÞ2 ¼ Cðmþ2Þ
CðmÞ ¼ mðmþ 1Þ

Exercise 5.1.3.2 (solution) GðxÞ ¼ F�1ðxÞ ¼ � lnð1� xÞ; Gð1� e�xÞ ¼ x: Thus
by Representation 4, 3,

XðnÞ d X1 þ X2 þ � � � þ Xn

Exercise 5.1.3.3 (solution)

EN ¼
Z
0
� ln

xn�1

CðnÞrn e
�x

r

� �
xn�1

CðnÞrn e
�x

rdx

¼
Z 1

0
ðlnCðnÞ þ n ln rþ x

r
� ðn� 1Þ ln xÞ xn�1

CðnÞrn e
�x

rdx

¼ lnCðnÞ � ln r� ðn� 1ÞwðnÞ;
Exercise 5.2.3.1 (solution) Let us consider n ≥ 1 and r = 0, 1, 2,…,

EðxðnÞÞr ¼ 1
CðnÞ

Z 1

�1
xrf� lnFðxÞgn�1f ðxÞ dx

¼ 1
CðnÞ

Z 1

�1
xrf� lnFðxÞgnFðxÞdx

Upon integrating by parts treating xr for integration and the rest of the integrand
for differentiation. We simply obtain

EðxðnÞÞr ¼ 1
ðr þ 1ÞCðnÞ n

Z 1

�1
xrþ1f� lnFðxÞgn�1f ðxÞdx

�
Z 1

�1
xrþ1f� lnFðxÞgnf ðxÞdx

¼ n
r þ 1

Z 1

�1

xrþ1

CðnÞ f� lnFðxÞgn�1f ðxÞdx

�
Z 1

�1

xrþ1

Cðnþ 1Þ � lnFðxÞgn�1f ðxÞdx

¼ n
r þ 1

fEðxðnÞÞrþ1 � EðXðnþ 1ÞÞgrþ1

Upon rewriting the above equation, we obtain the recurrence relation.

Problem 5.3.3.1 (solution) The recurrence relations presented in Theorem 5.3.3.2
can be used in a simple recursive manner to compute all the product moments of all
record values. It is known that the generalized Pareto distribution in (5.3.3.1) has
finite variance if β < ½. In Theorem 5.3.3.2 setting r = 1 and s = 0 we get
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E XðmÞXðmþ 1Þð Þ ¼ 1
1� b

E ðXðmÞÞð Þ þ E ðXðmÞÞ2
� �h i

We know EðXðmþ 1ÞÞ ¼ 1
1�b ð1þ EðXðmÞÞÞ

Thus

E XðmÞXðmþ 1Þð Þ � E XðmÞÞEðXðmþ 1Þð Þ ¼ E XðmÞXðmþ 1Þð Þ
¼ 1

1� b
E ðXðmÞÞð Þ þ E ðXðmÞÞ2

� �h i
� EðXðmÞÞ 1

1� b
ð1þ EðXðmÞÞÞ;

On simplification

Cov XðmÞÞXðmþ 1ð Þ ¼ 1
1� b

Var XU mð Þ
� �

:

Cov XðmÞXðnÞð Þ ¼ 1
1� b

Cov XðmÞXðn� 1Þð Þ

¼ 1
1� bð Þn�m VarðXðmÞÞ:

Problem 5.6.2. 1 (solution)

F�1ðxÞ ¼ /ð1� ð1� uÞ1=cÞ and� lnð1� FðxÞÞ ¼ � ln
b� x
v

� �c

:

XðNÞ ¼ F�1‘ 1� e
�
Pn
i¼1

lnð1�FðXiÞ
0
@

1
A

¼ b 1�
Yn

i¼1

b� Xi

b

� �� �
:

where Xi are i.i.d with PF(0, β, γ).

Exercise 5.7.2.1 (solution)

HnðxÞ ¼ �
Z 1

0
ln fnðxÞfnðxÞdx

�
Z 1

0
ln

2
CðnÞ � x2n�1e�x2
� �

x2ðn�1Þ

CðnÞ 2xe�x2dx

¼ ln
CðnÞ
2

� n� 1
2

� �
WðnÞ þ n
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Exercise 5.8.2.1 (solution) The joint pdf fn,n-1(x, y) of X(n − 1)and X(n) is

fn�1;nðx; yÞ ¼ ð� lnð1� xÞÞn�1

CðnÞ
1

1� x
; 0\X\Y\1

Using the transformation U = −log(1 − X(n − 1)), V = log((! − X(n))/(1 − X
(n − 1)), we obtain the joint pdf of f ðu; vÞ as

f ðu; vÞ ¼ un�1

CðnÞ e�ðuþvÞ
� �

;\u; v\1:

Thus U and V are independent and V is distributed as E(0, 1).

Exercise 5.9.2.1 (solution) We have U ¼ Xc is distributed as (0, 1). The result
follows by Exercise 5.1.3.2.
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Chapter 6
Records of Discrete Distributions

6.1 Introduction

Let X1;X2; . . .;Xn; . . . be a sequence independent and identically distributed ran-
dom variables taking values on 0; 1; 2; . . . such that F nð Þ\1 for all n ¼ 0; 1; 2; . . .
We define the upper record times, U(n) as U 1ð Þ ¼ 1;Uðnþ 1ð¼ min j[U nð Þ;f
Xj [XUðnÞg; n ¼ 1; 2; . . .: The nth upper record value is defined as Xd(n). Let

pk ¼ P X1 ¼ kð Þ, P(k) ¼Pk
j¼0 p(j); k� 0 and �PðkÞ ¼ 1� PðkÞ with and P(1Þ ¼ 1.

The joint probability mass function (pmf) of the Xd 1ð ÞÞ;Xd 2ð Þ; . . .Xd nð ÞÞ is
defined as

P1;2;...;n x1; x2; . . .xnð Þ ¼ P Xd 1ð Þ1Þ ¼ x1; Xd 2ð ÞÞ¼ x2; . . .:;Xd nð Þ ¼ xn
� �

¼ pðx1Þ
�Pðx1Þ �

pðx2Þ
�Pðx2Þ � � � �

pðxn�1Þ
�Pðxn�1Þ pðxnÞ

0� x1\x2\ � � �\xn\1;
¼ 0; otherwise.

ð6:1:1Þ

The marginal pmf’s of the upper record values are given as

p1 x1ð Þ ¼ P Xd 1ð Þ ¼ x1ð Þ ¼ p x1ð Þ; x1 ¼ 0; 1; 2; . . .;

p2 x2ð Þ ¼ P Xd 2ð Þ ¼ x2ð Þ ¼ R1 x2ð Þ p x2ð Þ;

where

R1 kð Þ ¼
X

0� x1\x2

Bðx1Þ;BðxÞ ¼ pðxÞ
�PðxÞ ; x2 ¼ 1; 2; . . .

Pn xnð Þ ¼ P Xd nð ÞÞ¼ xn
� �

¼ Rn�1 xnð Þ p xnð Þ;
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where

Rn�1 xnð Þ ¼
X

0� x1\x2\...\xn�1\xn

Bðx1ÞBðx2Þ. . .:Bðxn�1Þ; xn ¼ n� 1; n; . . . ð6:1:2Þ

The joint pmf of Xd(m)) and Xd(n), m < n is given by

Pm;n xm; xnð Þ ¼ P Xd mð Þ ¼ xm;Xd nð ÞÞ¼ xm
� �

¼ Rm�1 xmð ÞA xmð ÞRmþ1;n xm; xnð Þ p xnð Þ;m� xm � xn � nþm\1;

ð6:1:3Þ

where

Rmþ1;n x; yð Þ ¼
X

xm\xmþ1\xmþ2\...\xn

Bðxmþ1Þ. . .. . .Bðxn�1Þ; m\ n� 1

¼ 1 if m ¼ n� 1

The conditional pmf of Xd(n) given Xd(m) = xm is given by

Pnjm xnjXd mð Þ ¼ xmð Þ ¼ Rm;nðxm; xnÞ pðxnÞ
~PðxmÞ

; xm � xn � nþm\1: ð6:1:4Þ

Pn j n�1 xnjXd n� 1ð Þ ¼ xn�1ð Þ ¼ pðxnÞ
~Pðxn�1Þ

; xn�1\xn: ð6:1:5Þ

Using (6.1.1) and (6.1.4) it follows that the sequence of upper record values
Xd(1), Xd(2). . . forms a Markov chain. Let In = 1 if n is a record value i.e.
Xd(m) = n, for m = 1, 2,. . . and In = 0 if it is not a record. The following Theorem is
due to Shorrock (1972).

Theorem 6.1.1 The random variables I1, I2, . . . are mutually independent and

P In ¼ 1ð Þ ¼ PfX ¼ n jX� nÞ ¼ P(X ¼ n)
P(X� n)

; n ¼ 0; 1; 2; . . .:

Proof

P In ¼ nð Þ ¼ P X1 ¼ nð Þ þ P X1\n;X2 ¼ nð Þ þ P X1\n;X2\n; X3 ¼ nð Þ þ � � �
¼ P X1 ¼ nð Þ P X\nð Þ þ P2 X\nð Þ þ � � �� �
¼ PðX ¼ nÞ

1� PðX\nÞ ¼
P(X ¼ n)
P(X� n)

: ð6:1:6Þ
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Let 0� a 1ð Þ\a 2ð Þ, thenPðIað1Þ ¼ 1; Iað2Þ ¼ 1Þ ¼ P
m
PðIað1Þ ¼ 1; Iað2Þ ¼ 1Þ;

tð1Þ ¼ mÞ, t(1) is time when α(1) occurs.

X
m

X1
r¼1

PfIað1Þ ¼ 1; tð1Þ ¼ m;Xmþ1 [ að1Þ;
X
m

PfIað1Þ ¼ 1; tðkÞ ¼ mg
X1
r¼1

PðXmþ1 [ a 1ð ÞÞ

. . .:Xmþr�1 [ að1Þ;Xmþr ¼ að2Þg
PðXmþr�1 [ a 1ð ÞÞPðXmþr ¼ a 2ð ÞÞ

¼
X
m

PfIað1Þ ¼ 1; tðkÞ ¼ mgPðX ¼ að2ÞÞ
PðX� að1ÞÞ

¼ PðIað1Þ ¼ 1ÞPðIað2Þ ¼ 1Þ; by ð6:2:4Þ:
ð6:1:7Þ

By iteration the independence of I1; I2; . . . follows.
The following result was proved by Aliev and Ahsanullah (2002).

Theorem 6.1.2 Let X1, X2, . . . be a sequence of independent and identically
distributed random variables taking values on 0, 1, 2, . . . with common distribution
function F such that F(n) < 1 for all n and E(Xi

2) < ∞. Suppose that {Bk, k = 0, 1,
. . . | be a sequence of numbers such that 2 + 2Bn+1 − Bs − Bs+2 ≥ 0. If there exits F
(x) such that E{(Xd(2) − Xd(1))

2|Xd(1) = s} = Bs, s = 0, 1, 2.
Then F(x) is unique.

Proof From (6.1.5), we obtain

E Xd 2ð Þ � Xd 1ð Þð Þ2jXd 1ð Þ ¼ s
n o

¼
P1

j¼1 j
2
psþjP1

j¼1 psþj

;

pj ¼ P X ¼ Jð Þ; j ¼ 0; 1; 2; . . .

ð6:1:8Þ

Thus the condition E Xd 2ð Þ � Xd 1ð Þð Þ2jXd 1ð Þ ¼ s
n o

¼ Bs implies

X1
j¼1

j2psþj
¼ Bs

X1
j¼1

psþj
; for s[ 0; ð6:1:9Þ

Writing s = s + 1 in (6.1.9), we get from (6.1.8) and (6.1.9),

X1
j¼1

ðj � 1Þ2psþj
¼ Bsþ1

X1
j¼1

psþjþ1
ð6:1:10Þ
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Subtracting (6.1.10) from (6.1.9) we obtain

X1
j¼1

ð2j� 1Þpsþj
¼ Bs

X1
j¼1

psþj
� Bsþ1

X1
j¼1

psþ1þj ð6:1:11Þ

Now substituting s = s + 1 in (6.1.11), we will have

X1
j¼1

ð2j� 1Þpsþ1þj
¼ Bsþ1

X1
j¼1

psþ1þj
� Bsþ2

X1
j¼1

psþ2þj ð6:1:12Þ

Subtracting (6.1.12) from (6.1.11) and on simplification, we obtain

Psþ2 ¼ 1 + 2Bsþ1 �Bsþ2

Bsþ2
psþ1

� 2 + 2Bsþ1�Bs �Bsþ2

Bsþ2
ð1� p0 � p1 � � � � psÞ

ð6:1:13Þ

Since the coefficients � 2 + 2Bsþ1�Bs �Bsþ2

Bsþ2
and 1+ 2Bsþ1 �Bsþ2

Bsþ2
are positive, it

means that P = s + 2 is increasing (decreasing) if ps + 1 increases(decreases) for all
s ≥ 0. It means that for any p = 0, all probabilities p2, p3,. . . increases when p1
increases. Together with the condition

P1
i¼0 pi ¼ 1 we conclude that for any given

p0, we have only one F(x) which satisfy (6.1.1).

6.2 Geometric Distribution

A discrete random variable X is said to have geometric distribution if its probability
mass function (pmf) is of the following form:

p kð Þ ¼ P X ¼ kð Þ ¼ pqk � 1;
0\p\1; q ¼ 1� p; k2A0

¼ 0; otherwise;
ð6:2:1Þ

where An = is the set of integers nþ 1; nþ 2; . . .; and n ≥ 0. We say X 2 GE(p), if
the pmf of X is as given in (6.2.1). For k > 0, we define r(k) = P[X = k| X ≥ k].

We choose to distinguish between GE(p) and the larger class of distributions
having geometric tail (GET). We write X 2 GET(s, p) if the pmf of X is as follows:

p kð Þ ¼ P X ¼ k½ � ¼ cqk�1; q ¼ 1� p; k 2 As;
¼ 0; otherwise;

ð6:2:2Þ
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where c is such that
P1

k¼sþ1 pðkÞ ¼ 1. If s = 0, then GET(s, p) = GE(p) with
c = p. The geometric distribution like the exponential distribution possesses the
memory less property i.e.

�pðr þ sÞ ¼ �pðrÞ �pðsÞ; ð6:2:3Þ

where r and s are positive integers and �pðjÞ ¼ P1
k¼ jþ 1 pðkÞ.

Geometric distribution is said to a discrete analogue of the exponential
distribution.

If X 2 GE(p), then �PðxÞ ¼ qx and p xð Þ ¼ pqx�1, for x 2 Ao. Then substituting
the values of �PðxiÞ and p(xi) in (6.2.1), we get pmf of Xd(1), Xd(2),. . .Xd(m)

p x1; x2; . . .; xmð Þ ¼ pnqxm�m; 1� x1\x2\. . .\xm\1
¼ 0; otherwise.

ð6:2:4Þ

The conditional pmf of XU(n) | XU(n−1) = xn−1 is

P Xd nð Þ ¼ xnjXd n� 1ð ÞÞ¼ xn�1

� �
¼ pqxn�xn�1�1; n� 1� xn�1\xn\1;

¼ 0; otherwise.

Thus Xd(n)) − Xd(n − 1) is independent of Xd(n − 1) and Xd(n)) − Xd(n − 1) 2
GE(p), n = 2, 3,. . ..

Let

V1 ¼ Xd 1ð Þ
V2 ¼ Xdð2� Xd 1ð Þ
. . .. . .. . .. . .. . .. . .. . .. . .:
Vn ¼ Xd nð Þ � Xd n� 1ð Þ

Then Vi’s are independent and Vi 2 GE(p).
We have

Xd nð Þ ¼ V1 þ V2 þ � � � þ Vn: ð6:2:5Þ

It is known that if X. 2G E(p), then

E(sxÞ ¼
X1
x¼1

sxpqx�1 ¼ ps
1� qs

: ð6:2:6Þ
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Using (6.2.6), We obtain

EðsXdðnÞ ¼ E sV1þV2þ���Vn
� � ¼ ps

1� qs

� �n

ð6:2:7Þ

The coefficient of sx in ps
1� qs

� �n
is x�1

n�1

� �
pnqx�n; x� n:

Thus the marginal pmf of Xd(m) can be written as

pmðxÞ ¼ p½XdðmÞ ¼ x� ¼ x� 1
m� 1

� �
pmqx�m; x 2 Am�1;m� 1

¼ 0; otherwise.
ð6:2:8Þ

We see that Xd(m) has a negative binomial distribution with parameters m and p.
We can write

Xd nð ÞjXd mð ÞÞ¼ xm d
¼ Vmþ1 þ � � � þ Vn þ xm; n[m:

and

EðsXdðnÞjXdðmÞ ¼ xÞ ¼ sxm
ps

1� qs

� �n�m

:

The coefficient of sy in sxm ps
1�qs

� �n�m
is

y� xm � 1

n� m� 1

 !
pn�mqy�xm�nþm,

Thus we obtain the conditional pmf of Xd(n) given Xd(m) as

P Xd nð ÞÞ¼ xnjXd mð ÞÞ¼ xm
� �

¼ xn � xm � 1

n� m� 1

 !
pn�mqxn�xm�nþm;

0\m� ; xm � xn � nþm\1:

But we know that the marginal pmf of Xd(m) is

pmðxÞ ¼ p½ XdðmÞ ¼ x� ¼ x � 1
m � 1

� �
p m q x�m ; x 2 Am � 1; m� 1

Thus the joint pmf of Xd(m) and Xd(n)( is

pm;nðx; yÞ ¼ P½XdðmÞ ¼ x;XdðnÞ ¼ yÞ ¼ array�20cx� 1m� 1ð Þ y� x� 1

n� m� 1

� �
pnqy�n

m� x\y� nþm\1
¼ 0; otherwise.
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We have seen that

P½Xd(nþ 1Þ � Xd(n) ¼ ujXd(n) ¼ y� ¼ pqu�1; u 2 Ao

¼ P½Xk ¼ u�

Thus

E½ðXd ðnþ 1Þ � Xd ðnÞÞ2jXd ðnÞ ¼ y� ¼ P1
u¼ 1

u2pqu�1

¼ 1þq
p2:

Thus E½ðXd ðnþ 1Þ � Xd ðnÞ Þ2jXd ðnÞ ¼ y� is independent of y. If fact it can be
shown that E½ðXd ðnþ 1Þ � Xd ðnÞ ÞkjXd ðnÞ ¼ y�, for any positive integer k, is
independent of y.

Since Xd mð Þ¼d V1 þ V2 þ . . .:þ Vm, where V1; . . .;Vm are independent and
identically distributed as GE(p), using this property, we get

EðXd mð Þ ¼ np�1;Var Xd mð ÞÞ
� �

¼ np�2q: ð6:2:9Þ

Cov Xd nð ÞXd mð Þð Þ ¼ Var Xd mð Þð Þ ¼ n�mð Þp�2q ð6:2:10Þ

The following Theorem is due to Srivastava (1978).

Theorem 6.2.1 Suppose F(x) is the distribution function of the sequence of i.i.d.
random variables {Xn, n ≥ 1} with positive mass function only at 1, 2,… Then
P Xd 2ð Þ � Xd 1ð Þ ¼ 1 Xd 1ð Þ ¼ i ¼ P� ½Xd 2ð Þ � Xd 1ð Þ ¼ 1j j1½ � for i ¼ 1; 2; . . .; if
and only if Xn has the geometric distribution with pmf as given by

pj ¼ P X ¼ j½ � ¼ c p 1� pð Þj�2; j ¼ 2; 3; . . .: ð6:2:11Þ

and

p1 ¼ 1�
X1
j¼2

pj ¼ 1� c; 0\p\1; 0\c\1:

Proof We give here the original proof of Srivastasva.

P½Xd 2ð ÞÞ�Xd 1ð Þ ¼ 1jXd 1ð Þ ¼ i]]

¼ P Xd 2ð ÞÞ¼ iþ 1;Xd 1ð Þ ¼ i
h i

=P XU 1ð Þ¼i
� 	

¼ piþ1
1�ðp1þ���þpiÞ

:
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Since this conditional probability is independent of i, we must have

p ¼ piþ1
1�ðp1þ���þpiÞ ; for j ¼ 1; 2; . . .

For j ¼ 1; we get p2 ¼ pð1� p1Þ ¼ cp; say:
For j ¼ 2;we get p3 ¼ pð1� p1 � p2Þ ¼ ð1� p1Þpð1� pÞ ¼ cpð1� pÞ

:

Similarly for j = k, we have

pk ¼ cpð1� pÞj�2; k[ 3: ð6:2:12Þ

If pj is as given by (6.2.11) then

P XU 2ð Þ � XU 1ð Þ ¼ 1jXU 1ð Þ ¼ i
� 	
¼ P XU 2ð Þ � XU 1ð Þ ¼ 1

� 	
:

A generalization of the Theorem 8.2.1 is the following theorem.

Theorem 6.2.2 Let {Xn, n ≥ 1} be a sequence of independent and identically
distributed discrete random variables with common distribution function F.
Suppose X is concentrated on the positive integers and a = sup {x|F(x) < 1} = ∞.
Then Xn 2 GET(n,p) for some fixed n, n ≥ 1, if and only Xd(n + 1) − Xd(n) and
Xd(n) are independent.

Proof The ‘if’ part follows immediately from the from Eq. (6.2.5), so we need to
established the ‘only if’ part. For x 2 Ao, let

c uð Þ ¼ P Xd nþ 1ð Þ � Xd nð Þ ¼ ujXU nð Þ ¼ x
� 	

¼ pðuþ xÞ
�pðxÞ

¼ �pðuþ x� 1Þ � �pðuþ xÞ
�pðxÞ ; u 2 Ao; x 2 An:

ð6:2:13Þ

Summing both sides of (6.2.13) with respect to u from 1 to uo, and writing

c1ðuoÞ ¼
Xuo
u¼1

cðuÞ and co ¼ 1� c1ðuoÞ: ð6:2:14Þ

On simplification, we get

�p ðx þ uoÞ ¼ co ðuoÞ �p ðxÞ; u 2 Ao; x 2 An ð6:2:15Þ

The general solution of (6.2.15) is

�p ðxÞ ¼ c px; x 2 An ð6:2:16Þ

where c is independent of p.
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Using the boundary condition �p ð1Þ ¼ 0, we get

�pðxÞ ¼ c px; x 2 An; 0\p\1; x2An:

We have already seen that

P Xd nþ 1ð ÞXd nð Þ½ ¼ ujXd nð Þ ¼ y� ¼ pqu�1; u2Ao

¼ P Xk ¼ u½ �:

Does the above condition characterize the geometric distribution? As an answer
to that question we have the following theorem.

Theorem 6.2.3 Let {Xn, n ≥ 1} be a sequence of independent and identically
distributed random variables with common distribution function F. Suppose X is
concentrated on the positive integers with a = sup {x|F(x) < 1} = ∞. Further if
P Xd nþ 1ð Þ � Xd nð Þ ¼ uj Xd nð Þ ¼ y½ Þ ¼ P X1 ¼ u½ � for two fixed y2An�1;
y1; y2 relatively prime and all u 2 Ao, then X 2 GET(n,p).

Proof Suppose that

P Xd nþ 1ð Þ � Xd nð Þ ¼ ujXd nð Þ ¼ y½ Þ ¼ P X1 ¼ u½ � ð6:2:17Þ

then

P P½ ½Xd nþ 1ð Þ � Xd nð Þ ¼ ujXd nð Þ ¼ yÞ� ¼ pðuþ yÞ
�pðyÞ ¼ p uð Þ ð6:2:18Þ

for two relatively prime y1; y2 2 An−1 and all u 2 Ao. Summing (6.2.18) with
respect to u from uo + 1 to ∞, we get

�p ðuo þ yÞ
�p ðyÞ ¼ �pðuoÞ; ð6:2:19Þ

for two relatively prime y1 ; y2 2 An−1 and all u 2 Ao. The general solution of
(6.2.19) is

�p ðxÞ ¼ c px ; x 2 An;

and since �p ð1Þ ¼ 0, we must have

�p ðxÞ ¼ c px; 0 \ p \ 1; x 2 An: ð6:2:20Þ

Srivastava (1979) gave a characterization of the geometric distribution using the
condition E(Xd(2)|Xd(1) = y) = α + y Ahsanullah and Holland (1984) proved the
following theorem which is a generalization of Srivastava’s result.
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Exercise 6.2.1 Let {Xn, n ≥ 1} be a sequence of independent and identically
distributed discrete random variables with common distribution function F.
Suppose X is concentrated on the positive integers with a = sup{x|F(x) < 1} = ∞.
Further suppose E(Xd(n + 1))2 < ∞. If E(Xd(n + 1)|Xd(n) = y) = y + p−1 for all y 2
An−1, then X1 2 GET(n,p) and 0 < p < 1.

6.3 Weak Records

Vervaat (1973) introduced the concept of weak records of discrete distribution. Let
X1, X2,. . . be a sequence of independent and identically distributed random vari-
ables taking values on 0, 1,. . . with distribution function F such that F(n) < 1 for
any n. The weak record times Uw(n) and weak upper record values XdwðnÞ are
defined as follows:

Uw 1ð Þ ¼ 1

Uw nþ 1ð Þ ¼ minfj[ Lw nð Þ;Xj [maxðX1;X2; . . .Xj�1Þg

and the corresponding weak upper record value is defined as Xdwðnþ 1Þ. If in the
above expression if we replace ≥ by >, then we obtain record times and record
values instead of weak record times and weak record values.

The joint pmf of Xdwð1Þ;Xdwð2Þ; . . .;XdwðnÞ is given by

Pw;1;2;...;nðx1;x2;...;xnÞ ¼
Yn�1

i¼1

pðxiÞ
~Pðxi � 1Þ

 !
pðxnÞ

for 0\ x1 \ x2 \ � � � xn \1:

ð6:3:1Þ

For any m > 1 and n > m, we can write

PðXdwðnÞ ¼ xn; :. . .Xdwðmþ 1Þ ¼ xmþ1jXdwðmÞ ¼ xm; :. . .

Xdwð1Þ ¼ x1ÞYn�1

i¼m

pðxiÞ
~Pðxi � 1Þ

 !
pðxnÞ

~Fðxm � 1Þ

ð6:3:2Þ

It follows easily from (6.3.1) and (6.3.2) that the weak records,
Xdwð1Þ; Xdwð2Þ; . . .:, form a Markov chain.

The marginal pmf’s of the upper weak records are given by

PðXdwð1Þ ¼ x1Þ ¼ Pw;1 x1ð Þ ¼ pðx1Þ; x1 ¼ 0; 1; 2; . . .:

PðXdwð2Þ ¼ x2Þ ¼ Pw;2 x2ð Þ ¼ Rw;1 x2ð Þp x2ð Þ; x2 ¼ 0; 1; 2; . . .:
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where

Rw;1ðx2Þ ¼
X

0� x1 � x2

pðx1Þ
~Pðx1 � 1Þ ð6:3:3Þ

PðXdwÞðnÞ ¼ xnÞ ¼ Pw;n xnð Þ ¼ Rw;n�1 xnð Þp xnð Þ;

where

Rw;n�1 xnð Þ ¼
X

0� x1 � x2 � ...xn�1

Yn�1

i¼1

pðxiÞ
~Pðxi � 1ÞpðxnÞ ð6:3:4Þ

The joint pmf of Xdw ðmÞ andXdw; ðmÞ m < n, m < n is given by

Pw;m;n xm; xnð Þ ¼Rw;m xmð ÞAw xmð ÞRwm;þ1;n xm; xnð Þp xnð Þ;
m� xm� xn � n þm\1;

where

Rw;m;n x; yð Þ ¼
X

xm � xmþ1 � xmþ2... � :n

Awðxmþ1Þ. . .. . .Awðxn�1Þ;

m\n� 1 ¼ 1

if m ¼ n� 1;

andAw xð Þ ¼ pðxÞ
�Pðx� 1Þ :

The conditional pmf of XdwðnÞ givenXdw; ðmÞ is given by

Pw;njmðXdwðnÞ ¼ xnjXdwðmÞ ¼ xmÞ

¼ Rw;mþ1;nðxm; xnÞ pðxnÞ
Pðxm � 1Þ ;

for � xm � xn \1:

ð6:4:5Þ

Thus the pmf of XUwðnÞ givenXUwðn�1Þ is

Pw;njn�1ðXdwðnÞ ¼ xnjXdwðn� 1Þ ¼ xn�1

¼ pðxnÞ
�pðxn�1Þ

ð6:3:6Þ
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Theorem 6.3.1 Let {Xi, i = 1, 2,. . .} be sequence of independent and identically
distributed random variables taking values on 0, 1, 2,..,n, n ≤ ∞, with distribution
F such that F(n) < ∞ for n < ∞ and E(X1ln(1 + X1) < ∞. The for some continuous
function w, the condition Eðw(Xdw ðnÞj Xdw ðn� 1Þ ¼ jÞ = g(j) determines the
distribution.

Proof We have from (6.3.6)

PðXdwðnÞ ¼ y jXdwðn� 1Þ ¼ xÞ ¼ py
qx

; ð6:3:7Þ

where py = P(X = y) and qx = P(X ≥ x)

Now

EðwðXdwðnÞÞ jXdwðn� 1Þ ¼ jÞ ¼ 1
qj

XN
k¼j

wðkÞpk:

Using the condition as given in the theorem, we can write the above expression as

gðjÞ qj ¼
Xn
k¼j

wðkÞpk ð6:3:8Þ

Taking first order difference, we obtain from (6.3.8)

g jð Þqj � g jþ 1ð Þqjþ1 ¼ wðjÞpj ð6:3:9Þ

Thus

g jð Þqj � g jþ 1ð Þ qj � pj
� �

¼ wðjÞpj ð6:3:10Þ

i.e.

pj ¼ gðjþ 1Þ � gðjÞ
gðjþ 1Þ � wðjÞ qj ð6:3:11Þ

Since qj ¼ qj
qj�1

:
qj�1

qj�2
. . . q1qo ; q0 ¼ 1; we have from (6.3.11)

pj ¼ gðjþ 1Þ � gðjÞ
gðjþ 1Þ � wðjÞ

Yj�1

k¼0

qkþ1

qk

� �
ð6:3:12Þ

From (6.3.10)

g jð Þ qj � g jþ 1ð Þqjþ1 ¼ wðjÞ ðqj � qjþ1Þ
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i.e.

qjþ1

qj
¼ gðjÞ � wðjÞ

gðjþ 1Þ � wðjÞ ð6:3:13Þ

From (6.3.13), we can write

pj ¼ gðjþ 1Þ � gðjÞ
gðjþ 1Þ � wðjÞ

Yj�1

k¼0

gðkÞ � wðkÞ
gðk þ 1Þ � wðkÞ
� �

ð6:3:14Þ

6.3.1 Geometric Distribution

Suppose X1, X2,. . .. be a sequence of independent and identically random variables
with p(k) = pqk and ~Pðk � 1Þ ¼ qk; k ¼ 0; 1; 2; . . .

Here Rw;1ðx2Þ ¼
P

1� x1 � x2

pðx1Þ
~Pðx1�1Þ ¼ x2p:

Thus

Pw;2 kð Þ ¼ Rw;1 kð Þp kð Þ ¼ kp2qk; k ¼ 0; 1; 2; . . .:

Since

Pw;njn�1ðxnj Xdwðn� 1Þ ¼ xmÞ ¼ pðxnÞ
~Pðxn�1 � 1Þ ¼ pqxn�xm ;

xn [ xn�1

we obtain

Pw;3 x3ð Þ ¼ Px3
x2¼0

x2p2qx2pqx3�x2

¼ Px3
x2¼0

x2p3qx3

¼ x3ðx3þ1Þ
2 p3qx3 ; x3 ¼ 0; 1; 2; ; . . .

By induction it can be proved that

Pw;n xnð Þ ¼ xnðxn þ 1Þ. . .ðxn þ n� 2Þ
ðn� 1Þ! pnqxn

¼ xnþn�2
n�1

� �
pnqxnn� 2 and xn ¼ 0; 1; 2; . . .

EðXdwðnÞjXdwðn� 1Þ ¼ xn�1Þ

¼
X1

xn¼xn�1

xn pq
xn�xn�1 ¼ xn�1 þ q

p
:
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The conditional expectation of XdwðnÞ jXdwðn� 2Þ ¼ x is

EðXdwðnÞjXdwðn� 2Þ ¼ xn�2Þ

¼
X1
x¼xn�2

xðx� xn�2 þ 1Þp2qx�xn�2

¼ xn�2 þ
X1
x¼xn�2

½ðx� xn�2Þ ðx� xn�2 þ 1Þ�p2qx�xn�2

¼ xn�2 þ 2q
p

Wesolowski and Ahsanullah proved the following characterization theorem
using conditional expectation.

Theorem 6.3.2 Let {Xi, i = 1, 2,. . .} be sequence of independent and identically
distributed random variables taking values on 0, 1, 2,.., n, n ≤ ∞, with cdf F; Then
E(Xdw(n + 1)|Xdw(n) = x) = x + b, where b is a constant characterized the geo-
metric distribution.

We have seen that

P Xd nþ 1ð Þ½ Þ � Xd nð Þ ¼ ujXd nð Þ ¼ y� ¼ pqu�1; u 2 Ao

¼ P Xk ¼ u½ �:

Thus

E½ðXd ðnþ 1Þ � Xd ðnÞÞ2jXd ðnÞ ¼ y� ¼
X1
u¼ 1

u2pqu�1

¼ 1þ q
p2

:

Thus E½ðXd ðnþ 1Þ � Xd ðnÞÞ2jXd ðnÞ ¼ y� is independent of y. If fact it can be
shown that E½ðXd ðnþ 1Þ � Xd ðnÞ ÞkjXd ðnÞ ¼ y�, for any positive integer k, is
independent of y.

Exercise 6.3.1 Suppose {Xn, n > 1| be a sequence of i.i.d. random variables with
cdf F(x). We assume Xn is concentrated on 0, 1, 2,. . . and F(x). 0 for all x > 0. Then
X 2 GE pð Þ if and only if Xdw 2ð ÞdX1 þ X2, where X1 and X2 are independent
copies of Xn.

Ahsanullah and Aliev (2011) extended the result of the above exercise to Xdw(n).
They prove that under the same assumptions of the above exercise the condition
Xdw nð ÞdX1 þ X2 þ � � � þ Xn where X1, X2,. . ., Xn are independent copies of Xn

characterizes GE(p).
Ahsanullah and Hijab proved that the following theorem.

136 6 Records of Discrete Distributions



Theorem 6.3.3 Suppose {Xn, n > 1| be a sequence of i.i.d. random variables with
cdf F(x). We assume Xn is concentrated on 0, 1, 2,. . .. Then X 2 GE pð Þ if and only
if Xdw nþ 1ð ÞdXdw nð Þ þW, where W has the same distribution as X’s.

Example 6.3.2 Beta—Binomial distribution.
Suppose X1, X2,. . . be a sequence of independent and identically random

variables having Beta—Binomial distribution, BB(N, β) with pmf as

p jð Þ ¼ P X ¼ jð Þ ¼ bþN � j� 1
N � j

� �
bþN
N

� ��1
; j ¼ 0; 1; 2; . . .; N ð6:3:19Þ

and

~Pðk � 1Þ ¼ qk ¼
XN
j¼k

pj;

¼
XN
j¼k

bþN� j� 1
N� j

� �
bþN
N

� ��1

¼
XN � k

j¼0

bþN � j� 1
j

� �
bþN
N

� ��1

¼ bþN� k
N� k

� �
bþN
N

� ��1
:

Here

Rw;1ðx2Þ ¼
X

1� x1 � x2

pðx1Þ
~Pðx1 � 1Þ ¼

X
1� x1 � x2

bþN�x1�1
N�x1

� �
bþN�x1

N�x1

� �
¼

X
1� x1 � x2

b
N þ n� x1

Thus

pðXdwð2Þ ¼ jÞ ¼ Rw;1 jð Þ p jð Þ
¼

X
0� x1 � j

b
N þ n� x1

bþN�j�1
N�j

� �
bþN
N

� ��1

j ¼ k; . . .;N

E(XdwðnÞjXdwðn� 2Þ ¼ mÞ

¼ 1
qm

XN
r¼m

pr
qr

XN
k¼r

kpk

¼ bþN�m
N�m

� ��1XN
r¼m

b
bþ N � r

XN
k¼r

k bþN�k�1
N�k

� �
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Now

XN
k¼r

k bþN�k�1
N�k

� �

¼
XN�r

i¼0

ðN � iÞ bþi�1
i

� �

¼ N
XN�r

i¼0

bþi�1
i

� �
�
XN�r

i¼0

i bþi�1
i

� �

¼ N bþN�r
n�r

� �� bþN�r
N�r�1

� �
¼ N bþN�r

N�r

� �
� ðN � rÞb

bþ 1
bþN�r
N�r

� �

¼ N þ rb
bþ 1

bþN�r
N�r

� �

Thus

E(XdwðnÞjXdwðn� 2Þ ¼ mÞ

¼ b
bþ 1

bþN�m
n�m

� ��1Xn
r¼m

N þ rb
bþ N � r

bþN�r
N�r

� �

Now

XN
r¼m

N þ rb
bþ N � r

bþN�r
N�r

� �
þ
XN
r¼m

N þ rb
b

bþN�r�1
N�r

� �

¼ N
b

bþN�m
N�m

� �
�
XN
r¼m

r bþN�r�1
N�r

� �
:

It can easily be shown that

XN
r¼m

r bþN�r�1
N�r

� �
¼
XN�m

t¼0

ðN � tÞ bþt�1
t

� �

¼ N bþN�m
N�m

� �
�
XN�m

t¼0

t bþt�1
t

� �

¼ N bþN�m
N�m

� �
� ðN � mÞb

bþ 1
bþN�m
N�m

� �

¼ N þ mb
bþ 1

bþN�m
N�m

� �
:
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Hence

E(XdwðnÞjXdwðn� 2Þj ¼ mÞ

¼ b
bþ 1

� �
N
b
þ N þ mb

bþ 1

� �

¼ b
bþ 1

� �2

mþ 2bþ 1

ðbþ 1Þ2
 !

N:

Exercise 6.3.2 Suppose X1, X2,. . . be a sequence of independent and identically
random variables having Beta Binomial distribution, BNB(β, γ) with pmf as

p jð Þ ¼ P X ¼ jð Þ ¼ c
cþ j

b
c

� �
bþjþ1
cþj

� ��1
; j ¼ 0; 1; 2; . . .; ð6:3:20Þ

where β > γ > 0.
Show that

E(XwUðnÞjXwUðn�2Þ ¼ mÞ

6.4 Exercises (solutions)

Exercise 6.2.1 (solution) Suppose E(Xd(n + 1)|Xd(n) = y) = y + p−1 for all
y 2 An−1, then we have

P XU nþ1ð Þ ¼ uþ yjXU nð Þ ¼ y
� 	 ¼ pðuþ yÞ

�pðyÞ ; y2An�1;

and hence

E XU nþ1ð ÞjXU nð Þ ¼ y
� 	 ¼X1

u¼y

ðuþ yÞ pðuþ yÞ
�pðyÞ

¼ p�1 þ y;

which implies that

X1
u¼y

u
pðuþ yÞ
�pðyÞ ¼ p�1:
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Thus we have

p�1 ¼
P1
u¼1

u½�pðuþ y� 1Þ � �pðuþ yÞ
�pðyÞ

¼
X1
j¼o

�pðyþ iÞ
�pðyÞ

¼ JðyÞ
Jðyþ 1Þ � Jðyþ 1Þ ;

where J yð Þ ¼P1
i¼o

�pðyþ iÞ. Thus

J yþ 1ð Þ ¼ q J yð Þ; q ¼ 1� p ð6:4:1Þ

for all y 2 An−1.
The general solution of (6.4.1) with the boundary condition, J(n) = θ, 0 < θ < 1, is

J xð Þ ¼ h qx�n;x2An�1:

Therefore

�p ðxÞ ¼ J xð Þ � J xþ 1ð Þ ¼ h pqx�n; x2An�1:

i.e. x 2 GET(n,p).

Exercise 6.3.1 (solution) We have already seen that if X2GE pð Þ then
Xdw 2ð ÞdX1 þ X2:

We will prove here the only if condition.

PðXdw 2ð Þ ¼
X

0� x� x

pðxiÞ
�PðxiÞ pðxÞ

P X1 þ X2 � xð Þ ¼
Xx
u¼0

pðx� uÞpðuÞ;

Hence

X
0� x� x

pðxiÞ
�PðxiÞ pðxÞ ¼

Xx
u¼0

pðx� uÞpðuÞ;
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Putting x = 1, we obtain

pð0Þ
�Pð0Þ þ pð1Þ

�Pð1Þ
� �

pð1Þ ¼ 2pð0Þpð1Þ

Let p(0) = p, then
P(1) = pq, q = 1 − p.
For x = 2, we have

pð0Þ
�Pð0Þ þ pð1Þ

�Pð1Þ þ pð2Þ
�Pð2Þ

� �
pð2Þ ¼ 2pð0Þpð2Þ þ ðpð1ÞÞ2

Substituting p(0) = p. p(1) = q in the above equation, we obtain p 2ð Þ ¼ pq2.
Suppose p uð Þ ¼ pqu for u ≤ x, then we have for u = x + 1.

Exercise 6.3.2 (solution)

~Pðk � 1Þ ¼ qk ¼
X1
j¼k

pj

¼
X1
j¼k

c
cþ j

b
c

� �
bþjþ1
cþj

� ��1
;

¼
X1
i¼0

c
cþ k þ i

b
c

� �
bþkþiþ1
cþkþi

� ��1
:

¼ c
cþ k

b
c

� �
bþk
cþk

� ��1
; k ¼ 0; 1; 2; . . .

Here Rw;1 jð Þ ¼ P
0� x1 � j

pðx1Þ
qx1

¼ P
0� x1 � j

bþx1
cþx1

� �
bþx1þ1
cþx1

� �

¼
X

0� x1 � j

b� cþ 1
bþ x1 þ 1

Thus

PðXdwð2Þ ¼ jÞ ¼ Rw;1 jð Þp jð Þ
¼

X
0� x1 � j

b� cþ 1
bþ x1 þ 1

c
cþ j

b
c

� �
bþjþ1
cþj

� ��1

j ¼ 0; 1; . . .;
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Now

E(XdwðnÞjXdwðn� 2Þj ¼ mÞ

¼ 1
qm

X1
r¼m

pr
qr

X1
k¼r

kpk

We have

X1
k¼r

kpk ¼
X1
j¼0

cðr þ jÞ
cþ r þ j

b
c

� �
bþrþjþ1
cþrþj

� �

¼ cðr � 1Þ
cþ r

b
c

� �
bþr
cþr

� ��1X1
j¼0

cþ r
cþ r þ j

bþr
cþr

� �
bþrþjþ1
cþrþj

� ��1

¼ cðr � 1Þ
cþ r

b
c

� �
bþr
cþr

� ��1
þ c
cþ r

b
c

� �
bþr�1
cþr

� ��1

¼ c½rðb� c� 1Þ þ c�
ðcþ rÞðb� cÞ

b
c

� �
bþr
cþr

� ��1
:

Thus

EðXdwðnÞjXdwðn� 2Þ ¼ mÞ

¼ 1
qm

X1
r¼m

ðb� cþ 1Þc½rðb� c� 1Þ þ c�
ðbþ r þ 1Þðcþ rÞðb� cÞ

b
c

� �
bþr
cþr

� ��1

¼ b
c

� � 1
qm

b� cþ 1
b� c

X1
r¼m

cr
cþ r

bþrþ1
cþr

� ��1
"

þ c
b� c

X1
r¼m

c
cþ r

bþrþ1
cþr

� ��1
#

1
qm

ðb� cþ 1Þ½mðb� cþ 1Þ þ c�
b� cð Þ2 qm

On simplifying we the obtain

E(XwUðnÞjXwUðn�2Þ ¼ mÞ ¼ ðb� cþ 1Þ½mðb� cþ 1Þ þ c�
b� cð Þ2 þ c

b� c

¼ ðb� cþ 1Þ2m
b� cð Þ2 þ cf2ðb� cÞ þ 1g

ðb� cÞ2 :
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Chapter 7
Estimation of Parameters and Predictions
of Records

7.1 Exponential Distribution

We will consider here the two parameter exponential distribution with pdf f(x) as
given by

f ðxÞ ¼ 1
r
expð�r�1ðx� lÞÞ; �1\l\x\1; r[ 0;

¼ 0; otherwise:
ð7:1:1Þ

7.1.1 Minimum Variance Linear Unbiased Estimates
(MVLUE) of μ and σ

Suppose that X(1), X(2), …, X(m) are the m (upper) record values from E(μ, σ) with
pdf as given in (7.1.1)

Let

Yi ¼ r�1 XðiÞ � lð Þ; i ¼ 1; 2; . . .;m; then

E Yið Þ ¼ i ¼ Var Yið Þ; i ¼ 1; 2; . . .;m;

and Cov(Yi, Yj) = min (i, j).
Let

X ¼ Xð1Þ;Xð2Þ; . . .;XðmÞð Þ; then
E Xð Þ ¼ lLþ rd

Var Xð Þ ¼ r2V ;
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where

L0 ¼ 1; 1; . . .; 1ð Þ0; d0 ¼ 1; 2; . . .mð Þ0
V ¼ Vij

� �
; Vij ¼ minði; jÞ; i; j ¼ 1; 2; . . .;m:

The inverse V−1(= Vij) can be expressed as

2 if i ¼ j ¼ 1; 2; . . .;m� 1
Vij ¼ 1 if i ¼ j ¼ m

�1 if ji� jj ¼ 1; i; j ¼ 1; 2; . . .;m
0 otherwise:

The minimum variance linear unbiased estimates (MVLUE) l̂; r̂ of μ and σ
respectively are

l̂ ¼ �d0V�1 Ld0 � dL0ð ÞV�1X=D

r̂ ¼ L0V�1 Ld0 � dL0ð ÞV�1X=D;

where

D ¼ L0V�1L
� �

d0V�1d
� �� L0V�1d

� �2
and

Var l̂ð Þ ¼ r2L0V�1d=D

Var r̂ð Þ ¼ r2L0V�1L=D

Cov l̂; r̂ð Þ ¼ �r2L0V�1d=D.

It can be shown that

L0V�1 ¼ 1; 0; 0; . . .; 0ð Þ; d0V�1 ¼ 0; 0; 0; . . .; 1ð Þ;
d0V�1d ¼ m and D ¼ m� 1:

On simplification, we get

l̂ ¼ ðmXð1Þ � XðmÞÞ=ðm� 1Þ
r̂ ¼ XðmÞ � Xð1Þð Þ= m� 1ð Þ ð7:1:1:1Þ

with

Var l̂ð Þ ¼ mr2= m� 1ð Þ; Var r̂ð Þ ¼ r2= m� 1ð Þ and

Cov l̂; r̂ð Þ ¼ �r2= m� 1ð Þ: ð7:1:1:2Þ
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Exercise 7.1.1.1 If μ = 0, then the MVLUE r̂0 of - is

r̂0 ¼ XðmÞ
m

:

7.1.2 Best Linear Invariant Estimators

The best linear invariant (in the sense of minimum mean squared error and
invariance with respect to the location parameter μ) estimators (BLIE) ~l ~r of μ and
σ are

~l ¼ l̂� r̂
E12

1þ E22

� �

and

~r ¼ r̂= 1þ E22ð Þ;

where
l̂ and r̂ are MVLUE of μ and σ and

Var l̂ð Þ Cov l̂; r̂ð Þ
Cov l̂; r̂ð Þ Var r̂ð Þ

� �
¼ r2

E11 E12

E12 E22

� �

The mean squared errors of these estimators are

MSEð~lÞ ¼ r2 E11 � E2
12ð!þ E22Þ�1

� �
and

MSE ~rð Þ ¼ r2E22 1þ E22ð Þ�1

We have

E ~l� lð Þ ~r� rð Þ ¼ r2E12 1þ E22ð Þ�1:

Using the values of E11, E12 and E22 from (7.1.1.2), we obtain

l̂ ¼ ððmþ 1ÞXð1Þ � XðmÞÞ=m;
r̂ ¼ XðmÞÞ � Xð1Þð Þ=m

Var ~lð Þ ¼ mþ 1
m

r2 and Var r̂ð Þ ¼ m� 1
m2 r2
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7.1.3 Maximum Likelihood Estimate

The log likelihood equation based on the m upper X(1), X(2),…, X(m) can be
written as ln L ¼ �mlnr � 1

r ðXðmÞ � lÞ;l\Xð1Þ\Xð2Þ � � �\XðmÞ\1: The
maximum likelihood estimate l̂ml and r̂ml of l and r are respectively.

l̂ml ¼ X(1)

and

r̂ml ¼ 1
m
ðXðmÞ � Xð1ÞÞ

Eðl̂mlÞ ¼ lþ r;Varðl̂mlÞ ¼ r2;

Eðr̂mlÞ ¼ ðm� 1Þr
m

;VarðĥmlÞ ¼ ðm� 1Þr2
m2

andCovðl̂mlr̂mjÞ ¼ 0

Exercise 7.1.3.1 Show that in the case of one parameter exponential with FðxÞ ¼
1� e¼x=r; x� 0; r[ 0: The maximum likelihood estimate r�ml of r based on m
upper records X 1ð Þ;X 3ð Þ; . . .;X mð Þ is

r�ml ¼
x(m)
m

with

Eðr�mlÞ ¼ rþ l
m

and Varðr�mlÞ ¼
r2

m
:

7.1.4 Prediction of Record Values

We will predict the sth upper record value based on the first m record values for
s > m.

Let W 0 ¼ W1;W2; . . .;Wmð Þ, where

r2WijCov XðiÞ;XðjÞð Þ; i ¼ 1; . . .;m and a� ¼ r�1E XðsÞ � lð Þ:

The best linear unbiased predictor of X(s) is X̂ðsÞ where

X̂ðsÞ ¼ l̂þ r̂a� þW 0V�1 X � l̂ L� r̂dð Þ;
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where l̂; r̂ are the MVLUE of μ, σ respectively. It can be shown that
W 0V�1 X � l̂ L� r̂dð Þ ¼ 0:

X̂ðsÞ ¼ s� 1ð ÞXðmÞ þ m� sð ÞXð1Þð Þ= m� 1ð Þ
E X̂ðsÞ� � ¼ lþ sr

Var X̂ðsÞ� � ¼ r2 mþ s2 � 2s
� �

= m� 1ð Þ:
ð7:1:4:1Þ

Let ~XðsÞ be the best linear invariant predictor of X(s). Then it can be shown that

~XðsÞ ¼ X̂ðsÞ � C12 1þ E22ð Þ�1r̂; ð7:1:4:2Þ

where

C12r
2 ¼ Cov r̂; L�W 0V�1L

� �
l̂þ a� �W 0V�1d

� �
r̂

� �
and

r2E22 ¼ Var r̂ð Þ:

On simplification we get

~XðsÞ ¼ m� s
m

Xð1Þ þ s
m
XðmÞ

E ~XðsÞ� � ¼ lþ msþ m� s
m

� �
r

Var ~XðsÞ� � ¼ r2 m2 þ ms2 � s2
� �

=m2:

It is well known that the best (unrestricted) least squares predictor ~�X of X(s) is

�X
^
ðsÞ ¼ E XðsÞjXð1Þ; . . .;XðmÞð Þ

¼ XðmÞ þ ðs� mÞr:
ð7:1:4:3Þ

But �X^
UðsÞ depends on the unknown parameter σ. If we substitute the minimum

variance linear unbiased estimate r̂ for r; then �X
^
ðs) becomes equal to X

^ ðs): Now

Eð�X
^
ðs)Þ ¼ lþ sr ¼ EðXðsÞÞ

Varð�X
^
ðs)Þ ¼ mr2
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7.2 Generalized Extreme Value Distribution

We will consider here the generalized extreme value distribution having d.f. F(x) as

F xð Þ ¼ exp½�f1� cr�1ðx� lÞg1=c� ð7:2:1Þ

where σ > 0, γ ≠ 0,

x\lþ rc�1; for c[ 0;

and

x[ lþ rc�1; for c\0:

If γ = 0 then

F xð Þ ¼ exp � exp� �ðx� lÞ=rf g½ �;r[ 0;�1\x\1: ð7:2:2Þ

We will write X 2 GEVðl;r; cÞ if X has the d.f. as given in (7.2.1).
Since

lim
c!0

1� cr�1 x� lð Þ� 	1=c ¼ exp �r�1 x� lð Þ� 	
; we can take

lim
c!0

GEV l;r,cð Þ ¼ GEV l;r,0ð Þ:

The density function of GEVðl;r; cÞ is

f xð Þ ¼ r�1 1� cr�1 x� lð Þ� 	1�c
c exp � 1� cr�1 x� lð Þ� 	1=ch i

;

x[ 1=c; c[ 0;

x\1=c; for c \ 0;

and f ðxÞ ¼ e�
x�l
rð Þ exp �e�

x�l
rð Þ� �

; for c ¼ 0:

7.2.1 Minimum Variance Linear Unbiased Estimate
of μ and σ for Known γ

Suppose γ ≠ 0 but γ is known. Let x(1), x(2),… x(m) be the m (lower) record values
from GEV(μ, σ, γ) with pdf as given in (7.2.1). Then the MVLUE l̂ and r̂o of μ and
σo respectively, based on m upper record values, x(1), X(2), … x(m), are:
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l̂ ¼ D�1fxðmÞð10V�1aÞ � am10V¼1R




r̂ ¼ �D�1fxðmÞð10V�11Þ � 10V�1R
	

where

D ¼ Cðmþ 1Þ 10V�11
CðmÞ � � 1

bm

� �
;V � ðVijÞ � ðaibjÞ;V�1 ¼ ðVijÞ

ai ¼ C iþ cð Þ
C ið Þ ; bi ¼ C iþ 2cð Þ

C iþ cð Þ � C iþ cð Þ
C ið Þ and r20 ¼

r2

c2
:

V11 ¼ ð1þ cÞ2
c2

1
Cð1þ 2cÞ

Vii ¼ Cði)
C iþ 2cð Þ �

1
c2

ðiþ cÞ2 þ i� 1ð Þ i� 1þ 2cð Þ
n o

; i ¼ 2; . . .;m� 1;

Vij ¼ Vji ¼ iþ c
c2

C iþ 1ð Þ
C iþ 2cð Þ ; j ¼ iþ 1; i ¼ 1; . . .;m� 1

Vij ¼ 0, if i� jj j[ 1; here

10 ¼ 1; . . .; 1ð Þ;
R0 ¼ ðx 1ð Þ; x 2ð Þ; . . .x mð Þ; a0 ¼ a1; . . .; amð Þ;

ai ¼ 1� C iþ cð Þ
C ið Þ ; i ¼ 1; 2; . . .;m;

Var l̂ð Þ ¼ r20 bm 10V�11
� �� 2þ C mþ cð Þ

C mð Þ
� �


D

Var r̂0ð Þ ¼ r20bm 10V�11
� �� 	�

D

and

Cov l̂; r̂0ð Þ ¼ r̂20 bm 10V�11
� �� 1

� 	
=D:

Let R = (x(1), x(2), …, x(m)). Then we can write

E Rð Þ ¼ l1þ r0a

Var Rð Þ ¼ r20 V;

where

a0 ¼ a; . . .; amð Þ; ai ¼ 1� C iþ cð Þ
C ið Þ ;

10 ¼ 1; . . .; 1ð Þ; V ¼ Vij
� 	

; Vij ¼ ai bj; 1� i; j�m

ai ¼ C iþ cð Þ
C ið Þ ; bi ¼ C iþ 2cð Þ

C iþ cð Þ � C iþ cð Þ
C ið Þ and r20 ¼

r2

c2
:
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Let V�1 ¼ ðVijÞ, then

V11 ¼ a2
a1 a2b1 � a1b2ð Þ ¼

1
c2

C 1þ cð Þ2
C 1þ 2cð Þ

Vii ¼ aiþ1bi�1 � ai�1biþ1

aibi�1 � ai�1bið Þ aiþ1bi � aibiþ1ð Þ
¼ CðiÞ

c2C iþ 2cð Þ iþ cð Þ2þ i� 1ð Þ i� 1þ 2cð Þ
n o

; i ¼ 2; . . .; m� 1

Vmm ¼ bm�1

bm

1
ambm�1 � am�1bm

¼ bm�1

bm

mþ 1� c
c2

CðmÞ
Cðm� 1þ cÞ ;

Vij ¼ Vij ¼ � 1
aiþ1bi � aibiþ1

¼ � iþ c
c2

Cðiþ 1Þ
Cðiþ 2cÞ

j ¼ iþ 1; i ¼ 1; 2; . . .; m� 1;

and

Vij ¼ 0; if ji� jj[ 1:

It follows from the method of Lloyd (1952) that the MVLUE of μ and σo based
on the observed value r of R are, respectively,

l̂ ¼ a0V�1ð10a� a10ÞV�1R=Dj
r̂ ¼ 10V�1ð1a0 � a10ÞR=D

where

D ¼ 10 V�11
� 	

a0 V�1a
� 	� 10 V�1a

� 	2
and

Var l̂ð Þ ¼ r2o a0V�1a
� �

=D

Var r̂oð Þ ¼ r2o 10V�1
� �

=D

Cov l̂; r̂oð Þ ¼ r2o 10V�1a
� �

=D

It can be shown that, upon simplification,

10V�1a ¼ 10V�11� 1=bm

a0V�1a ¼ 10V�11� 1=bm þ am=bm

a0V�1R ¼ 10V�1R� x mð Þ=bm;
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and

D ¼ C mþ cð Þ 10V�11
bmC mð Þ
� �

� 1
b2m

:

Suppose γ = 0.
Then the MVLUE l̂; r̂o of μ and σ respectively based on the lower record

values x(1), x(2), …, x(m) are

l̂ ¼ xðmÞ � m�mr̂

r̂ ¼ ðm� 1Þ�1
Xm�1

i¼1

xðiÞ � xðmÞ

Their corresponding variances and covariance are

Var l̂ð Þ ¼ r2 t�m
� �2

m� 1ð Þ�1 þV�
mm

n o
Var r̂ð Þ ¼ r2= m� 1ð Þ; and

where

m�m ¼ EðxðmÞÞ and v�m ¼ VarðxðmÞÞ:

Proof For γ = 0, we know (see Sect. 5.2.3).

E x rð Þð Þ ¼ lþ t�rr

Var x rð Þð Þ ¼ r2V�
r;r0 ;

Cov ðx rð Þ x jð Þ ¼ Var x jð Þð Þ; . . . 1� j� J; j ¼ 1; 2; . . .; . . .

with

t�r ¼ t

t�j ¼ t�j�1 � j� 1ð Þ�1; j� 2;

V�
1;1 ¼

p2

6
;

� � � � � � � � � � � � � � � � � � � � � � � �
V�
j; j ¼ v�j�1; j�1 � j� 1ð Þ�1; j� 2;

where υ is the Euler’s constant.
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Let X ¼ V�1 ¼ Vijð Þ; then

Vii ¼ i2 þ i� 1ð Þ2; i ¼ 1; 2; . . .; m� 1

Vij ¼ �min i2; j2
� �

; i 6¼ j; i� jj j ¼ 1

¼ 0; if i� jj j[ 1

Vmm ¼ m� 1ð Þ2þ1=:

10 V�1 ¼ ð0; 0; . . .; 1=V�
mmÞ0

a0 V�1 ¼ 1; 1; . . .; am=V�
mm � m� 1ð Þ� �

a0 V�11 ¼ am=V
�
mm;

a0 V�1a ¼ amð Þ2=V�
mm þm� 1

and

D ¼ m� 1ð Þ=V�
mm:

Substituting these values in the expression of l̂ and â, where

l̂ ¼ a0V�1ð10a� a10ÞV�1R=D

r̂ ¼ 10V�1ð1a0 � a10ÞR=D.

On simplification the results follow.

7.2.2 Best Linear Invariant Estimates (BLIE)

Suppose γ ≠ 0 but γ is known. Then the best linear invariant (best in the sense of
minimum mean squared error and invariant with respect to the location parameter
μ) estimators ~l and ~ro of μ and σo are respectively

~l ¼ l̂� c1r̂o
~r ¼ c2r̂o

where

c1 ¼ bmfð10V�1Þbm � 1g
C mþ 2cð Þ=C mþ cð Þ bm 10V�11ð Þ � 1f gf
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and

c2 ¼ D
Dþ bm 10V�11ð Þ :

Proof The BLIE ~l and ~ro of μ and σo are:

~l ¼ l̂� r̂o E12 1þ E22ð Þ�1
n o

;

and

~ro ¼ r̂o 1þ E22ð Þ�1;

where

ro ¼ E11 E12

E12 E22

� �

defines the covariance matrix of the MVLUEs of ~l and ~ro: The mean squares errors
(MSE) of ~l and ~ro are:

MSE ~lð Þ ¼ r2o E11 � E2
12 1þ E22ð Þ�1

n o
;

MSE ~roð Þ ¼ r2oE22 1þ E22ð Þ�1;

E ~l� lð Þ ~ro � rð Þ ¼ r2oE12 1þ E22ð Þ�1

Substituting the values of E11; E12 and E22; the results follow on simplification.
Suppose γ = 0. Then the BLIE ~l and ~r of μ and σ are:

~l ¼ l̂� t�mr̂=m
~r ¼ r̂ m� 1ð Þ=m

MSE ~lð Þ ¼ r2 V�
mm þ t�m

� �2
=m

h i

and

MSE ~rð Þ ¼ r2=m;

where l̂ and r̂ are the MVLUE of μ and σ when γ = 0.
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Proof We know

Var l̂ð Þ ¼ r2 t�m
� �2

m� 1ð Þ�1þV�
mm

n o
Var r̂ð Þ ¼ r2= m� 1ð Þ; and

Cov l̂; r̂ð Þ ¼ r̂t�m= m� 1ð Þ;

Since 1þ E22 ¼ m
m�1, on simplification, we get the results.

7.2.3 Maximum Likelihood Estimates (MLE)

Suppose γ ≠ 0. But γ is known. Then we can write the log likelihood function L
based on the record values x(1), x(2),…, x(m) are:

log L ¼
Xm�1

k¼1

f ðxðkÞÞ
FðxðkÞÞ þ ln f ðxðmÞÞ ð7:2:3:1Þ

Differentiating (7.2.3.1) with respect to μ and equating to zero, we obtain

ð�1þ c�1Þ
Xm
i¼1

cr�1ð1� cr�1ðxðiÞ � lÞÞ�1

þ cr�1lÞð1� cr�1ðxðmÞ � lÞÞ�1þc�1:3:2 ¼ 0

ð7:2:3:2Þ

Differentiating (7.2.3.1) with respect to σ and equating to zero, we obtain

� mr�1 þ ð�1þ c�1Þ
Xm
i¼1

cðxðiÞi � lÞr�2ð1þ cr�1ðxi � lÞÞ�1

� cr�2ðxðmÞ � lÞð1� cr�1ðxðmÞ � lÞÞ�1þc�1 ¼ 0:

ð7:2:3:3Þ

From (7.2.3.2) and (7.2.3.3), we obtain the maximum likelihood estimators
l_l and r

_

l of μ and σ assuming γ is known and not equal to zero.

Exercise 7.2.3.1 Show that if γ = 0, then the maximum likelihood estimates of
r and l are respectively

r̂�0 ¼ �x� xðmÞ

and

l̂�0 ¼ xðmÞ þ r̂�0 lnm
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7.3 Generalized Pareto Distribution

We will consider the generalized Pareto distribution with the following pdf f(x)

f xð Þ ¼ 1
r

1þ b
x� l
r

� �� �� 1þb�1ð Þ

x� l; for b[ 0;

l\ x\ l� r=b; for b\0;

¼ 1
r
e� x�lð Þr�1

; x� l for b ¼ 0; r[ 0

= 0, otherwise,

ð7:3:1Þ

7.3.1 Minimum Variance Linear Unbiased Estimator
of μ and σ When β Is Known

Theorem 7.3.1.1 The minimum variance linear unbiased estimators l̂ and r̂ of μ
and σ based on the observed upper record values X(1), X(2),…, X(m)

l̂ ¼Xð1Þ1 � ð1� bÞ�1r̂

r̂ ¼ð1� bÞðb� D�1ð1� 2bÞ3Xð1Þ þ D�1bð1� bÞ
Xm�1

i¼2

ð1� 2bÞiþ1XðiÞ

þ D�1ð1� bÞ2ð!� 2bÞmþ1XðmÞ

where

D ¼
Xm
I¼2

ð1� 2bÞiþ1 and b\1=2:

Proof We assume GP(μ, σ, β) with β ≠ 0 and with finite variance. Let R be the
m × 1 vector corresponding to X(i), i = 1, 2,…, m, then we can write

E Rð Þ ¼ lLþ rd

where

R0 ¼ X 1ð Þ;X 2ð Þ; . . .;X mð Þð Þ
L0 ¼ 1; 1; . . .; 1ð Þ; d0 = a1; a2;. . .; amð Þ
ai ¼ b�1ð1� bÞ�i;
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and

ai ¼ b�1 1� bð Þ�i; i ¼ 1; 2; . . .;m:

We can write
V(R) = σ2 V, V = (Vi,j), Vi,j = β−2 ai bj, 1 < i < j < m and Vi,j = Vj,i. The inverse

V−1 (=Vi,j) can be expressed as

Viþ1;i ¼ Vi;iþ1 ¼ � 1
aiþ1bi � aibiþ1

¼ �ð1� 2bÞiþ1ð1� bÞ; i ¼ 1; 2; . . .;m� 1;

Vi;i ¼ aiþ1bi�1 � ai�1biþ1

ðaibi�1 � ai�1biÞðaiþ1bi � aibiþ1Þ ; i ¼ 1; 2; . . .; n; Vi;j ¼ 0; for i� jj j[ 1;

where ao = 0 = bn+1 and bo = 1 = an+1.
On simplification, we obtain

Vi;i ¼ ð1� 2bÞi ð2� 4bþ 2b2Þ; i ¼ 1; 2; . . .; m� 1

and

Vm;m¼ð1� 2bÞmð1� bÞ:

The minimum variance linear unbiased estimators (MVLUE) l̂; r̂ of μ and σ are
respectively based on the upper record values are

l̂ ¼ �d0V�1ðLd0 � dL0ÞV�1R=D;

and

r̂ ¼ L0V�1ðLd0 � dL0ÞV�1R=D;

where

D ¼ L0 V�1L
� � ðd0V�1dÞ � ð L0 V�1dÞ2

On substituting the values for δ and V−1 and subsequent simplification, it can be
shown that

l̂ ¼ Xð1Þ � r̂ð1� bÞ�1 and

r̂ ¼ ð1� bÞðb� D�1ð1� 2bÞ3Xð1Þr1Þ þ D�1bð1� bÞ
Xm
i¼2

ð1� 2bÞiþ1XðiÞi
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where

D ¼
Xm
i¼2

ð1� 2bÞiþ1:

The corresponding variances and the covariance of the estimates are

Varðl̂Þ ¼ r2
T
D

Varðr̂Þ ¼ r2
bT � ð1� 2bÞ

D

Covðl̂; r̂Þ ¼ r2
fð1� 2bÞ2 þ b2Tg

D

and

T ¼
Xm
i¼2

ð1� 2bÞi:

Exercise 7.3.1.1 Find the MVLUE l̂ and r̂ of l and r based on n upper record
values X(1), X(2),…, X(n) of the Pareto Type II (Lomax) distribution with pdf f(x)
as

f ðxÞ ¼ m
r

1þ x� l
r

� ��ðmþ1Þ
; x[ l; r[ 0 and m[ 0;

7.3.2 Best Linear Invariant Estimators (BLIE)

Theorem 7.3.2.1 The best linear invariant (in the sense of minimum mean squared
error and invariance with respect to the location parameter μ) estimators ~l; ~r of μ
and σ are respectively

~l ¼ l̂� bT � ð1� 2bÞ
Tð1� bÞ2 r̂ and

~r ¼ D

Tð1� bÞ2 r̂; where

D ¼
Xm
i¼2

ð1� 2bÞiþ1; T ¼
Xm
i ¼ 1

ð1� 2bÞi

and l̂ and r̂ are MVLUE of μ and σ.
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Proof The BLIE ~l and ~r can be written as

l̂ ¼ l̂� E12

1þ E22
r̂

and

~r ¼ 1
1þ E22

r̂;

where

Varðl̂Þ Covðl̂; r̂Þ
Covðl̂; r̂Þ Varðr̂Þ

� �
¼ r2

E11 E12

E12 E22

� �
:

The mean squared errors of ~l and ~r are

MSEð~lÞ ¼ r2 E11 � E2
12

1þ E22

� �
;

MSEð~rÞ ¼ r2
E22

1þ E22

� �
:

Substituting the values of E11, E12 and E22 in terms of β, T and D, we get the
result.

7.3.3 Estimator of β for Known μ and σ

A Moment Estimator of β.
We have seen that for μ = 0 and σ = 1.
E(X(m)) = β−1 {(1 − β)−m − 1}. Thus

Eð�XÞ ¼ EfðXð1Þ þ Xð2Þ þ � � � þ XðmÞg=mg ¼ 1

mb2
fð1� bÞ�m � 1g � 1

b

¼ XðmÞ � m
mb

Thus we can take ~b as an estimator of β where

~b ¼ XðmÞ � m
Xð1Þ þ Xð2Þ þ � � � þ XðmÞ ; for Xð1Þ þ Xð2Þ þ � � � þ XðmÞ 6¼ 0
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7.4 Power Function Distribution

We will consider the following pdf f(x) of power function distribution

f x; a; b; cð Þ ¼ cb�c aþ b� xð Þc�1;

for a\x\aþ b; b[ 0; c[ 0;

¼ 0; otherwise:

ð7:4:1Þ

We will say a rv X 2 PF(α, β, γ) if its pdf is given by (7.4.1). This is a Pearson’s
Type I distribution. If γ = 1, then f(x, α, β, γ) as given by (7.4.1) coincides with the
uniform distribution in the interval (α, α + β). If we take Y = (α + β)γ, the Y has the
uniform distribution in (0, 1).

7.4.1 The Minimum Variance Linear Unbiased Estimate
of α and β When γ Is Known and c 6¼ 0

Suppose X(1), X(2),…, X(m) be the first m upper records from this distribution.
Let

Wk ¼ ckðXðkÞ � c
cþ 1

Xðkðk � 1ÞÞ; k ¼ 1; 2; . . .;m

with X(0) = 0, and ck ¼ cþ 1ð Þ cþ2
c

� �k=2
; k ¼ 1; 2; . . .;m:

Now

E W1ð Þ ¼ cþ 2
c

� �1=2

f cþ 1ð Þaþbg;

E Wkð Þ ¼ cþ 2
c

� �k=2

aþ bð Þ, k ¼ 2; 3; . . .;m:

Var Wkð Þ ¼ b2; k ¼ 1; 2; . . .;m

Cov WiWj
� � ¼ 0; i 6¼ j; 1� i; j�m:

Let W0 = W1;W2; . . .;Wnð Þ, then E Wð Þ ¼ Xh, where

X ¼

cþ 2=cð Þ1=2
� �

cþ1ð Þ
cþ 2ð Þ=cð Þ1=2

cþ 2ð Þ=c
:

cþ 2ð Þ=c
:

cþ 2=cð Þn=2
� �

cþ 2=cð Þn=2
� �

2
666664

3
777775; h ¼ a

b

� �
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We can write X′X as

X 0X ¼ cþ 2ð Þ2þT cþ 2þ T

cþ 2þ T T

 !

T ¼
Xm
k¼1

cþ 2
c

� �k

X 0X�1 ¼ D�1
o

T �ðcþ 2þ T

� cþ 2þ Tð Þ ðcþ 2Þ2 þ T

� �
Do ¼ cþ 2ð Þ cT � c� 2ð Þ

X 0W ¼ V1

V2

� �

V1 ¼ c cþ 2ð Þð Þ1=2W1 þ V2

V2 ¼
Xm
k¼1

cþ 2
c

� �k=2

Wk

Theorem 7.4.1.1 The minimum variance linear unbiased estimates of α and β
respectively based on Y1,…, Yn (assuming γ as known and γ ≠ 0 are)

â
b̂

� �
¼ ðX 0XÞ�1X 0W

On simplification, we get

â ¼ 1
Do

c cþ 2ð Þ1=2W1 �
Xn
k¼1

cþ 2ð Þ=cð Þk=2Wk

 !" #

b̂ ¼ 1
Do

� T þ cþ 2ð Þ c cþ 2ð Þð Þ�1=2W1 þ cþ 2ð Þ cþ 1ð Þ
Xn
k¼1

cþ 2ð Þ=cð Þk=2Wk

" #

The variances and covariance of are given by

Var âð Þ ¼ b2TD�1
o ;

Var b̂
� �

¼ b2 cþ 2ð Þ2þT
� �

D�1
o

and

Cov â; b̂
� �

¼ �b2 cþ 2þ Tð ÞD�1
o
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7.4.2 Minimum Variance Linear Invariance Estimators

Theorem 7.4.2.1 The best linear invariant (in the sense of minimum mean squared
error and invariance with respect to the location parameter α) estimators
~a and ~b of a and b are respectively

~a ¼ â� cþ 2þ T
cþ 1ð Þ cþ 1ð ÞT � cþ 2ð Þf g b̂

and ~b ¼ Do

cþ 1ð Þ cþ 1ð ÞT � cþ 2ð Þf g b̂

where

Do ¼ cþ 2ð Þ cT � cþ 2ð Þf g; T ¼
Xm
i¼1

cþ 2
c

� �i

and â and b̂ are MVLUEs of α and β.

Proof The BLIE ~a and ~b of a and b can be written as

~a ¼ â
E12

1þ E22
b̂

and

~b
1

1þ E22
b̂;

where

Var âð Þ Cov â; b̂
� �

Cov â; b̂
� �

Var b̂
� �

0
@

1
A ¼ c2

E11 E12

E12 E22

� �
:

The mean squared errors of ~a and ~b of a and b are

MSE ~að Þ ¼ c2 E11 � E2
12

1þ E22

� �
;

MSE ~b
� �

¼ c2
E22

1þ E22

� �
:

Substituting the values of E11, E12 and E22 in terms of γ, we get the results.
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7.4.3 Maximum Estimator of β for Known μ and σ

Without any loss of generality we will assume μ = 0 and σ = 1. The log likelihood
function can be written as

log L ¼ m log c�
Xm
i¼1

1
1� xðiÞ þ c logð1� xðmÞÞ

Differentiating with respect γ and equating to zero, we get c^ as the maximum
likelihood estimator of γ as

c
^ ¼ m

lnð1� xðmÞÞ�

A moment Estimator of γ.

Taking α = 0 and β = 1, we get E X ið Þð Þ ¼ c
kþ1

� �i
�1 and

EðX 1ð Þ þ X 2ð Þð ÞÞ þ � � � þ X mð Þ ¼ c
c

cþ 1

� �m

�1
� �

� m:

Thus we can a moment estimator based on the m record values X(1), X(2),.., X
(m) is

€k ¼ Xð1Þ þ � � � þ XðmÞ þ m
xðmÞ :

7.5 Rayleigh Distribution

Let {Xn, n > 1} be a sequence of i.i.d random variables from standard Rayleigh
distribution with pdf

f xð Þ ¼ x e�x2=2; x[ 0 ð7:5:1Þ

and d.f.

F xð Þ ¼ 1� e�x2=2; x[ 0: ð7:5:2Þ

We say X€ RH(0, 1) if the pdf of X is given by (7.5.1)
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Theorem 7.5.1 Let μn = E(XU(n)), Vn,n = Var(XU(n)) and Vm,n = Cov(XU(m) XU(n)),
then

ln ¼
ffiffiffi
2

p C nþ 1
2

� �
CðnÞ ;Vn;n ¼ 2 n� C nþ 1=2ð Þ2

CðnÞ

 !" #
and

Vm;n ¼ 2
Cðmþ1=2Þ

CðmÞ
� �

Cðnþ1Þ
C nþ 1=2ð Þ �

Cðnþ1=2Þ
C nð Þ

� �
; for 1�m� n:

Proof

ln ¼
1

CðnÞ
Z1
o

x �Inð1� F xð Þf gn�1f xð Þdx

¼ 1
CðnÞ

Z1
o

x
x2

2

� �n�1

e�x2=2xdx

¼ 1
CðnÞ

ffiffiffi
2

p Z1
o

u1=2un�1e�udu

¼
ffiffiffi
2

p Cðnþ 1=2Þ
CðnÞ :

Similarly it can be shown that

l2n ¼ E X2
UðnÞ

� �
¼ 2

Cðnþ 1Þ
CðnÞ ¼ 2n

lm;n¼
1

CðmÞCðn� mÞ
Z1
o

Zy
o

xy
x2

2

� �m�1

x
y2

2
� x2

2

� �n�m�1

y e�y2=2dxdy

¼ 1
CðmÞCðn� mÞ

1
2m�1

Z1
o

y
y2

2

� �n�m�1

y e�y2=2Iydy;

where

ly =
Zy
o

x2
� �m

1� x2

y2

� �n�m�1

dx

¼ 1
2
y2mþ!Bðmþ 1=2; n� mÞ;
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with

B a,bð Þ ¼ CðaÞCðbÞ
Cðaþ bÞ :

On simplification we get

Vn;n ¼ 2 n� Cðnþ1=2Þ
C nð Þ

� �2
" #

and

Vm;n ¼ 2
Cðmþ1=2Þ

CðmÞ
� �

Cðnþ1Þ
C nþ 1=2ð Þ �

Cðnþ1=2Þ
C nð Þ

� �
; for 1�m� n:

¼ Cðmþ1=2Þ
CðmÞ

� �
CðnÞ

Cðnþ 1=2Þ
� �

Vn;n

We will consider the estimation of μ and σ based on the m upper record values
X(1), X(2),…, X(m) of the two parameter Rayleigh distribution with the pdf

fðx; l;rÞ ¼ x� l
r

e
ðx�lÞ2
2r2 ; l\x\1; r[ 0

7.5.1 Minimum Variance Linear Unbiased Estimators of μ
and σ

Theorem 7.5.1 The minimum variance linear unbiased estimators l̂ and r̂ of μ and
σ based on the X(1), X(2),…, X(m) are

l̂ ¼
Xm
k¼1

ckX kð Þ; and r̂
Xm
k¼1

dkX kð Þ;

where

c1 ¼ 3
2
ambm
D

; ci ¼ 1
2i
ambm
D

; i ¼ 2; 3; . . .;m� 1;

cm ¼ 1� ambm
2D

3þ
Xm�1

i¼2

1
i

" #
; d1 ¼ � 3

2
bm
D

; di ¼ � 1
2i
bm
D

; i ¼ 2; 3; . . .;m� 1;

dm ¼ 1
2
bm
D

3þ
Xm�1

i¼2

1
i

( )
;
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where

D ¼ ambmT� 1; T ¼ 3
2
þ
Xm�1

i¼2

1
2i
þ 2m� 1ð Þ bm�1

bm
� 1

� �" #

ak ¼
ffiffiffi
2

p C k þ 1
2

� �
CðkÞ ¼ ak and bk ¼

ffiffiffi
2

p Cðk þ 1Þ
C k þ 1

2

� �C k þ 1
2

� �
CðkÞ

( )
;

k ¼ 1; 2; . . .;m:

Proof Let R be the m × 1 vector corresponding to X(k), ki = 1, 2,…, m, then we
have

E Rð Þ ¼ lLþ rd

where

R0 ¼ X 1ð Þ;X 2ð Þ; . . .;X mð Þð Þ
L0 ¼ 1; 1; . . .; 1ð Þ; d0 ¼ ða1; a2; . . .; amÞ

ai ¼
ffiffiffi
2

p Cðiþ 1=2Þ
CðiÞ ; i ¼ 1; 2; . . .;m:

We can write

V Rð Þ ¼ r2V; V ¼ ðVi;jÞ; Vi;j ¼ ai bj; 1� i� j�mandVi;j ¼ Vj;i:

The inverse V−1 (=Vi,j) can be expressed as

Viþ1;i ¼ Vi;iþ1 ¼ � 1
aiþ1bi � aibiþ1

¼ � 2iþ 1ð Þ; i = 1; 2; . . .;m� 1;

Vi; i ¼ � aiþ1bi�1 � ai�1biþ1

aibi�1 � ai�1bið Þ aiþ1bi � aibiþ1ð Þ ; i = 1; 2; . . .; n;

Vi;j ¼ 0; for i� jj j[ 1;

where ao = 0 = bn+1 and bo = 1 = an+1.
On simplification, we obtain

Vi;i ¼ 8i2 þ 1
2i

; i ¼ 1; 2; . . .;m� 1;

and
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Vm;m ¼ 2m� 1ð Þ bm�1

bm
:

The minimum variance linear unbiased estimates (MVLUE) l̂; r̂ of μ and σ
respectively are

l̂ ¼ �d0V�1 Ld0 � dL0ð ÞV�1X=D

r̂ ¼ �L0V�1 Ld0 � dL0ð ÞV�1X=D;

where

D ¼ L0V�1L
� �

d0V�1d
� �� L0V�1d

� �2
and

Var l̂ð Þ ¼ r2L0V�1d=D;

Var r̂ð Þ ¼ r2L0V�1L=D

Cov l̂; r̂ð Þ ¼ �r2L0V�1d=D:

On simplification, we obtain the MVLUE l̂; r̂ of μ and σ. The corresponding
variances and the covariance of the estimates are

Var l̂ð Þ ¼ r2
anbn
D

Var r̂ð Þ ¼ r2
b2nT
D

Cov l̂; r̂ð Þ ¼ �r2
bn
D
:

ð7:5:1:1Þ

7.5.2 Best Linear Invariant Estimators (BLIEs) of μ and σ

Theorem 7.5.2.1 The best linear invariant (in the sense of minimum mean squared
error and invariance with respect to the location parameter μ) estimators (BLIEs)
l̂ ~r of μ and σ are

~l ¼ ~l� r̂
E12

1þ E22

� �

and
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~r ¼ r̂= 1þ E22ð Þ;

where l̂ and r̂ are MVLUEs of l and r and

Var l̂ð Þ Cov l̂; r̂ð Þ
Cov l̂; r̂ð Þ Var r̂ð Þ

� �
¼ r2

E11 E12

E12 E22

� �
:

The mean squared errors of these estimators are

MSE ~lð Þ ¼ r2 E11 � E2
12ð!1þ E22Þ�1

� �

and

MSE ~rð Þ ¼ r2E22 1þ E22ð Þ�1:

Using the values of E11, E12 and E22 from (7.3.4), we obtain

~l ¼ l̂þ r̂
bm

Dþ b2mT

� �

and

~r ¼ r̂
D

Dþ b2mT
:

Exercise 7.5.2.1 Show that if μ = 0, then MVLUE of σ based on upper records X
(1), X(2),…, X(m) is

r̂ ¼ cX mð Þ

where

c ¼ r
EðXðmÞÞ ¼

1ffiffiffi
2

p CðmÞ
C mþ 1

c

� �
Exercise 7.5.2.2 Show that the minimum variance linear unbiased predictor X̂ðsÞ
of X(s) of X(s) based on X(1), X(2),…, X(m), s > m X̂ðsÞ ¼ l̂þ asr̂
where l̂ and r are the MVLUEs of l and r, Respectively.
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7.6 Uniform Distribution

7.6.1 Two Parameter Uniform Distribution

Let {Xn, n > 1} be a sequence of i.i.d. random variables from a uniform distribution
with the following pdf

f xð Þ ¼ 1
h1 � h2

; h1\x\h2 ð7:6:1:1Þ

and d.f.

F xð Þ ¼ x� h1
h2 � h1

; h1\x\h2: ð7:6:1:2Þ

We will say X2 U(θ1, θ2) if the pdf of X is as given in (7.6.1.1).
The pdf fn(x) of X(n) can be written as

fn xð Þ ¼ 1
CðnÞ

1
h2 þ h1

In
h2 � h1
h2 � x

� �n�1

; h1\x\h2 ð7:6:1:3Þ

E X mð Þð Þ ¼ 2�nh1 þ 1� 2�nð Þh2
Varð X mð Þð Þ ¼ 3�n � 4�nð Þðh2 � h1Þ2:

ð7:6:1:4Þ

The joint pdf of X(m) and X(n) is

fm;n x; yð Þ ¼ 1
CðmÞ

1
Cðn� mÞ

1
h2 � h1

1
h2 � x

In
h2 � h1
h2 � x

� �m�1

In
h2 � h1
h2 � y

� �n�m�1

;

for h1\x\y\h2

ð7:6:1:5Þ

We have t

E X nð Þ X mð Þ ¼ ymk Þð ¼ 2m�nym þ ð1� 2m�nÞh2
and

Cov X mð ÞX nð Þð Þ ¼ 2m�nVar XU mð Þ
� �

:

ð7:6:1:6Þ
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7.6.2 Minimum Variance Linear Unbiased Estimate of θ1
and θ2

We will consider here the estimation of θ1 and θ2 based on m upper record values X
(1), X(2),.., X(m).

Consider the following transformation

W1 ¼ XUð1Þ

Wi ¼ 3ð Þði�1Þ=2 XU ið Þ � 1
2
XU i�1ð Þ

� �
; i ¼ 2; 3; . . .;m

ð7:6:2:1Þ

It can easily be verified that

E W1ð Þ ¼ h1 þ h2
2

;

Wk ¼ h2
2
; k ¼ 2; 3; . . .;m:

Var Wið Þ ¼ r2

12
; i ¼ 1; 2; . . .;m

ð7:6:2:2Þ

and

Cov Wi;Wj
� � ¼ 0; i 6¼ j:

Let W′ = (W1, W2,…., Wm), then E(W) = Η θ, where

H =

1
2

1
2

0

1
2i

3ð Þ12

� � �
0 1

2n 3ð Þ n�1ð Þ=2

2
66666664

3
77777775
; h ¼ h1

h2

" #
:

We have

H0Hð Þ�1¼ 32
3ð3m�1 � !Þ

3m�1
8 � 1

4� 1
4

1
4

� �

Thus, expressing W’s in terms of the X(1), X(2),.., X(m) we obtain

ĥ1 ¼ 2Xð1Þ � ĥ2
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and

ĥ1 ¼ 4
3ð3m�1 � 1Þ ð3

m�1XðmÞ � 3m�2

2
xðm� 1Þ � � � � � 3

2
Xð2Þ � 3

2
Xð1ÞÞ:

The variances covariance of these estimates are

Var ĥ
� �

¼ 1
9

3m � 1
3m�1 � 1

h2 � h1ð Þ2;

Var ĥ2
� �

¼ 2
9

1
3n�1 � 1

h2 � h1ð Þ2

and

Cov ĥ2 � ĥ1
� �

¼ 2
9

1
3m�1 � 1

h2 � h1ð Þ2:

The generalized variance R̂ R̂ ¼ varh1 � varh2 � cov h1h2ð Þð Þ2
� �

is

2
27

� 1
3n�1 � 1

h2 � h1ð Þ2:

Exercise 7.6.2.1 Suppose X(1), X(2),…, X(m) are m upper record values from a
one parameter uniform distribution with pdf fU(u) as fUðuÞ ¼ 1

h ; 0\x\h; h[ 0:

Then the MVLUE ĥ of θ is

ĥ ¼ 2
3n � 1

ð2:3n�1XðnÞ � 3n�2Xðn� 1Þ � 3n�3Xðn� 2Þ � � � � � Xð1ÞÞ

Proof Let X″ = (X(1), X(2),…, X(m)); We have E(X′) = δθ and

Var Xð Þ ¼ h2V : Vþ ðVijÞ

where d0 ¼ ðd1; d2; . . .; dmÞ; di ¼ 1� 1
2i ; i ¼ 1; 2; . . .m

Vii ¼ 1
3i
� 1
4i
; i ¼ 1; 2; . . .;m and

Let V ¼ Vij
� �

;, then,

Vii ¼ 1
3i
� 1
4i
; i ¼ 1; 2; . . .;m

Vij ¼ 2i�j 1
3i
� 1
4

� �
; i\ j\m:
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Let V−1 − (Vij), then Vii = 73i, i = 1, 2,.., m − 1.

Vmm = 4.3 m, Vii+1 = − 2, 3i+1 = Vi+1i, and Vij = 0 for |i − j|.
The MVLUE r̂ of r is

r̂ ¼ d0V�1X
d0V�1d

¼ 2
3m � 1

ð2:3m�1XðmÞ � 3m�2Xðm� 1Þ; . . .��Xð1ÞÞ

Varðr̂Þ ¼ 2r2

3ð3n � 1Þ :

7.6.3 One Parameter Uniform Distribution

Suppose γ = 1 and α = 0, i.e. when X is distributed uniformly in the interval (0, β),
We have in this case the pdf fn(x) of X(n) as

fn xð Þ ¼ 1
C nð Þ In

b
x

� �n�1

; 0\x\b: ð7:6:3:1Þ

Using (7.6.3.1), we obtain

E X nð Þð Þ ¼ 1� 2�nð Þb:
Var X nð Þð Þ ¼ 3�n � 4�nð Þb2

The joint pdf of X(m) and X(n), n > m is

fm;n x; yð Þ ¼ 1
C mð Þ

1
C n� mð Þ

1
b

1
b� x

ln
b

b� x

� �m�1

ln
b

b� y

� �n�m�1

;

n[m[ 0; 0\x\y\b:

ð7:6:3:2Þ

It follows from (7.6.6) that

E X nð ÞjX mð Þ ¼ xmð Þ ¼ 2m�nxm þ 1� 2m�nð Þb.

and

Cov X nð ÞX mð Þð Þ ¼ 2m�nVar X mð Þð Þ; m\n; 1�m� n

The correlation coefficient ρm,n of X(m) and X(n) − s
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qm;n ¼
4
3

� �m

�1
� �1

2 4
3

� �n

�1
� �1

2

; m\n

7.6.3.1 Minimum Variance Unbiased Estimator of β

We will consider here n upper records X(1), X(2),…, X(n).
Using the following transformation

W1 ¼ X 1ð Þ
Wi ¼ 3

i�1
2 ðX ið Þ � 1

2
X�i� 1ÞÞ; i ¼ 2; . . .; n

We have

E Wið Þ ¼ 1=2ð Þ 3ð Þ i�1ð Þ=2b

Var Wið Þ ¼ b2

12
;

Cov Wi;Wj
� � ¼ 0; i 6¼ j, i; j ¼ 1; 2; . . .; n:

Let

X0 ¼ 1
2
;
1
2

3ð Þ1=2; 1
2

3ð Þ; . . .; 1
2

3ð Þn�1
� �

and

W0 ¼ W1;W2; . . .;Wnð Þ;

then minimum variance linear unbiased estimator b̂ of β based on the first n record
values is

b̂ ¼ X0Xð Þ�1X0W

¼ 4
3n � 1

Xn
i¼1

ð3Þ i�1ð Þ=2Wi

 !

¼ 4
3n � 1

3n�1X nð Þ � 3n�2

2
X n� 1ð Þ � 3n�3

2
X n� 2ð Þ � � � � � 1

2
X 1ð Þ

� �

Since X0X ¼ 3n�1
8 andVar Wið Þ ¼ b2

12 ; we have
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Var b̂
� �

¼ X 0Xð Þ�1 b
2

12

¼ 2b2

3 3n � 1ð Þ

7.6.3.2 Minimum Mean Square Estimate of β

If we drop the condition of unbiasedness, then the estimator ~b, where

~b ¼ 3ð3nÞ � 1
3nþ1 � 1

b̂

has minimum mean squared error.

Bias of ~b ¼ Eð~bÞ � b ¼ � 2
3nþ1 � 1

b

and

MSEðb̂Þ ¼ 2b2

3nþ1 � 1

Exercise 7.6.3.1 Find the maximum likelihood estimate of β.

7.6.3.3 Prediction of Record Values

Writing

Ynþs ¼ Ynþs
1
2
Ynþs�1 þ 1

2
Ynþs�1

1
2
Ynþs�2

� �
þ � � � þ 1

2
Ynþs�2 Y2 � 1

2
Y1

� �

þ 1
2nþs�1 Y1;

it can be shown that

Cov Ynþs;Wið Þ ¼; i ¼ 1; 2; . . .; n:
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It can be shown that the best linear unbiased predictor (BLUP) of Yn+s is Ŷnþs,
where

Ŷnþs ¼ 1� 1
2nþs

� �
b̂þ c0V�1ðW � Xb̂ÞÞ;

where

c0 ¼ ðc1; c2; . . .; cnÞ;V�1 ¼ X0Xð Þ�1 and ciVar Wið Þ ¼ Cov Ynþs;Wið Þ; s� 1:

Thus

Ŷnþs ¼ 1� 1
2nþs

� �
b̂þ 8

3n � 1

Xn
i¼1

1
2nþs�i

� W
3 i�1ð Þ=2 �

b̂
2s

1� 1
2n

� �" #

The best linear (unrestricted) least square predictor of Yn+s is ~Ynþs, where

Y
$

rþs ¼ EðYnþs Y1; Y2; . . .; Ynj Þ

¼ Yn
2s

þ 1þ 1
2s

� �
b;

Substituting b̂ for β, we get the best linear least squares predictor as

Yn
2s

þ 1� 1
2s

� �
� 4
3n � 1

3n�1yn � 1
2

3ð Þn�2yn�1 � � � � � 1
2
y1

� �
:

7.7 Weibull Distribution

Let {Xn, n > 1} be a sequence of i.i.d random variables from standard Weibull
distribution with pdf

f xð Þ ¼ xc�1e�xc=c; x[ 0; c[ 0; ð7:7:1Þ

and d.f.

F xð Þ ¼ 1� e
1
cx

c

; x[ 0; c[ 0; ð7:7:2Þ

Let μn = E(X(n), Vn, n = Var(X(n)) and Vmn = Cov(X(m)X(n)), m < n, then
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ln ¼ c
1
c

C nþ 1
c

� �
CðnÞ ; Vn;n ¼¼ c

2
c

C nþ 2
c

� �
CðnÞ �

C nþ 1
c

� �
CðnÞ

0
@

1
A

2
8><
>:

9>=
>;:

and

Vm;n ¼
C mþ 1

c

� �
CðmÞ � c2=c

C nþ 2
c

� �
Cðnþ 1

cÞ
�
C nþ 1

c

� �
CðnÞ

8<
:

9=
;; for 1\m\ n:

We will consider the following pdf f(x, μ, σ), for Weibull distribution,

f ðx; l; rÞ ¼ ðx� lÞc�1

rc
e�

1
c

x�l
rð Þc �1\l\x\1; r[ 0:;

7.7.1 Minimum Variance Linear Unbiased Estimators
of μ and σ

Theorem 7.7.1 The minimum variance linear unbiased estimators l̂ and r̂ of μ and
σ based on the record values X(1), X(2),.., X(n) are

l̂ ¼
Xm
k¼1

ckXðkÞ; and r̂ ¼
Xm
k¼1

dkXðkÞ;
where

c1 ¼ ambm
D

cþ 1ð Þc2=c
C 1þ 1

c

� � ; ci ¼ ambm
D

c�2=c c� !ð Þ C ið Þ
C iþ 2

c

� � ; i ¼ 2; 3; . . .;m� 1;

cm ¼ 1� ambm
D

c�2=c cþ 1

C 1þ 2
c

� �þ ðc� 1Þ
Xm�1

i¼2

C ið Þ
C iþ 2

c

� �
2
4

3
5;

d1 ¼ � bmðcþ 1Þc�2=c

D
;

di ¼ � bm
D

ðc� 1Þc�2=c;
C ið Þ

C iþ 2
c

� � ; i ¼ 2; 3; . . .;m� 1;

dm ¼ bm
D

c�2=c cþ 1

C 1þ 2
c

� �þ c� 1ð Þ
Xm�1

i¼2

C ið Þ
C iþ 2

c

� �
2
4

3
5;
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where

D ¼ ambmT� 1;

T ¼ c�2=c cþ 1

C 1þ 2
c

� �þ c� 1ð Þ
Xm�1

i¼2

C ið Þ
C iþ 2

c

� �þ C mð Þ
C mþ 2

c

� � mc� cþ 1ð Þ mc� cþ 2ð Þ bm�1

bm
� 1

� �2
4

3
5

am ¼ c1=c
C mþ 1

c

� �
C mð Þ and bm ¼ c1=c

C nþ 2
c

� �
C nþ 2

c

� �� C nþ 1
c

� �
C nð Þ

8<
:

9=
;:

We can write

V Rð Þ ¼ r2V; V ¼ ðVi;jÞ; Vi;j ¼ ai bj; 1� i� j�mandVi;j ¼ Vj;i:

The inverse V−1 (= Vi,j) can be expressed as

Viþ1;i ¼ Vi;iþ1 ¼ � 1
aiþ1bi � aibiþ1

¼ �c�2=cic icþ 1ð Þ C ið Þ
C iþ 2

c

� � ; i = 1,2,. . .;m� 1;

Vi;i ¼ aiþ1bi�1 � ai�1biþ1

aibi�1 � ai�1bið Þ aiþ1bi � aibi�1ð Þ ; i ¼ 1; 2; . . .; n, Vi;j¼0; for i� jj j[ 1;

where ao ¼ 0 ¼ bnþ1 and bo ¼ 1 ¼ anþ1:
On simplification, we obtain

Vi;i ¼ c�2=c C ið Þ
C iþ 2

c

� � c2 2i2 � 2iþ 1
� �þ c 4i� 2ð Þ þ 1

� �
; i = 1,2,. . .;m� 1

Vm;m ¼ c�2=c C nð Þ
C iþ 2

c

� � bn�1

bn
½ nc� cþ 1ð Þ nc� cþ 2ð Þ�:

The minimum variance linear unbiased estimates (MVLUE) l̂; r̂ of μ and σ
respectively are

l̂ ¼ �d0V�1 Ld0 � dL0ð ÞV�1X=D

r̂ ¼ �L0V�1 Ld0 � dL0ð ÞV�1X=D;
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where

D ¼ L0V�1L
� �

d0V�1d
� �� L0V�1d

� �2
,

X0 ¼ X 1ð Þ;X 2ð Þ; . . .X nð Þð Þ:

and

Var l̂ð Þ ¼ r2L0V�1d=D

Var r̂ð Þ ¼ r2L0V�1L=D

Cov l̂; r̂ð Þ ¼ �r2L0V�1d=D:

On simplification, we obtain the MVLUEs l̂; r̂ of μ and σ. The corresponding
variances and the covariance of the estimates are

Var l̂ð Þ ¼ r2
anbn
D

Var r̂ð Þ ¼ r2
b2nT
D

Cov l̂; r̂ð Þ ¼ �r2
bn
D

ð7:7:4Þ

Best Linear Invariant Estimators (BLIEs) of μ and σ.

Theorem 7.7.2 The best linear invariant (in the sense of minimum mean squared
error and invariance with respect to the location parameter μ) estimators (BLIEs)
~l ~r of μ and σ are

~l ¼ l̂� r̂
E12

1þ E22

� �

and

~r ¼ r̂= 1þ E22ð Þ;

where l̂ and r̂ are MVLUEs of l and r and

Varðl̂Þ Covðl̂; r̂Þ
Covðl̂; r̂Þ Varðr̂Þ

� �
¼ r2

E11 E12

E12 E22

� �

The mean squared errors of these estimators are

MSEð~lÞ ¼ r2 E11 � E2
12ð1þ E22Þ�1

� �
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and

MSEð~rÞ ¼ r2 E22ð1þ E22Þ�1
� �

:

Using the values of E11, E12 and E22 from (7.7.4), we obtain

~l ¼ l̂þr̂
bm

Dþ b2mT

� �

and

~r ¼ r̂
D

Dþ b2mT

� �
:

Exercise 7.7.2.1 Show that if l ¼ 0; then MVLUE estimator σ based on the record
values X(1), X(2),…, X(m) for known ν is

�r ¼ c0XðmÞ;

7.8 Exercises (solutions)

Exercise 7.1.1.1 (hint) X(m) is the sufficient statistics and E(X(m) ¼ mr:

Exercise 7.1.3.1 (solution) The log likelihood function logL is

ln L ¼ m ln r� xðmÞ
r

:

Thus r�ml ¼ x(m)
m :

Exercise 7.2.3.1 (hint)

log nL ¼ �m log r�
Xm
i¼1

xðiÞ � l
r

� expð�r�1ðxðmÞ � lÞ

The solutions of the equations as given in (7.2.3.4) will give theMLE of μ and σ as

r̂�0 ¼ �x� xðmÞ
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and

l̂�0 ¼ xðmÞ þ r̂�0 lnm

where

�x ¼ ðxð1Þ þ xð2Þ þ � � � þ xðmÞÞ=m
Exercise 7.3.1.1 (solution) We have

E(x(1)) ¼ l� rþ r
v

v� 1

� �n
; n[ 1;

Var(x(1)) ¼ r2
v

v� 2

� �n
� v

v� 2

� �2n� �
; n[ 2

From the joint pdf of XU(m) and XU(n), it can be derived that the

Cov(XUðmÞ;XUðnÞÞ ¼ v
v� 1

� �n�m
VarðXUðmÞÞ:

Let Vij =Cov(X(i)X(j)), V = (VijÞandX ¼ Vð Þ�1¼ ðVi;jÞ; i,j = 1,2,. . .; n, then

Vi;i ¼ ð2v2 � 4vþ 1Þci; i ¼ 1; 2; ..., n� 1

Viþ1;i ¼ �ðv2 � 3vþ 2Þci ¼ Vi;iþ1 ; i = 1; 2; . . .; n� 1

Vn;n ¼ ðv2 � 2vþ 1Þcn
Vi;j ¼ 0; i� jj j[ 1

and c ¼ v
v� 2

:

Using Lloyd’s (1952) method we obtain the minimum variance linear unbiased
estimator (MVLUE), as

l̂ ¼
Xn
j¼1

pjXðiÞ

and

r̂ ¼
Xn
j¼1

qj XðiÞ;
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where

p1 ¼ ðvðv� 1ÞT1 � ðv� 2ÞÞ=ðvðvT1 � vþ 2ÞÞ
pj ¼ �ðv� 2

v
Þj=ðvT1 � vþ 2Þ; j ¼ 2; . . .; n� 1

pn ¼ ðv� 1ÞT1 � ðv� 1Þ2ðv� 2Þ
v

( ),
ðvT1 � vþ 2Þ

q1 ¼ p1
ðv� 2Þ2

vT1 � vþ 2
qj ¼ ðv� 1Þpj; j ¼ 2; . . .; n

and

T1 ¼
Xn
j¼1

v� 2
v

� �j

:

Further we have

Varðl̂Þ ¼ r2
T1
T2

Varðr̂Þ ¼ r2
T1 þ ðv� 2Þ2

T2

Covðl̂; r̂Þ ¼ �r2
T1 þ vþ 2

T2

where

T2¼ ðm� 2ÞðmT1 � mþ2Þ
Exercise 7.5.2.1 (hint) If if l ¼ 0; then X(m) is the sufficient statistics for σ and

EðXðmÞÞ ¼
ffiffiffi
2

p
C mþ 1

c

� �
CðmÞ

Exercise 7.6.1.1 (solution) If if l ¼ 0; X(m) is the sufficient statistics for σ and

EðXðmÞÞ ¼
ffiffiffi
2

p
Cðmþ 1

cÞ
CðmÞ
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Exercise 7.6.4.1 (solution) The log likelihood function logL is

log L ¼ log b�
XN
i¼1

logðb� XðiÞÞ

Thus the maximum likelihood estimate b̂ml of b is

b̂ml ¼ XðnÞ
Eðb̂mlÞ ¼ ð1� 2�nÞb

and

Varðb̂mlÞ ¼
1
3n

� 1
4n

� �
b2

Exercise 7.7.1.1 Solution (hint) X(m) is a sufficient statistic for σ, and

EðXðmÞÞ ¼ C mþ1
cð Þ

CðmÞ =Hence c0 ¼ CðmÞ
C mþ1

cð Þ
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Chapter 8
Characterizations of Distributions

8.1 Characterizations Using Conditional Expectations

Suppose {Xi, i = 1, 2,… } be a sequence of independent and identically distributed
random variables with d.f. F(x) and pdf f(x). We assume E(Xi) exists. Let X(n),
n ≥ 1 be the corresponding upper records. We have the following theorem for the
determine F(x) based on the conditional expectation.

Theorem 8.1.1 The condition

EðwðXðk þ sÞjXðkÞ ¼ zÞ ¼ gðzÞ

where k, s ≥ 1 and ψ(x) is a continuous function, determines the distribution F(x)
uniquely

Proof

EðwðXðk þ sÞjXðkÞ ¼ zÞ ¼
Z1

z

wðxÞðRðxÞ � RðzÞÞs�1

FðzÞ f ðxÞdx ð8:1:1Þ

where R(x) ¼ � ln �FðxÞ.

Case s = 1
Using the Eq. (8.1.1), we obtain

Z1

z

wðxÞf ðxÞdx ¼ gðzÞFðzÞ ð8:1:2Þ

© Atlantis Press and the author(s) 2015
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Differentiating both sides of (8.1.2) with respect to z and simplifying, we obtain

rðzÞ ¼ f ðzÞ
FðzÞ ¼

g0(z)
gðzÞ � wðzÞ ð8:1:3Þ

where r(z) is the failure rate of the function. Hence the result.
If w xð Þ ¼ x and g xð Þ ¼ axþ b; a; b� 0; then

rðxÞ ¼ a
ða� 1Þxþ b

ð8:1:4Þ

If a ≠ 1, then FðxÞ � 1� ðða� 1Þxþ bÞ� a
a�1, which is the power function dis-

tribution for a < 1 and the Pareto distribution with >1. For a = 1, (8.1.4) will give
exponential distribution. Nagaraja (1977) gave the following characterization
theorem.

Theorem 8.1.2 Let F be a continuous cumulative distribution function. If, for some
constants a and b, EðX nð ÞjX n� 1ð Þ ¼ xÞ ¼ axþ b; then except for a change of
location and scale,

(i) F(x) = 1−(–x)θ, x < 0, if 0 < a < 1
(ii) F(x) = 1–e–x, x ≥ 0, if a = 1
(iii) F(x) = 1–xθ, x > 1 if a > 1,
where θ = a/(1–a). Here a > 0.

Proof of Theorem 8.1.1 for s = 2
In this case, we obtain

Zz

z

wðxÞðRðxÞ � RðzÞf ðxÞdx ¼ gðzÞFðzÞ ð8:1:5Þ

Differentiating both sides of the equation with respect to z, e obtain

�
Z1

z

wðxÞf ðzÞdx ¼ g0ðzÞ ðFðzÞÞ
2

f ðzÞ � gðzÞFðzÞ ð8:1:6Þ

Differentiating both sides of (8.1.6) with respect to z and using the relation
f 0ðzÞ
f ðzÞ ¼ r0ðzÞ

rðzÞ � rðzÞ we obtain on simplification

g0ðzÞ r
0ðzÞ
rðzÞ þ 2g0ðzÞrðzÞ ¼ g00ðzÞ þ ðrðzÞÞ2ðgðzÞ � wðzÞÞ ð8:1:7Þ

Thus r′(z) is expressed in terms of r(z) and known functions. The solution of r(x)
is unique (for details see Gupta and Ahsanullah (2004a)).
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Putting w xð Þ ¼ x and g xð Þ ¼ axþ b, we obtain from (8.1.7)

a
r0ðzÞ
rðzÞ þ 2arðzÞ ¼ ðrðzÞÞ2ðða� 1Þaþ bÞ ð8:1:8Þ

The solution of (8.1.8) is

r(xÞ ¼ aþ ffiffiffi
a

p
ða� 1Þxþ b

:

Thus X will have (i) exponentially distributed if a = 1, (ii) power function
distribution if a < 1 and (iii) Pareto distribution if a > 1.

Ahsanullah and Wesolowski (1998) extended the result Theorem 8.1.2 for non
adjacent record values. Their result is given in the following theorem.

Theorem 8.1.3

If E ðXðnþ 2ÞjXðnÞ ¼ aXðnÞ þ b:u[ 1:

where the constants a and b, then if:

(a) a = 1 then Xi has the exponential distribution,
(b) <1 , then XI has the power function distribution
(c) a > 1 XI has the Pareto distribution

Proof of Theorem 8.1.1 for s > 2 In this case, the problem becomes more com-
plicated because of the nature of the resulting differential equation Lopez-Blazquez
and Moreno-Rebollo (1997) also gave characterizations of distributions by using
the following linear property

EðXðkÞjXðk þ sÞ ¼ zÞ ¼ azþ b; 1� k\s� n;

Raqab (2002) and Wu (2004) considered this problem for non-adjacent record
values under some stringent smoothness assumptions on the distribution function
F(.). Dembinska and Wesolowski (2000) characterized the distribution by means of
the relation

EðXðsþ kÞj XðkÞ ¼ zÞj ¼ azþ b; for 1\k\s\n:

They used a result of Rao and Shanbhag (1994) which deals with the solution of
extended version of integrated Cauchy functional equation. It can be pointed out
earlier that Rao and Shanbhag’s result is applicable only when the conditional
expectation is a linear function.

Bairamov et al. (2005) gave the following characterization.

Theorem 8.1.4 Let X be an absolutely continuous random variable with d.f. F(x)
with F(0) = 0 and F(x) > 0 for all x > 0 and pdf f(x), then
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(a) for 1 ≤ k ≤ n – 1,

EððXðnÞjXðn� kÞ ¼ xÞ;Xðnþ 1Þ ¼ yÞ ¼ uþ kv
k þ 1

; 0\ u\ v\1
If and only if

FðxÞ ¼ 1� ekx; x � 0; k[ 0;

(b) for 2 ≤k ≤ n–1,

EððXðnÞjXðn� k þ 1Þ ¼ xÞ;Xðnþ 2Þ ¼ yÞ
¼ 2uþ ðk � 1Þv

k þ 1
; 0\ u\ v\1

If and only if
F(x) = 1 – e=λx, x ≥ 0, λ > 0, Yanev et al. (2007) extended these results for

general cases of nonadjacent record values. Under the conditions of Theorem
8.1.4, Akhundov and Nevzorov (2008) proved that

E
Xð2Þ Xð3Þ þ � � � þ XðnÞ

n� 1
jXð1Þ ¼ u;Xðnþ 1Þ ¼ v

� �
¼ uþ v

2

characterizes the exponential distribution under mild condition on F(x).

Exercise 8.1.1 Let X be an absolutely continuous random variable with d.f. F(x)
with F(0) = 0 and F(x) > 0 for all x > 0 and pdf f(x) Suppose h(x) is a monotonic and

differentiable function with respect to x. We assume that lim!0
FðxÞ
x ¼ k; k[ 0 and

lim!0 hðxÞFðxÞ ¼ 0. Then for two values o r, s−1th. Then, for two values of r and
s, 1 ≤ r < s − 1 < n, ðhðXðsÞ � hðXðrÞÞjXðrÞÞ ¼ xÞ ¼ s�r

k if and I If and only if

FðxÞ ¼ 1� e�kx; x� 0; k[ 0:

8.2 Characterization by Independence Property
of Record Statistics

Tata (1969) presented a characterization of the exponential distribution by the
independence of the random variables X(2) and X(2) − X(1) given in the following
theorem.

Theorem 8.2.1 Let {Xn, n ≥ 1} be an i.i.d. sequence of non-negative continuous
random variables with d.f. F(x) and pdf f(x). We assume F(0) = 0 and F(x) > 0 for
all x > 0. Then for Xn to have the d.f., F(x) = 1 – e–x/σ, x ≥ 0, σ > 0, it is necessary
and sufficient that X(2) − X(1) and X(1) are independent.
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Proof The necessary condition is easy to establish, We give here the proof of the
sufficiency condition. The property of the independence of X(2) − X(1) and X(1)
will lead to the functional equation

Fð0ÞFðxþ yÞ ¼ FðxÞFðyÞ; 0\ x; y\1: ð8:2:1Þ

The continuous solution of this functional equation with the boundary condition
F(0) = 0, is

FðxÞ ¼ e�xr�1
; x [ 0;r[ 0:

The following generalization theorem was given by Ahsanullah (1079)

Theorem 8.2.2 Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables with
common distribution function F which is absolutely continuous with pdf f. Assume
that F(0) = 0 and F(x) > 0 for all x > 0. Then Xn to have the d.f., F(x) = 1 − e–x/σ,
x ≥ 0, σ > 0, it is necessary and sufficient that X(n) − X(n−1) and X(n−1) are
independent.

Proof It is easy to establish that if Xn has the d.f., F(x) = 1 – e–x/σ, x ≥ 0, σ > 0, then
X(n) – X(n–10) and X(n–1) are independent. Suppose that X(n + 1) − X(n) and X
(n), n ≥ 1, are independent. Now the joint pdf f(z, u) of Z = X(n−1)(−X(n) and
U = X(n)1 can be written as

f z; uð Þ ¼ ½RðuÞ�n�1

CðnÞ rðuÞf ðuþ zÞ; 0\u; z\;1:

¼ 0; otherwise:

ð8:2:2Þ

But the pdf fn (u) of X(n) can be written as

Fn�1 uð Þ ¼ ½RðuÞ�n�1

CðnÞ f ðuÞ;0\u\1;

¼ 0; otherwise:

ð8:2:3Þ

Since Z and U are independent, we get from (8.2.2) and (8.2.3)

f ðuþ zÞ
FðuÞ ¼ gðzÞ; ð8:2:4Þ

where g(z) is the pdf of u. Integrating (8.3.4) with respect z from 0 to z1, we obtain
on simplification

FðuÞ � Fðuþ z1Þ ¼ FðuÞGðz1Þ: ð8:2:5Þ

Since Gðz1Þ ¼
R z1
0 gðzÞdz. Now u ! 0þ and using the boundary condition

Fð0Þ ¼ 1, we see that G(z1) = F(z1). Hence we get from (8.2.5)
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Fðuþ z1Þ ¼ FðuÞFðz1Þ: ð8:2:6Þ

The only continuous solution of (8.2.6) with the boundary condition F(0) = 0, is

FðxÞ ¼ e�r�1x ; x� 0 ð8:2:7Þ

where σ is an arbitrary positive real number.
The following theorem (Theorem 8.2.3) is a generalization of the Theorem 8.2.2.

Theorem 8.2.3 Let {Xn, n ≥ 1} be independent and identically distributed with
common distribution function F which is absolutely continuous and F(0) = 0 and F
(x) < 1 for all x > 0. Then Xn has the d.f., F(x) = 1 – e–σx, x ≥ 0, σ > 0, it is necessary
and sufficient that are independent X(n) − X(m) and X(m).

Proof The necessary condition is easy to establish. To proof the sufficient condi-
tion, we need the following lemma.

For proof of sufficiency we need the following lemma.

Lemma 8.2.1 Let F(x) be an absolutely continuous function and FðxÞ > 0, for all
x > 0. Suppose that Fðuþ vÞðFðvÞÞ�1 ¼ exp �q u; vð Þf g and h(u,v) = {q(u,v)}r exp
{−q(u,v)} @

@u q(u,v), for r ≥ 0. Further if h(u,v) ≠ 0, and @
@u q(u,v) ≠ 0 for any

positive u and v. If h(u,v) is independent of v, then q(u,v) is a function of u only.
We refer to Ahsanullah () for the proof of the lemma.

Proof of the sufficiency pf Theorem 8.2.4.
The conditional pdf of Z = X(n) = X(m) given V(m) = x is

f zjX mð Þ ¼ xð Þ ¼ 1
Cðn� mÞ ½Rðzþ xÞ

� RðxÞ�n�m�1 f ðzþ xÞ
FðxÞ ; 0\z \1, 0 \x \1:

Since Z and X(m) are independent, we will have for all z > 0,

ðRðzþ xÞ � RðxÞÞn�m�1 f ðzþ xÞ
FðxÞ ð8:2:8Þ

as independent of x. Now let

Rðzþ xÞ � RðxÞ ¼ � ln
Fðzþ xÞ
FðxÞ ¼ qðz; xÞ; say.
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Writing (8.2.9) in terms of q(z,x), we get

½qðz; xÞ�n�m�1 expf�qðz; xÞg @

@z
qðz; xÞ; ð8:2:9Þ

as independent of x. Hence by the Lemma 8.2.1, we have

� ln Fðzþ xÞðFðxÞÞ�1
n o

¼ qðzþ xÞ ¼ cðzÞ; ð8:2:10Þ

where c(z) is a function of z only. Thus

Fðzþ xÞðFðxÞÞ�1 ¼ c1ðzÞ; ð8:2:11Þ

and c1(z) is a function of z only.
The relation (8.2.11) is true for all z ≥ 0 and any arbitrary fixed positive number

x. The continuous solution of (8.2.11) with the boundary conditions, Fð0Þ ¼
1 and Fð1Þ ¼ 0 is

FðxÞ ¼ expð�x r�1Þ; ð8:2:12Þ

for x ≥ 0 and any arbitrary positive real number σ. The assumption of absolute
continuity of F(x) in the Theorem can be replaced by the continuity of F(x).

Cheng (2007) gave an interesting characterization of the Pareto distribution.
Unfortunately the statement and the proof of the theorem were wrong. Here we will
give a correct statement and proof of his theorem.

Theorem 8.2.4 Let {Xn, n ≥ 1} be independent and identically distributed with
common distribution function F which is absolutely continuous and F(1) = 0 and
F(x) < 1 for all x > 1. Then Xn has the d.f., F(x) = 1 − x–θ, x ≥ 1, θ > 0, it is

necessary and sufficient that XðnÞ
Xðnþ1Þ�XðnÞ and X(m), n ≥ 1 are independent.

Proof If F xð Þ ¼ 1�x�h; x� 1; h [ 0; then the joint pdf fn,n+1(x,y) of X(n) and
X(n + 1) is

fn;nþ1ðx; yÞ ¼ 1
CðnÞ

hnþ1ðln xÞn�1

xyhþ1 ; 1\x\y\1; h[ 0:

Using the transformation, U = X(n) and V = XðnÞ
Xðnþ1Þ�XðnÞ . The joint pdfUV f(u,v)

cab be written as

fW ;V ðw; vÞ ¼ 1
CðnÞ

hnþ1ðln uÞn�1

uhþ3

v
1þ v

� �hþ1

; 1\u; v\1; h[ 0: ð8:2:13Þ
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Thus U and are independent.
The proof of sufficiency
The joint pdf of W and V can be written as

fW ;Vðu; vÞ ¼ ðRðuÞÞn�1

CðnÞ rðuÞf 1þ v
v

u

� �
u
V2 ; 1\u; v\1; ð8:2:14Þ

where R(x) = –lnx, r(x) ¼ d
dx RðxÞ:

We have the pdf fU(u) od U as fUðuÞ ¼ ðRðuÞÞn�1

CðnÞ f ðuÞ: Since U and V are inde-

pendent, we must the pdf fV(v) of V as

fVðvÞ ¼ f
1þ v
v

u

� �
w
V2

1
1� FðuÞ ; 0\v\1: ð8:2:15Þ

Integrating the above pdf from v0 to ∞, we obtain

1� F v0ð Þ ¼
1� F 1þv0

v0
u

� �

1� FðuÞ ð8:2:16Þ

Since F(v0) is independent of U, we must have

1� F 1þv0
v0

u
� �

1� FðuÞ ¼ G(v0) ð8:2:17Þ

where G(v0) is independent of u

Letting u ! 1, we obtain G(v0) = 1� F 1þv0
v0

� �
.

We can rewrite (8.2.17) as

1� F
1þ v0
v0

u

� �
¼ 1� F

1þ v0
v0

� �
ð1� FðuÞ

� �
ð8:2:18Þ

Since the above equation is true all u ≥ 1 and almost all v0 ≥ 1, we must have
F xð Þ ¼ 1� xb. Since F(1) = 0 and F(F(∞)) = 0, we must have

F xð Þ ¼ 1� x�h; x� 1 and h[ 0:

Example 8.2.1 Let {Xn, n ≥ 1} be independent and identically distributed with
common distribution function F which is absolutely continuous and F(1) = 0 and F
(x) < 1 for all x > 1. Then Xn has the d.f., F(x) = 1 – x–θ, x ≥ 1, θ > 0, it is necessary

and sufficient that Xðnþ1Þ�XðnÞ
XðnÞ and X(n),n ≥ 1 are independent.
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The following theorem is a generalization of Chang’s (2007) result.

Theorem 8.2.5 Let {Xn, n ≥ 1} be independent and identically distributed with
common distribution function F which is absolutely continuous and F(1) = 0 and
F(x) < 1 for all x > 0. Then Xn has the d.f., F(x) = 1 – x–θ, x ≥ 1, θ > 0, it is

necessary and sufficient that XðmÞ
XðnÞ�XðmÞ , 1 < m < n and X(m) are independent.

Proof The joint pdf fm,n (x,y) of X(n) and X(m) is

fm;nðx; yÞ ¼ ðRðxÞÞm�1

CðmÞ
ðRðyÞ � RðxÞÞn�m�1

Cðn� mÞ rðxÞf ðyÞ; ð8:2:19Þ

We have FðxÞ ¼ 1� x�h; RðxÞ ¼ h ln x; rðxÞ ¼ h
x, thus we obtain

fm;nðx; yÞ ¼ ðh ln xÞm�1

CðmÞ
ðln y� ln xÞn�m�1

Cðn� mÞ
1

xyhþ1 : ð8:2:20Þ

where 1� x\y\1; h[ 0:

Using the transformation U = X(m) and V ¼ XðmÞ
XðnÞ�XðmÞ , we obtain the pdf fU,V

(u,v) of U and V as

fU;Vðu; vÞ ¼ hnðln uÞn�1

CðnÞ
ðlnð1þv

v ÞÞn�m�1

Cðn� mÞ
vh�1

u1hþ1ð1þ vÞhþ1

Thus X(m) and XðmÞ
XðnÞ�XðmÞ are independent.

Proof of sufficiency.

Using U = X(m) and V ¼ XðmÞ
XðnÞ�XðmÞ , we can obtain the pdf fU,V of U and V from

(8.2.19) as

fU;V ðu; vÞ ¼ ðRuÞm�1

CðmÞ
ðRðuð1þvÞ

v Þ � RðuÞÞn�m�1

Cðn� mÞ rðuÞf ðuð1þ vÞ
v

Þ; ð8:2:21Þ

We can write the conditional pdf fV|U(v|u) of V|U as

fV jUV ðvjuÞ ¼
ðRðuð1þvÞ

v Þ � RðuÞÞn�m�1

Cðn� mÞ
uf ðuð1þv

v Þ;
v2FðuÞ ; 1\u\1; 0\v\1: ð8:2:22Þ

Using the relation R(x) = −ln FðxÞ, we obtain from (8.2.22) that

fV jUðvjuÞ ¼
ð� lnðFð

uð1þvÞ
v Þ

FðuÞ ÞÞn�m�1

Cðn� mÞ
d
dv

ðFð
uð1þvÞ

v Þ
FðuÞ Þ; 1\u\1; 0\v\1: ð8:2:23Þ
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Since V and U are independent, we must have Fðuð1þvÞ
v Þ

FðuÞ independent of U.

Let

Fðuð1þvÞ
v Þ

FðuÞ ¼ G vð Þ; ð8:2:24Þ

Letting u → 1, we obtain

F
uð1þ vÞ

v

� �
¼ FðuÞF 1þ vÞ

v

� �
ð8:2:25Þ

For all u, 1 < u < ∞ and all v, 0 < v < ∞.
The continuous solution of (8.2.24) with the boundary condition F(0) 0 and F

(∞) = 1 is

F(x) ¼ 1� x�h; x� 1 and h [ 0.

The following exercise is proved under the assumption of monotone hazard rate.
We will say F belongs to the class C2 if r(x) is either monotone increasing or
decreasing.

Exercise 8.2.1 If Xk, k ≥ 1 has an absolutely continuous distribution function F
with pdf f and F(0) = 0. If In,n+1 and In–1,n, n ≥ 1, are identically distributed and F
belongs to C2, then Xk has the d.f. F xð Þ ¼ 1� e�1xx; x� 0; r[ 0: k� 1:

8.3 Characterizations Based on Identical Distribution
and Moment Properties

If F is the distribution function of a non-negative random variable, we will call F is
“new better than used” (NBU) if for x, y ≥ 0, Fðxþ yÞ�FðxÞFðyÞ, and F is “new
worse than used” (NWU) if for x, y ≥ 0, Fðxþ yÞ�FðxÞFðyÞ. We will say F
belongs to the class C1 if either F is NBU or NWU. We will say F belongs to the

class C2 if the hazard rate r xð Þ ¼ f ðxÞ
1�FðxÞ increases monotonically increases or

decreases for all x.

Theorem 8.3.1 Let Xn, n ≥ 1 be a sequence of i.i.d. random variables which has
absolutely continuous distribution function F with pdf f and F(0) = 0. Assume that F
(x) < 1 for all x > 0. If Xn belongs to the class C1 and In–1,n = X(n) − X(n–1), n > 1.,
has an identical distribution with Xk, k ≥ 1, then Xk has the d.f.
F xð Þ ¼ 1� e�1xx; x� 0; r[ 0:
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Proof The if condition is easy to establish. We will proof here the only if condition.
The pdf fn–n,n of In–1,n can be written as

Fn¼1;n x:yð Þ ¼
Z1

0

½RðuÞ�n�1

CðnÞ rðuÞf ðuþ zÞdu; z� 0

¼ 0; otherwise:

ð8:3:1Þ

By the assumption of the identical distribution of In–1,n and Xk, we must have

Z1

0

½RðuÞ�n�1 rðuÞ
CðnÞ f ðuþ zÞdu ¼ f ðzÞ; for all z [ o. ð8:3:2Þ

Substituting

Z1

0

½RðuÞ�n�1f ðuÞdu ¼ CðnÞ; ð8:3:3Þ

we have

Z1

0

½RðuÞ�n�1rðuÞf ðuþ zÞdu ¼ f ðzÞ
Z1

0

½RðuÞ�n�1f ðuÞdu; z [ 0. ð8:3:4Þ

Thus

Z1

0

½RðuÞ�n�1f ðuÞ½f ðuþ zÞðFðuÞÞ�1 � f ðzÞ�du ¼ 0; z[ 0: ð8:3:5Þ

Integrating the above expression with respect to z from z1 to ∞, we get from
(8.3.5)

Z1

0

½RðuÞ�n�1f ðuÞ½Fðuþ z1ÞðFðuÞÞ�1 � Fðz1Þ�du ¼ 0; z1 [ 0: ð8:3:6Þ

If F(x) is NBU, then (8.3.6) is true if

Fðuþ z1ÞðFðuÞÞ�1 ¼ Fðz1Þ; z1 [ 0: ð8:3:7Þ

The only continuous solution of (8.3.7) with the boundary conditions Fð0Þ ¼ 1
and Fð1Þ ¼ 0 is FðxÞ ¼ expð0; r�1Þ, where σ is an arbitrary real positive number.
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Similarly, if F is NWU then (8.3.6) is true if (8.3.7) is satisfied and Xk has the d.f.
F(x) ¼ 1� e�1xx; x� 0; r[ 0: k[ 1:

Theorem 8.3.2 Let Xn, n ≥ 1 be a sequence of independent and identically dis-
tributed non-negative random variables with absolutely continuous distribution
function F(x) with f(x) as the corresponding density function. If F 2 C2 and for
some fixed n,m, 1 ≤ m < n < ∞, Im,n = X(n – m – 1), then Xk has the d.f.
FðxÞ ¼ 1� e�1xx; x� 0; r[ 0, k ≥ 1.

Proof The pdfs f1(x) of Rn–m and f2(x) of Im,n (= Rn − Rm) can be written as

f1ðxÞ ¼ 1
Cðn� mÞ ½RðxÞ�

n�m�1f ðxÞ; for 0\ x \1, ð8:3:8Þ

and

f2ðxÞ ¼
Z1

0

½RðxÞ�m�1

CðmÞ
½Rðxþ uÞ � RðxÞ�n�m�1

Cðn� mÞ r(u)f (uþ x)du; 0\ x\1: ð8:3:9Þ

Integrating (8.3.8) and (8.3.9) with respect to x from 0 to x0, we get

F1(x0Þ ¼ 1� g1ðx0Þ; ð8:3:10Þ

where

g1ðx0Þ ¼
Xn�m

j¼1

½Rðx0Þ�
CðjÞ e�Rðx0Þ;

and

3F2ðx0Þ ¼ 1� g2ðx0;uÞ; ð8:3:11Þ

where

g2ðx0; uÞ ¼
Xn�m

j¼1

½Rðuþ x0Þ � RðuÞ�j�1

CðjÞ expf�ðRðuþ x0Þ � RðuÞÞg:

Now equating (8.3.10) and (8.3.11), we get

Z1

0

½RðyÞ�m�1

CðmÞ f ðuÞ½g2ðu; x0Þ � g1ðx0Þ�du ¼ 0; x0 [ 0: ð8:3:12Þ
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Now g2(x0, 0) = g1(0) and

0 ¼ ½RðuÞ � RðuÞ�n�m�1

Cðn� mÞ expf�ðRðuþ x0Þ � RðuÞg½rðx0Þ � rðuþ x0Þ�:

Thus if F 2 C2, then (8.3.12) is true if

r(uþ x0Þ ¼ r(u) ð8:3:13Þ

for almost all u and any fixed x0 ≥ 0. Hence Xk has the d.f. F(x) ¼ 1� e�1xx;
x� 0; r [ 0: k ≥ 1. Here σ is an arbitrary positive real number. Substituting

m = n − 1, we get In�1;n ¼d X1 as a characteristic property of the exponential
distribution.

Theorem 8.3.3 Let {Xn, n ≥ 1} be a sequence of independent and identically
distributed non-negative random variables with absolutely continuous distribution
function F(x) and the corresponding density function f(x). If F belongs to C2 and for
some m, m > 1, X(n) and X(n−1) + U are identically distributed, where U is
independent of X(n) and X(n−1) is distributed as Xn’s, then Xk has the d.f. F(x) ¼
1� e�1xx; x� 0; r[ 0: k ≥ 1.

Proof The pdf fm(x) of Rm, m ≥ 1, can be written as

fmðyÞ ¼ ½RðyÞ�m
Cðmþ 1Þ f ðyÞ; 0\ y\1;

¼ d
dy

��FðyÞ
Zy

0

½RðxÞm�1�
CðmÞ rðxÞdxþ

Zy

0

½RðxÞm�
CðmÞ f ðxÞdx

0
@

1
A;

ð8:3:14Þ

The pdf f2(y) of X(n−1) + U can be written as

f2ðyÞ ¼
Zy

0

½RðxÞm�1�
CðmÞ f ðy� xÞf ðxÞdy

¼ d
dy

� ½RðxÞm�1�
CðmÞ

�Fðy� xÞf ðxÞ dxþ
Zy

0

½RðxÞm�1�
CðmÞ f ðxÞdx

0
@

1
A:

ð8:3:15Þ

Equating (8.3.14) and (8.3.15), we get on simplification

Zy

0

½RðxÞm�1�
Cðm� 1Þ f ðxÞH1ðx; yÞ dx ¼ 0; ð8:3:16Þ
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where H1ðx; yÞ ¼ �Fðy� xÞ � �FðyÞ�FðxÞÞ�1; 0\ x\ y\1. Since F 2 C1,
therefore for (8.3.16) to be true, we must have

H1ðx; yÞ ¼ 0; ð8:3:17Þ

for almost all x, 0 < x < y < ∞.
This implies that

�Fðy� xÞ�FðxÞ ¼ �FðyÞ; ð8:3:18Þ

for almost all x, 0 < x < y < ∞. The only continuous solution of (8.3.18) with the
boundary conditions �Fð0Þ ¼ 1; and �Fð1Þ ¼ 0; is

�FðxÞ ¼ e�xr�1
; ð8:3:19Þ

where σ is an arbitrary positive number.

Remark 8.3.1 The Theorem 8.3.4 can be used to obtain the following known
results of a two parameter exponential distribution �FðxÞ ¼ expf�r�1ðx� lÞgð Þ:

EðX(n) ¼ lþ n r

Var X(n)ð Þ ¼ n r2

Cov X(m)X(n)ð Þ ¼ m r2; m\n:

Theorem 8.3.4 Let X1, X2, …, Xm,… be independent and identically distributed
random variables with probability density function f(x), x ≥ 0 and m is an integer
valued random variable independent of X’s and P(m = k) = p(1 − p)k−1, k = 1, 2,
…, and 0 < p < 1. Then the following two properties are equivalent:

(a) X’s are distributed as E(0, σ), where σ is a positive real number

(b) p
Pm

j¼1
Xj ¼d In�1;n, for some fixed n, n ≥ 2, Xj 2 c2 and E(Xj) < ∞.

Proof It is easy to verify (a) ⇒ (b). We will prove here that (b) ⇒ (a). Let ϕ1(t) be
the characteristic function of of In–1,n then

/1ðtÞ ¼
Z1

0

Z1

0

1
CðnÞ e

itx½RðuÞ�n�1rðuÞf ðuþ xÞdu dx

¼ 1þ it
Z1

0

Z1

0

1
CðnÞ e

itx½RðuÞ�n�1rðuÞ�Fðuþ xÞdu dx

ð8:3:20Þ
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The characteristic function p ϕ2 (t) of p
Pm

j¼1
Xj can be written as

U2ðtÞ ¼ Eðe
itp
Pm
j¼1

Xj

Þ

¼
X1

k¼1

½UðtpÞ�kpð1� pÞk�1;

¼ pðUðt pÞÞð1� qUðp tÞÞ�1; q ¼ 1� p;

ð8:3:21Þ

where Φ(t) is the characteristic function of X’s.
Equating (8.3.20) and (8.3.21), we get on simplification

UðptÞ � 1
1� qUðptÞ

1
it

Z1

0

Z1

0

1
CðnÞ e

itx½RðuÞ�n�1rðuÞ�Fðuþ xÞdu dx ð8:3:22Þ

Now taking limit of both sides of (8.3.22) as t goes to zero, we have

U0ð0Þ
i

¼
Z1

0

Z1

0

1
CðnÞ ½RðuÞ�

n�1rðuÞ�Fðuþ xÞdu dx: ð8:3:23Þ

Writing

U0ð0Þ
i

¼
Z1

0

�FðxÞdx; we get from ð8:3:24Þ

Z1

0

Z1

0

ðRðuÞÞn�1rðuÞf�Fðuþ xÞ � �FðuÞ�FðxÞgdu dx ¼ 0: ð8:3:25Þ

Since X’s belong to C1, we must have

�Fðuþ xÞ ¼ �FðxÞ�FðuÞ; ð8:3:26Þ

for almost all x, u, 0 < u, x < ∞ The only continuous solution of (8.3.26) with the
boundary condition �Fð0Þ ¼ 1 and �Fð1Þ ¼ 0; is

�FðxÞ ¼ expð�xr�1Þ; x� 0; ð8:3:27Þ

where σ is an arbitrary positive real number.
We will prove the following characterization theorem under the assumption of

the finite first moment.
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Exercise 8.3.1 Let Xn, n ≥ 1 be a sequence of independent and identically dis-
tributed non-negative random variables with absolutely continuous distribution
function F(x) and the corresponding density function f(x). Let a = inf{x|F
(x) > 0} = 0, F(x) < 1 for all x > 0. If F belongs to the class C1 and E(Xk), k ≥ 1 is
finite, then Xk 2 E(0,σ), if and only if for some fixed n, n > 1, E(In−1,n) = E(Xk).

The following theorem uses the property of homoscedasticity but does not use
NBU or NWU property.

Exercise 8.3.2 Let Xn, n ≥ 1 be a sequence of independent and identically dis-
tributed random variables with common distribution function F which is absolutely
continuous and inf{x| F(x) > 0} = 0 and E(Xn

2) < ∞. Then Xk, k ≥ 1 has the
exponential distribution if and only if Var(In–1,n|X(n–1) = x) = b for all x, where b is
a positive constant independent of X and In–1,n.

Exercise 8.3.3 Let {Xn, n ≥ 1} be a sequence of independent and identically
distributed non negative random variables with continuous distribution function F
(x) and the corresponding density function f(x). Let a = inf{x|F(x) = 0} = 0, F(x) < 1
for all x > 0 and F belongs to class C2. Then Xn 2 E(0,σ), if and only if for some
fixed n, n ≥ 1, the hazard rate r1 of In–1,n = the hazard rate r of Xk.

Suppose that the random variables {Xj, j = 1,2,…} are from Gumbel distribution
with d.f. F(x) as follows:

FðxÞ ¼ e�e�x
;�;;�1\ x\1

It is known that (see Ahsanullah and Holland (1994), p. 475) that

XðnÞd�X � W1 þW2

2
þ � � � þ Wm�1

m� 1
þWm

m

� �
; m� 1

where W1, W2, …,Wm–1, Wm are independently distributed as negative exponential
with F(w) = 1 − e−w, w > 0. X(1) = X. Thus S(m) = m(X(m−1) − X(m), m = 2,…,
are identically distributed as exponential. Similarly if we consider the upper records
from the distribution, FðxÞ ¼ e�ex ;�1 \x \1; then for any m ≥ 1, Sm = m(X(m
−1)−X(m), m = 2,…. are identically distributed as exponential distribution. It can
be shown that for one fixed m, S(m) or Sm distributed as exponential does not
characterize the exponential distribution.

Arnold and Villasenor (1997) raised the question suppose that S1 and 2 S2 are i.i.
d. exponential with unit mean, can we consider that Xj’s are (possibly translated)
Gumbel variables? Here, we will prove that for a fixed m > 1, the condition

XðnÞ¼d Xðn� 1Þ þ W
m ; where W is distributed as exponential distribution with

mean unity characterizes the Gumbel distribution.

Theorem 8.3.5 Let {Xj, j = 1,…,} be a sequence of independent and identically
distributed random variables with absolutely continuous (with respect to Lebesgue
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measure) distribution function F(x). Then the following two statements are
identical.

(a) FðxÞ ¼ e�e�x
;�1\ x\1;

(b) For a fixed m > 1, the condition XðmÞ¼d Xðm� 1Þ þ W
m ; where W is dis-

tributed as negative exponential mean unity.

Proof It is enough to show that (b) ⇒ (a). Suppose that for a fixed m > 1,

XðmÞ¼d Xðm� 1Þ þ W
m ; then

FðmÞðxÞ ¼
Zx

�1
PðW �mðx� yÞfðmþ1ÞðyÞdy

¼
Zx

�1
½1� e�mðx�yÞ�fðmþ1ÞðyÞdy

¼ Fðmþ1ÞðxÞ �
Zx

�1
e�mðx�yÞfðmþ1ÞðyÞdy:

ð8:3:28Þ

Thus

emx½Fðmþ1ÞðxÞ � FðmÞðxÞ� ¼
Zx

�1
emyfðmþ1ÞðyÞdy ð8:3:29Þ

Using the relation

emx
FðxÞ½HðxÞ�m
Cðmþ 1Þ ¼ eHðxÞ X

m

j¼0

½HðxÞ�j
m!Þ ;

we obtain

emx
FðxÞðHðxÞÞm
Cðmþ 1Þ ¼

Zx

�1
emyfðmþ1ÞðyÞdy ð8:3:30Þ

Taking the derivatives of both sides of (8.3.30), we obtain

d
dx

emx
ðHðxÞÞm
Cðmþ 1ÞFðxÞ

� �
¼ emxfðmþ1ÞðxÞ ð8:3:31Þ
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This implies that

d
dx

emx
HmðxÞ

Cðmþ 1Þ
� �

FðxÞ ¼ 0: ð8:3:32Þ

Thus

d
dx

emx
ðHðxÞÞm
Cðmþ 1Þ

� �
¼ 0: ð8:3:33Þ

Hence

H(x) ¼ c e�x; �1\x\1 ð8:3:34Þ

Thus

F(x) ¼ e�ce�x
; 1\ x\1: ð8:3:35Þ

Since F(x) is a distribution function we must have c as positive. Assuming F
(0) = e−1, we obtain

F(x) ¼ e�e�x
; �1\x\1: ð8:3:36Þ

Ahsanullah and Malov (2004) proved the following characterization theorem.

Theorem 8.3.6 Let X1, X2, …, be a sequence of independent and identically dis-

tributed r.v.’s with distribution function F(x). If XðmÞ¼d Xðm� 2Þ þ W1
m þ W2

m�1 ;

m > 2, for twice differentiable F(x), where W1 and W2 are independent as expo-
nential distribution with unit mean then F(x) ¼ 1� e�e�x

; �1\x\1:
Ahsanullah and Kirmani (1991) gave the following result.

Exercise 8.3.5 Suppose {Xn, n ≤ 1} is a sequence of I.i.d. random variable with
h continuous d.f. F(x) with F(0) = 0 and X(x) > 0 for all x > 0. We assume

lim ! 0 FðxÞ
x ¼ k; k [ 0:We define the random variable N such that N = min{i > 1,

Xi < X1}. Then the random variables NXN and X1 are identically distributed if and
only if F(x) ¼ 1� e�kx; x� 0:
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8.4 Exercises (solutions)

Exercise 8.2.1 (solution)

P In�1;n [ z
	 
 ¼

Z1

0

½RðuÞ�n�1 rðuÞ
CðnÞ

�Fðuþ zÞdu; for all z[ 0;

¼ 0; otherwise:

Since In,n+1 and In–1,n are identically distributed, we get using the above
equation,

Z1

0

½RðuÞ�nrðuÞ�Fðuþ zÞdu ¼ n
Z1

0

½RðuÞ�n�1rðuÞ�Fðuþ zÞdu; z [ 0:

Substituting the identity

n
Z1

0

½RðuÞ�n�1rðuÞ�Fðuþ zÞdu ¼
Z1

0

½RðuÞ�nf ðuþ zÞdu

in (8.3.8), we get on simplification

n
Z1

0

½RðuÞ�n�1rðuÞ�Fðuþ zÞ 1� rðuþ zÞ
rðuÞ

� �
du ¼ 0; z [ 0:

Thus if F 2 C2, then the above equation is true: if for almost all u and any fixed
z > 0,

r(uþ z) ¼ r(u):

The constant hazard rate is the well known characterization property of the
exponential distribution.

Exercise 8.3.1 (solution) If Xk 2 E(0, σ), then it can easily be seen that
E(In–1,n) = E(Xk). Suppose that for some foxed n, n > 1, E(In–1,n) = E(Xk), then we
must have

Z1

0

Z1

0

½RðuÞ�n�1

CðnÞ f ðuÞ�FðuÞÞ�1dudx ¼
Z1

0

�FðuÞdu
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But we know

CðnÞ ¼
Z1

0

½RðuÞ�n�1f ðuÞdu

0 m simplifying, we obtain

�Fðuþ zÞ ¼ �FðuÞ�FðzÞ; ð8:3:37Þ

for all u,z, 0 < u, z < ∞. Now the continuous solution of (8.3.3) with the boundary
conditions �Fð0Þ ¼ 1 and Fð1Þ ¼ 0; is �FðxÞ ¼ expf�xr�1Þ; where r is an arbi-
trary real number.

Exercise 8.3.2 (solution) The “if” condition is easy to establish. We will prove
here the “only if” condition. Now

b ¼ EðI2n�1;n X(n� 1Þj j � E(In�1;njX(n� 1Þ ¼ x)
� �2

:

Also

EðI2n�1;n X(n� 1Þ = x)j j ¼
Z1

0

z2½�FðxÞ��1d�Fðzþ xÞ ¼ 2
Z1

0

z½�FðxÞ��1�Fðzþ xÞdz

and

EðIn�1; n X(n� 1Þ = x)j ¼
Z1

0

zð�FðxÞÞ�1d�Fðzþ xÞ ¼
Z1

0

ð�FðxÞÞ�1�Fðzþ xÞdz

Substituting G(x) =
R1

0
z�Fðzþ xÞdz and denoting G(r)(x) as the rth derivative of

G(x), we have on simplification

Gð1ÞðxÞ ¼
Z1

0

�Fðzþ xÞdz; Gð2ÞðxÞ ¼ �FðxÞ and Gð3ÞðxÞ ¼ �f ðxÞ:

Writing in terms of G(x) and G(r)(x), we obtain

2G(x) G(r)(x)f g � 1� Gð1Þðx) Gð2Þðx)
� �

� 1
n o

2 ¼ b; for all x[ 0:
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Differentiating the above equation with respect to x and simplifying, we obtain

2Gð3Þðx) Gð2Þðx)
n o�3

� Gð1Þðx)
� �2

� G(x) Gð2Þðx)
� �

¼ 0

Since G(3) (x) ≠ 0 for all x > 0, we must have

Gð1Þðx)
n o2

�G(x) Gð2Þðx) ¼ 0;

i.e.

d
dx

fG(x) Gð1Þðx)
� ��1

g ¼ 0; for all x[ 0:

The solution of the above equation is

G(x) ¼ a e�cx; x[ 0

where a and c are arbitrary constants. Hence

�FðxÞ ¼ Gð2Þðx) ¼ ac2e�cx; x[ 0:

Since F(x) is a distribution function with F(0) = 0, it follows that

�FðxÞ ¼ e�xr�1
;

where σ is an arbitrary real positive number.

Exercise 8.3.4 (solution) If Xk 2 E(0, σ), then it can easily be shown that r1 = r.
Suppose r1 = r, then we can write the joint pdf of X(n) and X(n–1)–1 as

fn�1;nðx; yÞ ¼ 1
CðnÞ ½RðxÞ�

n�1rðxÞf ðyÞ; 0\ x\ y\1;

¼ 0; otherwise:

Substituting In–1,n = X(n) − X(n−1)1 and U = X(n−1), we get the pdf of In–1,n
and U as

f �1 ðz; uÞ ¼
1

CðnÞ ½RðuÞ�
n�1rðuÞf ðuþ zÞ; 0\ x\ y\1;

¼ 0; otherwise:
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Thus we can write

r1ðzÞ ¼
R1
0 ½RðuÞ�n�1rðuÞf ðuþ zÞdu

R1
0 ½RðuÞ�n�1rðuÞ�Fðuþ zÞdu :

for all z ≥ 0. Since r1(z) = r(z) for all z, we must have

R1

0
½RðuÞ�n�1rðuÞf ðuþ zÞdu

R1

0
½RðuÞ�n�1rðuÞ�Fðuþ zÞdu

¼ f ðzÞ
�FðzÞ

for all z ≥ 0. Now simplifying the above equation, we obtain

Z1

0

½RðuÞ�n�1rðuÞ�FðzÞ�Fðuþ zÞ½rðuþ zÞ � rðzÞ�du ¼ 0

for all z ≥ 0. Since F belongs to class C2, for the above equation to be true, we must
have

r(uþ z) ¼ r(u)

for all z ≥ 0 and almost al u, u ≥ 0.

Exercise 8.3.5 (solution) To proof the exercise we need the following two lemmas.

Lemma 8.3.1 Suppose {Xn, n ≥ 1} be a sequence of i.i.d. random variables with d.
f. F and F(0) = 0. Let N is the r.v. defined as N = min {i > 1: Xi < X1}. It can easily
be shown that P(N ¼ n) ¼ 1

nðn�1Þ ; n ¼ 2; 3; . . .;

Lemma 8.3.2

PðNXN [ xÞ ¼
X1

n¼2

1
nðn� 1Þð

�Fðx
n
ÞÞn; for all x� 0:
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Proof

PðNXN [ xÞ ¼
X1

n¼2

PðNXN [ x;N[ nÞ

¼
X1

n¼2

Z1

�1
PðnXn [ x;Xn\y;Xi [ yÞ X1 ¼ yÞd fðyÞ;j for all i ¼ 2; 3; . . .; n� 1;

¼
X1

n¼2

Z1

x
n

Pðx
n
\xn\yÞðPðxi [ yÞÞn�2dFðyÞ

¼
X1

n¼2

Z1

x
n

f�Fðx
n
Þ � �FðyÞgf�FðyÞgn�2dFðyÞ

¼
X1

n¼2

�Fðx
n
Þ ½
�FðxÞ�n�1

n� 1
� ½�FðxnÞ�n

n

" #

¼
X1

n¼2

1
nðn� 1Þ

�Fðx
n
Þ

h in
:

Exercise 8.3.1 (solution) Define u(x) ¼ � ln �FðxÞ
x ; x[ 0; u(0) ¼ u(0þÞ and suppose

that NXN ¼d X1:
Then

X1

n¼2

1
nðn� 1Þe

�xnðx=nÞ ¼ e�xnðxÞ; x[ 0:

We shall show that the above holds iff u(x) is a constant, i.e. given any T > 0

min
x2½0;T �

UðxÞ ¼ min
x2½0;T �

UðxÞ:

Let

a0 ¼ min
x2½0;T �

UðxÞ; x0 ¼ inffx 2 ½0; T � uðxÞ ¼ a0g;j

a1 ¼ min
x2½0;T �

UðxÞ; x1 ¼ inffx 2 ½0; T � uðxÞ ¼ a1gj :
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It is obvious that (8.3.25) will be proved if we show that x0 = 0 = x1. By
continuity of u, x0 2 [0,T] and u(x0) = a0.

Hence

uðx0Þ� uðx0=nÞ for all n[ 1:

If equality holds for all n ≥ 2, then u(x0) = u(0) which by definition of x0 = 0.
Suppose now that x0 > 0 (so that x0/n ≠ x0 for all n. Then, the strict inequality must
hold for at least one value of n > 1 ≥ 2. Now

e�x0uðx0Þ �
X1

n¼2

1
nðn� 1Þe

�x0uðx0=nÞ ¼
X1

n¼2

1
nðn� 1Þe

�x0uðx0Þ � e�x0uðx0=nÞg[ 0;

which contradicts. Therefore x0 = 0. Similarly x1 = 0. Thus NXN ¼d
X1 ) uðxÞ � constant:
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Chapter 9
Asymptotic Distributions of Records

9.1 Limit Behavior of Record Times

Above (see Chap. 3) it was described the asymptotic (as n → ∞) behavior of
numbers of records N(n) among random variables X1, X2,…. Xn. Don’t forget that
we suppose that X’s are independent and have the same continuous distribution
function F. It appears that applying to N(n) classical limit theorems for sums of
independent random variables immediately allows to obtain the following state-
ments (see relations (3.4.1)−(3.4.5)):

sup
x

jPfNðnÞ � log n\ x
ffiffiffiffiffiffiffiffiffiffi
log n

p
g � UðxÞj ! 0; ð9:1:1Þ

where

Uðx) ¼ 1ffiffiffiffiffiffi
2p

p
Zx

�1
expð�t2=2Þdt;

sup

x
jPfNðnÞ � log n\x

ffiffiffiffiffiffiffiffiffiffi
log n

p
g � UðxÞj �C=

ffiffiffiffiffiffiffiffiffiffi
log n

p
; n ¼ 1; 2; . . .;

C being some absolute constant;

PflimðNðnÞ= log nÞ ¼ 1g ¼ 1;

P limsup
NðnÞ � log n

ð2 log n log log log nÞ1=2
¼ 1

( )
¼ 1
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and

P liminf
NðnÞ � log n

ð2 log n log log log nÞ1=2
¼ �1

( )
¼ 1:

To study the asymptotic behavior of record times L(n) one needs to recall that
random variables L(n) and N(m) are tied by the following equality:

PfLðnÞ[mg ¼ PfNðmÞ\ng; ð9:1:2Þ

which holds for any n = 1, 2, … and m = 1, 2, ….
Due to this equality the most part of the limit theorems given for N(n), were

overworked (see, for example, Renyi (1962)) into the corresponding theorems for
record times L(n).

(a) Central Limit Theorem (CLT) for L(n).
It appears that in this case CLT is formulated not for L(n) but for its logarithm
logL(n):

sup
x

jPflog LðnÞ � n\ x
ffiffiffi
n

p g � UðxÞj ! 0; n ! 1: ð9:1:3Þ

Note that

Pflog LðnÞ � n � x
ffiffiffi
n

p g ¼ PfLðnÞ� expfnþ x
ffiffiffi
n

p gg:

For the sake of simplicity we will suppose that

Rðn; xÞ ¼ expfnþ x
ffiffiffi
n

p g

is the entire number.
Then we get from (9.1.2) that

Pflog LðnÞ � n� x
ffiffiffi
n

p g ¼ 1� PfLðnÞ[Rðn; xÞg ¼ 1� PfNðRðn; xÞÞ\ng
¼ 1� PfNðRðn; xÞÞ � logðRðn; xÞÞ\ n� logðRðn; xÞÞg
¼ 1� PfNðRðn; xÞÞ � logðRðn; xÞÞ\� x

ffiffiffi
n

p g
¼ 1� PfNðRðn; xÞÞ � logðRðn; xÞÞ\� xðlogRðn; xÞÞ1=2ðn1=2=ðlogRðn; xÞÞ1=2Þg:

By noticing that ðn1=2=ðlogRðn; xÞÞ1=2Þ ! 1 for any fixed x, as n→∞,we see
that

PfNðRðn; xÞÞ � logðRðn; xÞÞ\� xðlogRðn; xÞÞ1=2ðn1=2=ðlogRðn; xÞÞ1=2Þg
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behaves as

PfNðRðn; xÞÞ � logðRðn; xÞÞ\� xðlogRðn; xÞÞ1=2g:

Now, taking into account relation (9.1.1), one gets that these probabilities are
approximated by Φ (−x). Finally it appears that

1� PfNðRðn; xÞÞ � logðRðn; xÞÞ\n� logðRðn; xÞÞg:

behaves asymptotically as 1� U ð�xÞ ¼ U ðxÞ: It proves relation (9.1.3).
The same approach based on equality (9.1.2) allowed Renyi (1962) to work
over the corresponding limit theorems for N(n) into the following results for
record times L(n):

(b) Strong Law of Large Numbers:

Pflim log LðnÞ=n ¼ 1g ¼ 1; n ! 1: ð9:1:4Þ
(c) Law of Iterative Logarithm:

P limsup
log LðnÞ � n

ð2n log log nÞ1=2
¼ 1

( )
¼ 1; n ! 1; ð9:1:5Þ

and

P liminf
log LðnÞ � n

ð2n log log nÞ1=2
¼ �1

( )
¼ 1; n ! 1: ð9:1:6Þ

Let us recall now the kth record times L(n, k) and the numbers N(n, k) of the kth
records among random variables X1, X2,…, Xn, n = 1, 2,…, k = 1, 2,…, which were
determined in Chap. 3.

Exercise 9.1.1 Write the generalization of equality (9.1.2), which will tie distri-
butions of N(n, k) and L(n, k).

Exercise 9.1.2 It was proved (see Exercise 3.4.1) that for r.v.’s N(n, k) the fol-
lowing relation is valid:

sup
x

jPfNðn; kÞ � k log n\x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k log n

p
g � UðxÞj ! 0; n ! 1; ð9:1:7Þ

where UðxÞ ¼ 1ffiffiffiffi
2p

p
Rx

�1
expð�t2=2Þdt:

Based on (9.1.7) and on the result of Exercise (9.1.1) get the corresponding
generalization of relation (9.1.3) for the kth record times L(n, k).
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Remark 9.1.1 It is interesting to recognize that relations (9.1.3)−(9.1.6) stay true if
to take there inter-record times DðnÞ ¼ LðnÞ � Lðn� 1Þ; n ¼ 2; 3; . . .; instead of L
(n). These surprising results are presented in Neuts (1967), Holmes and
Strawderman (1969), Strawderman and Holmes (1970).

There are some simple limit results for the ratios of the record times

Tn ¼ Lðnþ 1Þ=LðnÞ; n ¼ 1; 2; . . .

One of them is formulated in the following exercise.

Exercise 9.1.3 Prove that for any x > 1

PfTn [ xg ! 1=x; n ! 1: ð9:1:8Þ

9.2 Limit Behavior of Record Values

Since X(n) = max{X1,…,XL(n)} = M(L(n)), the limit distributions of record values
must be close to the analogous distributions of maximal order statistics. As it is
known (see Chap. 2) there are three types of asymptotic distributions for the
suitable centering and normalizing maxima

ðMðnÞ � bðnÞÞ=aðnÞ:

For the sake of simplicity denote the standard representatives of this distribution
types as

KðxÞ ¼ expð� expð�xÞÞ;

UaðxÞ ¼
0; if x\0;

expð�x�aÞ; if x[ 0

�
; a[ 0;

and

WaðxÞ ¼ expð�ð�xÞaÞ; if x\0;
1; if x[ 0

�
; a[ 0:

Indeed, under the corresponding random centering and normalizing we will
obtain the same limit distributions for random variables

ðXðnÞ � bðLðnÞÞÞ=aðLðnÞÞ:
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The following question arises: what types of asymptotic distributions can one get
for nonrandomly normalized record values? That is, what types of the limit dis-
tribution functions T(x), where

TðxÞ ¼ limPfXðnÞ � BðnÞ\ xAðnÞg; n ! 1; ð9:2:1Þ

can be obtained under the corresponding choice of the normalizing and centering
constants A(n) > 0 and B(n)?

Let us consider firstly the situation when X1, X2,… have the standard exponential
E(1)-distribution. In Exercise 2.4.1 it was obtained that in this case

PfXn;n � log n\xg ! KðxÞ; n ! 1: ð9:2:2Þ

Hence, we also get that

lim PfXðnÞ � log LðnÞ\ xg ¼ KðxÞ; n ! 1: ð9:2:3Þ

In the next exercise let us consider the asymptotic distribution for these X(n),
when they are nonrandomly normalized. Below, as usual, we will denote the
distribution function of the standard N(0, 1) normal distribution as

UðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
Zx

�1
expð�t2=2Þdt:

Exercise 9.2.1 Taking into account Representation 4.2.1 for the exponential record
values X(n) show that

PfXðnÞ � n\xn1=2g ! UðxÞ; n ! 1: ð9:2:4Þ

Now let us consider the general situation.
Tata (1969) (see also Resnick (1973a)) proved that all possible limit distribution

functions T(x) in (9.2.1) have (up to linear transformations) the form

TðxÞ ¼ UðgkðxÞÞ; k ¼ 1; 2; 3; ð9:2:5Þ

where

g1ðxÞ ¼ x;

g2ðxÞ ¼ c log x; c[ 0; if x[ 0; and g2ðxÞ ¼ �1; if x\0;

g3ðxÞ ¼ �c logð�xÞ; c[ 0; if x\0; and g3ðxÞ ¼ 1; if x[ 0:
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Remark 9.2.1 We see that in Exercise 9.2.1 the limit distribution function T(x) can
be expressed as

TðxÞ ¼ Uðg1ðxÞÞ:

Let us recall now the kth record times X(n, k), which present the natural gen-
eralizations of the classical record values X(n) = X(n, 1). For the case, when X’s
have the standard E(1)-distribution, there is Representation 4.6.1, from which it
follows that in this situation

X n; kð Þd¼ ðm1 þ m2 þ � � � þ mnÞ=k; k ¼ 1; 2; . . .; n

where ν1, v2,…, are independent random variables having the exponential E(1)-
distribution. From here one gets for the exponential X’s that

X n; kð Þ¼d X n; 1ð Þ=k ¼ X nð Þ=k ð9:2:6Þ
Exercise 9.2.2 Formulate and prove the analogue of Exercise 9.2.1 for the kth
records generating by the standard exponential E(1)-distribution.

Remark 9.2.2 In Chap. 4 (see Exercise 4.6.3) we considered two sequences of
independent random variables: X1, X2, … with a continuous distribution function F,
and Y1 ¼ minfX1; . . .;Xkg; Y2 ¼ minfXkþ1; . . .;X2kg; . . .; having distribution
function TðxÞ ¼ 1� ð1� FðxÞÞk: There were introduced the kth record values X(n,
k) based on X1, X2, … , and the usual (k = 1) record values Y(n), constructed with
the help of the sequence Y1, Y2, … . It was shown that for any k = 1, 2,… and any
n = 1, 2,… the following equality in distribution is valid:

Xðn; kÞ¼d Yðn; 1Þ: ð9:2:7Þ

It follows from (9.2.7) that for any k = 2, 3,… the set of all possible limit
distributions for the suitably normalized kth record values also coincides with set
(9.2.5) of the limit distributions for the classical (k = 1) record values.

9.3 Asymptotic Behavior of Discrete Records

Let us discuss some problems connected with record values in the sequences of
discrete X’s. Practically, without loss of generality, we can deal only with sequences
of independent identically distributed X, X1, X2,…, taking values 0, 1, 2, … with
positive probabilities
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pn ¼ PfX ¼ ng; n ¼ 0; 1; 2; . . .

Denote

qn ¼ PfX� ng; n ¼ 0; 1; 2; . . .

and consider record values X(n) in the sequence X1, X2,….
Let us introduce also random indicators ηn, n = 0, 1, 2,…, such that ηn = 1, if n is

a record value in our sequence, and ηn = 0, if the sequence of records X(1), X(2),…
does not contain this value. As it was showed in Shorrock (1972b), these indicators
are independent. Moreover the probabilities

rn ¼ Pfgn ¼ 1g ¼ 1� Pfgn ¼ 0g

are expressed as

rn ¼ pn=qn; n ¼ 0; 1; 2; . . .:

It is evident that in this situation

PfXðnÞ[mg ¼ Pfg0 þ g1 þ . . .þ gm\ng;m ¼ 0; 1; 2; . . .; n ¼ 1; 2; . . .:

ð9:3:1Þ

Indeed, on the RHS of (9.3.1) one can see a sequence of independent indicators
with expectations Eηn = rn and variances Vargn ¼ rn 1� rnð Þ; n ¼ 0; 1; 2. . . Hence,
under some specific conditions on probabilities r0, r1,… one obtains the asymp-
totical normality of sums

ðg0 þ g1 þ . . .þ gm � amÞ=bm;m ! 1;

where

am ¼ r0 þ r1 þ . . .þ rm;

bm ¼ ðr0ð1� r0Þ þ r1ð1� r1Þ þ . . .þ rmð1� rmÞÞ1=2;m ¼ 0; 1; 2; . . .; ð9:3:2Þ

and then this result allows to prove the normality (under n → ∞) of the suitably
centered and normalized record values X(n). Indeed, since indicators ηn are bounded
random variables, the condition bm → ∞ provides the asymptotical normality of
sums (η0 + η1 + … + ηm − am)/bm. Then it is possible to state the asymptotical
normality of (X(n)−A(n))/B(n) under the suitable choice of constants A(n) and B(n).
The matter is that really in the general situation one can’t express A(n) and B(n) via
the initial probabilities r0, r1,…. Hence the case of the geometric distributions is
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rather interesting and important because it allows to present the limit distribution of
X(n) in the simplest form.

Let us consider the situation of the geometric distribution with probabilities

pn ¼ PfX ¼ ng ¼ ð1� pÞpn�1; n ¼ 1; 2; . . .: ð9:3:3Þ

In this case

rn ¼ ð1� pÞ; n ¼ 1; 2; . . .:

Exercise 9.3.1 Show that for X’s having geometric distribution (9.3.3) the fol-
lowing asymptotical relation holds for any −∞ < x < ∞:

Pfð1� pÞXðnÞ � n\ xðnpÞ1=2g ! UðxÞ; n ! 1: ð9:3:4Þ

9.4 Exercises (solutions)

Exercise 9.1.1 (answer) For any k = 1, 2,…, n = 1, 2,… and m = 1, 2,… the
following equality holds:

PfLðn; kÞ[mg ¼ PfNðm; kÞ\ ng:
Exercise 9.1.2 (answer) For any k = 1, 2,… the following limit relation is valid:

sup
x

jPfk log Lðn; kÞ � n\x
ffiffiffi
n

p g � UðxÞj ! 0; n ! 1:

Exercise 9.1.3 (solution) We see that

PfTn [ xg ¼ PfLðnþ 1Þ[ xLðnÞg ¼
X1

i¼n

PfLðnþ 1Þ[ xLðnÞjLðnÞ ¼ igPfLðnÞ ¼ ig

¼
X1

i¼n

PfLðnþ 1Þ[ ½xi�jLðnÞ ¼ igPfLðnÞ ¼ ig:

Here [xi] denotes the entire part of xi. It follows from (3.5.15) that

PfLðnþ 1Þ[mjLðnÞ ¼ iÞg ¼ i=m;m ¼ i; iþ 1; . . .:

Thus,
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PfTn [ xg ¼
X1

i¼n

ði=½xi�ÞPfLðnÞ ¼ ig:

Taking into account relations

1=x� i=½xi�\1=xþ 1=x½xi�

and

X1

i¼n

PfLðnÞ ¼ ig ¼ 1;

one gets that

1=x�
X1

i¼n

ði=½xi�ÞPfLðnÞ ¼ ig\1=xþ
X1

i¼n

ð1=x½xi�Þ PfLðnÞ ¼ ig\1=xþ 1=x½xn�;

ð9:4:1Þ

and it follows now from (9.4.1) that

PfTn [ xg ! 1=x; n ! 1:

Exercise 9.2.1 (hint) In this situation (see Representation 4.2.1)

XðnÞ ¼d Sn ¼ m1 þ � � � þ mn;

where ν1, ν2,… are independent random variables, and

Emk ¼ Varmk ¼ 1; k ¼ 1; 2; . . .

Hence it is enough to apply the classical Central Limit Theorem for independent
identically distributed summands and to get that

PfXðnÞ � n\xn1=2g ! UðxÞ; n ! 1:

Exercise 9.2.2 (hint and answer) It is enough to use equality (9.2.6) and the
corresponding result for X(n, 1) = X(n), which was obtained in the previous
Exercise 9.2.1. Then the final relation will have the following form:

PfkXðn; kÞ � n\xn1=2g ! UðxÞ; n ! 1:
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Exercise 9.3.1 (solution) It follows from (9.3.1) that in this case

PfXðnÞ[mg ¼ Pfg1 þ � � � þ gm\ng;m ¼ 1; 2; . . .; n ¼ 1; 2; . . .;

and

rn ¼ Pfgn ¼ 1g ¼ 1� Pfgn ¼ 0g ¼ pn=qn ¼ ð1� pÞ; n ¼ 1; 2; . . .

Applying the classical Central Limit Theorem for independent identically dis-
tributed random variables having expectations (1 − p) and variances p(1 − p) we
obtain that

P ðg1 þ � � � þ gm � mð1� pÞÞ= mpð1� pÞð Þ1=2\x
n o

! U xð Þ; n ! 1 ð9:4:2Þ

Denote

aðn; xÞ ¼ ðnþ xðnpÞ1=2Þ=ð1� pÞ:

We need to find the limit (under n → ∞) expression for

PfXðnÞ� aðn; xÞg ¼ 1� Pfg1 þ . . .þ g½aðn;xÞ�\ng

Substituting [a(n, x)] instead of m to the LHS of (9.4.2) one gets that

Pfg1 þ . . .þ g½aðn;xÞ�\ng ! Uð�xÞ; n ! 1:

Thus,

PfXðnÞ� aðn; xÞg ! 1� Uð�xÞ ¼ UðxÞ; n ! 1:
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Chapter 10
Nonclassical Record Schemes

10.1 Records in the Fα-Scheme

Really the first record model for sequences of non-identically distributed X’s was
suggested by Yang (1975). In this scheme records are considered in the sequence

Yk ¼ max Xk;1; . . .;Xk;nðkÞ
� �

; k ¼ 1; 2; . . .;

where {Xk,j}, j = 1, 2,. . ., n(k), k = 1, 2,. . .., are i.i.d. random variables with a
common continuous distribution function F. Indeed here any Yk, k = 1, 2,. . ., has a
specific distribution function Fk(x) = Fn(k)(x), where n(k) is the corresponding
integer value. This partial model initiated the appearance of the more general the
so-called Fα-scheme (see, for details, Nevzorov (1981, 1985) and books Nevzorov
(2000, 2001), Ahsanullah and Nevzorov (2001a)), where independent r.v.’s Xk,
k = 1, 2,. . ., have distribution functions

Fk xð Þ ¼ FaðkÞ xð Þ; aðkÞ[ 0; k ¼ 1; 2; . . .; ð10:1:1Þ

and F is any continuous distribution function.
In this generalization of Yang’s model coefficients α(k) can take any positive

values. The most important property of this scheme is that the record indicators ξn,
n = 1, 2,. . . (which mark the appearance of the strong upper record values), defined
in Chap. 3, save the independence property and the following equalities are valid:

P nn ¼ 1f g ¼ a nð Þ=S nð Þ; n ¼ 1; 2; . . .: ð10:1:2Þ

where S nð Þ ¼ a 1ð Þ þ . . .þ a nð Þð Þ:
Exercise 10.1.1 Let independent random variables X1, X2,. . . have distribution
functions of the form (10.1.1). Let ξn = 1 if Xn is a record value in the sequence X1,
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X2,. . . and ξn = 0, otherwise. Show that for any n = 2, 3,. . . indicators ξ1, ξ2,. . ., ξn
are independent.

Really, the joint distributions of record indicators in the Fα-scheme are given by
the following equality:

P nkð1Þ ¼ 1; nkð2Þ ¼ 1; . . .; nkðnÞ ¼ 1
� � ¼

Yn
m¼1

aðkðmÞÞ
SðkðmÞÞ; 1� k 1ð Þ\k 2ð Þ\. . .\k nð Þ;

ð10:1:3Þ

It is interesting also to consider the relationship between record indicators in the
Fα-scheme and the corresponding maximal values M(n) = max{X1, X2,. . ., Xn},
n = 1, 2,. . ..

Exercise 10.1.2 Show that for any n = 1, 2,. . . random indicators ξ1, ξ2,. . ., ξn and
maximal value M(n) are independent.

The independence property of record indicators provided the possibility to
obtain for the Fα-scheme a lot of results for record times and record values, which
are analogous to the corresponding results for the “classical” records.

For example, it follows from (10.1.2) that

Enn ¼ pn andVarnn ¼ pn 1� pnð Þ; n ¼ 1; 2; . . .;

where

pn ¼ P nn ¼ 1f g ¼ a nð Þ= S nð Þ:

Hence it is easy to investigate (under some conditions on probabilities pn) the
limit behavior of numbers of records N(n) and record values L(n).

Exercise 10.1.3 Formulate for the numbers of records N(n) and the record times L
(n) in the Fα-scheme the results analogous to relations (9.1.1) and (9.1.3), which are
valid for the classical records.

As to the asymptotic behavior of the record values in the Fα-scheme, it was
proved (see, for example, Nevzorov (1995)), that the set of all possible asymptotic
distributions of the suitably normalized record values X(n) (under some rather mild
restrictions on coefficients α(1), α(2),. . .) consists of the same three (given in
Chap. 9.2) limit distributions

T xð Þ ¼ U gk xð Þð Þ; k ¼ 1; 2; 3;
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where

g1 xð Þ ¼ x;

g2 xð Þ ¼ c log x; c[ 0; if x[ 0; and g2 xð Þ ¼ �1; if x\ 0;

g3 xð Þ ¼ �c log �xð Þ; c[ 0; if x\0; and g3 xð Þ ¼ 1; if x[ 0:

10.2 Linear Draft Model

One more simplest way to get a nonstationary record scheme is to take a sequence
of independent X’s with any common distribution function F and then construct a
new sequence Yn = Xn + c(n), n = 1, 2,. . ., where constants c(n) provide a non-
random trend. The most natural in this construction is the situation when c(n) = cn,
n = 1, 2,. . ., where c is some constant. Indeed, it is clear that if c < 0 then the
number of records in the sequence Y1, Y2,. . . is finite with probability 1. If c = 0 one
gets the well-known classical record model. Hence really this scheme is interesting
for c > 0. This model is called the Linear Draft record model. This record scheme
and some its generalizations were investigated in many papers. See, for example,
the works by Foster and Teichroew (1955), Ballerini and Resnick (1985, 1987), de
Haan and Verkade (1987), Smith (1988), Nagaraja (1994a).

Let us consider the sequence

Yn ¼ Xn þ cn; n ¼ 1; 2; . . .;

where c > 0. In this case the distributions of record indicators ξn are given as

pn ¼ P nn ¼ 1f g ¼ 1� P nn ¼ 0f g ¼
Z1
�1

Yn�1

j¼1

Fðxþ cjÞdFðxÞ: ð10:2:1Þ

Exercise 10.2.1 Let now F(x) in this model be the Gumbel distribution function:

F xð Þ ¼ e�e�x
;�1\x\1: ð10:2:2Þ

Find for this case probabilities pn, n = 1, 2,. . ..
It is interesting that only for the case, when X’s in the Linear Draft model have

the Gumbel distribution, record indicators ξ1, ξ2, . . . are independent. Note also that
in this case

P Yn\ xf g ¼ F xð Þð ÞaðnÞ; ð10:2:3Þ
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where α(n) = exp(cn), n = 1, 2,. . .., that is we deal here with the partial case of Fα-
scheme.

It is not difficult to see that probabilities pn, given in (10.2.1), decrease:
p1 > p2 > . . .. Hence there exists the limit

p ¼ lim
n!1 pn:

This limit p is named the limiting record rate. For example, Ballerini and
Resnick (1985) showed that if c = 1 and F(x) = Φ(x), then p = 0.72506. . ..

It was shown (see Nagaraja (1994a)) that if c > 0, then p is positive if and only if

Z1
0

ð1� FðxÞÞdx\1:

Note also that the limiting record rate p in this model appears in some limit
theorems for the numbers of records N(n) (see, Ballerini and Resnick (1985)). For
example, the following relations are valid for the Linear Draft model:

E N nð Þ=nð Þ ! p and E N nð Þ=n�pð Þ2! 0; as n ! 1:

10.3 δ-Exceedance Record Scheme

This scheme was suggested by Balakrishnan et al. (1997). A new observation Xj is
called δ-exceedance upper record value if it is larger than the previous record by a
prefixed positive quantity δ > 0. In this model L(1) = 1 and

L nþ 1ð Þ ¼ min jjj[ L nð Þ; Xj [XLðnÞ þ d
� �

; n ¼ 1; 2; . . .:

The sequence fXLðnÞ; n ¼ 1; 2; . . . :g forms the δ-exceedance upper record
scheme. If we have the sequence of i.i.d. X’s having some continuous distribution
function F(x) and probability density function (pdf) f(x), then the joint pdf of the
first m upper records X(1), X(2),. . ., X(m) is given in this scheme by equalities

fXð1Þ;Xð2Þ;...;XðmÞðx1; . . .; xmÞ ¼ f ðx1Þ
1� Fðx1 þ dÞ . . .

f ðxm�1Þ
1� Fðxm�1 þ dÞ f ðxmÞ; xj [ xj�1 þ d;

j ¼ 2; 3; . . .;m:

ð10:3:1Þ
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Exercise 10.3.1 Consider the exponential E(1) distribution with F(x) = 1 − exp
(−x), x ≥ 0 and write the expression for the joint pdf of X(1), X(2),. . ., X(m). Show
that the marginal pdf of XðmÞ; m ¼ 1; 2; . . .; is given as

fXðmÞðxÞ ¼ 1
CðmÞ ðx� mdÞm�1e�ðx�mdÞ; x[md: ð10:3:2Þ

We can see from (10.3.2) that XðmÞ � md has the gamma distribution.
Moreover, in this situation the form of the joint pdf allows us to state that for any
m = 1, 2,. . . the vector {X(1), X(2),. . ., X(m)} have the same distribution as the
vector {Y1, Y1 + Y2,. . ., Y1 + Y2 + . . . + Ym}, where Yi’s are independent and have
the exponential distribution with F xð Þ ¼ 1� e�ðx�dÞ; x[ d: From here it follows
that in this situation inter record values X(m) − X(m − 1), m = 2, 3,. . ., are
independent and have the same exponential distribution.

10.4 Records with Restrictions I

The next object of our consideration is the so-called records with restrictions,
which are rather close in some sense to the previous δ-exceedance record scheme.
Consider the sequence of independent identically distributed random variables X1,
X2, … and fixed some positive constant C. We take X(1) = X1 and L(1) = 1 as the
first record value and the first upper record time correspondingly. The next record
times L(n) and record values X(n) are defined as follows:

L nð Þ ¼ min j[L n� 1ð Þ : X n� 1ð Þ\Xj � X n� 1ð Þ þ C
� �

; X nð Þ ¼ XLðnÞ; n ¼ 2; 3; . . . :

ð10:4:1Þ

It means that the new coming observation is ignored as a record, if it exceeds
essentially the previous record value.

Suppose that the initial r.v.’s have a common pdf f(x). It is not difficult to get the
expression for the conditional pdf fn(xn|x1, x2,. . ., xn−1), that is the expression
for the pdf of X(n) under condition that X(1) = x1, X(2) = x2,. . ., Xn−1 = xn−1, where
0 < xj−xj−1 ≤ C, j = 2, 3,. . ., n−1, are fixed. One obtains in this case that

fn xnjx1; x2; . . .; xn�1ð Þ ¼ f xnð Þ= F xn�1 þ Cð Þ � F xn�1ð Þð Þ; ð10:4:2Þ

if xn–1 < xn ≤ xn−1 + C, and fn(xn|x1, x2,. . ., xn−1) = 0, otherwise.
These equalities allow us to find the corresponding relations for probability

density functions fn−1(x) and fn(x) of record values X(n−1) and X(n):

fn xð Þ ¼ f xð Þ
Zx

x�C

ðfn�1 uð Þ= F uþ Cð Þ � F uð Þð ÞÞdu; n ¼ 2; 3; . . .: ð10:4:3Þ
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From (10.4.3) one gets that the joint pdf fn(x1, x2,. . ., xn) of record values X(1), X
(2),. . ., X(n) has the following form:

fn x1; x2; . . .; xnð Þ ¼ f x1ð Þ f ðx2Þ
ðFðx1 þ CÞ � Fðx1ÞÞ . . .

f ðxnÞ
ðFðxn�1 þ CÞ � Fðxn�1ÞÞ ;

ð10:4:4Þ

if x1\x2 � x1 þ C; x2\x3 � x2 þ C ; . . .; xn�1\ xn � xn�1 þ C;

and fn(x1, x2,. . ., xn) = 0, otherwise.
These relations can be simplified essentially for the case of exponential distri-

butions of X’s.

Exercise 10.4.1 Let us consider the sequence of X’s having the standard expo-
nential E(1)-distribution function F(x) = max{0, 1 − exp(−x)}. Define also X
(0) = X0 = 0. Apply (10.4.4) to obtain the joint pdf of record values X(1), X(2),. . ., X
(n) with some restriction value C > 0.

Show also that in this case the joint probability density function g(v1, v2,. . ., vn)
of the differences V1 = X(1) − X(0), V2 = X(2) − X(1),. . ., Xn = X(n) − X(n − 1) has
the form

g v1; v2; . . .; vnð Þ ¼ exp � v1 þ v2 þ . . .þ vnð Þf g= 1� exp �Cð Þð Þn; 0� v1 � C; . . .; 0� vn � C:

ð10:4:5Þ

Expression (10.4.5) allows us to state that inter record values V1, V2, . . ., Vn are
independent and identically distributed with pdf g(x) given as follows:

g xð Þ ¼ exp �xð Þ= 1� exp �Cð Þð Þ; if 0� x�C; ð10:4:6Þ

and g(x) = 0, otherwise.
It means that in this situation vectors {X(1), X(2),. . ., X(n)} and {V1, V1 + V2,. . .,

V1 + V2 + . . . + Vn}, where independent r.v.’s V1, V2,. . ., Vn have pdf (10.4.6), are
identically distributed. Thus exponential record value X(n) is presented as the sum
of n independent identically distributed random variables.

Note that the means and the variances of V1, V2,… are given as

aðcÞ ¼ EVk ¼ ð1� ð1þ CÞe�C=ð1� e�CÞ; k ¼ 1; 2; . . .; ð10:4:7Þ

and

r2ðcÞ ¼ VarVk ¼ ð1� ð2þ C2Þe�C þ e�2CÞ=ð1� e�CÞ2; k ¼ 1; 2; . . .: ð10:4:8Þ
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It is possible now to obtain, in particular, different limit theorems for the
exponential record values with restrictions. For example, it follows immediately
that in this case random variables XðnÞ � naðcÞð Þ=rðcÞn1=2; where a(c) and rðcÞ are
defined in (10.4.7) and (10.4.8), tend, as n ! 1; to the standard normal
distribution.

10.5 Records with Restrictions II

The next scheme is very close to the previous record models. Now we also fix some
constant C > 0, which determines the acceptable rate of exceeding of the previous
record value. The discrepancy of these two schemes is the following. In the second
case we do not ignore the observations, which are essentially greater than the
previous record value X(n). In this situation we simply determine the new record
value X(n + 1) as X(n) + C. In the case when the new coming observation belongs to
the interval (X(n), X(n) + C] it is announced as the record value X(n + 1).

If we again consider the initial independent E(1)—distributed random variables
(with pdf f(x) = exp(−x), x ≥ 0) X1, X2,. . . and denote the records with such type of
restrictions as 0 = X(0, C) < X(1, C) < X(2, C) < . . ., then arguments analogous to
those, which are given in the previous model, show that differences (inter record
values)

Wk Cð Þ ¼ X k;Cð Þ � X k � 1;Cð Þ; k ¼ 1; 2; . . .;

are also independent. In this case one gets that

P Wk Cð Þ\xf g ¼ 1� exp �xð Þ; if 0� x�C; andP Vk\ xf g ¼ 1; if x[C:

ð10:5:1Þ

In particular,

P WkðCÞ ¼ Cf g ¼ expð�CÞ; k ¼ 1; 2; . . . :

One can see that in this record scheme for any n = 1, 2,. . . the distribution of the
vector of record values {X(1, C), X(2, C),. . ., X(n, C)} coincides with the distri-
bution of the vector

W1ðCÞ;W1ðCÞ þW2ðCÞ; . . .;W1ðCÞ þW2ðCÞ þ . . .þWnðCÞ;

where W1(C),W2(C),. . . are independent random variables having the same distri-
bution function (10.5.1).

Exercise 10.5.1 Find expressions for expectations and variances of summands
W1(C), W2(C),. . . and formulate the Central Limit Theorem for the exponential
record values X(n, C).
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10.6 Records with Confirmation

One more nonclassical record scheme—the so called “records with confirmation”
(confirmed records), was considered in Saghatelyan (2008) and Nevzorov and
Saghatelyan (2009). Let us fix some k = 1, 2,. . .. In the simple option of this scheme
to determine a new record value X(n + 1, k) one must wait for appearance of
k observations which will be greater than the previous record value X(n, k) and only
after this event it is possible to determine X(n + 1, k) as the maximal value among
these k observations. This scheme is useful in the situation when among X’s, which
have some fixed distribution, can appear an observation having another distribution
(the contamination of the original sample). Taking into account this situation we
need to find the distributions of the corresponding record times L(n, k), n = 1, 2,. . ..
Note that L(1, k) = k.

Consider a random sample X1;X2; . . .;Xn of size n from a population with a
continuous distribution function F(x). It is easy to find that the distribution of the
minimal number R(n) of additional observations, which are needed to get the first
value exceeding Xn,n = max{X1,. . ., Xn}, is given as follows:

P R nð Þ[mf g ¼ n= nþ mð Þ: ð10:6:1Þ

Let now R(n, k) denote the number of observations, which are needed to get
exactly k values exceeding Xn,n.

Exercise 10.6.1 Find the distribution of R(n, k), n = 1, 2,. . ., k = 1, 2,. . ..

Let us consider now more complicate situations, when a new record will coin-
cide with the mth (1 ≤ m ≤ k) in order observation taken from k random variables,
which are greater than the previous record value. The reason why we consider here
the case when m can be less than k is rather simple. For example, imagine that we
know that the given sample can be contaminated with some outliers and we expect
that these outliers are presented in the sample by the “top” observations. Hence it is
naturally to delete these extraneous observations from the further consideration.

As above the most interesting case here is connected again with the exponential
distribution. The following result is valid for the corresponding exponential record
values X(n, k, m).

Theorem 10.6.1 Let F(x) = max{0,1 − exp(−x)}, and 1 ≤ m ≤ k, defined above, are
fixed. Then for any n = 1, 2,. . . the following equality holds:

X nþ 1; k;mð Þ¼d X n; k;mð Þ þ XðnÞ
1 =k þ . . .þ XðnÞ

m = k � mþ 1ð Þ; ð10:6:2Þ

where X n; k;mð Þ; XðnÞ
1 ; . . .;XðnÞ

m are independent and P{ XðnÞ
j < x}= max{0,1 − exp

(−x)}, 1 ≤ j ≤ m.
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Corollary 10.6.1 It follows from Theorem 10.6.1, that

X n; k;mð Þ¼d l1=k þ l2= k � 1ð Þ þ . . .þ lm= k � mþ 1ð Þ; ð10:6:3Þ

where µ1, µ2,. . . are independent Gamma(n)-distributed r.v.’s.

From this theorem, which is formulated for the exponential record values, it can
be obtained (using the standard methods from the theory of records) that a set of all
possible types of the limit (as n ! 1) distributions G(x) (under any fixed k = 1,
2,. . . and m = 1, 2,. . ., k) for the records with confirmations X(n, k, m) coincides
with the corresponding set for the classical records:

Gi xð Þ ¼ U �ln �ln Hi xð Þð Þð Þ; i ¼ 1; 2; 3;

where

H1 xð Þ ¼ exp � exp �xð Þf g;�1\x\1;

H2 xð Þ ¼ 0; if x\0; andH2 xð Þ ¼ expf�x�dg; if x[ 0; d[ 0;

H3 xð Þ ¼ expf� �xð Þdg; if x\ 0; d[ 0; andH3 xð Þ ¼ 1; if d[ 0;

and Φ(x) is the normal N(0, 1)-distribution function.
Indeed, the centering and normalizing constants in this situation will differ from

the corresponding constants for the classical records and will depend on k and m.

10.7 The Record Scheme of Balabekyan-Nevzorov

One more nonstationary record model was suggested by Balabekyan and Nevzorov
(1986). Consider the following situation. Let m athletes of different skill have in
succession n starts each. In this case the distribution functions, which correspond to
their results X1;X2; . . .;Xm;Xmþ1; . . .;X2m; . . .;X n�1ð Þmþ1; . . .;Xnm; form a sequence

F1 xð Þ;F2 xð Þ; . . .;Fm xð Þ;F1 xð Þ; . . .;Fm xð Þ; . . .;F1 xð Þ; . . .;Fm xð Þ;

that is, a group of m different distribution functions is repeated n times. Hence one
can see that this record scheme contains at the same time elements of stationarity
and nonstationarity.

Let N(nm) be the number of records in a sequence X1, X2,. . .,Xnm. It appears that
comparing N(nm) with the number of the classical records in the sequence Y1 = max
{X1, X2,. . ., Xm},. . ., Yn = max{Xm(n−1)+1,. . ., Xmn} allows us to obtain the following
result.
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Theorem 10.7.2 Let F1, F2,. . ., Fm be continuous distribution functions. Then

sup
x

P N nmð Þ � logn\x lognð Þ1=2
n o

� UðxÞ
��� ���! 0; n ! 1: ð10:7:1Þ

Remark 10.7.1 Note that in this theorem m need not to have some fixed value. It
may be permitted to increase to a certain degree with n, like

m ¼ m nð Þ ¼ o lognð Þ1=2
� �

; n ! 1:

10.8 Exercises (solutions)

Exercise 10.1.1 (solution) Denote

S nð Þ ¼ a 1ð Þ þ a 2ð Þ þ . . .þ a nð Þ; M nð Þ ¼ max X1;X2; . . .;Xnf g

and

Gn xð Þ ¼ P M nð Þ\ xf g ¼ F1 xð ÞF2 xð Þ. . .Fn xð Þ ¼ F xð Þð ÞSðnÞ; n ¼ 1; 2; . . .:

One can see that in this situation for any n = 2, 3,. . . the following equality holds:

P nn ¼ 1f g ¼
Z1
�1

Gn�1 xð ÞdFn xð Þ ¼
Z1
�1

F xð Þð ÞSðn�1Þd FaðnÞ xð Þ
� �

¼
Z1
0

xS n�1ð Þd xaðnÞ
� �

¼ a nð Þ=SðnÞ:
ð10:8:1Þ

Now in order to get the independence of the indicators it suffices to obtain that
for any 1 ≤ k(1) < k(2) < . . .<k(r), r = 2, 3,…, we have relations

P nkð1Þ ¼ 1; nkð2Þ ¼ 1; . . .; nkðrÞ ¼ 1
� � ¼

Yr
m¼1

aðkðmÞÞ
SðaðkðmÞÞÞ: ð10:8:2Þ

Recall that the probability integral transformation does not change the order of
random variables and hence it does not change the values of the record indicators.
Hence for simplicity (without loss of generality) we can take F(x) = x, 0 < x < 1, and

Fk (x) = xα(k), k = 1, 2,. . .. Then, taking into account that
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P nkð1Þ ¼ 1; nkð2Þ ¼ 1; . . .; nkðrÞ ¼ 1
� �

¼P Xkð1Þ [M k 1ð Þ � 1ð Þ; Xkð2Þ [M k 2ð Þ � 1ð Þ; . . .; XkðrÞ [M k rð Þ � 1ð Þ� �
;

one gets the relation

P nkð1Þ ¼ 1; nkð2Þ ¼ 1; . . .; nkðrÞ ¼ 1
� �

¼
Z1
0

vSðkð1Þ�1Þ
1 dðvaðkð1ÞÞ1 Þ

Z1
v1

vSðkð2Þ�1Þ�Sðkð1ÞÞ
2 dðvaðkð2ÞÞ2 Þ. . .

Z1
vr�1

vSðkðrÞ�1Þ�Sðkðr�1ÞÞ
r dðvaðkðrÞÞr Þ:

ð10:8:3Þ

Accurately continue the integration in (10.8.3.) we get relation (10.8.2.).

Exercise 10.1.2 (solution) This case is very close to the situation in Exercise
10.1.1. Instead of (10.8.2.) one can verify that for any 1 ≤ k(1) < k(2) < . . . < k
(r) ≤ n, r = 2, 3,…, we have relations

P nkð1Þ ¼ 1; nkð2Þ ¼ 1; . . .; nkðrÞ ¼ 1; M nð Þ\x
� � ¼

Yr
m¼1

aðkðmÞÞ
SðaðkðmÞÞÞF xð ÞSðnÞ:

ð10:8:4Þ

Indeed, again it is possible to take F(x) = x, 0 < x < 1. Then the LHS of (10.8.4)
can be written as

P nkð1Þ ¼ 1; nkð2Þ ¼ 1; . . .; nkðrÞ ¼ 1;M nð Þ\x
� �
¼
Zx
0

vSðkð1Þ�1Þ
1 d vaðkð1ÞÞ1

� � Zx
v1

vSðkð2Þ�1Þ�Sðkð1ÞÞ
2 d vaðkð2ÞÞ2

� �
� � �

Zx
vr�1

vSðkðrÞ�1Þ�Sðkðr�1ÞÞ
r d vaðkðrÞÞr

� �
xSðnÞ

ð10:8:5Þ

Continue the integration in (10.8.5) one gets the necessary equality

P nkð1Þ ¼ 1; nkð2Þ ¼ 1; . . .; nkðrÞ ¼ 1; M nð Þ\x
� � ¼

Yr
m¼1

aðkðmÞÞ
SðaðkðmÞÞÞ x

SðnÞ:

Exercise 10.1.3 (answer) Denote

pn ¼ P nn ¼ 1f g ¼ 1� P nn ¼ 0f g ¼ a nð Þ=S nð Þ; n ¼ 1; 2; . . .:

Then
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A nð Þ ¼ EN nð Þ ¼
Xn
k¼1

pk andBn ¼ Var N nð Þ ¼ A nð Þ �
Xn
k¼1

p2k :

In this case, if Bn → ∞, then

sup
x

jPfN nð Þ � A nð Þ\ x
ffiffiffiffiffiffiffiffiffiffi
BðnÞ

p
g � U xð Þj ! 0; n ! 1: ð10:8:6Þ

Let additionally the following relation holds:

Xn
k¼1

p2k ¼ o
Xn
k¼1

pk

 !
; n ! 1:

Then (10.8.6) can be simplified as follows:

sup
x

jP N nð Þ � logS nð Þð Þ\x logS nð Þð Þ1=2
n o

� U xð Þj ! 0; n ! 1: ð10:8:7Þ

Taking into account the equality

P L nð Þ[mf g ¼ P N mð Þ\nf g;

it is possible to obtain from (10.8.7) that if

A nð Þ ! 1; pn ¼ a nð Þ=S nð Þ ! 0

and

Xn
k¼1

p2k ¼ o
Xn
k¼1

pk

 !
; n ! 1;

then

sup
x

jP logS L nð Þð Þ � nð Þ\xn1=2
n o

� U xð Þj ! 0 ; n ! 1: ð10:8:8Þ

The proof of relations (10.8.6)–(10.8.8) and some related results concerning the
Central Limit Theorem for N(n) and L(n) can be found in Nevzorov (1986c, 1995).

Exercise 10.2.1 (solution) It is enough to see that

Fn xð Þ ¼ P Yn\ xf g ¼ F x� cnð Þ ¼ F xð Þð ÞaðnÞ; n ¼ 1; 2; . . .;
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where α(n) = exp(cn). Thus random variables Y1, Y2,. . . in this case present the
Fα-scheme. Hence, the distributions of record indicators ξn are given as

pn ¼P nn ¼ 1f g ¼ 1� P nn ¼ 0f g ¼ exp cnð Þ= exp cð Þ þ exp 2cð Þ þ . . .þ exp ncð Þð Þ
¼ 1� exp cð Þð Þ exp c n� 1ð Þð Þ= 1� exp ncð Þð Þ; n ¼ 1; 2; . . .:

Exercise 10.3.1 (solution) Taking into account the general expression (10.3.1) and
substituting f(x) = exp(−x) and 1 − F(x) = exp(−x), x > 0, in (10.3.1) we get that

fXð1Þ;...;XðmÞðx1; . . .; xmÞ ¼ expðdðm� 1ÞÞ expð�xmÞ; x1 [ 0; xj [ xj�1 þ d; j ¼ 2; 3; . . .;m:

ð10:8:9Þ

By fixing any xm > mδ and integrating the RHS of (10.8.9) over the domain
{x1 > 0, x2 > x1 + δ,. . ., xm−2 + δ < xm−1 < xm − δ}, one obtains now that

fXðmÞðxmÞ ¼
1

CðmÞ ðxm � mdÞm�1e�ðxm�mdÞ; xm [md:

Exercise 10.4.1 (answer) Substituting f(x) = exp(−x) and 1 − F(x) = exp(−x), x > 0,
in (10.4.4) one immediately gets that in this partial case

fn x1; x2; . . .; xnð Þ ¼ exp �xnð Þ= 1� exp �cð Þð Þn; ð10:8:10Þ

if x1\ x2 � x1 þ C; x2\x3 � x2 þ C ; . . .; xn�1\xn � xn�1 þ C;

and fn(x1, x2,. . ., xn) = 0, otherwise.

It immediately follows from (10.8.10) that the joint probability density function
of the differences

V1 ¼ X 1ð Þ � X 0ð Þ;V2 ¼ X 2ð Þ � X 1ð Þ; . . .;Xn ¼ X nð Þ � X n� 1ð Þ

has the form (10.4.5).

Exercise 10.5.1 (answers) In this case

aðCÞ ¼ EWkðCÞ ¼ 1� expð�CÞ;
r2ðCÞ ¼ VarWkðCÞ ¼ 1� 2C expð�CÞ � expð�2CÞ; k ¼ 1; 2; . . .:

ð10:8:11Þ

Since Wk(C), k = 1, 2,. . . are independent identically distributed and restricted
random values one can state that the following asymptotical relation, where nor-
malizing coefficients are defined in (10.8.11), holds as n → ∞ :
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sup
x

jðPðXðn;CÞ � naðcÞÞ\ xrðcÞn1=2 � UðxÞj ! 0:

Exercise 10.6.1 (answer) For any n = 1, 2,. . ., k = 1, 2,. . ., the following equality
holds:

P R n; kð Þ[mf g ¼ 1� m! nþ m� kð Þ!= m� kð Þ! nþ mð Þ!; m� k:

Compare it with (10.6.1), where the corresponding relation for R(n) = R(n,1) is
given.
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