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Foreword

One of the charms of mathematics is the contrast between its generality and its
applicability to concrete, even everyday, problems.

Branching processes are typical in this. Their niche of mathematics is the abstract
pattern of reproduction, sets of individuals changing size and composition through
their members reproducing; in other words, what Plato might have called the pure
idea behind demography, population biology, cell kinetics, molecular replication,
or nuclear fission, had he known these scientific fields. Even in the performance of
algorithms for sorting and classification there is an inkling of the same pattern.

In special cases, general properties of the abstract ideal then interact with the
physical or biological or whatever properties at hand. But the population, or branch-
ing, pattern is strong; it tends to dominate, and here lies the reason for the extreme
usefulness of branching processes in diverse applications. Branching is a clean and
beautiful mathematical pattern, with an intellectually challenging intrinsic structure,
and it pervades the phenomena it underlies.

The problem that gave birth to branching processes, that of the astonishingly
frequent extinction of noble families, illustrates the situation well. The starting point
was a question, which today would seem more intriguing or amusing than serious:
Where have all the well-known families gone? Where are all the Hohenstauferns,
Plantagenets, Tudors, Trastámaras, or Vasas? How come that they so often have died
out, even though the populations they were part of increased? Degeneration?

But to Bienaymé and Galton, 150 years ago, this was a serious concern, and
behind it lurks a question of general scientific interest: Can frequent extinction of
separate family lines go hand in hand with a rapid increase of the whole population?
Is this a general property of the branching pattern and not some oddity of human
populations? If so, would it be part of an explanation of the extremely frequent
extinction of species?

After a first disastrous mistake and 50 years of ensuing confusion, branching pro-
cesses were able to prove that in natural conditions frequent extinction of separate
family lines is completely compatible with exponential (“Malthusian”) growth of
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vi Foreword

the whole. This is, indeed, a mathematical property: a strongly supercritical branch-
ing process can still exhibit extinction probabilities say around 75%.

Extinction matters, like the time and path to extinction, remain important in
branching processes and cutting-edge areas of application like conservation biol-
ogy. But with time branching processes have developed into a full-fledged theory
of population dynamics, encompassing the growth of populations as well as the sta-
bilization of their composition, and their pedigrees looking backward. Mating can
be dealt with, at least in simple processes, the effects of random environments clar-
ified, and the first steps are being taken on models where there is a feedback from
population size on individual behaviour. Today branching processes is a mature and
important part of mathematics, and also of theoretical biology, theoretical chemistry,
nuclear physics, computer algorithms, and demography.

Many aspects of the theory and its stance today were presented at the 2009 Bada-
joz workshop on branching processes, organized by the active branching process
group of the University of Extremadura. This book contains most of the lectures
given. It will be of great help to those wanting to acquaint themselves with contem-
porary branching process theory.

Gothenburg, Sweden
September 2009 Peter Jagers



Preface

The Workshop on Branching Processes and their Applications (WBPA) was held
during 20–23 April 2009 in Badajoz, Spain. This conference gave continuity to
such important previous meetings as the First World Conference on Branching Pro-
cesses held in Varna, Bulgaria, in 1993, the IMA workshop on Classical and Modern
Branching Processes held in Minnesota, USA, in 1994, and the more recent Sym-
posium: Branching in Biology held in Gothenburg, Sweden, in 2005. The WBPA
was promoted and organized by the Branching Processes Research Group belong-
ing to the Department of Mathematics of the University of Extremadura, Spain.
There were 35 invited participants from 15 countries from all over the world.

The papers presented at the workshop maintained a healthy balance between the
theoretical and practical aspects of branching process theory, showing it to be an
area of active and interesting research. They clearly indicated the importance of
branching concepts in the development of theoretical approaches to solving prob-
lems in applied fields such as Epidemiology, Cell Kinetics, Genetics, and, of course
Population Dynamics.

The Proceedings consists of 20 papers. All of them have been thoroughly re-
viewed. Parts covered by the workshop have been classified into the following areas:

1. Population Growth Models in Random and Varying Environments
2. Special Branching Processes
3. Limit Theorems and Statistics
4. Applications in Cell Kinetics and Genetics
5. Applications in Epidemiology
6. Two-Sex Branching Models

The first part deals with Population Growth Models in Random and Varying En-
vironments. V. Vatutin considers critical branching processes in independent and
identically distributed random environment. He shows the asymptotic behaviour of
the survival probability and proves a conditional functional limit theorem under hy-
potheses which are milder than those used in classical papers. G. Alsmeyer revisits
the extinction problem in branching processes in a stationary ergodic environment.

vii



viii Preface

The use of random times in connection with the stationary environment leads him
quite naturally to the use of Palm-duality theory in some of his arguments. C. Brau-
mann compares the density-independent models of population growth; namely the
Galton–Watson process, the simple birth and death process, and the Malthusian
stochastic differential equation model, the first two being demographic stochasticity
models, and the third an environmental stochasticity model. P. Mayster establishes
the existence of stationary distributions for alternating branching processes, where
two Markov branching processes act alternately in random time periods of observa-
tion and treatment.

In Part 2, Special Branching Processes, F. Klebaner considers models of popu-
lation–size–dependent branching processes with the feature that they are supercriti-
cal when the population reaches a certain threshold, near critical around that value,
and subcritical below it. G. Yanev reviews the existing results and presents new
ones on certain subtrees of the Galton–Watson family tree. He considers rooted and
complete subtrees, i.e., subtrees rooted at the ancestor and being family trees of a
deterministic branching process. K. Mitov et al. study Bienaymé–Galton–Watson
processes subordinated by a renewal process for which the interarrival periods have
a finite mean or heavy tails. V. Topchii studies renewal measure densities associated
with the problem of determining the expected number of particles at the origin of
catalytic branching random walks.

Part 3 focuses on Limit Theorems and Statistics. I. Rahimov considers a branch-
ing stochastic process with non-stationary immigration given by an offspring dis-
tribution depending on an unknown parameter. He estimates this parameter and in-
troduces a bootstrap process. The paper deals with how good the estimator must
be in order for the bootstrap process to have the same asymptotic properties as
the original process. M. Ispàny and G. Pap investigate critical and nearly critical
Galton-Watson branching processes with immigration, obtaining related functional
limit theorems by using a general convergence theorem for martingale differences.
M. González and I. del Puerto propose a weighted conditional least squares estima-
tor of the offspring mean matrix for a multitype controlled branching process and
study its asymptotic properties in the supercritical case.

Part 4 comprises some applications of the branching processes theory in Cell
Kinetics and Genetics. N. Yanev considers some new ideas for branching process
theory that arise in cell proliferation modeling. He considers distributions of dis-
crete and continuous labels and of ages and residual lifetimes, models of leukemia
cell kinetics, age-dependent branching populations with randomly chosen paths of
evolution as models of (in vitro) progenitor cell populations and the estimation of
offspring distributions, multitype branching populations with a large number of an-
cestors, and asymptotic likelihood estimation of the basic mitotic parameters. M.
Kimmel and M. Mathaes propose a modification of the discrete time branching pro-
cess described by Griffith and Pakes to model the amplification, mutation, and se-
lection forces of Alu elements. They derive a limit frequency spectrum of the Alu
element distribution, which serves as the theoretical, neutral frequency with which
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real Alu insertion data can be compared through statistical goodness of fit tests.
M. González et al. use a two-type bisexual branching process to model, in a two-sex
monogamic population, the evolution of the number of carriers of the two alleles
of a gene linked to the Y chromosome. They deal with inferential problems arising
from this model, considering a frequentist and parametric approach. They consider
the situation in which the only data available are the total number of females and the
total number of males of each genotype in each generation. This leads them to use
the expectation-maximization (EM) method in order to obtain maximum likelihood
estimators.

Part 5 is about applications in Epidemiology. This is an applied area in which
a number of new and exciting contributions were made at the Workshop. F. Ball
and P. Neal are concerned with applications of branching processes to model the
spread of an SIR (susceptible–infective–removed) epidemic among a closed, ho-
mogeneously mixing population consisting initially of certain numbers of infective
and susceptible individuals. Each infective remains infectious for a period sampled
independently from an arbitrary but specified distribution, during which he/she con-
tacts susceptible individuals independently with some rate for each susceptible. C.
Jacob et al. treat the problem of modeling the propagation of Bovine Spongiform
Encephalopathy at the scale of a very large population (Great Britain) in order to
predict its extinction time and to evaluate the efficiency of the main feed-ban regu-
lation. They elaborate a multitype branching process in discrete time with age and
population dependent individual transitions. The types are the health states at each
age. M. González et al. use a Sevast’yanov age-dependent branching process to de-
scribe outbreaks of infectious diseases with an incubation period. They propose a
method to obtain the optimal proportion of susceptible individuals that have to be
vaccinated in order to eliminate the disease from the population. D. Heinzmann is in-
terested in modeling the transmission dynamics of the macroparasite Echinococcus
granulosus. He presents an approximation for the time to extinction in a sub-critical
epidemic two-host interaction process for this macroparasite by using multitype
branching processes.

Part 6, Two-Sex Branching Models, has contributions from S. Ma and Y. Xing
who introduce and study a class of discrete time bisexual branching processes in
which in each generation there is allowed the immigration of females and males,
depending on the current numbers of females and males in the population, and from
M. Molina who presents a summary of the literature associated with the classes of
two-sex branching processes.

The organizers greatly appreciate the major response from the participants to
submit contributions to the Proceedings. They would also like to thank all the peo-
ple who actively participated in organizing the workshop, and those entities which
provided financial and scientific support. The main funding came from the Spanish
Ministry of Science and Innovation (Ministerio de Ciencia e Innovación), the Uni-
versity of Extremadura itself, and the Local Administration. The Spanish Society
of Statistics and Operations Research (SEIO) supported the meeting scientifically.
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Also, our very special thanks go to Peter Jagers for accepting the task of writing the
foreword of this book. Finally, many thanks to Springer Publishers, particulary to
Niels Peter Thomas and John Kimmel, for making it possible for this project to see
the light.

Badajoz, Spain Miguel González
September 2009 On behalf of the Editors
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Population Growth Models in Random and

Varying Environments



1
A refinement of limit theorems for the critical
branching processes in random environment

Vladimir Vatutin

Abstract For the critical branching processes in i.i.d. environment the asymptotic
behavior of the survival probability is found and a conditional functional limit the-
orem is proved under the hypotheses which are milder than those used earlier.

Mathematics Subject Classification (2000): 60J80, 60F17, 60K37

Keywords: branching processes in random environment, associated random walk,
Doney’s condition, survival probability, conditional limit theorems.

1.1 Introduction and main results

In this paper we refine some results from [1] concerning the asymptotic behavior
of the survival probability and the conditional functional limit theorem for the crit-
ical branching processes in i.i.d. random environment. To give a formal definition
of the processes under consideration let Δ be the space of probability measures on
N0 := {0,1,2, . . .} and Q be a random variable taking values in Δ . An infinite se-
quence Π = (Q1,Q2, . . .) of i.i.d. copies of Q is said to form a random environment.
A sequence of N0-valued random variables Z0,Z1, . . . is called a branching process
in the random environment Π , if Z0 is independent of Π and, given Π , the process
Z = (Z0,Z1, . . .) is a Markov chain with

L
(
Zn | Zn−1 = zn−1, Π = (q1,q2, . . .)

)
= L

(
ξn1 + · · ·+ξnzn−1

)
(1.1)

for every n ≥ 1, zn−1 ∈ N0 and q1,q2, . . . ∈ Δ , where ξn1,ξn2, . . . are i.i.d. random
variables with distribution qn. We can write this as

Vladimir Vatutin
Steklov Mathematical Institute, Gubkin Street 8, 119991 Moscow, Russia,
e-mail: vatutin@mi.ras.ru

M. González et al. (eds.), Workshop on Branching Processes and Their Applications, 3
Lecture Notes in Statistics – Proceedings 197, DOI 10.1007/978-3-642-11156-3 1,
c© Springer-Verlag Berlin Heidelberg 2010



4 Vladimir Vatutin

Zn :=
Zn−1

∑
i=1

ξni (1.2)

where, given the environment, Z is an ordinary inhomogeneous Galton-Watson pro-
cess. Thus, Zn is the nth generation size of the population and Qn is the distribution
of the number of children of an individual at generation n−1.

We will denote the corresponding probability measure on the underlying prob-
ability space by P. (If we refer to other probability spaces, then we use notation P

and E for the respective probability measures and expectations.)
In the theorems below we assume Z0 = 1 a.s. for convenience. For further details

and background of the branching processes in random environment we refer the
reader to [1–3, 12].

In what follows it is convenient to identify Q and Qn,n = 1,2, . . . with (random)
generating functions

f (s) :=
∞

∑
i=0

si Q({i}) =: E
[
sξ |Q

]
, 0 ≤ s ≤ 1 ,

and

fn(s) :=
∞

∑
i=0

si Qn({i}) =: E
[
sξn |Qn

]
, 0 ≤ s ≤ 1 ,

and to introduce the compositions

fk,n(s) := fk+1( fk+2(· · · fn(s) · · ·)) , 0 ≤ k < n, fn,n(s) := s. (1.3)

In the sequel we make no difference between the tuples Π = (Q1,Q2, . . .) and f =
( f1, f2, . . .). In particular, we rewrite the distributional identity (1.1) as

E[sZn | f,Zk] = E[sZn | Π ,Zk] = fk,n(s)Zk P–a.s. (1.4)

It follows from (1.4) that under the assumption P(Z0 = 1) = 1

P(Zn > 0 | Π) = 1− f0,n(0) P–a.s.

Later on for brevity we use the notation

P f (·) := P(· | f , Z0 = 1) , E f [·] := E [· | f , Z0 = 1]

and
P fn (·) := P(· | fn, Zn−1 = 1) , E fn [·] := E [· | fn, Zn−1 = 1]

for the probabilities and expectations related with functionals of the random variable
ξ (respectively, ξn) given f (respectively, fn) and

Pf (·) := P(· | f, Z0 = 1) , Ef [·] := E [· | f, Z0 = 1]
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for the probabilities and expectations related with functionals of the branching pro-
cess Z given f = ( f1, f2, . . .).

It was demonstrated in [1] that the properties of Z are first of all determined by its
associated random walk S = (S0,S1, . . .). This random walk has initial state S0 := 0
and increments Xn = Sn −Sn−1, n ≥ 1, defined as

Xn := log f ′
n(1),

which are i.i.d. copies of the logarithmic mean offspring number

X := log f ′(1) .

We assume that X is a.s. finite. In view of (1.1) the conditional expectation of Zn

given the environment f is calculated by the formula

μn := E[Zn | Z0, f] = Z0Ef[Zn] = Z0 eSn P–a.s.

We assume that S is an oscillating random walk meaning that limsupn→∞ Sn = ∞
a.s. and at the same time liminfn→∞ Sn = −∞ a.s., which implies limsupn→∞ μn =∞
a.s. and liminfn→∞ μn = 0 a.s. Then we call Z a critical branching process. Here we
do not require that the expectation of X exists.

We impose an assumption on the random walk S, which we call as Doney’s con-
dition.

Assumption A1. There exists a number 0 < ρ < 1 such that

P(Sn > 0) → ρ as n → ∞.

In fact, Doney [5] proved that Assumption A1 is equivalent to Spitzer’s condition

1
n

n

∑
m=1

P(Sm > 0) → ρ as n → ∞.

Denote by I (A) the indicator of the event A. In the sequel the random variables

a f (x) := E f

[
ξ

E f ξ
I

(
ξ

E f ξ
> x

)]
, x ∈ [0,∞),

and

a fn(x) := E fn

[
ξn

E fnξn
I

(
ξn

E fnξn
> x

)]
, x ∈ [0,∞),

n = 1,2, . . . play an essential role and our next assumption requires a uniform inte-
grability of a f (x) with respect to the probability measure P.

Assumption A2. There are an ε > 0 and a constant C ∈ (0,∞) such that

P

(

f : a f (x) ≤ C

log(ρ−1−1)(1+ε)(e+ x)
, x ∈ (0,∞)

)

= 1. (1.5)
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To formulate one more assumption we need additional notation.
Let 0 = γ0 < γ1 < γ2 < · · · and 0 = Γ0 < Γ1 < Γ2 < · · · be the descending and

increasing strict ladder epochs of {Sn,n ≥ 0}:

γ j+1 := min(n > γ j : Sn < Sγ j), j ≥ 0,

Γj+1 := min(n > Γj : Sn > SΓj), j ≥ 0.

Introduce two renewal functions

V (x) :=
∞

∑
j=0

P
(
Sγ j ≥ −x

)
, x > 0, V (0) = 1,V (x) = 0, x < 0,

U(x) :=
∞

∑
j=0

P
(
SΓj ≤ x

)
, x > 0, U(0) = 1,U(x) = 0, x < 0. (1.6)

Since S is an oscillating random walk under Doney’s condition (see, e.g., Sect. XII.7
in [7]), it follows from Lemma 1 in [10] that V (x) is a harmonic function, that is, for
any x ≥ 0

EV (x+X) = V (x). (1.7)

Assumption A3. There exists a nonnegative random variable Y with

E
[
YV
(
log+Y

)
U
(
log+Y

)]
< ∞

such that

P
(

f : P f

(
ξ

E f ξ
> x

)
≤ P(Y > x) , x ∈ (0,∞)

)
= 1. (1.8)

Some of our results are established under stronger conditions imposed on the
characteristics of the branching process in random environment.

Assumption B1. The distribution of X belongs without centering to the domain
of attraction of some stable law with parameters α ∈ (0,2] and |β | < 1.

Observe, that under Assumption B1 Doney’s condition holds with

ρ =
1
2
− 1

πα
arctan

(
−β tan

πα
2

)

(see, for instance, [4]).

Assumption B2. Doney’s condition holds and, in addition, if α ∈ [1,2] then
there are ε > 0 and a constant C ∈ (0,∞) such that

P

(

f : a f (x) ≤ C

log(α−1)(1+ε)(e+ x)
, x ∈ (0,∞)

)

= 1 (1.9)

while if α ∈ (0,1) then there exists a random variable Y with EY < ∞ such that



1 Limit theorems for critical branching processes in random environment 7

P
(

f : P f

(
ξ

E f ξ
> x

)
≤ P(Y > x) , x ∈ (0,∞)

)
= 1. (1.10)

It follows from Lemma 7 in [13] that under condition B1

V (x)U(x) = xαL(x) (1.11)

for some function L(x) slowly varying at infinity. Therefore, Assumption A3 may
be rewritten in this case as

Assumption B3. Assumption B1 is valid and there exists a nonnegative random
variable Y with

E

[
Y
(
log+Y

)α
L
(
log+Y

)]
< ∞ (1.12)

such that

P
(

f : P f

(
ξ

E f ξ
> x

)
≤ P(Y > x) , x ∈ (0,∞)

)
= 1.

Observe that for α < 1 Assumption B2 is weaker than Assumption B3. Besides,
condition (1.9) is less restrictive than Assumption A2 if αρ < 1.

We formulate now the main results of the paper. The first theorem describes the
asymptotic behavior of the survival probability at generation n.

Theorem 1.1. Assume A1, A2 or A1, A3 or B1, B2. Then there exists a positive finite
number θ such that

P(Zn > 0) ∼ θ P(min(S1, . . . ,Sn) ≥ 0) ∼ θn−(1−ρ)l(n) as n → ∞, (1.13)

where l(1), l(2), . . . is a sequence slowly varying at infinity.

For integers 0 ≤ r ≤ n consider the rescaled generation size process Wr,n =
(Wr,n;t , 0 ≤ t ≤ 1) given by

Wr,n;t := e−Sr+[(n−r)t]Zr+[(n−r)t], 0 ≤ t ≤ 1 . (1.14)

Our next theorem describes the structure of the rescaled process given the event
{Zn > 0}.
Theorem 1.2. Assume A1, A3 or A1, B3. Let r1,r2, . . . be a sequence of positive
integers such that rn → ∞ and rn = o(n) as n → ∞. Then

L
(
Wrn,n

∣
∣Zn > 0

)
=⇒ L (Wt , 0 ≤ t ≤ 1) as n → ∞,

where the limiting process is a stochastic process with a.s. constant paths, i.e.,
P(Wt = W for all t ∈ [0,1]) = 1 for some random variable W. Furthermore,

P(0 < W < ∞) = 1 .

Here, =⇒ denotes weak convergence w.r.t. the Skorokhod topology in the space
D[0,1] of càdlàg functions on the unit interval.
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Theorems 1.1 and 1.2 complement, respectively, Theorems 1.1 and 1.3 in [1].
The mentioned theorems from [1] were proved (along with some other technical
hypotheses) under Assumption A1 and P( f ′′(1) < ∞) = 1. Our conditions A1-A3
and B1-B3 include a wide class of branching processes in random environment
where P( f ′′(1) < ∞) = 0.

The proofs of Theorems 1.1 and 1.2 combine approaches used in the mentioned
article [1] and paper [6] containing some statements for branching processes in vary-
ing environment.

1.2 Branching in conditioned environment

Following [1] and [8] consider, along with P another probability measure P+. In
order to define this measure let Fn, n ≥ 0 be the σ–field of events generated by the
random variables Q1, . . . ,Qn and Z0, . . . ,Zn. These σ–fields form a filtration F . Let

Ln := min(S1, . . . ,Sn), n ≥ 1,

be the sequence of minima of the associated random walk.

Lemma 1.1. [1] The random variables V (Sn)I (Ln ≥ 0), n = 0,1, . . ., form a mar-
tingale with respect to F under P.

Since V (0) = 1, we may introduce probability measures P+
n on the σ -fields Fn

by means of the densities

dP+
n := V (Sn)I (Ln ≥ 0) dP .

Because of Lemma 1.1 the measures are consistent, i.e., P+
n+1|Fn = P+

n . Therefore
(choosing a suitable underlying probability space), there exists a probability mea-
sure P+ on the σ -field F∞ :=

∨
n Fn such that

P+|Fn = P+
n , n ≥ 0 . (1.15)

We note that (1.15) can be rewritten as

E+Yn = E[YnV (Sn);Ln ≥ 0] (1.16)

for every Fn–measurable nonnegative random variable Yn.
It is easy to check that the change of measure from P to P+ keeps the sequence

Z0,Z1, . . . as a branching process in a randomly fluctuating environment. However,
the environment Q1,Q2, . . . is no longer built up from i.i.d. components. We call
such new process as a branching process in conditioned environment.

Along with the initial branching process in conditioned environment we con-
sider an auxiliary process Z∗ =

{
Z∗

0 ,Z∗
1 , . . .

}
which is constructed according to the

rule Z∗
0 = 1,
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Z∗
n :=

Z∗
n−1

∑
j=1

ξn j(bn), n ≥ 1,

where, for a deterministic sequence {bn,n ≥ 1} specified later

ξn j(bn) := min(ξn j,bnE fnξn j).

Let
ξn(bn) :

d= ξn j(bn).

Evidently, for any k ≥ 1

Var fkξk (bk) = Var fk

[
ξkI
(
ξk ≤ bkE fkξk

)]≤ (E fkξk
)2

b2
k

and

E fkξk (bk) = E fk

[
ξkI
(
ξk ≤ bkE fkξk

)]

= E fkξk −E fk

[
ξkI
(
ξk > bkE fkξk

)]

= E fkξk −E fkξk ×E fk

[
ξk

E fkξk
I

(
ξk

E fkξk
> bk

)]

=
(
1−a fk(bk)

)
E fkξk.

It is not difficult to understand that Z∗ is, under fixed f, an inhomogeneous
branching process with finite variance of the offspring number of individuals. Hence

EfZ
∗
k =

k

∏
i=1

(
1−a fi(bi)

)
E fiξi =

k

∏
i=1

(
1−a fi(bi)

)
EfZk,

and, for n ≥ 1

VarfZ
∗
n = Var fnξn (bn)EfZ

∗
n−1 +

(
E fnξn (bn)

)2
VarfZ

∗
n−1

implying
VarfZ∗

n

(EfZ∗
n)2 =

Var fnξn (bn)
(
E fnξn (bn)

)2 EfZ∗
n−1

+
VarfZ∗

n−1(
EfZ∗

n−1

)2 .

This leads us to the estimate

VarfZ∗
n

(EfZ∗
n)2 ≤

∞

∑
k=1

Var fkξk (bk)
(
E fkξk (bk)

)2 EfZ∗
k−1

≤
∞

∑
k=1

(
E fkξk

)2
b2

k(
E fkξk

(
1−a fk(bk)

))2∏k−1
i=1

(
1−a fi(bi)

)
EfZk−1

=
∞

∑
k=1

b2
k(

1−a fk(bk)
)2∏k−1

i=1

(
1−a fi(bi)

)e−Sk−1 =: Tf(b).
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Below we denote by C,C1,C2, . . . some positive constants which may vary from
formula to formula.

Before we pass to the prove of the next lemma we note that if Assumptions A2
and B2 are valid for some ε = ε0 > 0 then they are valid for any ε ∈ (0,ε0]. Thus,
we may take ε > 0 as small as it is needed. With this in view let δ = ε/2. It is not
difficult to check that one can find ε > 0 such that, given Assumption A2

1 < (1+ ε)(1−δ ) = 1+
ε
2
− ε2

2
<

1
1−ρ

,

and, given Assumption B2 and α ∈ [1,2],

1 < (1+ ε)(1−δ ) <
α

α −1

with the agreement that the right-hand side of the last expression equals +∞
for α = 1.

Lemma 1.2. Let one of the following conditions be valid:
(i) Assumptions A1, A2 and bk := exp{k(1−δ )ρ}− e for k = 1,2, . . .;
(ii) Assumptions B1, B2 with α ∈ [1,2] and bk := exp{k(1−δ )/α} − e for k =

1,2, . . .;
(iii) Assumptions B1, B2 with α ∈ (0,1) and bk := log(k +1) for k = 1,2, . . ..
Then

Tf(b) < ∞ P+ −a.s.

Proof. (i) From the conditions of the lemma it follows that, as k → ∞,

(
1−a fk(bk)

)2
k−1

∏
i=1

(
1−a fi(bi)

)
= exp

{

−(1+o(1))
k

∑
i=1

a fi(bi)

}

.

Observing that under our choice of δ

γ := (ρ−1 −1)(1+ ε)(1−δ )ρ = (1−ρ)(1+ ε)(1−δ ) < 1

we see that

k

∑
i=1

a fi(bi) ≤
k

∑
i=1

C

(logbi)
(ρ−1−1)(1+ε)

=
k

∑
i=1

C
iγ

≤ C1k1−γ = C1kρ−(1−ρ)ε(1−ε)/2 < C1kρ(1−ε1) (1.17)

for some ε1 > 0. Thus, for all k ≥ 1,

(
1−a fk(bk)

)2
k−1

∏
i=1

(
1−a fi(bi)

)≥ C2e−C3kρ(1−ε1)
.

Hence we conclude that
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Tf(b) ≤ C−1
2

∞

∑
k=1

eC3kρ(1−ε1)
e2kρ(1−δ )

e−Sk .

Finally, by formula (2.22) in [1] for any ε2 > 0, as k → ∞,

e−Sk = O
(

e−kρ(1−ε2)
)

P+ − a.s. (1.18)

From this estimate the desired statement follows with 0 < ε2 < min{ε1,δ}.
(ii) Arguing as in point (i) with γ := (α −1)(1+ ε)(1−δ ) < 1 it is not difficult

to see that

Tf(b) ≤ C−1
4

∞

∑
k=1

eC3kα
−1(1−ε1)

e2kα
−1(1−δ )

e−Sk .

To complete the proof of this point it remains to recall that by formula (2.23) in [1]
for any ε2 > 0

e−Sk = O

(
e−kα

−1(1−ε2)
)

P+ − a.s. (1.19)

as k → ∞.
(iii) Under the conditions of this point for any ε ∈ (0,1) there exists x = x(ε)

such that for all k = 1,2, . . .

a fk(x) ≤
∫ ∞

x
P(Y > y)dy ≤ ε P+ − a.s.

Thus, for any fixed ε ∈ (0,1) and sufficiently small constant C3 = C3(ε)

(
1−a fk(bk)

)2
k−1

∏
i=1

(
1−a fi(bi)

)≥ C3 (1− ε)k ≥ C3e−C4εk P+ − a.s.

for all k ≥ 1, which, along with (1.19) used with α < 1 justifies the desired state-
ment.

The following lemma states that, with respect to P+ the population has a positive
probability to survive forever.

Lemma 1.3. Assume A1, A2 or B1, B2. Then

Pf (Zn > 0 for all n ) > 0 P+–a.s.

In particular,
P+ (Zn > 0 for all n ) > 0 .

Proof. It is known that for any nonnegative random variable ς

P(ς > 0) ≥
{

Varς
(Eς)2 +1

}−1

.

This and Lemma 1.2 imply
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Pf (Z∗
n > 0) ≥ {Tf(b)+1}−1 > 0 P+ − a.s. (1.20)

To complete the proof of the first statement of the lemma it remains to observe that

lim
n→∞

Pf (Zn > 0) ≥ lim
n→∞

Pf (Z∗
n > 0) P+ − a.s. (1.21)

The second statement of the of the lemma follows easily from the first one.

Now we consider the branching processes satisfying either Assumption A3 or
Assumption B3. To this aim for a nonnegative random variable Y with Laplace
transform F(u) := Ee−uY and expectation a := EY < ∞ set

G(t) :=
F(e−t)−1+at

t
=

E
[
e−tY −1+ tY

]

t
, t ≥ 0.

Lemma 1.4. If V (x) and U(x) are the renewal functions specified by (1.6) and

E
[
YV (log+Y )U

(
log+Y

)]
< ∞,

then for any u > 0 ∫ ∞

0
G(ue−x)V (x)dU(x) < ∞.

Proof. Setting R(x) := P(Y < y) we have
∫ ∞

0
G(ue−x)V (x)dU(x)

= −
∫ u

0
G(t)V

(
log

u
t

)
dU
(

log
u
t

)

= −
∫ u

0

E
[
e−tY −1+ tY

]

t
V
(

log
u
t

)
dU
(

log
u
t

)

= −
∫ ∞

0
ydR(y)

∫ u

0

[
e−ty −1+ ty

ty

]
V
(

log
u
t

)
dU
(

log
u
t

)
. (1.22)

Let us show that there exists a constant 0 < C1 < ∞ such that for all y ≥ y0

I(y) := −
∫ u

0

[
e−ty −1+ ty

ty

]
V
(

log
u
t

)
dU
(

log
u
t

)

≤ C1V (logy)U(logy). (1.23)

Indeed, assuming that u > y−1 and using the inequalities

0 ≤ 1− e−x ≤ x, 0 ≤ e−x −1+ x ≤ x2, x ≥ 0, (1.24)

we see that
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I(y) ≤ −
∫ u

y−1
V
(

log
u
t

)
dU
(

log
u
t

)
−
∫ y−1

0
tyV
(

log
u
t

)
dU
(

log
u
t

)

≤ V (logyu)U (logyu)−
∫ 1

0
wV
(

log
yu
w

)
dU
(

log
yu
w

)
. (1.25)

Since U(x) and V (x) are renewal functions, there exists a constant C ∈ (0,∞) such
that

U(x+1)−U(x) ≤ C, V (x+1)−V (x) ≤ C, x ≥ 0. (1.26)

In particular,
U (logyu) ≤ U(logy)+C |logu|

and, for all sufficiently large y

−
∫ 1

0
wV
(

log
yu
w

)
dU
(

log
yu
w

)

= −
∞

∑
k=0

∫ e−k

e−k−1
wV
(

log
yu
w

)
dU
(

log
yu
w

)

≤
∞

∑
k=0

e−kV (logyu+ k +1) [U(logyu+ k +1)−U(logyu+ k)]

≤ C
∞

∑
k=0

e−kV (logyu+ k +1) ≤ C
∞

∑
k=0

e−k [V (logyu)+C(k +1)]

≤ C1V (logyu) = o(V (logyu)U (logyu)), as y → ∞.

This in view of (1.25) and (1.26) gives

lim sup
y→∞

I(y)
V (logy)U(logy)

≤ 1. (1.27)

Combining (1.22)–(1.27) proves the lemma.

Lemma 1.5. If Assumptions A1 and A3 are valid, then, as n → ∞,

e−SnZn → W+ P+ −a.s., (1.28)

where the random variable W+ satisfies the property: for any u > 0

Efe
−uW+ ≤ e−u +u

∞

∑
n=0

G
(
ue−Sn

)
+u2

∞

∑
n=0

e−Sn ,

where the right-hand side is finite P+ - a.s.

Proof. Since
{

e−SnZn,n ≥ 0
}

is a nonnegative martingale P+−a.s., the limit in
(1.28) exists. Moreover,

Efe
−uW+

= lim
n→∞

Ef
[
exp
{−ue−SnZn

}]
= lim

n→∞
f0,n

(
e−ue−Sn

)
.
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Setting

gn(u) :=
fn(e−u)−1+ eXnu

u
=

E
[
e−uξn −1+uξn

]

u
, u ≥ 0,

and using the second inequality in (1.24), we have for all n ≥ 1
∣
∣
∣ f0,n

(
e−ue−Sn

)
− f0,n−1

(
e−ue−Sn−1

)∣∣
∣

=
∣
∣
∣ f0,n−1

(
fn

(
e−ue−Sn

))
− f0,n−1

(
e−ue−Sn−1

)∣∣
∣

≤ eSn−1

∣
∣
∣ fn

(
e−ue−Sn

)
− e−ue−Sn−1

∣
∣
∣

≤ eSn−1

(
fn

(
e−ue−Sn

)
−1+ue−Sn−1

)

+eSn−1

(
e−ue−Sn−1 −1+ue−Sn−1

)

≤ ue−Xn
fn

(
e−ue−Sn

)
−1+ eXnue−Sn

ue−Sn
+u2e−Sn−1

= ue−Xn gn
(
ue−Sn

)
+u2e−Sn−1 .

It is known (see Lemma 6 in [9] and formula (2.4) in [6]) that, given (1.8)

G(u) ≥ e−Xn gn
(
ue−Xn

)
, u ≥ 0, P− a.s.

and, therefore, this estimate is valid P+-a.s. as well. Hence we get for all u ≥ 0 :

Efe
−uW+

= e−u + lim
n→∞

n

∑
k=1

(
f0,k

(
e−ue−Sk

)
− f0,k−1

(
e−ue−Sk−1

))
P+ − a.s.

or

Efe
−uW+ ≤ e−u +u

∞

∑
n=1

G
(
ue−Sn

)
+u2

∞

∑
n=0

e−Sn P+ − a.s.

Let us show that the right-hand side of this inequality is finite P+-a.s. Since U(x)
and V (x) are renewal functions, it is easy to check by (1.26) that

E+
∞

∑
n=0

e−Sn =
∞

∑
n=0

Ee−SnV (Sn)I (Ln ≥ 0) =
∫ ∞

0
e−xV (x)dU(x) < ∞

and, by Assumption A3 and Lemma 1.4 that

E+
∞

∑
n=1

G
(
ue−Sn

)
=
∫ ∞

0
G
(
ue−x)V (x)dU(x) < ∞.

Hence
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∞

∑
n=0

e−Sn +
∞

∑
n=1

G
(
ue−Sn

)
< ∞ P+ − a.s.

The lemma is proved.

Since G(u) → 0 as u → 0+, we have

lim
u→0+

∞

∑
n=1

G
(
ue−Sn

)
= 0 P+ − a.s. (1.29)

Therefore, for any j = 0,1, . . . the random variable

η j := sup
u>0

(

1− e−u −u
∞

∑
n=1

G

(
ue−
(

Sn+ j−S j

))
−u2

∞

∑
n=0

e−
(

Sn+ j−S j

))

is positive P+−a.s.
Let 0 =: ν(0) < v(1) < .. . be the times of prospective minima of S under P+,

i.e.,
ν(k) := min{m > v(k−1) : Sm+i ≥ Sm for all i ≥ 0}, k ≥ 1.

Corollary 1.1. Under the conditions A1, A3 or A1, B3

EfW
+ = 1 P+ −a.s.

Besides, for any k ≥ 0

Pf
(
W+ > 0 |Zv(k) = 1

)≥ ηv(k) > 0 P+ −a.s. (1.30)

and
P+ (W+ > 0 |Z0 = 1

)≥ E+η0 > 0. (1.31)

Proof. By Fatou’s lemma

EfW
+ = Ef

[
lim
n→∞

(
e−SnZn

)]
≤ lim

n→∞
Ef
[
e−SnZn

]
= 1 P+ − a.s.

By Lemma 1.5 and relation (1.29) we conclude that

EfW
+ = lim

u→0+

1−Efe−uW+

u

≥ lim
u→0+

(
1− e−u

u
−

∞

∑
n=1

G
(
ue−Sn

)−u
∞

∑
n=0

e−Sn

)

= 1 P+ − a.s.

Thus, EfW+ = 1 P+−a.s.
Further, for any u > 0

Pf
(
W+ > 0 |Z0 = 1

)≥ 1−Efe
−uW+

.
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This and Lemma 1.5 give

Pf
(
W+ > 0 |Z0 = 1

)≥ η0 > 0 P+ − a.s.

proving (1.30) for k = 0 and, therefore, (1.31).
To prove (1.30) for k ≥ 1 it remains to observe that

Ef

[
e−uW+ |Zv(k) = 1

]
≤ 1− e−u

+ u
∞

∑
n=1

G

(
ue−
(

Sn+v(k)−Sv(k)

))
+u2

∞

∑
n=0

e−
(

Sn+v(k)−Sv(k)

)

and by Lemma 2.6 in [1] the distribution of the right hand side of this inequality
does not depend on k with respect to P+.

Theorem 1.3. Under Assumptions A1, A3 or A1, B3

lim
n→∞

Pf (Zn > 0) > 0 P+ −a.s. (1.32)

Besides, for W+ := limn→∞ e−SnZn we have

{
W+ > 0

}
= {Zn > 0 for all n} P+ −a.s. (1.33)

Proof. Statement (1.32) follows from Corollary 1.1 with k = 0.
To demonstrate (1.33) observe first that, as shown in Proposition 3.1 in [1]

∞

∑
n=1

Pf (ξn 
= 1) ≥
∞

∑
j=1

Pf
(
ξv( j)+1 
= 1

)
= ∞ P+ − a.s.

This, by Theorem 1 in [11] implies

lim
n→∞

Pf (Zn > 0) = Pf

(
lim
n→∞

Zn = ∞
)

P+ − a.s. (1.34)

To go further, note that by the properties of branching processes

Pf
(
W+ = 0 |Zν(k) = j

)
=
(
Pf
(
W+ = 0 |Zν(k) = 1

)) j

and, therefore,

Pf
(
W+ = 0

)
= Ef[Pf

(
W+ = 0 | Zν(k)

)
]

= Ef

[(
Pf
(
W+ = 0 |Zν(k) = 1

))Zν(k)
]
≤ Ef

[(
1−ηv(k)

)Zν(k)
]
.

Since the sequence v(k) and, as a result, the random variable ηv(k) are specified by
the environment only, we have for any z ≥ 1

Pf
(
W+ = 0

)≤ Pf
(
Zv(k) ≤ z

)
+
(
1−ηv(k)

)z P+ − a.s. (1.35)
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By Lemma 2.6 in [1] the law of the second term in the right-hand side of (1.35) does
not depend on k under P+. Taking the expectation with respect to the measure P+

and letting than k → ∞ we see by (1.34) that

P+ (W+ = 0
)≤ P+

(
lim
n→∞

Zn = 0
)

+E+ [(1−η0)
z] .

Now letting z → ∞ we conclude by Lemma 1.2 that

P+ (W+ = 0
)−P+

(
lim
n→∞

Zn = 0
)

≤ P+ (η0 = ∞) = 0.

Combining this fact with the obvious estimate

P+ (W+ = 0
)≥ P+

(
lim
n→∞

Zn = 0
)

,

we obtain statement (1.33).

1.3 Proof of Theorems 1.1 and 1.2

In this section for the reader convenience we first list some results from [1] that are
essentially used in the subsequent proofs.

Lemma 1.6. [1] Assume A1. For k ∈ N let Yk be a bounded real-valued Fk–measu-
rable random variable. Then, as n → ∞,

E[Yk | Ln ≥ 0] → E+Yk .

More generally, let Y1,Y2, . . . be a uniformly bounded sequence of real-valued ran-
dom variables adapted to the filtration F , which converges P+–a.s. to some random
variable Y∞. Then, as n → ∞,

E[Yn | Ln ≥ 0] → E+ Y∞ .

Let

τn := min(i ≤ n : Si = min(S0, . . .,Sn)), Lk,n := min
k≤ j≤n

(Sn −Sk).

Lemma 1.7. [1] Assume A1 and suppose that V1,V2, . . . is a uniformly bounded se-
quence of real-valued random variables, which for every k ≥ 0 satisfy

E[Vn;Zk > 0,Lk,n ≥ 0 | Fk] = P(Ln ≥ 0)(Vk,∞ +o(1)) P–a.s. (1.36)

Then
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E[Vn;Zτn > 0] = P(Ln ≥ 0)

(
∞

∑
k=0

E[Vk,∞;τk = k]+o(1)

)

, (1.37)

where the right-hand side series is absolutely convergent.

Proof of Theorem 1.1 repeats almost literal the proof of Theorem 1.1 in [1]. We give
here the needed arguments for completeness only.

For z,n ∈ N0 write

ψ(z,n) := P(Zn > 0,Ln ≥ 0 |Z0 = z) .

Note that ψ(0,n) = 0. Setting Yn := I (Zn > 0) and Y∞ := I (Zn > 0 for all n ≥ 0) in
Lemma 1.6 we see that for any z ≥ 1

ψ(z,n) ∼ P(Ln ≥ 0) P+ (Zn > 0 for all n ≥ 0 |Z0 = z) as n → ∞. (1.38)

In addition, for k ≤ n we have

P
(
Zn > 0,Lk,n ≥ 0 | Fk

)
= ψ(Zk,n− k) P–a.s. (1.39)

Relations (1.38) and (1.39) show that we may apply Lemma 1.7 to Vn := I (Zn > 0)
and Vk,∞ := P+ (Zn > 0 for all n ≥ 0|Zk) to obtain

P(Zn > 0) ∼ θ P(Ln ≥ 0) as n → ∞,

where

θ :=
∞

∑
k=0

E[P+ (Zn > 0 for all n ≥ 0|Zk) ;τk = k] < ∞. (1.40)

For θ being strictly positive observe that according to Lemma 1.3 and Theorem 1.3
P+ (Zn > 0 for all n ≥ 0|Z0 = z) > 0 for all z ≥ 1.

Proof of Theorem 1.2 is reduced to the almost literal repetition of the arguments
used in [1] to establish Theorem 1.3. It is necessary only to substitute everywhere
our Theorem 1.3 for Proposition 3.1 of the mentioned paper. We omit the details
referring the reader to paper [1].
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2
Branching processes in stationary random
environment: The extinction problem revisited

Gerold Alsmeyer

Abstract A classical result by Athreya and Karlin states that a supercritical Galton-
Watson process in stationary ergodic environment f = ( f0, f1, . . .) (these are the ran-
dom generating functions of the successively picked offspring distributions) has a
positive chance of survival 1 − q(f) for almost all realizations of f provided that
E log(1 − f0(0)) > −∞. While in some cases like when f0, f1, . . . are i.i.d., this
last condition together with supercriticality, viz. E log f ′

0(1) > 0, is actually equiv-
alent to q(f) < 1 a.s., there are others where it is not. This is demonstrated by
giving a rather simple counterexample which in turn draws on the main result
of this paper. The latter is intended to shed further light on the relation between
E log(1− f0(0)) > −∞ and the almost sure noncertain extinction property, the most
interesting outcome being that, if E log f ′

0(1) is also finite, then q(f) < 1 a.s. holds

iff E log
( 1− f0◦...◦ fT (0)

1− f1◦...◦ fT (0)

)
> −∞ for some random time T . The use of random times in

connection with the stationary environment f will lead us quite naturally to the use
of Palm-duality theory in some of our arguments.
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2.1 Introduction

The Galton–Watson process in random environment (GWPRE) constitutes one of
the various generalizations of the classical Galton–Watson branching process and is
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M. González et al. (eds.), Workshop on Branching Processes and Their Applications, 21
Lecture Notes in Statistics – Proceedings 197, DOI 10.1007/978-3-642-11156-3 2,
c© Springer-Verlag Berlin Heidelberg 2010



22 Gerold Alsmeyer

characterized by a random variation of the offspring distribution over generations.
When originating from one ancestor, it is given by an integer-valued stochastic se-
quence (Zn)n≥0 on a probability space (Ω ,A,P), recursively defined as

Z0 = 1 and Zn =
Zn−1

∑
k=1

Xn,k for n ≥ 1,

where Zn denotes the size of the nth generation of the considered population and the
following assumptions hold true:

(A1) (Xn,k)n,k≥1 forms a double array of integer-valued random variables that are
conditionally independent and rowwise identically distributed given a random
sequence ( fn)n≥0 (the random environment);

(A2) each fn is a random generating function, i.e., a random element in

Γ def=

{

g : [0,1] → [0,1] : g(s) = ∑
n≥0

pnsn with p0, p1, . . . ≥ 0 and g(1) = 1

}

.

(A3) E
(
sXn,k | f0, f1, . . .

)
= fn(s) for all n ≥ 0 and k ≥ 1.

In this note we will consider the case where

(A4) ( fn)n≥0 forms a stationary ergodic sequence satisfying P( f0(0)+ f ′
0(0) = 1) <

1 and min(E log+ f ′
0(1),E log− f ′

0(1)) < ∞.

This model was first studied by Athreya and Karlin in two seminal papers [3],
[4] shortly after the work by Smith and Wilkinson [17] who dealt with the special
case of i.i.d. f0, f1, . . .

It is well known that many of the properties of (Zn)n≥0 are intimately related

to the behavior of the random walk (Sn)n≥0 with S0
def= 0 and stationary ergodic

increments
Xn

def= log f ′
n−1(1), n ≥ 1.

Indeed, we have

E(sZn |Z0, . . .,Zn−1, f0, f1, . . .) = f0:n−1(s)
def= f0 ◦ . . .◦ fn−1(s)

for each n ≥ 1 and s ∈ [0,1], and therefore

μn
def= E(Zn|Z0, f0, f1, . . .) = Z0eSn a.s. (2.1)

We can extend ( fn)n≥0 to a doubly infinite stationary sequence ( fn)n∈Z which in
turn leads to a doubly infinite extension of (Xn)n≥1 as well. Define Sn recursively by

Sn−1
def= Sn −Xn for n =−1,−2, . . . The sequence ( f0:n)n≥0, constitutes the backward

system associated with the forward (iterated function) system fn:0
def= fn ◦ . . . ◦ f0,

n ≥ 0, of Lipschitz maps on the unit interval. Defining the usual Lipschitz constant
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l(g) def= sup
r,s∈[0,1],r 
=s

|g(s)−g(r)|
|s− r|

for g ∈ Γ , the fact that g and its derivative are nondecreasing and convex implies

l(g) = g′(1)

which may be infinite. Consequently,

l( f0:n) = f ′
0:n(1) =

n

∏
k=0

f ′
k(1) =

n

∏
k=0

l( fk) ∈ [0,∞] a.s.

and the product is not a.s. equal to zero because P( f0(0) = 1) < 1 by (A4) which
in turn ensures P( f ′

0(1) > 0) > 0. With the help of this observation and Birkhoff’s
ergodic theorem we infer that ( fn:0)n≥0 possesses the (by ergodicity necessarily con-
stant) Lyapunov exponent χ = E log f ′

0(1) ∈ [−∞,∞], for

χ = lim
n→∞

1
n

n−1

∑
k=0

log f ′
k(1) = lim

n→∞

Sn

n
= E log f ′

0(1).

The cases where χ is positive, negative or zero mark quite different types of behavior
for the associated GWPRE and lead to the following definition.

Definition 2.1. A GWPRE (Zn)n≥0 satisfying (A1–4) and associated random walk
(Sn)n≥0 is called

• subcritical, if E log f ′
0(1) < 0 and thus limn→∞ Sn = −∞ a.s.

• supercritical, if E log f ′
0(1) > 0 and thus limn→∞ Sn = ∞ a.s.

• critical, if E log f ′
0(1) = 0.

• strongly critical, if E log f ′
0(1) = 0, liminfn→∞ Sn = −∞ and limsupn→∞ Sn = ∞

a.s.

Let us note that strong criticality really constitutes a genuine subcase. In fact,
Lalley [13, Prop. 6] has shown that (Sn)n≥0 is L1-bounded, i.e. supn≥0 E|Sn| <∞, iff
(log f ′

n(1))n≥0 is null-homologous which means that, for some measurable function
ξ : R

Z → R,
log f ′

0(1) = ξ (f0)−ξ (f1) a.s.

and thus
Sn = ξ (f0)−ξ (fn) a.s. for n ≥ 0,

where f = f0
def= (. . ., f−1, f0, f1, . . .) and fn

def= (. . ., fn−1, fn, fn+1, . . .) denotes the n-
shift of this sequence for n ∈ Z. Hence, if ξ is bounded we see that strong criticality
fails albeit E log f ′

0(1) = 0. Conversely, if (log f ′
n(1))n≥0 is not null-homologous,

then E log f ′
0(1) = 0 does indeed imply strong criticality, see [2, Remark (b) after

Thm. 3].
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2.2 Classical results revisited

We continue with a short survey of some classical results concerning the asymptotic
behavior of (Zn)n≥0. Church [5] and Lindvall [14] proved that Zn always converges
a.s. to a random variable Z∞ taking values in N0 ∪{∞}, while Tanny [19] added to
this that

P(Z∞ = 0 or = ∞) = 1 iff P( f ′
0(0) = 1) < 1.

In view of (A4) it is thus clear in the given setup that the considered population
either explodes or dies out a.s. Turning to the extinction probability

q(ξ ) def= P(Z∞ = 0|f = ξ )

for a given environment ξ ∈ Γ Z, let us first note that

P(Z∞ = 0|f,Z0 = k) = q(f)k

for each k ∈ N0 whence it suffices to look at the case Z0 = 1. Athreya and Karlin [3]
proved that

q(f) = f0(q(f1)) a.s.

and that {q(f) = 1} is a.s. shift-invariant, i.e. {q(f) = 1} = {q(f1) = 1} a.s. Hence,
by ergodicity,

P(q(f) = 1) ∈ {0,1}.
Putting

gn(s)
def=

1
1− fn(s)

− 1
f ′
n(1)(1− s)

, s ∈ [0,1),

and ηk,n
def= gk ◦ fk+1:n−1(0) for 0 ≤ k < n, Geiger and Kersting [10] derived the

useful formula

P(Zn > 0|f) =

(

e−Sn +
n−1

∑
k=0

ηk,ne−Sk

)−1

(2.2)

for n ≥ 0 which shows quite clearly the importance of (Sn)n≥0 for the asymptotic
behavior of the survival probability P(Zn > 0) as n →∞. The latter was then studied
by them and later also in [11, 1] and [9] for critical and subcritical GWPRE in i.i.d.
random environment; for earlier results of this type see Kozlov [12] and Dekking
[7]. In the subcritical and strongly critical case, formula (2.2) also provides a quick
proof of the following result first obtained by Athreya and Karlin [3, Cor. 1]:

Proposition 2.1. Let (Zn)n≥0 be a GWPRE satisfying (A1–4). Then q(f) = 1 a.s. if
(Zn)n≥0 is subcritical or critical.

Proof (in the subcritical and strongly critical case). If (Zn)n≥0 is subcritical or
strongly critical then liminfn→∞ Sn = −∞ a.s. By using formula (2.2) and the mono-
tonicity of P(Zn > 0|f), we hence infer
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1−q(f) = lim
n→∞

P(Zn > 0|f) ≤ liminf
n→∞

eSn = 0 a.s.,

that is q(f) = 1 a.s.
In the subcritical case, there is yet another quick argument, for E log f ′

0(1) < 1
means nothing but the iterated function system ( fn:0)n≥0 to be strictly mean con-
tractive with unique stationary distribution δ1, the Dirac measure at 1. Hence the
associated backward system ( f0:n(s))n≥0 converges a.s. to 1 for any initial state s
(see e.g. [8]), in particular q(f) = limn→∞ f0:n(0) = 1 a.s.

The proof is completed after Lemma 2.1. The next result, also obtained by
Athreya and Karlin [3, Thm. 3], provides conditions ensuring q(f) < 1 a.s.

Proposition 2.2. Let (Zn)n≥0 be a GWPRE satisfying (A1–4). Then q(f) < 1 a.s. if
(Zn)n≥0 is supercritical and E log(1− f0(0)) > −∞.

The additionally occurring condition E log(1− f0(0)) > −∞ in the supercritical
case naturally raises the question of its necessity. Certain special cases for which the
answer is positive are stated in the next result.

Proposition 2.3. Let (Zn)n≥0 be a GWPRE satisfying (A1–4) and E| log f ′
0(1)| < ∞.

Then {
E log(1− f0(0)) > −∞

E log f ′
0(1) > 0

}
⇐⇒ P(q(f) < 1) = 1 (2.3)

in any of the following two cases:

(C1) f0, f1, . . . are independent or m-dependent for some m ∈ N.
(C2) f0, f1, . . . take values in a finite subset Γ0 of Γ .

For the subcases where f0, f1, . . . are i.i.d. or a finite irreducible Markov chain,
this result is due to Smith [16] and once again to Athreya and Karlin [3, Thm. 2],
respectively. For a proof of the result in the stated form we refer to Section 5.

2.3 Main result and a counterexample

We proceed with a statement of our main result after some necessary notation. It
provides necessary and sufficient conditions in the supercritical case for q(f) < 1
a.s. as well as for E log(1 − f0(0)) > −∞. Then we give a counterexample which
demonstrates that even in the case where the environment f constitutes a positive
recurrent discrete Markov chain we cannot generally conclude E log(1 − f0(0)) >
−∞ from q(f) < 1 a.s. Thus equivalence (2.3) in Proposition 2.3 for finite irreducible
Markov chains does not extend to general positive recurrent Markov chains with
countable state space; for a positive result in the latter situation see again [3, Thm. 4].

Given a doubly infinite environment f, denote by T = Tf the set of all a.s. finite
random times T of the form

T = inf{n ≥ m : fn ∈ C}
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for m ∈ N and some measurable subset C of Γ (the definition of a suitable σ -field
on Γ is standard and will not be spelled out here, see e.g. [8] in the context of
iterated random Lipschitz functions). We note that with T any T +k, k ∈ Z, is also an
element of T, for T = inf{n ≥ m+k : fn ∈Θ kC} whereΘ denotes the usual forward
shift mapping (. . ., f−1, f0, f1, . . .) �→ (. . ., f0, f1, f2, . . .). The following truncation
has been introduced in [6]: For any function v : Γ Z → N and given f = ( fn)n∈Z with

fn(s) =∑k pn,ksk, let fv def= ( fn,v)n∈Z be the sequence of generating functions defined
by

fn,v(s)
def=

v(fn)−1

∑
k=0

pn,ksk + sv(fn) ∑
k≥v(fn)

pn,k.

In the case of a constant truncation function v ≡ c we simply write fn,c for fn,v. It is
easily verified that fv is again stationary and ergodic if this holds true for f.

Theorem 2.1. Let (Zn)n≥0 be a GWPRE satisfying (A1–4). and consider the follow-
ing assumptions:

(B1) E log(1− f0(0)) > −∞;
(B2) There exists c ∈ N such that 0 < E log f ′

0,c(1) < ∞;

(B3) P(q(f) < 1) = 1, E

∣
∣
∣
∣log

(
1−q(f0)
1−q(f1)

)∣∣
∣
∣< ∞ and E log

(
1−q(f0)
1−q(f1)

)
= 0;

(B4) There exists T ∈ T such that E log

(
1− f0 ◦ . . .◦ fT (0)
1− f1 ◦ . . .◦ fT (0)

)
> −∞;

(B5) There exists v : Γ Z → N such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 < E log f ′
0,v(1) < ∞

limn→∞ n−1 logv(fn) = 0 a.s.

P(q(fv) < 1) = P(q(f) < 1) = 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

;

(B6) lim
n→∞

n−1 log(1−q(fn)) = 0 a.s.;

(B7) lim
n→∞

n−1 log(1− fn(0)) = 0 a.s.

(a) If E log f ′
0(1) > 0, then

(B1) (B4) ⇒ (B5) ⇒ (B6) ⇒ (B7)
� �

(B2) ⇒ (B3)

(b) If 0 < E log f ′0(1) < ∞, then (B3–5) are equivalent.

The proof of this result is rather long and postponed to Sect. 2.5. Let us point
out that condition (B4) actually coincides with condition (B1) if T ≡ 0 and the term
f1 ◦ . . .◦ fT (0) is interpreted as 1 in this case. We will further see in Lemma 2.1 that,
if 0 < E log f ′

0(1) <∞, then P(q(f) < 1) = 1 alone already entails the other assertions
in (B3). Consequently, in this situation we have equivalence of P(q(f) < 1) = 1
with condition (B4) for some random time T but not necessarily for T ≡ 0. This is
exemplified by the subsequent already announced counterexample:
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Example 2.1. Let Γ0 = {g0,g1, . . .} be the countable subset of Γ , defined by

gn(s)
def= 1− e−n + e−nsmn for n ≥ 0,

where mn is the smallest integer greater than en+1. Hence gn is the generating func-

tion of the two-point distribution Qn
def= (1− e−n)δ0 + e−nδmn and

e < g′
n(1) = mne−n ≤ e+1 (2.4)

for each n ≥ 0.
Suppose that ( fn)n≥0 is a Markov chain on Γ0 with transition matrix

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 α1 α2 α3 α4 . . .
1 0 0 0 0 . . .
0 1 0 0 0 . . .
0 0 1 0 0 . . .
...

. . .
. . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

for suitable αn > 0 satisfying ∑nαn = 1, κ def= ∑n nαn <∞ and ∑n n2αn =∞. Plainly,
the (i, j)-component of P denotes the probability of fn = g j given fn−1 = gi for any
n ≥ 0. As one can further readily check, ( fn)n≥0 is positive recurrent with stationary
distribution π , given by

πn
def= π(gn) =

1
κ +1 ∑k≥n

αk, n ≥ 0.

and satisfying ∑n nπn = ∞, for ∑n n2αn = ∞. In the following, let ( fn)n≥0 be in
stationary regime under P (so P = Pπ ) and note that

E log f ′
0(1) = ∑

n≥0
πn logg′

n(1) ∈ (1, log(e+1)] [by (2.4)]

and E log(1− f0(0)) = ∑
n≥0

πn log(1−gn(0)) = −∑
n≥0

nπn = −∞.

So we are in the supercritical case, but with condition (B1) being violated. On the
other hand, condition (B4) will now be shown to hold true with T ≡ 1. Indeed, using

lim
n→∞

n−1 log
(
en(1− e−n)3)= 1 and lim

n→∞
(1− e−n+1)mn = exp(−e2),

we infer

0 < E

(
1− f0 ◦ f1(0)

1− f1(0)

)

= π0 ∑
n≥1

αn log

(
1− f0 ◦ fn(0)

1− fn(0)

)
+ ∑

n≥1
πn log

(
1− fn ◦ fn−1(0)

1− fn−1(0)

)
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= π0 ∑
n≥1

αn log

(
fn(0)m0

1− fn(0)

)
+ ∑

n≥1
πn log

(
e−n(1− fn−1(0)mn)

1− fn−1(0)

)

= π0 ∑
n≥1

αn log(en(1− e−n)3) + ∑
n≥1

πn log
(
e−1(1− (1− e−n+1)mn)

)

≤ C
(
π0 ∑

n≥1
nαn + 1−π0

)
< ∞

for a suitable constant C ∈ (0,∞). Having verified condition (B4), we infer from
Theorem 2.1 that q(f) < 1 a.s.

The flavor of this example is that the offspring distributions Qn are picked in
such a way that, as n → ∞, individuals have no offspring with a chance 1 − e−n

exponentially approaching 1, while with probability e−n they produce an exponen-
tially growing number of descendants. This is combined with a transition mecha-
nism for picking the Qn resulting in long runs of the form Q0 → Q1 → . . . → Qk

where the population grows very rapidly on the event of survival, before it starts
anew with a pick of Q0. It is this transition mechanism that makes for an almost
certain positive chance of survival. Indeed, if the fn are i.i.d. with distribution π
then E log(1 − f0(0)) = −∞ and 0 < E log f ′

0(1) < ∞ clearly persist to hold while
Proposition 2.3 now tells us that q(f) = 1 a.s.

Let us finally note that Tanny [19, Ex. 2] has produced a counterexample of
a similar kind but less explicit insofar as it requires to review a rather long and
technical argument given in [18] in order to conclude q(f) < 1 a.s.

2.4 Some useful facts from Palm-duality theory

Consider a doubly infinite sequence X = (Xn)n∈Z of random variables defined
on a probability space (Ω ,A,P) and taking values in a Borel space (Λ ,C). Put

Xn
def= Θ nX = (. . .,Xn−1,Xn,Xn+1, . . .) for n ∈ Z. Let further T = (Tn)n∈Z be an in-

creasing doubly infinite sequence of a.s. finite random epochs such that T = τ(X)
for a measurable function τ and T0 ≤ 0 < T1 holds true. The forward shift Θ is
supposed to act on (X,T) in the canonical manner, namely

Θ ◦ (X,T) def= (ΘX,τ(ΘX)) .

Hence (X,T) is stationary if this holds true for X. The Tn divide X into the cycles
(or segments)

Yn
def= (XTn , . . .,XTn+1−1), n ∈ Z

which are generally not stationary under P. The Palm-duality theory for stationary
point processes tells us how the latter can be achieved (leading to so-called cycle sta-
tionarity) under an appropriate change of measure which, roughly speaking, means
to condition the stationary (X,T) to have a point at 0 (here points are the epochs
Tn). For a detailed exposition of this topic we refer to the monographs by Thorisson
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[20, Chap. 8] or Sigman [15]. Here we confine ourselves with a statement of some
basic facts. Defining

P̂(dω) def=
1

c(T1(ω)−T0(ω))
P(dω), c

def= E

(
1

T1 −T0

)
, (2.5)

the main result may be stated as follows:

Proposition 2.4. Given a stationary sequence (X,T) on a probability space (Ω ,A,P)
as introduced before, the following assertions hold true:

(a) (Yn)n∈Z is stationary under P̂.

(b) Under P̂, ΘTn ◦ (X,T) d=ΘT0 ◦ (X,T) for all n ∈ Z.
(c) Ê(Tn −Tn−1) = 1

c for all n ∈ Z.

A consequence of this result is the subsequent useful formula reminiscent of
Dynkin’s formula in the theory of Markov processes. We will use it in several places
in the proof of Theorem 2.1.

Corollary 2.1. Suppose that (X,T) is stationary under P. Let h : Λ∞ → R be any
measurable function such that Eh−(X) or Eh+(X) is finite. Then

Ê

(
T1−1

∑
k=T0

h(Xk)

)

= Eh(X) Ê(T1 −T0) =
Eh(X)

c
.

Proof. It suffices to consider the case of bounded h, for then the general assertion
follows in the usual manner by monotone approximation of h+ and h− through non-
negative bounded functions. Observe that, by part (a) of the previous proposition,(
∑Tn−1

k=Tn−1
h(Xk)

)
n∈Z

is stationary under P̂. For bounded h, we now infer

Ê

(
T1−1

∑
k=T0

h(Xk)

)

=
1
n

Ê

(
Tn−1

∑
k=T0

h(Xk)

)

=
1
n

n

∑
j=1

Ê

(
Tj −Tj−1

Tn −T0

Tn−1

∑
k=T0

h(Xk)

)

and each expectation in the last sum converges to Eh(X) Ê(T1 − T0) as n → ∞ by
an appeal to Birkhoff’s ergodic theorem (giving (Tn −T0)−1∑Tn−1

k=T0
h(Xk) → Eh(X)

P-a.s. and thus P̂-a.s.), the dominated convergence theorem and Proposition 2.4(b).
This clearly yields the asserted result.

2.5 Proofs

Let us begin by recalling the following result by Athreya and Karlin [3, Thm. 1].

Lemma 2.1. Let (Zn)n≥0 be a GWPRE satisfying (A1–4) and E(log f ′
0(1))+ < ∞.

Then P(q(f) < 1) = 1 implies
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E| log f ′
0(1)| < ∞ and E log f ′

0(1) > 0

as well as

E

∣
∣
∣
∣log

(
1−q(f0)
1−q(fn)

)∣∣
∣
∣< ∞ and E log

(
1−q(f0)
1−q(fn)

)
= 0 (2.6)

for all n ∈ N.

Proof (of Proposition 2.1 (Completion)). In view of the previous lemma we see that
criticality (i.e., E log f ′

0(1) = 0 and particularly E(log f ′
0(1))+ < ∞) always entails

q(f) = 1 a.s.

Proof (of Proposition 2.3). Suppose E| log f ′
0(1)| < ∞. In view of Proposition 2.2 it

remains to show that q(f) < 1 a.s. implies E log(1− f0(0)) >−∞. That E log f ′
0(1) >

0 holds true as well follows by an appeal to Proposition 2.1.
For all n ≥ 1 and ε ∈ (0,1), we infer with the help of Lemma 2.1 that

∞ > E

∣
∣
∣
∣log

(
1−q(f0)
1−q(fn)

)∣∣
∣
∣

= E

∣
∣
∣
∣log

(
1− f0 ◦ . . .◦ fn−1(q(fn))

1−q(fn)

)∣∣
∣
∣

≥ E

∣
∣
∣
∣log

(
1− f0 ◦ . . .◦ fn−1(q(fn))

1−q(fn)

)∣∣
∣
∣1[0,1−ε ](q(fn))

≥ −E log(1− f0 ◦ . . .◦ fn−1(q(fn)))1[0,1−ε ](q(fn)) + logε
≥ −E log(1− f0(0))1[0,1−ε ](q(fn)) + logε

≥ −E

(
log(1− f0(0))P(q(fn) ≤ 1− ε| f0)

)
+ logε. (2.7)

Now we have

P(q(fn) ≤ 1− ε| f0) = P(q(f) ≤ 1− ε) > 0 a.s.

for all n > m and ε sufficiently small, if the fn are m-dependent (notice that q(fn)
does actually only depend on fn, fn+1, . . .), while in the case (C2)

P(q(fn) ≤ 1− ε| f0) ≥ min
g∈Γ0

P(q(fn) ≤ 1− ε| f0 = g) > 0 a.s.

for ε sufficiently small. Consequently, by choosing n and ε in a suitable manner in
(2.7), we infer E log(1− f0(0)) > −∞.

Proof (of Theorem 2.1). Put h(ξ ) def= − log
(

1−q(ξ )
1−q(Θξ )

)
for any ξ ∈ Γ Z.

(a) Suppose E log f ′
0(1) > 0.

“(B1)⇒(B2)” As, by convexity, f ′
0,c(1) ≥ 1 − f0,c(0) = 1 − f0(0) for all c ∈ N,

we see that (B1) implies E log f ′
0,c(1) > −∞ for all c ∈ N and thereupon, by the
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monotone convergence theorem, that limc→∞E log f ′
0,c(1) = E log f ′

0(1) > 0. This
shows (B2).

“(B2)⇒(B1)” Using f ′′
0,c(1)<∞ and the inequality

1− f0,c(s)
1−s ≥ f ′

0,c(1)− 1
2 f ′′

0,c(1)(1−
s) for s ∈ [0,1), we infer

E log

(
1− f0,c(s)

1− s

)
≥ 1

2
E log f ′

0,c(1) > 0

by making 1− s sufficiently small. Picking such an s, (B1) now follows from

E log(1− f0(0)) = E log(1− f0,c(0)) ≥ E log(1− f0(s))

= E log

(
1− f0,c(s)

1− s

)
+ log(1− s) ≥ log(1− s).

“(B3)⇒(B4)” As P(q(f) < 1) = 1, Birkhoff’s ergodic theorem implies the existence
of q ∈ (0,1) such that

lim
n→∞

1
n

n−1

∑
k=0

1[0,q]
(
q(fk)

)
= P(q(f) ≤ q) > 0 a.s.

which in turn yields

P
(
q(fn) ≤ q infinitely often

)
= 1.

Denote by (Tn)n∈Z the sequence of successive random epochs with q(fTn)≤ q, where
T0 ≤ 0 < T1 a.s. Defining P̂ as in (2.5) for this sequence, Proposition 2.4 ensures that

f̂ = ( f̂n)n∈Z, f̂n
def= fTn ◦ . . .◦ fTn+1−1,

is stationary and ergodic under P̂. The latter holds true in particular for (Tn −
Tn−1)n∈Z and Ê(T1 −T0) =

[
E
(

1
T1−T0

)]−1
< ∞ (see Proposition 2.4(c)). Now con-

sider a stochastic sequence (Ẑn)n∈Z satisfying

P̂((Ẑn)n≥0 ∈ ·|̂f = ξ ) = P((Ẑn)n≥0 ∈ ·|̂f = ξ ) = P((Zn)n≥0 ∈ ·|f = ξ )

for all ξ ∈ Γ Z. It follows that (Ẑn)n∈Z forms a GWPRE under P as well as P̂ with
Ẑ0 = 1, (under P̂ stationary ergodic) environment ( f̂n)n≥0 and

P̂(Ẑ∞ = 0|̂f = ξ ) = P(Ẑ∞ = 0|̂f = ξ ) = q(ξ ).

By the choice of the Tn, we have

q(̂f) = q(fT0) ≤ q P-a.s.

and therefore (since P and P̂ are equivalent measures and f̂0(0) ≤ q(̂f))
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Ê log(1− f̂0(0)) ≥ log(1−q) > −∞. (2.8)

Next use E(log f ′
0(1))− < ∞ (by assumption) and Corollary 2.1 to obtain

Ê(log f̂ ′
0(1))− = Ê

(
log( fT0 ◦ . . .◦ fT1−1)′(1)

)−

= Ê

(
T1−1

∑
k=T0

log f ′
k(1)

)−

= Ê

(
T1−1

∑
k=T0

(log f ′
k(1))−

)

= E(log f ′
0(1))− Ê(T1 −T0) < ∞

and then once again Corollary 2.1 to conclude

Ê log f̂ ′
0(1) = E log f ′

0(1) Ê(T1 −T0) > 0.

Write next

Ê log(1− f̂0(0)) = Ê

(
T1−1

∑
k=T0

log

(
1− fk ◦ . . .◦ fT1−1(0)

1− fk+1 ◦ . . .◦ fT1−1(0)

))

= Ê

(
T1−1

∑
k=T0

g(fk)

)

,

(2.9)

where, for any ξ = (ξn)n∈Z ∈ Γ Z,

g(ξ ) def= log

(
1−ξ0 ◦ . . .◦ξτ(ξ )−1(0)
1−ξ1 ◦ . . .◦ξτ(ξ )−1(0)

)

, τ(ξ ) def= inf{n ≥ 1 : q(Θ nξ ) ≤ q}.

We show now that Eg(f) > −∞, which proves (B4) with T = T1 −1 ∈ T. It follows

with the help of the monotonicity of 1− f0(s)
1−s that

g+(fn) =
(

log

(
1− fn( fn+1 ◦ . . .◦ fT1−1(0))

1− fn+1 ◦ . . .◦ fT1−1(0)

))+

≤
(

log

(
1− fn(q(fn+1))

1−q(fn+1)

))+

=
(

log

(
1−q(fn)

1−q(fn+1)

))+

= h−(fn)

for T0 ≤ n < T1. Since E|h(f)| <∞ by assumption (B3), we obtain by another appeal
to Corollary 2.1
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Ê

(
T1−1

∑
k=T0

g+(fk)

)

≤ Ê

(
T1−1

∑
k=T0

h−(fk)

)

= Eh−(f) Ê(T1 −T0) < ∞

which in combination with (2.8) and (2.9) gives Ê(∑T1−1
k=T0

g−(fk)) < ∞ as well and
thus

E|g(f)| =
1

Ê(T1 −T0)
Ê

(
T1−1

∑
k=T0

|g(fk)|
)

< ∞.

“(B4)⇒(B3)” Assuming (B4) with T = inf{n ≥ m : fn ∈ C} for some measurable
C ⊂ Γ Z and m ≥ 0, let T ′

n , n ∈ Z, be the increasing sequence of successive random

epochs where fT ′
n
∈ C and T ′

0 ≤ 0 < T ′
1. Putting Tn

def= T(m+1)n for n ∈ Z, we clearly
have T ≤ T1 −1 and therefore

−∞ < E log

(
1− f0( f1 ◦ . . .◦ fT (0))

1− f1 ◦ . . .◦ fT (0)

)

≤ E log

(
1− f0( f1 ◦ . . .◦ fT1−1(0))

1− f1 ◦ . . .◦ fT1−1(0)

)
.

(2.10)

Now let P̂ and f̂ be defined as in the previous part but for the Tn just defined. Then
Corollary 2.1 (applicable because of (2.10)) and (2.9) (with g adapted to the present
Tn) implies

Ê log(1− f̂0(0)) = Ê(T1 −T0)E log

(
1− f0( f1 ◦ . . .◦ fT1−1(0))

1− f1 ◦ . . .◦ fT1−1(0)

)
> −∞. (2.11)

We further infer Ê log f̂ ′
0(1) > 0 as in the previous part which in combination with

(2.11) gives

1 = P̂(q(̂f) < 1) = P(q(̂f) < 1) = P(q(fT0) < 1)

by an appeal to Proposition 2.2 and thus also q(f) < 1 a.s.
Left with the proof of E|h(f)| < ∞, we first note that Eh−(f) < ∞, for

log

(
1− f0( f1 ◦ . . .◦ fT (0))

1− f1 ◦ . . .◦ fT (0)

)
≤ log

(
1− f0(q(f1))

1−q(f1)

)
= −h(f) a.s.

Then use ∑n−1
k=0 h(fk) = − log(1−q(f0))+ log(1−q(fn)) to infer

limsup
n→∞

1
n

n−1

∑
k=0

h(fk) ≤ lim
n→∞

− log(1−q(f))
n

= 0 a.s.

which in combination with n−1∑n−1
k=0 h−(fk) = Eh−(f) <∞ a.s. by Birkhoff’s ergodic

theorem leads us to the conclusion
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Eh+(f) = lim
n→∞

1
n

n−1

∑
k=0

h+(fk) ≤ Eh−(f) < ∞.

and thereupon to Eh(f) = limn→∞ n−1∑n−1
k=0 h(fk) = 0.

“(B3)⇒(B5)” We first point out that for any truncation function v the inequality

f ′
0,v(1) ≥ 1−q(f0)−q(f1)v(f)

1−q(f1)
a.s.

holds true as was shown by Coffey and Tanny [6, Lemma 2]. Choose ṽ(ξ ) def= inf{n ≥
1 : q(Θξ )n ≤ (1−q(ξ ))/2} which is a.s. finite as q(f) < 1 a.s. It follows that

E log f ′
0,ṽ(1) ≥ E

(
1−q(f0)

2(1−q(f1))

)
> −∞.

Hence, by the monotone convergence theorem,

E log f ′
0,ṽ+n(1) = E log f ′

0(1) > 0.

Nox fix N large enough such that, for v
def= ṽ+N, we have E log f ′

0,v(1) > 0. It is no
loss of generality to assume E log f ′

0,v(1) < ∞ as well, for otherwise we can choose
m so large that

E log f ′
0,v(1)1{log f ′0,v(1)≤m} > 0

and replace v(f) on the event {log f ′
0,v(1) > m} by v(f)− w(f), where for ξ ∈ Γ Z

(recall f0(s) = ∑k p0,ksk)

w(ξ ) def= inf

{

n ≥ 1 :
v(ξ )−n−1

∑
k=0

kp0,k +(v(ξ )−n) ∑
k≥v(ξ )−n

p0,k ≤ m

}

.

If v(fn) satisfies the second condition of (B5) still to be verified, then this is obvi-
ously also true for the just defined modification. Turning to the verification of

lim
n→∞

n−1 logv(fn) = 0, i.e. lim
n→∞

v(fn)1/n = 1 a.s.

note that it suffices to do so for ṽ instead of v. Since, by assumption and Birkhoff’s
ergodic theorem,

0 = Eh(f) = − lim
n→∞

n−1

∑
k=0

h(fk) = lim
n→∞

1
n

log

(
1−q(f0)
1−q(fn)

)
a.s. (2.12)

we infer n−1 log(1−q(fn)) → 0 a.s. and thereby

∑
n≥0

1[1−exp(−εn),1](q(fn)) < ∞ a.s. (2.13)
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for all ε > 0. Consequently,

limsup
n→∞

q(fn)exp(2εn) ≤ lim
n→∞

(1− e−ε)exp(2εn) a.s.

= lim
n→∞

exp
(

e2εn log(1− e−εn)
)

= lim
n→∞

exp(−eεn) = 0

which in turn implies
lim
n→∞

e−2εnṽ(fn+1) = 0 a.s.

for all ε > 0 by going back to the definition of ṽ and using (2.13). Namely, for any
sufficiently large n (depending on the fixed ε),

q(fn+1)exp(2εn) ≤ (1− e−ε(n+1))exp(2εn) = exp
(

e2εn log(1− e−ε(n+1))
)

≤ 2exp
(− eε(n−1)) ≤ e−εn

2
≤ 1−q(fn)

2
.

Since ṽ ≥ 1, we have thus particularly shown that

1 ≤ limsup
n→∞

ṽ(fn)1/n ≤ e2ε a.s.

for all ε > 0, and this clearly gives the desired assertion.
Since truncation always increases the chance of extinction, we have q(fv) ≥ q(f)

a.s. and must therefore still verify P(q(fv) < 1) = 1. Let (Zn,v)n≥0 be a GWPRE with

one ancestor and stationary environment ( fn,v)n≥0. Put μn,v
def= E(Zn| f0,v, f1,v, . . .)

(compare (2.1)) and notice that Wn,v
def= Zn,v/μn,v, n ≥ 0, constitutes a mean one

nonnegative martingale. Check that f ′′
n,v(1) ≤ v(fn)2 a.s. for all n ≥ 0 whence

lim
n→∞

1
n

log+ f ′′
n,v(1) ≤ lim

n→∞

2
n

v(fn) = 0 a.s.

But a combination of this fact with 0 < E log f ′
0,v(1) < ∞ and E log f ′′

0,v(1) < ∞ is
now easily seen to imply the L2-boundedness of Wn which in turn entails P(q(fv) <
1) = 1 as claimed.

“(B5)⇒(B6)” As P(q(fv) < 1) = 1 and 0 < E log f ′
0,v(1) <∞, we infer from Lemma

2.1 that E log
( 1−q(f0)

1−q(fn)

)
= 0 for all n ≥ 1. This yields the assertion by recalling (2.12)

from above.

“(B6)⇒(B7)” This is immediate from log(1−q(fn)) ≤ log(1− fn(0)) ≤ 0.

(b) Here it remains to show “(B5)⇒(B3)”. Since part (a) already gives P(q(f) <
1) = 1 and we now additionally assume E| log f ′

0(1)| < ∞, the remaining assertions
in (B3) are once again following from Lemma 2.1.
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Environmental versus demographic stochasticity
in population growth

Carlos A. Braumann

Abstract Demographic stochasticity (sampling variation in births and deaths) and
environmental stochasticity (effect of random environmental fluctuations on growth
rate) in population growth are usually modeled using different approaches. Branch-
ing processes or birth and death processes (BDP) are used to model the effect of de-
mographic stochasticity but do usually assume a constant environment. Stochastic
differential equations (SDE) are used to model environmental stochasticity but usu-
ally ignore demographic stochasticity. We shall examine the similarities and the dif-
ferences between these approaches in what concerns extinction and local behavior,
using as a benchmark the particular case of the Malthusian (density-independent)
models, namely the Galton–Watson process, the simple BDP and the Malthusian
SDE model. For SDE density-dependent growth models, we then present a review
of the results on extinction and existence of stationary densities. Such results are
robust with respect to the form of density-dependence since we use general models
(rather than specific models like the logistic). It would be worth studying the results
for corresponding general density-dependent demographic stochasticity models.

Mathematics Subject Classification (2000): 92D25, 60J70, 60J85

Keywords: population growth, environmental stochasticity, demographic stochas-
ticity, extinction, stationary distribution.

3.1 Introduction

Deterministic population growth models may take into account the effect of popu-
lation size on the growth rate (density-dependence) but ignore the effect of chance
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events and the resulting random fluctuations in population size. Even for popula-
tions with positive average growth rate, there is always a risk of extinction that
deterministic models do not show. There are two sources of randomness affecting
population growth. One is the inevitable sampling variability in births and deaths,
usually called demographic stochasticity. The other is due to the random fluctua-
tions in the environmental conditions that affect the growth rate of the population,
usually called environmental stochasticity.

Branching processes and birth and death processes (BDP) incorporate the effect
of demographic stochasticity but usually assume birth/death rates that are not af-
fected by environmental conditions. Stochastic differential equation (SDE) models
are used to model the environmental stochasticity but usually ignore sampling vari-
ability in births and deaths.

The two sources of randomness affect the population growth differently, despite
having some common effects. We will compare the effects of the two sources of
randomness on extinction and local behavior for the benchmark case of density-
independent or Malthusian growth. It is a benchmark because it would be the growth
model under ideal conditions of unlimited resources. It is also a benchmark be-
cause we have detailed results for the two types of demographic stochasticity mod-
els and for the environmental stochasticity SDE model that allow us to compare
them. In Sect. 3.2, we briefly present the well-known Malthusian models to be com-
pared, namely the Galton–Watson process (GWP), the simple birth and death pro-
cess (SBDP) and the Malthusian stochastic differential equation model (MSDE). We
also compare the local behavior of the three models in terms of their infinitesimal
means and standard deviations. In Sect. 3.3 we compare the extinction behavior of
these models.

In wild populations, density-independence, however, is not very realistic since re-
sources are limited and intraspecific competition for such resources becomes more
intense for large populations, making it more difficult for individuals to survive and
reproduce. So, we will look at density-dependent SDE models, which are general-
izations of density-dependent ordinary differential equation models that incorporate
a stochastic term describing the effect of environmental fluctuations on the growth
rate. For such models, we will present results on extinction and existence of a sta-
tionary density (existence of a stationary distribution having a probability density
function). The literature, starting with the pioneer work of Levins [15], considers
specific density-dependent models, the logistic model being the most popular one.
However, the exact form of density-dependence of a given population is not really
known and so we prefer to use a general density-dependence model in which we
do not specify any particular functional form for the density-dependence but only
some biologically dictated properties of such dependence. In such a way, the model
properties that we reach are robust with respect to the form of density-dependence.
Despite this level of generality, we were able to obtain the same qualitative results
that have been obtained for specific models and we briefly review these results in
Sect. 3.4. We start with models with constant noise intensity and then generalize to
density-dependent noise intensities.
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Having presented the consequences of environmental stochasticity on density-
dependent growth, we believe that a similar study on the effect of demographic
stochasticity would be interesting if indeed we could obtain the qualitative behav-
ior of quite general (rather than specific) density-dependent branching processes or
density-dependent birth and death processes. Based on analogy, Sect. 3.5 speculates
on the behavior of such models and presents the main conclusions.

3.2 Density-independent models and their local behavior

Let us denote by X(t) the population size at time t ≥ 0 and by x0 = X(0) > 0 the
initial population size.

In deterministic continuous-time ordinary differential equation models, let us call
total growth rate to the growth rate of the entire population dX(t)

dt =limΔt↓0
X(t+Δt)−X(t)

Δt

and per capita growth rate, or simply growth rate, to 1
X(t)

dX(t)
dt .

In density-independent growth, the growth rate is independent of population
size, which means that resources are abundant and we do not need to consider the
intraspecific competition for such resources. So, the continuous-time determinis-
tic density-independent model just states that the growth rate is a constant r, i.e.,

1
X(t)

dX(t)
dt = r or dX(t)

dt = rX(t). This is the so-called Malthusian growth model,

the solution being exponential growth: X(t) = x0 exp(rt). The constant growth rate
r = λ −μ is the difference between a constant birth rate λ and a constant death rate
μ . As t → +∞, we get X(t) → 0 if r < 0 and X(t) → +∞ if r > 0. For r = 0 the
population size remains equal to its initial value.

Of course, such models allow non-integer values for X(t) and can not hold ex-
actly. This may be somewhat irrelevant for very large populations but it is certainly
important for extinction studies. A more realistic model would consider that there
are sampling variations in births and deaths. Then, in a continuous-time framework,
the rates would be interpreted in a probabilistic sense, namely the probability that
a given individual would give birth to a new individual in a time interval [t, t +Δt]
(with small Δt > 0) would be approximately λΔt and the probability that a given
individual would die in such an interval would be approximately μΔt. We may then
model X(t) as a birth and death process.

As can be seen in any stochastic processes textbook, a general birth and death
process is a particular type of continuous-time Markov chain having the non-
negative integers as the state space and having an infinitesimal matrix of the form

Q =

⎛

⎜
⎜
⎜
⎜
⎝

−λ0 λ0 0 0 0 . . .
μ1 −(λ1 −μ1) λ1 0 0 . . .
0 μ2 −(λ2 −μ2) λ2 0 . . .
0 0 μ3 −(λ3 −μ3) λ3 . . .
. . . . . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎠

,
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where λi ≥ 0 and μi ≥ 0 are, respectively, the total birth rate and the total death
rate when population size is i (i = 0,1,2, . . . ), with μ0 = 0. Remember that the
element qi j (i, j = 0,1,2, . . . ) of matrix Q is the instantaneous rate of transition from
population size i to population size j; for i 
= j, the probability of transition from i
to j in a time interval [t, t +Δt] (with Δt > 0 small) is approximately given by qi jΔt.
Some restrictions on the λ ’s and μ’s need to be imposed for unicity and validity of
the forward Kolmogorov equation (see, for instance [1]), but these are automatically
satisfied in the density-independent case that we are going to consider.

In general, the per capita rates λi/i and μi/i may depend on population-size i
(density-dependence). We will consider here the density-independent or Malthusian
case, known as simple birth and death process (SBDP), in which these rates (inter-
preted in the probabilistic sense) are constants λ > 0 and μ > 0. Then, λi = λ × i
and μi = μ × i. The growth rate is r = λ − μ . One can see in any stochastic pro-
cesses textbook (for example, in [13]) that, assuming the initial population size has
a known x0 value, the solution behaves on average like in the deterministic model:
E[X(t)] = x0 exp(rt).

Since X(t) assumes integer values, it can only stay or jump, so its derivative is
either zero or infinite. So, the concept of total growth rate (or of per capita growth
rate) makes no sense. But it makes sense to speak about the rate of growth of the
expected value or of the variance, to which we call infinitesimal mean and infinites-
imal variance. When the population size at time t is x, the infinitesimal mean will
be given by

a(x) = lim
Δt↓0

E[X(t +Δt)− x|X(t) = x]
Δt

and the infinitesimal variance by

b2(x) = lim
Δt↓0

E[(X(t +Δt)− x)2 |X(t) = x]
Δ t

.

Since, for small Δt > 0, we have P(X(t +Δt) − x = 1|X(t)=x) = λxΔt + o(Δt),
P(X(t +Δt)− x = −1|X(t)=x) = μxΔt + o(Δt) and P(X(t +Δt)− x = 0|X(t)=x)
= 1 − (λ + μ)xΔt + o(Δt), then E[X(t + Δt) − x|X(t) = x] = rxΔt + o(Δt) and
E[(X(t +Δt)− x)2 |X(t) = x] = (λ + μ)xΔt + o(Δt). Therefore the infinitesimal
mean of the SBDP is

a(x) = rx,

similar to the total growth rate in the deterministic model. The infinitesimal variance
is b2(x) = (λ +μ)x, and so the infinitesimal standard deviation is

b(x) =
√

λ +μ
√

x ;

the proportionality to the square root of the sample size x is typical of sampling
variation and should not come as a surprise.

Another way of taking into account sampling variations in births and deaths is to
use classical branching processes models, a particular type of discrete-time Markov
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chains having the non-negative integers as the state space. Usually, although there
are now available two-sex models (for a survey see [12]), one looks only at indi-
viduals of one sex, for instance females. An excellent quite comprehensive book on
branching processes is [11].

For branching processes, the next generation n + 1 consists of the offspring of
the current generation n. Denote by ξn j the number of offspring of the individual
number j of generation n. For the Malthusian type branching process, called Galton-
Watson process (GWP), these random variables (r.v.) are assumed to be independent
identically distributed (iid) for all n and j and do not depend on population size. Of
course, Xn+1 =∑Xn

j=1 ξn j, where Xn represents the population size at generation n. Let

pk = P[ξn j = k] (k = 0,1,2, . . . ) with ∑+∞
k=0 pk = 1 be the offspring distribution and

assume that it has positive and finite mean m = E[ξn j] and variance σ2 = VAR[ξn j].
Let us denote by φ(s) = ∑+∞

k=0 pksk the probability generating function (p.g.f.) of
the offspring distribution. The average behavior is exponential growth like in the
deterministic model: E[Xn] = x0mn.

To make the bridge to continuous-time models, let Δt > 0 be the time interval
between consecutive generations, so that Xn = X(nΔt) and make Δt → 0. Then, for
t = nΔt, E[X(t)] = E[Xn] = x0mn; of course, for fixed t, as Δt → 0, we must have
n = t/Δt → +∞ and so, to keep the same average size at time t, m must decrease in
such a way that mn remains constant. Equating with the deterministic case X(t) =
x0 exp(rt) one gets mn = exp(rt) and therefore r = (n lnm)/t = (n lnm)/(nΔt) =
lnm/Δt. So, denoting r = lnm/Δt, which remains constant as Δt → 0, we see that
r plays for the average population size the same role as the Malthusian parameter r
plays in the deterministic model.

With this approach we can define an analog to infinitesimal means and variances
when the population size at generation n (time t = nΔt) is x:

a(x) = lim
Δt↓0

E[Xn+1 − x|Xn = x]
Δt

= lim
Δt↓0

(m−1)x
Δt

= rx

b2(x) = lim
Δt↓0

E[(Xn+1 − x)2 |Xn = x]
Δt

= lim
Δt↓0

σ2x+(m−1)2x2

Δt
= σ2x.

So, we still get the same local behavior as the SBDP. In fact, the infinitesimal mean
behaves similarly to the total growth rate in the deterministic model and the in-
finitesimal standard deviation is proportional to the square root of population size.

To take into account environmental stochasticity, the standard approach, since
the pioneer work of [15], is to use SDE models. The reader interested in SDEs can
consult, for instance, [2] or [16]. For the Malthusian (density-independent) case,
the deterministic model would imply that, on a time interval [t, t +Δt] (with small
Δt > 0), the change in population size ΔX(t) = X(t +Δt)−X(t) should be approx-
imately equal to (rΔt)X(t), where rΔt is the cumulative growth rate in that inter-
val. In a randomly varying environment, we may assume that the growth rate has a
constant average but fluctuates randomly about that average due to random fluctua-
tions in the environmental conditions. If we assume that the random environmental
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perturbations about the average environmental conditions are in very large num-
ber and have approximately independent effects on the growth rate, then the central
limit theorem suggests that the resulting accumulated perturbations on the growth
rate in the time interval [0, t] can be described by a stochastic process having ap-
proximately a Gaussian distribution with zero mean and variance proportional to t
(variance should be proportional to the number of such perturbations, which is pro-
portional to the length of the time interval); furthermore, the increments of such pro-
cess in non-overlapping time intervals should be approximately independent. This
suggests that we approximate such cumulative perturbations on growth rate by a
Wiener process or Brownian motion process σW (t), where W (t) is the standard
Wiener process and σ > 0 is the proportionality constant that measures the strength
of the effect of environmental fluctuations on growth; we may call it noise inten-
sity and assume that is independent of population size. So, the cumulative growth
rate on [t, t +Δt] is now given by the average value (rΔt)X(t) plus the accumulated
perturbations σΔW (t) (with ΔW (t) = W (t +Δt)−W (t)) it experiences on that in-
terval. Going to the limit as Δt → 0, we may write dX(t) = (rdt +σdW (t))X(t) or
dX(t) = rX(t)dt +σX(t)dW (t). We call this SDE, which is written in its standard
format, the Malthusian SDE (MSDE) model. It has also been used in the finan-
cial literature to describe the evolution of a stock price (Black–Scholes model) due
to random changes in market conditions. Although W (t) has no derivative almost

surely (a.s.), we can define a generalized function derivative ε(t) = dW (t)
dt , which is

a generalized stochastic process known as standard (continuous-time) white noise.
If we do so, we can write the MSDE in the nonstandard but suggestive format

1
X(t)

dX(t)
dt = r +σε(t). This can be read as the growth rate 1

X(t)
dX(t)

dt having a con-

stant average value r perturbed by a white noise σε(t) induced by environmental
fluctuations. Of course, the white noise, which is uncorrelated, is just an approxi-
mation to a real possibly slightly correlated noise; similarly, the Wiener process (the
integral of white noise in the time interval [0, t]) is just an approximation to the real
accumulated noise in [0, t].

Of course, the solution X(t) of the MSDE dX(t) = rX(t)dt +σX(t)dW (t) with
initial condition X(0) = x0 > 0 is the solution to the integral equation X(t) =
x0 +

∫ t
0 rX(s)ds +

∫ t
0 σX(s)dW (s) and, since W (s) is a stochastic process (which

depends on chance, that is to say, on the environmental conditions that happen to
occur), the solution is also a stochastic process. For a given trajectory (that is, for
a given environmental scenario), the first integral is just an ordinary Riemann in-
tegral; however, the second integral cannot be defined as a Riemann-Stieltjes in-
tegral because W (s) is a.s. of unbounded variation. In fact, choosing mean square
(m.s.) limits for convenience, when we decompose the interval of integration into n
subintervals (decompositions defined by 0 = tn,0 < tn,1 < tn,2 < · · · < tn,n = t with
diameter converging to 0 as n → +∞), we see that the Riemann-Stieltjes sums
∑n

j=1σX(τn, j)
(
W (tn, j)−W (tn, j−1)

)
converge to different limits according to the

choice of the intermediate points τn, j ∈ [tn, j−1, tn, j]. We have several stochastic
integrals according to the choice we made of the intermediate points. The non-
anticipative choice τn, j = tn, j−1 corresponds to the Itô integral, which has nice
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probabilistic properties but does not follow ordinary calculus rules. Another com-
monly used integral is the Stratonovich integral, which corresponds to taking as
intermediate point the average between the initial and the end point of the subin-
terval [tn, j−1, tn, j]; this integral does not have such nice probabilistic properties but
follows ordinary calculus rules. Since the two calculi lead to apparently different
solutions, there has been a controversy on the literature on which calculus is more
appropriate to describe population growth in a randomly varying environment. In
[7] and [8] we have resolved the controversy in much more general contexts, but
let us illustrate the resolution for the particular context of the MSDE. In this case,
the resolution consists in showing that the “average” growth rate r does not have
the same meaning under the two calculi. The literature on the controversy had as-
sumed implicitly that, because they were using the same letter r for both models, the
Itô Calculus model and the Stratonovich calculus model, it meant the same average
and they did not even specify what average they were talking about; this could only
lead to confusion because the growth rate is now fluctuating and therefore, when we
write our results in terms of the average growth rate, we should clarify which av-
erage we are using. Indeed, for the present particular context of Malthusian growth
models, when population size is x at time t, r means the arithmetic average growth
rate ra = 1

x limΔt↓0
E[X(t+Δt)|X(t)=x]−x

Δt under Itô calculus and the geometric average

growth rate rg = 1
x limΔt↓0

exp(E[lnX(t+Δt)|X(t)=x])−x
Δt under Stratonovich calculus and,

taking into account the difference σ2/2 between the two averages, the two calculi
give exactly the same result.

The solution of the MSDE is, for both calculi, given by the geometric Brown-
ian motion X(t) = x0 exp(rgt +σW (t)) = x0 exp((ra −σ2/2)t +σW (t)). Therefore,
lnX(t) has a Gaussian distribution with mean lnx0 + rgt and variance σ2t. The av-
erage behavior is similar to the deterministic model: E[X(t)] = x0 exp(rat).

From now on, we will use for convenience Stratonovich calculus and the MSDE
model (S)dX(t)= rgX(t)dt +σX(t)dW (t) (the “(S)” stands for the use of Stratonovich
calculus when solving the equation) with initial condition X(0) = x0. Of course,
since we use Stratonovich calculus, the parameter r is the geometric average growth
rate and so, to avoid any risk of confusion, we write “rg”. The arithmetic average
growth rate will be denoted by ra = rg +σ2/2.

The solution of the MSDE is a homogeneous diffusion process. Since X(t +Δt)
= X(t)exp(rgΔt + σ(W (t +Δt) −W (t)), the infinitesimal mean (also called drift
coefficient of the diffusion process), when the population size at time t is x, is given
by

a(x) = lim
Δt↓0

E[X(t +Δt)− x|X(t) = x]
Δt

= lim
Δt↓0

(e(rg+σ2/2)Δt −1)x
Δt

= rax,

which also has a behavior similar to the deterministic model. As for the infinitesimal
variance (also called diffusion coefficient of the diffusion process), we obtain

b2(x)=lim
Δt↓0

E[(X(t +Δt)− x)2 |X(t) = x]
Δt

=lim
Δt↓0

(e(2ra+σ2)Δt −2eraΔt +1)x2

Δt
=σ2x2.
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Thus, for environmental stochasticity, the infinitesimal standard deviation is pro-
portional to population size, not to the square root of population size, which is a
fundamental difference with respect to demographic stochasticity. The reason is
that favorable or unfavorable environmental variations affect in a similar manner
the birth and death rates of all individuals. On the contrary, demographic stochastic-
ity does not affect birth and death rates, only the sample realizations of such rates,
which are independent among individuals.

3.3 Density-independent models and extinction

For the environmental stochasticity model the state space is the set of positive
real numbers (like in the deterministic ordinary differential equation models) and
we may consider two concepts of extinction. One is “mathematical” extinction,
by which we mean the population size converging to 0 as t → +∞. From X(t) =
x0 exp(rgt +σW (t)) and the fact that W (t)/t → 0 as t → +∞, we have X(t) → 0 a.s.
if rg < 0 and X(t) → +∞ a.s. if rg > 0. Therefore, “mathematical” extinction occurs
with probability one if rg < 0 (with extinction time +∞) and occurs with probabil-
ity zero if rg > 0. But, of course, these models cannot be accurate near extinction.
For example, a constant population size of 0.4 individuals is not “mathematically”
extinct. So, we can define “realistic” extinction as occurring when the solution of
the SDE reaches an extinction threshold a > 0 (we assume x0 > a for otherwise
we would start with an already extinct population) and the extinction time T is just
the first passage time through a. For example, we can put a = 1 or a = 2 (for two-
sex populations), or even a equal to an Allee effect threshold if such effects (not
contemplated on the model) are present.

Since X(t) is geometric Brownian motion, these results are known for a long time
(one can see a review and extensions in [3]).The probability of “realistic” extinction
is one if rg ≤ 0 and is (a/x0)2rg/σ2

(which is positive and smaller than one) if rg > 0.
If rg > 0, the populations that do not become extinct, will grow to +∞. One can
also determine the distribution of the extinction time, which is an inverse Gaussian
distribution (see, for example, [3]). Using an analogy with branching processes
terminology, we may say that rg < 0 corresponds to a subcritical population, rg = 0
to a critical population and rg > 0 to a supercritical population.

For the demographic stochasticity models the state space is the natural one,
namely the set of non-negative integers and, therefore, we do not have any prob-
lems in precisely defining extinction. Extinction means population size equal to 0
and the extinction time T is the first passage time of X(t) through 0.

For the GWP, it is well-known (see, for instance, [11]) that the probability of
extinction occurring is qx0 , where q is the first positive fix point of the p.g.f. φ(s)
(i.e., the first positive solution of φ(s) = s). In the critical (m = 1) and subcritical
(m < 1) cases, we have q = 1 and, therefore, extinction occurs with probability one.
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In the supercritical case (m > 1), we have 0 < q < 1 and therefore extinction has a
positive probability of occurring but that probability is smaller than one. Consider-
ing the limiting behavior as Δ t → 0, the critical, subcritical and supercritical cases
correspond to r = lnm/Δt being = 0, < 0 and > 0, respectively. So, r plays here a
role similar to the rg in the MSDE model and the two models behave similarly with
respect to extinction probabilities being one or smaller than one. In the supercriti-
cal case, however, the expressions for the extinction probability, although positive
and smaller than one in both models and although decreasing with increasing initial
population sizes, are quite different. For the MSDE, the extinction probability is a
power function of x0, while, for the GWP, the extinction probability is an exponen-
tial function of x0. This is not surprising taking into account that the local behavior
described by the infinitesimal standard deviation is quite different, particularly near
zero population size (in the MSDE, it varies linearly with population size, while
in the GWP it behaves more sharply, proportional to the square root of population
size).

As for the SBDP, it is well known (see, for instance, [13]) that we have also a
similar behavior concerning the extinction probability being one or smaller than one
(but always positive). Again, in the subcritical (r = λ − μ < 0) and critical (r = 0)
cases, extinction occurs with probability one, while in the supercritical case (r > 0)
extinction has a probability (μ/λ )x0 of occurring, again an exponential function of
the initial population size like in the GWP. The distribution of the extinction time
can be easily obtained and its behavior is different from the MSDE model.

3.4 Density-dependent models for environmental stochasticity

Density-independence is not a realistic model, at least for wild populations. Let us
first consider a deterministic model for a closed population (that is, a population
with no migration). Under limited resources, as the population size becomes larger,
the resources available for individual survival and reproduction become shorter and,
therefore, the growth rate 1

X(t)
dX(t)

dt should be a decreasing function of population

size g(X(t)), contrary to the density-independent case in which we have a constant
function of population size. There are many models that have been proposed in
the literature. The most popular ones are g(x) = r(1 − x/K) (the logistic or Pearl-
Verhulst model) and g(x) = r ln(K/x) (the Gompertz model), but one may find many
others in the literature. Notice that, in the two examples, K is the only zero of g(x)
and represents a stable equilibrium population, usually called carrying capacity of
the environment. We will denote by G(x) = g(x)x the total growth rate of the popu-
lation.

When dealing with randomly varying environments, the literature also considers
several alternative models (see, for instance, [7] for references) and there are two
main ways in which the effect of environmental fluctuations has been introduced:
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1. One assumes that the environmental fluctuations directly affect the growth rate
1
X

dX
dt through an additive noise term. The rationale is similar to the one we have

used above for the MSDE model. Using Stratonovich calculus for convenience,
we obtain a model of the type (S) 1

X(t)
dX(t)

dt = g(X(t))+σε(t), where g(x) is the

geometric average growth rate when population size is x and σε(t) is a noise
term describing the fluctuations in the growth rate induced by the environmental
variability, σ > 0 being a constant noise intensity.

2. The other assumes that the environmental fluctuations affect a parameter of the
model. For example, in the logistic model, if r is affected by environmental fluc-
tuations, we could replace it by r +σε(t) to obtain the SDE model 1

X(t)
dX(t)

dt =

(r+σε(t))
(

1− X(t)
K

)
, or dX(t)= rX(t)

(
1− X(t)

K

)
dt +σX(t)

(
1− X(t)

K

)
dW (t).

Notice that the noise term becomes zero when population size is = K and one
wonders why environmental fluctuations do not affect population growth any
longer when the population reaches that precise size. So, this particular example
is not a very realistic model. But there are other examples. In all cases, we get
SDE models of the type (S) 1

X(t)
dX(t)

dt = g(X(t))+σ(X(t))ε(t), in which the noise

intensity σ(x) may depend on the population size x.

In the literature, always specific functions g(x) have been considered. But, in re-
ality, for each particular population, it is very difficult to know the exact form of
the density-dependence function g(x). So, we have obtained results for the case of a
general function g(x), satisfying only some assumptions mainly dictated by biolog-
ical considerations. In so doing, we insure that the qualitative results we have ob-
tained are model robust, that is, they are unaffected by the specific form of density-
dependence.

We now review these results.
We will start with models with constant noise intensity σ (results in [4], also

generalized for harvesting models in [5]). Afterwards, we generalize to density-
dependent noise intensities σ(x) (results in [6], which includes a generalization
to harvesting models), but imposing some restrictions on σ(x) in order to avoid
non-realistic cases like the logistic example with noise in r mentioned above. This
generalization responds to the issue that environmental fluctuations may have differ-
ent effects on the growth rate for different population sizes, in which case the noise
intensity (which measures the intensity of such effects) may depend on population
size.

Let us start with the results for constant noise intensity σ , i.e. for the SDE model

(S)dX(t) = g(X(t))X(t)dt +σX(t)dW (t).

We will consider an absolutely arbitrary density-dependence function g(·) :]0,+∞[�→
]−∞,+∞[ satisfying only the following assumptions:

• g is continuously differentiable and strictly decreasing
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• g(0+) := limx→0+ g(x) 
= 0 (technical assumption to avoid the undecided case
g(0+) = 0, which is extremely unlikely)

• g(+∞) < 0 (the environment can not sustain an arbitrarily large population)
• G(0+) := limx→0+ g(x)x = 0 (because immigration is not allowed).

The continuous differentiability of g implies (see, for instance, [2]) the existence
and unicity of the solution of the SDE up to a possible explosion time, the solu-
tion being a homogeneous diffusion process with diffusion coefficient (infinitesimal
variance)

b2(x) = σ2x2

(the square of the coefficient of the stochastic part of the SDE) and drift coefficient
(infinitesimal mean)

a(x) = g(x)x+
1
2

b(x)
db(x)

dx
= (g(x)+σ2/2)x

(coefficient of the deterministic part plus a correction term due to the use of
Stratonovich calculus). Notice that the mean behavior is similar to the total growth
rate in the deterministic model, but, like we have already seen in the density-
independent case (MSDE model), using the arithmetic average growth rate g(x)+
σ2/2 instead of the geometric average growth rate g(x). Notice also that the in-
finitesimal standard deviation b(x) = σx is also, like in the MSDE model, propor-
tional to population size.

We now use the scale and speed measures (see, for instance, [14]) defined in
the state space (in our case the interval with boundaries 0 and +∞) by the scale and
speed densities, respectively

s(x) = exp

(
−
∫ x

x∗
2a(θ)
b2(θ)

dθ
)

and

m(x) =
1

s(x)b2(x)
,

where x∗ is an arbitrarily chosen point in the interior of the state space. We can also
define the scale and speed functions

S(x) =
∫ x

x∗∗
s(z)dz

and

M(x) =
∫ x

x∗∗
m(z)dz,

where x∗∗ is an arbitrarily chosen point in the interior of the state space. The scale
and speed measures are defined for Borel sets B by S(B) =

∫
B s(z)dz and M(B) =∫

B m(z)dz. One can see, for instance in [14], that, given constant thresholds a and
b in the interior of the state space such that a < x0 < b and denoting by Tc the first
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passage time through c, we have u(x0) := P(Tb < Ta|X(0) = x0) = S(x0)−S(a)
S(b)−S(a) , from

which one deduces a criterion for non-attractiveness of a state space boundary.
In fact, the boundary 0 is non-attractive if there is a right neighborhood R =]0,y[

of zero such that, for any 0 < x0 < n ∈ R, P(T0+ < Tn|X(0) = x0) = 0 (this means
that, when X(t) gets close to 0, it tends to move away from 0). Using the previ-
ous result, one sees that a necessary and sufficient condition for that to happen is
S(0+) = −∞. In [14] one can see that a non-attractive boundary cannot be reached
in finite nor in infinite time a.s. So, if the boundary 0 is non-attractive, “mathe-
matical” extinction has a zero probability of occurring. We can similarly define
non-attractiveness of the boundary +∞ and show that a necessary and sufficient
condition is that S(+∞) = +∞.

With the assumptions we made on the function g(x), we have shown that the
boundary +∞ is always non-attractive, which means that an explosion of the solu-
tion can not occur and, therefore, the solution of the SDE exists and is unique for all
t ≥ 0. As for the boundary 0, it is non-attractive or attractive according to whether
the geometric average growth rate at low population densities g(0+) is positive or
negative.

When g(0+) > 0, we therefore have both boundaries non-attractive. When that
happens and simultaneously the speed measure is finite (that is, M :=

∫ +∞
0 m(z)dz <

+∞), then (see, for instance, [14]) the process is ergodic and there is a stationary
density given by p(x) = m(x)/M (0 < x < +∞), a kind of stochastic equilibrium. In
fact, contrary to the deterministic model, for which the zero of g is a stable equilib-
rium, the random variations in environmental conditions move the population away
from any possible equilibrium size. When there is a stationary density, although
population size X(t) is always changing and does not settle down to an equilibrium
value, the probability distribution of X(t) settles down to an equilibrium distribution
as t → +∞ and that equilibrium distribution has a probability density function p(x),
which we call stationary density. Using the assumptions made on g, we were able to
prove that, when g(0+) > 0, we have M < +∞.

So, we reach the following conclusion according to the sign of the geometric
average growth rate at low population densities g(0+):

• When g(0+) < 0, “mathematical” extinction (and therefore, also “realistic” ex-
tinction) occurs with probability one.

• When g(0+) > 0, there is a zero probability of “mathematical” extinction and
there is a stationary density for X(t). Actually, for low noise intensities σ , the
mode of this stationary density almost coincides with the deterministic equilib-
rium. As for “realistic” extinction, which means crossing of a low extinction
threshold a > 0, since the process is ergodic, it will cross the threshold sooner or
later. Therefore, “realistic” extinction occurs with probability one.

The important different qualitative conclusion for density-dependence of any
kind (the result is model robust) in a randomly varying environment is that we
always have “realistic” extinction with probability one, while in the density –
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independent case we would have a probability of “realistic” extinction smaller than
one when the geometric average growth rate was positive. With density-dependence
and environmental stochasticty, the question is no longer whether extinction will or
not occur (it will occur), but rather how long does it take to happen and, under some
conditions, it may indeed take an extremely long time on average, while for others
it may occur very quickly on average.

In [10] (see also [9]), we have obtained explicit (although cumbersome, in-
volving multiple integrals) expressions for the mean and standard deviation of the
extinction time and, for the particular case of the logistic and the Gompertz models,
we have numerically calculated these moments for several combinations of param-
eter values and presented graphs of their variation as a function of x0/a. The study
of the behavior of such moments as a function of the parameters is quite illuminat-
ing and pretty much in accordance with the intuition. One striking fact is that the
mean is not very representative of the extinction time behavior since the standard
deviation is of the same order of magnitude as the mean.

Our conclusions were obtained assuming constant noise intensity σ , but the con-
clusions are exactly the same if we allow density-dependence noise intensities σ(x)
that are realistic (that is, do not become zero for particular values of population size,
for otherwise a population of such particular sizes would be unaffected by envi-
ronmental fluctuations) and satisfy some mild technical assumptions. Namely, we
assume that σ(·) :]0,+∞[�→]0,+∞[ satisfies the following assumptions:

• It is twice continuously differentiable and strictly positive.
• The total noise intensity V (0+) := limx→0+ σ(x)x = 0 (since there is no immi-

gration).
• ∫ x∗

0+
1

σ(x)x = +∞ for some x∗ > 0.

• ∫ +∞
y∗

1
σ(x)x = +∞ for some y∗ > 0.

• |σ(x)/g(x)| is bounded in a right neighborhood of zero.
• |σ(x)/g(x)| is bounded in a neighborhood of +∞.

The last four assumptions are indeed quite mild since they are automatically
satisfied by all bounded σ(x) functions and by many unbounded functions.

3.5 Conclusions

We have compared the density-independent models for population growth, namely
the Galton–Watson process (GWP), the simple birth and death process (SBDP) and
the Maltusian stochastic differential equation (MSDE) model, the first two being
demographic stochasticity models and the third being an environmental stochasticity
model.

For the SDE models, just like in deterministic ordinary differential equation mod-
els, the concept of “mathematical” extinction (population size converging to 0 as
t → +∞) seems to be not appropriate. In fact, the state space is the positive real line
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and so the population size may take values like 0.4 individuals, being really extinct
but not “mathematically” extinct. Anyway, for the MSDE, “mathematical” extinc-
tion occurs with probability one if rg (the geometric average growth rate) is negative
and has a zero probability of occurrence if rg is positive. The concept of “realistic”
extinction (population size crossing a low extinction threshold size a > 0) was used
instead. No such problem arises in the GWP and the SBDP, in which extinction
means population actually reaching zero size.

Using branching processes terminology, we shall consider for the three models
subcritical, supercritical and critical cases, corresponding to negative, positive or
zero growth rate. In all three models we have extinction with probability one in the
subcritical and critical cases and extinction with a positive probability smaller than
one in the supercritical case. In the MSDE model the relevant criticality growth
rate is the geometric average growth rate rg. In the SBDP and GWP, the growth
rates are not varying (since there are no environmental fluctuations) and are given
by r = λ −μ in the SBDP and by r = lnm/Δt in the GWP, where m is the average
number of offspring of an individual and Δ t is the time interval between generations.

In the supercritical case, the extinction probability is in all cases positive and
smaller than one but behaves differently as a function of the initial population size.
It is an exponential function for the demographic stochasticity models and a power
function for the environmental stochasticity model. This difference in behavior is
not surprising considering the differences in local behavior of standard deviation.

Looking at the local behavior, the infinitesimal mean (rate of change of the mean
population size) is in all three models similar to the deterministic total growth rate of
the population, i.e., proportional to population size. In the demographic stochastic-
ity models, the constant of proportionality is the growth rate. In the MSDE model,
the constant of proportionality is an average rate, namely the arithmetic average
growth rate (notice that this average is different from the geometric average, which
was the relevant average for extinction behavior). The infinitesimal standard devi-
ation (square root of the rate of change of the population size variance) has quite
different behavior. It is proportional to the square root of population size in the de-
mographic stochasticity models (which is typical of sampling variation). However,
for the environmental stochasticity MSDE model, it is proportional to population
size. This fundamental difference is due to the fact that favorable or unfavorable
environmental variations affect in a similar manner the birth and death rates of all
individuals.

Due to resource limitations, populations usually grow in a density-dependent
fashion. We have considered a very general SDE model for the density-dependent
growth of a population in a randomly varying environment, so that the results we
have obtained previously and review here are unaffected by the specific form of
density-dependence. In order to make results even more robust, we have considered
not only the case of constant noise intensity but also the case of very general density-
dependent noise intensities. The infinitesimal mean is similar to the total growth rate
of the corresponding deterministic model and the infinitesimal standard deviation is
proportional to population size in the constant noise intensity case.
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When the geometric average growth rate at low population densities g(0+) is neg-
ative, “mathematical” and “realistic” extinction occur with probability one. When
g(0+) is positive, “mathematical” extinction has zero probability of occurring, the
process is ergodic and X(t) has a stationary density (a kind of stochastic equilib-
rium); however, the ergodicity implies that “realistic” extinction occurs with proba-
bility one since the extinction threshold a > 0 will sooner or later be crossed.

In conclusion, environmental stochastic leads to inevitable extinction if any form
of density-dependence is present, as it is likely to happen, at least in wild popula-
tions. The important issue now is how long does it take for the population to become
extinct, which in some conditions can be extremely long on average. There are re-
sults on the distribution of the extinction time that are not shown in this paper.

It would be interesting to study the effect of density-dependence on demographic
stochasticity models. But it would be important to obtain results, mainly on extinc-
tion, with a general (instead of a specific) form of density-dependence in order for
the results to be robust. It is only reasonable to guess that, like in environmental
stochasticity models, extinction would also be inevitable.

General density-dependent branching processes such that Xn+1 = ∑Xn
j=1 ξn j(Xn),

in which the number of offspring is a function ξn j(x) of the population size x (with
offspring distributions pk(x) = P[ξn j(x) = k]) can be seen in [11] and references
therein. However, in order to obtain interesting conclusions, we need some biolog-
ically reasonable assumptions on pk(x). Of course, one can immediately conclude
that extinction is inevitable if one limits the number of offspring to zero and one
for population sizes larger than a certain value L. The reason is that the state space
{0,1,2, . . . ,L} would be finite and the only recurrent (and absorbing) class would be
{0}. This is, however, a rather artificial (and unrealistic) way of introducing density-
dependence and we need assumptions that are not so restrictive. Maybe one can do
away with biologically realistic assumptions like the mean offspring size m(x) being
a decreasing function of x such that m(+∞) < 1; probably the variance σ(x) of the
offspring distribution would need to be controlled (maybe boundedness would be
sufficient).

For birth and death processes, the general formulation with total birth and death
rates λi and μi that need not to be proportional to population size i is the standard
one and automatically allows for density-dependence. However, as far as I know,
there are no conclusions for sufficiently general density-dependence. Here, one may
reasonably assume that the per capita birth rate λi/i would be a decreasing function
of i (with λ0 = 0) and the per capita death rate μi/i an increasing function of i, and
that ri := (λi − μi)/i satisfies limi→+∞ ri < 0. Would that be sufficient to show that
extinction is inevitable or further conditions would be required? That is certainly
worth investigating.
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4
Stationary distributions of the alternating
branching processes

Penka Mayster

Abstract We consider the model of alternating branching processes, where two
Markov branching processes act alternately by the random time periods of obser-
vation and treatment. Stationary distributions can be obtained by feed-back control
if the observation time δ is defined by the additive functional of total progeny of
the supercritical Markov branching process ξ (t), or by the explicit immigration of
particles. We investigate the reproduction by n cycles and limit theorems to obtain
the stationary distributions.

Mathematics Subject Classification (2000): 60J80, 60K05

Keywords: controlled branching process, state-dependent emigration, explicit im-
migration, feed-back control, random environment, stationary distributions.

4.1 Introduction

Controlled branching processes have a 30-years history. The model of controlled
branching processes with deterministic control function has been introduced by Sev-
astyanov and Zubkov [18] in 1974 year, and then, with random control function, by
Yanev [25] in 1976 year. The control function (deterministic or random) modifies
the number of particles from the n-th generation accepted to continue the reproduc-
tion. The main tools of control have been: immigration or emigration of particles.
Branching processes with emigration was investigated by Vinokurov [24], Kaverin
[12]. Random migration has been studied by Yanev and Nick Yanev [26], Nagaev
and Kharn [15]. Stationary distributions for the model of controlled branching pro-
cesses with multiple control function have been investigated by del Puerto [5] and
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in collaboration with Yanev [6, 7]. Limit theorems and asymptotic behavior of con-
trolled branching processes have been studied by González et al. in the chain of
papers, see [8–10] and [11].

Branching processes with random environment started in 1969 with the article
of Smith and Wilkinson [19] and then in 1971, this model has been developed by
Athreya and Karlin [2, 3]. The remarkable contribution in the last time is done by
Vatutin and Dyakonova [22], Afanasiev et al. [1]. They investigate the natural corre-
spondence between the branching processes in random environment and the simple
random walk with increments given by logarithm of the conditional expectation of
reproduction, see also Vatutin and Wachtel [23].

In 2005 we introduced the model of autoregressive type control [13] by means of
fractional thinning operator as “discrete multiplication”

θ ⊗ k = μ(τ|k) with τ = − logθ , θ ∈ (0,1),

where μ(τ|k) is a subcritical Markov branching process μ(t) starting with a random
number of particles, μ(0) = k, and stopped at the time τ , see for definition [20] and
[21]. We interpret τ as a treatment time period. The Control process consists of test-
ing every particle from the n-th generation according to a dying Markov branching
process during an independent random time τn. This control approach keeps the lo-
cal independence of evolution of particles and allows to introduce different kind of
dependence between the reproduction and environment. The random environment
is generated by the sequence of random variables (δn,τn), representing the observa-
tion and treatment times, respectively, and by the probability generating functions of
the Markov branching processes stopped at the random times δn or τn. Considering
over all the possibilities, there are two streams with opposite sense living together,
but looking on the particular realization, they appear in the alternating way, when
the random environment is created by independent identically distributed cycles. If
the random environment is defined by the first order exponential autoregressive pro-
cess, then this alternative character is disturbed: there appear the cycles with zero
treatment time, see [14].

This communication describes the correspondence between the models of alter-
nating branching processes, controlled branching processes and branching processes
in random environment. First of all we define the branching mechanism of one cycle
and reproduction by n cycles. We define the models of alternating branching process
with explicit immigration and the model of feed-back control. Our main interests are
the critical parameters of reproduction in random environment for different particu-
lar cases. We investigate the existence and properties of stationary distributions for
the model of alternating branching process with explicit immigration and for the
model of feed-back control.
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4.2 Alternating branching process

We intend to control a Markov branching process (MBP) ξ (t) defined by the compo-
sition semigroup of probability generating functions (p.g.f.) f (t,s), t ≥ 0, by means
of another MBP μ(t) defined by the composition semigroup of probability generat-
ing functions g(t,s), t ≥ 0, see [13]. Let u(s) and v(s) be the infinitesimal generating
functions to the composition semigroups f (t,s) and g(t,s), respectively. The first
derivatives of u(s) and v(s) at the point s = 1 define the criticality of the MBP, see
for the details on MBP [4], p. 106 and [17], p. 27. We suppose that f (t,s) is su-
percritical, i.e. u′(1) > 0, and g(t,s) is subcritical, i.e. (v′(1) < 0). Traditionally q
denotes the extinction probability, that is the smallest root in the closed interval [0,1]
of the equation u(s) = 0 or v(s) = 0. The supercritical process ξ (t) has the extinction
probability q(ξ ) < 1 and the subcritical process μ(t) has the extinction probability
q(μ) = 1. In order to describe the model of alternating branching process we con-
sider the following sequences of independent identically distributed (i.i.d.) random
variables (r.v.) representing observed processes and treatment processes:

{ξn(.); ξn, j(.) : n = 1,2, . . . ; j = 1,2, . . .},

{μn(.); μn, j(.) : n = 1,2, . . . ; j = 1,2, . . .},
being independent copies of ξ (t) and μ(t), respectively. Let the immigration parti-
cles be represented by the following sequence:

{ηn : n = 0,1, . . .},

of independent copies of a random variable η with probability generating func-
tion h(s). Suppose the observation time periods (δ1,δ2, . . .) form a sequence of
i.i.d. copies of a non-negative random variable δ and the treatment time periods
(τ1,τ2, . . .) are independent copies of a random variable τ . First of all we de-
fine the model of alternating branching process without explicit immigration. Ob-
viously, the initial conditions will play an important role. Suppose the reaction
(Xn,Yn), n = 1,2, . . ., starts with one particle observed by the time δ1. We have

X0 = 0, Y0 = 1 and X1 = ξ1(δ1|1), . . . ,

Xn = ξn(δn|Yn−1) and Yn = μn(τn|Xn), . . . ,

with ξn(δn|Yn−1) and μn(τn|Xn) the supercritical and subcritical Markov branching
processes ξn(t) and μn(t), starting with the random number of particles ξn(0) =Yn−1

and μn(0) = Xn, and stopped at the times δn and τn, respectively. We shall compare
it with the reaction (X ′

n,Y
′
n),n = 1,2, . . . starting with one particle treated by the time

τ1. We define
Y ′

0 = 0, X ′
0 = 1 and Y ′

1 = μ1(τ1|1), . . . ,
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X ′
n = ξn(δn|Y ′

n) and Y ′
n+1 = μn+1(τn+1|X ′

n), . . . .

The Markov chains (Yn) and (X ′
n) are conditioned on the random environment of

cycles, respectively,

σ = { (observation, treatment) = (δi,τi), i = 1,2, . . .},

σ ′ = { (treatment, observation ) = (τi,δi), i = 1,2, . . .}.
We shall denote it by {(Yn,σ),n = 1,2. . .} and {(X ′

n,σ ′),n = 1,2. . .}. They describe
the reproduction by n successive cycles of (observation, treatment) or (treatment,
observation) starting with one particles. The Markov chains (Y ′

n) and (Xn) are con-
ditioned on the delayed random environment of cycles:

d = { (observation, treatment ) = (δi,τi+1), i = 0,1, . . . , where δ0 = 0},

d′ = {( treatment, observation ) = (τi,δi+1), i = 0,1, . . . , where τ0 = 0}.
We shall denote it by {(Xn,d′),n = 0,1, . . .} and {(Y ′

n,d),n = 0,1, . . .}. We remark
that for n = 1,2, . . ., the delayed cycles are equal in distribution to the “regular”

one, since the r.v. (δi,τi+1)
D= (δi,τi) and (τi,δi+1)

D= (τi,δi), for i = 1,2, . . ., where

“
D=” denotes the equality in distribution. The Markov chain {(Y ′

n,d),n = 0,1, . . .}
represents the reproduction by n − 1 successive cycles of (observation, treatment)
starting with μ1(τ1). Respectively, {(Xn,d′),n = 0,1, . . .} represents the reproduc-
tion by n−1 successive cycles of (treatment, observation) starting with ξ1(δ1).

4.3 Alternating branching process with explicit immigration

We define the alternating branching process with explicit immigration by the se-
quence (Zn,Wn),n = 0,1,2, . . . as follows:

Z0 = 0 and W0 = η0,

Z1 = ξ1(δ1|W0) and W1 = μ1(τ1|Z1)+η1

Zn = ξn(δn|Wn−1) and Wn = μn(τn|Zn)+ηn, . . . .

We interpret the sequence {(Wn,σ),n = 1,2, . . .} as a random control function de-
scribing state-dependent emigration and explicit immigration. The sequence given
by {(Zn,d′), n = 1,2, . . .} describes the population before the control and the se-
quence {(Wn,σ), n = 1,2, . . .} represents the controlled population accepted to
splitting. In the particular case, when the observation time δ = 1 we recognize the
model of controlled Galton-Watson process with autoregressive control function,
see [13].

Suppose Zn = k, then the random control function
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Wn = μn(τn|k)+ηn

is homogeneous by generation, depends on k and on the random environment. We
have

Wn = Wn(k,τ,η) D=
k

∑
j=1

μn, j(τn)+ηn,

where μn, j(.), j = 1,2, . . . are independent copies of μn(.). The mean of random
control function is linear by k, namely,

EWn(k,τ,η) = kEμ(τ)+Eη .

Knowing the environment σ = {(δi,τi), i = 1,2, . . .}, or the delayed environment
d = {(δi,τi+1), i = 0,1, . . .} the reproduction by the n’th cycle of (observation, treat-

ment)= (δn,τn)
D= (δn,τn+1),n = 1,2, . . . has random p.g.f.

ϕn(s,σ) = f (δn,g(τn,s))
D= f (δn,g(τn+1,s)) = ϕn(s,d), for n = 1,2, . . . ,

ϕ0(s,d) = f (0,g(τ1,s)) = g(δ1,s), since f (0,s) = s.

Indeed, one particle observed by the time δn and its offsprings tested by the time τn

are transformed into ζn particles, such as

ζn =
ξn(δn)

∑
j=1

μn, j(τn),

where μn, j(.), j = 1,2, . . . are independent copies of μn(.). The random p.g.f.

ϕn(s,σ) = E(sζn | σ), n = 1,2, . . .

are all independent and identically distributed. Knowing the environment σ ′ =
{(τi,δi), i = 1,2. . .}, or the delayed environment d′ = {(τi,δi+1), i = 0,1, . . .}, the

reproduction by the n’th cycle of (treatment, observation)= (τn,δn)
D= (τn,δn+1),n =

1,2, . . . is given by

ζ ′
n =

μn(τn)

∑
j=1

ξn, j(δn),

and has random p.g.f.

ψn(s,σ ′) = g(τn, f (δn,s))
D= g(τn, f (δn+1,s)) = ψn(s,d′), for n = 1,2, . . .

and
ψ0(s,d′) = g(0, f (δ1,s)) = f (δ1,s), since g(0,s) = s.
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Naturally, the delayed cycles are i.i.d. only for n = 1,2, . . .. The explicit immigra-
tion particles ηn−1 arriving at the time ∑n−1

i=1 (δi + τi) reproduce during the observa-
tion time period δn according to the MBP ξn(.) and influence the population Zn by
ξn(δn|ηn−1) particles having random p.g.f. h( f (δn,s)).

Proposition 4.1. If the random environments σ and d′ consist of i.i.d. random cycles
independent of the branching mechanisms ξ (.) and μ(.), then the sequences (Zn,d′)
and (Wn,σ) are Markov chains representing Galton-Watson processes with immi-
gration in random environment. The sequence (Zn,d′) has random reproduction law
ψn(s,d′) and immigration law h( f (δn,s)). The sequence (Wn,σ) has random repro-
duction law ϕn(s,σ) and immigration law h. The fundamental relations are

E(sZn+1 |d′) := Fn+1(s,d′) = h( f (δn+1,s))Fn(ψn(s,d′),d′), F0(s,d′) = 1,

E(sWn+1 |σ) := Gn+1(s,σ) = h(s)Gn(ϕn+1(s,σ),σ), G0(s,σ) = h(s).

Fn+1(s,d′) = Gn( f (δn+1,s),σ) and Gn(s,σ) = h(s)Fn(g(τn,s),d′).

The independence of the evolution of the particles is manifested by the following
equalities:

Zn+1 =
Wn

∑
j=1

ξn+1, j(δn+1) and Wn =
Zn

∑
i=1

μn,i(τn)+ηn.

The relation between the p.g.f. Fn and Fn+1 describes the following equality:

Zn+1 =
Zn

∑
i=1

μn,i(τn)

∑
j=1

ξn+1, j(δn+1)+
ηn

∑
k=1

ξn+1,k(δn+1).

4.4 Reproduction by n cycles

Denote by T the shift operator on the random environment, i.e. translation by
one cycle, defined by T d′ = {(τi,δi+1), i = 1,2, . . .}, T d = {(δi,τi+1), i = 1,2 . . .},
Tσ = {(δi,τi), i = 2,3, . . .} and Tσ ′ = {(τi,δi), i = 2,3 . . .}. As the random environ-
ment consists of i.i.d. cycles, we have the following properties: The random envi-
ronments σ , σ ′, d and d′ are stationary ergodic processes, exchangeable processes

and uniformly mixing processes, see [2, 3] for definition. Obviously, T d′ D= σ ′ and

T d
D= σ . The reproduction by the first n cycles is equal in distribution to the repro-

duction by n successive cycles, knowing the environments σ or σ ′. Analytically, this
property can be expressed by the composition of random p.g.f. to n cycles, defined
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by induction, as follows:

ϕ1 ◦ϕ2(s,σ) = f (δ1,g(τ1, f (δ2,g(τ2,s)))),

ϕ1 ◦ϕ2 ◦ϕ3(s,σ) = f (δ1,g(τ1, f (δ2,g(τ2, f (δ3,g(τ3,s)))))),

and so on. Namely, let

φ→
n (s,σ) := E(sYn |σ) = ϕ1 ◦ϕ2 ◦ . . .ϕn(s,σ), n ≥ 1; φ→

0 (s,σ) = s,

then for each 0 ≤ s ≤ 1 the random probability generating function

φ→
n (s,Tσ) := ϕ2 ◦ϕ3 ◦ . . .ϕn+1(s,σ) D= φ→

n (s,σ).

In complete analogy, let

ψ→
n (s,σ ′) := E(sX ′

n |σ ′) = ψ1 ◦ψ2 ◦ . . .ψn(s,σ ′), n ≥ 1; ψ→
0 (s,σ ′) = s,

then for each 0 ≤ s ≤ 1 the random p.g.f.

ψ→
n (s,Tσ ′) := ψ2 ◦ψ3 ◦ . . .ψn+1(s,σ ′) D= ψ→

n (s,σ ′).

For the delayed random environments d and d′ we can write in parallel

E(sXn |d′) := f (δ1,ψ→
n−1(s,T d′)) D= f (δ1,ψ→

n−1(s,σ ′)),

E(sY ′
n |d) := g(τ1,φ→

n−1(s,T d)) D= g(τ1,φ→
n−1(s,σ)).

4.5 Criticality

Conditional mean of the reproduction by one cycle knowing the environment
is given by the first derivative of the corresponding random p.g.f.: ϕ ′

n(1,σ) or
ψ ′

n(1,σ ′), namely (see Proposition 3 in [13]),

E(ζn|σ) = E(ζ ′
n|σ ′) = exp{u′(1)δn + v′(1)τn}.

The main normalizing quantity is the conditional mean of the reproduction by n
cycles

Mn = E(X ′
n|σ ′) = E(Yn|σ),

given by

Mn =
n

∏
i=1

ϕ ′
i (1,σ) =

n

∏
i=1

ψ ′
i (1,σ ′) = exp

{
n

∑
i=1

u′(1)δi + v′(1)τi

}

.
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The unconditional mean of the reproduction by one cycle (homogeneous by gener-
ation) is defined by the constant m as follows

m := Eϕ ′
n(1,σ) = Eψ ′

n(1,σ ′) = E exp{u′(1)δ + v′(1)τ}.

Obviously, it is a Laplace transform of the mixture of random variables δ and τ . And
it is well known, that it is not always finite. Then, let us consider the logarithm of the
conditional mean, i.e. the sequence of i.i.d. random variables {u′(1)δn + v′(1)τn}.
Definition 4.1. Denote by

γ := E logϕ ′(1,σ) = E logψ ′(1,σ ′) = E{u′(1)δ + v′(1)τ}.

The reproductions by one cycle ζ = ζn and ζ ′ = ζ ′
n will be labeled supercritical,

critical or subcritical as γ > 0, γ = 0 or γ < 0, respectively.

This is the classical definition of criticality in random environment introduce by
Athreya and Karlin, see [2, 3]. Now, we see that, if the observation and treatment
times belong to the positive stable law, this definition of criticality is not convenient.
And, we arrive to another criterium of criticality:

Definition 4.2. (Criticality by Afanasiev, Geiger, Kersting and Vatutin) The proper-
ties of the reproduction by n cycles are determined by its associated random walk
S = (S0,S1, . . .), having initial state S0 = 0 and increments {u′(1)δn + v′(1)τn}, i.e.

Mn = exp{Sn}.

We assume that the r.v. {u′(1)δ + v′(1)τ} is a.s. finite, but we do not assume that it
has finite mean. According to the fluctuation theory of random walks, we distinguish
three different types of BPRE, see [1, 23].

(a) Supercritical branching process with random environment corresponds to the
random walk S with positive drift, which means that

lim
n→∞

Sn = ∞ a.s. and Mn → ∞ a.s..

(b) Subcritical branching process with random environment corresponds to the ran-
dom walk S with negative drift, having

lim
n→∞

Sn = −∞ a.s. and implying Mn → 0 a.s..

(c) Critical branching process with random environment is characterized by the
oscillating random walk, meaning that

limsup
n→∞

Sn = ∞ a.s. and liminf
n→∞

Sn = −∞ a.s.

Example 4.1. If the observation and treatment times, being mutually independent,
follow exponential distributions with parameters α and β respectively, then for α >
u′(1),
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m =
αβ

(α −u′(1))(β − v′(1))
, and γ =

u′(1)
α

+
v′(1)
β

.

The unconditional means of the BPRE (Yn,σ) and (X ′
n,σ ′) are given by:

E(Yn) = E(X ′
n) = mn.

The Jensen’s inequality provides m ≥ eγ always.

Example 4.2. If the random environment σ is generated by the first order exponen-
tial autoregressive sequence EAR(1) then the random variables {u′(1)δn + v′(1)τn}
are identically distributed but dependent r.v. [14]. Denote by σn the length of the
cycles

σn = δn + τn,n = 1,2. . ..

Suppose that the treatment times τn are i.i.d. non-negative random variables. We
consider the model when the observation time of the n-th cycle is a deterministic
part of the length of the previous (n−1)-th cycle, i.e.

δn = ρσn−1,0 < ρ < 1,n = 1,2. . .

The lengths of the cycles σn,n = 1,2, . . . constitute the sequence of identically
distributed but dependent random variables with exponential distribution function
B(.) and intensity β . The observation times δn,n = 1,2, . . . form the sequence of
identically distributed but dependent random variables with exponential distribu-
tion function A(.) and intensity α = β

ρ . The treatment times τn,n = 1,2, . . . form
the innovation sequence for the EAR(1) of the i.i.d. random variables with degen-
erate exponential distribution C(.) having the atom of mass ρ at 0 and density
B(dx) = βe−βxdx with probability (1 − ρ). Denote by αk(n) the following deter-
ministic constants:

αk(n) = u′(1)
n−k

∑
j=1

ρ j + v′(1), k = 1,2. . .,n−1,

α0(n) = u′(1)
n

∑
j=1

ρ j, αn(n) = v′(1).

For the random environment σ generated by the EAR(1) we have:

Sn = logMn = σ0α0(n)+
n

∑
k=1

τkαk(n),

where σ0 has p.d.f. B(.) and τk,k = 1,2, . . . have degenerate p.d.f. C(.). Suppose that
β −α0(n) > 0 and β −αk(n) > 0,k = 1,2, . . .for any ρ ∈ (0,1) , then

E(Mn) =
β

β −α0(n)

n

∏
k=1

{
ρ +

β (1−ρ)
β −αk(n)

}
.
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If γ = 0 and if β > max(u′(1),−v′(1)) then the following limit exists

lim
n→∞

EMn =
β 2

β 2 − (v′(1))2 .

Example 4.3. Suppose, the length of the cycles is deterministic, say δn + τn = 1.
Consider the particular case when δn,n = 1,2, . . . are independent copies of the ran-
dom variable δ having Beta(α,β ) distribution with parameters (α,β ). Then treat-
ment time is given by τn = 1−δn. Knowing the environments σ or σ ′ the reproduc-
tions by one cycle are defined by the random probability generating functions:

ϕn(s,σ) = f (δn,g(1−δn,s)) and ψn(s,σ ′) = g(1−δn, f (δn,s)).

The classical critical parameter in random environment is

γ =
αu′(1)+βv′(1)

α +β
.

4.6 Stationary distribution in random environment

Suppose the random environments σ , σ ′, d and d′ are created by i.i.d. random vari-
ables of observation and treatment times. Consider the model of alternating branch-
ing processes with explicit immigration. Then, we announce the following results.
The complete proofs will be done in a forthcoming paper.

Theorem 4.1. The random p.g.f. Gn(s,σ) and Fn(s,d′) can been expressed by the
reproduction on i cycles (i = 1,2, . . .n) as follows:

Gn(s,σ) =
n

∏
i=0

h(φ→
i (s,σ)),

Fn(s,d′) =
n

∏
i=0

h◦ f (δn−i,ψ→
i (s,σ ′)).

Theorem 4.2. If γ < 0 then for all 0 < s < 1 we have

lim
n→∞

φ→
n (s,σ) = 1,

lim
n→∞

ψ→
n (s,σ ′) = 1.

In a general setting this convergence of random p.g.f. had been announced by
Athreya and Karlin [3].

Theorem 4.3. Suppose, there exists the logarithmic moment of the immigration par-
ticles:
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E logη+ < ∞.

If γ < 0 then for all 0 < s < 1 we have

lim
n→∞

Gn(s,σ) = G(s,σ) and G(s,σ) = G( f (δ1,g(τ1,s)),σ)h(s),

lim
n→∞

Fn(s,d′) = F(s,d′) and F(s,d′) = F(g(τ1, f (δ1,s)),d′)h( f (δ1,s)).

Moreover, stationary distributions before control and after control are related by the
following

G◦ f = F and F ◦g = G.

4.7 Unconditional probability generating functions

Consider the averaging over one cycle and compare it with the averaging over entire
environment. Suppose the observation times δn and treatment times τn, being mutu-
ally independent, have probability distribution functions A(.) and B(.), respectively.
Then the unconditional probability generating functions to the reproduction by one
cycle are defined by the following integrals:

ϕ̄(s) := E f (δ ,g(τ,s)) and ψ̄(s) := Eg(τ, f (δ ,s)).

Let

f̄ (s) := E f (δ ,s) =
∫

f (x,s)A(dx) and ḡ(s) := Eg(τ,s) =
∫

g(y,s)B(dy).

The Jensen’s inequality and convexity of the p.g.f. provide the inequalities

ϕ̄ ≥ f̄ ◦ ḡ and ψ̄ ≥ ḡ◦ f̄ .

Suppose Zn = k then the unconditional probability generating function of the control
function Wn(k,τ,η) is given by:

EsWn(k,τ ,η) = h(s)
∫

[g(y,s)]kB(dy) 
= h(s)ḡ(s)k.

The transition from one cycle to another has unconditional p.g.f.:

E(sZn+1 |Zn = k) =
∫

h( f (x,s))
∫

[g(y, f (x,s))]kB(dy)A(dx).

We can create a Galton–Watson process Z̄n with reproduction defined by averaging
over one cycle: ϕ̄(s). Moreover, take the averaging over the n-th cycle and denote
by
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Z∗
n+1 =

⋃

δn,τn

Z∗
n

∑
j=1

ζn, j

the transition from one cycle to the next one. Its probability generating function
holds the relation:

F∗
n+1 =

∫
F∗

n ( f (x,g(y,s))A(dx)B(dy).

Obviously, if we interpret the values of the observation and treatment times as a
type of control, we recognize the analog of the multi-type random control function
introduces by del Puerto and Yanev, see [6, 7]. The processes Zn, Z̄n and Z∗

n have the
same parameter m as unconditional expectation of reproduction.

4.8 Feed-back control

Stationary distributions can be obtained also by feed-back control if the observation
time δ depends on the observed branching process ξ (t) without explicit immigra-
tion. It is well known that in a growing population the rate at which jumps occur
increases with time. A remarkable time transformation show that the path of MBP is
linked to the path of a compound Poisson process. Let ξ (t), t ≥ 0, be a supercritical
branching process having infinitesimal generating function u(s) = a(U(s)−s), with
0 < a < ∞, U(0) = U ′(0) = 0, and U ′(1) < ∞. Suppose that the observation time
periods δn,n = 1,2, . . . depend on the observed branching mechanism ξ (t). Namely,
consider observation time δ defined by the additive functional of total progeny of
the supercritical MBP process ξ (t):

∫ δ

0
ξ (x)dx = y(δ ).

The inverse function of the additive functional is correctly defined:

y−1(r) = inf{δ : y(δ ) = r}.

Then the value of the MBP ξ (t) at the random time δ = y−1(r) is represented by:

ξ (y−1(r)) = C(r),

where C(r) is a compound Poisson process with initial condition C(0) = 1. The
probability generating function of C(r) is given by:

EeC(r)−C(0) = ear(U(s)
s −1).

The path of the compound Poisson process C(r) has jumps whose distribution is sup-
ported in (−1,0,1,2, . . .), stopped at the first instant that it hits zero. When ξ (0) = 1
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the first jump of the MBP ξ (t) occurs at the random time T1 exponentially dis-
tributed with parameter a. Let the value of the MBP ξ (t) at the first jump times is
x = ξ (T1). Obviously, the value of the additive functional y(T1) = T1. Let T2 be the
time of the second jump of ξ (t), then condition on the history (ξ (t) : t ≤ T1) the
random variable T2 −T1 is exponentially distributed with parameter ax as the min-
imum of x independent exponential random variables, each with parameter a > 0,
and so on.

Consider the model of alternating branching process (Xn,Yn) in random environ-
ment Σ defined as follows. Suppose the reaction starts with one particle observed
by the random time δ0 such that ξ (δ0) = C(r). Then we continue the observation
till ξ (δ0 +δ1) = C(r + z) = (X1,Σ). Following the results of Steutel and Van Harn
(see [20, 21]) we can choose the treatment time τ1 exponentially distributed with
parameter β such that:

(Y1,Σ) = C(r) = θ
1
β ⊗C(r + z),τ = − logθ

1
β ,

where the random variable θ is uniformly distributed on the interval (0,1). Define
the random environment

Σ = { (observation, treatment ) = (δi,τi), i = 1,2, . . .},

by means of i.i.d. copies of δ1 and τ1. The alternating branching process (Xn,Yn)
with initial condition Y0 = C(r) is no longer transient because the observation time
depends on the observed branching mechanism. This construction leads to the sta-
tionary distribution at the first cycle (δ1,τ1). Namely, knowing the environment Σ
we have :

(Xn,Σ) = C(r + z) and (Yn,Σ) = C(r),n = 1,2, . . ..

This way we realize a feed-back control at each observation time period. Relatively
to the population created by the subcritical process μ(t), the influence of C(r + z)
on the successive cycles is equivalent to the stationary immigration.

Theorem 4.4. In the feed-back control model the stationary distribution is of the
form

C(.) = Sε(T (.)),

where Sε(.) is a g(t,s)-stable with exponent ε integer-valued process and T (.) is a
gamma Lévy process with shape parameter 1

z , the so called gamma-subordinator.
The constants {ε,r,z,−v′(1)} are related by:

ε = β
z
r
≤ −v′(1).

The complete proof will be done in the forthcoming paper. For the convenience we
quote here the relevant definitions. The real valued random variable Z is said to be
self-decomposable if for every θ ∈ (0,1) there is a random variable η such that
Z = θZ +η , where Z and η are independent random variables. The non-degenerate



66 Penka Mayster

self-decomposable distributions are known to be absolutely continuous. It is clear
that a non-degenerate discrete distribution cannot be self-decomposable, but it can
be g(t,s)-self-decomposable.

Definition 4.3. Let g(t,s) be the p.g.f. of a subcritical MBP μ(t). An integer valued
random variable Z is said to be g(t,s)-self-decomposable if for every θ ∈ (0,1)
there is a random variable η such that Z = θ⊗Z+η , where Z and η are independent
random variables and ⊗ is the fractional thinning operator representing the “ discrete
multiplication”.

Definition 4.4. Let g(t,s) be the p.g.f. of a subcritical MBP μ(t). An integer valued
random variable Z is said to be g(t,s)-stable with exponent ε > 0 if independent
random variables z1,z2, . . . exist being all independent copies of Z such that for all
n ∈ N,

Z = θ ⊗ (z1 + z2 + . . .+ zn) with θ = n− 1
ε .

If Z is g(t,s)-self-decomposable then Z and η are infinitely divisible random vari-
ables. Moreover, if Z is g(t,s)-stable then Z is g(t,s)-self-decomposable. The sta-
tionary solution of equation

θ ⊗C(r + z) = C(r)

has been studied by Van Harn, Steutel [21], and Pakes [16]. They investigated the
properties of the limiting distribution in the MBP with immigration to be self-
decomposable and infinitely divisible.
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9. González, M., Molina, M., del Puerto, I.: On the geometric growth in controlled branching

processes with random control functions. J. Appl. Probab. 40, 995–1006 (2003)
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Special Branching Processes



5
Approximations in population-dependent
branching processes

Fima C. Klebaner

Abstract We consider models of population size dependent branching processes
with the feature that they are supercritical until population reaches some threshold
K, near critical around that value, and subcritical above it. Although such population
die out with probability one, their time to extinction is large. We show that this time
is exponential in K. Approximations to the populations size in various domains are
given, and a problem of small initial population size is discussed. From a technical
point of view, analysis of such processes involves techniques of density dependent
models as small random perturbations of dynamical systems, and size-dependent
bounds.

Mathematics Subject Classifications (2000): 60J80, 60F10

Keywords: population models, extinction, size-dependence, density-dependence,
large deviations, exit times, time to extinction, random perturbations.

5.1 Introduction and a motivating example

We consider here some classes of branching processes with reproduction depending
on the population size z. Typically such processes were termed population-size-
dependent, e.g. [5], to differentiate them from models where reproduction depends
on the size through population density z/K, where K is some large number (carry-
ing capacity or threshold). At first glance it seems such difference is not important,
since K is a fixed quantity. However, it turns out that when it is taken as a parameter,
analysis simplifies when K is large, where certain deterministic dynamical systems
emerge as first order approximations to the population process. In order to invoke
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such approximation the initial population size should also be large, as it must be
proportional to K. This assumption is not satisfied in some biological models con-
sidered here. The reason we use population-dependent in the title is because our
analysis shows that the same process can be approximated as a density-dependent
process in some domain, and as a population-size-dependent process in another do-
main. We present here analysis for such models and pose unsolved yet questions
about their approximations.

We describe the organization of the paper next. After the definition of the pro-
cesses under consideration, we give the basic decomposition of the process into
a predictable component, and uncorrelated martingale difference component. To-
gether with the original process we also consider the re-scaled version, which we
call the population density process, and obtain a similar decomposition for those.
This is done in Sect. 5.2. It follows from this representation that on the scale of den-
sities the process behaves as a randomly perturbed dynamical system with a small
noise. To appreciate the effect small noise has on the dynamics, we describe briefly
the behaviour of the dynamical system without noise. Without noise the system is
attracted to one of its stable fixed points, and never dies out provided it starts with
a positive initial population. But due to noise it will die out for sure. However, the
event of extinction is a particular event of exit from a domain of attraction of a
stable fixed point, and as such is explained by uncharacteristically large values oc-
curring in the small noise. Therefore, if the carrying capacity is large, extinction
can be analyzed by the Large Deviations techniques and is done in Sect. 5.3. In
Sect. 5.4 we look at the typical size of the population conditioned on its survival, ie
prior to extinction. Section 5.5 considers the case of small initial populations. The
approximations developed previously are not informative for this case and new re-
sults are given. These include a bound on the probability becoming extinct before
reaching high level as well as time to reach high level. Finally, in Sect. 5.6 we give
a qualitative description of the process before its ultimate extinction.

Some of the theory is rather technical. So for the sake of ease of exposition
we choose to present and follow an example. This motivating example is a binary
splitting in discrete time (n = 0,1,2, . . .) with the splitting probability

p =
K

K + z
,

where z is the size of the population. At each time n, a particle either splits into two
with probability p or dies. This generic random variable is denoted by ξ . Clearly,
the splitting probability is a function of population size, p = p(z), and denote the
mean of offspring distribution by

m(z) = Eξ = 2p(z).

This process arises naturally in a model for polymerase chain reaction, see [11,
12], and [3], as well as other models. In this model, whenever z < K then p > 0.5
and reproduction is supercritical, whenever z = K then p = 0.5 and reproduction is
critical, and whenever z > K then p < 0.5 and reproduction is subcritical. Let Zn
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denote the population size at time n. Then

Zn+1 =
Zn

∑
i=1

ξi = 2
Zn

∑
i=1

ξi/2,

where ξi/2 are i.i.d zero-one random variables. Hence conditionally on Zn, Zn+1 is
twice the Binomial distribution with parameters Zn and p(Zn),

Zn+1 ∼ 2Bin(Zn, p(Zn)).

For this example, as well as in more general models of population-size-dependent
processes, Zn is a Markov Chain on nonnegative integers with 0 the only absorbing
state. Since Eξ (z) = m(z) > 1 only for finitely many z, extinction is certain, eg.
[5], Corollary to Theorem 1.1, p. 34. But for large K’s the time to extinction is
large. The suggested approximations explains why it is so, and also describe what
happens to the process before extinction. It is important to note that we are interested
in the population size process Zn but at various stages of population development it
is convenient to look at and develop approximations for the density process Xn =
Zn/K.

5.2 A Representation of the process and its re-scaled version

Here we give an insightful representation of the processes we consider. We have,
obviously,

Zn+1 = E(Zn+1|Zn)+(Zn+1 −E(Zn+1|Zn)). (5.1)

The term
E(Zn+1|Zn) = ZnE(ξ ) = Znm(Zn)

represent dynamics and the term

Zn+1 −E(Zn+1|Zn) =
Zn

∑
i=1

ξi −E(ξi)

is a martingale difference and represents the noise. Hence

Zn+1 = Znm(Zn)+(Zn+1 −E(Zn+1|Zn)). (5.2)

Introduce the re-scaled process, or the density process

Xn =
Zn

K
(5.3)

and note that the splitting probability is in fact a function of the density z/K
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p =
K

K + z
=

1
1+ x

, (5.4)

with x = z/K. In view of representation 5.2 the density process has a representation

Xn+1 = Xnm(Xn)+
1
K

KXn

∑
i=1

(ξi −m(Xn)). (5.5)

5.2.1 Re-scaled process: Dynamics plus small noise

Let f (x) = xm(x). Then

Xn+1 = f (Xn)+
1√
K
ηn+1,where ηn+1 =

1√
K

KXn

∑
i=1

(ξi −m(Xn)). (5.6)

E(ηn+1) = 0, Var(ηn+1) = O(1),

and under mild conditions ηn converges to Normal as K → ∞. In fact as a process
{ηn} converge to a Gaussian process with a computable covariance function, [6].

5.2.2 Dynamics without noise in binary splitting

In binary splitting

f (x) = xm(x) =
2x

1+ x
, x ≥ 0.

When noise is zero, the dynamics is

xn+1 = f (xn).

For any x0 ≥ 0, there exists a limit

lim
n→∞

xn ∈ {0,1}− the set of fixed points of f .

If x0 = 0 then xn ≡ 0, but for any x0 > 0, limn→∞ xn = 1.

Proof. The function f : R+ → [0,2). f (x) < 1 for x < 1 and f (x) > 1 for x > 1.
For any 0 < x0 < 1, x1 = f (x0) > x0 and x1 < 1. Hence the sequence of iterates is
monotone increasing and converges. The limit must be a fixed point, so it is 1. For
any x0 > 1, x1 = f (x0) < x0, because f (x) < x in this region. Also x1 > 1. Hence
the sequence of iterates is monotone decreasing and converges. The limit must be a
fixed point, and since they are all greater than 1, it must be 1. The point 1 is globally
attracting (even though f ′(1) = 1) and 0 is repelling ( f ′(0) = 2). Hence for any
initial point but 0, limn→∞ xn = 1. ��
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5.3 Time to extinction

Extinction time of Zn and XK
n = Zn/K is clearly the same. Provided XK

0 → x0 > 0,
for large K, the starting point is in the domain of attraction of the stable fixed point
1. According to dynamics the process gets pushed towards 1, but due to noise it will
exit the neighbourhood of 1. The exit when it occurs is due to uncharacteristically
large value of the noise, or as it is known a large deviation. In fact, it is much more
likely that a sequence of uncharacteristically large values of noise, all lined up in
the same direction will occur rather than a one huge value that will take the process
outside the domain of attraction. Large deviations will take the process out of this
domain. Time for it to happen is exponential in K. This is by the extension of the
Freidlin-Wentzell theory, eg. [4], in branching context [7]. In our example, these
large deviations events occur when many particles die out simultaneously without
leaving offspring.

More precisely about a Domain of attraction and exit from it. A fixed point x∗ is
attracting (stable) if there is an interval I around it so that for all x ∈ I f (n)(x) → x∗.
The domain of attraction of x∗ is a largest such set.

Theorem 5.1 [7]. Let T K = inf{n : XK
n /∈ Bx∗ ,XK

0 = x0 ∈ Bx∗} be the first exit time
from the domain of attraction of x∗. Then there is a constant c, which does not
depend on the initial point x0, and K, such that for any δ > 0

P(eK(c−δ ) < T K < eK(c+δ )) → 1, as K → ∞.

So roughly,
T K ≈ ecK .

All we can say about time to extinction in general is that it is larger than the time to
exit the domain of attraction.

5.4 The size of the population after a long time provided
it has survived

In this section we look at approximations when the time n goes to infinity for a fixed
parameter K. It turns out that the limiting behaviour is possible to describe for large
K.

Define
ρK(A) = lim

n→∞
P(XK

n ∈ A|XK
n > 0).

This is so-called the quasi-stationary distribution of XK
n .

Using a Theorem of Harris 1989, [1] (an analogue of the Perron-Frobenius theo-
rem) the limit exists and satisfies

ρK(A) = R(K)
∫

P(K)(x,A)ρK(dx),
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for some number R(K) > 1. Here P(K)(x,A) denotes the transition probability kernel

P(K)(x,A) = P(XK
1 ∈ A|XK

0 = x).

It is easy to see that any weak limit

lim
K→∞

ρK(A) = ρ(A)

is invariant measure for f , ie

ρ(A) = ρ( f −1(A)).

Moreover, in our example ρ is invariant for f if and only if

ρ(0)+ρ(1) = 1.

Finally, the measures ρK converge weakly to the measure ρ({1}) = 1 concen-
trated on the stable fixed point.

These results were proven in [9], and a particular case of a more general set
up when the function f can have many fixed points, none of them attracting, but
will have an attracting cycle. Results showing convergence to the measure on the
attracting cycle are given in [8, 2, 10]. (Chaotic case was solved in [4] under the
Axiom A assumption on f . In [10] a condition similar to Axiom A for discrete
dynamical systems was given.)

Applied to our process these result say that if after a long time our process has
survived then the population size will be in the vicinity of K, ie. if given a large n,
Zn > 0, then Zn ≈ K.

5.5 Case of small initial population

In this section we address the question as to what happens when the process starts
with one particle Z0 = 1. If the initial population size is Z0 = 1 (or for that matter
any fixed number not depending on K) then XK

0 = 1/K → 0 and according to above
approximation Theorem 5.1 the processes

XK → 0.

But in this case the limiting (in K) process does not give a useful approximation
to the actual process. As we need behaviour as n → ∞ for a large but fixed K. What
happens here is that the initial point is small and goes to 0 as K → ∞, but for a
fixed K it is positive and dynamics takes it to 1. What is a correct approximation to
trajectories in this case? To answer this question note that because of absorbtion at
zero, we can have extinction before we reach a level comparable to K, say aK, for
some a ∈ (0,1).
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5.5.1 Probability of becoming large and time for it to happen

Here we give a result on the probability of extinction before reaching level aK.

Theorem 5.2. The probability of becoming extinct before reaching level dK does
not exceed dZ0 .

Proof. As long as z < Kd the probability of splitting is greater than the K/(K +
aK) = 1/(1 + a). It is clear therefore that the required probability is smaller than
the corresponding probability in the GW binary splitting Ẑ with probability of no
offspring a/(1+a). It is clearly smaller than extinction P(Ẑn → 0) = q̂.

a
1+a

+
1

1+a
q̂2 = q̂,

which is a. ��
Next, we look at how long it takes to reach level aK.

Theorem 5.3. The time to reach level aK, τaK satisfies asymptotic as K → ∞

τaK = O
( logK

log2/(1+a)

)
.

Proof. The process grows faster than the GW binary splitting with the smallest split-
ting probability in the range [1,aK], which is 1/(1+a). Hence the time it takes for
it to reach level aK is shorter that in the corresponding GW binary splitting with the
mean m̂ = 2/(1 + a). Clearly, ZτaK ≈ aK. Replacing the variable on the left by is
mean we have an approximation m̂τaK ≈ aK, hence the result. ��
Remark 5.1. The probability of extinction before reaching a certain level in the
Galton-Watson process does not seem to be known. Note that such probability is
well known for diffusion models, and is obtained by martingale arguments (optional
stopping of some martingales) in terms of the scale function. It is remarkable that
for Galton-Watson process there is no mention of it in the literature. Use of the same
techniques as for diffusions produces only a bound.

5.6 Behaviour before extinction

Here we give qualitative description of our process before it becomes extinct, having
started with a number of particles below level aK, in particular a single particle.

The probability of early extinction before reaching aK is less than a. If the pro-
cess does not extinct it will reach level aK after time τ1 of order logK. After that
time the process will stay above aK for time T 1, which is exponential in K, of order
ecK , for some constant c. After that time the process will drop below the level aK.
Denote by di,τ i for the i-th time the process below aK the value and the time spent
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below respectively, and by ui,Ti the value it takes and time it spends above that level.
By Markov property, conditional on di’s and ui’s the random variables τ i’s and Ti’s
are independent. τ i’s are intervals of order logK, but during one of such time absorb-
tion may occur, whereas intervals Ti’s are of exponential in K length with extinction
possible with extremely low probability. Approximately, the process of survival has
the structure of independent trials where the probability of survival is rather large (1
minus the extinction probability), but varies somewhat each time since every time
the population falls below aK it is different. Overall, since a sum of quantities of
order exponential in K is again exponential in K, we conclude that the survival time
is exponential in K.
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6
Extension of the problem of extinction
on Galton–Watson family trees

George P. Yanev

Abstract We review the existing and present new results on certain subtrees of the
Galton-Watson family tree. For a positive integer N, define an N-ary subtree to be
the tree of a deterministic N-splitting, rooted at the ancestor. Dekking (Amev. Math.
Monthly 98:728–731, 1991) raised and answered the question how to compute the
probability for a branching process to possess the binary splitting property, i.e.,
N = 2. Pakes and Dekking (J. Theor. Probab. 4:353–369, 1991) studied the gen-
eral situation when N ≥ 2. Surprisingly, the case N ≥ 2 is studied so late, whereas
the question for extinction of a branching process, i.e., non-existence of an infinite
unary subtree (N = 1) has been studied extensively over the past 120–150 years.

Mathematics Subject Classification (2000): 60J80, 05C05

Keywords: branching processes, Galton–Watson family trees, binary and N-ary
trees, geometric offspring, Poisson offspring.

6.1 Introduction

Let {Zn} be a Bienaymé–Galton–Watson process with offspring probability gener-
ating function (pgf) f (s) = ∑∞

k=0 pksk. Suppose Z0 = 1 and as usual assume pk < 1
for all k, and also that pk > 0 for some k > N where N is an integer. Galton [3]
formulated his famous problem of “the decay of the families of men”, which is to
determine the probability that the process {Zn} becomes extinct, i.e., Zn = 0 for
some n ≥ 1. Let us consider the family tree of {Zn} (see [4], pp. 122–125 for a for-
mal description). Note that the family tree is finite if and only if the process becomes
extinct. As it was pointed out by Dekking in [2], the problem of non-extinction can
be formulated as “with what probability does the family tree contain the (infinite)
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unary tree as a subtree, rooted at the root of the family tree?” Then he asked the
question, “with what probability does the family tree of a branching process contain
the (infinite) binary tree as a subtree, rooted at the root of the family tree (binary
splitting property)?” Here the binary tree is the family tree associated to the branch-
ing process with offspring distribution given by p2 = 1. It is surprising that this
extension of the classical question for extinction of a branching process is studied
so late, whereas the latter has been studied extensively over the past 120–150 years.

In this paper we study characteristics of certain subtrees of the family tree of
{Zn}. We call two subtrees disjoint if they do not have a common node different
from the root of the entire tree. In addition, we consider only rooted and complete
subtrees, i.e., subtrees rooted at the ancestor and being family trees of the deter-
ministic branching process with pgf f (s) = sN . Let the random variable VN be the
number of complete infinite and disjoint N-ary subtrees of a branching tree, rooted
at the ancestor. The event {V1 > 0} implies that there is at least one infinite unary
subtree and thus the process would never die. The event {V2 > 0} can be interpreted
as the set of process’ trajectories where the family tree grows faster than binary split-
ting. Dekking [2] computes the probability for a branching process to possess the
“binary splitting property”, i.e., P(V2 > 0). Pakes and Dekking [8] study the general
situation when N ≥ 2. Mutafchiev [7] proves limit results for the survival probability
of an N-ary subtree. In [11], Yanev and Mutafchiev study the distribution of VN .

In Sects. 6.2 and 6.3 we review some existing results. In Sect. 6.5 we prove a limit
theorem for the ratio of the conditional expectations of Zn, provided that an infinite
N-ary and an unary subtree exist. Sections 6.6, 6.7 and 6.8 cover the particular cases
of geometric, Poisson, and “one-or-many” offspring distributions. There we discuss
corollaries of the general results as well as some numerical illustrations. Finally, in
the concluding remarks, we point out some links between the problem of existence
of an infinite complete N-ary subtree and other research results.

6.2 Critical phenomenon

Define T2 −1 to be the maximum height of a complete binary subtree rooted at the
ancestor. Note that T2 = 0 if Z1 < 2. Also, T1 −1 is the maximum height of a unary
subtree rooted at the ancestor and thus T1 is the extinction time of {Zn}. We start this
section with a theorem about the probability γ2 = P(T2 < ∞) that there is no infinite
complete binary subtree, i.e., the growth is slower than binary splitting. Notice that
γ1 = P(T1 < ∞) is the probability that there is no infinite unary subtree, i.e., the
extinction probability of the process.

The following result is fundamental. We present the original Dekking’s proof.

Theorem 6.1 [2]. The probability γ2 is the smallest root in [0,1] of the fixed point
equation

x = g2(x), (6.1)

where
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g2(x) = f (x)+(1− x) f ′(x).

Proof. For n = 1,2, . . . let γ2(n) be the probability that the family tree associated to
{Zn} does not contain a complete binary subtree of height n rooted at the ancestor.
If the family tree has k nodes at level 1 (i.e., Z1 = k), then it does not contain a
complete binary subtree of height n + 1 iff k = 0 or 1, or either all or all but one
of the k subtrees rooted at these nodes do not contain a complete binary subtree of
height n. Therefore one has

γ2(n+1) = p0 + p1 +
∞

∑
k=2

[γk
2(n)+ kγk−1

2 (n)(1− γ2(n))]pk

= p0 + p1 + f (γ2(n))− p0 − p1γ2(n)+(1− γ2(n))( f ′(γ2(n)− p1),

and hence

γ2(n+1) = f (γ2(n))+(1− γ2(n)) f ′(γ2(n)) (6.2)

= g2(γ2(n)).

Therefore, γ2 = limn→∞ γ2(n) satisfies (6.1). Furthermore, if we put γ0 = 0, then (6.2)
is also true for n = 0. Since g′

2(x) = (1−x) f ′′(x) is nonnegative, g2(x) is increasing
and it follows that γ2 = limn→∞ gn

2(0) is the smallest root in [0,1] of (6.1). ��
Note that a similar recurrent argument can be applied to derive the equation x =

f (x) for the probability of extinction γ1 (see Kemeny and Snell [6], pp. 80–81).
It turns out that no simple expression involving the moments of the offspring

distribution can be found that will yield whether γ2 = 1 or not. In fact, Dekking
[2] shows (see Theorem 6.2) by a counterexample that γ2 cannot be a continuous
function of the moments of the offspring distribution, nor of any other parameter of
the process which depends continuously on pk, k = 0,1,2, . . ..

In [8], Theorem 6.1 is generalized to the case of the presence of a complete N-
ary subtree (N ≥ 2) rooted at the ancestor, i.e., the family tree of the deterministic
branching process with pgf f (s) = sN . The following theorem for the probability γN

that there is no such N-ary subtree with infinite height holds.

Theorem 6.2 [8]. The probability γN is the smallest root in [0,1] of the fixed point
equation

x = gN(x), (6.3)

where

gN(x) =
N−1

∑
i=0

(1− x)i

i!
f (i)(x).

In examples when the offspring distribution can be parameterized by its mean m,
Pakes and Dekking [8] observe the following unusual critical phenomenon. There
is an (critical) offspring mean value mc

N > 1 for N ≥ 2 such that
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{
γN = 1, m < mc

N ;
γN < 1, m ≥ mc

N .

This is qualitatively different to the behavior of the extinction (or not having an
infinite unary subtree) probability γ1, when the critical offspring mean is mc

1 = 1
and {

γ1 = 1, m ≤ 1;
γ1 < 1, m > 1.
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Fig. 6.1 Geometric offspring.

This difference occurs because gN(x) is increasing but not convex; g′
N(1) = 0.

Thus the critical case occurs when gN(x) first touches the diagonal of the unit square
somewhere other than unity. Figure 6.1 illustrates the situation for geometric off-
spring: (a) m = 1 - critical case for unary subtree; (b) m = 1.5 - supercritical case for
unary subtree; (c) m = 4 - critical case for binary subtree; (d) m = 4.5 - supercritical
case for binary subtree.

Next theorem gives a sufficient and a necessary condition for γN < 1.
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Theorem 6.3 [8]. (i) If γN < 1, then for some s ∈ (0,1)

(1− s)N−1 f (N)(s) ≥ (N −1)!.

(ii) If

2N ∑
k≥N

pk

k +1
≤
(

∑
k≥N

pk

)2

,

then γN < 1.

We will finish this section with a remark from [8]. “Inspection of (6.3) should
make it clear that there is virtually no hope of finding explicit expressions for the
distribution of TN for N ≥ 2. It is even more unaccessible than the extinction time
(T1) distribution.”

6.3 Distribution of the number of complete and disjoint subtrees,
rooted at the ancestor

Recall that the random variable VN for N = 1,2, . . . is the number of disjoint com-
plete N-ary subtrees with infinite height, rooted at the ancestor of {Zn}. As the
following result shows, the probability mass function of VN can be obtained using
the Taylor expansion of the pgf f (s) about the point γN evaluated at s = 1.

Theorem 6.4 [11]. For j = 0,1,2, . . . and N ≥ 1

P(VN = j) =
jN+N+1

∑
k= jN

(1− γN)k

k!
f (k)(γN).

It is worth mentioning that P(VN = j) is the ( j + 1)st segment of length N in the
Taylor expansion of f (1) about γN . Indeed, set (for simplicity) N = 2 and consider
the Taylor expansion of f (1) about the point γ2. Then

P(V2 = 0) = f (γ2)+(1− γ2) f ′(γ2)

P(V2 = 1) =
(1− γ2)2

2!
f
′′
(γ2)+

(1− γ2)3

3!
f
′′′
(γ2)

. . .

P(V2 = j) =
(1− γ2)2 j

(2 j)!
f (2 j)(γ2)+

(1− γ2)2 j+1

(2 j +1)!
f (2 j+1)(γ2)

Denote by VN(n) the number of complete, disjoint, and rooted subtrees of maximum
height n, (n = 0,1,2, . . .), i.e., for which TN = n. Mutafchiev [7] studies the survival
probability P(VN(n) > 0|VN = 0). Observing that P(VN(n) > 0) = P(TN > n) and
P(VN(n) = 0) = P(TN <∞), we can state his results as follows. Denote aN = g′

N(γN)
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and 2bN = g′′
N(γN). One can see that

aN =
(1− γN)N−1

(N −1)!
f (N)(γN) (6.4)

and if aN = 1, then

2bN =
f (N+1)(γN)
f (N)(γN)

− N −1
1− γN

. (6.5)

Theorem 6.5 [7]. Assume γN ∈ (0,1) for N ≥ 2. Then aN ≤ 1.
(i) If aN < 1 (supercritical case), then as n → ∞

P(TN > n | TN < ∞) = cNan
N +O(a2n

N ), (6.6)

where cN > 0 is certain constant.
(ii) If aN = 1 (critical case) and bN < ∞, then bN > 0 and as n → ∞

P(TN > n | TN < ∞) ∼ 1
γNbNn

. (6.7)

Remark 6.1. (i) Note that if aN = 1 and f (N+1)(1−) < ∞, then bN < ∞, see (6.5).
(ii) (6.6) extends to N ≥ 2 the classical results (e.g., [4], Theorem 8.4) for P(Zn >
0) = P(T1 > n) when m > 1. (iii) For P(Zn > 0) = P(T1 > n), when m = 1, we
have γ1 = 1 and hence (6.7) for N = 1 is consistent with the Kolmogorov’s result
P(Zn > 0) ∼ 1/(b1n) as n → ∞.

The subcritical case γN = 1 (N ≥ 2) is treated in the following theorem.

Theorem 6.6 [8]. Assume γN = 1 for N ≥ 2 and that f (N)(1−) < ∞. Then

P(TN > n) ∼ exp{−kNNn} (n → ∞),

where kN > 0 is certain constant.

In Sects. 6.6, 6.7 and 6.8 we will come back to Theorem 6.5 discussing its corol-
laries for particular offspring distributions.

6.4 Ratio of expected values of Zns provided infinite
subtrees exist

In this section we prove a limit theorem for the ratio of the expected values of the
nth generation’s size, Zn, as n → ∞, conditioned on the existence of an N-ary and a
unary subtree. Recall that aN = g′

N(γN) and m = f ′(1) is the offspring mean.
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Theorem 6.7. Assume γN < 1 for N ≥ 1. If E(Z1 log(1+Z1)) < ∞, then

lim
n→∞

E(Zn | TN > n)
E(Zn | T1 > n)

= αN
1− γ1

1− γN
(6.8)

where

αN =
1

m−aN

[

m−
N−1

∑
j=0

1
j!

(1− γN) j f ( j+1)(γN)

]

∈ (0,1]. (6.9)

Proof. Under the assumption E(Z1 log(1+Z1)) <∞, there exists a random variable
W such that Zn/mn → W in L1 and EW = 1 (e.g., [5], Theorem 2.7.3). Thus,

αN := lim
n→∞

E

(
Zn

mn
;TN > n

)
= E(W ;TN = ∞)

and, since γN < 1, we have

lim
n→∞

E(Zn | TN > n)
E(Zn | T1 > n)

= lim
n→∞

E(Zn ; TN > n)P(T1 > n)
E(Zn ; T1 > n)P(TN > n)

= lim
n→∞

E(Zn ; TN > n)P(T1 > n)
mnP(TN > n)

= αN
1− γ1

1− γN
,

which is (6.8). Next, we shall derive formula (6.9) for αN . Denote

ψn(s) = E
(
sZn ;TN > n

)
and φn(s) = E

(
sZn ;TN ≤ n

)
.

From [8], Theorem 6.1, we have

ψn+1(s) = fn+1(s)−
N−1

∑
j=0

1
j!
ψ j

n(s) f ( j)(ϕn(s)).

Differentiating with respect to s, we obtain

ψ ′
n+1(s) = f ′

n+1(s)−
N−1

∑
j=1

1
( j −1)!

ψ j−1
n (s)ψ ′

n(s) f ( j)(ϕn(s))−
N−1

∑
j=0

1
j!
ψ j

n(s) f ( j+1)(ϕn(s))ϕ ′
n(s)

Setting s = 1, gives us

E (Zn+1;TN > n+1) = EZn+1 −E(Zn;TN > n)
N−1

∑
j=1

1
( j −1)!

(1− γN(n))
j−1 f ( j)(γN(n))

−[EZn −E(Zn;TN > n)]
N−1

∑
j=0

1
j!

(1− γN(n))
j f ( j+1)(γN(n))

Therefore,
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E (Zn+1;TN > n+1)−E(Zn;TN > n)
1

(N −1)!
(1− γN(n))

N−1 f (N)(γN(n))

= mn+1 −mn
N−1

∑
j=0

1
j!

(1− γN(n))
j f ( j+1)(γN(n))

Referring to (6.4), we have

E (Zn+1;TN > n+1)−aN(n)E(Zn;TN > n) = mn+1 −mn
N−1

∑
j=0

1
j!

(1− γN(n))
j f ( j+1)(γN(n))

Dividing both sides by mn, we find

mn+1

mn E

(
Zn+1

mn+1 ;TN > n+1

)
−aN(n)E

(
Zn

mn ;TN > n

)
= m−

N−1

∑
j=0

1
j!

(1− γN(n))
j f ( j+1)(γN(n))

Passing to the limit as n → ∞, we obtain

αN(m−aN) = m−
N−1

∑
j=0

1
j!

(1− γN) j f ( j+1)(γN) (6.10)

Note that since γ1 < γN < 1, we have m > 1 and on the other hand by Theorem 6.5,
aN ≤ 1. Hence m−aN > 0. Dividing (6.10) by m−aN , we arrive at (6.9). ��
In the next three sections, we will prove corollaries of Theorem 6.7 for three partic-
ular cases of offspring distributions.

6.5 Geometric offspring distribution

In this section we present results for the case when the offspring distribution is
geometric, i.e., pk = (1− p)pk, k ≥ 0 and p ∈ (0,1). Then for |s| < 1 and N ≥ 2

f (s) =
1− p
1− ps

and gN(s) = 1−
[

p(1− p)
1− ps

]N

.

The number of N-ary subtrees VN is geometric too (see [11]) given by

P(VN = j) = γN(1− γN) j, j ≥ 0,

where γN is the smallest solution in [0,1] of

(1− x+m−1)N = (1− x)N−1. (6.11)

It is clear from (6.11) that in the geometric case γN → 0 as m → ∞ and, as it is
pointed out in [8],
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γN =
N
m

+O(m−2), m → ∞.

The critical value mc
N for the offspring mean m is (see [8])

mc
N = (N −1)

(
1− 1

N

)−N

(6.12)

and the corresponding probability of not having a N-ary subtree

γc
N = 1−

(
1− 1

N

)N

. (6.13)

Note that if m = mc
N , then as N → ∞

γc
N → 1− 1

e
≈ 0.6321 and EV c

N =
1− γc

N

γc
N

→ 1
e−1

≈ 0.5820.

In Table 6.1 we list some values of mc
N , γc

N , and EV c
N .

N 2 3 4 6 10 20 100

mc
N 4 6.750 9.481 14.930 25.812 53.001 270.468

γc
N 0.750 0.704 0.684 0.665 0.651 0.641 0.634

EV c
N 0.333 0.421 0.463 0.504 0.535 0.559 0.577

Table 6.1 Values of mc
N , γc

N , and EV c
N for geometric offspring.

Next corollary of Theorem 6.5(ii) (critical case) is straightforward.

Corollary 6.1. Assume geometric offspring. If m = mc
N, where mc

N is given by (6.12),
then as n → ∞

P(T c
N > n | T c

N < ∞) ∼ 2
(
1−N−1

)N−1

1− (1−N−1)N

1
n

.

Next result is a corollary of Theorem 6.7 for geometric offspring.

Corollary 6.2. Assume geometric offspring with m ≥ mc
N. Then for any N = 2,3, . . .

lim
n→∞

E(Zn|TN > n)
E(Zn|T1 > n)

=
m−1

m−aN
(1+aN). (6.14)

Remark 6.2. It is interesting to note that if aN = 1 (critical case) than the limit (6.14)
equals the constant 2 for any N. This is rather unexpected.
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Proof. We shall calculate α(1 − γN)/(1 − γN), which is the limit in Theorem 6.7.
First, using (6.11) and p = m/(m+1), we obtain

aN = g′
N(γN) (6.15)

=
(1− γN)N−1

(N −1)!
N!pN(1− p)
(1− pγN)N+1

=
N

m(1− γN)+1
.

Also, since for j = 1,2, . . .

f ( j)(s) =
j!p j(1− p)
(1− ps) j+1 ,

we have

N−1

∑
j=0

1
j!

(1− γN) j f ( j+1)(γN) =
N−1

∑
j=0

1
j!

(1− γN) j ( j +1)!(1− p)p j+1

(1− pγN) j+2

=
p(1− p)

(1− pγN)2

N−1

∑
j=0

( j +1)
[

p(1− γN)
1− pγN

] j

=
m

(1+m−mγN)2

N−1

∑
j=0

( j +1)
[

m(1− γN)
m+1−mγN

] j

=
m

(1+m(1− γN))2

[

1+
N−1

∑
j=1

( j +1)
[

m(1− γN)
1+m(1− γN)

] j
]

.

Denote SN(x) = ∑N−1
j=1 ( j +1)x j for some x > 0. One can see that

SN(x)− xSN(x) = 2x+
N−1

∑
i=2

xi −NxN

= 2x+ x2 1− xN−2

1− x
−NxN

and thus,

1+SN(x) = 1+
2x

1− x
+ x2 1− xN−2

(1− x)2 − NxN

1− x

=
NxN+1 − (N +1)xN +1

(1− x)2 .

Set x = m(1− γN)/[1 + m(1− γN)] and thus 1− x = [1 + m(1− γN)]−1. Now, after
some algebra and using (6.11) and (6.15), we obtain
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αN(m−aN) = m−
N−1

∑
j=0

1
j!

(1− γN) j f ( j+1)(γN) (6.16)

= m[1− (NxN+1 − (N +1)xN +1)]

= m

[
m(1− γN)

1+m(1− γN)

]N [
N +1−N

m(1− γN)
1+m(1− γN)

]

=
mN+1(1− γN)N

[1+m(1− γN)]N
N +1+m(1− γN)

1+m(1− γN)

= m(1− γN)
N +1+m(1− γN)

1+m(1− γN)
.

Therefore, using (6.15), (6.16), and γ1 = 1/m, we have for the limit in Theorem 6.7

αN
1− γ1

1− γN
=

m(1− γ1)
m−aN

[
1+

N
1+m(1− γN)

]

=
m−1

m−aN
(1+aN),

which completes the proof of the corollary. ��

6.6 Poisson offspring distribution

Consider Poisson offspring distribution with pgf f (s) = em(s−1), m > 0. Whence

gN(s) = e−m(1−s)
N−1

∑
j=0

1
j!

[m(1− s)] j. (6.17)

The distribution of VN (see [11]) can be presented for j = 0,1, . . . as

P(VN = j) = P( jN ≤ YN ≤ jN +N −1),

where YN is a Poisson random variable with mean m(1− γN). That is, P(VN = j) is
the ( j +1)st segment of length N in the distribution of YN . Some values of EV c

N are
given in Table 6.2. In the Poisson case, one also has γN → 0 as m → ∞. Now, (6.3)
and (6.17) lead to

γN ∼ mN−1e−m

(N −1)!
, m → ∞.

Denote y = mc
N(1− γc

N). It is shown in [8] that mc
N and γc

N satisfy the equations

yN

(N −1)!
+

N−1

∑
j=0

y j

j!
= ey (6.18)
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and
mc

NyN−1 = (N −1)!ey. (6.19)

Since (6.18) has a unique positive solution, one can find mc
N and γc

N from (6.18) and
then (6.19). Some values are given in Table 6.2 below. It is proved in [8] that as
N → ∞

mc
N = N +

√
N logN(1+o(1)) and γc

N =
√

π/(2N)(1+o(1)).

N 2 3 4 6 10 20 40

mc
N 3.351 5.150 6.800 9.876 15.582 28.775 53.434

γc
N 0.465 0.343 0.282 0.218 0.160 0.107 0.072

EV c
N 0.654 0.793 0.844 0.876 0.886 0.899 0.929

Table 6.2 Values of mc
N , γc

N , and EV c
N for Poisson offspring.

Here we state a straightforward corollary of Theorem 6.5(ii) (critical case).

Corollary 6.3. Assume Poisson offspring. If m = mc
N, then as n → ∞

P(T c
N > n | T c

N < ∞) ∼ 2(1− γc
N)

mc
N(1− γc

N)−N +1
1
n
.

Next result is a corollary of Theorem 6.7 for Poisson offspring.

Corollary 6.4. Assume Poisson offspring with m ≥ mc
N. Then for any N = 2,3, . . .

lim
n→∞

E(Zn | TN > n)
E(Zn | T1 > n)

=
m(1− γ1)

m−aN
. (6.20)

Remark 6.3. (i) The limit in (6.20) can be expressed in the form

(1− γ1)
{

1− [m(1− γN)]N−1

(N −1)!
e−m(1−γN)

}−1

.

(ii) Let mN = mc
N . Then ac

N = 1 and since the probability of extinction γc
1 satisfies

γc
1 = exp{−mc

N(1− γc
1)}, one can see that for the limit in (6.20) it is true that

mc
N(1− γc

1)
mc

N −1
> 1 and

mc
N(1− γc

1)
mc

N −1
↓ 1 as N → ∞.

Proof. We have f (s) = exp{−m(1− s)} and thus for j = 1,2, . . .
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f ( j+1)(s) = m j+1e−m(1−s) = m f ( j)(s)

Therefore, referring to (6.9) and (6.17),

αN =
1

m−aN

[

m−
N−1

∑
j=0

1
j!

(1− γN) j f ( j+1)(γN)

]

=
m

m−aN

[

1−m−1
N−1

∑
j=0

1
j!

(1− γN) jm f ( j)(γN)

]

=
m

m−aN

[

1− e−m(1−γN)
N−1

∑
j=0

1
j!

[m(1− γN)] j

]

=
m(1− γN)

m−aN
.

Hence,

αN
1− γ1

1− γN
=

m(1− γ1)
m−aN

and the limit in (6.20) follows from Theorem 6.7. ��

6.7 One-or-many offspring distribution

In this section we consider a two-parameter family of offspring distributions {pk}
defined for p ∈ (0,1) and some integer r > N > 1 by p1 = 1− p, pk = 0 for 2 ≤ k ≤
r −1, and pr = p. Clearly m = 1− p+ rp and f (s) = (1− p)s+ psr. Hence

gN(s) = 1− p
r

∑
j=N

(
r
j

)
(1− s) jsr− j.

Consequently, Theorem 6.2 shows that γN is the smallest solution in [0,1] of

s = p
r

∑
j=N

(
r
j

)
s j(1− s)r− j.

Let Br(γN) denote a binomial (r,1 − γN) random variable. It is shown in [11] that
P(VN = 0) = 1− p+ pP(Br(γN) ≤ N −1) and for j = 1,2, . . .

P(VN = j) =
{

pP( jN ≤ Br(γN) ≤ jN +U) if jN ≤ r,
0 if jN > r,

where U = min{N −1,r− jN}. That is, P(VN = j) is the ( j+1)st segment of length
U in the distribution of Br(γN). It is shown in [8] that γc

N is the unique solution of
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r

∑
j=N

(
r
j

)(
1− x

x

) j−N

= r

(
r −1
N −1

)

and also for the critical value pc
N

(pc
N)−1 = r

(
r −1
N −1

)
(1− γc

N)N−1(γc
N)r−N . (6.21)

In particular, if r = N +1 then

mc
N = 1+(N −1)

(
1− 1

N2

)−N

, γc
N = N−2, and EV c

N = 1−N−2. (6.22)

We list some values of mc
N , γc

N , and EV c
N in Table 6.3.

N 2 3 4 6 10 20 40

mc
N 2.778 3.848 4.884 6.921 10.952 20.975 40.988

γc
N 0.250 0.111 0.063 0.028 0.010 0.003 0.001

EV c
N 0.750 0.889 0.938 0.972 0.990 0.998 0.999

Table 6.3 Values of mc
N , γc

N , and EV c
N for one-or-(N +1) offspring.

The following straightforward corollary of Theorem 6.5(ii) holds.

Corollary 6.5. Assume one-or-(N +1) offspring distribution. If m = mc
N, then

P(T c
N > n | T c

N < ∞) ∼ 2

(
N − 1

N

)
1
n

(n → ∞).

Next result is a corollary of Theorem 6.7 for one-or-(N +1) offspring.

Corollary 6.6. Assume one-or-(N +1) offspring distribution. If m = mc
N, then

lim
n→∞

E(Zn | T c
N > n)

E(Zn | T c
1 > n)

=
N

N −1

(
1− 2N −1

N2N

)
.

Proof. We have for j ≥ 1

f ′(s) = 1− p+ p(N +1)sN and f ( j+1)(s) = p(N +1)N . . .(N +1− j)sN− j

(6.23)
It follows from (6.9) and (6.21)–(6.23), after some algebra, that
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αN =
1

mc
N −1

[

mc
N − f ′(γc

N)−
N−1

∑
j=1

1
j!

(1− γc
N) f ( j+1)(γc

N)

]

=
(1−N−2)N

(N −1)

[
N −N−1

(1−N−2)N − 1−N−1

(1−N−2)NN2N

N−1

∑
j=0

(N +1) . . .(N +1− j)
j!

]

=
(
1+N−1)− 1

N2N+1

N−1

∑
j=0

(N +1)N . . .(N +1− j)
j!

=
(
1+N−1)− (N +1)

(
2N −1

)

N2N+1

and the corollary follows from Theorem 6.7. ��

6.8 Concluding remarks

Pakes and Dekking [8] point out that constructions of complete N-ary subtrees of
a Galton-Watson family tree, have appeared in the study of Mendelbrot’s percola-
tion process by Chayes et al. [1] and in Pemantle’s work [9] on reinforced random
walks. In particular, Pemantle’s results imply that: if there exists s0 ∈ (0,1), such
that gN(s0) ≤ s0, then γN ≤ s0 < 1. In [7], Mutafchiev discusses an interesting con-
nection between the subject matter N-ary trees and the existence of a giant k-core
in a random graph. Consider an Erdös-Rényi random graph G(n, p) with n vertices
in which the possible arcs are present independently, each with probability p. Pittel
et al. [10] construct a Galton–Watson family tree rooted at a vertex of the graph
G(n,λ/n), (λ > 0), assuming Poisson offspring distribution with mean λ . They
show that a giant k-core appears suddenly when the number of arcs reaches ckn/2,
where the constant ck can be explicitly computed. It is remarkable that the values of
ck coincide with those of mc

k−1 for k = 3,4,5 in case of Poisson offspring distribution
(see Table 6.2 and [10], p. 114). This needs further investigation.
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7
Limit theorems for critical randomly indexed
branching processes

Kosto V. Mitov, Georgi K. Mitov and Nikolay M. Yanev

Abstract We investigate a BGW process subordinated by a renewal process for
which the interarrival periods have a finite mean or heavy tails. The branching pro-
cess is critical with finite or infinite offspring variance and started with a random
number of ancestors with infinite mean. The asymptotic behavior of the probability
for non-extinction is investigated and limiting distributions are obtained.

Mathematics Subject Classification (2000): 60J80, 60F05.

Keywords: branching processes, renewal processes, random time change, limit
theorems.

7.1 Introduction

A randomly indexed branching process was introduced by Epps [5] for modeling of
daily stock prices as an alternative of the geometric Brownian motion. He consid-
ered a Bienaymé–Galton–Watson (BGW) branching process indexed by a Poisson
process, assuming four particular discrete offspring distributions. Under these con-
ditions, Epps obtained the asymptotic behavior of the moments, submitted certain
estimates of the parameters of the process, and made the calibration of the model
using real data from the New York Stock Exchange (NYSE). Assuming this stock
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M. González et al. (eds.), Workshop on Branching Processes and Their Applications, 95
Lecture Notes in Statistics – Proceedings 197, DOI 10.1007/978-3-642-11156-3 7,
c© Springer-Verlag Berlin Heidelberg 2010



96 Kosto V. Mitov, Georgi K. Mitov and Nikolay M. Yanev

price process, two formulas for pricing of European Call Option and Up-and-Out
Barrier Option were derived in [8] and [10], respectively.

Dion and Epps [4] noted that the process is a particular case of branching pro-
cesses in random environments. Therefore, one can derive their general properties
from the results for branching processes in random environments. On the other hand,
the particular assumptions provide some important characteristics which are not ex-
hibited in the general framework.

In the present paper we continue the investigation of the randomly indexed
branching processes initiated in [7] and [9]. Let us briefly recall the definition.

Assume that on the probability space (Ω ,A ,P) are given:
(i) The set X = {Xi(n),n = 1,2, . . . ; i = 1,2, . . .} of i.i.d. nonnegative integer

valued random variables (r.v.) with the probability generating function (p.g.f.)

f (s) = E
[
sXi(n)

]
=

∞

∑
k=0

pksk, s ∈ [0,1].

(ii) An independent of X set J = {J1,J2, . . .} of positive i.i.d. r.v. with the cumu-
lative distribution function (c.d.f.) F(x) = P(Jn ≤ x).

The classical BGW branching process starting by I ancestors can be defined as
follows

Z0 = I, Zn+1 =
Zn

∑
i=1

Xi(n+1), n = 0,1,2, . . . (7.1)

It is well known that the p.g.f. fn(s) = E[sZn |Z0 = 1], |s| ≤ 1, is the n-fold iteration
of f (s); that is fn(s) = f ( fn−1(s)), f1(s) = f (s), f0(s) = s (see e.g. [1]). The initial
number of particles is assumed to be a r.v. I independent of the set X . Denote by
g(s) = E

[
sI
]
. Then from the independence of the evolution it follows that

E
[
sZn |Z0 = I

]
= g( fn(s)), n = 0,1,2, . . . , s ∈ [0,1]. (7.2)

Define also the ordinary renewal process

S0 = 0, Sn =
n

∑
j=1

Jj, n = 0,1, . . . , (7.3)

and the corresponding counting process

N(t) = max{n ≥ 0 : Sn ≤ t}, t ≥ 0. (7.4)

Denote the renewal function of N(t) by H(t) = E[N(t)] =
∞

∑
n=0

F∗n(t), t ≥ 0, and

Pk(t) = P(N(t) = k), k = 0,1,2, . . . . Here and later F∗n(t) denotes the n−fold
convolution of the distribution function F(t); that is F∗1(t) = F(t), F∗n(t) =∫ t

0 F∗(n−1)(t −u)dF(u), F∗0(t) = 1.

Definition 7.1. The continuous time process {Y (t), t ≥ 0} defined by

Y (t) = ZN(t), t ≥ 0,

is called a randomly indexed BGW branching process.
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Applying the total probability law we obtain by the independence of the processes
Z(n) and N(t) that

Φ(t;s) = E
[
sY (t)
]

=
∞

∑
n=0

Pn(t)g( fn(s)).

In the investigation of the limiting behavior of the process we need also the follow-
ing equation for the conditional distribution of Y (t)

P(Y (t) ≤ x |Y (t) > 0) (7.5)

=
∫ ∞

0
P
(
Z[y] ≤ x |Z[y] > 0

)
dP
(
N(t) ≤ y |ZN(t) > 0

)
.

Relating to this equation, the following interesting problem arises:
If we know the limiting behavior of the processes N(t) and Zn, what can be said

about the limiting distribution of

P
(
N(t) ≤ x |ZN(t) > 0

)

as t → ∞?
The solution of this problem in more general settings is given in Sect. 7.2. Sec-

tion 7.3 presents the results for renewal processes needed later. In Sect. 7.4 it is
proved a limit theorem for BGW branching process starting with random number of
ancestors. In Sect. 7.5, using the results from the previous sections, it is established
the limiting behavior of a randomly indexed branching process in critical case.

7.2 A conditional limit theorem for random time change

Assume that on the common probability space (Ω ,A ,P) are given two independent
processes:

(i) The integer valued process N(t) and the real valued function K(t) such that as
t → ∞

N(t) ↑ ∞, K(t) ↑ ∞, and
N(t)
K(t)

d→ ξ , (7.6)

where the random variable ξ is almost surely positive. Here and later
d→ denotes

convergence in distribution.
(ii) The process Zn, n = 0,1,2, . . . is a discrete time stochastic process having 0

as its absorbing state (e.g. branching process) and such that

Q(n) := P(Zn > 0) ↓ 0, n → ∞,
Q(0) = 1, i.e. Z0 > 0 a.s.,
Q(n) ∼ n−θL(n) n → ∞,

⎫
⎬

⎭
(7.7)
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where 0 < θ < 1 and L(x) is a function slowly varying at infinity. Define for x ∈
[0,∞), Q(x) = Q([x]).

Theorem 7.1. Assume the conditions (7.6), (7.7), and E
[
ξ−θ
]
<∞. Then as t →∞,

Gt(x) = P
(

N(t)
K(t)

≤ x |ZN(t) > 0

)
→ G(x) (7.8)

for every x which is a point of continuity of G(.), where

G(x) =
E
[
ξ−θ I{ξ≤x}

]

E [ξ−θ ]
.

Proof. The following representation holds

Gt(x) = R(t)−1 ∑
n≤xK(t)

P(N(t) = n)Q(n), (7.9)

where

R(t) = P
(
ZN(t) > 0

)
=

∞

∑
n=0

P(N(t) = n)Q(n) = E [Q(N(t))] .

Indeed,

Gt(x) = P
(

N(t)
K(t)

≤ x |ZN(t) > 0

)
= R(t)−1P

(
N(t) ≤ xK(t), ZN(t) > 0

)

= R(t)−1
∞

∑
n=0

P
(
N(t) = n, N(t) ≤ xK(t), ZN(t) > 0

)

= R(t)−1 ∑
n≤xK(t)

P(Zn > 0)P(N(t) = n) = R(t)−1E
[
Q(N(t))I{N(t)≤xK(t)}

]
.

First, we shall prove that as t → ∞,

R(t) =
∞

∑
n=0

P(N(t) = n)Q(n) = E [Q(N(t))] ∼ E
[
ξ−θ
]

Q(K(t)). (7.10)

Since Q(0) = 1, and Q(n) ↓ 0, we can write for every n ≥ 0 that

Q(n) =
∞

∑
k=n

(Q(k)−Q(k +1)),

where p(k) = Q(k)−Q(k +1) ≥ 0, k = 0,1,2, . . . and
∞

∑
k=0

p(k) = 1, that is p(k) is

a probability distribution on 0,1,2, . . . and the corresponding to it c.d.f. is 1−Q(x).
Using this we obtain
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R(t) =
∞

∑
n=0

P(N(t) = n)Q(n) =
∞

∑
n=0

∞

∑
k=n

P(N(t) = n)(Q(k)−Q(k +1)).

Changing the order of summation one gets

R(t) =
∞

∑
k=0

k

∑
n=0

P(N(t) = n)(Q(k)−Q(k +1))

=
∞

∑
k=0

(Q(k)−Q(k +1))
k

∑
n=0

P(N(t) = n) =
∞

∑
k=0

p(k)P(N(t) ≤ k) .

Therefore, we can write R(t) =
∫ ∞

0
P(N(t) ≤ x)d(1−Q(x)), and

R(t)
Q(K(t))

= −
∫ ∞

0
P(N(t) ≤ x)d

Q(x)
Q(K(t))

= −
∫ ∞

0
P
(

N(t)
K(t)

≤ x
K(t)

)
d

Q(x)
Q(K(t))

=−
∫ ∞

0
P
(

N(t)
K(t)

≤ y

)
d

Q(yK(t))
Q(K(t))

.

In the last step we substitute x = yK(t). Since (7.6) and the fact that Q(x) varies
regularly it follows that as t → ∞,

−
∫ ∞

0
P
(

N(t)
K(t)

≤ y

)
d

Q(yK(t))
Q(K(t))

→ −
∫ ∞

0
P(ξ ≤ y)d(y−θ ).

Substituting in the last integral y−θ = z ⇔ y = z−1/θ we prove (7.10).
Let us consider now

P
(
N(t) > xK(t),ZN(t) > 0

)

Q(K(t))
= E

[
Q(N(t))
Q(K(t))

I{N(t)>xK(t)}

]
.

Since Q(.) is non increasing then almost surely,

Q(N(t))
Q(K(t))

I{N(t)>xK(t)} ≤ Q(x(K(t))
Q(K(t))

I{N(t)>xK(t)}. (7.11)

Since (7.6) and the regular variation of Q(.), the following relations hold as t → ∞,

Q(N(t))
Q(K(t))

I{N(t)>xK(t)}
d→ ξ−θ I{ξ>x},

Q(x(K(t))
Q(K(t))

I{N(t)>xK(t)}
d→ x−θ I{ξ>x},

E
[

Q(xK(t))
Q(K(t))

I{N(t)>xK(t)}

]
=

Q(xK(t))
Q(K(t))

P
(

N(t)
K(t)

> x

)
→ x−θP(ξ > x) .

These relations, the inequality (7.11), and the Lebesgue’s theorem for dominated
convergence yield
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P
(
N(t) > xK(t),ZN(t) > 0

)

Q(K(t))

= E
[

Q(N(t))
Q(K(t))

I{N(t)>xK(t)}

]
→ E

[
ξ−θ I{ξ>x}

]
,

as t → ∞. Therefore,

P
(
N(t) ≤ xK(t),ZN(t) > 0

)

Q(K(t))
→ E

[
ξ−θ I{ξ≤x}

]
, (7.12)

as t → ∞. Now, from (7.12), (7.10), and (7.9) we get (7.8). The theorem is proved.
��

7.3 Renewal processes

In this section we apply Theorem 7.1 to the ordinary renewal process defined by
(7.3) and (7.4).

Denote the distribution function of the interarrival times Jk by F(x), F(0+) = 0
and assume one of the following conditions:

The mean of interarrival times Jk is finite,

μ = E [Jn] =
∫ ∞

0
(1−F(y))dy ∈ (0,∞). (7.13)

The interarrival times Jk have an infinite mean, and

1−F(t) ∼ t−βL (t)
Γ (1−β )

, t → ∞, β ∈ (0,1), (7.14)

where L (.) is a function slowly varying at infinity.
If condition (7.13) holds, then by the SLLN it follows that (see e.g. [6])

Sn

μn
a.s.→ 1, n → ∞, and

N(t)
t/μ

a.s.→ 1, t → ∞,

where
a.s.→ denotes the convergence almost surely.

Suppose that condition (7.14) is satisfied. Then the function

r̃(t) =
1

Γ (1−β )(1−F(t))
∼ tβ

L (t)
, as t → 0, (7.15)

and its asymptotic inverse r(t) > 0, t ≥ 0, defined by (see e.g. Theorem 1.5.12 in
[2])

r(r̃(t)) ∼ r̃(r(t)) ∼ t as t → ∞,
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provide the appropriate normalization for the renewal sequence and the counting
process,

Sn

r(n)
d→ Dβ , as n → ∞

N(t)
r̃(t)

d→ Wβ , as t → ∞.

The random variable Dβ has an one-sided β -stable distribution. That is Dβ > 0 a.s.
and

E
[
e−λDβ

]
= e−λβ

, λ > 0.

(See also Sect. 13.6 in [6]). The random variable Wβ is also almost surely positive
and its distribution is defined by

Wβ
d= (Dβ )−β .

The r.v. Wβ has Laplace transform

E
[
e−λWβ

]
=

∞

∑
n=0

(−λβ )n

Γ (1+nβ )
.

The distribution of this type is known as the Mittag-Lefler distribution.
It is known that (see e.g. [6], Sect. XIII.6, Theorem 1)

P
(
Dβ > x

)∼ x−β , as x → ∞. (7.16)

Further, if θ > 0 then

P
(
(Wβ )−θ > x

)
= P
(
((Dβ )−β )−θ > x

)
= P
(

Dβ > x
1
βθ
)

.

This chain of equalities and the relation (7.16) show that

P
(
(Wβ )−θ > x

)
∼ x− 1

θ , as x → ∞.

Therefore, if θ ∈ (0,1) we have E
[
(Wβ )−θ ]< ∞.

Assuming that the process Zn is the same as in the previous section, we are ready
to formulate the following consequence from Theorem 7.1.

Theorem 7.2. Suppose that on the same probability space we have a renewal count-
ing process N(t) and a process Zn satisfying the conditions (7.7) from Sect. 7.2.

If for N(t) condition (7.13) is satisfied then

lim
t→∞

P
(

N(t)
t/μ

≤ x |ZN(t) > 0

)
= I{1≤x}. (7.17)
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If for N(t) condition (7.14) is satisfied and θ ∈ (0,1) then

lim
t→∞

P
(

N(t)
r̃(t)

≤ x |ZN(t) > 0

)
=

E
[
(Wβ )−θ I{Wβ≤x}

]

E
[
(Wβ )−θ

] . (7.18)

In this case

E
[
(Wβ )−θ

]
=

Γ (1−θ)
Γ (1−θβ )

. (7.19)

Proof. The limits (7.17) and (7.18) follow immediately from Theorem 7.1. We have
to prove only (7.19). Since N(t) is a renewal counting process it follows from the
Eq. (7.11) that

R(t) =
∞

∑
k=0

p(k)P(Sk > t) .

Let us denote by Φ(t) = 1−R(t), t ≥ 0. Then

Φ(t) =
∞

∑
k=0

p(k)P(Sk ≤ t)

is a proper distribution function on [0,∞). Taking the Laplace-Stieltjes transform
from both sides of the last equation we obtain for λ > 0

Φ̂(λ ) =
∞

∑
k=0

p(k)F̂k(λ ),

where Φ̂(λ ) =
∫ ∞

0
e−λ tdΦ(t), and F̂(λ ) =

∫ ∞

0
e−λ tdF(t). Then

1− Φ̂(λ ) =
∞

∑
k=1

p(k)(1− F̂k(λ ))

= (1− F̂(λ ))
∞

∑
k=1

p(k)(1+ F̂(λ )+ . . .+ F̂k−1λ )).

Changing the order of summation in the last equation we get

1− Φ̂(λ ) = (1− F̂(λ ))
∞

∑
k=0

Q(k +1)F̂k(λ ), λ > 0. (7.20)

Since F(.) is a proper distribution function then F̂(λ ) ↑ 1 as λ ↓ 0. From this fact
and the asymptotic behavior of Q(k) (see Sect. 7.2, (ii)) one gets from Theorem 5,
Sect. XIII.5, [6], that

∞

∑
k=0

Q(k +1)F̂k(λ ) ∼ Γ (1−θ)
1

(1− F̂(λ ))1−θ L

(
1

1− F̂(λ )

)
, λ ↓ 0.
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From this relation and (7.20) it follows that

1− Φ̂(λ ) ∼ Γ (1−θ)(1− F̂(λ ))θL

(
1

1− F̂(λ )

)
, λ ↓ 0. (7.21)

Now we will use (7.14) which is equivalent to the following relation (see e.g. [6],
Sect. XIII.5, or [2], Corollary 8.1.7)

1− F̂(λ ) ∼ λβL (1/λ ), λ ↓ 0. (7.22)

From (7.21) and (7.22) we get

1− Φ̂(λ ) ∼ Γ (1−θ)(λβL (1/λ ))θL

(
1

λβL (1/λ )

)

∼ Γ (1−θ)λβθ (L (1/λ ))θL

(
1

λβL (1/λ )

)
, λ ↓ 0.

The last relation is equivalent to (see e.g. [6], Sect. XIII.5, or [2], Corollary 8.1.7)

R(t) = 1−Φ(t) ∼ Γ (1−θ)
Γ (1−θβ )

t−θβL θ (t)L

(
tβ

L (t)

)

, t → ∞. (7.23)

On the other hand, from (7.15) and the asymptotic of Q(.) it follows that

Q(r̃(t)) ∼
(

tβ

L (t)

)−θ

L

(
tβ

L (t)

)

, t → ∞.

Now from the last relation and (7.23) we get

R(t)
Q(r̃(t))

→ Γ (1−θ)
Γ (1−θβ )

, t → ∞,

which together with (7.10) completes the proof of (7.19). ��

7.4 BGW branching processes starting with random number
of particles

In this section we obtain a limit theorem for the BGW processes defined by (7.1),
(7.2) under the following “branching” conditions:

(B1) The process Z(n) is critical with finite variance, i.e.

E [Xi(n)] = f ′(1) = 1,

E [Xi(n)(Xi(n)−1)] = f ′′(1) = b ∈ (0,∞).
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(B2) The initial number of particles I is a positive random variable independent
of the set X , with infinite mean and

g(s) = E
[
sI]= 1− (1− s)θ l

(
1

1− s

)
,

where θ ∈ (0,1) and l(.) is a slowly varying at infinity function.
The following theorem is valid for BGW branching processes starting with ran-

dom number of ancestors.

Theorem 7.3. Assume that the conditions (B1) and (B2) hold. Then

P(Zn > 0) = 1−g( fn(0)) ∼ (bn)−θ l(n), n → ∞, (7.24)

lim
n→∞

P(Zn(1− fn(0)) |Zn > 0) = Eθ , (7.25)

where Eθ is a random variable with Laplace-Stieltjes transform E
[
e−λEθ

]
= 1 −

λθ (1+λ )−θ .

Proof. The proof of (7.24) follows from the representation

P(Zn > 0 |Z0 = I) = 1−g( fn(0)) = (1− fn(0))θ l

(
1

1− fn(0)

)
,

and the well known Kolmogorov’s result 1− fn(0) ∼ 1
bn , n → ∞.

For the proof of (7.25) we can use the conditional p.g.f. of the process Zn,

E
[
sZn |Zn > 0

]
= 1− 1−g( fn(s))

1−g( fn(0))
, s ∈ [0,1],n = 1,2, . . . .

Let λ > 0 be fixed. Then

E
[
e−λZn(1− fn(0)) |Z(n) > 0

]
= 1− 1−g( fn(e−λ (1− fn(0))))

1−g( fn(0))
.

Further, we have

1−g( fn(e−λ (1− fn(0))))
1−g( fn(0))

=

(
1− fn(e−λ (1− fn(0)))

1− fn(0)

)θ l
(
(1− fn(e−λ (1− fn(0))))−1

)

l ((1− fn(0)−1))

This representation, the well known Yaglom’s limit theorem for critical BGW, and
the uniform convergence of slowly varying functions give
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lim
n→∞

1−g( fn(e−λ (1− fn(0))))
1−g( fn(0))

=
λθ

(1+λ )θ
, λ > 0.

This completes the proof of (ii). ��

7.5 Limit theorems for the process Y (t)

Using the results from Sects. 7.3 and 7.4 we will find the limiting behavior of the
process Y (t).

Theorem 7.4. Suppose the conditions (B1), (B2), and (7.13) hold. Then as t → ∞,

P(Y (t) > 0) ∼
(

bt
μ

)−θ
l(t), (7.26)

and

lim
t→∞

P
(

Y (t)
t/μ

≤ x |Y (t) > 0

)
= P
(
Eθ ≤ x

b

)
, x > 0. (7.27)

Proof. We have that R(t) = P(Y (t) > 0) = P
(
ZN(t) > 0

)
. Under the conditions of

the theorem one has

Q(n) = 1−g( fn(0)) ∼ (bn)−θ l(n),n → ∞, ( see (7.24)),

and

K(t) =
t
μ

, t → ∞, and ξ = 1, (see (7.17)).

These relations and (7.10) complete the proof of (7.26). From the Eq. (7.5) one gets

P
(

Y (t)
t/μ

≤ x |Y (t) > 0

)
= P(Y (t) ≤ xt/μ |Y (t) > 0)

=
∫ ∞

0
P
(

Z[y] ≤
xt
μ

|Z[y] > 0

)
dP
(
N(t) ≤ y |ZN(t) > 0

)

[Substituting y = (ut)/μ]

=
∫ ∞

0
P
(
Z[ut/μ] ≤ xt/μ |Z[ut/μ] > 0

)
dP
(
N(t) ≤ ut/μ |ZN(t) > 0

)

=
∫ ∞

0
P
(

Z[ut/μ]

b[ut/μ ]
≤ xt/μ

b[ut/μ ]
|Z[ut/μ] > 0

)
dP
(

N(t)
t/μ

≤ u |ZN(t) > 0

)

[Letting t → ∞ and having in mind the limits (7.25) and (7.17) we obtain]
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→
∫ ∞

0
P
(

Eθ ≤ x
by

)
dyP(1 ≤ y) = P

(
Eθ ≤ x

b

)
.

This completes the proof of (7.27) and the theorem. ��
Theorem 7.5. Suppose the conditions (B1), (B2) and (7.14) hold. Then as t → ∞,

P(Y (t) > 0) ∼ Γ (1−θ)
Γ (1−θβ )

b−θ t−βθL∗(t), (7.28)

where L∗(t) = (L (t))θ l
(

tβ

L (t)

)
is a s.v.f. and

lim
t→∞

P
(

Y (t)
r̃(t)

≤ x |Y (t) > 0

)

=
Γ (1−θβ )
Γ (1−θ)

∫ ∞

0
P
(

Eθ ≤ x
by

)
y−θdP

(
Wβ ≤ y

)
, x > 0, (7.29)

where r̃(t) is defined by (7.15).

Proof. Since R(t) = P(Y (t) > 0) = P
(
ZN(t) > 0

)
we have to use Eq. (7.10), i.e.

R(t) ∼ E
[
ξ−θ
]

Q(K(t)), t → ∞.

Furthermore, under the conditions of the theorem one has

Q(n) = 1−g( fn(0)) ∼ (bn)−θ l(n), n → ∞, (see (7.24)),

and

K(t) = r̃(t) ∼ tβ

L (t)
, t → ∞, (see (7.15))

ξ = Wβ , with E
[
W−θ

β

]
=

Γ (1−θ)
Γ (1−θβ )

(see (7.18), (7.19)).

Substituting Q(.), K(.), and E
[
W−θ

β

]
in the asymptotic formula for R(t) one gets

R(t) ∼ Γ (1−θ)
Γ (1−βθ)

b−θ (K(t))−θ l(K(t))

∼ Γ (1−θ)
Γ (1−βθ)

b−θ t−θβ (L (t))θ l

(
tβ

L (t)

)

, t → ∞,

which completes the proof of (7.28).
From Eq. (7.5) we have that
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Dt(x) := P
(

Y (t)
r̃(t)

≤ x|Y (t) > 0

)
= P(Y (t) ≤ xr̃(t)|Y (t) > 0)

=
∫ ∞

0
P
(
Z[y] ≤ xr̃(t)|Z[y] > 0

)
dP
(
N(t) ≤ y|ZN(t) > 0

)
.

The substitution y = ur̃(t) in the last integral gives

Dt(x) =
∫ ∞

0
P
(
Z[ur̃(t)] ≤ xr̃(t) |Z[ur̃(t)] > 0

)
dP
(
N(t) ≤ ur̃(t) |ZN(t) > 0

)

=
∫ ∞

0
P
(

Z[ur̃(t)]

b[ur̃(t)]
≤ xr̃(t)

b[ur̃(t)]
|Z[ur̃(t)] > 0

)
dP
(

N(t)
r̃(t)

≤ u |ZN(t) > 0

)
.

Therefore, the relations (7.25) and (7.18) allow us to pass to the limit in the last
integral, which leads to

lim
t→∞

Dt(x) =
∫ ∞

0
P
(

Eθ ≤ x
by

)
dy

E
[
W−θ

β I{Wβ≤y}
]

E
[
W−θ

β

] .

Finally, using (7.19) and the equality

dyE
[
W−θ

β I{Wβ≤y}
]

= dy

∫ y

0
z−θdP

(
Wβ ≤ z

)
= y−θdP

(
Wβ ≤ y

)
,

we complete the proof of (7.29). ��

7.6 Concluding remarks

Although the randomly indexed branching processes appeared as models in Finan-
cial Mathematics, it seems that they could be applied also in the Cell Biology, espe-
cially for analysis of clonal data, PCR processes or cell proliferation models consid-
ered by Crump and Mode [3]. Since the cell proliferation processes usually begin
from a large random population of cells then the initial condition (B2) seems quite
natural in this case, as well as the slowly extinction of the considered population
obtained in (7.26) of Theorem 7.4 and (7.28) of Theorem 7.5. Note that the limiting
random variable in Theorem 7.5 can be presented as a product of two independent
random variables with known c.d.f. In fact, the limiting distribution (7.29) is quite
new in the theory of branching processes. Finally we recall that some generalizations
and new problems concerning randomly indexed branching processes are proposed
in [9].
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8
Renewal measure density for distributions with
regularly varying tails of order α ∈ (0,1/2]

Valentin Topchii

Abstract Increments of the renewal function related to the distributions with infinite
means and regularly varying tails of orders α ∈ (0,1] were described by Erickson in
1979 (Trans. Amer. Math. Soc. 151: 263–291, 1970). However, explicit asymptotics
for the increments are known for α ∈ (1/2,1] only. For smaller α one can get,
generally speaking, only the lower limit of the increments. There are many examples
showing that this statement cannot be improved in general.

We refine Erikson’s results by describing sufficient conditions for regularity of
the renewal measure density of the distributions with regularly varying tails with
α ∈ (0,1/2]. We also discuss the reasons of non-regular behavior of the renewal
function increments in the general situation.
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Keywords: regularly varying tails of order α ∈ (0,1/2], renewal measure density,
branching random walks, attraction to a stable law.

8.1 Introduction

One of the important characteristics of the continuous time symmetric catalytic ran-
dom walks on the multi-dimensional integer lattice with only source at the origin is
the average number of particles at the origin [2]. Vatutin and Topchii [3] reduced the
study of such branching random walks to the investigation of the multi-dimensional
branching Bellman-Harris processes. The expected number of particles at the origin
is a solution to the well-known renewal equation. In some dimensions, the expecta-
tion is infinite. Studying the random walks in R3 requires explicit asymptotics for
the renewal densities whose distribution belongs to the domain of attraction of stable
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laws with parameter α = 1/2. In general, no explicit asymptotics is know for such
a case and they can be found only under additional restrictions. We slightly extend
this problem and describe some conditions for the case α ∈ (0,1/2] under which
one can find an explicit form of the renewal density function and analyze the role of
the introduced conditions for the n-fold convolution of the initial distribution.

Let Fα(t) be a distribution function with regularly varying tail of order α ∈ (0,1)
with Fα(0) = 0, and let L(t) be a function slowly varying as t → ∞ [4, Chap. VIII
Sect. 8] such that

1−Fα(t) ∼
t→∞

t−αL(t). (8.1)

Here and below, the symbol ∼
t→∞

denotes convergence of the ratio of the left- and

right-hand sides to 1.

We study the density of the renewal function U(t) def=
∞
∑

n=0
F∗n
α (t) for t > 0, where

the upper index ∗n denotes the usual n-fold convolutions of distributions (or densi-
ties).

Theorem 8.1 below is a restatement of the respective results from [1].

Theorem 8.1. If condition (8.1) hold, then for every fixed h > 0

U(t +h)−U(t) ∼
t→∞

hCα∫ t
0(1−Fα(u))du

, for 1/2 < α ≤ 1, (8.2)

where Cα =Γ−1(α)Γ−1(2−α) or Cα(1−α) = sinπα
π for α 
= 1, and Γ (α) is the

Euler gamma function, and

liminf
t→∞

t1−αL(t)(U(t +h)−U(t)) = h
sinπα

π
, for 0 < α ≤ 1/2, (8.3)

Equation (8.2) gives the asymptotic of the renewal density function for 1/2 <
α ≤ 1, if it exists. There are many examples of the distributions Fα with 0 <α ≤ 1/2
showing that the respective densities and increments of F∗n

α (t) can be infinitely large
with respect to tα−1/L(t), i.e. estimate (8.3) cannot be refined to the form (8.2).
Thus, it is impossible to have an analog of (8.2) for 0 < α ≤ 1/2 without additional
conditions on the increments of Fα(t). The point is that condition (8.1) implies

Fα(t +h)−Fα(t) =
t→∞

o(t−αL(t)), (8.4)

but the increment of the renewal function should be of order tα−1L−1(t). This term
can be infinitely small with respect to the increment from (8.4). The fact of possible
dominating influence of starting summands of the renewal function is a basis for
counter-examples and irregular behavior of increments of the renewal function or
its density for 0 < α ≤ 1/2.

The aim of the present article is to find some conditions on the density of Fα(t)
providing an analog of estimate (8.2) in the case 0 < α ≤ 1/2. It is a folklore that
a sufficient condition for (8.2) to hold is the monotonicity of the density for t ≥ t0.
However, no published proofs are known to the author.
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8.2 Effects of attraction to a stable law

By Theorem 2.6.1 in [5], the distribution of Fα(t) from (8.1) with support on

R+
def= [0,∞) belongs to the domain of attraction of a stable law of order α whose

distribution function we denote by Gα(t). According to Theorem 2.2.2 in [5] with
β = 1 corresponding to distributions on R+ and Remark 2 in [5, p. 54] the logarithm
of characteristic function for Gα(t) has the form,

−cα |θ |α
(

1− i
|θ |
θ

tan
πα
2

)
= −Γ (1−α)|θ |α exp

{
− iπα|θ |

2θ

}

def= c1,α |θ |α exp

{
− iπα|θ |

2θ

}
,

where cα = Γ (1−α)cos(απ/2).
Theorem 2.1.1 in [5] states that there is a sequence Bn = n1/αh(n), where h(n) is

an explicitly defined slowly varying function as n → ∞, such that

F∗n
α (Bnx) →

n→∞
Gα(x).

In general, we should check existence of sequences An and Bn such that the

normed sums

(
n
∑
j=1

ξ ( j)
α −An

)

B−1
n converge in distribution to a stable law of or-

der α < 1, where ξ ( j)
α are independent identically distributed random variables with

distribution function Fα(t) [4, Chap. XVII, Sect. 5, the remark following Theorem
3]. In this case one may take An = 0, and the theorem gives the asymptotic form of
Bn shown in Eq. (5.23) in [4, Chap. XVII, Sect. 5] or in [5, p. 94, Eq. (2.6.4)]. In
our notation,

n(1−Fα(Bnx)) →
n→∞

cx−α , (8.5)

where c > 0 is arbitrary and fixed. We set c = 1.
Rewrite the Eq. (8.5) for t ∈ R+ as follows,

t(1−Fα(Btx)) = t(Btx)−αL(Btx) →
t→∞

x−α ,

or
Bt ∼

t→∞
t1/αh(t),

where h(t) ∼
t→∞

L1/α(Bt) and in Karamata’s representation [4, Chap. VIII, Sect. 8,

formula (9.9)] the multiplier in front of the exponential can be taken constant. In
this case h′(t) =

t→∞
o(h(t)/t). Here and below we assume that the slowly varying

function L(·) satisfies the mentioned regularity condition, and Bn = n1/αh(n).
If F∗N

α (t) has a bounded density for some N > 0, i.e.,

max
x

f ∗N
α (x) < ∞, (8.6)



112 Valentin Topchii

it follows that F∗n
α (t) has a bounded density for every n ≥ N. Note that the convolu-

tion F∗n
α (t) may have no density for some n < N.

By Theorem 4.3.1 in [5], in this case

max
x

|Bn f ∗n
α (Bnx)−gα(x)| def= Δn →

n→∞
0, (8.7)

or
max

x
| f ∗n
α (x)−B−1

n gα(xB−1
n )| = ΔnB−1

n . (8.8)

This fact allows us to describe the asymptotic of a sum related with the density
of the renewal function. The case α ∈ (1/2,1] has been treated in Theorem 8.1.
Therefore, we will study the mentioned asymptotic for α ∈ (0,1/2].

Fix a monotone step function n1(t) ∈ N satisfying tBn1(t) ∼
t→∞

1. For all N0 ∈ N

define n0(t) = n0(t,N0)
def= n1(N

−1/α
0 t). Then t ∼

t→∞
L1/α(t)n1/α

1 (t), n1(t) ∼
t→∞

tα/L(t)

and n0(t)
def= n1(N

−1/α
0 t) ∼

t→∞
N−1

0 n1(t).

Theorem 8.2. Let Fα(t) be the distribution function satisfying condition (8.1) with
α ∈ (0,1/2], and let the density of F∗N

α (t) exist and bounded for some N > 0, i.e.
condition (8.6) holds true. Then uniformly in integer fixed N0 such that n0(t) > N, the
density of the renewal function tail with increasing cut off level has the asymptotic,

∞

∑
j=n0(t)

f ∗ j
α (t) =

t→∞

tα−1 sinπα
πL(t)

(
1+N1/α−1

0 o(1)+N−2
0 O(1)

)
.

Proof. The integral of the density gα(t) of Gα(t) on R+ equals 1, therefore for each
δ > 0 there exist ε > 0 and ε < Nε < ∞ such that

1 >
∫ Nε

ε
gα(x)dx > 1−δ .

Let x j(t)
def= (tB−1

j )αhα( j)/L(t), j ≥ n0(t), then xn0(t)(t) ∼
t→∞

N0,

−Δx j(t)
def= x j(t)− x j+1(t) =

tα(Bα
j+1hα( j)−Bα

j hα( j +1))

L(t)Bα
j+1Bα

j

=
j→∞

tαh2α( j)(1+o(1))
L(t)(Bα

j )2 =
L(t)x2

j(t)(1+o(1))
tα

tL1/α(t)

h( j)x1/α
j (t)B j

.

Using (8.8), one gets,

∞

∑
j=n0(t)

f ∗ j
α (t) =

∞

∑
j=n0(t)

Δ j

B j
−

∞

∑
j=n0(t)

tα−1h( j)x1/α
j (t)(1+o(1))

αL(t)L1/α(t)x2
j(t)

gα(x1/α
j )Δx j(t).

(8.9)
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If tB−1
j is bounded away from 0 and infinity, the hα( j)/L(t) →

t→∞
1. This fact im-

plies boundedness of x j(t) away from 0 and infinity. If tB−1
j → 0, which is true

as j/n1(t) → ∞, then x j(t) → 0. For each fixed N0, the condition n0(t) →
t→∞

∞ and

convergence sup j≥n0(t)Δx j(t) ∼
t→∞

Δxn0(t)(t) ∼
t→∞

N2
0 L(t)t−α →

t→∞
0 holds. Clearly,

−
∞

∑
j=n0(t)

h( j)x1/α
j (t)(1+o(1))

L1/α(t)x2
j(t)

gα(x1/α
j )Δx j(t) →

t→∞

∫ N0

0
u1/α−2gα(u1/α)du,

and due to Theorem 1 in [4, Chap. XVII, Sect. 9]

∞

∑
j=n0(t)

1
B j

∼
n0(t)→∞

∞

∑
j=n0(t)

1

j1/αh( j)
∼

n0(t)→∞

αn−1/α+1
0 (t)

(1−α)h(n0(t))

∼
t→∞

α
1−α

N1/α−1
0 tα−1/L(t).

For each fixed N0 such that N0L−1(t)tα > N by (8.7) and representations above,
Eq. (8.9) is rewritten as an estimate uniform in N0,

∞

∑
j=n0(t)

f ∗ j
α (t) =

t→∞

αtα−1

L(t)

(∫ N1/α
0

0
gα(u)u−αdu+N1/α−1

0 o(1)

)

. (8.10)

By Theorem 2.4.1 in [5]

gα(t) ∼
t→∞

π−1 sin(πα)αΓ (α)t−1−α .

Hence, ∫ 1/α

N0

gα(u)u−αdu =
N0→∞

O
(
N−2

0

)

and (8.10) takes the form,

∞

∑
j=n0(t)

f ∗ j
α (t) =

t→∞

tα−1

αL(t)

(∫ ∞

0
gα(u)u−αdu+N1/α−1

0 o(1)+N−2
0 O(1)

)
. (8.11)

Now we calculate Iα
def= α

∫ ∞
0 gα(u)u−αdu. To this aim we observe that by Theo-

rem 2.3.1 and relation (2.3.1) in [5], gα(x) = x−1Φ1 (x−αc1,α). The explicit expres-
sion for Φ1(x) (in our case with β = 1) is given by the integral,

Iα =
1

c1,α

∫ ∞

0
Φ1(u)du =

1
πΓ (1−α)

∫ ∞

0

∫ ∞

0
e−t−tαucosπα sin(tαusinπα)dtdu.

For α 
= 1/2, the double integral converges and one can change the order of
integrals. By formula 472 1, p. 555 in [6]
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∫ ∞

0
e−tαucosπα sin(tαusinπα)du = t−α sinπα.

Hence,

Iα =
sinπα

πΓ (1−α)

∫ ∞

0
e−t t−αdt =

sinπα
π

.

Along with (8.11) it proves Theorem 8.2 for α 
= 1/2.
If α = 1/2,

Iα =
1

πΓ (1/2)

∫ ∞

0

∫ ∞

0
e−t sin(

√
tu)dtdu

and straightforward calculations are feasible. By changing variables
√

t = u and
formula 3.952 1 in [7] one gets,

∫ ∞

0
e−t sin(

√
tu)dt =

u
√
π

2
e−u2/4.

Thus

Iα =
1
π

∫ ∞

0

u
2

e−u2/4du = π−1,

which finishes the proof of Theorem 8.2. ��

8.3 Asymptotics of renewal function density

In order to get a really useful renewal theorem for density u(t) def=
∞
∑
j=1

f ∗ j
α (t), we

suppose that for
n0(t) ∼

t→∞
N−1

0 L−1(t)tα (8.12)

the condition

u(t) def=
n0(t)−1

∑
j=1

f ∗ j
α (t) =

t→∞
o

(
tα−1

L(t)

)
(8.13)

is valid as N0 → ∞.
Note that in contrast with Theorem 8.2 we require the existence of the density

fα(t).
Evidently, a necessary condition for (8.13) is

fα(t) = o

(
tα−1

L(t)

)
. (8.14)

We suggest a sufficient condition for (8.13) to hold which generalizes the (folk-
lore) claim that for (8.13) to be valid the density must be monotone for the arguments
large enough.

Introduce two auxiliary differentiable decreasing functions,
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f0,α(t) def= min(1, t−α)L1(t) and f1,α(t) def= min(1, t−1−α)L1(t),

where L1(t) ∼
t→∞

L(t) and L′
1(t) =

t→∞
o(L(t)/t). The last always exists and corresponds

to the choice a(x) ≡ const in Karamata’s representation for slowly varying func-
tions [4, Chap. VIII Sect. 9, formula (9.9)].

Below we assume that there exist t0 > 0 and a constant c ∈ R+ such that the
estimate

fα(t) ≤ c f1,α(t) (8.15)

is true for fixed α ∈ (0,1/2] and for all t > t0. The case α ∈ (1/2,1) is omitted be-
cause condition (8.15) is not needed for this case and the proofs have to be changed
in a natural way.

Fix t0 and T0 > 4t0 large enough. We evaluate the derivatives of the functions
g(t) = t−1−kαLk

1(t) = f k
0,α(t)t−1 = f k−1

0,α (t) f1,α(t), for k ∈ N and t > T0 large enough.

Let c0(2) = c0(2,T0) > 2α and c1(2) = c1(2,T0) > 21+α be defined by the relations

c0(2) def= sup
T0<t

f0,α(t/2)
f0,α(t)

, c1(2) def= sup
T0<t, t/2≤u≤t

f ′
0,α(u)
f ′
0,α(t)

.

Note that both functions are non-increasing in T0 and

lim
T0→∞

c0(2) = 2α and lim
T0→∞

c1(2) = 21+α .

In view of (8.15) there exists a constant c(1) > 0 such that for every t > T0 and
j ∈ N

∫ t/2

0
fα(t −u) f ∗ j

α (u)du ≤ c f1,α(t)+ cc(1) j f0,α(t) f1,α(t). (8.16)

Indeed,

∫ t/2

0
fα(t −u) f ∗ j

α (u)du

≤ c f1,α(t)
∫ t/2

0
f ∗ j
α (u)du+ c

∫ t/2

0
f ∗ j
α (u)( f1,α(t −u)− f1,α(t))du

≤ c f1,α(t)− c
∫ t/2

0
f ∗ j
α (u)

∫ u

0
f ′
1,α(t − v)dvdu

≤ c f1,α(t)− cc1(2) f ′
1,α(t)

∫ t/2

0
u f ∗ j

α (u)du.

In view of the definition of f1,α(t), the well-known properties of regularly vary-
ing functions [4, Chap. VIII Sect. 9] and their integrals and evident inequality
E(η1 +η2)I(η1 +η2 < z) ≤ Eη1I(η1 < z) + Eη2I(η2 < z) for non-negative ran-
dom variables this proves Eq. (8.16).

It follows from the mean value theorem for differentiable functions that
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∫ t

t/2
fα(t −u)(g(u)−g(t))du ≤ sup

t/2≤v≤t
|g′(v)|

∫ t

t/2
fα(t −u)(t −u)du.

Modifying the proof of (8.16) in a natural way we can show that there exists a
constant c(2) = c(2,T0) > 0 such that for every t > 2T0 and k ≥ 0

∫ t

t/2
fα(t −u) f k

0,α(u) f1,α(u)du

≤ f k
0,α(t) f1,α(t)+ c(2)(k +1)ck

0(2) f k+1
0,α (t) f1,α(t). (8.17)

Indeed,
∫ t

t/2
fα(t −u) f k

0,α(u) f1,α(u)du

≤ f k
0,α(t) f1,α(t)+

∫ t

t/2
fα(t −u)

(
f k
0,α(u) f1,α(u)− f k

0,α(t) f1,α(t)
)

du

≤ f k
0,α(t) f1,α(t)+ sup

t/2≤v≤t

∣
∣
∣
∣
(

v−(k+1)α−1Lk+1
1 (v)

)′∣∣
∣
∣

∫ t

t/2
fα(t −u)(t −u)du

≤ f k
0,α(t) f1,α(t)+ c sup

t/2≤v≤t

∣
∣
∣
∣
(

v−(k+1)α−1Lk+1
1 (v)

)′∣∣
∣
∣

∫ t/2

0
f1,α(u)udu.

By (8.16) and (8.17) we conclude that

f ∗2
α (t) =

∫ t

0
fα(t −u) fα(u)du ≤ 2c f1,α(t)+ c(c(1)+ c(2)) f0,α(t) f1,α(t). (8.18)

Note that condition (8.12) may be written as

n0(t) ∼
t→∞

N−1
0 f −1

0,α(t).

Therefore, for t and N0 large enough and every j < n0(t) we have

sup
j≤n0(t)

j f0,α(t) →
n0(t),N0→∞

0. (8.19)

Now we demonstrate by induction that for every j < n0(t)

f ∗ j
α (t) ≤ jc f1,α(t)+ j2c(c(1)+ c(2)) f0,α(t) f1,α(t). (8.20)

We use (8.18) and (8.19) as the starting step of induction.
Assume that (8.20) is true for j ≤ n < n0(t)−1 and prove it for j = n+1.
By induction hypothesis and (8.17)
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∫ t

t/2
fα(t −u) f ∗n

α (u)du ≤ nc
∫ t

t/2
fα(t −u) f1,α(u)du

+ n2c(c(1)+ c(2))
∫ t

t/2
fα(t −u) f0,α(u) f1,α(u)du

≤ nc f1,α(t)+ncc(2) f0,α(t) f1,α(t)+n2c(c(1)+ c(2)) f0,α(t) f1,α(t)

+ 2n2c(c(1)+ c(2))c(2)c0(2) f 2
0,α(t) f1,α(t)

In view of (8.19) for n < n0(t) and T0 and N0 large enough, the quantity 2n(c(1)+
c(2))c0(2) f0,α(t) is negligibly small. Fix the low bounds of the parameters T0 and
N0 such that the mentioned quantity is less than 1. Then the last inequality for the
integral and (8.16) give,

f ∗(n+1)
α (t) ≤ (n+1)c f1,α(t)+(2n+n2)c(c(1)+ c(2)) f0,α(t) f1,α(t),

which justifies the induction transition n → n+1.
Using (8.20) we demonstrate (8.13). By the inequality

u(t) ≤ c f1,α(t)
n0(t)−1

∑
j=1

j + c(c(1)+ c(2)) f0,α(t) f1,α(t)
n0(t)−1

∑
j=1

j2

and (8.12) one can show that there is a constant c̃, and values T0 and N0 large enough
such that the inequality

u(t) ≤ c f1,α(t)n2
0(t)+ c(c(1)+ c(2)) f0,α(t) f1,α(t)n3

0(t) ≤ c̃
tα−1

N2
0 L(t)

holds for t > T0.
Taking into account that N0 can be selected arbitrary and recalling Theorem 8.2,

we see that the following statement is valid:

Theorem 8.3. Let Fα(t) be an absolute continuous distribution function satisfying
condition (8.1) with α ∈ (0,1/2], and let its density fα(t) satisfy conditions (8.6)
and (8.15). Then the density of the renewal function has the asymptotic representa-
tion

u(t) ∼
t→∞

tα−1 sinπα
πL(t)

.

Remark 8.1. Evidently, Theorem 8.3 remains valid if condition (8.15) is replaced by
conditions (8.14) and

f ∗m
α (t) ≤ c f1,α(t)

for some m > 1.
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Approximation of a sum of martingale
differences generated by a bootstrap branching
process

Ibrahim Rahimov

Abstract Let {Z(k),k ≥ 0} be a branching stochastic process with non-stationary
immigration given by offspring distribution {p j(θ), j ≥ 0} depending on unknown
parameter θ ∈Θ . We estimate θ by an estimator θ̂n based on sample Xn = {Z(i), i =
1, . . .,n}. Given Xn, we generate bootstrap branching process {ZXn(k),k ≥ 0} for
each n = 1,2, . . . with offspring distribution {p j(θ̂n), j ≥ 0}. In the paper we address
the following question: How good must be estimator θ̂n, the bootstrap process to
have the same asymptotic properties as the original process? We obtain conditions
for the estimator which are sufficient and necessary for this in critical case. To derive
these conditions we investigate a weighted sum of martingale differences generated
by an array of branching processes. We provide a general functional limit theorem
for this sum, which includes critical or nearly critical processes with increasing or
stationary immigration and with large or fixed number of initial ancestors. It also
includes processes without immigration with increasing random number of initial
individuals. Possible applications in estimation theory of branching processes are
also be provided.

Mathematics Subject Classification (2000): 60J80

Keywords: bootstrap branching processes, conditioned process random measure,
asymptotic behavior, functional limit theorem.

9.1 Introduction

We consider a discrete time branching stochastic process {Z(k),k ≥ 0},Z(0) = 0. It
can be defined by two families of independent, nonnegative integer valued random
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variables {Xki,k, i ≥ 1} and {ξk,k ≥ 1} recursively as

Z(k) =
Z(k−1)

∑
i=1

Xki +ξk, k ≥ 1. (9.1)

Assume that Xki have a common distribution for all k and i, families {Xki} and
{ξk} are independent. Variables Xki will be interpreted as the number of offspring
of the ith individual in the (k−1)th generation and ξk is the number of immigrating
individuals to the kth generation. Then Z(k) can be considered as the size of kth
generation of the population.

In this interpretation a = EXki is the mean number of offspring of a single in-
dividual. Process Z(k) is called subcritical, critical or supercritical depending on
a < 1,a = 1 or a > 1 respectively. The independence assumption of families {Xki}
and {ξk} means that reproduction and immigration processes are independent. How-
ever, in contrast of classical models, we do not assume that ξk,k ≥ 1, are identically
distributed, i.e. immigration rate may depend on the time of immigration.

The process with time-dependent immigration is given by the offspring distri-
bution of {Xki,k, i ≥ 1}, and by the family of distributions of the number of immi-
grating individuals {ξk,k ≥ 1}. We assume that the offspring distribution has the
probability mass function

p j(θ) = P{Xki = j}, j = 0,1, . . . (9.2)

depending on unknown parameter θ , where θ ∈Θ ⊆ R. We also assume that ξk for
any k ≥ 1 follows a known distribution with the probability mass function

q j(k) = P{ξk = j}, j = 0,1, . . . (9.3)

We estimate θ by an estimator θ̂n based on sample Xn = {Z(i), i = 1, . . .,n}
and generate bootstrap branching process {ZXn(k),k ≥ 0} for each n = 1,2, . . . as
following. Given Xn, let {XXn

ki ,k, i ≥ 1} be a family of i.i.d. random variables with
the probability mass function {p j(θ̂n), j = 0,1, . . .}. Now we obtain the process
{ZXn(k),k ≥ 0} recursively from

ZXn(k) =
ZXn (k−1)

∑
i=1

XXn
ki +ξk, n,k ≥ 1, (9.4)

with ZXn(0) = 0, where ξk,k ≥ 1, are independent random variables with the prob-
ability mass functions {q j(k), j = 0,1, . . .}.

Related to the process {ZXn(k),k ≥ 0} the following question is of interest. How
good must be the estimator θ̂n, the bootstrap branching process {ZXn(k),k ≥ 0} to
have the same asymptotic properties as the process {Z(k),k ≥ 0}? For example, if
we denote Zn(t) = Z([nt])/E(Z(n)) and {Zn(t), t ∈ R+} converges weakly as n →
∞ to some process {Z (t), t ∈ R+}, in Skorokhod space D(R+,R+), will the same
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be true for Z Xn
n (t) = ZXn([nt])/E[ZXn(n)|Xn]? Similar question for the process of

fluctuations of {ZXn(k), k ≥ 0} can also be considered.
To answer these questions without concretization of the process in the sense of

criticality is difficult, because the asymptotic properties of the process strictly de-
pend on whether the process subcritical, critical or supercritical. In this paper we
address the above question in the critical case.

It is clear that the problem, which we are going to consider, closely related to the
question on validity of the bootstrap procedure. In particular, if the process preserves
its asymptotical properties after “bootstrapping”, it can be used to generate multiple
bootstrap samples. These new samples can further be used in statistical inference
about the process. This is very important in branching process models, since in
statistics of branching processes, usually, a generation number plays the role of the
sample size and, therefore, it is difficult to obtain samples of a large size. On the
other hand, sometimes, in applications (for example in epidemic processes) one
needs to make a decision on criticality of the processes when it is still at the early
stages.

In Sect. 9.2 we provide main results giving conditions for the bootstrap process
to preserve asymptotic properties of the original process. Section 9.3 contains func-
tional limit Theorem 9.5 for a sum of martingale differences generated by array of
branching processes. Since the conditioned bootstrap process is the array branching
process, to prove main theorems one needs just to check conditions of correspond-
ing consequences of Theorem 9.5. Naturally, the proof of Theorem 9.5 is based on
a functional martingale central limit theorem. Detailed proofs of announced here
results will be published elsewhere.

9.2 Main theorems

It follows from (9.2) that a =: EθXki = fa(θ) and b = VarθXki = fb(θ) for some
functions fa and fb, when they do exist. Let the following assumptions be satisfied.
A1. Function fa is a one-to-one mapping of Θ to [0,∞) and is continuous with
continuous inverse (which means that it is a homeomorphism between its domain
and range).
A2. Function fb is continuous on its domain.

We note that A1 and A2 are satisfied, for example, for distributions of the
power series family [1]. Given a sample Xn, we now estimate the offspring mean
a by an estimator ân and derive the estimate of parameter θ as θ̂n = f −1

a (ân). Let
{ZXn(k),k ≥ 0} be the bootstrap branching process defined by (1.4). This construc-
tion reduces the stated above problem to finding out conditions for estimator ân,
which are sufficient to preserve asymptotic properties of the process. Since the weak
convergence of the conditioned process {Z Xn

n (t), t ∈ R+} given Xn is equivalent to
convergence of conditional probability measures generated by Z Xn

n , now we pro-
vide necessary definitions of convergence of random probability measures defined
on Skorokhod space.
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Let (Ω ,A ,P) be a probability space and (D,B(D)) be a measurable Skorokhod
space, where B(D) is the Borel field on D. A function μ : Ω ×B �→ [0,1] is called
a random probability measure on D, if

(a) for each B ∈ B(D),μ(·, B) is a random variable on (Ω ,A );
(b) for each ω ∈ Ω ,μ(ω, ·) is a probability measure on (D,B(D)).

Definition 9.1. Let μn for each n be a random probability measure on (D,B(D)).
(a) We say that μn converges weakly to μ on the set A ∈ A , if for each ω ∈ A as
n → ∞ ∫

D
g(x)μn(ω,dx) →

∫

D
g(x)μ(ω,dx)

for any bounded and continuous in Skorokhod metric function g = g(x). If P{A}= 1,
we say that μn converges weakly to μ almost surely.
(b) We say that μn converges weakly to μ in probability (in distribution), if as n →∞

∫

D
g(x)μn(ω,dx)

P(d)→
∫

D
g(x)μ(ω,dx).

Here and throughout the paper “
D→”, “

d→” and “
P→” will denote convergence of

random functions in Skorokhod topology and convergence of random variables in

distribution and in probability, respectively. Also X
d=Y denotes equality of distribu-

tions. In [7], the authors discussed the weak convergence of distributions of random
probability measures. We note that in the case of conditional distributions Definition
9.1 coincides with their definition of weak convergence in probability. For different
modes of convergence of conditional probability distributions see also [6].

Let X(t),Xn(t),n ≥ 1, be conditioned processes with paths on Skorokhod space
D(R+,R) and μ ,μn,n ≥ 1, be corresponding random probability measures. Con-
vergence of conditioned processes can now be defined as following.

Definition 9.2. We say that the sequence of conditioned processes {Xn,n ≥ 1} as
n → ∞ converges weakly in Skorokhod space D(R+,R) to X on the set A, in proba-
bility or in distribution, if the sequence of corresponding random probability mea-
sures {μn,n ≥ 1} converges weakly to μ on the set A, in probability or in distribu-
tion, respectively.

If a sequence ( f (k))∞k=1 is regularly varying with exponent d, we will write
( f (k))∞k=1 ∈ Rd . We assume that a = EXi j and b = VarXi j are finite. We also as-
sume that α(k) =: Eξk < ∞, β (k) =: Varξk < ∞ for each k ≥ 1 and (α(k))∞k=1 ∈
Rα ,(β (k))∞k=1 ∈ Rβ with α,β ≥ 0. Then A(a,n) = EZ(n) and B2(a,n) = VarZ(n)
are finite for each n ≥ 1, and by a standard technique we find that

A(a,n) =
n

∑
i=1

α(i)an−i, B2(a,n) = Δ 2(a,n)+σ2(a,n), (9.5)

where

Δ 2(a,n) =
n

∑
i=1

α(i)Var(X(n− i)), σ2(a,n) =
n

∑
i=1

β (i)a2(n−i),
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Var(X(i)) =

⎧
⎨

⎩

b
1−a ai−1(1−ai), a 
= 1,

bi, a = 1.

Here {X(i), i ≥ 0} is corresponding branching process without immigration with
offspring distribution (9.2) and X(0) = 1.

In particular, we denote A(n) = A(1,n), B2(n) = B2(1,n), Δ 2(n) = Δ 2(1,n),
σ2(n) = σ2(1,n) and put

Z Xn
n (t) =

ZXn([nt])
A(ân,n)

, Y Xn
n (t) =

ZXn([nt])−A(ân, [nt])
B(ân,n)

.

Now we provide first result for the bootstrap process. We denote
A = {ω ∈ Ω : n(ân −1) → 0,n → ∞}, μα(t) = t1+α , t ∈ R+.

Theorem 9.1. Let A1 and A2 be satisfied and α(n) →∞, β (n) = o(nα2(n)) as n →
∞.
(a) Conditioned process {Z Xn

n |Xn} as n →∞ converges weakly in Skorokhod space
D(R+,R+) to μα on the set A.

(b) If n(ân − 1) P→ 0, then {Z Xn
n |Xn} as n → ∞ converges weakly in Skorokhod

space D(R+,R+) to μα in probability.

The next result is related to the fluctuations of the bootstrap process. Let ξ̄k = ξk −
α(k), χ(A) denotes the indicator of event A and

δn(ε) =
1

B2(n)

n

∑
k=1

E[(ξ̄k)2χ(|ξ̄k| > εB(n))].

We also denote ψ(t) = γ1t2+α + γ2t1+β , where

γ1 = lim
n→∞

Δ 2(n)
B2(n)

, γ2 = lim
n→∞

σ2(n)
B2(n)

, γ1 + γ2 = 1.

We need two more conditions to be satisfied.
A3. Moment Eθ [(Xki)2+l ] is a continuous function of θ for some l > 0.
A4. δn(ε) → 0 as n → ∞ for each ε > 0.

Theorem 9.2. Let A1-A4 be satisfied and α(n) → ∞ as n → ∞.
(a)Conditioned process {Y Xn

n |Xn} converges weakly in Skorokhod space D(R+,R)
to Y on the set A, where Y (t) =W (ψ(t)) and W (t) is the standard Wiener process.

(b) If n(ân − 1) P→ 0, then {Y Xn
n |Xn} converges weakly in Skorokhod space

D(R+,R) to Y in probability.
Remarks. (a) It follows from Theorem 9.1(a) and Theorem 2.1 in [5] that the con-
ditioned bootstrap process {ZXn(k)|Xn,k ≥ 0} generated by estimator ân such that
n(ân −1) → 0 a.s., under some conditions, a.s. has the same asymptotic behavior as
the original process.
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(b) Comparing Theorem 9.2(a) with Theorems 1, 2 and 3 in [4], one can see that the
same is true for fluctuations of the bootstrap process.

Now we provide an example of the estimator that satisfies conditions of parts (b)
of the above theorems. Let ân be the weighted conditional least squares estimator
(WCLSE), derived in [5] from a “standardized” stochastic regression equation. If
the sample Xn is available and the immigration mean is known, it is defined as

ân = ∑n
k=1(Z(k)−α(k))
∑n

k=1 Z(k−1)
. (9.6)

To provide the asymptotic distribution of ân, we assume that there exists c ∈ [0,∞]
such that

lim
n→∞

β (n)
nα(n)

= c. (9.7)

As it was proved in [5] (Theorem 3.1), if a = 1, b ∈ (0,∞), α(n) → ∞, β (n) =
o(nα2(n)), condition (9.7) is satisfied and δn(ε) → 0 as n →∞ for each ε > 0 , then
as n → ∞

nA(n)
B(n)

(ân −a) d→ (2+α)N (0,1). (9.8)

Furthermore, under the above conditions, A(n)/B(n) →∞ as n →∞ and when c = 0
the condition δn(ε) → 0 is satisfied automatically. More detailed discussion and
examples can be seen in [5].

From (9.8) we immediately obtain that n(ân − 1) P→ 0 as n → ∞. Thus the fol-
lowing result holds.

Corollary 9.1. Let ân be the WCLSE defined in (9.6), α(n) →∞, β (n) = o(nα2(n))
and δn(ε) → 0 as n → ∞.
(a) If A1 and A2 are satisfied, then {Z Xn

n |Xn} as n → ∞ converges weakly in Sko-
rokhod space D(R+,R+) to μα in probability.
(b) If A1-A3 are satisfied, then {Y Xn

n |Xn} converges weakly in Skorokhod space
D(R+,R) to Y in probability, where Y (t) = W (ψ(t)).
The next theorem is related to the case

n(ân −1) d→ W0 (9.9)

as n → ∞, where W0 is a random variable. We denote

μα(d, t) =
∫ t

0
uαed(t−u)du, πα(d, t) =

μα(d, t)
μα(d,1)

.

Theorem 9.3. If A1, A2 and (9.9) are satisfied and α(n) →∞, β (n) = o(nα2(n)) as
n →∞, then {Z Xn

n |Xn} as n →∞ converges weakly in Skorokhod space D(R+,R+)
to πα(W0, ·) in distribution.

Let (an)∞n=1 be a sequence of positive numbers, such that n(an − 1) → d ∈ R as
n → ∞. We assume that there exist limits
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lim
n→∞

Δ 2(an,n)
B2(an,n)

= γ1(d), lim
n→∞

σ2(an,n)
B2(an,n)

= γ2(d). (9.10)

Naturally γ1(d)+ γ2(d) = 1 for each d.
To provide the next theorem, we need some additional notation. We denote

να(d, t) =
∫ t

0
uαed(t−u)(1− ed(t−u))du, ∇β (d, t) =

∫ t

0
uβ e2d(t−u)du, (9.11)

ψ(d, t) =
γ1(d)d
να(d,1)

∫ t

0
μα(d,u)e2d(t−u)du+

γ2(d)
∇β (d,1)

∫ t

0
uβ e2d(t−u)du. (9.12)

It is clear that limits (9.10) do exist, if ratio σ2(an,n)/Δ 2(an,n) as n → ∞ has a
(finite or infinite) limit. It is also not difficult to show that

lim
n→∞

σ2(an,n)
Δ 2(an,n)

=
bc
d
ν(d,1)∇β (d,1) (9.13)

under our conditions, where c is defined in (9.7).

Theorem 9.4. If A1–A4 and (9.9) are satisfied and α(n) → ∞ as n → ∞, then the
process {Y Xn

n |Xn} as n → ∞ converges weakly in Skorokhod space D(R+,R) to
Y (W0, ·) in distribution, where Y (W0, t) = W (ψ(W0, t)).
Remarks. (a) Theorems 9.3 and 9.4 show that, when the estimator ân is such that
(9.9) holds with P(W0 = 0) < 1, then the asymptotic behavior of the bootstrap pro-
cess is different from the behavior of the original process. In other words, condition
n(ân −1) → 0 as n → ∞ a.s. or in probability is necessary for the conditioned boot-
strap process to have the same asymptotic behavior as the initial process in the sense
of convergence a.s. or in probability, respectively.
(b) It follows from Theorem 3.2 in [5] that convergence (9.9) holds, for example,
when ratio nα2(n)/β (n) has a finite limit. In this case W0 can be expressed in terms
of certain functionals of the Wiener process.

9.3 Array of processes

In this section we provide a functional limit theorem for an array of branching pro-

cesses, which will be used in the proof of our theorems. Let {X (n)
ki ,k, i ≥ 1} and

{ξ (n)
k ,k ≥ 0} be two families of independent, nonnegative and integer valued ran-

dom variables for each n ∈N. We consider a weighted sum of martingale-differences
generated by sequence of branching processes (Z(n)(k),k ≥ 0)n≥1 defined recur-
sively as

Z(n)(k) =
Z(n)(k−1)

∑
i=1

X (n)
ki +ξ (n)

k , k,n ≥ 1, (9.14)
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with Z(n)(0) = ξ (n)
0 ,n ≥ 1. As before, we assume that X (n)

ki have a common distribu-

tion for all k and i, and families {X (n)
ki } and {ξ (n)

k } are independent. Variables X (n)
ki

will be interpreted as the number of offspring of the ith individual in the (k − 1)th
generation and ξ (n)

k is the number of immigrating individuals in the kth generation.
Then Z(n)(k) can be considered as the size of population of kth generation in nth pro-
cess. Unlike the initial model, here we assume that the initial number of individuals
is a random variable ξ (n)

0 , which can also be large.

Let an = EX (n)
ki be the mean number of offspring of a single individual in the nth

process. The process with non-stationary immigration is a natural generalization of
the classical model. It turned out that the long run behavior of the process is largely
influenced by the non-homogeneity of the immigration process in time. As a result
certain new problems, regarding the asymptotic behavior of the process when the
immigration rate increases, decreases or remains bounded, emerged in the literature.
Therefore, in solving these problems one needs certain regularity assumptions for
parameters of the immigration process. The family of branching processes (9.14) is
said to be nearly critical if an → 1 as n → 1.

For each n ≥ 1, we denote by ℑ(n)(k) the σ -algebra containing the history of the
nth process up to kth generation, i.e. it is generated by {Z(n)(0),Z(n)(1), . . .,Z(n)(k)}.
Let M(n)(k) = Z(n)(k)− E[Z(n)(k)|ℑ(n)(k − 1)], n, k ≥ 1 be the array of the mar-
tingale differences generated by (1.1) and M(n)(0) = Z(n)(0)− EZ(n)(0). First we
investigate asymptotic behavior of the sum

Sn(k) =
k

∑
i=0

cρi
n M(n)(i),n,k ≥ 1, (9.15)

where (cn,n ≥ 1) is a sequence of positive numbers and ρ ∈ R.
It turns out that various variables and processes, related to the process (9.14) can

be expressed in terms of the sum (9.15). Let us consider the following trivial identity

a−k
n Z(n)(k) =

k

∑
i=1

(a−i
n Z(n)(i)−a1−i

n Z(n)(i−1))+Z(n)(0).

Since M(n)(i) = Z(n)(i)−anZ(n)(i−1)−Eξ (n)
i and EZ(n)(k) = ak

nEξ (n)
0 +ak−1

n Eξ (n)
1

+. . .+Eξ (n)
k , we easily obtain the following representation for the process:

Z(n)(k) = ak
nSn(k)+EZ(n)(k), (9.16)

where Sn(k) is defined by (9.15) with ρ = −1 and cn = an. Equality (9.16) allows
to express in terms of Sn(k) “broken line” processes obtained from Z(n)(k) by a
scaling and fluctuation processes of Z(n)(k) from its mean. In estimation problems
of the offspring mean pivots, related to an estimator, sometimes, will have a form of
certain functionals of sum (9.15).

Here we provide an approximation theorem for normalized process Sn([nt]), t ∈
R+ as n → ∞ when the initial array of processes (9.14) contains critical or nearly
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critical branching processes. As applications of the obtained theorem, derive an ap-
proximation for the process Z(n)([nt]), normalized by its mean, and by obtaining
a time-changed Wiener process approximation for the fluctuations of the process
around its mean. These approximations contain both cases of large and finite number
of initial individuals in the process. The results obtained for the array of processes
naturally include the functional limit theorems for a single critical process [4] and
some of theorems for the process without immigration with random or deterministic
large number of initial individuals [2, 3].

We assume that an = EX (n)
i j and bn = VarX (n)

i j are finite for each n ≥ 1 and

α(n, i) = Eξ (n)
i < ∞, β (n, i) = Varξ (n)

i < ∞ for all n ≥ 1 and i ≥ 0. Furthermore,
we assume that the following condition is satisfied.
C1. There are sequences (α(i))∞i=1 ∈ Rα and (β (i))∞i=1 ∈ Rβ with α,β ≥ 0, such
that, as n → ∞ for each s ∈ R+,

max
1≤k≤ns

|α(n,k)−α(k)| = o(α(n)), max
1≤k≤ns

|β (n,k)−β (k)| = o(β (n)). (9.17)

In the above assumptions An(an, i) = EZ(n)(i) and B2
n(an, i) = VarZ(n)(i) are finite

for each n ≥ 1, 0 ≤ i ≤ n, and one can find that An(an,k) = ∑k
i=0α(n, i)ak−i

n and
B2

n(an,k) = ∑4
i=1 C2

i (an,n,k) with An(an,0) = α(n,0),B2
n(an,0) = β (n,0), where

C2
1(an,n,k) =

k

∑
i=1

α(n, i)Var(X (n)(k− i)), C2
2(an,n,k) =

k

∑
i=1

β (n, i)a2(k−i)
n ,

C2
3(an,n,k) = α(n,0)Var(X (n)(k)), C2

4(an,n,k) = β (n,0)ak
n,

Var(X (n)(i)) =

⎧
⎨

⎩

bn
1−an

ai−1
n (1−ai

n), an 
= 1,

bni, an = 1.

Here X (n)(i) is corresponding branching process without immigration and, as usual,
is defined by relation

X (n)(k) =
X(n)(k−1)

∑
i=1

X (n)
ki , X (n)(0) = 1, k,n ≥ 1.

We also note that the following representation holds for each n,k ≥ 1

Z(n)(k) =
k

∑
i=0

ξ (n)
i

∑
j=1

X (n)
i j (k− i) =

ξ (n)
0

∑
j=1

X (n)
0 j (k)+ Z̄(n)(k), (9.18)

where {X (n)
i j (k)}k≥0 is the corresponding branching process without immigration,

generated by j-th immigrant in i-th generation, Z̄(n)(k) is a process with the same
immigration and offspring distributions as Z(n)(k) with Z̄(n)(0) = 0. We denote
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Ān(an,k) = EZ̄(n)(k) and B̄2
n(an,k) = VarZ̄(n)(k). Then we obtain from (9.18) that

An(an,k) = ak
nα(n,0)+ Ān(an,k) and B̄2

n(an,k) = C2
1(an,n,k)+C2

2(an,n,k). In par-
ticular, when k = n we use also notation A(an,n) = An(an,n), B2(an,n) = B2

n(an,n),
Ā(an,n) = Ān(an,n), B̄2(an,n) = B̄2

n(an,n) and C2
i (an,n) = C2

i (an,n,n), i = 1, . . .,4.

We denote “centered” offspring and immigration variables as X̄ (n)
ki = X (n)

ki −
an, ξ̄

(n)
k = ξ (n)

k −α(n,k) and put Θi(an,n) = C2
i (an,n)/B2(an,n), i = 1, . . .,4. Let

δ (1)
n (ε) = max{Θ1(an,n),Θ3(an,n)}E[(X̄ (n)

ki )2χ(|X̄ (n)
ki | > εB(an,n))] and

δ (2)
n (ε) =

1
B2(an,n)

n

∑
k=1

E[(ξ̄ (n)
k )2χ(|ξ̄ (n)

k | > εB(an,n))],

where χ(A), as before, stands for the indicator of event A. Further, we assume that
there exist limits

Θi = lim
n→∞

Θi(an,n), i = 1, . . .,4. (9.19)

It is clear that 0 ≤Θi ≤ 1 andΘ1 + . . .+Θ4 = 1. We approximate normalized process

Wn(t) =
Sn([nt])
B(an,n)

, t ∈ R+,

weakly in Skorokhod topology. In addition to C1, we need the following conditions
to be satisfied.
C2. an = 1+n−1a+o(n−1) and cn = 1+n−1c+o(n−1) as n →∞ for some a,c ∈ R.

C3. bn → b ∈ R+, δ (i)
n (ε) → 0 as n → ∞ for each ε > 0 and i = 1,2.

C4. Θ4 = 0 and B(an,n)/n → ∞ as n → ∞.
The following functions appear in the approximating processes:

ϕ1(t) =
a

να(a,1)

∫ t

0
e2ρcuμα(a,u)du, ϕ2(t) =

1
∇β (a,1)

∫ t

0
uβ e2ρcudu,

ϕ3(t) =
a

ea(ea −1)

∫ t

0
e(a+2ρc)udu, ϕ(t) =Θ1ϕ1(t)+Θ2ϕ2(t)+Θ3ϕ3(t).

In particular, it is useful to note that μα(a, t) = tα+1/(α + 1) when a = 0, and
lima→0 να(a, t)/a = tα+2/(α +1)(α +2).

Theorem 9.5. If conditions C1–C4 are satisfied, then Wn
D→ Y as n → ∞ weakly

in Skorokhod space D(R+,R), where Y (t) = W (ϕ(t)), t ∈ R+, W (t) is a standard
Brownian motion.
Remarks. (a) The first part of condition C1, related to the immigration mean is sat-
isfied when α(n) → ∞, if just limn→∞ max1≤k≤ns |α(n,k)−α(k)| < ∞. In general,
C1 is satisfied, for example, if there are εi(n) → 0 as n → ∞, i = 1,2, such that
α(n,k) = α(k)(1+ ε1(n)) and β (n,k) = β (k)(1+ ε2(n)).
(b) Note that the Lindeberg-type condition for the family {X (n)

ki ,k, i ≥ 1} is trivially

satisfied, if Θ13 = max{Θ1,Θ3} = 0. If Θ13 
= 0 and E(X (n)
ki )2+l < ∞ for all n ∈ N
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and some l ∈ R+, then

δ (1)
n (ε)
Θ13

≤ 1
ε lBl(an,n)

E|X (n)
ki −an|2+l .

Since B2(an,n)≥C2
1(an,n)∼ Kn2α(n) as n →∞, where K is a positive constant, the

Lindeberg-type condition is satisfied, for example, if E|X (n)
ki − an|3 = o(n

√
α(n))

and α(n) → ∞ as n → ∞.
(c) What concerns the Lindeberg-type condition for the immigration variables, it
is automatically satisfied when Θ13 
= 0, since in this case C2

2(n) = o(B2(n)) as
n → ∞. If Θ13 = Θ4 = 0, then it is equivalent to the Lindeberg condition for the

array {ξ (n)
k ,k,n ≥ 1}.

Now we provide some consequences of Theorem 9.5 which will be used in the proof
of main theorems. We consider the following processes.

Zn(t) =
Z(n)([nt])
A(an,n)

, Yn(t) =
Z(n)([nt])−EZ(n)([nt])

B(an,n)
.

If we denote An(t) = EZn(t), we easily obtain from (9.16) the following representa-
tion.

Zn(t) = Wn(t)
a[nt]

n B(an,n)
A(an,n)

+An(t). (9.20)

We assume that there exist finite limits

λ0(t) = lim
n→∞

An(t), λ1 = lim
n→∞

B(an,n)
A(an,n)

. (9.21)

The following result is a direct consequence of Theorem 3.1.

Theorem 9.6. If conditions C1–C4 are satisfied, then Zn
D→ Z as n → ∞ weakly in

Skorokhod space D(R+,R), where Z (t) = λ0(t)+λ1W (ω(t)), t ∈ R+, W (t) is a
standard Brownian motion and

ω(t)=
Θ1a

να(a,1)

∫ t

0
μα(a,u)e2a(t−u)du+

Θ2

∇β (a,1)

∫ t

0
uβ e2a(t−u)du+Θ3e2at 1− e−at

1− e−a .

Remark. One can obtain that limits in (9.21) are computed as

λ0(t) = lim
n→∞

λ0(n, t)/λ0(n,1) and λ1 = lim
n→∞

λ1(n,1)/λ0(n,1),

where
λ0(n, t) = α(n,0)eat +nα(n)μα(a, t),

λ 2
1 (n, t) = n2α(n)μα(a, t)+nβ (n)∇β (a, t)+

nα(n,0)b
a

eat(eat −1).
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Let Θ1 = 1 and α(n) → ∞ as n → ∞. In this case the approximating process is
deterministic and the following result holds.

Corollary 9.2. If C1-C4 are satisfied,Θ1 = 1 and α(n)→∞ as n →∞, then Zn
D→Z

as n → ∞, where Z (t) = λ0(t) = μα(a, t)/μα(a,1).
Next result is related to the case of large immigration variance.

Corollary 9.3. If C1-C4 are satisfied, Θ2 = 1, then Zn
D→ Z as n → ∞, where

Z (t) = λ0(t)+λ1W (ω(t)) with

λ1 = lim
n→∞

(nβ (n)∇β (a,1))1/2/λ0(n,1) and ω(t) =
∫ t

0
uβ e2a(t−u)du/∇β (a,1).

Now we consider process Yn(t). We obtain from (9.16) that Yn(t) = a[nt]
n Wn(t) with

cn = an and ρ = −1 and the following result follows immediately from Theorem
9.5.

Theorem 9.7. If conditions C1-C4 are satisfied, then Yn
D→ Y as n → ∞ weakly in

Skorokhod space D(R+,R), where Y (t) = W (ω(t)), t ∈ R+.
Remark. When processes {Z(n)(k),k ≥ 0},n ≥ 1, are critical with the same offspring
and immigration distributions conditions C1 and C2 are satisfied with a = 0. If, in
addition, Z(n)(0) = 0 and α(n) → ∞ as n → ∞, then condition C4 is also satisfied
with Θ3 = 0, and from Theorem 9.7 we obtain assertions of Theorems 1, 2 and 3 in
[4] in cases Θ1 = 1, Θ2 = 1 and 0 <Θi < 1, i = 1,2, respectively.

Let nowΘ3 = 1 in Theorem 9.7. In this case EZ(n)([nt])∼α(n,0)eat and B2(n)∼
nα(n,0)bea(ea −1)/a as n → ∞. If we denote

Y (1)
n (t) = (Z(n)([nt])−α(n,0)eat)/(nα(n,0))1/2,

the following result holds.

Corollary 9.4. If conditions C1-C4 are satisfied and Θ3 = 1, then Y (1)
n

D→ Y (1) as
n → ∞ weakly in Skorokhod space D(R+,R), where Y (1)(t) = W (ψ(t)), t ∈ R+
with

ψ(t) = e2at 1− e−at

1− e−a .

Remark. If ξ (n)
0 ,n ≥ 1 are degenerate, ξ (n)

k ≡ 0, n,k ≥ 1 and processes {X (n)(k),k ≥
0},n ≥ 1, are critical with the same offspring distribution, we obtain from Corollary
9.4 the assertion of Theorem 1 in [3].
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Critical branching processes with immigration

Márton Ispány and Gyula Pap

Abstract In this paper we give a survey on some results concerning critical and
nearly critical Galton–Watson branching processes with immigration. As a byprod-
uct of a general limit theorem for weak convergence of step processes of mar-
tingale differences towards a diffusion process, functional limit theorems can be
proved for different models. The limit process is either a squared Bessel process or
an Ornstein–Uhlenbeck type process. The asymptotic behavior of conditional least
squares estimator of the offspring mean will also be described. The results are ap-
plied in the theory of integer-valued autoregression as well.

Mathematics Subject Classification (2000): 60J80, 60F17, 62F12

Keywords: critical branching process with immigration, conditional least squares
estimator.

10.1 Introduction

The theory of branching processes allowing immigrants joining to the population
in each generation has been studied for a long time, see, e.g., Sevastyanov [26]
and Harris [8]. The limit distribution of a branching process with immigration has
been described by Heathcote [9] and Foster [4] in the most elementary cases. They
proved that if the offspring mean is greater than or equal to 1, i.e., the model is su-
percritical or critical, then the process tends to infinity, while if the offspring mean
is less than 1, i.e., the model is subcritical, and the immigration mean is finite then
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the process converges weakly to the (unique) stationary distribution. A necessary
and sufficient condition for convergence in distribution to a proper random variable
has been proved by Foster and Williamson [5], see Athreya and Ney [2, Theorem
VI.7.2]. Moreover, in the supercritical case Seneta [24] proved that under appropri-
ate normalization the process converges almost surely to a random variable. Finally,
in the critical case Foster [4] and Seneta [25] showed that the process normalized
by the number of generation converges in distribution to a gamma distribution.

In this paper critical and nearly critical Galton–Watson branching processes with
immigration are investigated and related functional limit theorems are presented.
That is, we prove not only the weak convergence of the one dimensional distribu-
tions but the weak convergence of finite dimensional distributions and tightness.
Our technique is the martingale method and the proofs are based on a general
convergence theorem for martingale differences, see Theorem 10.1. The first such
theorem in the critical case has been proved by Wei and Winnicki [29, 30], see
Theorem 10.2.

The paper is organized as follows. In Sect. 10.2 a two-way connection is pre-
sented between the branching processes with immigration and conditionally het-
eroscedastic autoregressive processes. Section 10.3 is devoted to the main functional
limit theorem with application to the Wei–Winnicki’s theorem. In Sect. 10.4 nearly
critical branching processes with immigration are considered. Finally, in the last
section, as an application, the asymptotic behaviour of the conditional least squares
estimator of the offspring mean is investigated under various assumptions.

10.2 Branching and autoregressive processes

Let {ξk, j, εk : k, j ∈ N} be independent, non-negative, integer-valued random vari-
ables such that {ξk, j : k, j ∈ N} and {εk : k ∈ N} are identically distributed. Define
recursively

Xk =
Xk−1

∑
j=1

ξk, j + εk for k ∈ N, X0 = 0. (10.1)

The sequence (Xk)k∈Z+ is called a branching process with immigration. We can
interpret Xk as the size of the kth generation of a population, where ξk, j is the
number of offsprings of the jth individual in the (k − 1)st generation and εk is
the number of immigrants contributing to the kth generation. Assume that

m := Eξ1,1 < ∞, λ := Eε1 < ∞, σ2 := Varξ1,1 < ∞, b2 := Varε1 < ∞.

The cases m < 1, m = 1 and m > 1 are referred to respectively as subcritical,
critical and supercritical. Such processes have a number of applications in biology,
finance, economics, queueing theory etc., see e.g. Haccou et al. [7].

In particular, if the offspring distribution is a Bernoulli distribution then the
branching process with immigration is called first order integer-valued autoregres-
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sive (INAR(1)) time series. It has been introduced by Al–Osh and Alzaid [1]. An
INAR(1) process may also be written in the form

Xk = m◦Xk−1 + εk for k ∈ N, X0 = 0, (10.2)

where we use the thinning or Steutel and van Harn operator m◦ which is defined
for m ∈ [0,1] and for a non-negative integer-valued random variable X by

m◦X :=

⎧
⎨

⎩

X
∑
j=1

ξ j, X > 0,

0, X = 0,

where the counting sequence (ξ j) j∈N consists of independent and identically dis-
tributed Bernoulli random variables with mean m, independent of X (see Steutel
and van Harn [28]), and the counting sequences involved in m ◦Xk−1, k ∈ N, are
mutually independent and independent of (εn)n∈N. Formula (10.2) shows the anal-
ogy with the common AR(1) process, i.e., m plays the role of an autoregressive
parameter and {εk : k ∈ N} is an innovation or driving process. Motivation in or-
der to include discrete data models comes from the need to account for the discrete
nature of certain data sets, often counts of events, objects or individuals. Branching
process with immigration is a promising model to describe such phenomenas. Ex-
amples of applications can be found in review papers by McKenzie [20], Jung and
Tremayne [19], and Weiß [32].

For k ∈ Z+, let Fk denote the σ -algebra generated by X0,X1, . . . ,Xk. Then,
by (10.1), we have the conditional expectation

E(Xk | Fk−1) = mXk−1 +λ , k ∈ N.

Clearly,
Mk := Xk −E(Xk | Fk−1) = Xk −mXk−1 −λ , k ∈ N, (10.3)

defines a martingale difference sequence (Mk)k∈N with respect to the filtration
(Fk)k∈Z+ , thus we have the recursion

Xk = λ +mXk−1 +Mk for k ∈ N, X0 = 0. (10.4)

Hence a branching process with immigration can be rewritten as an autoregres-
sive process with drift, where the driving process (Mk)k∈N is a sequence of mar-
tingale differences. The main difference from the common autoregressive process
is in the nature of conditional variance. An AR(1) process is homoscedastic, i.e.,
E(M2

k | Fk−1) is constant for all k ∈ N. Contrarily, the autoregressive representa-
tion of branching processes with immigration has heteroscedastic conditional struc-
ture. Namely, for the conditional variance we have E(M2

k | Fk−1) = σ2Xk−1 + b2

since, by (10.3) and (10.1),
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Mk = Xk −mXk−1 −λ =
Xk−1

∑
j=1

(ξk, j −m)+(εk −λ ).

Summarizing, there is a natural two-way connection between the branching pro-
cesses with immigration and autoregressive processes. On one hand, branching pro-
cess with immigration is a useful alternative to model integer-valued time series.
On the other hand, a branching process with immigration is an autoregressive pro-
cess with conditionally heteroscedastic innovation. Thus, to prove functional limit
theorem for branching processes with immigration we may apply limit theorems
developed for heteroscedastic autoregressive processes and more general stochastic
processes.

10.3 Functional limit theorems

The functional limit theorems of this section are based on a general limit theorem for
martingale differences. For each n ∈ N, let (Un

k )k∈N be a sequence of R
d-valued

square-integrable martingale differences with respect to a filtration (F n
k )k∈Z+ , i.e.,

(i) Un
k is F n

k -measurable for all k,n ∈N, and (ii) E‖Un
k ‖2 <∞, E

(
Un

k |F n
k−1

)
= 0

for all k,n ∈ N. Introduce the random step functions

U n
t :=

�nt�
∑
k=1

Un
k , t ∈ R+, n ∈ N.

Moreover, let (Ut)t∈R+ be a (not necessarily time-homogeneous) d-dimensional
diffusion process with zero drift, i.e.,

dUt = γ(t,Ut)dWt , t ∈ R+,

where γ : R+ × R
d → R

d×r is a continuous function and (Wt)t∈R+ is an r-
dimensional standard Wiener process. Assume that the SDE has a unique weak
solution with U0 = x0 for all x0 ∈ R

d . Let (Ut)t∈R+ be a solution with U0 = 0.
Our martingale limit theorem is derived from a general semimartingale limit the-

orem due to Jacod and Shiryayev [18, Theorem IX.3.39], but the assumptions of the
following theorem are much easier to verify.

Theorem 10.1. Suppose that for each T > 0,

(i) sup
t∈[0,T ]

∥
∥
∥
∥
∥

�nt�
∑

k=1
E
(
Un

k (Un
k )� | F n

k−1

)− ∫ t
0 γ(s,U n

s )γ(s,U n
s )�ds

∥
∥
∥
∥
∥

P−→ 0,

(ii)
�nT�
∑

k=1
E
(‖Un

k ‖21{‖Un
k ‖>θ} | F n

k−1

) P−→ 0 for all θ > 0.

Then
U n D−→ U as n → ∞,
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that is, weakly in the Skorokhod space D(R+,Rd).

We note that in assumption (i) uniform convergence on compacts in probability is
involved and assumption (ii) is the conditional Lindeberg condition. The proof of
this theorem can be found in Ispány and Pap [12, 13]. In the sequel, we check only
assumption (i) in the proof of limit theorems. Assumption (ii) can be verified in the
same manner, see the cited reference in each case.

The celebrated Wei–Winnicki’s theorem, see [29] and [30], describes the asymp-
totic behaviour of a critical branching process with immigration. Introduce the ran-
dom step functions

X n
t := X�nt� for t ∈ R+, n ∈ N.

Theorem 10.2. For a critical branching process with immigration we have

n−1X n D−→ X as n → ∞, (10.5)

where (Xt)t∈R+ is the solution of the stochastic differential equation

dXt = λ dt +σ
√

(Xt)+ dWt , t ∈ R+, X0 = 0, (10.6)

where x+ := max{x,0}, and (Wt)t∈R+ is a standard Wiener process.

It is well known that the SDE (10.6) has a unique global strong solution such that
Xt ≥ 0 almost surely for all t ∈ R+. Thus, one may replace (Xt)+ by Xt under
the square root. (See, e.g., Ikeda and Watanabe [10, Example IV.8.2].) The process
(Xt)t∈R+ is a continuous branching process called square-root process, squared
Bessel process, or Cox–Ingersoll–Ross model.

Proof. We apply the martingale limit theorem, Theorem 10.1, with the choice γ(x, t)
:=σ

√
(x+λ t)+, and prove that M n D−→ M as n →∞, where M n

t := 1
n ∑

�nt�
k=1 Mk

and dMt = σ
√

(Mt +λ t)+ dWt , t ∈ R+, M0 = 0. Indeed, by (10.4), Xk =
Xk−1 +λ +Mk implies Xk =∑k

j=1(Mj +λ ). Hence the following heuristics proves
condition (i). The conditional covariances admit the asymptotics

1
n2

�nt�
∑
k=1

E(M2
k | Fk−1) =

1
n2

�nt�
∑
k=1

(σ2Xk−1 +b2) ≈ σ2

n2

�nt�
∑
k=1

k−1

∑
j=1

(Mj +λ )

=
σ2

n

�nt�
∑
k=1

(
M n

k/n +λ
k−1

n

)
≈ σ2

∫ t

0
(M n

s +λ s)ds.

The conditional Lindeberg condition (ii) can be verified as in Ispány [11] or Ispány
et al. [16]. Finally, the continuous mapping theorem proves (10.5) since

1
n

X�nt� =
1
n

�nt�
∑
j=1

(Mj +λ ) D−→ Mt +λ t = Xt as n → ∞. ��
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10.4 Nearly critical branching processes with immigration

In this section we study branching processes with immigration which are close to
the criticality. To be precise we consider a sequence of branching processes with
immigration (Xn

k )k∈Z+ , n ∈ N, given by the recursion

Xn
k =

Xn
k−1

∑
j=1

ξ n
k, j + εn

k for k, n ∈ N, Xn
0 = 0, (10.7)

where {ξ n
k, j, ε

n
k : k, j, n ∈ N} are independent, nonnegative, integer-valued random

variables such that {ξ n
k, j : k, j ∈ N} and {εn

k : k ∈ N} for each n ∈ N are identically
distributed. Assume furthermore that, for all n ∈ N,

mn := Eξ n
1,1 < ∞, λn := Eεn

1 < ∞, σ2
n := Varξ n

1,1 < ∞, b2
n := Varεn

1 < ∞.

Definition 10.1. A sequence of branching processes with immigration is called
nearly critical with rate α ∈ R if mn = 1+αn−1 +o(n−1) as n → ∞.

This kind of the parametrization of the offspring mean has been considered by
Sriram [27] for the first time. The notion of nearly criticality or nearly unstability has
been suggested by Chan and Wei [3] in case of AR(1) models. The main motivation
comes from the econometrics, where the so-called “unit-root problem” plays an
important role.

The following theorem, see Ispány [11, Theorem 2.1] is a generalization of the
Wei–Winnicki’s theorem and Sriram’s theorem, see [27, Theorem 3.1]. In the limit
theorem we apply a kind of “self-normalization”, namely we divide by the off-
spring variance. Such kind of normalization is investigated recently by Rahimov
[21], where the offspring variance is modelled by a slowly varying function. Intro-
duce the random step functions

X n
t := Xn

�nt�, M n
t :=

�nt�
∑
k=1

Mn
k for t ∈ R+, n ∈ N.

Theorem 10.3. Suppose that σ2
n > 0 for all n ∈ N, and

(i) E
(
|ξ n

1,1 −mn|21{|ξ n
1,1−mn|>θnσ2

n }
)

= o(σ2
n ) as n → ∞ for all θ > 0,

(ii) λn = λσ2
n +o(σ2

n ) as n → ∞ for some λ ≥ 0,
(iii) b2

n = o(nσ4
n ) as n → ∞.

Then
(
nσ2

n

)−1
EX n

t → λ
∫ t

0
eαs ds as n → ∞ (10.8)

for all t ∈ R+, and

(
nσ2

n

)−1
X n D−→ X as n → ∞,
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that is, weakly in the Skorokhod space D(R+,R), where
(
Xt
)

t∈R+
is the unique

solution of the stochastic differential equation (SDE)

dXt = (λ +αXt)dt +
√

(Xt)+ dWt , t ∈ R+, X0 = 0, (10.9)

where (Wt)t∈R+ is a standard Wiener process.

If the offspring variance tends to 0, e.g., in case of Bernoulli offspring distri-
bution, then the above theorem gives a trivial deterministic limit process. How-
ever, in this case going one step further a fluctuation theorem holds with Ornstein–
Uhlenbeck type limit process, see Ispány et al. [16, Theorem 2.2].

Theorem 10.4. Suppose that

(i) σ2
n = βn−1 +o(n−1) as n → ∞ with some β ≥ 0,

(ii) nE
(
|ξ n

1,1 −mn|21{|ξ n
1,1−mn|>θ

√
n}
)

→ 0 as n → ∞ for all θ > 0,

(iii) λn → λ and b2
n → b2 as n → ∞ with some λ ≥ 0 and b2 ≥ 0,

(iv) E
(
|εn

1 −λn|21{|εn
1 −λn|>θ

√
n}
)

→ 0 as n → ∞ for all θ > 0.

Then
n−1/2 (X n −EX n, M n) D−→

(
X̃ ,M̃

)
as n → ∞,

that is, weakly in the Skorokhod space D(R+,R2), where
(
M̃t

)

t∈R+
is a time-

changed Wiener process, namely, M̃t = W (Tt), t ∈ R+ with

Tt :=
∫ t

0
ρ(s)ds, ρ(t) := b2 +βλ

∫ t

0
eαs ds, t ∈ R+,

(W (t))t∈R+ is a standard Wiener process, and

X̃t :=
∫ t

0
eα(t−s) dM̃s, t ∈ R+,

is an Ornstein–Uhlenbeck type process driven by (M̃t)t∈R+ .

A more general approximation theorem has been proved in Ispány et al. [17] for
Ornstein–Uhlenbeck processes using sequence of branching processes with immi-
gration.

Finally, we may investigate the nearly critical behaviour in the framework of
one model only allowing inhomogeneous parameters, i.e., considering branching
processes with immigration in varying environment. The next theorem, see Györfi et
al. [6, Theorem 2], shows that if the convergence to criticality is slow, then the limit
is a Poisson distribution and we do not need any normalization. The inhomogeneous
INAR(1) process (Xn)n∈Z+ is defined by

Xk = mk ◦Xk−1 + εk for k ∈ N, X0 = 0,
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where {εk : k ∈ N} are non-negative integer-valued random variables with λk :=
Eεk < ∞ and b2

k := Varεk < ∞.

Theorem 10.5. Assume that

(i) mn < 1 for all n ∈ N, lim
n→∞

mn = 1,
∞
∑

n=1
(1−mn) = ∞,

(ii) lim
n→∞

λn
1−mn

= λ ∈ [0,∞), lim
n→∞

b2
n

1−mn
= 0.

Then
Xn

D−→ Po(λ ) as n → ∞.

The proof of this theorem is based on Poisson approximation.

10.5 Conditional least squares estimators

Let us consider the branching process (10.1). The conditional least squares estimator
(CLSE) m̂n of m based on the observations X1, . . . ,Xn assuming that λ is known
can be obtained minimizing the sum of squares

n

∑
k=1

(Xk −mXk−1 −λ )2

with respect to m, and it has the form

m̂n = ∑n
k=1(Xk −λ )Xk−1

∑n
k=1 X2

k−1

,

hence

m̂n −m = ∑n
k=1 MkXk−1

∑n
k=1 X2

k−1

.

Theorem 10.6. For a subcritical branching process with immigration under the as-
sumptions Eξ 3

1,1 < ∞, Eε3
1 < ∞ we have

n1/2(m̂n −m) D−→ N (0,σ2
sub)

with

σ2
sub :=

σ2∑∞
j=0 j3 p j +b2∑∞

j=0 j2 p j
(
∑∞

j=0 j2 p j

)2 ,

where (p j) j∈Z+ denotes the unique stationary distribution of the Markov chain
(Xk)k∈Z+ .
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Proof. First observe ∑n
k=1 X2

k−1 → ∑∞
j=0 j2 p j a.s. by the Ergodic Theorem. Then

by the Martingale Central Limit Theorem we obtain n−1/2∑�nt�
k=1 MkXk−1

D−→ cWt ,
where (Wt)t∈R+ is a standard Wiener process and c2 := σ2 ∑∞

j=0 j3 p j + b2∑∞
j=0 j2 p j .

Indeed, the conditional covariances admit the asymptotics

1
n

�nt�
∑
k=1

E(M2
k X2

k−1 | Fk−1) =
1
n

�nt�
∑
k=1

(σ2Xk−1 +b2)X2
k−1 ≈ c2t

again by the Ergodic Theorem. ��
The asymptotic behaviour of the CLSE of the offspring mean is unknown if the off-
spring or immigration distribution have infinite third moment. Simulations suggest
that the limit distribution is not normal, we suspect it is a stable distribution.

Wei and Winnicki [29, 31] described the asymptotic behavior of the CLSE in the
critical case m = 1 with σ2 > 0.

Theorem 10.7. For a critical branching process with immigration under the as-
sumption σ2 > 0 we have

n(m̂n −1) D−→
∫ 1

0 Xt d(Xt −λ t)
∫ 1

0 X 2
t dt

,

where the process (Xt)t∈R+ is given in Theorem 10.2.

Proof. This can be proved using the general martingale limit theorem, Theorem
10.1. For each n ∈ N, consider the martingale differences

Un
k :=

[
n−1Mk

n−2MkXk−1

]
= Mk

[
n−1

n−2Xk−1

]
, k ∈ N,

with respect to the filtration F n
k := σ(M1, . . . ,Mk). The conditional covariances

admit the asymptotics

�nt�
∑
k=1

E[Un
k (Un

k )� | F n
k−1] =

�nt�
∑
k=1

E(M2
k | Fk−1)

[
n−1

n−2Xk−1

][
n−1

n−2Xk−1

]�

=
�nt�
∑
k=1

(σ2Xk−1 +b2)
[

n−2 n−3Xk−1

n−3Xk−1 n−4X2
k−1

]
≈
∫ t

0
γ(s,U n

s )γ(s,U n
s )�ds

with γ : R+ × R
2 → R

2×1, γ
(

s,

[
x
y

])
= σ

[
(x+λ s)1/2

+

(x+λ s)3/2
+

]

, since (10.4) yields

Xk =
k
∑
j=1

(Mj +λ ) =
k
∑
j=1

Mj + kλ .

By Theorem 1 we obtain
(

n−1∑�nt�
k=1 Mk, n−2∑�nt�

k=1 MkXk−1

)
D−→ (Mt ,Yt), where
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[
dMt

dYt

]
= γ
(

t,

[
Mt

Yt

])
dWt = σ

[
(Mt +λ t)1/2

+

(Mt +λ t)3/2
+

]

dWt , t ∈ R+,

M0 = Y0 = 0. Hence

dMt = σ(Mt +λ t)1/2
+ dWt ,

Yt = σ
∫ t

0
(Ms +λ s)3/2

+ dWs =
∫ t

0
(Ms +λ s)+ dMs.

We also obtain n−1X�nt� = n−1∑�nt�
j=1(Mj +λ ) D−→ Mt +λ t = Xt (compare with

Theorem 10.2). Consequently Yt =
∫ t

0 Xs dMs and

(

n−3
�nt�
∑
k=1

X2
k−1, n−2

�nt�
∑
k=1

MkXk−1

)
D−→
(∫ t

0
X 2

s dt,
∫ t

0
Xs dMs

)
,

hence

n
(
m̂n −1

)
=

n−2∑n
k=1 Xk−1Mk

n−3∑n
k=1 X2

k−1

D−→
∫ 1

0 Xt dMt
∫ 1

0 X 2
t dt

as n → ∞. ��
The critical case m = 1 with σ2 = 0 has been described by Ispány et al. [14].

Theorem 10.8. For a critical branching process with immigration under the as-
sumptions σ2 = 0 and λ > 0 we have

n3/2 (m̂n −1) D−→ N (0,σ2
crit) with σ2

crit :=
3b2

λ 2 .

Proof. This can be proved again using Theorem 10.1. For each n ∈ N, consider
now the martingale differences

Un
k :=

[
n−1/2Mk

n−3/2MkXk−1

]
= Mk

[
n−1/2

n−3/2Xk−1

]
, k ∈ N,

with respect to the filtration F n
k := σ(M1, . . . ,Mk). The conditional covariances

admit the asymptotics

�nt�
∑
k=1

E[Un
k (Un

k )� | F n
k−1] =

�nt�
∑
k=1

E(M2
k | Fk−1)

[
n−1/2

n−3/2Xk−1

][
n−1/2

n−3/2Xk−1

]�

=
�nt�
∑
k=1

b2
[

n−1 n−2Xk−1

n−2Xk−1 n−3X2
k−1

]
≈
∫ t

0
γ(s,U n

s )γ(s,U n
s )�ds
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with γ : R+ ×R
2 → R

2×1, γ
(

s,

[
x
y

])
= b

[
1

λ s

]

, since now Xk = Xk−1 + εk =

k
∑
j=1

ε j yields n−1X�nt� = n−1
�nt�
∑
j=1

ε j
D−→ λ t =: Xt . By Theorem 10.1 we obtain

(
n−1/2∑�nt�

k=1 Mk, n−3/2∑�nt�
k=1 MkXk−1

)
D−→ (Mt ,Yt), where

[
dMt

dYt

]
= γ
(

t,

[
Mt

Yt

])
dWt = b

[
1

λ t

]

dWt , t ∈ R+,

M0 = Y0 = 0. Thus Mt = bWt and Yt = bλ
∫ t

0 sdWs =
∫ t

0 Xs dMs, and(
n−3∑�nt�

k=1 X2
k−1, n−3/2∑�nt�

k=1 MkXk−1

)
D−→ (∫ t

0 X 2
s ds,

∫ t
0 Xs dMs

)
, hence

n3/2 (m̂n −1) =
n−3/2∑n

k=1 Xk−1Mk

n−3∑n
k=1 X2

k−1

D−→
∫ 1

0 Xt dMt
∫ 1

0 X 2
t dt

D= N (0,σ2
crit),

since
∫ 1

0 X 2
t dt = 1

3λ
2 and

∫ 1
0 Xt dMt

D= N
(
0, 1

3λ
2b2
)
. ��

The case of unknown immigration mean has been described by Ispány et al. [15].
Rahimov [22] has proved that in the non-degenerate case σ2 > 0 if the immigration
is time-dependent with regularly varying mean and variance then the limit is normal
or certain functional of a time-changed Wiener process. The aymptotics of weighted
CLSE has been studied in [23] using the same framework.
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11
Weighted conditional least squares estimation
in controlled multitype branching processes

Miguel González and Inés M. del Puerto

Abstract The multitype controlled branching process provides a useful way to
model generation sizes in population dynamics studies, where several types of indi-
viduals coexist and a control on the growth of population size is necessary at each
generation. From a probabilistic viewpoint this model has been studied in González
et al. (Bernoulli 11(3):559–570, 2005; J. Appl. Probab. 42:1015–1030, 2005; Pliska
Stud. Math. Bulgar. 17: 85–96, 2005; J. Appl. Probab. 43: 159–174, 2006; Pliska
Stud. Math. Bulgar. 18: 103–110, 2007; Stoch. Models 24: 401–424, 2008). In this
paper we are interested in developing its inferential theory, not considered until
now. We propose a weighted conditional least squares estimator of the offspring
mean matrix. For the supercritical case, we establish the strong consistency of the
proposed estimator.

Mathematics Subject Classification (2000): 60J80

Keywords: multitype branching processes, random control function, weighted con-
ditional least squares estimator, strong consistency.

11.1 Introduction

The multitype Galton–Watson process is a well-known branching model which has
received considerable attention in the scientific literature (e.g. see [14]). From this
model, the possibility of achieving in each generation a control in the number of
particles/individuals of each type that participates in the reproduction process is
considered in [16] where the control was introduced in a deterministic way. Later
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on, as a generalization of the one-dimensional model with random control and re-
production dependent on the population size considered by [13], a multitype model
that puts together random control mechanism and size dependent reproduction is
introduced in [1]. In this model, called controlled multitype branching process with
random control and population-size-dependent reproduction, the reproduction phase
in a generation is conditioned by the size of the previous generation, the number of
progenitors of each type is controlled by means of a random mechanism and pos-
sible dependence among individuals of the same generation at reproduction time is
allowed. The asymptotic behaviour of this process has been investigated in [1–6].
The study of inference problems arising from this model has not been considered
yet. The purpose of this article is to consider the estimation problem of the off-
spring mean matrix. As a first approach, we will focus our attention on controlled
multitype branching process with random control, non-population-size-dependent
reproduction and independence at the reproduction phase between individuals of
the same generation. In Sect. 11.2 we will introduce the model and some notation
and basic results will be provided. Moreover, analogously to the classification of
the multitype Galton–Watson process, we will introduce a threshold parameter to
establish a classification for the CMBP. In Sect. 11.3, making use of the weighted
conditional least squares procedure we will propose an estimator for the offspring
mean matrix and we will investigate its asymptotic behaviour in the supercritical
case.

11.2 Probability model

A controlled multitype branching process with random control (CMBP), {Z(n)}n≥0,
is a m-dimensional random vector sequence defined as follows:

Z(0) = z ∈ N
m
0 ; Z(n+1) =

m

∑
i=1

φn
i (Z(n))

∑
j=1

Xi,n, j, n = 0,1, . . . (11.1)

where {Xi,n, j = (Xi,n, j
1 , . . . ,Xi,n, j

m ) : i = 1, . . . ,m, n = 0,1, . . . , j = 1,2, . . .} and
{φ n(z) = (φ n

1 (z), . . . ,φ n
m(z)) : n = 0,1, . . . ;z ∈ N

m
0 } are two independent sequences

of m-dimensional, non-negative, integer valued random vectors defined on the same
probability space such that:

(i) The stochastic processes {Xi,n, j : i = 1, . . . ,m, j = 1,2, . . .}, n = 0,1, . . ., are
independent and identically distributed. Moreover, for each i ∈ {1,2, . . . ,m},
the random vectors {Xi,n, j : j = 1,2, . . . , n = 0,1, . . .} are independent and
identically distributed.

(ii) For each z ∈ N
m
0 , the random vectors {φ n(z)}n≥0 are independent and identi-

cally distributed and if n, ñ ∈ N0 are such that n 
= ñ, then the random vectors
φ n(z) y φ ñ(z̃) are independent, for every z, z̃ ∈ N

m
0 . Moreover we will assume
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that for each n ∈ N0 and z ∈ N
m
0 the variables {φ n

1 (z), . . . ,φ n
m(z)} are indepen-

dent.

As usually the empty sum is considered as zero. Intuitively, m represents the
number of different types of individuals in the population. Each random vector
Xi,n, j governs the reproduction phase and, intuitively, represents the vector of de-
scendants of the jth i-type individual in the nth generation. Each random vector
φ n(z) describes the control made on the population and, intuitively, represents the
number of individuals of the different types allowed to be parents in the nth gener-
ation, provided that the population size in this generation is given by the vector z.
Consequently the vector Z(n + 1) represents the total number of individuals of the
different types in the (n + 1)st generation. This CMBP is a particular model of the
one introduced in [1]. It is easy to check that a CMBP is a homogeneous multitype
Markov chain. From the relationship between the control and the offspring vectors,
it is not difficult to prove that the null state is absorbing if and only if

P(φ 0(0) = 0) = 1,

where 0 denotes the null-vector. Also every non-null vector z ∈ N
m
0 is transient if

P

(
m⋂

i=1

({φ 0
i (z) = 0}∪{φ 0

i (z) > 0,Xi,0, j = 0, j = 1, . . . ,φ 0
i (z)})

)

> 0.

If these conditions are satisfied, then

P(Z(n) → 0)+P(‖Z(n)‖ → ∞) = 1

holds, where ‖ · ‖ is an arbitrary norm in R
m.

Let us introduce the following notation for the main moments associated to the
random variables that define the model:

mi j = E[Xi,0,1
j ], i, j = 1, . . . ,m,

σ2
i j = Var[Xi,0,1

j ], σi, jk = Cov(Xi,0,1
j ,Xi,0,1

k ), i, j,k = 1, . . . ,m; j 
= k,

and
εi(z) = E[φ 0

i (z)], ν2
i (z) = Var[φ 0

i (z)], i = 1, . . . ,m.

We assume all the latter moments finite. Let M be the offspring mean matrix and Σi

denote the variance-covariance of the vector Xi,0,1 = (Xi,0,1
1 , . . . ,Xi,0,1

m ), i = 1, . . . ,m.
In order to obtain a classification of this model similar to the classical multitype

branching process, from now on we assume that, for i = 1, . . . ,m, there exist λi ≥ 0
such that:

εi(z) = λizi +hi(z), hi(z) = o(‖z‖), as ‖z‖ → ∞. (11.2)
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Remark 11.1. (a) Condition (11.2) means that the average number of progenitors of
a type is proportional to the number of individuals of this type plus/minus certain
quantity of progenitors which is negligible with respect to the total amount of popu-
lation. Notice that under (11.2) immigration/emigration of progenitors of each type
is allowed. Immigration is possible even if there are not individuals of a type. This
could not happen if hi(z) = zio(1). However, in this case we could determine λi

explicitly as λi = lim‖z‖→∞;zi 
=0 z−1
i εi(z).

(b) For m = 1, condition (11.2) was also considered in the study of the behaviour
of single-type controlled branching processes (see [7–10]).

We further assume that M̃ = (λimi j)1≤i, j≤m is irreducible in the sense of [15].
Notice that M̃ is irreducible iff λi is non null for each i and the offspring mean
matrix M is irreducible. In this case, there exists ρ , the Perron-Frobenius eigenvalue
of M̃, which will play an important role in the study of extinction problem. Under
these conditions, we say that a CMBP is subcritical if ρ < 1, near-critical if ρ = 1,
and supercritical if ρ > 1 (as was given in [3]). Criteria for deciding whether or
not the model grows indefinitely with positive probability, and in consequence the
extinction does not happen almost surely, are given in [1] and [3].

11.3 Weighted conditional least squares estimator
of the offspring mean matrix

For notational simplicity, we consider the case m = 2, the two-type controlled
branching process with random control function.

Before we develop a method of estimation for the offspring mean matrix, we have
to determine what is observable. It is worthwhile to note here that if φ n

i (z) = zi +Y n
i ,

i = 1,2, where {Y n = (Y n
1 ,Y n

2 ) : n = 0,1, . . .} are independent and identically non-
negative integer valued random vectors and independent of {Xi,n, j : i = 1, . . . ,m; n =
0,1, . . . ; j = 1,2, . . .}, then {Z(n)}n≥0 is a multitype branching process with immi-
gration (MBPI). Shete (see [17], Sect. 4.2 for details) established that for a MBPI
there are not consistent estimators of the offspring mean matrix if only we observe
the generation sizes of each type. Thus in order to obtain consistent estimators for
the offspring matrix for a CMBP we have to assume a little more information about
the process than just the generation sizes are observed.

To this end, we define, for i, j = 1,2, n = 0,1, . . .,

Zn+1,i
j =

φn
i (Z(n))

∑
k=1

Xi,n,k
j ,

which intuitively represents the number j-type individuals in the nth generation
whose parent are of type i. We assume we observe Z̃ j = (Z j,1

1 ,Z j,1
2 ,Z j,2

1 ,Z j,2
2 ),

j = 1,2, . . . ,n. Note then that Zi(n) = Zn,1
i + Zn,2

i , i = 1,2, n = 0,1, . . .. Let define
Fn = σ(Z(0), . . . ,Z(n)), n = 0,1, . . .. From the model we have that, for i, j = 1,2,
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E[Zn,i
j | Fn−1] = εi(Z(n−1))mi j a.s.

We can use this to represent Zn,i
j as

Zn,i
j = εi(Z(n−1))mi j + δ̃ n,i

j , n = 1,2, . . . , (11.3)

where the error term δ̃ n,i
j has E[δ̃ n,i

j | Fn−1] = 0 almost surely.

Let δ̃n = (δ̃ n,1
1 , δ̃ n,1

2 , δ̃ n,2
1 , δ̃ n,2

2 ), n = 1,2, . . .. Taking into account the indepen-
dence properties between the control and offspring vectors, the conditional variance-
covariance matrix of δ̃n is given by

Var[δ̃n | Fn−1] =

⎛

⎜
⎜
⎝

d̃11 d̃1,12 0 0
d̃1,12 d̃12 0 0

0 0 d̃21 d̃2,12

0 0 d̃2,12 d̃22

⎞

⎟
⎟
⎠ ,

where

d̃i j = Var[δ̃ n,i
j ] = σ2

i jεi(Z(n−1))+m2
i jν2

i (Z(n−1)), i, j = 1,2

and

d̃i,12 = Cov(δ̃ n,i
1 , δ̃ n,i

2 ) = σi,12E[(φ n
i (Z(n−1)))2]+mi1mi2ν2

i (Z(n−1)), i = 1,2.

Note that Var[δ̃n | Fn−1] can be unbounded if ‖Z(n)‖ → ∞ almost surely as n → ∞.
To overcome this, we construct the weighted conditional least squares estimator by
normalizing (11.3) by (εi(Z(n−1))+1)1/2, i.e. we consider, for n = 1,2, . . . ,

Zn,i
j

(εi(Z(n−1))+1)1/2
=

εi(Z(n−1))mi j

(εi(Z(n−1))+1)1/2
+δ n,i

j , (11.4)

where δ n,i
j = (εi(Z(n−1))+1)−1/2δ̃ n,i

j . Let δn = (δ n,1
1 ,δ n,1

2 ,δ n,2
1 ,δ n,2

2 ), n = 1,2, . . ..
Then we have almost surely that E[δn | Fn−1] = 0 and

Var[δn | Fn−1] =

⎛

⎜
⎜
⎝

d11 d1,12 0 0
d1,12 d12 0 0

0 0 d21 d2,12

0 0 d2,12 d22

⎞

⎟
⎟
⎠ ,

where, for j = 1,2,

di j = (εi(Z(n−1))+1)−1d̃i j

= (εi(Z(n−1))+1)−1(σ2
i jεi(Z(n−1))+m2

i jν2
i (Z(n−1))),

and, for i = 1,2,
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di,12 = (εi(Z(n−1))+1)−1d̃i,12

= (εi(Z(n−1))+1)−1(σi,12E[(φ n
i (Z(n−1)))2]+mi1mi2ν2

i (Z(n−1))).

In this paper we will impose certain conditions on εi(z) and ν2
i (z) so that the ele-

ments of the matrix Var[δn | Fn−1] stay bounded as ‖Z(n)‖ → ∞. These considera-
tions lead us to the following conditional weighted least squares estimators of mi j,
i, j = 1,2:

m̂i j =

(
n

∑
k=1

Zk,i
j εi(Z(k−1))

εi(Z(k−1))+1

)(
n

∑
k=1

ε2
i (Z(k−1))

εi(Z(k−1))+1

)−1

. (11.5)

From these, the conditional weighted least squares estimator of the offspring mean
matrix is given by

M̂ =
(

m̂11 m̂12

m̂21 m̂22

)
,

where m̂i j are defined in (11.5).

Remark 11.2. (a) The validity of the estimators m̂i, j, i, j = 1,2, defined in (11.5)
does not requiere condition (11.2).

(b) Note that the maximal eigenvalue ρ of M̃ is given by

ρ = 2−1(λ1m11 +λ2m22 +((λ1m11 −λ2m22)2 +4λ1λ2m12m21)1/2). (11.6)

Therefore, we propose as estimator of ρ the one obtained from replacing in (11.6)
mi j by m̂i j, given λi, i = 1,2, known.

(c) For the single-type controlled branching process, this estimator was proposed
in [19].

Next, we state the strong consistency of the estimator of the offspring mean ma-
trix in the supercritical case, i.e. ρ > 1. To this end, note that under some conditions
the following results hold for the supercritical CMBP:

(A1) P(‖Z(n)‖ → ∞) > 0

(A2) limn→∞ρ−nZ(n) = W a.s. on {‖Z(n)‖ → ∞} with Wi, the ith coordinate of W ,
non degenerate in 0, i = 1,2.

Remark 11.3. Conditions that guarantee (A1)–(A2) can be found in the papers [1–3]
and [6]. Moreover, using the similar reasoning as given in [11] one can derive that
{Wi > 0} = {‖Z(n)‖ → ∞} almost surely for each i.

Firstly to state the strong consistency of the offspring mean matrix, we establish the
following preliminary result:

Lemma 11.1. Let {Z(n)}n≥0 be a CMBP defined by (11.1) satisfying (11.2). Define,
for i=1,2, {Un,i}n≥1 as

Un,i =
n

∑
k=1

ε2
i (Z(k−1))(εi(Z(k−1))+1)−1.
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Then, for i = 1,2, Un,i → ∞ almost surely on {‖Z(n)‖ → ∞} as n → ∞.

Proof. It follows that, on {‖Z(n)‖ → ∞}, for i = 1,2,

εi(Z(n))
ρn → λiWei a.s. as n → ∞, (11.7)

being W introduced in (A2) and ei a two dimensional vector with its ith coordinate
equal to one and the other equal to zero, i = 1,2. Indeed, using (11.2)

εi(Z(n))
ρn =

λiZi(n)
ρn +

hi(Z(n))
‖Z(n)‖

‖Z(n)‖
ρn

and from (A1)–(A2), we have (11.7). Moreover, from (11.7) and using Cesàro’s
lemma we obtain that, on {‖Z(n)‖ → ∞},

1
ρn

n

∑
k=1

ε2
i (Z(k−1))

εi(Z(k−1))+1
→ λiWei

(ρ −1)
a.s. as n → ∞. (11.8)

Thus, using (11.8) and since ρ > 1, we deduce, for i = 1,2, that on {‖Z(n)‖ → ∞},
Un,i → ∞ almost surely as n → ∞. ��
Theorem 11.1. Let {Z(n)}n≥0 be a CMBP defined by (11.1) satisfying (11.2) and

ν2
i (z) = O(εi(z)), as ‖z‖ → ∞. (11.9)

Then, for i, j = 1,2, m̂i j defined in (11.5) is strongly consistent for mi j on {‖Z(n)‖→
∞}, as n → ∞.

Proof. It is easy to check that, for i, j = 1,2,

m̂i j −mi j =

(
n

∑
k=1

(Zk,i
j −mi jεi(Z(k−1)))εi(Z(k−1))

εi(Z(k−1))+1

)

U−1
n,i ,

being Un,i defined in Lemma 11.1. We will prove that on {‖Z(n)‖ → ∞}, for i, j =
1,2, the estimator m̂i j is strongly consistent for mi j making use of Theorem 2.18 of
[12]. Note that, for i = 1,2,

n

∑
k=1

(Zk,i
j −mi jεi(Z(k−1)))εi(Z(k−1))

εi(Z(k−1))+1
is a martingale.

Recalling that Fn = σ(Z(0), . . . ,Z(n)), if we show that, as n →∞, almost surely on
{‖Z(n)‖ → ∞}

∞

∑
k=1

E
[
((Zk,i

j −mi jεi(Z(k−1)))εi(Z(k−1)))2(εi(Z(k−1))+1)−2 |Fk−1

]

U2
k,i

< ∞,
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then, since by Lemma 11.1, for i = 1,2, on {‖Z(n)‖ → ∞}, Un,i → ∞, as n →∞, we
have that on {‖Z(n)‖ → ∞}

∑n
k=1(Z

k,i
j −mi jεi(Z(k−1)))εi(Z(k−1))(εi(Z(k−1))+1)−1

Uk,i
→ 0 a.s. as n → ∞,

that is, the strong consistency of the estimator m̂i j.
Now, taking into account (11.9), for some positive constant K,

E
[
((Zk,i

j −mi jεi(Z(k−1)))εi(Z(k−1)))2(εi(Z(k−1))+1)−2 |Fk−1

]

=
(σ2

i jεi(Z(k−1))+m2
i jν2

i (Z(k−1)))ε2
i (Z(k−1))

(εi(Z(k−1))+1)2

≤ K
ε2

i (Z(k−1))
εi(Z(k−1))+1

.

Therefore,

∞

∑
k=1

E
[
((Zk,i

j −mi jεi(Z(k−1)))εi(Z(k−1)))2(εi(Z(k−1))+1)−2 |Fk−1

]

U2
k,i

≤ K
∞

∑
k=1

ε2
i (Z(k−1))(εi(Z(k−1))+1)−1

U2
k,i

= K
∞

∑
k=1

(Uk,i −Uk−1,i)
U2

k,i

< ∞. ��

Remark 11.4. (a) Notice that if we assume in condition (11.2) that hi(z) = zio(1), as
‖z‖ → ∞, then (11.9) is verified if ν2

i (z) = O(zi), as ‖z‖ → ∞. This is the condition
required to check the strong consistency of the estimator of the offspring mean for
the single-type controlled branching process (see [19]).

(b) Note that in the construction of our estimator of the offspring matrix we
implicitly assume that εi(z), z ∈ N

m
0 , i = 1,2, are known. It is possible that this

assumption is not valid, for instance, in the special case of MBPI, defined at the
beginning of Sect. 11.3, with unknown E[Y n], i.e. immigration mean vector. In the
case of unknown εi(z), we can replace εi(Z(k − 1)) in (11.5) by φi(Z(k − 1)) and
define a modified estimator of the offspring mean vector by

̂̂mi j =

(
n

∑
k=1

Zk,i
j φi(Z(k−1))

φi(Z(k−1))+1

)(
n

∑
k=1

φ 2
i (Z(k−1))

φi(Z(k−1))+1

)−1

.

With minor modifications in the proof of Theorem 11.1, it is possible to show the
strong consistency of ̂̂mi j in the supercritical case. Finally, note that our results ex-
tend those of [18] for the estimation of the offspring mean matrix in the case of
known E[Y n].
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3. González, M., Martı́nez, R., Mota, M.: A note on the extinction problem for controlled multi-
type branching processes. Pliska Stud. Math. Bulgar. 17, 85–96 (2005)
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Branching processes in cell proliferation kinetics

Nikolay M. Yanev

Abstract This is a memorial survey paper on some joint works with Andrei Yu.
Yakovlev† in the field of branching processes and their applications in cell prolif-
eration kinetics. The following topics are considered: distributions of discrete and
continuous labels, age and residual lifetime distributions, models of leukemia cell
kinetics, age-dependent branching populations with randomly chosen paths of evo-
lution as models of progenitor cell populations (in vitro) and estimating of offspring
distributions, multitype branching populations with a large number of ancestors and
asymptotic likelihood estimation of the basic mitotic parameters. A part of the pre-
sented results is not published yet. The paper is focused on some new ideas for
branching processes theory arising in cell proliferation modeling.

Mathematics Subject Classification (2000): 60J80, 60J85, 62P10, 92D25

Keywords: branching processes, cell proliferation, discrete and continuous la-
bels, label distributions, immigration, age and residual lifetime distributions, age-
dependent processes, large number of ancestors, multitype branching processes,
limiting distributions, asymptotic normality, statistical inference.
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12.1 Introduction

The theory of branching processes has a long history of biological applications. It
is worth to point out that the first asymptotic result for branching processes was
obtained by Kolmogorov [12] considering some biological problems. Recall that
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c© Springer-Verlag Berlin Heidelberg 2010



160 Nikolay M. Yanev

the terminology “branching processes” was first introduced by Kolmogorov and
his coauthors [14, 15] proposing multitype branching processes, which received
much attention in biological applications. For a further development of the theory of
branching processes and their applications in Biology we refer the reader to several
books [1, 4–6, 10, 11, 17, 19, 22].

The main purpose of this work is to present some new ideas and results (in the
theory of branching processes) obtained in modeling of cell proliferation kinetics
(and based on [21–28]). The paper is organized as follows. The distribution of the
discrete marks (labels) is given in Section 12.2 (see [22, 35]) using a model with
infinite many types of Bellman-Harris branching processes. Generalizations in the
case of continuous labels are presented in Sect. 12.3 (see [23] and [25]). This work
is concerned with an age-dependent branching process with cells bearing a label,
the latter being treated as a continuous parameter. The proposed stochastic model
is motivated by applications in cell biology. It is assumed that the mitotic division
results in a random distribution of the label among daughter cells in accordance with
some bivariate probability distribution. In the event of cell death the label borne by
that cell disappears. The main focus is on the label distribution as a function of the
time elapsed from the moment of label administration. Explicit expressions for this
distribution are derived in some particular cases which are of practical interest in
the analysis of cell cycle. The Markov branching process with the same evolution
of a continuously distributed label is considered as well. Note that processes with
continuous labels are first considered by Kolmogorov [13].

New models of renewing cell populations (in vivo) using age-dependent branch-
ing processes with non-homogeneous Poisson immigration are proposed in
Sect. 12.4, where is considered an interesting and important problem arising from
cell proliferation kinetics: definition and limiting behavior of age and residual life-
time distributions for branching processes (see [24] and [26]). Leukemia cell ki-
netics with a stem cell immigration component is studied in Sect. 12.5 (see [33]).
Multitype age-dependent branching processes with randomly chosen paths of evo-
lution are proposed in Sect. 12.6 as models of progenitor cell populations (in vitro)
with estimating of the offspring distributions using real data as well as bootstrap
methods (see also [30]).

The relative frequencies of distinct types of cells in multitype branching pro-
cesses with a large number of ancestors are investigated in Sect. 12.7 (see [27] and
[28]). The reported limiting results are of advantage in cell kinetics studies where the
relative frequencies but not the absolute cell counts are accessible to measurement.
In [27] some relevant statistical applications are discussed in the context of asymp-
totic maximum likelihood inference for multitype branching processes. In [28] the
asymptotic behavior of multitype Markov branching processes with discrete or con-
tinuous time is investigated in the positive regular and nonsingular case when both
the initial number of ancestors and the time tend to infinity. Some limiting distri-
butions are obtained as well as multivariate asymptotic normality is proved. The
results from [27] and [28] have specific applications in cell proliferation kinetics.
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Finally it is worth to point out that the new problems in the theory of branching
processes appeared as a result of cell proliferation modeling and the paper is focused
on some of these new ideas.

12.2 Distributions of discrete marks over a proliferating
cell populations

Among many applied problems for which methods of branching stochastic pro-
cesses hold much promise is the analysis of labeling experiments. These experi-
mental techniques are intended for making quantitative inference of the mitotic cy-
cle parameters in renewing cell populations from observed dynamics of cells after
a fraction of the cell population is labeled with specially designed molecular mark-
ers. DNA precursors labeled either with radioactive isotopes (e.g., 3H-thymidine) or
with fluorescent antibodies are typically used for this purpose. Such labeling of the
cells occurs during their progression through the S-phase of the mitotic cycle. When
using 3H-thymidine and autoradiographic technique, one can obtain data on grain
counts, the latter being interpreted as discrete marks attached to each labeled cell.
The distribution of such marks as a function of the time elapsed from the adminis-
tration of a pulse label yields the needed information on the structure of the mitotic
cycle to be extracted by methods of mathematical modeling. Assuming that the ini-
tial distribution of marks is Poisson, and treating the evolution of labeled cells as
a Bellman-Harris age-dependent branching process with infinitely many cell types,
Yanev and Yakovlev [35] derived an analytical form of this distribution. On the other
hand, analyzing the kinetics of cells that have been pulse-labeled with BrdU on a
fluorescence-activated cell sorter has become a method of choice in this field of re-
search. This technique calls for modeling the distribution of BrdU intensity and its
variations with time. However, little attention has been given to this problem within
the framework of stochastic branching processes.

The problem for the distribution of the discrete labels was solved completely in
[35] for the case of impulsive labels at t = 0 and initial Poisson distribution Po(θ)
of the labels among cells. It is proved that the states of the system can be described
by a Bellman-Harris branching process with infinitely many types of particles Z̃ =
(Z0(t),Z1(t), . . . ,Z j(t), . . .), where Z j(t) is the number of cells with label j at time
t. For the distribution Π j(t) = E [Z j(t)]/E [∑∞

k=0 Zk(t)] , j = 0,1,2, ...; t ≥ 0, it is
obtained (in case of synchronized population) that

Π j(t) =
θ j

j!

∞

∑
k=0

(p21− j)ke−θ/2k
(G∗G∗k)(t)/

∞

∑
k=0

(2p)k(G∗G∗k)(t),

where G(t) is the cumulative distribution function (c.d.f.) of the mitotic cycle, G∗k

denotes the k-fold convolution of G, G = 1−G and p is the probability for successful
division. The generalization of these results and further applications are continued
in [36]. Henceforth the introduced notation will be used throughout the paper.
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A comprehensive presentation of biological applications of branching processes
by that time can be found in the book of Yakovlev and Yanev [22].

12.3 Distributions of continuous labels in branching populations
of cells

The case of a randomly distributed continuous label is more complicated than its
discrete counterpart and involves modeling of a branching process with states char-
acterized by a real-valued parameter (see [23, 25]). Recall that Kolmogorov [13]
was the first to consider a branching process (particle splitting) of this type with the
continuous parameter being the particle size.

Suppose that every cell has a life time τ with distribution function G(x) =
P(τ ≤ x) and at the end of its life it either divides into two cells with probability
p (0 < p ≤ 1) or it dies with probability 1 − p. If a cell divides, its label L is dis-
tributed randomly between daughter cells so that their labels L1 and L2 satisfy the
condition L1 +L2 ≤ L. Introduce the conditional distribution

P(L1 ≤ y1,L2 ≤ y2|L = y) = K (y1/y,y2/y) , 0 ≤ y1 ≤ y, 0 ≤ y2 ≤ y,

where the bivariate distribution function K(x1,x2) is symmetric, that is K(x1,x2) =
K(x2,x1), 0 ≤ K(x1,x2) ≤ 1 for 0 ≤ x1 ≤ 1,0 ≤ x2 ≤ 1. Let K(x) = K(x,1) =
K(1,x) be the one-dimensional distribution that defines both marginal distributions
of K(x1,x2). In the event of cell death the label borne by that cell disappears.

We assume for simplicity that the process begins with one cell of age zero at time
t = 0 and the initial cell bears a certain amount L0 of label. The results can readily
be generalized to include an arbitrary initial distribution of the random variable L0

and then the resultant formulas can be compounded with respect to this distribution.
The initial distribution can be estimated non-parametrically from the data on label
intensity available at time t = 0.

Let Z(t,x) be the number of cells at time t > 0 with the label intensity of
x ≤ L0. It is clear that Z(t,x) = 0 if x > L0. Introduce the notation: Pn(t,x|L0) =
P(Z(t,x) = n) . Then Pn(t,x|L0) = Pn(t,x/L0|1),x ≤ L0, and in what follows, we
will use the notation Pn(t,x) = Pn(t,x|1), 0 ≤ x ≤ 1. Note that Pn(t,x) = 0 for
n > 1/x.

Introducing the p.g.f.Ψ(t,x,s) = E
[
sZ(t,x)

]
one can obtain the equation

Ψ(t,x,s) = (1− p)G(t)+ s[1−G(t)

+p
∫ t

0

{∫ 1

x

∫ 1

x
Ψ(t − y,x/u1,s)Ψ(t − y,x/u2,s)K(du1,du2)

}
dG(y)],

which has a unique solution in the class of the p.g.f.
Introduce the notations
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A(t,x) = E [Z(t,x)] =
∂
∂ s

Ψ(t,x,s)|s=1,

B(t,x) = E [Z(t,x)(Z(t,x)−1)] =
∂ 2

∂ s2Ψ(t,x,s)|s=1.

Then one can obtain the following equations:

A(t,x) = 2p
∫ t

0

{∫ 1

x
A(t − y,x/u)dK(u)

}
dG(y)+1−G(t),

B(t,x) = 2p
∫ t

0

{∫ 1

x
B(t − y,x/u)dK(u)

}
dG(y)

+2p
∫ t

0

{∫ 1

x

∫ 1

x
A(t − y,x/u1)A(t − y,x/u2)K(du1,du2)

}
dG(y).

Setting x = 0 one has

Ψ(t,0,s) = (1− p)G(t)+ s[1−G(t)+ p
∫ t

0
Ψ 2(t − y,0,s)dG(y)],

A(t,0) = 2p
∫ t

0
A(t − y,0)dG(y)+1−G(t),

B(t,0) = 2p
∫ t

0
B(t − y,0)dG(y)+2p

∫ t

0
A2(t − y,0)dG(y),

describing an age-dependent binary branching process considered by Bellman and
Harris.

Definition 12.1. The label distribution Dt(x) is defined as follows:

Dt(x) = 1−Dt(x) = A(t,x)/A(t,0).

A closed form solution can be obtained in the special case where one of the daughter
cells receives a fixed fraction c (0 < c < 1) of the mother label while the comple-
ment 1− c goes to the second daughter cell. By a symmetry argument we have the
condition: 0 < c ≤ 1/2.

Theorem 12.1. If Kc(u) = 0 for u < c and Kc(u) = 1 for u ≥ c, then the following
label distribution holds:

(i) For x < c ≤ 1/2,

Dt(x) =

{
N

∑
k=0

(2p)k(G∗G∗k)(t)

}

/
∞

∑
k=0

(2p)k(G∗G∗k)(t),

where N = N(x,c) = 〈ln(x/c)/ lnc〉 and 〈z〉 denotes the smallest integer greater or
equal to z;

(ii) If x ≥ c, then



164 Nikolay M. Yanev

Dt(x) = G(t)/
∞

∑
k=0

(2p)k(G∗G∗k)(t)

for every c ∈ (0,1/2].

Corollary 12.1. The distribution given by Theorem 12.1 assumes a particularly sim-
ple form in the biologically plausible case of c = 1/2. In this case, N = N(x,1/2) =
〈−(ln2x)/ ln2〉 for x < 1/2.

Let G(x) = 1−e−λx,λ > 0, which means that the considered process is a Marko-
vian one.

Theorem 12.2. In the Markov case Dt(x)=
∞

∑
n=0

Πn(2pλ t)R∗n(− logx), where R(y)=

1−K(e−y) and Πn(z) = zne−z/n! is the Poisson distribution.

Corollary 12.2. Assuming in addition that K(u) = u for 0 ≤ u ≤ 1, then Dt(x) =
∞

∑
n=0

Πn(2pλ t)Γn(− logx), where Γn(y) =
1

(n−1)!

∫ y

0
zn−1e−zdz.

Theorem 12.3. Let α =
∫ 1

0
log(1/x)dK(x) < ∞, β =

∫ 1

0
log2(1/x)dK(x) < ∞ and

Δt(z) = exp{−2pλαt − z(2pλ tβ )1/2}. Then in the Markov case

lim
t→∞

Dt(Δt(z)) = 1/(2π)1/2
∫ z

−∞
e−u2/2du

for every z ∈ (−∞,∞).

The label distribution can be generalized in many different ways by replacing
A(t,x) and A(t,0) with other pertinent models of cell proliferation kinetics. In par-
ticular, age dependent branching processes with immigration are gaining in impor-
tance in conjunction with recent advancements in experimental approaches to cell
proliferation kinetics in analysis of renewing cell populations (see [24]). These ad-
vancements have made it possible to distinguish many cell types by antibody label-
ing so that cells of different types can be counted in the dissociated tissue by using
flow cytometry. Finally it is interesting to point out that the asymptotic results in
Theorem 12.3 remain open problems in the non-Markov cases.

12.4 Age and residual lifetime distributions for branching
processes

Let Z(t) be a continuous-time branching process and let Z(t,x) be the number of
individuals (cells) at time t of age ≤ x. Let Zt(y) represent the number of individuals
at time t whose residual lifetime is greater than y, y ≥ 0. Note that Z(t) = Z(t,x) if
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x ≥ t. Denote their p.g.f.’s by F(t;s) = E
[
sZ(t)
]

and F(t,x;s) = E
[
sZ(t,x)

]
, t,x ≥ 0,

with the corresponding expectations denoted by M(t) = E [Z(t)] = ∂F(t;s)
∂ s |s=1 and

M(t,x) = E [Z(t,x)] = ∂F(t,x;s)
∂ s |s=1, respectively.

Definition 12.2. For the process Z(t), the average age distribution at time t ≥ 0
is given by At(x) = M(t,x)/M(t), x ≥ 0. The limiting average age distribution is
defined as A(x) = limt→∞ At(x).

Definition 12.3. For the process Z(t) the average residual lifetime distribution at
time t ≥ 0 is given by Rt(y) = 1 − Rt(y) = 1 − E

[
Zt(y)

]
/M(t), y ≥ 0. Then the

limiting average residual lifetime distribution is defined as R(y) = limt→∞ Rt(y).

Note that E
[
Zt(y)

]
= M(t + y)−M(t + y,y). Therefore, one can write

Rt(y) =
M(t + y)−M(t + y,y)

M(t)
=

M(t + y)
M(t)

[
1− M(t + y,y)

M(t + y)

]
,

which offers some advantages.

Remark 12.1. Since every renewal process is a particular case of the age-dependent
branching process in which every individual produces exactly one offspring, the in-
troduced notions can be considered as a generalization of the age and residual life-
time distributions encountered in the renewal theory. However, these characteristics
are more difficult to handle in the context of branching processes.

Let us first consider a class of age-dependent branching processes with a ran-
domly chosen paths of evolution (without immigration) defined as follows (see also
Sect. 12.7).

Evolution. Every cell with probability p has a random lifetime ξ with c.d.f.
G(x) = P(ξ ≤ x), x ≥ 0, or with probability 1− p it differentiates into another cell
type. In other words, the lifetime ξ is identical to the mitotic cycle (MC) dura-
tion. At the end of its life, every cell gives rise to ν offspring (of the same cell
type) with discrete distribution pk(u) = P(ν = k|ξ = u) , ∑∞

k=0 pk(u) = 1, u ≥ 0.
It takes a random time η with c.d.f. L(x) = P(η ≤ x), x ≥ 0, for the event of
differentiation to actually occur. If p = 1, the stochastic process thus defined re-
duces to the Sevastyanov branching process [19]. The mixture-type branching (al-
lowing non-identical distributions of the time to division and the time to differ-
entiation) was introduced by Jagers [10]. Denote the offspring p.g.f. by h(u;s) =
E [sν |ξ = u] = ∑∞

k=0 pk(u)sk, |s| ≤ 1, u ≥ 0. The most representative example is
given by h(u;s) = 1 − β (u) + β (u)s2, implying that the cell divides with proba-
bility β (u) or dies with probability 1−β (u). In what follows, our focus will be on
the general case.

Let F(t;s) = E
[
sZ(t)
]

be the p.g.f. of the number of cells Z(t) at time t produced

by one cell of zero age, and let Z(t,x) be the number of cells of age ≤ x that are

present at time t. The latter process has p.g.f. F(t,x;s) = E
[
sZ(t,x)

]
, t,x ≥ 0. The

p.g.f.’s F(t;s) and F(t,x;s) satisfy the following integral equations
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F(t;s) = p
∫ t

0
h(u;F(t −u;s))dG(u)

+s{p[1−G(t)]+(1− p)[1−L(t)]}+(1− p)L(t),

F(t,x;s) = p
∫ t

0
h(u;F(t −u,x;s))dG(u)

+[sδ (x− t)+1−δ (x− t)]{p[1−G(t)]+(1− p)[1−L(t)]}+(1− p)L(t),

with F(0;s) = F(0,0;s) = s, where δ (z) = 1 for z ≥ 0 and δ (z) = 0 for z < 0.
These equations are obtained by conditioning on the evolution of the first cell

and applying the law of total probability (LTP). It is not difficult to obtain equations
for the corresponding expectations by taking partial derivatives with respect to s at
the point s = 1.

Let α be the Malthus parameter of the equation p
∫ ∞

0 e−αum(u)dG(u) = 1 and
assume the conditions
∫ ∞

0
ue−αum(u)dG(u) < ∞,

∫ x

0
e−αu[1−G(u)]du < ∞,

∫ ∞

0
e−αu[1−L(u)]du < ∞.

Note that in the supercritical case α > 0, the last two conditions are automatically
met.

Theorem 12.4. Under the conditions the following limiting age and residual life-
time distributions hold

(i) A(x) =
p
∫ x

0 e−αu[1−G(u)]du+(1− p)
∫ x

0 e−αu[1−L(u)]du
p
∫ ∞

0 e−αu[1−G(u)]du+(1− p)
∫ ∞

0 e−αu[1−L(u)]du
,

(ii) R(y) = 1− eαy
p
∫ ∞

y e−αu[1−G(u)]du+(1− p)
∫ ∞

y e−αu[1−L(u)]du

p
∫ ∞

0 e−αu[1−G(u)]du+(1− p)
∫ ∞

0 e−αu[1−L(u)]du
.

Note that in the critical case α = 0

A(x) = R(x) =
p
∫ x

0 [1−G(u)]du+(1− p)
∫ x

0 [1−L(u)]du
p
∫ ∞

0 [1−G(u)]du+(1− p)
∫ ∞

0 [1−L(u)]du
.

Remark 12.2. Let us now set p = 1. If we assume in addition that h(s)≡ h(u;s), m =
h′(1), then Z(t) will be the classical Bellman–Harris branching process generated by
the (G,h)-evolution of cells. Hence one obtains the limiting age distribution A(x) =∫ x

0 e−αu(1−G(u))du
∫ ∞

0 e−αu(1−G(u))du
, which can be found in Harris [6] but only for α > 0. Note

that R(y) = 1− eαy(1−A(y)).

Remark 12.3. Consider now the Markov case G(t) = 1− e−λ t , t ≥ 0, with h(u;s) ≡
h(s). Assuming additionally that p = 1, one obtains the age distribution At(x) = 1−
e−mλx. Note that the age distribution for the Markov branching process is stationary,
but it depends of the critical parameter m. It is not difficult to see also that Rt(y) =
1− e−λy, i.e. the residual lifetime distribution in the Markov case is also stationary
and identical to the lifetime distribution.
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Let Y (t) be an age-dependent process with the evolution as previously and the
following immigration component.

Immigration. Let 0 = S0 < S1 < S2 < S3 < ... be a sequence of time points in
a non-homogeneous Poisson process ξ (t) with rate r(t). The notation Λ(t) is used
for the cumulative rate Λ(t) =

∫ t
0 r(u)du. We also use the notation: Ti = Si − Si−1

then Sk = ∑k
i=1 Ti, k = 1,2, .... Associated with every point Sk is an independent

immigration component Ik, where {Ik} are i.i.d. r.v.’s with p.g.f. g(s) = E
[
sIk
]

=
∑∞

i=0 qisi.

This process can be represented as Y (t) =∑ξ (t)
k=1 Z(k)(t−Sk) if ξ (t) > 0 and Y (t) =

0 if ξ (t) = 0, where Z(k)(t) are i.i.d. branching processes with the same evolution
as Z(t) but originated from a random number of ancestors Ik. Each of the processes
Z(k)(t) has p.g.f. F∗(t;s) = g(F(t;s)). The p.g.f. of the process Y (t) is denoted by
Ψ(t;s).

Let Y (t,x) be the number of cells of age ≤ x at time t in this branching model

with immigration. Introduce the p.g.f. Ψ(t,x;s) = E
[
sY (t,x)|Y (0,0) = 0

]
. Note that

if x ≥ t then Y (t) = Y (t,x). Let Yt(y) be the number of cells at time t whose residual
lifetime is greater than y.

Theorem 12.5. The p.g.f.’s of the processes Y (t) and Y (t,x) are given by

Ψ(t;s) = exp

{
−
∫ t

0
r(t −u)[1−F∗(u;s)]du

}
, Ψ(0;s) = 1,

Ψ(t,x;s) = exp

{
−
∫ t

0
r(t −u)[1−F∗(u,x;s)]du

}
, Ψ(0,0;s) = 1,

where F∗(t;s) = g(F(t;s)), F∗(t,x;s) = g(F(t,x;s)).

Further on we will use Definitions 12.2 and 12.3, where the process Z is replaced
by the process Y.

Theorem 12.6. Assume conditions of Theorem 12.4 and let limt→∞ r(t) = r > 0.
Then the limiting age distribution A(x) is given by Theorem 12.4 and for the limiting
residual lifetime one has: R(y) = A(y) for α ≤ 0 and R(y) = 1− eαy(1−A(y)) for
α > 0.

Remark 12.4. The limiting age distributions in the general age-dependent branching
processes with and without immigration are identical. The same statement is valid
for the limiting residual lifetime distributions.

Let us consider the Markov case with p = 1 and r(t) ≡ r. Sevastyanov (see [19])
was the first to study this Markov branching process with homogeneous Poisson
immigration (MBPwHPI) .

Theorem 12.7. In the MBPwHPI there exists a stationary age distribution At(x) =
N(t,x)/N(t) = 1 − e−mλx, x ≥ 0, and the limiting residual lifetime distribution is
given as follows R(y) = 1− e−mλy, m < 1 and R(y) = 1− e−λy, m ≥ 1.
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Remark 12.5. The residual lifetime distributions associated with the Markov branch-
ing process with homogeneous Poisson immigration depend on the critical parame-
ter m. It is interesting to note that in the critical and supercritical cases the limiting
residual lifetime distribution is the same as the lifetime distribution (just as it comes
about when considering the Markov process without immigration), while in the sub-
critical case it is exponential with parameter mλ .

12.5 Branching processes with immigration as models
of leukemia cell kinetics

The purpose of the considered work [33] is to introduce and investigate a class of
two-type decomposable Markov branching processes with immigration which has
the most direct bearing on mathematical modeling of leukemia cell kinetics. It is
well known that no general theory is available for the multi-type decomposable
branching processes so that every particular case is of mathematical interest. Let us
first consider the biological motivation for the problem under study.

Malignant stem cells have now been described for cancers of the blood, breastand
brain. In each case, the unifying feature of such cancers is a unique subpopulation
of stem cells that are responsible for tumor genesis and perpetuation. Such cells are
poorly defined and found at relatively low frequency, thus making their identifica-
tion difficult. There is currently no experimental method by which drug effects on
cancer stem cells can easily be measured. That is why mathematical modeling can
greatly augment our understanding of cancer stem cell growth kinetics and provide
a direct means by which drugs may be screened for cancer stem cell specific effects.

The initiation and perpetuation of leukemia derives from the leukemic stem cell
(LSC) population while the propagation of leukemic disease depends critically on
the immediate downstream progeny of LSC, the leukemic progenitor (LP) popula-
tion. In what follows, the LP cells will be referred to as Type T1 cells. The latter cell
type can be easily screened using common in vitro colony assays. The same is true
for the population of blast cells (BC) (referred to as Type T2 cells).

From a modeling standpoint, we intend to explore the possibility of modeling
the system under study as a two-type branching stochastic process. The most seri-
ous complication here is that the processes of leukemic cell development involve the
transition of LSCs to the LP cell compartment. This influx of the LP cells is unob-
servable and one has to reconstruct it in order to describe the dynamics of progenitor
and blast cells.

We first consider the process of immigration of cells into the LP compartment.
Suppose that the time intervals between successive arrivals form a renewal stochas-
tic process μ(t) = {# arrivals by time}. These arrivals do not include those resulting
from mitotic divisions of the LP cells. Given below is a sound reason for treat-
ing μ(t) as a Poisson process. Experimental studies of the central nervous system
(CNS) development support the hypothesis of asymmetric division of multipotent
stem cells that generate diverse cell types in the CNS, indicating a crucial role of
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the membrane-associated protein NUMB in this process. The asymmetric division
is a mechanism by which stem cells prevent their extinction and it seems highly
plausible that LSC divide asymmetrically as well. If we hypothesize in addition that
the dynamics of LSC’s follows the Smith and Martin model, then the immigration
process of LP’s is Poisson with intensity r. Indeed, the asymmetric mitosis of stem
cells ensures ordinariness of the immigration process while the Smith and Martin
model postulates a Markovian transition of resting stem cells to the state of active
proliferation (see [20]).

Upon arrival, every LP cell enters the MC. The outcomes of the MC include sym-
metric or asymmetric mitotic division, differentiation into a blast cell, and cell death.
The evolution of cells under a general two-compartment model can be described as
follows.

General Model. Every cell of type T1 has a life-time τ1 with a d.f. G1(x) =
P(τ1 ≤ x) and at the end of its life-time it gives rise to a random number of offspring
with probability generating function (p.g.f.) h1(s1,s2) = p0 + p1s2

1 + p2s2
2 + p3s1s2,

h1(1,1) = 1.
In other words, every cell of type T1 produces either two cells of type T1 with

probability p1 > 0, or two cells of type T2 with probability p2 > 0, or one cell of type
T1 and one cell of type T2 with probability p3 > 0, or it dies (or exits the population
under study) with probability p0 = 1− p1 − p2 − p3 ≥ 0. The usual independence
assumptions are also adopted.

The following important particular cases are worth considering:
Model 1 – symmetric mitosis (p3 = 0): h1(s1,s2) = p0 + p1s2

1 + p2s2
2.

Model 2 – symmetric and asymmetric mitoses (p2 = 0): h1(s1,s2) = p0 + p1s2
1 +

p3s1s2.
We hypothesize in addition that every cell type T2 has a life-time τ2 with d.f.

G2(x) = P(τ2 ≤ x) giving rise to a random number of offspring with with p.g.f.
h2(s2) = 1−q+qs2

2, h2(1) = 1. In other words, every cell of type T2 produces two
daughter cells of the same type with probability q > 0 and it dies with probability
1−q.

Independently of the processes of cell proliferation and differentiation, there is a
process of immigration of type T1 cells. The moments of immigration events form a
homogeneous Poisson process with cumulative rate R(t) = rt, r > 0, so that exactly
one cell of type T1 enters the population at every given moment of immigration.

Let Yk(t) be the number of cells of type Tk, k = 1,2, at time t ≥ 0. It is obtained
a joint p.g. f .

Ψ(t;s1,s2) = E[sY1(t)
1 sY2(t)

2 ] = exp{−r
∫ t

0
[1−F1(u;s1,s2)]du}, Ψ(0;s1,s2) ≡ 1,

where
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F1(t;s1,s2)

=
∫ t

0
h1(F1(t −u;s1,s2),F2(t −u;s2))dG1(u)+ s1(1−G1(t)), F1(0;s1,s2) = s1

F2(t;s2) =
∫ t

0
h2(F2(t −u;s2))dG2(u)+ s2(1−G1(t)), F2(0;s2) = s2.

Consider now the Markov case, when G1(x) = 1 − e−λx and G2(x) = 1 − e−μx,
introducing the infinitesimal g.f. f1(s1,s2) = λ (h1(s1,s2)−s1), f2(s2) = μ(h2(s2)−
s2) and the corresponding infinitesimal parameters a = λ (2p1 − 1), b = λ p1, c =
λ p2, ρ = λ p3, α = μ(2q−1), β = μq.

Defining the functions R1(t;s1,s2) = 1−F1 (t;s1,s2) and R2(t;s2) = 1−F2 (t;s2)
one can obtain the following Riccati equations:

(i) For Model 1

∂
∂ t

R1(t;s1,s2) = aR1(t;s1,s2)−bR2
1(t;s1,s2)+2cR2(t;s2)− cR2

2(t;s2).

(ii) For Model 2

∂
∂ t

R1(t;s1,s2)

= (a+ρ)R1(t;s1,s2)−bR2
1(t;s1,s2)−ρR1(t;s1,s2)R2(t;s2)+ρR2(t;s2).

In both cases

R2(t;s2) = (1− s2)/{1+β t(1− s2)}, for α = 0,

R2(t;s2) = eαt(1− s2)/{1+β (eαt −1)(1− s2)/α}, for α 
= 0.

Note that the above-considered two-type branching processes are decomposable.
Since no general theory is available for decomposable processes then every partic-
ular case is of interest. Further on, our focus is on the General Model. Asymptotic
results for Model 1 (ρ = 0) and Model 2 (c = 0) easily follow as special cases.

Let us introduce the moments (under the condition Y1(0) = Y2(0) = 0): M1(t) =
E [Y1(t)] , Σ1(t) = Var [Y1(t)] , M2(t) = E [Y2(t)] , Σ2(t) = Var [Y2(t)] , C1,2(t) =
Cov [Y1(t)Y2(t)] .

The asymptotic (as t →∞ ) behavior of the above quantities depends on relations
between the critical parameters a + ρ (type T1) and α (type T2). We will distin-
guish between the subcritical case, where both parameters are negative, the critical
case, where at least one of the two parameters is equal to zero while the other is
non-positive, and the supercritical case, where at least one of the parameters is pos-
itive. The obtained results demonstrate that the mean values M1(t) and M2(t), the
variances Σ1(t) and Σ2(t), as well as the covariance C1,2(t), all converge to some
constants in the subcritical case, they show an exponential growth in the supercriti-
cal case and a polynomial growth (with degrees from 1 to 4) in the critical case.

The following limit theorem holds in the biologically most interesting subcritical
case.
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Theorem 12.8. In the subcritical case (a +ρ < 0,α < 0) there exists a stationary
distribution

P(Y ∗
1 = n1,Y

∗
2 = n2) = lim

t→∞
P(Y1(t) = n1,Y2(t) = n2) , n1,n2 = 0,1,2, ...

with joint p.g.f.

Ψ ∗(s1,s2) = E
[
s
Y ∗

1
1 ,s

Y ∗
2

2

]
= exp

{
−r
∫ ∞

0
(1−F1(x;s1,s2))dx

}
, Ψ ∗(1,1) = 1.

The stationary marginal distribution for the cells of type T1 is negative-binomial
with p.g.f.

Ψ ∗(s1,1) = E
[
s
Y ∗

1
1

]
= ((1− p)/(1− ps1))r/b, p = b/(b− (a+ρ)).

Remark 12.6. The limiting distributions in the critical and supercritical cases remain
to be open problems.

The results of this paper demonstrate that the problem of stochastic modeling
of such complex cell systems as the heterogeneous population of leukemic cells
is mathematically approachable. From a biological standpoint, the most important
conclusion is that it is possible to make inferences on the dynamics of the popula-
tion of stem cells by the indirect route, i.e., by estimating the rate of transition be-
tween the populations of stem cells and more differentiated progenitor cells. From
a mathematical standpoint, the decomposable branching process under considera-
tion is tractable in terms of its moments and relevant asymptotic results have been
obtained. Since experimental techniques are now available to count the numbers of
cells of various types as functions of time, it is a technical problem to develop as-
sociated methods of statistical inference along the lines of the earlier work in the
field. Extending the results reported in this paper to the case of non-homogeneous
Poisson immigration represents a challenging problem for future research. Such an
extension is necessary to model the effects of anti-tumor drugs on the population of
leukemic cells.

12.6 Age-dependent branching populations with randomly
chosen paths of evolution

Consider a multitype population with the following cell evolution (see Appendix
in [30]). Every newborn cell of type Tk (k = 1,2, ...,d) with probability rk,i(
∑d

i=1 rk,i = 1
)

has a life-time c.d.f. Fk,i(t) and at the end of its life produces progeny
in accordance with p.g.f. hk,i(s), s = (s1,s2, ...,sd).

Let Z(t) = (Z1(t),Z2(t), ...,Zd(t)), where Zk(t) denotes the number of cells of

type Tk at time t. Introduce p.g.f.s Φk(t;s) = E
[
sZ(t)|Z(0) = ek

]
and ΦΦΦ(t;s) =
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(Φ1(t;s),Φ2(t;s), ...,Φd(t;s)), where ek = (0, ...,0,1,0, ...0) with 1 at the k-th place.
Then the following system of integral equations holds:

Φk(t;s)=
d

∑
i=1

rk,i

∫ t

0
hk,i(ΦΦΦ(t −u;s))dFk,i(u)+ sk

d

∑
j=1

rk, jFk, j(t) , k = 1,2, ...,d,

which is equivalent to the system of equations:

Φk(t;s)=
∫ t

0
hk(u;ΦΦΦ(t −u;s))dGk(u)+ skGk(t), k = 1,2, ...,d,

where Fk, j(t) = 1−Fk, j(t), Gk(t) =
d
∑

i=1
rk,iFk,i(t), Gk(t) = 1−Gk(t) and hk(u;s) =

d
∑

i=1
αk,i(u)hk,i(s) with αk,i(u) = rk,i/

d
∑
j=1

rk, j(dFk, j(u)/dFk,i(u)),
d
∑

i=1
αk,i(u) = 1. We

use the notation dFk, j(u)/dFk,i(u) for the corresponding Radon–Nikodym deriva-
tives. The above model represents a special case of the d-type Sevastyanov branch-
ing process.

In [30], two new models of an age-dependent branching process with two types
of cells are proposed to describe the kinetics of progenitor cell populations cultured
in vitro. Another approach is given in Hyrien et al. [7, 8], Yakovlev [29] and Zorin
et al. [37]. Our models considered in [30] with two cell types can be derived by
the general case setting d = 2, r1,1 = p, r1,2 = 1 − p, F1,1(t) = F1(t), F1,2(t) =
F3(t), h1,2(s1,s2) ≡ 1, r2,1 = 0, r2,2 = 1, F2,2(t) = F2(t), h2,2(s1,s2) ≡ 1. The most
biologically relevant example of the p.g.f. h1,1(s1,s2) is given by h1,1(s1,s2) = p0 +
p1s2

1 + p2s2, h(1,1) = p0 + p1 + p2 = 1.This form of h1,1(s1,s2) implies that every
cell of type T1 either dies with probability p0, or divides into two new T1 cells with
probability p1, or differentiates into a new cell type T2 with probability p2, all the
transformations occurring upon completion of its mitotic cycle.

The main focus is on the estimation of the offspring distribution from data on
individual cell evolutions. Such data are typically provided by time-lapse video-
recording of cultured cells. Some parameters of the life-cycle of progenitor cells,
such as the mean (median) and variance of the mitotic cycle time, can be estimated
nonparametrically without resorting to any mathematical model of cell population
kinetics. For other parameters, such as the offspring distribution, a model-based
inference is needed. Age-dependent branching processes have proven to be useful
models for this purpose. Within the framework of branching processes, the loss of
cells to follow-up can be modeled as a process of emigration that precludes other
cell transformations from occurring. This motivates the development of branching
models with emigration and associated estimation techniques. The considered work
[30] develops the needed methodology and put it to practical use.

The basic idea behind our approach is to consider a hidden discrete process that
would have been observed in the absence of emigration. The net reproduction prob-
abilities of such a process represent the parameters of interest and we develop a
procedure that makes it possible to estimate them from experimental observations.
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This approach allows us to employ the theory of statistical inference for branching
processes with a large number of ancestors (see Yanev [31, 32] and Dion and Yanev
[2]).

The proposed new models of a two-type age-dependent branching process with
emigration are motivated by a specific biological application. In this application,
the first type of cells represents immediate precursors of oligodendrocytes while
the second type represents terminally differentiated oligodendrocytes. The proposed
methodology can be readily extended to branching processes with any finite number
of cell types.

12.7 Multitype branching populations with a large number
of ancestors

Usually branching processes with discrete or continuous time are investigated sepa-
rately but in this section we will treat them together. We will consider first a multi-
type Markov branching process

Z(t;N) = (Z1(t;N),Z2(t;N), ...,Zd(t;N)),

where Zk(t;N) denotes the number of cells of type k (k = 1,2, ...,d) at time t ∈ T
with Z(0) = (N,0, ...,0). The time may be discrete T = N0 = {0,1,2, ...} or contin-
uous T = R+ = [0,∞), but the process is assumed to be positive regular and nonsin-
gular. Let R and r denote Perron-Frobenius eigenvalues respectively for a discrete
or continuous time and with a left eigenvector v = (v1, ...,vd).

The relative frequencies (fractions, proportions) of types can be defined on the
non-extinction set as follows:

Δi(t;N) = Zi(t;N)/
d

∑
j=1

Z j(t;N), i = 1,2, ...,d.

The investigation of the relative frequencies is very important for the applications
(especially in the cell biology) because there are a lot of situations when it is not pos-
sible to observe the numbers of cells but only their relative proportions. In what fol-
lows, we will also need the following deterministic proportions pi(t) = A1i(t)/M(t),
where M(t) = ∑d

j=1 A1 j(t) and A1 j(t) = E [Z j(t;1)] , i, j = 1,2, ...,d; t ∈ T.

Theorem 12.9. ([28]) Let pk = vk/V, k = 1, ...,d, V =
d
∑

k=1
vk, and N, t → ∞.

(i) If {R < 1,NRt → ∞ or r < 0,Nert → ∞}∨ {R = 1 or r = 0 and N/t → ∞}
then Δk(t;N) → pk in probability, k = 1,2, ...,d;

(ii) If {R > 1 or r > 0} then Δk(t;N) → pk a.s., k = 1,2, ...,d.

Consider now X(t;N) = (X1(t;N), ...,Xd(t;N)), t ∈ T, where for some normaliz-
ing functions Dk(t)
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Xk(t;N) = (Zk(t;N)−A1k(t;N))/(Dk(t)
√

N)

with A1k(t;N) = E [Zk(t;N)] , k = 1, ...,d.

Theorem 12.10. ([28]) Assume finite second moments and N, t → ∞.
(i) If {R < 1,NRt → ∞, or r < 0,Nert → ∞} and Dk(t) ≡ D(t) ∼ {√Rt or

√
ert}

for k = 1, ...,d, then

X(t;N) d→ ξξξ = (ξ1, ...,ξd), (12.1)

and ξξξ = (ξ1, ...,ξd) has a multivariate normal distribution with E [ξi] = 0 and

a covariance matrix C =
∥
∥Cjk

∥
∥ , where Cjk = limB(1)

jk (t)/Rt , t ∈ N0 or Cjk =

limB(1)
jk (t)/ert , t ∈ R+.

(ii) If {R = 1 or r = 0 with N/t → ∞} and Dk(t) ∼ {vk
√

u1Bt or vk
√

u1bt},
k = 1, ...,d, then

X(t;N) d→ ηηη = (η1, ...,ηd), (12.2)

where η1 = ... = ηd a.s. and η1 has N(0,1) distribution.
(iii) If R > 1 or r > 0 and Dk(t) ∼ {vkRt or vkert}, k = 1, ...,d, then

X(t;N) d→ ζζζ = (ζ1, ...,ζd), (12.3)

where ζ1 = ... = ζd a.s., ζ1 has N(0,τ2) distribution and τ2 = E
[
W 2 | Z(0) = δδδ 1

]

is defined in [1].

Theorem 12.11. ([28]) Assume N, t →∞ and Condition (i) of Theorem 12.10. Then
(i) For every k = 1,2, ...,d

Φk(t;N) = u1V
√

ND(t)[Δk(t;N)− pk(t)]
d→ Yk ,

where Yk is a normally distributed r.v. with E [Yk] = 0 and

Var [Yk] = Ckk −2pk

d

∑
j=1

Ck j + p2
k

d

∑
i, j=1

Ci j.

(ii) For every k = 2,3, ...,d −1 and every subset (n1,n2,...,nk) with nonrecurring
elements from the set {1,2, ...,d} the following joint distributions hold

(Φn1(t;N), ...,Φnk(t;N)) d→ (Yn1 , ...,Ynk),

where the random variables (Yn1 , ...,Ynk) have a multivariate normal distribution
with

Cov[Yi,Yj] = Ci j − pi

d

∑
k=1

Ck j − p j

d

∑
l=1

Cli + pi p j

d

∑
k,l=1

Ckl .
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Remark 12.7. Surprisingly in the critical and supercritical cases there are not analogs
of Theorem 12.11.

Introduce the following notions:

σ2
i (t) = Var [Zi(t,1)] , i = 1,2, ...,d,

R(d)(t) = ||ri j(t)||, ri j(t) = Cor [Zi(t,1),Z j(t,1)] , i, j = 1,2, ...,d,

C(d)(t) = ||ci j(t)||, cii(t) = σi(t)(1− pi(t)), ci j(t) = −σi(t)p j(t)

for i 
= j; i, j = 1,2, ...,d.
As a contrast of the previous obtained results the following theorem is valid for

any kind of branching processes with discrete or continuous time (Markov or non
Markov, reducible or irreducible) assuming only the usual independence of the in-
dividual evolutions. Let, for i = 1,2, ...,d,

Vi(t;N) = (Zi(t;N)−A1i(t;N))/(σi(t)
√

N) and Wi(t;N) = M(t)
√

N (Δi(t;N)− pi(t)) .

Theorem 12.12. ([27]) Let t be fixed and N → ∞. Then the following statements
are valid:

(i) (V1(t;N), ...,Vd(t;N)) d→ (X1(t), ...,Xd(t)),
where the random vector X(d)(t) = (X1(t), ...,Xd(t)) has a joint normal distribution
with E [Xi(t)] = 0, Var [Xi(t)] = 1, and Cor [Xi(t),Xj(t)] = ri j(t).

(ii) Wi(t;N) d→ Yi(t),
where the r.v. Yi(t) is normally distributed with E [Yi(t)] = 0 and Var [Yi(t)] =
∑d

j,k=1 r jk(t)c ji(t)cki(t), i = 1,2, ...,d;
(iii) For every k = 2,3, ...,d −1,

(W1(t;N), ...,Wk(t;N)) d→ (Y1(t), ...,Yk(t)),

and Y(k)(t) = (Y1(t), ...,Yk(t)) has a multivariate normal distribution with a covari-
ance matrix which can be calculated as follows:

D(k)(t) = ||Cov [Yi(t),Yj(t)] || = [Cd×k(t)]T R(d)(t)Cd×k(t),

where [Cd×k(t)]T = ||c ji(t)||, j = 1,2, ...,k; i = 1,2, ...,d, is the corresponding
transposed matrix of [k×d] dimensions.

In particular, the following observation process is directly relevant to quantitative
studies of proliferation, differentiation, and death of cells. Suppose that the process

under study begins with N =
n
∑

k=1
Nk cells of type T1 and the values of Nk are all

large, i.e., N0 = min{N1,N2,...,Nn} → ∞. The descendants of the first N1 ancestors
are examined only once at time t1 to determine the observations of Zi(t1;N1) or
Δi(t1;N1), i = 1,2, ...,d, whereupon the observation process is discontinued (i.e. the
cells under examination are destroyed). At the next moment t2 ≥ t1, the process



176 Nikolay M. Yanev

Zi(t2;N2) or the fractions Δi(t2;N2), i = 1,2, ...,d, related to the descendants of the
second N2 ancestors are observed, and so on. This procedure results in n independent
observations of the form:

ζζζ k = Z(tk;Nk) = (Z1(tk;Nk), ...,Zd(tk;Nk)) , k = 1,2, ...,n; t1 ≤ t2 ≤ ... ≤ tn,

or

ζζζ k = Δ(tk;Nk) = (Δ1(tk;Nk), ...,Δd(tk;Nk)) , k = 1,2, ...,n; t1 ≤ t2 ≤ ... ≤ tn,

where each vector ζζζ k is asymptotically normal in accordance with Theorems 12.10,
12.11 and 12.12.

Denoting the corresponding contribution to the asymptotic log-likelihood func-
tion by Lk(ζζζ k; tk,Nk), the overall log-likelihood is given by

Λn(ζζζ 1,ζζζ 2, ...,ζζζ n) =
n

∑
k=1

Lk(ζζζ k; tk,Nk).

The log-likelihood depends on the offspring parameters only, which are of primary
interest in applications and especially in cell kinetics studies. Finally the parame-
ters can be estimated from the data on the process or the relative frequencies by
maximizing the log-likelihood. In this way, the asymptotic results give a new di-
rection toward statistical inference and applications of branching processes in cell
proliferation kinetics (see [27]).

Feller [3] considered first branching process with a large number of ancestors.
For a classical Bienaymé–Galton–Watson (BGW) process he showed a diffusion
approximation in the near-critical case. Lamperti [16] derived also some interesting
limiting distributions for BGW process. These results were summarized and dis-
cussed by Jagers [10]. Statistical inference for BGW processes with an increasing
number of ancestors as well as limiting distributions when N and t tend to infinity
were developed by Yanev [31] and Dion and Yanev [2] (see also a review chapter
by Yanev [32]).

Jagers [9] was probably the first to consider relative frequencies (proportions,
fractions) of cells within the framework of multitype branching processes. He stud-
ied asymptotic (as t →∞) properties of a reducible age-dependent branching process
with two types of cells and proved convergence of their relative frequencies to non-
random limits in mean square and almost surely on the non-extinction set. The use-
fulness of such frequencies in cell cycle analysis was further demonstrated by Mode
[18] considering a four-type irreducible age-dependent branching process. Mode
built his cell cycle analysis on a model of multitype positively regular age-dependent
branching process. In the supercritical case, he proved that limΔk(t) = δk a.s. as
t → ∞, providing the population does not become extinct. In his monograph, Mode
[17] also considered the utility of fractions and reported a similar result for the BGW
process.
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12.8 Concluding remarks

The presented results were planed as a part of a joint book with Andrei Yakovlev on
branching processes as models in cell proliferation kinetics. Unfortunately the book
will appear never. This paper is a tribute to the stimulating ideas of Andrei Yakovlev
and the friendship that we shared in our collaboration.

Acknowledgements The paper is supported by NIH/NINDS grant NS39511, NIH/NCI R01 grant
CA134839 and NIH grant N01-AI-050020. The author would like to thank the referee for the
useful remarks and suggestions.
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13
Griffiths–Pakes branching process as a model
for evolution of Alu elements

Marek Kimmel and Matthias Mathaes

Abstract Alu elements occupy about eleven percent of the human genome and are
still growing in copy numbers. Since Alu elements substantially impact the shape of
our genome, there is a need for modeling the amplification, mutation and selection
forces of these elements. Our proposed theoretical neutral model follows a discrete-
time branching process described by Griffith and Pakes. From this model, we derive
a limit frequency spectrum of the Alu element distribution, which serves as the the-
oretical, neutral frequency to which real Alu insertion data can be compared through
statistical goodness of fit tests. Departures from the neutral frequency spectrum may
indicate selection. A comparison of the Alu sequence data, obtained by courtesy of
Dr. Jerzy Jurka, with our model shows that the distributions of Alu sequences in
the AluY family systematically deviate from the expected distribution derived from
the branching process. This observation suggests that Alu sequences do not evolve
neutrally and might be under selection.
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Keywords: Bienayme–Galton–Watson branching process, infinite-allele model,
Alu elements, evolution, human genome, Pakes–Griffiths process.

13.1 Introduction

We present a biological application of a special case of the Griffiths–Pakes discrete-
time branching process with infinite-allele mutations. The process seems to be

Matthias Mathaes
Department of Statistics, Rice University, MS 138, 6100 Main Street, Houston, TX 77005, USA

Marek Kimmel
Systems Engineering Group, Institute of Automatic Control, Silesian University of Technology,
Akademicka 16, 44-100 Gliwice, Poland; Department of Statistics, Rice University, MS 138, 6100
Main street, Houston, TX 77005, USA, e-mail: kimmel@stat.rice.edu
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almost ideally suitable for modeling the evolution of the so-called Alu elements,
which are movable sequences of DNA, very abundant in the human genome. For
the biologically important special case of the linear-fractional offspring distribution
we derive the semi-explicit expressions for the expected frequency spectra of classes
of alleles existing in a given number of copies (an analogue of the Ewens sampling
formula). We compare the outcome with Alu-element statistics data.

13.2 Alu repeat sequences

13.2.1 Background on Alus

Alu elements belong to the group of transposable or mobile elements, which occupy
nearly 45% of the human genome [2]. Within this group of transposable and also
highly repetitive elements, LINEs (Long INterspersed Elements) and SINEs (Short
INterspersed Elements) form the two largest groups. They occupy 21 and 13% of the
human genome respectively [5]. Whereas the LINEs are dominated by L1 elements,
the largest and hence most studied group of the SINEs are comprised of the Alu
elements. While many transposable elements are present in all eukaryotic genomes,
Alu elements appear only in mammals. A typical full-length Alu sequence is ap-
proximately 300 bp long. Alu sequences amplify by retrotransposition, also known
as “the copy and paste” mechanism. At present it is estimated that more than one
million copies of Alu elements occupy about eleven percent of the human genome,
and the number of elements seems to be growing [2].

Based on diagnostic mutations, Alu elements are divided into subfamilies. The
three major families of Alu sequences are J, S and Y. The letters are chosen in
alphabetical order to convey the different ages of each family. Alu sequences in
the J family are the oldest, while Alu sequences in the Y family are the youngest.
The most interesting family in the current research of Alu elements is the Y family,
which contains the youngest and most active Alu elements [6]. Due to their recent
integration, 25% of their loci are still polymorphic [2]. An Alu locus is defined to
be polymorphic if some individuals have an Alu element at that particular location
while others do not. These polymorphic loci can be used as genetic markers for
disease association studies.

13.2.2 Alu sequence data used in this study

Dr. Jerzy Jurka of the Genetic Information Research Institute (GIRI) kindly pro-
vided Alu sequence data for our analysis. All Alu subfamilies were extracted
from the March 2006 assembly of the USCS Human Genome database. Only
recognizable full-length Alu sequences were retained for analysis. Overall, Alu
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sequences for nine different Alu subfamilies were extracted from the USCS ref-
erence genome: AluYa1, AluYa4, AluYa5, AluYa8, AluYb8, AluYc1, AluYd2,
AluYe2, and AluYe5.

Following preparatory steps described elsewhere [4], we obtained the counts of
Alu sequences that were unique, had two identical copies, three identical copies,
or n identical copies in the sample. To obtain these counts for each Alu subfamily,
a program was written in R-language. The counts, as presented in Table 13.1, or
corresponding percentages constitute our final data, which were tested against the
theoretical distribution based on the branching process model.

Number of copies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18

Ya1 3761 25 2 4 1 1
Ya4 426 6 2 2 1 1
Ya5 1722 75 15 16 11 10 5 4 2 5 1 1 2 1 2
Ya8 28 3 1
Yb8 1489 71 11 15 8 9 4 4 1 1 1 1 1
Yc1 3162 42 9 4 1 1 1 1
Yd2 401 1
Ye2 1130 3 1
Ye5 853 10 7 2 1
All 12970 237 47 43 23 21 10 8 5 5 2 1 3 3 1 2

Table 13.1 Frequencies of alleles (mutant types) with j copies (class j alleles). Classes with j > 20
have been omitted.

13.3 Discrete branching process of Griffiths and Pakes with
infinite allele mutations

Branching processes have been widely used in modeling cell population dynamics.
An insertion of an Alu sequence into a new genomic location can be considered a
proliferation process not dissimilar from cell division. Therefore proliferation and
mutation of Alu sequences can be described in a mathematical way using a branch-
ing process. The branching process has to account for the fact that Alu sequences are
still growing in numbers in the human genome. Therefore we focus on the supercrit-
ical branching processes, in which the expected number of offspring is greater than
one (m > 1). One interesting model prediction, which can be compared to data is
how many different Alu sequences occur in each Alu subfamily or more specifically
how many Alu alleles with frequency j exist in each subfamily. Based on a discrete-
time branching process with infinite allele mutations, Griffiths and Pakes (see [3])
derived a limit result for the expected proportion of alleles having frequencies in j.

Griffiths and Pakes process [3] is a modification of the standard Bienayme-
Galton-Watson branching process to allow individuals infinitely many possible
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identifiable types. In our application, the types are alleles (variants) of the Alu
sequence identified by specific point mutations. From time t = 0, a non-mutant
clone of particles is evolving in time according to a single-type branching process
(Fig. 13.1).

Fig. 13.1 Griffiths–Pakes branching process with infinite-allele mutations. A non-mutant clone
of particles is evolving in time according to a single-type branching process (in our case, time
discrete). With probability μ per time step, a particle mutates and initiates a clone of new previously
nonexistent type, which evolves according to the same rules as the original non-mutant clone. As a
result, a set of clones of different types emerges, spawning further clones, some of which may die
out. Upper panel: low μ; lower panel: high μ .

With probability μ per time step, a particle mutates and initiates a clone of new
previously nonexistent type, which evolves according to the same rules as the origi-
nal non-mutant clone. As a result, a set of clones of different types emerges, spawn-
ing further clones, some of which may die out. We are interested in deriving, using
Griffith-Pakes theory (see [3]), expected frequencies of allele classes such that al-
lele is in class k if it exists in k copies, for a specific version of the process, which is
biologically justifiable.

The number of individuals at t = 0 is defined as Z0 = 1. Let Gn be the collection
of individuals in generation n and let Zn denote their number. Each generation size
depends on the previous generation size through the branching property

Zn+1 =
Zn

∑
j=1

ξ j,n,
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where ξ j,n are independent identically distributed (iid) integer-valued random vari-
ables, which represent the number of offspring born to the jth member of Gn. The
distribution of ξ j,n is characterized by its probability generating function (pgf)

f (s) =
∞

∑
k=0

pksk,

where pk = P[ξ j,n = k], and it is assumed that p0 + p1 < 1, i.e., the branching process
is nontrivial. We have m = f ′(1).

If an individual produces j offspring then the number of progeny having the
parental allele is distributed binomially with parameters j and 1−μ , hence its pgf is
equal to (μ+(1−μ)s) j. This implies that any new allele is followed by a branching
process of its like-type descendants with offspring pgf H(s) = f (μ+(1−μ)s). This
process is supercritical if its expected progeny count M = m(1− μ) is greater than
1. Within this framework let us define αn( j) as the number of alleles in Gn having j
representatives in Gn. Let Kn = ∑ j≥1αn( j) be the number of alleles in Gn and then
Zn can be expressed as Zn = ∑ j≥1 jαn( j).

The number of alleles αn( j) can be counted in the following way. Define indi-
cator I1,0,n( j) = 1 if the ancestor allele has j representatives in Gn. Define indicator
Ik,r,n−r( j) = 1 if the kth member of Gr has a new allele and has j like-type descen-
dants in Gn. With these indicator definitions

αn( j) = I1,0,n( j)+
n−1

∑
r=1

Zr

∑
k=1

Ik,r,n−r( j).

The indicators are independent within generations, but dependent across genera-
tions. Taking expectations and letting n → ∞ leads to the unnormalized frequency
spectrum φ j:

φ j = lim
n→∞

m−nEαn( j) = μ
∞

∑
r=1

m−rq(r)
1 j ,

with the symbol q(r)
1 j = ( j!)−1d jH(r)(s)/ds j|s=0, where H(r)(s) is the rth iterate of

pgf H(s), is the probability that there are j individuals at time r in a nonmutant clone
started at time 0 by a single individual. The frequency spectrum sequence (φ j) j≥1

can be normalized by A = ∑∞
j=1 φ j:

Ψj = A−1φ j =
μ ∑∞

r=1 m−rq(r)
1 j

μ ∑∞
n=1 m−n(1−q(n)

10 )
.

TheΨj is the long-term expected proportion of alleles with frequency j, which is the
formula that we will use to compute the theoretical distribution of Alu allele classes
for given offspring pgfs.
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13.3.1 Linear fractional offspring distribution

The process of creation of new Alu repeats by retrotransposition can be naturally
described by the age dependent Markov branching process {Zt} (i.e., process with
exponentially distributed individuals’ lifelengths) with quadratic offspring distribu-
tion. If such process is sampled at constant time intervals, the resulting discrete-time
process {ZkΔ t} is a Galton–Watson branching process with linear fractional pgf [1].
A unique property of the linear fractional case is that the iterations of the pgf can
be computed explicitly and also are of linear fractional form. Let us start with the
generating function of the linear fractional case:

f (s) = 1− b
1− p

+
bs

1− ps
.

The probability distribution corresponding to this generating function is:

p0 = 1−
∞

∑
i=1

pi =
1−b− p

1− p
,

pk = bpk−1, k = 1,2, . . .

The parameters b and p are subject to certain restrictions,

p, b > 0,

b+ p ≤ 1.

To ensure that this process is supercritical, i.e., m > 1, additional constraints on b
and p are needed. The mean of f (s) is m = (d f /ds)|s↑1 = b

(1−p)2 , so supercriticality

yields an additional restriction on parameters b and p, b > (1− p)2, or equivalently

p > 1−
√

b.

To compute q(n)
1 j , the nth iterate of f (s) is derived, which we define as fn(s).

For every supercritical pgf f (s), the equation f (s) = s has two roots, s = 1 and
s0 = (1−b− p)/[p(1− p)] ∈ [0,1).

We have

fn(s) = 1−mn
(

1− s0

mn − s0

)
+

mn( 1−s0
mn−s0

)2s

1− ( mn−1
mn−s0

)s
.

Allowing for mutation in this linear fractional case leads to following pgf:

H(s) = f (μ +(1−μ)s)

= 1− b
1− p

+
b(μ +(1−μ)s)

1− p(μ +(1−μ)s)
.
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To use to above results, we rearrange the parameters in H(s) so that it is repre-
sented in the linear fractional form,

H(s) = 1− b∗

1− p∗ +
b∗s

1− p∗s
.

We find that b∗ = b(1−μ)
(1−pμ)2 and p∗ = p(1−μ)

1−pμ .

The constraints for the new parameters b∗ and p∗,

p∗, b∗ > 0,

p∗ +b∗ ≤ 1,

p∗ > 1−
√

b∗,

lead to modified constraints on p, b, and μ :

μ 
= 1
p
,

p, b > 0,

(1− p)2

1−μ
< b ≤ 1− p(1+(1− p)μ)

1−μ
,

1−
√

b(1−μ) < p ≤ 1+μ −
√

(1−μ)2 +4bμ(1−μ)
2μ

.

The lower bounds on b and p result from the condition m = b∗
(1−p∗)2 > 1, whereas

the upper bounds come from the restriction b∗ + p∗ ≤ 1.

We now compute the q(n)
1 j , to obtain the distribution of the long-term expected

proportion of alleles having frequencies in j, referred to as Ψj’s. As before, the

q(n)
1 j ’s are derived from the offspring pgf Hn(s) by equating the coefficients of s.

Hn(s) = 1− mn(1− s0)
mn − s0

+
mn( 1−s0

mn−s0
)2s

1− ( mn−1
mn−s0

)s

= 1−mnxn +mn x2
ns

1− zns

where xn = (1−s0)
mn−s0

and zn = mn−1
mn−s0

.

To compute the q(n)
1 j we solve



186 Marek Kimmel and Matthias Mathaes

Hn(s) =
∞

∑
j=0

q(n)
1 j s j

1−mnxn +
mnx2

ns
1− zns

=
∞

∑
j=0

q(n)
1 j s j

1−mnxn +
mnx2

n

zn

∞

∑
j=1

(zns) j = q(n)
10 s0 +

∞

∑
j=1

q(n)
1 j s j (13.1)

From Eq. (13.1) we see that q(n)
10 = 1−mnxn and q(n)

1 j = mnx2
nz j−1

n for j ≥ 1. In
the terms of m and s0,

q(n)
10 = 1− mn(1− s0)

mn − s0
=

s0(mn −1)
mn − s0

and q(n)
1 j = mn

(
1− s0

mn − s0

)2( mn −1
mn − s0

) j−1

.

Applying these expressions to the expression forΨj gives us:

Ψj = A−1φ j

=
∑∞

r=1 m−rq(r)
1 j

∑∞
n=1 m−n(1−q(n)

10 )

=
∑∞

r=1(
1−s0

mr−s0
)2( mr−1

mr−s0
) j−1

∑∞
n=1

(1−s0)
mn−s0

=
∑∞

r=1(1− s0)
(mr−1) j−1

(mr−s0) j+1

∑∞
n=1

1
mn−s0

The infinite sums in the numerator and denominator are numerically computed. A

program was written in R-language to compute the q(n)
1 j andΨj. Since Alu sequence

data in Table 13.1 suggest a high value for Ψ1, we verify that the theoretical Ψ1

attains such values for any choices of parameters b, p, and μ . For fixed μ = 10−6,
we established a grid of b and p from 0 to 1 in steps of 0.01. Figure 13.2 shows that
Ψ1 can assume any value between 0 and 1, and that high values of Ψ1 occur for a
combination of low values of b and high values of p.

13.4 Fitting results

To fit the branching process model to the Alu sequence data, we use the maximum
likelihood method. The highest value of the likelihood determines the estimates
for our parameters. Since the log-likelihood of does not exist in a closed form, we
evaluate it numerically. Our estimates of b and p are accurate to the fifth digit. For
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Fig. 13.2 Contour plot illustrating the influence of parameters b and p on Ψ1, based on Griffiths–
Pakes process with linear-fractional distribution. As evident from the plot, the highest valuest of
Ψ1 are located at the upper left end of the unit square, i.e., at large b and small p vaues. Range of
Ψ1-values, from 0 to 1.

these runs we fixed μ = 10−6. Sensitivity of the outcome to variation in parameter μ
is very slight as along as this parameter is small (such as 10−5 −10−9 per division).

Figures 13.3 and 13.4 depict the maximum-likelihood fits of the model to the
data from AluYa1 and AluYa5 subfamilies, respectively. They are presented in the
semi-logarithmic scale, to amplify the tail probabilities.

The graphical comparison that the data fit relatively well for allele classes 1 and
3–7. Notably, the allele class 2 shows the worst fit among the first seven allele
classes. These seven classes account for at least 0.99 cumulative class frequency
observed in the data.

13.5 Discussion

The current study seems to constitute the first application of the Griffiths–Pakes
process to biological data. The outcome is interesting in the sense that a generally
plausible fit is obtained to the Alu element frequency distribution. It is not quite
clear, why the fit fails worst at the frequency class 2. This may have something to
do with initial steps of data preparation. Indeed, if a region containing a relatively
frequent variant were removed so that sequences could be aligned, some unique
variants might migrate to class 2.



188 Marek Kimmel and Matthias Mathaes

Fig. 13.3 AluYa1 data-based class frequencies against the theoretical {Ψk} in log scale. Fitted by
Griffiths–Pakes process with linear-fractional distribution, with b = 0.016, p = 0.983.

Fig. 13.4 AluYa5 data-based class frequencies against the theoretical {Ψk} in log scale. Fitted by
Griffiths–Pakes process with linear-fractional distribution, with b = 0.139, p = 0.861.

A more detailed discussion is contained in the companion paper [4], but we
should notice that the current model does not involve genetic drift. Indeed, the
genomes evolve within individuals and properly, the branching process should have
been embedded in a population genetic model of Wright-Fisher or Moran type.
However, this would lead to enormous complications.
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Parametric inference for Y-linked gene
branching models: Expectation-maximization
method

Miguel González, Cristina Gutiérrez and Rodrigo Martı́nez

Abstract Inferential problems for Y-linked bisexual branching processes are stud-
ied. A parametric frequentist framework is considered, with the reproduction laws
belonging to the power series family of distributions. This kind of model is appro-
priate for the analysis of the generation-by-generation evolution of the number of
carriers of two alleles of a Y-linked gene in a two-sex monogamic population, as-
suming that females prefer males carrying one of the alleles. It is assumed that the
only available data are the total number of females and the total number of males of
each genotype in each generation. The estimation problem is tackled as an incom-
plete data problem. Maximum likelihood estimators for the main parameters of the
model are derived using expectation-maximization method. Predictive distributions
for as yet unobserved generations are derived, and the accuracy of the algorithm is
illustrated by way of a simulated example.

Mathematics Subject Classification (2000): 60J80, 60J85, 62M05, 90D10, 92D25

Keywords: Y-linked genes, bisexual branching processes, power series family of
distributions, maximum likelihood estimators, expectation-maximization method.

14.1 Introduction

The XX/XY sex-determination system is one of the most familiar, and is found in
the populations of most mammals, including humans. In these populations, females
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have XX chromosomes, while males have two distinct chromosomes, XY. There-
fore, the Y chromosome is exclusive of males. Recent research has shown the im-
portance of some Y-linked genes or markers, such as long-arm Y-chromosomal mi-
crodeletions, certain DNA polymorphisms, transmission of surnames, or the spread
of melanistic pigmentation (see, e.g., [1, 2, 10], and [13]).

Determining the evolution of these kinds of Y-linked characters in a population
plays an important role in solving certain questions with a practical importance. In
this sense, bisexual branching processes have recently been introduced in [5] and
[7] to model the evolution in the number of carriers of Y-linked characters of popu-
lations. Both these models consider perfect fidelity mating and a Y-linked gene with
a pair of alleles. These alleles could represent the presence or absence of a character
in an individual. We here consider the model presented in [5], which assumes that
the alleles are expressed in the male phenotype, and that females have a preference
for males carrying one of the alleles of the gene. Melanistic pigmentation in the
Eastern Mosquitofish and certain surnames in humans are two notable examples of
this kind of Y-linked character.

Using this Y-linked bisexual branching process, one deduces that the behaviour
(extinction/survival) of this kind of Y-linked gene depends on certain parameters of
the model (see [5] and [6]). In most real situations, these parameters are unknown
and they have to be estimated. In the present work, we deal with the problem of
making inferences about these parameters. We take a frequentist and parametric
approach, with the reproduction laws belonging to the power series family of distri-
butions. In relation to this, a major problem is what information one can expect to
obtain from the sample. In this sense, we consider a realistic situation in which the
only data available are the total number of females and the total number of males
of each genotype in each generation. This is a relatively small amount of sample
information, and we view the estimation problem using such a sample as analogous
to an incomplete data problem. This leads us to use the expectation-maximization
(EM) method (see [4]) in order to obtain maximum likelihood estimators (MLEs).

The communication is organized in four sections. In Sect. 14.2, we provide the
definition of the Y-linked bisexual branching process. Then, in Sect. 14.3, we set
out the inference problem, and provide MLEs of the main parameters of the model
using the EM method. We also derive predictive distributions for as yet unobserved
generations. Finally, a simulation study is described in Sect. 14.4.

14.2 The probability model

The probability model we are concerned with is the Y-linked bisexual branching
process introduced in [5]. This model is a discrete-time stochastic process which
determines generation-by-generation the evolution of the number of carries of the
two alleles, R and r, of a Y-linked gene. These alleles are expressed in the pheno-
type of males. Hence, the males are designated by R-type or r-type according to
allele they carry. Thus, for each n ≥ 1, Fn, MRn, and Mrn denote the total number
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of females, and R-type and r-type males at generation n, respectively. Since females
and males form mating units to produce offspring, a couple (female–male) is clas-
sified as R-type or r-type according to the genotype of the male. The total numbers
of R-type and r-type mating units at generation n are denoted by ZRn and Zrn, re-
spectively. The number of mating units of each type in the initial generation (n = 0)
is fixed, and from this vector (ZR0,Zr0) the population size is determined in each
generation according to two phases: reproduction and mating.

According to the inheritance rules, in the reproduction phase, R-type mating units
can generate females and R-type males, while r-type mating units can produce fe-
males and r-type males. Moreover, each couple is assumed to randomly produce
offspring independently of the other couples. The probability distribution of these
variables will be the same for all the couples with a given genotype, irrespective
of the generation they belong to, and will be called the reproduction law of that
genotype. Formally therefore, we consider two independent sequences

{(FRn,l ,MRn,l) : l = 1,2, . . . ;n = 0,1, . . .}

and
{(Frn,l ,Mrn,l) : l = 1,2, . . . ;n = 0,1, . . .}

of independent, identically distributed, non-negative, and integer-valued bivariate
random vectors, where (FRn,l ,MRn,l) (resp. (Frn,l ,Mrn,l)) represents the number of
females and males generated by the lth R-type (resp. r-type) mating unit in genera-
tion n.

In general, (FR0,1,MR0,1) and (Fr0,1,Mr0,1) may have different distributions,
meaning that R-type and r-type couples may have differences in their reproductive
abilities. With respect to the distribution of these vectors, we assume the binomial
reproduction scheme introduced in [3]. That is, the total number of descendants
generated by an R-type (resp. r-type) couple is specified by a given probability dis-
tribution, {pR

k }k≥0 (resp. {pr
l }l≥0), where pR

k = P(FR0,1 + MR0,1 = k), with k ≥ 0
(resp. pr

l = P(Fr0,1 + Mr0,1 = l), with l ≥ 0), called the reproduction law of the
R-type (resp. r-type) mating units. We denote by mR (resp. mr) the average number
of offspring (i.e., “the reproduction mean”) generated by an R-type (resp. r-type)
couple.

Furthermore, an offspring will be female with probability α , 0 <α < 1, and male
with probability 1−α . These sex designations are made independently among the
offspring of any couple, and it is assumed that the genotype has no influence on the
sex determination, so that α is the same for both genotypes. Then, given that an R-
type (resp. r-type) mating unit produces k (resp. l) offspring, i.e., FR0,1 +MR0,1 = k
(resp. Fr0,1 + Mr0,1 = l), the number of females among these, FR0,1 (resp. Fr0,1),
follows a binomial distribution of size k (resp. l) and probability α . Thus the average
number of females and males per R-type (resp. r-type) couple will be αmR and
(1−α)mR (resp. αmr and (1−α)mr), respectively.

As was noted in the Introduction, we consider a parametric framework. We then
assume that the reproduction laws belong to the power series family of distributions,
i.e.,
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pR
k = aR,kθ k

R(AR(θR))−1 and pr
l = ar,lθ l

r (Ar(θr))−1, for all k, l ≥ 0, (14.1)

where {aR,k}k≥0 and {ar,l}l≥0 are known non-negative sequences of real values,
AR(θR)= ∑∞

k=0 aR,kθ k
R and Ar(θr) = ∑∞

l=0 ar,lθ l
r , with aR,kθ k

R ≥ 0 and ar,lθ l
r ≥ 0, for

all k, l ≥ 0, and θR ∈ R and θr ∈ R, such that 0 < AR(θR) < ∞ and 0 < Ar(θr) < ∞.
For these distributions, it is not hard to deduce that

mR = mR(θR) = θR
d

dθR
logAR(θR) and mr = mr(θr) = θr

d
dθr

logAr(θr).

(14.2)
The power series is an exponential family that includes most of the usual distribu-
tions used in practice (e.g., Poisson, geometric, binomial, negative binomial,. . . ).

For a fixed generation n with known total numbers of R-type and r-type mating
units, and taking into account the basis of the genetic rules described above, the
female offspring of all the couples in generation n yield the total number of females
in generation n+1, i.e.,

Fn+1 =
ZRn

∑
i=1

FRn,i +
Zrn

∑
j=1

Frn, j. (14.3)

Similarly, the male offspring of all the R-type (resp. r-type) couples in generation n
yield the total number of R-type (resp. r-type) males in generation n+1, i.e.,

MRn+1 =
ZRn

∑
i=1

MRn,i and Mrn+1 =
Zrn

∑
j=1

Mrn, j. (14.4)

Now we deal with the mating phase. Since the generations do not overlap, from
Fn+1, MRn+1, and Mrn+1, the number of couples of each genotype in generation
n + 1 is obtained in the following way. We assume perfect fidelity and preference
in mating, i.e., each individual mates with only one individual of the opposite sex
provided that some of them are still available, and females prefer R-type males as
mates. Therefore, since R-type males are chosen first as mates, the number of R-type
mating units is

ZRn+1 = min{Fn+1,MRn+1}. (14.5)

The number of females which do not mate with R-type males is

max{0,Fn+1 −MRn+1}.

These females (if any) mate with r-type males and the assumption of perfect fidelity
implies that the number of r-type mating units is

Zrn+1 = min{max{0,Fn+1 −MRn+1},Mrn+1}. (14.6)

Notice that the number of couples of each genotype in the (n + 1)st generation
depends only on the present number of mating units, and not on the number of
ancestors that belonged to past generations. Therefore, knowing the present number
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of mating units of each type and the parameters of the model, i.e., the probability
that a descendant is female, α , and the reproduction laws of both types defined by
θR and θr, one obtains by recursion the number of females, males, and mating units
of each type in the following generations by Eqs. (14.3), (14.4), (14.5) and (14.6).

In [5] and [6], the extinction problem for a Y-linked gene was considered using
this model, providing conditions for the almost sure extinction of the whole popu-
lation, and also for each genotype to have a positive probability of survival/fixation.
These conditions depend on the magnitudes of α and the means of the reproduc-
tion laws of the two types, mR and mr. In [6], it was shown that these parameters
determine the asymptotic behaviour of the genotypes.

In practice, the parameters α , θR, θr, mR, and mr are usually unknown. In order
to apply this model to real situations, it is therefore necessary to develop the theory
of its estimation.

14.3 The estimation problem: The expectation-maximization
method

Restricting ourselves to a frequentist approach in the parametric context described
in the previous section, we next attempt to find MLEs of the parameters (α,θR,θr)
and the reproduction means (mR,mr). We shall also make inferences of the fu-
ture population sizes of females and of the two types of males, i.e., of the vector
(FN+s,MRN+s,MrN+s), for any s > 0. To this end, we first assume that the entire
family tree up to generation N, denoted by Z FM N , is observed, i.e., the vectors

{(FRn,l ,MRn,l),(Frn,k,Mrn,k) : l = 1, . . . ,ZRn;k = 1, . . . ,Zrn;n = 0, . . . ,N −1}

are known. Given that mating units reproduce independently, that reproduction
laws belong to the power series family given by (14.1), and the binomial scheme,
it is straightforward to obtain that the likelihood function of (α,θR,θr) based on
Z FM N is given by

L((α,θR,θr)|Z FM N) ∝

N−1

∏
n=0

αFn+1(1−α)MRn+1+Mrn+1θFRn+1+MRn+1
R (AR(θR))−ZRnθFrn+1+Mrn+1

r (Ar(θr))−Zrn ,

(14.7)
with FRn (resp. Frn) the number of females in generation n generated by all ZRn−1

(resp. Zrn−1) R-couples (resp. r-couples), i.e.,

FRn =
ZRn−1

∑
i=1

FRn,i (resp. Frn =
Zrn−1

∑
j=1

Frn, j).



196 Miguel González, Cristina Gutiérrez and Rodrigo Martı́nez

From (14.2) and (14.7), it is easy to prove by applying a standard procedure (see
[8]) that MLEs of (α,mR,mr) based on Z FM N are given by

α̂ = ∑N
n=1 Fn

∑N
n=1(Fn+MRn+Mrn)

, m̂R = ∑N
n=1(FRn+MRn)

∑N−1
n=0 ZRn

, and m̂r = ∑N
n=1(Frn+Mrn)

∑N−1
n=0 Zrn

.

We assume that mR(θR) and mr(θr) are one-to-one functions. Then, one deduces
that MLEs of θR and θr, denoted by θ̂R and θ̂r, respectively, are the unique solutions
of the equations

N

∑
n=1

(FRn +MRn) = mR(θ̂R)
N−1

∑
n=0

ZRn and
N

∑
n=1

(Frn +Mrn) = mr(θ̂r)
N−1

∑
n=0

Zrn,

respectively.
Note that the above estimators depend only on the total number of mating units

of each type and the females and individuals generated by them, that is, on the
variables ZRn, Zrn, Fn+1, T Rn+1 = FRn+1 + MRn+1 and Trn+1 = Frn+1 + Mrn+1,
for n = 0, . . . ,N − 1. Using a standard procedure (see [9] for details), one obtains
that (α̂, θ̂R, θ̂r, m̂R, m̂r) are also the MLEs of (α,θR,θr,mR,mr) based on the sample

{(ZRn,Zrn),(Fn+1,T Rn+1,Trn+1),n = 0, . . . ,N −1}.

However, in most real situations, it is impossible to observe the random variables
T Rn+1 and Trn+1 because the females are indistinguishable. Only the two types of
males can be differentiated. This leads us to the interesting problem of how to esti-
mate the parameters of the model only assuming as available data the total number
of females and the total number of males of each type in each generation up to the
Nth generation, i.e., the vectors

{(Fn+1,MRn+1,Mrn+1),n = 0, . . . ,N −1}.

Moreover, we assume that the vector (ZR0,Zr0) is known, i.e., the total number of
mating units of each type at the initial generation. Since Eqs. (14.5) and (14.6) give
the number of mating units of each type deterministically, the above set of vectors
contains the same information as

{(ZRn,Zrn),(Fn+1,MRn+1,Mrn+1),n = 0, . . . ,N −1}.

To simplify the notation, we shall refer to this set as FM N .
The question posed above can then be studied as a problem of estimation with

incomplete data. In this sense, the expectation-maximization (EM) method (see [4]
and [11]) is appropriate to deal with the problem, allowing one to obtain MLEs.

To apply the EM method, we write

FRrN = {(FRn+1,Frn+1),n = 0, . . . ,N −1}.
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This set of unobserved vectors is taken to be a latent vector, and is required to make
inferences completing the information given by FM N .

First we shall describe the distribution of the latent vector FRrN given the sam-
ple FM N and the parameters of the model (α,θR,θr), denoted by

FRrN |(FM N ,α,θR,θr).

14.3.1 Determining the distribution of FRrN |(FM N ,α,θR,θr)

To determine the distribution of the unobserved vector FRrN given the sample
FM N and the parameters of the model (α,θR,θr), we shall first prove that this
distribution satisfies

f (FRrN |(FM N ,α,θR,θr)) =
N−1

∏
n=0

f ((FRn+1,Frn+1)|(ZFMn,α,θR,θr)), (14.8)

where, for n = 0, . . . ,N − 1, ZFMn is the vector (ZRn,Zrn,Fn+1,MRn+1,Mrn+1).
Computationally, this means that to generate the vector FRrN we must proceed
generation-by-generation. Specifically, once we know the total number of mating
units in generation n, (ZRn,Zrn), and the total number of females and of males of
each type in the (n +1)st generation, (Fn+1,MRn+1,Mrn+1), it is enough to sample
the vectors (FRn+1,Frn+1). In proving (14.8), we shall write P(·|·) to denote the
conditional probability with parameters (α,θR,θr). Let f RrN and f mN be vectors
of non-negative integers with

f RrN = ( f Rn+1, f rn+1,n = 0, . . . ,N −1)

and
f mN = (zRn,zrn, fn+1,mRn+1,mrn+1,n = 0, . . . ,N −1),

where zRn+1 = min{ fn+1,mRn+1} and zrn+1 = min{max{0, fn+1−mRn+1},mrn+1},
for n = 0, . . . ,N −1. Since mating units reproduce independently, one has that

P(FRrN = f RrN |FM N = f mN)

=
N−1

∏
n=0

P((ZRn,Zrn) = (zRn,zrn),AmRn+1 ,Amrn+1 ,A fn+1 ,A f Rn+1 ,A f rn+1)
P((ZRn,Zrn) = (zRn,zrn),AmRn+1 ,Amrn+1 ,A fn+1)

=
N−1

∏
n=0

P(A f Rn+1 ,A f rn+1 |(ZRn,Zrn) = (zRn,zrn),AmRn+1 ,Amrn+1 ,A fn+1),

where, for each n = 0, . . . ,N −1, we have defined the sets

AmRn+1 = {MRn+1 = mRn+1} = {
ZRn

∑
i=1

MRn,i = mRn+1},
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Amrn+1 = {Mrn+1 = mrn+1} = {
Zrn

∑
j=1

Mrn, j = mrn+1},

A fn+1 = {Fn+1 = fn+1} = {
ZRn

∑
i=1

FRn,i +
Zrn

∑
j=1

Frn, j = fn+1},

A f Rn+1 = {FRn+1 = f Rn+1} = {
ZRn

∑
i=1

FRn,i = f Rn+1},

A f rn+1 = {Frn+1 = f rn+1} = {
Zrn

∑
j=1

Frn, j = f rn+1}.

Specifically, knowing that ZRn = zRn and Zrn = zrn, the set AmRn+1 (resp. A f Rn+1 )
means that mRn+1 (resp. f Rn+1) R-type males (resp. females) have been generated
by all zRn R-type mating units. Analogous descriptions can be given for the sets
Amrn+1 and A f rn+1 . Finally, the set A fn+1 means that all zRn + zrn mating units have
generated fn+1 females.

Having shown that the distribution of FRrN given FM N when the underlying
parameters are(α,θR,θr) can be simulated generation-by-generation, we now deter-
mine, for a fixed generation n, the distribution of the (FRn+1,Frn+1) given ZFMn,
i.e.,

f ((FRn+1,Frn+1)|(ZFMn,α,θR,θr)).

Applying the multiplication rule, one straightforwardly obtains that

P(A f Rn+1 ,A f rn+1 |(ZRn,Zrn) = (zRn,zrn),AmRn+1 ,Amrn+1 ,A fn+1)

is proportional to the product of the probabilities

P(AmRn+1 ,Amrn+1 ,A f Rn+1 ,A f rn+1 |(ZRn,Zrn) = (zRn,zrn)) (14.9)

and

P(A fn+1 |(ZRn,Zrn) = (zRn,zrn),AmRn+1 ,Amrn+1 ,A f Rn+1 ,A f rn+1). (14.10)

Given that mating units reproduce independently, (14.9) is equal to

P(AmRn+1 ,A f Rn+1 |ZRn = zRn)P(Amrn+1 ,A f rn+1 |Zrn = zrn).

Since the total number of descendants produced by all R-type couples at generation
n is given by FRn+1 +MRn+1, and the reproduction scheme considered is binomial,
then the probability that mRn+1 R-type males and f Rn+1 females are produced by
all R-type mating units, given by P(AmRn+1 ,A f Rn+1 |ZRn = zRn), is the product of the
probabilities

P(FRn+1 +MRn+1 = f Rn+1 +mRn+1|ZRn = zRn) (14.11)

and
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P(A f Rn+1 |ZRn = zRn,FRn+1 +MRn+1 = f Rn+1 +mRn+1). (14.12)

Considering that the reproduction law, that is the distribution of the random vari-
able FRn,i +MRn,i, belongs to the power series family of parameter θR and that the
conditional distribution of FRn+1 + MRn+1 is a convolution of ZRn copies of the
reproduction law, one obtains that the probability given in (14.11) is proportional to

(AR(θR))−zRnθ f Rn+1+mRn+1
R ,

and therefore, this distribution belongs also to the power series family. Special cases
in which one can easily obtain this distribution are the Poisson and the geometric
distributions, because the sum of independent random variables with these distri-
butions follows a Poisson or a negative binomial distribution, respectively. Further-
more, taking into account the binomial reproduction scheme, the probability given
in (14.12) is obtained from a binomial distribution with size f Rn+1 + mRn+1 and
probability α . One can obtain P(Amrn+1 ,A f rn+1 |Zrn = zrn) analogously.

Finally, the probability given in (14.10) is obviously unity if fn+1 = f Rn+1 +
f rn+1, and zero otherwise.

In sum, computationally, to determine the probability distribution of FRrN given
(FM N ,α,θR,θr) it is sufficient to determine it generation-by-generation. Fixed
n = 0, . . . ,N −1 and given (ZRn,Zrn,Fn+1,MRn+1,Mrn+1), we have shown that this
can be done by determining the convolution of ZRn and Zrn distributions belonging
to the power series family defined by θR and θr, respectively, and independent bino-
mial distributions with size the total number of descendants generated by all mating
units of each type and probability α , subject to the constraint Fn = FRn +Frn.

14.3.2 The expectation-maximization method

Now that we know the distribution of FRrN |(FM N ,α,θR,θr), we shall describe
the EM method. This is an iterative method that runs as follows. For i ≥ 0, let
(α(i),θ (i)

R ,θ (i)
r ) be the estimated parameters in the i-th iteration of the algorithm.

The (i+1)st iteration starts with the expectation step (E), where the expected value

of the log-likelihood with respect to the available data (FM N ,α(i),θ (i)
R ,θ (i)

r ) is
calculated, i.e.,

E
FRrN |(FM N ,α(i),θ (i)

R ,θ (i)
r )

[
log(L((α,θR,θr)|(FM N ,FRrN)))

]
.

The maximization step (M) consists of finding the values (α(i+1),θ (i+1)
R ,θ (i+1)

r ) of
the parameters which maximize this expectation. Writing

E∗
i [·] = E

FRrN |(FM N ,α(i),θ (i)
R ,θ (i)

r )
[·],
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taking into account (14.2) and (14.7), and applying a standard procedure, one ob-
tains that

α(i+1) = ∑N
n=1 Fn

∑N
n=1(Fn +MRn +Mrn)

,

m(i+1)
R = ∑N

n=1(E
∗
i [FRn]+MRn)

∑N−1
n=0 ZRn

, and m(i+1)
r = ∑N

n=1(E
∗
i [Frn]+Mrn)

∑N−1
n=0 Zrn

.

Note that the sequence {α(i)}i≥1 is constant and is equal to α̂ , the MLE of α .

This is because α̂ only depends on FM N . Moreover, m(i+1)
R and m(i+1)

r depend
on the expectations given by ∑N

n=1 E∗
i [FRn] and ∑N

n=1 E∗
i [Frn], respectively, since

∑N
n=1 FRn and ∑N

n=1 Frn are not observed. Finally, since mR(θR) and mr(θr) are one-

to-one, then θ (i+1)
R and θ (i+1)

r are the unique solutions of the equations

N

∑
n=1

(FRn +MRn) = mR(θ (i+1)
R )

N−1

∑
n=0

ZRn and
N

∑
n=1

(Frn +Mrn) = mr(θ
(i+1)
r )

N−1

∑
n=0

Zrn,

respectively, where mR(θ (i+1)
R ) = m(i+1)

R and mr(θ
(i+1)
r ) = m(i+1)

r .
Therefore, given the known sample FM N , the EM algorithm is as follows:

Fixed (α(0),θ (0)
R ,θ (0)

r ) for some positive values
Do i = 1

E Step:

Determine FRrN |(FM N ,α(i),θ (i)
R ,θ (i)

r )

Calculate ∑N
n=1 E∗

i [FRn] and ∑N
n=1 E∗

i [Frn]

M Step:

Calculate

(α(i+1),θ (i+1)
R ,θ (i+1)

r ) = argmax(α,θR,θr) E∗
i

[
log(L((α,θR,θr)|(FM N ,FRrN)))

]

Do i = i+1

One hence obtains a sequence {(α(i),θ (i)
R ,θ (i)

r ,m(i)
R ,m(i)

r )}i>0 which converges to
(α̂EM, θ̂EM

R , θ̂EM
r , m̂EM

R , m̂EM
r ), i.e., MLEs of (α,θR,θr,mR,mr) based on the sample

FM N . A discussion of the convergence of the EM method can be found in [11].
Note that, as was pointed out above, α̂EM = α̂ . We can obtain a sample of the dis-
tribution of (FN+s,MRN+s,MrN+s) knowing FM N for any s > 0 by simulating,
through the Monte-Carlo method, s generations of a Y-linked bisexual branching
process starting with (ZRN ,ZrN) and considering (α̂EM, θ̂EM

R , θ̂EM
r ) as the parame-

ters of the model.

14.4 Simulation study

In this section, we describe the application of the above algorithm to simulated
data. To this end, we considered a Y-linked bisexual branching process where the
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R-type reproduction law follows a Poisson distribution and the r-type reproduction
law follows a geometric distribution, with unknown parameters, λR > 0 and 0 <
pr < 1, respectively, i.e.,

pR
k = e−λR

λ k
R

k!
and pr

l = pr(1− pr)l , for all k, l ≥ 0.

For these reproduction laws, taking into account expressions (14.1) and (14.2),
one has that θR = λR = mR, AR(θR) = eλR , θr = 1 − pr, mr = (1 − θr)−1θr, and
Ar(θr) = p−1

r . Therefore, mR(θR) and mr(θr) are strictly increasing functions.
To determine the distribution of the latent vector FRrN , one notes that, since the

R-type reproduction law follows a Poisson distribution, then the probability given
by (14.11) is obtained from a Poisson distribution with parameters zRnλR. For the r-
type case, this probability is derived from a negative binomial distribution with size
zrn and probability pr since the r-type reproduction law is a geometric distribution.

By way of illustration, we considered a Y-linked bisexual branching process
with α = 0.4, mR = 1.7, and pr = 5/18, simulating 20 generations starting with
(ZR0,Zr0) = (3,10). Table 14.1 lists the total numbers of females and of males of
each type for each generation.

Table 14.1 Simulated data.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fn 30 33 39 44 46 56 57 47 39 47 48 50 39 48 52 67 69 79 56 50
MRn 5 5 4 4 3 6 6 3 2 2 3 6 9 10 11 7 3 2 1 1
Mrn 25 31 37 42 59 62 86 83 44 51 67 78 73 57 75 88 86 114 93 86

Note that it would be difficult to determine at a glance anything about the fu-
ture behaviour of a Y-linked character on the basis of these observations. To apply

the EM method, we took as starting values (α(0),m(0)
R , p(0)

r ) = (0.5,1,0.5), where

m(i)
R = θ (i)

R and p(i)
r = 1−θ (i)

r , for all i ≥ 0, and then applied the algorithm given in

the previous section. The resulting sequence {(α(i),m(i)
R , p(i)

r )}i≥0 converged from
iteration 50 onwards – the difference between consecutive elements of the sequence
was less than 10−7– (see Fig. 14.1). A discrete sensitivity analysis applied to study

the influence of the initial values (α(0),m(0)
R , p(0)

r ) on the convergence of the method
showed the procedure to be stable with respect to the initial values. There were no
changes in the limit.

Figure 14.2 shows the expectation–maximization MLEs by generation up to gen-
eration 20 for α , mR, and pr. The estimates converge to the true values of the pa-
rameters. Indeed, under weak general conditions, the EM method leads to consistent
estimates (see [4] or [11]), as is the case of the usual MLEs. Figure 14.3 shows a
Monte-Carlo approximation to the sampling distribution of α̂EM , m̂EM

R , and p̂EM
r

in generation 20, when neither genotype has become extinct, with p̂EM
r denoting
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Fig. 14.1 Evolution of m(i)
R (left) and p(i)

r (right), for i = 1, . . . ,50, in generation 20.

the expectation–maximization MLE of pr. Figure 14.4 illustrates the bootstrap ap-
proximation to these sampling distributions. One can see how the bootstrap method
works quite well.

An interesting question is to predict on the basis of the observed data whether
or not the process will survive over time. From the Monte-Carlo approximation to
the sampling distribution of α̂EM , m̂EM

R and p̂EM
r , we calculated the proportion of

samples in generation 20 which satisfy α̂EM < 0.5 and (1− α̂EM)m̂EM
R < α̂EMm̂EM

r ,
finding the value 0.861. Since the condition α < 0.5 and (1−α)mR < αmr ensures
that there exists a positive probability for both genotypes to grow without limit over
time (see [6]), the high value of the calculated proportion is indicative that this
condition might be satisfied. In fact, the true values of the parameters indeed satisfy
this condition, and therefore there exists a positive probability that both genotypes
grow over the generations.
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Fig. 14.2 Evolution of α̂EM (left), m̂EM
R (middle), and p̂EM

r (right) over the generations, together
with the true value of each parameter (dashed line).

Finally, Fig. 14.5 illustrates the predictive distribution of the total numbers of
females and of each type of male in the 21st generation. The predicted behaviour in
this generation is in keeping with the fact that there is a positive probability (which
may be small) that both genotypes grow without limit over time.
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Fig. 14.3 Monte-Carlo approximation to the sampling distribution of α̂EM (left), m̂EM
R (middle),

and p̂EM
r (right), in generation 20, together with the true value of each parameter (dashed line).
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Fig. 14.5 Histogram of the estimated predictive distribution of F21 (left), MR21 (middle), and Mr21
(right), when FM 20 is observed.

Remark 14.1. To carry out the simulation study, we used the statistical computing
and graphics language and environment R (“GNU S”) (see [12]).
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Applications of branching processes to the final
size of SIR epidemics

Frank Ball and Peter Neal

Abstract This paper considers applications of branching processes to a model for
the spread of an SIR (susceptible → infective → removed) epidemic among a
closed, homogeneously mixing population, consisting initially of m infective and
n susceptible individuals. Each infective remains infectious for a period sampled
independently from an arbitrary but specified distribution, during which he/she con-
tacts susceptible individuals independently with rate n−1λ for each susceptible. The
well-known approximation of the early stages of this epidemic model by a branch-
ing process is outlined. The main thrust of the paper is to use branching processes
to obtain, when the infectious period is constant, new and probabilistically direct
proofs of central limit theorems for the size of an epidemic which becomes estab-
lished. Two asymptotic situations are considered: (i) many initial infectives, where
m and n both become large, for which establishment is asymptotically certain; and
(ii) few initial infectives, where m is held fixed and only n becomes large, for which
asymptotically establishment is not certain and may not be possible. The model with
constant infectious periods is closely related to the Erdös-Rényi random graph and
our methodology provides an alternative proof of the central limit theorem for the
size of the giant component in that graph.
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15.1 Introduction

This paper is concerned with applications of branching processes to the following
model for the spread of an SIR (susceptible → infective → removed) epidemic
among a closed, homogeneously mixing population. Suppose that initially the pop-
ulation comprises m infectives (that have just become infected) and n susceptibles.
The infectious periods of infectives are distributed according to a random variable
I, having an arbitrary but specified distribution. Throughout its infectious period a
given infective makes infectious contact with any given individual at the points of a
homogeneous Poisson process with rate n−1λ . If a contacted individual is suscepti-
ble then he/she becomes infected and is immediately able to infect other individuals.
If a contacted individual is no longer susceptible then nothing happens. An individ-
ual is removed (and plays no further role in the epidemic) when his/her infectious
period ends. All infectious periods and Poisson processes describing contacts be-
tween individuals are mutually independent. The epidemic ceases as soon as there
is no infective present in the population.

By linearly changing the time scale we may assume without loss of generality
that E[I] = 1. Denote the epidemic by En,m. Important special cases are (a) when
I follows the exponential distribution with mean 1 and (b) when I ≡ 1 (i.e. P(I =
1) = 1). In (a), the model becomes a continuous-time Markov chain, the so-called
general stochastic epidemic (see e.g. Bailey [4], Chap. 6) – this is by far the most
studied epidemic model. In (b), the final size of the epidemic (i.e. the number of
susceptibles that are ultimately infected) has the same distribution as that of the
Reed–Frost epidemic – a discrete time Markov chain model in which infectious
individuals infect susceptibles independently, each with probability p = 1 − e−λ

(see e.g. Bailey [4], Chap. 14).
Suppose that the initial number of infectives m is small and the initial number of

susceptibles n is large. Then in the early stages of the epidemic it is very likely that
each infectious contact is with a susceptible. (Note that an equivalent description
of the infection process is that an infective makes contacts according to a Poisson
process with rate λ and each contact is sampled uniformly and independently from
the n initial susceptibles.) It follows that at the start of an epidemic, the process of
infectives may be approximated by a branching process. This approximation has a
long history going back to Bartlett [16] and Kendall [25], and it leads to a threshold
theorem for the epidemic (see Whittle [37] and Williams [38] in the context of
the general stochastic epidemic). The approximation is made exact in Metz [27],
Ball [5] and Ball and Donnelly [6] by considering a sequence of epidemics, indexed
by n, and proving convergence to the branching process as n → ∞.

Let R be the number of contacts made by a typical infective in En,m, so

P(R = k) = (−λ )kφ (k)
I (λ )/k! (k = 0,1, . . .),

where φI(θ) = E[e−θ I ] (θ ≥ 0) is the moment-generating function of R and φ (k)
I

denotes the kth derivative of φI . Let R0 = E[R] = λ and let Z denote the total progeny
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of the above branching process. (Throughout this paper total progeny excludes the
initial ancestors.) Then, see e.g. Jagers [24], Theorem 2.11.2,

P(Z = k) =
m

m+ k
P(R1 +R2 + · · ·+Rm+k = k) (k = 0,1, . . .), (15.1)

where R1,R2, . . ., are independent and identically distributed (i.i.d.) copies of R.
Note that P(Z < ∞) < 1 if and only if R0 > 1, so R0 is a threshold parameter for the
epidemic model, in the sense that if n is large and m small, the epidemic can become
established with non-zero probability only if R0 > 1. The parameter R0 is called the
basic reproduction number, see e.g. Heesterbeek and Dietz [23].

The above branching process approximation yields information concerning epi-
demics that die out quickly (corresponding to extinction of the branching process)
but it says little concerning major epidemics, i.e. ones that become established. Con-
sider first the case when there are many initial infectives, specifically the sequence
of epidemics En,mn (n = 1,2, . . .), where n−1mn → μ > 0 as n → ∞. Let Zn denote
the final size of En,mn and Z′

n = Zn + mn. Then, see e.g. Andersson and Britton [2],
Theorem 4.1,

n−1Z′
n

D→ τ as n → ∞, (15.2)

where τ is the unique positive solution of

1+μ− τ = e−λτ , (15.3)

and
n− 1

2 (Z′
n −nτ) D→ N(0,σ2) as n → ∞, (15.4)

where

σ2 =
ρ(1−ρ)+λ 2τρ2 var(I)

(1−λρ)2 with ρ = 1+μ − τ, (15.5)

D→ denotes convergence in distribution and N(0,σ2) denotes the normal distribution
with mean zero and variance σ2.

Suppose instead that there are few initial infectives, i.e. mn = m for all n, so the

initial number of infectives is held fixed as n →∞. Then Zn
D→ Z as n →∞ (Ball [5]).

If R0 ≤ 1 then P(Z <∞) = 1, so only minor epidemics occur in the limit as n →∞. If
R0 > 1 then P(Z < ∞) = πm, where π is the extinction probability of the branching
process assuming one initial ancestor. Thus, for large n, the probability that the
epidemic becomes established is approximately 1−πm. Further, see e.g. Andersson
and Britton [2], Theorem 4.2, conditional upon the epidemic becoming established,

n−1Zn
D→ τ as n → ∞, (15.6)

where now τ is the non-zero solution of

1− τ = e−λτ , (15.7)

and
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n− 1
2 (Zn −nτ) D→ N(0,σ2) as n → ∞, (15.8)

where σ2 is given by (15.5) with μ = 0.
There are several, markedly different proofs of the above central limit theorems.

It was first proved for the general stochastic epidemic with many initial infectives
by Nagaev and Startsev [28], by exploiting an embedded random walk, and sub-
sequently by Watson [35], using a random time scale transformation, and by Wat-
son [36], using a martingale argument. Other proofs for this case include those based
on rigorous diffusion approximations to continuous-time Markov jump processes
(e.g. Barbour [12] and Ethier and Kurtz [21], Chap. 11). Watson [36] considered
also the case of few initial infectives. The first proof of (15.4) and (15.8) for the
Reed–Frost epidemic was by von Bahr and Martin-Löf [3], via a rather technical
analysis using a family of martingales based on harmonic functions for the discrete-
time Markov chain which describes that model. These authors also considered a ran-
domised version of the Reed–Frost model, which extends their proof to the general
stochastic epidemic and indeed to the model En,m. Martin-Löf [26] proved (15.4)
and (15.8) for an even more general Reed–Frost model, by exploiting an embed-
ded random walk that is similar to that used by Dwass [19] for studying the total
progeny of a Galton–Watson process. Another proof of (15.4) and (15.8) for En,m is
via the elegant embedding construction of Scalia-Tomba [33, 34]. This latter method
is widely applicable, e.g. to multitype epidemics among a population of households
(Ball and Lyne [7]) and to epidemics on random networks incorporating casual con-
tacts (Ball and Neal [9, 10]).

The main aim of the present paper is to use ideas developed recently in Ball
and Neal [10] to give new, probabilistically direct proofs of the above central limit
theorems in the case when I ≡ 1, i.e. for the Reed–Frost epidemic. The case when
the infectious period I follows any specified distribution with finite variance will
be considered in a separate paper (Ball and Neal [11]), within the framework of
the collective Reed–Frost model (Picard and Lèfevre [31]) that is equivalent to the
general Reed–Frost model of Martin-Löf [26].

As discussed for example by Barbour and Mollison [13], the Reed–Frost model
is closely related to the Erdös-Rényi random graph (see e.g. Durrett [18], Chap. 2),
in which there are n vertices and between any distinct pair of vertices an edge is
present independenty with probability p. Suppose that p = λ/n. Then, as n → ∞,
if λ < 1, all connected components of the graph are small, whilst if λ > 1, there is
precisely one large connected component, called the giant component, with all other
connected components being small. The size of the giant component has the same
distribution as the size of a major epidemic in the Reed–Frost model with few initial
infectives. Thus our methods give an alternative proof of the central limit theorem
for the size of the giant component (cf. Pittel [32] and Barrez et al. [15]).

The remainder of the paper is organised as follows. Approximation of the early
stages of an epidemic by a branching process is considered briefly in Sect. 15.2,
where results required for analysing the final outcome of a major epidemic when
there are few initial infectives are developed. Central limit theorems for the final
size of a major epidemic for the Reed–Frost model are proved in Sect. 15.3.
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15.2 Early stages of epidemic

We use the construction of Ball and Donnelly [6] to define a sequence of epi-
demics En,m (n = 1,2, . . .), where m is held fixed, on a common probability space.
Let (Ω1,F1,P1) be a probability space on which is defined a realisation of a gen-
eral (Crump–Mode–Jagers) branching process, B say, having m initial ancestors,
in which a typical individual lives until age distributed according to I during which
he/she has one offspring at each of the points of a homogeneous Poisson process
with rate λ . Let (Ω2,F2,P2) be a probability space on which is defined, for each
n = 1,2, . . ., i.i.d. random variables ξ n

1 ,ξ n
2 , . . ., that are uniformly distributed on the

integers 1,2, . . . ,n.
For n = 1,2, . . ., a realisation of the epidemic En,m can be defined on the product

space (Ω ,F ,P) = (Ω1 ×Ω2,F1 ×F2,P1 × P2) as follows. Label the initial sus-
ceptibles 1,2, . . . ,n. Births in B correspond to infectious contacts in En,m. For the
kth birth in B, the individual contacted in En,m is ξ n

k . If the contacted individual
is susceptible then he/she becomes infected in En,m and makes infectious contacts
according to the corresponding individual in B. If the contacted individual is not
susceptible then that contact, together with any descendants of the corresponding
individual in B, is ignored in En,m.

Let Z denote the total progeny of B and, for n = 1,2, . . ., let Zn denote the final
size of En,m. Let Mn = min{k ≥ 2: ξ n

k ∈ {ξ n
1 ,ξ n

2 , . . . ,ξ n
k−1}}. The key observation is

that B and En,m coincide up until, but not including, the Mnth birth in B. Thus, for
k = 0,1, . . .,

P(Zn = k) = P(Zn = k, Mn > k)+P(Zn = k, Mn ≤ k)
= P(Z = k, Mn > k)+P(Zn = k, Mn ≤ k),

whence
|P(Zn = k)−P(Z = k)| ≤ P(Mn ≤ k).

Now, for k = 2,3, . . .,

P(Mn ≤ k) = 1−
k−1

∏
i=1

(
1− i

n

)
≤ k(k−1)

2n
. (15.9)

Thus, limn→∞ P(Zn = k) = P(Z = k) (k = 0,1, . . .), i.e. Zn
D→ Z as n →∞. The distri-

bution of Z is defective (i.e. has a mass at ∞) if B is supercritical.
Note that (15.9) implies that limn→∞ P(Mn ≤ nδ ) = 0 for any δ ∈ (0, 1

2 ). Thus, for
such δ and large n, the total variation distance between En,m and B remains small
until nδ individuals have been infected in En,m. (Using a different approach, Barbour
and Utev [14] show for the Reed–Frost epidemic that this holds for any δ < 2

3 .)

Further, n− 1
2 Mn

D→ M as n → ∞, where M has probability density function f (x) =
xe− 1

2 x2
(x > 0) (see e.g. Aldous [1], p. 96), so (Ball and Donnelly [6], Theorem 2.1)

the Skorokhod representation theorem can be invoked to define ξ n
i (n, i = 1,2, . . .)
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such that Mn
a.s.→ M as n → ∞, where

a.s.→ denotes almost sure convergence. Hence,
En,m (n = 1,2, . . .) and B can be coupled so that almost surely, for any δ < 1

2 , En,m

and B coincide up until nδ individuals have been infected in En,m for all sufficiently
large n, whence Zn

a.s.→ Z as n → ∞.
The above convergence of Zn to Z can be used to give a threshold theorem for

the epidemic En,m (Williams [38], Ball [5] and Ball and Donnelly [6]). Specifically,
a major epidemic is said to occur if in the limit as n → ∞ the epidemic infects
infinitely many individuals. Standard branching process theory then yields (i) that a
major epidemic occurs with non-zero probability if and only if R0 > 1; and (ii) the
probability that a major epidemic occurs.

For ε ∈ (0,1), let Bε denote the branching process obtained from B by abort-
ing births independently with probability ε and let Zε denote the total progeny of
Bε . Note that if En,m infects ≤ nε individuals then the above construction can be
extended so that almost surely En,m is bounded between Bε and B, whence

P(Zε ≥ nε) ≤ P(Zn ≥ nε) ≤ P(Z ≥ nε). (15.10)

This is the key idea underlying Whittle’s [37] stochastic epidemic threshold the-
orem. Let g(n) be any non-decreasing sequence of positive numbers satisfying
limn→∞ n−1g(n) = 0. Then the right-hand inequality in (15.10) implies that

limsup
n→∞

P(Zn ≥ g(n)) ≤ lim
n→∞

P(Z ≥ g(n)) = P(Z = ∞) (15.11)

and, for any ε ∈ (0,1), since g(n) < nε for all sufficiently large n, the left-hand
inequality in (15.10) implies that

liminf
n→∞

P(Zn ≥ g(n)) ≥ lim
n→∞

P(Zε ≥ g(n)) = P(Zε = ∞). (15.12)

Letting ε ↓ 0 in (15.12) and using (15.11) yields

lim
n→∞

P(Zn ≥ g(n)) = P(Z = ∞). (15.13)

The above definition of a major epidemic is not very practical. Instead we say
that a realisation of En,m is a major epidemic if it infects at least logn susceptibles.
Let Gn = {Zn ≥ logn}. Then (15.13) implies that limn→∞ P(Gn) = P(Z = ∞), so
this definition of a global epidemic is asymptotically equivalent to the previous one.
Equation (15.13) also implies that for, any δ ∈ (0,1), limn→∞ P(Zn ≥ nδ | Gn) = 1.
Thus, asymptotically, a major epidemic infects at least nδ individuals, for any δ < 1.
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15.3 Final outcome of Reed–Frost epidemic

15.3.1 Preliminaries

15.3.1.1 Susceptibility sets

Consider the epidemic En,m. Label the m initial infectives −(m−1),−(m−2), . . . ,0,
and the n susceptibles 1,2, . . . ,n. Let N = {−(m − 1),−(m − 2), . . . ,n}, I0 =
{−(m − 1),−(m − 2), . . . ,0} and X0 = {1,2, . . . ,n} denote respectively the entire
population, the set of initial infectives and the set of initial susceptibles. Let G de-
note the random directed graph on N , in which for any distinct i, j ∈ N there is a
directed edge from i to j if and only if i, if infected, makes infectious contact with j.
Thus G is constructed as follows. For i ∈ N , let Ii denote individual i’s infectious
period if they were to become infected. Then, given Ii = t, the edge from i to j is

present with probability 1− e− λ t
n , independently for j ∈ N \{i}.

For distinct i, j ∈ N , write i � j if and only if there is a chain of directed edges
from i to j. Then the set of initial susceptibles who are ultimately infected by the
epidemic is given by {i ∈ X0 : j � i for some j ∈ I0}. Note that this set does not
depend on the times of the potential infections; see Pellis et al. [30] for a recent
discussion. For i ∈ X0, define the susceptibility set of individual i by Si = { j ∈
N \{i} : j � i} (see e.g. Ball and Lyne [7] and Ball and Neal [8]). Thus i becomes
infected by the epidemic if and only if Si ∩I0 
= /0.

15.3.1.2 Mean and variance of final size

For i ∈ X0, let Si = |Si| denote the cardinality of Si and χi = 1{Si∩I0 
= /0}, the
indicator function of the event {Si ∩I0 
= /0} (i.e. of the event that i is infected by
the epidemic). Then the final size Zn of the epidemic is given by

Zn =
n

∑
i=1

χi. (15.14)

Note that, by symmetry, the random variables χ1,χ2, . . . ,χn are exchangeable and,
for i = 1,2, . . . ,n,

P(χi = 1 | Si = l) = 1−θ n,m
0 (l) (l = 0,1, . . . ,n+m−1),

where θ n,m
0 (0) = 1, θ n,m

0 (l) = 0 if l ≥ n and

θ n,m
0 (l) =

(n−1
l

)

(n+m−1
l

) =
l

∏
i=1

(
n− i

n+m− i

)
(l = 1,2, . . . ,n−1).

By (15.14) and exchangeability, it follows that
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E[Zn] = nE[χ1] = n(1−E[θ n,m
0 (S1)]). (15.15)

Further, using (15.14) and exchangeability,

var(Zn) = nvar(χ1)+n(n−1)cov(χ1,χ2)
= nE[χ1](1−E[χ1])+n(n−1)cov(1−χ1,1−χ2). (15.16)

Now,

cov(1−χ1,1−χ2) = P(χ1 = 0,χ2 = 0)−P(χ1 = 0)P(χ2 = 0)
= E[P(χ1 = 0 | S1){P(χ2 = 0 | χ1 = 0,S1)−P(χ2 = 0)}] (15.17)

and

P(χ2 = 0 | χ1 = 0,S1) = P(χ2 = 0 | χ1 = 0,S1,2 ∈ S1)P(2 ∈ S1 | χ1 = 0,S1)
+ P(χ2 = 0 | χ1 = 0,S1,2 /∈ S1)P(2 /∈ S1 | χ1 = 0,S1). (15.18)

By symmetry,

P(2 ∈ S1 | χ1 = 0,S1) =
S1

n−1
(15.19)

and, if 2 ∈ S1 then S2 ⊆ S1, so

P(χ2 = 0 | χ1 = 0,S1,2 ∈ S1) = 1. (15.20)

Let S2\1 =S2\(S1∪{1}) and S2\1 = |S2\1|. If χ1 = 0 and 2 /∈S1, then S1 ≤ n−2.
Therefore, by symmetry, for k = 0,1, . . . ,n−2 and l = 0,1, . . . ,n+m− k−2,

P(χ2 = 0 | χ1 = 0, S1 = k, S2\1 = l, 2 /∈ S1) = θ n,m
k+1(l),

where, for k = 0,1, . . . ,n−1, θ n,m
k (0) = 1, θ n,m

k (l) = 0 if l ≥ n− k and

θ n,m
k (l) =

(n−k−1
l

)

(n+m−k−1
l

)

=
l

∏
i=1

(
n− k− i

n+m− k− i

)
(l = 1,2, . . . ,n− k−1).

Thus,

P(χ2 = 0 | χ1 = 0,S1) =
S1

n−1
+
(

1− S1

n−1

)
E[θ n,m

S1+1(S2\1) | S1]. (15.21)

Substituting (15.18) to (15.21) into (15.17) yields
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cov(1−χ1,1−χ2) =
1

n−1
E[θ n,m

0 (S1)S1(1−E[θm,n
0 (S2)])]

+E[θ n,m
0 (S1){E[θ n,m

S1+1(S2\1) | S1]−E[θ n,m
0 (S2)]}]

− 1
n−1

E[θ n,m
0 (S1)S1{E[θ n,m

S1+1(S2\1) | S1]−E[θ n,m
0 (S2)]}]

=
1

n−1
(An +Bn −Cn), say. (15.22)

We now restrict attention to the case when the infectious period I ≡ 1. Note that
in this case G is the random directed graph in which for any ordered pair (i, j)
of distinct vertices there is a directed edge from i to j with probability 1 − e− λ

n ,
independently for different ordered pairs (This is not the case if I is not constant
since the presence/absence of edges from a given individual, i say, are correlated
through i’s infectious period.) It follows that S1 has the same distribution as the final
size of an epidemic with 1 initial infective and m + n − 1 initial susceptibles and
hence can be approximated by the total progeny of a Galton–Watson process with 1
initial ancestor and a Poisson offspring distribution, cf. Sect. 15.2.

We consider a sequence of epidemics En,mn , indexed by the initial number of
susceptibles n and study two asymptotic regimes; namely (i) many initial infectives,
in which μn = n−1mn → μ > 0 as n →∞ and (ii) few initial infectives, in which mn =
m (n = 1,2, . . .), where m is fixed. Note that under (i), the offspring distribution of the
above-mentioned approximating Galton–Watson process for S1 has mean λ (1+μ),
whereas under (ii) it has mean λ . We now use superfixes to show explicitly the
dependence of quantities such as S1, S2\1 and χ1 on n, i.e. we write S n

1 , Sn
2\1 and

χn
1 etc.

Before proceeding, it is useful to give some results concerning the quantities
θ n,m

k (l), whose proofs are elementary and hence omitted. For k = 0,1, . . . ,n, let

θ n,m
k =

n− k
n+m− k

,

and, for k = 0,1, . . . ,n−1 and l = 0,1, . . . ,n− k−1, let

Rn,m
k,1 (l) =

m
n− k

l

∑
i=1

i
n+m− k− i

and

Rn,m
k,2 (l) =

(
m

n− k

)2 l

∑
i=1

l

∑
j=1

i
= j

i j
(n+m− k− i)(n+m− k− j)

,

where a sum is zero if vacuous. Then, for k = 0,1, . . . ,n−1 and l = 0,1, . . . ,n−k−1,

(θ n,m
k )l(1−Rn,m

k,1 (l)) ≤ θ n,m
k (l) ≤ (θ n,m

k )l (15.23)

and
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(θ n,m
k )l(1−Rn,m

k,1 (l)) ≤ θ n,m
k (l) ≤ (θ n,m

k )l(1−Rn,m
k,1 (l)+Rn,m

k,2 (l)). (15.24)

15.3.2 Many initial infectives

15.3.2.1 Limiting mean final size

Let B(λ ) denote a Galton–Watson process with one initial ancestor whose offspring
distribution is Poisson with mean λ . For n = 1,2, . . . , we construct coupled reali-
sations of the susceptibility set S n

1 and its approximating branching process, Bn
1

say, as follows. Let (Ω ,F ,P) be a probability space on which, for each n, is de-
fined a realisation Bn

1 of B(λ (1 + μn)) and a sequence of i.i.d. random variables
ηn

1 ,ηn
2 , . . . that are uniformly distributed on N n = {−(mn − 1),−(mn − 2), . . . ,n}.

The susceptibility set S n
1 is constructed in the obvious fashion. Set ηn

0 = 1 and
label the individuals in Bn

1 (excluding the initial ancestor) 1,2, . . ., in the order in
which they are born, splitting ties so that siblings have consecutive labels. Then
S n

1 follows Bn
1 except that whenever ηn

i ∈ {ηn
0 ,ηn

1 , . . . ,ηn
i−1} individual i in Bn

1,
together with all of its descendants in Bn

1, are ignored in S n
1 . For n = 1,2, . . ., let

Mn = min{i ≥ 1: ηn
i ∈ {ηn

0 ,ηn
1 , . . . ,ηn

i−1}}. Thus, as in Sect. 15.2, S n
1 and Bn

1 co-
incide up until but not including the Mnth birth in Bn

1.
Note that θ n,mn

0 → θ = (1 + μ)−1 < 1 as n → ∞, so there exists ε < 1 such that
θ n,mn

0 < ε for all sufficiently large n. Hence, if g(n) is any increasing strictly positive
function that tends to infinity as n → ∞ then, using (15.23),

lim
n→∞

E[θ n,mn
0 (Sn

1)1{Sn
1>g(n)}] ≤ lim

n→∞
εg(n) = 0,

whence, from (15.15),

lim
n→∞

n−1E[Zn] = 1− lim
n→∞

E
[
θ n,mn

0 (Sn
1)1{Sn

1≤g(n)}
]
. (15.25)

Let W (λ ) be the total progeny of B(λ ) and h(λ ,s) = E[sW (λ )] (λ > 0, 0 ≤ s ≤ 1).
For n = 1,2, . . ., let W n

1 be the total progeny of Bn
1, and let W1 be distributed as

W (λ (1+μ)). Then, arguing as in Sect. 15.2, for k = 0,1, . . .,

lim
n→∞

P(Sn
1 = k) = lim

n→∞
P(W n

1 = k)

= P(W1 = k), (15.26)

where the last equality follows using (15.1), since μn → μ as n → ∞.
Take g(n) = logn. Now, (15.23) implies that θ n,mn

0 (l) → θ l as n →∞, uniformly for
l = 0,1, . . . ,g(n), whence (15.25) and (15.26) imply

lim
n→∞

n−1E[Zn] = 1−h(λ (1+μ),θ). (15.27)
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For λ > 0, let f (λ ,s) = exp(−λ (1− s)) (0 ≤ s ≤ 1) be the probability generating
function of the Poisson distribution with mean λ . Then by a standard result for
Galton–Watson processes (cf. Jagers [24], Sect. 2.11), h(λ ,s) is the unique solution
in [0,1] of

h(λ ,s) = f (λ ,sh(λ ,s)). (15.28)

Let τ = limn→∞ n−1(mn + E[Zn]). Then (15.27) implies that τ = μ + 1 − h(λ (1 +
μ),θ). Using (15.28) and recalling that θ = (1 + μ)−1 then yields that τ is the
unique positive solution of 1+μ − τ = e−λτ , agreeing with (15.3).

15.3.2.2 Limiting variance final size

First note, using (15.16) and (15.27), that

lim
n→∞

var(χn
1 ) = h(λ (1+μ),θ)[1−h(λ (1+μ),θ)]

= ρ(1−ρ), (15.29)

where ρ = h(λ (1+μ),θ) = 1+μ − τ .
To determine limn→∞(n−1)cov(1−χn

1 ,1−χn
2 ), we consider separately the three

terms on the right hand side of (15.22).
First note that

lim
n→∞

An = lim
n→∞

E[θ n,mn
0 (Sn

1)S
n
1](1−h(λ (1+μ),θ))

= E[θW1W1](1−h(λ (1+μ),θ))
= θhs(λ (1+μ),θ)(1−h(λ (1+μ),θ)), (15.30)

where hs(λ ,s) denotes ∂h
∂ s (λ ,s). (Note that supk≥0 kεk <∞, so the random variables

θ n,mn
0 (Sn

1)S
n
1 (n = 1,2, . . .) are uniformly bounded, and with [x] denoting the greatest

integer ≤ x, limn→∞ E[θ n,mn
0 (Sn

1)S
n
11{Sn

1>logn)}] ≤ limn→∞∑∞
i=[logn] iε

i = 0.)
For the other two terms, it is convenient to let S n

2\1(k) = S n
2\1 | Sn

1 = k,χn
1 = 0

(k = 0,1, . . .) and, for fixed k, construct coupled realisations of S n
2 , S n

2\1(k) and
their approximating branching processes as follows. Let (Ω ,F ,P) be a probability
space on which, for each n, is defined a realisation Bn

2 of B(λ (1 + μn)) and a
sequence of i.i.d. random variables ηn

1 ,ηn
2 , . . . that are uniformly distributed on N n.

The susceptibility set S n
2 is constructed like S n

1 in Section 15.3.2.1, except now
ηn

0 = k + 2. The set S n
2\1(k) is constructed in the same fashion, except individual

i (and all of its descendants) in Bn
2 is also deleted if ηn

i ∈ Ak = {1,2, . . . ,k + 1}.
Finally, for n = 1,2, . . ., let Bn

2(k) be the Galton–Watson process obtained from Bn
2

by deleting individual i (and all of its descendants) if ηn
i ∈ Ak.

For n = 1,2, . . ., let Mn = min{i ≥ 1: ηn
i ∈ {ηn

0 ,ηn
1 , . . . ,ηn

i−1}} and MA
n (k) =

min{i ≥ 1: ηn
i ∈ Ak}. Let W n

2 and W n
2 (k) denote the total progenies of Bn

2 and
Bn

2(k), respectively. Observe that, for l = 0,1, . . ., if Mn ∧ MA
n (k) > l and W n

2 = l,
then Sn

2 = Sn
2\1(k) =W n

2 =W n
2 (k). (Here, x∧y = min{x,y} and Sn

2\1(k) = |S n
2\1(k)|.)
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Thus, considering Cn in (15.22), note that for any k ≤ logn,

lim
n→∞

|E[θ n,mn
S1+1(S

n
2\1)|Sn

1 = k]−E[θ n,mn
0 (Sn

2)]|
= lim

n→∞
|E[θ n,mn

S1+1(S
n
2\1(k))1{Sn

2\1≤logn}]−E[θ n,mn
0 (Sn

2)1{Sn
2≤logn}]|

≤ lim
n→∞

[P(Mn ≤ logn)+P(MA
n (k) ≤ logn)]

≤ logn(2logn+1)
mn +n

→ 0 as n → ∞,

whence Cn → 0 as n → ∞.
Turning to limn→∞ Bn, let M(2)

n (k) = min{i > Mn ∧MA
n (k) : ηn

i ∈ {ηn
0 ,ηn

1 , . . . ,ηn
i−1}

∪Ak}. Fix k and observe that, for l = 0,1, . . ., if Mn > k+ l +2 then Sn
2 = l ⇔W n

2 = l

and Sn
2\1(k) = l ⇔ W n

2 (k) = l; and also, if Mn ≤ k + l + 2 and M(2)
n (k) > k + l + 2

(so MA
n (k) > k + l +2) then again Sn

2 = l ⇔ W n
2 = l and Sn

2\1(k) = l ⇔ W n
2 (k) = l. It

follows that

|P(Sn
2\1(k) = l)−P(Sn

2 = l)−(P(W n
2 (k) = l)−P(W n

2 = l))|≤2P(M(2)
n (k) ≤ k+ l +2).

(15.31)
Let

Dn(k) = (n−1)(E[θ n,mn
k+1 (Sn

2\1(k))]−E[θ n,mn
0 (Sn

2)]),

En(k) = (n−1)(E[θ n,mn
k+1 (W n

2 (k))]−E[θ n,mn
0 (W n

2 )])

and
Fn(k) = (n−1)(E[(θ n,mn

k+1 )W n
2 (k)]−E[(θ n,mn

0 )W n
2 ]).

Let g(n) = (logn)2 and note that limn→∞ nεg(n) = 0. Also,

P(M(2)
n (k) ≤ k + l +2) ≤

(
k + l +2

2

)(
k + l +2+ k +1

n+mn

)2

,

so limn→∞(n− 1)P(M(2)
n (k) ≤ k + l + 2) = 0, uniformly for k, l ≤ g(n). It then fol-

lows, using (15.31), that limn→∞ |Dn(k)−En(k)| = 0, uniformly for k ≤ g(n). Fur-
ther, (15.24) implies that

lim
n→∞

|(n−1)[θ n,mn
k (l)−θ n,mn

0 (l)− ((θ n,mn
k )l − (θ n,mn

0 )l)]| = 0,

uniformly for k, l ≤ g(n), whence limn→∞ |En(k)− Fn(k)| = 0, uniformly for k ≤
g(n).

The offspring distributions of Bn
2 and Bn

2(k) are Poisson, with means λ (1+μn)
and λn(k) = λ (1+μn)(1− (1+ k)/(n+mn)), respectively. Thus,

Dn(k) = (n−1)(h(λn(k),θ n,mn
k+1 )−h(λ (1+μn),θ n,mn

0 ))+ rn(k),
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where limn→∞ rn(k) = 0, uniformly for k ≤ g(n). Note that limn→∞ n(λn(k)−λ (1+
μn)) = −λ (1 + k) and limn→∞ n(θ n,mn

k+1 −θ n,mn
0 ) = − μ(k+1)

(1+μ)2 both uniformly for k ≤
g(n).

Let hλ (λ ,s) = ∂h
∂λ (λ ,s) (λ > 0, 0 ≤ s ≤ 1) and define hs(λ ,s) similarly. Appli-

cation of (bivariate) Taylor’s theorem to h(λ ,s) yields, after some analysis, that

lim
n→∞

Dn(k) = −λ (1+ k)hλ (λ (1+μ),θ)− μ(1+ k)
(1+μ)2 hs(λ (1+μ),θ),

uniformly for k ≤ g(n). Finally, it then follows using similar arguments to the deriva-
tion of (15.27) that

lim
n→∞

Bn = lim
n→∞

E[θ n,mn
0 (Sn

1)Dn(Sn
1)]

= lim
n→∞

E[θ n,mn
0 (Sn

1)Dn(Sn
1)1{Sn

1≤g(n)}]

= −E[θW (1+W )]g(λ ,μ ,θ)
= −[h(λ (1+μ),θ)+θhs(λ (1+μ),θ)]g(λ ,μ ,θ), (15.32)

where
g(λ ,μ ,θ) = λhλ (λ (1+μ),θ)+

μ
(1+μ)2 hs(λ (1+μ),θ).

Differentiating (15.28) yields

hλ (λ ,s) = − (1− sh(λ ,s))h(λ ,s)
1−λ sh(λ ,s)

and hs(λ ,s) =
λh(λ ,s)2

1−λ sh(λ ,s)
.

Recall that θ = (1 + μ)−1 and ρ = h(λ (1 + μ),θ). Equations (15.30) and (15.32)
yield that limn→∞ An = λρ2(1 − ρ)/(1 − λρ) and limn→∞ Bn = λρ2(1 − ρ)/(1 −
λρ)2, whence using (15.16), (15.22) and (15.29), and recalling that limn→∞Cn = 0,

lim
n→∞

n−1 var(Zn) =
ρ(1−ρ)
(1−λρ)2 , (15.33)

agreeing with (15.5) (recall that var(I) = 0). The law of large numbers (15.2) follows
immediately from (15.27) and (15.33) using Chebyshev’s inequality.

15.3.3 Few initial infectives

Recall that m is now held fixed as n → ∞, that Gn is the event that En,m infects
at least logn individuals and, from the end of Sect. 15.2, that limn→∞ P(Zn ≥ nδ1 |
Gn) = 1, for all δ1 < 1. Thus, we can study major outbreaks by considering the
epidemic En′,m′ , where m′ = [nδ1 ] and n′ = n + m − [nδ1 ] (Note that m′ and n′ are
implicitly indexed by n.) Elementary analysis shows that, for any δ1,δ2 > 0 and any
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k ≤ (logn)2,

lim
n→∞

θ n′,m′
k ([nδ2 ]) =

{
0 if δ1 +δ2 > 1,
1 if δ1 +δ2 < 1.

Further, by the paragraph after Eq. (15.9) in Sect. 15.2, the susceptibility set S n
1 can

be coupled with its approximating branching process Bn
1, so that, given any δ2 < 1

2 ,
for all sufficiently large n they coincide up until nδ2 individuals have been added to
the susceptibility set. A similar comment holds for S n

2\1(k) and its approximating
branching process. Thus, if we choose δ1,δ2 ∈ (0,1) so that δ1 + δ2 > 1 and δ2 <
1
2 , it follows that limn→∞ P(χn

1 = 0) = π(λ ), where π(λ ) denotes the extinction
probability of B(λ ), and limn→∞

[
P(χn

2 = 0 | Sn
1 = k)−π

(
λ
(
1− k+1

n

))]
= 0.

Suppose that λ > 1 and that a major epidemic occurs. Then it follows immedi-
ately using (15.15) that

lim
n→∞

n−1E[Zn] = 1−π(λ ) (15.34)

and
lim
n→∞

var(χn
1 ) = π(λ )(1−π(λ )). (15.35)

Also, using (15.22) and a similar asymptotic analysis to before,

lim
n→∞

(n−1)cov(1−χn
1 ,1−χn

2 ) = E[W11{W1<∞}](1−π(λ ))

+ lim
n→∞

(n−1)E
[

1{W1<∞}

{
π
(
λ
(

1− W1 +1
n

))
−π(λ )

}]
.

where W1 is now the total progeny of B(λ ).
Let W̃1 be distributed according to W1 conditional upon B(λ ) going extinct. Then

lim
n→∞

(n−1)cov(1−χn
1 ,1−χn

2 ) = E[W̃1]π(λ )(1−π(λ ))−λ (E[W̃1]+1)π(λ )π ′(λ ),
(15.36)

where π ′ denotes the derivative of π with respect to λ .
By standard branching process theory (e.g. Haccou et al. [22], Sect. 5.3), for

λ > 1, π(λ ) is the unique solution in (0,1) of

f (λ ,π(λ )) = π(λ ). (15.37)

Let τ = limn→∞ n−1E[Zn], so (15.34) yields τ = 1 − π(λ ). Recall that f (λ ,s) =
exp(−λ (1 − s)). Then (15.37) implies that τ is the non-zero solution of 1 − τ =
e−λτ , agreeing with (15.7), and (15.35) yields limn→∞ var(χn

1 ) = ρ(1 −ρ), where
ρ = π(λ ) = 1− τ .

Let pk(λ ) = λ ke−λ/k! (k = 0,1, . . .). Then Daly [17] implies that W̃1 is dis-
tributed as the total progeny of a Galton–Watson process with offspring distribution
given by P(Ỹ = k) = (π(λ ))k−1 pk(λ ) (k = 0,1, . . .), whence E[Ỹ ] = fs(λ ,π(λ )) =
λ f (λ ,π(λ )) = λπ(λ ) = λρ , so E[W̃1 +1] =∑∞

k=0(E[Ỹ ])k = (1−λρ)−1. Also, dif-
ferentiating (15.37) yields
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π ′(λ ) = −π(λ )(1−π(λ ))
1−λπ(λ )

,

whence substitution into (15.36) and using (15.16) gives

lim
n→∞

n−1 var(Zn) = ρ(1−ρ)+
λρ2(1−ρ)

1−λρ
+

λρ2(1−ρ)
(1−λρ)2

=
ρ(1−ρ)
(1−λρ)2 ,

agreeing with (15.8). The law of large numbers (15.6) follows immediately.

15.3.4 Central limit theorem

The central limit theorems (15.4) and (15.8) follow from the preceding results by
using the central limit theorem of Peligrad and Utev [29] for an associated sequence
of random variables. The random variables X1,X2, . . . ,Xn are called associated if
cov( f (X1,X2, . . . ,Xn),g(X1,X2, . . . ,Xn)) ≥ 0 for any coordinatewise nondecreasing
functions f (x1,x2, . . . ,xn) and g(x1,x2, . . . ,xn) for which the covariance is defined
(Esary et al. [20]).

Consider the random directed graph G described in Sect. 15.3.1.1. Let E =
{(i, j) ∈ N 2 : i 
= j} be the set of possible edges and, for e ∈ E , let ψe be the indica-
tor random variable that takes the value one if the directed edge e is present in G and
zero otherwise. For the Reed–Frost epidemic, the random variables (ψe : e ∈ E ) are
independent, and hence associated. For i = 1,2, . . . ,n, χi is a nondecreasing function
of (ψe : e ∈ E ), hence, by property (P4) of Esary et al. [20], the random variables
χ1,χ2, . . . ,χn are associated.

For n = 1,2, . . ., let κ(n) = [n
1
2 ], ι(n) = [n/κ(n)], Y n

i = ∑iκ(n)
j=(i−1)κ(n)+1 χ

n
j (i =

1,2, . . . , ι(n)) and Rn = ∑n
j=ι(n)κ(n)+1 χ

n
j . The results of Sects. 15.3.2 and 15.3.3

imply that, under the two asymptotic regimes considered, c = supn≥1 var(χn
1 ) and

d = supn≥1 ncov(χn
1 ,χn

2 ) are both finite. It follows that n−1 var(Rn) → 0 as n → ∞,

hence n− 1
2 (Rn − (n − κ(n)ι(n))E[χn

1 ]) D→ 0 as n → ∞ and, by Slutsky’s theo-

rem, n− 1
2 ∑n

i=1(χn
i − nE[Xn

1 ]) and n− 1
2 ∑ι(n)

i=1 (Y n
i − κ(n)E[χn

1 ]) have the same lim-
iting distribution as n → ∞. Also, cov(Y n

1 ,Y n
2 ) = κ(n)2 cov(χn

1 ,χn
2 ) ≤ dκ(n)2/n

(n = 1,2, . . .). Thus n−1∑ι(n)
i=2 cov(Y n

1 ,Y n
i ) ≤ dι(n)κ(n)2/n2 → 0 as n → ∞. For

n = 1,2, . . ., Y n
1 ,Y n

2 , . . . ,Y n
ι(n) are each nondecreasing functions of (χn

1 ,χn
2 , . . . ,χn

n ), so
Y n

1 ,Y n
2 , . . . ,Y n

ι(n) are associated. Hence, using Theorem 2.3 of Peligrad and Utev [29],
which may be extended to a triangular array of random variables (Sergey Utev,

personal communication), n− 1
2 ∑ι(n)

i=1 (Y n
i − κ(n)E[χn

1 ]) converges in distribution to

a zero-mean normal distribution as n → ∞, and therefore so does n− 1
2 ∑n

i=1(χn
i −

E[χn
i ]). The central limit theorems (15.4) and (15.8) follow immediately.
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16
A branching process approach for the
propagation of the Bovine Spongiform
Encephalopathy in Great-Britain

Christine Jacob, Laurence Maillard-Teyssier, Jean-Baptiste Denis and Caroline
Bidot

Abstract The goal of this work is the modelling of the propagation of BSE (Bovine
Spongiform Encephalopathy) at the scale of a very large population (Great-Britain)
in order to predict its extinction time and to evaluate the efficiency of the main feed-
ban regulation. To this end, we first elaborated a multitype branching process in
discrete time with age and population dependent individual transitions. The types
are the health states at each age. Then, assuming that the disease is rare at the ini-
tial time, and assuming that the probability for an animal to be exposed to a given
infective is inversely proportional to the total population size, we derived from this
model, as the initial size of the population increases to ∞, a limit process on the
incidence of clinical cases. This limit process may be either considered as a single-
type d-Markovian process with a Poissonian transition distribution, or a multitype
Bienaymé–Galton–Watson process having d types corresponding to the memory of
the process. We studied the behavior of the limit process and estimated its unknown
parameters using a Bayesian approach.

Mathematics Subject Classification (2000): 60J80, 60J85, 92D30; 62F15, 92D25

Keywords: branching process, epidemiology, extinction time, Bayesian estimation,
Bovine spongiform encephalopathy.

16.1 Introduction

BSE (Bovine Spongiform Encephalopathy), also known as “mad cow disease”, was
initially recognized in Great-Britain in 1986. This disease was due to a change in
the early 1980s of the rendering process by which livestock carcasses are converted
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to protein supplements for livestock feed. It is a fatal neurodegenerative transmissi-
ble disease in cattle due to self-replicating proteins, the prions. It causes a spongy
degeneration in the brain and spinal cord leading to death. The main routes of trans-
mission are horizontal via the protein supplements (MBM (Meat and Bone Meal),
milk replacers) and maternal from a cow to its calf [5]. It may be transmitted to hu-
man by the food route. The human disease, called nvCJD, was first detected in the
mid 1990s and caused 164 deaths in Great Britain until now. The main measures for
controlling BSE were first of all the ban of feeding ruminants with ruminant-derived
proteins in July 1988, and then the extension in 1996 of this ban to mammalian-
derived proteins and to all farmed livestock [4].

The main questions adressed here consist in the quantification of the infection
according to the different sources (feed, maternal, excretion), in the estimation of
the efficiency of the main feed ban law (July 1988), and in the prediction of the
propagation of the disease, in particular the extinction time distribution.

To this end, we first built a multitype branching process in discrete time with age
and population dependent individual transitions. The types were the ages crossed
with the health states. Then, assuming a rare disease at the initial time and the prob-
ability for an animal to be exposed to a given infective inversely proportional to
the population size, we recursively derived from this model, as the initial size of
the population increases to ∞, a limit model on the incidence of clinical cases. We
showed that this limit model may be written either as a singletype Markovian model
of order aM − 1 with a Poissonian transition distribution, where aM is the largest
survival age of an healthy animal, or as a multitype branching process with aM −1
types corresponding to the memory of the process, where the offsprings distributions
are Poisson distributions. Moreover this branching process is a BGW (Bienaymé-
Galton-Watson) process on periods without any control regulation. The limit model
has the advantage to depend only on the incidence of clinical cases at successive
times, which corresponds to the observations. Using either one model (multitype
branching process) or the other one (aM − 1-Markovian model with a Poissonian
transition), we studied the behavior of the process and estimated its unknown pa-
rameters using a Bayesian approach (efficiency of the Meat and Bone Meal (MBM)
ban in 1988, infection parameters, incubation period distribution parameters, initial
cases numbers in 1982, 1984, 1985 and 1986). Details of the proofs may be found
in [7].

16.2 Initial branching model

The propagation of a disease with a long incubation time with respect to the pop-
ulation dynamics (offspring and death) being due to interaction of the disease dy-
namics and the population dynamics, we first built a branching process based on
the population dynamics, the disease propagating on each random tree, according
to the different steps of the disease evolution within each animal. These steps are
described in Fig. 16.1.
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infection

incubation

S

E1

I1

R

R

R

control slaughtering

due to BSE

routine slaughtering

routine slaughtering
(E and S seem identical)

S = susceptible

E1 = newly infected

I1 = newly clinical case

R = slaughtered

Fig. 16.1 The different steps of the disease.

The incubation period is random and may last several years while the clinical
state lasts at most a few months.

We chose a discrete time approach with a time unit of 1 year for consistence with
the observations on one hand, and for removing both seasonal effects and unknown
effects linked to continuous time approach such as the duration of the clinical state,
on the other hand.

Let I1
a,n and Ia,n be the respective number of new clinical cases and the total

number of clinical cases, aged a at time n, According to the chosen unit time,
Ia,n = I1

a,n. Let E1
a,n and Ea,n be the respective number of newly infected ani-

mals and the total number of infected animals in incubation, aged a at time n,
and let Na,n be the total number of animals aged a at time n. Moreover let, for
(X0,X1) ∈ {(S,E1),(E1, I1),(S,R),(E1,R),(I1,R)}, δX0,X1

a0,l0,l1,i be the Bernoulli vari-
able equal to 1 if animal i aged a0 and in state X0 at time l0, undergoes transition
X0 → X1 at time l1, let δE1

1,l1,i′ and δR
1,l1,i′ be similar Bernoulli variables for the new-

born animals, and δ (S,a0−1)
l0−1,i be the Bernoulli variable equal to 1 if animal i is S and

is aged a0 −1 at time l0 −1, and let Yn,i the number of newborn animals with parent
i. Then in a natural way denoting E the incubation state,

Ia,n = I1
a,n = ∑

l<n

E1
a−(n−l),l

∑
i=1

δE1,I1

a−(n−l),l,n,i (clinical cases) (16.1)

E1
a,n =

Nn−1

∑
i=1

[1{a≥2}δ
(S,a−1)
n−1,i δ S,E1

a−1,n−1,n,i+1{a=1}
Yn,i

∑
j=1

δE1

1,n,i, j] (new infected) (16.2)

Ea,n = ∑
l<n

E1
a−(n−l),l

∑
i=1

δE1,E
a−(n−l),l,n,i +E1

a,n (total number of infected)

Nn =
aM

∑
a=1

Na,n, Na,n = (Ia,n +Ea,n +Sa,n) (total population size).

The process defined by these relationships is a multitype branching process with
age and population dependent individual transitions since the incubation time dis-
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tribution cannot be assumed geometric and the probability to be infected depends
on the number of infectives. The types are the ages, 1 ≤ a ≤ aM , crossed with the
health states S, E, I. In order to completely define the process, we must determine
the distribution of the set of the Bernoulli variables involved in this model. To this
end, we assumed the following hypotheses:

1. A1: the S and E animals have the same time-homogeneous survival law {Sa}a;
2. A2: the survival law has the exponential form Sa = Sa−1 exp(−λ ), for a ≥ 2 (this

assumption is used only for simplifying the expression of infection parameters);
3. A3: |EI | < 1 year, |E| ≥ 1 year, where |EI | is the duration of the infectious stage

of the incubation period and |E| is the duration of the whole incubation period.
Therefore, according to observations, a newborn animal cannot become a clinical
case during its first time unit of life.

4. A4: there is no overcontamination during the incubation period or the clinical
state;

5. A5: the intrinsic incubation period distribution is assumed independent of the
infection age and time;

6. A6: the birth dates are at the beginning of each time unit (this assumption allows
to consider the first age class in the same way as the other ones especially for the
incubation distribution);

7. A7: the number of newborn animals Yl,i at each calving per animal at time l,
is independent of l, i, and of the health state of i (but the health state of each
newborn animal and his survival during the first time step may depend on the
health state of i);

8. A8a: the contamination of a S animal at time l is due either to the ingestion of
excreted prions from clinical cases at this time, or to the ingestion of prions in
the MBM or milk replacers resulting from slaughtered animals which were in the
infectious stage EI at the previous time l −1;
A8b: the probability for a given susceptible animal to be infected at l by a given
set of prions is inversely proportional to the total population size Nl (note: this
probability is proportional to the exposure probability of S to this set of prions,
and in classical infectious diseases with direct transmission, this probability is
the probability of efficient contacts during the time unit of a given S with a given
I);
A8c: the probability of infection via dead animals (and similarly via alive animals)
follows a Reed-Frost’s type model.
Consequently the infection probability via the slaughtered animals has the form:

P(S is not infected at n by γREI,R
n−1,n)

A8a,A8c= P(S is not infected at n by a set of prions)γ
REI,R

n−1,n

A8b= (1− μR

Nn
)γ

REI,R
n−1,n

$ 1− μRγREI,R
n−1,n

Nn
+O

⎛

⎝

(
EI

n−1

Nn

)2
⎞

⎠ ,
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where γR is the mean number of prions aggregates produced in MBM by a dead
infectious animal and EI,R

n−1,n is the number of infectives in EI at time n−1 who
are slaughtered at time n and entered in the MBM production. And similarly for
the infection probability via the alive cattle.

9. A9: the disease is very rare at the initial time: limN0→∞ E2
0 N−1

0
a.s.= 0.

Then the distributions of the Bernoulli variables were deduced from these assump-
tions [7].

16.3 Limit process as N0 → ∞

We study here the number of clinical cases at time n, In = ∑a≤aM
Ia,n, as N0 → ∞,

where aM is the largest survival age, and we also denote {In} the limit process. We
denote Ik the σ -algebra generated by {Il}l≤k and I ∗

k the σ -algebra generated by

{Il}l≤k,{Na,l}a,l<k,{NY,l}l<k, where NY,l =∑Nl−1
i=1 Yl,i is the total number of newborn

animals (at the birth time).

Proposition 16.1. The limit process, as N0 → ∞, is a singletype Markovian process
of order aM −1 with a Poissonian transition law:

L (In|In−1) = Poisson

(
aM−1

∑
h=1

Ψh|n−hIn−h

)

, (16.3)

Ψh|n−h :=
aM

∑
a=1+h

(θ a−h,Rc
+θ a−h,Rφn−h +1{a−h=1}pmat.)P(a)Pinc.(h), (16.4)

where θ a−h,Rc
and θ a−h,R(expλ − 1)−1φn−h represent the mean numbers of new

infected animals aged a−h per infective at time n−h respectively via excretion of
alive animals and via slaughtered animals, φn−h ∈ [0,1] represents the efficiency at
time n− h of the MBM ban of 1988, pmat. is the probability for a newborn animal
to be infected by his mother, P(a) is the probability at each time for an animal to
have age a, and Pinc.(h) is the probability for an infected animal to have an intrinsic
incubation time equal to h, which is defined by the censored process that is, at each
time, not allowed to die. SoΨh|n−h represents the mean number of new clinical cases
produced with a delay h by a clinical case at time n−h.

Proof. We have Ia,n = ∑a−1
h=1 Ia,n−h,n, where according to (16.1) and (16.2),

Ia,n−h,n := 1{a−h≥2}
Nn−h−1

∑
i=1

δ (S,a−1−h)
n−h−1,i δ S,E1

a−1−h,n−h−1,n−h,iδ
E1,I1

a−h,n−h,n,i

+1{a−h=1}
NY,n−h

∑
i′=1

δE1

1,n−h,i′δ
E1,I1

1,n−h,n,i′ .
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We first show that limN0→∞ E(Ia,n−h,n|In−1) is a finite quantity depending only on
the past clinical cases until n−h. Then we show using this result that the limit tran-
sition law of Ia,n−h,n given In−1, as N0 →∞, is Poissonian and that the {Ia,n−h,n}a,h

given In−1 are independent, as N0 → ∞.

1. We use E(Ia,n−h,n|In−1) = E(E(Ia,n−h,n|I ∗
n−1)|In−1), where according to A4,

E(Ia,n−h,n|I ∗
n−1)

= 1{a−h≥2}Nn−h−1E(δ (S,a−1−h)
n−h−1,i δ S,E1

a−1−h,n−h−1,n−h,iδ
E1,I1

a−h,n−h,n,i|I ∗
n−h)

+ 1{a−h=1}NY,n−hE(δE1

1,n−h,i′δ
E1,I1

1,n−h,n,i′ |I ∗
n−h)

= 1{a−h≥2}Nn−h−1P(δ (S,a−1−h)
n−h−1,i = 1,δ S,E1

a−1−h,n−h−1,n−h,i = 1,

δE1,I1

a−h,n−h,n,i = 1|I ∗
n−h)+1{a−h=1}NY,n−hP(δE1

1,n−h,i′ = 1,δE1,I1

1,n−h,n,i′ = 1|I ∗
n−h).

Then using Bayes’ formula, we get

E(Ia,n−h,n|I ∗
n−1) (16.5)

= 1{a−h≥2}Nn−h−1P(δ (S,a−1−h)
n−h−1,i = 1|I ∗

n−h)

× P(δ S,E1

a−1−h,l−1,n−h,i = 1|I ∗
n−h,δ

(S,a−1−h)
n−h−1,i = 1)

× P(δE1,I1

a−h,n−h,n,i = 1|I ∗
n−h,δ

(S,a−1−h)
n−h−1,i δ S,E1

a−1−h,n−h−1,n−h,i = 1)

+ 1{a−h=1}NY,n−hP(δE1

1,n−h,i′ = 1|I ∗
n−h)P(δE1,I1

1,n−h,n,i′ = 1|I ∗
n−h,δ

E1

1,n−h,i′ = 1).

So we need to calculate each conditional probability of this formula using {Ai}.

Let δ̃E1

a−h,n−h,i := 1{a−h≥2}δ
(S,a−h−1)
n−h−1,i δ S,E1

a−h−1,n−h−1,n−h,i +1{a−h=1}δE1

a−h,n−h,i.

a. Let us assume A1, A4 and A5. Then

P(δE1,I1

a−h,n−h,n,i = 1|δ̃E1

a−h,n−h,i = 1,I ∗
n−h) =

Ŝa,n|n−h

Ŝa−h,n−h|n−h

Pinc.(h) (16.6)

where Ŝa′,n′|n′−h = P(AR
n′−(a′−1),n′ > a′|Nn′−h) is the survival probability at

age a′ and time n′ for an animal born at time n′ − (a′ − 1), given the set
Nn′−h of sizes of the populations until time n′ − h, and Pinc.(h) is the dis-
tribution of the intrinsic incubation time (for the censored process that is not

allowed to die, defined by Pc
E(δE,I1

a′,l,l+1,i = 1) = PE(δE,I1

a′,l,l+1,i = 1|{δE,I1

a′,l,l+1,i =

1}∪{δE,E
a′,l,l+1,i = 1}).

b. Under A2 and A8, the infection probabilities have the following forms:
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P(δE1

1,n−h,i′ = 1|I ∗
n−h,A

R
n−h,n−h(i

′) > 1)

= [q+ θ̂ 1,Rc
+ θ̂ 1,Rφn−h]

In−h

Nn−h
+O

⎛

⎝

(
EI

n−h−1

Nn−h

)2
⎞

⎠ (16.7)

P(δ S,E1

a−h−1,n−h−1,n−h,i = 1|I ∗
n−h,δ

S
a−h−1,n−h−1 = 1,AR

n−(a−1),n−h(i) > a−h)

= [θ̂ a−h,Rc
+ θ̂ a−h,Rφn−h]

In−h

Nn−h
+O

⎛

⎝

(
EI

n−h−1

Nn−h

)2
⎞

⎠ , (16.8)

where θ̂ a−h,Rc
and θ̂ a−h,R(expλ − 1)−1φn−h represent the mean numbers of

new infected animals aged a − h per infective at time n − h respectively via
excretion of alive animals and via slaughtered animals given I ∗

n−h.

c. Under A1, A3, A7 and A9, the disease is rare at any time: limN0→∞ E2
l−1N−1

l
a.s.=

0, for all l ≥ 0.
d. Under A7 and A9, then the population remains stable at any time, that is, for

all l ≥ 1,

lim
N0→∞

NlN
−1
l−1

a.s.= 1, Pl(a) = m, Sa =: P(a), (16.9)

where Pl(a) is the probability at time l for an healthy animal to have the age
a ≥ 1, and m = [∑a′≥1 Sa′ ]−1 = limN0→∞ NY,lN

−1
l−1 =: E(Yl,i) is the mean num-

ber of calves at time l per cow at the birth time, and mS1 = P(1) is the mean
number of calves at each time per cow, that are still alive at the end of their
first year.

e. Let us assume A1, A7 and A9. Then

lim
N0→∞

E(δ (S,a−h−1)
n−h−1,i |I ∗

n−h)
a.s.= P(a−h−1). (16.10)

Then, according to (16.5), using (16.6), (16.7), (16.8), (16.10) and (16.9),
we get

E(Ia,n−h,n|I ∗
n−h)

= 1{a−h≥2}
Nn−h−1

Nn−h
P̂n−h−1(a−1−h)

Sn−h−1

Nn−h−1

Ŝa,n|n−h

Ŝa−1−h,n−h−1|n−h−1

× (θ̂ a−h,Rc
+ θ̂ a−h,Rφn−h)Pinc.(h)In−h

+ 1{a−h=1}
NY,n−h

Nn−h
Ŝ1,n−h|n−h(q+ θ̂ 1,Rc

+ θ̂ 1,Rφn−h)

× Ŝa,n|n−h

Ŝa−h,n−h|n−h

Pinc.(h)Il +O

⎛

⎝

(
EI

n−h−1

Nn−h

)2
⎞

⎠Nn−h−1.

which leads to
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lim
{N0→∞}

E(Ia,n−h,n|I ∗
n−h)

a.s.= (θ a−h,Rc
+θ a−h,Rφn−h +1{a−h=1}q)P(a)Pinc.(h)In−h (16.11)

=: λa(In−h) (16.12)

implying (16.4).
f. Let us consider the distribution of Ia,n−h,n given In−1. We show that this dis-

tribution is a Poisson one. According to its definition (see previous item),
Ia,n−h,n is the sum of 2 independent Binomial variables given I ∗

n−h:

L (Ia,n−h,n|I ∗
n−h)

= 1{a−h≥2}B(Nn−h−1,E(δ (S,a−1−h)
n−h−1,i δ S,E1

a−1−h,n−h−1,n−h,iδ
E1,I1

a−h,n−h,n,i|I ∗
n−h))

⊕ 1{a−h=1}B(N1,n−h,E(δE1

1,n−h,i′δ
E1,I1

1,n−h,n,i′ |I ∗
n−h)), (16.13)

where B(N, p) represents the Binomial variable ∑N
i=1 δi, E(δi) = p(N). Using

(16.11) and (16.12), and since P(Ia,n−h,n = ia−h,n−h|I ∗
n−h)≤ 1, then according

to Lebesgue’s dominated convergence theorem, we get

lim
N0→∞

E(P(Ia,n−h,n = ia−h,n−h|I ∗
n−h)|In−h)

a.s.= E( lim
N0→∞

P(Ia,n−h,n = ia−h,n−h|I ∗
n−h)|In−h) = λa(In−h). (16.14)

Therefore according to (16.12), (16.13) and (16.14), Ia,n−h,n given In−1 is
asymptotically Poisson distributed as N0 → ∞:

lim
N0→∞

L (Ia,n−h,n|In−h) = Poisson(λa(In−h)),

λa(In−h) = lim
N0→∞

E(Ia,n−h,n|I ∗
n−h).

g. Next, for a given k, we show that the {Ia,n−h,n}a,h are independent given In−1.
This property is due to A4 (no overinfection during the incubation) on one
hand and to the property of rare disease which means that the number of S
animals at time n−h′ < n is independent, as N0 →∞, of the number of infected
animals at the previous times n−h < n−h′, on the other hand.

h. Finally let us consider limN0→∞L (Ia,n|In−1), a ≥ 2. Let Ia,n = ∑h≤a−1 Ia,n−h,n,
where the {Ia,n−h,n}a,h are asymptotically, as N0 → ∞, independent given
In−1, and moreover according to A4, L (Ia,n−h,n|In−1) = Poisson(λa(In−h)).
Therefore

lim
N0→∞

L (Ia,n|In−1) = ⊕a−1
h=1Poisson(λa(In−h)) =: Poisson(λa(In)),

where λa(In) := ∑a−1
h=1λa(In−h).

Corollary 16.1. The limit process has the same distribution as:
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In =
a−1

∑
h=1

In−h

∑
i=1

Y E,I
n−h,n,i, (16.15)

where L (Y E,I
n−h,n,i|In−1) = Poisson(Ψh|n−h), Ψh|n−h = E(Y E,I

n−h,n,i|In−1), and given

In−1, the {Y E,I
n−h,n,i}i,h are independent.

This result is just a direct consequence of the linearity of (16.3) in In−h.
Notice that (16.15) may be considered as a singletype discrete time Crump-

Mode-Jagers process with bounded support of offspring production period, when
Ψh|n−h =Ψh (homogeneous setting).

In the same way as a unidimensional Markovian chain of order d may be rep-
resented by a d-multidimensional Markovian chain of order 1, we may also rep-
resent the limit process In=∑aM−1

h=1 ∑In−h
i=1 Y E,I

n−h,n,i according to a multitype Marko-
vian branching process. Let d := aM − 1 and, for n ≥ 0, In =: (In,1, In,2, ..., In,d) :=
(In, In−1, ..., In−(d−1)).

Proposition 16.2. Process {In} is a multitype Markovian branching process defined
by:

In,k =
d

∑
h=1

In−1,h

∑
i=1

Y (h,k)
n,i , 1 ≤ k ≤ d,

where Y (h,k)
n,i is the number of offspring of type k generated at time n by an animal of

type h, and for k = 1, In,1 = In with Y (h,1)
n,i = Y E,I

n−h,n,i, and for k > 1, In,k = In−(k−1)

with Y (h,k)
n,i = 1, for h = k−1, and Y (h,k)

n,i = 0, for h 
= k−1.
Moreover in the particular homogeneous case Ψn−h,n = Ψh (same infection at

each time), then {In} is a multitype Bienaymé–Galton–Watson process.

Proposition 16.3. Let f(s) := ( f (1)(s), ..., f (d)(s)) be the offspring generating func-

tion, where s := (s1, ...,sh+1, ...,sd), f (h)(s) := E(s
Y (h,1)

n,1
1 ...s

Y (h,d)
n,1

d ). Then

f (h)(s) = sh+1 exp(−Ψh(1− s1)),

where sd+1 = 1, and the generating function of In is

Fn(s) := E(sIn,1
1 ...s

In,d
d |I0) = Fn−1(f(s)) = Fn−2(f(f(s))) = ... = F0(fn(s)).

16.4 Behavior of the BGW limit process

We assume here the homogenous settingΨh|n−h =Ψh, for all h,n.
Let M be the d ×d matrix defined by E(In|In−1) = In−1M. Then
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M =

⎛

⎜
⎜
⎜
⎜
⎝

Ψ1 1 0 ... 0
Ψ2 0 1 ... 0
... ...
Ψd−1 0 0 ... 1
Ψd 0 0 ... 0

⎞

⎟
⎟
⎟
⎟
⎠

Except (16.16) and propositions (16.9) and (16.10) that are based on the Pois-
sonian character of the transition law of the process {In}, the following results are
based on classical results in multitype branching processes [2].

Proposition 16.4. Let ρ be the first eigenvalue of M. Then ρ ∈ R+ and satisfies
∑d

h=1Ψhρ−h = 1. Moreover ρ ≤ 1 is equivalent to Rstoch
0 ≤ 1, where Rstoch

0 = ∑hΨh.

Notice that according to the definition of {Ψh}, Rstoch
0 corresponds to the usual ba-

sic reproductive number used in epidemiology (mean number of secondary cases
produced by one case, see for example [1]). This comes from the fact that the limit
model is not state-dependent.

Proposition 16.5. Let u and v be the corresponding right and left eigenvectors as-
sociated to ρ , that is vM = ρv, MuT = ρuT , with u.v = 1, u.1 = 1. Then

uh = [ρh−1
d

∑
l=h

ρ−lΨl ]u1, h = 1, ...,d, u1 = [
d

∑
h=1

ρh−1
d

∑
l=h

ρ−lΨl ]−1

vh = ρ−(h−1)v1, v1 = [
d

∑
h=1

ρh−1
d

∑
l=h

ρ−lΨl ][
d

∑
h=1

d

∑
l=h

ρ−lΨl ]−1.

From now on let us assumeΨ1 > 0,...,Ψd > 0.

Proposition 16.6. 1. The process {In} is positive regular and nonsingular;
2. E(‖I1‖ ln(‖I1‖)) < ∞, where ‖I1‖ = max{I1, I0, ..., I−(d−2)};
3. P(limn→∞ In = 0∪ limn→∞ In = ∞) = 1;
4. In the supercritical case ρ > 1, (⇐⇒ Rstoch

0 > 1), then there exists a proper non-

negative random variable W such that limn→∞
In
ρn

a.s.= W with qh := Ph(limn→∞ In =
0) = Ph(W = 0) (extinction probability starting from an animal of the h-type).

5. In the subcritrical and critical cases ρ ≤ 1, then P(limn→∞ In = 0) = 1 (a.s.
extinction).

16.4.1 Extinction probability

Let I0 = (i0, i−1, ..., i−(d−1)) be the initial state of the multitype BGW process. No-
tice that if I0 corresponds to the appearance of the first clinical case, then i0 = 1 and
il = 0, l < 0.
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Proposition 16.7. The extinction probability of {In} is q := P(limn→∞ In = 0|I0) =
qi0

1 ...q
i−(d−1)
d , where

qh = exp(−
d

∑
l=h

Ψl (1−q1)) , h = 1, ...,d. (16.16)

As a consequence, Rstoch
0 ≤ 1 =⇒ q1 = 1 =⇒ q2 = 1 =⇒..., qd = 1.

16.4.2 Extinction time distribution

Let Text be the extinction time of the process. Then {Text. ≤ n} := {In = 0}.

Proposition 16.8. When Rstoch
0 < 1, then limn→∞ρ−nP(Text. >n|I0) = Q(0)I0.u > 0,

where
Q(0) := limn→∞ρ−nv.(1− fn(s)).

Proposition 16.9. The extinction time distribution is given by:

P(Text. ≤ n|I0) = E
(

exp(−
d−1

∑
l=0

In−d−l

d

∑
h=l+1

Ψh)|I0

)
, for n ≥ d.

Notice that ∑d−1
l=0 In−d−l ∑d

h=l+1Ψh is the mean number of secondary cases pro-
duced on the period n−d, ...,n corresponding to the memory of In, by the existing
cases before time n−d.

16.4.3 Size of the epidemic

Proposition 16.10. The distribution of the epidemic size is given by:

P(
Text.

∑
h≥1

Ih = n|I0)

= ∑
l≥0

∑
{i j}:∑l

j=1 i j=n

exp
(
−

d

∑
h=1

Ψh

l+d

∑
j=1

i j−h

) (∑d
h=1Ψhil−h)il

il!
...

(∑d
h=1Ψhi1−h)i1

i1!
.

16.5 Estimation

We used a bayesian approach which has the double advantage to lead to the con-
struction of exact credibility intervals from the posterior marginal distributions of
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the parameters on one hand, and to take into account the support of each parameter
in its prior distribution.

For each parameter, the chosen prior distribution P(θ j) expresses the lack of
information (uncertainty) about this parameter. Assuming that the parameters are a
priori independent, then the posterior distribution satisfies

P(θ |I1 = i1, ..., In = in) ∝Π jP(θ j)P(I1 = i1, ..., In = in|θ),

where P(I1 = i1, ..., In = in|θ) is the likelihood of (I1, ..., In). .

16.5.1 Observations

The data set (Table 16.1) consisted of the number of cases of BSE per year reported
in Great Britain until 2007 by the World Organisation for Animal Health [11], where
the observations until 1987 have been detailed attributing 9 cases in 1986, 1 case in
1985 and 0 case before 1985. Recall that the disease was notifiable from 1988 [4]
and that different types of active surveillance began since 1999, in particular the
most efficient one required by the European Union starts in 2001 (see Department
for Environment Food and Rural Affairs [3]). So the accuracy of the observations
increases with time; in particular, the first observations concern only the clinical
status while the current observations from 2001 concern not only the clinical status
but also the last stage of the incubation period. However we did not take into account
these changes of accuracy of the data.

n 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
In 0 0 0 0 1 9 432 2469 7137 14181 25032 36682 34370 23945

n 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
In 14302 8016 4312 3179 2274 1355 1113 1044 549 309 203 104 53

Table 16.1 Number of cases per year until 2007 in Great-Britain. The epidemic peaks in 1992 and
then decreases.

The observed survival probabilities until aM = 10 were drawn from [10]. We also
extrapolated these data until aM = 19 in order to evaluate the influence of aM on the
estimation of θ and of derived quantities.

16.5.2 Model and parameters

In this section, {In} was assumed to follow the limit model described in Sect. 16.3.
We assumed in a parcimony purpose that θ a,Rc

= θRc
, for all a, θ a,R = θ 1,R, for

a = 1, θ a,R = θ 2,R, for a ≥ 2. Because of an identifiability problem concerning
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(θRc
, pmat.), we set pmat. = 0.1 which is the largest potential value based on ob-

servations. We assumed that φl = 1 until 1988, φl = φ , for l ∈ [1989,1996], where
φ ∈ [0,1], and φl = 0, for l ≥ 1997. Parameter φ represents the efficiency of the feed
ban of 1988.

The transition law of the process was for n ≥ 1986, L (In|In−1) = Poisson(λ (In)),
where λ (In) = ∑a∑a−1

h=1λa(In−h), λa(In−h) being given by (16.12).
We chose for the intrinsic incubation time distribution in continuous time a

Weibull distribution of parameters c and d with density dP(Tinc = x)/dx = cdxd−1e−cxd

in continuous time since the Weibull density covers a very large set of unimodal
probability densities.

Therefore the distribution in discrete time was defined by Pinc( j) = P(Tinc ≥ j −
1)−P(Tinc ≥ j) = e−c( j−1)d −e−c jd , where c = (d−1)[dbd ]−1, b = argmaxx dP(Tinc

= x)/dx (mode of the probability density), and d is a shape parameter (for a convex
density in a neighborhood of 0, d should be larger than 2).

Since the disease was unknown until 1986, the unknown parameter that we esti-
mated was

θ = ((i1982, ..., i1986),(b,d),φ ,(θ 1R,θ 2R,θRc
)).

16.5.3 Prior distributions

Due to the lack of knowledge of the parameters values, we assumed that all prior
distributions were uniform distributions:

• Ih ∼ Uni f orm(0,1000), for h = 1982, ...,1986;
• b ∼ Uni f orm(3,10), d ∼ Uni f orm(1,5);
• φ ∼ Uni f orm(0,1);
• θ 1R ∼ Uni f orm(0,100000) (calves), θ 2R ∼ Uni f orm(0,100000) (cows);
• θRc ∼ Uni f orm(0,100).

16.5.4 Algorithm and software

All calculations were performed with the software OpenBUGS [8]. BUGS means
Bayesian inference Using Gibbs Sampling. This software mainly developed at the
MRC Biostatistics Unit, Cambridge, UK, automatically implements MCMC algo-
rithms for a very wide variety of models. Convergence of the algorithm was assessed
by the Gelman and Rubin procedure [6].
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16.5.5 Main results

We present here only the main results.

16.5.5.1 Parameters estimation

Recall that θ = ((i1982, ..., i1986),(b,d),φ ,(θ 1R,θ 2R,θRc
)). The empirical marginal

posterior distributions for each parameter were computed from N = 26,000 sim-
ulations of θ according to the Markov Chain leading to the posterior distribution.
The MAP θ̂n (Maximum a posteriori Bayesian estimation, [9]), where the number
of observations was n = 22. was

θ̂n = ((0,0,0,181,545),(7.46,3.84),0,(838,1200,2.43), for aM = 10

θ̂n = ((0,0,0,236,540),(5.953,4.14),0,(233,616,1.056), for aM = 19.

Parameter Mean s.d. MC error Q0.025 Median Q0.975

I1982 0.6955 0.6921 0.004654 0.01762 0.4899 2.543
I1983 0.9755 0.967 0.006083 0.02544 0.6809 3.589
I1984 2.541 2.519 0.01526 0.06208 1.778 9.255
I1985 177.4 13.42 0.09923 149.5 178.0 202.3
I1986 545.1 35.19 0.2557 478.2 544.6 616.8

b 7.46 0.1347 0.003829 7.204 7.457 7.737
d 3.84 0.03425 4.527E-4 3.772 3.841 3.907
φ 7.75E-5 6.079E-5 5.99E-7 2.76E-6 6.381E-5 2.251E-4
θ 1R 842.8 34.29 0.5332 775.7 842.6 910.9
θ 2R 1202.0 134.2 3.836 949.6 1198.0 1479.0
θRc

2.464 0.1266 0.003252 2.231 2.458 2.728

Table 16.2 Empirical statistics computed from the empirical marginal posterior distributions
corresponding to each parameter using aM = 10; s.d. stands for empirical standard deviation,
MC error for Monte Carlo standard error for the mean that is s.d./

√
N, Qα is defined by

P̂(θ j ≤ Qα |i1981, i1987, ..., i2007) = α (quantile).

According to Table 16.3, the mode of the incubation distribution is correlated
with the infection parameters. So these estimations must be interpreted with caution.

16.5.5.2 Prediction of the epidemic

The observed epidemic until 2007 is represented in Fig. 16.2 with a credibility band
of probability 0.95 simulated from 1982 until 2040. This credibility band was calcu-
lated as follows: for each θl , l = 1, ...,N, we simulated a trajectory {i1987,l , ..., i2040,l}
according to the branching process with parameter θ l and the first data i1982, ..., i1986
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I1982 I1983 I1984 I1985 I1986 b d φ θ 1R θ 2R θRc

I1982 1.00 −0.02 0.00 −0.20 0.17 0.06 0.06 0.02 −0.02 0.04 0.05
I1983 −0.02 1.00 −0.02 −0.27 0.20 0.05 0.06 0.02 −0.01 0.03 0.04
I1984 0.00 −0.02 1.00 −0.49 0.26 0.05 0.07 0.02 −0.01 0.03 0.04
I1985 −0.20 −0.27 −0.49 1.00 −0.54 −0.17 0.17 0.00 −0.21 −0.05 −0.15
I1986 0.17 0.20 0.26 −0.54 1.00 0.16 0.53 0.08 −0.10 0.10 0.15

b 0.06 0.05 0.05 −0.17 0.16 1.00 0.31 0.25 −0.35 0.96 0.89
d 0.06 0.06 0.07 0.17 0.53 0.31 1.00 0.22 −0.76 0.46 0.27
φ 0.02 0.02 0.02 0.00 0.08 0.25 0.22 1.00 −0.29 0.29 −0.17
θ 1R −0.02 −0.01 −0.01 −0.21 −0.10 −0.35 −0.76 −0.29 1.00 −0.58 −0.31
θ 2R 0.04 0.03 0.03 −0.05 0.10 0.96 0.46 0.29 −0.58 1.00 0.86
θRc

0.05 0.04 0.04 −0.15 0.15 0.89 0.27 −0.17 −0.31 0.86 1.00

Table 16.3 Empirical correlations between the parameters for aM = 10.

of this trajectory were given by the corresponding elements of θl . Therefore we got
N trajectories {i1982,l , ..., i2040,l}l=1,...,N defining, at each time k, an empirical distri-

bution of Ik(θ) from which we determined the quantiles QIk(θ)
0.025 and QIk(θ)

0.975. So the

credibility band of {Ik(θ)} with probability 0.95 is defined as ∪k(Q
Ik(θ)
0.025,Q

Ik(θ)
0.975],

and by construction P
(

Ik(θ) ∈ (QIk(θ)
0.025,Q

Ik(θ)
0.975]

)
= 0.95. Notice that (QIk(θ)

0.025,Q
Ik(θ)
0.975]

depends by construction of the set of simulations {ik,i}i. But since these values
are simulated independently given the past by using the process variability (Pois-
son transitions), then the variability of the process should also be represented in

(QIk(θ)
0.025,Q

Ik(θ)
0.975] for N large enough. So finally the credibility band should be (quasi)-

independent of the given simulated set {ik,i}i,k, which was shown by different sim-
ulations.

Moreover, for each simulated trajectory starting in 1982, we determined the ex-
tinction time as the first year without any BSE case followed by d −1 years without
any BSE case, and we determined using this set of simulated trajectories the em-
pirical extinction time distribution and its quantiles QText.

0.025 and QText.
0.975 (Fig. 16.2).

We see that this distribution is quite narrow with the most probable value at around
2021 (median at 2022).

16.6 Conclusion

Starting from a general detailed and complex branching process describing the prop-
agation of the disease on branching trees relative to the population dynamics, and
assuming reasonable epidemiological assumptions, we got, as N0 → ∞ a simple
branching process on the clinical cases allowing easily the study of the behavior
of the process and estimations from the observed incidences of cases. We also de-
rived in the same way as for {In} the incidences of infected animals {E1

n} [7]. The
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Fig. 16.2 On the left, the observed epidemic with a credibility band of probability 0.95; on the
right the empirical distribution of the extinction time with a credibility interval of probability 0.95.

Bayesian estimation showed the great efficiency of the feed ban of 1988 and allowed
us to calculate the extinction time distribution.
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Time to extinction of infectious diseases through
age-dependent branching models

Miguel González, Rodrigo Martı́nez and Maroussia Slavtchova-Bojkova

Abstract This paper is concerned with a Sevast’yanov age-dependent branching
process, describing outbreaks of an infectious disease with incubation period. The
main goal was to define the optimal proportion of susceptible individuals that has to
be vaccinated in order to eliminate the disease. To this end we study the properties
of the time to extinction of an infection according to the proportion of immune indi-
viduals in the population. The results lead us to suggest a vaccination policy based
on the mean of the infection survival time. Finally, we provide a simulation-based
method to determine the optimal vaccination level, and as an illustration analyze the
data of outbreaks of avian influenza spreading in Vietnam at the end of 2006.

Mathematics Subject Classification (2000): 60J80, 92D30

Keywords: Sevast’yanov age-dependent branching process, SIR model, time to ex-
tinction, vaccination policies, Monte Carlo method, avian influenza.

17.1 Introduction

When an infectious disease is strongly detrimental to the population in which it
is spreading, control measures are needed to protect susceptible individuals. Vac-
cination programs represent one of the most effective forms of control. However,
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immunizing the whole population is not an option in most cases (either because it
is logistically impossible or because it is too costly), so that only a proportion of
susceptible individuals can be vaccinated. In this case therefore, infections can still
occur, and their spread will depend on the level of immunization. How to determine
the necessary proportion is an important public health problem in its own right, and
depends on multiple factors. One of these factors that is particularly significant for
public health authorities to assess vaccination efficiency is the time that elapses for
the infectious disease to become extinct after vaccination, known as the disease’s
time to extinction.

The aim of the present work is to provide an approach to this problem by using
branching processes to model the spread of epidemics in order to estimate their time
to extinction. These processes have been widely applied to modeling the spread of
epidemics (see for example the monographs [1, 4, 15], or [17]).

We centre our attention on the SIR (Susceptible-Infective-Removed) model.
Measles, mumps, and avian influenza are examples of infectious diseases whose
spread obeys this scheme. Since the branching process approach is appropriate for
a homogeneously mixing population, when the number of infected individuals is
small in relation to the total population size (see [11]), we shall assume this sce-
nario, which clearly would correspond to the early stages of an epidemic.

The study of the spread of infectious disease following the SIR model and de-
pending on a vaccination/immunized level has been considered in [5], using branch-
ing processes in discrete time. However, these generation-by-generation models are
inappropriate for evaluating the time to extinction in real time. We hence propose
here a more accurate approach to the problem, modeling the number of infectious
individuals in the population according to the vaccination level by means of Sev-
ast’yanov age-dependent branching processes (see [19]). This model is a particular
case of the general branching process (see [12]), also called the Crump-Mode-Jagers
(CMJ) branching process, and is the model best suited to the behaviour of infectious
diseases that follow the SIR scheme (see [2]). The Sevast’yanov branching process
(SBP) is especially well suited to modeling the evolution of diseases with an incu-
bation period (and a negligible contact period in comparison with this) for which the
disease’s virulence may be a function of that period. Therefore, our target is to use
SBPs to determine the optimal proportion of susceptible individuals which could be
immunized by vaccination to guarantee the extinction of the disease within a given
time. An advance of this work has been published in [8].

The paper is divided into 6 sections. In Sect. 17.2 we model the spread of the dis-
ease by means of SBPs that depend on the proportion of immune individuals in the
population. In Sect. 17.3, we first model the time to extinction of an infectious dis-
ease according to the proportion of immune individuals in the population, and then
study the main monotonicity and continuity properties of the time to extinction.
In Sect. 17.4, we propose a policy for defining the optimal vaccination/immunized
level based on the mean of the time to extinction of the disease. We then describe a
simulation-based method to calculate the optimal proportion of susceptible individ-
uals to be vaccinated, and end the section by analyzing the data of the spread of avian
influenza in Vietnam at the end of 2006. In Sect. 17.5, we present our concluding
remarks. Finally, the proofs are consigned to the end of the paper in Sect. 17.6.
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17.2 Model of epidemic spread

We assume that the population consists of three types of individuals: infected,
healthy but susceptible of infection (susceptible individuals), and healthy and im-
mune to this disease (immune individuals). The disease spreads whenever an in-
fected individual comes into contact with a susceptible one. The survival time of the
disease in an infected individual will be treated as the “age” of this individual in the
branching model. Essential assumption for the epidemic we are modeling is that the
survival time of the disease consists of two periods: an incubation or latency period
and a comparatively very short (negligible) contact period. During the incubation
period, the infected individual as yet neither shows any symptoms of the disease
nor passes the disease to any susceptible individual. Moreover, when the infectious
disease is observed in an individual, this individual is either isolated (in the case of
human populations, for instance) or culled (for instance, in the case of very conta-
gious animal diseases such as classical swine fever, foot-and-mouth disease, or avian
influenza), so that the individual ceases to be infective. For that reason, we consider
that the “offspring”, meaning in an epidemic setting the number of contacts, are pro-
duced in a very short period of time (called the contact period) and that this happens
only once after the incubation period. One final but very essential aspect is that a dis-
ease may have different levels of severity during its survival period. Thus, it would
be a mistake to model a survival time of a disease and the number of contacts as
mutually independent. All the above considerations lead us to conclude that an SBP
is appropriate to fit the evolution of an infectious disease with these characteristics.

In particular, to model the spread of an epidemic, we denote by pk(u) the proba-
bility that an infected individual with survival time (incubation plus contact periods)
u > 0 contacts k healthy individuals, k ≥ 0, and by α (0 ≤ α ≤ 1) the proportion of
immune individuals in the population. We assume that the population size is fixed
and large enough for α and the family of contact distribution laws, {pk(u)}k≥0,
u > 0, to be considered stable over time. Then, it is straightforward to verify that the
probability that an infected individual with survival time u > 0 transmits the disease
to k susceptible individuals is given by

pα,k(u) =
∞

∑
j=k

(
j
k

)
α j−k(1−α)k p j(u), (17.1)

i.e., the infected individual with survival time u has been in contact with j(≥ k)
healthy individuals, and among them there were k susceptible individuals. We call
the family {pα,k(u)}k≥0, u > 0, the infection distribution laws when the proportion
of immune individuals in the population is α . Note that, if no individual is im-
mune, α = 0, then every individual will be infected whenever it contacts an infected
one, i.e., p0,k(u) = pk(u), for all k ≥ 0, u > 0. Also, if all individuals are immune,
α = 1, then the infection does not spread, i.e., p1,k(u) = 0, for all k ≥ 0, u > 0. With
this spreading scheme over time, infected individuals pass the disease on at the end
of their survival time to other susceptible individuals, and so on. We model the
number of infected individuals when the proportion of immune individuals in the
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population is α by an SBP such that its offspring law is determined by the fam-
ily of infection distribution laws {pα,k(u)}k≥0, u > 0, and the distribution function
(d.f.) of the survival time of an infected individual is given by an arbitrary d.f. G(·)
on the non-negative real numbers. Recall that by survival time we mean the period
(measured in real time) consisting of the incubation period plus the comparatively
very short (negligible) contact period, and note that we assume the family of contact
distribution laws to depend on the survival time of each infected individual.

17.3 The epidemic’s time to extinction

The objective of this section is to investigate the distribution of the time to extinc-
tion of an SBP according to the vaccination level α and for the family of contact
distribution laws {pk(u)}k≥0, u > 0. To this end, for each α , 0 ≤ α ≤ 1, we denote
by Tα the time to extinction of an SBP initiated at time 0 with a single infected
individual, with family of infection distribution laws {pα,k(u)}k≥0, u > 0, and with
d.f. of the survival time G(·). Intuitively, Tα is the maximum time that the infection
survives in the population when the proportion of immune individuals is α . Hence-
forth, we denote by vα(·) the d.f. of the extinction time Tα , i.e., vα(t) = P(Tα ≤ t)
for all t ∈ R. For each u > 0 we also denote by fα(u, ·) the probability generating
function (p.g.f.) of {pα,k(u)}k≥0. Moreover, we suppose that G(0+) = 0, i.e., there
is null probability of instantaneous death and consequently vα(0) = 0. Then, from
[19], we deduce that vα(·) is the unique bounded function such that

vα(t) =

{
0, t < 0
∫ t

0 fα(u,vα(t −u))dG(u), t ≥ 0.
(17.2)

This expression will play an important role in our study, together with the following
relationship between α and the family of contact distribution laws. Let m(u) be the
mean of contacts of an infected individual with survival time u, and mα(u) be the
mean number of susceptible individuals which are infected by a contagious individ-
ual with survival time u given a proportion α of immune individuals in the popula-
tion. Also let m =

∫ ∞
0 m(u)dG(u) < ∞ and mα =

∫ ∞
0 mα(u)dG(u) < ∞, 0 ≤ α ≤ 1.

Intuitively, m is the average number of individuals contacted by a contagious indi-
vidual during its survival time, and mα is the average number of infected individuals
when the vaccination level is α . Then, from (17.1) one straightforwardly obtains that

mα = (1−α)m. (17.3)

Also, it is easy to prove that

fα(u,s) = f (u,α +(1−α)s), 0 ≤ s ≤ 1, u > 0, (17.4)

with f (u, ·) being the p.g.f. of the contact distribution law {pk(u)}k≥0, u > 0.



17 Time to extinction of age-dependent branching models 245

Let qα = P(Tα < ∞) be the extinction probability of an SBP with family of re-
production laws {pα,k(u)}k≥0, u > 0. It is well known that qα = 1 iff mα ≤ 1 (see
[19]). Notice that mα is the critical threshold parameter of our model, so that, for
an α for which mα > 1, vα(·) is the d.f. of a non-proper random variable because
P(Tα < ∞) < 1.

Henceforth, we consider α such that the extinction time Tα is a proper random
variable, i.e., mα ≤ 1, which implies that the infectious disease becomes extinct al-
most surely. We are interested in how fast the process becomes extinct depending on
α . From (17.3), mα ≤ 1 is equivalent to max{0,1−m−1} ≤ α ≤ 1, which depends
on the mean of contacts of an infected individual. In order to simplify the notation,
we shall denote by αin f = max{0,1−m−1} the smallest proportion of immune indi-
viduals, so that the infectious disease becomes extinct almost surely Notice that the
corresponding mean mαin f = min{1,m} is the greatest mean number of susceptible
individuals catching the disease from an infected individual, so that it is guaranteed
that the disease becomes extinct almost surely Moreover, m1 = 0, i.e., the infectious
disease does not spread to any susceptible individual and therefore the extinction
time is given by the survival time of the initial infected individual, i.e., v1(t) = G(t)
for all t ≥ 0. It stands to reason that if there are non-immune individuals in the
population, then it is probable that the infectious disease takes more time to become
extinct. In the following result, we show that this is so by investigating the behaviour
of vα(·) depending on the parameter α and when the family of contact distribution
laws is fixed.

Theorem 17.1. If 0 ≤ α1 < α2 ≤ 1, then vα1(t) ≤ vα2(t) for all t ≥ 0.

Intuitively, it is clear that the greater the proportion of immune individuals, the
more probable that the infectious disease will disappears faster. Consequently, for
any α with αin f ≤ α ≤ 1, the d.f. vα(·) has the upper bound v1(·) = G(·) and the
lower bound vαin f (·). Furthermore, they all have the lower bound v0(·), which is not
necessarily a proper d.f.

Moreover, we obtain that minor changes in the proportion of the immune indi-
viduals generate minor changes in the extinction time.

Theorem 17.2. Let α be such that mα < mαin f . Then for each ε > 0 there exists
η = η(ε,α) > 0 such that for all α∗, with mα∗ ≤ 1 and |α −α∗| ≤ η ,

sup
0≤t<∞

|vα(t)− vα∗(t)| ≤ ε.

In particular, we have proved the continuity of the d.f. vα(·) depending on
α , for αin f < α ≤ 1. Notice that αin f has been excluded as corresponding to
mα = min{1,m}. This is not necessary if m < 1. Moreover, the continuity is uni-
form over time.

Furthermore, some parameters of Tα inherit these properties of vα(·). In what
follows we establish the monotonicity and continuity properties of the mean of the
distribution of the infection extinction time, depending on α . Denote by μα the
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mean time to extinction of the infectious disease when the proportion of immune
individuals is α . Since Tα is a non-negative random variable, then

μα = E[Tα ] =
∫ ∞

0
(1− vα(t))dt. (17.5)

Theorem 17.3.
1. If αin f ≤ α1 < α2 ≤ 1, then μα2 ≤ μα1 .
2. If α is such that 0 < mα < mαin f and sup{μα : α < α ≤ 1} < ∞, then μα is

finite and μα = lim
α̃→α+

μα̃ . Moreover, for all α with α < α ≤ 1, it follows that

lim
α̃→α

μα̃ = μα .

Remark 17.1. If the process starts with z infected individuals, then its time to ex-
tinction when the proportion of immune individuals in the population is α will be

Tα,z = max{T (1)
α , . . . ,T (z)

α }, where T (i)
α are i.i.d. random variables with the same dis-

tribution as Tα . Then, denoting by vα,z(·) the distribution function of Tα,z, one has
that vα,z(t) = (vα(t))z, t ∈ R. From this expression and considering the properties of
the power functions, it is easy to establish for vα,z(·) the same properties of mono-
tonicity and continuity as those of vα(·). Moreover, these properties can be extended
to the mean value of Tα,z, that we shall denote by μα,z.

17.4 Determining vaccination policies

In this section we propose a method of determining the optimal proportion of sus-
ceptible individuals to be immunized. To guarantee the extinction of the disease
almost surely, the proportion of immune individuals in the population after vacci-
nation, α , should be at least equal to αin f . But we shall propose a possible way to
define the optimal proportion of individuals to be vaccinated (immunized) to guar-
antee not only that the infection terminates after the vaccination period, but also that
this happens within a given period of time. The procedure is based on the mean of
the time to extinction.

Let us recall that we model the spread of the disease by an SBP as follows. With-
out loss of generality, we suppose that, before vaccination, every healthy individual
which comes into contact with an infected individual is non-immune, i.e., the con-
tact always produces infection. At some arbitrary time t0 after the infection entered
the population, the process of vaccination of susceptible individuals starts. We sup-
pose that this vaccination process finishes at time t1. Therefore t1 − t0 is the period
of time that is taken for immunization, termed the vaccination period. We suppose
that this vaccination period is fixed a priori by public authorities and that it does not
depend on the proportion to be vaccinated. We also suppose that every vaccinated
individual is immune to the infectious disease at least after time t1. Actually there-
fore, we are considering the vaccination period to include not only the vaccination
process but also the time that each vaccinated individual takes to develop the im-
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munological response, and that the efficacy of vaccination is complete. Given the
binomial scheme, this latter assumption does not lack generality.

17.4.1 Vaccination based on the mean value of the time to extinction

For fixed τ > 0, we are interested in investigating vaccination policies which guar-
antee that the average time to extinction of an infection after the vaccination period,
t1, is less than or equal to t1 + τ . We determine these vaccination policies by apply-
ing the results of the previous section as follows. Let us suppose that a proportion
α of susceptible individuals have been vaccinated. If at the end of the vaccination
period there is a single infected individual in the population, then this infected indi-
vidual might have already lived some time before time t1. Therefore the probability
that the disease becomes extinct no later than time t1 + τ is greater than or equal to
vα(τ).

However, the number of infected individuals at time t1 is a random variable de-
pending on α and on the number of infected individuals at the time t0. We shall
approximate it by its expected value. In general this is hard to calculate, but it is
bounded above by the expected number of infected individuals at time t1 in the
case that no vaccination policy was applied. Indeed, if Z(t1) denotes the num-
ber of infected individuals at time t1 assuming that there has been no vaccination
and the individuals have already lived some time before t1, then the probability
that the disease becomes extinct no later than time t1 + τ is greater than or equal
to F(t1,vα(τ)), where F(t1, ·) denotes the p.g.f. of Z(t1). By Jensen’s inequality,
F(t1,vα(τ))≤ (vα(τ))E[Z(t1)]. Therefore, if z is the greatest integer less than or equal
to the expected value E[Z(t1)], then the probability that the disease becomes extinct
no later than time t1 + τ can be bounded by vα,z(τ) = (vα(τ))z. The expected value
of Z(t1) can be determined by means of a renewal integral equation (see [19]).

Then, any vaccination level α such that μα,z ≤ τ would be acceptable. The opti-
mal vaccination policy is that which corresponds to the smallest α , i.e.,

αopt(τ,z) = inf{α : αin f ≤ α ≤ 1,μα,z ≤ τ}.

By simplicity, when the meaning is clear, let us write αopt instead of αopt(τ,z).
Taking into account the results of the previous section, one has that μαopt ,z ≤ τ if
αopt > αin f . Therefore, by vaccinating a proportion αopt of susceptible individuals,
the infectious disease becomes extinct on average no later than time τ after the vac-
cination period. Moreover, although τ has been chosen arbitrarily, to find a solution
of the problem, it must be satisfied the natural condition τ ≥ μ1,z.

The vaccination policy αopt depends on the d.f. of time to extinction. Therefore,
to calculate αopt , it is necessary to know vα(·) for α such that αin f ≤ α ≤ 1. Al-
though vα(·) satisfies the integral equation defined by (17.2), in general it is not
possible to obtain this function in a closed form. Recently, some numerical and
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simulation methods have been described for the approximation of the solution of in-
tegral equations (see for example [3] or [14]). We determine αopt by approximating
vα(·) using a simulation-based method when {pk(u)}k≥0, u > 0, and G(·) are con-
sidered known. For each fixed α we apply the Monte Carlo method to approximate
the d.f. of the time to extinction, vα(·). We approximated αopt by simulating various
sufficiently close α’s. To simulate the spread of the disease when the proportion of
immune individuals is α , it is enough to know G(·) and {pk(u)}k≥0, u > 0. Usually,
the survival time distribution and the family of contact distribution laws are esti-
mated from the information that becomes available as the epidemic proceeds (see,
for example [9] and [13]).

17.4.2 Analyzing the control measures for avian influenza
in Vietnam

It is well-known that the highly pathogenic H5N1 avian influenza virus requires an
incubation period after which it appears to be extremely virulent for a variety of
domestic and wild bird species (see for example [10]). The usual routes of bird-to-
bird transmission are airborne transmission if birds are in close proximity, or direct
contact with contaminated respiratory secretions. Also, since the contact period is
considered to be very short (negligible) in comparison with the incubation period,
an SBP is appropriate to model the spread of the H5N1 virus in birds.

According to the official reports of the World Organization for Animal Health
(see the Web site http://www.oie.int), Vietnam has been the country with the great-
est number of outbreaks of avian influenza in domestic birds since the end of 2003.
On the 7th December 2006, an outbreak started to spread widely in the southern part
of the country, and became extinct on 14th January 2007 (see [16]). The left plot of
Fig. 17.1 shows the numbers of infected domestic birds detected each day during
this period. The non-null values are also given in Table 17.1. From 20th December
the number of cases decreased, probably because some control measures were taken
(see [16]). We guess that these strategies must have started before 19th December.

Table 17.1 Non-null values of infected domestic birds detected between 7th December 2006 and
14th January 2007.

Date Cases Date Cases Date Cases Date Cases Date Cases

7 Dec 80 22 Dec 382 27 Dec 140 1 Jan 8 7 Jan 330
13 Dec 188 23 Dec 127 28 Dec 189 3 Jan 160 8 Jan 42
14 Dec 225 24 Dec 12 29 Dec 60 4 Jan 378 9 Jan 10
19 Dec 6,073 25 Dec 262 30 Dec 18 5 Jan 240 12 Jan 880
20 Dec 40 26 Dec 1,908 31 Dec 130 6 Jan 300 14 Jan 1,621
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Next, we analyze the spread of the H5N1 avian influenza virus in Vietnam from
19th December until 14th January by comparing it with the simulated times to ex-
tinction of the SBP for different vaccination levels. First, in order to apply the above
simulation-based method, we consider that G(·) is the d.f. of a gamma distribution,
and, for each u > 0, {pk(u)}k≥0 follows a Poisson distribution with parameter λu,
with λ > 0. These types of distribution have been found to be appropriate for the
survival time (including incubation and contact periods) and the number of contacts,
respectively (see for example [4, 6, 7] or [15]). Intuitively, λ represents the power
of the virus. The average number of infected individuals is considered to be propor-
tional to time, i.e., the longer the survival period (in our case almost equal to the
incubation period because the contact period is negligible), the more infected indi-
viduals there will be. Taking into account that the incubation period of the H5N1
avian influenza virus is estimated at between 3 and 7 days (see [10])—this can be
observed in our data at the beginning of the outbreak— we consider a gamma distri-
bution with mean 5 and shape parameter 16 to guarantee that the survival period in
90% of the individuals is between 3 and 7 days. Therefore, we deduce that m = 5λ .
Since the number of infected individuals at the first outbreak (on 7th December) was
80, and after the incubation period (on 13th and 14th December) the total number of
infected individuals was 413, we can estimate the rate m, using Lotka’s estimator,
as m̂ = 413/80 (see [9]). We did not take more outbreaks into account in our con-
sideration because, as was observed above, some control measures must have been
applied before 19th December. Thus, in order to apply our method, we consider this
date to be the end of the vaccination period. We estimate the number of individuals
incubating the virus at this date at z = 413m̂ $ 2,132. Finally, for each vaccination
level, α , 0 ≤α ≤ 1, we deduce from (17.4) that {pk,α(u)}k≥0 also follows a Poisson
distribution with parameter u(1−α)λ , u > 0.
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Fig. 17.1 Left: Numbers of infected domestic birds detected between 7th December 2006 and 14th
January 2007. Right: Histogram of simulated times to extinction for α = 1.
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Fig. 17.2 Left: Empirical d.f. of the time to extinction for α = 0.85,0.90,0.95 and 1. Right: His-
togram of simulated extinction times for α = 0.97.

The right-hand plot of Fig. 17.1 shows the histogram of 10,000 simulated times
to extinction for α = 1, i.e., when all susceptible individuals are immunized. As-
suming that our model fits well, we deduce from the fact that the virus took close
to 30 days to become extinct after the vaccination time, while the maximum of
the simulated extinction times is less than 30, that the control measures followed
in Vietnam did not cover all the susceptible individuals. Consequently, the control
measures in Vietnam correspond to a vaccination level α < 1 in our setting. Let
us now determine αopt which corresponds to these control measures. From Theo-
rem 17.1 we deduce that the smaller is α , the longer the time to extinction. This
behaviour is shown in the left-hand panel of Fig. 17.2 where the empirical d.f. of
the time to extinction is plotted for α = 1,0.95,0.90, and 0.85. Since the virus took
close to 30 days to become extinct, we deduce that the vaccination level must have
been close to 1. Taking into account the vaccination policy based on the mean value
of the time to extinction, we obtain by applying the simulation-based method that
αopt(τ = 30,z = 2132) = 0.97. The right-hand panel of Fig. 17.2 shows the his-
togram of 10,000 simulated times to extinction for α = 0.97. In conclusion, the
control strategies followed in Vietnam correspond, in our setting, to a vaccination
level close to 1 (αopt = 0.97). Of course one must observe that such a high propor-
tion is connected with the great risk of death not only in the birds but also in the
human population in the case of bird-to-human transmission.

Remark 17.2. For the computer simulation, we used the language and environment
for statistical computing and graphics R (“GNU S”) (see [18]).
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17.5 Concluding remarks

We have presented a method for defining an optimal vaccination level of a popula-
tion in which a strongly detrimental disease has started to spread following a SIR
scheme. We tackled this problem using a continuous-time branching model, namely
the Sevast’yanov age-dependent branching process, taking the age and reproduction
of an individual not to be independent. In epidemiological terms, this lack of inde-
pendence takes into account that the number of contacts of an infected individual
will depend on the survival time of an infection.

We are aware of the fact that the Sevast’yanov branching model we have pro-
posed here is a particular case of the general branching process. In particular, SBPs
follow from general branching processes if reproduction is assumed to occur once at
the end of the individual’s life and the offspring depend on the age of the individual.
They are therefore appropriate for modeling infectious diseases with an incubation
period and negligibly short contact period. Using this SBP model, we were able to
define an optimal vaccination level using the mean value of the time to extinction of
the epidemic after vaccination took place.

We used a real set of data from the outbreaks of avian influenza virus that spread
in South Vietnam at the end of 2006 to illustrate the application of the technique.
Our analysis, assuming SBP fits the situation well, showed that the model would
indeed be useful for controlling the spread of avian influenza virus.

Mathematically, we established monotonicity and continuity properties for the
time to extinction of SBPs.

Generalization of the results in the framework of general branching processes
seems to be an important direction for further investigations.

17.6 Proofs

In this section we provide the proofs of the foregoing results. For each α such that
0 ≤ α ≤ 1, we introduce the functional operator Hα(·), defined on a set of functions
h(·) from non-negative real numbers, R+, to the interval [0,1], as follows:

Hα(h)(t) =
∫ t

0
fα(s,h(t − s))dG(s), t ≥ 0.

Also, for all n ≥ 1, we denote by Hn
α(·) the n-th composition of the operator Hα(·).

With this notation, (17.2) can be rewritten as the fixed-point equation vα(t) =
Hα(vα)(t), t ≥ 0. Moreover, vα(·) has the following property:

Proposition 17.1. For any fixed α , 0 ≤ α ≤ 1, and for any function h(·) from R+ to
the interval [0,1], one has that

vα(t) = lim
n→∞

Hn
α(h)(t), t ≥ 0.
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Proof. Let α , 0 ≤ α ≤ 1, and h : R+ → [0,1]. To prove the result it will be sufficient
to establish the following statements:

S1. For each t ≥ 0,
G̃(t) ≤ Hα(h)(t) ≤ G(t)

with G̃(t) =
∫ t

0 fα(s,0)dG(s).
S2. Hα(·) is a non-decreasing functional operator, i.e., if hi : R+ → [0,1], i = 1,2,

are functions such that h1(t) ≤ h2(t) for all t ≥ 0, then

Hα(h1)(t) ≤ Hα(h2)(t), for all t ≥ 0.

S3. For each t ≥ 0, there exist

u1(t) = lim
n→∞

Hn
α(G̃)(t) and u2(t) = lim

n→∞
Hn
α(G)(t).

S4. u1(·) and u2(·) are solutions of the fixed-point equation h(·) = Hα(h)(·), and
then vα(·) = u1(·) = u2(·).
Indeed, from these four statements one can establish that, for t ≥ 0,

vα(t) = u1(t) = lim
n→∞

Hn
α(G̃)(t) ≤ lim

n→∞
Hn+1
α (h)(t)

≤ lim
n→∞

Hn
α(G)(t) = u2(t) = vα(t).

Let us now prove S1–S4.

S1. This statement is clear from considering that, for each s ≥ 0 and 0 ≤ t ≤ 1,

fα(s,0) ≤ fα(s, t) ≤ fα(s,1) = 1.

S2. This statement is clear from the fact that, for every s ≥ 0, fα(s, ·) is an increasing

function.
S3. By S1–S2, for each t ≥ 0

G̃(t) ≤ Hα(G̃)(t) ≤ Hα(G)(t) ≤ G(t).

Hence, by iteration, for n ≥ 1 and each t ≥ 0

Hn
α(G̃)(t) ≤ Hn+1

α (G̃)(t) ≤ Hn+1
α (G)(t) ≤ Hn

α(G)(t).

Therefore, {Hn
α(G̃)(t)}n≥1 is a non-decreasing sequence bounded above by 1, and

hence there exists u1(t) = limn→∞ Hn
α(G̃)(t), t ≥ 0. Moreover, {Hn

α(G)(t)}n≥1 is
a non-increasing sequence bounded below by 0, and hence there exists u2(t) =
limn→∞ Hn

α(G)(t), t ≥ 0.
S4. Let us prove this statement for u1(·). Then the proof for u2(·) will be similar.

Let t ≥ 0. Then, using S3, the fact that fα(s, ·) is increasing and continuous for
each s ≥ 0, and the dominated convergence theorem, one can establish that
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u1(t) = lim
n→∞

Hn+1
α (G̃)(t)

= lim
n→∞

∫ t

0
fα(s,Hn

α(G̃)(t − s))dG(s)

=
∫ t

0
lim
n→∞

fα(s,Hn
α(G̃)(t − s))dG(s)

=
∫ t

0
fα(s, lim

n→∞
Hn
α(G̃)(t − s))dG(s)

=
∫ t

0
fα(s,u1(t − s))dG(s)

= Hα(u1)(t).

Since u1(·) is a bounded function verifying the fixed-point equation h(·) = Hα(h)(·)
and vα(·) is the unique bounded function verifying this equation, then u1(t) = vα(t)
for all t ≥ 0. This concludes the proof. ��

Proof of Theorem 17.1

Let α1,α2 be such that 0 ≤ α1 < α2 ≤ 1. Then, as vα1(·) is a distribution function,

α1 +(1−α1)vα1(t − s) ≤ α2 +(1−α2)vα1(t − s)

for all 0 ≤ s ≤ t. Therefore

fα1(s,vα1(t − s)) = f (s,α1 +(1−α1)vα1(t − s))
≤ f (s,α2 +(1−α2)vα1(t − s)) = fα2(s,vα1(t − s)),

and then vα1(t) = Hα1(vα1)(t) ≤ Hα2(vα1)(t), for all t ≥ 0.
Since the functional operators Hα(·) are non-decreasing (see S2 in the proof of

Proposition 17.1), it is clear that vα1(t) ≤ Hn
α2

(vα1(t)), for all t ≥ 0 and n ≥ 1. Then,
applying Proposition 17.1, for all t ≥ 0,

vα1(t) ≤ lim
n→∞

Hn
α2

(vα1(t)) = vα2(t),

concluding the proof. ��

Proof of Theorem 17.2

Let ε > 0 and let α be such that mα < mαin f = min{1,m}. Also let η = η(ε,α) =
ε(1 − mα)m−1. Given α∗ such that mα∗ ≤ 1 and |α − α∗| ≤ η , since for all t,
0 ≤ t ≤ 1, |α +(1−α)t − (α∗ +(1−α∗)t)| ≤ |α −α∗|, from the mean value the-
orem and (17.4), it follows that for every s > 0 and 0 ≤ t ≤ 1,

| fα(s, t)− fα∗(s, t)| ≤ m(s)|α −α∗| ≤ m(s)η . (17.6)
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Taking this into account, we next show by induction on n, for each n ≥ 1, that

|Hn
α(G)(t)−Hn

α∗(G)(t)| ≤ ε(1−mn
α), t ≥ 0. (17.7)

For a given t ≥ 0, for n = 1 we deduce from (17.6), that

|Hα(G)(t)−Hα∗(G)(t)| ≤
∫ t

0
| fα(s,G(t − s))− fα∗(s,G(t − s))|dG(s)

≤ ε(1−mα)m−1
∫ ∞

0
m(s)dG(s)ε(1−mα).

By the hypothesis of induction, (17.7) holds for n. Then for n+1 we have that

|Hn+1
α (G)(t)−Hn+1

α∗ (G)(t)| ≤ |Hα(Hn
α(G))(t)−Hα(Hn

α∗(G))(t)|
+ |Hα(Hn

α∗(G))(t)−Hα∗(Hn
α∗(G))(t)|.

Moreover, using the mean value theorem again,

|Hα(Hn
α(G))(t)−Hα(Hn

α∗(G))(t)| ≤

≤
∫ t

0
| fα(s,Hn

α(G)(t − s))− fα(s,Hn
α∗(G)(t − s))|dG(s)

≤
∫ t

0
mα(s)|Hn

α(G)(t − s)−Hn
α∗(G)(t − s)|dG(s)

≤ mα sup
0≤s<∞

|Hn
α(G)(s)−Hn

α∗(G)(s)|

≤ ε(1−mn
α)mα ,

and, from (17.6),

|Hα(Hn
α∗(G))(t)−Hα∗(Hn

α∗(G))(t)| ≤

≤
∫ t

0
| fα(s,Hn

α∗(G)(t − s))− fα∗(s,Hn
α∗(G)(t − s))|dG(s)

≤ ε(1−mα).

Therefore, we conclude that

|Hn+1
α (G)(t)−Hn+1

α∗ (G)(t)| ≤ ε(1−mn
α)mα + ε(1−mα) = ε(1−mn+1

α ).

Finally, using Proposition 17.1 and the fact that mα < 1, from (17.7), we obtain that

sup
0≤t<∞

|vα(t)− vα∗(t)| ≤ ε,
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and then the proof is complete. ��

Proof of Theorem 17.3

1. Let α1,α2 be such that αin f ≤ α1 < α2 ≤ 1. From Theorem 17.1, we have that
vα1(t) ≤ vα2(t), t ≥ 0, and taking into account (17.5), it follows that μα2 ≤ μα1 .

2. Let α be such that 0 < mα < mαin f and M = sup{μα : α < α ≤ 1} < ∞. First
we show that μα is finite. For a given ε > 0 and N > 0, applying Theorem 17.2,
there exists η = η(α,ε,N) such that for all α > α , with α −α ≤ η , it follows that

vα(t)− vα(t) ≤ N−1ε, t ≥ 0.

Therefore,

∫ N

0
(1− vα(t))dt ≤

∫ N

0
(N−1ε +1− vα(t))dt ≤ ε +M,

and we deduce that μα is finite. Hence, there exists n0 = n0(ε,α) > 0 such that
∫ ∞

n0

(1− vα(t))dt ≤ 2−1ε. (17.8)

Let α be such that α ≥ α . Then, by applying Theorem 17.2, we guarantee that there
exists η = η(α,ε,n0) > 0 such that, if |α̃−α| ≤ η , then |vα(t)−vα̃(t)| ≤ (2n0)−1ε
for all t ≥ 0, and therefore

∫ n0

0
|vα(t)− vα̃(t)|dt ≤ 2−1ε.

Moreover, since (17.8) holds, from Theorem 17.1 we have, for α̃ ≥ α , that
∫ ∞

n0

|vα̃(t)− vα(t)|dt ≤ 2−1ε,

and the proof is complete. ��
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18
Time to extinction in a two-host interaction
model for the macroparasite Echinococcus
granulosus

Dominik Heinzmann

Abstract An approximation is derived for the time to extinction in a sub-critical epi-
demic two-host interaction process for the macroparasite Echinococcus granulosus.
The argument is based on coupling the epidemic model with a two-type branching
process, and then to approximate the time to extinction for the branching process.
It is shown that the approximate time is proportional to the logarithm of a weighted
sum of the initially infectives in the host populations plus a Gumbel random vari-
able. The accuracy of the approximation is illustrated.

Mathematics Subject Classification (2000): 60J80; 92D30

Keywords: multitype branching process, coupling, extinction time, Echinococcus.

18.1 Introduction

This paper is concerned with approximate the time to extinction in a sub-critical
stochastic two-host interaction process for the macroparasite Echinococcus gran-
ulosus. Macroparasites, as opposite to microparasites as viruses and bacteria, do
in general not multiply within the definitive hosts, but produce transmission stages
such as eggs and larvae which pass into the external environment, resulting in rather
complex transmission cycles. The life cycle of Echinococcus granulosus is between
dogs and sheep as primary definitive and intermediate hosts. The dog harbors the
adult parasite in the small intestine. It releases eggs that are passed in the feces.
The sheep ingests the eggs on pasture, which then develop into cysts. The develop-
ment of such space occupying cystic lesions is known as cystic echinocococcosis
which is a zoonotic parasitic diseases. Humans are ecologically aberrant intermedi-
ate hosts who also develops such space occupying cystic lesions. The definitive host
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acquires the infection by ingesting organs containing infective material. The para-
site is endemic in many parts of the world (see [7] and [14]) and continues to exert
an unacceptable burden on human health, livestock production and wildlife ecology
(see [6]).

Whittle (see [17]) has shown that initial and final stages of epidemic processes
can often be approximated by suitable branching processes. More recently, Ball [1],
Ball and Donnelly [2], Barbour and Utev [4], and Barbour [3] have used differ-
ent construction arguments to quantify the accuracy of such approximations. We
will use the argument in [1] and [2] to couple our sub-critical epidemic process,
which models the transmission dynamics of Echinococcus granulosus, to a suitable
branching process. We then derive an approximation for the time to extinction of
the process. The basic idea is to construct the epidemic and branching processes on
a same probability space and then to show that they coincide with high probabil-
ity. Finally, the distributional approximation of the time to extinction for multi-type
branching processes derived in [11] can be applied to obtain an approximate time
to extinction for the epidemic process. It is shown that the approximate time is pro-
portional to the logarithm of a weighted sum of the initially infectives in the host
populations plus a Gumbel random variable. Numerical illustrations indicate that
the approximation performs well.

18.2 Prevalence-based interaction model

Based on the natural life-cycle of Echinococcus granulosus [6], we introduce an
interaction model for the transmission of infection between dogs and sheep, the pri-
mary definitive and intermediate hosts. Suppose that transmission takes place in a
homogeneous, homogeneously mixing closed community with constant population
sizes of n(1) dogs and n(2) sheep. Let EEE = (D,S) = {(D(t),S(t))}t≥0 be the numbers
of infective dogs and sheep at time t. The epidemic can be described as follows.
Infective dogs infect susceptible sheep by indirect transmission based on free-living
stages in their excreta. The contacts of individual sheep with the excreta of dogs is
assumed to occur according to independent Poisson processes with rate θ . The rate
θ depends on the density of infective dogs and the grazing activity of sheep, so that
infection of a susceptible sheep occurs at rate θD/n(1). Infections are assumed to
be permanent (see [8] and [16]). Sheep live for an exponentially distributed time
with rate λ2 before they die (or are slaughtered) and are fed directly to a dog. An
infection is established if the dog is susceptible and the dead sheep is infectious.
The infectious period in dogs is exponentially distributed with rate λ1 and the loss
of infection happens either through loss of parasites or through death. It is further
assumed that there is no acquired immunity (see [8] and [13]) and that all subjects
at death are replaced by susceptibles (newborn) of the same type.

The process EEE takes values in {0,1, . . . ,n(1)}×{0,1, . . . ,n(2)} and is character-
ized by the set of Markov transitions given in Table 18.1.



18 Time to extinction in a two-host interaction model 259

Table 18.1 Transitions of the interaction model.

Transition Rate

D → D−1, S → S λ1D
D → D, S → S +1 θ(n(2) −S)(D/n(1))
D → D, S → S−1 λ2S(D/n(1))
D → D+1, S → S−1 λ2S(1− (D/n(1))).

18.3 Approximating branching processes

Let ZZZ = (Z1,Z2) = {(Z1(t),Z2(t))}t≥0 be a multitype Markov branching process,
where Z1 and Z2 denote the number of animals of type 1 and 2 respectively, with
corresponding transitions given in Table 18.2. This process represents a birth and
death process, with events (i) an animal of type 2 lives for an exponential time of
rate λ2 and produces at its death one offspring of type 1, (ii) an animal of type 1
lives for an exponential time with rate λ1 +θρ and produces at its death either no
offspring with probability λ1/(λ1 +θρ) or one type 1 and one type 2 offspring with
probability θρ/(λ1 +θρ), where ρ = n(2)/n(1), the population rate.

Table 18.2 Transitions of the approximating branching process.

Transition Rate

Z1 → Z1 −1, Z2 → Z2 λ1Z1
Z1 → Z1, Z2 → Z2 +1 θρZ1
Z1 → Z1 +1, Z2 → Z2 −1 λ2Z2.

Let z1 := Z1/n(1) and z2 := Z2/n(2). Then the corresponding mean field dynamics
are given by

dz1

dt
= −λ1z1 +ρλ2z2 ,

dz2

dt
= θz1 −λ2z2 . (18.1)

Applying the results given in [5] and [10], it is straightforward to verify that the
type-reproduction number R1, a threshold for the extinction of the process, is given
by the following result.

Theorem 18.1. The quantity

R1 :=
θρ
λ1

is a threshold for the deterministic model (18.1) such that as t → ∞, R1 < 1 implies
that (z1,z2) → (0,0) and R1 > 1 implies that (z1,z2) → (z̄1, z̄2), where



260 Dominik Heinzmann

z̄1 =
λ2(ρθ −λ1)
θ(ρλ2 +λ1)

and z̄2 =
ρθ −λ1

ρ(θ +λ2)
.

We will see that the epidemic process EEE described in Table 18.1 and the branch-
ing process ZZZ described in Table 18.2 can be constructed on a same probability space
so that there is a direct correspondence between the number of infective dogs D and
the number of type 1 individuals Z1, respectively between the number of infective
sheep S and the number of type 2 animals Z2. It is shown that the construction im-
plies that D ≤ Z1 and S ≤ Z2 almost surely. Hence R1 < 1 for the branching process
implies extinction behavior in EEE.

Under some assumptions that we will discuss below, the construction of the pro-
cesses on a same probability space indicates that ZZZ and EEE coincide with high prob-
ability. Then, the biological interpretation of R1 is as follows. The mean duration
of an infection in dogs is 1/λ1. Given an infectious dog, it infects sheep at rate
θρ . Thus the expected number of sheep infected by a single infectious dog is R1.
Since an infected sheep is connected with exactly one dog, R1 is the mean number
of infections in the dog population caused (indirectly) by a single infectious dog.

18.4 Coupling

Let III = (I1, I2) be the initial numbers of infective dogs and sheep respectively, and
denote with MMM = (M1,M2) the initial numbers of susceptible dogs and sheep re-
spectively so that Mi = n(i) − Ii (i = 1,2). Let the epidemic process described in
Table 18.1 be given by EEEMMM

III and denote with ZZZIII the branching process described in
Table 18.2. Note that both processes are Markov. Assume that R1 < 1, so that ZZZIII and
thus EEEMMM

III are sub-critical as seen before.
We use the construction argument in [1] and [2] to couple EEEMMM

III and ZZZIII . They de-
scribed the construction of a single-host epidemic model from a limiting branching
process. They showed that if the branching process is sub-critical, the epidemic and
branching processes coincide for N → ∞, where N is the number of susceptible
hosts. For that, we need to adapt to our model the independent and identically dis-
tributed life histories of the individuals, given as (L,ξ ) in [2], where L is the time
elapsing between an individual’s infection and its death, and ξ is a Poisson pro-
cess of times at which contacts are made. We specify the life histories for dogs as
(L1,ξ1), where L1 is exponentially distributed with rate λ1 and ξ1 is a point process
of rate θρ at which sheep make infective contacts with its excreta, and the life his-
tories for sheep with (L2,ξ2), where L2 is exponentially distributed with rate λ2 and
ξ2[0,L2) = 0 and ξ2{L2} = 1, since an infected sheep is connected with exactly one
dog and the infection is transmitted at death of the sheep. The construction of the
process is now similar to the construction in the proof of Theorem 2.1 in [2], except
that in our case, individuals contacted during an infection event are chosen indepen-
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dently and uniformly from the Mi (i = 1,2) initial susceptibles in the corresponding
host population. It follows that D ≤ Z1 and S ≤ Z2 almost surely.

Let B1 and B2 be the random variables for the total number of new births of type
1 and 2 individuals respectively into the branching process ZZZIII .

Lemma 18.1. We have

E(B1|III = (I1, I2)) = 2a(I1 + I2)+ I2 ,

E(B2|III = (I1, I2)) = a(I1 + I2) ,

where a = θρ/(λ1 −θρ).

Proof. Define mi := E(Bi|III = (1,0)) and ki := E(Bi|III = (0,1)) for i = 1,2, where
III = (1,0) highlights that the branching process is started with a single type 1 individ-
ual and III = (0,1) analogously. Define a := θρ/(λ1 −θρ). Starting with a type 1 in-
dividual, we can have a splitting into a type 1 and type 2 individual with probability
p := θρ/(λ1 +θρ), or no offspring with probability 1− p. When starting with a type
2 individual, there will be exactly one offspring of type 1, thus m1 = p(1+m1 +k1)
and m2 = p(1 + m2 + k2). We have k1 = 1 + m1 and k2 = m2. Since R1 < 1, then
mi and ki, for i = 1,2, are finite. Then, using k1 = 1 + m1 in the expression for m1

implies that m1 = 2a and thus k1 = 2a + 1. Analogously, we obtain m2 = k2 = a.
Hence the lemma follows immediately. ��
Lemma 18.2. It holds that

E(B2
1|III = (I1, I2)) = 4a2I2

1 +(1+4a+4a2)I2
2 +4a(1+3a+2a2)(I1 + I2)

+4a(1+2a)I1I2 ,

E(B2
2|III = (I1, I2)) = a2(I1 + I2)2 +a(1+3a+2a2)(I1 + I2) ,

where a = θρ/(λ1 −θρ).

Proof. Define gi = E(B2
i |III = (1,0)) and hi = E(B2

i |III = (0,1)) for i = 1,2. Let
a, p, mi and ki be given as in the proof of Lemma 18.1. Conditioning on the
first event as before, we have g1 = p(1 + 2m1 + 2k1 + 2m1k1 + g1 + h1) and h1 =
1 + 2m1 + g1. Thus using the previous results, g1 = p(4 + 16a + 8a2 + 2g1) and
h1 = 1 + 4a + g1. Since p/(1 − 2p) = a, it follows that g1 = 4a(1 + 4a + 2a2)
and h1 = 1 + 8a(1 + 2a + a2). Similarly, we have g2 = p(1 + 4a + 2a2 + 2g2) and
h2 = g2, which results in g2 = h2 = a(1 + 4a + 2a2). These imply that Var(B1|III =
(1,0)) = Var(B1|III = (0,1)) = g1 −4a2 = 4a(1+3a+2a2) and Var(B2|III = (1,0)) =
Var(B2|III = (0,1)) = g2 − a2 = a(1 + 3a + 2a2). Since individuals reproduce in-
dependently of each other, Var(B1|III = (I1, I2)) = 4a(1 + 3a + 2a2)(I1 + I2) and
Var(B2|III = (I1, I2)) = a(1+3a+2a2)(I1 + I2), which implies the lemma. ��

Based on the construction of the processes described above, Theorem 4.1 and
Eq. (4.3) in [2] yields that the probability, given B1 and B2, that ZZZIII and EEEMMM

III do not
coincide is
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p(B1,B2)
III,MMM = 1−

B1

∏
k=1

[
1− k−1

M1

] B2

∏
l=1

[
1− l −1

M2

]

≤ 1− exp

(
−B1(B1 −1)

2M1
− B2(B2 −1)

2M2

)

≤
(

B1(B1 −1)
2M1

+
B2(B2 −1)

2M2

)
,

since x > 1− exp(−x) for x > 0. Thus the corresponding unconditional probability
pIII,MMM satisfies

pIII,MMM ≤E

(
B1(B1 −1)

2M1
+

B2(B2 −1)
2M2

)
,

so that Lemmas 1 and 2 imply that

pIII,MMM = O(max{I1, I2}2/min{M1,M2}) ,

leading to the following result.

Theorem 18.2. If max{I1, I2}2/min{M1,M2} → 0 as min{M1,M2} → ∞, it follows
that

lim
min{M1,M2}→∞

P(EEEMMM
III = ZZZIII for all t ≥ 0) = 1 .

18.5 Time to extinction

Let R1 < 1 and assume that max{I1, I2}2 is much smaller than min{M1,M2}, with
min{M1,M2} →∞. Then Theorem 18.2 indicates that the epidemic process EEEMMM

III and
its approximating branching process ZZZIII , given that they start with III = (I1, I2) infec-
tious and MMM = (M1,M2) susceptibles animals, coincide with high probability. Thus
we can now use the distributional approximation of the time to extinction of a mul-
titype Markov branching process derived in [11].

We proceed analogous to the application in [11]. Let TIII be the extinction time
of the branching process ZZZIII , and define the survival probability of the process un-
til time t, with t > 0, when starting with a single type i (i = 1,2) individual as
qi(t) = 1−P(TIII ≤ t|III = (δi1,δi2)), where δi j is the Kronecker Delta. Then Eq. (2.2)
in [11] yields

dqqq(t)
dt

=
(−λ1 ρθ

λ2 −λ2

)
qqq(t)−

(
ρθq1(t)q2(t)

0

)
=: BBBqqq(t)−vvv(t) ,

where vvv(t) = (v1(t),v2(t))T and qqq(t) = (q1(t),q2(t)). Since the number of offspring
of each type in the branching process is ≤ 2, Corollary 2.1 in [11] can be applied
with α = 1, stating that 0 ≤ vi(t) ≤ ai‖qqq(t)‖2 for i = 1,2, were ai is a constant.
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Hence the behavior of the solution qqq(t) can be approximated by that of q̃qq(t) given
by dq̃qq(t)/dt = BBBq̃qq(t).

Since BBB has only non-negative elements off the diagonal and is irreducible, The-
orem 2.1 in [11] implies that BBB has a unique real largest eigenvalue −r, with cor-
responding positive left fff T

1 and right bbb1 eigenvectors, which are given by −r =
(−(λ1 +λ2)+

√
D)/2 and

fff T
1 =

1
N1

(
λ2 −λ1 +

√
D

2ρθ
,1

)

, bbbT
1 =

1
N2

(
λ2 −λ1 +

√
D

2λ2
,1

)

,

with D = (λ1 + λ2)2 − 4λ2(λ1 − ρθ), N1 and N2 are appropriate constants such
that | fff 1| = 1 and fff T

1 bbb1 = 1. Theorem 4.2 in [11] implies that the approximate time
to extinction for the branching process ZZZIII is given by T̃III = logCIII/r +V/r, where
CIII = c1I1 + c2I2 with c1,c2 > 0 constants and V is a Gumbel random variable. The
theorem also states that the bound on the error in total variation distance is inversely
proportional to CIII . The ci’s can be computed as described in Sect. 5 of [11] by using
the above eigen elements of BBB. The coupling argument in Sect. 18.4 implies that T̃III

is also an approximation for the time to extinction of the initial epidemic process
EEEMMM

III .

18.6 Numerical illustration

To verify our approach, the distribution of the true extinction time of EEEMMM
III can be

compared with that of T̃III . This true distribution is theoretically not amenable, and
thus needs to be computed by simulation. The Markov chain in Table 18.1 can easily
be simulated by the classical Gillespie algorithm (see [9]).

The parameters of the epidemic process are chosen such that they reasonably re-
flect a “typical” situation in Central Asia. The population ratio ρ is approximated
by 10 based on an estimate of 10.368 from (unpublished) field data in Kazakhstan,
where during a purgation study in dogs, the owners have been asked how many
sheep and dogs they own. It is assumed that there are n(1) = 500 dogs, and thus
n(2) = n(1)ρ = 5,000 sheep. The death rate λ2 is set to 0.5 based on an estimate
of 0.491 (95%CI : 0.473,0.501) in a sheep sample from Kazakhstan (see [15]).
R.C.A. Thompson and A.J. Lymbery (see [12]) suggested a loss of infection rate
of about 1 − 1.2 infections per dog per year, and thus we choose λ1 ∈ {1,1.2}.
There is no appropriate estimate available for the contact rate θ , and thus we select
θ ∈ {0.01,0.05} such that R1 < 1.

Figure 18.1 displays the distribution of the approximate time to extinction T̃III and
the simulated distribution of the true time to extinction for the different parameter
settings of EEEMMM

III . The resulting values for c1, c2 and r are represented in Table 18.3.
The approximate time to extinction is well in line with the simulated distribution

of the true time for all settings. Longer mean times to extinction are observed for
decreasing values of λ1 (see in Fig. 18.1, (x1)–(x2) for x=a,b,c), and for increasing
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Table 18.3 Computed values of r, c1 and c2 for different parameter settings. Note that ρ = 10 and
λ2 = 0.5.

λ1 θ r c1 c2

1 0.01 0.408 0.252 1.491
1.2 0.01 0.427 0.186 1.437
1.2 0.05 0.236 0.420 0.809

values of θ (see in Fig. 18.1, (x2)–(x3) for x = a,b,c). These observations can be
explained as follows. Recall the construction argument of the branching process in
Section 18.4, where the life histories of infections in dogs are specified as (L1,ξ1),
with L1 exponentially distributed with mean 1/λ1 and with ξ1 a Poisson process of
rate θρ at the points of which sheep make infective contacts with its excreta, and
the life histories for sheep with (L2,ξ2), where L2 is exponentially distributed with
rate λ2 and ξ2[0,L2) = 0 and ξ2{L2} = 1, since an infected sheep is connected with
exactly one dog and the infection is transmitted at death of the sheep. Let P1 be a
Poisson process with rate λ1. Let T1,T2, . . . be the arrival times of the Poisson pro-
cess. Introduce two marked point processes based on P1. In the first, mark all oc-
currence times of P1 with probability 1. In the second, mark the occurrence times
with probability λ ′

1/λ1 < 1, where λ ′
1 < λ1. Define L1 as the first marked occur-

rence time. Hence L1 = T1 for the first marked process and L1 = Tj with probability
(1−λ ′

1/λ1) j−1(λ ′
1/λ1), j ≥ 1, for the second. Note that for the second process, L1

has the exponential distribution with mean 1/λ ′
1, and so corresponds to the lifetime

of an infection of a dog, when the recovery rate λ ′
1 is smaller than λ1. Hence each

infection duration can be constructed to be longer almost surely in dogs for the lat-
ter process, so that dogs in the second process will infect more sheep if the same
constant process ξ2 is used in both cases. Since infection is transmitted back to the
dog population with probability 1, the second process implies an increased time to
extinction almost surely, and hence also in mean. A similar argument can be used
to show that increasing θ implies increasing the mean time to extinction. Finally,
increasing values of the initial conditions I1 and I2 imply longer mean times to ex-
tinction since T̃III grows like logCIII = log(c1I1 + c2I2), with c1,c2 > 0 fixed. Despite
the shift of the mean, it is clear from the definition of T̃III that the shape remains
the same for different values of the initial conditions (see in Fig. 18.1, (ai)–(ci) for
i = 1,2,3).

Remark 18.1. Since the final stages of epidemic processes can often be approxi-
mated by suitable branching processes (see [17]), the approach in this paper can be
extended to other (sub-critical) epidemic multi-host interaction processes.

Acknowledgements The author wishes to thank Andrew Barbour for fruitful discussions. The au-
thor also gratefully acknowledge the referee for comments and suggestions that greatly improved
the presentation. This work was supported by the Schweizerischer Nationalfonds (SNF), project
no. 107726.



18 Time to extinction in a two-host interaction model 265

D
e

n
si

ty

10 15 20 25

0
.0

0
0

.0
5

0
.1

0
0

.1
5

(a1)

10 15 20 25

0
.0

0
0

.0
5

0
.1

0
0

.1
5

(b1)

10 15 20 25

0
.0

0
0

.0
5

0
.1

0
0

.1
5

(c1)

D
e

n
si

ty

10 15 20 25

0
.0

0
0

.0
5

0
.1

0
0

.1
5

(a2)

10 15 20 25

0
.0

0
0

.0
5

0
.1

0
0

.1
5

(b2)

10 15 20 25

0
.0

0
0

.0
5

0
.1

0
0

.1
5

(c2)

Time (years)

D
e

n
si

ty

10 20 30 40

0
.0

0
0

.0
5

0
.1

0
0

.1
5

(a3)

Time (years)

10 20 30 40

0
.0

0
0

.0
5

0
.1

0
0

.1
5

(b3)

Time (years)

10 20 30 40
0

.0
0

0
.0

5
0

.1
0

0
.1

5

(c3)

Fig. 18.1 Density distribution of T̃III (solid line) versus the simulated distribution of the true ex-
tinction time (histogram of 10,000 simulations) for the epidemic process EEEMMM

III , with n(1) = 500,
n(2) = 5,000, ρ = 10 and λ2 = 0.5. The parameter pair (λ1,θ) is (1,0.01) for (a1)–(c1), (1.2,0.01)
for (a2)–(c2) and (1.2,0.05) for (a3)–(c3). The initial conditions (I1, I2) are (20,100) for (a1)–(a3),
(100,200) for (b1)–(b3), and (100,1000) for (c1)–(c3).
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Bisexual branching processes with immigration
depending on the number of females and males

Shixia Ma and Yongsheng Xing

Abstract In this work, we introduce a class of discrete time bisexual branching
processes where, in each generation, it is allowed the immigration of females and
males. The immigration depends on the numbers of females and males in the pop-
ulation. For such a class of processes, some results about its probabilistic evolution
are established. First, the existence of the asymptotic growth rate is proved. Then,
assuming the supercritical case, namely, when the asymptotic growth rate is greater
than one, several limiting results are derived.

Mathematics Subject Classification (2000): 60J80

Keywords: branching processes, bisexual processes, processes with immigration.

19.1 Introduction

Nowadays, the branching process theory is an active research area with theoretical
interest and practical applications in fields such as biology; demography; ecology;
epidemiology; genetics; medicine; population dynamics; physics and so on. With
the aim to describe the evolution of populations where females and males coexist
and form couples (one female and one male) several classes of bisexual branching
processes have been studied, see e.g. [1, 2, 4, 6–8, 10, 12, 13, 16, 18–21, 23, 22]
and [25]. In particular with the purpose to consider the possible immigration of
females and males from outside populations, it was introduced in [8] a bisexual pro-
cess where the immigration of females and males is governed through a sequence of
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independent and identically distributed random vectors. Several theoretical results
about such a class of bisexual models with immigration were developed in [9, 11]
and [17]. In this work, we shall introduce a more general class of bisexual processes
where, in each generation, the immigration of females and males depends on the
numbers of females and males in the population. The paper is organized as follows:
In Sect. 19.2, the bisexual process with immigration of females and males is for-
mally described and its intuitive interpretation is provided. In Sect. 19.3, the mean
growth rates per couple for the new model are introduced. Then, the existence of the
asymptotic growth rate is proved in Theorem 19.1. Sect. 19.4 deals with the super-
critical case, namely, when the asymptotic growth rate is greater than one. For such
a situation, several limiting results are derived in Theorems 19.2, 19.3 and 19.4.

19.2 The bisexual process with immigration

On a sufficiently probability space (Ω ,F ,P), let us define the following bisexual
branching process with immigration of females and males initiated with Z0 = N0

couples:

(Fn+1,Mn+1) =
Zn

∑
i=1

( fn,i,mn,i)+
(
FI

n+1( fn�

)
,MI

n+1(mn�)),

Zn+1 = L(Fn+1,Mn+1), n ∈ Z+ (19.1)

where the empty sum is considered to be (0,0) and Z+ denotes the set of nonnega-
tive integers. The random vector ( fn,i,mn,i) represents the numbers of females and
males descending from the ith couple of the nth generation, {( fn,i,mn,i), i ≥ 1; n ≥
0} is a sequence of independent and identically distributed random vectors, its com-
mon probability law will be referred as the offspring probability distribution. On

the other hand, (FI
n+1( fn�),MI

n+1(mn�)), with fn� =
Zn

∑
i=1

fn,i and mn� =
Zn

∑
i=1

mn,i, rep-

resents the numbers of immigrant females and males in the (n + 1)th generation.
Given j, l ∈ Z+, it is assumed that {(FI

n+1( j),MI
n+1(l))}∞n=0 is a sequence of inde-

pendent and identically distributed random vectors. We shall denote by (μ f ,μm) and

(μ j,l
f ,μ j,l

m ), j, l ∈ Z+, respectively, the offspring mean vector and the immigration
mean vectors assumed to be positive and finite. Finally, L : R+ × R+ → R+ is the
mating function, assumed to be nondecreasing in each argument, integer-valued on
the integers, and such that L(x,0) = L(0,y) = 0, x,y ∈ R+, with R+ denoting the set
of nonnegative real numbers. Also, throughout this paper, we shall consider that L
is a superadditive function, namely:

L(x1 + x2,y1 + y2) ≥ L(x1,y1)+L(x2,y2), xi,yi ∈ R+, i = 1,2.
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Note that in this class of models the immigration of females and males depends
on the numbers of females and males in the population. Intuitively, (Fn+1,Mn+1)
represents the numbers of females and males in the (n+1)th generation which form
Zn+1 couples according to the mating function L. It can be verified that {Zn}∞n=0 and
{(Fn,Mn)}∞n=1 are Markov chains with stationary transition probabilities.

It is pointing out that in addition its theoretical interest, the class of processes
introduced in (19.1) has also practical implications, especially in population dynam-
ics. It includes as particular cases the bisexual processes introduced in [6] and [8].
In order to derive some theoretical results about its limiting behaviour we introduce
the following working assumption:

(A): The sequences {FI
1 ( j)}∞j=0 and {MI

1(l)}∞l=0 are such that, for j, l ∈ Z+,

E
[
g(FI

1 ( j +1))
]≤ E[g(FI

1 ( j))] and E
[
g(MI

1(l +1))] ≤ E[g(MI
1(l))

]
,

where g is a nondecreasing function.

Remark 19.1. From (A) it is derived (see for details [14]) the existence of random
variables FI( j) and FI( j + 1) defined on the same probability space and having
the same respective probability distributions than FI

1 ( j) and FI
1 ( j + 1) and the

existence of a nonnegative integer-valued random variable FI( j, j + 1) such that
FI( j) = FI( j + 1)+ FI( j, j + 1), j ∈ Z+. Similarly, it is deduced the existence of
random variables MI(l)) and MI(l +1)) defined on the same probability space and
having the same respective probability distributions that MI

1(l) and MI
1(l + 1)) and

the existence of a nonnegative integer-valued random variable MI(l, l +1) such that
MI(l) = MI(l +1)+MI(l, l +1), l ∈ Z+. Also, it is deduced that

(i) {FI( j)}∞j=0 (respectively {MI(l)}∞l=0) is a monotone nonincreasing sequence
which converges almost surely to a nonnegative, integer-valued random variable
FI (respectively MI).

(ii) {E[g(FI( j))]}∞j=0 (respectively {E[g(MI(l))]}∞l=0) is a monotone nonincreasing

sequence which converges to E[g(FI)] (respectively E[g(MI)]), for every non-
decreasing function g.

19.3 The asymptotic growth rate

The concept of mean growth rate per couple, defined in [5] for the Daley’s bisexual
Galton–Watson process introduced in [6] may be extended for the class of processes
given in (19.1).

Definition 19.1. For every positive integer k, we define the mean growth rate per
couple as:

Rk :=
1
k

E[Zn+1 | Zn = k] =
1
k

E

[

L

(
k

∑
i=1

fn,i +FI
n+1( fn�),

k

∑
i=1

mn,i +MI
n+1( fn�)

)]

.
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Next we establish conditions which guarantee the existence of the asymptotic
growth rate, namely R := lim

k→∞
Rk.

Theorem 19.1. Assume (A) and mating function L such that L(x,y) ≤ x + y, x,y ∈
R+. Then,

R = lim
k→∞

1
k

L(kμ f ,kμm)

where recall that μ f = E[ f0,1] and μm = E[m0,1] both assumed to be positive and
finite values.

Proof. Let {(F j,l
n ,M j,l

n )}∞n=1 (with j, l ∈ Z+ fixed) and {(F ′
n,M

′
n)}∞n=1 be the bisexual

processes with immigration of females and males defined, for n ∈ Z+, as follows:

(F j,l
n+1,M

j,l
n+1) =

Z j,l
n

∑
i=1

( fn,i,mn,i)+
(
FI

n+1( j),MI
n+1(l)

)
, Z j,l

n+1 = L(F j,l
n+1,M

j,l
n+1) (19.2)

(F ′
n+1,M

′
n+1) =

Z′
n

∑
i=1

( fn,i,mn,i)+(FI
n+1,M

I
n+1), Z′

n+1 = L(F ′
n+1,M

′
n+1) (19.3)

where Z j,l
0 = Z′

0 = N0.
Notice that (19.2) and (19.3) are bisexual processes with the same offspring

probability distribution and the same mating function than the considered in the
process introduced in (19.1), but now the immigration of females and males is gov-
erned, respectively, by the sequences {(FI

n ( j),MI
n(l))}∞n=1 and {(FI

n ,MI
n)}∞n=1, being

(FI
n ,MI

n) random vectors independent and with the same probability distribution that
(FI ,MI), see Remark 19.1.

For each positive integer k, let us consider the mean growth rates:

R j,l
k :=

1
k

E
[
Z j,l

n+1 | Z j,l
n = k

]
=

1
k

E

[

L

(
k

∑
i=1

fn,i +F j,l
n+1( j),

k

∑
i=1

mn,i +M j,l
n+1(l)

)]

and

R′
k :=

1
k

E
[
Z′

n+1 | Z′
n = k

]
=

1
k

E

[

L

(
k

∑
i=1

fn,i +FI
n+1,

k

∑
i=1

mn,i +MI
n+1

)]

.

By using the fact that the mean vectors (μ f ,μm) and (μ j,l
f ,μ j,l

m ) are positive and
finite and taking into account Propositions 2.1 and 2.2 in [11], one deduces the ex-
istence of the asymptotic growth rates:

R j,l := lim
k→∞

R j,l
k and R′ := lim

k→∞
R′

k.
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Moreover

R j,l = R′ = lim
k→∞

1
k

L(kμ f ,kμm) (19.4)

Now, by Remark 19.1, one has for k ≥ 1,

E

[

L

(
k

∑
i=1

fn,i +FI
n+1( fn�),

k

∑
i=1

mn,i +MI
n+1(mn�)

)]

≥ E

[

L

(
k

∑
i=1

fn,i +FI
n+1,

k

∑
i=1

mn,i +MI
n+1

)]

.

Hence

liminf
k→∞

1
k

E

[

L

(
k

∑
i=1

fn,i +FI
n+1( fn�),

k

∑
i=1

mn,i +MI
n+1(mn�)

)]

≥ R′. (19.5)

On the other hand, for j, l ∈ Z+ fixed again by Remark 19.1, one deduces that

limsup
k→∞

1
k

E

[

L

(
k

∑
i=1

fn,i +FI
n+1( fn�),

k

∑
i=1

mn,i +MI
n+1(mn�)

)]

≤ lim
k→∞

1
k

E

[

L

(
k

∑
i=1

fn,i +FI
n+1( j),

k

∑
i=1

mn,i +MI
n+1(l)

)]

= R j,l . (19.6)

Finally, by (19.4), (19.5) and (19.6), one derives the existence of R = lim
k→∞

Rk and

the fact that R = lim
k→∞

1
k L(kμ f ,kμm). ��

Definition 19.2. The bisexual process presented in (19.1) is said to be subcritical,
critical, or supercritical if R < 1, R = 1, or R > 1, respectively.

19.4 Limit behavior for the supercritical case

In this Section, we shall focuss the interest in a supercritical bisexual process
(19.1) verifying condition (A). We shall investigate the limiting behaviour of the
sequences:

{R−nZn}∞n=0, {Zn
−1Fn+1}∞n=0, {Zn

−1Mn+1}∞n=0, {R−nFn}∞n=1 and {R−nMn}∞n=1.

Let us consider the sequence {Ek}∞k=1 where Ek = R−Rk. By Theorem 19.1, it is
clear that limk→∞Ek = 0.
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Theorem 19.2. Assume that, for some constants H,α > 0, |Ek| < Hk−α , k ≥ 1.
Then {Wn}∞n=0, with Wn = R−nZn, converges almost surely to a nonnegative and
finite random variable W as n → ∞.

Proof. Let Fn =σ(Z0, . . . ,Zn) be the σ -algebra generated by the variables Z0,. . .,Zn.
One has that

E[Zn+1 | Fn] = ZnRZn = ZnR−ZnEZn a.s.

Hence, it is derived that

|E[Zn+1 | Fn]−ZnR| = |ZnEZn | < HZn
1−α a.s.

Therefore,
|E[Wn+1 | Fn]−Wn| < HW 1−α

n R−nα−1 a.s. (19.7)

Taking expectations and using the fact that φ(x) = x1−α , x ∈ R+ is a concave
function, one deduces that

|E[Wn+1]−E[Wn]| < HE[W 1−α
n ]R−nα−1 ≤ H(E[Wn])1−αR−nα−1. (19.8)

Finally, from (19.7) and (19.8), using a similar reasoning to that one considered
in Theorem 1.7 of [15] the proof is complete. ��
Theorem 19.3. On [Zn → ∞], the sequences {Zn

−1Fn+1}∞n=0 and {Zn
−1Mn+1}∞n=0

converge almost surely to μ f and μm, respectively, as n → ∞.

Proof. From condition (A) and taking into account Remark 19.1 and Theorem 4.1
(i) in [11], one deduces on [Zn → ∞] that

liminf
n→∞

Z−1
n

(
Zn

∑
i=1

fn,i +FI
n+1( fn�)

)

≥ lim
n→∞

Z−1
n

(
Zn

∑
i=1

fn,i +FI
n+1

)

= μ f a.s.

(19.9)
where {FI

n }∞n=1 is a sequence of independent and identically distributed random
variables, being their common probability distribution the corresponding to FI .

From a similar reasoning one has, on [Zn → ∞], and j, l ∈ Z+ fixed, that

limsup
n→∞

Z−1
n

(
Zn

∑
i=1

fn,i +FI
n+1( fn�)

)

≤ lim
n→∞

Z−1
n

(
Zn

∑
i=1

fn,i +FI
n+1( j)

)

= μ f a.s.

(19.10)
By (19.9) and (19.10) one obtains, on [Zn → ∞], that

lim
n→∞

Z−1
n

(
Zn

∑
i=1

fn,i +FI
n+1( fn�)

)

= lim
n→∞

Z−1
n Fn+1 = μ f a.s.

Analogously it is derived, on the set [Zn → ∞], that {Zn
−1Mn+1}∞n=0 converges

almost surely to μm as n → ∞. ��
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Next we establish an analogous result for the class of processes introduced in
(19.1) to the classical Kesten-Stigum result, see e.g. [3].

Theorem 19.4. Assume that Ek ≥ 0, k ≥ 1.

(i) If {R−nFn}∞n=1 converges almost surely to F as n →∞ where P(0 ≤ F <∞) = 1
then, E[ f0,1 log+ f0,1] < ∞ is a necessary condition in order that F be a nonde-
generate at 0 random variable.

(ii) If {R−nMn}∞n=1 converges almost surely to M as n →∞ where P(0 ≤ M <∞) = 1
then, E[m0,1 log+ m0,1] < ∞ is a necessary condition in order that M be a nonde-
generate at 0 random variable.

Proof. First, note that

E[Wn+1 | Fn] = R−(n+1)(R−EZnZn) = Wn −R−(n+1)EZnZn a.s.

Then, taking expectation and using the fact that Ek ≥ 0, k ≥ 1, one deduces that

E[Wn+1] = E[Wn]−R−(n+1)E [EZnZn] ≤ E[Wn] ≤ ·· · ≤ E[Z0] = N0. (19.11)

Now, by condition (A) and Remark (2.1)(i), it is deduced (see e.g. [14]) that the
sequences {(FI( j)}∞j=0 and {MI(l))}∞l=0 are such that, for each j, l ∈ Z+,

FI ≤st FI( j) ≤st FI(0) and MI ≤st MI(l) ≤st FI(0) (19.12)

where ≤st denotes the stochastic order1.

Let {Z̃n}∞n=0 and {Ẑn}∞n=0 be the sequences defined, for n ∈ Z+, in the form:

Z̃n+1 = L(F̃n+1,M̃n+1), (F̃n+1,M̃n+1) =
Zn

∑
i=1

( f̃n,i, m̃n,i)+(FI ,MI),

Ẑn+1 = L(F̂n+1,M̂n+1), (F̂n+1,M̂n+1) =
Zn

∑
i=1

( f̂n,i, m̂n,i)+(FI(0),MI(0))

where Z̃0 = Ẑ0 = Z0 = N0, ( f̃n,i, m̃n,i) and ( f̂n,i, m̂n,i) being random vectors with
the same distribution that ( fn,i,mn,i). Hence E[ f̃0,1] = E[ f̂0,1] = E[ f0,1] = μ f and
E[m̃0,1] = E[m̂0,1] = E[m0,1] = μm. Finally, L and {Zn}∞n=0 are the mating function
and the sequence of couples, respectively, given in (19.1).

From (19.12), by stochastic order properties (see e.g. [24]) one deduces that

1 Given the random variables X and Y we say that X is stochastically smaller than Y and we write
X ≤st Y if P(X ≤ t) ≥ P(Y ≤ t), t ∈ R
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F̃n+1 ≤st Fn+1 ≤st F̂n+1, n ∈ Z+. (19.13)

Now, taking into account the proof in Theorem 19.1, it is derived the existence
of the asymptotic growth rates:

R̃ := lim
k→∞

k−1E[Z̃n+1 | Z̃n] and R̂ := lim
k→∞

k−1E[Ẑn+1 | Ẑn].

Moreover R̃ = R̂ = R.
Hence, by (19.13), one has that

R̃−(n+1)F̃n+1 ≤st R−(n+1)Fn+1 ≤st R̂−(n+1)F̂n+1, n ∈ Z+.

By Theorem 19.3, one derives that, on [Zn → ∞], the sequences {Z̃−1
n F̃n+1}∞n=0 and

{Ẑ−1
n F̂n+1}∞n=0 converge almost surely to μ f as n → ∞.
Taking into account (19.11) and Theorem 2.1 in [17], result in Theorem 19.4(i)

holds. In a similar way it is proved result in Theorem 19.4(ii). ��
Corollary 19.1. Assume P(Zn → ∞) = 1. Then, under requirements in Theorem
19.4, E[ f0,1 log+ f0,1] <∞ and E[m0,1 log+ m0,1] <∞ are necessary conditions in or-
der that P(0 < W <∞) = 1, where recall that W is the almost sure limit of {Wn}∞n=0
as n → ∞.

Proof. By the definition of {Z̃n}∞n=0 and {Ẑn}∞n=0 given in Theorem 19.4, it is veri-
fied that

Z̃n ≤st Zn ≤st Ẑn, n ∈ Z+.

Thus, using that R̃ = R̂ = R,

W̃n ≤st Wn ≤st Ŵn, n ∈ Z+

where W̃n = R̃−nZ̃n, Wn = R−nZn and Ŵn = R̂−nẐn.
Then, by considering Theorem 19.4, we conclude the proof. ��
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Abstract With the purpose to model the probabilistic evolution of populations
where females and males coexist and form couples, in 1968, D. J. Daley introduced
the called bisexual Galton–Watson branching process. From Daley’s process gen-
eral setting, new classes of discrete time two-sex branching processes have been
investigated. They include processes with immigration, in varying environments, in
random environments, depending on the number of couples in the population, and
controlled processes. Also, some classes of continuous time two-sex branching pro-
cesses have been studied. This work is intended to be a summary of the literature
associated with such classes of two-sex branching processes.
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20.1 Introduction

D. J. Daley in his paper entitled Extinction conditions for certain bisexual Galton–
Watson branching processes (see [8]) introduced the first two-sex branching process,
the called bisexual Galton–Watson branching process.

Since Daley’s work, the interest on two-sex (bisexual) branching processes
increased and more than 30 authors from different countries have contributed 56
papers in several journals until the year 2008. Nowadays, the two-sex branching
process theory is an active research area of both theoretical interest and applicabil-
ity to such fields as biology, demography, ecology, genetics, medicine, population
dynamics, and physics.
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M. González et al. (eds.), Workshop on Branching Processes and Their Applications, 279
Lecture Notes in Statistics – Proceedings 197, DOI 10.1007/978-3-642-11156-3 20,
c© Springer-Verlag Berlin Heidelberg 2010



280 Manuel Molina

In this work, a survey of the research papers associated with two-sex branch-
ing processes is provided. In addition to this introductory Section, five additional
Sections are included. In Sect. 20.2, we concentrate our attention on the Daley’s
bisexual process and its literature associated. In Sects. 20.3 and 20.4, we provide a
brief summary about the new classes of discrete time and continuous time two-sex
branching processes investigated, respectively. Section 20.5 is devoted to consider-
ing the main fields of applications where two-sex branching processes have been
used as mathematical models. Finally, in Sect. 20.6, some suggestions for further
research are pointed out.

20.2 The Daley’s two-sex branching process

In Daley’s two-sex process, the population consists in two disjoint classes, the fe-
males and the males. The reproduction is accomplished only through couples (also
called mating units). A couple is formed by one female and one male of the same
generation who come together for the main purpose of procreation. Each couple pro-
duces offspring, independently of the others couples, according to a given offspring
probability distribution {pk}k≥0, pk being the probability that a couple produces k
new individuals. It is assumed that an individual is female with probability α ∈ (0,1)
and male with probability 1−α . An alternative approach is to consider an offspring
probability distribution {pi, j}i, j≥0 where pi, j denotes the probability that a couple
produces i females and j males.

Let Z+ be the set of nonnegative integers. Formally, the bisexual Galton–Watson
process {(Fn,Mn)}n≥1 is defined as follows:

(Fn+1,Mn+1) =
Zn

∑
i=1

( fn,i,mn,i), Zn+1 = L(Fn+1,Mn+1), n ∈ Z+

where:

1. The empty sum is considered to be (0,0).
2. (Fn+1,Mn+1) represents the number of females and males in the (n+1)th genera-

tion. These females and males form Zn+1 = L(Fn+1,Mn+1) couples which repro-
duce independently and with the same offspring probability distribution. Initially
there are a positive number N0 of couples in the population, i.e. Z0 = N0.

3. ( fn,i,mn,i) represents the number of females and males descending from the
ith couple of the nth generation. It is assumed that {( fn,i,mn,i), n ∈ Z+, i =
1, . . . ,Zn} are independent and identically distributed nonnegative random vec-
tors.

4. L is a function defined on R+ ×R+ and taking values in R+, with R+ denoting
the set of nonnegative real numbers. It is called the mating function and is as-
sumed to be nondecreasing in each argument, integer-valued on the integers and
such that L(x,0) = L(0,y) = 0, x,y ∈ R+.



20 Two-sex processes 281

It is easy to verify that {Zn}n≥0 is a Markov chain with the nonnegative integers
as the state space, 0 being an absorbing state and each positive integer k being a
transient state.

If, for some n, Zn = 0 then the two-sex population extinction will occur. Let
q j = P(limn↑∞ Zn = 0 | Z0 = j) be the extinction probability when initially there are
j ≥ 1 couples in the population.

In Daley’s initial work the extinction problem was investigated for the following
two intuitive mating functions:

(A) L(x,y) = xmin{1,y}.
It was called the completely promiscuous mating and assumes that a single male
will emerge in each generation and then will mate with every female of that gen-
eration. All other males of this generation are excluded from the mating process.
By using some techniques based in analytic iteration of functions it was proved
that:

q j = 1, j ≥ 1 if and only if αm ≤ 1

where m = ∑∞
k=0 kpk.

(B) L(x,y) = min{x,dy}, d being a positive integer.
It was called the polygamous mating with perfect fidelity. The females practice
perfect fidelity, they are allowed to have at most one mate, and the males (or at
least some males) practice polygamy, a male may have up to d wives if enough
females are available. The particular case d = 1 corresponds to the perfect fidelity
mating function. D.J. Daley proved that:

q j = 1, j ≥ 1 if and only if min{αm , d(1−α)m} ≤ 1.

By considering a different probabilistic approach, similar conclusions were ob-
tained in [37].

The first attempt to use mating functions other than Daley’s two mating functions
was made by Hull [31]. He considered superadditive mating functions, namely func-
tions L such that

L(x1 + x2,y1 + y2) ≥ L(x1,y1)+L(x2,y2), xi,yi ∈ R+, i = 1,2.

Superadditivity expresses the intuitive notion that x1 + x2 females and y1 + y2

males coexisting together will form a number of couples that is at least at great as
the total number of couples formed by x1 females and y1 males, and x2 females and
y2 males, living separately.

By comparison with an stochastic process where only offspring produced by the
same couple are able to mate, D. M. Hull proved that E[Z1 | Z0 = 1] ≤ 1 was a nec-
essary condition for q j = 1, j ≥ 1. By using a counterexample, he showed that it
was not a sufficient condition.

An alternative proof of Hull’s necessary condition for certain extinction it was
provided by González and Molina [15]. They established that:
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fn(s) ≤ fn−1( f1(s)), s ∈ [0,1], n = 1,2, . . .

where fn(s) = E[sZn ]. As consequence, they derived that E[Zn] ≥ (E[Z1])n, n ≥ 1
and the Hull’s necessary condition.

In order to obtain sufficient conditions for the population extinction, F.T. Bruss
(see [6]) introduced the concept of mean growth rate per couple defined for each
positive integer j in the form:

r j = j−1E[Z1 | Z0 = j], j ≥ 1.

He proved that r j ≤ 1 for all sufficiently large j is a sufficient condition for the
almost sure extinction of the two-sex population. Also, making use of an auxiliary
multitype branching process and taking into account some results of the multitype
branching process theory, conditions which are both necessary and sufficient for
extinction were provided in [32].

The paper by Daley et al. (see [9]) contributed important results to the bisex-
ual Galton–Watson process theory. They derived several monotonicity properties,
proved that {r j} j≥1 has a limit r, the called asymptotic growth rate, and deduced
that r = sup j≥1 r j. Moreover, for a bisexual Galton–Watson process with superaddi-
tive mating function, they proved that

q j = 1, j ≥ 1 if and only if r ≤ 1

and determined upper and lower bounds for the extinction probability.
Note that, in [9] it was established conditions which guarantee the extinction for

all possible positive values of Z0. But, if these conditions do not hold, the question
is: How large a value of Z0 will move the process away from certain extinction?

A first attempt to answer this question was provided by Hull [33]. He considered
population bounded superadditive functions, namely superadditive functions veri-
fying that L(1,1) = 1 and L(x,y) ≤ min{xy,x + y}. For a bisexual Galton–Watson
process governed by a population bounded mating function and such that r > 1 he
proved that:

q j < 1 if and only if P(Z1 > j | Z0 = j) > 0.

Alsmeyer and Rösler [1] investigated the sequence of ratios {q j/q j} j≥1 where
the numerator is the extinction probability of the process governed by the com-
pletely promiscuous mating function and the denominator represents the extinction
probability of the process governed by the mating function L(x,y) = x when Z0 = j.
They obtained upper and lower bounds for such a sequence and established a link-
age to the standard Galton–Watson branching theory by comparing the completly
promiscuous process to a standard process based on female lines of descent where
extinction can also occur because there are no males in the generation. Also, they
determined an equation, which when solved provides the extinction probability for
a completely promiscuous process.

In a second paper (see [2]) they continued their research about the sequence
{q j/q j} j≥1, identifying these ratios as a certain functional of a classical subcritical
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Galton–Watson branching process. Then, by using such functionals, a distinction
was made between the convergence of these ratios and a second case where these
ratios do not converge, but rather oscillate very slowly.

Also, sequences of lower and upper bounds for the extinction probabilities were
derived in [35].

The first paper about convergence results concerning the bisexual Galton–Watson
process was published by Bagley [5]. Assuming Z0 = 1 and L(x,y) = min{x,y}, he
proved that if τ = min{αm,(1−α)m} > 1 then there exists a nonnegative and finite
random variable W such that {τ−nMn}n≥1 and {τ−nFn}n≥1 converge almost surely
to W and α(1−α)−1W , respectively, as n → ∞. Also, he established that:

E[M1 log+ M1] = ∞ (or E[F1 log+ F1] = ∞) implies that P(W = 0) = 1

and

E[M1 log+ M1] < ∞ (or E[F1 log+ F1] < ∞) implies that P(W > 0) = 1−q1.

Thanks to the probabilistic techniques considered by F. Klebaner (see [38] and
[39]) in his research on population-size dependent asexual branching processes,
Bagley’s results were extended to superadditive mating functions in the papers by
M. González and M. Molina (see [16–20]) where several limiting results about the
almost sure, L1 and L2 convergence of the sequences {r−nZn}n≥0, {r−nFn}n≥1 and
{r−nMn}n≥1 were provided. Also, the limiting behaviour of {∑n

i=0 Zi}n≥0 suitably
normalized was investigated.

Statistical inference about the Daley’s bisexual process has been developed. In
fact, a substancial number of estimators having good properties have been proposed
for the estimation of the offspring probability distribution, the offspring mean vec-
tor, the offspring covariance matrix, and the asymptotic growth rate.

Assuming superadditive mating function such that L(x,y) ≤ x, maximun likeli-
hood estimators for the offspring mean vector and the asymptotic growth rate were
determined in [29].

Unbiased, consistent, and asymptotically normal ratio estimators for the off-
spring mean vector were provided in [28].

Several classes of estimators, under non-parametric or parametric context and
from a classical or a Bayesian point of view, for the above mentioned parameters
were determined, and their asymptotic properties studied in [23] and [42].

Finally, some multitype versions of the bisexual Galton–Watson branching pro-
cess were considered in [34] and [37].

For more information about the literature on the bisexual Galton–Watson branch-
ing process we refer the reader to the references [30] and [36].
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20.3 Discrete time two-sex branching processes

In order to describe the probabilistic evolution of more complicated populations
that Daley’s two-sex population, several classes of discrete time two-sex branching
processes have been introduced and some theoretical contributions about them de-
rived. Next we provide, from a historical outlook, some brief information about such
classes of processes. To simplify, the discrete time two-sex processes investigated
until now (from Daley’s process setting) could be grouped in the general classes:

1. Processes with immigration.
2. Processes in varying or in random environments.
3. Processes depending on the number of couples in the population.
4. Processes with control on the number of progenitor couples.
5. Others classes of two-sex processes

The main topics investigated have been: Probabilistic properties, extinction prob-
lem, asymptotic behaviour, statistical inference, and applications.

20.3.1 Processes with immigration

(A) Processes with immigration of females and males.
The novelty with respect the Daley’s model is that it is allowed, in each genera-
tion, the incorporation of females and males from others populations:

(Fn+1,Mn+1) =
Zn

∑
i=1

( fn,i,mn,i) + (FI
n+1,M

I
n+1), Zn+1 = L(Fn+1,Mn+1), n ∈ Z+

where Z0 = N0 ≥ 1. The random vector (FI
n+1,M

I
n+1) represents the number of

immigrant females and males in the (n+1)th generation, {(FI
n ,MI

n)}n≥1 is a se-
quence of independent and identically distributed nonnegative random vectors.
It is assumed that {(FI

n ,MI
n)}n≥1 and {( fn,i,mn,i), n ∈ Z+, i = 1, . . . ,Zn} are

independent sequences. Some probabilistic properties, limiting results, and in-
ferential questions for this class of processes were established in [21, 22] and
[25].

(B) Processes with immigration of couples.
In this class of processes it is allowed, in each generation, the immigration of
couples from outside populations:

(Fn+1,Mn+1) =
Zn

∑
i=1

( fn,i,mn,i), Zn+1 = L(Fn+1,Mn+1)+ In+1, n ∈ Z+

where Z0 = N0 ≥ 1. The variable In+1 represents the number of immigrant cou-
ples in the (n + 1)th generation, {In}n≥1 is a sequence of independent and iden-
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tically distributed nonnegative random variables. It is assumed that {In}n≥1 and
{( fn,i,mn,i), n ∈ Z+, i = 1, . . . ,Zn} are independent. Some probabilistic proper-
ties and results about its limiting evolution were derived in [21, 24] and [41].

20.3.2 Processes in varying or in random environments

(A) Processes in varying environments.
It is allowed a different offspring probability distribution in each generation:

(Fn+1,Mn+1) =
Zn

∑
i=1

( fn,i,mn,i), Zn+1 = L(Fn+1,Mn+1), n ∈ Z+.

where Z0 = N0 ≥ 1. For each n, {( fn,i,mn,i)}i≥1 is a sequence of independent
and identically distributed nonnegative random vectors with common probabil-

ity distribution p(n)
k,l = P( fn,1 = k,mn,1 = l), k, l ∈ Z+. In this class of processes,

the sequences {(Fn,Mn)}n≥1 and {Zn}n≥0 are nonhomogeneous Markov chains.
Some probabilistic properties, necessary and sufficient conditions for the almost
sure extinction, and limiting results were investigated in [44–47] and [50].

(B) Processes in random environments.
The offspring probability distribution is governed according to a random envi-
ronment process {ξn}n≥0:

(Fn+1,Mn+1) =
Zn

∑
i=1

( fn,i(ξn),mn,i(ξn)), Zn+1 = L(Fn+1,Mn+1), n ∈ Z+

This class of processes was introduced by Ma [40] where several probabilis-
tic properties and some results concerning its extinction probability where pro-
vided. Recently, Fernández et al. [11] have introduced a two-sex process where
the offspring probability distribution depends on some fertility parameters which
evolve randomly in time. They have proved that the total population increases, in
some stochastic sense, as the positive dependence between the fertility indexes
increases.

20.3.3 Processes depending on the number of couples
in the population

(A) Processes with mating function depending on the number of couples.
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(Fn+1,Mn+1) =
Zn

∑
i=1

( fn,i,mn,i), Zn+1 = LZn(Fn+1,Mn+1), n ∈ Z+

where Z0 = N0 ≥ 1 and {Lk}k≥0 is a sequence of mating functions. If, for some n,
Zn = k then Lk is the function that determine the number of couples formed in the
(n + 1)th generation. Some contributions about stochastic monotony properties,
accumulated progeny, extinction probability, and limiting behaviour for such a
class of processes have been established in [43, 48, 49, 51] and [52]. Also, statis-
tical inference for its main parameters has been considered from a classical point
of view in [27] and from a Bayesian perspective in [57].

(B) Processes with offspring depending on the number of couples.

(Fn+1,Mn+1) =
Zn

∑
i=1

( fn,i(Zn),mn,i(Zn)), Zn+1 = L(Fn+1,Mn+1), n ∈ Z+

where Z0 = N0 ≥ 1. This class of processes was introduced by Xing and Wang
[60]. Assuming that for every bounded, componentwise-increasing function g,
the sequence {E[g( f0,1(k),m0,1(k))]}k≥0 is nonincreasing, they established a cri-
terion to identify when the process admits ultimate extinction with probability
one.

(C) Processes with offspring and mating depending on the number of couples.

(Fn+1,Mn+1) =
Zn

∑
i=1

( fn,i(Zn),mn,i(Zn)), Zn+1 = LZn(Fn+1,Mn+1), n ∈ Z+

where Z0 = N0 ≥ 1. This class of process has been investigated by Molina et al.
[56] where several probabilistic properties and results about its extinction prob-
ability and limiting evolution have been determined. Recently, Xing and Wang
[61], assuming again that for every bounded, componentwise-increasing func-
tion g, the sequence {E[g( f0,1(k),m0,1(k))]}k≥0 is nonincreasing, have obtained
a criterion to identify whether the process is extinct with probability one.

(D) Processes with immigration depending on the number of couples.

(Fn+1,Mn+1) =
Zn

∑
i=1

( fn,i(Zn),mn,i(Zn))+( f I
n+1(Zn),mI

n+1(Zn)),

Z0 = N0 ≥ 1, Zn+1 = LZn(Fn+1,Mn+1)+ In+1(Zn), n ∈ Z+.

This general class of two-sex models has been investigated in [53] and [54] where
several probabilistic properties have been established.
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20.3.4 Processes with control on the number of progenitor couples

The following class of two-sex processes with a deterministic control on the number
of progenitor couples has been introduced in [55]:

(Fn+1,Mn+1) =
Z∗

n

∑
i=1

( fn,i,mn,i), Zn+1 = LZ∗
n
(Fn+1,Mn+1), Z∗

n+1 = φ(Zn+1), n ∈ Z+

where Z∗
0 = N∗

0 ≥ 1, {Lk}k≥0 is a sequence of mating functions and φ : R+ → R+ is
a deterministic function integer-valued on the integers and such that φ(0) = 0. The
variable Zn+1 represents the number of couples originated according to the mating
function LZ∗

n
where Z∗

n = φ(Zn) denotes the number of couples that, after the control
governed by φ , really participated in the reproduction phase. The role of φ is to con-
trol, in each generation, the number couples that will intervene in the reproduction.
Note that, if φ(Zn) > Zn then φ(Zn)−Zn couples will be introduced in the popula-
tion, if φ(Zn) < Zn then Zn −φ(Zn) couples will be removed of the population, and
if φ(Zn) = Zn then no control will be considered.

20.3.5 Others classes of two-sex processes

It is worth noticing that in [10] two new classes of two-sex branching processes
were introduced and some contributions about their limiting behaviours investi-
gated. First, the author considered a class of two-sex models which, in each genera-
tion, the conditional distribution corresponding to the number of couples produced
by a daughter descending from certain couple depends on the number of couples
in the previous generation as well as the average number of offspring per couple.
Then, this class was generalized to a second class of two-sex models which con-
siders that, in each generation, the conditional distribution of the total number of
couples formed by the daughters descending from certain couple depends on the
number of couples as well as the numbers of females and males per couple and the
average number of offspring per couple in all the previous generations.

20.4 Continuous time two-sex branching processes

A continuous time two-sex branching process theory has not been sufficiently de-
veloped until now. The first model was introduced by Asmussen [3]. He consid-
ered a process {(Ft ,Mt)}t≥0, where Ft and Mt represent, respectively, the num-
ber of females and males present at time t in the population. He assumed that
births take place at rates which at time t are f L(Ft ,Mt) and mL(Ft ,Mt) for fe-
males and males respectively, where f and m are the female and male birth rates
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and L is the mating function. Considering a mating function of the form L(F,M) =
(F + M)ϕ(M(F + M)−1) where ϕ is a sufficiently smooth function, and assuming
that each couple only produces one female or one male, S. Asmussen established
some limiting results for such a continuous time two-sex process. For more infor-
mation about this process we refer the reader to chapter XI in [4].

In an attempt to widen knowledge of this subject, Molina and Yanev (see [58])
formulated the following general continuous time two-sex process, denoted by
{(F(t),M(t))}t>0:

F(t) =
ν(t)

∑
j=0

Z j

∑
k=1

1{Sν(t)<S j+η j,k≤t}
f j,k

∑
i=1

1{S j+η j,k+τ f
j,k,i≥t}

M(t) =
ν(t)

∑
j=0

Z j

∑
k=1

1{Sν(t)<S j+η j,k≤t}
m j,k

∑
i=1

1{S j+η j,k+τm
j,k,i≥t}

where:

1. The process starts with Z(0) = N0 ≥ 1 couples.
2. {Sn}n≥0 is an increasing random sequence. Sn is interpreted as the moment of

the forming of the nth generation of couples (S0 = 0).
3. Zn = L(Fn,Mn) is the number of couples in the nth generation, L being the mat-

ing function, and Fn = F(Sn) (respectively Mn = M(Sn)) denoting the number of
females (respectively males) at the moment of the nth generation.

4. ηn,k is the life-period of the kth couple which is formed in the nth generation.
5. fn,k and mn,k represent the number of females and males, respectively, born at

zero age in the end of the life period of the kth couple.
6. The random variables τ f (n,k; i) and τm(n,k; i) represent, respectively, the life-

period of the ith female and male born by the kth couple of the nth generation.
7. ν(t) = max{n ∈ Z+ : Sn ≤ t}, t > 0.
8. The evolutions corresponding to the couples and the individuals are independent.

In such a paper, several especial situations of this general continuous time two-sex
model were described. In particular, it contains Asmussen’s and Daley’s two-sex
procesess.

20.5 Applications

To describe the probabilistic evolution of several populations, some classes of two-
sex branching processes have been used as appropriate mathematical models. The
main fields where such applications have been considered are:

1. Epidemiology.
2. Genetics.
3. Population dynamics.
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20.5.1 Application in the field of the Epidemiology

It is well-known that macroparasites are characterised by the fact that part of their
life-cycles is outside the host, so that the host’s parasite burdens increase only
through re-infection. Therefore, unlike the models for microparasite infections, the
models for macroparasite infections must include both the actual parasite loads of
the host and the re-infection process.

Several stochastic epidemic models have been developed for macroparasite in-
fections. In particular, in [7] a modified two-sex Galton–Watson process has been
applied as appropriate epidemic model and some questions about its extinction prob-
ability have been investigated. The authors consider a bisexual parasite, with 50:50
sex ratio, that lives in discrete non-overlapping generations. Such parasites are dis-
tributed among n hosts. In each generation, each female parasite mates and produces
eggs, provided there is at least one male in the same host. The eggs pass out of the
host and mature to join a pool of infectious larvae outside the host. After that, some
of these larvae die, but some infect a host and form the next generation of adult
parasites. They assume that the number of offspring of each female parasite which
survive to contribute to the next generation of adults has a Poisson probability dis-
tribution, independently of the number of males in the same host, provided only that
there is at least one. Offspring from distinct females are produced independently,
and each offspring is, again independently, equally likely to be male or female.

20.5.2 Applications in the field of the Genetics

In the XY sex-determination system, the females have two chromosomes belonging
to the same kind (XX) while the males have two distinct sex chromosomes (XY).
Certain genetics characteristics are due to genes linked to the Y chromosome and,
consequently, they are only associated to the males.

In [12] with the aim to model the evolution of Y-linked genes from generation to
generation a multitype two-sex model has been proposed, the called Y-linked bisex-
ual branching process. Such a model considers the necessity of sexual interaction
between a female and a male and assumes a mating mechanism where an individual
may mate with no more than one individual of the opposite sex. Several results about
the extinction problem for the total population and for each genotype were derived.

In a second paper, González et al. [13], this research has been continued and
the rate of growth of a genotype provided its extinction has not happened has been
investigated. Also, in [14] assuming two-sex monogamic populations, a multitype
two-sex process has been introduced. The aim is to analyze the evolution of the
number of carriers of each allele of a Y-linked gene which does not have influence
on the mating process. Results concerning the extinction problem for both the whole
population and each genotype have been obtained.
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20.5.3 Applications in population dynamics

Let us consider phenomena concerning to populate or re-populate environments
with animal species, possibly in danger of extinction or previously disappeared,
which we know that they reproduce through the formation of couples female–male.
In these situations, frequently several attempts are needed until to get the wanted
success. It is assumed that if an attempt fails then we introduce new couples in the
habitat with the purpose that reproduction process begins again. An interesting ques-
tion is to investigate the probabilistic evolution of some random variables with an
environmental interest. For example, considering certain attempt of re-population,
the variable Number of generations before extinction of the population occurs, or
taking into account the number of necessary life-periods until obtaining the wanted
re-population, the variable Number of generations until the implementation of the
animal species in the habitat.

Such questions were considered in [26] by using as mathematical model the bi-
sexual Galton–Watson branching process.

More recently, it has been considered in [59] such problems under the perspective
that the mating process could be affected by the number of couples in the popula-
tion. Hence they have used as stochastic model the two-sex branching process with
mating depending on the number of couples in the population (see Sect. 20.3.3(A)).

20.6 Some suggestions for research

1. Much of the research associated with two-sex branching processes has been con-
centrated on extinction probabilities. Significant progress has been made on this
topic. However, research on the time of extinction has not been thoroughtly con-
sidered. This topic needs to be addressed with greater intensity.

2. It is necessary to complete both the probabilistic and the inferential theory con-
cerning the new classes of discrete time two-sex branching processes introduced.
For example, an important question is to investigate properties about the limiting
random variables.

3. It can be stated that significant efforts have been made regarding discrete time
two-sex branching processes. Now, similar efforts should be made to develop a
continuous time two-sex branching process theory.

4. Other interesting question is to explore new fields where the two-sex branching
processes introduced can be applied as appropriate mathematical models.
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21. González, M., Molina, M., Mota, M.: A note on bisexual branching models with immigration.
J. Inter-Amer. Statist. Inst. 49, 81–107 (1999)
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