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Introduction

There was a time, during the 19th century and for much of the
20th century, where the great and the good in society would hold that
to be considered a “cultured man” one would have to be knowledge-
able in Latin, Greek, and English classical literature. Those that held
this view, and held themselves to be members of the cultured elite,
would often announce, almost with pride, that they had no ability to
handle numbers or any mathematical concepts. Indeed, even within
living memory, the United Kingdom has had a Chancellor of the
Exchequer who claimed that he could only do calculations relating
to economics with the aid of matchsticks.

Times have changed — society is much more complex than
it was a century ago. There is universal suffrage and a greater
spread of education. Information is more widely disseminated by
newspapers, radio, television, and through the internet and there
is much greater awareness of the factors that affect our daily lives.
The deeds and misdeeds of those that govern, and their strengths
and weaknesses, are exposed as never before. It is inevitable that in
a multi-party democracy there is a tendency to emphasize, or even
overemphasize, the virtues of one’s own party and to emphasize, or
even overemphasize, the inadequacies of one’s opponents.

In this game of claim and counterclaim, affecting education,
health, security, social services and all other aspects of national life,
statistics plays a dominant role. The judicious use of statistics can
be very helpful in making a case and, unfortunately, politicians can
rely on the lack of statistical understanding of those they address.

1
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An eminent Victorian, and post-Victorian, politician, Leonard Henry
Courtney (1832–1913), in a speech about proportional representation
used the phrase “lies, damned lies and statistics” and in this he suc-
cinctly summarized the role that statistics plays in the hands of those
who wish to use it for political advantage. Courtney knew what he
was talking about — he was the President of the Statistical Society
from 1897–1899.

To give a hypothetical example — the party in power wishes
to expand a public service. To attract more people in to deliver the
service it has to increase salaries by 20% and in this way it increases
the number of personnel by 20%. The party in power say, with pride,
that it has invested a great deal of money in the service and that
20% more personnel are delivering it to the nation. The party in
opposition say that the nation is getting poor value for money since
for 44% more expenditure it is getting only 20% more service. Neither
party is lying — they are telling neither lies nor damned lies — but
they are using selective statistics to argue a case.

To make sense of the barrage of numbers with which society
is bombarded, one needs to understand what they mean and how
they are derived and then one can make informed decisions. Do you
want 20% more service for 44% more expenditure or do you want
to retain what service you have with no more expenditure? That is
a clear choice and a preference can be made, but the choices cannot
be labeled as “bad” or “good” — they are just alternatives.

However, statistics plays a role in life outside the area of pol-
itics. Many medical decisions are made on a statistical basis since
individuals differ in their reactions to medications or surgery in an
unpredictable way. In that case the treatment applied is based on get-
ting the best outcome for as many patients as possible — although
some individual patients may not get the best treatment for them.
When resources are limited then allocating those resources to give
the greatest benefit to the greatest number of people may lead to
some being denied help that, in principle, it would be possible for
them to receive. These are hard decisions that have to be made by
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politicians and those who run public services. All choices are not in
their nature between good and bad — they are often between bad
and worse — and a mature society should understand this.

How often have you seen the advertisement that claims that
9 dentists out of 10 recommend toothpaste X? What does it mean?
If it means that nine-tenths of all the dentists in the country endorse
the product then that is a formidable claim and one that should
give reason to consider changing one’s brand of toothpaste. Alter-
natively it could mean that, of 10 dentists hand-picked by the com-
pany, 9 recommend the toothpaste — and perhaps the dissenting
dentist was only chosen to make the claim seem more authentic.
Advertisers are adept in making attractive claims for various prod-
ucts but those claims should be treated with scepticism. Perhaps the
antiseptic fluid does kill 99% of all germs but what about the other
1% — are they going to kill you?

Another rich source of manipulated statistics is the press, partic-
ularly the so-called tabloid press — the type of newspaper that head-
lines the antics of an adulterous pop-idol while relegating a major
famine in Africa to a small item in an inside page. These newspapers
are particularly effective in influencing public opinion and the skilful
presentation of selected statistics is often part of this process. In the
1992 UK general election, the Sun newspaper, with the largest cir-
culation in the United Kingdom, supported the Conservative party
and in the few days before the actual vote presented headlines with
no factual or relevant content that were thought to have swayed a
significant number of voters. In 1997, the Sun switched its allegiance
to the Labour party, which duly won a landslide election victory.

At another level entirely, statistics is the governing factor that
controls gambling of any kind — horse-racing, card playing, foot-
ball pools, roulette wheels, dice throwing, premium bonds (in the
United Kingdom), and the national lottery, for example. It is in this
area that the public at large seems much more appreciative of the
rules of statistics. Many adults who were mediocre, at best, in school
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mathematics acquire amazing skills, involving an intuitive appreci-
ation of the applications of statistics, when it comes to gambling.

Statistics, as a branch of mathematics, not only has a wide range
of applicability but also has a large number of component topics
within it. To master the subject completely requires all the abilities
of a professional mathematician, something that is available to com-
paratively few people. However, to comprehend some of its main
ideas and what they mean is, with a little effort, within the capa-
bilities of many people. Here the aim is to explain how statistics
impinges on everyday life and to give enough understanding to at
least give the reader a fighting chance of detecting when organiza-
tions and individuals are trying to pull the wool over the public’s
eyes. In order to understand statistics one needs also to know some-
thing about probability theory and this too forms a component of
this book. In the 21st century a cultured man should understand
something about statistics otherwise he will be led by the nose by
those who know how to manipulate statistics for their own ends.

More mature readers who long ago lost contact with formal
mathematics, or younger ones who struggle somewhat with the sub-
ject, may find it helpful to test their new knowledge by tackling some
problems set at the end of each chapter. Worked out solutions are
given so that, even if the reader has not been successful in solving
a problem, reading the solution may help to strengthen his, or her,
understanding.
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Chapter 1

The Nature of Probability

Probable impossibilities are to be preferred to improbable possibilities.
(Aristotle, 384–322 BC)

1.1. Probability and Everyday Speech

The life experienced by any individual consists of a series of events
within which he or she plays a central role. Some of these events,
like the rising and setting of the sun, occur without fail each day.
Others occur often, sometimes on a regular, if not daily, basis and
might, or might not, be predictable. For example, going to work is
normally a predictable and frequent event but the mishaps, such as
illnesses, that occasionally prevent someone from going to work are
events that are to be expected from time to time but can be predicted
neither in frequency nor timing. To the extent that we can, we try
to compensate for the undesirable uncertainties of life — by making
sure that our homes are reasonably secure against burglary — a
comparatively rare event despite public perception — or by taking
out insurance against contingencies such as loss of income due to ill
health or car accidents.

To express the likelihoods of the various events that define and
govern our lives, we have available a battery of words with different
shades of meaning, some of which are virtually synonymous with
others. Most of these words are so basic that they can best be defined
in terms of each other. If we say that something is certain then we
mean that the event will happen without a shadow of doubt; on any
day, outside the polar regions, we are certain that the sun will set.

5
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We can qualify certain with an adverb by saying that something is
almost certain meaning that there is only a very small likelihood that
it would not happen. It is almost certain that rain will fall some-
time during next January because that month and February are the
wettest months of the year in the United Kingdom. There are rare
years when it does not rain in January but these represent freak con-
ditions. However, when we say that an event is likely, or probable,
we imply that the chance of it happening is greater than it not hap-
pening. August is usually sunny and warm and it is not unusual for
there to be no rain in that month. Nevertheless, it is probable that
there will be some rain inAugust because that happens in most years.

The word possible or feasible could just mean that an event is
capable of happening without any connotation of likelihood, but
in some contexts it could be taken to mean that the likelihood is
not very great — or that the event is unlikely. Finally, impossible is a
word without any ambiguity of meaning; the event is incapable of
happening under any circumstances. By attaching various qualifiers
to these words — almost impossible as an example — we can obtain
a panoply of overlapping meanings but at the end of the day, with
the exception of the extreme words, certain and impossible, there is
a subjective element in both their usage and interpretation.

While these fuzzy descriptions of the likelihood that events
might occur may serve in everyday life, they are clearly unsuitable
for scientific use. Something much more objective, and numerically
defined, is needed.

1.2. Spinning a Coin

We are all familiar with the action of spinning a coin — it happens
at cricket matches to decide which team chooses who will bat first
and at football matches to decide which team can choose the end of
the pitch to play the first half. There are three possible outcomes to
the event of spinning a coin, head, tail, or standing on an edge. That
comes from the shape of a coin, which is a thin disk (Fig. 1.1).
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Fig. 1.1. The three possible outcomes for spinning a coin.

However, the shape of the coin contains another element, that
of symmetry. Discounting the possibility that the coin will end up
standing on one edge (unlikely but feasible in the general language
of probabilities), we deduce from symmetry that the probability of
a head facing upward is the same as that for a tail facing up. If we
were to spin a coin 100 times and we obtained a head each time,
we would suspect that something was wrong — either that it was a
trick coin with a head on each side or one that was so heavily biased
it could only come down one way. From an instinctive feeling of the
symmetry of the event we would expect that the two outcomes had
equal probability so that the most likely result of spinning the coin
100 times would be 50 heads and 50 tails, or something fairly close
to that result. Since we expect a tail 50% of the times we spin the
coin, we say that the probability of getting a tail is 1/2, because that is
the fraction of the occasions that we expect that outcome. Similarly,
the probability of getting a head is 1/2. We have taken the first step in
assigning a numerical value to the likelihood, or probability, of the
occurrence of particular outcomes.

Supposing that we repeated the above experiment of spinning
a coin but this time it was with the trick coin, the one with a head
on both sides. Every time we spin the coin we get a head; it happens
100% of the time. We now say that the probability of getting a head is
1 because that is the fraction of the occasions we expect that outcome.
Getting a head is certain and that is what is meant by a probability
of 1. Conversely, we get a tail on 0% of the times we flip the coin;
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probability 0 1 0.5 

description impossible certainpossible probable 

Fig. 1.2. The numerical probability range with some notional verbal descriptions
of regions.

the probability of getting a tail is 0. Getting a tail is impossible and
that is what is meant by a probability of 0. Figure 1.2 shows this
assignment of probabilities in a graphical way.

The range shown for probability in Fig. 1.2 is complete. A prob-
ability cannot be greater than 1 because no event can be more certain
than certain. Similarly, no probability can be less that 0, i.e., negative,
since no event can be less possible than impossible.

We are now in a position to express the probabilities for spin-
ning an unbiased coin in a mathematical form. If the probabilities of
getting a head or a tail are ph and pt, respectively, then we can write

ph = pt = 1
2

. (1.1)

1.3. Throwing or Spinning Other Objects

Discounting the slight possibility of it standing on an edge there are
just two possible outcomes of spinning a coin, head or tail, something
that comes from the symmetry of a disk. However, if we throw a die,
then there are six possible outcomes — 1, 2, 3, 4, 5, or 6. A die is a
cubic object with six faces and, without numbers marked on them,
all the faces are similar and similarly disposed with respect to other
faces (Fig. 1.3).

From the symmetry of the die, it would be expected that the
fraction of throws yielding a particular number, say a 4, would be 1/6
so that the probability of getting a 4 is p4 = 1/6 and that would be the
same probability of getting any other specified number. Analogous
to the coin equation (1.1), we have for the probability of each of the
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Fig. 1.3. A die showing three of the six faces.

Fig. 1.4. A regular tetrahedron — a “die” with four equal-probability outcomes.

six possible outcomes

p1 = p2 = p3 = p4 = p5 = p6 = 1
6

. (1.2)

It is possible to produce other symmetrical objects that would give
other numbers of possible outcomes, each with the same probability.
In Fig. 1.4, we see a regular tetrahedron, a solid object with four faces,
each of which is an equilateral triangle. The two faces that we cannot
see have two and four spots on them, respectively. This object would
not tumble very well if thrown onto a flat surface unless thrown quite
violently but, in principle, it would give, with equal probability, the
numbers 1–4, so that

p1 = p2 = p3 = p4 = 1
4

. (1.3)

A better device in terms of its ease of use is a regular shaped
polygon mounted on a spindle about which it can be spun. This
is shown in Fig. 1.5 for a device giving numbers 1–5 with equal
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Fig. 1.5. A device for giving p1 = p2 = p3 = p4 = p5 = 1
5 .

probability. The spindle is through the center of the pentagon and
perpendicular to it. The pentagon is spun about the spindle axis like
a top and eventually comes to rest with one of the straight boundary
edges resting on the supporting surface, which indicates the number
for that spin.

We have now been introduced to the idea of probability
expressed as a fractional number between 0 and 1, the only useful
way for a scientist or mathematician. Next we will consider slightly
more complicated aspects of probability when combinations of dif-
ferent outcomes can occur.

Problems 1

1.1. Meteorology is not an exact science and hence weather forecasts
have to be couched in terms that express that lack of precision.
The following is a Meteorological Office forecast for the United
Kingdom covering the period 23 September to 2 October 2006.

Low pressure is expected to affect northern and western parts
of the UK throughout the period. There is a risk of some show-
ery rain over south-eastern parts over the first weekend but
otherwise much of eastern England and possibly eastern Scot-
land should be fine. More central and western parts of the UK
are likely to be rather unsettled with showers and some spells
of rain at times, along with some periods of strong winds too.
However, with a southerly airflow dominating, rather warm
conditions are expected, with warm weather in any sunshine
in the east.
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Identify all those parts of this report that indicate lack of
certainty.

1.2. The figure below is a dodecahedron. It has 12 faces, each a reg-
ular pentagon, and each face is similarly disposed with respect
to the other 11 faces. If the faces are marked with the numbers
1 to 12, then what is the probability of getting a 6 if the dodec-
ahedron is thrown?

1.3. The object shown below is a truncated cone, i.e. a cone with the
top sliced off with a cut parallel to the base.

Make drawings showing the possible ways that the object can
come to rest if it is thrown onto the floor. Based on your intuition,
which will be the most and least probable ways for the object
to come to rest?

1.4. A certain disease can be fatal, and it is known that 123 out of
4205 patients in a recent epidemic died. As deduced from this
information, what is the probability, expressed to three decimal
places, that a given patient contracting the disease will die?
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Chapter 2

Combining Probabilities

But to us probability is the very guide of life. (Bishop Butler, 1692–1752)

2.1. Either–or Probability

Let us consider the situation where a die is thrown, and we wish
to know the probability that the outcome will be either a 1 or a 6.
How do we find this? First, we consider the six possible outcomes,
all of equal probability. Two of these, a 1 and a 6 — one-third of the
possible outcomes — satisfy our requirement so the probability of
obtaining a 1 or a 6 is

p1 or 6 = 2
6

= 1
3

(2.1)

Another way of expressing this result is to say that

p1 or 6 = p1 + p6 = 1
6

+ 1
6

= 1
3

. (2.2)

In words, Eq. (2.2) says that “the probability of getting either a 1 or
a 6 is the sum of the probabilities of getting a 1 and getting a 6”.

This idea can be extended so that the probability of getting one
of 1, 2, or 3 when throwing the die is

p1 or 2 or 3 = p1 + p2 + p3 = 1
6

+ 1
6

+ 1
6

= 1
2

. (2.3)

13
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Similarly, the probability of getting either a head or a tail when flip-
ping a coin is

ph or t = ph + pt = 1
2

+ 1
2

= 1, (2.4)

which corresponds to certainty since the only possible outcomes are
either a head or a tail.

In considering these combinations of probability we are taking
alternative outcomes of a single event — e.g., throwing a die. If we
are interested in the outcome being a 1, 2, or 3 then, if we obtain
a 1, we exclude the possibility of having obtained either of the other
outcomes of interest, a 2 or a 3 (Fig. 2.1). Similarly, if we obtained a 2
the outcomes 1 and 3 would have been excluded. The outcomes for
which the probabilities are being combined are mutually exclusive.
It is a general rule that the probability of having an outcome which is one
or other of a set of mutually exclusive outcomes is the sum of the probabilities
for each of them taken separately.

To explore this idea further consider a standard pack of 52 cards.
The probability of choosing a particular card by a random selection
is 1/52. Four of the cards are jacks so the probability of picking a
jack is

pJ = 1
52

+ 1
52

+ 1
52

+ 1
52

= 4
52

= 1
13

. (2.5)

Now, we want to know the probability of picking a court card (i.e.
jack, queen or king) from the pack. The separate probabilities of
outcomes for jacks, queens, and kings are all 1/13 but the outcomes

If then 

Fig. 2.1. In either–or probability if a 1 is obtained then a 2 or a 3 is excluded.
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of obtaining a jack, a queen, or a king are mutually exclusive. Hence
the probability of picking a court card is

pJ or Q or K = pJ + pQ + pK = 1
13

+ 1
13

+ 1
13

= 3
13

. (2.6)

Of course one could have lumped court cards together as a single
category and since there are 12 of them in a pack of 52 the probability
of selecting one of them could have been found directly as 12

52 = 3
13

but having a mathematically formal way of considering problems is
sometimes helpful in less obvious cases.

This kind of combination of probabilities has been called either–
or and a pedantic interpretation of the English language would give
the inference that only two possible outcomes could be involved.
However, that is not a mathematical restriction and this type of
probability combination can be applied to any number of mutually-
exclusive outcomes.

2.2. Both–and Probability

Now, we imagine that two events occur — a coin is spun and a die
is thrown. We now ask the question “What is the probability that
we get both a head and a 6?”. The two outcomes are certainly not
mutually exclusive — indeed they are independent outcomes. The
result of spinning the coin can have no conceivable influence on the
result of throwing the die. First, we list all the outcomes that are
possible:

h + 1

t + 1

h + 2

t + 2

h + 3

t + 3

h + 4

t + 4

h + 5

t + 5

h + 6

t + 6

There are 12 possible outcomes, each of equal probability, and we
are concerned with the one marked with an arrow. Clearly the prob-
ability of having both a head and a 6 is 1/12. This probability can
be considered in two stages. First, we consider the probability of
obtaining a head — which is 1/2. This corresponds to the outcomes
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on the top row of our list. Now, we consider the probability that we
also have a 6 that restricts us to one in six of the combinations in the
top row since the probability of getting a 6 is 1/6. Looked at in two
stages, we see that

pboth h and 6 = ph × p6 = 1
2

× 1
6

= 1
12

. (2.7)

This rule can be extended to find the combined probability of any
number of independent events. Thus, the combined probability that
spinning a coin gives a head, throwing a die gives a 6, and picking
a card from a pack gives a jack is

ph and 6 and J = ph × p6 × pJ = 1
2

× 1
6

× 1
13

= 1
156

. (2.8)

Once again, our description of this probability combination has
done violence to the English language. The combination both–and
should formally be applied only to two outcomes but we stretch it to
describe the combination of any number of independent outcomes.

These rules of “either–or” and “both–and” combinations of
probability can themselves be combined together to solve quite com-
plicated probability problems.

2.3. Genetically Inherited Disease — Just Gene
Dependent

Within any population there will exist a number of genetically inher-
ited diseases. There are about 4,000 such diseases known and par-
ticular diseases tend to be prevalent in particular ethnic groups.
For example, sickle-cell anemia is mainly present in people of West
African origin, which will include many of the black populations of
the Caribbean and North America and also of the United Kingdom.
This disease affects the hemoglobin molecules contained within red
blood cells, which are responsible for carrying oxygen from the lungs
to muscles in the body and carbon dioxide back from the mus-
cles to the lungs. The hemoglobin forms long rods within the cells,
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distorting them into a sickle shape and making them less flexible
so they flow less easily. In addition, the cells live less time than the
normal 120 days for a healthy red cell and so the patient suffers from
a constant state of anemia. Another genetic disease is Tay–Sachs dis-
ease which affects people of Jewish origin. This attacks the nervous
system, destroying brain and nerve cells, and is always fatal, usually
at the infant stage.

To understand how genetically transmitted diseases are trans-
mitted, we need to know something about the gene structure of liv-
ingmatter, includinghumans. Containedwithineachcell of ahuman
being there are a large number of chromosomes, thread like bodies
which contain, strung out along them, large numbers of genes. The
number of genes controlling human characteristics is somewhere
in the range 30,000–40,000. Each gene is a chain of DNA of length
anything from 1,000 to hundreds of thousands of the base units that
make up DNA. Genes occur in pairs which usually correspond to
contrasting hereditary characteristics. For example, one gene pair
might control stature so that gene A predisposes toward height while
the other member of the pair, gene a, gives a tendency to produce
shorter individuals. Each person has two of these stature genes in
his cells. If they are both A then the person will have a tendency to
be tall and if they are both a then there will be a tendency to be short.
One can only talk about tendency in this instance since other factors
influence stature, in particular diet. A child inherits one “stature”
gene from each parent and which of the two genes he gets from each
parent is purely random. Here, we show some of the possibilities for
various parental contributions:

Father Mother Child (all pairs of equal probability)
Aa Aa AA Aa aA aa
AA aa Aa Aa Aa Aa
AA AA AA AA AA AA

where an individual has a contrasting gene pair then sometimes
the characteristics will combine, so that, for example, Aa will tend
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to give a medium-height individual, but in other cases one of the
genes may be dominant. Thus, if B is a “brown-eye” gene and b is
a “blue-eye” gene then BB gives an individual with brown eyes, bb
gives an individual with blue eyes, and Bb (equivalent to bB) will
give brown eyes because B is the dominant gene. Sometimes genes
become“fixed” inapopulation.AllChineseareBB so that allChinese
children must inherit the gene pair BB from their parents. Thus, all
Chinese have brown eyes.

Now, we consider a genetically related disease linked to the
gene pair D, d. The gene d predisposes toward the disease and some-
one who inherits a pair dd will certainly get the disease and die before
maturity. However, we take it that d is a very rare gene in the com-
munity and D is dominant. Anyone who happens to be Dd will be
free of the disease but may pass on the harmful gene d to his, or her,
children; such a person is known as a carrier. Let us suppose that in
this particular population the ratio of d:D is 1:100. What is the prob-
ability that, with random mating, i.e., no monitoring of parents, a
baby born in that population will have the disease?

We can consider this problem by considering the allocation of
the gene pair to the baby one at a time. The probability that the first
gene will be d is 0.01 because that is the proportion of the d gene. The
allocation of the second gene of the pair is independent of what the
first one happens to be so, again, the probability that this one is d is
0.01. Hence the probability that both the first gene is d and the second
gene is d is 0.01 × 0.01 = 0.0001, or one chance in 10,000. If we were
interested in how many babies would be carriers of the faulty gene,
i.e., possessing the gene pair Dd, then, using both–and probability,
we note that:

the probability that both gene 1 is D and gene 2 is d is 0.99 × 0.01 =
0.0099

the probability that both gene 1 is d and gene 2 is D is 0.01 × 0.99 =
0.0099.
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Since Dd and dD are mutually exclusive the probability of the baby
carrying the gene pairs either Dd or dD is

0.0099 + 0.0099 = 0.0198

so that about one in 50 babies born is a carrier.
Some genetically related diseases are very rare indeed because

the incidence of the flawed gene is low; for d:D = 1:1,000 only one
child in a million would contract the disease although about one
in 500 of them would be carriers of the disease. On the other hand
diabetes, which is thought to have a genetically transmitted ele-
ment, is much more common and the number of carriers is probably
quite high.

2.4. Genetically Dependent Disease — Gender Dependent

There are genetically transmitted diseases where the gender of the
individual is an important factor. The sex of an individual is deter-
mined by two chromosomes, X and Y, a female having the chromo-
some pair XX and a male XY. The female always contributes the
same chromosome to her offspring, X, but the man contributes X
or Y with equal probability thus giving a balance between the num-
bers of males and females in the population. Henry VIII divorced
two wives because they did not give him a son but now we know
that he was to blame for this! There are some defective genes, for
example which leads to hemophilia, which only occurs in the X
chromosome. If we call a chromosome with the defective X gene X′
then the following situations can occur:

Daughter with chromosome combination XX’ will be a carrier
of hemophilia but will not have the disease because the presence
of X compensates for the X′.
Son with X′Y will have the disease because there is no accom-
panying X to compensate for the X′.
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Now, we can see various outcomes from different parental chro-
mosome compositions

(i)

All children are free of hemophilia and none are carriers
(ii)

The father suffers from the disease but all children are free of
hemophilia. Sons are completely unaffected because they just
receive a Y chromosome from their fathers. However, all daugh-
ters are XX’ and so all are carriers.

(iii)

Here, the father is free of the disease but we have a carrier
mother. Half the sons are X′Y and so are hemophiliacs. The
other half of the sons are XY and so are free of the disease. Half
of the daughters are XX’ and so are carriers but the other half
are XX and are not carriers.

(iv)

Here, we have a hemophiliac father with a carrier mother. Half
the sons are X′Yand so are hemophiliacs. The other half of the
sons are XY and so are free of the disease. Half the daughters
are X′X′ and so will have the disease while the other half are
X′X and so are carriers.

The incidence of hemophilia does not seem to have any strong
correlation with ethnicity and about 1 in 5,000 males are born with
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the disease. The most famous case of a family history of hemophilia
is concerned with Queen Victoria who is believed to have been a car-
rier. She had nine children and 40 grandchildren and several male
descendants in Royal houses throughout Europe suffered from the
disease. The most notable example was that of Tsarevitch Alexis,
the long-awaited male heir to the throne of Russia, born in 1904.
A coarse, and rather dissolute, priest, Rasputin, became influen-
tial in the Russian court because of his apparent ability to amelio-
rate the symptoms of the disease in the young Alexis. There are
many who believe that his malign influence on the court was an
important contributory factor that led to the Russian revolution
of 1917.

2.5. A Dice Game — American Craps

American craps is a dice game that is said to originate from Roman
times and was probably introduced to America by French colonists.
It involves throwing two dice and the progress of the game depends
on the sum of the numbers on the two faces. If the thrower gets a
sum of either 7 or 11 in his first throw that is called “a natural” and he
immediately wins the game. However, if he gets 2 (known as “snake-
eyes”), 3, or 12 he immediately loses (Fig. 2.2). Any other sum is the
players “point.” The player then continues throwing until either he
gets his “point” again, in which case he wins, or until he gets a 7, in
which case he loses. The probabilities of obtaining various sums are
clearly the essence of this game.

(a) (b)

Fig. 2.2. (a) Snake-eyes (b) A natural (first throw) but losing throw later.



March 24, 2008 17:9 B-595 ch02

22 Everyday Probability and Statistics

First, we consider the probability of obtaining 2, 3, or 12. The
two dice must show one of

1 + 1 1 + 2 2 + 1 6 + 6

and these are mutually exclusive combinations. Since the numbers
on each of the dice are independent of each other, each combination
has a probability of 1/36, e.g.

psnake-eyes = p1 × p1 = 1
6

× 1
6

= 1
36

. (2.9)

Hence the probability of getting 2, 3, or 12 is

p2, 3 or 12 = p1+1 + p1+2 + p2+1 + p6+6 = 4
36

= 1
9

. (2.10)

Getting 7 or 11, as a sum requires one or other of the
combinations

6 + 1 5 + 2 4 + 3 3 + 4 2 + 5 1 + 6 6 + 5 5 + 6.

These combinations are mutually exclusive, each with a probability
of 1/36 so that the probability of a “natural” is 8/36 = 2/9.

If the player has to play to his “point” then his chances of win-
ning depends on the value of that “point” and how the probability
of obtaining it compares with the probability of obtaining 7. Below,
we show for each possible “point,” the combinations that can give
it and the probability of achieving it per throw.

Point Combinations Probability

4 3 + 1 2 + 2 1 + 3 3
36 = 1

12

5 4 + 1 3 + 2 2 + 3 1 + 4 4
36 = 1

9

6 5 + 1 4 + 2 3 + 3 2 + 4 1 + 5 5
36

8 6 + 2 5 + 3 4 + 4 3 + 5 2 + 6 5
36

9 6 + 3 5 + 4 4 + 5 3 + 6 4
36 = 1

9

10 6 + 4 5 + 5 4 + 6 3
36 = 1

12
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The total of 7 can be achieved in six possible ways (see above
ways of obtaining a “natural”) and its probability of attainment, 1/6,
is higher than that of any of the points.

This is an extremely popular gambling game in the United
States and those that play it almost certainly acquire a good instinc-
tive feel for probability theory as it affects this game, although few
would be able to express their instinctive knowledge in a formal
mathematical way. Later, when we know a little more about prob-
abilities, we shall calculate the overall chance of the thrower win-
ning — it turns out that the odds are very slightly against him.

Problems 2

2.1. For the dodecahedron described in problem 1.2 what is the
probability that a throw will give a number less than 6?

2.2. If a card is drawn from a pack of cards then what is the proba-
bility that it is an ace?

2.3. The dodecahedron from problem 1.2 and a normal six-sided
die are thrown together. What is the probability that both the
dodecahedron and the die will give a 5?

2.4. Find the combined probability of getting a jack from a pack of
cards and getting four heads from spinning four coins. Is this
probability greater than or less than that found in problem 2.3?

2.5. The dodecahedron from problem 1.2 and a normal six-sided die
are thrown together. What is the probability that the sum of the
numbers on the sides is 6?
(Hint: Consider the number of ways that a total of six can be
obtained and the probability of each of those ways.)

2.6. For a particular gene pair F and f , the latter gene leads to a
particular disease although F is the dominant gene. If the ratio
of the incidence of the genes is f :F = 1:40 then what proportion
of the population is expected to be

(i) affected by the disease, and
(ii) carriers of the disease?
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Chapter 3

A Day at the Races

Do not trust the horse. (Virgil, 70–19 BC)

3.1. Kinds of Probability

The kind of probability we have considered numerically thus far can
be regarded as logical probability, which is to say that we can estimate
probability by an exercise of logic, or reason. Usually this is based
on the concept of symmetry; a coin has two sides neither of which is
special in a probabilistic sense so each has an associated probability
of 1/2. A die is a symmetrical object, each face of which is related
geometrically in the same way to the other five faces so again we
divide the probability 1, corresponding to certainty, into six equal
parts and associate a probability of 1/6 with each of the faces. Such
assessments of probability are both logical and intuitive.

If we wish to know the likelihood that an infected person will
die from a potentially fatal disease we cannot use logical probability.
Here, the only guide is previous experience — knowledge of the
death-rate from the disease, assessed from those that have contracted
it previously in similar circumstances. That was the basis of prob-
lem 1.4. This kind of probability, gained from observation or, where
appropriate, from experiment, is known as empirical probability and
it is the more important kind of probability from the point of view of
everyday life — unless one is an inveterate gambler in casinos where
many games are based on logical probabilities. Thus, if one is plan-
ning a 2-week holiday in Florida one could predict the probability of

25
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being within 10 miles of a tornado during the holiday by consulting
the weather statistics for that state. The total area within 10 miles of
any spot is the area of a circle of that radius and is

A = π × (10)2 square miles = 314 square miles.

The average frequency of tornadoes in Florida is 9.09 per year per
10,000 square miles so, assuming that all times of the year have the
same probability, the number expected within an area of 314 square
miles in a particular 2-week period is

N = 9.09 × 314
10,000

× 2
52

= 0.011.

Of course, fractions of a tornado do not exist but what the answer
means is that the probability of having a tornado within a distance
of 10 miles is 0.011 or about 1 in 90. For a tornado to be a risk to an
individual he would have to be in its direct path and the risk of that
is much smaller than 1 in 90, probably more like 1 in 30,000—so very
small.

A kind of probability, which is empirical in essence but has an
extra dimension, is in assessing the likelihood that a horse, or per-
haps a greyhound, will win a particular race. There is, of course, the
previous record of the contesting animals but there are many other
factors to take into account. Each of the previous races, on which
the form would be assessed, would have taken place under differ-
ent conditions both in the state of the track and the characteristics
of the opposition. In races like the Grand National, which involves
jumping over high fences, the unpredictable interaction of horses as
they jump together over a fence can cause upsets in the race result.
Again, like humans, horses have their good days and bad days and
these cannot be predicted. The kind of probability involved here is
certainly neither logical nor even empirical since each case being
considered has its own individual features and cannot be accurately
assessed from past performance. The extra dimension that must be
involved here in assessing probabilities is judgment and we can
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define this kind of probability assessment as “judgmental probabil-
ity”. Getting this right is of critical importance to bookmakers who
take bets on the outcome of races and who could be ruined by con-
sistently making faulty judgements.

3.2. Betting on a Horse

There are three main ways that a punter can bet on the results of
a race — in a betting shop either locally or at the track, through a
bookmaker at the track, or by the Tote. The Tote is a system which,
by its very nature, cannot lose money. At the time a punter places a
£10 bet on “My Fair Lady” with the Tote he has only a rough idea of
what he would win if that horse won. The Tote organizers will take
the total money staked on the race, say £500,000, take a proportion
of this, say £25,000, to cover expenses and to create a profit and will
divide the remaining money, £475,000, between those that backed
‘My Fair Lady’ to win in proportion to how much they staked. Thus,
if the people backing “My Fair Lady” staked a total of £20,000 on
the horse then our punter would receive a fraction 10/20,000 of the
returned stake money. Thus his return will be

£475, 000 × 10
20, 000

= £237.50.

The Tote is actually a little more complicated than we have
described because “place bets” can be made where the punter will
get a reduced return, a fraction of the odds for winning, if the horse
finishes in one of the first two, three, or four places, depending on
the number of horses in the race. However, the essentials of the Tote
system are described by just considering bets to win.

A betting shop or a bookmaker, by contrast, enters into a con-
tract with the punter to pay particular odds at the time the bet
is placed. If the horse backed has odds 3/1 (three-to-one) then a
successful £10 bet will bring a return of the original £10 plus 3
times £10, i.e., £40 in all. A bookmaker can lose, and lose heavily,
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on a particular race but if he knows his craft and assesses odds skill-
fully he will make a profit over the long term.

Let us take an example of odds set by a bookmaker that would
obviously be foolish. Consider a two-horse race where the book-
maker sets odds of 2/1 on each horse. A punter would not take long
to work out that if he staked £1,000 on each horse his total stake on
the race would be £2,000 but, whichever horse won, his return from
the race would be £3,000. This case is easy to see without analyzing
it in detail but more subtle examples of bad odds-setting can occur.
Let us take a hypothetical race with 10 runners and the bookmaker,
assessing the relative merits of the various runners, offers the fol-
lowing odds on a race for fillies:

Diana 3/1
Dawn Lady 6/1
Fairy Princess 6/1
Olive Green 10/1
Mayfly 10/1
Dawn Chorus 15/1
Missy 15/1
Lovelorn 20/1
Helen of Troy 25/1
Piece of Cake 30/1

Although it is not obvious from a casual inspection of the list of odds
this bookmaker is heading for certain ruin and any punter worth his
salt could make a profit on this race. Let us see how he does this. He
bets on every horse and places bets as follows:

Diana £250 (£1,000)
Dawn Lady £143 (£1,001)
Fairy Princess £143 (£1,001)
Olive Green £91 (£1,001)
Mayfly £91 (£1,001)
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Dawn Chorus £63 (£1,008)
Missy £63 (£1,008)
Lovelorn £48 (£1,008)
Helen of Troy £39 (£1,014)
Piece of Cake £33 (£1,023)

In parentheses, after the bets, are shown what the punter will receive
if that particular horse wins — anything between £1,000 and £1,023.
However, if the bets are added they come to £964; the punter is
a certain winner and he will win between £36 and £59 depending
on which horse wins the race. Clearly no bookmaker would offer
such odds on a race and we shall now see what the principles are
for setting the odds that ensure a high probability of profit for the
bookmaker in the longer run.

We notice that what the punter has done is to set his stake on
each horse at a whole number of pounds that will give a return (stake
money plus winnings) of £1,000 or a small amount more. For simplic-
ity in analyzing the situation, in what follows we shall assume that
he adjusts his stake to receive exactly £1,000 — although bookmak-
ers do not accept stakes involving pennies and fractions of pennies.
If the horse has odds of n/1 then the punter will receive n + 1 times
his stake money so to get a return of £1,000 the amount staked is
£1,000/(n + 1). To check this, we see that for Diana, with n = 3, the
stake is £1,000/(3 + 1) = £250. Now let us take a general case where
the odds for a ten-horse race are indicated as n1/1, n2/1· · ·n10/1.
If the punter backs every horse in the race, planning to get £1,000
returned no matter which horse wins, then his total stake, in
pounds, is

S = 1000
n1 + 1

+ 1000
n2 + 1

+ · · · + 1000
n10 + 1

. (3.1)

If S is less than £1,000 then the punter is bound to win. Thus for
the bookmaker not to be certain to lose money to the knowledge-
able punter, S must be greater than 1,000. This condition gives the
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bookmaker’s golden rule which we will now express in a mathe-
matical form.

If we take Eq. (3.1) and divide both sides by 1,000 then we have

S
1000

= 1
n1 + 1

+ 1
n2 + 1

+ · · · + 1
n10 + 1

, (3.2)

and for the bookmaker not to lose to the clever punter the left-hand
side must be greater than 1. Put into a mathematical notation, which
we first give and then explain, the golden-rule condition is

m∑

i=1

1
ni + 1

> 1. (3.3)

The symbol>means “greater than” and Eq. (3.3) is the condition that
a punter cannot guarantee to win — although of course he may win
just by putting a single bet on the winning horse. The summation
symbol

∑m
i=1 means that you are going to add together m quantities

with the value of i going from 1 to m. In our specific case m = 10, the
number of horses, and i runs from 1 to 10 so that

10∑

i=1

1
ni + 1

= 1
n1 + 1

+ 1
n2 + 1

+ 1
n3 + 1

+ 1
n4 + 1

+ 1
n5 + 1

+ 1
n6 + 1

+ 1
n7 + 1

+ 1
n8 + 1

+ 1
n9 + 1

+ 1
n10 + 1

.

If relationship (3.3) were not true and the summation was less than 1,
as in the hypothetical case we first considered, then the punter could
guarantee to win. The skill of a bookmaker is not just in fixing his
odds to satisfy the golden rule — anyone with modest mathematical
skills could do that. He must also properly assess the likelihood
of each horse winning the race. If he fixed the odds on a horse at
10/1 when the horse actually has a one-in-five chance of winning
then astute professional gamblers would soon pick this up and take
advantage of it.
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3.3. The Best Conditions for a Punter

We have seen that the bookmaker’s golden rule, Eq. (3.3), will ensure
that no punter can place bets so as to guarantee to win on a particular
race. If the quantity on the left-hand side was less than 1 then the
punter could guarantee to win and if it is equal to 1 then the punter
could so place bets as to guarantee to get exactly his stake money
returned — but, of course, that would be a pointless exercise. Given
that the left-hand side is greater than 1, then the larger its value the
larger is the likely profit that the bookmaker will make on the race.
Logically, what is good for the bookmaker is bad for the punter so we
may make the proposition that, assuming that the relative chances of
the horses winning is properly reflected in the odds offered, which
is usually the case, then the smaller is the summation the less are
the odds stacked against the punter. Conversely, the higher is the
summation the better it is for the bookmaker. Let us consider the
following two races with horses and odds as shown. In brackets is
shown the value of 1/(n + 1)

Race 1 Diana 2/1 (0.333)
Dawn Lady 4/1 (0.200)
Fairy Princess 6/1 (0.143)
Olive Green 10/1 (0.091)
Mayfly 10/1 (0.091)
Dawn Chorus 15/1 (0.062)
Missy 15/1 (0.062)
Lovelorn 20/1 (0.048)
Helen of Troy 25/1 (0.038)
Piece of Cake 30/1 (0.032)

Race 2 Pompeii 3/2 (=11
2/1) (0.400)

Noble Lad 2/1 (0.333)
Gorky Park 5/1 (0.167)
Comet King 8/1 (0.111)
Valliant 12/1 (0.077)
Park Lane 16/1 (0.059)
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The value of the summation for race 1 is 1.100 and for the second
race it is 1.147. Other things being equal, and assuming that the
relative chances of the horses winning are accurately reflected in the
odds, the punter would have a better chance of winning by betting
on his fancied horse in the first race.

One factor that works to the advantage of bookmakers is that
much betting is done on an illogical basis, by whims or hunches.
There are a number of classic races during the year, for example,
the Derby, the St Leger, and the Grand National, that attract large
numbers of people, who normally never gamble on horses, to place
bets either individually or through a sweepstake organized by a
social club or at work. Most people placing bets on such occasions
know nothing of the horses but may be attracted by the fact that
they are trained locally or that their names are the same or similar to
that of a friend or family member. In 1948, Sheila’s Cottage won the
Grand National at odds of 50/1 and was backed by large numbers of
punters lucky enough to have a wife, daughter, or girlfriend called
Sheila.

By contrast to the occasional or recreational punter there are
some professional gamblers who, by carefully assessing the odds,
studying form, and betting only when conditions are most favorable,
manage to make a living. For them the big classic races have no
particular attraction. One hundred pounds won on a minor race at
a minor racetrack is the same to them as one hundred pounds won
on a classic race — and if the classic race does not offer them a good
opportunity then they will simply ignore it.

It must always be remembered that bookmakers also make a
living, and usually a good one so, for the average punter, gambling
is best regarded as a source of entertainment and betting limited to
what can be afforded.
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Problem 3

3.1. The runners and odds offered by a bookmaker for three races
at a particular track are as follows:

2:30 pm Bungle 1/1 (Evens)
Crazy Horse 4/1
Memphis Lad 6/1
Eagle 8/1
Galileo 12/1
Mountain Air 18/1

3:15 pm Diablo 2/1
Copper Boy 3/1
Dangerous 3/1
Boxer 4/1
Kicker 6/1
Zenith 8/1

3:45 pm Turbocharge 2/1
Tantrum 3/1
Argonaut 4/1
Firedance 8/1
Dural 12/1

Do the odds for all these races conform to the bookmakers
golden rule? Which is the race that best favors the bookmaker’s
chance of winning?
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Chapter 4

Making Choices and Selections

Refuse the evil, and choose the good (Isaiah 7:14)

4.1. Children Leaving a Room

We imagine that there are three children, Amelia, Barbara, and
Christine, playing in a room. The time comes for them to leave
and they emerge from the room, one-by-one. In how many different
orders can they leave the room? Using just their initial letters, we
show the possible orders in Fig. 4.1.

You can easily check that there are no more than these six possi-
bilities. If there had been another child in the room, Daniella, then the
number of different orders of leaving would have been considerably
greater — viz.

ABCD ABDC ACBD ACDB ADBC ADCB
BACD BADC BCAD BCDA BDAC BDCA
CABD CADB CBAD CBDA CDAB CDBA
DABC DACB DBAC DBCA DCAB DCBA

While it is possible to generate these 24 orders of leaving in a sys-
tematic way it gets more and more complicated as the number of
children increases. Again, there is not much point in generating the
detailed orders of leaving if all that is required is to know how many
different orders there are.

For three children there were six orders of leaving and for four
children there were 24. Let us see how this could be derived without

35
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Fig. 4.1. The six orders in which three girls can leave a room.

writing down each of the orders as has been done above. For three
children there are three different possibilities for the first child to
leave — A, B, or C — corresponding to the different rows of Fig. 4.1.
Once the first child has left then there are two children remaining
in the room and hence two possibilities for the exit of the second
child — corresponding to the second letter for each of the orders.
This leaves one child in the room, who finally leaves. Seen in this
way the number of possible patterns of departure is given by

N3 = 3 × 2 × 1 = 6. (4.1)

If we repeat this pattern for four children — there are four possi-
bilities for the first to leave, three for the second, two for the third,
and then the last one leaves — the number of possible patterns of
departure for four children is given by

N4 = 4 × 3 × 2 × 1 = 24. (4.2)
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This kind of approach gives the results that we found by listing the
orders in detail and extending it to, say, seven children the number
of different orders of leaving is

N7 = 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5, 040. (4.3)

It would be possible, but very complicated to write down each indi-
vidual order as was done for three children and four children.

Fully writing out these products of numbers for larger numbers
of children is tedious and takes up a great deal of space, so as a
shorthand we write

7 × 6 × 5 × 4 × 3 × 2 × 1 = 7! (4.4)

where 7! is called “factorial 7”. For factorials of large numbers, say 50!,
the conciseness of the notation is of great benefit.

Notice that, we can find the number of orders even when deter-
mining and listing the individual orders would not be practicable.
For example, the number of orders in which a class of 30 pupils
could leave a classroom is 30!, which is a number with 33 digits.
A computer generating one billion (one thousand million) of these
orders per second would take more than eight million billion years
to complete the job!

4.2. Picking a Team

We consider a bridge club, consisting of 12 members, that has entered
a national bridge tournament in which they will be represented by a
team of four players. The members of the club are all of equal merit
so it is decided to pick the team by drawing lots — which means
that all possible selections of four players have the same probability
of occurring. The question we ask is “How many different composi-
tions of team is it possible to select from the members of the club?”

This problem can be considered in stages by picking members
of the team one-by-one, much as we considered children leaving
the room. The first member of the team can be picked in 12 ways.
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For each of those 12 ways there are 11 ways of picking the next team
member — so there are 12 × 11 = 132 ways of picking the first two
members of the team. The next member can be picked in 10 ways
and the final member in 9 ways giving a total number of different
ordered selections:

S = 12 × 11 × 10 × 9 = 11,880. (4.5)

This will be the answer if the players have to be designated in some
order because the tournament requires that players of a team must
be labeled 1, 2, 3, and 4 to decide on how they play in pairs against
opponents. However, if the team is just a group of four individuals,
without regard to the order of their selection, then the value of S
given by (4.5) is too great. Representing individuals by letters the
value of S comes about if selection ABCD is regarded as different
from ACBD and all the other different ways of ordering the four
letters. Within the 11,880 ordered selections there are groups of the
same four individuals and to find the number of teams, without
regard to order, one must divide S by the number of different ways
of ordering four letters. This is precisely the problem of the number
of different orders in which four girls can leave a room; the first letter
can be chosen in four ways, then the second in three ways, then the
third in two ways, and finally the fourth in one way so the number
of ways of ordering four letters is

4 × 3 × 2 × 1 = 4!.
From this, we find the number of teams, without regard to order of
selection, as

T = S
4! = 12 × 11 × 10 × 9

4! = 495. (4.6)

It is possible to express this in a more succinct way. We note that

12 × 11 × 10 × 9

= 12 × 11 × 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1
8 × 7 × 6 × 5 × 4 × 3 × 2 × 1

= 12!
8! ,
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giving

S = 12!
8! , (4.7)

and then

T = S
4! = 12!

8!4! .

We can generalize from this example. Let us suppose that there are
n objects, distinguishable from each other — say, numbered balls
contained in a bag. If we take r of them out of the bag, one-at-a-
time, and take the order of selection into account then the number
of different selections is

S = n!
(n − r)! . (4.8)

By making n = 12 and r = 4, we get (4.7), the number of ways
of selecting an ordered team of four people from 12. However, if
the order is not taken into account, corresponding to putting your
hand in the bag and taking a handful of r balls, then the number of
different selections is

T = n!
(n − r)!r! , (4.9)

which, with n = 12 and r = 4 is the number of different teams of four
people one can select from 12 without order being taken into account.
The expression on the right-hand side of (4.9) is important enough
to have its own symbol so we can write the number of combinations of
r objects taken from n as

nCr = n!
(n − r)!r! . (4.10)

It is obvious that the number of combinations of n objects that
can be taken from n is 1 — you take all the objects and that is the
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only combination. Inserting r = n in (4.10) gives

nCn = n!
0!n! = 1,

from which we conclude the interesting result that

0! = 1, (4.11)

which is not at all obvious.

4.3. Choosing an Email Username

The most common number of initials designating an individual in
western societies is three, corresponding to a family name plus two
given names. Thus Gareth Llewelyn Jones would be recognized by
his initials GLJ, with which he would sanction alterations on his
checks or which he would put at the bottom of notes to colleagues at
work. However, when Gareth signs up to an internet provider and
asks for the username GJL he is told that it is already in use. So he
adds the digit 1 to his username and finds that it is still unavailable.
He then tries the digit 2 with the same result — as happens for 3, 4,
and 5. Why is this?

Let us assume that the internet provider has one million cus-
tomers wishing to use a set of three initials as a username. First,
we ask ourselves how many different sets of three initials we could
have on the assumption that all letters of the alphabet are equally
likely — which is not actually true since letters such as Q, X, and Z
rarely occur. Each initial has 26 possibilities so the number of possi-
ble combinations is

26 × 26 × 26 = 17,576.

Hence the expected number of times the combination GLJ would
appear in one million customers is

N = 1,000,000
17,576

= 57, (4.12)
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to the nearest whole number. Actually, given the fact that G, L, and J
are fairly common initials the number of people in the provider’s
customer list sharing Gareth’s combination may well be closer to 100.
If Gareth were to try something like GLJ123 then he would be likely
to find a unique username.

Even if four-letter usernames were normal, an appended digit
might still be needed since 264(= 456,976) is less than one million.

4.4. The UK National Lottery

A single entry in the UK national lottery consists of picking six dif-
ferent numbers in the range 1–49. If these match the numbers on the
balls picked at random out of a drum then the first prize is won.
A seventh ball is also selected from the drum, the bonus ball; if you
have the bonus-ball number plus any five of the six main winning
numbers then you win the second prize. There are also smaller prizes
for getting five correct without the bonus-ball number, and also for
four or three correct numbers. Figure 4.2 shows some examples for
winning each kind of prize.

What are the chances of winning a first prize with a single entry?
All combinations of six different numbers are equally likely and

2 8 15 23 33 41
2 15 18 23 33 41
8 15 23 33 35 41
2 6 8 29 33 41
5 8 14 15 33 48

23 15 8 33 2 41 18

6 winning numbers Bonus  
ball

(a) 
(b) 
(c) 
(d) 
(e) 

Fig. 4.2. The selected numbered balls and some winning lines. (a) First prize —
six correct. (b) Second prize — five correct plus bonus ball. (c) Third prize — five
correct. (d) Fourth prize — four correct. (e) Fifth prize — three correct.
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the number of combinations of six that can be selected from 49 is
obtained from (4.10) with n = 49 and r = 6, giving

49C6 = 49!
43!6! = 49 × 48 × 47 × 46 × 45 × 44

6 × 5 × 4 × 3 × 2 × 1
= 13,983,816. (4.13)

Since there is only one correct combination the probability of win-
ning the first prize is

Pfirst = 1
13,983,816

. (4.14)

It is probably sensible to await the draw before ordering the Rolls
Royce!

To win a second prize you must have five of the six winning
numbers plus the bonus-ball number. The number of different ways
of having five of the six winning numbers is six. For the example of
the six winning numbers given in Fig. 4.2 these are

2 8 15 23 33
2 8 15 23 41
2 8 15 33 41
2 8 23 33 41
2 15 23 33 41
8 15 23 33 41

Since there are six different ways of having five of the six winning
numbers so there are six different combinations — five winning
numbers + bonus-ball number — that can win the second prize.
Thus the probability of winning this way is the ratio of the number
of ways of having a winning combination, 6, divided by the total
number of different combinations, that is,

Psecond = 6
13,983,816

= 1
2,330,636

. (4.15)

We have seen that there are six different ways of having five
winning numbers and the number of ways of having a sixth number
which is neither a winning number nor the bonus-ball number is
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49–number of winning numbers–bonus-ball number
= 49 − 6 − 1 = 42.

Thus, the number of combinations for winning with five correct
is 6 × 42 = 252 and hence the chance of winning this way is

Pthird = 252
13,983,816

= 1
55,491.33

. (4.16)

The number of ways of winning a prize with four correct num-
bers is the number of combinations of having four out of six winning
numbers with two out of 43 nonwinning numbers. The number of
ways of having four out of the six winning numbers is

6C4 = 6!
4!2! = 15,

and the number of ways of having two out of 43 nonwinning
numbers is

43C2 = 43!
2!41! = 903.

Hence the number of combinations with just four correct numbers is

6C4 × 43C2 = 15 × 903 = 13,545,

giving the probability of winning as

Pfourth = 13,545
13,983,816

= 1
1,032.4

. (4.17)

Finally, to have just three winning numbers you need three out of six
winning numbers together with three out of 43 nonwinning num-
bers. The number of ways of doing this is

6C3 × 43C3 = 6!
3!3! × 43!

40!3! = 246,820,

so the chance of winning this way is

Pfifth = 246,820
13,983,816

= 1
56.66

. (4.18)
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The money staked on the national lottery is used for three pur-
poses. Some of it is returned to the prize-winners, some provides a
profit for the company that organizes and runs the lottery and the
remainder goes to “good causes.” There are ways to contribute to
good causes while having a “flutter” that are more cash efficient, but
there is no doubt that many enjoy the anticipation of the periodic
drawing of the winning balls one-by-one from a drum, performed
on television with flashing lights and theatrical music, and have the
dream that one day the big prize will be theirs.

Problems 4

4.1. Five children are in a room and leave in single file. In how many
different orders can the children leave?

4.2. A darts club has 10 of its members who are better than all the
other members and are all equally proficient. It is required to
select a team of four from these ten to represent the club in a
tournament and the selection is done by drawing lots. In how
many different ways can the team be chosen?

4.3. A bag contains six balls all of different colors. Three balls are
taken out of the bag, one at a time. What is the probability that
the balls selected will be red, green, and blue in that order? The
three selected balls are returned to the bag and then a handful
of three balls is taken out. What is the probability that the three
balls are red, green, and blue?

4.4. A town decides to run a local lottery based on the same model
as the national lottery. There are only 20 numbers from which
to pick, 1 to 20, and only four numbers are picked. Four win-
ning numbers are selected from a drum-full of numbered balls
plus a bonus ball. The top prize is for four correct numbers, the
second prize is for three correct numbers plus the bonus ball
and the third prize is for three correct numbers. What are the
probabilities of winning each of these prizes with a single entry
in the lottery?
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Non-Intuitive Examples of Probability

And things are not what they seem. (Henry Wadsworth Longfellow,
1807–1882)

We have already mentioned that it is intuitively obvious that the
probability of obtaining a head when flipping an unbiased coin is
0.5 and that of getting a 6 when throwing a die is 1/6 but sometimes
intuition can lead you astray. Here, we shall deal with three situa-
tions where, to most people, the probabilities of particular outcomes
are not-at-all obvious.

5.1. The Birthday Problem

Ignoring the complication of leap-days there are 365 days on which
a birthday can occur. A moment of thought tells us that if there are
366 people in a room then it is certain (probability = 1) that at least
one pair of them must share a birthday. If the number of people were
reduced to 365 or 364, then while it is not certain that at least one
pair share a birthday, our intuition tells us that the probability of
this must be very close to 1 — indeed we should be astonished if
no two people shared a birthday with such numbers. If the number
of people were reduced further then, clearly, the probability would
reduce but would still remain high down to 200 people or so.

Let us now start at the other end with two people in a room.
The probability that they have the same birthday is low and is easy
to calculate. One way of thinking about it is to consider that one
of them tells you his birthday. Then you ask the other one for his
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birthday. There are 365 possible answers he can give but only one
of them will match the birthday given by the first person. Hence the
probability of the birthdays being the same is 1/365.

The other possible way to look at this problem is to first ask the
question “In how many possible ways can two people have birth-
days without any restriction?”. Since there are 365 possibilities for
each of them then the answer to this is 365×365 — every date in the
calendar for one combined with every date in the calendar for the
other. Now, we are going to ask a question that is not, perhaps,
the obvious one to ask — “In how many ways can the two people
have different birthdays?”. Well, the first one has 365 possibilities but
once his birthday is fixed then, for the birthdays to be different, the
second has only 364 possibilities so the answer is 365 × 364. Now,
we can find the probability that they have different birthdays as

pdiff = Number of ways of having different birthdays
Total number of ways of having birthdays

= 365 × 364
365 × 365

= 364
365

. (5.1)

Now, either the two individuals have the same birthday or they
do not and these are the only possibilities and they are mutually
exclusive so that

pdiff + psame = 1,

or

psame = 1 − pdiff = 1 − 364
365

= 1
365

, (5.2)

the answer obtained previously. The reason we have introduced this
apparently convoluted way of getting the answer is because it better
lends itself to dealing with the problem of when there are three or
more people in the room.

Now consider three people in a room. The number of ways they
can have birthdays, without any restriction, is 365 × 365 × 365. The
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number of ways they can have different birthdays is found by noting
that the first person can have a birthday in 365 ways, for the second
to be different from the first there are 364 ways and for the third to
be different from the other two there are 363 ways. Hence the total
number of ways they can have different birthdays is 365×364×363.
Hence the probability that they have different birthdays is

pdiff = number of ways birthdays can be different
number of ways they can have birthdays

= 365 × 364 × 363
365 × 365 × 365

= 0.9917958. (5.3)

If the birthdays are not all different then at least two of them must
be the same and the probability of this is

3pnot diff = 1 − pdiff = 0.0082042. (5.4)

The prefix 3 before the p is to indicate that the answer is for three
people.

We should now be able to see by extending the principle that
the probability that at least two people out of five people in a room
would share a birthday is

5pnot diff = 1 − 365 × 364 × 363 × 362 × 361
365 × 365 × 365 × 365 × 365

= 0.027136. (5.5)

The advantage of calculating the probability in the way that we
do, by finding the probability that all birthdays are different and
then subtracting from 1, is now evident. Suppose that, we tried to
directly find the probability that two or more people in a set of five
shared a birthday. We would have to consider one pair the same and
the others all different, three with the same birthday with the other
two different, two pairs with the same birthday, and many other
combinations. All birthdays being different is a single outcome, the
probability of which is comparatively easy to find.
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Now, we ask the question that is really the basis of this section —
“How many people must there be in a room for there to be a prob-
ability greater than 0.5 that at least two of them would share a
birthday?”. This can be done with a calculator. We work out the fol-
lowing product term-by-term until the answer we get is less than 0.5.

365
365

× 364
365

× 363
365

× 362
365

× 361
365

× 360
365

× 359
365

× · · ·

The value of n for which the answer first falls below 0.5 is when the
probability of all birthdays being different is less than 0.5 and hence
when there is a probability greater than 0.5 that two or more people
have the same birthday. This is the number of people that fulfils our
requirement. What is your intuitive assessment of n at this point?

In Table 5.1, we give the probability of having at least two people
with the same birthday with increasing n. We see that the probability
just exceeds 0.5 when 23 individuals are present — a result that most
people find surprisingly low. A visual impression of what this result
gives is illustrated in Fig. 5.1.

Table 5.1. The probability that two or more people
have the same birthday with n people present.

n Probability n Probability n Probability

2 0.002740 3 0.008204 4 0.016356
5 0.027136 6 0.040462 7 0.056236
8 0.074335 9 0.094624 10 0.116948

11 0.141141 12 0.167025 13 0.194410
14 0.223103 15 0.252901 16 0.283604
17 0.315008 18 0.346911 19 0.379119
20 0.411438 21 0.443688 22 0.475695
23 0.507297 24 0.538344 25 0.568700

Fig. 5.1. There is greater than 50% chance that two of these will share a birthday!
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For someone teaching a class of 30 students the probability
that two or more will share a birthday is 0.706316, for 40 students
0.891232, and for 50 students 0.970374.

5.2. Crown and Anchor

Crown andAnchor is a dice game that was once popular with sailors
in the British navy. It was played with three dice each of which had
on its six faces a crown, an anchor and the symbols for the card
suits — club, diamond, heart, and spade (Fig. 5.2).

However, the essence of the game is preserved if the dice are
normal ones with the numbers 1 to 6 on their faces and we shall
consider them so. There are two players, the banker who runs the
game and the thrower who rolls the dice. We start by considering a
game which is not Crown and Anchor.

The banker first justifies the fairness of the game to his intended
non-mathematical victim, who is the thrower-to-be. He explains that
since the probability of getting a 6 with one die is 1/6 then the prob-
ability of getting a 6 when throwing three dice is 3/6 = 1/2. Of
course, that is complete nonsense since adding probabilities is only
justified when the outcomes are mutually exclusive — but the out-
comes from the three dice are actually independent since getting a
6 on one die has no influence on what happens with the other two

Fig. 5.2. A set of three Crown and Anchor dice.



March 24, 2008 17:9 B-595 ch05

50 Everyday Probability and Statistics

dice. However, our thrower-to-be has not read this book, accepts the
argument and throws on the basis that if he gets a 6 the banker pays
him £1 and if he fails to get a 6 then he will pay the banker £1.

The thrower loses heavily and it gradually dawns on him that
something is wrong. Sometimes he throws two 6s and once in a
while three 6s but he still gets paid just £1. He remonstrates with
the banker and asks to be paid £2 if he gets two 6s and £3 if he
gets three 6s. With a show of reluctance the banker agrees and they
continue to play what is now truly the game of Crown and Anchor.
The thrower still loses, albeit a little slower than previously, but he
concludes that since the game is now fair, and being played under
the rules he demanded, he must just be having an unlucky day. Is
he really unlucky or has he been duped? Let us analyze the game.

The first thing we must determine is what outcomes are possible
from throwing three dice. Representing not-a-6 by the symbol 0 these
possibilities for the three dice are

000 600 060 006 660 606 066 666

The probability of getting a 6 with any die is 1/6 and the probability
of getting not-a-6 is 5/6. Since the outcomes from the three dice are
independent, the probabilities of the outcomes listed above are given
in the second column of Table 5.2 by multiplying probabilities.

It will be found that the sum of the probabilities in the sec-
ond column add to 1 as indeed they must since the mutually exclu-
sive outcomes listed are the totality of possible outcomes. When the
first game, in which the thrower is not rewarded for multiple 6s, is
played 216 times with a unit stake then on 125 occasions the banker
wins and on the remaining 91 occasions the thrower wins giving
a net loss of 34 stake units. This is shown in the third column of
the table. However, when the game is played according to the rules
of Crown and Anchor the thrower receives two stake units when
he throws two 6s and three stake units when he throws three 6s
but, as seen in the final column of Table 5.2, he still has a loss of
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Table 5.2. The probabilities for various outcomes of throwing three dice
and the expected profits and losses for the thrower for each outcome play-
ing the first game 216 times and then playing Crown and Anchor 216
times.

Outcome Probability Profit (loss) Profit (loss)
on first game on C&A

0 0 0
5
6

× 5
6

× 5
6

= 125
216

(−125) (−125)

6 0 0
1
6

× 5
6

× 5
6

= 25
216

25 25

0 6 0
5
6

× 1
6

× 5
6

= 25
216

25 25

0 0 6
5
6

× 5
6

× 1
6

= 25
216

25 25

6 6 0
1
6

× 1
6

× 5
6

= 5
216

5 10

6 0 6
1
6

× 5
6

× 1
6

= 5
216

5 10

0 6 6
5
6

× 1
6

× 1
6

= 5
216

5 10

6 6 6
1
6

× 1
6

× 1
6

= 1
216

1 3

Net loss 34 17

17 stake units. The game seemed fair — why is the thrower still
losing?

If three dice are thrown 216 times then altogether 3×216 = 648
faces are seen, one sixth of which, i.e., 108, are expected to be 6s. Now
let us suppose that when 6s do appear they only appear singly so
that two 6s and three 6s never happen. In this case the thrower will
win 108 times — each time a 6 appears — and the banker will win
108 times — each time a six does not appear — so there will be no
profit or loss on either side. Now imagine that two of the expected
108 6s do appear together and the other 106 6s appear singly. The
thrower still wins 108 units, one unit for each appearance of a 6, but
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he has won this on 107 throws so now there are 109 occasions when
there is no 6. The banker is now one unit in profit. This is the secret of
the game — every time that 6s appear twice or three times, no doubt
welcomed jubilantly by the thrower, the conditions are created for
extra gains by the banker. All is not what it seems in Crown and
Anchor.

In the early years of the 20th century, and perhaps earlier,
bankers would set up street games of Crown and Anchor in London
and other big cities. The variation from what has been described is
that the thrower could choose the symbol on which he was stak-
ing — for example, the anchor — but that made no difference to
the probabilities involved. This was an illegal activity since the
only form of gambling that was legal at that time was betting on
horses or greyhounds at registered tracks and in registered casi-
nos and clubs. Crown and Anchor is a game so heavily biased
against the thrower that it is tantamount to robbing the inno-
cent and so should be banned even under present more liberal
legislation.

5.3. To Switch or Not to Switch — That is the Question

Television game shows in which contestants select boxes containing
various rewards are very popular. Pick the right box and a fortune
is yours, pick the wrong box and the prize is derisory or even some-
thing unpleasant. The games never involve the single simple act of
selecting a box but are usually accompanied by a set of intermedi-
ate actions or decisions before the box is finally opened. We now
describe one such game.

The contestant is offered three boxes which we shall indicate as
A, B, and C. In one of the boxes is £1,000 while the other two boxes
each contains a sausage. The contestant picks box A but does not
open it. The game-show host then opens one of the other two boxes
which is seen to contain a sausage. Now, he archly asks the contestant
whether he would like to stick with his original box or to switch to
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the other unopened box. The contestant is suspicious of this offer.
He concludes that since there are two boxes unopened, and one of
them contains the money, the probability of the money being in each
unopened box is 0.5 so he might just as well stick with his original
choice. The argument seems impeccable but, in fact, he has made the
wrong choice. His chance of winning is actually doubled by deciding
to change to the other unopened box. A surprising result — but let
us see how we get to it.

The critical factor in this game is that the host knows where the
money is and will always open a box containing a sausage. Now, let
us assume that the contestant initially chooses box A. The possible
content of the boxes in terms of money and sausages is as shown in
Fig. 5.3.

First, we suppose that the contestant decides not to switch
boxes. If the arrangement is the top one in Fig. 5.3, then he will
win the money. However, if the arrangement is one of the other two
he will find a sausage in his box. His chance of winning is there-
fore one in three, i.e., 1/3. Next, we assume that he always decides
to switch boxes. If the arrangement is the top one then, whichever
sausage the host decides to display, our contestant will have picked
the other sausage and so by switching he has lost out. But for the

 Box

Probability  A  B  C

  1/3

  1/3

  1/3

Fig. 5.3. The three possible arrangements of money and sausages, each with
probability 1/3.
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middle arrangement the host will have opened box C, the switch
will give the contestant box B and he will win the money. Likewise,
for the bottom arrangement the host will have opened box B, our
contestant will have switched to box C and again he wins the money.
For two out of the three possible arrangements he wins, so his prob-
ability of winning is 2/3, just double what it was if he did not switch.

Since all the boxes are effectively equivalent — it is arbitrary
which are chosen as A, B, and C, the result we have found is quite
independent of which box the contestant originally chose. He always
has a better chance of winning the money if he decides to switch
boxes. A surprising result you will agree.

Problems 5

5.1. On the planet Arret there are 100 days in a year.

(i) What is the probability that two Arretians, chosen at ran-
dom, will have different birthdays?

(ii) What is the probability that four Arretians, chosen at ran-
dom, will have different birthdays?

(iii) “How many Arretians must there be in a room for there to
be a probability greater than 0.5 that at least two of them
would share a birthday?”

5.2. A game of Crown and Anchor is played with two dice. In the
terminology of Table 5.2 the possible outcomes are 0 0, 0 6, 6 0,
and 6 6. Construct a table similar to Table 5.2 showing what the
expected profit is for the banker from 36 games for both the first
game and the two-dice Crown-and-Anchor game.
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Probability and Health

If you believe the doctors, nothing is wholesome; (Lord Salisbury,
1830–1903)

6.1. Finding the Best Treatment

Medicine is a field of activity in which the type of probability of
interest is empirical probability, as described in problem 1.4 and in
Sec. 3.1. Bodies such as national Medical Councils and the World
Health Organization collect and collate information from different
sources and so derive empirical fatality rates for various diseases
and success rates for different clinical treatments and surgical proce-
dures. Of course, in each individual case where diagnosis and treat-
ment is required, other factors come into play, such as the training,
skill, and experience of the doctor or surgeon and also the character-
istics of the patient — age and robustness, for example. In view of all
these factors there is some element in diagnosis and treatment that
is akin to what was called judgmental probability in Sec. 3.1. Trying
to introduce some certainty in diagnosis, various computer-based
diagnostic systems have been devised. When the computer diag-
noses for four of these systems were tested against the diagnoses
produced by a group of highly experienced and competent doctors
for particular sets of symptoms, the programs gave a correct diag-
nosis in between one-half and three-quarters of cases. Where there
were several possible conditions suggested by the symptoms then
the programs gave less than one-half of the possibilities suggested
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by the experts. By contrast, on average the programs suggested two
additional diagnoses per case that the experts had not themselves
proposed but which they thought were relevant.

Despite all the uncertainties of diagnosis, more often than not
when we visit a doctor with a medical condition the doctor will rec-
ognize the problem and know the treatment that will best deal with
it. But, as we have already indicated, that is not always so. Sometimes
symptoms may not point uniquely to a particular medical condition
but may indicate one or other of a finite number of possible condi-
tions with different probabilities of being present (Fig. 6.1).

We shall consider a hypothetical case of an uncertain diagnosis
indicating three possible conditions, A, B, and C with probabilities

A 0.70 B 0.20 C 0.10

These probabilities will be based on a considerable body of infor-
mation gathered by doctors and medical bodies and published in
research journals. There is a range of drugs available for treating
these conditions and, since the symptoms are similar, the drugs will
probably all have some efficacy for each of the possible conditions.

Fig. 6.1. I’m not really sure what’s wrong with you but I know the best way to
treat it.
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We shall assume that there are three drugs available, a, b, and c,
which have the following observed probabilities of dealing success-
fully with each of the conditions.

Drug a A 0.6 B 1.0 C 0.4
Drug b A 0.65 B 0.5 C 0.9
Drug c A 0.75 B 0.2 C 0.5

From the probabilities of the conditions it is clear thatAis most likely
to be present and from the effectiveness of the drugs it is clear that c
is the best for treating condition A so should we conclude that, from
the point of view of the patient the best treatment is to administer
drug c? The answer is no — it is actually the worst decision to make!

To see what the doctor should prescribe let us make the absurd,
but numerically helpful, assumption that he has 1,000 patients with
this uncertain condition and then work out the likely outcome of the
three drug treatments. Of the 1,000 patients, we would expect the
following numbers with the three conditions

A 700 B 200 C 100

If he uses drug a then

of the 700 patients with condition A, a number 700× 0.6 = 420 will
recover,
of the 200 patients with condition B, a number 200 × 1.0 = 200 will
recover,
and
of the 100 patients with condition C, a number 100 × 0.4 = 40 will
recover.

Hence the total number of recovered patients would be 420 + 200 +
40 = 660. We now repeat this exercise for the other two drugs. The
outcomes, with the results for drug a repeated are

For drug b the number recovering is 700 × 0.65 + 200 × 0.5 + 100 ×
0.9 = 645,
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For drug c the number recovering is 700 × 0.75 + 200 × 0.2 + 100 ×
0.5 = 615.

The best drug to use, drug a, turns out to be the one that is least
effective for the most likely condition, A, but it is far more effective
for the other two conditions.

What we learn from this is that in cases where there are many
possible mutually exclusive situations (i.e., conditions A, B, and C)
with different probabilities, and different possible reactions to those
situations (i.e., applying drugs a, b, and c), with different probabil-
ities of having a successful outcome, it is necessary to consider the
outcomes of all possible combinations of situation and reaction to
optimize the chances of success. Here, we have met another situa-
tion, like those described in Chap. 5 where the answer obtained from
probability theory may be at variance with one’s intuition.

6.2. Testing Drugs

In non-Western societies, notably in China and India, branches of
medicine have evolved over many centuries that involve the use
of natural products, usually of vegetable, but sometimes of animal,
origin. Many of these treatments are very effective and provide the
basis for the synthetic drugs used in Western medicine. However,
there are many advantages in the use of synthetic drugs rather than
natural products. First, the dosage can be more accurately controlled;
the concentration of the active ingredient in a natural product, say
in the root of a plant, may depend on the weather conditions during
the growing season. Again, by extracting and analyzing the struc-
ture of the active ingredient in a plant, a drug company may be able
to produce derivatives that are either more effective than the natural
product or have less severe side effects — or both. Another modern
aspect of the pharmaceutical industry is that of drug design. The
beneficial effect of many drugs is obtained by their action on partic-
ular proteins in the patient and drugs can be designed so that they
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bind themselves in specific ways to the protein and so either inhibit
or increase its activity.

Many drugs are tested on animals where the assumption is that
the reaction of the animal, say a guinea-pig or a mouse, to the drug
will be similar to that of a human patient. Often it is, but sometimes
it is not, so at the end of the day the only certain way to determine the
effect on human patients is to test it on human patients. Occasionally,
and fortunately rarely, such tests can go badly wrong, as happened
with the test of a drug in the United Kingdom in March 2006. Tests
on mice and primates had shown beneficial medical results without
side effects. However, six men given the drug in a trial all became
seriously ill, with failure of various organs and permanent damage
to health. While this was a setback for testing drugs on humans it
is certain that such tests will continue, although with much more
stringent safeguards than hitherto.

It is important that when such trials are carried out, a proper
assessment should be made of the effectiveness of the new proce-
dure. The theory behind these assessments is fairly difficult but we
shall describe how the application of a few simple rules enables a
decision to be made regarding the significance of the result of a clin-
ical trial.

We consider the hypothetical trial of a drug which is admin-
istered to 10 patients suffering from a particular disease. Of the
10 patients 7 of them recover but 3 get no benefit from the treat-
ment. Another group of 20 patients with the same disease are
given a placebo, a harmless and inactive substance that in appear-
ance resembles the drug. Of these patients 5 recover but 15 do
not. The patients themselves do not know whether they received
the drug or the placebo so we can rule out any psychologically
induced physiological effects. Is there any evidence that the new
drug is effective? To decide on this we are going to describe the
steps in what statisticians call the χ2-test (χ is a Greek letter writ-
ten as “chi” but pronounced as “kye” so this is the chi-squared
test).
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Step 1 Represent the results of the trial in a table O (for observation)
as shown below

 Recover  Not recover 

7 3 

5 15 

Drug taken 

Placebo taken 

Table O

10

20

12 18

The totals given at the right-hand side of the rows are the total
numbers of patients given the drug and given the placebo.
The totals given at the bottom of the columns are the total
numbers of recovered and non-recovered patients, respec-
tively.

Step 2 We make a hypothesis (called the null hypothesis) that the
drug is ineffective. Overall 12 out of 30 patients, i.e., a fraction
0.4, recovered and if the null hypothesis is valid then this is the
proportion of patients that recover spontaneously without
any treatment. Based on the null hypothesis we now produce
a table E (for expected) giving the expected numbers of recov-
ered and unrecovered patients for those given the drug (now
assumed ineffective) and those not given the drug. Thus, of
the 10 patients given the drug, on the basis of the overall
proportion of recoveries, we would expect 4 to recover and
6 not to recover. Similarly, for the number of patients given
the placebo the expected number recovering and not recov-
ering would be 8 and 12, respectively. Notice that when the
expected numbers are entered in the table the sums of rows
and columns are the same as they were previously.
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 Recover  Not recover 

4 6 

8 12 

Drug taken 

Placebo taken 

Table E

10 

20

12 18

Step 3 Now, even if the drug is completely ineffective the O an E
tables would probably be different just because of random
fluctuations. As an example, if you flipped a coin 100 times it
is unlikely that there would be exactly 50 heads and 50 tails.
However, if you obtained 90 heads and 10 tails you might
suspect that your null hypothesis, that the coin was unbiased,
was almost certainly untrue. Now, we see how to test the
differences between the O and E tables to see whether they
are so different that we might suspect that our null hypothesis
was untrue. To do this we calculate the value of

χ2 =
4∑

i=1

(Oi − Ei)2

Ei
(6.1)

where i = 1 to 4 for the four entries in the table and Oi and
Ei are the entries in the O and E tables, respectively. Remem-
bering the explanation of

∑4
i=1 given in relation to Eq. (3.3),

this value is

χ2 = (7 − 4)2

4
+ (3 − 6)2

6
+ (5 − 8)2

8
+ (15 − 12)2

12
= 5.625.

(6.2)

Step 4 The value of χ2 is compared with the numbers in a standard
table, part of which is shown in Table 6.1.
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Table 6.1. Probabilities associated with the χ2 distribution for one degree of
freedom.

Probability 0.20 0.10 0.05 0.025 0.02 0.01 0.005 0.001
χ2 1.642 2.706 3.841 5.024 5.412 6.635 7.879 10.827

Let us imagine that our value of χ2 had been 3.841. The table
would tell us that if the null hypothesis is true, and the drug is
ineffective, then the probability of getting this value of χ2, or some
greater value, is 0.05, which is 1 in 20. What significance you place
on that value is a subjective choice that depends on the kind of
test being made. If the test related to some commercial decision,
e.g., testing consumer reaction to some new form of packaging,
then possibly 0.05 would be regarded as sufficiently low to indicate
that the null hypothesis, i.e., that the new packaging was ineffec-
tive, was probably untrue. In medicine the decision barrier is usu-
ally much more stringent and if the medical condition is a matter
of life and death then it would be extremely stringent. The value
of χ2 found in the example we have used indicates a probabil-
ity just under 0.02 that the result could be obtained with the null
hypothesis but this may not be small enough to pronounce that
the treatment is effective and so to sanction its use. It is the usual
practice to decide on the level of significance that would lead to
acceptance before doing the test. If that is not done then there is
always the danger that, with the result of the test already being
known, a significance level will be set so as to achieve a desired
outcome.

Let us suppose that a significance level of 0.01 had previously
been set as a criterion for judging whether or not the new drug
should be adopted for general use. This means that the value of χ2

must be such that there is a probability less than 0.01 that the result
of the test, or something even further from expectation, could have
been obtained just by chance. The test described above would not
have met the conditions for adoption but now let us suppose that
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the test had been carried out on a larger scale and that the observed
and expected tables had been as shown below.

 Recover  Not Recover 

 Recover  Not Recover 

14 6 

10 30 

8 12 

16 24 

Drug taken 

Placebo taken 

Table O 

20

40

24 36

Drug taken 

Placebo taken 

Table E 

20

40

24 36

These tables are just the ones we considered previously scaled up
by a factor of 2, and now we have

χ2 = (14 − 8)2

8
+ (6 − 12)2

12
+ (10 − 16)2

16
+ (30 − 24)2

24
= 11.25. (6.3)

From Table 6.1, it is clear that there is less than 1 chance in 1,000
that the result of the test, or some more extreme result, could come
about by chance if the null hypothesis was true. The test satisfies
the criterion for adoption of the drug and its efficacy is confirmed
beyond all reasonable doubt. This shows the importance of scale in
carrying out significance tests.

The χ2 test can be applied in many different contexts and we
have just given one example here. In the legend to Table 6.1, there
is a reference to “one degree of freedom”. The concept of “degrees
of freedom” is very important in statistics and is a measure of how
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many independent quantities there are in the system of interest.
We noticed that although the O and E tables had different entries the
totals of both rows and columns are the same. Thus, if we were told
that 20 people had been given the drug and 40 given the placebo and
that 24 patients had recovered but that 36 had not, then that would
not enable us to construct a table. Both the O and E tables satisfy the
information given and many other tables can be constructed that do
so. In this context, one degree of freedom means that, given the totals
of rows and columns, once a single entry is made in the table then all the
other entries follow.

We shall meet the concept of degrees of freedom again: there are
other applications of the χ2 test, which will be described in Chap. 8,
that involve many degrees of freedom. While it is a difficult con-
cept to understand fully, fortunately, in the contexts in which it
occurs, it is usually simple to find out how many degrees of freedom
there are.

Problems 6

6.1. The symptoms for a patent indicate one of two conditions —
A with a probability of 0.65 or B with a probability of 0.35. Two
drugs are available, both of which have partial success in deal-
ing with both conditions. Their effectiveness is summarized
in the following table which gives the success rate in giving
a cure.

Condition A B

Drug a 0.6 0.4
Drug b 0.3 0.9

To maximize the probability of obtaining a cure, which drug
should the doctor prescribe?
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6.2. A chain store decides to test the effectiveness of a new form of
packaging for one of its products. In two of its stores, in similar
environments and with similar sales profiles, it arranges similar
displays of the product. Of the first 100 customers that enter
store A, 8 buy the product with the old packaging. Of the first
100 customers that enter store B, 20 buy the product with the
new packaging.

Calculate the value of χ2. The null hypothesis is that the new
packaging is ineffective. If the probability that the value of χ2, or
some larger value, could be obtained with the null hypothesis
just by chance is greater than 0.05, then the store will not bother
to change the packaging. Do they change it or not?
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Chapter 7

Combining Probabilities; The Craps
Game Revealed

Un coup de dés jamais n’abolira le hazard; a throw of a dice will never
eliminate chance (Stéphane Mallarmé, 1842–1898)

7.1. A Simple Probability Machine

We consider a simple probability machine where a ball drops out
of a hole and falls along a set of channels arranged in a pattern as
shown in Fig. 7.1

Whenever the ball reaches a junction point, shown by a small
circle, it has an equal probability of taking the left-hand or right-
hand path to the next line of junctions. At the bottom, indicated
by the larger circles, are a set of cups, into one of which the ball
falls. To start a ball on its journey a 10p coin must be inserted in the
machine. If the ball enters the center cup the money is lost. If it goes
into either of the two cups flanking the center one then the 10p is
returned. If it enters an outer cup then 30p is returned. What are the
chances of winning or losing at this game?

On leaving the first junction the ball has an equal probability of
going to the left or right, so the probabilities of arriving at each of
these junctions is 0.5. Now consider a ball that reached the left-hand
junction. It can go left or right and if it goes left then it will reach
the left-hand junction of the second row — the one containing three
junctions. For this to happen two independent events must take
place — it must have gone left at two junctions with a probability

67
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Falling ball 

0.5 0.5 

0.5 
0.25 0.25 

0.375 0.375 
0.125 0.125

0.0625 0.06250.25 0.25 0.375 

Fig. 7.1. The pinball machine.

0.5 that it will do so each time. Hence the probability that it will
get there is 0.5 × 0.5 = 0.25, as marked in the figure. By symmetry
this is also the probability of reaching the right-hand junction of that
row. To get to the middle junction of the row requires either of the
combinations left–right or right–left, each of which has a probability
0.5 × 0.5 = 0.25. Since the combinations left–right and right–left are
mutually exclusive the probability of reaching the middle junction is
obtained by adding the two probabilities, i.e., 0.25+0.25 = 0.5. These
three probabilities are marked along the second row of junctions and,
of course, they add to unity since the ball must arrive somewhere
on that row.

Similar reasoning gives the probabilities marked along the third
row of junctions and along the cups. It will be seen that the game
is superficially attractive to the player. He loses his money on 0.375
( = 3/8) of the occasions he plays but on the other 0.625 of the occa-
sions he either gets his money back or makes a handsome profit. Let
us see what his chances really are. The probability of losing is 0.375
( = 3/8), of getting his money returned is 0.25 + 0.25 = 0.5 = 1/2,



March 24, 2008 17:9 B-595 ch07

Combining Probabilities; The Craps Game Revealed 69

and of getting three times his stake returned is 0.0625 + 0.0625 =
0.125(= 1/8). So the expectation is that if he plays eight games, his
return will be zero on three games, 10p on four games, and 30p
on one game, a return of 70p in all. However, he inserted 80p to
play the eight games so he is a net loser. Of course, if his luck is
in and he quits when he is ahead then he can win something but
if he plays the game a sufficiently long time he is almost bound
to lose.

This is an example where we have considered combinations
of probabilities, some independent and some mutually exclusive.
As an example, we can consider the ways the ball can get to the
center cup in Fig. 7.1. Representing a left deflection by L and a right
deflection by R there are six mutually exclusive routes the ball can
take

LLRR LRLR LRRL RRLL RLRL RLLR

Each step, to left or right, is independent of the previous ones
so the probability of each path is

0.5 × 0.5 × 0.5 × 0.5 = 0.0625

but since the routes are mutually exclusive the total probability of
reaching the central cup is

6 × 0.0625 = 0.375.

Probability machines that are much more complicated can be
designed with many more rows of junctions and with the junctions,
which may be a simple pin off which the ball bounces, so designed
that the chances of going left or right are not equal. However, no mat-
ter how complicated the probability machine the chances of ending
in each of the cups can be calculated using the principles explained
above.
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7.2. Pontoon — A Card Game

This game, called pontoon in the United Kingdom as an extremely
corrupted form of the French name vingt-et-un, is called blackjack
in the United States and is a popular casino gambling game. Cards
are associated with a number of points, with the cards 2 to 10 giving
the number they display. Court cards, i.e., a Jack, Queen, or King,
count for 10 points while an ace has a degree of flexibility and may
be counted by the player as either 1 point or 11 points, according to
which best serves his requirements.

A dealer initially deals two cards to each player and to him-
self. The players then request further cards, one at a time, up to a
maximum of three further cards, by saying “twist” or “hit” with the
objective of getting as close as possible to 21 without exceeding 21.
When the player wishes to stop receiving more cards he says “stick”
or “stand”. If his total exceeds 21 he goes “bust”, he loses that hand
and forfeits his stake money to the dealer. Thus there is a measure of
judgement to be exercised — although luck also plays a major role.
For example, if the player has three cards, 2 + 6 + 8, giving a total
of 16 points, and then requests a further card that turns out to be a
six or greater, then he will lose that hand. When all the players have
received the cards they requested the dealer reveals his two cards
and adds to them until he wishes to stop. If he goes bust then he
pays all players who did not go bust an amount equal to that they
staked. If he does not go bust then he pays out to all those with a
higher number of points but takes the stakes of all those with less
than or equal to his number of points.

The above is a basic description but there are extra aspects. If
21 points is obtained with two cards, which must be an ace plus a
10 or a court card, then that is called “pontoon” and will beat any
other hand. Another good combination is a “five-card trick” which
is five cards totaling less than 21, which beats all other hands except
a pontoon. What has been given is not a complete description of
the game but suffices for present purposes. The dealer’s advantage
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in this game is first that if he has a hand equal in value to that of
another player then he wins and, second, that he knows something
about what the other players have, e.g., the number of cards he dealt
them, although not their total of points.

A complete statistical analysis of pontoon is possible but com-
plicated — just think of the number of different ways of achieving a
five-card trick. There are some hands for which it is fairly simple to
estimate the probabilities. For example, we consider the probability
of getting 19 with two cards. One way is to get 10 points + 9 points.
The 10 may be obtained with a 10 or a court card and the probability
of getting one of these from the pack is 16/52. Now there are 51 cards
left in the pack of which 4 are 9s. Hence the probability of getting
a 9 as a second card is 4/51. The selections are independent so the
chance of getting first 10 points and then 9 is

P(10, 9) = 16
52

× 4
51

= 0.02413.

The probabilities of this and other selections are now listed.

P(10, 9) = 16
52

× 4
51

= 0.02413

P(9, 10) = 4
52

× 16
51

= 0.02413

P(11, 8) = 4
52

× 4
51

= 0.00603

P(8, 11) = 4
52

× 4
51

= 0.00603

The last two ways of getting 19 involve having an ace and 8 either
way round. These four combinations are mutually exclusive so the
total probability of getting 19 points with two cards is

P(19) = 0.02413 + 0.02413 + 0.00603 + 0.00603 = 0.06032,

or about one chance in 16. Of course, one may get 19 with three or
four cards so the total probability of getting 19 in a hand of pontoon
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is higher than this. If 19 is obtained with five cards then that is a
five-card trick and is a stronger hand than just getting 19 points.

In the casino game of pontoon, or blackjack, the cards are peeled
one-by-one from a deck of cards placed face downwards. There are
professional gamblers who “count the cards” — that is they mentally
record aspects of the cards they have already seen so as to reassess
the probabilities for future cards. As a simple example, if the first
20 cards dealt from the pack contained one ace then the probability
that the next card will be an ace is increased from 4/52 = 0.07692,
the probability before any cards are dealt, to 3/32 = 0.09375. Such
information can, in the hands of a clever gambler, slant the odds
in his favor to the extent of wiping out the dealer’s advantage and
substituting a player’s advantage. Casino managers are always on
the lookout for card counters and they are excluded from casinos
when they are detected.

7.3. The Throwers Chance of Winning at American Craps

There are many different routes by which the thrower may win, or
lose, in the American craps dice game. The game can be won or
lost in a single throw — getting a “natural” to win or by getting
2 (Fig. 7.2), 3, or 12 to lose. However, there are more complicated

Fig. 7.2. Two ways of losing playing American craps!
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ways of winning and losing. We shall find the combined probability
of all the winning ways; they are mutually exclusive so we need to
identify all the routes, find their probabilities and add them together.

Throwing a “natural”

The probability of this was found in Sec. 2.5 as Pnatural = 2
9 =

0.22222.

Setting a “point” of 4 (or 10) and then winning

In Sec. 2.5, the probability of obtaining 4 was found as 1/12. Having
obtained a 4 the thrower now embarks on a series of throws. The
only throws relevant to winning or losing after setting this point are
getting 4 again to win, with a probability of 1/12 on each throw, or
getting 7 to lose with a probability of 1/6 on each throw. The chance
of getting a 4 before getting a 7 is

probability of 4
probability of 4 + probability of 7

=
1
12

1
12 + 1

6

= 1
3

. (7.1)

Similarly the probability of getting a 7 before getting a 4 is

probability of 7
probability of 4 + probability of 7

=
1
6

1
12 + 1

6

= 2
3

,

but we are not directly interested in this probability because we
are finding the total probability of winning. Winning by this route
has two independent components — first establishing a “point” of
4 and subsequently getting a winning throw of 4. The composite
probability of this is

P4 = 1
12

× 1
3

= 1
36

. (7.2)

Since the probabilities are the same for a total of 10, we have,

P10 = P4. (7.3)
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Setting a “point” of 5 (or 9) and then winning

In Sec. 2.5, the probability of obtaining 5 was found as 1/9. The
only throws relevant to winning or losing after setting this point are
getting 5 again to win, with a probability of 1/9 on each throw, or
getting 7 to lose with a probability of 1/6 on each throw. For the
relevant throws the chance of winning is

probability of 5
probability of 5 + probability of 7

=
1
9

1
9 + 1

6

= 2
5

. (7.4)

Winning by this route has two independent components — first
establishing a “point” of 5 and subsequently getting a winning
throw of 5. The composite probability of this is

P5 = 1
9

× 2
5

= 2
45

. (7.5)

Since the probabilities are the same for a total of 9, we have,

P9 = P5. (7.6)

Setting a “point” of 6 (or 8) and then winning

In Sec. 2.5, the probability of obtaining 6 was found as 5/36. The
only throws relevant to winning or losing after setting this point are
getting 6 again to win, with a probability of 5/36 on each throw, or
getting 7 to lose with a probability of 1/6 on each throw. For the
relevant throws the chance of winning is

probability of 6
probability of 6 + probability of 7

=
5
36

5
36 + 1

6

= 5
11

. (7.7)

The composite probability of first establishing a “point” of 6 and
subsequently getting a winning throw of 6 is

P6 = 5
36

× 5
11

= 25
396

. (7.8)
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Since the probabilities are the same for a total of 8, we have,

P8 = P6. (7.9)

Summing the probabilities of these mutually exclusive routes
for winning, the overall probability of winning for the thrower is

Pwin = Pnatural + P4 + P5 + P6 + P8 + P9 + P10

= 2
9

+ 1
36

+ 2
45

+ 25
396

+ 25
396

+ 2
45

+ 1
36

= 0.492929.

Thus the bank has a slight advantage — which in any profitable
casino is a necessary condition for running any game. As the game
is played the bank, and the thrower stake an equal amount and the
winner takes all. For every £500 staked by the bank another £500
will be staked by the thrower who will, on average receive back
£493. Thus on average the bank receives £7 profit for every £500
invested — a return of 1.4% per game which is small but almost
assured over a long period.

Problems 7

7.1. A probability pinball machine, similar in principle to that
described in Sec. 7.1, is illustrated below.

A B C D E 

The ball has a probability of 1/3 of going along each of the
channels shown. What is the probability of landing in each of
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the cups marked by a letter symbol. Analyze the profit or loss
of using the machine if it costs 10p per ball, no return was made
on cup C, the 10p was returned on cups B and D, and 20p was
returned on cups A and E.

7.2. What is the probability of obtaining a points total of 20 with two
cards in a game of pontoon?

7.3. In a game of American craps what is the probability that the
thrower loses by

(i) Setting a point of 4 and then subsequently losing by
throwing a 7?

(ii) Setting a point and then subsequently losing by
throwing a 7?
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Chapter 8

The UK National Lottery, Loaded Dice,
and Crooked Wheels

Thou shalt not steal, an empty feat, When it’s so lucrative to cheat.
(Arthur Hugh Clough, 1819–1861)

8.1. The Need to Test for Fairness

In Sec. 3.1, we defined logical probability which is based on reason-
ing and is heavily influenced by ideas of symmetry. We know that
something is wrong when a coin comes down heads 100 times in 100
spins. But at what level should we be concerned — 90 times out of
100, 70 times out of 100, 60 times out of 100? After all the coin may
not have two heads but may be so unbalanced, or biased, that the
mechanics of spinning it leads to a preponderance of heads. To see
how to answer this question, we first consider a completely different
problem concerning outcome and expectation.

During the Second World War scientists in the United States
were working on the development of a nuclear bomb. One prob-
lem they faced was to determine how neutrons would penetrate a
barrier — a problem that they needed to solve quickly but with-
out any previous experience to guide them. A neutron interacting
with an atomic nucleus in the barrier could be unaffected, absorbed,
or scattered. The probabilities of these possible interactions, which
depended on the neutron energy, were known but this knowledge
could not be converted into an analytical solution of the problem.
The problem was eventually solved by two of the scientists working

77



March 24, 2008 17:9 B-595 ch08

78 Everyday Probability and Statistics

on the project, Ulam and von Neumann, by a novel numerical
procedure. They could estimate how far a neutron would travel on
average before encountering a nucleus so they simulated the path of
a neutron through a barrier. At each interaction they decided what
would happen by the generation of a random number that would
determine whether the atom was unaffected, absorbed, or scattered
and, if scattered, in which direction, and also how far it would travel
to the next interaction. By following a large number of such simu-
lated paths they were able to determine the probability that a neutron
would penetrate the barrier. The generation of a random number is
similar to what happens in various gambling activities — throwing
a die or spinning a roulette wheel, for example — so a procedure of
this kind is called a Monte–Carlo method. With the advent of com-
puters that enable large numbers of Monte–Carlo trials to be made,
the method has been used in many areas, both in science and in the
social sciences. However, it is important for the success of the method
that the random numbers generated should be truly random.

Premium Bonds are a UK national institution that relies on the
generation of random numbers. These bonds yield an average inter-
est at a predetermined rate but the interest is not distributed as
income to each individual bond holder but is used to provide prizes
for a lottery based on the number of the bonds. The numbers of the
bonds are generated each month by ERNIE, an acronym for Elec-
tronic Random Number Indicator Equipment. The present version
of ERNIE uses the random noise produced in transistors to control
an oscillator, the output of which is interpreted as numerical digits
and letters. In this way something of the order of one million ran-
dom bond numbers can be generated per hour. This produces truly
random numbers since it is based on completely unpredictable phys-
ical events but for some scientific purposes it would be unsuitable.
For many scientific calculations truly random numbers are required
but it is desirable that they should be generated in a reproducible
way so that the calculation that produces them can be rerun with
the same numbers if necessary. For this reason much effort has been
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expended in creating pseudo-random-number generators that produce
a series of random numbers by some repeatable mathematical pro-
cess. Producing such generators is a surprisingly difficult thing to
do and to be confident in the performance of a generator one must
be able to test its output in some way.

8.2. Testing Random Numbers

To illustrate the methods of testing for the fairness of a random
number generator, we shall consider a generator, that is intended to
produce a string of random digits, from 0 to 9. The generator we test
will be of the following form:

xn+1 = Frac{(xn + π)2}, (8.1a)

yn+1 = Int(10 × xn+1). (8.1b)

What this means will now be described. A series of fractional num-
bers is produced of the form:

x1, x2, x3, . . . ,

of which xn is the nth one. Let this fractional number be 0.65382961.
This number is added to the special number π = 3.14159265 to
give 3.79542226. This number is then squared to give 14.40523013.
That is what happens within the outer bracket in Eq. (8.1a). The
next thing that we do, represented by Frac in the equation, is to
take the fractional part of that number, 0.40523013, which gives
xn+1. Now, we move down to Eq. (8.1b) where we multiply xn+1

by 10 to give 4.0523013 and then take the whole number part,
represented by Int in the equation, to give the digit 4, which is
yn+1. To continue the series from xn+1 one can generate xn+2 and
yn+2 and so on. To get started, it is necessary to provide an ini-
tial fractional number x0, called the seed, for the random digit gen-
erator. A computer can readily generate a long string of digits in
this way. As long as the same computer is used then the same
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Table 8.1. Observed table for 50 digits produced by the
random-digit generator described in Eq. (8.1).

Digit 0 1 2 3 4 5 6 7 8 9 Total
Number 2 8 10 4 2 1 7 7 6 3 50

string of digits will be generated by the same seed. If a different
set of random digits is required then it is only necessary to change
the seed.

A simple computer program was used to generate 50 digits in
this way and the numbers of each digit are shown in Table 8.1.

The average times of occurrence of a digit is five but there
is considerable variation about that average. Can we deduce just
from looking at the table that it is an unsatisfactory random-digit
generator? Not necessarily so. Inevitably, just by chance, the num-
bers of each digit found will vary and, indeed, it would have been
surprising — even suspicious — if we had found a row of ten 5s.
What we need is an objective numerical measure to see if what have
obtained could have come about with reasonable probability with
a good random-number generator. To do this, we are going back to
the χ2 test that was described in Sec. 6.2 to test the efficacy of a drug.
Table 8.1 represents the observed table with observations, O, and
Table 8.2 the expected table E.

Now, we calculate χ2 as we did in Eq. (6.1) except that we now
have ten boxes rather than four.

χ2 =
10∑

i=1

(Oi − Ei)
2

Ei
= (2 − 5)2

5
+ (8 − 5)2

5
+ (10 − 5)2

5

+ (4 − 5)2

5
+ (2 − 5)2

5
+ (1 − 5)2

5
+ (7 − 5)2

5
+ (7 − 5)2

5

+ (6 − 5)2

5
+ (3 − 5)2

5
= 16.4.
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Table 8.2. The expected table E for 50 digits with a uni-
form distribution.

Digit 0 1 2 3 4 5 6 7 8 9 Total
Number 5 5 5 5 5 5 5 5 5 5 50

However, we cannot use Table 6.1 for our probabilities because we
have a different number of degrees of freedom in the present case. You
will recall that, in Sec. 6.2, the number of degrees of freedom was
found as the number of arbitrary entries you could make in the table,
given the sums in rows and columns. In the present case, with only
one row, it is just the sum of the row, 50, that is relevant. There are
ten digit boxes and until you have filled in nine of them the contents
of the table are not defined — so in this case we have nine degrees of
freedom. Published tables give the value of χ2 for various numbers
of degrees of freedom, and we show an excerpt for 9 degrees of
freedom in Table 8.3.

Comparing the value of χ2 with the entries of the table shows
that there is only about a 1 in 20 chance that the value found for
χ2, or some greater value, could come about just by chance. This
indicates that the random-digit generator might be suspect.

Using the same random-digit generator, the distribution for
1000 digits is given in Table 8.4.

Table 8.3. Probabilities associated with the χ2 distribution for nine degrees of
freedom.

Probability 0.50 0.30 0.20 0.10 0.05 0.025 0.02 0.01 0.005
χ2 8.343 10.656 12.242 14.684 16.919 19.023 19.679 21.666 23.589

Table 8.4. Analysis of 1000 digits produced by the random-digit generator
described in Eq. (8.1).

Digit 0 1 2 3 4 5 6 7 8 9 Total
Number 109 99 123 91 99 83 89 103 98 106 1000



March 24, 2008 17:9 B-595 ch08

82 Everyday Probability and Statistics

Table 8.5. Analysis of 1000 digits produced by a more sophisticated ran-
dom-fraction generator followed by Eq. (8.1b).

Digit 0 1 2 3 4 5 6 7 8 9 Total
Number 99 94 98 104 92 85 102 101 115 110 1000

The expected table would have 100 in each box so for this dis-
tribution the value of χ2 is

(9)2

100
+ (−1)2

100
+ (23)2

100
+ (−9)2

100
+ (−1)2

100
+ (−17)2

100
+ (−11)2

100

+ (3)2

100
+ (−2)2

100
+ (6)2

100
= 11.52.

This gives a better indication that the random-digit generator may
be reliable since there is now about a one in four chance of getting
this value of χ2 or greater.

The step described in Eq. (8.1a) generated a series of fractional
numbers with a uniform distribution between 0 and 1 and there are
much more complicated and effective processes for doing this. The
result of producing 1000 random digits by using one of the genera-
tors for a uniform distribution, much used by Monte–Carlo model-
ers, followed by Eq. (8.1b) gave the outcome shown in Table 8.5.

This distribution gives χ2 = 6.76 and from Table 8.2 we see that
there is a somewhat greater than 50% chance that random fluctua-
tions would give this value of χ2 or greater. One could have more
confidence in this generator than the one first described.

The general principles described here for testing random-digit
generators can also be used for testing the output of the various
pieces of equipment used for gambling.

8.3. The UK National Lottery

The way that the UK national lottery operates was described in
Sec. 4.4. Balls numbered from 1 to 49 are selected at random from
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Table 8.6. The frequency of UK lottery winning numbers up to 4 October 2006.

(1) 134 (2) 138 (3) 133 (4) 130 (5) 131 (6) 145 (7) 147
(8) 133 (9) 144 (10) 142 (11) 151 (12) 141 (13) 115 (14) 132

(15) 125 (16) 123 (17) 132 (18) 136 (19) 146 (20) 108 (21) 125
(22) 137 (23) 152 (24) 126 (25) 155 (26) 138 (27) 143 (28) 141
(29) 137 (30) 146 (31) 149 (32) 145 (33) 147 (34) 130 (35) 141
(36) 127 (37) 127 (38) 167 (39) 129 (40) 148 (41) 111 (42) 137
(43) 158 (44) 159 (45) 141 (46) 134 (47) 156 (48) 153 (49) 135

a rotating drum that ejects them individually without human inter-
vention. In this way it is expected that the numbers are produced
without any bias. To see if this is so, we look at how frequently the
numbers 1 to 49 have been picked and Table 8.6 gives the relevant
frequencies for the whole history of the lottery up to 4 October 2006.

The first thing we notice about this table is the large range of
frequencies, from 108 for number 20 to 167 for number 38. This might
lead us to wonder whether this is an indication that the selection of
numbers was flawed in some way. To check this, we need to do a χ2

test. The average number of times each number was selected is 138.4;
while this average is fractional, and hence not a possible frequency
for selecting a number, for the purpose of working out the value of
χ2 it will be taken as the expected value E to be inserted in Eq. (6.1).
There are 49 terms in the calculation of χ2 and we indicate the first
two and last two of these in (8.2):

χ2 = (134 − 138.4)2

138.4
+ (138 − 138.4)2

138.4
+ · · · + (153 − 138.4)2

138.4

+ (135 − 138.4)2

138.4
= 51.56. (8.2)

The total number of numbers picked in the lottery up to 4 October
2006 was 6780 and, given this total, 48 of the frequencies must be
given to define the table — meaning that there are 48 degrees of
freedom in this significance test. Commonly available χ2 tables do
not normally give probabilities for 48 degrees of freedom but there
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Table 8.7. Probabilities associated with the χ2 distribution for 48 degrees of
freedom.

Probability 0.50 0.25 0.10 0.05 0.025 0.01
χ2 47.33 54.20 60.91 65.17 69.02 73.68

are Web sources that enable such probabilities to be derived.Apartial
table for 48 degrees of freedom is given in Table 8.7.

From the table, we can see that the probability of getting χ2 =
51.56 or some greater value is greater than 0.25 so we have no reason
to suppose that the selection of national lottery numbers is biased
in any way.

This example shows the importance of doing objective statisti-
cal tests before jumping to conclusions on the basis of just examining
the numbers involved. Without doing such a test it might be con-
cluded that the discrepancy between the number of times that 38 and
20 occurred indicated some failure of the number-selection system.
However, the χ2 test confirms that this is not so and such variation
is within the bounds of normal random fluctuation.

8.4. American Craps with Loaded Dice

In Sec. 7.2, it was shown that the throwers chance of winning for
the American craps dice game is 0.492929, just slightly under 0.5 so
that the bank makes a small, but assured profit in the longer term.
However, let us suppose that the dice are slightly loaded. This could
be done by inserting a small lead weight within each die as shown
in Fig. 8.1 on the line between the center of the 1-face and the 6-face
(which are opposite to each other).

Now when the die rolls it will have a slight tendency to end
up with the lead weight as low as possible, i.e., closest to the table
thus increasing the chance of getting a 1 and decreasing the chance
of getting a 6. Now, we suppose that instead of the six numbers each
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The 1-face 

The 6-face 

Offset lead weight

Fig. 8.1. A loaded die.

having a probability of 1
6 = (0.1666•) the probabilities are:

P(1) = 0.175000, P(2) = P(3) = P(4) = P(5) = 1
6

,

and P(6) = 0.158333.

How much difference would this make?
To determine the new probabilities of winning and losing we

must go through the analysis as was done in Sec. 7.2. Since the prob-
ability is not the same for all faces the analysis is a little more com-
plicated but the principles involved are the same. In each case the
probability of getting a particular combination of two numbers on
the two dice is just the product of the individual probabilities for
each of the numbers.

Probability of a “natural”

This requires one or other of the combinations shown with their
probabilities as indicated.
Getting 7

6 + 1 1 + 6 2 × (0.1750 × 0.158333) = 0.055416,

5 + 2 4 + 3 3 + 4 2 + 5 4 ×
(

1
6

× 1
6

)
= 0.111111.

Total probability of 7 P7 = 0.055416 + 0.111111 = 0.166527.

We notice that this is less than 1
6(= 0.166667), the probability with

unloaded dice. In all the following calculations of probability with
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loaded dice we give the corresponding result with fair dice in
parentheses.
Getting 11

6 + 5 5 + 6 2 ×
(

0.158333 × 1
6

)
= 0.052778 (0.055556).

The probability of a “natural” is Pnatural = 0.166527 + 0.052778 =
0.219305 (0.222222).
Setting a “point”
Setting a “point” of 4 and then winning

3 + 1 1 + 3 2 ×
(

1
6

× 0.1750
)

= 0.058333,

2 + 2
1
6

×1
6

= 0.027778.

Hence P4 = 0.058333 + 0.027778 = 0.086111 (0.083333).
Then, the probability of getting 4 before 7 is

P4

P4 + P7
= 0.086111

0.086111 + 0.166527
= 0.340847 (0.333333).

To win with a “point” of 4 requires the two steps — first, to establish
the “point” and then to win with it. The probability of taking these
two independent steps is

Pw4 = 0.086111 × 0.340847 = 0.029351 (0.277778).

Setting a “point” of 5 and then winning

4 + 1 1 + 4 2 ×
(

1
6

× 0.1750
)

= 0.058333,

2 + 3 3 + 2 2 ×
(

1
6

× 1
6

)
= 0.055556.

Hence P5 = 0.058333 + 0.055556 = 0.113889 (0.111111).
Then, the probability of getting 5 before 7 is

P5

P5 + P7
= 0.113889

0.113889 + 0.166527
= 0.406143 (0.400000).
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The probability of taking the two independent steps is

Pw5 = 0.113889 × 0.406143 = 0.046255 (0.044444).

Setting a “point” of 6 and then winning

5 + 1 1 + 5 2 ×
(

1
6

× 0.1750
)

= 0.058333,

4 + 2 2 + 4 3 + 3 3 ×
(

1
6

× 1
6

)
= 0.083333.

Hence P6 = 0.058333 + 0.083333 = 0.141666 (0.138889).
Then, the probability of getting 6 before 7 is

P6

P6 + P7
= 0.141666

0.141666 + 0.166527
= 0.459667 (0.454545).

The probability of taking the two independent steps is

Pw6 = 0.141666 × 0.459667 = 0.065119 (0.063131).

Setting a “point” of 8 and then winning

6 + 2 2 + 6 2 ×
(

1
6

× 0.158333
)

= 0.052778,

5 + 3 3 + 5 4 + 4 3 ×
(

1
6

× 1
6

)
= 0.083333.

Hence P8 = 0.052778 + 0.083333 = 0.136111 (0.138889).
Then, the probability of getting 8 before 7 is

P8

P8 + P7
= 0.136111

0.136111 + 0.1666527
= 0.449749 (0.454545).

The probability of taking the two independent steps is

Pw8 = 0.136111 × 0.449749 = 0.061216 (0.063131).

Setting a “point” of 9 and then winning

6 + 3 3 + 6 2 ×
(

1
6

× 0.158333
)

= 0.052778,

5 + 4 4 + 5 2 ×
(

1
6

× 1
6

)
= 0.055556.

Hence P9 = 0.052778 + 0.055556 = 0.108334 (0.111111).
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Then, the probability of getting 9 before 7 is

P9

P9 + P7
= 0.108334

0.108334 + 0.166527
= 0.394141 (0.400000).

The probability of taking the two independent steps is

Pw9 = 0.108334 × 0.394141 = 0.042699 (0.044444).

Setting a “point” of 10 and then winning

6 + 4 4 + 6 2 ×
(

1
6

× 0.158333
)

= 0.052778,

5 + 5
1
6

×1
6

= 0.027778.

Hence P10 = 0.052778 + 0.027778 = 0.080556 (0.083333).
Then, the probability of getting 10 before 7 is

P10

P10 + P7
= 0.080556

0.080556 + 0.166527
= 0.326028 (0.333333).

The probability of taking the two independent steps is

Pw10 = 0.080556 × 0.326028 = 0.026264 (0.0277778).

The overall probability of the thrower winning with the loaded dice
is thus

Pw = Pnatural + Pw4 + Pw5 + Pw6 + Pw8 + Pw9 + Pw10 = 0.490209.

While this may not seem very different from the probability of win-
ning with the fair dice, 0.492929, it is, in fact, a very important dif-
ference. Now for every £500 staked by the thrower he gets a return
of £490 so that the banker makes a profit of £10 on a stake of £500 —
a return of 2.0% per game rather than the 1.4% received with the fair
dice. A 43% increase in the rate of return is by no means trivial!
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8.5. Testing for a Loaded Die

The effect of slightly loading the dice in a crap game so that a 1
appearing is very slightly favored may not be very noticeable in the
duration of a game involving one or two hundred throws. However,
as we have seen, it can give a substantial proportional increase in
the profit to the bank. If it were suspected that the dice were loaded
then how could it be tested? The obvious way would be to throw the
dice a large number of times to check that all the numbers appeared
with equal frequency. The problem with this is that even with a fair
die there would be some random fluctuations in the frequencies, as
was seen in Table 8.5 that generated random digits with a perfectly
fair random-digit generator. To be sure that the die was loaded, we
would have to carry out an objective test like the χ2 test. We would
start with the null hypothesis that the die was a fair one, throw it many
times, find the frequencies of the numbers 1 to 6 and then check that
the distribution found is not an improbable one for a fair die.

To simulate what would happen if the loaded die was thrown
many times, we are going to use a high-quality random-number gen-
erator that gives a uniform distribution between 0 and 1. Each num-
ber obtained is interpreted as a throw of the die in the following way:

Between 0.000000 and 0.175000 is equivalent to throwing a 1
(probability 0.175000)

Between 0.175000 and 0.341667 is equivalent to throwing a 2
(probability 0.166667)

Between 0.341667 and 0.508333 is equivalent to throwing a 3
(probability 0.166666)

Between 0.508333 and 0.675000 is equivalent to throwing a 4
(probability 0.166667)

Between 0.675000 and 0.841667 is equivalent to throwing a 5
(probability 0.166667)

Between 0.841667 and 1.000000 is equivalent to throwing a 6
(probability 0.158333).
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Table 8.8. A simulation of throwing a loaded die many times.

Total throws E 1 2 3 4 5 6 χ2

600 100 114 93 100 81 107 105 6.80
3,000 500 551 493 487 498 504 467 7.86

15,000 2500 2628 2471 2505 2510 2512 2374 13.35
45,000 7500 7832 7513 7536 7485 7508 7126 33.58

This gives a probability of 0.175000 of obtaining a 1, a prob-
ability of 0.1583333 for a 6, and a probability of 1/6 (very nearly)
for the other numbers — the loading of the die considered in
Sec. 8.4.

When 600 random numbers were generated, and translated
into equivalent throws of the die, the result is as given in the first
numerical row of Table 8.8.

For the null hypothesis of a fair die, the expected frequency
of each number, shown in the column headed E, is 100. The actual
numbers vary between 81 and 114. We can calculate the value of χ2

as we did for the random digits in Sec. 6.2 but now, with six faces of
the die rather than ten digits, the number of degrees of freedom is
five. Part of a probability table for five degrees of freedom is given
in Table 8.9.

The value of χ2 for 600 throws is

χ2 = (114 − 100)2

100
+ (93 − 100)2

100
+ (100 − 100)2

100
+ (81 − 100)2

100

+ (107 − 100)2

100
+ (105 − 100)2

100
= 6.80.

Table 8.9. Probabilities associated with the χ2 distribution for five degrees of
freedom.

Probability 0.50 0.30 0.20 0.10 0.05 0.025 0.02 0.01 0.005
χ2 4.351 6.064 7.289 9.236 11.070 12.832 13.388 15.086 16.750
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From Table 8.9, we see that there is about a 25% chance of getting
this value of χ2, or some greater value, with a fair die; there is no
evidence that the die is biased for a test with this number of throws.
Now suppose that we increase the number of test throws to 3,000.
The number 1 now appears clearly more frequently than any other
but the value of χ2, 7.86, or some greater value, has a probability of
somewhat less than 0.2 of being found with a fair die. We could not
be confident that the die was unfair with this test.

When we do a test with 15,000 throws the evidence for a loaded
die becomes stronger. The value of χ2, 13.35, or some greater value,
has a 1 in 50 chance of happening with a fair die. We may be fairly
confident that the die is loaded. However, with 45,000 throws and
a value of χ2 = 33.58 we may be completely certain that the die is
loaded.

With 45,000 throws the proportion of throws for the various
numbers are

1 0.1740 2 0.1670 3 0.1675 4 0.1663 5 0.1668 6 0.1584,

which are very close to expectation. For a large-scale test it is possible
to find not only that the die is loaded but also a good estimate of the
way that it is loaded.

8.6. The Roulette Wheel

A roulette wheel, as found in European casinos, contains 37 num-
bered slots uniformly distributed around its rim within an annular
valley. When the wheel is spinning quite quickly a steel ball is tossed
into the valley after which it bounces around in haphazard fashion
until eventually it lands up in one of the slots. The slots are num-
bered from 0 to 36 and there are various ways of betting on the spin
of the wheel. One may pick one of the 36 non-zero numbers and
if the ball lands on the number the punter gets odds of 35:1, i.e.,
he gets 36 time his stake returned. Another way is to bet on either
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even or odd numbers where the odds are 1 to 1, or evens, or on a
group of six numbers where the odds are 5 to 1. If the only numbers
on the wheel were 1 to 36 then the casino and the punter would be
playing on even terms. However, on average once every 37 spins of
the wheel, the ball lands in the zero and then the casino takes all the
stakes; this is its profit.

The standard roulette wheel used in the United States is some-
what more profitable to the casino because it not only has a 0 slot
but also a 00 slot when the casino takes all (Fig. 8.2).

A wheel which is slightly off-center might give an increased
tendency for the ball to fall in the zero. The ball is usually made of
steel so a bias toward zero may also be made with a magnet but this
form of cheating is so easily detected that it is never used. To test a
roulette wheel for fairness it is necessary to spin it many times. From
the point of view of fairness there are only two types of numbers — 0
and non-0. Suppose that a wheel gave a frequency of 0s 10% greater
than it should. Could this be detected with, say, 3,700 spins of the

Fig. 8.2. An American roulette wheel with 0 and 00.
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wheel? With the null assumption that the wheel is fair the observed
and expected tables are as shown below.

0 non-0

110 3,590

0 non-0

100 3,600

Observed

Expected

The value of χ2 for these tables is 1.028 which for one degree
of freedom (Table 6.1) would not indicate bias with any certainty.
However, if 0 turned up 1,100 times in 37,000 spins the value of χ2

would be 10.28; the chances of getting this value of χ2 or a greater
value is only one in a thousand so there would then be clear evidence
for a biased wheel.

Where casinos are licensed to operate, either locally or nation-
ally, they are also monitored and the punter may be reasonably sure
that the equipment used is fair and without bias.

Problems 8

8.1. When a die is thrown 600 times the occurrence of the various
sides is as follows:

1 2 3 4 5 6

112 113 81 109 101 84

On the basis of this test is there a greater than 90% chance that
the die is unfair?
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Note: The wording of this question implies that the probability
of getting the associated value of χ2, or some greater value, with
a fair die is less than 10%.

8.2. Aheavily biased die has the following probabilities of obtaining
the various sides:

1 2 3 4 5 6
1
4

1
6

1
6

1
6

1
6

1
12

What is the probability that the thrower will get a natural?
8.3. In 370 spins of a European roulette wheel a 0 occurs 20 times.

Would you be justified in suspecting that the wheel was biased?
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Chapter 9

Block Diagrams

Variety’s the very spice of life, That gives it all its flavour
(William Cowper, 1731–1800)

9.1. Variation in Almost Everything

Most natural classes of objects show variations. There is the saying
“They are as alike as two peas in a pod” but when you examine the peas in
a pod carefully they are all different — in size, weight or blemishes on
their surfaces. In particular, it is a matter of everyday experience that
all human beings are different. Identical twins come from the same
divided ovum and are thus identical in their DNA composition but,
nevertheless, even the most similar identical twins differ in some
small characteristics. The fact is that we are all the products both
of nature and nurture and, whatever our genetic inheritance, the
environment in which we develop and live and our life experiences
will influence our characteristics. An individual may be genetically
inclined to be tall, but if he has an inadequate diet then he will
never achieve the capability given by his genes. Differences between
people can be both physical and non-physical so that, for example,
people have wide differences of temperament. One person is placid,
another excitable, one may be of happy disposition and another
morose. As William Cowper stated in the quotation that begins this
chapter, this variety is all part of the rich tapestry of life.

Non-physical characteristics can usually be expressed in a qual-
itative way but may be difficult or impossible to quantify. Joe may

95
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be impulsive, Jim may be reflective and deliberate in his actions and
John is somewhere in-between, but how can these characteristics be
numerically described? By contrast physical characteristics are eas-
ily measured. We may generally describe people as tall, short or of
average height but we can be more specific by giving their actual
measured heights. Thus, a man who is 1.91 m (6′3 1/4”) tall would be
regarded as tall in a European context although he would be con-
sidered of normal height by the Watutsi people of Ruanda, many
of whom grow to a height of 2.1 m (nearly 7′) or more. This exam-
ple gives us a warning. Comparative terms such as tall or short only
have meaning when the context in which they are applied is known.
Ashort man in Europe may be average, or even tall, by the standards
of the pigmy people of the Congo and tall in Europe may not mean
the same as tall in Ruanda. We should stick to numbers — these
mean the same thing everywhere.

Variation occurs in entities other than human beings. In other
animals, in plants, and in geographical features such as the length
of rivers — in all these there is variation. Only scientists deal with
objects, which by their very nature are identical. All atomic parti-
cles of the same kind are precisely the same. There is no way that
two electrons can be distinguished — if there were then the whole
of physics as a subject would be radically different and the phys-
ical world would be very difficult, or even impossible, to describe
in a systematic way. But atomic particles are things we cannot see
although we can infer their existence with complete certainty. In the
things that we can see no two are alike; however similar they may
seem superficially, at some level of refinement they will be found to
be different. Usually variations are just matters of note but, partic-
ularly in the human context, they can be of greater importance and
may even be of commercial significance.

9.2. A Shoe Manufacturer

The objective of a shoe manufacturer is to make shoes to be sold at
a profit to a shoe wholesaler who will, in turn, sell them to a retailer
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at a profit who will, in turn, sell them to a customer at a profit. The
last link in this chain is the customer and satisfying the needs of cus-
tomers is the key to the success of the whole enterprise. If a customer
comes into a shop and cannot find the size of shoe to fit him or her
then a sale is lost. Another adverse factor in the profit-making enter-
prise would be if a large surplus of some particular sizes of shoe
were to build up at any stage of the chain because this would corre-
spond to an unproductive tie-up of capital. It is of interest to all that
the number of shoes of a particular made size should approximately
match the number the customers needing that size.

Let us consider men’s shoes. If it were possible to check the shoe
size of every man in the community then the proportions of shoes
required of each size would be known.Although that would not be a
feasible exercise, there is a process called sampling, that is described
more fully in Chap. 14, by which a close approximation to the rel-
ative numbers required of each size can be found. Such a sampling
exercise would probably find that the great majority of men’s shoes
fell within the UK sizes 6–13 with a tiny fraction outside that range.
Extreme sizes, at least in the upward direction, would fall in the
province of shops dealing with unusual clothing requirements —
and the cost to customers of providing such a need is usually quite
high. However, within the normal commercial range the obviously
efficient thing to do would be to manufacture numbers of men’s
shoes with sizes in the same proportions as occur in the adult male
population. Notional proportions, somewhat idealized, are shown
in Table 9.1 for shoe sizes 6–13 in steps of 1/2.

Table 9.1 gives the essential information about the proportions
of shoes of each size required but the detailed numbers must be
studied at some length to appreciate the variation of demand over
the size range. A better visual picture giving the overall pattern of
demand is given in Fig. 9.1, where the same information is presented
in the form of a block diagram, or histogram, in which the length of
a block gives the proportion of shoes required of the indicated size.

The symmetrical bell-shaped distribution shown in Fig. 9.1 is
very common in naturally occurring quantities. Since values, either
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Table 9.1. Notional proportions of men’s shoe sizes between 6
and 13.

Shoe size Proportion Shoe size Proportion

6 0.0004 10 0.1761
61/2 0.0022 101/2 0.1210
7 0.0088 11 0.0648
71/2 0.0270 111/2 0.0270
8 0.0648 12 0.0088
81/2 0.1210 121/2 0.0022
9 0.1761 13 0.0004
91/2 0.1995

0
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Distribution of shoe sizes between 6 and 13

Fig. 9.1. The distribution of men’s shoe sizes shown as a histogram.

at the extreme smaller end of the scale or at the extreme larger end,
are usually rare, a bell-shape is very common, although it may not
necessarily be symmetrical. However, there are exceptions to the
conditions that give bell-shaped distributions and other types of
distribution are possible.
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9.3. Histogram Shapes

As an example of a non-bell-shaped histogram, Fig. 9.2 gives the
average night-time cloud cover, month-by-month, averaged over a
five year period at Trenton in Ontario — something of interest to
astronomers.

Although this seems very different from the histogram repre-
senting shoe sizes, in fact, there is some similarity. The months of the
year run cyclically and deciding to begin the year with the month
of January is an arbitrary choice. If we re-plotted Fig. 9.2 starting
with August as the first month then the cloud cover steadily rises
each month up to January then falls steadily until April. Enhanced
cloud-cover in May and June spoils the bell-shaped pattern. In fact,
we can interpret the cloud-cover histogram as a bimodal distribution,
i.e. one with two peaks, occurring in January and June.

The bimodal nature of the cloud-cover distribution is not too
pronounced but there are situations where much stronger bimodal

Fig. 9.2. Average cloud cover on a monthly basis at Trenton, Ontario.
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Fig. 9.3. The Old Faithful Geyser, Yellowstone Park, USA (USGS).

distributions can occur. One of the great wonders of nature, in Yel-
lowstone Park in the USA, is the Old Faithful geyser (Fig. 9.3). This
geyser may be faithful but it is somewhat variable in its behavior.
It erupts at intervals between 65 and 92 mins, mostly at the longer
end, sending anything from 14,000 to 32,000 liters of boiling water
to a height between 30 and 55 m. The duration of each eruption is
also very variable, being between 1.5 and 5 mins. Figure 9.4 shows a
histogram of the relative number of eruptions of various durations,
with durations divided into intervals of 1/3 min. This means that
the first interval is between 1.5 and 1.833 mins, the second between
1.833 and 2.167 mins and so on. In Fig. 9.4 the bimodal nature of the
frequency is clearly seen. Most eruptions last either about 2 mins or
4 mins with 3 mins eruptions, or thereabouts, being comparatively
rare.
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Fig. 9.4. The distribution of eruption durations for Old Faithful.

Other shapes of histogram can occur but only rarely. The bell-
shaped and bimodal histograms account for most of the distribu-
tions that occur naturally.

9.4. Lofty and Shorty

In Fig. 9.1 a bell-shaped histogram comes about from a quantity, shoe
size, which is discrete — i.e. can only occur with particular values.
No shoes of size 9.35 are manufactured and if you require shoes that
are not one of the standard sizes then you must go to the expense of
having them made to measure. However, there are quantities that
are continuously variable — height, weight etc., and we shall now
see how to represent these by means of histograms. We have already
introduced this idea for the eruption durations of Old Faithful where
the durations were divided into 1/3 min intervals.

It is common to give people nicknames dependent on their
heights, especially in environments such as an army barracks, a
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school or a workplace. Thus, the 1.91 m (6′31/4
′′) man becomes

known as “lofty” and the 1.62 m man (5′4′′) is called “shorty.” Some-
times, perversely and as a form of irony, the short man is called
“lofty” and the tall man “shorty” — but the main point here is
that in some way or other the extremes of height are being high-
lighted in some way. The majority of men fall in the middle range
of height and so they are not granted a distinguishing nickname
relating to height — “middley”, for example, could be applied to
most men.

If a man is asked for his height he will usually quote it to the
nearest centimeter or quarter-inch but it is only an approximation.
If someone says that he is 1.76 m tall what he really means is that
his height is closer to 1.76 m than to either 1.75 m or 1.77 m. In
fact in giving his height as he does he is implying that his height
is somewhere between 1.755 m and 1.765 m. Figure 9.5 shows the
basis of this implication.

We now consider the question “What is the probability that an
adult British male, chosen at random, will have a height of 1.76 m?”
The question, in a strictly scientific sense, is meaningless since there
may be nobody who is exactly 1.76 m tall although there may be
several men between 1.7599 m and 1.7601 m tall. The question only
makes sense if we ask for the probability that the man will be in a
certain range of height — for example between 1.755 m and 1.765 m.
If we could explore the whole population of British adult males and
look at the proportions in various heights in the range of 1 cm, we
could produce a histogram looking something like Fig. 9.6.

1.76 m 1.77 m1.75 m

1.755 m 1.765  m

Implied range 

Fig. 9.5. The implied range of possible heights for a quoted height of 1.76 m.
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Fig. 9.6. A histogram showing proportion of UK males in 1 cm height intervals.
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Fig. 9.7. A histogram showing proportion of UK males in 0.5 cm height intervals.

We notice that the histogram shown in Fig. 9.6 is somewhat
smoother in appearance than the one in Fig. 9.1 and this smoothness
is dependent on the size of the interval we choose for the blocks. For
example, in Fig. 9.7 we show the same distribution of heights but
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this time plotted in half-centimeter blocks and the result is smoother
than that shown in Fig. 9.6.

We notice that the lengths of the blocks are less in Fig. 9.7 than
in Fig. 9.6 since the blocks are narrower and the proportion of men
with heights in a 0.5 cm interval centered on 1.75 m will obviously
be one-half of the proportion in a 1 cm interval.

As we make the intervals smaller and smaller so the saw-tooth
serrations along the boundary get finer and finer. In the following
chapter we will see what happens when we take this to the limit of
very tiny (theoretically zero) intervals.

Problem 9

9.1. Women’s off-the-peg dresses in the UK are normally manufac-
tured in sizes ranging from 6 to 26 in steps of 2. The proportions
of women in each size category, excluding the very few outside
that range, are:

6 0.07 18 0.09
8 0.10 20 0.04
10 0.15 22 0.03
12 0.20 24 0.02
14 0.16 26 0.01
16 0.13

Draw a histogram to represent this table. The shop has a policy
of charging the same price for all sizes of a particular style. If
it only stocked sizes 8 to 18 its overall costs would be reduced
and its profit per garment sold would increase by 20%. In the
interests of its shareholders should it reduce the range of sizes
it sells?
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Chapter 10

The Normal (or Gaussian) Distribution

…that of the strange and sinister embroidered on the very type of the
normal and easy. (Henry James, 1843–1916)

10.1. Probability Distributions

Let us imagine that we take the distribution of men’s heights, as
illustrated in Figs. 9.6 and 9.7 and we make the intervals narrower
and narrower so that the appearance of the curve becomes smoother
and smoother. Eventually we reach a distribution that is completely
smooth, looking somewhat like the curve shown in Fig. 10.1. How-
ever, you may have noticed an important difference between this
distribution and the ones shown in Figs. 9.6 and 9.7. When we went
from wider to a narrower blocks in going from Fig. 9.6 to Fig. 9.7 the
lengths of the blocks went down, with the maximum length going
from about 0.057 to about 0.028. You may well ask why it is that
when we represent the situation of having infinitely narrow blocks
the maximum shoots up to nearly 7. How does this come about?

We can best understand this by going back to Fig. 9.1 and inter-
preting what we see there. The length of the block corresponding to
size 91/2 is 0.1995 corresponding to the proportion of shoes required
of that size. Another way of thinking about this is to say that if we
pick a pair of shoes at random from all the available pairs then there
is a probability of 0.1995 that it will be size 91/2. Similarly, the length
of the block corresponding to size 10 (and also to size 9) is 0.1761 and
this is the probability that a pair of shoes chosen at random will be

105
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Fig. 10.1. A distribution of heights for infinitely small intervals.

size 10 (or size 9). We now ask the question “What is the probability
that a pair of shoes chosen at random will be one of size 9, size 91/2

or size 10?”. Since the choices are mutually exclusive — if one size
is chosen then the other two sizes are excluded — then the answer
is obtained by adding the lengths of the blocks corresponding to the
three sizes — i.e., 0.1761 + 0.1995 + 0.1761 = 0.5517. Extending this
idea we now ask what the probability is of choosing a pair of shoes
at random and having a size somewhere in the range 6–13. This is
obtained by adding the lengths of all the blocks in Fig. 9.1 and the
answer is found to be 1 — which can be checked from the figures
in Table 9.1. A probability of 1 means “certainty”; all the shoes are
between sizes 6 and 13 so it is completely certain that the pair chosen
will be one of these sizes.

With this interpretation of the lengths of the histogram blocks
we now consider Figs. 9.6 and 9.7 which portray the notional height
distribution of UK males. The sum of the lengths of the blocks has
to be 1 in each of the figures but since there are twice as many blocks
in Fig. 9.7 as there are in Fig. 9.6 the lengths of the blocks in Fig. 9.7
are, on average, one half of the lengths of those in Fig. 9.6.
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Fig. 10.2. A narrow strip of the distribution of Fig. 10.1, of width 0.01 centered
on 1.70.

The continuous curve in Fig. 10.1, which contains no blocks of
defined width with lengths to represent probabilities, has to be con-
sidered in a different way. In Fig. 10.2 we show a narrow strip of the
curve, of thickness 0.01 m centered on the height 1.70 m. The strip
covers the range of heights from 1.695 m to 1.705 m and the proba-
bility that a man chosen at random would have a height between
these limits is now taken as being given by the area of the strip — not
the length of the strip as for the previous histograms. It follows from
this that the probability that the randomly chosen man would have
a height somewhere between h1 and h2, also shown in Fig. 10.2, is
the total area under the curve between those two limits. Extending
this idea the probability that a man chosen at random would have
a height between 1.40 m and 2.10 m is the total area under the curve
and must be 1, or nearly so, because all, except a very few individ-
uals, fall inside this range. To check this, Fig. 10.3 shows the curve
covered by a mesh of blocks, each of area 0.1 (length 1 × breadth 0.1).
Some blocks fall completely under the curve and some partially so
and within each block is given the estimated fraction of the block
in the region below the curve to the nearest 0.1. Adding all these
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Fig. 10.3. The fractions of blocks under the curve judged to the nearest 0.1.

numbers gives 10.0 which, multiplied by 0.1, the area of each block,
gives the area under the curve as 1 — as it should be.

10.2. The Normal Distribution

The symmetrical bell-shaped distribution shown in Fig. 10.1 is the
one that occurs frequently in nature. Its mathematical form was first
described in detail and made well known by Johann Carl Friedrich
Gauss (1777–1855) — who is usually known as Carl Gauss since
for some reason he discarded the Johann part of his given name
(Fig. 10.4). It was first used in a mathematical context by Abra-
ham de Moivre (1667–1754), a French mathematician, in 1733 but
its widespread applications were not realized at that time.

This distribution is now called a normal distribution or, especially
by physicists, a Gaussian distribution, and its properties are of great
interest to the statistician. Because of its symmetrical form it is clear
that the peak of the curve represents the average, or mean, value.
What is also of interest is the spread of the curve. To illustrate this,
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Fig. 10.4. Carl Friedrich Gauss.
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Fig. 10.5. Three normal distributions with the same mean but different spreads.

in Fig. 10.5 there are shown three normal curves with the same mean
but with different spreads.

Since the area under all the curves equals 1 this means that the
greater the lateral spread the less is the height of the curve — as is
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seen in the figure. We now have to find out how it is that different
curves, as shown in Fig. 10.5, can all be described as normal curves.

10.3. The Variance and Standard Deviation

Clearly, what is needed to describe the difference between the curves
in Fig. 10.5 is some numerical quantity related to their spread of
values. To see what this could be we consider the following two sets
of seven numbers:

Set A 7 8 9 10 11 12 13
Set B 1 6 9 10 11 14 19

The sum of each set of numbers is the same, equal to 70, so the
average of each set is the same, equal to 10 (70/7). What we now do
is to find the sum of the squares of the differences of each number in
a set from the average for that set. We now illustrate this with set A.

Set A 7 8 9 10 11 12 13
Difference from average (10) −3 −2 −1 0 1 2 3
Square of difference 9 4 1 0 1 4 9

We notice here that the square of −3 is the same as the square of +3.
The sum of the squares of the differences is 28 and now we find the
average square of difference for the seven numbers as

V = 28
7

= 4.

This quantity V that describes the spread of the set of numbers is
known as the variance and taking its square root gives the standard
deviation of the set of numbers, usually represented by the Greek
letter σ. Here we have

σA = √
V = √

4 = 2.
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The same process carried out for set B gives:

Set B 1 6 9 10 11 14 19
Difference from average (10) −9 −4 −1 0 1 4 9
Square of difference 81 16 1 0 1 16 81

The variance is V = (81 + 16 + 1 + 0 + 1 + 16 + 81)/7 = 196/7 = 28
and hence

σB = √
V = √

28 = 5.29.

The values of the standard deviations, σA and σB, are measures of
the spread of the two sets of numbers and clearly indicate that set B
has a much larger spread than does set A.

Now a normal distribution may come from a large number,
perhaps many millions, of quantities and for these quantities, and
hence for the distribution function they form, there will be a standard
deviation. In fact, the three distributions shown in Fig. 10.5 have
variances of 1, 2, and 3 and hence standard deviations of 1,

√
2, and√

3, respectively.

10.4. Properties of Normal Distributions

An important characteristic of normal distributions is that, essen-
tially, they all have the same shape. You may look at Fig. 10.5 and
wonder how that can be so — surely the three curves shown have
different shapes! To understand what is meant in saying that all nor-
mal curves essentially have the same shape, we consider Fig. 10.6 that
shows a normal curve with distances 1σ, 2σ, and 3σ from the mean,
on both sides of the mean, indicated by vertical lines. The total area
under the curve is 1 — a necessary condition for a sensible distribu-
tion curve. The characteristic of all normal distributions, no matter
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Fig. 10.6. A normal curve with lines at ±σ, ±2σ and ±3.

what are their standard deviations, is that:

The area between −σ and + σ is 0.6826
The area between −2 σ and +2σ is 0.9545
The area between −3 σ and +3 σ is 0.9973

We now discuss what this means? If a particular quantity has
values with a normal distribution then the probability that one of
the values chosen at random differs in magnitude from the mean,
either in the positive or negative direction, by 1σ or less, is 0.6826. It
follows from this that since the total area under the curve is 1, we can
say that the probability that the quantity differs in magnitude from
the mean by more than 1σ is 1 − 0.6826 = 0.3174, roughly one-third.
By the same reasoning we can also see that the probability of having
a quantity more than 3σ from the mean is only 0.0027, about 1 chance
in 400. In the language of statisticians a part of the curve beyond a
particular specified limit is referred to as a tail of the distribution.

Finding the areas from the mean either out to, or beyond, a
particular number of standard deviations for a normal curve is fre-
quently required in statistical work. Table 10.1 gives the area from
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Table 10.1. Area from the mean to n standard deviations from the mean
for a normal distribution.

N 0.0 1.0 2.0 3.0 4.0

0.0 0.0000 0.3413 0.47725 0.49865 0.49997
0.1 0.0398 0.3643 0.48214 0.49903
0.2 0.0793 0.3849 0.48610 0.49931
0.3 0.1179 0.4032 0.48928 0.49952
0.4 0.1554 0.4192 0.49180 0.49966
0.5 0.1915 0.4332 0.49379 0.49977
0.6 0.2257 0.4452 0.49534 0.49984
0.7 0.2580 0.4554 0.49653 0.49989
0.8 0.2881 0.4641 0.49744 0.49993
0.9 0.3159 0.4713 0.49813 0.49995

the mean out to four standard deviations (just in one direction) in
steps of 0.1 σ.

To illustrate the use of this table, if we wish to find the area from
the mean out to 1.7 standard deviations from the mean then we go
down the column headed 1.0 down to the row labeled 0.7 and read
off the area, 0.4554.

The distribution of men’s heights shown in Fig. 10.1 has a mean
of 1.75 m and a standard deviation of 0.06 m (6 cm). Thus, the prob-
ability that a man chosen at random is taller than 1.90 m (equivalent
to 6′23

4
′′
) can be found by noting that 1.90 m is 15 cm, or 2.5σ from

the mean. We can now find the area under the curve from the mean
out to 2.5σ from the sixth entry down in the column headed 2.0 in
Table 10.1. This is 0.49379. The total area in one half of the curve is
0.5 so that the area beyond 2.5σ is 0.5 − 0.49379 = 0.00621, which
is the probability that a man chosen at random has a height greater
than 1.90 m. To see what this means we consider a town with 30,000
adult males. Of these 30, 000×0.00621 = 186 of them should be taller
than 1.90 m. In the other direction the height 1.60 m (5′3′′) is 2.5σ less
than the mean height so 186 of the townsmen should be shorter than
this height.
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10.5. A Little Necessary Mathematics

10.5.1. Some Special Numbers

A number that occurs a great deal in mathematics is the exponential
e given by

e = 2.718281828.

It seems a fairly arbitrary number but it crops up over and over
again in mathematics and the sciences in a very natural way. It is not
easy to explain to a non-mathematician how and why it occurs so
naturally — but it does. One way of defining e is to take the equation

ε =
(

1 + 1
n

)n

(10.1)

and to make n very large — in fact infinity. Here we show the
value of ε, starting with n = 2 and increasing n to the final value
of 1,000,000.

n ε

2 (1 + 0.5)2 = 2.250000
5 (1 + 0.2)5 = 2.488320

10 (1 + 0.1)10 = 2.593742
20 (1 + 0.05)20 = 2.653298
50 (1 + 0.02)50 = 2.691588

100 (1 + 0.01)100 = 2.704814
200 (1 + 0.005)200 = 2.711517
500 (1 + 0.002)500 = 2.715569

1000 (1 + 0.001)1000 = 2.716924
10,000 (1 + 0.0001)10,000 = 2.718146

1,000,000 (1 + 0.000001)1,000,000 = 2.718280.
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As we make n larger and larger so ε gets closer and closer to e.
While e cannot be justified as a special number very easily, the

same is not true for another frequently occurring number, repre-
sented by the Greek letter pi, given by

π = 3.141592654

that is easily described as the circumference of a circle divided by
its diameter. This was used in the simple random-number generator
described in Eq. (8.1).

10.5.2. Powers of Numbers

Another piece of mathematics that is fairly familiar consists of taking
powers, a process that was used in the calculations using Eq. (10.1)
to find the successive approximations to e. Thus, for example, we
know that the square of 2 is 4 and the cube of 2 is eight, which we
can write mathematically as

22 = 2 × 2 = 4 and 23 = 2 × 2 × 2 = 8.

We see there the notation 22 for the square of 2 and 23 for the cube
of 2. However, mathematically we can have 22·3 and this cannot be
written as 2 multiplied by itself a finite number of times. The first
step in understanding what this means is to consider the following:

22 × 23 = (2 × 2) × (2 × 2 × 2) = 32 = 25 or, in general,

xa × xb = xa+b. (10.2)

The general equation can be related to the original specific example
by taking x = 2, a = 2 and b = 3. In fact, this idea can be extended
to the product of many powers of x so that, for example, we come



March 24, 2008 17:9 B-595 ch10

116 Everyday Probability and Statistics

to our first rule for handling products of powers

Rule 1 xa × xb × xc × xd = xa+b+c+d. (10.3)

Now, we consider what happens when we take a power of a power
of a number. The following example, taking the square of 2 cubed,
illustrates this

(22)3 = (2 × 2) × (2 × 2) × (2 × 2) = 22×3 = 26.

This generalizes to the second rule

Rule 2
(
xa)b = xa×b. (10.4)

We can now understand what is meant by fractional powers of num-
bers. For example, from Rule 1

2
1
3 × 2

1
3 × 2

1
3 = 21 = 2

so that 2
1
3 is the cube-root of 2, i.e., the number such that the product

of three of them gives 2. By generalization we can see that

x
1
n is the nth root of x, (10.5)

i.e., the number such that the product of n of them gives x.
With the above information we are now in a position to under-

stand what 22·3 means. According to Rule 2 we can write it as

22·3 = (223)
1
10

which is the tenth-root of 223. In fact, it can be found with a scientific
hand-calculator in the form 22·3 and is 4.9246.

We finish with a last little oddity. Using Rule 1 we find:

xa × x0 = xa+0 = xa

from which we come to the conclusion that x0 = 1. This is absolutely
true — any finite number raised to the power zero equals 1!
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What we have established is that any positive quantity can be
raised to any power and that this power can be fractional or even
zero. We do not have to worry about interpreting such calculations
when we need them — they can easily be found by calculators or
computers.

10.6. The Form of the Normal Distribution

The formula describing the normal distribution involves the expo-
nential e raised to some power — something of the form ex. However,
x is itself a complicated function and there is obviously a problem
in showing ex clearly if x is a bulky function to express. To help with
this problem there is a convention by which one can write

ex = exp (x). (10.6)

With this notation we can represent the normal (Gaussian) distri-
bution for a quantity x that has a mean value x̄ and a standard
deviation σ as

P(x) = 1√
2πσ2

exp

{
−(x − x̄)2

2σ2

}
. (10.7)

With x representing height, the mean height x̄ = 1.75 m and the
standard deviation σ = 0.06 m this produces the curve shown in
Fig. 10.1. The factor before “exp” ensures that the curve is properly
scaled so that the area under the curve is 1.

10.7. Random and Systematic Errors

When a scientist carries out an experiment, say to find the speed of
light, he will make various measurements and then combine them
to get the quantity he wants. For example, measuring the speed of
light may involve a measurement of distance and a measurement of
time and both these measurements will have some associated error.
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The error may be large, small or even minute but no matter how
much care the scientist takes there will be some error. The errors in
the different measurements — and in some experiments there can
be many of them — will combine together to give an error in the
estimated value of the quantity of interest. Now, we imagine that
the scientist repeats the experiment many times (he would not do so
in practice) and ends up with a large number of estimates. The dis-
tribution of the values of these estimates would be Gaussian with a
mean close to the true value of the quantity and a standard deviation
that would depend on the precision of the individual measurements.
If the measurements were all made very precisely then the standard
deviation of the distribution would be small; if they individually
had large errors then the standard deviation would be large.

Another kind of procedure that would involve errors is the mea-
surement of a baseline in surveying. To create a map it is necessary to
measure a baseline, perhaps several kilometers long, that will create
the correct scale for the mapping procedure. A classical way of mea-
suring a baseline was with a steel tape. The length of the tape was
marked off repeatedly over the whole span of the baseline with each
length indicated by score lines on a metal plate attached firmly to
the ground. The tape was suspended above the ground attached to
supports adjusted to be at the same level at each end. Because of its
weight the tape was not straight but bowed downwards in a shape
known as a catenary and a correction had to be made for this effect.
Considering the complication of this process the measurements were
made with surprising precision. Even earlier a standard chain was
used, 100 feet long, which was supported horizontally by wooden
coffers each 20 feet long. These were used in the great survey of India,
carried out by the British army at the beginning of the 19th century,
and completed by Colonel George Everest whose name was given
to the world’s highest mountain. Baselines of length 7–10 miles were
measured with an accuracy of about 1 in — approximately two parts
in a million. Every measurement of a single chain length, of which
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there would be several hundred along the baseline, would involve a
small error, sometimes positive and sometimes negative. The sum of
these errors gave the total error in the measurement of the baseline
and, clearly, positive and negative errors would compensate to some
extent. Nevertheless, if the baselines had been measured many times
the estimates would have had a normal distribution centered on a
value close to the correct value and with a standard deviation of the
order of 1 in.

In the above discussion of errors, we have assumed that the
errors in the measurements were random and equally likely to be
negative as positive. However, there is another kind of error for
which this supposition is not true. Let us suppose that the steel tape,
or the chain, used for the baseline measurement had stretched —
which sometimes they had. Now a distance estimated as 100 feet,
the assumed length of the chain, is actually slightly longer so the
total distance is going to be underestimated independent of any
random errors. The total baseline measured with a stretched chain,
if measured many times, would give a normal distribution of esti-
mated distances with a standard deviation dependent on the mag-
nitude of the random errors but with a mean shorter than the true
distance. This error of the mean is called a systematic error.

Assuming that only random errors are present, if the quantity is
measured as X with an estimated standard deviation (usually called
a standard error in this context) of σ then the probability that the true
value is in the range X+σ and X−σ is 0.6826 and in the range X+2σ

and X − 2σ is 0.9545, just as indicated by a normal distribution.

10.8. Some Examples of the Normal Distribution

10.8.1. Electric Light Bulbs

Hot-filament electric light bulbs are a common and cheap com-
modity, produced in large numbers by mass-production processes.
Inevitably there is some variation in their characteristics and the
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one that most people are concerned with is their lifetime. A more
expensive light bulb that lasts longer may be preferred to a cheaper
one with a shorter lifetime, no matter what the relative cost per hour,
if the effort of changing a bulb is a primary consideration.

We now consider a particular brand of light bulb that is found
to have a mean life of 1,000 h and a standard deviation of 100 h.
Assuming that the lifetimes have a normal distribution then what is
the probability that a particular bulb will have a lifetime of more than
1,200 h? Since 1,200 h is 2σ from the mean we are interested in the area
of that part of the normal distribution that is more than 2σ from the
mean in the positive direction. From Table 10.1 the area between the
mean and 2σ from the mean is 0.47725 so the area in the tail more than
2σ from the mean in the positive direction is 0.5−0.47725 = 0.02275.
Hence the proportion of bulbs with a lifetime of more than 1,200 h
is about 1 in 45. We should also note that this is also the probability
of a lifetime of less than 800 h.

If we bought a light bulb and it only lasted 700 h would we be
justified in complaining? Not really — in the sale of millions of light
bulbs some would inevitably fail early. We would not be rushing to
pay the shop extra money if we had a bulb of unusually long lifetime.
Again the pattern of use must be taken into account since constantly
turning a bulb on and off subjects it to thermal shocks that shorten
its lifetime. In the museum in Fort Myers, Florida, devoted to the
work of the inventor Thomas Edison (1847–1913) who invented the
first practical filament light bulb in 1879, one of the original bulbs is
still burning. It has never been switched off.

10.8.2. People on Trolleys and Under-Used Resources

Occasionally a story hits the news media in the UK concerning an
individual left on a hospital trolley in a corridor for several hours.
Clearly, the National Health Service is under-resourced, inadequate
and failing — or so the tabloid press would have you believe!
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The provision of a health service is made complicated by the
fact that the demands on it are spasmodic and unpredictable. A cold
snap or an influenza epidemic may mean a sudden large increase in
the admission of elderly patients. It could be argued that although
the times of occurrence of these eventualities are unpredictable it
is known that they occur from time to time so provision should be
made for them. Let us see what the implications of this argument are
by considering a hypothetical hospital with 1,000 beds. The demand
for beds, estimated over a long period of time, suggests that the
average demand on any day is 900 beds with a standard deviation
of 50. Now, on the (dubious) assumption that the daily demand
follows a normal distribution we consider the following questions:

(a) On how many days per year, on average, is the hospital unable
to provide all the beds required?

If more than 1,000 beds were required then the demand would be
more than 2σ from the average. From the light-bulb example we
know that the area of a single tail more than 2σ from the mean is
0.02275 so the number of days per year that demand cannot be met
is 365 × 0.02275 = 8 days to the nearest whole number. Sometimes
the excess demand can be moved to a neighboring hospital but if all
local hospitals are under pressure then the hospital-trolley expedient
becomes necessary.

(b) On how many days per year, on average, is the hospital working
at less than 90% capacity?

Since 90% capacity is 900 beds, the average demand, then clearly on
50% of days, or 188 days per year, the hospital resources are being
underused. Since, under any reasonable employment regime, staff
cannot be engaged and dismissed to match demands fluctuating on
a timescale of a few days then some inefficiency must be present in
the system.

This is the problem of providing any resource for which there is
a fluctuating demand. If the demand were constant then the resource
could be made to exactly match the demand, every demand would
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be met and the resource could be provided in the most economical
way. This is all a question of priorities. By increasing the number of
beds to 1050 the incidence of being unable to meet demand falls to 1
day per two years. On the other hand there are then 246 days per year
of underused resources — including staff. Managers have various
ways of trying to optimize the efficiency of their hospitals — moving
patients between hospitals to try to balance over-demand in one
hospital by spare capacity in another has already been mentioned.
Employing agency staff on a short-term basis as needed is another
possibility — but agency staff are considerably more expensive than
permanent staff.

The actual situation that hospitals have to face will actually be
much worse than that described above — demands can increase
dramatically due to some emergency, such as an epidemic, a train
crash or a terrorist attack. The detailed structure of the hospital pro-
vision also plays a role so that, for example, intensive-care provision
is expensive and the number of beds devoted to it is limited. In some
circumstances the hospital may have spare beds, but not the right
kind of beds.

The normal distribution, that we have used to illustrate the
hospital-capacity problem, will certainly not be an adequate descrip-
tion of the extreme and rapid fluctuations of demand that can occur.
The stories of patients on trolleys are certainly worthy of report,
and to the person affected, and his or her relatives, the statistics of
the situation may not seem relevant. However, such stories are often
driven by political agendas; those who are not directly involved, and
should therefore be able to take an objective view, should be aware
of the problems being faced by hospitals by the very nature of the
service they provide. By spending enough money a system can be
set up in which hospitals can meet every demand and, alternatively,
by ensuring that excess capacity is kept to a minimum, hospitals can
be run economically — but not both at once. Again, it is a question
of choice, not of good and bad.
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Problems 10

10.1. Find the average, the variance, and the standard deviation of
the following set of numbers:

2 4 6 7 8 10 12

10.2. Write in the form 3n the following:

(i) 32 × 34 × 35

(ii)
(
33)4

(iii)
(
313)1/10

10.3. The average daily sale of a daily paper is 52,000 with a standard
deviation of 2,000. On how many days a year will its sales be:

(i) below 47,000
(ii) above 55,000?
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Chapter 11

Statistics — The Collection and
Analysis of Numerical Data

A great multitude, which no man could number (Revelation,
New Testament)

11.1. Too Much Information

We consider a Minister of Health who wishes to keep a check on the
birth weights of babies born in each year so as to be able to see if
there are any significant trends in the country as a whole. Regional
health offices record the birth weights of all the babies in its area and
each sends a complete list of weights to the ministry. The Minister is
now presented with a document about the size of a large telephone
directory containing about three-quarters of a million numbers. She
flicks over the pages and sees the list of weights 3.228 kg, 2.984 kg,
3.591 kg, etc. and she just receives confirmation of what she knew
anyway, that most babies weigh about 3 kg, or a little more, at birth.

A useful number is the average of the weights and if the infor-
mation were provided by each region on a CD, or some other elec-
tronic medium for computer input, then the average could be found
quickly. The average from year to year could then be compared to
see what trend, if any, there was. Another quantity of interest would
be the spread of the weights, which would be best expressed by the
standard deviation, or variance (Sec. 10.3), of the babies’ weights.
Again, if the information was provided in an electronic form this
could readily be found.

125
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Actually there was no need for the local regional health offices
to have sent all the individual weights in the first place. The weights
both in the individual regions and in the country as a whole would
have a normal distribution. If each region had submitted the number
of babies born, their average weight and the standard deviation (or
variance) of their weights that would be a complete description of the
situation in their area. To see how to combine the regional estimates
into a national estimate we have to do some calculations.

11.2. Another Way of Finding the Variance

In Sec. 10.3 we described the variance of a set of numbers as: the
average of the square of the difference between each number and the aver-
age of the numbers. While that is a perfectly correct definition of the
variance, and the way that we worked it out for the distributions
A and B, it does challenge the imagination somewhat. With a lit-
tle mathematical manipulation the variance can be expressed in an
alternative way as: the average of the square minus the square of the
average. We now apply this way of calculating variance to the sets A
and B given in Sec. 10.3 to check that it gives the same results as we
found previously.

Set A 7 8 9 10 11 12 13
Square 49 64 81 100 121 144 169

The average of the square is

x2 = 49 + 64 + 81 + 100 + 121 + 144 + 169
7

= 104. (11.1)

Notice the terminology x2. The bar over the top means “average of”
so x2 means the average of x2 where the individual numbers of set A
are the x′s. We also found previously that the average of set A, that
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we indicate as x̄, is 10 so the variance is

V = x2 − x2 = 104 − 102 = 4, (11.2)

the same as we found previously. Similarly, for set B

Set B 1 6 9 10 11 14 19
Square 1 36 81 100 121 196 361

The average of the square is

x2 = 1 + 36 + 81 + 100 + 121 + 196 + 361
7

= 128 (11.3)

Again the average is 10 so the variance is

V = x2 − x2 = 128 − 102 = 28 (11.4)

as found previously.
We can now use these results to see how to convert the regional

birth weight data into that of the nation as a whole.

11.3. From Regional to National Statistics

We now consider one of the regions, designated by the letter j, for
which the number of babies born was Nj, the average weight was wj,
and the variance of the weights was Vj. Since, by our latest definition
of variance,

Vj = w2
j − wj

2. (11.5)

We find by rearranging

w2
j = Vj + wj

2. (11.6)

That means for each of the regions, since we are given Vj and wj,

we can find w2
j .
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We are now in a position to find the average baby weight and
the average of the square of the babies’ weight for all the babies
combined from all the regions. The average baby weight is

wall =
∑M

j=1 Njwj
∑M

j=1 Nj
. (11.7)

The summation symbol
∑

was explained in relation to Eq. (3.2). The
term Njwj is the total weight of all the babies born in region j and
summing this over all the regions gives the total weight of all the
babies born that in the year for the whole nation (about 2,000 tonnes
for the UK!). The divisor in (11.7) is the total number of babies born
so dividing the total weight of the babies by the number of babies
gives the average weight of the babies for the whole country.

By an exactly similar process we can find the average squared
weight of the babies. That is:

w2
all =

∑M
j=1 Njw2

j
∑M

j=1 Nj
. (11.8)

The top of Eq. (11.8) is the sum of the squared weights of all the
babies in the country and dividing by the total number of babies
gives the average squared weight.

Now by combining wall and w2
all we can find the variance for all

the babies as

Vall = w2
all − wall

2. (11.9)

The Minister has now combined the information from the regions
to find the total number of babies born, their mean weight, and the
variance of their weights — and all that each region had to send
in was three numbers. In Table 11.1 we show the results of such an
exercise for a hypothetical set of data. The fourth column shows the
standard deviation (square root of the variance) of the weights in
each region.
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Table 11.1. Data for the birth weights of babies born in different regions.

Region N w (kg) σ (kg) w2 (kg2)

South 66,296 3.062 0.251 9.438845
South-east 108,515 2.997 0.239 9.039130
South-west 64,621 3.185 0.267 10.215514
West 76,225 3.002 0.224 9.062180
Central 93,496 2.996 0.250 9.038516
East 41,337 3.099 0.231 9.657162
North-east 104,212 3.101 0.237 9.672370
North-west 82,358 3.011 0.226 9.117197
Far-north 37,362 3.167 0.219 10.077850
Outer Isles 26,219 3.178 0.220 10.148084
Average (sum) (700,641) 3.05987 9.424592

The averages, at the bottom of columns three and five, are
found from Eqs. (11.7) and (11.8), respectively.

The table directly gives the total number of babies born, 700,641,
and their average weight, 3.05987 kg. The variance of the weights is

V = w2
all − wall

2 = 9.424592 − (3.05987)2 = 0.0617875 kg2

corresponding to a standard deviation

σ = √
V = 0.2486 kg.

The Minister now has available all the information she needs.
The UK Office of National Statistics collects and analyses sta-

tistical data over a wide range of national activities concerned
with health, the economy, demography, employment, and business.
Many of its analyses are based on the assumption of a normal dis-
tribution but there are other kinds of distribution that we shall now
consider.
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Problems 11

11.1. Use Eq. (11.2) to find the variance of the set of numbers given
in problem 10.1.

11.2. Four schools in a particular district send the following infor-
mation concerning the heights of their 11 year old boy pupils.

School Number of pupils Mean height Standard deviation

1 62 1.352 m 0.091 m
2 47 1.267 m 0.086 m
3 54 1.411 m 0.089 m
4 50 1.372 m 0.090 m

What is the mean height and standard deviation of heights of 11 year
old boys in the district?
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Chapter 12

The Poisson Distribution and
Death by Horse Kicks

Life is good for only two things, discovering mathematics and teaching
mathematics. (Siméon-Denis Poisson, 1781–1840)

12.1. Rare Events

Although the normal distribution is by far the most important nat-
urally occurring distribution there are others, and one of these, of
considerable importance, we now describe.

Siméon-Denis Poisson, 1781–1840 (Fig. 12.1), was a French
mathematician and physicist whose contributions covered an enor-
mous range of topics and who must be considered as one of the
scientific giants of the 19th century. In 1837, he wrote a paper with a
title that translates into English as Research on the Probability of Crim-
inal and Civil Verdicts in which he developed and described what is
now known as the Poisson distribution. Although it never again fea-
tured in any of his mathematical publications this distribution turns
out to be of great importance in dealing with the statistics of many
real-life situations.

To illustrate an application of the Poisson distribution let us
consider the problem of taking a census of traffic flow on a quiet
country road. We decide to divide time up into one-minute intervals
and in each interval the number of cars passing is recorded. In 1 h,

131
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Fig. 12.1. Siméon-Denis Poisson.

the 60 numbers recorded are

0 0 1 0 1 2 1 0 0 1 1 0
1 1 0 2 0 0 0 1 3 1 0 1
0 0 0 1 1 2 1 0 1 1 0 0
0 0 1 2 1 1 0 0 0 0 0 3
0 1 1 2 0 0 1 0 1 2 0 1

These results can be represented by the histogram, Fig. 12.2, which
shows the number of intervals for each number of cars passing.

The numbers of cars per one-minute interval were small — for
many intervals none, for somewhat fewer intervals one, for less
intervals two, and for even fewer intervals three. It is to explain
the variation in frequency in situations like this that Poisson devel-
oped the theory of what is now called the Poisson distribution. We
can illustrate the mathematical nature of this distribution by taking
another situation where the number trials (minute intervals in the
case we have just taken) is large but the numbers of events per trial
(the passing of cars) are small.
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Fig. 12.2. Histogram for numbers of cars passing per minute on a quiet country
road.

12.2. Typing a Manuscript

We consider the task of typing a manuscript of 100 pages. Being
human, and hence prone to error, the typist makes occasional typing
errors although, for a good typist, the average number of errors per
page would be small. When the pages are proof-read the number-
of-errors-per-page are found, with the following results.

Number of errors 0 1 2 3 4 5 More than 5
Number of pages 30 36 22 9 2 1 0

This distribution is illustrated as a block diagram in Fig. 12.3.
The first thing we can find is the average number of errors per

page. The total number of errors is

(30 × 0) + (36 × 1) + (22 × 2) + (9 × 3) + (2 × 4) + (1 × 5) = 120

and, hence, the average number of errors per page is

a = 120
100

= 1.2.
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Fig. 12.3. The numbers of pages with particular numbers of typing errors.

The Poisson distribution is completely defined in terms of
the average, a. Starting with the number of pages with no errors,
we multiply that by a to obtain

30 × a = 36, which is the number of pages with one error.

Now, we multiply the number of pages with one error by a and
divide by 2

36 × a ÷ 2 = 21.6.

The nearest whole number is 22, the number of pages with two
errors.

Now, we multiply the number of pages with two errors by a
and divide by 3

22 × a ÷ 3 = 8.8.

The nearest whole number is 9, the number of pages with three
errors.
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Now, we multiply the number of pages with three errors by a
and divide by 4

9 × a ÷ 4 = 2.7.

The nearest whole number is 3, but the actual number of pages
with four errors is 2. These calculated and observed numbers of
errors do not exactly agree in this case, which is partly due to taking
nearest whole numbers in the calculated values.

Now we multiply the number of pages with four errors by a
and divide by 5

3 × a ÷ 5 = 0.7.

The nearest whole number is 1, the number of pages with five errors.
Although this gives the numbers of pages with different num-

bers of errors related by a sequence of factors it is better to have an
explicit formula to give the number of pages with a specified number
of errors.

12.3. The Poisson Distribution as a Formula

Expressing a Poisson distribution in a mathematical form, the frac-
tion of cases with r events (error on a page, cars passing in one
minute) where the average a is

F(r) = e−aar

r! . (12.1)

The two terms at the top of this formula have been explained in
Sec. 10.5. The term at the bottom is factorial r that was described in
Sec. 4.1.

Let us see how the formula works for the typist’s errors where
the average number per page is 1.2. With a calculator we find that
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e−a = e−1.2 = 0.3012. The fraction of pages with zero errors is thus

F(0) = e−1.2 × 1.20

0! = 0.3012

since, as we have previously seen, 1.20 = 1 and 0! = 1. Because there
are 100 pages in all, to the nearest whole number, 30 of them will be
error-free.

The fraction of pages with one error is

F(1) = e−1.2 × 1.2
1! = 0.3614, giving 36 pages with one error.

Similarly

F(2) = e−1.2 × 1.22

2! = 0.2169, giving 22 pages with two errors

F(3) = e−1.2 × 1.23

3! = 0.0867, giving 9 pages with three errors

F(4) = e−1.2 × 1.24

4! = 0.0260, giving 3 pages with four errors

F(5) = e−1.2 × 1.25

5! = 0.0062, giving 1 page with five errors.

Once again there is a discrepancy for the number of pages with four
errors but this is due to the rounding-off of the numbers — there
cannot be 36.14 pages with one error.

Like any sensible distribution giving probabilities the sum of
the probabilities for all the possible outcomes must be 1 — that is to
say that it is completely certain that there must be some outcome.
Thus, we can write

F(0) + F(1) + F(2) + F(3) + F(4) + F(5) + F(6) + · · · = 1, (12.2)

where, on the left-hand side, we have an infinite number of terms.
The sum of the probabilities for F(0) to F(5) for the typing errors is
0.9984 since the probabilities from F(6) onwards are missing.
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Fig. 12.4. Poisson distributions for (a) average 0.5 and (b) average 3.0.

To get a feeling for Poisson distributions we now show as his-
tograms in Fig. 12.4 the distributions for averages 0.5 and 3.0.

12.4. Death by Horse Kicks

One of the most famous applications of the Poisson distribution
was made by a Russian statistician Ladislaus Bortkiewicz, 1868–1931
(Figure 12.5).
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Fig. 12.5. Ladislaus Bortkiewicz.

Table 12.1. Statistics of deaths by horse kicks
for 200 cavalry-unit-years.

Number of deaths Number of unit years
per unit per year

0 109
1 65
2 22
3 3
4 1
More than 4 0

At the end of the 19th century cavalry units formed a compo-
nent of most armies and once in a while someone in a cavalry unit
would be killed by a horse kick. Bortkiewicz took the record of such
deaths for 10 cavalry units of the Prussian army over a period of 20
years, from 1875 to 1894, and analyzed them statistically. For the 200
cavalry-unit-years the information he derived is shown in Table 12.1.

Bortkiewicz showed that the number of deaths per cavalry-
unit-year followed a Poisson distribution. From his figures the total
number of deaths was

65 × 1 + 22 × 2 + 3 × 3 + 1 × 4 = 122,
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so the average number of deaths per cavalry-unit-year was
122
200 = 0.61.

Equation (12.1) gives the proportion of cases with r events
(deaths) so the number of cavalry-unit years that no deaths would
be expected, given the average, is

N(0) = 200 × e−0.61 × 0.610

0! = 108.7

or 109, rounded off to the nearest whole number. This is exactly the
figure found in Table 12.1. Similarly, with the rounded-off figure in
brackets,

N(1) = 200 × e−0.61 × 0.611

1! = 66.3 (66),

N(2) = 200 × e−0.61 × 0.612

2! = 20.2 (20),

N(3) = 200 × e−0.61 × 0.613

3! = 4.0 (4),

N(4) = 200 × e−0.61 × 0.614

4! = 0.6 (1)

and the similarity of these figures to those given in Table 12.1 will be
evident. Indeed, a χ2 test shows no significant difference between
the expected numbers we have just calculated and the observed
numbers found by Bortkiewicz.

The Poisson distribution is important in many areas of life and
we now give two further examples.

12.5. Some Other Examples of the Poisson Distribution

12.5.1. Flying Bomb Attacks on London

During the final period of World War II the Germans designed
a weapon, mainly for bombarding London and the South-east of
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Table 12.2. The number flying bombs landing within 1/4 km2

squares in London.

Number of bombs Number of squares Poisson distribution

0 229 227.5
1 211 211.3
2 93 98.1
3 35 30.4
4 7 7.1
5 1 1.3

England, known as the flying bomb. It was a small pilot-less aircraft,
driven by a simple ram-jet motor that traveled at 575 km hour−1

mph and had a range of 240 km. They were launched from a ramp
pointing toward London and when the fuel ran out they fell to the
ground as a bomb containing 1 ton of explosive. Of the 8600 that
were launched roughly one-half penetrated the defenses, the rest
being shot down by anti-aircraft fire and fighter planes.

Clearly, they were a very imprecise weapon and depended for
their success on the large size of the target, which could hardly be
missed. They were at the mercy of unpredictable tail winds, head
winds, and side winds so that their falls were distributed all over the
London area. There was a suspicion that the fall sites of the bombs
tended to occur in clusters so it was decided to apply a statistical
test on the fall of the bombs in London up to that time. London was
divided up into 576 squares of side 0.5 km and the number of bombs
that had fallen in each square was recorded. The results are shown
in Table 12.2.

The total number of bombs falling in this period was

211 × 1 + 93 × 2 + 35 × 3 + 7 × 4 + 1 × 5 = 535.

So the average number of bombs per square equaled 535/576 =
0.9288. The final column of Table 12.2 shows the numbers
expected from the Poisson distribution. The similarity between the
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observations and the Poisson distribution is evident and a χ2 test
shows that there is no significant difference between the two. The
idea of clustering was not supported by this analysis.

12.5.2. Clustering of a Disease

The medical authorities are often interested in what is known
as clusters of particular diseases. If the incidence of a condition,
say testicular cancer, is higher that would be expected in a partic-
ular region then one might look for contributory causes of a local
nature — particular industrial processes or the use of pesticides. Let
us consider a hypothetical example.

A condition affecting young men is known to occur with a fre-
quency of 2.2 per 100,000 men. In a city with 50,000 young men, 8 of
them are found to have the condition. Is there any evidence that this
is a significant cluster of incidence?

The expected number for 50,000 young men is 1.1 so we are
clearly interested in a Poisson distribution with that average. In test-
ing for the significance of an outcome greater than the expectation
we find the total probabilities of the actual result and all results which
are more extreme — i.e., the combined probabilities of 8, 9, 10, 11 etc.
up to infinity. Since from (12.2) the sum of all the probabilities of a
Poisson distribution must equal unity we can find the probability of
8 or more cases by taking away from unity the sum of the probabil-
ities of 7 or less cases. This gives:

P( ≥ 8) = 1 − F(0) − F(1) − F(2) − F(3) − F(4) − F(5) − F(6) − F(7)

or

P( ≥ 8) = 1 − e−1.1

(
1 + 1.1 + 1.12

2! + 1.13

3! + 1.14

4!

+ 1.15

5! + 1.16

6! + 1.17

7!

)

= 0.000020124.
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Now, this is a very small probability so we may conclude that this is
a significant cluster so that some local factor is operating to produce
the condition. This may be genetic, cultural, dietary or of some other
origin and would take further investigation to find out which.

In judging this significance we have to beware to not jump to
conclusions. Suppose the answer had been 0.01, i.e., one chance in
100 — could we conclude then that the cluster was significant? Let us
say that there are 5,000,000 young men in the region that gave the
incidence rate of 2.2 per 100,000. Then there are 100 sets of 50,000 men
so, on average, one of those sets of 50,000 young men would give the
outcome we found. This would come about just by the vagaries of
a random distribution of cases so one could not then conclude that
there was a significant cluster. Statistics must be treated with care —
they can be misleading but also, sometimes, those with bad intent
can attempt to use them to mislead!

12.5.3. Some Further Examples

To finish our description of the Poisson distribution we give here a
sample list of other situations in which the distribution plays a role.

(i) The number of calls at a call center per minute. By having
too few operators the customer may have a long wait, lead-
ing to excessive customer dissatisfaction. At the other extreme,
having a sufficient number of operators to meet the greatest
peak demand will mean that operators are often idle, leading
to inefficiency in the running of the call center. By analyzing the
demand, which will be in terms of Poisson statistics, a compro-
mise number of operators can be found that will be acceptably
economic while, at the same time, giving an acceptable service
to the customer.

(ii) The number of light bulbs that fail per day in a large building.
One aspect of servicing a large business premises is to replace
failing light bulbs. There might be an average of 7 failing per
day but the actual number per day, taken over a long period of
time, will give a Poisson distribution with average 7.
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(iii) The number of mutations in a given stretch of DNA for a given
dose of radiation. DNA is the material within the animal cell
that controls the genetic make-up of the individual. It consists
of a long chain of many thousands of units of which there are
four basic types. When exposed to radiation DNA can become
damaged and will then reconstruct itself, sometimes but not
always giving modification of the original genetic information
it contains — i.e., a mutant has been created. The number of
mutations for a given radiation dose will be a matter of chance
but, in a statistical sense, the numbers will follow a Poisson
distribution.

Problems 12

12.1. The number of faulty components in a manufacturing process
follows a Poisson distribution with a mean of 1 per 100 com-
ponents. What is the probability that a random selection of 100
components will have:

(i) No faults, (ii) 1 fault, (iii) 3 faults, (iv) 5 faults?

12.2. Large asteroids fall onto the Earth at the rate of 1 per 10,000,000
years. What is the probability that at least one will fall on the
Earth within the next 1,000,000 years?

12.3. The average number of electric light bulbs failing per day in a
factory is 10. On how many days per year would the number
failing be 15?
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Chapter 13

Predicting Voting Patterns

Die Politik ist keine exakte Wissenschaft; Politics is not an exact science
(Bismark, 1815–1898)

13.1. Election Polls

In democratic countries there is always a natural interest in knowing
the support given to the various parties who, from time to time, will
contest national and local elections. Ideally, one would like to know
the voting intention of everyone who intends to vote but this is tan-
tamount to actually holding an election. As an alternative, polling
organizations collect the opinions of samples of the population and
then give the estimates of the voting intensions of the whole popu-
lation based on the declared intentions of those sampled.

To obtain a good sample is a complicated exercise. To start with
one must be sure that those sampled are a good representative selec-
tion of the population as a whole. There are various ways of cate-
gorizing members of the population, for example, by social class,
age, gender, income, ethnicity, religion or region of the country. If
the sample is taken just from those entering an expensive jewellery
store in the West End of London the results of the poll would be as
unlikely to be representative of the whole population as sampling
just those entering a fish-and-chip shop in a run-down northern
inner-city area. The clientele of both those establishments should be a
part of the polled sample, but not its totality. The major polling orga-
nizations show great skill in getting good samples and in general

145
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their results are now reliable. They have learned from many early
mistakes. In the 1948 presidential election in the United States all
the polls showed that the Republican, Thomas E. Dewey, had a com-
fortable lead of between 5% and 15% over his Democratic opponent,
Harry S. Truman. The Chicago Daily Tribune newspaper, pressured
by a printing deadline before the actual result was known, brought
out an edition with a huge headline “DEWEYDEFEATS TRUMAN”.
In the event, Truman won the election with a 4.4% advantage over
his opponent. It turned out that the sampling of public opinion had
been carried out by telephone; Dewey certainly had majority sup-
port from those that owned telephones in 1948 but hardly any sup-
port from the many without a telephone at that time.

For the purposes of our discussion of polling we shall assume
that the sample of the population is a good representative one and,
initially, that the choice is basically between two alternatives. Later
we shall consider the situation when there are three or more choices
of party or individual.

13.2. Polling Statistics

We consider a situation where just two parties, the National
Democrats and the People’s Party, are offering themselves to the
electorate. A poll of 1,000 representative members of the public is
taken and indicates the support as follows:

National Democrats 522 People’s Party 478

Translated into proportions, the voting intentions of the sample
become

National Democrats 0.522 People’s Party 0.478

On the face of it the National Democrats have a clear lead and must
be considered as likely to win a majority of the popular vote. How-
ever, can it be said that they are certain to do so? Clearly not — the
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possibility must exist that there is actually a majority in favor of the
People’s Party but that, just by chance, the poll sample included a
majority of National Democrats supporters. The reality of the situ-
ation is that there is a finite, but small, probability that the People’s
Party will win and we now see how to estimate this mathematically.

Let the size of the poll be N, in this case 1,000, and the pro-
portion of the poll sample supporting the National Democrats be
p, in this case 0.522. The mathematics tells us that the most likely
outcome of the election is that a proportion p will vote for the
National Democrats. However, the actual proportion of the elec-
torate supporting the National Democrats could be different from
p, say r. Theory shows that on the basis of the polling evidence the
unknown value of r has an approximately-normal probability dis-
tribution with mean

r = p (13.1)

and with a standard deviation

σr =
√

p(1 − p)
N

. (13.2)

Let us see what this means with our hypothetical example. We
have r = p = 0.522 and hence

σr =
√

0.522 × 0.478
1000

= 0.0158.

We show this probability distribution in Fig. 13.1. Getting a majority
of the popular vote means getting more than 0.5 of the votes and this
value is also shown in the figure. The form of the normal distribu-
tion, as illustrated in this figure, has unit area under the curve. The
probability that the National Democrats will get more of the popular
vote is the area to the right of the line indicating r = 0.5 and the area
to the left is the probability that the People’s Party will come out on
top. We shall now find what these probabilities are.
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Fig. 13.1. The probability distribution of those voting for the National Democrats.

The line r = 0.5 is

0.522 − 0.5
0.0158

= 1.4σr

from the mean of the distribution. From Table 10.1 the area from
the mean out to 1.4 standard deviations from the mean is 0.4192.
Hence the probability that the National Democrats will get most of
the popular vote is the sum of the area to the right of the mean (0.5
because it is one half of the area under the curve) and the area to the
left of the mean out to r = 0.5 (0.419 which is the area out to 1.4σp)
giving a total probability 0.919. This means that the probability on
the basis of the poll that the People’s Party will win is 1.0 − 0.919 =
0.081 — unlikely but not impossible.

If the analysis had been done from the aspect of looking at the
probability distribution of support for the People’s Party then the
distribution would have been centered on 0.478 but the standard
deviation would have been the same. The line r = 0.5 would still be
1.4σp from the mean of the distribution, but in the other direction,
and the probability deduced for the likelihood that the People’s Party
would come out on top would be found as before — 0.081.



March 24, 2008 17:9 B-595 ch13

Predicting Voting Patterns 149

We have stressed all the time the concept “proportion of the
popular vote” because how that would turn out in terms of seats in
the parliament would depend on the electoral system. In a system
giving proportional representation, the party with a majority of the
popular vote would also have the most seats. In a first-past-the-post
system, as prevails in the UK, this is not necessarily so.

The size of the poll has a considerable effect on the significance
of the results. We suppose that the poll size was 2,000 and, again,
the proportion of those voting for the National Democrats was 0.522.
Using (13.2) the standard deviation now becomes

σr =
√

0.522 × 0.478
2000

= 0.0112.

The line r = 0.5 is now

0.522 − 0.5
0.0112

= 2.0σr

from the mean of the distribution. The area from the mean to 2.0
standard deviations from the mean is, from Table 10.1, 0.47725 and,
from this, the probability of the National Democrats getting more of
the popular vote is 0.97725. The chance that the People’s Party would
win has reduced from 0.081, or about one chance in 12, to 0.023, about
one chance in 43, from the same proportions in a larger poll.

13.3. Combining Polling Samples

There are a number of different polling organizations, differing
slightly in their polling techniques but all giving worthwhile esti-
mates of voting intentions. Assuming that they are all equally valid
then it is possible to combine them to give an estimate of voting
intentions more precise than any individual one of them. However,
care should be taken in making such combinations — for example,
party support may vary through a pre-election period so the data for
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the separate polls should not be widely separated in time. We con-
sider the following information from, three polling organizations in
a two-party election:

Poll X Poll size 1,000 National People’s Party 479
Democrats 521

Poll Y Poll size 1,000 National People’s Party 483
Democrats 517

Poll Z Poll size 1,000 National People’s Party 505
Democrats 495

For poll X alone:

σX =
√

0.521 × 0.479
1000

= 0.0158.

Support for the National Democrats is thus 0.021
0.0158σX = 1.33σX from

the level 0.5, beyond which they are the majority party. The area from
the mean of the probability distribution (0.521) to the critical 0.5 level
of support is, from Table 10.1, equal to 0.408, making the probability
of a National Party victory 0.908. Similarly, the probability of victory
by the National Democrats is 0.860 from poll Y alone and 0.376 from
poll Z alone (it predicts a People’s Party victory).

When the three polls are combined we find that the indicated
fractional support for the National Democrats is 0.511 on a poll of
size 3,000. For this combined data

σ‘XYZ =
√

0.511 × 0.489
3000

= 0.00913

and support for the National Democrats is 0.011
0.00913σXYZ = 1.20σXYZ

from the critical 0.5 level. From Table 10.1 this gives a probability of
0.885 for a National Democrat victory.

Polls takenatdifferent timesduringanelectioncampaigncanbe
quite informative of trends in the voting intensions of the electorate.
However, as with all human activities, there is always some unpre-
dictability even when the polls are properly conducted.
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13.4. Polling with More than Two Parties

Once there are more than two choices of party or individual, the
analysis of polls is somewhat more difficult. We now consider a
three-party system, with parties A, B, and C, for which a poll of size
N gave a proportion pA for partyA, pB for party B, and pc for party C.
We have the condition that

pA + pB + pC = 1. (13.3)

To find out what the range of possible support is for party A,
the simplest approach is to consider a two-choice scenario where
the choice is party A or not-party-A. The probability distribution
of the proportion voting for party A can be regarded as a normal
distribution, with mean pA and standard deviation

σA =
√

pA(1 − pA)
N

=
√

pA(pB + pC)
N

. (13.4)

Swapping around A, B, and C gives the means and standard devia-
tions for the support of the other parties.

Consider a case where a poll of size 2,000 gives pA = 0.4,
pB = 0.35, and pC = 0.25. Then the expected means and standard
deviations for the parties are:

Party A

p̄A = 0.4 σA =
√

0.4 × 0.6
2000

= 0.0110.

Party B

p̄B = 0.35 σB =
√

0.35 × 0.65
2000

= 0.0107.

Party C

p̄C = 0.25 σC =
√

0.25 × 0.75
2000

= 0.0097.
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A precise mathematical analysis of this situation is quite com-
plicated; when there were two parties, the probability estimates for
getting a majority of the vote were the same whether one consid-
ered the distribution for one party or the other. A gain by one party
relative to the poll estimate completely defined the loss by the other
and the probabilities of gain and loss were consistent. Here, with
three parties, a particular gain by one party involves a net loss by
the other two but the pattern of loss between the other two parties
is not defined. However, from the point of view of getting a general
impression of where the parties stand, and by how much the actual
result is likely to differ from the mean, the individual means and
standard deviations as given above serve their purpose well. As an
illustration a poll taken just before the 2005 election in the UK, with
a poll size of 2,000, gave the following percentages, with the actual
voting percentage in parentheses:

Labour 37.0% (35.3%)
Conservative 32.5% (32.3%)

Liberal Democrat 24.0% (22.1%)

The minor parties accounted for the remaining few percent. On the
basis that votes were either Labour or non-Labour, the standard
deviation for the Labour vote was

σLab =
√

0.37 × 0.63
2000

= 0.011

so that the actual vote was

0.017
0.011

= 1.55σLab

below the poll prediction. Similarly the Conservative vote was 0.2
standard deviations below and the Liberal Democrat vote was 2.0
standard deviations below their respective poll predictions. Clearly,
the minor parties did better than the polls suggested.
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13.5. Factors Affecting Polls and Voting

Apart from the problem of selecting a good representation of the
population for polling there are other factors that can distort the
poll results. For various reasons — perhaps out of sheer mischief —
people may say that they are voting for a party other than the one
they intend to vote for. Another factor is that if the polls are indi-
cating a strong lead for a party then its supporters may not vote
on the grounds that their votes will not make any difference. Many
countries forbid the taking of sample polls in the week or so before
the election is due to take place to prevent the polls themselves from
influencing the voting pattern of the electorate.

By-and-large polls give a good indication of how people intend
to vote although it is not clear that they serve any important demo-
cratic function. Some individuals may, indeed, be influenced by the
polls in the way they vote. If a small party with extreme views is
indicated as having significant support then those generally sym-
pathetic to those views may be encouraged to vote for that party
since they would not then feel they were part of a freakish minority
in doing so. However, whether or not we would agree with their
choice, we must accept that, that is what democracy is all about!

There are other influences, to some extent unpredictable, which
can affect the results of a General Election. In the 1992 UK General
Election the Labour Party, headed by Neil Kinnock, was ahead in the
opinion polls and seemed to be heading for a comfortable victory.
Just before the election, the Labour Party held a rally in the Sheffield
Arena that was conducted in a triumphal rather noisy American
style that was jarring to the UK public. In the opinion of many com-
mentators this lost the Labour party some of its support. In addition,
the influential and widely read tabloid newspaper, the Sun, brought
out a pre-election edition with the front page showing a large pic-
ture of Kinnock with a headline requesting that if Kinnock won the
election that day then the last person to leave Britain should turn out
the lights. The Sun is also known for its scantily-clad young ladies
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who appear on page 3. In that particular issue the lady on page 3
was not young and very overweight with the caption “Here’s how
page 3 will look under Kinnock”.

It was thought that this intervention by the Sun, intellectually
irrelevant as it was, influenced enough votes to give a Conserva-
tive victory. In the event, John Major became Prime Minister with
his party achieving the highest proportion of the popular vote ever
obtained by a British political party, albeit that he had a reduced and
rather small majority in the House of Commons. The Sun certainly
thought that its influence had been decisive. On the day following
the election its headline, in typical Sun style, was “It’s the Sun wot
won it”. Subsequently the Sun switched its support to the Labour
Party (relabelled ‘New Labour’) which won the three subsequent
elections. Such are the factors that influence democracy!

Problems 13

13.1. A large scale poll of 3,000 electors gives 1,560 supporting party
A and the remainder supporting party B. What is the proba-
bility that party A will get more than 50% of the popular vote?

13.2. In a random sample of 200 baby snakes 92 were found to be
male. What is the probability that for the whole population of
snakes more than 50% are male?



March 24, 2008 17:9 B-595 ch14

Chapter 14

Taking Samples — How Many Fish
in the Pond?

…few are chosen (St Matthew)

14.1. Why do we Sample?

Consider that we have some large number of entities — they could
be human beings, animals, plants, or material objects — and we wish
to determine some characteristic that they possess. Some examples
of this are:

(i) The average height of 14-year-old boys within a country.
(ii) The distribution of hat sizes of males in the United Kingdom.

(iii) The average house income of those living in social housing.
(iv) The average weight of codfish living in the North Sea.
(v) The number of people watching a particular television program.

(vi) The proportion of faulty components made in a particular
factory.

What is clearly impracticable, if not impossible, is to examine every
individual entity to determine the required characteristic. It would
be possible, although extremely uneconomic, to measure every
14-year-old boy or to check every component for its perfection but
it is certainly not possible to catch every codfish in the North Sea.

The technique that is used to estimate the required characteristic
of a complete set of the entities is to take a sample — that is, after all,

155



March 24, 2008 17:9 B-595 ch14

156 Everyday Probability and Statistics

what was described in the previous chapter to estimate the voting
intentions of the entire electorate.

14.2. Finding out from Samples

In sampling theory, the complete set of entities, whatever it is, be
it humans, fish or brake pads, is referred to as the population. This
population has some property of which we wish to know the average
value, āp, and the standard deviation, σp. The technique that we use
to estimate these quantities is to measure them for a sample of size
n — that is to say that we take a random selection of n entities for
our measurements. The individual values of the quantity a in the
sample are:

a1, a2, a3, . . . , an

and from these we can obtain the sample average, ās, and the sample
variance, Vs, found by the method described in Sec. 11.2. Without
any other information available, the best estimate that can be made
for the average of the whole population, āp, is the average for the
sample, so that

〈āp〉 = ās (14.1)

Notice the notation here; the brackets 〈 〉 mean “the estimate for” the
quantity they enclose. Now it might be thought that the best estimate
of the variance of the population, Vp, is the sample variance, Vs, but
a detailed mathematical analysis shows that it is actually given by

〈Vp〉 = 〈σ2
p〉 = n

n − 1
Vs. (14.2)

The factor n
n−1 is called the Bessel correction and is especially impor-

tant in its effect for small samples. For a sample size of 1,000, the
Bessel correction is 1.001 but for n = 9 it is 1.125. If the sample size
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were 1, then the estimate of the population variance would be infin-
ity, implying that it cannot be estimated at all — which is sensible
since there cannot be any variation in a single quantity.

Another matter of interest when taking samples is to know how
much uncertainty there is in estimating the mean of the population
from that of the sample. Instinctively we know that the larger the
sample the more reliable is the estimate of the population mean, but
we would like to be able to quantify that reliability. To see how to
do this we first imagine the following scenario — there is a large
population of millions of entities and we repeatedly take different
random samples of n of them and find the sample means, ās, each
time. The values of ās themselves would have a distribution, and
statistical theory shows that, at least for larger values of n, it would
be a normal distribution, or nearly so, centered on the true average
for the whole population, āp. Now, if the variance of the distribution
of the values of ās is small, then it is likely that the estimate of the
population mean taken from the single sample would be a good one.
Conversely, if the variance of the sample means is large, then one
could have less confidence that the mean of the single sample was
a good estimate of the mean of the whole population.

Theory shows that if the variance of the whole population is
Vp, then the variance of the means of samples of size n is

Vās = Vp

n
. (14.3)

However, the reality is that when you take a sample, that is all
the information you have, and it is from this single sample, that you
must estimate the variance of the sample mean; the true value of
the variance of the whole population, Vp, is not available. Taking
estimated values on both sides of (14.3) and using (14.2) as the best
estimate of Vp, we find

〈Vās〉 = 〈Vp〉
n

= 1
n

× n
n − 1

Vs = Vs

n − 1
. (14.4)
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Apart from being found by analysis, this is a sensible result with
the right sort of characteristics. If Vs is small, this is an indication
that there is not much variation in the values of a so that the sample
mean is likely to be close to the population mean. Again, whatever
the variance of the individual values in the sample, the larger the
sample the more likely it is to give an average close to the population
average — the effect of n − 1 in the divisor of (14.4).

14.3. An Illustrative Example

We will better understand the subject matter of Sec. 14.2 by applying
the results toanumerical example. In sellingapplesan important fac-
tor in setting the price is the size, or weight, of the individual apples.
However, while trees do not provide apples of uniform size they can
be separated by size and sold accordingly. A quantity quoted by a
grower would be the minimum average weight of the batch of apples
he is providing, and a wholesaler would be interested in checking
the grower’s claim. This is the basis of the following example.

A wholesaler, buying apples from a grower, selects 20 of the
apples at random. The individual weights of the apples, in kilo-
grams, are as follows:

0.152 0.203 0.146 0.137 0.123 0.198 0.176 0.139 0.211 0.155
0.139 0.252 0.162 0.180 0.174 0.224 0.156 0.192 0.150 0.167

(i) What is the mean weight and standard deviation of the weights
for this sample?
Adding the weights and dividing by 20 gives

w = 3.436
20

= 0.1718 kg.

Adding the squares of the weights and dividing by 20 gives

w2 = 0.611084
20

= 0.0305542 kg2.
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Hence, the variance of the weights for the sample is

Vs = w2 − w2 = 0.0305542 − 0.17182 = 0.00103896 kg2,

and the standard deviation for the sample is

σs =
√

Vs = 0.03223 kg.

(ii) Find an estimate for the standard deviation of the sample mean?
The estimate of the variance of the sample mean is given by
(14.4), so that

〈Vās〉 = Vs

n − 1
= 0.00103896

19
= 0.000054682 kg2.

This gives the estimate of the standard deviation of the sample
mean as

〈σās〉 = √
Vās = 0.007395 kg.

(iii) The grower claims that the average weight of the apples he
supplies is more than 0.2 kg. Can this claim be rejected on the
basis of the sample results?

If the grower’s claim was correct, then taking many samples
of 20 from his apples would give an average sample mean of 0.2 kg
or more with a standard deviation estimated to be 0.007395 kg. The
one sample we take has a mean weight of 0.1718 kg, which is at least
0.2 − 0.1718 = 0.0282 kg from the claim. If the claim is true, then the
probability that the mean weight of the sample is 0.0282/0.007395 =
3.8 standard deviations or more from the mean is the area in the tail
of a normal distribution and is found from Table 10.1 to be 0.00007 —
so very unlikely. The grower’s claim is almost certainly untrue.



March 24, 2008 17:9 B-595 ch14

160 Everyday Probability and Statistics

14.4. General Comments on Sampling

The kind of analysis that was used to test the grower’s claims about
his apples could equally be applied to claims about the lifetime of
electric light bulbs or in other situations. In examining the claim
about apples, we assumed that if we took many sample means
they would form a normal distribution. This would only be strictly
true if we took very large, theoretically infinite, samples. Otherwise,
for smaller samples, instead of using a table for the normal dis-
tribution we should use a table for what is known as the Student
t-distribution,a a distribution that depends on the sample size. For
a sample of size 20, the error is not negligible but neither is it large,
so using the normal distribution gives simplicity at the expense of
some accuracy. However, for smaller samples, the error would be
significant.

14.5. Quality Control

It is extremely annoying to a customer if, having bought some prod-
uct, he finds it to be faulty and has to return it to have it replaced.
It also represents a cost to the manufacturer of the product who
has made an article that had yielded no income. For the manufac-
turer there is a fine balance to be struck. At one extreme he could
check every article before it leaves the factory; this would ensure that
there were no returns but the expense of doing this would have to be
passed on to the customer, make his product less competitive, and
so reduce his sales. At the other extreme he could check nothing but
then if the manufacturing process developed a flaw through, say, a
machine tool becoming defective then he might not detect this for
some time and then he would suffer the double loss of needing to
replace many articles and also of customer confidence in his product,
which would adversely affect future sales. He needs to implement

aStudent was a pseudonym used by the statistician W. S. Gossett who
derived the t-distribution in 1908.
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something between these two extremes — something called quality
control.

To illustrate the basic concept of quality control we consider a
factory turning out 1,000 bicycles a day. Experience in the industry
suggests that it is acceptable if less than 1% of the bicycles have a
flaw, so the manufacturer must monitor his production to keep faulty
products below that level. He decides on a strategy of testing every
tenth bicycle and using as a sample the last 1,000 tested bicycles for
his statistical analysis. He also wants to be 99% sure that the 1% fault
level is not exceeded. The question that we now ask is “What is the
maximum number of failures in the current sample of 1,000 bicycles
such that there is a probability of 0.01 or less that 1% or more of the
bicycles are faulty?” It is worth reading that last sentence again so
that you properly understand the nature of the exercise.

We will deal with this problem in a similar way to that in
Sec. 13.2, where voting intentions were considered. If the measured
number of failures in the sample of 1,000 is x then the estimated
proportion of failures is

f = x
1000

. (14.5)

Following the pattern described in Sec. 13.2, there will be a probabil-
ity distribution of failure rate centered on f with a standard deviation

σf =
√

f (1 − f )
1000

. (14.6)

Assuming a normal distribution, the probability of an actual failure
rate greater than 0.01 will be the probability of being more than
0.01 − f from the mean, or a number of standard deviations

t = 0.01 − f
σf

= 0.01 − x/1000
√

x/1000(1−x/1000)
1000

. (14.7)

The condition that there should be a probability less than 0.01 of
a 1% failure rate is equivalent to having an area in the tail of the
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normal distribution beyond t standard deviations less than 0.01.
From Table 10.1, this is found to require

t > 2.33. (14.8)

Finding a value of x that inserted in (14.7) will give condition (14.8)
is best achieved by trial and error — just trying values of x until you
find the maximum value satisfying the condition. The values of t
found for x = 3, 4, and 5 are shown below:

x = 3, t = 4.047; x = 4, t = 3.006; x = 5, t = 2.242.

The highest value of x satisfying the condition is 4. If the manufac-
turer finds more than 4 faults in the last 1,000 bicycles sampled, then
he should check and, if necessary, overhaul either his manufacturing
equipment or his assembly process.

There is some arbitrariness in the quality control system
described here. It was decided to use the most recent 1,000 checks
on which to base the statistics and to be 99% sure of not exceeding
the target fault rate. Fewer checks would give less reliable statistics
and more would give a greater interval between the time of real-
izing that something was wrong and the time from the beginning
of the sample when things started going wrong. Similarly, if it was
every 20 bicycles that were checked this would also increase the time
between the occurrence and detection of a manufacturing problem.
Getting a good balance is part of the skill of quality control.

What has been described here is much simpler than any system
that would be used by a large-scale manufacturer, but it illustrates
the general principles involved.

14.6. How Many Fish in the Pond?

Sampling theory can be used in various ways and here we describe
an interesting application. The owner of a large fish pond wishes
to know how many fish it contains — at least to an accuracy of



March 24, 2008 17:9 B-595 ch14

Taking Samples — How Many Fish in the Pond? 163

about ±50%. He suspects that the number is of order 3,000, but it
could be half as much or even twice as much as that. It is not possible
to count the fish individually, so what should he do?

The average lifetime of the type of fish in the pond is about
3 years, so a process for finding the number that takes about a month
will not be bedevilled by excessive changes of the total number by
births and deaths. On a daily basis he goes to different parts of the
pond, nets a few fish and tags them with a light plastic tag attached
to a fin that causes the fish no distress. The fish are then released
back into the pond. Once he has tagged about 400 fish he then starts a
process of again going to different parts of the pond and netting fish,
but now he just counts the number of fish caught and the number
of those that are tagged. Let us see how he finds the number of fish
in the pond from this procedure.

We take a numerical example to illustrate the process. When he
carries out his final netting, he finds that of the 300 fish he has caught,
60 are tagged. On that basis the best estimate of the proportion of
tagged fish in the pond is

p = 60
300

= 0.2.

However, from (13.2) the standard deviation of that estimate is

σp =
√

p(1 − p)
300

= 0.0231.

From Table 10.1, we find that, for a normal distribution that we
assume here, the probability of being within 2σp of the mean is about
0.95. In this case, the limits of p up to two standard deviations from
the mean are

plow = 0.2 − 2 × 0.0231 = 0.1538

and

phigh = 0.2 + 2 × 0.0231 = 0.2462.
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If the number of fish in the pond is N, and 400 fish were tagged,
then the actual value of p is 400/N, because we know that 400 fish
were tagged. Hence, the limits found, with a probability 0.95, for the
number of fish in the pond are

400
N1

= 0.1538 or N1 = 2, 601,

and

400
N2

= 0.2462 or N2 = 1, 625.

The most probable number, with p = 0.2 is N = 2,000.

Problems 14

14.1. Asample of 20 Watutsi adult males gave the following heights,
in meters:

1.92 1.97 2.03 1.87 2.10 1.85 1.93 1.89 1.92 2.14
2.08 1.97 1.87 1.73 2.06 1.99 2.04 2.02 1.88 1.97

Find

(i) The mean height of the sample;
(ii) The standard deviation of the sample;

(iii) An estimate of the standard deviation for the whole
population;

(iv) An estimate of the standard deviation of the sample mean;
(v) The probability that the mean height of Watutsi adult

males is greater than 2.00 m.

14.2. The owner of a fish pond catches and tags 100 fish. He then
catches 100 fish and finds that 20 of them are tagged. What is
the most likely number of fish in the pond?
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Chapter 15

Differences — Rats and IQs

Le people n’a guère d’esprit…; The people have little intelligence
(Jean de la Bruyère, 1645–1696)

15.1. The Significance of Differences

It is believed that there are as many brown rats as there are people in
the United Kingdom, mostly living within city environments. By and
large they keep clear of the human population, at least in Western
societies, although in some less-well developed societies they can be
seen roaming the streets at night. Once ensconced within an urban
environment theyarenotgreat travelers,movingnomore than100 m
from their nests if the food supply is adequate, and so it is quite
feasible that the gene pools of rats in well separated places may
differ significantly.

We consider a hypothetical example of comparing the weights
of male rats from London and Manchester. A sample of 400 rats
from London had a mean weight of 595 g and a standard deviation
of 41 g, while a sample of the same size from Manchester had a mean
weight of 587 g and a standard deviation of 38 g. The question we
consider is the likelihood of having that difference, or more, in the
mean weights if the samples were taken from the same population. If
that probability is very low, then we could say that there is evidence
that the populations in London and Manchester are significantly
different, otherwise there would be no such evidence.

165
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As is usual in problems of this kind we make a null hypothesis
(Sec. 6.2), in this case that London and Manchester rats are all part of
the same population so that there is a single population from which
we have drawn the two samples. Theory shows that the expected
difference of the sample means is zero, i.e., if we compare the sample
means from a very large number of samples taken from the same
population then the difference from one sample mean to another is
sometimes positive and sometimes negative, but averages to zero.
Another theoretical result is that the variance of the difference will be

Vdiff = σ2
1 + σ2

2
n1 + n2 − 2

, (15.1)

where n1 and n2 are the sample sizes. For the present example, this is

Vdiff = 412 + 382

400 + 400 − 2
g2 = 3.916 g2,

giving the standard deviation for the difference of sample means,
σdiff = 1.98 g. To spell out what this signifies, if we take samples
of 400 from the same population, then from Table 10.1, 68% of the
magnitudes of differences of sample means will be less than 1.98 g
and 95% of them will be less than 3.96 g.

Really, for this kind of problem, the Student t-distribution, as
mentioned in Sec. 14.4, is appropriate, but for the large samples we
are using here, assuming that the normal distribution applies will
give little error. The actual difference in the sample means from the
two cities is 8 g, or just over 4.0 standard deviations. In considering
the significance of the difference we must consider the possibility
of having a difference of four standard deviations in either direction,
that is, we must find the area in the two tails of the distribution
more than four standard deviations from their means. From Table
10.1, the area in one tail more than 4σ from the mean is 0.00003; so
in the two tails it is 0.00006. This is a very small probability so that
the difference in the means of the two samples is unlikely to have
occurred by chance and we may conclude that the rat populations
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in the two cities are significantly different. Whether or not one can
say that they are genetically different will depend on a judgment
about environmental factors. If there is some prevailing condition in
Manchester that leads to a smaller food supply, then the difference in
mean weights may be due to that factor alone and not due to genetic
variation.

15.2. Significantly Different — So What!

The probability curves for the rats’ weights, as indicated by the sam-
ples, are shown in Fig. 15.1.

The fact that the distributions are different, and that London
rats have a somewhat higher mean weight, is clear from this form
of presentation. However, what is also clear is that the weights are
very similar and the statistical term “significant difference” must
not be confused with the judgmental term “important difference.”
Faced with an average London rat and an average Manchester rat
you would be hard-pressed to detect any difference.
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Fig. 15.1. The probability distributions for the weights of rats in London and
Manchester.
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We have already indicated that a statistical difference may be the
result of environmental factors, e.g., a better food supply for rats in
London than in Manchester, or it may be due to genetic factors. These
factors are usually popularly referred to as, respectively, nurture and
nature and, in general, they occur together. If nurture was the sole
cause of the difference in weight between Manchester and London
rats, then a group of Manchester rats transported to London would
have progeny with the same mean weight as London rats.

The human population of the world is subdivided in various
ways — by nationalities, by ethnicity, by religion etc. Some of these
divisions are related to genetic differences that manifest themselves
through visible characteristics such as skin color, hair color, height,
and physique. Athletic prowess may well depend on genetic factors,
although cultural and environmental factors will also play a role.
Thus, people of West African origin seem to do well in track sprint
events, while endurance events on the track tend to be the speciality
of those from East and North Africa. An Ethiopian sprint champion
would be regarded as an oddity but no one is surprised when an
Ethiopian or a Kenyan wins an international marathon race.

While ascribing differences of athletic ability to genetic factors
is largely non-controversial as soon as there is any discussion of dif-
ferences of ability related to the workings of the brain there is much
controversy.An anthropologist who specialized in the study of tribes
in New Guinea recounted a story where he accompanied some mem-
bers of a tribe on a hunting trip. On reaching a clearing in the jungle,
the headman stated that, since they had last been along that path
a few days previously, a large animal had passed through. When
asked how he knew this he replied that some of the vegetation had
been disturbed — but the anthropologist looking round the clearing
could see nothing of any significance. He decided that the headman
was trying to impress him and that really there was no evidence
of the passage of a large animal. Such a deception would be safe
enough; how could the anthropologist with his western city back-
ground know one way or the other? However, the anthropologist



March 24, 2008 17:9 B-595 ch15

Differences — Rats and IQs 169

decided to conduct a test. On returning to the village he spilled a box
of matches into a heap on a table and asked the headman to examine
it and commit the arrangement to memory. Using a Polaroid camera
he then photographed the pile from several different directions to
preserve an accurate record of how it had been. Then, after 3 days, he
gave the headman the same box of matches and asked him to arrange
them as he had seen them previously. The pattern of matches set up
was not perfect, but it was topologically correct in that the system
of matches being under and over others was exactly as in the orig-
inal pattern. The anthropologist concluded his description of this
remarkable feat by noting, “By any intelligence test we have devised,
these people would appear to be subnormal; by any intelligence test
that they would devise we would appear to be subnormal.”

When a baby is born, its brain has little ability to recognize the
world in which it lives. It has a few basic instincts — to cry when
hungry or uncomfortable and to suck when hungry and the oppor-
tunity presents itself — but otherwise its brain is almost like a blank
sheet of paper on which anything may be written.As the child grows
so, contacts are established by synaptic connections in the brain that
condition the child for involvement in the society in which it will live
and enable it to develop the skills necessary to flourish in that envi-
ronment. Most of this process of brain development takes place in the
first 3 years of a child’s life. A child that gets plenty of stimulation in
its early years is likely to be intellectually well developed in later life;
one that is deprived of such stimulation will be handicapped there-
after. The intellectual capacity of an individual and the main skills
developed will depend to a great extent on nurture — the society in
which he or she lives and his or her early experiences — but also on
nature, in the sense that genetic factors will also come into play. The
New Guinea tribesmen needed and acquired different skills from
those of the anthropologist but there is no evidence that the intellec-
tual capacity of their society was in any sense inferior to that of his.

Within a particular society, homogeneous in a genetic sense,
there are often different patterns of child development dependent
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on social class. However, one can learn little about the genetic quality
of individuals from such differences. Parents lacking parenting skills
will not enable the full potential of their children to be realized and
these children, in their turn, will often become inadequate parents.
This cumulative neglect, sad though it is, does not affect the potential
bound up in the genes of the affected individuals and, given the
right circumstances, that potential could be realized. Trying to create
those circumstances is a difficult, perhaps impossible, task that many
governments have tried to tackle.

Testing different social or racial groups may reveal significant
differences, in a statistical sense, in their ability to deal with intel-
ligence tests or their ability to track animals but will tell you noth-
ing of interest about the genetic characteristics of the groups being
tested. Such differences as are found are often statistically significant
but may be of no importance. The child of inadequate parents, who
would usually perform badly with intelligence tests, might, with
the right upbringing, have become a theoretical physicist. The child,
influenced by the teaching of a parent who was a rabid racist, could,
with the right upbringing, have become a tolerant high dignitary
of the Church of England. Statistics is a useful tool for understand-
ing society — but it is important that we should first understand
statistics, otherwise we may draw the wrong conclusions from its
applications.

Problem 15

15.1. A farmer decides to test the effect of a new feeding regime on
his chickens. For the chickens fed on the original regime, the
mean weight of 100 eggs is 57.2 g with a standard deviation of
2.1 g. For chickens fed on the new regime, the mean weight of
100 eggs is 57.7 g with a standard deviation of 2.3 g. What is
the probability that there could be that difference or more in
the means of the two samples if the new feeding regime was
ineffective?
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Chapter 16

Crime is Increasing and Decreasing

O liberté! O liberté! que de crimes on commet en ton nom!; O liberty!
O liberty! What crimes are committed in your name! (Mme Roland,
1754–1793)

16.1. Crime and the Reporting of Crime

Committing a crime involves breaking the law and since what is
unlawful is defined in great detail it would seem that the presenta-
tion of crime statistics would be a completely objective process.Actu-
ally this is not so. For one thing the police exercise a certain amount
of discretion in applying the law; for example, if exceeding the legal
speed limit on roads by a modest amount was always detected and
prosecuted, then there would be millions of criminal acts and pros-
ecutions per day. Mostly, such “crimes” are not detected, but even
when they are, the police will either not take action because the vio-
lation is not at a gross level or, perhaps, they will just issue a warning.
When a young offender is caught committing a minor crime, a for-
mal warning may be enough to steer him away from further crime,
whereas prosecution and conviction may do no more than create
another citizen with a criminal record. Another uncertainty in crime
statistics is that not all crimes are reported. A minor act of pilfering,
say involving the loss of money or goods just worth a few pounds,
might not be reported. The effort of reporting the crime may be more
troublesome than the loss itself, coupled with the knowledge that
the police are unlikely to devote much effort to solving such a trivial
crime when they have more serious matters under consideration.
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Even serious crime is sometimes unreported. Acts of domestic vio-
lence may be unreported, because the victim is too ashamed to reveal
the sad state of, usually her, family life. Another serious crime, rape,
is notoriously under-reported, because the victim fears that she, or
he, will be accused of having been a consensual partner in the act.
Proving rape beyond reasonable doubt is often very difficult.

As a result of various government and police initiatives, there
are changes over time in both the reporting and recording of crime,
and this is one of the factors that confuse any consideration of trends
in crime statistics. Rape seems to be more reported than once it was
as procedures have changed and victims are less fearful that they will
be exposed to humiliation both in the initial police investigation and
in the courts. Another factor is that criminals may, from time to time,
change the direction of their criminality. In recent years the security
of motor vehicles has been improved so that car crime has become
more difficult to carry out. A criminal seeking to fund a drug habit
may therefore be deflected away from car crime toward some other
criminal activity.

Crime is a rich source of point-scoring for politicians and an
observer of a political debate on crime, in which statistics are bandied
to-and-fro, might well conclude that crime is simultaneously increas-
ing and decreasing. Here, we shall look at the official crime statistics
in the United Kingdom, particularly in England and Wales, over the
past few years to see what really has been happening. Based on the
facts, should we be more or less fearful about crime or is the inci-
dence of crime fairly stable? If we take the politics out of crime we
may see it as it really is.

16.2. The Trend for Overall Crime in England and Wales

The British Crime Survey is issued by the Home Office and reports
on various types of crime in England and Wales over the recent past.
All major types of crime are included in the survey, except fraud
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Fig. 16.1. The numbers of reported crimes of all types in England and Wales from
1981 to 2005.

and forgery. The figures for overall crime, reported by the survey,
are given in the form of a graph in Fig. 16.1.

It will be seen that in the period under report, crime rose steadily
from 1981 to 1995, increasing by approximately 80% in that period.
Since 1995, the total number of offences fell steadily and in the year
2004–2005 fell below the 1981 figure.

The rise in crime took place during the Conservative adminis-
tration, headed for most of the time by Margaret Thatcher, a point
made much of by the opposition political parties. On the other hand,
there was a marked decline between 1995 and 1997, the last years
before the Labour election victory of 1997, so the Conservatives can
justly claim to have launched the improvement which lasted for
over a decade. Labour would claim that since it took power, overall
crime has fallen and might neglect to mention that it inherited an
improving situation. Such is politics!

The graph shows the facts of the situation but it is not the whole
story. Some kinds of crime are of more concern to society than others.
Vehicle crime is not trivial — especially to those affected by it — but
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everyone in society would regard murder as much more serious. If
it turned out that burglary and car theft had greatly reduced, but
that murder had greatly increased, then an average citizen would
feel that everyday life was much more threatening.

16.3. Vehicle Crime, Burglary, and Violent Crime

The incidence of vehicle crime over the period 1981–2005, as given
by the British Crime Survey, is shown for England and Wales in
Fig. 16.2. It mirrors to some extent the pattern shown in Fig. 16.1 for
overall crime — a steep rise, more than doubled, between 1981 and
1995 and thereafter a fall, starting in the Conservative administration
and continuing under the Labour government. A consideration to
bear in mind in judging the significance of this graph is a substantial
increase in car ownership during the period — by 16% in the decade
1990–2000 alone.

Part of the decrease is probably due to improved security on
motor vehicles; many now have immobilizers which means that they
cannot be started by “hot-wiring,” i.e., by joining wires behind the

Fig. 16.2. Vehicle crime in England and Wales from 1981 to 2005.
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dashboard, but require the key to get them started. Another factor is
that radios, which were once an optional extra, are now standard on
all cars so that there is little market for stolen car radios. Finally, pub-
licity campaigns have persuaded people not to leave valuables —
handbags and mobile phones, for example — in view within cars
that have been left unattended.

The crime of burglary, stealing by breaking into homes, is less
common than vehicle crime but far more traumatic for the victim.
A home is a special place where an individual or a family spends
most of time and in which they normally feel secure. Even the police
cannot enter a home without a warrant or some other authoriza-
tion. A burglary is a violation of that security and some victims say
that they never again quite feel the same about their homes once
they have been burgled. There are no such feelings about vehicles;
a country at war exhorts its citizens to defend their homes — not
their motor cars! Figure 16.3 shows the incidence for burglary in
England and Wales from 1981 to 2005, a pattern that by and large
resembles those for overall crime and vehicle crime except that the
decline began a little earlier, in 1993.

Fig. 16.3. Burglary in England and Wales from 1981 to 2005.
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Fig. 16.4. Violent crime in England and Wales from 1981 to 2005.

The pattern as presented so far is reassuring in that the present
trend is downward. However, vehicle crimes and burglary rarely,
although sometimes, involve violence and it is violent crime that is
of the greatest concern to most people. To have the alloy wheels of
your car stolen while you sleep may be annoying but to be in hospital
after being violently assaulted is an experience in a different league
altogether.

The category of violent crime includes domestic violence, com-
mon assault, and mugging, but does not include homicide. The
occurrence of violent crime in England and Wales from 1981 to 2005
is given in Fig. 16.4.

The scale of violent crime, several million per year, is quite sur-
prising, but at least it shows the same decline from 1995 as the other
categories of crime so far described. In the year 2004–2005, there
were 401,000 cases of domestic violence, 347,000 cases of mugging,
and the remainder were assaults of one sort or another. A high pro-
portion of the assaults are the regular Saturday night “punch-ups”
that occur in town and city centers after too much alcohol has been
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consumed. However, a citizen who leads a quiet domestic life and
has friendly neighbors is not very likely to become a victim of
violence — although, alas, some do.

16.4. Homicide

Homicide is the category of crime that includes murder and
manslaughter, and is the one that most impinges on the public’s gen-
eral awareness of crime. A murder is always reported in the local
press and on local radio and television news programs. A homi-
cide with special characteristics, involving, say, multiple deaths, a
celebrity, a child or the use of a firearm will usually become a national
news item. This concentration of attention on homicide in the news
media leads to the impression that it is a common occurrence in
society. The incidence of homicide in England and Wales from 1993
to 2005, as displayed in Fig. 16.5 shows that, on the contrary, it is a
very rare crime. The numbers per year are measured in hundreds,
whereas the numbers per year of the other types of crime to which

Fig. 16.5. Homicides in England and Wales, 1993–2005.



March 24, 2008 17:9 B-595 ch16

178 Everyday Probability and Statistics

we have referred are measured in millions. However, the graph
shows a different evolutionary pattern to those of the other types
of crime.

The later entries in the graph are a little misleading, because
the 2000–2001 figure includes the deaths of 58 Chinese illegal immi-
grants who suffocated in a lorry that brought them into the United
Kingdom and the 2002–2003 figure is greatly distorted by includ-
ing all the victims of the mass murderer Dr Harold Shipman, esti-
mated to be between 150 and 250, in that year, although their
deaths occurred over several years. Taking these special factors into
account, it is probably true to say that the underlying rate has flat-
tened out at a level less than 10% above what it was in the late
1990s — to something in the region of 830 per year. It is customary
when reporting homicide rates in any society to express it as homi-
cides per 100,000 of the population per year. Given the population
of England and Wales as about 53 million, this gives a rate of 1.6 per
100,000 per year.

As might be expected the rates tend to be higher in major cities:
the figures for three major cities in the United Kingdom are

London 2.1
Edinburgh 2.4
Belfast 4.4

The Belfast figure is affected by a component of sectarian homi-
cide which is not present to any extent in the remainder of the United
Kingdom. However, while any homicide is one too many, it turns
out that the United Kingdom is one of the safest countries in the
world in terms of homicide. Of all major countries, only Japan has
a lower homicide rate (0.9 per 100,000, but accompanied by a huge
suicide rate); even Switzerland, generally regarded as a haven of
harmony and tranquility, has more than twice the UK rate. To put
the UK city figures in perspective, some quoted figures for major
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cities in Europe and the United States are as follows:

New York 7.3
Amsterdam 7.7
Lisbon 9.7
Chicago 22.2
Baltimore 38.3
Washington, DC 45.8

Despite all the impressions to the contrary the United Kingdom
is a safe place to live — at least as far as homicide is concerned.
A UK citizen should be concerned about homicide, but it should not
overshadow his life — he is four times more likely to be killed in a
road accident than to be the victim of a homicide.

16.5. Crime and Politicians

There are many issues that affect the lives of citizens of any coun-
try — education, law and order, health, employment, and taxes to
mention just a few. The facts relating to any of these issues will
be complex and interact with other facts in unexpected ways. In
this chapter, a numerical account of the incidence of crime in the
United Kingdom has been given. But even this picture, objective as
it seems, is open to criticism. The British Crime Survey finds out
about crimes that have occurred by asking victims of crime (with
the obvious exclusion of homicide victims) about their experiences,
and their survey includes both crimes reported to the police and
those unreported, Their claim is that this form of collecting statistics
is more comprehensive than just relying on police figures and also
reveals more about the public’s attitudes toward crime. However,
some question the validity of this way of collecting crime statistics.

There may be a number of reasons why crime statistics vary
from year to year. There will be a statistical fluctuation based on the
random pattern of the incidence of crime. If over a long period of time



March 24, 2008 17:9 B-595 ch16

180 Everyday Probability and Statistics

it is assessed that the average rate for a particular crime is N per year,
then the standard deviation in that number due to random fluctua-
tions is

√
N per year. For N = 2,000,000, we have

√
N = 1414 which

is 0.071% of the number of crimes committed — a very small frac-
tional fluctuation. On the other hand, if 900 homicides are expected
in a year, then

√
N = 30, which is 3.3% of the expected number, a

much larger random fluctuation. Because of the numbers involved,
with the exception of the homicide figure, the graphs shown in this
chapter are little affected by random fluctuations — the trends are
real.

Another important reason put forward for changes in the crime
figures is changes in the unemployment rate. During the period that
crime rates have fallen in the United Kingdom, so has the unem-
ployment rate, and there is an assumption that crime rates will be
higher among the unemployed. This was not evident during the
slump years of the 1920s and 1930s, but during that earlier period
there was no television, and so much less exposure to advertising,
that stresses the attractiveness of acquiring ever-more worldly pos-
sessions. No individual government can be blamed for a worldwide
change in advertising pressures or for a worldwide depression. So,
perhaps it is unfair to blame a government for an increase in crime
during its tenure of office.

The argument just made as an excuse for the increase in UK
crime from 1981 to 1995 may or may not be sustainable. The point
really being made is that a simplistic interpretation of any set of
statistics, whether it relates to crime or anything else, may be flawed.
We live in a complex world. Politicians for their own ends will try to
put forward a simple picture that either presents their own party in a
favorable light or the opposition in an unfavorable light. The rule is
to try to think for yourself; a useful exercise is to be a devil’s advocate
and to see if you can make a case for the other side, because then
you might see the inconsistencies in the argument being presented
to you. One should beware of confidence tricksters, whether they
are after your money or your vote.
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Problem 16

16.1. The following graph shows the number of road users killed
in road accidents in the United Kingdom from 1964 to 2005.
Estimate from the graph:

(i) The ratio of the number killed in 2005 to the number killed
in 1964.

(ii) The fraction of those killed who were pedestrians in 1964,
1982, and 2005.

Suggest some reasons for the general decline in the figures
over the period of the graph.
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Chapter 17

My Uncle Joe Smoked 60 a Day

damned tobacco, the ruin and overthrow of body and soul. (Robert
Burton, 1577–1640)

17.1. Genetics and Disease

At the beginning of summer many plants enter their period of repro-
duction and release vast quantities of pollen. For most people this
is a matter of no consequence, but for an unfortunate minority it
presages a time of great misery and discomfort. These are the suffer-
ers from hay fever. They sneeze violently and continuously, their
nasal passages become blocked with mucous, their eyes become
red and inflamed, and they have difficulty with breathing. Some
relief is obtained by taking antihistamine tablets, but they have the
unpleasant and potentially dangerous side effect of causing drowsi-
ness. Unfortunately the onset of the hay-fever season coincides with
the period when many young people take important examinations
and, unless some allowance is made for their condition, hay-fever
sufferers may have their futures blighted by performing below their
true capability.

Hay fever is recognized as being of genetic origin and its inci-
dence occurs in families, often associated with the occurrence of
eczema and asthma. It is a prototype of a genetic disease of which
there are many other examples. Breast cancer in women is now
recognized to have a strong genetic association and, indeed, the
genes associated with the condition, labeled as BRCA1, BRCA2, and
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BRCA3, have now been detected. Researchers have stated that 60%
of women with the BRCA3 gene will develop cancer before the age
of 70. Nevertheless only 5% of cancers are associated with the pres-
ence of the aforementioned genes; so there are clearly other factors
at work.

Cancer is a condition in which some cells of the body run out
of control and repeatedly divide, forming a tumor. If the condi-
tion remains localized, then the tumor is benign and removing it
by surgery or locally-applied high radiation doses essentially cures
the condition. However, if the tumor cells migrate through the body
affecting other tissues, then the condition is malignant and much
more difficult to handle. Cancer may be caused by various agents,
but basically all these have the effect of damaging some of the protein
molecules in the cell. This could happen by exposure to radiation —
for example, by excessive sunbathing — or by the action of carcino-
genic chemicals of which there are many.

The breast cancer example shows that not all those with a
genetic predisposition toward a particular disease will suffer from
that disease and also that those without the predisposition some-
times will. There is an element of chance in determining whether or
not a particular individual is affected. A potentially cancer-inducing
agency may or may not damage a cell protein to cause a cancerous
cell. The probability that it will do so would depend both on the
degree of exposure to it and on the propensity of the individual to
suffer such damage. It can happen that someone who has a genetic
tendency toward some form of cancer, but who is little exposed to
the agencies that cause it, may never contract the disease. It is even
possible that such a person could be heavily exposed to a carcino-
genic agency and not contract the disease — but he would have to be
lucky. By contrast, someone without any genetic disposition toward
cancer could well contract the disease under any level of exposure
but with the risk increasing with exposure.

It is against this background that we will discuss the relation-
ship between smoking and smoking-related diseases.
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17.2. The Incidence of Smoking in the United Kingdom

The smoking of tobacco originated with the aboriginal inhabitants of
North America and was introduced to Europe by various explorers
during the sixteenth century. It probably came to England through
Sir John Hawkins, or his crew, in about 1564 but was popularized by
Sir Walter Raleigh, a rakish adventurer and a favorite of Elizabeth
I — but somewhat less favored by her successor James I who ordered
his execution. During the eighteenth and nineteenth centuries the
idea was prevalent that smoking was, in some way, beneficial to
health — perhaps because the smell of tobacco was preferable to the
prevailing smells of the time.

During the early part of the twentieth century, smoking
cigarettes was regarded as a rather sophisticated thing to do and
films from the pre-World-War-II period show people smoking (and
drinking) quite heavily with languid wealthy young ladies doing
so with the aid of long cigarette holders. However, in the latter half
of the twentieth century evidence began to emerge of a connection
between smoking and various diseases, notably lung cancer and also
many others.At first the major cigarette companies fiercely disputed
this evidence, saying that it was not well founded. Anti-smoking
organizations even suggested that the companies were withhold-
ing information connecting smoking and lung cancer that their own
research had revealed. The companies were to a great extent initially
supported by smokers themselves who were in a state of denial.
Often they would use irrational arguments to justify continuing
to indulge in their harmful drug habit, of the kind “My Uncle Joe
smoked 60 a day for the whole of his life and lived to be 101”. Some-
times the same Uncle Joe would be cited by other nephews and
nieces as a reason to drink alcoholic beverages to excess because
that is what he did.

Eventually the cigarette companies had to give ground as
responsible governments all over the world took steps to encour-
age people to give up smoking. The advertising of tobacco products



March 24, 2008 17:9 B-595 ch17

186 Everyday Probability and Statistics

was banned on television and in other media. In addition, the
tobacco companies had to put warnings on the packets of their
products, so that one has the bizarre spectacle of individuals giv-
ing large sums of money in return for packets bearing the words
“Warning — cigarettes can kill”. Smoking was banned in many
public places, for example, in theatres and cinemas. Many of the
early films in which smoking was portrayed in such a glamorous
way had to be viewed through a thick haze of tobacco smoke.
Restaurants designated smoking and non-smoking areas, and many
airlines prohibited smoking even on long-haul flights. In 2004,
the Republic of Ireland banned smoking in what had been, until
then, the smokers’ paradize — the public house. The various com-
ponent countries of the United Kingdom followed suit in 2006
and 2007.

All this pressure against smoking gradually had an effect and
the proportion of smokers of both sexes has steadily decreased in
the United Kingdom — from 45% of all adults in 1974 to 25% in
2005. Figure 17.1 shows the variation in the proportions of men
and women who smoked from 1974 to 2004/2005 published by
the UK National Statistics Office. The UK government has a tar-
get to reduce the proportion of smokers down to 21% or less
by 2010.

By definition, reducing the overall proportion of those smoking
will reduce the incidence of smoking-related illness. By and large
the argument against smoking, in terms of the health hazard that
it imposes, has been won; those continuing to smoke either accept
the risk involved, perhaps because they are so addicted that they
cannot stop, or because they are completely unable to understand
the arguments that have been accepted by the majority. For them the
“Uncle Joe” example is the only one they can understand.

Nevertheless Uncle Joes do exist so we will now consider why
it is that Uncle Joe got away with his reckless lifestyle while other
clean-living, non-smoking individuals die young of lung cancer or
some other disease associated with smoking.
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Fig. 17.1. The incidence of cigarette smoking in the United Kingdom.
Source: UK Office of National Statistics.

17.3. The Smoking Lottery

Unless there is a family history of smoking-related illness, or genetic
screening of some kind, an individual cannot know what his or her
sensitivity is to tobacco smoke or, indeed, to any other carcinogen.
There is no way of avoiding some exposure to potential carcinogenic
hazards. Background radiation is everywhere and is particularly
high in areas where granite exists in the rocks, such as in parts of
Cornwall, or where granite is heavily used as a building material,
as in Aberdeen. While smoking is still a legal activity, there is the
hazard of secondary exposure when in the presence of those smok-
ing. This is especially true in the home if some, but not all, of the
family smoke and young children are particularly put at risk by
the smoking of one or both parents. Even with the best of filters,
the exhaust systems of cars emit some carcinogens and occasionally
one sees badly-maintained vehicles illegally emitting black exhaust
fumes that are both unpleasant and highly toxic.
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Given that there is no escape in the modern world from some
exposure to carcinogenic hazards and also that, in general, one’s sen-
sitivity to such hazards is unknown the prudent course of behavior is
to avoid any other additional exposure, such as smoking. The prob-
ability of carcinogen-related illness increases with sensitivity and
increases with exposure, although exactly quantifying the risk is not
easily done. Just as an illustration of what the situation could be there
is given in Fig. 17.2 a notional representation of the dependence of
the probability of acquiring a carcinogen-related illness related to
exposure and sensitivity. The sensitivity is given on a scale of 1–5
on the basis that nobody can have so little sensitivity that they are
immune from such illnesses, and exposure is also given on a scale
of 1–5 on the basis that there is a minimum exposure that cannot be
avoided.

Fig. 17.2. A notional representation of the probability of acquiring a carcinogen-
related illness as a function of exposure and sensitivity.
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From the figure it will be seen that, for someone with a sen-
sitivity rating of 2.0 the probability of getting a carcinogen-related
illness goes from 0.05 at minimum exposure to about 0.16 at maxi-
mum exposure — an increase factor of more than 3 in risk. Someone
who is maximally sensitive goes from a probability of 0.15 with min-
imum exposure to about 0.45 with maximum exposure — again an
increase factor of 3. Uncle Joe may well have had maximum exposure
but if he had minimum sensitivity then the likelihood that he would
acquire a carcinogen-related illness would only be 0.05 — about a
one in twenty chance. However, if there were 20 people like Uncle
Joe, both in sensitivity and exposure, then the chances are that one of
them would become ill. Which one would succumb, and which ones
would not, could not be determined ab initio even if the facts about
sensitivity and exposure were known. That is the smoking lottery.

The story about smoking and illness is one that is now well
understood and, essentially, will not change with time even though
the exact nature of the risks involved may be quantifiable with
greater accuracy as the results of further research are made avail-
able. In the comedy film The Sleeper, starring Woody Allen, a nerdish
shopkeeper is awakened from a cryonic state after 200 years into a
world where many beliefs and practices had changed. In one scene
he is being examined by hospital doctors who prescribe a course
of smoking cigarettes to improve his health. Smoking to promote
health may make good cinema humor but is not, and never will be,
a reality.

Problem 17

17.1. From the graph in Fig. 17.2 find the probability of an individual
acquiring a carcinogen-related illness with:

(i) Sensitivity level 1.5, exposure level 5.0;
(ii) Sensitivity level 5.0, exposure level 1.5;

(iii) Sensitivity level 3.0, exposure level 3.0.



March 24, 2008 17:9 B-595 ch17

190 Everyday Probability and Statistics

For someone with a sensitivity level of 3.0, living with a back-
ground exposure level of 2.0, the increase in exposure level
due to smoking 20 cigarettes a day is 2.0. By what factor has
he increased his risk of acquiring a carcinogen-related disease
by deciding to smoke?
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Chapter 18

Chance, Luck, and Making Decisions

Has he luck? (Napoleon I, 1769–1821)

18.1. The Winds of Chance

In Edward Fitzgerald’s famous translation of The Rubáiyát of Omar
Khayyám there is a verse that runs:

‘Tis all a chequer-board of nights and days
Where destiny with men for pieces plays
Hither and thither moves, and mates, and slays,
And one by one back in the closet lays.

This verse summarizes the beliefs of many people about the nature
of life — a series of chance happenings that toss you this way and
that, sometimes for good and sometimes for ill. In primitive societies
this idea of being helpless, coupled with ignorance about the way
that nature works, led to superstitious beliefs in the supernatural.
The idea arose that there were all-powerful agencies, interpreted
as gods, who shared many of the emotions and characteristics of
humankind — anger and generosity, for example, and would act
accordingly. If a volcano erupted and life was lost, then this was a
sign that a god was angry and was venting its feelings by killing
some of those that had offended it in some way.

In most early societies the idea was established that there was a
multiplicity of gods dealing with different aspects of human affairs

191
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such as war, love, fertility, prosperity, etc. There were two main reac-
tions to this belief in a panoply of gods. The first was to try to modify
the way that the gods felt, and would therefore react, by prayer and
supplication and by making offerings of one sort or another. In the
more advanced societies, temples were built and a priesthood was
established, which included experts who could act as intermediaries
between the layman and the all-powerful gods. They would arrange
and supervise the recital of prayers, the offerings of goods, and the
carrying out of sacrifices, usually of animals, and also of human
beings in some societies. The second reaction was to try to predict
what the gods had in store, so that one could take some kind of reme-
dial action. A famous example of this, from Greek culture, was the
Oracle ofApollo at Delphi, a temple in whichApollo spoke through a
Pythia, a human priestess, and offered guidance to those who came.
The pronouncements about the future were usually a bit vague (a
characteristic of many religious texts) and required further inter-
pretation. The Romans seemed to favor an investigation of chicken
entrails to predict the future. In Shakespeare’s Julius Caesar, a sooth-
sayer, a person who can foretell the future, warns Caesar to “Beware
the Ides of March” but one is not told how he derived his prediction
of danger. The idea that some people can predict the future has given
rise to a host of terms for describing such people — for example, in
addition to soothsayer there are the terms seer, visionary, and fortune
teller. Belief in powers of prediction has declined greatly in the mod-
ern world, but there are still those who use tarot cards, astrology,
tea leaves, palmistry, or a crystal ball to attempt to find out what the
future has in store for them.

One of the great scientific discoveries of the last century, at least
in a philosophical sense, referred to as the Heisenberg Uncertainty
Principle, is that there is no way of precisely defining the future state
of the universe, or any part of it. This is in contrast with the deter-
ministic view that existed at the end of the nineteenth century when
it was believed that if the position and motion of every particle in the
universe were known at any instant, then the future development
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of the universe would be completely defined. The uncertainty in
behavior most strongly manifests itself in the behavior of particles
of very small mass, like electrons. The uncertainty principle indicates
that it is impossible to know exactly where a particle is and how it is
moving, i.e., its velocity; if you try to locate its position exactly, then
this is at the expense of having no idea at all of how it is moving and
if you try to find its velocity exactly then you have no idea at all of
where it is. The Heisenberg uncertainty principle actually quantifies
the relationship between the uncertainty of position and the uncer-
tainty of velocity. Theoretically, the uncertainty principle applies to
bodies of any mass but for large bodies of the type we meet in every-
day life, it has no practical importance. Snooker players do not have
to worry about the uncertainty principle in planning their next shot.

The basis of the uncertainty principle is that in trying to deter-
mine the position and velocity of a body you have to disturb it in
some way. Finding the position of a body requires it to emit or reflect
radiation for some detector to record. The most precise definition of
position is obtained if the radiation has a very high frequency, but
then the radiation has a great deal of energy associated with it, and
in its interaction with the body, it will cause it to move in an unpre-
dictable way. Basically, the principle says that if you go through
the process of finding the characteristics of a body, then you influ-
ence that body and change its characteristics. Similarly, in relation to
human affairs, any attempts to find out about the future will influ-
ence and change that future. If Calphurnia, Caesar’s wife, had had
her way, Caesar would not have gone to the Senate on the Ides of
March. If one were to accept Shakespeare’s version of Roman history,
then Caesar would not have been assassinated and human history
would have been changed. It seems that the flow of events that dic-
tates both the life of an individual and the destiny of a society are
unpredictable and uncertain. As the Rubááiyát says, we are moved
hither and thither. By making sensible choices we can minimize the
harm that we experience, but we cannot control our lives completely.
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18.2. Choices

Every day people make decisions of one sort or another. They are
mostly trivial and sometimes involve a choice of alternative actions,
i.e., to go shopping or not to go shopping, and sometimes a choice
of several different possibilities — for example, deciding on which
resort to choose for a holiday. In Chap. 6, we examined another kind
of decision-making when a doctor decides on a course of treatment
based on some diagnostic information that leaves the patient’s con-
dition not uniquely defined. In that case, we were able to assign
numerical values to the probabilities of particular conditions and to
the probabilities of the effectiveness of various drugs and so to iden-
tify the course of action most likely to lead to a favorable outcome.
Nevertheless, in a decision based on the calculation of probabilities
there is the possibility, or even certainty, that from time to time the
wrong decision will be made. In such circumstances, if it turned out
that the treatment prescribed by the doctor was not the best for the
patient’s actual condition, it would be unfair to criticize the doctor
or to say that he or she had been professionally incompetent.

Any decision, no matter how trivial it seems, can have unex-
pected, and sometimes tragic, consequences. The trip to the super-
market by car may be marred by a traffic accident. How many times
have those involved in such incidents uttered the words “If only I
had decided to do it tomorrow!”? People who chose to have a hol-
iday in Phuket, Thailand, over the Christmas period in 2004 could
not have anticipated or imagined the tragedy of the Asian tsunami
that claimed more than a quarter of a million lives. How many rel-
atives and friends of victims have said “If only they had decided to
go somewhere else!”?

We see from the above that in making decisions there are two
types of outcome, those that are predictable and those that are not.
The latter category is almost infinite in its range of possibilities.
When going to the supermarket, almost anything can happen from
meeting an old school friend, spraining an ankle, having a traffic
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accident, or winning a prize for being the store’s one-millionth cus-
tomer. If you let your imagination flow you can fill several pages
with possible outcomes of widely varying likelihood. By contrast,
by their very nature, predictable consequences are usually bounded.
However, one cannot accuse of foolishness, either a doctor making
a wrong decision based on an estimate of probabilities or a holiday-
maker who travels to the scene of a tsunami. That is what life is like
and it cannot be any other way.

18.3. I Want a Lucky General

There are those who move majestically through their lives with
everything going in their favor and others who experience one
mishap after another. From a statistical point of view, what we are
seeing here are the extremes of a distribution of what we might call
good fortune or luck. It was Napoleon who, when confronted with
the curriculum vitae of candidates for a vacant general-officer post,
pushed them aside and said that what he wanted was a lucky gen-
eral. Rationally that statement did not make sense. Awinning streak
at the roulette table would not have any influence on the outcome of
future spins of the wheel and, equally, someone who had been lucky
in the past was not more likely than anyone else to be lucky in the
future. Nevertheless, where decision-making does not depend on
mechanical devices like a roulette wheel, there may be people who
appear to be lucky in that they make many more good decisions
than bad. Actually such “luck” may just be a subtle manifestation of
more skill. The golfer Arnold Palmer is reported as having said “It’s
a funny thing, the more I practice the luckier I get”. So, it is that a
lucky general may just be one who has a better appreciation of the
lie of the land and so disposes his forces more effectively.

Sporting fixtures very often give unexpected results with the
“underdog” individual or team winning, and sometimes winning
well. That is just one aspect of the variation that occurs in all human
affairs. In 1985, in the fourth round of the FA Cup Competition,
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the third division club, York City, beat one of the giants of English
football, the first division side Arsenal, 1–0. Not only that, but on
the day Arsenal were outplayed. The game was played at York, but
nevertheless, the outcome was almost unbelievable. If York City and
Arsenal had played 100 games of football, it is likely that Arsenal
would have won 99 times, but on that day it was the 100th game. Was
York City lucky that day? In a sense they were; presumably there was
a concentration of factors operating in their favor and against their
opponents. The Arsenal team was in no sense at fault — it was a day
when they were at the low end of their performance distribution
and their opponents were at the high end of theirs.

What we learn from all this is that in all human affairs there is
an element of chance that may affect either performance in achiev-
ing certain objectives or the outcome of decision-making. Members
of a mature and thoughtful society will recognize this and accept
the ups and downs of life for what they are, the manifestation of
entirely unpredictable statistical fluctuation of outcomes in particu-
lar situations. If rainfall had been low, so that the levels of reservoirs
had substantially fallen, then a prudent government minister would
order restrictions on the use of water — to the great inconvenience
of those affected. If 1 month after the restrictions were imposed there
was a period of heavy rain that quickly replenished the reservoirs,
then it may be possible to show that the restrictions had been unnec-
essary. In the nature of the shallow thinking that accompanies most
politically motivated judgment, the minister will then undoubtedly
be accused of making an unnecessary premature decision. With the
benefit of hindsight decision-making is much easier, and is extremely
easy for those who do not have to make the decisions in the first
place. Actually, a government minister who ignored the drought by
imposing no restrictions and whose decision was rescued by the
subsequent rain would be worthy of dismissal, despite the fact that
his course of action had less inconvenienced the public. He might
be a lucky minister on that occasion, but it would be unwise to put
one’s trust on the future luck of such a reckless minister. In the next
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decision he makes, his luck might run out and then a disaster could
follow his lack of judgment.

18.4. To Fight or Not to Fight — That is the Question

The world is a very dangerous place because of the nature of its
inhabitants. There seems to be an inbuilt tendency in human being
toward violence based on a tribal instinct. However, unlike the small-
scale conflicts that went on between tribes in primitive societies, the
conflicts of the modern world encompass a huge range of scales.
When the football teams Glasgow Celtic and Glasgow Rangers meet,
there is an antagonism between the supporters based on a religious
and political divide that has its origins on the island of Ireland. The
skirmishes that sometimes accompany such games are unpleasant,
sometimes tragic, but are not a threat to mankind in general. Curi-
ously, when Scotland plays England at football, the erstwhile rival
fans of the Glasgow teams are united in their opposition to the
English tribe. The tribes are not static but can reorganize themselves
in various ways based on a football team, a country, color of skin,
religion, school, university, etc. Any individual may be a member
of several tribes and so may be an ally of another individual in one
context and an opponent of the same individual in another context.

The most important decision that any country can make is
whether or not to go to war. If the country is attacked and wishes to
defend itself, then there is no decision that needs to be made — some-
one else has made it already. There are many reasons for going to
war as an action rather than as a reaction. Some local wars are caused
by border disputes, often between ex-colonial countries where the
colonial powers had created artificial frontiers that did not respect
traditional boundaries. In the past, many wars were based on impe-
rialism, the wish to extend the territorial possessions of a country.
That was the motivation of the many wars that established the colo-
nial empires of, for example, the United Kingdom and France. Such
empire building is now outmoded, a thing of the past. Another
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reason for declaring war could be of a question of principle. The
United Kingdom and France declared war on Germany on 3 Septem-
ber 1939, because Germany had invaded Poland and the United
Kingdom and France had treaty obligations with Poland to defend
its integrity. There may have been other background reasons, but,
if so, they were not the ones advanced at the time. The Falklands
conflict of 1982 might also be claimed to have been a war based on
principle since the economic benefit to the United Kingdom was far
exceeded by the cost of reoccupying the islands and the potential
dangers that such a military expedition involved. Finally, there are
wars based on attempts to obtain economic benefits; the combina-
tion of unstable regions of the world plus the presence of oil in those
regions has proved to be a very combustible mixture.

The most significant conflict at the beginning of the 21st
century has been the invasion of Iraq and the overthrow of Saddam
Hussein. There are many overtones associated with this conflict. Was
the invasion of Iraq legal or illegal? Were there good reasons, based
on intelligence sources, to believe that Iraq had, or was developing,
chemical or biological weapons? Was the public deliberately misled
about the perceived nature of the threat posed by Iraq? Of course
we now know that Iraq did not have available stocks of chemical or
biological weapons, but the general belief at the time, even in those
countries that opposed the war such as Russia, France and Germany,
and by the United Nations itself, was that it did. There was good
reason for such a belief. Iraq certainly had once possessed chemical
weapons and had used them against its own population and against
Iranian soldiers in the Iran–Iraq war that raged from 1980 to 1988. In
this war the Iraqis were largely supported by the United States that
saw the Iranian revolutionary government as a threat to its oil sup-
plies; for the Iraqis it was more based on a border dispute somewhat
fueled by traditional antagonism between Persians and Arabs. Iraq
never fully accounted to the United Nations for the stock of chemical
weapons it was known to have had in 1991 although at some time
they must have been destroyed by the Iraqis themselves. The UN
weapons inspection teams, headed by Hans Blix, often complained
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of obstruction by the Iraqi authorities and one must wonder why
they were being obstructive since there was nothing to hide. Given
the character of Saddam Hussein, his history of violent behavior,
and his reputation for deviousness, it seems remarkable that Iraq
was free of chemical weapons in 2003 — but so it was. That we now
know — but it was not known for certain in 2003 and there were
good reasons to think otherwise.

The UN position on Iraq was basically dominated by two
blocks, the first headed by the United States and the United
Kingdom, which wanted strong and immediate action, and the sec-
ond by France, Russia, and Germany, which urged that the UN
inspection teams should be given more time to hunt for weapons.
The general view is that the US position was mainly dominated by
a concern about oil supplies coupled with a deep distrust of Iraq
after that country’s invasion of Kuwait in 1990. On the other hand,
France and Russia were the countries with the strongest commercial
links with Iraq, which owed both of them a great deal of money.
Of the major players in this crisis, Germany alone could be seen
to be taking a principled stand without any discernable ulterior
motive. Resolution 1441, passed by the United Nations had con-
cluded in section 13 that “… the Council has repeatedly warned
Iraq that it will face serious consequences as a result of its contin-
ued violation of its obligations”. The United States and the United
Kingdom clearly believed that the General Assembly would prevar-
icate endlessly and that the time had come to offer those serious con-
sequences as a real possibility and so assembled forces on the borders
of Iraq.

The rest is history as they say. Iraq was invaded successfully, but
the follow up to the invasion by the coalition forces was pathetically
inept and the situation developed into a state of chaos with an influx
of foreign terrorists, armed resistance to the coalition forces, but of
even greater significance, conflict between different Iraqi groups,
based on antagonistic branches of Islam, leading to a large loss of
life. An elected government was formed after a successful general
election, but the long-term future of Iraq became uncertain.



March 24, 2008 17:9 B-595 ch18

200 Everyday Probability and Statistics

Both in the United States and the United Kingdom, the tide of
public opinion which, at first supported the war in Iraq — more
so in the United States than in the United Kingdom — later swung
decisively in the opposite direction with strong and vituperative crit-
icism of both the President and the Prime Minister. There can be no
doubt that the outcome of the war was not as had been expected —
but, as we have previously stated, hindsight is a wonderful guide to
policy. Putting aside all questions of the veracity of the leaders or the
quality of their intelligence sources, we now try to construct a the-
oretical framework to assess whether or not there was any rational
justification for the path taken by the United States and the United
Kingdom.

18.5. The Mathematics of War

For many people the rights and wrongs of the Iraq war are sim-
ply matters of legitimacy of the action, taken without specific UN
sanction, and the fact that the justification given for invading Iraq
turned out to be invalid. They would argue that, even if the war had
produced only benign outcomes, it created a dangerous precedent
in which the one superpower now on Earth overrode the primary
agency for international order, the United Nations, to pursue its
own path. Many countries in the United Nations believed that if
action was to be taken, then it should have been taken later with
the approval of the whole international community — if that were
possible. There is strength in that argument. However, there is a
counterargument that, with the state of knowledge that existed at
the time the invasion was carried out, there was a possibility of a
catastrophic outcome if nothing at all had been done by the inter-
national community and that the international community was far
too divided to decide on a course of action. Here we shall sidestep
all these questions of legitimacy and morality — important though
they are. We shall consider the question of whether to invade or not
to invade by looking at the probabilities of postulated favorable or
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Fig. 18.1. A decision tree for deciding whether or not to invade Iraq.

unfavorable outcomes. This is a notional exercise to illustrate the
principles involved in decision-making, as we discussed in relation
to medical treatments in Chap. 6. It is not intended as either justifi-
cation for invading Iraq or for not doing so.

The decision tree for this exercise is presented diagrammatically
in Fig. 18.1, where WMD stands for weapons of mass destruction, the
UN term for what it was seeking in Iraq.

Several things must be said about this decision tree before we
contemplate using it. Firstly, where alternative possible outcomes
deviate from the single point, the sum of the probabilities must be 1,
since the outcomes are mutually exclusive. Thus,

p1 +p2 = 1; p3 +p4 = 1; p5 +p6 = 1; p7 +p8 = 1; p9 +p10 = 1.

The actual values of the probabilities will be a matter of judgment
and different individuals, inserting different probabilities, will come
to different conclusions. Lastly, the nature of the good and bad out-
comes will also depend on individual assessments of what the reac-
tions of participants — the Iraqi people, foreign terrorists, and the
Iraqi government — might be. Here we suggest some probabilities
and outcomes; the reader should insert his own ideas to see what
the decision tree suggests. As has been previously mentioned, there
are an infinite number of unpredictable outcomes.
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Based on general expectations by the United Nations and by
individual countries, p1 = 0.8 (p2 = 0.2).

Good outcome A The WMD are destroyed, a tyrannical govern-
ment is removed, and a democratic government
is established. Iraq becomes peaceful.

Bad outcome B There is local resistance to the coalition forces,
sectarian strife ensues, and foreign terrorists
exploit the chaotic situation.

Good outcome C As ofAexcept that there are no WMD to destroy.
Bad outcome D Emboldened by lack of UN action the Iraqi

regime used WMD and intermediate-range mis-
siles to threaten or bully its neighbors. Restarts
nuclear weapons research and uses threat of
chemical and biological attack on Israel, deliv-
ered by rockets, to deter intervention by western
powers. There is a possible threat of Middle-east
war involving several countries and consequent
world economic chaos when oil supplies are dis-
rupted. This scenario might not appear for a few
years and would be difficult to counter.

Good outcome E The Iraqi regime does not attempt either to
begin or to expand WMD production and set-
tles into peaceful coexistence with its neighbors.
It also stops persecuting opposition groups
within Iraq.

Bad outcome F Despite having no WMD, Iraq continues to
threaten its neighbors, confident that the UN
will not physically intervene.

We now consider some notional probabilities to attach to these
outcomes.

In view of the rather tempestuous nature of Middle-east soci-
eties, where political, religious, or other differences often lead to
armed conflict, in considering outcomes A, B, and C a bad rather
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than a good outcome would be expected. However, Iraqis are, on
the whole, intelligent and well educated and are the inheritors of
an ancient civilization; so the expectation of a good outcome might
be better than is generally expected in the region. This gives the
judgment p3 = 0.4 (p4 = 0.6) and p5 = 0.6 (p6 = 0.4).

With the assumed possession of WMD and taking into account
Iraq’s previous wars with its neighbors, bad outcome D, or some
variant of it, seems more likely than the alternative outcome E. We
take p7 = 0.7 (p8 = 0.3). Without WMD, Iraq would be less likely to
be aggressive, so we take p9 = 0.5 (p10 = 0.5).

We are now in a position to estimate the total probabilities of
good or bad outcomes for both the decision to invade and the deci-
sion not to invade.

Invading
Probability of a good outcome is

p1p3 + p2p6 = 0.8 × 0.4 + 0.2 × 0.4 = 0.4;

Probability of a bad outcome is

p1p4 + p2p5 = 0.8 × 0.6 + 0.2 × 0.6 = 0.6.

The sum of these probabilities is 1, as it must be, since good and bad
outcomes are mutually exclusive.

Not invading
Probability of a good outcome is

p1p8 + p2p9 = 0.8 × 0.3 + 0.2 × 0.5 = 0.34;

Probability of a bad outcome is

p1p7 + p2p10 = 0.8 × 0.7 + 0.2 × 0.5 = 0.66.

Almost every reader would disagree with some aspect of this
analysis or even reject the whole concept of looking at the problem
this way. However, what should not be rejected is that it is possible
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that both options — to invade or not to invade — could more prob-
ably give a bad outcome than a good one. Choices in real life are not
always between good and bad; often they are between what is bad
and what is worse. Whatever one chooses in such a situation, one
will be open to criticism — the critics will only see the bad outcome
and not the potentially worse outcome of the alternative choice.

What has not been considered in the above analysis is the rela-
tive quality of the bad outcomes. Bad outcome D could be so catas-
trophic that, even if its probability was very low, eliminating it as
a possibility might be considered to be of paramount importance.
Crossing a quiet country road with your eyes shut might be a fairly
safe thing to do, but it is not a sensible thing to do as the potential
consequences of a small-probability accident are so bad.

There are many possible scenarios that could be envisaged, but
the only one we know the consequences of is the one that actually
happened — and that turned out to be very bad indeed. There is a
tendency to look for scapegoats when things go wrong. Decisions
often have to be made without complete knowledge — knowledge
that, with hindsight, the eventual critics will have. Such decisions
have to be made on the basis of perceived probabilities of this or that
happening, just as one bets on a horse in the light of a probability
based on its previous performances. Backed horses do not always
win and logically-taken decisions do not always turn out well. That
is something an educated citizen should appreciate.

Problem 18

18.1. It could be argued that without the availability of WMD, and
with the previous experience of the war in which Kuwait was
liberated, Iraq would have followed a peaceful path so that the
probability p10 in Fig. 18.1 should be 0. What is the outcome
of a good outcome in this case if no invasion was carried out?
Could this have led to a different decision about whether or
not to invade?
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Problems 1

1.1. The words showing lack of certainty are underlined.
Low pressure is expected to affect northern and western
parts of the United Kingdom throughout the period. There
is a risk of some showery rain over south-eastern parts over
the first weekend but otherwise much of eastern England and
possibly eastern Scotland should be fine. More central and west-
ern parts of the United Kingdom are likely to be rather unsettled
with showers and some spells of rain at times, along with some
periods of strong winds too. However, with a southerly airflow
dominating, rather warm conditions are expected, with warm
weather in any sunshine in the east.

1.2. Since all numbers are equally likely to occur the probability
is 1

12 .
1.3.

 Most likely   Least likely

1.4. The fraction of patients who died in the epidemic is 123
4205 =

0.029. This is the probability that a given patient with the disease
will die.

205
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Problems 2

2.1. There are five sides less than 6 and getting these are mutually
exclusive events. Hence the probability of getting a number less
than 6 is

P1 to 5 = 1
12

+ 1
12

+ 1
12

+ 1
12

+ 1
12

= 5
12

.

2.2. The probability of picking a particular ace is 1
52 . There are four

aces and getting them are mutually exclusive events. Hence the
probability of getting an ace is

Pace = 1
52

+ 1
52

+ 1
52

+ 1
52

= 1
13

.

2.3. The probabilities that the dodecahedron and die will give a 5
are 1

12 and 1
6 respectively. Since getting the 5s are independent

events the probability of getting the two 5s is

P5+5 = 1
12

× 1
6

= 1
72

.

2.4. From the argument given in 2.2 the probability of picking a jack
is 1

13 . For each coin the probability of getting a head is 1/2. Since
all the events are independent the total probability is

PJ+4H = 1
13

×1
2
×1

2
×1

2
×1

2
= 1

104
smaller than that found in 2.3.

2.5. From 2.3, the probability of getting a particular combination of
numbers is 1

72 . The combinations that can give a total of 6 are:
1 + 5, 2 + 4, 3 + 3, 4 + 2, and 5 + 1. These combinations are
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mutually exclusive so the probability of getting a sum of 6 is

Psum=6 = 5 × 1
72

= 5
72

.

2.6. The probability that a particular gene will be

f is Pf = 1
41

and that it will be F is PF = 40
41

.

Note that the sum of the two probabilities is 1 (the gene has to
be one or other of the mutually exclusive possibilities) and that
the ratio is 1:40 as given.

(i) To have the disease each gene of the pair possessed by the
individual must be f . Hence the probability of having the
disease is

Pff = 1
41

× 1
41

= 1
1681

.

(ii) To be a carrier the gene pair must be (f , F) or (F, f ), the com-
binations being mutually exclusive. Hence the probability
of being a carrier is

Pcarrier = 1
41

× 40
41

+ 40
41

× 1
41

= 80
1681

= 0.0476.

Problem 3

3.1. We calculate the summation on the right-hand side of (3.3) for
the three races.

2.30 pm Sum = 1
2

+ 1
5

+ 1
7

+ 1
9

+ 1
13

+ 1
19

= 1.0835,
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3.15 pm Sum = 1
3

+ 1
4

+ 1
4

+ 1
5

+ 1
7

+ 1
9

= 1.2873,

3.45 pm Sum = 1
3

+ 1
4

+ 1
5

+ 1
9

+ 1
13

= 0.9714.

The third race does not satisfy the golden rule. The sum is the
greatest for the second race and hence is the best from the book-
maker’s point of view (and worst for the punters’ chances of
winning!).

Problems 4

4.1. The number of different orders is 5! = 5 × 4 × 3 × 2 × 1 = 120.
4.2. The number of ways is 10C4 = 10!

6!4! = 210.
4.3. Number of ways of selecting three balls, taking the order into

account, is 6× 5× 4 = 120. One of those ways is red, green, and
blue, in that order, so the probability is 1

120 . Ways of selecting
three balls without regard to order is

6C3 = 6!
3!3! = 20.

One of those non-ordered selections is red + green + blue so the
probability of picking that is 1

20 = 0.05.
4.4. The number of ways of picking four numbers from 20 is 20C4 =

20×19×18×17
4×3×2×1 = 4, 845.

There is one way to get the first prize so the probability is 1
4,845 .

The number of different selections of three correct numbers
from four is 4C3 = 4, so the number of different ways of getting
a second prize, with three correct numbers plus the bonus ball,
is four. The probability of getting a second prize is thus 4

4,845 .
Athird prize is won with three correct numbers and one of the

15 numbers that is neither a correct number nor the bonus ball
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number. The number of ways of obtaining this is 4 × 15 = 60,
so the probability of winning a third prize is 60

4,845 = 4
323 .

Problems 5

5.1. (i) The number of ways they can have birthdays is 100 × 100.
The number of ways they can have different birthdays is
100 × 99.

Hence the probability they have different birthdays is
100×99
100×100 = 0.99.

(ii) The number of ways they can have birthdays is 100×100×
100 × 100.

The number of ways they can have different birthdays
is 100×99×98×97.

The probability they have different birthdays is
100×99×98×97

100×100×100×100 = 0.9411.
(iii) We calculate the series of terms

100
100

× 99
100

× 98
100

× 97
100

× · · ·

until it falls below 0.5. At this number the probability that
two Arretians have the same birthday is greater than 0.5.
The table similar to Table 5.1 is

n Probability n Probability n Probability

2 0.9900 3 0.9702 4 0.9411
5 0.9035 6 0.8583 7 0.8068
8 0.7503 9 0.6903 10 0.6282

11 0.5653 12 0.5032 13 0.4428

The number of Arretians for a greater than 50% chance that
two have the same birthday is 13.
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5.2. The table similar to Table 5.2 is

Outcome Probability Profit (loss) Profit (loss)
on first game on C&A

0 0 5
6 × 5

6 = 25
36 (−25) (−25)

0 6 5
6 × 1

6 = 5
36 5 5

6 0 1
6 × 5

6 = 5
36 5 5

6 6 1
6 × 1

6 = 1
36 1 2

Net loss 14 13

Problems 6

6.1. Consider a notional 200 patients with the symptoms. Of these
130 will have conditionAand 70 condition B. The number cured
with

drug a 130 × 0.6 + 70 × 0.4 = 106,

drug b 130 × 0.3 + 70 × 0.9 = 102.

Hence the doctor should prescribe drug a.
6.2. The O and E tables are

  Buy   No buy   Buy  No buy 

8 92 

20 80 

14 86 

14 86 

8 92 

20 80 

old

new 

O 
old

new

E

These give

χ2 = 36
14

+ 36
86

+ 36
14

+ 36
86

= 5.98.
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Table 6.1 indicates that the probability of getting this value or
above is between 0.01 and 0.02. This is much less than the deci-
sion limit of 0.05. Hence the indication is that the new packaging
is effective.

Problems 7

7.1. Each path from the top point to a cup has a probability of 1
9(

1
3 × 1

3

)
. There is one path to A so the probability of getting

there (or to E) is 1
9 . There are two paths to B so the probability

of getting there (or to D) is 2
9 . There are three paths to C so the

probability of getting there is 1
3 . In nine games, costing 90p, the

player receives back 40p from the ball reaching B and D and 40p
from the ball reaching A or E, i.e., a total of 80p in all.

7.2. The probabilities of the various ways of getting 20 are

10 + 10 probability
16
52

× 15
51

= 240
2652

= 0.09050,

11 + 9 probability
4
52

× 4
51

= 16
2652

= 0.00603,

9 + 11 probability
4
52

× 4
51

= 16
2652

= 0.00603.

Hence the total probability is 0.10256.
7.3. (i) The probability of setting a point of 4 and then losing by

throwing a 7 is

P4,7 = Probability of getting 4

× Probability of getting a 7 before a 4

= Probability of getting 4

× (1 − Probability of getting a 4 before a 7)

= 1
12

×
(

1 − 1
3

)
= 1

18
.
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(ii) With the notation of (i) we need to find P4,7 + P5,7 + P6,7 +
P8,7 + P9,7 + P10,7,

P5,7 = Probability of getting 5

× Probability of getting a 7 before a 5

= Probability of getting 5

× (1 − Probability of getting a 5 before a 7)

= 1
9

×
(

1 − 2
5

)
= 1

15
.

P6,7 = Probability of getting 6

× Probability of getting a 7 before a 6

= Probability of getting 6

× (1 − Probability of getting a 6 before a 7)

= 5
36

×
(

1 − 5
11

)
= 5

66
.

We also have

P10,7 = P4,7, P9,7 = P5,7, and P8,7 = P6,7.

Hence

P4,7 + P5,7 + P6,7 + P8,7 + P9,7 + P10,7

= 1
18

+ 1
15

+ 5
66

+ 5
66

+ 1
15

+ 1
18

= 0.3960.

Problems 8

8.1. The expected number for each side is 100 so that

χ2 = 144
100

+ 169
100

+ 361
100

+ 81
100

+ 1
100

+ 256
100

= 10.12.

There are five degrees of freedom and according to Table 8.9 the
probability of getting this value of χ2, or some greater value, is
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between 0.05 and 0.1. This is less that the 10% criterion so we
conclude that the die is probably unfair.

8.2. The probability of getting either 1 + 6 or 6 + 1 is
2 × 1

4 × 1
12 = 1

24 ,
The probability of getting either 2 + 5 or 5 + 2 is
2 × 1

6 × 1
6 = 1

18 ,
The probability of getting either 3 + 4 or 4 + 3 is
2 × 1

6 × 1
6 = 1

18 ,
The probability of getting either 5 + 6 or 6 + 5 is
2 × 1

6 × 1
12 = 1

36 .
Hence the probability of getting a natural is

Pnatural = 1
24

+ 1
18

+ 1
18

+ 1
36

= 0.1806 (0.2222 for fair dice).

8.3. The observed and expected tables are

0 non-0 

10 360 

0 non-0 

20 350 

Observed

Expected

This gives χ2 = 100
10 + 100

360 = 10.28. For one degree of freedom the
probability of getting this value of χ2, or some greater value, is
close to 0.001. Hence, we may deduce that the wheel is almost
certainly biased.
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Problem 9

The histogram representing the distribution of dress sizes is shown
below. If only sizes inside the range 8 to 18 were stocked then the
number of dresses sold would change by a factor of 0.83. However,
the profit per dress would change by a factor of 1.2. The changed
profit would be of 0.83 × 1.2 = 0.996 so the total profit would fall.

0

0.05

0.1

0.15

0.2

6 8 10 12 14 16 18 20 22 24 26

pr
op

or
tio

n

size

Distribution of dress sizes

Problems 10

10.1. The average is 2+4+6+7+8+10+12
7 = 49

7 = 7

V =
(2 − 7)2 + (4 − 7)2 + (6 − 7)2 + (7 − 7)2 + (8 − 7)2

+ (10 − 7)2 + (12 − 7)2

7
= 10

σ = √
10 = 3.162.

10.2. (i) 311, (ii) 312, and (iii) 31.3.
10.3. Sales of 47,000 are 21/2σ below the mean. From Table 10.1, the

area under the normal curve from the mean to 21/2σ is 0.49379
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so the area beyond 21/2σ is 0.00621. Hence the number of days
per year with sales below 47,000 will be 0.00621 × 365 = 2, to
the nearest whole number.

Sales of 55,000 are 11/2σ from the mean. The area from the
mean out to 11/2σ is, from Table 10.1, 0.4332 so the area beyond
11/2σ is 0.0668. Hence the number of days per year with sales
above 55,000 will be 0.0668 × 365 = 24, to the nearest whole
number.

Problems 11

11.1.
Numbers 2 4 6 7 8 10 12 Mean = 7
Squares 4 16 36 49 64 100 144 Mean

square = 59

Variance = mean square – square of mean = 59 − 72 = 10.
11.2. We first work out the mean square height for each school from

V + h̄2.

School 1 h2 = 0.0912 + 1.3522 = 1.8362,

School 2 h2 = 0.0862 + 1.2672 = 1.6127,

School 3 h2 = 0.0892 + 1.4112 = 1.9988,

School 4 h2 = 0.0902 + 1.3722 = 1.8905.

The mean square height for all the children is

h2
all =

(62 × 1.8362) + (47 × 1.6127) + (54 × 1.9988)
+ (50 × 1.8905)

62 + 47 + 54 + 50
= 1.8409

The mean height of all the children is

ha;; =
(62 × 1.352) + (47 × 1.267) + (54 × 1.411)

+ (50 × 1.372)

62 + 47 + 54 + 50
= 1.353 m.
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The variance of the heights for all the children is

Vall = h2
all − hall

2 = 1.8409 − 1.3532 = 0.01029 m2

Hence the standard deviation is σall = √
Vall = 0.1014 m.

Problems 12

12.1. For this Poisson distribution the average a = 1
(i) e−1×10

0! = 0.3679, (ii) e−1×11

1! = 0.3679, (iii) e−1×13

3! = 0.0613,

and (iv) e−1×15

5! = 0.0031.
12.2. The average number of asteroids per 1,000,000 years is 0.1. The

probability that no large asteroids will fall is e−0.1×0.10

0! = 0.9048.
Hence the probability that at least one will fall is 1.0−0.9048 =
0.0952.

12.3. The number of days that 15 would fail is 365× e−10×1015

15! = 12.7,
or 13 days to the nearest whole number.

Problems 13

13.1. The proportion of those polled supporting party A is 0.52.
Hence the most probable support for party A is 0.52 with a
standard deviation

σ =
√

0.52 × 0.48
3000

= 0.00912.

The indicated support is 0.52−0.50
0.00912 σ = 2.19σ from the 50% level.

The area under the normal curve out to 2.19σ may be found
from Table 10.1 by going 9

10 of the way from 2.1σ toward 2.2σ.
This area is 0.486. For party B to win the actual result would
have to be more than 2.19σ from the mean, the probability of
which is 0.5 − 0.486 = 0.014. Hence the probability that party
A will have more than 50% of the popular vote is 1.0−0.014 =
0.986.
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13.2. From the sample the proportion of male snakes is 0.46. The

standard deviation of this estimate is σ =
√

0.46×0.54
200 = 0.0352.

The sample proportion is 0.5−0.46
0.0352 σ = 1.14σ from the 50% level.

For more than 50% of snakes to be male the sample average
must be more than 1.14σ from the mean. From Table 10.1,
interpolating between 1.1σ and 1.2σ, the probability of this is
0.5 − 0372 = 0.128.

Problems 14

14.1. (i) The mean height is found by adding the given heights
and dividing by 20. This gives the mean height as h̄ =
1.9615 m.

(ii) To find the variance, we first need to find the mean
square height of the men. This is found by adding the
squares of their heights and dividing by 20. This gives
h2 = 3.85694 m2. Hence the variance of the height is

Vh = h2 − h̄2 = 3.85694 − 1.96152 m2 = 0.0094577 m2

giving σh = √
Vh = 0.097 m.

(iii) Applying the Bessel correction the estimated standard

deviation for the whole population is 〈σp〉 =
√

20
19 ×

0.097 = 0.0995 m.
(iv) The estimated standard deviation of the sample mean is,

from (14.4)

〈σap〉 =
√

Vh

19
=

√
0.0094577

19
= 0.022 m.

(v) 2.0 m is 2.0−1.9615
0.022 〈σap〉 = 1.75〈σap〉 from the sample mean.

The probability of being this far, or further, from the sam-
ple mean is found from Table 10.1 as 0.5 − 0.459 = 0.041.
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14.2. The proportion of the sample tagged is 20
100 = 0.2. Assuming

that this is true for all the fish then, since 100 fish were tagged
the total number of fish in the pond is 500.

Problem 15

15.1. We take the null hypothesis that there is no difference in the
feeding regimes. The difference in mean weights from the
two samples is 0.5 g. The variance of the difference Vdiff =

2.12+2.32

100+100−2 = 0.04899 g2 giving a standard deviation of 0.22 g.
The actual difference is 0.5

0.22 = 2.27. The probability of being
that far, or further, from the mean in both directions is, from
Table 10.1,

2 × (0.5 − 0.4882) = 0.0236.

Problem 16

16.1. Estimating figures from a graph is not something that can be
done precisely but the following estimates are reasonable.

(i) Number killed in 1964 = 7700;
Number killed in 2005 = 3200.
Ratio = 0.42.

(ii)
1964 1982 2005

Pedestrians 3000 1800 850
Total 7700 5950 3200
Ratio 0.39 0.30 0.30

The number of cars on the road in the period in question has
greatly increased, which makes the reduction in road deaths
more remarkable. The MOT test for cars was introduced in
1960 for cars over 10-year-old but the age at which the test was
applied was reduced until by 1967 it was 3 years. Cars have
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become much safer with the introduction of mandatory safety
belts and of airbags that protect both the driver and passengers.
Front-wheel drive, power-assisted steering and improved sus-
pensions give better vehicle control giving extra safety both to
those in the car and to pedestrians. Advanced braking systems
(abs) have also contributed greatly to safety giving braking in
shorter distances without skidding, particularly on icy roads.

Problem 17

17.1. (i) 0.095, (ii) 0.22, and (iii) 0.24
The exposure level is 2.0 without smoking and 4.0 with smok-
ing. The probability of disease is increased from 0.175 to 0.28,
i.e., a factor of 2.8

1.75 = 1.6.

Problem 18

18.1. With p10 = 0, and hence p9 = 1, the probability of a bad out-
come by not invading is reduced to 0.8 × 0.7 + 0.2 × 0 = 0.56.
This is now less than the probability of a bad outcome by
invading.
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