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Preface

This monograph is an attempt to provide a mathematical treatment for
the procedure known as kriging, which is a popular method for interpo-
lating spatial data. Kriging is superficially just a special case of optimal
linear prediction applied to random processes in space or random fields.
However, optimal linear prediction requires knowing the covariance struc-
ture of the random field. When, as is generally the case in practice, the
covariance structure is unknown, what is usually done is to estimate this
covariance structure using the same data that will be used for interpolation.
The properties of interpolants based on an estimated covariance structure
are not well understood and it is common practice to ignore the effect of
the uncertainty in the covariance structure on subsequent predictions. My
goal in this monograph is to develop the mathematical tools that I believe
are necessary to provide a satisfactory theory of interpolation when the co-
variance structure is at least partially unknown. This work uses these tools
to prove a number of results, many of them new, that provide some insight
into the problem of interpolating with an unknown covariance structure.
However, I am unable to provide a complete mathematical treatment of
kriging with estimated covariance structures. One of my hopes in writ-
ing this book is that it will spur other researchers to take on some of the
unresolved problems raised here.

I would like to give a bit of personal history to help explain my devo-
tion to the mathematical approach to kriging I take here. It has long been
recognized that when interpolating observations from a random field pos-
sessing a semivariogram, the behavior of the semivariogram near the origin
plays a crucial role (see, for example, Matheron (1971, Section 2-5)). In
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the mid 1980s I was seeking a way to obtain an asymptotic theory to sup-
port this general understanding. The asymptotic framework I had in mind
was to take more and more observations in a fixed and bounded region of
space, which I call fixed-domain asymptotics. Using this approach, I sus-
pected that it should generally be the case that only the behavior of the
semivariogram near the origin matters asymptotically for determining the
properties of kriging predictors. Unfortunately, I had no idea how to prove
such a result except in a few very special cases. However, I did know of
an example in which behavior away from the origin of the semivariogram
could have an asymptotically nonnegligible impact on the properties of
kriging predictors. Specifically, as described in 3.5, the semivariograms cor-
responding to exponential and triangular autocovariance functions have the
same behavior near the origin, but optimal linear interpolants under the
two models do not necessarily have similar asymptotic behavior. I believed
that there should be some mathematical formulation of the problem that
would exclude the “pathological” triangular autocovariance function and
would allow me to obtain a general theorem on asymptotic properties of
kriging predictors. Soon after arriving at the University of Chicago in the
fall of 1985, I was browsing through the library and happened upon Gaus-
stan Random Processes by Ibragimov and Rozanov (1978). I leafed through
the book and my initial reaction was to dismiss it as being too difficult for
me to read and in any case irrelevant to my research interests. Fortunately,
sitting among all the lemmas and theorems and corollaries in this book was
a single figure on page 100 showing plots of an exponential and triangu-
lar autocovariance function. The surrounding text explained how Gaussian
processes corresponding to these two autocovariance functions could have
orthogonal measures, which did not make an immediate impression on me.
However, the figure showing the two autocovariance functions stuck in my
mind and the next day I went back to the library and checked out the book.
I soon recognized that equivalence and orthogonality of Gaussian measures
was the key mathematical concept I needed to prove results connecting the
behavior of the semivariogram at the origin to the properties of kriging
predictors. Having devoted a great amount of effort to this topic in subse-
quent years, I am now more firmly convinced than ever that the confluence
of fixed-domain asymptotics and equivalence and orthogonality of Gaussian
measures provides the best mathematical approach for the study of kriging
based on estimated covariance structures. I would like to thank Ibragimov
and Rozanov for including that single figure in their work.

This monograph represents a synthesis of my present understanding of
the connections between the behavior of semivariograms at the origin, the
properties of kriging predictors and the equivalence and orthogonality of
Gaussian measures. Without an understanding of these connections, I be-
lieve it is not possible to develop a full appreciation of kriging. Although
there is a lot of mathematics here, I frequently discuss the repercussions of
the mathematical results on the practice of kriging. Readers whose main
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interests are in the practice of kriging should consider skipping most of the
proofs on a first reading and focus on the statements of results and the
related discussions. Readers who find even the statements of the theorems
difficult to digest should carefully study the numerical results in Chap-
ters 3 and 6 before concluding that they can ignore the implications of this
work. For those readers who do plan to study at least some of the proofs, a
background in probability theory at the level of, say, Billingsley (1995) and
some familiarity with Fourier analysis and Hilbert spaces should be suffi-
cient. The necessary second-order theory of random fields is developed in
Chapter 2 and results on equivalence and orthogonality of Gaussian mea-
sures in Chapter 4. Section 1.3 provides a brief summary of the essential
results on Hilbert spaces needed here.

In selecting topics for inclusion, I have tried to stick to topics pertinent
to kriging about which I felt I had something worthwhile to say. As a con-
sequence, for example, there is little here about nonlinear prediction and
nothing about estimation for non-Gaussian processes, despite the impor-
tance of these problems. In addition, no mention is made of splines as a way
of interpolating spatial data, even though splines and kriging are closely
related and an extensive literature exists on the use of splines in statistics
(Wahba 1990). Thus, this monograph is not a comprehensive guide to sta-
tistical approaches to spatial interpolation. Part I of Cressie (1993) comes
much closer to providing a broad overview of kriging.

This work is quite critical of some aspects of how kriging is com-
monly practiced at present. In particular, I criticize some frequently used
classes of models for semivariograms and describe ways in which empirical
semivariograms can be a misleading tool for making inferences about semi-
variograms. Some of this criticism is based on considering what happens
when the underlying random field is differentiable and measurement errors
are negligible. In some areas of application, nondifferentiable random fields
and substantial measurement errors may be common, in which case, one
could argue that my criticisms are not so relevant to those areas. However,
what I am seeking to accomplish here is not to put forward a set of method-
ologies that will be sufficient in some circumscribed set of applications, but
to suggest a general framework for thinking about kriging that makes sense
no matter how smooth or rough is the underlying random field and whether
there is nonnegligible measurement error. Furthermore, I contend that the
common assumption that the semivariogram of the underlying random field
behaves linearly in a neighborhood of the origin (which implies the random
field is not differentiable), is often made out of habit or ignorance and not
because it is justified.

For those who want to know what is new in this monograph, I provide a
summary here. All of 3.6 and 3.7, which study the behavior of predictions
with evenly spaced observations in one dimension as the spacing between
neighboring observations tends to 0, are new. Section 4.3 mixes old and
new results on the asymptotic optimality of best linear predictors under
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an incorrect model. Theorem 10 in 4.3, which shows such results apply to
triangular arrays of observations and not just a sequence of observations,
is new. So are Corollaries 9 and 13, which extend these results to cases
in which observations include measurement error of known variance. The
quantitative formulations of Jeffreys’s law in 4.4 and the plausible approx-
imations in 6.8 giving asymptotic frequentist versions of Jeffreys’s law are
published here for the first time, although some of these ideas appeared in
an NSF grant proposal of mine many years ago. Section 6.3, which points
out an important error in Matheron (1971), is new, as is 6.7 on the asymp-
totic behavior of the Fisher information matrix for a periodic version of
the Matérn model. Finally, the extensive numerical results in 3.5, 6.6 and
6.8 and the simulated example in 6.9 are new.

This work grew out of notes for a quarter-long graduate class in spatial
statistics I have taught sporadically at the University of Chicago. However,
this book now covers many more topics than could reasonably be addressed
in a quarter or even a semester for all but the most highly prepared stu-
dents. It would be a mistake not to get to Chapter 6, which has a much
greater focus on practical aspects of kriging than the preceding chapters. I
would recommend not skipping any sections entirely but instead judicially
omitting proofs of some of the more technical results. The proofs in 3.6
and 6.7 depend critically on evenly spaced observations and do not provide
much statistical insight; they are good candidates for omission. Other can-
didates for omission include the proofs of Theorem 1 and Theorems 10-12
in Chapter 4 and all proofs in 5.3 and 5.4. There are exercises at the end
of most sections of highly varying difficulty. Many ask the reader to fill in
details of proofs. Others consider special cases of more general results or
address points not raised in the text. Several ask the reader to do numerical
calculations similar to those done in the text. All numerical work reported
on here, unless noted otherwise, was done in S-Plus.

There are many people to thank for their help with this work. Terry
Speed pointed out the connection between my work and Jeffreys’s law (see
4.4) and Wing Wong formulated the Bayesian version of this law described
in 4.4. Mark Handcock calculated the predictive densities given in 6.10
using programs reported on in Handcock and Wallis (1994). Numerous
people have read parts of the text and provided valuable feedback including
Stephen Stigler, Mark Handcock, Jian Zhang, Seongjoo Song, Zhengyuan
Zhu, Ji Meng Loh, and several anonymous reviewers. Michael Wichura
provided frequent and invaluable advice on using TEX; all figures in this text
were produced using his P[CTEX macros (Wichura 1987). Mitzi Nakatsuka
typed the first draft of much of this work; her expertise and dedication are
gratefully acknowledged. Finally, I would like to gratefully acknowledge the
support of the National Science Foundation (most recently, through NSF
Grant DMS 95-04470) for supporting my research on kriging throughout
my research career.
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I intend to maintain a Web page containing comments and corrections
regarding this book. This page can be reached by clicking on the book’s title
in my home page http://galton.uchicago.edu/faculty/stein.html.

Chicago, Illinois Michael L. Stein
December 1998
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1

Linear Prediction

1.1 Introduction

This book investigates prediction of a spatially varying quantity based on
observations of that quantity at some set of locations. Although the notion
of prediction sometimes suggests the assessment of something that has not
yet happened, here I take it to mean the assessment of any random quantity
that is presently not known exactly. This work focuses on quantities that
vary continuously in space and for which observations are made without
error, although Sections 3.7, 4.2, 4.3, 6.6 and 6.8 do address some issues re-
garding measurement errors. Our goals are to obtain accurate predictions
and to obtain reasonable assessments of the uncertainty in these predic-
tions. The approach to prediction I take is to consider the spatially varying
quantity to be a realization of a real-valued random field, that is, a family
of random variables whose index set is R9.

Much of this work focuses on the properties of predictors that are linear
functions of the observations, although 1.4 describes a cautionary example
on the potential inefficiencies of “optimal” linear predictors. Section 1.2
defines and derives best linear prediction of random fields based on a fi-
nite number of observations. Section 1.3 briefly reviews some properties of
Hilbert spaces, which are a powerful tool for studying general linear predic-
tion problems. Section 1.5 considers best linear unbiased prediction, which
applies when the mean function of the random field is known up to a vec-
tor of linear parameters. Best linear unbiased prediction is frequently used
in spatial statistics where it is commonly called universal kriging. Section
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1.6 summarizes some basic themes of this work and briefly considers how
these themes relate to practical issues in the prediction of random fields.
Section 1.7 succinctly states my main recommendations for the practice of
predicting random fields. Readers who can only spare 30 seconds on this
book might want to skip directly to 1.7.

Chapter 2 provides a detailed discussion of properties of random fields
relevant to this work. For now, let us introduce some essential definitions
and notation. For a random variable X, I use E(X) to indicate its ex-
pected value and var(X) for its variance. For random variables X and Y,
cov(X,Y) = E(XY) — E(X)E(Y) is the covariance of X and Y. Suppose
{Z(x) : x € R%} is a real-valued random field on R? and x,y € R¢. The
mean function of Z is EZ(x), which I often denote by m(x). The covari-
ance function is cov{Z(x), Z(y)}, which I often denote by K(x,y). Finally,
a random field is Gaussian if all of its finite-dimensional distributions are
Gaussian (multivariate normal). See Appendix A for a brief summary of
results on multivariate normal distributions.

1.2 Best linear prediction

Suppose we observe a random field Z on R? at x3,..., X, and wish to pre-
dict Z(xp). I call the quantity to be predicted the predictand. If the law of
Z is known, then inference about Z(xg) should be based upon the condi-
tional distribution of Z(x¢) given the observed values of Z(x;),...,Z(x,).
In practice, specifying the law of a random field can be a daunting task.
Furthermore, even if we are willing to believe that we know the law of
Z, calculating this conditional distribution may be extremely difficult. For
these reasons, it is common to restrict attention to linear predictors.

Suppose Z has mean function m(x) and covariance function K(x,y). If
m and K are known, then we can obtain the mean and variance of any
linear combination of observations of Z. For random vectors X and Y,
define cov(X,Y7) = E{(X — EX)(Y — EY)T}, where the expected value
of a random matrix is just the matrix of expected values and Y7 is the
transpose of Y. Suppose we observe Z = (Z(x1),..., Z(x,))” and wish to
predict Z(xo) using a predictor of the form A9 + ATZ. The mean squared
error (mse) of this predictor is just the squared mean of the prediction error
plus its variance and is given by

E{Z(x0) — X0 — ATZ}” = {m(x0) — Ao — ATm}? + kg — 227k + ATKA,

where m = EZ, ko = K(xo,X0), k = cov {Z, Z(x0)} and K = cov (Z, Z7).
It is apparent that for any choice of A, we can make the squared mean term
0 by taking Ao = m(x¢) — ATm, so consider choosing A to minimize the
variance. For any A,v € R",

var{Z(xo) — (A +v)TZ}
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=ko —2A+v)"k+ A +v)TKA +v)
=ko — 22Tk + ATKX + v"Kv + 2(KX — k) v. (1)

Let us next show k is in C(K), the column space of K. Consider p € R™
such that var(u”Z) = pTKp = 0. Then 0 = cov(y7Z, uTZ) = vTKp for
all v € R™, so Ku = 0. In addition, 0 = cov{Z(xo), uTZ} = kT , so that
Kpu = 0 implies k” pu = 0. Thus, k is orthogonal to the null space of K and
hence k € C(K7T) = C(K), as required. Consequently, there exists A such
that KX = k, and for such A,

var{Z(xg) = A+ v)TZ} = ko — 22Tk + ATKA + vTKv
> ko — 22Tk + ATKA

for all v since ¥ Kv = var(vTZ) > 0. Thus, since ATZ achieves this lower
bound, it necessarily minimizes the variance of the prediction error. We call
any linear predictor that minimizes the mean squared error among all linear
predictors the best linear predictor or BLP. The preceding argument proves
that the BLP always exists. Exercise 1 asks you to show it is essentially
unique. If K is invertible, the values of A\g and A that give the BLP are

A=Kk and

Ao = m(xg) — kTK 'm

(2)

and the resulting mse is kg — kT K~ 'k.

If Z is Gaussian, then (see Appendix A) we have the much stronger
result that the conditional distribution of Z(xo) given Z = z is N (o +
ATz, ko — kTK™'k), where A and X are given by (2) and N(u,0?) is the
univariate normal distribution with mean p and variance o2. Thus, for a
Gaussian random field with known mean and covariance functions, finding
the conditional distribution of the process at xg is straightforward.

We see that for Gaussian Z, the BLP gives the conditional expectation,
so that the BLP is the best predictor (in terms of minimizing mse), linear
or nonlinear (Rice 1995, p. 140). Thus, there is a temptation to believe that
BLPs work well for processes that are not too far from Gaussian. However,
as the example in 1.4 demonstrates, it is important to be careful about
what one means by a process being close to Gaussian.

Exercises

1 Show that the BLP is unique in the sense that if Ao+ A7 Z and po+u”Z
are both BLPs for Z(xo), then E(Ag + ATZ — po — u7Z)2 = 0.

2 Suppose Xj, X; and X5 are random variables with mean 0 and variance
1, cov(Xo, X1) = cov(X1, X2) = p with |p| < 271/2 and cov(Xp, X2) =
0. Find the BLP of X, based on X; and X5. Find the mse of the BLP.
Note that unless p = 0, X5 plays a role in the BLP despite the fact that
it is uncorrelated with Xo. Why is there the restriction |p| < 271/2?
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3 Suppose Xg, X1,...,X, are random variables with mean 0, variance
1 and cov(X;,X;) = p for ¢ # j. Find the BLP of X, based on
Xi,...,X,. Find the mse of the BLP.

1.3 Hilbert spaces and prediction

A classical problem in stochastic processes is to predict the future of a
process based on having observed it up to the present. More specifically,
for a process Z on R with finite second moments, consider finding the BLP
of Z(t), t > 0 based on observing Z(s) for all s < 0, so that s = 0 is the
present time. Wiener (1949) and Kolmogorov (1941) studied this problem
for weakly stationary processes. Linear algebra, which worked fine when
there were only a finite number of observations, is not an adequate tool
in this setting. The right approach is to view the set of possible linear
predictors as a Hilbert space. For background material on Hilbert spaces,
see, for example, Akhiezer and Glazman (1981), although Section 5.6 of
Cramér and Leadbetter (1967) contains pretty much everything you will
need to know about Hilbert spaces to read this work.

Very briefly, a Hilbert space is a complete inner product space, or a-
linear space possessing an inner product and containing all of its limit
points under the metric defined by the inner product. A linear space L is
a set of elements x,y, ... satisfying the conditions:

(a) there is an operation called addition and denoted by + such that £
is an Abelian (commutative) group with respect to addition;

(b) multiplication of elements of £ by (real or complex) scalars a,b, ...
is defined and satisfies a(x + y) = ax + ay, (a + b)x = ax + bx,
a(bx) = (ab)x, 1x = x and 0x = 0, where 0 is the zero element of the

group.

A linear space is an inner product space if for each x,y € L there is a (real
or complex) number (x,y) such that

(¢) (x,y) = (y,x), where, for a complex number z, Z is its complex
conjugate,

(d) (ax +by,z) = a(x,2z) + b(y, z) and

(e) (x,x) > 0 with equality if and only if x = 0.

We say x is orthogonal to y, written x L y, if (x,y) = 0.

For any x € L, define its norm, written ||x||, by the positive square
root (x,x)!/2. If we define ||x — y|| as the distance between x and y, the
inner product space is a metric space. The inner product space is com-
plete and hence a Hilbert space if for any sequence xi,xs,... such that
limy, n—oo ||Xm — X, || = 0 there exists x € £ such that lim,_ [|x, — x|| =
0. The Hilbert space is called separable if it has a countable dense subset.
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We are mostly concerned with Hilbert spaces for which scalar multiplication
is restricted to reals and the inner product is real.

For any subset X of a Hilbert space H, the linear manifold spanned by
X, denoted by My, is the set of all linear combinations a;x; + - --a,X,
with n finite and x;,...,x, € X. The closed linear manifold spanned by X,
denoted by M, is just Mg together with its limit points under the metric
defined by the inner product. Note that M is itself necessarily a Hilbert
space. Any set whose closed linear manifold is M is called a basis for
M, so that X is automatically one basis for M. In this work, we generally
only consider Hilbert spaces with finite or countable bases. Every separable
Hilbert space possesses a finite or countable basis (Exercise 4).

For studying prediction, the crucial concept is that of projection of an
element of a Hilbert space onto a subspace. Suppose H is a Hilbert space
and G a subspace. Given h € H, there exists a unique element g € G such
that

A — gl = inf ||h—d'| ©)

inf |
g9'€eg
(Exercise 5). We call g the projection of h onto G. An important property
of the projection g is that it is the unique element in G satisfying h—g 1 ¢’
for all ¢’ € G (Exercise 6). That is, the error of approximation is orthogonal
to all elements of G.

The Hilbert spaces we encounter most frequently in this work are those
generated by a random field Z on some set R. More specifically, consider
a random field Z on a set R C R? with mean function m and covariance
function K. Let H% be the real linear manifold of {Z(x) : x € R} for some
R C R% For g and h in ‘H%, define the inner product (g,h) = E(gh). The
closure of H% with respect to this inner product is a Hilbert space, which
I denote by Hr(m, K).

To characterize the BLP in terms of such a Hilbert space, we need
to make sure the constant term is in the space of possible predictors.
Specifically, letting @ be the set on which Z is observed, all linear pre-
dictors of h € Hr(m, K) are of the form ¢ + g, where c is a scalar and
g € Ho(m, K). Let g(h) be the unique element in Hg(m, K) satisfying
cov{h — g(h),g'} = 0 for all ¢’ € Hg(m, K) (see Exercises 5 and 6) and
set ¢(h) = Eh — Eg(h). Then c(h) + g(h) is the BLP of h, which follows
from E[{h —c(h) — g(h)}(c' +g')] = 0 for all real ¢’ and all ¢’ € Hg(m, K)
(Exercise 7). We use this characterization in the next section to verify that
a particular linear predictor is the BLP.

Exercises

4 Show that every separable Hilbert space has a finite or countable basis.

5 For a Hilbert space H, a subspace G and h € H, show that there is a
unique element g € G such that (3) holds.
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6 (Continuation of 5). Show that g is the unique element in G satisfying
h—glg foralg eg.

7 Using the definitions in the last paragraph of this section, show that
E[{h—c(h) — g(h)}(c' + ¢')] = 0 for all real ¢’ and all ¢’ € Hg(m, K).
Use this in conjunction with Exercise 3 to verify that c(h)+ g(h) is the
BLP of h.

1.4 An example of a poor BLP

Although much of this work focuses on linear prediction, it is important
to keep in mind that “best” linear predictors can sometimes be highly
inefficient compared to the best nonlinear predictors when the underlying
random field is not Gaussian. This section presents an example showing
that a stochastic process can in one sense be nearly Gaussian and yet
a BLP performs infinitely worse than the best nonlinear predictor under
this model. Thus, in reading Chapters 3-5, where we study properties of
linear predictors in some depth, keep in mind that these results are largely
irrelevant for some non-Gaussian random fields.

Suppose N is a Poisson process with constant intensity A on R, so
that for a Borel set A, N(A) is the number of events of the process in
A and E{N(A)} is X times the Lebesgue measure of A. Define Z(t) =
N ((t—1,t+1]). Then m(t) = 2) and K(s,t) = (2 — |s — t|)* A, where ¢+
means the positive part of ¢ (Exercise 8). Observe Z on R = [—2, —1]U[1, 2]
and consider predicting Z(0). A partial realization of N, where the xs rep-
resent the locations of events of IV, and the corresponding values of Z on
R is given in Figure 1. It is possible to show that with probability 1,

Z(0) = {# positive jumps of Z on [-2, 1]}

+ {# negative jumps of Z on [1,2]}, (4)
so that the mse of the best predictor is 0 (Exercise 9). For the realization
shown in Figure 1, Z(0) = 3 and we see there is 1 positive jump on [—2, —1]
and 2 negative jumps on [1,2]. This optimal predictor of Z(0) is decidedly
nonlinear. On the other hand, the BLP of Z(0) is

FA+3{Zz()+2(-1)} - 5{2(2) + Z2(-2)}, (5)

which follows by showing that the error of the BLP has mean 0 and is
uncorrelated with Z(t) for all ¢ € R (Exercise 10). The mse of the BLP is
% A, so the ratio of the mse of the BLP to the mse of the best nonlinear
predictor is infinite for all A\. This is despite the fact that as A — oo,
{Z(-)—2A}/A'/? converges weakly (Billingsley 1968) to a Gaussian process!

Exercises

8 Show that for Z as defined in this section, K(s,t) = (2 —|s —¢|)*\.
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FIGURE 1. A partial realization of the process Z described in 1.4. The xXs on
the horizontal axis indicate events of the Poisson process N. Values for Z(t) are
plotted for t € R =[-2,—-1]U[1,2].

9 Verify that (4) holds with probability 1.

10 Verify that (5) gives the BLP of Z(0) by using the characterization for
the BLP in the last paragraph of 1.3.

1.5 Best linear unbiased prediction

Suppose we have the following model for a random field Z,
Z(x) = m(x)" B + e(x), (6)

where ¢ is a mean 0 random field with known covariance structure, m is a
known function with values in R? and B is a vector of p unknown coeffi-
cients. We observe Z = (Z(x1),...,Z(x,))" and wish to predict Z(xo). If
B were known, we could use the BLP

m(x)" 8 + k"K' (Z - MB), (7)

where M = (m(x;)--- m(x"))T and K and k are defined as in 1.2.
If B is unknown but all covariances are known, a natural approach is
to replace B in (7) by the generalized least squares estimator 8 =
(MTK-'M)"!MTK~!Z, assuming K is nonsingular and M is of full rank.
The estimator 3 is best linear unbiased for 3 (see Exercise 11).

An alternative approach is to minimize the mse of prediction among all
predictors of the form A9 + ATZ subject to the unbiasedness constraint
E(Xo + ATZ) = EZ(xo) for all B. The unbiasedness constraint is identical
to Ao + ATMB = m(x)7 3 for all B, or

M=0 and M7= m(x). (8)
Our goal then is to minimize E{Z(xo) — ATZ}? subject to X satisfying (8).
If X solves this constrained minimization problem, then ATZ is called a

best linear unbiased predictor (BLUP) for Z(xg). To solve this problem,
first note that there exists a LUP (linear unbiased predictor) if and only if
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m(xg) € C(MT), so let us suppose so from now on. If X satisfies M7\ =
m(X), then any LUP can be written as (A + v)TZ where MTv = 0.
Considering (1) and (8), ATZ is a BLUP if (KA — k)Tv = 0 for all v
satisfying MTv = 0, or equivalently, if there exists a vector u such that
KX —k = Mpu. Thus, ATZ is a BLUP if

(v 6) (2) = (en)

for some p, where O is a matrix of zeroes. This set of linear equations has
a solution if and only if m(xg) € C(MT) (Exercise 12). If K and M are of

full rank, then
()= (i 5) ) ©

From (9) it can then be shown that (Exercise 13)
A={K'-K'MMTK'M)"'MTK"'}k
+ K 'M(MTK~M) 'm(xg), (10)
so that the resulting predictor is
ATZ = kTK~1(Z — MB) + m(x0)7 3,

which is identical to what we obtained by replacing 3 in the BLP by the
generalized least squares estimator 3. The mse of the BLUP is

ko — kKTK 'k + 4T (MTK~'M) 4, (11)

where ¥ = m(xg) — MTK~'k and ko = K(xo,X0) as in 1.2 (Exercise 14).

Best linear unbiased prediction is called kriging in the geostatistical lit-
erature, named after the South African mining engineer D. G. Krige (Krige
1951; Journel and Huijbregts 1978). If m(x) = 1, so that the mean of the
process is assumed to be an unknown constant, then best linear unbiased
prediction is called ordinary kriging. Best linear unbiased prediction for
more general m is known as universal kriging and best linear prediction
with the mean assumed 0 is called simple kriging. Simple kriging is gen-
erally called objective analysis in the atmospheric sciences (Thiébaux and
Pedder 1987 and Daley 1991, Chapter 4). Goldberger (1962) described best
linear unbiased prediction for regression models with correlated errors but
did not explicitly consider the spatial setting. Cressie (1989, 1990) provides
further discussion on the history of various forms of kriging.

As noted in 1.3, A useful characterization of the BLP is that its error
is orthogonal (uncorrelated) to all possible linear predictions. The BLUP
has a similar characterization, which is implicit in the derivation of (10).
Suppose a random field Z is of the form given in (6). The random variable
E§=1 a;Z(y;) is called a contrast if it has mean 0 for all 3, or equivalently,

if Z§=1 a;m(y;) = 0. A BLUP of Z(x¢) based on some set of observations
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Z(x1),...,2(xy) is characterized by the following two properties: its error
is a contrast and its error is orthogonal to any contrast of the observations
(Exercise 15). It follows that to find BLUPs and to evaluate their mses,
it is only necessary to know the covariance structure of all contrasts of
the random field. This property is of value when using intrinsic random
functions (see 2.9), which is a class of models for which variances of linear
combinations that are not contrasts are undefined.

The BLUP has a Bayesian interpretation (Kitanidis 1986 and Omre
1987). Let N(w,X) be the multivariate normal distribution with mean
vector p and covariance matrix X. Suppose Z is given by (6), where
the random field € is Gaussian and independent of the random vector 3
which has prior distribution N(u,02V) for some positive definite V. Define
W(o?) = (MTK™'M + 072V ~1)~1. Then the posterior distribution of 3
given Z is (Exercise 16)

B|Z~N(W(@©)M'K'Z+072V7!),W(c?)). (12)

For making predictions about Z(xg), the natural Bayesian solution is to use
the conditional distribution of Z(xg) given Z but averaging over the poste-
rior of B given Z. This distribution is known as the predictive distribution
of Z(xq) (Zellner 1971, Section 2.8) and is given by (Exercise 17)

Z(xo) | Z ~ N(kTK'lz +7TW(0?) (MTK™'Z + 072V~ 1y),
ko — k'K 'k + ’YTW(Uz)’Y)- (13)

Letting 02 grow means letting the prior on 3 get increasingly uninforma-
tive, and as 02 — oo (assuming M is of full rank), the limiting predictive
distribution of Z(xo) given Z is Gaussian with the BLUP as its conditional
expectation and conditional variance given by (11).

Exercises

11 Show that if ,@ is the generalized least squares estimator for 3, then for
any fixed vector q € R?, qT,@ is the BLUP for q”' 3. Since the quantity
being predicted here is not random, qTB is more commonly called the
best linear unbiased estimator. Thus, we have that best linear unbiased
estimation is just a special case of best linear unbiased prediction.

12 Show that if a LUP exists, then the BLUP exists and is unique in the
sense that the BLP was shown to be unique in Exercise 1.

13 If K and M are of full rank, verify that (9) implies (10).

14 Show that (11) gives the mse of the BLUP.
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15 Show that a BLUP based on some set of observations is characterized
by the following two properties: its error is a contrast and its error is
orthogonal to any contrast of the observations.

16 Verify (12).
17 Verify (13).

18 Suppose as in Exercise 2 that Xy, X1, Xy are random variables with
variance 1, cov(Xp,X;) = cov(X1,X2) = p for |p|] < 271/2 and
cov(Xg, X2) = 0 but now assume that all three random variables have
an unknown common mean. Find the BLUP of X, based on X; and
X5. Find the mse of the BLUP. Compare your results to those for

Exercise 2.

19 Suppose as in Exercise 3 that Xg, X,,...,X, are random variables
with variance 1 and cov(X;, X;) = p for ¢ # j. Find the BLUP of Xj
based on Xi,...,X, if all X;s have a common unknown mean. Find

the mse of this BLUP. Find the BLUP of Xy based on X1,...,X,
and its mse if EX; = (i for some unknown constant 3. Compare your
results with those of Exercise 3.

1.6 Some recurring themes

There are four recurring and interrelated themes that underlie my approach
to problems in spatial prediction. In order to provide the reader with some
guidance as to what is most important in the upcoming chapters, it is
worthwhile to spell out these themes here. I make a number of statements
without justification in the present section and I hope that the reader who
questions these statements will be thereby motivated to continue on to the
rest of the work.

The first of these themes is the contrast between interpolation and ex-
trapolation. Although these words do not have a sharp distinction in the
spatial setting, by interpolation I mean predictions at locations that are
“surrounded” by available observations or, alternatively, are not near or
beyond the boundaries of the region in which there are observations. By
extrapolation, I mean predictions at locations beyond the boundaries of the
observation region. My main goal in this work is to develop a mathematical
framework that is most appropriate for studying interpolation problems. In
most problems in which spatial prediction is contemplated, interpolation
will be of greater interest than extrapolation, since one would generally
take observations in any region in which prediction were to be done unless
there were some physical impediment to doing so. To the extent that some-
one is interested in extrapolation, which is generally the case in time series
analysis, the results and approach taken in this work are decidedly less
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relevant. Sections 3.4-3.6, 6.8 and 6.9 provide some comparisons between
interpolation and extrapolation.

This focus on interpolation leads to the second theme, which is that the
properties of interpolation schemes depend mainly on the local behavior of
the random field under study. In particular, 3.4-3.6 provide theoretical and
numerical evidence that the behavior of a random field over longer distances
is much less relevant when interpolating than when extrapolating. Ac-
cordingly, Chapter 2, which provides background material on second-order
properties of random fields, emphasizes their local behavior. Chapter 2 fo-
cuses on random fields on R? with covariance functions K (x,y) depending
only on x — y, in which case, I call the function K(x —y) = K(x,y) the
autocovariance function of the random field. If the autocovariance function
is continuous, then it can be written as the Fourier transform of a positive
finite measure. In most cases of practical interest, this measure has a den-
sity with respect to Lebesgue measure known as the spectral density. More
specifically, the spectral density f satisfies

K(x) = /Rd exp(iwTx) f(w)dw

for all x € R?. It turns out that the local behavior of a random field is
intimately related to how the spectral density f behaves for large values of
|w|. Generally speaking, the more quickly the spectral density decreases as
|w| increases, the smoother the random field.

As in many areas of statistics, it is not possible to make much progress on
the theory of spatial interpolation from finite sample results. Thus, much of
the theory in the following chapters is asymptotic. The third theme of this
work is that the most appropriate asymptotic framework for problems of
spatial interpolation is to consider taking more and more observations in a
fixed region, which I call fixed-domain asymptotics. Most existing asymp-
totic theory concerning inference for stochastic processes and random fields
based on discrete observations allows the observation region to grow with
the number of observations, which I call increasing-domain asymptotics.
Chapter 3, and 3.3 in particular, detail my arguments for preferring fixed-
domain asymptotics for studying spatial interpolation. For now, I would
point out that if the goal is to develop a theory that shows the relation-
ship between the local behavior of a random field and the properties of
interpolation methods, then the fixed-domain approach is quite natural in
that the degree of differentiability of the random field, which is a funda-
mental aspect of its local behavior, plays a central role in any fixed-domain
asymptotic results.

The final theme is the connection between what aspects of a random
field model are important for purposes of spatial interpolation and what
aspects of the model can be well estimated from available data. This issue
is particularly crucial when using fixed-domain asymptotics because there
will commonly be parameters of models that cannot be consistently esti-
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mated as the number of observations in a fixed region increases. However,
at least for Gaussian random fields, results in 4.3 demonstrate that models
that cannot be distinguished well based on observations in a fixed region
yield asymptotically indistiguishable spatial interpolants. These results are
an example of what Dawid (1984, p. 285) calls Jeffreys’s law: “things we
shall never find much out about cannot be very important for prediction.”
Sections 4.4 and 6.8 provide some quantitative formulations of Jeffreys’s
law.

The following subsections describe a few implications for the practice of
spatial statistics that arise from the consideration of these themes, with a
focus on those implications that suggest problems with current common
practices and conceptions.

The Matérn model

The second theme states that properties of spatial interpolants depend
strongly on the local behavior of the random field. In practice, this local
behavior is not known and must be estimated from the same data that
will be used to do the interpolation. This state of affairs strongly suggests
that it is critical to select models for the covariance structures that include
at least one member whose local behavior accurately reflects the actual
local behavior of the spatially varying quantity under study. A number of
commonly used models for the covariance structure, including the spherical
(see 2.10), the exponential and the Gaussian (see 2.7) provide no flexibil-
ity with regard to this local behavior and essentially assume it is known
a priori. An alternative model that I recommend for general adoption is
the Matérn model (see 2.7, 2.10 and 6.5). This model includes a parame-
ter that allows for any degree of differentiability for the random field and
includes the exponential model as a special case and the Gaussian model
as a limiting case.

BLPs and BLUPs

Best linear unbiased prediction provides an elegant and satisfying solution
to the problem of linear prediction when the mean function of the ran-
dom field is of the form m(x)”3 with B unknown. However, when best
linear unbiased prediction is used in practice, the components of m are
quite commonly highly regular functions such as monomials and have little
impact on the local behavior of the random field. Thus, considering our
second theme, it should also be the case that such highly smooth mean
functions have little impact on spatial interpolation. In fact, under fixed-
domain asymptotics, BLUPs generally do as well asymptotically as BLPs
(that is, assuming B is known), but one also does as well asymptotically
by just setting 3 = 0 (see 4.3). It seems to me that many texts in spatial
statistics and geostatistics place too great an emphasis on modeling mean
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functions and on BLUPs, perhaps because it distracts attention from the
more important but less well understood problem of modeling and estima-
tion of the local behavior of random fields. In particular, intrinsic random
function models (see 2.9), although of some mathematical interest, are not
a helpful generalization of stationary random fields for spatial interpolation
problems because the mean functions are just polynomials in the coordi-
nates and the local behavior of these models is indistinguishable from the
local behavior of stationary models.

In arguing for less emphasis on modeling the mean function when the
goal is spatial interpolation, it is important to exclude mean functions that
do have a strong effect on the local behavior of a random field. As an exam-
ple, when interpolating monthly average surface temperatures in a region
based on scattered observations, one might use altitude as a component
of m. In a mountainous region, variations in altitude may largely explain
local variations in average temperatures and hence, including altitude as a
component of m may have a profound effect on the spatial interpolation of
average temperatures.

Inference for differentiable random fields

The most commonly used geostatistical tool for making inferences about
spatial covariance functions is the empirical semivariogram. Specifically, for
a random field Z observed at locations x;,...,Xx,, the empirical semivar-
iogram at a distance h is the average of 3{Z(x;) — Z(x;)}* over pairs of
points (x;,x;) that are very nearly a distance of h apart. Although the
empirical semivariogram can be a useful tool for random fields that are not
differentiable, it is much less useful and can even be seriously misleading
for differentiable random fields. Indeed, Matheron (1971, 1989) states that
“statistical inference is impossible” for differentiable random fields. Section
6.2 explains what he means by this statement and shows why it is incor-
rect. At the heart of the problem is his unstated and erroneous presumption
that the empirical semivariogram contains all possible information about
the local behavior of a random field. Once one is willing to consider meth-
ods for estimating spatial covariance structures that are not based on the
empirical semivariogram, inference for differentiable random fields is just
as possible as it is for nondifferentiable ones. In particular, in Sections 6.4,
6.9 and 6.10, I advocate the use of likelihood-based or Bayesian methods
for estimating the parameters of a random field. These methods are just as
appropriate for differentiable as for nondifferentiable random fields.

Nested models are not tenable

It is fairly common practice in the geostatistical literature to model covari-
ance structures as linear combinations of spherical semivariogram functions
with different ranges (see 2.7 for definitions). See Journel and Huijbregts
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(1978, p. 167), Wackernagel (1995, p. 95) and Goovaerts (1997, p. 159) for
examples where such models are advocated or employed. However, because
all spherical semivariograms correspond to random fields with the same lo-
cal behavior, there is little to be gained for purposes of spatial interpolation
in employing such models. Furthermore, there is little hope of estimating
the parameters of such models with any degree of accuracy for datasets
of the size that generally occur in geological applications. I believe such
models would not be employed if users had a proper appreciation of the
inherent uncertainties in empirical semivariograms.

1.7 Summary of practical suggestions

Use the Matérn model. Calculate and plot likelihood functions for unknown
parameters of models for covariance structures. Do not put too much faith
in empirical semivariograms.



2
Properties of Random Fields

2.1 Preliminaries

This chapter provides the necessary background on random fields for under-
standing the subsequent chapters on prediction and inference for random
fields. The focus here is on weakly stationary random fields (defined later
in this section) and the associated spectral theory. Some previous exposure
to Fourier methods is assumed. A knowledge of the theory of characteristic
functions at the level of a graduate course in probability (see, for example,
Billingsley (1995), Chung (1974), or Feller (1971)) should, for the most
part, suffice. When interpolating a random field, the local behavior of the
random field turn out to be critical (see Chapter 3). Accordingly, this chap-
ter goes into considerable detail about the local behavior of random fields
and its relationship to spectral theory.

For a real random field Z on R with E{Z(x)?} < oo for all x € R, the
covariance function K (x,y) = cov{Z(x), Z(y)} must satisfy

n
> cioeK(xj,%xk) >0 (1)
7,k=1
for all finite n, all x;,...,x, € R and all real cy,...,c,, which follows by

noting

var{z ch(xj)} = Z cic K (x5, Xx).

j=1 J,k=1
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A function K satisfying (1) is said to be positive definite on R x R. We have
just demonstrated that (1) is necessary for there to exist a random field
with covariance function K and mean function EZ(x) = m(x). It is also
sufficient, which follows by showing that for K positive definite, there exists
a Gaussian random field with this covariance function and mean function
m. Specifically, take the joint distribution of (Z(x1),..., Z(x,)) to be mul-
tivariate normal with mean (m(x;),...,m(x,)) and covariance matrix with
Jjkth element K (x;,x). This family of finite-dimensional distributions sat-
isfies the consistency conditions of Kolmogorov’s theorem (Billingsley 1995,
Section 36) and hence there exists a random field (Gaussian by definition)
with these finite-dimensional distributions (Gihman and Skorohod 1974,
p. 147).

Stationarity

If we do not make any assumptions restricting the class of random fields
we wish to consider, making inferences about its probability law from ob-
serving a single realization of the field is hopeless. A common simplifying
assumption is that the probabilistic structure in some sense looks similar
in different parts of R. Supposing R = R? for instance, one way to define
this concept is through strict stationarity: for all finite n, x1,...,x, € RY,
t1,...,t, €Rand x € RY,

Pr{Z(x;+x) <t1,...,Z(xp +x) < t,}
=Pr{Z(x1) <t1,...,Z(xs) < tn}.

A different type of stationarity is defined in terms of the first two moments
of Z. Suppose the covariance function of Z depends on x and y only through
x — y. Then there is a function K on R?, which I call the autocovariance
function for Z, such that cov{Z(x),Z(y)} = K(x —y) for all x and y
in R%. A random field is called weakly stationary if it has finite second
moments, its mean function is constant and it possesses an autocovariance
function. Note that a strictly stationary random field with finite second
moment is also weakly stationary. For describing strength of associations
between random variables it is more natural to consider correlations than
covariances, so we sometimes make use of the autocorrelation function of
a weakly stationary random field, defined as C(x) = K (x)/K(0) assuming
K(0) > 0.

Since weak stationarity is a less restrictive assumption than strict sta-
tionarity whenever the second moments are finite, it is tempting to claim in
practice that one is only assuming weak stationarity and then make infer-
ences that only depend on specifying the first two moments of the random
field. This temptation is perhaps encouraged by results in discrete time
series showing that certain asymptotic properties of the periodogram (the
squared modulus of the discrete Fourier transform of the observations) do
not depend on the time series being Gaussian (Priestley 1981, Section 6.2).



2.2 The turning bands method 17

However, as the example in Section 1.4 demonstrates, considering only the
first two moments can lead to infinitely suboptimal predictions. A further
example illustrating problems that can occur by just considering the first
two moments of a random field is given in 2.2.

Isotropy

Stationarity can be thought of as an invariance property under the trans-
lation group of transformations of the coordinates. For a random field on
R¢, we can also consider invariance under rotations and reflections. I call a
random field Z on R? strictly isotropic if its finite-dimensional joint distri-
butions are invariant under all rigid motions. That is, for any orthogonal
d x d matrix H and any x € R¢,

Pr{Z(Hx; +x) < t1,...,Z(Hx, + x) < t,}
= Pr{Z(xl) <t,. ..,Z(Xn) < t'n.}

for all finite n, Xy,...,%, € R? and ¢;,...,t, € R. A random field on R¢
is weakly isotropic if there exists a constant m and a function K on [0, 00)
such that m(x) = m and cov { Z(x), Z(y)} = K(|x — y|) for all x,y € R,
where | - | indicates Euclidean distance. I call the function K on [0,00) the
isotropic autocovariance function for Z. Note that I am implicitly assuming
a (strictly/weakly) isotropic random field is always (strictly/weakly) sta-
tionary. The isotropy condition amounts to assuming there is no reason to
distinguish one direction from another for the random field under consider-
ation. A simple but useful extension of isotropic random fields is to random
fields that become isotropic after a linear transformation of coordinates. We
say Z exhibits a geometric anisotropy if there exists an invertible matrix
V such that Z(Vx) is isotropic (Journel and Huijbregts 1978, p. 177).

Exercise

1 Show that a Gaussian random field on R? is strictly stationary if and
only if it is weakly stationary. Show that a Gaussian random field on
R? is strictly isotropic if and only if it is weakly isotropic.

2.2 The turning bands method

The turning bands method (Matheron 1973) is a procedure for simulating
isotropic random fields on R? based on simulating processes on R. The
method is clever and useful but I am mainly introducing it here as a further
example of the problems that can occur by just considering the first two
moments of a random field. Define by to be the unit ball in R? centered at
the origin, so that its boundary 0by is the unit sphere. Matheron gives the
following procedure for generating a weakly isotropic random field in RY.
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(i) For an autocovariance function B on R, simulate a stochastic process
Y on R with EY (t) = 0 and cov {Y'(¢),Y(s)} = B(t — s).
(ii) Independently of Y, choose a random unit vector V from the uniform
distribution on 9by.
(iii) Let Z(x) = Y(xTV) for x € R

The resulting random field Z is weakly isotropic: it has mean 0 since
EZ(x)=E [E {Y(xTV) | V}] =0 and

cov{Z(x),Z(y)} = E[E{Y(x"V)Y(y" V) | V}]
=E{B((x-y)"V)}
— [ B(x-yTv)Ulav), 2)

by

where U is the uniform probability measure on 0b,;. By symmetry consid-
erations, cov {Z(x), Z(y)} depends on x and y only through |[x — y/|, so we
can write cov {Z(x), Z(y)} = K(Jx — y|). In R3,

2n  pm
K(r) = i./o /0 B(rcos ¢)sin¢ do df

= /01 B(rt) dt.

The inverse relationship is given by B(r) = (d/dr) {rK(r)} (Exercise 2).
Is this a sensible algorithm for simulating isotropic random fields? Clearly
not in general, since Z(x) is constant on planes of the form xTV = ¢ for
any real c. The problem is that the first two moments of the random field
do not adequately describe its properties.

Another subtle point arises by taking Y in step (i) of the algorithm
to be Gaussian and then supposing, based on (iii), that Z must also be
Gaussian. However, Z cannot be Gaussian with covariance function given
by (2), since a Gaussian random field with this covariance function would
not be constant along certain planes. The resolution of this apparent para-
dox is that conditionally on V = v, Z is Gaussian but not isotropic, and
unconditionally, Z is isotropic but not Gaussian.

The conclusion I draw from this example and that in 1.4 is that anyone
who claims to be only making assumptions about the first two moments of
a random field is being naive at the least. To make sensible predictions, it
is unavoidable at least implicitly to make further assumptions about the
law of the random field.

Of course, Matheron (1973) did not intend for anyone to use the algo-
rithm described here to simulate isotropic random fields in practice. To use
the turning bands method to simulate an approximately isotropic Gaussian
random field in R%, what is done in practice is to simulate a large number
of independent realizations of Gaussian processes Y1,Y5,...,Y, on R with



2.3 Elementary properties of autocovariance functions 19

autocovariance function B and then set
1 n
2(x) = —73 >_Y;(x"Vy),
=1

where the V ;s are random unit vectors independent of Y3,...,Y,. If, in ad-
dition, Vi,...,V,, are independent and uniformly distributed on the unit
sphere, then Z has covariance function given by (2). For n large, a central
limit effect should make at least the low-order finite-dimensional distribu-
tions approximately normal. There may be some advantages in choosing
the Vs more systematically to obtain a more evenly spaced distribution
on Ob,. For example, for d = 3, Journel and Huijbregts (1978, p. 503) sug-
gest taking n = 15 and the Vs to be along the lines joining the midpoints
of opposite edges on a regular icosahedron centered at the origin.

Note that the approximate Gaussianity of Z should hold even if the Y;s
are not Gaussian due to the central limit theorem effect. Thus, the turning
bands method cannot be used directly to simulate a non-Gaussian random
field. For a random field Z such that, for example, log Z is Gaussian, we can
of course use turning bands to simulate log Z and then transform pointwise
to obtain Z. See Cressie (1993) for further discussion on simulating random
fields.

Exercise

2 In using the turning bands method to simulate an isotropic random
field on R3 with K as its isotropic autocovariance function, show that
B in step (i) of the algorithm is given by (d/dr){rK(r)}.

2.3 Elementary properties of autocovariance
functions

Suppose Z is weakly stationary on R? with autocovariance function K.
Then K must satisfy

K(0) >0,
K(x) = K(—x) and

IK (x)| < K(0).

The first two conditions are trivial and the last follows from the Cauchy—
Schwarz inequality. We say the real-valued function K is positive definite
if

Z cick K(x; —xx) >0

k=1
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for all finite n, all real ¢y, ...,c, and all Xy, ...,%, € R% This condition is
necessary and sufficient for there to exist a weakly stationary random field
with autocovariance function K by the same argument as given in 2.1 for
positive definite functions on R¢ x R¢.

Some other properties of positive definite (p.d.) functions include the
following.

If K; and K5 are p.d., then a; K; + a3 K5 is p.d. for all nonnegative a;

and as. (3)
If K1, Ks,... are p.d. and lim K,(x) = K(x) for all x € R?, then K

is p.d. e (4)
If K; and K, are p.d., then K(x) = K;(x)K3(x) is p.d. (5)

The proofs of (3) and (4) are straightforward. The easiest way to prove
(5) is to consider independent mean 0 Gaussian random fields Z; and Z,
with autocovariance functions K; and K, respectively, and to show that
K is the autocovariance function of the random field Z defined by Z(x) =
Z1(x) Z2(x).

Exercise

3 If Ky is a p.d. autocovariance function on R? for all # € R and is
continuous in @ for all x, show that [, Ko(x)u(df) is p.d. if p is a
positive finite measure on R and [ Ky(0)u(df) < co.

2.4 Mean square continuity and differentiability

There is no simple relationship between the autocovariance function of a
random field and the smoothness of its realizations. However, it is possible
to relate the autocovariance function to what are known as mean square
properties of a random field. For a sequence of random variables X;, Xo, ...
and a random variable X defined on some common probability space, define

2
X, 5 X tomean E(X,,— X)? — 0 and EX? < co. We say {X,,} converges

2
in L2 if there exists X such that X, = X.
Suppose Z is a random field on R%. Then Z is mean square continuous

at x if

lim E{Z(y) - Z(x)}*> =0.

y—x
For Z weakly stationary with autocovariance function K, E {Z(y) — Z(x)}*
= 2{K(0) — K(x —y)}, so that Z is mean square continuous at x if and
only if K is continuous at the origin. Since a weakly stationary random
field is either mean square continuous everywhere or nowhere, we can say
Z is mean square continuous if and only if K is continuous at the origin.
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The mean square continuity of Z does not imply that its realizations are
continuous. The process Z in Section 1.4 is mean square continuous but
Pr(Z is continuous on R) = 0.

If K is continuous at 0, then it is continuous everywhere, which follows
by noting

|K (x) — K(y)| = |cov {Z(x) — Z(y), Z(0)}]
< [var {Z(x) - Z(y)} var {Z(0)}]'/?
=[2{K(0) - K(x - y)} K(0)]"/?

-0

as y — X. On the other hand, for a weakly stationary process on R, if K is
not continuous at the origin, it may have other discontinuities (Exercises 4
and 5).

Mean square differentiability has a similar definition as an L? limit. A
process Z on R with finite second moments is called mean square differen-
tiable at ¢ if {Z(t + h,,) — Z(t)}/h, converges in L? for all sequences {h,}
converging to 0 as n — oo with limit independent of {h,}. If such a limit
exists, we call it Z’(t). A weakly stationary process Z on R is either mean
square differentiable everywhere or nowhere. For Z weakly stationary with
autocovariance function K, define the process

Z(t+h) — Z(t)

Zh(t) = 5 ,
which has autocovariance function
1
Ki(t) = 7w {2K(t) - K(t+h)— K(t—h)}.

If K is twice differentiable, then
. _ g
lim Kn(t) = —K"(t),

so that —K" is positive definite by (4). In Section 2.6 I prove that Z is mean
square differentiable if and only if K" (0) exists and is finite, and that if Z
is mean square differentiable, then Z’ has autocovariance function —K”.

To define higher-order mean square derivatives, we say Z is m-times mean
square differentiable if it is (m — 1)-times mean square differentiable and
Z(™=1) is mean square differentiable. By repeated application of the stated
results in the preceding paragraph on the mean square differentiability of
a process, it follows that Z is m-times mean square differentiable if and
only if K(™)(0) exists and is finite and, if so, the autocovariance function
of Z(M) is (—1)mK (™),

The following example shows that Z can have analytic realizations and
not be mean square differentiable. Let Z(¢) = cos(Xt +Y) where X and
Y are independent random variables with X following a standard Cauchy
distribution (i.e., has density 1/{r(1 + z?)} for z € R) and Y following a
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uniform distribution on [0,27] (i.e., has density 1/(27) on [0, 27]). Then
EZ(t) =0 and

cov{Z(s),Z(t)} = E {cos(Xs+Y)cos(Xt+Y)}

=1FEcos{X(s—t)} +1Ecos{X(s+t)+2Y}
Lg-lo—t,

so Z is weakly stationary (it is also strictly stationary) and mean square
continuous but not mean square differentiable, even though all realizations
of Z are analytic.

Exercises

4 Find a p.d. autocovariance function on R that is discontinuous at t =
—1,0 and 1 and continuous elsewhere.

5 Find a p.d. autocovariance function on R that is discontinuous at all
teR.

6 For Z(t) = cos(Xt+Y'), where X and Y are independent random vari-
ables with distributions as given in the last paragraph of 2.4, consider
predicting Z(t) for t > 0 based on observing Z(s) for all s < 0. Find
the conditional expectation of Z(t) and the BLP of Z(t) (see 3.4) and
compare. Why is the conditional expectation not a linear predictor?

2.5 Spectral methods

Spectral methods are a powerful tool for studying random fields. In Fourier
analysis, it is somewhat more natural to consider complex-valued functions
rather than restricting to real-valued functions. We say Z is a complex
random field if Z(x) = U(x) + iV (x), where U and V are real random
fields. If U and V are jointly weakly stationary, by which we mean U and
V are weakly stationary and that cov{U(x), V(y)} depends only on x —y,
then Z is weakly stationary and we define

K(y) = cov {Z(x+Y),Z(x)}
— cov {U(x +), U(x)} + cov {V(x +¥), V(x)}
+ifcov{U(x),V(x+y)} —cov{U(x+y),V(x)}

as the autocovariance function of Z. Then K(—x) = K(x) and for ¢y, ..., ¢,
complex

Z chkK — Xg) >

J,k=1



2.5 Spectral methods 23

since the left side equals E| Y16 Z(x5) - EY, ch(xj)|2. A function
K satisfying this condition for all finite n, all xi,...,x, € R% and all
complex ci, ..., cp is said to be a positive definite complex function on R<.

Spectral representation of a random field

As an example of a complex random field, suppose wi,...,wn € R¢ and
let Z1,...,Z, be mean 0 complex random variables with E(Z;Z;) = 0 if
i # j and E|Z;|? = f;. Consider

Z(x) = Z Zy exp(iwf x), (6)

k=1

so that Zj is the complex random amplitude for Z at frequency wy. Then
Z is a weakly stationary complex random field in R? with autocovariance
function K (x) = Y r_, frexp(iw] x).

Equation (6) is an example of a spectral representation of a random field.
By taking L? limits of sums like those in (6) in an appropriate manner,
spectral representations of all mean square continuous weakly stationary
random fields can be obtained (Yaglom 1987a). That is, all mean square
continuous weakly stationary random fields are, in an appropriate sense,
L? limits of linear combinations of complex exponentials with uncorrelated
random amplitudes. To make this concept more precise, we need to consider
complex random measures, which map Borel sets on R? into complex-valued
random variables. Suppose M is a complex random measure on R<. Since
it is a measure, M (A; UA3) = M(A;) + M(A3) for disjoint Borel sets A;
and As. In addition, suppose that for some positive finite measure F' and
all Borel sets,

EM(A) =0,
E|M(A)? = F(A)
and for all disjoint Borel sets A; and Ag,
E {M(AI)M(Az)} = 0.

I assume such a random measure exists; see, for example, Gihman and
Skorohod (1974) for mathematical details. Next consider how to interpret
the integral

Z(x) = /}R  explie”x) M (dw). (1)

The idea is to think of the integral as a limit in L? of sums of the form (6).
For simplicity, suppose that with probability 1, M is identically 0 outside
[_17 1]d Now Setj = (jla' .. 7jd)Ta A’n(j) = xzzl (n_l(jk - 1)7n_ljk] (SO
that A,(j) is the cube with edges of length n~! and “upper right corner”
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at n1j), S, = {—n, —n+1,...,n}¢ and define
= Y exp(in” i x)M (A (1)), (8)
JESH

which is a sum of the form given in (6). It is possible to show that for any
X, Zn(x) converges in L? (Exercise 7) and the integral on the right side
of (7) is defined to be this limit. More specifically, by defining F,(A) =

Sies, F(An(3))1{n"1j € A} we get
E{Z,(x)Za(y)} = ) exp {in 'jT (x — y) } F(An(§))

JESRH
= /md exp {iw” (x — y) } Fn(dw).

Since F, converges weakly to F (Exercise 8) and exp {iw”(x — y)} is
bounded and uniformly continuous for w € [~1, 1],

B{Z,0Z@)} — [ exp {ie (x—y)}F(dw)

as n — oo for any fixed x and y (see Chapter 1 of Billingsley (1968) for
definitions and results on weak convergence of measures on metric spaces).
In conjunction with the L? convergence of Z,(x) for all x, this implies that
the autocovariance function of Z is (Exercise 8)

K(x) = /md exp(iwT x) F(dw). (9)

The function F is called the spectral measure or spectrum for Z.

Bochner’s Theorem

It is easy to see that for any finite positive measure F', the function K given
in (9) is p.d., since

Z ¢t K(x; — x) Z c]ck/ exp{iwT (xj — xx) } F(dw)

7,k=1 7,k=1

>

Z ¢j exp(iw’ x;)

2

F(dw)

> 0.

Furthermore, all continuous positive definite complex functions are of the
form (9) with F' a positive measure of finite mass.

Theorem 1 (Bochner’s Theorem). A complez-valued function K on R?
is the autocovariance function for a weakly stationary mean square contin-
uous complez-valued random field on R? if and only if it can be represented
as in (9) where F is a positive finite measure.
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A proof of this fundamental result is given in Gihman and Skorohod
(1974, p. 208). Although the following argument does not constitute a
proof, it is instructive to use the existence of spectral representations to
indicate why the Fourier transform of a measure assigning negative mass
to any measurable set cannot be a positive definite function. For simplicity,
suppose Z is a complex process on R with spectral measure F. Suppose
w1 < wsp are not mass points of F' and set I = (w;,w2). Proceeding formally,
consider the process Y defined by

1 oo eiuJ2u _ eiwlu
Y(t)= 5 /_w T 2 - ) du. (10)

Using the spectral representation of Z and again proceeding formally,

Y (t) L A { /R e'“"(t‘“)M(dw)}du

25_7}: R mu
) i(we—w)u _ gi(w;—w)u
_1 ewt{/ ¢ _¢ du} M(dw)
2T R R mu
=/ eith(dw)
I

(see Exercise 9 for the last step). The autocovariance function of Y is
[; €“'F(dw) and in particular E|Y (0)|? = F(I), which must be nonnega-
tive, so that F' must be a positive measure. We are a long way from proving
Bochner’s Theorem even in R, but the physical intuition should be clear.
Given any process Z, we can define another process Y that is made up of
only those frequencies in the spectral representation contained in the inter-
val I. The transformation from Z to Y defined by (10) is called a band-pass
filter. Since F(I) = E|Y (0)|? > 0 for any interval I, F must be a positive
measure.

If F has a density with respect to Lebesgue measure, I call this density
the spectral density and generally denote it by f. When the spectral density
exists, we have the inversion formula (Yaglom 1987a, p. 332)

1

flw) = @ny /md exp(—iwTx) K (x) dx. (11)

Exercises

7 Show that Z,(x) as defined in (8) converges in L2. If you have trouble
proving this, show that the subsequence Z,-(x) converges in L2.

8 For Z, as defined in (8), show that F,, converges weakly to F. Show
that (9) gives the autocovariance function for Z as defined in (7).

9 For w; < wy, evaluate

) ei(wz—w)u _ ei(w1 —w)u
wu

du

—00
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for all real w.

10 Use the inversion formula (11) to determine which of these functions
on R are positive definite:

(i) e 't cost.

(if) e~(1 - J¢]).
(iii) (1—¢3)*.

2.6 Two corresponding Hilbert spaces

A technique that is used on several occasions in this work is to turn
questions about Hilbert spaces of random variables into questions about
Hilbert spaces of sums of complex exponentials and their limits. Ibrag-
imov and Rozanov (1978) make extensive use of this idea. Suppose Z
is a mean 0 weakly stationary real random field on R¢ with autocovari-
ance function K and corresponding spectrum F. For a subset R of R¢,
let Hr(F) = Hr(0, K) be the closed linear manifold of Z(x) for x € R,
where the 0 in Hg(0, K) refers to the mean of Z. Similarly, define Lg(F')
to be the closed linear manifold of functions of w of the form exp(iw”x) for
x € R under the inner product (¢, u)r = [; $(w)p(w) F(dw). If we identify
>i—1a5Z(x;) with 3°7_, a;jexp(iw”x;) and extend this correspondence
to respective limits of such sums, Hr(F) and Lg(F) are essentially two
ways of describing the same Hilbert space since

cov{z a; Z(x;), Zbkz(}’k)}
j=1 k=1

= ajexp(iwTx;),) brexp(iwlyy) | .
g j
F

Indeed, if Z(x) = [za exp(iw?x)M(dw) is the spectral representation for
Z, then for V € Lg(F), the corresponding random variable in Hg(F) is
given by [ V(w)M(dw) (Gihman and Skorohod 1974, p. 244).

An application to mean square differentiability

Let us make use of this correspondence to prove two results stated in 2.4 for
a weakly stationary process Z on R: first, we show that Z is mean square
differentiable if and only if K'(0) exists and is finite and, second, that if Z is
mean square differentiable, then Z’ has autocovariance function — K. Since
a constant mean obviously does not affect the mean square differentiability
of a process, assume EZ(t) = 0. Because of the correspondence between
Lr(F) and Hr(F'), to study the convergence of Z,(t) = {Z(t+h)—Z(t)}/h
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as h — 0 in Hg(F') it is completely equivalent to study the convergence of
Th(w) = (et+h) _eit) /b as h — 0 in Lr(F). But limy_o 74 (w) = iwe™*
for every w, so that 7, converges in Lg(F') if and only if it converges to
iwe™! in Lr(F) (Exercise 11). Obviously, [ w?F(dw) < oo is necessary for
this convergence, since otherwise iwe™* ¢ Lg(F). But [pw?F(dw) < oo is
also sufficient, since it implies

lim / |Th (W) — iwe™!|2F(dw) = 0
h—0 R

by a simple application of the Dominated Convergence Theorem. It is well
known (Chung 1974, Theorem 6.4.1; Lukacs 1970, Section 2.3) that the
finiteness of the second moment of a finite positive measure is equivalent
to its Fourier transform possessing a second derivative at the origin, which
proves that Z is mean square differentiable if and only if K is twice differen-
tiable at the origin. Furthermore, [ w?F(dw) < oo implies that K is twice
differentiable with —K"(t) = [p w?e**F(dw), so that K" (0) exists implies
K is twice differentiable. The claim that when K is twice differentiable, Z’
has autocovariance function — K" follows by showing that

: — 1" _
h_}l(l)gcl_’ocov{Zh(s),Zk(t)}— K"(s—1t),

where Z,, = {Z(t+ h) — Z(t)}/h as in 2.4.

Exercises

11 For a sequence of complex-valued functions 71, 72,... on R converging
pointwise to the function 7, prove that 7, converges in Lr(F') if and
only if it converges to 7 in Lg(F'). Suggestion: use a subsequence argu-
ment similar to the one in the proof of Theorem 19.1 (the completeness
of LP spaces) of Billingsley (1995).

12 For R = [0,1] and K (t) = e~ !*!, show that every element of Lg(F) can
be written in the form a+ (1+1iw) fol e™c(t)dt for some real constant a
and real-valued function c that is square-integrable on [0, 1]. This result
is a special case of (1.3) of Ibragimov and Rozanov (1978, p. 30).

2.7 Examples of spectral densities on R

This section describes some commonly used classes of spectral densities and
a class of spectral densities that should be commonly used. I consider only
real processes here, in which case, we can always take the spectral density
to be an even function.
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Rational spectral densities

Rational functions that are even, nonnegative and integrable have cor-
responding autocovariance functions that can be expressed in terms of
elementary functions (Yaglom 1987a, pp. 133-136). For example, for posi-
tive constants ¢ and a, if f(w) = ¢(a? + w?)7!, then K(t) = mpa— eIt
which can be obtained by contour integration (Carrier, Krook and Pear-
son 1966, p. 80). Since K does not even have a first derivative at 0, we
have that the corresponding process Z is not mean square differentiable.
Alternatively, we reach the same conclusion by noting ffooo w? f(w)dw = oco.

As a second example, suppose f(w) = ¢(a? + w?)~2, which implies
K(t) = mpa=3e=?ltl(1 + aft|). In this case, [* w?f(w)dw < oo and
ffooo w*f(w)dw = o0, so the corresponding process Z is once but not twice
mean square differentiable. This result is not so easy to see via the auto-
covariance function. However, if care is taken, it is possible to calculate
directly —K"(t) = in¢a~te el (1 — alt|) for all ¢, including ¢ = 0. Alter-
natively, one can get this result from —K” () = ¢ [*°_w?(a?+w?) 2e™tdw
by using contour integration.

The general form for a rational spectral density for a real process on R
is given by

fW) = |Pa(iw)?/1Qm (iw)[?, (12)

where P, and @, are polynomials with real coefficients of order n and m,
respectively, m > n, and @, has no zeroes on the imaginary axis (Exer-
cise 13). These last two conditions ensure the integrability of f. Processes
on R with rational spectral densities can be thought of as continuous time
analogues of the familiar autoregressive moving-average models for discrete
time series (Priestley 1981, Chapter 3). A process Z with spectral density
given by (12) has exactly m —n— 1 mean square derivatives. Thus, the class
of processes with rational spectral densities includes processes with exactly
p mean square derivatives for any nonnegative integer p. However, later in
this section I describe a class of processes with even greater flexibility in
their local behavior.

Principal irreqular term

Before giving any further examples of spectral densities, it is worthwhile
to consider more generally the behavior of autocovariance functions in a
neighborhood of 0. A natural way to describe this behavior of an auto-
covariance function K(t) is to take a series expansion in [t| about 0. For
K(t) = mpa~te !l we have K(t) = mda~! — wo|t| + O(|t|?) as |t| | 0. It
follows that K is not differentiable at 0 due to the nonzero coefficient for
|t]. For K(t) = irpa—3e~lt(1 + at)),

K(t) = 3m¢a® — jrgat[t|* + gmolt]> + O(|t|) (13)

Il
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as |t| | 0. The nonzero coefficient multiplying |¢|> implies that K is not
three times differentiable as a function of ¢ at ¢ = 0. Note that a function
of the form by + b1t% + be|t|3 + O(t*) as t — 0 need not be even twice
differentiable at 0 (see Exercise 14). However, we also know K is p.d. The
following result is an easy consequence of Theorem 2.3.1 of Lukacs (1970)
(Exercise 15).

Theorem 2. IfK isp.d. on R and K(t) = Z?:o cjt? +o(t*™) as t — 0,
then K has 2n derivatives.

Theorem 2 in conjunction with (13) does imply that K(t) = 1mga—3e~lt x
(14 aft|) is twice differentiable.

For an autocovariance function K, let us informally define its principal
irregular term as the first term in the series expansion about 0 for K as
a function of |t| that is not proportional to |¢| raised to an even power
(Matheron 1971, p. 58). For K(t) = mpa—le~°l!l, the principal irregular
term is —7¢|t|, and for K(t) = impa3e (1 + aft]) it is 2we|t|>. In
both cases, the coefficient of the principal irregular term does not depend
on c. This fact suggests that for either class of models, the local behavior
of the corresponding process is not much affected by a. Note that f(w) =
#(a?+w?) ! ~ w2 and f(w) = p(a? +w?) "2 ~ pw™* as w — oo, so that
the high frequency behavior of the spectral densities also does not depend
on a. Section 2.8 explores this close connection between the high frequency
behavior of the spectral density and the coefficient of the principal irregular
term of the autocovariance function more generally.

It is not so easy to give a formal definition of the principal irregular term,
since as we show in (16), it need not be of the form a|t|®. One possible
definition is to call g a principal irregular term for K if g(t)t~2" — 0 and
lg(t)[t>*"2 — 0o as t — 0 and K is of the form K(t) = 337_;¢;t* +
g(t) +o(|g(t)|) as t — 0. It follows from Theorem 2 that the corresponding
process is exactly n times mean square differentiable.

A problem with this definition for a principal irregular term g is that
any function h such that h(t)/g(t) — 1 as t | 0 is also a principal irregular
term. If g(t) = a|t|® is a principal irregular term for K, I call 3 the power
and «a the coefficient of the principal irregular term. Note that if such a and
[ exist they must be unique, so there is no ambiguity in their definition.
For models used in practice, if there is a principal irregular term, it can
usually be taken to be of the form g(t) = a|t|® for 3 positive and not an
even integer or g(t) = at?* log |t| for some positive integer k.

Gaussian model

A somewhat commonly used form for the autocovariance function of a
smooth process on R is K(t) = ce‘“tz, for which the corresponding spec-
tral density is f(w) = Lc(ma)~1/2e~~*/(42), Because of its functional form,
it is sometimes called the Gaussian model (Journel and Huijbregts 1978,
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p. 165). This name is unfortunate, as it apparently suggests that this model
is of central importance in the same way as Gaussian probability distribu-
tions. Nothing could be farther from the truth. Note that K is infinitely
differentiable, and correspondingly, all moments of the spectral density are
finite, so that the corresponding Z has mean square derivatives of all or-
ders. In fact, a much stronger result holds: for any t > 0, as n — o0,
Z?:o ZW(0)t7 /5! — Z(t) in L? (Exercise 16). That is, it is possible to pre-
dict Z(t) perfectly for all ¢ > 0 based on observing Z(s) for all s € (—¢, 0]
for any € > 0. Such behavior would normally be considered unrealistic for
a physical process. One might argue that a process cannot practically be
observed continuously in time, but we show in 3.5 that even with discrete
observations, the use of this autocovariance yields unreasonable predictors.
Figure 1 plots e=*"/2 and e~!/(1 + |¢|). Both functions are of the form

— 1t24+0(|t|3) as t — 0. It is difficult from looking at these plots to see
that the first function is analytic whereas the second only has two deriva-
tives at the origin. One important practical conclusion we can draw is that
plots of empirical autocovariance functions are likely to be a poor way to
distinguish between possible models for the autocovariance function of a
smooth process.

Triangular autocovariance functions

A class of autocovariance functions that we have seen before and will see
again is K(t) = c(a — [t|)T for ¢ and a positive. Such autocovariance func-
tions are sometimes called triangular due to the shape of the graph of K.
Although these autocovariance functions are not commonly used in applica-
tions, some BLPs under this model have unusual behavior (see 3.5) and it is
important to explore the reasons for this behavior in order to develop a good
understanding of the properties of BLPs. Using the inversion formula (11)

1.0 1
0.8 1
0.6 -
0.4 1

0.2 1

0.0 =T—
-8

FIGURE 1. Plots of e~**/2 (solid line) and e~'*!(1 + |¢]) (dashed line).
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FIGURE 2. Plot of the spectral density f(w) = (1 — cosw)/w? for the triangular
autocovariance function K(t) = 77 '(1 — [¢])*.

(Exercise 17), the corresponding spectral density is cm~1{1 — cos(aw)}/w?,
plotted in Figure 2. The oscillating behavior of the spectral density would
be unrealistic for many physical processes. More specifically, there would
usually be no reason for assuming the spectrum has much more mass near
the frequency (2n + 1)7 than near 2nr for n large, which is the case for
the spectral density (1 — cosw)/w?. We show in 3.5 that the fact that some
BLPs under this model have strange properties is a direct consequence of
the oscillations of the spectral density at high frequencies.

Matérn class

A class of autocovariance functions that I believe has considerable prac-
tical value is obtained from spectral densities of the form f(w) = ¢(a? +
w?)~¥~12 for v > 0, ¢ > 0 and a > 0. The corresponding autocovariance
function is

7r1/2¢
T 210 (v 4+ 1/2)a?

K(t) (alt) K. (alt]), (14)
where K, is a modified Bessel function (Abramowitz and Stegun 1965,
pp. 374-379). I call this class of autocovariance functions the Matérn class
after Bertil Matérn (Matérn 1960, 1986). The critical parameter here is v:
the larger v is, the smoother Z is. In particular, Z will be m times mean
square differentiable if and only if v > m, since ffooo W f(w)dw < oo if
and only if v > m. When v is of the form m + % with m a nonnegative
integer, the spectral density is rational and the autocovariance function is
of the form e~/ times a polynomial in |¢| of degree m (Abramowitz and

Stegun 1965, 10.2.15). For example, as we have already seen, when v = %,

K(t) = nr¢a~te~®t and when v = , K(t) = inpa3e2I(1 + alt|).
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We can also determine the mean square smoothness of a process in the
Matérn class through its behavior at the origin. Using results on Bessel
and gamma functions from Abramowitz and Stegun (1965, Section 9.6 and
6.1.18), for K as in (14) with v not an integer and m < v < m + 1,

_ - 425 _ ¢ 2w 2m+2 -
K(t)_gob]tﬂ @ T 1) sin(on) [t} +O(|t|*™*%) ast - 0 (15)

for appropriate real constants bg,...,b,, depending on ¢, v and a
(Exercise 18). For K as in (14) and v = m + 1 a positive integer,

2y 2078
_ 427 2m+2 2m+2
K(t) _]gob]t + m 1 9) ™2 log [t| + O(t*™ ) ast — 0  (16)
for appropriate constants by, . . ., b,, depending on ¢, m and a. Note that in
both (15) and (16) the coefficient multiplying the principal irregular term
does not depend on «a and that f(w) ~ @lw|~2¥"! as |w| — oo, so that the
high frequency behavior of f also does not depend on c.. Theorem 2 together
with (15) and (16) implies that (a|t|)”K,(a|t|) is 2m times differentiable
if and only if v > m. Thus, we recover the fact that the corresponding
process Z is m times mean square differentiable if and only if v > m.

We can obtain a more precise result on the local behavior of a process
with autocovariance function given by (14). Specifically, termwise differen-
tiation of either (15) or (16) can be justified, from which it follows that for
m<v<m-+l1,

var {Z(M)(h) - Z(m)(O)} ~ I'(2v — m2f1) sin(v) e ("

as h | 0 and for v =m + 1,
var {Z(™ (h) — Z(™(0)} ~ 2¢h%log h (18)

as h | 0 (Exercise 18). Thus, the continuous parameter v has a direct in-
terpretation in the time domain as a measure of smoothness of the process,
with larger values of v corresponding to smoother processes.

In comparison, if Z has a rational spectral density and exactly m mean
square derivatives, it is possible to show that for some ¢ > 0,

var {Z(™ (h) — Z(™(0)} ~ ch

as h | 0. Therefore, in terms of the local behavior of Z, rational spectral
densities only cover the Matérn models with v = m + % Of course, this
conclusion is transparent in the spectral domain, since a rational spectral
density f for a process with exactly m mean square derivatives must satisfy
fw) ~ cw™=2 as w — oo for some ¢ > 0.

We can use the fact that functions in the Matérn class are positive definite
to show that e~ 14’ is positive definite for 0 < § < 2 (we already know it is
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positive definite for § = 2). Specifically, for 0 < v < 1,
alt]’K,(elt]) = v - Blat|* + O(t?)
in a neighborhood of 0, where
w2v1 T
= snmri =) P = 3 enemr( + 1)

(see Exercise 18). Then B, (t) = c, {an|t|"Ky(anlt])}" is p.d. for a, and
¢, positive and taking ¢, = 7", a, = n~ /2" yields

Ba(t) — e~ B/t

v

for every fixed t. By (4), e~(3/M1t° is p.d. for 0 < § < 2 and hence so is
eIt Finally, e~1t” is not p.d. for § > 2, which can be seen by noting that
the second derivative of this function is 0 for ¢ = 0, which would imply
var{Z'(0)} = 0. Yaglom (1987b, p. 48) provides some historical notes on

determining the positive definiteness of the function eIt

Exercises

13 Show that if f is the spectral density of a real process on R and is
rational, then f can be written as in (12).

14 Show that the function ¢* cos(t~3) (defined by continuity at ¢ = 0) is of
the form bg+b;1t2 +bo|t|3+O(t*) as t — 0 but is not twice differentiable
at 0.

15 Look up Theorem 2.3.1 of Lukacs (1970) and show that Theorem 2
follows.

16 Suppose Z is a weakly stationary process on R with analytic autoco-
variance K. Show that Z;LZO ZW(0)t7 /5! — Z(t) in L? as n — oo for
any t > 0.

17 Using the inversion formula (11), show that the spectral density
corresponding to K(t) = c(a — |t|)* is en {1 — cos(wa)}/w?.

18 Verify (15) and (16) by looking up the relevant series expansions for
modified Bessel functions in, for example, Abramowitz and Stegun
(1965). Give explicit expressions for bg,...,b, in both cases. Verify
(17) and (18).

2.8 Abelian and Tauberian theorems
We have now seen a number of examples in which the tail behavior of the

spectrum is closely related to the smoothness at the origin of the auto-
covariance function. General results on properties of the transform of a
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measure in terms of properties of the measure are known as Abelian the-
orems; results on the converse problem of finding properties of a measure
in terms of those of its transform are known as Tauberian theorems (Feller
1971; Bingham, Goldie and Teugels 1987).

Pitman (1968) proved both Abelian and Tauberian theorems useful for
our purposes. We first need to define the notion of a regularly varying
function. A function h : (0,00) — [0,00) is said to have index p at oo, or
to be regularly varying at oo with index p, if for every A > 0,

h(xt) — M as t— o0

h(t)
Obviously, h(t) = t* or any function for which h(t)t™” converges to a
positive finite constant as ¢ — oo has index p, but so does t*(log t)? for any
real q (Exercise 19). A function h : (0,00) — [0,00) is said to have index p
at 0 if A(1/t) has index —p at co. See Bingham, Goldie and Teugels (1987)
for a comprehensive account of regularly varying functions. For a positive
finite measure F' on R, define the tail area of the spectrum

H(z) = F(R) — F((—00,2]) + F((—00, —2])
and the cosine transform U(t) = [; costzF (dx). Pitman (1968) also gives

results for the sine transform of F, but this is 0 when F is the spectrum of
a real process.

Theorem 3 (Abelian Theorem). Suppose, for an integer n > 0, po, =
Jg#*"F(dz) < co. Define

n

=Syt
Unn(t) = Z%( D" gt ~ VO
If H has index —7 at 0o with 2n < 7 < 2n + 2 then Ugyn(t) ~ S(7)H(1/t)
ast | 0, where S(r) = n/{20(7)sin (377)} for 7> 0. If T = 2n+ 2, then
$2n+1

1/t
Uzn(t) ~ (_I)nt2n+2/0 m

Pitman (1968) gives the proof for this general result. I only consider
the special case for which H(z) ~ cz™" as £ — oo for some ¢ > 0 and
0 < 7 < 2. Note that the function Us, is generally a principal irregular
part of U.

Using integration by parts,

M)%U(t) :/ H(z)sintz dz,
0

H(z)dx. (19)

so that
po —U@R)  [* H(z/t)

HE) o HAE T
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Since H is bounded and H(z) ~ ¢z~ as £ — oo, there exists a finite
constant A such that H(z) < A(1+z)~" for all z > 0 and H(z) > 1cz™"

for all z sufficiently large. Hence, for all z > 0 and all ¢ sufficiently small,

H sinz| < 24
l/t) M=t

which is integrable on [0, p] for any finite p. Furthermore, for any z > 0,
H(z/t)
10 H(1/t)

P P
lim Hz/t) sinz dzr = / z " sinzdz
tlo Jo H(1/t) 0

for any finite p. Let ¢ be the smallest integer such that 2wrq > p. Then

sing = z7 " sinz,

so that

H(x/t sinz dx
1/t)
H(p/t) =N A= I
<2r H(1/t) ! H(1/t) J;q /_,ﬂj H (?) sinz dz
Hp/t) | _2r =g (21 2m(j +1)
ol gy £l () (4
4wH (p/t)
= THQW

which can be made arbitrarily small by taking ¢ small and p large. It follows
that

lim /9 sinz dz /00 z " sinzdr = S(7)

= zdz = S(1),
t10 Jo H(1/t) 0
where the last equality is by 3.761.4 of Gradshteyn and Ryzhik (1994).
Thus, po — U(t) ~ S(t)H(1/t), proving the theorem when H(z) ~ cz™"
for0<7<2.
Theorem 4 (Tauberian Theorem). If po — U(t) is of index 7 ast | 0
and 0 < 7 < 2, then

1-U(1/x)
H(z) ~ ————
@~ 5

This is part of Theorem 5 of Pitman (1968). Even if we restrict to

po — U(t) ~ ct™ as t | 0, the proof is quite a bit more delicate than
for Theorem 3.

as T — OQ.

Exercises

19 Show that t”(logt)? has index p as t — oo for any real g.
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20 In the proof of the special case of Theorem 3, use the Second Mean
Value Theorem for Integrals (see Spivak (1980, p. 367) or Phillips
(1984, p. 302) for a more general version) to provide an alternative
argument to justify that fpoo{H(z/t)/H(l/t)}sinzdz can be made
arbitrarily small by taking ¢t small and p large. This is the argument
Pitman (1968) uses. The Second Mean Value Theorem for Integrals
was unfamiliar to me prior to my reading Pitman’s paper but is a
result well worth knowing.

21 If H(z) ~ z=2logz as £ — oo, find an explicit expression in terms of
elementary functions for a function U, satisfying (19).

22 For the autocovariance function e~/*” on R with 0 < § < 2, show that
the corresponding spectral density is asymptotic to cw™°~! as w — oo
and find ¢ as a function of 4.

2.9 Random fields with nonintegrable spectral
densities

This section explores what one might mean by a random field with
nonintegrable spectral density. Bochner’s Theorem tells us that the corre-
sponding random field cannot be both weakly stationary and mean square
continuous.

Intrinsic random functions

If f is nonintegrable in a neighborhood of the origin, then the corresponding
random field is nonstationary and corresponds to what Matheron (1973)
calls an intrinsic random function. Intuitively, there is then so much vari-
ation at low frequencies that the random field cannot have some constant
level of variation about its mean. For example, consider the function on
R f(w) = |w|™ for some a € (1,3). If this were the spectral density of a
weakly stationary process Z, then we would have

var Xn:ch(tj) = ~ En:cjexp(iwtj)
j=1 —oolj=1

Formally evaluating this expression for n = 1, ¢; = 1 and any ¢; gives
var{Z(t1)} = [* |w|"*dw = co. However, if > j-1¢j =0, then

2
lw|~%dw. (20)

'ch exp(z'wtj)]2 = O(w?) (21)
j=1

in a neighborhood of the origin (Exercise 23), so the integral on the right
side of (20) is then finite for 1 < a < 3. Furthermore, using 3°7_, ¢; = 0
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to justify the following second equality,

o | n 2
/ ch exp(iwt;)| |w|™%dw
—ool i
/ Z cjck cos {w(t; — tg)} lw| ™% dw
Jk 1

= / Z cjck [cos{w(t; —tx)} — 1] jw| “dw

k=1

Z c]ck/ [cos {w(t; —tx)} — 1] |w| “dw

7,k=1

=— cjcklt; — te|*!
I'(a) sm{,_, (a—1) szl

by 3.823 of Gradshteyn and Ryzhik (1994). We see that the function
ﬂ.|t|a—l
I'(a)sin {3m(a—1)}

G(t) = —

behaves like an autocovariance function in that Z;L w1 CickG(t; —tx) >0
whenever 37, ¢; = 0. It is possible to show that for 1 < o < 3, there
exist processes (nonstationary, of course) for which

n n
var{chZ(tj)} =—¢ Z cjck|tj - tkla—1
j=1

J,k=1

for some ¢ > 0 whenever Z;LZI ¢; = 0. Brownian motion is an example of
such a process with oo = 2. A Gaussian process with 1 < & < 3 but a # 2 is
known as a fractional Brownian motion (Mandelbrot and Van Ness 1968);
see Voss (1988) for an elementary introduction to such processes.

Let us consider extending these ideas to positive symmetric measures F
on R? satisfying

|w|2r+2

———F(dw) < 22

for a nonnegative integer r. If we restrict attention to c;,...,c, € R
and x1,...,X, € R? such that 37_, ¢; exp(iw”x;) = O(|lw|™*?) in w,
then (22) implies fRd|Z?:1 c; exp(inxj)|2F(dw) < oo (Exercise 24).
For x = (z1,...,24) and a = (ai,...,04), define x* = Hle z{* and
let D, be the set of all d-tuples whose components are nonnegative in-
tegers summing to at most r. Then if Z;L c;x$ = 0 for all @ € D,

Jra [Z;‘zl cj exp(iwTx;) |2F(dw) < 00, as requlred. Since the Fourier trans-
form of F' will not be defined in the ordinary sense when F' has infinite mass
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in any neighborhood of the origin, we need to modify our definition of its
transform. Set Q,(t) = Y ;_(—t*)7/(27)!, which is just the first r + 1
nonzero terms in the Taylor series for cost. Define

G(x) = [ {cos(wx)— Qr(w"x)} F(dw) / cos(wTx)F(dw), (23)
ba be
where b, is the ball of radius 1 centered at the origin and the superscript ¢
indicates complement. Since | cos(w”x) — Qr(wTx)| = O(|w|?>"*2) for any
fixed x, the first integral on the right side of (23) is well defined for F'
satisfying (22). Furthermore, if }-7_, ¢;x$ = 0 for all & € Dy, then

n 2
D ciekG(x; — xx) = F(dw). (24)
j,k=1

s exp(iw” x;)

The choice of by in (23) is arbitrary; we could just as well use any bounded
region containing a neighborhood of the origin and (24) would still hold.
Matheron (1973) shows that for any positive, symmetric measure F satis-

fying (22) there is a real random field Z for which var{Z?zl ¢z (Xj)} is

given by [ea|37_ ¢ exp(inxj)le(dw) whenever 37, ¢;x¥ = 0 for all
a € D,.. Matheron calls such a random field an intrinsic random function of
order r, or r-IRF. In addition, he calls G a generalized covariance function
for Z if it is symmetric and

var{Zc] (x; } Z cjerG(x; — Xy) (25)

k=1

whenever Z;L ¢;x§ = 0 for all @ € D,. To be consistent with the ter-
minology used here I call G a generalized autocovariance function. A
symmetric real—valued function G on R? is said to be conditionally positive
definite of order r if Z?,k:l cjckG(Xk — x;) > 0 whenever Z?:l ¢jx§ =0
for all @ € D,, so that any generalized autocovariance function for an
r-IRF is conditionally positive definite of order r. A minor adaptation of
Theorem 2.1 of Matheron (1973) gives that a continuous symmetric G on
R? is conditionally positive definite of order r if and only if it can be written
in the form

G(x) = ./Rd [cos(wTx) — Qr(wTx)1 {|w| < 1}] F(dw) + P(x),

where F' is a positive symmetric measure satisfying (22) and P is an even
polynomial of order at most 2r + 2 that is conditionally positive definite
of order r. It is trivially true that every even polynomial of order at most
2r is conditionally positive definite of order r, since for any such poly-
nomial P, 3%, cjce P(x; — x;) = 0 whenever Y1 ¢xg = 0 for all
ae€ DIt follows that if G is a generalized autocovarlance function for
the r-IRF Z, then so is G plus any even polynomial of order at most 2r.



2.9 Random fields with nonintegrable spectral densities 39

An even polynomial of order 2r + 2 may or may not be conditionally pos-
itive definite of order r. For example, for Z]".II ¢; =0and ty,...,t, €R,
Yik=rcick(ty —te)? = —=2( X, c]-tj)z, so that P(t) = —at? is condition-
ally positive definite of order 0 if and only if a > 0. Micchelli (1986) gives
useful conditions under which functions of x that depend only on |x| are
conditionally positive definite.

IRF's can be written as a sum of a very smooth IRF and a stationary
random field. Specifically, suppose F has infinite mass in any neighborhood
of 0 but has finite mass on any set bounded away from 0. The form of G
in (23) implies that the corresponding r-IRF Z can be written as Z; + Z5
where Z; and Zs are uncorrelated random fields, Z; has spectral measure
F(dw)1 {|w| < 1} and hence is very smooth but nonstationary and Z, has
spectral measure F(dw)1 {|w| > 1} and hence is stationary. In particular,

in one dimension ZYH) will be a stationary analytic process with spec-
tral measure w?"*2F(dw)1 {|w| < 1}. Matheron (1973, Theorem 1.5) gives
a different decomposition of an r-IRF into a very smooth r-IRF and a sta-
tionary random field. These decompositions imply that in terms of the local
behavior of a random field, r-IRFs do not provide any additional flexibility
over stationary random fields. In spectral terms, the spectrum of an r-IRF
must have finite mass on any set bounded away from 0, so that r-IRFs
are no more general than stationary random fields in their high frequency
behavior.

There is a nice mathematical connection between r-IRFs and best linear
unbiased prediction. If we suppose the mean function of an r-IRF Z is of the
form EZ(x) =3, p, BaX®, where the (345 are unknown, then the variance
of the error of any linear unbiased predictor depends on the covariance
structure only through a generalized autocovariance function G for Z and
is independent of the equivalent form of the generalized autocovariance
function that is selected (Exercise 26). Hence, if Z(x) possesses a linear
unbiased predictor, then we can find its BLUP and the mse of the BLUP
from just knowing G. In other words, the r-IRF model only defines the
covariance structure for contrasts of the random field Z, but in order to
determine BLUPs and their mses, that is all we need to know (see 1.5).

Semivariograms

In practice, the most frequently used class of IRFs is the 0-IRFs. For a
0-IRF Z with generalized autocovariance function G, var {Z(x) — Z(y)} =
2G(0) — 2G(x — y). Define the semivariogram v of a 0-IRF by vy(x) =
3 var {Z(x) — Z(0)}. Then — is a generalized autocovariance function for
Z. The semivariogram is commonly used for modeling random fields in the
geostatistical literature (Journel and Huijbregts 1978; Isaaks and Srivastava
1989; Cressie 1993). See Cressie (1988) for some historical notes on semi-
variograms. One reason for its popularity is that there is a convenient way
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to estimate (x). For simplicity, suppose the observations Xi,..., X, form
some repeating pattern so that there are vectors x for which x; — x; = x
for many pairs of observations x; and x;. For such a vector x, an unbiased
estimator of y(x) is

100 = g 3 120x) = 2P,

Xi —X;=X

where n(x) is the number of pairs of observations whose difference equals

x. Note that E{Z(x;) — Z(x;)}? can be determined from < because Z(x;) —
Z(x;) satisfies (25) with r = 0. If the observations are irregularly located, it
is usually necessary to average over pairs of points whose difference is nearly
x, although how one defines “nearly” is a nontrivial problem (Cressie 1993,
pp. 69-70). Although plots of these estimates versus x or, more commonly,
|x|, can be helpful in identifying structures in spatial data, they do not
directly provide a method for estimating the function - at all x up to
some magnitude, which is what we need for prediction. Chapter 6 provides
further discussion on estimating semivariograms.

Generalized random fields

By considering spectral densities that are not integrable at infinity, we get
what are known as generalized random fields. The random field is gener-
alized in the sense that its pointwise evaluation is not defined, but only
certain linear functionals of it. In terms of the spectral representation of
the random field given in (7), there is so much variation at high frequen-
cies that the Fourier transform of the random measure does not converge
pointwise. The best-known generalized process is white noise, which can
be thought of as a continuous time analogue to a sequence of independent
and identically distributed observations. White noise has constant spectral
density over all of R. The name derives from the fact that white light is ap-
proximately an equal mixture of all visible frequencies of light, which was
demonstrated by Isaac Newton. For d = 1, the autocovariance function
corresponding to the density 2mc should then be K(t) = 2mc [°_e™'dw.
However, this integral is co for ¢t = 0 and is undefined in the ordinary
sense for ¢ # 0. Using the theory of generalized functions (Gel’fand and
Vilenkin 1964), it is possible to show that a reasonable definition for K (t)
is cd;, where &, is the Dirac delta-function, a generalized function satisfying
ffooo 8:9(t) dt = g(0) for all sufficiently smooth g. To see this relationship
between the Dirac delta-function and the uniform spectral density on R,

consider evaluating var { 22 h(t)Z(t) dt} when Z is white noise and h is
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square integrable. From the time domain, proceeding formally,

var{/— h(t)Z dt} / / h(t)cov{Z(s), Z(t)} ds dt
= / / bs_idsdt
=c/—oo h(t)2dt.

From the spectral domain, letting H(w) = [°_h(t)e!'dt and again
proceeding formally,

var{/oo ()Z(t)dt}
/ / { / ” 27rcei“’(s‘t)dw}dsdt
“one [ { [ oeras} { [ moera a

= 27rc/_oo |H(w)|? dw

=c /— Z h(t)%dt

where the last equality is by Parseval’s relation. If h(t) = 1{a < t <
b}/(b— a), then var {ffooo h(t)Z(t) dt} = ¢/(b— a), so that the variance of
an average of Z over an interval tends to co as the length of the interval
tends to 0. This result is in line with my previous statement that white
noise is not defined pointwise.

One way to think about white noise is as a generalized derivative of
Brownian motion, so that the spectral density of white noise should be w?
times the spectral density of Brownian motion, which is the case since, as
we noted earlier, the spectral density for Brownian motion is proportional
to w™2. Equivalently, Brownian motion can be interpreted as an integral of
white noise. This result is the continuous time analogue to a random walk
being a sum of independent and identically distributed random variables.
Gel’'fand and Vilenkin (1964) provide a rigorous development of random
fields that includes nonintegrability of the spectral density at both the
origin and infinity as special cases. Yaglom (1987a, Section 24) provides a
more accessible treatment of these topics.

Exercises

23 For Z?:l ¢;j = 0, show that (21) holds for w in a neighborhood of the
origin.
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T

24 If ¢1,...,¢cn € R and xi,...,x, € R? satisfy > ciexp(iw’x;) =

O(lw|"*1) in w, show that (22) implies
n 2
/ (ch exp(iw”x;)| F(dw) < oo.
Re
j=1

25 Show that the function K (s,t) = |s|*+|t|* —|s—t|~ is positive definite
onRxRfor0<a<2.

26 For @ > 0 and || the greatest integer function, show that G(t) =
(—=1)1+le/2]|¢| is a generalized autocovariance function for an |a/2]-
IRF on R. Find the corresponding spectral measure.

27 For a positive integer m, show that the function G(¢) = (—1)™![¢|?™ x
log |t| is conditionally positive definite of order m. Find the correspond-
ing spectral measure.

28 Extend the preceding two exercises to isotropic random fields on R.

29 Suppose the mean function of an r-IRF Z is of the form EZ(x) =
Eae D, Bax®, where the B,s are unknown. Show that the variance
of the error of any linear unbiased predictor depends on the covari-
ance structure only through a generalized autocovariance function G
for Z and is independent of the equivalent form of the generalized
autocovariance function that is selected.

2.10 Isotropic autocovariance functions

The class of all continuous autocovariance functions on R¢ can be char-
acterized as the Fourier transforms of all finite positive measures on R<.
Adding the requirement that the random field be weakly isotropic, we now
seek an analogous characterization of isotropic autocovariance functions
for random fields on R%. In addition, we consider smoothness properties
of isotropic autocovariance functions at positive distances. A number of
the topics in this section follow the development in Section 22.1 of Yaglom
(1987a).

Characterization

Suppose K(r), r > 0, is an isotropic autocovariance function in R%; that is,
there exists a weakly isotropic complex-valued random field Z on R? such
that cov {Z(x), Z(y)} = K (Jx — y|) for all x,y € R%. For x € R?, we have
K (|x|) = K (| — x|) = K (|x|), so that K must be real. So, if Z(x) = V(x)+
iW (x) with V and W real, then cov {V(x), W(y)} = cov {V(y), W(x)}.
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By Bochner’s Theorem, there exists a positive finite measure F' such that
for all x € R¢

K (|x]) = /R exp(iwx)F(dw).

Since K(x) = K(—x), without loss of generality, we can take F' to be
symmetric about the origin. Furthermore, by isotropy,

K(r)= [ K(rx|)U(dx),
by

where U is the uniform probability measure on 0by, the d-dimensional unit
sphere. Thus,

K(r) = /abd {/Rd exp(ierx)F(dw)} U(dx)

since the imaginary part of the integral drops out due to the symmetry
of F. It is clear that the inner integral over x depends on w only through
its length |w|, so take w to point in the direction of the “north pole” and
switch to spherical coordinates with ¢ measuring the angle from the pole.
For given ¢, the region of integration over the other d — 2 coordinates of
Ob, is a (d — 1)-dimensional sphere of radius sin ¢, so using the fact that
the surface area of a unit sphere in d dimensions is A; = 27%2/T'(d/2),

/ cos(rw”'x) U(dx)
by

= Ai /w cos (r|w| cos ¢) Ag—1(sin ¢)?~2d¢
d Jo

(d—2)/2
=T'(d/2) (le) J(a—2)/2(r|w])

using a standard integral representation for the ordinary Bessel function
Jy, (see 9.1.20 of Abramowitz and Stegun 1965). Thus,

(d—2)/2
ko) =1/ [ () Juw o) Faw)

Letting G(u) = [

|w|<u

F(dw), then for r > 0,

K(r) = 2972/21(d/2) /0 T @D/, (e dG),  (26)
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where G is nondecreasing, bounded on [0, 00) and G(0) = 0. The right side
of (26) is known as the Hankel transform of order 3(d — 2) of G. We have
the following.

Theorem 5. Ford > 2, a function K is a continuous isotropic autocovari-
ance function for a random field on R? if and only if it can be represented
as in (26) with G nondecreasing, bounded on [0,00) and G(0) = 0.

For d odd, (26) can be expressed in terms of elementary functions. For
example, for d = 3, K(r) = [;°(ru)~!sin(ru)dG(u). It is often difficult to
determine whether a given function can be written as in (26). Christakos
(1984) and Pasenchenko (1996) give sufficient conditions for a function to
be an isotropic autocovariance function that can be easily verified in some
circumstances.

Let Dy be the class of continuous isotropic autocovariance functions in
d dimensions and Dy, = ﬂg‘f__l Dy the class of functions that are isotropic
continuous autocovariance functions in all dimensions. By considering a d-
dimensional weakly isotropic random field along m coordinates, m < d, we
obtain an m-dimensional weakly isotropic random field, so that Dy C D,,.
Thus, D; DD3 D +++ D Deo.-

To characterize the elements of Do, define

Aq(t) = 2(Ulnz)/ZF(d/?)t—(d_z)/?J(d—z)/z(t)

- I‘(d/2)i 5t
= T (5 +39)
t2 t4

=12t 8dayy

so that for fixed ¢,
Ad((2d)1/2t) Set asd— oco. (27)

This suggests that a function is in D, if and only if it has the representation

K(r) = /0 ” e 4G () (28)

for G bounded nondecreasing on [0, 00). To prove that all functions of this
form are in Dy, note that the density (27)~%/2 exp{—|x|?/(20%)} on R¢
has joint characteristic function exp(—o?|w|?/2), so that e~™"v* € Dy for
all d and all r > 0, hence e %" € Dy. Then e e~%*dG(u) can be
exp2re§sed as a pointwise limit of positive sums of functions of the form
e~""", so a function of the form (28) with G bounded nondecreasing on
[0,00) is in Deo.

Schoenberg (1938) proved the converse result. His argument was to first
show the convergence in (27) is uniform in ¢; I refer the reader to Schoen-
berg’s paper for this part of the proof. Write G in (26) as G4 now to indicate
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its dependence on d and set, without loss of generality, G4(0) = 0. Define
G4 by G4(u) = G4{(2d)"/?u}. If K € Dy, then for all d,

K(r) = /000 Aa{(2d)?ru} dGy(u),

where the G4s are uniformly bounded since K(0) = G4(00). By Helly’s
selection principle, there is a subsequence {Gdj }:‘;1 converging vaguely to
monotone G with G(0) = 0 (Chung 1974, p. 83). Now, for given > 0 and
all 7,

lK(r) - /0 ” e ¥ dG(u)

sl / Ag,{(2d;)?ru} dGy, (u) — / e " dGy, (u)
0 0

/ e—r2u2dédj (’U.) _ / e_rzusz(u)
0 0

The first term on the right side tends to 0 as j — oo because of the
uniform convergence in (27) and {G’dj} uniformly bounded. The second

tends to O for any given r > 0 by the vague convergence of {édj} and
e ™%’ S 0asu— oo (Chung 1974, Theorem 4.4.1). Since neither K (r)
nor f0°° e~""**dG(u) depend on j, the two functions must be identical.

+

Lower bound on isotropic autocorrelation functions

Define the isotropic autocorrelation function C(r) = K(r)/K(0). A func-
tion C is an isotropic autocorrelation function for a random field on R? if
and only if it is of the form C(r) = [;° A4(ru)dG(u), where [;° dG(u) =1
and G is nondecreasing. Thus, for all r,

C(r) > inf Ad(s).

For d =2,
C(r) > ir>1£ Jo(s) = —0.403,

for d = 3,

O(r) > inf =2 ~ —0.218
s>0 S

and for d = oo, C(r) > 0. For all finite d, the infimum of A4(s) is attained
at a finite value of s, so the lower bounds on C are achievable (Exercise 30).

For d = 0o, the bound cannot be achieved since et > 0 for all t, so that
K(r) >0 for all  if K € Dy, (unless K(0) = 0).
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Inversion formula

The relationship (26) has a simple inversion if f0°° ri=1|K(r)|dr < co. In
this case, there exists a nonnegative function f with [° u®~! f(u) du < oo
such that

fu) = (2m)~4/? /0 oo(ur)‘(d‘z)/ 2J(a-2)/2(ur)r~ K (r) dr

and

K(r) = (2m)*? /0 °°(m)_<d_2)/ -y p(ruju f(w)du  (29)

(Yaglom 1987a). Note that if K and f are the functions on R
such that K(x) = K(|x|) and f(w) = f(Jw|), then the conditions
o 7 |K(r)|dr < oo and [;°u?"!f(u)du < oo are equivalent to the

absolute integrability of K and f, respectively.

Smoothness properties

We have shown in 2.4 that an autocovariance function on R that is contin-
uous at 0 is continuous. For continuous isotropic autocovariance functions
in more than one dimension, we can make stronger statements about the
smoothness of K(r) for r > 0. From standard properties of Bessel func-
tions, |J,(t)] < C,(1 + |¢|)~%/2 for some constant C, and all t, t~¥J, (t) is
bounded and (d/dt) {t7"J,(t)} = —t7YJ,+1(t). From (26), for d > 3 and
r>0,

K'(r) = 21"2/21(d/2) %{ /0 " (ru) D2 g () dG(u)}

— _9d=2)/2p(4/9) / w(rw)~@D2 ], (ru) dG (u),
0

where differentiating inside the integral can be justified by G bounded and
the preceding properties of J, (note that for d > 3, the last integrand is
bounded). More generally, for K € Dg, K is | 4(d—1)| times differentiable
on (0, 00) (see Trebels (1976) or Exercise 31).

Although K € D, may not be differentiable on (0, c0) (see Exercise 32 for
an example), we can draw a stronger conclusion than that K is continuous,
which is automatically true since K € D; is continuous. For an interval I,
let us say that a function f is Lipschitz with parameter o or f € Lip(a),
if there exists C finite such that |f(s) — f(t)| < C|s — t|* for all s,t € I.
Then I claim K € D, implies K € Lip(%) on I = [a,00) for any a > 0. To
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prove this, note that for s >t > a,
|K(s) — K(t)]

< /000 |Jo(su) — Jo(tu)| dG(u)
ug o 2Cy
<[ om0 s @G+ [ 0w

ug u 2C
<Ci(s— t)/o Arm dG(u) + _(HT(:))W {G(c0) - G(0)}

< C (S - t)uo + 2Cy
S\ 0+ ouo)2

} {G(o0) - C(0)}.

Choosing ug = (s — t)~! yields the desired result. Similarly, for d > 4 and
even, it is possible to show that K((4=2/2) is Lip(1) on any interval [a, c0)
with a > 0 (Exercise 31). Since a continuous function is not necessarily
Lip(a) for any a > 0 and a function that is Lip(1) is absolutely continuous
and hence nearly differentiable, it is not unreasonable to characterize a
function that is Lip(3) as being 3 times differentiable. Using this loose
interpretation, we might now say that K € Dy implies K is 3(d — 1) times
differentiable on (0, 0o).

Additional smoothness beyond continuity at the origin for K € Dy should
imply additional smoothness away from the origin. For example, consider
whether K(r) = (1 — )% is in Dy. We have already seen that K is in D
and since it is not differentiable at » = 1, it is not in D3. Using the inversion
formula (29), we can show that K ¢ D, by showing that fol Jo(ur)r(1 —
r) dr is negative for some u > 0. More specifically, by applying asymptotic
expansions for Jy and J; (Abramowitz and Stegun 1965, p. 364), as u — oo,

/lJo(ur)r(l —7r)dr
0
1 1
= /0 Jo(ur)rdr — /0 Jo(ur)r?dr
— oy (w) — / r2Jo(r) dr + O(u™?)
1

_ (;)1’2 {/ cos(u— ) - Bu-sr2snu— 27
- (;21_-)3/2 u3 /1u r2 {cos (r - %) + 8_17' sin (r - %)

cos (r - —g) + 0(,«-3)} dr +O(u™3)

9
128r2
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= (E) 2 u~%/2 sin(u - %r) +0®u™?), (30)

™

which can be obtained by repeated integration by parts (Exercise 33). Thus,
for some u sufficiently large f is negative, so that K(r) = (1 — )% is not
in Dz.

More generally, for some K € Dy, suppose K(r) = 1 — yr + o(r) as
r | 0. Then I claim that K is differentiable on (0,00) and that K'(r)
is in Lip(%) on [a,00) for any a > 0. To prove this claim, first apply
Theorem 1 of Bingham (1972), which is a Tauberian theorem for Hankel
transforms. This theorem shows that K(r) =1 —~r +o(r) as v | 0 implies
G(©) — G(u) ~ C/u as u — oo for an appropriate positive constant C.
Using the properties of Bessel functions described earlier, it follows that
(Exercise 35)

K'(r)= _/000 uJy(ur) dG(u) (31)

for r > 0. An argument similar to the one proving the Lip(3) property
of elements of D, yields K'(r) is in Lip(3) on [a,00) for any a > 0 as
claimed (Exercise 36). I am unaware of a general result on what some
degree of smoothness at 0 for an element of D, implies about its smoothness
elsewhere. Thinking of an element of D, as being a function on R by setting
K(—r) = K(r), then for any € > 0, I would expect K to have at least 3(d—
1) — e more “derivatives” away from the origin than it does at the origin,
where, for a positive noninteger ¢, a function is said to have ¢ derivatives
at a point if in some neighborhood of this point it has |¢| derivatives and
this |¢|th derivative is Lip(t — [¢]).

To see why I have included the —e term in this conjecture, consider the
following example. Pasenchenko (1996) shows that K(r) = {1 —r!/ 2}+
is in Dy. This function is in Lip(3) in a neighborhood of 0 but K is not
differentiable at 1. Hence, the proposition that K € Dy has %(d — 1) more
derivatives away from the origin than at the origin is false using the defini-
tion of fractional derivatives given here. Of course, such a proposition may
be true under a different definition of fractional differentiation.

Matérn class

The Matérn class of functions
K(r) =¢(ar)’K,(ar), ¢>0,a>0, v>0,

which we saw in (14) to be positive definite on R, are in fact all in D,. This
can be verified by using the inversion formula and (6.576.7) of Gradshteyn
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and Ryzhik (1994) to obtain the corresponding isotropic spectral density

2" 19T (v + £) o
flu) = 7d/2(a2 + u2)v+d/2

(32)

which is nonnegative and satisfies [;° f(u)u®"'du < co. This model is used
by Handcock (1989), Handcock and Stein (1993) and Handcock and Wallis
(1994). Matérn (1960) appears to be the first author to have recommended
these functions as a sensible class of models for isotropic random fields
in any number of dimensions. I believe this class of models has much to
recommend it. As we show in Chapter 3, the smoothness of a random field
plays a critical role in interpolation problems. Furthermore, there is often
no basis for knowing a priori the degree of smoothness of some physical
process modeled as a random field. Thus, it is prudent to use classes of
models that allow for the degree of smoothness to be estimated from the
data rather than restricted a priori. The Matérn model does allow for great
flexibility in the smoothness of the random field while still keeping the
number of parameters manageable.

It is often convenient to describe the smoothness of an isotropic random
field through the principal irregular term of the isotropic autocovariance
function. Extending the definition I gave in 2.7 for processes on R in the
obvious way, I call g a principal irregular term for the isotropic autoco-
variance function K if g(r)r=2" — 0 and |g(r)|r~?""2 — oo as r | 0 and
K is of the form K(r) = 3°7_;¢;r¥ + g(r) + o(|g(r)|) as | 0. As in the
one-dimensional setting, if g(r) = a|r|? is a principal irregular term for K,
I call B the power and o the coefficient of the principal irregular term. It
follows from (15) and (16) that for the Matérn model with » a noninteger,
2v is the power of the principal irregular term and when v is a positive
integer, there is a principal irregular term proportional to r2” logr.

For statistical purposes, the parameterization in (32) may not be best.
In particular, for fixed a, f becomes more and more concentrated around
the origin as v increases. In particular, suppose C,,, is the isotropic au-
tocorrelation function corresponding to f(w) = ¢(a? + |w|?)~~%/2. Then
lim, o0 Co,(r) =1 for all r > 0 (Exercise 39). One way to solve this prob-
lem is to use the class of models f(w) = ¢{a?(v + 3d) + |(.d|2}—"_d/2 (see
Exercise 39 for the limiting behavior of the corresponding autocorrelation
functions as v — 00). I implicitly use this parameterization in the numer-
ical studies in 3.5 and elsewhere. Handcock and Wallis (1994) recommend
the alternative parameterization

ac(v p) (33)
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where n = (o,v, p) and

(v + £)(4v)”

C(V’p)z 7Td/2——r(l/)p2’/ .

The corresponding isotropic autocovariance function is

o wl/2r\" w1 /2y
K"(r)_?‘ll‘(V)( p )’C"< p )

which has the nice property that it does not depend on d. In either parame-
terization, v has the same interpretation as a measure of the differentiability
of the random field. The parameter o in (33) is just var{Z(x)}. Finally, p
measures how quickly the correlations of the random field decay with dis-
tance. It is thus closely related to what is known as the practical range of
an isotropic autocovariance function in the geostatistical literature, which
is informally defined as the distance at which the correlations are nearly
0, say 0.05, for example (Journel and Huijbregts 1978, p. 164). Figure 3
plots the autocovariance functions corresponding to g, for o =1, v =1
and several values of p and shows how the correlations decay more slowly
as p increases. Although a~! has a similar interpretation in (32), p has
the attractive feature that its interpretation is largely independent of v,
which is not the case for a. To illustrate this point, Figure 4 plots the au-
tocorrelation functions corresponding to p = 1 for v = 1,2 or 3 under (33)
and Figure 5 plots the autocorrelation functions corresponding to a = 1
for v = 1,2 or 3 under (32). The autocorrelation functions in Figure 4
are much more similar at longer distances than those in Figure 5. Another
way to see that the interpretation of p is only weakly dependent on v is to
consider the limit of (33) as v — oo. Specifically, for fixed o, p and u,

2 d/2
uli—>r§o gm(u) =0 (%) exp ( — 1p*u?) (34)
and the corresponding isotropic autocovariance function is K(r) =
oe~"/P* . This calculation shows that for fixed p and o and two differ-
ent but large values of v, the corresponding covariance functions are nearly
the same.

An alternative to the Matérn class of models that is sometimes used
is K(r) = Ce™*"" (Diggle, Tawn and Moyeed 1998; De Oliveira, Kedem
and Short 1997). These functions are also in Dy, for all C and a positive
and all v € (0, 2], which follows by the same reasoning as held in the one-
dimensional setting treated in 2.7. For v > 2, we noted that K ¢ D; so it
is not in Dy for any d. The power of the principal irregular part of K is -,
so in terms of local behavior of the random field, v corresponds to 2v in
the Matérn model when vy < 2 and, roughly speaking, v = 2 corresponds
to v = co. We see that K(r) = Ce " has no elements providing similar
local behavior as the Matérn class for 1 < v < oo. Thus, although the
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FIGURE 3. Plots of Matérn autocovariance functions under the parameterization
given in (33) with 0 = 1, v = 1 and several values of p. Solid line corresponds to
p = 2, dashed line to p = 1 and dotted line to p = 4.

FIGURE 4. Plots of Matérn autocovariance functions under the parameterization
given in (33) with 0 = 1, p = 2 and several values of v. Solid line corresponds to
v = 1, dashed line to v = 2 and dotted line to v = 3.

Matérn class has no more parameters than this model, it provides much
greater range for the possible local behavior of the random field. The fact
that its use requires the calculation of a Bessel function does not create
a serious obstacle to its adoption as programs that calculate all manners
of Bessel functions are readily available (Cody 1987). Section 6.5 provides
further discussion on the use of the Matérn model.
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FIGURE 5. Plots of Matérn autocorrelation functions under the parameterization
given in (32) with @ = 1 and several values of v. Solid line corresponds to v = 1,
dashed line to v = 2 and dotted line to v = 3.

Spherical model

Perhaps the most commonly used model for isotropic autocovariance func-
tions in geological and hydrological applications is the spherical: for positive
constants ¢ and p,

31,
K(T)z C<1—2—p7'+‘2—p—37'), 'I‘Sp (35)
0, > p.

This function is in D3 but is not in D4 (Exercise 40). The parameter p
is called the range parameter and is the distance at which correlations
become exactly 0. Its popularity in the geostatistical literature (Journel
and Huijbregts 1978, p. 116; Isaaks and Srivastava 1989, p. 374; Bras and
Rodriguez-Iturbe 1985, p. 418; Christakos 1992, p. 71; Wackernagel 1995,
p. 42; Kitanidis 1997, p. 56; and Goovaerts 1997, p. 88) is a bit of a mys-
tery to me. Perhaps its superficially simple functional form is attractive or
perhaps there is a mistaken belief that there is some statistical advantage
in having the autocorrelation function being exactly 0 beyond some finite
distance. However, the fact that this function is only once differentiable at
r = p can lead to problems when using likelihood methods for estimating
the parameters of this model (see 6.4). Furthermore, in three dimensions,
the corresponding isotropic spectral density (Exercise 40) has oscillations
at high frequencies similar to the spectral density corresponding to the
triangular autocovariance function in one dimension (Figure 2 in 2.7). As
I argued in 2.7, such oscillations would generally not make much physi-
cal sense. Stein and Handcock (1989) show that when using the spherical
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model in three dimensions, certain prediction problems have rather patho-
logical behavior. I consider the spherical model to be a poor substitute for
the exponential model, since both have linear behavior at the origin, but
the exponential model has none of the pathologies of the spherical.

There can, in some circumstances, be a computational advantage in us-
ing a model such as the spherical for which the covariance is identically 0
beyond some distance. Specifically, if p in (35) is much smaller than the
dimensions of the observation region, then most of the covariances between
the observations will be 0, which saves storage space and makes it possible
to use sparse matrix methods to more efficiently calculate kriging predic-
tors (Cohn et al. 1998). For this reason, Gaspari and Cohn (1999) give a
large number of isotropic autocovariance functions that are identically 0
beyond a fixed distance. However, I suspect that all of the examples of
autocovariance functions derived in Gaspari and Cohn (1999) will, like the
spherical model, lead to problems when using likelihood-based methods for
estimating unknown parameters. If the computational advantage of having
the autocovariance function identically 0 beyond some distance is needed
in a particular application, I would suggest at least using an autocovari-
ance function that has two more derivatives away from the origin than it
does at the origin. For example, consider K(r)?, where K(r) is a spheri-
cal autovariance function as in (35). Equation (5) in 2.3 implies that this
function is in D3. Furthermore, like the spherical model, it behaves linearly
at the origin and is identically 0 beyond a certain distance, but unlike the
spherical model, it has two derivatives on (0, c0).

Exercises

30 Using standard properties of Bessel functions given in, say, Chapter 9 of
Abramowitz and Stegun (1965), show that for any d > 2, the infimum
of A4(s) for s > 0 is attained at a finite value of s. Use this to show
that if 7 > 0, there is an isotropic autocorrelation function C € D,
such that C(r) = infs>q Ag(s).

31 Show that K € Dy implies K is [3(d — 1)] times differentiable on
(0,00). For d > 4 and even, show that K € Dy implies K(4-2)/2) s
Lip(3) on any interval [a, 00) with a > 0.

32 Show that the isotropic autocovariance function for a random field on
R? corresponding to the isotropic spectral density f(u) = u=%2(1 —
cosu) is not differentiable at u = 1 by the following steps.

(i) Find the isotropic autocovariance function by using (29), inte-
gration by parts and formulas 6.669.1, 6.669.2 and 6.561.14 of
Gradshteyn and Ryzhik (1994).
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(ii) Show that the resulting function is continuous but not differen-
tiable at 1 by using properties of hypergeometric functions given,
for example, in Chapter 15 of Abramowitz and Stegun (1965).

33 Provide the details for (30).

34 By considering the correlation of Z(e) — Z(0) and Z(1 +¢) — Z(1) as
€10, show that {(1-r)*}" ¢D; if0<y< 1.

35 Verify (31).

36 Using (31), show that if K € D, and K'(0") exists and is finite, then
K'(r) is in Lip(}) on [a,c0) for any a > 0.

37 (Pdlya’s criteria). Prove that if K is even and is continuous, nonnega-
tive, nonincreasing and convex on [0, 00) then it is in D; by using (3),
(4) and the fact that (1 — [¢|)* is in D;.

38 For a weakly isotropic random field in R?, d > 2, the results given in
this section do not resolve whether such functions must be continuous
away from the origin. Read Crum (1956) and determine to what extent
the results in this paper resolve this issue.

39 Show that if Cy , is the isotropic autocorrelation function correspond-
ing to f(w) = ¢(a? + [w|2)7"%2, lim, o0 Ca,(t) = 1 for all ¢. For
flw)=9¢{a?(v+1d)+ |w|2}_"‘d/2, find the limiting behavior of the
corresponding isotropic autocorrelation function as ¥ — oo for fixed a.

40 Consider a Poisson process N on R3 with constant intensity A, so that
for A a Borel subset of R3, N(A) is the number of events of the process
in A. Let Z(x) = N(bs(r) + x), the number of events in the ball in
R3 of radius r centered at x. Show that the isotropic autocovariance
function of Z is of the form given in (35). Find the corresponding
spectral density. Show that K as given in (35) is not in Dy.

2.11 Tensor product autocovariances

An easy way to generate autocovariance functions on R? is to take
products of one dimensional autocovariance functions. Specifically, for au-
tocovariance functions Ki,..., Ky on R and x = (z1,...,%4), K(x) =
Ki(z1) -+ - K4(z4) is an autocovariance function on R?, which can be proven
using (5). For some mathematical problems, they are easier to study than
isotropic autocovariance functions, which has led to their rather widespread
use in mathematical works (Ylvisaker 1975; Papageorgiou and Wasilkowski
1990; WozZniakowski 1991; Ying 1993; Ritter 1995; and Miiller-Gronbach
1998). However, the extreme dependence of these models on the choice of
axes would appear to make them untenable for most physical processes
defined on continuous space.
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As an example of the physically unrealistic behavior such models imply,
consider K (u,v) = e~ uI=1%! for w and v real. Suppose Z has mean 0 and this
autocovariance function and we wish to predict Z(0,0) based on observing
Z(t,0) and Z(0,t). Then straightforward calculations yield that the BLP
of Z(0,0) is AZ(0,t) + AZ(t,0), where A = 1/(e* + e~*) = 1/(2sinht) and
the mse of the BLP is tanh¢ (Exercise 41). Ast | 0, A = 1 — 1t2 + O(¢%)
and the mse is ¢+ O(t?). Note that the simple predictor 1Z(t,0)+ 3 Z(0,t)
also has mse t+O(t3) as t | 0, so that the BLP is very nearly the average of
the two observations for ¢ small. Next, consider adding a third observation
at (t,t). Now the BLP of Z(0,0) is e tZ(0,t) + e 'Z(t,0) — e~ 2tZ(¢,t)
with mse (1 — e2t)? (Exercise 41). As t | 0, its mse is 4t + O(t3), so by
adding a third observation that is further away from (0,0) than the other
two observations, the mse decreases from O(t) to O(t2).

The reason for this huge drop in mse is that the random field is locally
almost additive. For a function f(u,v) = f1(u)+ f2(v), note that f(0,0) =
f(u,0) + f(0,v) — f(u,v), which is very nearly the form of the BLP for
Z(0,0) in terms of Z(0,t), Z(¢,0) and Z(t,t) when t is small. Indeed,
var{Z(0,0) — Z(0,t) — Z(¢,0) + Z(t,t)} = 4t> + O(t3) as t | 0, so this
additive approximation does as well asymptotically as the BLP.

If instead of having the first two observations along the axes, we predict
Z(0,0) based on observations at (271/2¢,2-1/2t) and (—2~1/2t,271/2t) and
then add a third observation at (0,2'/2t), so that the observations have
been rotated 45° from the previous setting, the mse of the BLP is O(t)
and not o(t) in both cases, so that there is no order of magnitude decrease
in the mse when the third observation is added. Thus, predictions based
on this model are highly sensitive to the choice of axes and should not
be used unless there is some very good reason for thinking the observed
random field possesses the required axis dependence. Ripley (1995) has
also criticized work in the numerical analysis of deterministic functions
that makes use of assumptions depending strongly on the choice of axes.

Finally, note that the only real functions on R¢ that are isotropic and
factor into functions of each coordinate are of the form cexp(—a|x|?) (Ex-
ercise 42). This fact was used by Maxwell in his famous work on the kinetic
theory of gases to argue that the velocity distribution in an ideal gas must
be spherical Gaussian (Ruhla 1992). The function ce~” is in Dy for all
c and a nonnegative, so in any number of dimensions cexp(—a|x|?) is pos-
itive definite for @ and ¢ nonnegative. However, as I previously argued in
the one-dimensional setting, random fields possessing these autocovariance
functions are unrealistically smooth for physical phenomena.

Exercises

41 Suppose Z is a weakly stationary mean 0 random field on R? with
autocovariance function K (u,v) = e~*I=1*! for u and v real. Show that
the BLP of Z(0,0) based on observing Z(t,0) and Z(0,t) is AZ(0,t) +
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AZ(t,0), where A = 1/(e* +e~*) = 1/(2sinht) and the mse of the BLP
is tanh t. Next, consider adding a third observation at (¢,t). Show that
the BLP of Z(0,0) is e tZ(0,t) + e"tZ(t,0) — e 2tZ(t,t) with mse
(1 —e™2)2

42 Show that the only real functions on R? that are isotropic and factor
into functions of each coordinate are of the form cexp(—al|x|?) for a
and c real.
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Asymptotic Properties of Linear
Predictors

3.1 Introduction

Suppose we observe a Gaussian random field Z with mean function m and
covariance function K at some set of locations. Call the pair (m, K) the
second-order structure of the random field. If (m, K) is known, then as
noted in 1.2, the prediction of Z at unobserved locations is just a matter
of calculation. To review, the conditional distribution of Z at an unob-
served location is normal with conditional mean that is a linear function of
the observations and constant conditional variance. In practice, (m, K) is
at least partially unknown and it is usually necessary to estimate (m, K)
from the same data we use to do the prediction. Thus, it might be natural
to proceed immediately to methods for estimating second-order structures
of Gaussian random fields. However, until we know something about the re-
lationship between the second-order structure and linear predictors, it will
be difficult to judge what is meant by a good estimate of the second-order
structure. In particular, it will turn out that it is possible to get (m, K)
nonnegligibly wrong and yet still get nearly optimal linear predictors. More
specifically, for a random field possessing an autocovariance function, if the
observations are tightly packed in a region in which we wish to predict the
random field, then the low frequency behavior of the spectrum has little
impact on the behavior of the optimal linear predictions.

One way to study the behavior of linear predictors when the second-
order structure is not perfectly known is to consider the behavior of linear
predictors that are optimal under some incorrect second-order structure.
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This approach has been used in the atmospheric sciences (Daley 1991,
Section 4.9) and in the geostatistical literature (Diamond and Armstrong
1984) as well as in my own work (Stein 1988, 1990a, 1990b, 1993, 1997, 1999
and Stein and Handcock 1989). I generally denote the actual second-order
structure for a random field Z by (my, Ko) and the incorrect second-order
structure used to generate and evaluate linear predictors by (m;, Ki). I call
linear predictors that are best under an incorrect model pseudo-BLPs.

To be more specific, suppose we observe Z for all x in some set Q C R
and wish to predict Z(xg), xo € R\Q. Define e; (Z(xg), Q) to be the error
of the best linear predictor if (m;, K;) is the correct second-order structure
and let E; indicate expected value under (mj, K;). One measure as to
how well predictions based on K; do when Kj is the correct covariance
function is Eo{e1 (Z(x0),Q)* }/Eo{eo (Z(x0),Q)’ }, the ratio of the mse
of the suboptimal pseudo-BLP to that of the BLP. This ratio is necessarily
at least 1. More specifically,

Ege1(Z(x0),Q)* _ Eo[{e1(Z(x0), Q) — e0(Z(x0), @)} + e0(Z(x0), Q)]
Eoeo(Z(x0),Q)? Eqeo(Z(x0),Q)?

Eo{e1(Z(x0), Q) — e0(Z(x0), @)} (1)

Eoeo(Z(x0), Q? ’

which follows from the orthogonality of the error of a BLP with all linear
combinations of the observations. In addition to the quality of point pre-
dictions, another concern is the accuracy of assessments of mse. If we not
only compute our prediction under (m;, K;) but also assess its mse under
this model, this amounts to presuming the mse is Eje;(Z(xo), Q)?. The
quantity

Ere1(Z(x0), Q)?
Foer (Z(x0), Q) @)

is then the ratio of the presumed mse of the pseudo-BLP to its actual mse.
If both (1) and (2) are near 1, then little is lost by using (m1, K;) instead
of the correct (mg, Kg), at least as far as predicting Z(xg) goes.

This chapter considers two ways of investigating the relationship between
second-order structures and linear prediction. One way is to study (1) and
(2) for various pairs of second-order structures, observations and predic-
tands. The second is to study the spectral characteristics of prediction
errors by making use of the correspondence between linear combinations
of values of a random field and linear combinations of complex exponen-
tials described in 2.6. It turns out that this second approach is helpful in
studying the first.

There are two basic themes to this chapter. One is the differences in
the behavior of pseudo-BLPs when interpolating (predicting at locations
“surrounded” by observations) and extrapolating (predicting at locations
outside the range of observations). The second is the lack of sensitivity of
predictions to misspecifications in the spectrum at low frequencies when
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neighboring observations are highly correlated. In addition, there is an
important interaction between these themes: the low frequency behavior
of the spectrum matters much less when interpolating than extrapolating.
These findings imply that when interpolation is the goal, the focus in model
selection and estimation of spectra should be on high frequency behavior.

3.2 Finite sample results

There are some theoretical results we can give on the ratios in (1) and
(2) that do not require asymptotic arguments nor specific considerations of
the observation locations. Let us first review some relevant definitions on
Hilbert spaces and random fields. Suppose Z is a real-valued random field
on a closed set R C R? possessing second-order structure (m, K) with m
continuous on R and K continuous on R x R. Let H% be the real linear
manifold of random variables Z(x) for x € R and Hg(m, K) the closure of
H%, with respect to the inner product defined by E(hihs) for hy and hs in
HY. For hi,he € Hr(m, K), define mean and covariance operators m and
K such that Ehy = m(hy) and cov(hy, hg) = K(hi,hs2). Thus, we use K
(and m) to indicate both a function and an operator, the meaning being
apparent from context. For example, K (Z(x), Z(y)) = K(x,y), where K
is an operator on Hr(m, K) x Hr(m, K) on the left side of the expression
and K is a function on R x R on the right side.

Suppose

) E1h? Eh?

0<a—h~151;£?2 Foh? Shsél;%! Foh? =b < 0. (3)
Then, as sets, Hr(mo, Ko) = Hgr(m1, K1), so call this set Hgr. The con-
dition (3) simplifies matters because now there is no need to worry about,
say, a BLP under Hg(mg, Ko) not being an element of Hr(my, K;). One
situation where (3) holds is if R = R%, mg = m; and Kj and K, are auto-
covariance functions with corresponding spectral densities fo and f; such
that fo/f1 is bounded away from 0 and oo.

Under (3), we can give some simple bounds on the effects of using the
wrong second-order structure. Define e;(h, Q) to be the error of the BLP
of h € Hr based on observing Z on Q and let H_g be those elements h
of Hp for which Egeq(h,Q)? > 0. Equation (3) implies a simple bound for
the ratio in (2) on assessing mses of pseudo-BLPs:

. Biei(h,Q)? Eie(h,Q)?
a< inf ———=< sup ——==<b 4
heH_q Egei(h,Q)? hEHIjQ Epeq(h,Q)? @
It is not possible to sharpen these bounds without further assumption.

Under (3), it is possible to show that Egeg(h,@)? = 0 if and only if
Egeo(h,Q)* = Eieo(h,Q)* = Erei(h,Q)* = Epei(h,Q)* = 0 (Exercise
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1). Thus, the restriction to H_¢ is not a significant one. Cleveland (1971)
obtains a more interesting bound for the ratio in (1) on the efficiency of

pseudo-BLPs.

Theorem 1. If mg =m; =0 and (3) holds, then for allh € H_g,

Epe1(h,Q)? (b—a)?
Eqeo(h, Q)? = e

(5)

PrOOF. Following Cleveland (1971), let P;, j = 0,1, be the operator
that maps h into its BLP under K; based on Hg. We can then call P; an
orthogonal projection operator, since P;h is the unique element of Hg such
that h — P;h is orthogonal to all elements of Hg under the inner product
defined by K. For h € H_q, if Poh = Pih, (5) trivially holds, so assume
from now on that Poh # Pih. In this proof and subsequently, I use e; to
denote e;(h, Q) when it is clear what is being predicted and what are the
observations. Define z = P;eg, which is not 0 when Poh # P h. Let R; be
the orthogonal projection operator onto the space spanned by z under the
inner product K;. Then Rieq = {K;i(Pieo,e0)/K1(Pieo, Preg)} Preo =
Pieo, so eg — Ri1eg = h — P1h. Furthermore, Ko(eg,2) = 0, so Rgeg = 0
and hence ey —Roeg = h —Poh. It follows that there is no loss in generality
in taking the prediction space to be one-dimensional, h orthogonal to the
prediction space under Ky and Ko(h,h) = 1. Let g be a basis for the
prediction space with Ky(g,g) = 1 and S be the space spanned by g and
h. By (3), we can choose a basis s1, sy for S so that for v = v;s1 + va8,
where vy, ve are scalars, Ko(v,v) = v? + v2, K1(v,v) = $1v? + B2v3 and
a < B1 < P2 <b. Let h = h151+hasz2, g = g151 + gas2, where g1, g2, by and
ha are scalars, and now take P; to be orthogonal projection onto the space
spanned by g under inner product Kj, so P1h = {Ki(h,9)/K1(9,9)}g-
Then Poh =0, Eo(h — Poh)? =1 and by (1)

Eo(h — Pih)?

(h Pgh)2

=14+ E

_ Ki(h,g

a {Kl (9,9) }

—14 {ﬂ1h191 + B2haga }2
B1g? + B293

ﬁ1!]1 (91 + hz) + ,3292(92 + h2) + 2ﬂ1ﬁ29192(h1h2 + 9192)
(,8191 + /5292) ’

From Ko(g,9) = Ko(h,h) = 1 and Ko(g,h) = 0, we get g2 + h? = 1,
g2 +h% =1 and g;go + h1hy = 0 (draw a picture of two orthogonal unit
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vectors in R? to see this), so

Eo(h—Pih)? _ Bigt+ B33 _ (Bi+B)? | . (B2=B)

Eo(h —Poh)? ~ (B1g? + B292)> = 4B1f2 4616
which can be verified by calculus, or as a consequence of Kantorovich’s
inequality (Rao 1973, p. 74). Then Theorem 1 follows froma < £, < G2 < b
and the fact that (82 — 81)%/(46132) is increasing as (; increases or as (;
decreases on the region 0 < 81 < 3. Cleveland (1971) further shows that
this bound cannot be sharpened without adding restrictions on the space
of predictors. ]

The fact that b — a is squared on the right side of (5) is worth noting.
Specifically, suppose a = 1+ ¢; and b = 1 + €3, where both €; and €2
are small, so that all variances are only slightly misspecified under (0, K ).
Then the right side of (5) is approximately 1 + %(62 — €1)2. For example,
if —e; = €2 =€, then 1+ (€2 — €1)% = 1 + €2, which is much nearer to 1
than either a = 1 — € or b = 1 + ¢, the bounds in (4). Thus, we see that
slight misspecifications of the model can potentially have a much larger
effect on the evaluation of mses of pseudo-BLPs than on the efficiency of
the pseudo-BLPs.

One other simple finite sample result we can give is that if Egh? > E;h?
for all h € Hp, then Eje? < Eje3 < Ege? < Ege?. Consequently,

Eoez > E()C% > 1, (6)

E1 €1 Eoeo
so that if variances under K, are always smaller than under the correct Ky,
the effect of this misspecification is greater on the evaluation of the mse
than on the efficiency of the prediction. There does not appear to be any
comparable result when K; always gives larger variances than under Kj.

Both (6) and the comparison of the inequalities in (4) and (5) provide

some support for the general notion that misspecifying the covariance struc-
ture of a random field has a greater impact on evaluating mses than on
efficiency of point predictions, which has been noted as an empirical find-
ing by Starks and Sparks (1987). Many of the examples and much of the
asymptotic theory in the rest of this chapter also support this finding.

Exercise

1 Assuming (3) holds, show that Epep(h,Q)? = 0 if and only if
Eqeo(h, Q)? = Ereo(h,Q)? = Ere1(h, Q)? = Epe; (h,Q)? = 0.
3.3 The role of asymptotics

Asymptotic methods provide powerful tools for obtaining approximate re-
sults in mathematics and statistics. The most common way to employ
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asymptotics in statistics is to consider what happens as the number of
observations increases. A key question is exactly how this should be done
when studying prediction problems for random fields. For someone with
a background in statistics, especially in time series analysis, a natural
approach would be to let the observation region grow with the number
of observations so that the distance between neighboring observations re-
mains at least roughly constant. This approach was taken for predicting
area averages of random fields by Quenouille (1949), Matérn (1960) and
Dalenius, Héjek and Zubrzycki (1961). A numerical analyst, on the other
hand, would more likely consider what happens as the number of obser-
vations within a fixed and bounded observation region increases so that
the distance between neighboring observations tends to 0 (Novak 1988;
Traub, Wasilkowski and Wozniakowski 1988). Although studying a prob-
lem from more than one perspective is generally a good idea, I believe that
the numerical analyst’s asymptotic approach is by far more informative for
interpolation problems and is the approach I take here. I call asymptotics
based on a growing observation region increasing-domain asymptotics and
that based on increasingly dense observations in a fixed and bounded region
fixed-domain asymptotics. Cressie (1993) uses the term “infill asymptotics”
for this second concept.

A natural argument for using different asymptotics in spatial settings
than in time series is the directional nature of time. That is, since it is not
possible to go back in time, it does not make sense to think about taking
more and more observations in a fixed interval of time. On the other hand,
in a fixed region of space, it is possible, at least in principle, to take more
and more observations in that region of space as long as the process does
not vary over time. However, I feel this argument is slightly off the mark.
For any given problem we have a given sample size from which we wish to
make predictions. We use asymptotics not because we actually plan to take
more and more observations but because we hope the approximations we
obtain will be useful for the specific problem at hand. Thus, the fact that
we could conceivably take more observations in our fixed region of space is
irrelevant to drawing inferences from our given set of observations.

The directionality of time is related to the differences in appropriate
asymptotics for temporal and spatial problems, but not, I believe, through
the observation sequences that are physically possible. Rather, the differ-
ence is due to the types of predictions we are likely to want to make in
the two settings. In time series, we usually want to predict the future, or
extrapolate. In spatial settings, we usually want to interpolate: predict the
process at a location that is, roughly speaking, surrounded by observations.
After all, if we wanted to predict a spatial process in some region, we would
take observations in that region and not some nearby region unless there
were some physical impediment to doing so.

One reasonable expectation about the behavior of a good interpolant of
a process Z at Xg is that it should depend mainly on observations near xg.
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It follows that for a weakly stationary process, the behavior near the origin
of the autocovariance function is critical for interpolation. It turns out that
it is slightly more accurate to focus on the high frequency behavior of the
spectrum, although, as described in 2.6 and 2.8, the two are closely related.
A corollary of sorts of this consideration is that the low frequency behavior
of the spectrum should have little effect on interpolation. The results in the
rest of this chapter provide support for this notion. Furthermore, the results
show that focusing on the high frequency behavior works much better when
interpolating than extrapolating.

3.4 Behavior of prediction errors in the frequency
domain

Suppose Z is a mean 0 weakly stationary random field with spectrum F
and spectral representation Z(x) = [p. exp(iwTx)M(dw). We can gain
some insight into prediction problems by studying the spectral representa-
tion of prediction errors. Recall from 2.6 that Lra(F') is the closed linear
manifold of the functions exp(iw?x) for x € R? with respect to the inner
product defined by F. For a random variable h € Hga(F'), let H be the cor-
responding function in Lga(F), so that h = [¢, H(w)M(dw) and var(h) =
Jge [ H(w)[*F(dw) (see 2.5). Next, for a symmetric Borel set B, define
Zp(x) = [ exp(iwTx)M(dw), the random field obtained by ﬁltermg out
frequencies not in B. Taking B symmetric makes Zp real whenever Z is
real. Defining hp = [; H(w)M(dw), we get var(hp) = [ |H(w)[*F(dw).
Then we may reasonably call

var(hp) _ [ |H(w)[>F(dw)
var(h)  [ga |[H(w)]?F(dw)

(7)

the fraction of the variance of h attributable to the set of frequencies B.
This section examines how (7) behaves for prediction errors in some simple
interpolation and extrapolation problems on R.

Some examples

As a first example, suppose f(w) = (1 + w?)~! so that K(t) = we .
Consider the extrapolation problem of predicting Z(0) based on Z(—6) for
some § > 0. The BLP of Z(0) is e %Z(—6) with mse 7(1 — e~2%) and the
BLP is unchanged if further observations are added at locations less than
—&, which follows by noting cov{Z(t), Z(0)—e ®Z(—6)} = 0 for all t < 6.
The prediction error is Z(0) — e~%Z(—6) and the corresponding function
in Lga(F) is Vs(w) = 1 — e~ (1+1)8 50 that

[Vg(w)l2 = 2e7%(cosh § — cos wé).
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If Ts is a positive function of § and 6Ts — 0 as 6 | 0, then

[ Vs@)* (1 +w?) o g1y (8)
12 V@) (1l +w?)ldw T

as § | 0 (Exercise 2). Thus, even if T} is large, as long as 6T} is small, only
a small fraction of the variance of the prediction error is attributable to
the frequencies [—T5, Ts).

For the same spectral density, now consider the interpolation problem of
predicting Z(0) based on Z(§) and Z(—6). The BLP is 1 sech(6){Z(6) +
Z(—6)} and the mse is w tanh(6) (Exercise 3). Moreover, these results are
unaffected by taking additional observations outside [—§,6] (Exercise 3).
In this case, the function corresponding to the prediction error is Vj(w) =
1 — sech(8) cos(w8). Thus, |Vs(w)|?> = 4sech?(6) {sin®(1éw) +sinh2(%6)}2
and if T} is positive and §T5 — 0 as § | 0, then

S5 V()P +w?)lde 68 [T \ 23 .
f_ooO: Vs (@)2(L + %) dw ~ ;[T6(1+w ) dw = T(T5+ 5T5) (9)

as 6 | 0 (Exercise 4). For 6Ts small, the fraction of the variance of the
prediction error attributable to [—Ts,T5s] is much smaller than for the
extrapolation problem.

As a second example, let us consider a smoother process: f(w) = (2 +
w?)~2 so that K(t) = 273/2wexp(—2'/2[t|) (1 + 2!/2¢|). For an extrapola-
tion problem, consider predicting Z(0) based on Z(—6j5) for j =1,...,10.
Taking B = [—T,T], Table 1 gives values of (7) for various values of T
and 6. It appears that for §T not too large, (7) is very nearly proportional
to 6T, which is also what happened for the previous spectral density. For
the corresponding interpolation problem, predict Z(0) based on Z(635) for
j = %1,...,+£10. For fixed T, it now appears that (7) is proportional
to &° for § sufficiently small, whereas (7) was proportional to §2 when
flw)=(1+w?)""

For both spectral densities, whether extrapolating or interpolating, the
fraction of variance of the prediction error attributable to the frequency
band [—T,T] is small when § and 8T are small. However, when extrapo-
lating, the rate of convergence appears to be linear in § regardless of the
smoothness of the process, and when interpolating, it is of order 6% for the
rougher process and appears to be of order §° for the smoother process as
long as T is not too large. These results suggest that optimal interpolations
are only weakly affected by the low frequency behavior of the spectrum,
particularly for smoother processes. We return to this problem in greater
generality in 3.5.
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Relationship to filtering theory

Christakos (1992), following up on some discussion in Carr (1990), notes
that the prediction error process can be viewed as a high-pass filter of sorts.
More specifically, he considers best linear unbiased prediction of Z(xg)
based on observations Z(x,),...,Z(x,) when EZ(x) = 87m(x) and m
contains a constant function as a component. In this case, if Y .- ; A Z(x;)
is the BLUP of Z(x¢), then setting A\ = —1, the prediction error is
Yo XiZ(x;) with 37 o A = 0. Since a BLUP is generally expected to
depend mainly on those observations near the predictand Z(x), the error
of the BLUP is, roughly speaking, a local difference operator and hence
behaves like a high-pass filter (Schowengerdt 1983). Neither Christakos
(1992) nor Carr (1990) provide any quantitative theory supporting this
viewpoint. The results in this chapter and in Stein (1999) show that it is
possible to provide such a quantitative theory. Note that we are consider-
ing simple kriging prediction here, for which Y. jA; = 0 generally does
not hold. Nevertheless, under appropriate conditions, the prediction error
process still has most of its variation attributable to the high frequency
components of Z.

Exercises

2 Verify (8).

3 Show that if f(w) = (1 + w?)™!, then the BLP of Z(0) based on
Z(6) and Z(-6) is 1 sech(8){Z(6) + Z(—6)} with mse = tanh(6). In
addition, show that these results are unaffected by taking additional
observations outside [—§, §].

4 Verify (9).
5 Produce results similar to those in Table 1 for f(w) = (3 + w?)73.
TABLE 1. Values of (7) for B = [T, T] with f(w) = (2+w?)~? when predicting

Z(0) based on Z(—6j) for j = 1,...,10 (extrapolation) and based on Z(§j) for
j = %1,...,£10 (interpolation).

Extrapolation Interpolation
=T §=005 6§=0.1 §=0.05 §=0.1
0.1 0.0100  0.0200 1.99 x 1078 6.31 x 1077
0.2 0.0200  0.0400 5.75x 1078 1.83 x 1076
0.5 0.0500 0.100 7.95 x 1077 2.53 x 1073
1 0.100  0.200 1.60 x 10° 5.10 x 10~*
2 0.200 0.400 452 x 107 1.43 x 102

5 0.499 0.913 420x 1072 7.68 x 107!
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TABLE 2. Interpolating with an incorrect model. Observations at +46j for j =
1,...,2/6 and predict at 0.

Case 1: mg=m; =0, Ko(t)=e ]| Ki(t)=1e 2

) Eoe% E()e%/Eoe(z) -1 Ele?/Eoef -1
0.2 0.19738 0.0129 —0.0498
0.1 0.09967 0.0020 —0.0118
0.05 0.04996 0.00026 —-0.0028

Case 2: mo =m1 =0, Ko(t) =e (1 +t]), Ki(t) = Le (1 +2J¢))

) Eye? Eoe?/Epe? — 1 Eie?/Epe? — 1
0.2 2.1989 x 103 2.9 x 1073 —0.0432
0.1 2.7771 x 104 1.5 x 104 —0.0104
0.05 3.4804 x 10~° 8.3 x 1076 —0.0026

3.5 Prediction with the wrong spectral density

If the low frequencies of the spectrum contribute little to the variance of
prediction errors, we might then expect that misspecifying the spectrum at
low frequencies would have little impact on the predictions. This is in fact
the case as the rest of this chapter shows.

Ezamples of interpolation

Suppose we observe a stationary process Z at 6§j for j = £1,...,+n and
wish to predict Z(0). Furthermore, let (mg, Ko) be the correct second-
order structure and (m;, K;) the presumed second-order structure. Table 2
gives results for § = 0.2,0.1 and 0.05, n = 2/é and two different pairs of
autocovariance functions.

The first case compares Ko(t) = e~ !t with K;(t) = 1e2*l, for which
it is possible to give analytic answers (Exercise 6). For now, just consider
the numerical results in Table 2. Note that the values of Ege?/Epe? and
E1€2/Ege? are both near 1, especially for smaller §, despite the fact that
a superficial look at Ky and K suggests the two autocovariance functions
are rather different; after all, K((0) = 1 and K;(0) = % It is helpful
to consider series expansions in powers of |t| of the two functions about
the origin: Ko(t) = 1 — |t| + 3t + O (|t|*) and Ki(t) = 3 — [t| + ¢ +
O (]¢|®). We see that —|t| is a principal irregular term for both functions.
The fact that the power of the principal irregular term is 1 for both K
and K, is the key factor in making Ege?/Epe? near 1 for § small. The
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additional fact that the coefficient of the principal irregular term is —1 for
both models is what makes E;e?/Ege? near 1 for § small. So, for example,
if we had Ko(t) = e !*l and K5 (t) = e~ 2tl, then Ege?/Egei = Ege?/Eged
but Ese3/Egel = 2E e2/Ege? so that the values of Exe2/Epe2 are near 2
for § small, despite the fact that we now have Ko(0) = K2(0) = 1. We can
also see the similarities of the autocovariance functions K;(t) = o; 'e~!!
with ag = 1 and a; = 2 through the spectral densities: the spectral density
fi corresponding to K; is fi(w) = 1/{n(a? +w?)} = n"lw 2{l - d?w™? +
O(w™*)} as w — oco. Thus, for i = 0,1, f;(w) ~ 7~ !w™2 as w — oo.

The second pair of second-order structures presented in Table 2 is
mo =my =0, Ko(t) = e~ "I(1 + |t|) and K (t) = 2e~2I*I(1 + 2]t|). Here we
see that Eqe?/Ege3 is extremely close to 1, especially for smaller § and that
E\e?/Ege? is quite close to 1, although not nearly as close as Ege?/Ege3.
Again, the results support the notion that misspecifying the autocovari-
ance function mainly affects the evaluation of mses. To see why these two
autocovariance functions should yield similar linear predictions and assess-
ments of mses, note that Ko(t) = 1 — 3¢2 + 1[¢t]* — §t* + O (|t|°) and
Ki(t) = § — 12+ 3]t|3— 2t*+ O (Jt|°). For both autocovariance functions,
31¥-|t|3 is a principal irregular term. Comparing the models in the spectral
domain, the spectral densities both are of the form 2/(rw?) + O(w™5) as
w — 00, so that the similar high frequency behavior for the two models is
readily apparent.

An example with a triangular autocovariance function

Before we conclude that it is always sufficient to find a principal irregular
term of an autocovariance function to determine the approximate prop-
erties of linear predictors as observations get dense, consider the pair of
autocovariance functions: Ko(t) = e~!*! and the triangular autocovariance
function K;(t) = (1 — |t|)*. Both are of the form 1 — |t| + O(t?) as t — 0,
so they correspond to processes with similar local behavior. Suppose we
observe Z(j/n) for j = +1,...,4n and wish to predict Z(0). The BLP
(assuming mg = m; = 0) under Kj is given in Exercise 3 of 3.3 and
depends only on Z(1/n) and Z(—1/n). The BLP under K is

(e () (D () o2 (2Y)

n+1
~ 1 2+ 210} (10)

(Exercise 7). The fact that for all n, Z(+1) and Z(£(n—1)/n) appear in the
BLP, whereas Z(+2/n), ..., Z(+(n—2)/n) do not, should seem strange, but
it is a consequence of the lack of differentiability of K; at 1. Furthermore,
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the role of these relatively distant observations is not negligible, since

slim- 25 (2) () -+

as n — 00, whereas the mse of the BLP under K; is asymptotically %n‘
(Exercise 7). To compare BLPs under the two models, let e;(n) be the pre-
diction error using K; and observations Z(+k/n) for k = 1,...,n. Then
as n — oo, Egeg(n)? ~ n~!, Eieg(n)? ~ n~!, Eiei(n)? ~ 3n~! and
Egei(n)? ~ %n‘l (Exercise 7). Thus, even asymptotically, there are non-
negligible differences between both the actual and presumed performances
of the linear predictors under the two models. Note though, that if one uses
K when K is the truth, the presumed mse is asymptotically correct; that
is, Egeo(n)?/E1eg(n)? — 1 as n — oo.

The corresponding spectral densities for this situation are fo(w) =
7711 4+ w?)7! and fi(w) = 77 }(1 — cosw)/w?, so that fi(w)/fo(w) =
(1 —cosw){1+ O(w™2)} as w — oo, whereas in the previous two cases,
f1(w)/ fo(w) converged to 1 as w — oo. It is instructive to look at the func-
tions corresponding to the prediction errors in this last example. Letting é;
be the function corresponding to e;, Figure 1 plots |é;(w)|? for j = 0,1 and
n = 5. Now fi(2mwk) = 0 for all nonzero integers k, so that e; has a smaller
mse than ey under f; because |é;(w)|? partially matches the oscillations in
f1, being small when f;(w) is large and vice versa.

This example shows that under fixed-domain asymptotics, it is not
always the case that two autocovariance functions sharing a common prin-
cipal irregular term yield asymptotically the same BLPs. However, it is
still possible that two spectral densities behaving similarly at high frequen-

1

8

107

FIGURE 1. For the prediction problem described in this subsection with n = 5,
plots of |éo(w)|? (dashed line) and |&;(w)|? (solid line) as functions of w. Dotted
vertical lines indicate zeroes of f;.
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cies give asymptotically the same BLPs. Indeed, Theorem 10 in Chapter 4
comes very close to proving such a result.

More criticism of Gaussian autocovariance functions

Table 3 gives results for a pair of second-order structures that yield
startlingly different linear predictions: mo = m; = 0, Ko(t) = e~ !t (1 + |t|)
and K, (t) = e~t*/2. Under Ky, the process is exactly once mean square
differentiable and under K; it is infinitely mean square differentiable, so
such a result is not surprising. However, as shown in Figure 1 of 2.7, plots of
the autocovariance functions give no obvious sign of the radically different
natures of the two models. Consider predicting Z(0) based on observing
Z(+67) for j =1,...,n. If Ky is the truth, then the mse of the BLP goes
down with é but is essentially the same for all n > 5. If K; is the truth,
then the mse of the BLP goes down sharply with § and furthermore, can go
down substantially as n increases. In particular, for § = 0.4, the mse goes
from 1.72 x 1072 to 4.79 x 10~ when n is increased from 10 to 20. This
decrease occurs despite the fact that the added observations at +4j for
j =11,...,20 have correlation of at most 6.25 x 10~° with the predictand
Z(0). Using results in 3.6, it is possible to show via numerical integration
that when predicting Z(0) based on observations at 0.4j for all nonzero
integers j, the mse is 1.94 x 10~1!, which is in turn quite a bit smaller than
4.79 x 10711, the mse when Z(0.45) is observed for 0 < |j| < 20.

Next, consider what happens if Kj is the truth but K; is presumed to be
the autocovariance function for Z. The ratio of mses, Ege?/FEope2, ranges
from 1.48 to 3.76 and increases as § decreases and n increases. The ratio of
the presumed and actual mses of the pseudo-BLP, E;e?/Eye?, ranges from
0.171 down to 7.53 x 107!, decreasing sharply with § but also decreasing
robustly as n increases when § is small. Thus, by acting as if K; were the

TABLE 3. Predicting Z(0) based on Z(+6j) for j = 1,...,n with mg = m1 =0,
Ko(t) = e "1+ |t]) and Ki(t) = e /2.

6 n Eoe? Epe? Ee? E,e?
0.8 5 0.115 0.170 2.90 x 102 7.42 x 10~2
10 0.115 0.207 2.51 x 102 7.42 x 1072
20 0.115 0.212 2.49 x 102 7.42 x 10~2
0.6 5 0.0532 0.0786 6.19 x 104 1.11 x 102
10 0.0532 0.128 1.94 x 10~4 1.11 x 102
20 0.0532 0.172 1.55 x 10~4 1.11 x 10~2
0.4 5 0.0169 0.0211 4.81 x 1077 5.28 x 104
10 0.0169 0.0328 1.72 x 109 5.30 x 10~
20 0.0169 0.0636 479 x 10711 5.30 x 10~
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truth when Ky was correct, our predictions will not be all that bad but
we may be wildly overoptimistic about their mses. On the other hand, if
K, is correct but K is presumed to be the autocovariance function of Z,
our predictions are severely inefficient for small § but at least our presumed
mses are badly conservative, which is usually a more tolerable mistake than
being badly overoptimistic.

I strongly recommend not using autocovariance functions of the form
Ce=%" to model physical processes. If the discussion of the theoretical
properties in 2.7 does not convince you of this, the mse of 4.79 x 107! in
Table 3 for predicting Z(0) when observing Z(0.45) for j = £1,...,420
should. Considering that var{Z(0)} = 1 and that the maximum correlation
between Z(0) and the observations is e~%4"/2 = 0.923, this mse is implau-
sibly small for any physical process. Unfortunately, a number of books on
geostatistics (Carr 1995; Christakos 1992; Isaaks and Srivastava 1989; Jour-
nel and Huijbregts 1978; and Kitanidis 1997) suggest Ce=t" as a sensible
example of an autocovariance function for a mean square differentiable pro-
cess. Furthermore, the Gaussian model is the only model for differentiable
processes available for fitting semivariograms to spatial data in SAS (SAS
Institute, Inc. 1997, p. 626), S+SPATIALSTATS (Kaluzny, Vega, Cardoso
and Shelly 1998, p. 91) and VARIOWIN (Pannetier 1996, p. 50). Goovaerts
(1997) does recognize some of the serious problems with this model but does
not give any alternative models for mean square differentiable processes.
The Matérn models (Sections 2.7 and 2.10) include a parameter that con-
trols the differentiability of the process and I recommend their adoption as
an alternative to Ce™® as a model for differentiable processes.

Examples of extrapolation

Let us next reconsider the two pairs of autocovariance functions in Ta-
ble 2 when there are only observations on one side of 0 so that we
are extrapolating rather than interpolating. Table 4 compares these two
pairs of second-order structures for predicting Z(0) based on Z(—6j),
j = 1,2,...,2/6. For the first case mg = m; = 0, Ko(t) = e /" and
Ki(t) = 272t we see again that Ege?/Ege? and Eje?/Ege? are both
near 1, especially for § small. However, these ratios are not as close to 1 as
in the interpolation case, particularly so for Ege?/Ege3. Exercise 6 gives an-
alytic results for this problem. Note that the prediction problem itself is not
all that much easier in the interpolation case, since, as § | 0, Ege2 ~ § when
interpolating and Ege3 ~ 2§ when extrapolating. What is true is that if we
use the model K (t) = a~le~?I!l, or equivalently, f(w) = 1/{m(a? + w?)},
the value of a is much less critical when interpolating than extrapolating.

The difference between the extrapolation and interpolation problems is
more dramatic for the second pair of second-order structures with mg =
my =0, Ko(t) = 7" (1 + |t|) and Ky (t) = ge~2*I (1 + 2]t|). Table 4 shows
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TABLE 4. Extrapolating with an incorrect model. Observations at —§j for j =
1,...,2/6 and predict at 0.

Case i mg=m; =0, Ko(t)=e I, K(t)=1e 2

6 E()e% E()@%/Eoeg -1 Elef/Ege% -1
0.2 0.3297 0.067 -0.217
0.1 0.1813 0.041 —0.126
0.05 0.0952 0.023 —0.069

Case 2: mg =my =0, Ko(t)=e (1+]t]), Ki(t)= ze 21 +2t])

) Eoe? Eoe?/Epe? — 1 E1e?/Epe? — 1
0.2 1.35 x 102 0.392 —0.506
0.1 2.04 x 1073 0.251 —0.341
0.05 2.82 x 10* 0.143 -0.207

that the values of Ege?/Ege? and Eje?/Ege? are not nearly as close to 1
when extrapolating as when interpolating.

Let us look more carefully at the transition between interpolation and
extrapolation. More specifically, consider what happens when there are
observations at —3/20 for j = 1,...,20 and at j/20 for j = 1,...,p for var-
ious values of p. For the exponential autocovariance functions a~le~@!l,
the transition is immediate: for all p > 1, we get the same results as in
Table 2. Table 5 shows that the transition is more gradual for the second
case in Tables 2 and 4. We see that once p = 2, the mse of the optimal
predictor does not change much by adding further observations. The ef-
fect on the misspecification of the mse of the pseudo-BLP as measured by
E1€2/Ege? — 1 settles down at around p = 3. However, the loss of efficiency
in using the pseudo-BLP as measured by Ege?/Eye2 — 1 drops dramatically
with every increase in p up through p = 5. Thus, we see that a prediction
location may need to be quite far from the boundary of the observation
region to be fully in the “interpolation” setting.

Pseudo-BLPs with spectral densities misspecified at high
frequencies

Let us next consider some pairs of spectral densities that both decay al-
gebraically at high frequencies but at different rates. Tables 6 and 7 show
numerical results comparing extrapolation and interpolation. Specifically,
consider predicting Z(0) based on observations at §5 for j = —2/4,...,—1
for the extrapolation case and j = +1,...,42/§ for the interpolation case.
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TABLE 5. The transition from extrapolation to interpolation. Observe Z(0.055)

for j =—20,...,—1and j =1,...,p and predict Z(0) for mo = m1 =0, Ko(t) =
e "I(1 + |t]) and K1 (t) = s~ (1 + 2[¢)).
D Eoeg E()C%/Egeg -1 EU‘B%/E@C? -1
0 2.815599 x 10~* 1.427 x 1071 —2.069 x 10~1
1 4.930707 x 1073 3.398 x 102 ~5.778 x 10~2
2 3.555431 x 10~5 1.891 x 1073 —5.786 x 1073
3 3.485779 x 10~5 1.219 x 104 —2.798 x 1073
4 3.480768 x 10~° 2.183 x 1075 —2.611 x 1073
5 3.480417 x 1075 7.901 x 10~ —-2.591 x 10~3
6 3.480392 x 10~3 8.644 x 106 —2.591 x 103
20 3.480390 x 10~5 8.317 x 106 —2.591 x 1073

The spectral densities used are c(k)(k + w?)™* for k = 1, 2 and 3, where
¢(k) is chosen to make var{Z(0)} = 1. Values for § of 0.2, 0.1 and 0.05
are considered. For all of these examples, no matter what the value of é
and what two values of v correspond to the true and presumed spectral
densities, Ege?/Ege? is larger when extrapolating than interpolating, par-
ticularly so for smaller 6. (It is not true that Ege?/FEoe? is always larger
when extrapolating; see Exercise 11 in 3.6 for an example.) Another ap-
parent pattern is that the penalty due to using the wrong spectral density
is smaller if the presumed spectral density decays more quickly at high fre-
quencies than the actual spectral density rather than the other way around.
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FIGURE 2. Plots of autocovariance functions used in Tables 6 and 7. Solid line
corresponds to k = 1, dashed line to k = 2 and dotted line to k = 3.
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The reader is strongly encouraged to try other examples of pairs of
second-order structures and other locations of observations and predic-
tands, including two-dimensional examples, to gain a better understanding
of how changing second-order structures affects linear predictions. When
using the autocovariance function et/ 2, numerical instabilities may limit
the examples one can consider. The problem is that for even a moderate
number of observations close together, this autocovariance function im-
plies that certain linear combinations of the observations have extremely
small variance, so that the covariance matrix of the observations is nearly
singular. That is why the smallest value for § in Table 3 is 0.4.

TABLE 6. Mean squared errors for predicting Z(0) based on Z(6j) for j =
1,...,2/6 (extrapolation) and based on Z(+83) for j =1,...,2/6 (interpolation)
under three spectral densities and for § = 0.2, 0.1 and 0.05. The three spectral
densities are f(w) = ¢(k)(k +w?)™" for k = 1,2, 3, where c(k) is chosen to make
var{Z(0)} = 1. See Figure 2 for plots of the autocovariance functions.

Presumed value of k

True & 1 2 3 6
Extrapolation
1 0.3295 0.653 1.999 0.2
0.1813 0.417 1.572 0.1
0.0952 0.238 1.002 0.05

2 8.72 x 1072 3.25x 102 5.59 x 102 0.2
2.55 x 1072 5.33x 1073 1.09x10"2 0.1
6.92x 1073 7.65x107% 1.74x10°3 0.05

3 6.48 x 1072 8.75x 1073 4.39 x 1073 0.2
1.80 x 1072 7.58 x 10~% 2.24 x 104 0.1
475%x 1073 5.59%x107° 9.02x10°%  0.05

Interpolation
1 0.1974 0.2483 0.3195 0.2
0.0997 0.1256 0.1620 0.1
0.0500 0.0630 0.0813 0.05

2 1.23x 1072 6.13x 1073 6.79x10~3 0.2
1.71 x 1073 7.83 x 10~* 8.68 x 104 0.1
2.25x 10~% 9.84 x 1075 1.09 x 10—* 0.05

3 340 x 1073 299x10"* 243x10~* 0.2
254 x 10~% 9.82x 10~¢ 7.90 x 10~8 0.1
1.73x 1075 3.11x1077 249x10~7  0.05
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Exercises

6 For a process Z on R, consider the two models (0, Ky) and (0, K3),
where K;(t) = ai‘le“““'. If Z is observed at +675 for j = 1,...,n, then
by a trivial extension of Exercise 3, the BLP of Z(0) under (0, K;) is

TABLE 7. Some comparisons for the results in Table 6. Unbracketed numbers in
off-diagonal entries of the tables are ratios of the mse of the pseudo-BLP to that
of the BLP. Numbers in angled brackets are limiting values for these ratios as
given by Theorem 3 in 3.6. Numbers in parentheses of diagonal entries of upper
table are ratios of mses of the BLPs under extrapolation to the mses of BLPs

under interpolation.

True &

1

Presumed value of

1 2 3
Extrapolation
(1.67) 1.98 6.06
(1.82) 230 8.67
(1.90) 2.50 10.53
(2.73) (12.88)
2.68 (5.30) 1.72
4.79  (6.80) 2.05
9.05 (7.77) 2.28
(00) (2.55)
14.8 2.00 (18.0)
80.5 3.38 (28.4)
5269  6.62 (36.2)
(00} (00)
Interpolation
1.258 1.619
1.260 1.626
1.261 1.627
(1.261) (1.628)
2.00 1.107
2.18 1.109
2.28 1.109
(2.39) (1.110)
14.0 1.229
32.1 1.242
69.3 1.246

(00)  (1.248)

0.2
0.1
0.05

0.2
0.1
0.05

0.2
0.1
0.05

0.2
0.1
0.05

0.2
0.1
0.05

0.2
0.1
0.05
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3 sech(6a;){Z(8) + Z(—6)}. Calculate E;e? and use the result to show
that as 6 | 0,

Eie? =6 — “—?63 + 0(6%)
1Yy — 3

and
2 2\2
Eo(e() — 61)2 = M(S‘l + 0(65),
4a1
so that
Eoef (af - a%)z 3 4
=14-——49 6
Fod 1T g 0 00
and
Ee} af —af » 3
=1 .
Foe? + 3 6 +0(6°)

If, instead, Z is observed at just —éj for j = 1,...,n, the BLP of Z(0)
under (0, K;) is e"%®Z(6). Show that as 6 | 0,

Ege? (ag — a1)? 2
Eoeg =1 + —5-(1—0_6 +O(6 ) and
Epe? aj —a} 2
=1 .
ot =1t g 0t 0(8?)

Suppose Z has known mean 0 and is observed at j/m for j =
+1,...,%n. Verify that (10) gives the BLP for Z(0) under (0, K) for
Ki(t) = (1—|t|)*. For Ko(t) = e~'*l prove that as n — oo, Egeg(n)? ~
n~!, Eieo(n)? ~n~!, Erei(n)? ~ 3n~! and Epe;(n)? ~ 3n~L.

When comparing linear predictions under two second-order structures
with the same covariance functions, show that Eoeg = F ef and
Eope? = Eq€2, so that Eqe?/Ege? = (E1€?/Eoe?)~!. Thus, when only
the mean function is misspecified, the effect on the mse due to using
the wrong mean is the same as the effect on the evaluation of the mse.

For a process Z on R, consider the two models (mg, K) and (m1, K),
where K(t) = a~le™%l and m;(t) = ;. If Z is observed at +6; for
j=1,...,n, show that the BLP of Z(0) under (m;, K) is

3 sech(ab) {Z(6) + Z(—6)} + pi{1 — sech(ab)}.
Furthermore, show that as § | 0,
a2
Eie?2 =6 — —3—63 + 0(6%)
and

4
Eo(eo — 1) = (1 — #0)2%54 +0(8°).
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Conclude that
Ege% _ <E16¥

-1
1
) =14+ 2 - po)ate? + 0(5").

Eoeg o Eoe%
Do similar asymptotic calculations when Z is observed at —§7 for j =
1,...,n. Compare your results for the two cases.

10 Suppose a weakly stationary process Z on R has known autocovariance
function K(t) = a~'e~2l!l, unknown constant mean u and that Z is
observed at —6j for j =1,...,n.

(i) Find the BLUE of 4 and the mse of this estimator. Show that
if 6n tends to a positive constant as § | 0, then the mse of the
BLUE tends to a positive constant.

(ii) Find the BLUP or ordinary kriging predictor of Z(0). Find the
mse of this predictor and examine its dependence on é§ and n,
paying particular attention to small values of §. Show that the
BLUP is asymptotically optimal relative to the BLP (which as-
sumes 4 is known) as § | 0 no matter how n changes with 6 (as
long as n > 0), despite the fact that the BLUE for y may not be
consistent.

(iii) Repeat parts (i) and (ii) when Z is observed at £6j for j =
1,...,n. Compare your results for the two cases.

3.6 Theoretical comparison of extrapolation and
interpolation

The previous two sections examined the relationship between the second-
order structure and interpolating or extrapolating in some specific
instances. This section provides a theoretical basis for supporting the con-
clusions drawn based on these examples. The approach I use is to consider
extrapolation and interpolation based on infinite sequences of observations,
for which there are well-known exact results on the properties of BLPs.
More specifically, for a mean 0 weakly stationary process Z on R and
some § > 0, this section compares predicting Z(0) based on observing
Z(67) for all negative integers j with predicting Z(0) based on observing
Z(67) for all integers j # 0. The first setting corresponds to the classi-
cal extrapolation problem addressed by Kolmogorov (1941) and Wiener
(1949) and the second is an interpolation problem whose general solution
is given, for example, in Hannan (1970). Of course, for any given spectrum,
the mse when interpolating must be no bigger than when extrapolating,
so that interpolating is easier than extrapolating in this sense. However,
as I indicated in the previous section, there is a second sense in which in-
terpolation is easier than extrapolation: the actual mse of pseudo-BLPs is
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generally less sensitive to misspecification of the spectrum at high (see Ta-
ble 7) or low (compare Tables 2 and 4) frequencies when interpolating than
when extrapolating. Considering what happens as 6, the spacing between
observations, tends to 0 provides some insight into this phenomenon.

For infinite sequences of observations, it is not appropriate to call what
happens as § | 0 fixed-domain asymptotics unless we want to allow our fixed
domain to be unbounded. However, for many prediction problems, only
those observations relatively near the location at which we are predicting
the process will have a nonnegligible impact on the prediction. Thus, it
will often be the case that results for predicting Z(0) based on observing
Z(67) for all integers j # 0 with § small will be very similar to those based
on observing Z(6j) for integers 0 < |j| < ¢/é for a positive constant c.
Exercise 12 can be used to show this is not always the case. Whether or
not the observation sequence is infinite, § | 0 does correspond to shrinking
the distance between neighboring observations, so we might call both of
these settings “shrinking interval” asymptotics.

Results on prediction problems when both the observations and the pre-
dictands fall on a regular lattice are usually stated in terms of discrete
time series observed on the integers. To see the connection between the
spectral density of a process Z on R and the process obtained by observing
Z every 6 time units, suppose that Z has spectral density f and define
Zs(j) = Z(8j), so that Zs is a process on Z. Then for all integers j and k,

cov (23(4), Zs(0)} = [ " exp{iwd(j — K)}f(w) dw

-

= /7r/5 exp{iwé(j — k)} i fw+ 27267 dw
/6

{=—o00
= /_7r exp{iw(j — k)} f* (w) dw,

where

Pu=e 3 (28, ()

¢=—00

Thus, we can view f& as the spectral density on (—m, 7] of the process Zs
on Z and, indeed, weakly stationary stochastic processes on the integers
are generally taken to have spectral distributions on (—, 7]. To avoid any
possible ambiguities, I always use a ~ to indicate a spectral density on
(—m, m] for a process on Z.

An interpolation problem

Dropping the és for now, let Z be a mean 0 weakly stationary process on
the integers with spectral density f on (—m, 7] and consider the interpola-
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tion problem of finding the BLP of Z(0) based on observing Z(j) for all
integers j # 0. Since the BLP will obviously have mean 0 (Ag = 0 in the no-
tation of 1.2), we can restrict attention to predictors with mean 0 in order
to find the BLP. The space of linear predictors with mean 0 is equivalent
to the closed real linear manifold £_o(f) of functions exp(iwj) on (-, ]
for integers j # 0 under the inner product defined by the spectral density
f. The BLP of Z(0) corresponds to the function H € L£_o(f) satisfying
J7 {1 - H(w)}exp(— iwj) f(w)dw = 0 for all integers j # 0. By the com-
pleteness and orthogonality of the functions {exp(iwj)} ez in the space
of square integrable functions on (—m, ] (see, for example, Akhiezer and
Glazman 1981), we must have {1— H(w)}f(w) constant almost everywhere
on (—m, . Suppose 1/ f is integrable on (—m, ], so that, in particular f
is positive almost everywhere on (—m,7]. It follows that H must be of the
form fI( )=1+ b/ f(w) for almost every w € (—, 7] for some constant b.
But H € L_o(f) implies ["_H(w)dw = 0, so

. 27r
Hw)=1- ST =yl (12)

The mean square prediction error is then 472 / f_" f (w)~!dw. Furthermore,

when f(w)~! is not integrable, the mean square prediction error is 0 (Ex-
ercise 13). Hannan (1970, page 164) gives a generalization of these results
to vector-valued time series. Defining e; to be the prediction error under

fis
an? [T {fo(w)/ fr(w)?} dw
{f_ﬂ fi(w —ldw}

which we need to assess the effect of using the wrong spectral density for
prediction.

Epe? = , (13)

An extrapolation problem

Next consider the classical extrapolation problem of finding the BLP of
Z(0) when observing Z(j) for all negative integers j. This problem is math-
ematically more difficult than the interpolation case and I only present its
solution; details are provided in many sources including Hannan (1970),
Priestley (1981) and Yaglom (1962). Let £_(f) be the closed real linear
manifold of exp(iwj) for integers j < 0 with respect to the inner product
defined by f and define

o? = o exp[i—r /_ : log{ f(w)}dw}.

Theorem 2 (Hannan 1970)). Suppose Z is a mean 0 process on the
integers with spectral density f satisfying o> > 0. The function in L_(f)
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corresponding to the BLP of Z(0

~

based on Z(j) for j <0 is

a(j) exp(—iwj)

s

=
S
I

)

a(j) exp(—iwj)

e

<
Il
o

where the a(j)s satisfy

2 )27 —exp{ )+2j2°;10(j)zj},

i) = 3= [ exp(-iwg) log f(w) dw

for 7 #0 and
o
— =exp{c(0)}.
= = exp{c(0)}
In addition, if % = 0, then perfect prediction is possible.
For our purposes, we only need this result to obtain Ege?. Using the

subscript k£ on 0%, ax(j) and cx(j) to indicate that these quantities are
defined in terms of fi, we have

-2

Eqe? =/ j)exp(—iwy)| dw
2 - oo
-2/ fo(w)exp{—2j;°o cr() exp(—i) o
_ [ " fo(w)
= exp{é—;/—ﬂlogfl(w) dw} L F@ dw,

where the last step uses the fact that the c;(j)s are the coefficients in
the Fourier series for Elog f 1. Taking fl = fo recovers the well-known
Kolmogorov formula of Ege = o3.

Asymptotics for BLPs

Suppose Z is a mean 0 weakly stationary process on R with spectral density
fo (on R) but we instead presume that f; is the spectral density and we
wish to predict Z(0). Define e;(in,6) to be the prediction error under f;
with observations at 5 for integers j # 0 and e;(ex, §) the prediction error
under f; with observations at §;j for integers j < 0. Suppose that for some
a > 1, fo(w) ~ cjw|™ as |w| — oo so that there exists T such that
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2¢ < fo(w)|w|® < 2¢ for all |w| > T. Consider approximating

Epeo(ex, 6)% = 2me6™~ 1exp{2ﬂ_/ log f3(w) dw} (14)

6(11

as 8 | 0, where f? is defined as in (11) with f; in place of f. For 6 < r/T,
we have

" log f°(“’ 2 dw = / m 2dw+/ log fga L 1{|w]| > 6T} dw.
(15)

For two functions a and b on a set T, I write a(t) < b(t) if there exists C
finite such that |a(t)] < Cb(t) for all t € T. The first integral on the right
side of (15) tends to 0 as § | 0, which follows from

fo( )

-

< log {1+ 6% fo(w/6)}

for all § sufficiently small. For o > 1, define

log

No(W) = Z lw + 275, (16)

J———OO

The second integral on the right side of (15) converges to ff" log 7o (w) dw
since the integrand converges to logn,(w) for all w € (—m, 7] other than
w = 0 and is dominated by the integrable function |logn,(w)|. Applying
these results to (14) gives

Epeo(ex, 6)% ~ 2mc6® ! exp {% / log 7q (w) dw} . (17)
Similarly (Exercise 14),
2. fa—1
Eoéo(in, 5)2 ~ 4mcd (18)

ff,r na(w)_ldw '

Of course, the right side of (18) must be no greater than the right side of
(17), which can be directly verified by Jensen’s inequality. A less trivial
consequence of (17) and (18) is that the mse is of order §%~! whether
extrapolating or interpolating.

We can now look at the behavior of the prediction errors in the spectral
domain. Let F' be a positive finite measure on R with density f and let
L(F) be the class of functions square integrable with respect to F. Suppose
Vs(w; ex) is the function in L£(F') corresponding to the prediction error for
the extrapolatlon problem with spacing § and spectral density f, so that
Ee(ex,6)? = [%_ |Vs(w;ex)|2f(w)dw. It follows from Theorem 2 that

log f(v) du} le“‘ (19)

Vs (w; ex)[? =exp{i &)

2

-7



3.6 Theoretical comparison of extrapolation and interpolation 81

(Exercise 15). For two positive functions a and b on some set D, write
a(z) =< b(z) if there exist positive finite constants ¢y and c; such that ¢y <
a(z)/b(z) < ¢ for all z € D. If f(w) < (1 + |w|)™, then for |w| < T62,

|Vs(w; ex)|? < 6%(1 + |w|)®
and for 0 < T < w671,

J77 Vs(w; ex) |2 f () dw
Ee(ex, 6)2

< 6T (20)
(Exercise 15). For the interpolation problem, let Vs(w;in) be the function
in L(F) corresponding to the prediction error. From (12),
2 472
S _ o
{fobw) J7, fo(w) tdw}

so that if f(w) < (1 + |w|)~, then for |w| < w671,

|Vs(w; in)|

|Vs(w;in)|? < 62¢(1 + |w|)®* (21)
and for0 < T < 7671,

I77 Vs(w;in) | f () dw
Ee(in, §)2

(Exercise 16). Equations (20) and (22) agree with (8) and (9) in 3.4 for
f(w) = (1 + w?)~! and support the numerical results in Table 1 of 3.4 for
f(w) = (2+w?)~2. For fixed T, when extrapolating, the rate of convergence
of the fraction of the variance of the prediction error attributable to the
frequencies [—T,T] is linear in 6 as § | O irrespective of a. In contrast,
when interpolating, this rate of convergence is of order §**! as § | 0. Thus,
the low frequencies make much less of a contribution when interpolating,
especially if the process is smooth.

= 6a+1(T+Ta+1) (22)

Inefficiency of pseudo-BLPs with misspecified high frequency
behavior

Let us next look at the behavior of interpolations and extrapolations when
the spectral density is misspecified. Define

E0€1(ex, 6)2
rOl(exv 6) = Eoeo(ex, 6)2

[ R ) [
T o p{27r /_,, log fE(w) dw}/_ﬂ fiw) o
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and

. Ege (in, 6)?
0) = ————=
TOI(ln’ ) Eoe(](in, 6)2
T R Fw) 2w [, () dw
= : 5 .
{J7, Py raw}

The following theorem describes the asymptotic behavior of rg; (ex, §)
and 791 (in, §) when fo and f; both decay algebraically at high frequencies
but at different rates. In particular, this theorem allows us to make sense
of the numerical results in Tables 6 and 7. Define L}, to be the class of
real-valued functions on R that are integrable on all bounded intervals. All
results in Theorem 3 are limits as 6 | 0.

Theorem 3. Suppose fi(w) ~ c;lw|~* as |w| — co. If fo/f1 € L}.., then
fora; >ap—1,

ro1(ex,8) — 2—17rexp{% /_7r log ZZIE:; dw} /_7r %’f‘% dw (23)

fora; =ag—1,

1 1 " Moy ((.U) -1
ro1(ex, 6) — exp { 5 /_7r log oo (@) dw} log 6 (24)

and for a; < ag — 1,

=gl [ o) e~

Furthermore, if fo/f? and 1/ fo are in L}, then for a1 > (g —1)/2,
S Moo (W)Nay (W) 72dw [T Moy (w) ™ dw

7'01(in, 6) hd 2 ’ (26)
{fj.r,r 77a1(w)_1dw}
for ay = (a9 — 1)/2,
rou(in, 8) ~ 2f ""°(“’)n1dw2 log 51 @7)
{7 e @)1}
and for a; < (ap —1)/2,
TOl(iIl, 6) ~ C? f_oooo fO(w)fl (w)—2dw f-:r UETS (w)_ldw 61+2a1—ao' (28)

o {7 M (@)1}

Before proving these results, some comments are in order. For both in-
terpolation and extrapolation, we can use f; rather than the correct fy and
still get the optimal rate of convergence for the mse as long as a; is not
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too much smaller than ap; that is, the process is not too much rougher
under f; than under fy,. However, for extrapolation, we need a; > ap — 1
for this to hold, whereas for interpolation, we only need a; > (ag — 1)/2.
A second point is that whenever the optimal rate is obtained, the limit
for either ro1(ex,8) or rpi(in,d8) depends on fy and f; only through ag
and a; and is independent of the behavior of fy and f; on any bounded
set. Thus, the range of problems for which the low frequency behavior has
asymptotically negligible effect as § | 0 is larger when interpolating. When
a; > ag — 1, so that both interpolation and extrapolation give the asymp-
totically best rate, Table 8 shows that the limit of rg;(in,d) tends to be
much smaller than rg;(ex,§). A reasonable conjecture is that for all ag
and a;, limg o 7o1(ex, 6)/ro1(in, ) > 1. We do know that this limit is +oo
whenever a; < g — 1.

Let us now return to Tables 6 and 7 and see how these results relate to
Theorem 3. First, as I have already noted, Theorem 3 does not directly
apply to the setting in Tables 6 and 7 in which there are only a finite
number of observations. However, numerical calculations show that the
results in these tables do not noticeably change by increasing n. For inter-
polation, Theorem 3 suggests that the ratios FEge?/Ege2 should tend to a
finite constant except when fo(w) = (3 +w?)™2 and fi(w) = (1 + w?)7!,
in which case, it should be proportional to 6~!. The numerical results fit
these patterns well, particularly for @; > ag, when the dependence of
Eoe?/Epe2 on § is extremely weak. For extrapolating, Theorem 3 suggests
the ratios tend to a finite constant in those entries above the main diag-
onal of the table. When fo(w) = (3 + w?)™3 and fi(w) = (2 +w?)72, or
fo(w) = (2+w?)"2 and f1(w) = (1+w?)~1, then the ratio should grow like
671 When fo(w) = (3 +w?)™3 and fi(w) = (1 +w?)~1, the ratio should
grow like 673. Although the numerical results roughly correspond to these
patterns, the agreement is not nearly as good as when interpolating. It
appears that the asymptotics “kick in” for larger values of § when interpo-
lating than when extrapolating, providing another argument for the greater
relevance of shrinking interval asymptotics for interpolation problems.

PROOF OF THEOREM 3. The proofs of (23) and (26) are similar to that
of (17) (Exercise 17). When a; < ag — 1, (25) follows from

ag—a1 i " flé(w) C1 1 " Mo, ((.«J)
’ exp{zw I d‘”} - o [ sl @)

and

[T Rw) TR folw + 2167 j)

° ~/—1r ff(w) do = /;‘n/é Z;‘;,w fi(w +2mw6—175) dw
* fo(w)
—o00 fl(w)
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TABLE 8. Limiting values of 791 (in, §) and 71 (ex, §) as given by Theorem 3 for
various values of ap and a;. For each ag, the largest value for a; is ap + 4.8,
which facilitates comparisons of how these limits depend on a1 — ap as ag varies.

1.2
1.6
2.0
24
2.8
3.2
3.6
4.0
4.4
4.8
5.2
5.6
6.0
6.4
6.8
7.2
7.6
8.0
8.4
8.8
9.2
9.6
10.0
10.4
10.8

as 6 | 0. Similarly, (28) follows for a; < (ag — 1)/2 by showing

and

(0]
2 4
in ex in ex in ex
1.655 3.878 400 400 400 400
1.063 1.171 16.55 . .
1 1 2.392 .
1.022 1.081 1.426 400
1.070 1.285 1.154 +o0 4.645
1.128 1.606 1.050 2.302 2.110
1.193 2.071 1.010 1.122 1.498
1.261  2.728 1 1 1.248
1.331 3.649 1.007 1.068 1.123 .
1.404 4.939 1.024  1.247 1.057 +4o0
1.478 6.749 1.048 1.534 1.021 2.265
1.552  9.294 1.077  1.952 1.005 1.116
1.628 12.88 1.110 2.546 1 1
1.704 17.95 1.144 3.381 1.004 1.067
1.781 25.13 1.181 4.552 1.013 1.241
1.220 6.196 1.027 1.522
1.260 8.507 1.044 1.931
1.300 11.77 1.064 2.510
1.342 16.31 1.085 3.324
1.384 22.90 1.109 4.464
1.134  6.062
1.159  8.309
1.186 11.47
1.214 15.94
1.242 22.28

soit [ o)t — —

1

—-m

™

-7

< fo(w)

-2 N fg(w)
g / Py “ /_m fi(w)?

Na; (w)"ldw
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as 6 | 0. Equation (24) follows by showing that when a; = ag — 1,

T 76
10©) 4 2%510g671,
- f{(w) 1

which is a consequence of

T1RW _w/a -1
A - dw = o(blogé™") (29)
Li#e o
as 6 | 0 (Exercise 18). The proof of (27) is similar (Exercise 18). O

Presumed mses for pseudo-BLPs with misspecified high
frequency behavior

As described in 3.1, another measure of the effect of using f; rather than
the correct fy is the ratio of the mse of the pseudo-BLP evaluated under
f1 to the mse of the pseudo-BLP under the true spectral density fo. Define
E161 (ex 6) 2

Eope;(ex, §)? ffﬂ fé(w)fi(w)ldw (30)

So1 (ex 5)

and

Eie(in, )2 f" ff
Foer(in, 07 [*_Jo(w)f¢ (w) "

How to do the comparisons is now not so simple since, as opposed to the
results in (23) and (26) for ro1(ex, §) and ro;(in, §), the values of ¢g and ¢;
matter asymptotically for all ag and a;. One informative choice is to allow
c; to depend on § and take c;1(6) to satisfy ¢1(6)(2m/8) ™ = ¢o(2m/8) 0
that is, for § small, make the two spectral densities nearly the same at
frequency 2m/6, which is arguably the highest frequency about which we
get information for observations spaced § apart since exp(i2wt/§) makes
one complete cycle in § units of ¢. For observations spaced § apart, 27/6 is
known as the Nyquist frequency (Priestley 1981, Yaglom 1987a). All results
in Theorem 4 are limits as 6 | 0.

so1(in, 6) = (31)

Theorem 4. Suppose fo ~ colw|~* and fi ~ |w|™*' as |w| — oco. For
the purposes of this theorem only, define

ff(w) _ 01(5)6_1 Z I3 (w +627Tj)

in (30) and (31), where c1(8) = co(2m/8)* =2 If fo/f1 € L, then for
a; >a9—1,

(27(') 1+a1—ao

f_ Neo (W), (W) 1

So01 (ex 6
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fora; < ag-—1,
(2m) 1t —aoc,
ffooo fo(w) fr(w)~ldw

and for a1 = ag — 1, so1(ex,8) ~ 3/log 6. If fo/ f? and 1/f1 are in L,
then for a; > (ap — 1)/2,

ag—a1—1

so1(ex, 6) ~

(2m)* 7 [T N, (W)~ dw
fjﬂndo(w)nal(w)_zdw ’

S01 (il’l, 6) —

for a; < (ap —1)/2,

(2m)*=20cg [T Moy (W)~ dw
JZo fo(w) fi(w)~2dw

and for oy = (ap — 1)/2, so1(in, 8) ~ 1(2m)*1 = /log 6.

apg—2a;—1

s01(in, §) ~

The proof of Theorem 4 is left as Exercise 19.

We see that in all cases, Egep(ex, §)? < Eje;(ex,§)? and Epep(in, §)? <
E1e(in, 6)2, which provides some support for choosing c; () =< §*~,
Theorems 3 and 4 together imply that when interpolating, for example, the
pseudo-BLPs have the optimal rate of convergence and the presumed mses
are of the same order of magnitude as the actual mses when a; > (ap—1)/2.
However, when a; < (ag — 1)/2, pseudo-BLPs have suboptimal rates of
convergence but the presumed mses still converge to 0 at the faster rate
obtained by the mse for the BLP.

Pseudo-BLPs with correctly specified high frequency behavior

We next develop some asymptotic results that elucidate the numerical re-
sults given in Tables 2 and 4 of the previous section. Suppose fo and f;
are of the form f;(w) = clw|™* + di|lw|™? + o(|lw|~®) as |w| — oo, where
B > a > 1, so that fo(w)/fi(w) — 1 as |w| — oo. Furthermore, the larger
the value of 8 — «, the more similar the two spectral densities are at high
frequencies. Thus, to the extent that the behavior of the BLPs is dom-
inated by the high frequency behavior of the spectrum, larger values of
B — a should correspond to smaller effects from using f; rather than fy.
Again, all results in Theorems 5 and 6 are limits as § | 0.

Theorem 5. Suppose that fori =0,1, fi(w) < (1 + |w|)™@ and fi(w) =
clw|~* + di|w|™# + o(|w| P) as |w| — oo, where 3> a > 1. For < a+ 3,

(dy — d) [ [™ 75(w)?
prea [/ T

ro1(ex,6) — 1 ~
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andforﬁ>a+%,

6 [ [folw) fo(w)
roi1(ex,8) — 1 ~ o {fl(w) —1-log ) } dw. (33)

Furthermore, for B < %a + %,

™

- 2 7"
ronin )= 1~ LB o070 [ pPrato) e

—7

- {/_: Uﬂ(w)na(w)_de}T

X {‘/7r na(w)_ldw} 262(5_"‘) (34)

-7
and for B> 3o+ 1,

wimo = (oSG o | [ e

Theorem 6. Under the same conditions on fo and f; as in Theorem 5,
forB<a+1,

~ di—do [ nﬁ(w) B—a
801(6)(, 6) -1 { e ‘/_W na(w) dw} 6 y (36)
and for B> a+1,
so1(ex,8) — 1 ~ % /_ W du. (37)
Furthermore, for B < 2a + 1,
. (d1 = do) [, Mp()na(w) 2w,

so1(in, 8) — 1 ~ Cflr,r N (W)~ Ldw 677, (38)

and for B> 2a+1,
o a __ -2
so(in, §) — 1 ~ f_oo {lw[ cfo(w) fi(w) }dw Presy (39)

Lo a(w)~1dw

The proofs of (32) and (33) are given at the end of this section; (34)—(39)
are left as exercises. Note that the conditions given imply that all of the
integrals in (32)—(39) are well defined and finite. The condition f;(w) =<
(14 |w|)~ for all w and 7 = 0,1 is stronger than necessary but simplifies
the proofs considerably.

The results for interpolation and extrapolation have a number of features
in common and one major difference. In both cases, the relative increase in
mse due to using f; rather than fy, given by rg;(-,6) — 1, is of order §2(6—®)
when (3 is not too large. Furthermore, again when 3 is not too large, for
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the predictor obtained under f;, the relative misspecification of its mse
obtained by using f; rather than fj to evaluate its mse, given by sg; (-, 6)—1,
is of order 6°~“. Thus, for B not too large, using f, rather than fy has a
much smaller effect on the actual mse of the predictor than on its presumed
mse. The major difference between interpolation and prediction is in what
it means for 3 to be too large. For example, 7¢;(ex,6) — 1 is only of order
6 and not §2(°=®) for B8 > a + 1, whereas ro, (in, §) — 1 is of order §2(6-)
for B < 3a+ % Similarly, assuming ffooo{fl(w) — fo(w)} fo(w)~tdw # 0,
so1(ex,8) — 1 is only of order § and not 6%~ for 8 > a + 1, whereas
so1(in, 8) — 1 is of order 6~ for B < 2a + 1.

Comparing the asymptotic results in Theorems 3 and 4 to the numer-
ical ones in Table 7 shows that the asymptotics tend to give much more
accurate approximations for finite § when interpolating than when extrap-
olating. A similar result holds when comparing Theorems 5 and 6 to the
numerical outcomes in Tables 2 and 4. For the first pair of spectral den-
sities in Tables 2 and 4, a = 2 and 8 = 4; for the second pair, a = 4
and @ = 6. Theorems 5 and 6 thus suggest that when extrapolating, both
Eye?/Epe? — 1 and E €2 /Fye? — 1 should be of order § for either pair of
spectral densities. When interpolating, Ege?/EgeZ — 1 should be of order
83 for the first pair and order 6* for the second, and E;e?/Eqe? — 1 should
be of order 62 for both pairs. Although these rates qualitatively agree with
the numerical outcomes, there is again evidence that for the values of §
considered in Tables 2 and 4, the asymptotic formulae give considerably
more accurate results for interpolation than extrapolation.

One general conclusion from Theorems 5 and 6 is that as § | 0, the low
frequency behavior of the spectral density has asymptotically negligible im-
pact on both interpolations and extrapolations. This result has important
implications for the modeling of frequently observed processes when the
goal is prediction. In particular, it implies that when neighboring observa-
tions are strongly correlated, one’s focus in choosing models and methods
of estimation should be to get the high frequency behavior as accurately
as possible and not worry so much about the low frequency behavior. The
theoretical and numerical results also suggest that this strategy of focusing
on the high frequencies is likely to work better when interpolating than ex-
trapolating. Indeed, when extrapolating more than a small distance from
the last observation, getting the high frequency behavior of the spectral
density correct does not guarantee asymptotically optimal predictions. For
example, suppose fo(w) = 1/{r(1 +w?)} and f;(w) = 1/{n(4 + w?)} asin
the first example in Tables 2 and 4 and that we wish to predict Z(¢) for
some ¢t > 0 based on observing Z(§;) for integers j < 0. Then independent
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of 6,
Egel 1-2e3 4 e %
Eoe? 1—e 2 and
Ee? 1—e % (40)

Eoe?  2(1—2e3t +e4t)’

For t = 0.5, this gives Eqe?/Epe3 = 1.0901 and Ee?/Epe? = 0.6274. This
example is reconsidered in 4.4.

PROOF OF (32) AND (33). Let us first consider why these results are
plausible. Write

Jii(i”_) =1+ 6°"*R(w) + Ss(w),

where
do —dy 7p(w)
Rw) = 2~ 4 T5'w)
== @

so that for any fixed w # 0 in (—m,7], Ss(w) = 0o(6°~%). If Ss(w) were
0(6°~*) uniformly in w € (—m, 7], then we could say

LA ()
exp{—%/_"log%dw}

= exp [—% /w {6ﬁ“1R(w) + Ss(w) — %52(ﬁ—a)R(w)2} dw

-7

)

+o(52<ﬁ—a>)]

§8—a pm 1 ™ g §2(8—a) pm 24,
=1- o / R(w)du.)--2;/~7r s(w) dw + i / R(w)

2B-a) ( [7 2
+687r2 { / R(w)dw} +o(8%F=), (41)

suggesting

ro1(ex,8) — 1 ~ 62(2;&) [/_: R(w)?%dw — 517; {/_7; R(w)dw}j )

which is the same as (32). This argument overlooks what happens for w
near 0 and gives a wrong result for 8 > o + % However, this calculation
does correctly suggest that frequencies not too near the origin contribute
a term of order §2(6=) to 1oy (ex, ) — 1. For B > a + 1, §2(0-%) = o(§),
which suggests the following heuristic justification for (33).

To1 (ex, 6)
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1 Bw 1 [Rw
"”’{ 2vr/_w gmw)d“} [”%/-w{ff(w) l}d“’J

61/ fo (w) dw}
61/2 f1 (w)

2o
x[1+ il/z{f{’EM; l}dw]+o(6)
—-1/2
fo(w)
p{ o
}dw (6

+o

—/ R E

)
5 [ [ folw) o(w)
- m{fl( ) fl(w)}d“’“(”

5[ (W) fo)
1+ {fl( ) -1 Iogfl(w)}dcu+o(6), (42)

—1-1o

dw

27 —6- 1/2 f w) }
1
g

where I have used f8(w) ~ 671 f;(w/6) uniformly for |w| < 6'/2 as 6 |
0. Note that it is important to combine the two integrals before letting
the limits of integration go to +oo since I ffo {fo(w)/filw)} —1] dwl and

|2, log{fow)/ ()} duw] are +oo for § < a+1 but [°2, [{folw)/f1 (@)} -

1 —log{fo(w)/ f1(w)}|dw is finite (and nonnegative) for all 8 > o + 1.

To provide a rigorous proof of (32), we need to consider the behavior of
Ss(w) more carefully for 8 < a+ 3. First, for |w| < §, Ss(w) < 1+|6/w|?~2
so that ffa |Ss(w)|dw < 6. Next, define

Pl (w) = 6 (w) ~ c6°Na(w) — dit’ns(w),

so that (w/6[°pd(w) < 1 and lims g |w/6|Ppf (w) = 0 for all w # 0 in (—, 7).
Then for § < |w| < =,

5 5
S _ po(w) — pi(w)
s(w) ““““—’—wl @)
dy — dy

+ W— {8 ng(w)? + 6°~*na(w)pl(w) }
« 1

w |2(a—B) w |2(e=B) | w8
<<$6| @) -+ |5+ 5] T [5] ki
2(a—-pB)

19 te8w) - Al + 2
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by using |w|"ny(w) < 1 on |w| < 7 for all v > 1. Thus,

/ 15(w) | d
8<|w<

" B

< 57 / 6l |2 103(w) ~ )] o + 8265
1)

= o(8°~),

so that [ |Ss(w)|dw = 0(6°~*). Now

T Rw L Rw) T fw)
/—rlog ff(w) dw _2/0 log ff(w) dw+2/6 log #ff(w) dw.

Since f§(w) =< f(w), the first term on the right side is O(8) and
/ log 704 4, — / {67 R(w) + S5(w) ~ 360~ R(w)? } d
5 filw) 0

)
< /0 {6721 R(w)| +185(w)] + 820~ R(w)? } dus

[
[

+ /7r {63(ﬂ“") |R(w)|? + 6°~%|R(w)Ss(w)| + Ss(w)? + |S,s(w)|3} dw
6
— 0(52(ﬂ—a))

for < a+ % by straightforward calculations using the properties of R(w)
and Ss(w). Thus, the heuristic calculation in (41) is correct for 8 < o + 3
and (32) follows.

To prove (42) for 8 > a + %, first note that as § | 0,

61/2

51/2 1) 5
fo(w) f1(w/6) o ag. _
./_51/210g{ff(w)f0(w/5)}dw<</o 1) dw+/6 wdw = 0(8)

and
" f(()s(w) _ SB—«a _ \
/6 o8 Ty~ R — S
(6-a _
< /51/2 {52 =) R(w)? +S,;(w)2}dw = o(6).
Moreover,

1/2

fow/8) . [* Jo(w)
/_61/2 log _fl (@/8) dw = 6/_6_1/2 log Fo@) dw

51/2
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so that
5-1/2

-2 {5ﬂ “R(w) + Sg(w)}dw = 0(6).
Similarly,

LA e [ 5 - e

-2 / {6°~*R(w) + Ss(w) }dw = o(9).
61 2

Now, [,z log { fo(w)/f1(w)} dw = o(6-1/2), s0

5 177 fow)
ro1(ex, 8) ={1 - ﬁ/_&m log f?(w) dw
—1 / {5f’ “R(w) + Ss(w }dw+o(6)}
61 2
6 6_1/2 fo(w)
[14—57;/54/2 {fl(w) - l}dw
+1/ {6°~*R(w) + Ss(w) } dw + 0(6)
§1/2
§5-1/2
1.9 fo(w)
=1+ /51/2{ —1-log f(w)}dw
1 o]
L e wre] o
1.9 o(w)
‘”%/_m{fl(w) }d““(‘s
proving (33). |

Exercises

11 Give an example of a pair of autocovariance functions for a mean 0
weakly stationary process for which rg; (in, 1) = oo but 791 (ex, 1) < oo.

12 Suppose Z is a mean 0 weakly stationary process with triangular au-
tocovariance function K (t) = (1 — |¢|)*. For n a positive integer, find
the BLP for Z(0) when Z is observed at j/n for all integers j # 0. Do
the same when Z is observed at j/n for all integers j < 0.
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17
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For a mean 0 weakly stationary time series on Z with spectral density
f on (—m, 7], show that perfect prediction of Z(0) is possible if Z(j)
is observed for all j # 0 when 1/f is not integrable.

Prove (18).

Verify (19) and (20).

Verify (22).

Prove (23) and (26).

Prove (29). Show that (24) follows. Prove (27).
Prove Theorem 4.

Develop an asymptotic theory for interpolation and extrapolation simi-
lar to that in Theorems 5 and 6 when fo = f;, fo satisfies the conditions
in Theorem 5, mg(t) = 0 for all ¢ and m; (t) is some given function.

State and prove asymptotic results for the borderline cases not treated
in Theorems 5 and 6. Specifically, consider r¢; (ex,§) when 8= a + %,
r01(in, §) when 8 = %a + %, so1(ex,8) when B = a + 1 and sp;(in, )
when 8 = 2a + 1.

Write a program that efficiently calculates 7,(w) as defined in (16)
correctly to six significant digits for all @ > 1 and 0 < w < 7. Note
that just truncating the infinite sum in the definition of 7, is not an
efficient method, particularly for a near 1.

It is possible to give a closed form expression for 7, when « is a posi-
tive even integer (see, for example, Carrier, Crook and Pearson (1966,
p. 97)). Do so for =2 and o = 4.

Write a program to calculate via numerical integration the ratios (23)
and (26) in Theorem 3. Note that special care is needed in (23) when
a1 +1— g is near 0 and in (26) when 2a; + 1 — ap is near 0.

Suppose that EZ(t) = #Tm(t), where m is a known vector-valued
function and B is an unknown vector. Assume Z has spectral density
f satisfying f(w) < (1 + |w|)~™ for some a > 1. For the interpolation
problem considered in this section, find conditions on m under which
the BLUP and the BLP are identical. Do the same for the extrapolation
problem. For definiteness, assume § = 1 in each case.

Prove (34) and (35). As a way to get started on (34), consider what
would happen if f;(w) = c|w|™* + d;|w|? for all w and i = 0, 1.

Prove Theorem 6. As a way to get started on (36) and (38), consider
what would happen if f;(w) = clw|™* + di|wl_€ for all w and ¢ =0, 1.
As a way to get started on (35), approximate f°(w) by 67! fi(w/é).



94 3. Asymptotic Properties of Linear Predictors

3.7 Measurement errors

Until now, we have been assuming that the random field Z is continuous
and that it can be observed at specified locations without error. This sce-
nario is, of course, an idealization. For many physical quantities, the whole
notion of its value at a single point is ill defined. For example, a concentra-
tion of a substance is inherently an average over some region of space (see
Vanmarcke (1983) and Cressie (1996) for further discussion). So, when we
say Z(x), we often are referring to an average over some region containing
x whose dimensions are small compared to the distance between neighbor-
ing observations. We may also be implicitly assuming that this average is
insensitive to modest changes in the region over which we are taking an
average. Even if the quantity of interest can, for all practical purposes, be
taken to be well defined pointwise, there are inevitably errors, however tiny,
in the measured values of both x and Z(x).

The usual approach in spatial statistics is to ignore errors in x and to
assume that errors in Z(x) are additive or perhaps multiplicative. Diggle,
Tawn and Moyeed (1998) consider more general error structures, but still
of the form that the conditional distribution of the observation at x given
the actual value of Z(x) does not depend on Z at any other location. Chan,
Hall and Poskitt (1995) note that if the height of a surface is measured by
a stylus, then the error at a particular x can naturally depend on values of
Z in a neighborhood of x. In this section, I consider the simplest possible
setting for measurement errors: observation locations X, .. ., X, are known
without error and the observations are

Y,=Z(x;)+U; for i=1,...,n,

where the U;s are independent and identically distributed with mean 0 and
common variance o and independent of Z. I further assume the U;s are
N(0,0?) when considering estimation of covariance structures.

In practice, it is commonly found that even the closest observations in
space differ by far more than the technical errors in the measurement pro-
cess; see Laslett, McBratney, Pahl and Hutchinson (1987) for a convincing
example of this phenomenon. Such variation is called the nugget effect in
the geostatistical literature (Cressie 1993, pp. 59-60). Standard practice
is to model both measurement errors and nugget effects by introducing a
discontinuity at the origin in the autocovariance function of the observa-
tions. As Cressie (1993, pp. 127-130) points out, whether we consider this
local variation in the observations due to measurement error or a nugget
effect does have an impact on the evaluation of mses when predicting the
random field at a point. However, I suspect that when there is a substantial
nugget effect, its magnitude must significantly vary with the region over
which the observations are averages, in which case, it is not clear to me that
prediction at a point is meaningful. Furthermore, when predicting area av-
erages over sufficiently large regions, there will be effectively no difference
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in either the prediction or the evaluation of its mse depending on whether
the spatial discontinuity in the observations is attributed to measurement
error, a nugget effect or some combination of the two. For the purposes
of this work, I ignore the distinction and presume that any discontinuity
at the origin in the autocovariance function of the observations is due to
measurement error.

Given that measurement errors are inevitable, an essential first issue is
to determine when they matter. In particular, for what sorts of prediction
problems can we act as if 02 = 0 and still get nearly optimal predictions
and accurate assessments of mse even though o2 is in fact positive but
small? For any 02 > 0 and any finite set of observations, the answer to
this question will depend on the predictand. For example, suppose model
0 is the correct model, which includes a measurement error with positive
variance, and model 1 is the same model except that o2 is taken to be 0.
Let e;(x) be the error of the BLP of Z(x) under model ¢. Then if x is an
observation location, clearly E;e;(x)? = 0 and Epe;(x)? > 0, so that the
presumed mse of the pseudo-BLP under model 1 is infinitely too small.
Thus, we cannot have uniformly good assessments of mse when ignoring
measurement errors, no matter how small the value of o2. However, if we
consider predicting Z at locations not too near any of the observations, we
may be able to obtain nearly optimal predictions and accurate assessments
of mse when ignoring a sufficiently small measurement error.

Some asymptotic theory

One way in which we can investigate this issue is to consider the inter-
polation problem addressed in 3.6: a mean 0 weakly stationary process Z
on R with spectral density f is observed at 65 for j # 0 and we wish to
predict Z(0). Suppose the observations are Y5(j) = Z(85) + U; for j # 0,
where the Ujs have mean 0, are uncorrelated and have common variance
o2. Allowing the error variance to depend on § may appear unconventional
to some, but it provides us with a way of assessing how the smoothness
of Z relates to the level of measurement errors that can be safely ignored.
Define Zs and f® as in 3.6. The spectral density of Ys (j) on (—m,n] is then
fo(w) + (2m)~to2. It follows that the mse of the BLP of Z(0) based on
Ys(j) for j #0 is

2
4 2

1 — O0g-
"z 1,
/_W{f (@"‘g%} dw
Next, suppose that f(w) ~ cw™ as w — oo for some ¢ > 0 and some o >
1. Then for any fixed w € (=, ] other than w = 0, fé(w) ~ c6* 194 (w)

as § | 0, where 1), is defined as in (16). Thus, a plausible conjecture is that
if 02 = O(6*!) as 6 | 0, the measurement error will have asymptotically
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negligible effect on predicting Z(0) and assessing the mse of prediction. To
prove this assertion, define f§(w) = f°(w) + (27)"'0? and f{(w) = fé(w)
as functions on (—m, 7], so that f~g is the actual spectral density for the Y;s
process and f? is the presumed spectral density obtained by ignoring the
measurement errors. Take e;(§) to be the error of the BLP of Z(0) under

model ¢ with observations Y;(j) for all j # 0.

Theorem 7. Suppose f(w) ~ cw™ asw — oo for some ¢ > 0 and a > 1.
Ifo2 =0(6%71) as 6§10, then
42621
T Maw) Tl
The proof of Theorem 7 is similar to the proofs in 3.6 and is left as an

exercise (Exercise 28). The next result gives asymptotic approximations to
FEgeo(6)? for various circumstances for which o2 is not o(6%71).

Theorem 8. Suppose f is as in Theorem 7. As 610, if 02 = b6*~! for
some fized b > 0, then

E0€0(6)2 ~ E0€1(6)2 ~ E161(6)2

2

E060(5)2 ~ b(sa—l 1 -1 ’ (43)
4 27me
/ {1 + Tna(w)} dw
if 02/6%71 — 0o and 602 — 0 as 10, then
1/a 2\ 1-1/a
B0 ~ 0 (%) (44
asin(Z) \ 6
if 02 =r/6 for some fized > 0, then
2 * )
Epeq(6)* — r/_oo T @) 27 (@) (45)
and if 602 — 00 as § 10, then
Eoeo(0)* = | f(w)do. (46)

The proof of Theorem 8 is left as a series of exercises (Exercises 29-31).
Theorems 7 and 8 imply that the measurement error has asymptotically
negligible impact on predictions of Z(0) if and only if 0 = 0(6*~!). Thus,
the smoother Z is, the smaller 07 needs to be before it can be ignored.
Such a result makes sense, since even small measurement errors can make
it quite difficult to extract information about the derivatives of Z and hence
seriously degrade predictions that exploit the existence of these derivatives.
As a consequence of this result, one should be quite reluctant to leave out
a measurement error term from a model for observations from a highly
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smooth random field, even if the measurement errors are expected to be
quite small.

Equation (44) includes the case 02 = 02 > 0 independent of 8, which is
the most common asymptotic regime to consider (see, for example, Stein
(1993b)). However, the more general result for 02/§*~! — 0o and 602 — 0
is no more difficult to obtain.

As 02 increases, we have to average a greater number of observations in
order to reduce the contribution of the measurement error to the prediction
error. Hence, we should expect that if o2 is sufficiently large, even if § is
small, observations outside any fixed bounded interval will have a nontrivial
impact on the prediction of Z(0). The case §oZ = r > 0 given by (45)
addresses this setting. Here we see that the low frequency behavior of f
does affect the asymptotic mse. Furthermore, Exercise 32 asks you to show
that the BLP makes nonnegligible use of observations outside any fixed
neighborhood of the origin. In contrast, I conjecture that (43) and (44)
still hold if Y5(3) is observed only for j satisfying 0 < é|j| < a for any fixed
a>0.

Finally, (46) just says that if the noise is too large, one might as well
predict Z(0) by 0, which has mse var {Z(0)} = [%_ f(w) dw.

Exercises

28 Prove Theorem 7.
29 Prove (43).

30 Prove (44).

31 Prove (45) and (46). Show that (46) still holds if one observes Y3(3)
for all integers j.

32 Suppose that f is as in Theorem 7 and that observations are restricted
to those Ys(j) for which j satisfies 0 < 4|j| < a for some fixed a > 0.
Show that if % = r/§ for some fixed r > 0,

lilgll})nf Egeo(6)? > 'r/_oo %{w—)

3.8 Observations on an infinite lattice

Section 3.6 gave some theory for predicting a mean 0 weakly stationary
process Z at the origin based on observing Z at §; for all integers j # 0 or
for all integers j < 0. The arguments were based on having exact results for
the spectral representation of the optimal predictions in these two settings.
There is no easy way to extend these results if we wanted to predict, for
example, Z(271/26), or fol Z(t) dt. If, however, we observe Z at §j for all
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integers j, then all possible linear prediction problems become in a sense
trivial. Furthermore, the same approach works just as well for a random
field in any number of dimensions observed at 6j for all j € Z¢, the d-
dimensional integer lattice. For this setting, this section provides a simple
bound on the fraction of the variance of the prediction error attributable
to some set of frequencies. This result is then used to obtain bounds on
the effects on prediction of using the wrong second-order structure. The
bounds in this section are uniform over all possible linear predictions.

Characterizing the BLP

Suppose Z is a real mean 0 weakly stationary random field on R? with
spectrum F and we observe Z at 6j for all j € Z%. Let H(F) be the closed
real linear manifold of the random variables Z(x), x € R?, with respect to
the inner product defined by F and let Hs(F) be the subspace of H(F)
generated by Z(8j) for j € Z?. Similarly, let L(F) be the closed real lin-
ear manifold of the functions exp(iw”x) for x € R? with respect to the
inner product defined by F and L5(F) the subspace of L(F') generated by
exp(i6wT]) for j € Z2. Since exp(iéwTj) has period 27/6 in all coordinates
for any j € Z%, it is apparent that all elements of £s(F) can be taken to
have period 27/§ in each coordinate. Thus, if H € L(F) is the function
corresponding to the random variable h € H(F') we wish to predict, then
the function Hj corresponding to the BLP can be characterized as the best
periodic approximant to H.

More specifically, by Exercise 6 in 1.3, we seek a periodic function H;
such that

/ {H(w) - m(w)} exp(—iwTj)F(dw) =0 forall j € Z¢  (47)
]Rd

so that H — Hp is orthogonal to Ls(F). Defining Ay(r) = (—nr, 7r]?, (47)
is equivalent to

/ {H(w +2m57%) ~ Hs(w)}
kezd ¥ A4(671)

x exp(—i6wTj)F(dw + 276~ 'k) = 0

for all j € Z%, where, for a set B and a point x, B + x is defined as {y :
y —x € B}. Defining the measure Fs on Aq(67') by Fs(B) = 3y cz¢ F(B+
2m6~ k) for Borel sets B C A4(67!), it is obvious that for all k € Z¢,
F(-+ 276~ k) is absolutely continuous with respect to F5 on A4(67!). Let
7(-;k) be a Radon-Nikodym derivative of F(- + 2§~ k) with respect to
Fs. Then (47) is equivalent to

./Ad(a—l) exp(—iéwTj){ Z H(w + 276 'k)7(w; k) — flg(w)}Fg(dw) =0

kezd
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for all j € Z%. By a basic theorem in multiple Fourier series (Stein and
Weiss 1971, p. 248),

{ > H(w+ 2167 k) (w; k) — ﬁg(w)}Fg(dw)

keZd
must be the 0 measure, so that
Hs(w) =Y H(w + 276 'K)7(w; K) (48)
kezd
almost everywhere with respect to Fs. Since there necessarily exists Hs e
Ls(F) satisfying (47) (see Exercises 5 and 6 in 1.3), for any Radon-Nikodym

derivative 7, Hs(w) as defined in (48) is in Ls(F) and hence gives the
function corresponding to the BLP of h.

Bound on fraction of mse of BLP attributable to a set of
frequencies
Suppose for the rest of this section that F' has density f with respect
to Lebesgue measure, in which case, we can take 7(w;k) = f(w +
2167'Kk) /Y ez4 f(w + 2m671j). For a symmetric Borel set B C Aq(671),
define
S f(w + 21671)
M;s(F,B) = ess su J <
s(F, B) = ess sup ieze [ (@ + 216~ 1j)

bl

. . ! . . . .
where ess sup is essential supremum, Y i indicates summation over all j €

Z other than 0 and 0/0 is defined to be 0. Corresponding to the prediction
error of any BLP is a V € L(F') orthogonal to Ls(F'). The mse of this BLP
is then given by ||V||%. The following result, given in Stein (1999), bounds
the fraction of the mse of the BLP attributable to some range of frequencies
contained in A4(671).

Theorem 9. Suppose V € L(F) is orthogonal to Ls(F). Then for
symmetric Borel sets B C Ag(671),

[ V@I fw)dw < Ms(RBIVE- (49)
Furthermore, if

/
Z F(-+2m67'j) is absolutely continuous with respect to F(-) on B,
J

(50)
then

[z lV(W) f(w)dw
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where the supremum is over all V € L(F) orthogonal to Ls(F') satisfying
|VIIZ > 0. If there are no such V, define this supremum as 0.

PrROOF. Equation (49) holds trivially if ||V]|% = 0 or Ms(F,B) = 1, so
assume otherwise. Define a function Vs g(w) with period 276~ in each co-
ordinate, Vs p(w) = V(w) for w € B and Vs g(w) =0 for w € Aq(67')\B.
Then Ms(F,B) < 1 and B symmetric imply Vs g € Ls(F) (Exercise 33).
Thus,

0= / V(@)Vr5 (@) f(w) dw

- / V(w)[? f(w) dw
B

n Z' /B Vi(w + 276~§)V 5 (@) f(w + 276~1j) dew,

so that

/ V(w)[? f(w) dw
B

< Z' /B |V(w + 27675) Vs (w)| f(w + 2r67) dw

< {Z:I/B|V(w+27r25‘1j)|2 flw +27671j) dw
i

1/2
x Z’/Bl%,B(w)sz(w+27r6‘lj)dw}
J

< Wit~ [ v s )

/
x ML / V(w)P f(w)dw]l ;

where the second inequality uses the Cauchy—Schwarz inequality. Straight-
forward calculation yields (49).

To prove (51), note that it is trivial if M;s(F, B) = 0, so assume otherwise.
Define 7(w) = E'J T(w;j). Given € € (0, Ms(F, B)), let Be be the subset of
B on which 7(w) > Mjs(F, B)—e¢. By the definition of Ms(F, B), E'J F(B.+
2767 1j) > 0, so that by assumption, F(B,) > 0. Next, define a function U
by

1 forj=0, w € B;
U(w+2m671) = {1_1/7-( ), forj#0, we B,
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and 0 otherwise. Then U € L(F), U is orthogonal to Ls(F) and |U||% > 0
(Exercise 34). Furthermore, [; U(w)|? f(w)dw = F(B,) and Z/J flw+
2m67 1)/ f(w) = T(w)/{1 — 7(w)} almost everywhere on B, so that

1 2 ’ 1.
llUll%:F(BE)+/13E{;m—1} EJ: f(w+27671j) dw

— F(B.) +/BE {F(IBS - l}f(w)dw

. F(B)

~ Ms(F,B) —¢ ’
Thus, [, |U(w)[? f(w)dw/||U||% > Ms(F, B) — €, which implies (51) since
€ can be taken arbitrarily small. O

The condition in (50) always holds whenever Ms(F, B) < 1. If Ms(F, B)
= 1, then (50) can be false, in which case, (51) can also be false. In par-
ticular, when Ms(F,B) = 1 and the support of F' does not intersect B,
then [ |V (w)|? f(w) dw is trivially 0 for any V so that the left side of (51)
equals 0, not 1.

As a specific example of Theorem 9, suppose there exist @ > d and
positive Cy and C; such that

Co(1+|w))™ < flw) <CrL(1+|w])™". (52)

Then for by(r) the d-dimensional ball of radius r centered at the origin,
C &\
My(F b)) < G+ (£) o) (53)
0 ™

where £4(a) = Z'J li|~* (Exercise 35). We see that for r fixed and é | 0,
M;s(F,b4(r)) tends to 0 more quickly when f tends to 0 more quickly at
high frequencies. As an extreme example, suppose f has bounded support
B, in which case, the process is said to be bandlimited. If B is contained in
A4(871) then Ms(F, B) = 0, which implies [, |V(w)|? f(w)dw = 0. Thus,
[V]|% = 0 since f has 0 mass outside B so that Z may be recovered without
error at all x. We have just proven a simple version of what is known as
the sampling theorem for random fields (Jerri 1977).

Asymptotic optimality of pseudo-BLPs

Theorem 9 provides a useful tool for proving results on the asymptotic
properties of pseudo-BLPs as 6 | 0 when f;(w)/fo(w) tends to a positive
finite constant as |w| — oo. It does not appear to yield useful results if
fi(w)/ fo(w) tends to 0 or oo as |w| — oo, so I do not have any results
analogous to Theorems 3 and 4 for this setting. The next result basically
says that spectral densities with similar high frequency behavior produce
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uniformly similar linear predictions for small é. Let H_s(F;) be the set of
those h in H(F;) for which E;e;(h,6)? > 0 and £L_s(F;) is the corresponding
set of functions.

Theorem 10. For some ¢ > 0, suppose fi(w)/fo(w) — ¢ as |w| — oo,
fo < f1, f1 is bounded away from 0 on any bounded set and fi(w) — 0 as
|w| — oo. Then

Elel(h 6)2
lim su — —c| =0, 54
610 per_ ?(Fl) Eoel(h 6)2 ( )
Eoeo(h 6)2 1
lim su —_— ——|=0 55
610 heH_ lSp(FO) Eleo(h 6)2 C ( )
and
. Eo {eo(h,8) — e1(h,6)}”
lim su =0. 56
510 he'H_ﬁFo) Epeo(h, 6)? (56)

PRrOOF. The result for general c is a trivial consequence of the result for
¢ = 1, so assume ¢ = 1. Since fo < f1, H(F1) = H(Fp) as sets, so the left
sides of (54)—(56) are well defined. For H € L(F;), define
> filw + 2767 j) H(w + 2167 1j)
Hs p,(w) = T - H(w),
> filw +2m6~1j)

so that if H corresponds to h € H(F;), Hs,F, corresponds to e;(h, §). Setting

PY(w) = {fi(w) — fo(w)}/ fr(w),
|| Hs r |17, — || Hs, F1||2Fo|

/ f1 (@) | Hs r, ()2 d

< / F1(@) ()| H, 7, (0)Pdw + m(8~ )| Ho |3, (57)
Aq(6-1)

where m(r) = sup,e a,(r)c [¥(w)|- Note that fi(w)/fo(w) — 1 as |w| — oo
implies m(r) — 0 as r — oo.

Under the stated conditions, [¢| is bounded by a finite constant 1, and
Ms(Fy,B) — 0 as § | 0 for any fixed bounded set B. Given € > 0, we can
choose 7, such that |¢(w)| < € on Ag(r)°. Thus, for all § sufficiently small,

[ @B Her @) do

Ad(é'—l)

<to [ () Ha () de
Aa(re)

+6/ fi(w) |Hs,p, (w)]? dw
Aa(6-1)\ Ad

< {YoMs(Fy, Aa (re)) + e} | Ho ||,
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Now e is arbitrary, Ms (F1, Aq(re)) — 0 as 6 | 0 and Yo Ms(F1, Ag(re)) +€
is independent of H, so
fAd(s—l) [Y(w)|f1(w) [Hs,F, (w)|2 dw

lim sup =0,
810 HeL_4(f) | Hs,F, |7,

which together with (57) and m(r) — 0 as r — oo implies (54). Equation
(55) follows from (54) by switching the roles of fo and f;.

To prove (56), consider bounding || Hs r, — Hs F, ||, - Define f5 by fs(w) =
fo(w) for w € A4(671), fs(w) = fi(w) elsewhere and let Fs be the spectral
measure with density fs. Then

| Hs,r, — Hs,roll%, < 2| Hs,r — Hs F3l|%, + 2| Hs,r, — Ho,p |5, (58)
Define u(r) = sup,ea,(r)c ¥(w) and £(r) = inf,ea,(r)c ¥(w). Applying
Theorem 1 in 3.2 with b=1+u(67!) and a = 1 + £(67!) yields

671) — (571}
H - H 2 < {u(
1Ho.ro = Horilles < gy ny (T 460

The function I'(w) = Hs r,(w) — Hs p,(w) has period 2m6~! in each
coordinate and for w € Ag4(671),

I'(w) = f1(w)Y(w)Hs F, (w)
fow) + ' fr(w +2m6-1j)

Since fo =< f1, there exist positive finite constants a and b such that a <
fo(w)/ fi(w) < b for all w. Thus,

| Hs, 7 — Hs,F, ||,

- [ h@Ir@)ds
R4

— -1,
—fAd( 3 folw +2n871j)

=15

1Hs, o 7. (59)

2

fr(w)p(w)Hs,r, (w)
fo(w) + 3" fi(w + 2m6-1j)
J

< max(1,b) / F1(@)$(@)? | s, (@) des, (60)
Aq(671)

a
so that for H € L_s(F}),
| Hs,r, — Hs, ||,
{u(&'l) —5(6_1)} 2
< — —y 1 Ho,Fo |,
2{1+ (6~} {1+£(6-1)}

4 2max(1,b) / fiw)p(w)? [Hs p (@) dw.  (61)
a Aq(6-1)

2

Using (58)-(61), (56) follows by an argument similar to the one leading
to (54). It is possible to give a simpler argument showing that (56) follows
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from (54) and (55) (see the proof of the asymptotic efficiency of the pseudo-
BLP in Theorem 8 of Chapter 4). The bound in (61) is needed to obtain
the rates of convergence in Theorem 12. a

Rates of convergence to optimality

Theorem 10 used Theorem 9 to show that when fi(w)/fo(w) — 1 as
|w| — oo, all linear predictors under the incorrect f; are uniformly asymp-
totically optimal and the presumed mses are uniformly asymptotically
correct. Under additional assumptions on fy and f;, Theorem 9 can also
be used to bound the right sides of (57) and (61) and hence obtain rates
of convergence for the effect of misspecifying the spectral density. We need
the following lemma.

Lemma 11. For a nonnegative function o on R, a > d and Cy,C;, D
and (B positive, suppose that Cy < fr(w)(1 + |w|)* < C1 and o(w) <
D(1+ |w|)™ for all w. Then for any H € L(F}),

/ f1(@)o(w) [Hs p, ()2 dw
Aq(6-1)

B a w61
< D|[Hyr I, [2 (2) +% () e | <1+r)a—ﬂ—ldr].

Proor. Using the bound on o,
/ f1(@)o (@) | Ho ()] de
Ad(6_1)

< / f1(@)o(w) | Ha p, ()2 dw
ba(w6-1)

5 B8
+D (—) / £1(@) | Hs r, (@) dw
™ Ag(6=1)\ba(ms-1)

w6t B
- 6
<o [ an P +0 (L) IHsnl,

0

where
o) = [ 1) Her 0 ()
61)4(7')

and p(dv) indicates the surface measure on Oby(r). Defining P(r) =

Js p(s)ds, Theorem 9 implies P(r) < Mjs(F1,ba(r))||Hs F %, By defini-
tion, P(m6~') < ||Hs,r ||%, - Integrating by parts,

/m?‘ 1+ r)_Bp(r) dr
0
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I

(1+5)” P(7r6‘1)+ﬂ/07r6_ (1+7)1P(r) dr

§ B 6! B
< {(;) +8 [0 0D MR balr) dr} I
0
Lemma 11 then follows from (53). a

Lemma 11 yields the following result, taken from Stein (1999), on the
effects on linear prediction of misspecifying the spectral density.

Theorem 12. If fo(w) < fi(w) < (1 + |w|)~® and for some v > 0,
[P(w)| < (1+ |w|)77, then

[Brea(h )2 — Boer(h,82] _ O™ a#n

iRy Foer(h, 6)? < (62)
nert-e(i) vex(h,9) 5*log(67!),  a=1

and
min(a,27)

ap  Pofeo(h,d) —ei(n, 6)})> 6 , a#2y .

. Eoeo(h, 6)? < (63)
heH_s(F1) 0€ol 2, = log(6-Y), a=2.

PRrROOF. To prove (62), just apply Lemma 11 and the bound on |¢| to
(57). To prove (63), apply Lemma 11 and the bound on %? to (61). a

Except possibly in the case @ = v in (62) and o = 2v in (63), these
bounds are sharp in the sense that there exist fo and f; satisfying the
stated conditions for which both conclusions are false if O(-) is replaced
by o(-) (Stein 1999). Stein (1999) also gives some analogous results for
a process observed unevenly on a bounded interval, but the arguments
are much more difficult and the conditions on the spectral densities are
somewhat restrictive. The general approach is similar to that taken here
in that the key result is a bound of the type given by Theorem 9 on the
fraction of the mse of a BLP attributable to a given range of frequencies.

Pseudo-BLPs with a misspecified mean function

Suppose that both the mean and covariance functions of Z are possibly
misspecified. Take E;; to be expectation under (m;, K;) and e;;(h, §) to be
the error of the BLP of h under (m;, K;). Then (Exercise 36)

Eoo(e11 — €oo0)® = Eoo(eo1 — €00)* + Eoo(e10 — €go)? (64)
and
E€l, — Enel, = (Bored; — Bniedy) + (Bl — Enely). (65)

Thus, the effect of misspecifying both the mean and covariance functions
on either the actual mse of prediction or the evaluation of the mse can be
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decomposed into a term giving the effect of just misspecifying the covari-
ance function and a term giving the effect of just misspecifying the mean
function. In light of these decompositions, let us next consider the effect of
misspecifying just the mean function on linear prediction.

Theorem 13. Suppose (mg, Ko) = (mo, K) and (m1, K1) = (mq, K),
where K is an autocovariance function with spectrum F possessing spectral
density f bounded away from 0 on any bounded set and f(w) — 0 as
|w| — oo. Ifm = my — myg is square-integrable and of the form m(x) =
Jre exp(—iwTx)€(w) dw, where

€(w)?
dw < oo, 66
L5 (66)
then
Eo {eo(h,8) — e1(h,6)}*
li su =0.
‘Slﬁ)lheu E)(Fo) Eqeo(h, 6)?

PROOF. It is a simple matter to show that Ege;(h,6)? is unchanged
by subtracting the same fixed function from mg and m;, so there is
no loss in generality in taking mg identically 0. Next, for any V €
L(F), the mean of the corresponding random variable in H(F) is
Jra €(w)V (w) dw (Exercise 37). By (66), for € > 0, we can choose 7 so that
ji(re)c |€(w)|2f(w)"'dw < €. Using Theorem 9, V € L(F) and orthogonal

to Ls(F) imply

2

£(w) V(w) dw

/ £(w)V(w) dw
ba(re)

le@)P :
<2 S [ reve)ras

)P Vo
+z/bd(n)c - dw/Rdf( )V (w)|?dw

2
<2 [ B do bR aa ) IV I + 261 VIR

<2

+2

| ewv@de
ba(re)e

and Theorem 13 follows since Ms(F,bg(re)) — 0 as 6 | 0 and € is
arbitrary. a

There is no need to prove a separate result for E;e;(h,n)?/Epe;(h,n)?
since Ege;(h,n)? = Ejeg(h,n)? and Egeg(h,n)? = Eie1(h,n)? when only
the mean function is misspecified (see Exercise 8). As an example of when
(66) holds, suppose d = 1 and f(w) =< (1 + w?)~P for some positive integer
p. Then (66) holds if and only if m is square integrable, m®~1) exists and is
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absolutely continuous and has almost everywhere derivative m(®) satisfying

/_00 {m(p)(t)}zdt < 0o

(see II1.4.1 of Ibragimov and Rozanov (1978)). The fact that m must be
square integrable eliminates such obvious candidates for a mean function
as a nonzero constant. Results in 4.3 show that if the observations and
predictands are restricted to a bounded region, it is generally possible to
obtain asymptotically optimal predictions if the mean is misspecified by a
nonzero constant. Thus, for assessing the effect of a misspecified mean, the
infinite lattice setting is somewhat misleading as to what happens in the
fixed-domain setting.

Under stronger assumptions on £ we can obtain rates of convergence in
Theorem 13. Specifically, suppose f(w) < (1 + |w|)”™® for some a > d and
|€(w)[2/f(w) < (1 + |w|)™® for some v > 0, so that (66) holds. Larger
values of v correspond to smoother mean functions m.

Theorem 14. If, in addition to the conditions of Theorem 13, f(w) =<
1+ |w|)™ and |¢(w)|?/f(w) < (1 + |w|)~¢7 for some vy > 0,
T ¥ R
heH_s(F) 0€o 6a{log |6|}2, a=r.
PRrROOF. For V € L(F') and orthogonal to Ls(F'),

2
/ {(w)V(w) dw
bd(ﬂ'6“l)

2
<2

[, €7 dw

By the Cauchy—Schwarz inequality,

[ V@)
ba(mé=1)e

)P 2
- /bd(ﬂ_l)c f(w) de /bd(ms-l)c fw)V(w)[*dw

< [ vz
1

< &|V|%. (68)
Similar to the proof of Lemma 11, define p(r) = f@bd(r) F(W)2V (w)pu(dw)
and P(r) = [ p(s)ds. Then

1/2

1/2
P(T)<<{Td f(w)IV(w)Izdw} < Ar'Ms(F,ba(r))} [V ]r,

ba(r)
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so that using integration by parts as in the proof of Lemma 11,

2
{ [ ewv dw}
ba(ms—1)
w61
—(r+d)/205(p) dr
< {/0 1+7) p(r)d }

< P(m§ 1)t

2

6! 2
+ VI3 / (1+7) 71O+ /2 {0y (Fby(r)) } dr}
0

/7f6
0

-1

2
< 8|VI[E + 6| VIIE (1 +T){(""W2}"ldr}

grneN |V, a7y
< (69)
6*(log6)?|IV[1%, a=7.
Theorem 14 follows from (67)—(69). m|
Exercises

33 In the proof of Theorem 9, verify that Ms(F, B) < 1 and B symmetric
imply Vs B € Ls(F).

34 In the proof of Theorem 9, verify that U € L(F), U is orthogonal to
Ls(F) and |U||% > 0.

35 Prove (53).

36 Prove (64) and (65).

37 Using the definitions in Theorem 13, show that for any V €
C(F) the he mean of the corresponding random variable in H(F) is

Jga €(w)V(w) dw. In addition, show that ' Joa E@)V(w) dw’ is finite.

38 Suppose Z is a mean 0 weakly stationary process on R with spectral
density f(w) = 1{|w| < 7}. Show that if Z is observed on Z then the
observations are all uncorrelated and yet perfect interpolation at all
t € R is possible.
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Equivalence of Gaussian Measures
and Prediction

4.1 Introduction

The basic message of the results of 3.8 is that for interpolating a mean 0
weakly stationary random field based on observations on an infinite square
lattice, the smaller the distance between neighboring observations in the
lattice, the less the low frequency behavior of the spectrum matters. This
suggests that if our goal is to interpolate our observations and we need to
estimate the spectral density from these same observations, we should focus
on getting the high frequency behavior of the spectral density as accurately
as possible while not worrying so much about the low frequency behavior.
Supposing that our observations and predictions will all take place in some
bounded region R, a useful first question to ask is what can be done if we
observe the process everywhere in R. Answering this question will put an
upper bound on what one can hope to learn from some finite number of
observations in R.

One simple way to formulate the question of what can be learned from
observations on R is to suppose that there are only two possible probability
measures for the process on R and to determine when one can tell which
measure is correct and which is not. For example, consider a mean 0 Gaus-
sian process on R with two possible autocovariance functions: Ko(t) = eIt
and K1 (t) = e~ 2l If we observe this process for all t € [0,7] with T' < oo,
then it turns out that it is not possible to know for sure which autocovari-
ance function is correct, despite the fact that we have an infinite number
of observations. Fortunately, as demonstrated in 3.5, these models can give
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very similar interpolations. Indeed, under quite general conditions, mea-
sures that cannot be correctly distinguished with high probability based
on a large number of available observations yield very similar predictions
(see 4.3).

Let us first introduce some terminology. For two probability measures Py
and P; on a measurable space (€2, F), say that Py is absolutely continuous
with respect to P; if for all A € F, P;(A) = 0 implies Py(A) = 0. Define
Py and P; to be equivalent, written Py = P, if P, is absolutely continuous
with respect to P; and P, is absolutely continuous with respect to Py. Thus,
Py = P, means that for all A € F, Py(A) = 0 if and only if P;(A4) = 0.
Define Py and P; to be orthogonal, written Py L Py, if there exists A € F
such that Py(A) =1 and P;(A) = 0. In this case, we also have Py(A°) =0
and P;(A°) = 1. Thus, suppose we know that either Py or P; is the correct
probability measure. If Py L P;, then based on observing w € €, it is
possible to determine which measure is correct with probability 1. On the
other hand, if Py = P;, then no matter what is observed, it is not possible
to determine which measure is correct with probability 1. More specifically,
consider a decision rule of the following form. For some A € F, choose Py
if A occurs and choose P, otherwise. If Py = P, then for any B € F such
that Py(B) > 0 (so that P;(B) > 0), we cannot have both Py(A | B) =1
and P;(A° | B) = 1. Indeed, if Py(A | B) = 1 then P;(A° | B) = 0. Thus,
there is no event B receiving positive probability under either measure such
that, conditionally on B, perfect discrimination between the measures is
possible. Of course, measures may be neither equivalent nor orthogonal; a
trivial example is to take Q = {0, 1,2}, have P, assign probability 1 to {0}
and {1} and probability 0 to {2} and P, assign probability 1 to {1} and
{2} and 0 to {0}. In this case, we would know which measure were correct if
w = 0 or 2, but we would not know if w = 1. An interesting property about
Gaussian measures is that in great generality they are either equivalent or
orthogonal.

Section 4.2 looks at the problem of determining equivalence and orthog-
onality of measures for Gaussian random fields observed on a bounded
region. There is a great deal known about this problem for Gaussian ran-
dom fields possessing an autocovariance function. The treatment in 4.2
largely follows that of Ibragimov and Rozanov (1978, Chapter III). Other
references include Yadrenko (1983), Gihman and Skorohod (1974) and Kuo
(1975).

Two critical weaknesses of the theoretical results in 3.6-3.8 on the behav-
ior of pseudo-BLPs are that they require observations over an unbounded
domain and that they require regularly spaced observations. Using results
on equivalence of Gaussian measures, Section 4.3 proves that if the pre-
sumed spectral density has similar high frequency behavior as the actual
spectral density, pseudo-BLPs are asymptotically optimal under fixed-
domain asymptotics even when the observations are not regularly spaced.
It may seem curious that properties of Gaussian measures are helpful
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in obtaining results on linear predictors, which only depend on the first
two moments of the random field. However, characterizations of equivalent
Gaussian measures provide a convenient means for showing that the low
frequency behavior of the spectral density has little impact on the behavior
of linear predictions.

Section 4.4 provides a first attempt to consider the effect of estimating
the law of a random field on subsequent predictions. In particular, 4.4 gives
a quantitative Bayesian formulation of Jeffreys’s law (Dawid 1984), which
states that aspects of a probability law that cannot be determined from a
large amount of data cannot have much impact on prediction. This law is
of particular interest and value when employing fixed-domain asymptotics,
since there will naturally be parameters of models that cannot be consis-
tently estimated based on an increasing number of observations in a fixed
domain.

4.2 Equivalence and orthogonality of Gaussian
measures

This section develops the basic theory for determining the equivalence or or-
thogonality of Gaussian measures for random fields. For finite-dimensional
random vectors, it is trivial to determine the equivalence or orthogonal-
ity of two possible Gaussian distributions: Gaussian random vectors on
R? have equivalent measures if their distributions are both nonsingular or
if they are both singular and the hyperplanes that form their respective
supports are the same; otherwise, they are orthogonal. It is in the infinite-
dimensional setting that determining the equivalence or orthogonality of
Gaussian measures becomes difficult.

Suppose Z is a random field on R? with mean function m and covariance
function K. For a closed set R C R%, let Gr(m, K) be the Gaussian measure
for the random field on R with second-order structure (m, K). When there
is no chance for confusion, I write G(m, K) for Gg(m, K). Furthermore, I
use P; as shorthand for the Gaussian measure G(m;, Kj).

Conditions for orthogonality

Reasonably elementary arguments can be used to establish orthogonality
in many cases. Note that to establish Py L P;, we only have to find a set A
such that Py(A) =1 and P;(A) = 0. To establish equivalence, we have to
show something about a whole class of sets. The following result is helpful
in establishing orthogonality. Py L P; if there exists A;, As,... € F such
that

lim Py(A,)=0and lim P;(4,)=1 (1)

n—o0 n—00
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(Exercise 1).

Since Gaussian random fields are determined by their first two moments,
all statements about their equivalence or orthogonality can also be written
in terms of the first two moments. For example, as a simple application of
(1), consider a random field Z on some set R with two possible Gaussian
measures Py and P;. If there exists a sequence of linear combinations Y;, =
E;’;l AjnZ(Xjn); Xin, - - -, Xr,n € R such that

vary (Y,)

nanolo varo(Yn) =0 (Ol' OO), (2)
or
. (B1Y, — EgYa)?
nllrrgo varg(Yy) o )

then Py L P, follows from (1) (Exercise 2). For example, suppose Z is a
mean 0 stationary Gaussian process on R, R = [0,1], Ko(t) = e~ !*| and
K, (t) = e~ (1 4 |t|) so that Z is mean square differentiable under P; but
not Py. Let Y, = Z(n™!) — Z(0). Then the limit in (2) is 0 and Py L P;.

More generally, suppose Z is a mean 0 stationary Gaussian process on
R with spectral density f; under P; and R = [0,1]. If Z is not infinitely
mean square differentiable under f; and fo(w)/f1(w) — 0 as w — oo, then
Py 1 P,. To prove this, note that the condition on f; implies there exists a
positive integer p such that fix;o w? f) (w)dw = oo (see Section 2.6). Define
the linear operator A, by A Z(t) =€ 1 {Z(t +€) — Z(t)}. Then

E, (AP ZO) = E, {},, kZ (%) (—1)1’*2(/«)}2
-/ 3—; (B)-et| frtwraw

= /m {%sin (“’76)}21’,3(“)) dw.

—00

Given 6§ > 0, we can choose T such that fo(w)/fi1(w) < 6 for |w| > T. As
€lO0,

/|w|<T {gsm (%) }2p fi(w)dw = w? f;(w) dw < 00

€ |w|<T

for j =0,1 and

2 2 we 2p
> L<|w|<1r/e {; (;l'_ ’ ‘2_>} fi(w) dw — oo.
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Thus,

= B{(A)r2(0) < Jwpr {2 sin (%)} fo(w
elo B {(A. )pZ(O)} f'w|>T{2sm(“’e)} fi( )dw—

since fo(w)/fi(w) < 6 for |w| > T, so Py L P, follows by the arbitrariness
of § and (2).

If mo = m, and fo < f1, then neither (2) nor (3) can happen. However,
we may still be able to prove orthogonality of Gaussian measures by con-
sidering sequences of sums of squares of linear combinations of Z. Suppose
Z is a stationary Gaussian process on [0, 1] with autocovariance function
K satisfying K(t) = C — D|t| + o(|t|) as ¢ — 0 for some D > 0. Define

R T
EUnzn{K(O)—K<%)}—+D

as n — o0o. Now Xi, X5, X3,X, jointly Gaussian with mean 0 and
cov(X;,X;) = oy; implies cov(X1Xz,X3X4) = 013024 + 014023 (see
Appendix A), so

(2(2)-z0)]

g [fo() s {e(22)-(2)]
~ on {K(O) - K (%) }2
Hooa () () (Y o

j=1

If K has a bounded second derivative on (0,1] then EU, = D + O(n™})
and varU, = 2n7'D? + O(n~%) (Exercise 3). That is, we can esti-
mate D with asymptotically the same mse as when the first differences,
Z(j/n) — Z((j — 1)/n) for j = 1,...,n, are independent and identi-
cally distributed N(0,2Dn~'). Note that if Z were Brownian motion with
var{Z(t) — Z(0)} = 2D|¢t|, then the first differences would be independent
and identically distributed N(0,2Dn~1).

So, for j = 0,1, suppose K; is an autocovariance function on R with
K;(t) = Cj—Dj|t|+o(|t]) as t — 0 for some D; > 0 and K has a bounded
second derivative on (0,1]. If Dy # D; and R = [0, 1], then Gg(0, Ko) L

Then

var U,

n
= —var

4
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Gr(0, K;), since under Gg(0, Kp), U, g Dq and under Gg(0, K1), U, LA
D;.

Although assuming K has a bounded second derivative on (0,1] sim-
plifies matters considerably, the following result implies that K;(t) =
C; — Dj|t| + o(Jt|) as ¢ — 0 for j = 0,1 with Dy and D; unequal and
positive is sufficient to conclude Gg(0, Ko) L Gg(0, K1) for R any interval
of positive length (Exercise 4).

Theorem 1. For a mean 0 stationary Gaussian process on R with auto-
covariance function satisfying K(t) = C — D|t| + o(|t]) as t — O for some
D >0 and U, as defined in (4), var(U,) — 0 as n — oo.

A proof using spectral methods is given at the end of this section.
Exercise 25 outlines a proof in the time domain.

I conjecture that the conditions of Theorem 1 imply the stronger result
var(U,) = O(n™!) as n — oo. For example, if K(t) = (3 — )", then
since K is not even once differentiable on (0, 1], one might imagine this
case would violate my conjecture. However, direct calculation shows that
we still have var(U,) = O(n~!) (Exercise 8).

Before attempting to develop a general theory of equivalence and orthog-
onality of Gaussian measures, let us consider one more example: R = [0, 2],
mo =my =0, Ko(t) = (1 - |t|)T and K (t) = e !l Define

n . . . .
w=2{e (7)) He () -2 (5 ) o
= n n n n

Then as n — oo (Exercise 9), EcW,, —» -1, E\W, — 0, varg W, — 0
and var; W,, — 0, so that Gr(0, Ko) L Gr(0, K;), despite the fact that
the autocovariance functions behave similarly at the origin. Recall that the
triangular autocovariance function Ko(t) = (1 — |t|)* produced strange
linear predictions (Section 3.5), so it is encouraging that we should be able
to distinguish between Ky and K; based on observations on [0,2]. It is
important that we chose R = [0, 2]; it is possible to show that if R = [0, T,
then Ggr(0,Kp) L Gr(0,K,) if T > 1 and Gr(0,Kp) = Gr(0,K;)if T <1
(see Exercise 19). However, it is also true that if ' < 1, Ky produces no
unusual predictors on [0, T'.

Gaussian measures are equivalent or orthogonal

Suppose mg and m; are continuous functions on R4, Ky and K are continu-
ous and p.d. on R?xR? and R is a closed subset of R%. We now demonstrate
that the Gaussian measures Py = Ggr(my, Kp) and P, = Ggr(my, K) are
always either equivalent or orthogonal. We follow the approach of Ibragimov
and Rozanov (1978, pp. 74-77). The following notation and assumptions
are used throughout the rest of this section and in 4.3. For a random field
Z on R?, let H% be the real linear manifold of Z(x) for € R and let
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Hr(m, K) be the closure of H% with respect to the norm given by second
moments under (m, K). The continuity assumptions about m; and K im-
ply that Hgr(m;, K;) is separable for j = 0,1 (Exercise 10). If there is a
basis for Hgr(mo, Ko) and Hgr(m;, K1) that is linearly independent under
one of the covariance functions but not the other, then trivially Py L P, so
assume there exists hy, hs,... in ’H% forming a linearly independent basis
for both Hr(mg, Ko) and Hg(m,, K1). For example, taking h; = Z(x;)
with X1,X2, ... dense in R yields a basis for Hr(m;, K;) and if the x;s are
distinct, the h;s will commonly be linearly independent (although see Exer-
cise 16 in 2.7). Ibragimov and Rozanov (1978, Lemma 1 of Chapter 3) show
that two Gaussian measures on the o-algebra generated by hi, ho,... are
equivalent if and only if they are equivalent on the o-algebra generated by
Z(x) for x € R, so I do not explicitly consider the distinction between these
two o-algebras subsequently. To determine when Py and P; are equivalent
or orthogonal (or neither), it makes no difference if we subtract a sequence
of constants from the h;s, so without loss of generality, assume Egh; = 0 for
all 7. Now we can linearly transform hy,...,h, to hip,...,h,, such that
for j,k=1,...,n

Ko(hkn,hjn) = 6k; and  Kj(hgn, hjn) = 02,8k;, (7)

where 6;; = 1 if k = j and is 0 otherwise. Set my, = m;(hi,). Note that
here we are considering m and K; to be operators on spaces of random
variables rather than functions on regions of Euclidean space.

Likelihood ratios play a critical role in statistical theory. In particular,
the famous Neyman-Pearson Lemma (Casella and Berger 1990, p. 366)
shows that for testing one simple hypothesis (a hypothesis containing only
one probability law for the observations) against another simple hypothesis,
tests based on the likelihood ratio are optimal in a well-defined sense. Thus,
it should not be surprising that likelihood ratios can be used to determine
equivalence and orthogonality of Gaussian measures. Based on observations
hi,..., Ry, the likelihood ratio of P, to Py, denoted by p,, is just the joint
density of hj,...,h, under P, divided by their joint density under P,.
Direct calculation yields (Exercise 11)

1ogpn_—21ogakn—-2{@ﬁ_2—m""2——h } ®)

k=1 Okn

Using the definitions in (7), we have (Exercise 11)

1o 1 M\
Eologpnziz{—logofn—a—z—+1—( k") },
kn

k=1 Okn

n
1 akn 24 2mkn

varg(logp,) = = Z ,
2 k=1 Ukn
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1 n
Eilogp, = 3 ; (~logoz, + 02, — 1+mZ,)
and

n

1
var; (logp,) = 3 1 —or,)? + 20knmkn} 9)
k=1

Define the entropy distance between the measures Py and P, based on
h1, ey hn by

= —Fylogp, + E; logp,

__Z(a,m ——2+ +Z‘2’2°">. (10)

kn kn

The quantity E;logp, is known as the Kullback divergence of Py from
P, based on hy,...,h,, so that 7, is a symmetrized Kullback divergence.
Section 4.4 discusses an interesting connection between Kullback divergence
and prediction. Now E log p,, is monotonically increasing in n (Exercise 12)
and hence so is —FEy log p,,. Thus, r, is monotonically increasing in n, so it
tends to a limit, possibly infinite.

Lemma 2. Ifr, — oo, then Py 1L P;.

PROOF. (Ibragimov and Rozanov 1978, p. 76). From (10) and the mono-
tonicity of 7, either infy , 0%, = 0 or sup, , 0%, = oo implies both that
rn — o0 and, from (2), Py L P;. Thus, from now on, suppose

or, <1, (11)
so that
logoz, +052—1x —logo?, + 02, —1x(1-02,)?
and

—Eylog p, < Ejlogp, < varg(logp,) < var; (logp,)

<= 3 {(1 -0k + ). 2

k=1
Define the event
= {logpn — Eglogp, > ir,}.
By Chebyshev’s inequality,

Py(Ay) < ——4 va.ro(iogpn) =r 150
’rn
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and
Pi(Ay) =1— Py (—logpn + Eglogpn > —37)
=1— P, (—logpn + E1logp, > §Tn)
>1_ 4 var, (log p,) a1
> —a
n
Thus Py L P;. O

Lemma 3. Ifr, — r <oo then Py = P;.

ProoF. (Ibragimov and Rozanov 1978, p. 77). Suppose there exists A €
F such that Py(A) = 0 and P;(A) > 0. Let P, = Py+ P;. Then there exists
a sequence of events Aj, Ag, ... such that A, is measurable with respect to
the o-field generated by hi,...,h, and P;(Ao A,) — 0 as n — oo, where
o indicates symmetric difference (Exercise 13). Thus,

Py(AoA,)—0 and Pi(AocA,)—0 as n— oo. (13)

Consider F}, = {2,Q, A,,, AS}. For w € Q, define
PO(A )

P(A

D forw € A,
Xn(w) = B {pn(‘”)—l I ]'-7’1} = Po(An)
1-Foldn) for w € AS.
1-Pi(Ay) "
Then
Po(An) 1 — Py(An)
Py(An) 1-Pi(A,)°
By (13), Pi(A,) — Pi(A) > 0 and Py(A,) — Py(A) =0so —E;log X, —
0o. By Exercise 12, —FE; log X, < —E; logp;l < 7, so that r, — oo, which
yields a contradiction. Hence, we cannot have Py(A) = 0 and P;(A) > 0.
Similarly, there cannot exist A € F with Pi(A) = 0 and Py(A) > 0. The
lemma, follows. O

E,log X,, = P;(A,)log

+{1 - Pi(4n)}log

Combining these two lemmas yields the following.

Theorem 4. P, and P, are either equivalent or orthogonal and are
orthogonal if and only if r, — co.

As the following corollary notes, we can determine the equivalence or
orthogonality of Py and P, by first considering the equivalence or or-
thogonality of G(0,Kjp) and G(m;, Ko) and then that of G(0,Kp) and
G(0,K;).

Corollary 5. G(0, Ko) = G(my, K1) if and only if G(0, Ko) = G(m4, Ko)
and G(0, Ko) = G(0, K} ).

Proor. If (11) is false, then G(0,Kp) L G(my, K1) and G(0,Kp) L
G(0, K1), so the corollary holds in this case. If (11) is true, then from
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(12), 7, tends to a finite limit if and only if both Y ;_; (1 - crﬁn)2 and
> r_,m2, are bounded in n. O

Determining equivalence or orthogonality for periodic random
fields

Quite a bit is known about how to establish equivalence of Gaussian
measures for processes possessing an autocovariance function; see Ibrag-
imov and Rozanov (1978, Chapter III) for processes on R and Yadrenko
(1983) for random fields. The proofs in these works are rather technical.
By restricting attention to periodic processes, the problem of establishing
equivalence or orthogonality of Gaussian measures becomes straightfor-
ward. We prove results in this simple case and then just state the
corresponding results for nonperiodic processes.

A process with period 27 in each coordinate will have a spectrum with
support on Z%. For j € Z4, take j > 0 to mean j # 0 and the first nonzero
component of j is positive. Consider the Gaussian random field on R¢ with
spectral representation

Z(x) = X(0) + ) {X(§) cos(i"x) + Y (j) sin(i"x)}, (14)
>0
where the X (j)s and Y'(j)s are independent Gaussian random variables
with EX(j) = u(j), EY(j) = v(j), var{X(0)} = f(0) and var{X(j)} =
var{Y (§)} = 2/(3) for j > 0. Then EZ(x) = u(0) + ¥y {(j) cos(iTx) +
v(j)sin(jTx)} and

K(x-y)=cov{Z(x),Z(y)} = D f(i)cos {i"(x—y)}  (15)

jezd

if we set f(—j) = f(j)- Under these conditions, for the sum (14) to exist
as an L2 limit of finite sums for all x, it is necessary and sufficient that
> f(3) < oo and 35 o{n(i)? + v(j)?} < co. Indeed, by a relatively simple
version of Bochner’s Theorem, it is not difficult to show that a function K
from R? to the reals is a continuous positive definite function on R¢ with
period 27 in each coordinate if and only if it can be written as in (15)
with all f(j)s nonnegative, f even and ) f(j) < co. We see that f is the
spectral density of the process with respect to counting measure on the
integer lattice.

The explicit representation in (14) of a periodic random field as a sum
of independent random variables makes it relatively easy to study. In par-
ticular, for two such Gaussian measures with mean functions mg and m;
having period 27 in each coordinate and autocovariance functions defined
by spectral densities fy and f; on Z¢, it is a simple matter to determine
their equivalence or orthogonality. First, as previously noted, we can as-
sume without loss of generality that the mean under Pp is 0 and let u(j)
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and v(j) be the Fourier coefficients for the mean under P;. Letting ji, jo,. ..
be some listing of those j in Z¢ for which j > 0, the sequence of random
variables X (0),Y (1), X(§1),Y (j2), X (j2), - - . forms a basis for the Hilbert
space of random variables generated by Z(x) for x € (0,27 under the
inner product defined by fo. Defining 7, as in (10) and 7 = lim,_,o0 7'n, We
get

5 [RO =f0? , a oay [ L 1
‘ZZ:[ wie 00 -0 7+ 7]

where 1 and v are taken to be even functions and v(0) = 0. This definition
is appropriate even when some f;(j)s are 0 as long as 0/0 is defined to be 0
and a positive number over 0 is defined to be co. By Theorem 4, Py and P,
are equivalent if r is finite and are otherwise orthogonal. If fo(j) < f1(j),
which is necessary for equivalence, then r < oo if and only if

AW - @), k@ +v@?| _
P> [{ w5 }< | 1o

In one dimension, we can rewrite (16) in terms of the mean and au-
tocovariance functions when fo(j) < f1(j) < (1 +5%)7P for j € Z and
some positive integer p. First consider the case where the autocovari-
ance functions are equal. Set Py = G(,2+](0, K) and P; = G(g,24](m1, K)
where K(t) = 3°72_, f(j) cos(jt) and my(t) = po + 3272, {u(j) cos(jt) +
v(j)sin(jt)}. Then 322 {u(5)* + v(5)?}/f(4) is finite if and only if

Z;‘;o{ﬂ(j)z + v(5)?}4?7 is, which in turn is equivalent to mﬁ”‘” existing

and being absolutely continuous on R with almost everywhere derivative

mgp ) satisfying

/027r {m(lp) (t)}2dt < 00 (17)

(Exercise 14). Now consider the case where the means are both 0 and de-
fine k(t) = Ko(t) — Ki1(t). Then (16) holds if and only if }>; ,{f1(j) -
fo(j)}%5% < oo, which in turn holds if and only if k(2P~1) exists and is ab-
solutely continuous on R with almost everywhere derivative k(2P satisfying
(Exercise 14)

/02" (k@ (#)}?dt < co. (18)

Determining equivalence or orthogonality for nonperiodic
random fields

The results for nonperiodic random fields possessing a spectral density with
respect to Lebesgue measure look quite similar to those for periodic random
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fields but are considerably harder to prove. Let us first consider results in
the spectral domain. Define Q¢ to be those functions f : R* — R such that

f(w) < |$p(w)|? as w| — oo (19)

for some function ¢ that is the Fourier transform of a square-integrable
function with bounded support, where a(w) < b(w) as |w| — oo means
there exists a finite constant A such that a(w) < b(w) on |w| > A. Then
for fo € Q% and any bounded region R C R?, Gr(0, Ko) = Gr(0, K,) if

for some C < o,
fi(w) = folw)\®
R e EERL 20)

This result is a minor extension of Theorem 4 in Yadrenko (1983, p. 156).
Moreover, Yadrenko (1983) gives nontrivial sufficient conditions for or-
thogonality of Gaussian measures with different spectral densities, but the
results are rather messy. Ibragimov and Rozanov (1978, Theorem 17 of
Chapter III) state that for a process on R, (20) is necessary and sufficient
for equivalence of the Gaussian measures on any finite interval. However,
the claim of necessity is false (Exercise 15) and furthermore, appears to
be unintended by the authors in light of the discussion on page 107 on
conditions for orthogonality. A reasonable conjecture is that if (20) does
not hold then there exists a bounded region on which the corresponding
Gaussian measures are orthogonal.

The condition fy € Q¢ does not have an analogue for periodic random
fields, so it is worth further scrutiny. For simplicity, I only consider processes
on R here. Exercise 16 asks you to show that if f is a spectral density on
R and f(w) < w™* as w — oo for some a > 1, then f satisfies (19).
Now let us consider what kinds of spectral densities Q¢ excludes. Suppose
p(w) = [ c(t)edt, where c has bounded support and is not 0 on a set
of positive measure. Denoting by ¢z the convolution of ¢ with itself, we have
that |#|? is the Fourier transform of cz. Now ¢z has bounded support and is
not 0 on a set of positive measure, so cz cannot be analytic on the real line.
This lack of smoothness in ¢, implies that |¢|?> cannot be arbitrarily small
at high frequencies. To see this note that c square integrable implies |¢|? is
integrable, so that ca(t L[ |¢(w)|?e~*!dw. Thus, for example,
|#|? cannot possess a Laplace transform in a neighborhood of the origin,
since that would imply that ¢ is analytic on the real line (Exercise 17).
Therefore, Q' excludes spectral densities such as e~“! and e

If fo possesses a Laplace transform in a neighborhood of the origin,
then (20) no longer implies the equivalence of the corresponding Gaussian
measures. More specifically, two nonidentical stationary Gaussian measures
are orthogonal on any interval of positive length if either of them has a
spectral density possessing a Laplace transform in a neighborhood of the
origin. This can be proven by first recalling (Exercise 16 in 2.7) that if
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a stationary Gaussian process Z with analytic autocovariance function is
observed on [—T,0] for T > 0, then for any t € R, Z(t) can be predicted
without error with probability one. Next, Yaglom (1987a, p. 234) shows
that the autocovariance function K of a Gaussian process observed on all
of R can be obtained at any given ¢ > 0 with probability one if

T
lim 77! / K(t)%dt = 0. (21)
T—o0 0

If the spectral density exists, then (21) follows from the Riemann-Lebesgue
Lemma, which says that the Fourier transform of an integrable function
tends to 0 as its argument tends to +oo (Stein and Weiss 1971, p. 2).
Now suppose that Ky and K; are two autocovariance functions, and Kj is
analytic and has a spectral density. Then for any T > 0, G (0, Kp) =
Gr(0,K;) if and only if Ko = K;, where Gr(m,K) = G 1)(m,K)
(Ibragimov and Rozanov (1978, p. 95) or Exercise 18). The reason an-
alytic autocovariance functions are not excluded from (16) for periodic
processes is that the perfect extrapolation of the process from [0, 27] to R,
although possible, does not provide any new information about the autoco-
variance function K, and hence K cannot be reconstructed with probability
one. Of course, (21) is not satisfied for a periodic process with continuous
autocovariance K unless K is identically 0.

Let us next consider spectral conditions for equivalence if only the mean
function is misspecified. For a closed region R C R? and f bounded, Ya-
drenko (1983, p. 138) shows Gg(0, K) = Ggr(mi, K) if and only if m; can
be extended to a square-integrable function on all of R¢ whose Fourier
transform M, satisfies

|7 (w)[?
/Rd —_f(w) dw < 0.

If R = R%, then there is no need to extend m;. Comparing this result to
Theorem 13 of 3.8, if f is bounded away from 0 and oo on bounded sets, we
see that Gra (0, K) = Grae(m;, K) implies the uniform asymptotic optimal-
ity of pseudo-BLPs using the wrong mean function based on observations
at djforall jeZ4 as 6 | 0.

In one dimension, analogous to (17) and (18) in the periodic setting, there
are results in the time domain on the equivalence of Gaussian measures.
Consider Gaussian measures G (0, K) and Gr(m;, K) for T > 0, where K
has spectral density f. If for some positive integer p,

fWw?® <1 as w— oo, (22)
then G(0, K) = Gr(my, K) if and only if mg”_l) exists and is absolutely

continuous on [0, T'] with almost everywhere derivative mgp)

/0 ’ {mgm (t)}2 dt < oo (23)

satisfying
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(Ibragimov and Rozanov, 1978, p. 92), which can be compared with (17).
Since (22) means Z is exactly p — 1 times mean square differentiable under
G(0, K), loosely speaking, we see that (23) says that if the difference of
mean functions has one more derivative than the stochastic part of Z, the
two models are equivalent.

Next consider Gaussian measures Gr(0, Kp) and Gr(0, K,) for a sta-
tionary process Z on R. Define k(t) = Ko(t) — Ki(t). For fo satisfying
(22), Gr(0, Ko) = Gr(0, K, ) if and only if k£(2»~1) exists and is absolutely
continuous on (—T,T) with almost everywhere derivative k(?P) satisfying

/OT {k(2”)(t)}2(T~t) dt < o, (24)

which follows from Theorems 13 and 14 of Ibragimov and Rozanov (1978,
Chapter IIT). Note that (22) implies K$P~? is not differentiable at 0, so
for equivalence we require that the difference between the autocovariance
functions be smoother than either of them separately. If, say, f1(w) > fo(w)
for all w, then we can define independent 0 mean Gaussian processes X and
Y with spectral densities fo and f; — fo, respectively, so that Gr(0, Ko)
is the law of X on [0,7] and Gr(0,K;) is the law of X +Y on [0,T].
In this case, (24) has the loose interpretation that we cannot distinguish
between X and X +Y if Y has one more derivative than X. Note that (24)
allows us to verify the claim of the preceding section that if Ky(t) = e~
and K;(t) = (1 - |t|)*, then G1(0, Ko) = G7(0, K)) if and only if T < 1
(Exercise 19).

Measurement errors and equivalence and orthogonality

This subsection examines the equivalence and orthogonality of Gaussian
measures on a sequence of observations of a random field with measurement
error. Let us suppose that the observation locations are all contained in a
region R and that the sequence is dense in R. The basic message is: if
the variance of the measurement error is different under the two measures,
then the measures are orthogonal and, if the variances are equal, then the
measures are equivalent if and only if the Gaussian measures for the random
field on R are equivalent.

To be more specific, for i = 0,1, let Gr(m;, K;) be two Gaussian mea-
sures for a random field Z on a region R and let X = {x1,xs,...} be
a sequence of points in R. For j = 1,2,..., define ¥; = Z(x;) + ¢;,
where under model i, €1,¢€a,... are independent of Z and independent
and identically distributed N(0,02). Thus, under model ¢, the distribu-
tion of (Y,Ya,...,Y,)T is N(E;Zn,covi(Zn,ZY) + 0?1), where Z, =
(Z(x1),.-.,2(xy))T. Write Gx(m;, K;,0?) for the probability measure of
Y1,Ys,... under model i.
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Theorem 6. Suppose all points in R are limit points of R, Z is mean
square continuous on R under GRr(mg, Ko) and that X is a dense sequence
of points in R. If 02 # 0%, then Gx(myg, Ko,02) L Gx(my, K;,02). Ifod =
o2, then Gx(mo,Koyffo) Gx(m1, K1,0%) if and only if Gr(mo, Ko) =
Gr(my, Ky).

PRrOOF. I just provide an outline of a proof, leaving the details as a series
of exercises. The key point to the proof is to show that Hg(mg, Kp) is
contained in the Hilbert space generated by Y7,Y53,... (Exercise 21). This
result can be proven by noting that for any x € R, we can find a,, | 0 such

that d(x,n) = Z;;l 1{|x — x| < an} — 0o as n — 00, so that

d(x > Z {Ix—x;] <an}Y; 5 2(x) (25)

as n — oo under Ggr(mg, Kp). It follows that if Z is not mean square
continuous on R under Gr(m,, K1), then Gr(mg, Ko) L Gr(m1, K1) and
Gx(mo, Ko,08) L Gx(my, K1,0?), whether or not 02 = o2 (Exercise 22),
so let us now suppose Z is mean square continuous on R under either mea-
sure. We can then correctly recover the measurement error variance with
probability 1 under either model (Exercise 23), so that Gx(mg, Ko,03) L
Gx(m1,K1,0%) if 02 # o2. If 02 = 0? and Gg(mo, Ko) = Gr(mi, K1),
then the two Gaussian measures on the o-algebra generated by {Z(x) :
x € R} and €,€2,... are equivalent. In addition, Y7,Y>2,... are mea-
surable on this o-algebra, so that Gx(mg,Ko,02) = Gx(mi, K1,0%)
(Exercise 24). Finally, if 02 = 0? but Gr(mo, Ko) L Gr(m1, K1), then
the fact that Hgr(m;, K;) is contained in the Hilbert space generated by
Y1,Ya,... under Gx(m;, K;,0?) implies G x(mg, Ko,02) L Gx(m1, K1,0%)
(Exercise 24). a

Proof of Theorem 1

We now return to proving Theorem 1, stated earlier in this section. Let
F be the spectral distribution function for the process, so that if F' is the
spectral measure, F'(w) = F((—oo,w]). Recalling that A4(r) = (—7r, 7r]?,

then
w(2) (225 (7)
:2/;(:6’""7'/" (l—cos—) dF(w)

=2/Al(n)ei“’j/" (l—cos——) dF,(w),

where F,(w) = 3252 ___ F((7n(2j — 1),27jn + w]) for w € A;(n) and the

j=—00
integrals are interpreted in the Riemann—Stieltjes sense. Using F' symmetric
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about 0, it follows that

Feofe()x(2) x5 en
—af, (=) (1= 2) Sn- a0 o).

From (5), it suffices to show (26) tends to 0 as n — oo. First,

)ei(w—v)f/n

_ nei(w—u)/n{l _ ei(w-—u)/n} _ ei(w—u)/n{l _ ei(w—u)}
- {1 — ei(w—u)/n}z

n2

(27)

uul

<___—
1+nsin' o

for v,w € A;(n) (Exercise 5). Thus,

rf(n—j){zx (%) _K(j_::_l) _K(%l)}z

j=1
1 w?v? - .
K ————— dF,(w) dF,(v).

nZ/A,_,(n)1+nsml“’ e (@) dFa(v)

Suppose {c,} and {d,} are positive sequences such that ¢, — oo,
cn = o(n’?), d, — oo and d,/c, — 0 as n — oo. Divide Az(n)
into three regions: R; = Az(cn); Rz, the part of Ay(n)\R; for which
nsin |(w — v)/(2n)| < d,; and R3, the rest of Az(n) (see Figure 1). Now,
cn = o(n'/?) implies

2,2 . .
—1-2-/ Y 4F(w)dF,(v) =0
n® Jp, 1+ns1n|“’—2n—"|

as n — oo. By Pitman’s Tauberian theorem (Theorem 4 of 2.8), f’ (=t) ~
C/t as t — oo for a positive constant C. Thus, defining H, (w) = Fy,(7n) —
F(w), we have H,(w) < 1/w for 0 < w < 7n (Exercise 6). For a > 1,

/ wdF, (w) = —w*H,(w) g" + a/ W H, (w) dw
(0,mn] 0

< n (28)
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FIGURE 1. Regions of integration in proof of Theorem 1. Horizontal stripes
indicate R;, diagonal stripes indicate Ry and unstriped area is Rs.
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so that
2,2 ; ;
3 | Tl AR dF)
n? Jg, 1+ nsin|%%|
2)%dF, (w) dF,
<<n2dn/Rawu Fp(w) (v)

<

2
1 / 9,5
wdFy,(w -0
— { o P )}

as m — 00, since d,, — oco. Finally,

= / ——ﬂ——an(w)an(u)

n2 R, 1 +nsin |42
1 - -
< 2/, VvidF, (w) dF, (v)
2
2 ~ ~ -
< 2 vt {Fn(u+dn) - F,(v- dn)}an(u),

(ecn—dn,mn]
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where if v + d,, > mn, ﬁ’n(u +d,) = Fn(wn) + F‘n(u + d,, — 2mn). Now, for
any positive integer jo and all v € (¢, — d,, 70},

v{Fy(v +dy) — Fu(v —dy)} (29)

Jo

<v Z {ﬁ’n(21rjn +v+d,) - F,(2mjn+v — dn)} + 2nnF(—2mjon).

Jj=—Jo
Since F(~t) ~ C/t as t — oo, given € > 0, we can choose jo such that
2mnF(—2mjon) < € for all n sufficiently large. Again using Pitman’s Taube-
rian theorem, it is possible to show that the first term on the right side of
(29) tends to 0 uniformly for all v € (¢, — dn,7n] (Exercise 7). Since € is
arbitrary, it follows that V{Fn(l/ +d,) — F,(v — dn)} — 0 uniformly for
all v € (¢, — dn, mn] (Exercise 7), so by (28), the contribution to (26) from
R, tends to 0 as n — oo. Since the first term on the right side of (5) is
O(n~1), the theorem follows. Exercise 25 outlines a time-domain proof of

Theorem 1.

Exercises
1 Prove (1).
2 Use (1) to show that (2) or (3) imply Py L P;.

3 Suppose U, is defined as in (4) and K(t) = C — D|t| +o(|t]) ast — 0
for some D > 0. If K has a bounded second derivative on (0, 1] then
EU, = D+ O(n™!) and varU, = 2D?*n"! + O(n~2). If, in addition,
K" is continuous on (0, 1], show that EU, = D + an™! + o(n™!)
and varU, = 2D?*n"! + Bn~2 + o(n"2) as n — oo and give explicit
expressions for a and (.

4 Use Theorem 1 to show that if K;(t) = C; — D,|t| + o(|t|) as t — 0
for D; > 0 for j = 0,1 with Dg # D;, then Gg(0, Ko) L Gr(0, K1) on
any interval of positive length.

5 Verify (27).

6 Verify the claim in the proof of Theorem 1 that H,(w) < w™! for
0<w< mn.

7 In the proof of Theorem 1, show that the first term on the right side of
(29) tends to 0 uniformly for all v € (¢, — dp, 7n]. Show that it follows
that v{F,(v + dy,) — Fp(v — dn)} — 0 as n — oo uniformly for all
v € (cp — dp,mn].

8 For K(t) = (3 — ]t])+, show that for U, as given in (4), varUs, ~
an~! and varUs,41 ~ fn~! as n — co. Find a and 8.

9 For W,, as defined in (6) and Z a Gaussian process, show that as
n — oo, EgW, — -1, E;W,, — 0, varg W,, — 0 and var, W,, — 0 for
R=1[0,2], mg=m; =0, Ko(t) = (1 —[t|)" and K (t) = e I*.
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Show that for a mean square continuous random field Z on R?, the
closed real linear manifold of Z(x) for x € R is a separable Hilbert
space.

Verify the expressions for log p,, in (8) and for the mean and variance
of logp,, under Py and P, in (9).

Consider probability spaces (R, F, Pp) and (Q, F, P;) with P, abso-
lutely continuous with respect to Py and let p be the Radon-Nikodym
derivative of P; with respect to Py. If 7/ C F is a o-algebra on (,
show that

Eq[log{Eo(p™"|F")}] < log{Eo(p~")}.

Note that to apply this result in the proof of Lemma 3, we should
take Q@ = R"™, F the Borel sets on R™ and F’ to be F), as defined in
Lemma 3.

In the proof of Lemma 3, verify that there exists a sequence of events
Aj, Aa, ... where A, is measurable with respect to the o-field generated
by hi,...,hn such that Py(Ao A,) — 0 as n — oo.

Consider a Gaussian process on R with period 2x. For a positive in-
teger p, suppose fo(j) =< fi1(j) < (1 + j5?)7P for j € Z. Show that
Gr(0, Ko) = Gr(m, Ky) if and only if m(~1) exists and is absolutely
continuous and has almost everywhere derivative satisfying (17). In ad-
dition, for k = K¢— K, show that Ggr(0, Kq) = Ggr(0, K1) if and only if
k(2P—1) exists and is absolutely continuous and has almost everywhere
derivative satisfying (18).

Show by example that for d = 1 the integral in (20) can be infinite and
yet Gr(0, Kg) = Gr(0, K,) for some positive T'.

Show that if f is a spectral density on R and f(w) < w™® as w — oo for
some o > 1, then f satisfies (19). This result is (4.31) in Chapter III
of Ibragimov and Rozanov (1978).

Show that if a function on R possesses a Laplace transform in a neigh-
borhood of the origin, then its Fourier transform is analytic on the real
line.

Applying (21), provide the details showing that if Ko and K; are
two autocovariance functions on R, Kj is analytic and has a spectral
density, then G7(0, Ko) = Gr(0, K1) for T > 0 if and only if Ky = K.

If Ko(t) = e~ " and K)(t) = (1 - |t|)", show that (24) implies that
Gr(0,Kp) = Gr(0,K;) if and only if T < 1.

If T > 0, Ko(t) = el and in a neighborhood of the origin, K;(t) =
K1(0) — |¢| + DI¢|” + o(|t|") as t — 0 for v € (1, 2] and some D # 0,
show that Gr(0, Ko) L Gr(0, K3).
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In Exercises 21-24, assume that the conditions of Theorem 6 hold.

Show that (25) holds and hence that Hg(mo, Ko) is contained in the
Hilbert space generated by Y7,Y5,.. ..

If Z is not mean square continuous on R under Ggr(m;, K1), show that
Gr(mo, Ko) L Gr(my, K1) and Gx(mo, Ko,03) L Gx(m1, K1,0%).

Show that it is possible to recover o3 with probability 1 from
Y1,Ys,... under Gx(myg, Ko,03). Hence, show Gyx(mo,Ko,08) L
Gx(m, Ky,0?) if 02 # o2.

Suppose Gr(mo, Ko) = Gr(mi, K)). Prove that Gx(my, Ko,0?) =
Gx(mi, K1,0?). Suppose Gr(mo, Ko) L Gr(my, K;) and Z is mean
square continuous on R under both models. Prove that G x(mqg, Ko, 0?)
is orthogonal to Gx(m,, K;,0?).

Prove Theorem 1 by completing the following argument. Suppose for
n=1,2,... that X;,,...,X,, is a sequence of random variables sat-
isfying var X;, = 1 for all ¢ and n, cov(X;n, X;n) depends only on
i— 7 and n for all 4,57 < mn and all n, and for any fixed j > 1,
cov(Xin, Xjn) — 0 as n — oco. Let X, = n~! Z;.LIXJ-”. The plan
is to prove var X, — 0 as n — oo and then to show that this result
implies Theorem 1.

i. Given € > 0 and j finite, choose ng > j such that for all n > nyg
and 1 < k < j, cov(X1n, Xkn) < €/4. Let 3, be the covariance
matrix of (Xin,...,Xjn). Using Theorem 8.1.3 of Golub and Van
Loan (1996), show that for all n > ng, the eigenvalues of X,, are
allin [1 —¢,1+¢].

ii. Letokn = cov ((Xkn,---, Xk+j—1,n)7, X1n). Prove o, X o, <
lforalll1<k<n-—jandaln>j.

iii. Show that a‘,{nakn <1/(1—¢€)foralln >mnpandalll <k <n-—j.
iv. Show that

Z COV(Xln, Xjn) _<_ nl/z{

=1

n 1/2
Zcov(Xm,Xjn)z} .

j=1

v. Show that

= 1
> cov(Xum X < (2 +1) 2.
s J 1—c¢

vi. Show that var X, — 0 as n — co.

vii. Prove Theorem 1.
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4.3 Applications of equivalence of Gaussian
measures to linear prediction

Suppose Py and P, are equivalent Gaussian measures for a random field
Z on a closed set R and let H be the Hilbert space generated by Z(x)
for x € R. Then there is only a finite amount of information in H for
distinguishing between Py and P;. Furthermore, if H is separable with ba-
sis hy, hg, ..., then for n large, most of the information for distinguishing
between these measures is contained in H,, the Hilbert space generated
by hi,...,h,. Under Py, eg(h,n) is independent of H,,, by which I mean
that eg(h,n) is independent of all elements of H,. If eg(h,n) were not
nearly independent of H, under P;, then that would mean that h con-
tained a nonnegligible amount of information for distinguishing P, from
Py not contained in H,. This suggests eg(h,n) = e;(h,n) when Py = P;.
Furthermore, if Eje;(h,n)? is not approximately Ege;(h,n)?, then again
h would contain a nonnegligible amount of information not contained in
M, for distinguishing the measures, suggesting E;e;(h,n)? & Eye;(h,n)?
when Py = P;. The goal of this section is to formalize this argument for
arbitrary separable Hilbert spaces of Gaussian random variables and then
apply it to obtain results on the asymptotic optimality of pseudo-BLPs
under fixed-domain asymptotics.

I use the following notation throughout this section. Let hj, hs,... be a
sequence of random variables that are linearly independent under (0, Kp),
let H° be the real linear manifold of this sequence and define H(m, K) to
be the closure of H° with respect to the inner product given by (m, K).
As noted in 4.2, we can take the mean under Py to be 0 without loss
of generality and I generally do so throughout this section. Let m; be
a real linear functional on H°. Take 1;,s,... to be the Gram-Schmidt
orthogonalization of hi,hg,... under (0, Ko) so that Ko(¢;,¥x) = ;.
Define

bjr = K1(¢j,%x) —6;x and p; = E1v;. (30)

As in the previous section (see (7)), let hyn,...,hn, be a linear transfor-
mation of hy,...,h, such that for j,k = 1,...,n, Ko(hkn, hjn) = 6x; and
K1 (hkn, hjn) = a;‘-’nékj and set Mg, = m1(hrn)-

The next theorem shows how to determine the equivalence or orthogo-
nality of Gaussian measures in terms of the b;xs and p;s. It combines (2.20)
and the last equation on page 78 in Ibragimov and Rozanov (1978).

Theorem 7. Suppose vargh < vari h for h € H°. Then G(0,K,) =
G(m1, K1) if and only if

> b <o (31)

jk=1
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and
oo
> u? < oo (32)
j=1
PROOF. There exists an nxn orthogonal matrix A such that A(¢; ...4,)T
= (h1ny--- hnn)T. Letting K be the covariance matrix under K; of
V1y-eey¥n, it follows that 02,,,...,02,, are the eigenvalues of K and hence

that (1 — o' )2 for j = 1,...,n are the eigenvalues of (I — K)2. Since the
trace of a matrlx equals the sum of the eigenvalues, we have
n

Y (1-a2,) =tr{(I-K }_Z (33)

ji=1 7,k=1

Letting m = (u1,...,un)7, then A orthogonal implies | Am||? = ||m||?, or

Z m?n = Z ,u?‘ (34)
j=1 j=1

Define a = Z;”kzl b and 8 = 372, 42, so that by (33) and (34),
Yi=1(l—0%,)> = aand 37, m?, — B as n — oo. Theorem 4 and (12)
imply that o and 3 are finite if and only if G(0, Ky) = G(m, K1). ]

Asymptotically optimal pseudo-BLPs

If (0, Ko) is the correct second-order structure, we can apply Theorem 7
to show that pseudo-BLPs under a second-order structure (m;, K;) satis-
fying G(0, Ko) = G(m, K1) are asymptotically optimal and the presumed
mses of the pseudo-BLPs are asymptotically correct. The following result
combines Theorem 3.1 and Corollary 3.1 of Stein (1990a).

Theorem 8. Suppose (0, Kg) and (my, K1) are two possible second-order
structures on H° with G(0,Ko) = G(my,K;). Let H_,, be made up of
elements h of H(0, Ky) for which Egeg(h,n)? > 0. Then

Ereg(,n)? — Egeo(t, n)?

lim su =0, 35
no0 yert Eoeo(1,n)? (35)
. Eoer(¥,n)? — Ere1(,n)?
lim su =0, 36
n—oo 1/)67_2" Elel(w,n)2 ( )
. Epe;(y,n)? — Eogeo(, n)?
lim su =0 37
n—oo wenlin Eoeo(1),n)? (87)
and
2 2
lim sup i) = Biei(n)t (38)

n—0 yeH_, Eyei(y,n)?
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Before proving this result, a few comments on the assumed conditions
are in order. The restriction to H_,, is just to avoid dividing by 0; if we
defined 0/0 to be 0, the suprema in (35)—(38) could be over H(0, Kj) in-
dependent of n. A more consequential condition is that the sequence of
observations is also the basis for all possible predictands. This condition
generally excludes “distant” extrapolations such as hy, hs, ... being a dense
sequence of observations of a process Z on, say, [0,1] and predicting Z(2).

PROOF OF THEOREM 8. For ¢ € H(0, Ko), we can write ¢ = 322, ¢;9j,
the limit existing in L? under either (0, Ky) or (m;, K1), where Zcf < 00.
Then the error of the BLP for ¢ given H,, under (0, Kp) is

oo

eo($yn) = Y ¢

j=n+1

Define b;x and p; as in (30). If Egeo(,n)? > 0, then as n — oo,

o0 o0 2
E1€0(¢an)2—E060(1/)7")2| < j’kz—:""'lcjc’cb]k i (j=2n:+ICJN])
Eoeo(v,n)? B § 2
j=n+1 !
00 1/2 00
s{ > bﬁk} + > M (39)
Jrk=n+1 j=n+1

by twice applying the Cauchy-Schwarz inequality. The right side of (39)
does not depend on 3 and, by Theorem 7, tends to 0 as n — oo, so (35)
follows. Switching the roles of K and K yields (36). Next, since Eje? <
Eleg,

Epei(y,n)*  Egei(y,n)? Eie(y,n)* Ereo(,n)?
Eoeq(y,n)?>  Ere1(y,n)? Eieo(y,n)? Eoeo(v,n)?
< Eoer(¢,n)*  Eeo(y,n)?
~ Eiei(¥,n)? Egeo(v,n)?’
so (37) follows from (35) and (36). Again switching the roles of Ky and K;
yields (38).

Note that we have only used the properties of Gaussian measures through
the result that equivalence of Gaussian measures implies (31) and (32).
Thus, (35)—(38) follow from (31) and (32), whether or not the elements of
HO are jointly Gaussian. O

)
)

We can combine Theorems 6 and 8 to prove that if a random field Z is
observed with measurement error whose variance is the same under either
model, the conclusions of Theorem 8 on the behavior of pseudo-BLPs still
apply.
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Corollary 9. Suppose Z is a random field on R, x1, X2, ... is a sequence
of points in R C R? and Y; = Z(x;) +¢; for j = 1,2,... where the ;s
have mean 0, are uncorrelated with Z and each other and have variance o2
under either (mg, Ko) or (m1, K1). For ¢ € Hg(0, Ko), define e;(y,n) to
be the error of the BLP of ¢ based on Y1,...,Y, when Z has second-order
structure (m;, K;). Assume all points in R are limit points of R, Z is mean
square continuous under (0, Ky), Gr(0, Ko) = Gr(mi, K1) and x1,Xa, ...
are dense in R. Then (35)-(38) in Theorem 8 all hold where, independent
of n, H_, is defined as all nonzero elements of Hr(0, Ko).

The proof is left to the reader (Exercise 26).

Observations not part of a sequence

Taking the observations to be a sequence forming a basis for the Hilbert
space of possible predictands is convenient mathematically but excludes
some settings of interest in fixed-domain asymptotics. For example, for
R =0, 1], it excludes taking observations at j/n for j =0, ...,n and letting
n — 00, since the observations are not nested as n increases. Furthermore,
if R = [0, 7], it excludes taking H, to be the Hilbert space generated by
Z(t) for t € [0,T — €,] with €, | 0 as n — oo, which was considered in
Stein (1990d). The following result covers both of these settings.

Theorem 10. Suppose (0, Ko) and (m, K1) are two possible second-order
structures on H® with G(0, Ko) = G(my, K1). Forn =1,2,..., let H,, be
a sequence of subspaces of H(0, Ko) such that for any given h € H(0, Ko),
Eoeg(h,n)? — 0 as n — oco. Then (35)-(38) hold.

In contrast to Theorem 8, we have the additional assumption that
Epeo(h,n)? — 0 as n — oo for any h € H(0, Ky). This condition is an
immediate consequence of the formulation of Theorem 8 (Exercise 27), so
it is unnecessary to include it as an assumption in that result. The role
of this assumption in Theorem 10 is to ensure that H, “approximates”
H(0, Ko) well when n is large, so that most of the information in H(0, Kq)
for distinguishing between G(0,Ko) and G(m;, K;) is contained in H,
when Z is Gaussian.

PROOF OF THEOREM 10. I provide an outline of a proof; the details are
left as a series of exercises. Under the inner product defined by (0, Kj), let
ut,u3,... be an orthonormal basis for H, of length 6, and v7,v3,... an
orthonormal basis for its orthogonal complement of length -, (both 8,, and
v may be oo) so that the two sequences together form an orthonormal
basis for H(0, Ky). Define a%y = Ki(u},up) — 8jk, by = K (v}, v) — 8k,
ch = Ky (u},vg), v = Eiu} and u} = Eyv}. Let H_, be the subset of
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H (0, Ko) for which Egeg(1,n)? > 0. For 9 € H_,,, similar to (39),

Bualb oo < £ 3% g e} 4 Sy
Eoeo(,n)? < j,k2=1( k) +j;(u] .

Defining o and 3 as in the proof of Theorem 7, then similar to (33) and
(34),

On On Tn

YDICARED 3 DA PIA

k=1 j=1lk=1 k=1

and
On Tn
D WP+ W) =6
j=1 j=1

for all n. Thus, (35) holds if

en
lim Z (@) =a (40)
n—o00 jk=1
and
en
lim > (v})? = 8. (41)
Jj=1

Consider (40); the proof of (41) is left as an exercise (Exercise 28). As in (7),
let hy,ha, ... be a linearly independent basis for H(0, Ko) and hip, ..., hyp
a linear transformation of hy,...,h, such that Ko(h;p, hxp) = 6% and
Ki1(hjp, hip) = 02,05k for j,k < p. From Theorem 7, >°%_, (1 — 07,)® con-
verges to a finite limit as p — oo; call this limit a. Thus, given € > 0, we
can find p such that 3°°_, (1 — 0%,)? > & — €. Define g, to be the BLP of
h;p based on H,, and Q" the covarlance matrix of (¢7,,- - ., gp,) under K;.
Then Qf, - T asn — oo and Q7, converges to the diagonal matrix with
diagonal elements o%,,.. (Exercxse 29). Using (33) it can be shown
that

P
lim tr [{1-(Q5,)7'Q5}] = D (1 - 02,)? (42)
j=1

(Exercise 30). Furthermore, for all n,

0n
n - n 2 n
tr[{1- @) 'Q5 ] < 3 @ (43)
J,k=1
(Exercise 31), and (40) follows since € is arbitrary. a

As we show in Theorem 12, the condition G(0, Kg) = G(0, K1) is stronger
than necessary to obtain uniformly asymptotically optimal predictions. We
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do have a converse of sorts to Theorem 10 when only the mean is misspeci-
fied. Let S be the subspace of H(0, K) generated by the observations. Note
that S is fixed so that the following result is not asymptotic. Furthermore,
if Z is in fact Gaussian, taking Gs(0, K) = Gs(m, K) is not restrictive in
practice, since it would be silly to use a model that is demonstrably wrong
with probability 1 based on the available observations.

Theorem 11. Let (0,Ko) = (0,K) and (my,K1) = (m,K). If
Gs(0,K) = Gs(m, K) and Gx(0, K) L Gy (m, K), then

sup EIGO(h’ 8)2 - EOGO(h’ 8)2 _
heS(0,K) Eoeg(h, S)?

PROOF. Let St be the orthogonal complement to S under the inner
product defined by K; that is, St is made up of those h € H(0, K)
for which Eg(hy) = 0 for all ¥ € S. It is possible to construct an or-
thonormal basis {r;}32, for §* such that p; = m(r;) is finite for all j
(Exercise 32). Then Gs(0, K) = Gs(m, K) and G»(0, K) L Gx(m, K) im-
ply Gs:(0,K) L Gsi(m,K) so that 3372, 2 = oo (Exercise 33). Defining
Tp = Y 5_1 KjT;, the theorem follows since eo(7,,S) = 7, and

Eveo(1p,8)? — Egeo(15,8)? S
EOEO('Tp,S)2 B Z”j -

as p — 00. ]

A theorem of Blackwell and Dubins

Theorem 8, which says that second-order structures corresponding to equiv-
alent Gaussian measures yield asymptotically similar linear predictions,
is essentially a special case of a much more general result on comparing
conditional distributions for equivalent measures due to Blackwell and Du-
bins (1962). Let Py and P; be two probability measures on a sequence of
random variables X;, X, ... and let Pj* and P* be the corresponding con-
ditional measures given F, = o(X1,...,X,), the o-algebra generated by
X1,...,X,. Under a mild technical condition, the Main Theorem of Black-
well and Dubins (1962) says that if P, is absolutely continuous with respect
to Py, then the variation distance between P§" and PJ* tends to 0 with P;-
probability 1. (The variation distance between two measures (€2, F, P) and
(Q, F,Q) is the supremum over A € F of [P(A) — Q(A)|.) Theorem 8 is a
straightforward consequence of this result. Specifically, for Gaussian mea-
sures Py and P, on X1, Xo, ..., if P; is absolutely continuous with respect
to Py, then Theorem 4 implies Py = P;. For h in the Hilbert space H gen-
erated by X, Xs,..., we have as a special case of the Main Theorem of
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Blackwell and Dubins (1962),

Pl{ lim sup |P0"(h§t)—-P1"(h§t)|=:0} =1 (44)
N0 heH teR

Using the fact that the conditional distribution of h given F,, is Gaussian
under P, or Py, it is possible to show (44) holds if and only if

. varg(h | F)
lim sup —————= =1 and 45
nooo pert, vary (| Fr) (45)

E\ {Eo(h | Fp) — Ex(h| o)}

lim su =0. 46
n—o0 henlz,, vary(h | Fr) (46)
Taking h to be eg(h,n) in (46) yields
2
lim sup Ei{eo(h,n) — ea(h,n)} =0, (47)

n—=0 hen_, Esey(h,n)?
which is the same as (38). Combining (47) and (45) yields

2 _ 2
lim Sup EOeO (h, n) Eleo(hi n) — 0 (48)

N0 heH _p EleO(h7 ")2

and Theorem 8 follows, since (47) and (48) are only statements about the
first two moments of the process and do not require Gaussianity. That
is, for a random field on R, Theorem 8 only requires the equivalence of
the Gaussian measures defined by the second-order structures (0, Kp) and
(m1, K1), not that the random field actually be Gaussian. However, as I
have already discussed (see, for example, 1.4), focusing on linear predictors
and their unconditional mses can be a serious mistake if the random field
is not Gaussian.

The result of Blackwell and Dubins also yields conclusions about non-
linear predictions of Gaussian processes. Thus, for example, consider a
Gaussian process Z on R = [0, 1] with Gr(mo, Ko) = Gr(m,,K;) and
t1,t2,... a dense sequence of observations on [0, 1]. Then the conditional
distribution of, say, fol eZ®)dt given Z(t1),. .., Z(t,) is very nearly the same
under G r(mog, Ko) and Gr(m,, K1) for n large.

Weaker conditions for asymptotic optimality of pseudo-BLPs

Theorem 10 of Chapter 3 showed that pseudo-BLPs based on observations
at &j for j € Z? are asymptotically optimal and the evaluations of mse are
asymptotically correct as § | 0 if fi(w)/fo(w) — 1 as |w| — oo. Theo-
rem 12 shows that a similar result holds for the fixed-domain setting when
fo € Q2. The condition f;(w)/fo(w) — 1 as |w| — oo is in practice sub-
stantially weaker than required to obtain equivalence of the corresponding
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Gaussian measures. For example, in one dimension, if fo(w) < w™® for
some o > 1 as w — 00, then Ibragimov and Rozanov (1978, p. 107) note
that w!/2{fo(w) — f1(w)}/ fo(w) — 0o as w — oo implies the corresponding
Gaussian measures are orthogonal on any interval of positive length.

Theorem 12. Consider continuous autocovariance functions Ky and K,
with corresponding spectral densities fo and f, for a mean 0 process Z on
R¢. For R a bounded subset of R?, suppose H,, n = 1,2,... is a sequence
of subspaces of Hr(0,Ky) satisfying Egeg(h,n)? — 0 as n — oo for all
h € Hgr(0,Ko). If fo € Q¢ and fi(w)/fo(w) — ¢ as |w| — oo for some
positive finite c, then

. Eoel(h,n)2
lim sup ———= =1 49
n—oo hG'Hizn Eoeo(h, n)2 ( )
and
. Eye, (h, n)2 {
lim su —_—— —¢| =0. 50
n—oo hgnlf,. Eqe; (h,n)? (50)

PRrROOF. Given € > 0, there exists C. finite such that

fi(w)
cfo(w)

sup —-1{<e

|w|>C

Define

_Jetfi(w) for |w| < C,
9e(w) = { fo(w; for |w| > C..

Using the subscript € to indicate a calculation done assuming g. is the
spectral density,

Eoel(h’ n)2
= Eo [{e1(h,n) — ec(h,n)} + ec(h,n)]?
< Eo {e1(h,n) — ec(h,n)}’ (51)

1/2
+2 [Eo {e1(h,n) — ec(h, n)}2 Epec(h, n)z] + Epec(h,n)?.
By (20), Ggr(0, fo) = Ggr(0, g¢), so by Theorem 8,

. Laoee(han)2
1 —_——=1.
"Lrgo hz;lﬁ,. Eqeo(h,n)? 52)

Set € = 3 so that fo(w) < 2¢7! f1(w) for all |w| > C,. Using Gr(0, fo) =
Gr(0, g,) and Exercise 2 in 4.2, there exists ap < oo such that

Eoh? < agE h® for all h € Hr(0, Ko).

For all € > 0, let us choose C. > C,, which we can always do. Then
geo(w) < 2g.(w), so that Egh? < 2a9E.h? for all e. By Theorem 10, for
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any particular €,

E.e.(h,n)?

lim sup W

n—oo hEH-n

——1|=0

so that for all n sufficiently large,
Eq {e1(h,n) — ec(h,n)}? E.{ei(h,n) — ec(h,n)}*
E()C()(h, n)2 Eeee(h,n)z

for all h € H_,, where ag is independent of ¢. But by Theorem 1 of
Chapter 3,

< 4oy

E.{ei1(h,n) — ec(h, n)}2 €2

< .
E.e.(h,n)? —1-—¢€? (53)

By (51)-(53),

lim sup

2 2 1/2
Epe; (h, n)2 < 4a062 +46( a ) +1
n—=0 peH_, Eoeg(h, n) 1—e€

1-¢2

and (49) follows since € is arbitrary. The proof of (50) is left as Exercise 34.
A result similar to Theorem 12 is given in Stein (1993a), although the proof
there is not valid if f;(w)/fo(w) is unbounded. a

The conditions in Theorem 12 are still stronger than necessary. For
example, if fy satisfies (19) and there exists a density f2 such that

/Rd {fZ(w;O(_wJ;O(w) }2dw < oo (54)

and for some positive finite c,

fo(w)
|w]1£»noo fl (W)

then (49) and (50) hold (Exercise 35 or Stein (1993a)).

Whether fo € Q7 or something like it is needed in Theorem 12 is un-
known. This condition is invoked in the proof to show that the Gaussian
measures corresponding to the spectral densities fy and g. are equivalent
so that Theorem 10 can be invoked. Theorem 10 in 3.8 regarding observa-
tions on an infinite lattice does not require any assumptions analogous to
fo € Q%, which suggests that Theorem 12 may hold even if fo ¢ Q9.

Similar to Corollary 9 of Theorem 8, we can obtain a corollary to
Theorem 12 for a random field observed with known measurement error

o2.

=c (55)

Corollary 13. Forn=1,2,..., let X, = {X1p,...,X;,n} be a finite sub-
set of a bounded set R and set Yj, = Z(Xjn) +€jn for j =1,...,jn, where
the €;n s have mean 0, are uncorrelated with each other and with Z and have
common variance o2 not depending on the model for Z. Fory € Hg(0, Ky),
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define e;(,n) to be the error of the BLP of 1 based on Y1y, ...,Y;.n when
Z has second-order structure (0, K;). Suppose Ky and K, are continuous
autocovariance functions with corresponding spectral densities fo and f, for
a mean 0 random field Z on R%. Assume fo € Q% and fi(w)/fo(w) — 1
as |w| — co. If R is a bounded subset of R® such that all points in R are
limit points in R and

Jim sup ot Ix—y|=0, (56)
then (49) and (50) hold with ¢ = 1, where H_, is taken as all nonzero
elements of Hr(0, Ko)-

Corollary 13 can be proven by first obtaining an analog to Theorem 8
for observations with measurement error and then essentially repeating the
proof of Theorem 12. The condition (56) just says that every point in R is
near a point in &,, when n is large.

Rates of convergence to asymptotic optimality

In 3.8, we were able to give rates of convergence to 0 in (35)—(38) under
additional conditions on fy and f;. Obtaining rates is much more difficult
with observations confined to a bounded region, although I have obtained
some limited results in one dimension (Stein 1990b, 1999). No rate re-
sults are presently available in more than one dimension for random fields
possessing a spectral density with respect to Lebesgue measure.

Stein (1990a) gives some rates of convergence in one and two dimensions
for the easier problem of the mean function being misspecified. The basic
message is that if m; —myg is much smoother than the stochastic component
of Z, the effect of using m; rather than the correct mg disappears rapidly
as the observations get denser in the region of interest.

Asymptotic optimality of BLUPs

Theorem 8 can be used to prove that there is asymptotically little differ-
ence between BLPs and BLUPs (see 1.5) if EZ(x) = BTm(x) and the
components of m are much smoother than the stochastic component of Z,
despite the fact that the BLUE of 8 will not be consistent in this case
(Stein 1990a, Theorem 5.2). The basic idea of the proof is to show that
the BLUP cannot do too much worse than a pseudo-BLP based on a fixed
but incorrect value for 3. Thus, this result is hardly a victory for best lin-
ear unbiased prediction, but merely is a restatement of the fact that the
mean often does not matter asymptotically for prediction when using fixed-
domain asymptotics. Exercise 10 of Chapter 3 gives an explicit example of
the asymptotic optimality of BLUPs.
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Exercises

26
27

28

29

30
31
32

33

34
35
36

37

Prove Corollary 9.

Under the conditions of Theorem 8, show that for all h € H(0, Kj),
Epeg(h,n)? — 0 as n — oo.

Prove (41).

In the proof of Theorem 8, show that Qf — I as n — oo and Q7Y
converges to the matrix with elements 03,,...,02, along the diagonal
and 0 elsewhere.

Prove (42).
Prove that (40) follows from (42) and (43).

In the proof of Theorem 11, show that it is possible to construct an
orthonormal basis {r;}52, for S+ such that u; = m(r;) is finite for all
3.

Under the conditions of Theorem 11, show that Gs(0, K) = Gs(m, K)
and Gx(0,K) L Gy(m, K) imply Gs.(0,K) L Gs1(m, K).

Prove (50).
Show that (54) and (55) imply (49) and (50).

Suppose Z is a mean 0 weakly stationary random field on R? with
actual autocovariance function Ky and presumed autocovariance func-
tion K. For a bounded set R C R¢, define the function f(j(x,y) on
R x R by f(j(x,y) = Kj(x —y). Suppose that for j = 0,1, I~(j can be
extended to a function on R% x R such that K ;(x,y) depends only on

x —y and [p. |K;(x,0)|dx < co. Define

filw) = (771;);; /Rd exp { —iw”x} K;(x,0) dx.

If fo satisfies (20) and f;(w)/fo(w) — c as |w| — oo for some positive,
finite ¢, show that (47) and (48) follow for H,, defined as in Theorem 10.

Suppose Z is a mean 0 weakly stationary process on R, Ko(t) = e~ !t
and K;(t) = (1 — |¢t|)*. Suppose R = [0,7] and that H, is as in
Theorem 10.

(i) For T < 1, use Pélya’s criteria (Exercise 37 of Chapter 2) and the
previous exercise to show that (47) and (48) hold for H,, defined
as in Theorem 10.

Show that (47) and (48) also hold for T' = 1 by filling in the details of
the following argument.
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(ii) Define the function ¢,(t) by taking it to have period 4a~! and
setting ¢4 (t) = 1 — alt| for |t| < 2a~1. Show that ¢, is p.d. for all

a> 0.
(iii) Define %(t) = 1 [7 ¢, (t) da. Show that % is p.d. and that y(t) =
1—|t| on [-1,1].

(iv) Show that 1 has spectral density

H|w| < (25 + )7}
7r3Z (27 +1)3 )

(v) Prove that 7(1 + w?)f(w) — 1 as w — oo.

4.4 Jeffreys’s law

Dawid (1984) discusses principles of forecasting, which he defines as mak-
ing predictions about the n + 1th element of an uncertain sequence based
on observing the first n elements of that sequence. He is specifically con-
cerned with this problem when there is a parametric family of models
P = {P, : 6 € ©} on this infinite sequence of observations with § unknown.
He notes that even if § cannot be consistently estimated as the number of
observations increases, it should still be possible to obtain forecasts based
on estimated values of 8 that do asymptotically as well as forecasts using
the true #. Again, a more succinct statement is “things we shall never find
much out about cannot be very important for prediction” (Dawid 1984,
p. 285). Dawid calls this principle Jeffreys’s law based on the following
statement of Jeffreys (1938, p. 718): “When a law has been applied to a
large body of data without any systematic discrepancy being detected, it
leads to the result that the probability of a further inference from the law
approaches certainty whether the law is true or not.”

Dawid (1984) considers the Main Theorem of Blackwell and Dubins
(1962) to be a mathematical statement of Jeffreys’s law, so that Theorem 8
can be thought of as an example of this law. The Kullback divergence can
be used to obtain a more quantitative connection between discrepancies
between Gaussian measures and linear prediction. Consider two probabil-
ity measures Py and P, on (€2, F). Suppose Y is an F-measurable random
vector and, for simplicity, assume that under P;, Y has density p; with
respect to Lebesgue measure. Then I(Fy, P1;Y), the Kullback divergence
of P, from P, based on Y, is given by Eglog{pe(Y)/p1(Y)}. The larger
the value of I( Py, P1;Y), the more information in Y, on average, for deter-
mining that P; is the wrong measure when P, is correct. Note that r, as
defined in (10) is just I(Po, P1;(h1,---,hn)) + I(P1, Po; (h1,...,hy)). See
Kullback (1968) for the role of the Kullback divergence in estimation prob-
lems and Christakos (1992, Chapter 2, Section 13; Chapter 9, Section 8; and
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Chapter 10, Section 9) for a rather different use of information measures
in modeling and prediction of random fields.

Suppose Y is a vector of observations, Z is the predictand and assume
(Y, Z) has a joint density with respect to Lebesgue measure under either
Py or P;. Then a measure of the additional information in Z not contained
in Y for distinguishing between Py and P; when P, is true is

Po (Ya Z )

po(Y) po(Z |Y)
Eolog =27 _ Eylo = Eplog 22—/
08 (Y, 2) (YY) T % (ZY)

where p; generically indicates the marginal or conditional density of a ran-
dom vector under P;. If (Y, Z) is Gaussian under Py and P; and e; is the
error of the BLP of Z under P;, then

pg(Z | Y) 1 Eoeg Eoe% Eo(el — 60)2
logt—— 2 = — —1-1 7
Eolog 7Yy = 2 \ B2 Eel) T 2E e (57)

(Exercise 38). Now consider a sequence of prediction problems in which
Y, is observed, Z, is the predictand, (Y,,Z,) is jointly Gaussian un-
der Py or P; and ej(n) is the prediction error under P;. Suppose that as
n — o0, there is asymptotically negligible harm in using P; rather than P,
for predicting Z,: Eo{ei(n) — eo(n)}2/Eoeo(n)? — 0 and {Epe;(n)? —
Eie1(n)?}/Epei(n)? — 0 as n — oo, which is exactly the case in
Theorem 10 when ¢ = 1. Then

po(Za | Ys) 1 [Egeo(n)® \°, Eofei(n) —eo(n)}
E"l"gpl(znm)”Z{Elel(n)fl} T S Ee (n)? (58)
Bl Bt } 4 Bolei(m) — eo(m)?

2Epe;1(n)? 2Epeg(n)?

(Exercise 39). Thus, the additional information in Z,, for distinguishing the
measures is approximately i times the square of the relative misspecifica-
tion of the mse plus % times the relative increase in mse due to using P;.
Note that the two terms on the right side of (58) do not necessarily tend
to 0 at the same rate, although results in Chapter 3 (compare (32) to (36)

or (34) to (38)) suggest that they sometimes do.

A Bayesian version

It is possible to give an exact quantification of Jeffreys’s law by taking
a Bayesian perspective. Let P = {Pg : & € O} be a finite-dimensional
parametric family of distributions for (Y, Z). Suppose (6,Y,Z) have a
joint density with respect to Lebesgue measure and use p generically to
denote a marginal or conditional density, so that, in particular, p(@) is the
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prior density for 8. Define the predictive density for Z given Y

p(Z]Y) = /@ p(Z16,Y)p(0 | Y)d6

_ JoP(Z6,Y)p(Y | 6)p(6) d6
Jop(Y | 0)p(6) d6

Then
E[I{p(Z16,Y),p(Z|Y)} | Y|=E[I{p(6|Y,Z),p(0|Y)}|Y], (59)

which was suggested to me by Wing Wong. The proof of (59) is just to note
that both sides of it equal

2{os s vz 1 | V)

This expression is 0 if @ and Z are conditionally independent given Y, so
that both sides of (59) measure the conditional dependence of 8 and Z given
Y. To see why (59) can be viewed as a quantification of Jeffreys’s law, we
need to take a closer look at both sides of this equality. For any particular
60, I {p(Z ] 60,Y),p(Z | Y)} measures how far the predictive distribution
for Z diverges from the conditional distribution for Z we would obtain
if & = 69 were known. The left side of (59) is then just the average of
this divergence over all possible values of 8. Thus, the left side of (59)
measures how much information @ contains about Z that is not already
contained in Y. Similarly, the right-hand side of (59) is a measure of how
much information Z contains about @ that is not already contained in Y.
The conclusion I draw from (59) is a sharpening of Jeffreys’s law: if the
quantity we wish to predict tells us very little new about the parameters
of our model, then our predictions will be close to those we would obtain
if we knew the true values of the parameters.

Let us now reexamine (40) in 3.6 in light of this result. To review,
suppose Z is a mean 0 Gaussian process on R observed at Z(—j/n) for
i =0,...,n, Ko(t) = el and K;(t) = Le~2l. For any finite interval
R, Gr(0,Ky) = Ggr(0,K,), so that even if n is large, it will be difficult
to distinguish between these measures. Now consider predicting Z(t) for
t > 0. Since prediction of Z(t) does not depend on n under either model,
denote the prediction error for Z(t) under K; by e;(t). Using (40) in 3.6,
Figure 2 plots Epe;(t)?/Epeo(t)? and Eje;(t)?/Epe:1(t)? as functions of ¢.
Both functions are near 1 for ¢ small, which, considering (58), implies that
Z(t) for t small does not provide much new information for distinguish-
ing the measures. For larger ¢, Z(t) does provide nonnegligible additional
information for distinguishing between the measures and this is reflected
particularly in Eje;(t)?/Eoe; ()%, which tends to § as t — oco. Thus, the
statement “things we shall never find much out about cannot be very im-
portant for prediction” (Dawid 1984) is incorrect in this setting because



4.4 Jeffreys’s law 143

o T

FIGURE 2. Ratios of mean squared errors for predicting Z(¢) from Z(0) when
Ko(t) = e~ and Ki(t) = Je~**!. Solid curve gives Eoe?/Eoe and dashed curve
E1 ef / Eo ef .

it does not anticipate the possibility that what is to be predicted provides
substantial additional information for distinguishing the measures.
Exercises

38 Prove (57).

39 Prove (58).
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Integration of Random Fields

5.1 Introduction

This chapter studies the prediction of integrals of random fields based on
observations on a lattice. The goal here is not to give a full exposition of
the topic (see Ritter (1995) for a more detailed treatment) but to make
two specific points about properties of systematic designs. The first is that
simple averages over observations from systematic designs can be very poor
predictors of integrals of random fields, especially in higher dimensions.
The second is that, at least for random fields that are not too anisotropic,
the problem with this predictor is the simple average aspect of it, not the
systematic design. These two points are of interest on their own, but they
are also critical to understanding a serious flaw in an argument of Matheron
(1971) purporting to demonstrate that statistical inference is “impossible”
for differentiable random fields (see 6.3).

Suppose Z is a mean 0 weakly stationary random field on R¢. Define
Gm = {1,...,m}? and let h be the vector of length d with each component
equal to 3. Consider predicting I(Z) = f[o,l]d Z(x)dx based on observing
Z at m~1(j — h) for j € G,,. This set of observations is called a centered
systematic sample because it places an observation at the center of each
cube of the form xZ_, [m~!(jo — 1),m™1ja] for j = (j1,...,j4) € Gm (see
Figure 1). A natural predictor of the integral is just the simple average
of the observations, Z,, = m™¢Y,; Z(m~!(j — h)). Although it may
be natural, it is not necessarily a good predictor. Section 5.2 looks at the
asymptotic mse of Z,, as m — oo. Results in 5.3 and 5.4 show that if Z has
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(R S ———

FIGURE 1. Centered systematic sample for d = 2 and m = 5. Dots indicate
design points and dashed lines the squares in which the design points are centered.

spectral density f satisfying f(w) =< (1+|w|)~?, then Z,, is asymptotically
optimal for p < 4 and its mse tends to 0 at a slower rate than the mse of the
BLP for p > 4. Section 5.4 also shows how to obtain an easily computed
predictor that is asymptotically optimal as m — oo for any particular p.

In principle, if the autocovariance function K is known, it is possible to
find the BLP of I(Z), which I denote by Z,,. However, this requires calcu-
lating cov {I(Z), Z(m~1(j — h)) } for all j € G, which will generally need
to be done numerically and could be a formidable task for m¢ large. Cal-
culating the mse can also be quite difficult since it requires the calculation
of a 2d-dimensional integral, which again must generally be done numeri-
cally. Theorem 7 of Section 5.4 gives asymptotically valid and fairly readily
computable approximations to the mse of the BLP or any asymptotically
optimal predictor under certain conditions on f. Section 5.5 provides some
numerical results for d = 1 indicating the applicability of the large sample
results to finite samples.

5.2 Asymptotic properties of simple average

The even spacing of the observations in a centered systematic sample sug-
gests the use of spectral methods for analyzing the behavior of Z,,. If Z
has mean 0 and spectral density f, then

var {I(Z) — Zn} (1)

= -/Rd f(w)lf[o’l]d exp(iwTx)dx — Z ;7,17 exp {im™'w”(j — h)}| dw.

J€Gm
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It follows that

var {I(Z) — Zp} = /Rd gm(w) dw,

where
& sin? (<) 2
gm(w) = f(w) 1—11 —_m2 prm g { H sinc ( )} ,
w = (w1,.-.,wq)T and sinct = t~!sint (Exercise 2). Thus,
var {I(Z) = Zp} = Z/ m(w + 27mj) dw
JEZd d(m)
- [ .
jezd
where
i 1n2 ﬂl)
gm(w;j) = f(w + 2mmyj) H 2&
a=1 (Zm)
d 1)J=2msin (2 ) ?
{ I=I R H{w € Ag(m)}.

The key to finding the asymptotic mse of Z,, is to determine whether
the term j = 0 or the terms j # 0 dominate the sum on the right side of
(2). We first need some preliminary approximations for g,,(w;}j). For any
fixed w and j # 0,

d
gm(wiJ) ~ f(w +27mj) [ sinc? (%) (3)

a=1

as m — o0o. And, for fixed w,
¢ w ¢ w?
: Foy _ a —4
a|=|1 sinc (2 ) o!:ll (1 2 2) +0(m™%)

— 2
=1 ool + O(m™)

as m — 00, so that
m"‘gm(w; 0) - G(w) 4)

as m — oo for fixed w, where

Gw) = 576Iu.v]f Hsmc( )
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Results for sufficiently smooth random fields

Which terms in the sum over j on the right side of (2) dominate depends
on how fast f decays at high frequencies. Equations (2)—(4) can be used
to show that if f(w) = o(|lw|™*) as |w| — oo, the term j = 0 dominates
the sum. The following result is taken from Stein (1993c). Tubilla (1975)
obtains a similar result in terms of the autocovariance function rather than
the spectral density under much stronger conditions than assumed here.

Theorem 1. If f(w) = o(|w|™*) as |w| — oo,
m* var {1(2)-Z,} — / G(w)dw.
Rd

Proor. For fixed w, m%g,,(w;0) is dominated by G(w) and G is
integrable (Exercise 3), which combined with (4) implies

m* | gm(w;0)dw — G(w)dw (5)
R4 R4
by the dominated covergence theorem. As in Chapter 3, let Z'J indicate

summation over all j € Z¢ other than 0. If f(w) = o(|w|™*) as |w| — oo,
then

it S (i) [[(1+62) =0 (6)
j a=1
as m — oo uniformly for w € Ag4(m) (Exercise 4), which implies
m4/RdZIgm(w;j)dw—~>0. (7)
J
Combining (5) and (7) yields Theorem 1. O

Note that for d > 5, the mse of order m~* is larger than the reciprocal
of the number of observations, or m~%. Since we can always get an mse of
order m~¢ by taking a uniform simple random sample on [0, 1}¢ of size m?
and averaging the observations, it is tempting to conclude that the cen-
tered systematic sample is a poor design in higher dimensions. We show in
5.4 (Exercise 16) that under a quite weak condition on the spectral den-
sity, centered systematic sampling together with an appropriate and easily
computed weighting of the observations yields a predictor with mse that
is o(m~%). Thus, it is not true that centered systematic sampling performs
worse asymptotically than a simple average based on a simple random sam-
ple in high dimensions. It is possible to argue that these asymptotic results
are misleading when d is very large, since m? then grows so quickly with d
as to make them irrelevant to practice. However, that is a rather different
argument than claiming that systematic sampling is asymptotically inferior
to simple random sampling.
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Results for sufficiently rough random fields

Theorem 1 showed that when |w|*f(w) — 0 as |w| — oo, the j = 0 term
in (2) dominates the mse. The following result essentially shows that when
|w|*f(w) — 00 as |w| — oo, the terms j # 0 dominate the mse.

Theorem 2. Suppose for some p satisfying d < p < 4, f(w) < |w|™? as
|w| — co. Then

d
var {I(Z) = Zp} ~ /Ad(m) Xj:’f(w + 27mj) al;[lsinc2 (%‘5) dw
PROOF. For w € A4(m) and j # 0,
d
mtwid) [T {sime ()} < (mi)~* ®)
(Exercise 5) so that
> [ om(wii)dw < m,
which combined with
[, mi0) des < m(1+ (m*), ©)
where (m)? = m? for q # 0 and (m)° = logm (Exercise 6), yields
var {I(Z) — Zn} ~ ; /Rd gm(w;j) dw (10)

as m — oo. To simplify this result, note that for w € A4(m) and j # 0,

f((im-if‘;;rm_] J;[lsmc ( )

d s 2 (w 2
H sin® (% (=1)/=2msin
s m?2 sing Eﬁl [ { H o+ 27rm_7( ) } -1
a=1 2m a

} .

+ {1 - H sinc? (;)—T:)
a=1

Now, for w € Asz(m) and j # 0,

sin® (95‘) 2 .2
!‘:[1 m2 sin? (g=) < III;Ilsmc (_)’

ﬁ 1)3°2msm(2m)<< H wal

Wq + 2TMj,

a=1
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and
4 w w2
- [l (2) <2
QI:I_lsmc m <K m
so that
———gm wid) H sinc (&’-) < |£|2 f[ sinc? (ﬁ)
f(w + 27mj) ot 2 ml -2 2
and
d w
‘/ gm(w;j) dw —/ f(w + 27mj) H sinc? (—"‘) dw'
Rd Ag(m) a1l 2
d
K (m|j|)—”m_2/ |w|2 H sinc? (w_a) d
Aa(m) a4y 2
2
w
< (mlj])"Pm~? —
O0<wg<...<wy <Tm Hi:l(l + wg)
< m P77
Theorem 2 then follows from (10). o

We can obtain a yet simpler result by making stronger assumptions about
f- The following is essentially a special case of Theorem 2 of Stein (1993c);
its proof is left as an exercise.

Theorem 3. Suppose f(w) < |w[™P as |w| — oo for some p < 4 and
there exists a function f: R% — R such that for any v € R and w # 0

tllglo tPf(v + tw) = f(w). (11)
Then
mPvar {I(Z) — Zm} — (2m)*P Z "7G).
J

Note that (11) holds if, for example, f(w) ~ |Aw|™? as |w| — oo for some
nonsingular d x d matrix A, in which case f(w) = |Aw|™?P.
Exercises

1 For a weakly stationary, mean square continuous random field Z on
R?, show that I(Z) can be defined as an L? limit of finite sums.

2 Verify var {I(Z) — Zm} = [ga gm(w) dw.

3 Show that m*g,,(w;0)/G(w) is bounded in m and w. Show that G is
integrable if f(w) < |w|™37¢ for some € > 0 as |w| — oo.

4 Verify (6).
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5 Show that (8) holds for w € A4(m) and j # 0.
6 Verify (9).
7 Prove Theorem 3.

8 Find a simple expression for the asymptotic mse of Z,, under (11) with
p = 4 (Stein 1993c).

9 For f(w) < |w|™* as |w| — oo, show that

var {I(Z) = Zp} ~m™ [ G(w)dw
R4

d
S 2rmj) [ sinc? (22 a
+/Ad(m) j flw+ wmj)gsmc (2) w

Show that the second term on the right side is O(m~*) but not o(m™*).
By combining these results with Theorem 5 in 5.4, show that Z,, is
not asymptotically optimal when f(w) < |w|™* as |w| — oo but does
have mse converging at the optimal rate.

5.3 Observations on an infinite lattice

As we saw in 3.8, it is straightforward to calculate certain properties of
BLPs if the observations are on the infinite lattice §j, j € Z¢ for some
6 > 0. Here we consider the slightly more general setting where the mean
0 weakly stationary process Z is observed at points 6(j — v) for j € Z¢,
where § > 0 and v is a fixed point in [0,1)?. The reason for including v
is that by taking ¥ = h we get that a centered systematic sample of size
m? is a subset of the infinite lattice with § = m~!. Therefore, the mse of
the BLP based on the infinite lattice provides a lower bound for the mse of
any linear predictor based on the centered systematic sample. In particular,
if a sequence of integration rules based on centered systematic samples of
size m® has asymptotically the same mse as the BLP based on observing
Z at m~!(j — h) for all j € Z¢, then this sequence of rules is necessarily
asymptotically optimal relative to all linear predictors based on centered
systematic samples.

Asymptotic mse of BLP

This section considers predicting I(Z;v) = [g. v(x)Z(x)dx, where both
f!Rd )2dx and var {I(Z;v)} are positive and finite. In 5.2 we took
= l{x € [0 1]4}. Let f be the spectral density of Z and set V(w) =
fmd x) exp(iwTx) dx, so that var {I(Z;v)} = [p. f(w)|V(w)|?dw. Note
that we have not assumed v is integrable so we have to interpret its Fourier



5.3 Observations on an infinite lattice 151

transform V as an L? limit of Fourier transforms of integrable functions
(Stein and Weiss 1971, Section 1.2). Define

S(t) = /A 3 flw + 2mt))|V (w) Pdw

a(t) j

and let I5(Z;v) be the BLP of I(Z;v) based on observing Z at §(j — v)
for all j € Z¢ and some fixed v € [0,1)?. The following is a special case of
Theorem 4 of Stein (1995a).

Theorem 4. If f(w) < (1 + |w|)~?, then var {I(Z;v)—fg(Z;v)} ~
S(671) asé | 0.

PrROOF. I only consider the case v = 0 here as it simplifies the notation.
See Stein (1995a) for the more general case. The basic idea of the proof is
to show that there is a family of linear predictors depending on é that has
S(67!) as its asymptotic mse and then to show that the BLP cannot do
better asymptotically.

The following simple result is helpful. Suppose {c,} is a sequence of
nonnegative and measurable functions on R¢ and {a,} and {b,} are se-
quences of measurable complex functions on R? such that [ps {|an(w)? +
|bn (w)|? }en(w) dw < oo for all n and
. fkd Ibn(“’)lzcn(w) dw

lim

=0.
n—oo [o4 |an(w)|?cn(w) dw

Then
/ 00(@) + bu@)Per@)dw ~ [ fan(@)Pen(@)dw  (12)
Rd R4

as n — oo (Exercise 10).

Now every linear predictor based on observing Z at 8j for all j € Z¢
corresponds to a function in L£s(f), the closed real linear manifold of the
functions exp(iw7j) for j € Z¢ with respect to the norm defined by f.
Thus, to find a family of predictors that has mse asymptotically equal
to S(67'), it suffices to find Us € Ls(f) such that [p. f(w)|Us(w) —
V(w)?dw ~ S(671) as § | 0. Let Us(w) = V(w) for w € Ag(67!) and
take Us to have period 2r6~! in each coordinate, so that Us € Ls(f)
(Exercise 11). Next,

/ @)V (w)Pdw < 57 / V(w)dw = o(8?),  (13)
Ad(é—l)c Ad(é—l)c

where the last step holds because v square integrable implies V is as well.
Then

[, HUs(@) - Vw)dw ~ 567 (19
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follows from (12), (13), Us(w) = V(w) on Ag(67') and [, 51 f(w) x
|Us(w)|*dw = S(671) < 6P.
We next show that the BLPs cannot do better asymptotically than the

predictors corresponding to Us. The element of Ls(f) corresponding to the
BLP I5(Z;v) is (see 3.8)

¥ flw+ 261 j)V (w + 2787 1)
> flw+2m6-1j) ’

Va(w) =

so that
var {I(Z; v) — I5(Z; 'v)}

> / F(@) | Us(w) — Us(w) + Vs(w) — V(w)[2dw
Aa(5-1)c

2 /;d(a_l)c f(w) { |Us(w)] — |Us(w) — Vs(w)| — |V (w)] }2 dw
~ 8671, (15)

where the last step follows from (12), (13) and
[ @) - Viw)dw
Aq(671)c

— v 2 ! - —1s
= [, Ve =T 3ot 2r87)

< 6”/ flw)™2
Aa(671)

< 8% / (1 + [w])??|V (w)2dw
Aq(6-1)

Z’f(w +2m67 1) {V(w) — V(w + 2767j) } 2d(...v
J

+/ E'f(w+27r6‘1j)|V(w+27r6‘1j)|2dw
Aa(671) 7

= o(6P). (16)

Exercise 12 asks you to provide the details for (16). Theorem 4 follows from
(14) and (15). O

Let us examine what makes this proof work. If f(w) < (1 + |w|)7?,
then any family of predictors t5 with mse tending to 0 as § | 0 must have
corresponding functions in 5 € Ls(f) satisfying [} |ts(w)— V(w)|*dw — 0
as 6 | 0 for any bounded set B. Since {5 is periodic and V is “small” at
high frequencies, for § small, there is then no way to avoid a contribution
to the mse from frequencies outside A4(6!) of approximately S(671).
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Asymptotic optimality of simple average

Theorems 2 and 4 yield that Z,, is asymptotically optimal for 1(Z) if
f(w) < (14 |w|)7P for p < 4. For p > 4, it turns out that Z,, has mse
tending to 0 at a slower rate than the mse of the BLP, which follows from
Theorem 1 in 5.2 and Theorem 5 in the next section. Stein (1995a) shows
that for v sufficiently smooth and p < 4, var {I(Z;v) — Zpm(v)} ~ S(m),

where
Z,m(v) = m_d Z v (J__—_ll.) 7 (J;l}) .
m m
Jj€Gm
Hence, Z,,(v) is asymptotically optimal for p < 4. Stein (1995a) also shows

how to modify this predictor so that it is asymptotically optimal for p > 4
using a generalization of the procedure outlined in the next section.

Exercises

10 Prove (12).

11 Show that the function Us; defined in the proof of Theorem 4 is in
Ls(f).

12 Provide the details for (16).

13 Show by example that the conclusion of Theorem 4 may not hold if
only f(w) =< |w|™P as |w| — oo is assumed.

5.4 Improving on the sample mean

Let us consider improving upon Z,, as a predictor of I(Z) when Z is
smooth. In 5.2, we showed that if f(w) =< (1 + |w|)~P with p > 4, then for
the integral on the right side of (1), frequencies in A4(m) produce a term of
order m~* in the mse and frequencies outside A4(m) a term of order m~P.
We see that we need to find a better approximation to f[o,ljd exp(iwTx)dx

at low frequencies than is given by 3°;cq m™%exp {im~'w”(j — h)}.

Approzimating [ exp(ivt)dt

For d = 1, we seek a more accurate approximation to fol exp(ivt)dt =
exp(iv/2)sinc(v/2) than

1 & 1o 1 exp (%) sin (%)
mgexp{zm v(i-3)}= msin ()
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for |v| < mm. Although there is more than one way to do this, let us
consider functions of the form

Om(viag) = % i exp{ %}

|

and m > 2q. Straightforward calculation ylelds

')}

where a; = (a1, .

aq)
dm(v;ag) = exp (EV) [—sm {csc( )+22a15m(
+2 cos (¥ )Zajcos( A

o) (lt’2k+l)

Using

k 0—19(920—1
-1 2(2 - 1B
CSC(t) t—l E ( ) ((ZZ)' ) 24 t2e—1

=1

for |[t| < w/2, where B, is the nth Bernoulli number (Abramowitz and
Stegun 1965, 4.3.68), we get that if

zq: (2§ —1)" =0 for r=0,. (17
and —_
iak@k ~ 1)1 = —%:—IBZT for r=1,...,s, (18)
then
exp (7,;) sinc (V) dm(v;ag)| < v 122::; (19)

for |v| < mm (Exercise 14). Furthermore, by taking ¢ = 2s + 1, (17)
and (18) give 2s + 1 equations in the 2s + 1 components of agsy;
and this system of linear equations has a unique solution (Exercise 15),
denoted by ags43. For example, a3 = (1/12,-1/8,1/24) and a5 =
(101/640, —2213/5760, 143 /384, —349/1920, 103/5760).

We see that by modifying just the weights assigned to observations near
the ends of the interval, we are able to get a sharper approximation to
exp(iv/2) sinc(v/2) at low frequencies. Another way to think about these
modifications is in terms of the Euler—-Maclaurin formula, which, for a func-
tion A on [0, 1], gives approximations to fo t) dt in terms of the values of
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h at j/n for j =0,...,n and derivatives of h at 0 and 1. For h possessing
2k — 1 derivatives on [0, 1], define the kth order Euler-Maclaurin rule

Re() = o= {(0) + A} + 2 S (f—l)

k
By 20— 20—1
=1

where the last sum is set to 0 if £ = 0 so that £ = 0 corresponds to the
trapezoidal rule. If h has a bounded derivative of order 2k + 2 on [0, 1],
then

1
| B2k+2| (2k+2)
h - W < — i h t
| e - ru)| < s sup (nk )

(Abramowitz and Stegun 1965, p. 886). We can use Ry(h) to integrate a
stochastic process if it possesses 2k — 1 mean square derivatives. Alter-
natively, as in Benhenni and Cambanis (1992), we can approximate the
derivatives at the endpoints using finite differences and avoid the need to
observe these derivatives. This approach gives rules very similar in spirit
to the ones described in the preceding paragraph.

Approzimating f[o’lld exp(iwlx)dx in more than one dimension

As the number of dimensions increases, the use of Z,, to predict
I(Z) becomes increasingly problematic. We need to find a better ap-
proximation at low frequencies to f[O,I]d exp(iwTx)dx than is given by
Yicg,, m “exp {im~'wT(j — h)}. For s > 1, [12_, m(wa; A2s41) pro-
vides such an approximation. More specifically, for m > 4s + 2, define the
predictor

Zms=m"¢ Z bZ(m'(j - h)),
JEGm
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where b; =H;{=1ﬁjq, Bj=1if2s+2<j<m—-2s—1and B = fp—j =
1+a; for 1 < j <2s+ 1. Note that Z,, 0 = Z,,. We then get

2
/Ad(m) Hsmc( ) H¢m (Wa; Bzs41)
<</Ad(m)‘w 4s+4Hsmc ( ) 1+|w|) P dw

< m—4s—4/ (1 +w )4s+2 p
0<wy<...<wi <Tm H 1+w2

< m—4s—4 (1 + (m)4s+3—p)
= o(m™P)

ifds+4 > p.

flw)dw

Asymptotic properties of modified predictors

By using 7m,s for 4s+4 > p, we again get the high frequencies of f domi-
nating the mse as we did for Z,, when p < 4. In particular, by an argument
similar to the proof of Theorem 2, we get the following generalization of
that result.

Theorem 5. Suppose for some p > d, f(w) < |w|™? as |w| — co. Then
fords+4>p,

var {I(Z) — Zm,s} ~ /A(m Z f(w + 2wmj) Hsmc ( )

Theorems 4 and 5 imply the followmg.

Corollary 6. If f(w) < (1+ |w|)™P and 4s + 4 > p, then Z,, 5 is an
asymptotically optimal predictor for I(Z).

We also have an analogue to Theorem 3.

Theorem 7. If f satisfies (11), then for 4s + 4 > p,
var {1(2) = Zm,s} ~m=P(2m)4P > F(j).
J

The fact that, independent of d, Z,, is asymptotically optimal for p < 4
and converges at a suboptimal rate for p > 4 is noteworthy (see Exercise 9
of 5.2 for the case p = 4). We must have p > d for f to be integrable so
that the range of p for which Z,, is asymptotically optimal narrows as d
increases from 1 to 3 and Z,, is not asymptotically optimal for any p when
d > 4. Since the suboptimality of Z,, for p > 4 is due to poorly chosen
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weights given to observations near an edge of [0,1]¢ and, as d increases,
more of the observations are near an edge of [0, 1)¢, it is not surprising that
the constraints on an isotropic random field Z become increasingly severe
as d increases in order for Z,, to be asymptotically optimal.

Are centered systematic samples good designs?

If asymptotically optimal predictors are used, Ritter (1995) showed that
centered systematic sampling cannot do too much worse than any other
sampling design for random fields that are not too far from isotropic. More
specifically, suppose {D;}32, is a sequence of finite subsets of [0, 1]* with
Dj containing m; points and n; — oo as j — oo. If f(w) < |w|™P as
|w| — oo, then the sequence of BLPs of I(Z) based on the points in D;
cannot have mses that are o(nj—p ) as j — oo (Ritter 1995). Thus, centered
systematic sampling achieves the best possible rate of convergence to 0 for
the mse. Furthermore, results in Stein (1995b) suggest that if the random
field is isotropic, centered systematic samples will sometimes do very nearly
as well asymptotically as the best possible designs. If the random field
possesses a tensor product autocovariance function (see 2.11), then BLPs
based on centered systematic sampling can be badly suboptimal (Ylvisaker
1975; Ritter 1995).

Exercises
14 Verify (19) for |v| < mm.
15 Show that for ¢ = 2s + 1, there is a unique solution to (17) and (18).

16 Show that if f(w) = o(|lw|™) as |w| — oo, then for 4s + 4 > d,
var{I(Z) — Z s} = o(m™¢). Thus, under this mild condition on f,
the mse of the BLP based on the centered systematic sample is o(m™%)
as m — oo and hence is better asymptotically than taking a uni-
form simple random sample on [0,1]¢ of size m? and averaging the
observations.

17 Continuation of 16. For d = 1, show by example that if no conditions
are placed on f, then mvar{I(Z)—Z,,} may not tend to 0 as m — oo.

18 Prove Theorem 5.
19 Prove Theorem 7.

5.5 Numerical results

This section looks at some results for finite m and d = 1. Stein (1993c)
provides some numerical results for d = 2. As a first example, suppose
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TABLE 1. Mean squared errors for predicting I(Z) when K (t) = exp(—4[t|)(1 +
4|t| 4 16t%/3).

m mse(Z,,) mse(Z,,) mse(Zm 1)

16 2.78x 1078  3.53x 1077 3.70 x 1078

32 348x10719 214x1078 4.16 x 10710

48 264x 10711 421x107° 3.02x 1071

K (t) = exp(—4|t|)(1 + 4]t| + 16t2/3), for which the corresponding spectral
density is f(w) = 2!3/ {37r(16 + w2)3}. The results in Table 1 for predict-
ing I(Z) = fol Z(t)dt at least qualitatively agree with the asymptotics.
Specifically, since p = 6 > 4, the simple average Z,, is badly suboptimal,
particularly for larger m. The modified predictor Zm,l performs much bet-
ter, although even for m = 48, it has mse 14% larger than that of the
BLP Z,,. Note that all integrals required to obtain these results can be
computed analytically (Exercise 20), so that numerical integration is not
needed.

Theorem 5 shows that asymptotically there is no penalty for using Z,
with s larger than necessary. For finite m, using s too large does tend to
give larger mses. Table 2 shows what happens when predicting I(Z) and the
autocovariance function is K (t) = e~ I*|. Here, f(w) =< (1 + |w|)™2 so that

Zm,s is asymptotically optimal for all nonnegative integers s. We see that
Z, is very nearly optimal for all m considered, 7,”,1 does somewhat worse
but is still within 2% of optimal even for m = 16, and 7,”72 does noticeably
worse, although it is within 5% of optimal for m = 48. Comparing Tables 1
and 2, it is apparent that the penalty for choosing s too small is much more
severe than for choosing s too large, as the asymptotic results predict.
The fact that it is possible to find an asymptotically optimal predictor
for I(Z) by choosing any integer s such that 4s + 4 > p and then us-
ing Zm,s indicates that prediction of integrals is particularly insensitive
to misspecification of the spectral density. The results of Chapter 4 show
that all prediction problems are insensitive to misspecification of low fre-
quency behavior under fixed-domain asymptotics. The results here indicate
that integrals may be predicted nearly optimally without knowing the high

frequency behavior of the spectral density well, either.

TABLE 2. Mean squared errors for predicting 1(Z) when K(t) = e~ !*l.

m Zm 7711 ~Z—m,1 7771,2

16 6.499 x 107*  6.510 x 10~%  6.595 x 10~  7.474 x 10~*
32 1.627x107% 1.628x10"*% 1.638x107% 1.748 x 10~*
48 7.232x107% 7.234x1075 7.265x107° 7.591 x 10~5
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Exercises

20 For K(t) = exp(—alt|) (1 + alt| + 3a%t?), find cov{Z(s),fO1 Z(t)dt}

21

for 0 < s <1 and var{fo1 Z(t)dt}.

Reproduce the results in Table 1. Try to extend these results to larger
m. You may run into numerical problems for m not much larger than
64. For example, for m = 64, S-Plus gives the condition number (the
ratio of the largest to smallest eigenvalue) of the covariance matrix of
the observations as 4.6 x 10° and refuses to calculate its QR decom-
position due to its apparent near singularity. A good project would
be to develop methods other than using higher-precision arithmetic to
ameliorate these numerical difficulties.
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Predicting With Estimated
Parameters

6.1 Introduction

Chapters 3 and 4 examined the behavior of pseudo-BLPs. Although the re-
sults given there provide an understanding of how linear predictors depend
on the spectral density of a stationary random field, they do not directly
address the more practically pertinent problem of prediction when parame-
ters of a model must be estimated from the same data that are available for
prediction. The reason I have avoided prediction with estimated parameters
until now is that it is very hard to obtain rigorous results for this problem.
The basic difficulty is that once we have to estimate any parameters of the
covariance structure, “linear” predictors based on these estimates are no
longer actually linear since the coefficients of the predictors depend on the
data.

The sort of theory one might hope to develop is that, as the number of
observations increases, it is generally possible to obtain:

(A) asymptotically optimal predictors, and
(B) asymptotically correct assessments of mean squared prediction errors

even when certain unknown parameters are estimated. Such general results
do exist for predicting future values of a time series observed on the integers
with finite-dimensional parameter spaces (Toyooka 1982 and Fuller 1996,
Section 8.5). Gidas and Murua (1997) prove that if a continuous time series
is observed at 6,26, ...,T6, where both 6! and 6T tend to infinity, then (A)
and (B) are generally possible for predictions a fixed amount of time after
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Té. The results in all of these works require that the unknown autocovari-
ance function can be consistently estimated as the number of observations
increases. Under fixed-domain asymptotics, the results on equivalence of
Gaussian measures in 4.2 show that there can quite naturally be parame-
ters that cannot be consistently estimated as the number of observations
increases. Indeed, Yakowitz and Szidarovszky (1985, Section 2.4) essentially
claim that the impossibility of consistently estimating the autocovariance
function based on observations in a fixed region implies that (A) and (B)
are unachievable. The results in Chapter 4 show that, at least for Gaussian
random fields, this line of reasoning is inadequate. Specifically, Theorems 8
and 10 in 4.3 demonstrate that there is no need to distinguish between
equivalent Gaussian measures in order to obtain asymptotically optimal
predictions.

These theorems do not by themselves imply (A) and (B). Indeed, direct
analogues to Theorems 8 and 10 in 4.3 will not generally be possible for
predictions based on estimated models. The problem, as I discuss in 6.8,
has to do with the uniformity of these results over all possible predictions.
If one restricts the class of predictands appropriately, then I expect that
rigorous results in support of (A) and (B) are obtainable. Putter and Young
(1998) provide the first step of an approach to proving (A) and (B) for
predictions based on estimated parameters, although much remains to be
done to obtain any such result when using, as I advocate, the Matérn model
for the autocovariance function.

This chapter provides theorems, heuristic derivations, numerical calcula-
tions and a simulated example concerning the estimation of autocovariance
functions and prediction of random fields based on these estimates. Sec-
tion 6.2 describes Matheron’s notion of microergodicity, which is closely
related to equivalence and orthogonality of measures and which plays a
crucial role in thinking about whether (A) and (B) should be possible un-
der fixed-domain asymptotics. Section 6.3 demonstrates a crucial flaw in an
argument due to Matheron (1971, 1989) that purports to show that (B) is
unachievable for predicting integrals of sufficiently smooth random fields.

Section 6.4 describes maximum likelihood and restricted maximum likeli-
hood estimation for the parameters of the covariance function of a Gaussian
random field. In many settings, as the number of observations increases,
maximum likelihood estimates are asymptotically normal with mean equal
to the true value of the parameter vector and covariance matrix given by
the inverse of the Fisher information matrix. Section 6.4 briefly describes
such standard asymptotic results and explains why they often do not hold
under fixed-domain asymptotics.

Section 6.5 advocates the Matérn class as a canonical class of autocovari-
ance functions for spatial interpolation problems. Recall from 2.10 that the
general form of the Matérn spectral density of an isotropic random field on
R? is f(w) = ¢(a? + |w|?)7¥~%/2. The critical parameter here is v, which
controls the degree of differentiability of the underlying random field. Any
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class of models that does not include a parameter allowing for a varying
degree of differentiability of the random field is, in my opinion, untenable
for general usage when interpolating random fields. Thus, in particular, a
standard semivariogram model such as the spherical (see 2.10) should not
be used unless there is some credible a priori reason to believe the semi-
variogram must behave linearly near the origin. The same criticism applies
to the exponential model, even though it is a special case of the Matérn
model with v = 1.

Section 6.6 investigates numerically the Fisher information matrix for
the parameters of the Matérn model in various settings, including cases in
which there are measurement errors. An important finding of 6.6 is that
evenly spaced observations can lead to great difficulty in estimating the
parameters of the Matérn model.

Theorem 1 in Section 6.7 derives fixed-domain asymptotic properties of
maximum likelihood estimates for a class of periodic random fields closely
related to the Matérn class. I would expect that similar results hold for
estimating the parameters of the (nonperiodic) Matérn class itself, but
cannot prove such a claim.

Section 6.8 considers some properties of the commonly used plug-in
method for prediction and assessment of mses, in which unknown parame-
ters of the autocovariance function are estimated and then these estimates
are treated as if they were the truth. In particular, I give an approximate
frequentist formulation of Jeffreys’s law relating the additional informa-
tion a predictand has about unknown parameters beyond that contained
in the observations to the effect on the prediction of having to estimate
these parameters. This approximation should be compared to the exact
Bayesian formulation of Jeffreys’s law given in 4.4. The approximation is
easily computed and provides the basis of a numerical study on the effect
of estimation on subsequent predictions.

Section 6.9 considers an example based on simulated data showing serious
problems with some commonly used methods in spatial statistics when the
process under investigation is differentiable.

Section 6.10 describes and advocates the Bayesian approach as the best
presently available method for accounting for the effect of the uncertainty
in the unknown parameters on predictions. However, it turns out that the
prior distributions on unknown parameters that are a necessary part of any
Bayesian analysis need to be chosen with some care.

6.2 Microergodicity and equivalence and
orthogonality of Gaussian measures

Matheron (1971, 1989) discusses fixed-domain asymptotics and its relation-
ship to issues of statistical inference. In these works he considers the notion
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of microergodicity for random fields observed on a bounded domain. For
a class of probability models {P, : 8 € ©} for a random field on a given
bounded domain R and a function h on ©, he effectively defines h(8) to be
microergodic if, for any 8 € O, h(0) can be determined correctly with prob-
ability 1 based on observing a single realization of the random field on R. It
immediately follows that if there exists 6g,0; € © such that h(6g) # h(0:)
but Py, = Py,, then h(0) is not microergodic. On the other hand, if for all
0,0’ € ©, h(0) # h(0') implies Py L Py, it is at least plausible that one
can determine the correct value of h(€) with probability 1. This would fol-
low if © were a countable set (Exercise 3), but can be false if the parameter
space is uncountable (Exercise 4). Since Matheron does not give a precise
mathematical definition of microergodic, for convenience, I define h(8) to
be microergodic if for all 8,8’ € ©, h(0) # h(0') implies Py L Py .

In practice, determining when h(0) can be estimated well based on a large
number of observations of the random field Z spread throughout R is more
important than determining microergodicity, although the two problems
are related. Suppose x1, X3, ... is a dense sequence of points in R and Z, =
(Z(x1),.-.,Z(xn))T. Let 6, be an estimator of 6 based on Z,,. Then h(8,,)
is said to be a consistent estimator of h(8) if h(8,) converges in probability
to h(@) under Py for all values of & € ©. We might generally expect that
if h(0) is microergodic, then there exists a sequence of estimators 6,, such
that h(@,) is consistent for h(@). However, such a result cannot be true
without some further assumptions (see Exercise 4) and, even when it is
true, is often difficult to prove. Wald’s classic paper on the consistency
of maximum likelihood estimates (Wald 1949; Ferguson 1996, Chapter 17)
provides considerable insight into the issues involved in proving consistency
of estimators.

For Gaussian measures, we can use the results in 4.2 to determine which
functions of a parameter are microergodic. For example, suppose Z is a
stationary Gaussian process, R = [0, 1] and the class of probability models
is Pp = Gg(0, Kg), where 6 = (61,62), © = (0,00) x (0,00) and Kp(t) =
0:e7%21tl is the class of autocovariance functions. From (24) in 4.2, it follows
that Py = Py if and only if 6,62 = 665 and they are otherwise orthogonal.
Thus, 6,6, is microergodic, but neither 6; nor 6, are. Ying (1991) provides
detailed results on the estimation of 6 for this model based on observations
in a bounded interval. As an example of a microergodic quantity when there
is no finite-dimensional model for the autocovariance function, suppose that
Z is a stationary Gaussian process, R = [0, 1] and let © index the class of
all autocovariance functions K on R for which K’(0%) exists and is in
(—00,0). Theorem 1 in 4.2 shows that for all such autocovariance functions
K, K'(0%) can be determined with probability 1 and hence is microergodic.

If we consider some class of models for a stationary mean 0 Gaussian
process on R = [0,1] with K”(0) existing and finite, then whether K”(0)
is microergodic depends on the class of models. If the class of models
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is all autocovariance functions for which K”(0) exists and is finite, then
K"(0) is not microergodic. To see this, consider Ko(t) = e~*/(1 + |t|) and
K\ (t) = Lte~2t(1 4 2J¢|), for which K¢”(0) = —1 and K,"(0) = —3. Since,
by (24) in 4.2, Gg(0,Ky) = Gr(0, K1), K”(0) is not microergodic. If the
class of models is Kg(t) = 61e%2It|(1+65|t]), @ = (01,02) € (0,00) x (0, 0),
then —6:02 = K"(0) is still not microergodic, but 26,03 = K'”’(0%) is (Ex-
ercise 5). On the other hand, if the class of models is Ky(t) = 0K (t) where
6 € (0,00), K is an autocovariance function possessing a spectral density
and K" (0) exists, then § and hence Ky"”(0) is microergodic, which follows
from Exercise 6. However, assuming the autocovariance function is known
up to a scalar multiplier is highly restrictive. Finally, if Kg(t) = 0,602t
with @ = (61,63) € (0,00) x (0,00), then @ is microergodic (Exercise 8)
and hence so is Kg"(0). This last example makes use of the unusual prop-
erties of processes with analytic autocovariance functions and should be
considered atypical.

Observations with measurement error

This subsection argues that measurement errors should generally have no
effect on which parameters of a model for a continuous random field are
microergodic. To be more specific, consider the infinite sequence of observa-
tions Y; = Z(x;) + U; for i = 1,2, ... where Z is a mean square continuous
Gaussian random field on R?, the U;s are independent N(0,02) random
variables that are independent of Z and xi,xg,... is a dense sequence in
some set R C R? such that every point in R is a limit point of R. Further-
more, suppose the mean and covariance function for Z on R are known up
to some finite-dimensional parameter @ € © and denote by Py the Gaussian
measure for Z on R as a function of 6.

If h(6) is microergodic when Z is observed everywhere on R, then as
discussed in the preceding subsection, we would commonly expect that
h(0) can be consistently estimated based on Z, = (Z(xl),...,Z(xn))T
as n — oo. If so, then we should generally have that h(0) is consistently
estimable based on Y,, = (Y1,...,Y,)T as n — oo. To see why this should
be the case, note that for any fixed j, Z(x;) can be predicted arbitrarily
well in terms of Y, as n — oo (see the proof of Theorem 6 in 4.2). Thus, if
6 can be estimated well based on Z,,, then by choosing n sufficiently large,
Y, can be used to predict each component of Z,,, arbitrarily well, which
suggests that @ can also be estimated well based on Y,,. Furthermore, o
will also be consistently estimable based on Y,, as n — oco. Exercise 9 asks
you to prove this by using the fact that if |x; —x;| is small, then E(Y; —Y;)?
equals 202 plus something small.

These arguments suggest that whatever parameters can be consistently
estimated when noise-free observations are available can still be consistently
estimated from noisy observations. In addition, the measurement error vari-
ance is always consistently estimable. However, we should also expect good
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estimators of the microergodic parameters of Z based on Y, to be substan-
tially less precise than good estimators based on Z,,. Stein (1990c, 1993b)
considers estimating parameters of periodic stochastic processes observed
with measurement error.

Exercises

1 For a stochastic process Z observed on [0,1], define the empirical
semivariogram for 4(t) for 0 <t < 1 by

1-t
A(t) = éﬁ /0 {Z(s+1t) — Z(s)}?ds.

Show that if Z is mean square differentiable, then

1
5(0) = / (7).

2 For a weakly stationary process Z on R with continuous semivari-
ogram v, show that var{ fol Z(t)dt} = 0 if and only if the spectrum’s
support is contained in the set {mj : j € Z\{0}}. Next, show that
for Z a stationary Gaussian process with continuous semivariogram,
var { fol Z(t)%dt} = 0 if and only if var{Z(0)} = 0. Finally, combining
this result with Exercise 1, show that for a stationary mean square
differentiable Gaussion process Z, var{9”(0)} = 0 if and only if vy is
identically 0.

3 For 0 € O, let {Q, F, Py} be a family of probability models on a mea-
surable space (2, F). Consider a function A on © whose range is at
most countable and suppose that h(6) # h(0') implies Py L Py. Show
that there is a measurable function X on €2 such that for all 8 € ©,
X = h(@) with probability 1 under P,.

4 Let © be the set of all subsets of the positive integers. Suppose
X1, X3, ... is an infinite sequence of binary random variables. If § € ©
is not the empty set, then for j =1,2,..., X; =1ifj€fand X; =0
otherwise, so that the sequence of random variables is in fact determin-
istic. If 0 is the empty set, then the X ;s are independent and identically
distributed with Pr(X = 0) = Pr(X = 1) = 1. Define h(6) to equal 1
if 6 is the empty set and 0 otherwise. Show that 6 and hence h(6) is
microergodic as defined in this section. Show that there does not exist
a function h of X, Xs,... such that h = h(@) with probability 1 under
P, for all 8 € ©. Conclude that it is not possible to estimate h(8)
consistently based on X,...,X, as n — oo.

5 Suppose Z is a mean 0 stationary Gaussian process on R and Kjy(t) =
01e=%1t1(1 + 62t]), @ = (61,62) € (0,00) x (0,00). For R = [0,1], show
—60,04 = K" (0) is not microergodic, but 26,605 = K"'(0%) is.
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6 Suppose Z is a mean 0 stationary Gaussian process on R with auto-
covariance function of the form Ky(t) = 6K (t), where K possesses a
spectral density with respect to Lebesgue measure and is not identically

0. Show that for R = [0,1] and 6 # ¢', Gr(0,0K) L Gr(0,0'K).

7 Suppose Z is a mean 0 stationary Gaussian process on R with auto-
covariance function of the form Kjy(t) = K (t). If the support of the
spectrum corresponding to K is discrete, find necessary and sufficient
conditions for 6 to be microergodic.

8 Suppose Z is a mean 0 stationary Gaussian process on R with autoco-
variance function of the form Kp(t) = 6;e=%%" with = (01,62) €
(0,00) x (0,00). For R = [0,1], show that @ and hence Ky"(0) is
microergodic.

9 For Y, as defined in the last subsection, show that it is possible to
estimate the measurement error variance o2 consistently as n — oo.
Hint: consider an average of (Y; — Y;)? over selected pairs (i, j) for
which |x; — x;| is small.

6.3 Is statistical inference for differentiable
processes possible?

Matheron (1989, p. 90) states that for an isotropic random field observed on
a bounded region whose isotropic semivariogram + satisfies y(h) ~ Ch? as
h | 0 for some C > 0, “statistical inference is impossible.” Let us examine
what he means by this statement and what is wrong with his reasoning.
Matheron correctly notes that, at least for Gaussian random fields, it is
not generally possible to recover C' based on observations in a bounded re-
gion. The reader who has understood Chapter 4 should think “So what? We
do not need to know C' in order to obtain asymptotically optimal predic-
tions in this bounded region nor to accurately assess their mses.” However,
Matheron (1971, Section 2-10-3) gives an example that appears to under-
mine this argument. I describe only a special case of his example, which
is sufficient to show his error. Suppose Z is a stationary Gaussian pro-
cess on R and we wish to predict I(Z) = fol Z(t)dt based on observing
Z((i—0.5)n7") for i = 1,...,n. Matheron studies the mse of the predictor
Zn =n"'Y[, Z((i — 0.5)n"1), and although his analysis is incorrect,
some of his conclusions are still relevant. Theorem 1 in 5.2 shows that if
Z has spectral density f satisfying f(w) = o(lw|™*) as |w| — oo, then the
mean squared prediction error is asymptotically of the form Tn~*, where
T = (1/144) ffooo w?sin?(w/2) f(w)dw. (Matheron’s results imply that the
mse will be of order n~® for sufficiently smooth processes, but this er-
ror does not affect the basic thrust of his argument. See Exercise 11 for
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further details.) Now 7 depends nontrivially on the low frequency behav-
ior of f, so it is apparent that 7 will only be microergodic under very
special assumptions on the class of models. In particular, if we only as-
sume f(w) = o(|lw|™*) as |w| — oo, then 7 cannot be determined based
on observations on [0,1]. Hence, based on observing Z((i — 0.5)n™!) for
t=1,...,n, it is impossible to get an asymptotically correct assessment of
the mean squared prediction error of Z,.

The careful reader of Chapter 5 should see the problem in this reasoning:
if f(w) = o(w™*) as w — oo, then Z,, is not asymptotically optimal, which
was shown in 5.4. Jeffreys’s law does not guarantee that we will be able
to accurately assess the mse of poor predictors! What we should expect to
be able to do is to find an asymptotically optimal predictor of I(Z) and to
assess its mse accurately.

An example where it is possible

Let us look at a specific case of how one could both predict I(Z) well and
accurately assess the mean squared prediction error when a differentiable
and stationary Gaussian process Z is observed at (i — 0.5)n~! for i =
1,...,n. Suppose the spectral density f of Z satisfies f(w) ~ ¢w=C as
w — oo for some unknown positive constant ¢. A more challenging and
realistic problem would be to assume f(w) ~ ¢w ™" as w — oo with both ¢
and p unknown (see Section 6.7 for a related problem), but even the simpler
problem when it is known that p = 6 is an example of what Matheron
considers “impossible.” Istas and Lang (1997) show how one can go about
consistently estimating both p and ¢ under certain additional regularity
conditions on the autocovariance function. See Constantine and Hall (1994)
and Kent and Wood (1997) for related work on estimating p when p < 3.

By Corollary 6 in 5.4, Z,,; as defined in 5.4 is asymptotically optimal
and Theorem 7 in 5.4 yields

1(2)-Z P e T
var{l(2) = Zna} ~ o5 > i°= 15,1205 ’
i=1 ’

where the last step uses 23.2.16 in Abramowitz and Stegun (1965). Thus,
if we can estimate ¢ consistently as m — oo, then we can obtain an asymp-
totically valid estimate of the mse of the asymptotically optimal predictor
7,1,1. I believe it is impossible to estimate ¢ consistently from the sample
semivariogram, although I do not know how to prove this claim. However, it
is possible to estimate ¢ consistently by taking an appropriately normalized
sum of squared third differences of the observations. More specifically, defin-
ing the operator A, by A Z(t) = e 1{Z(t +¢€) — Z(t)}, then f(w) ~ pw™"
as w — oo implies

E[{(ar*z0)})’] = / : f(w) {3 sin () }de
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~ /:: w8 {%sin (%)}6@)

as € | 0 (Exercise 12). Consider the following estimator of ¢ based on
observing Z at (i —0.5)n"! fori=1,...,n,

R U= j—05\\°
m-mjzl{ml/mz( 2l )

Equation (1) implies that E¢, — ¢ as n — oo and it is furthermore
possible to show that var ¢, — 0 as n — oo (Exercise 13), so that ¢, is a
consistent estimator of ¢.

Exercises

10 For a weakly stationary process Z on R with spectral density f and
autocovariance function K with [% w?f(w)dw < oo, show that

® 92 ot _ 1 " _qen
/_ww sin? () f(w) dw = S{K"(1) - K"(0)}
It immediately follows from Theorem 1 in Chapter 5 that if f(w) =
o(lw|™%),
1

288n4

Prove this result using an argument in the time domain under the
additional assumption that K (9 exists and is continuous.

var{I(Z) — Z,} ~ {K"(1) — K"(0)}.

11 For a weakly stationary process Z on R, define X;,, = (Z/_" 1)/n {Z (t)—

Z((i —0.5)/n)}dt for i = 1,...,n, so that [(Z) — Z, = Y1 | Xin.
Matheron (1971) obtains an incorrect rate of convergence for var{I(Z)
— Z,} because he calculates the mse by ignoring the correlations be-
tween the X;,s for i = 1,...,n. Suppose Z has spectral density f
satisfying f(w) ~ ¢w ™" as w — oo for some ¢ > 0 and p > 1. For what
values of p is var{I(Z) — Z,} ~ Y i, var(Xi,)? For what values of
pisvar{l(Z) — Z,} < Y1, var(X;,)? Note that Wackernagel (1995,
p. 60) also ignores the correlations of the X;,s when approximating

var{I(Z) — Z,}.
12 Fill in the details for (1).

13 For ¢,, as defined in (2), prove that var ¢n — 0 as n — oo. The ar-
gument is somewhat reminiscent of Theorem 1 in Chapter 4, although
quite a bit simpler because of the assumption that f(w) ~ ¢w=® as
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w — 00. The key step in the proof is to show

cov{(A1/r)*Z(0), (A1/)3Z(t)}
= [ Sl () e

uniformly in t.

6.4 Likelihood Methods

Maximum likelihood estimation plays a central role throughout statistics
and is no less appropriate or useful for estimating unknown parameters in
models for random fields. This section describes maximum likelihood esti-
mation and a variant known as restricted maximum likelihood estimation
for estimating the parameters of Gaussian random fields. Kitanidis (1997)
provides an elementary introduction to the use of likelihood methods in
spatial statistics.

Suppose Z is a Gaussian random field on R? with mean and covariance
structure as in 1.5: Z(x) = m(x)7 3 + &(x), where m is a known vector-
valued function, B is a vector of unknown coefficients and € has mean 0
with covariance function cov{e(x),e(y)} = Kp(x,y) for an unknown pa-
rameter 6. Observe Z = (Z(x1),.-.,2Z(x,))T. The likelihood function is
just the joint density of the observations viewed as a function of the un-
known parameters. A maximum likelihood estimate (MLE) of the unknown
parameters is any vector of values for the parameters that maximizes this
likelihood function. It is completely equivalent and often somewhat easier
to maximize the logarithm of the likelihood function, often called the log
likelihood. Let K(0) be the covariance matrix of Z as a function of 6 and

assume K(8) is nonsingular for all 8. Define M = (m(x;)... m(xn))T and
assume it is of full rank. Then (see Appendix A) the log likelihood function
is

¢0,8) = —g log(2r) — 1 log det{K(0)} — 1(Z— MB)TK(6)"\(Z - MB).

One way to simplify the maximization of this function is to note that for
any given 0, £(0, 3) is maximized as a function of 3 by

B(6) = W(8)'M"K(6)'Z, 3)
where W(6) = MTK(0)"'M. Thus, the MLE of (8, 8) can be found by
maximizing

4(6,A(9)) = — log(2m) — } log det{K(6)} (4)
-1Z2T{K(9)' - K(6)"'MW(8)"'MTK(9) '} Z
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(Exercise 14). Maximizing the likelihood over some parameters while hold-
ing others fixed is called profiling and the function £(6, 3(0)) is called the
profile log likelihood for @ (McCullagh and Nelder 1989, p. 254).

Restricted mazimum likelihood estimation

The MLE has a minor defect in this setting. If we knew 8 = By, we
would presumably estimate @ by maximizing ¢(6,3y) as a function of 6.
By construction (Exercise 15),

{Z-MpB(9)}TK(6)"{Z-MpB(8)} < (Z—MBo)"K(0) 1 (Z—-MpBo) (5)

for all @, so that M3(8) is always “closer” to Z than is Mfo. As a con-
sequence, the MLE of 8 will tend to underestimate the variation in the
process, at least relative to what we would get if we knew 3 = (. For
example, if K(0) = 6V, where V is known and 6 is a scalar, then 3(9)
does not depend on 6 and 6 = n=1(Z — MB)TV~1(Z — Mf), which has
expected value (n — p)n~'6, where p is the rank of M. Common practice
would be to estimate 6 unbiasedly by n(n — p)"lé. For more complicated
models for the covariance function, obvious adjustments for the bias of the
MLE are not available.

An alternative approach to estimating 6@ is to consider the likelihood
function of the contrasts, the linear combinations of the observations whose
joint distribution does not depend on 3 (see 1.5). By construction, this
likelihood will not depend on 3 and hence we can obtain an estimate of 6
by maximizing this function over just 8. This approach is commonly known
as restricted maximum likelihood (REML) estimation and was described
by Patterson and Thompson (1971) in the context of variance component
estimation, who called the method modified maximum likelihood. Kitanidis
(1983) was the first to propose applying REML to the estimation of spatial
covariances. The idea is that if little is known about 3 a priori, the contrasts
should contain essentially all of the information about 6. Furthermore, since
the distribution of the contrasts does not depend on 3, the “overfitting”
problem that occurs when using ordinary maximum likelihood should not
occur. In particular, if K(8) = 6V, then the REML estimate of 6 is the
usual unbiased estimate. A number of simulation studies in the time series
setting have demonstrated the general superiority of REML estimation
to ML estimation (Wilson 1988; McGilchrist 1989; and Tunicliffe-Wilson
1989).

To calculate the log likelihood of the contrasts, consider the set of con-
trasts Y = {I - M(M”M)~'MT” }Z, where we have assumed M is of full
rank p. The random vector Y forms a basis for all contrasts of Z. There
are then n — p linearly independent contrasts, so that any n — p linearly
independent components of Y also form a basis for all contrasts. Now Y
has a singular normal distribution, so writing down its likelihood is not
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trivial. One solution is to consider the likelihood of n — p linearly indepen-
dent contrasts. McCullagh and Nelder (1989, p. 247) give the log likelihood
for @ directly in terms of Y:

£6;Y) = _n;p log(2m) — 3 log det{K(6)} — 3 log det{W(6)}

-1YT{K(0)™' —-K(6)"'MW(0)'MTK()'}Y. (6)

Exercises 7.8-7.13 of McCullagh and Nelder (1989) outline a derivation of
this result. Any maximizer 8 of this expression is called a REML estimate
of 8. The REML estimate of 3 is then given by 3(0), where (3(0) is defined
as in (3).

An advantage of REML over ML estimation in estimating covariance
structures for Gaussian random fields is that REML can be applied to esti-
mating generalized autocovariance functions of IRF's (see 2.9), whereas ML
cannot. The problem is that a generalized autocovariance function for an
IRF does not define the covariance structure of all of the observations, so
that the likelihood for all of the observations is also not defined. However,
a generalized autocovariance function together with the Gaussian assump-
tion does define the joint density of the contrasts of the observations, so one
can use REML for estimating the parameters of a generalized autocovari-
ance function. Indeed, REML and best linear unbiased prediction of IRFs
form a coherent conceptual package, since in the modeling, estimation and
prediction one only needs to consider contrasts of the random field.

Gaussian assumption

The likelihood functions given in the previous subsections all assume that
the random field is Gaussian. This is a highly restrictive assumption so
that it is reasonable to be concerned about the performance of likelihood-
based methods based on a Gaussian model when the random field is in fact
not Gaussian. In particular, such methods will generally perform poorly if
there are even a small number of aberrant observations. However, methods
that are functions of the empirical semivariogram such as least squares and
generalized least squares (Cressie 1993, Section 2.6) will also be sensitive to
aberrant values even though they do not explicitly assume that the random
field is Gaussian. Cressie and Hawkins (1980) and Hawkins and Cressie
(1984) describe “robust” procedures for estimating semivariograms that
are less sensitive to distributional assumptions than procedures based on
the empirical semivariogram. However, these procedures do not fully take
into account the dependencies in the data and thus may be considerably
less precise than likelihood-based estimates when the Gaussian assumption
is tenable. A good topic for future research would be the development
of models and computational methods for calculating likelihood functions
for non-Gaussian random fields. Diggle, Tawn and Moyeed (1998) make
an important step in this direction and demonstrate that Markov Chain
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Monte Carlo methods provide a suitable computational tool for some non-
Gaussian models.

Computational issues

One potentially serious obstacle to employing likelihood methods is com-
puting the likelihood function. In general, if there are n observations,
calculating the determinant of W(@) and quadratic forms in W(8)~! each
require O(n3) calculations. In particular, for irregularly scattered observa-
tions in more than one dimension, an O(n®) calculation is usually necessary
to calculate the values of the likelihood function exactly. Thus, if there
are more than several hundred observations, exact likelihood calculations
are often infeasible. However, if the observations are on a regular lattice,
then it is possible to compute the likelihood function exactly with fewer
calculations (Zimmerman 1989). In this setting, it is also possible to use
spectral methods to approximate the likelihood (Whittle 1954; Guyon 1982;
Dahlhaus and Kiinsch 1987; and Stein 1995c), in which case, the approx-
imate likelihood can be calculated very efficiently by making use of the
fast Fourier transform (Press, Flannery, Teukolsky and Vetterling 1992,
Chapter 12).

Vecchia (1988) describes a general method for efficiently approximating
the likelihood function for spatial data. Let p(21, . . ., z,) be the joint density
of (Z(x1),...,2(xn)) evaluated at (z1,...,2,) and write other joint and
conditional densities similarly. Next, write

p(z1,- ., 2) =p(21) [[ (25 | 21, -, 2i-1)

i=2
and then approximate p(z; | 21,...,2;—1) by the conditional density of
Z(x;) given just the min(m, j — 1) observations among Z(x1),..., Z(Xx;j-1)

that are nearest to x; in Euclidean distance, where m is much smaller
than n. The smaller the value of m, the more efficient the computation but
the worse the approximation to the true joint density. The ordering of the
observations affects the results, but Vecchia (1988) found this effect to be
small in the examples he studied and suggests ordering by the values of
any one of the coordinate axes of the observation locations.

A somewhat related method for approximating the likelihood is to divide
the observation region into some number of subregions, calculate the like-
lihood for each subregion separately and then multiply these likelihoods
together. Similar to Vecchia’s procedure, smaller subregions lead to eas-
ier computation but worse approximations of the likelihood. Stein (1986)
recommended such a procedure for minimum norm quadratic estimators
(Rao 1973), which also require computing quadratic forms of n x n in-
verse covariance matrices. I would recommend using subregions containing
at least 100 observations, in which case, it should be feasible to carry out
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the necessary computations for many thousands of total observations. Nei-
ther this approach nor Vecchia’s should involve much loss of information
about those parameters governing the local behavior of the random field,
which are exactly those that will matter most when interpolating. Further-
more, even if it is possible to calculate the exact likelihood for all of the
data, calculating the likelihood separately for subregions might be desir-
able as a way of looking for possible nonstationarities in the random field.
For example, Haas (1990, 1995) deliberately uses only observations near
the predictand’s location when estimating the semivariogram to allow for
possible nonstationarities.

To compute MLEs, it is generally necessary to find the maximum of the
likelihood numerically. It is common practice to select starting values for
the unknown parameters and then use an iterative procedure such as con-
jugate gradient (Press, Flannery, Teukolsky and Vetterling 1992) to locate
a maximum of the function. If the function has more than one local maxi-
mum, there is no guarantee that such algorithms will converge to the global
maximum. Indeed, if one uses a model for the autocovariance function such
as the spherical (see 2.10), which yields likelihood functions that are not
twice differentiable, then it is quite possible to obtain likelihood functions
that have more than one local maximum (Ripley 1988). However, when us-
ing the Matérn model, I am unaware of any examples of likelihood functions
with more than one local maximum. What is possible is for the likelihood
not to possess a maximum in the interior of the parameter space. For exam-
ple, the supremum of the likelihood function may in some cases be obtained
as the parameter v, which controls the differentiability of the random field,
tends to oo.

I do not believe the results in Warnes and Ripley (1987) and Ripley
(1988) purporting to show multiple maxima in the likelihood when fitting
an exponential autocovariance function. Nevertheless, it is worth pointing
out that the various purported multiple maxima in their example corre-
spond to parameter values that will give nearly identical predictions and
mses when interpolating, since the slopes at the origin of the correspond-
ing semivariograms are nearly the same for all of the local maxima. The
example in Warnes and Ripley (1987) does correctly show that the likeli-
hood function can have long ridges along which it is nearly constant, which
could lead to numerical problems when using iterative procedures for find-
ing the maximum. Their presence is not a sign of a problem with likelihood
methods but rather an entirely correct indication that the data provide es-
sentially no information for distinguishing between parameter values along
the ridge. If, rather than just trying to maximize the likelihood, one plots
the log likelihood function, or at least some judiciously chosen profile log
likelihoods, then these ridges should be detected.
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Some asymptotic theory

This subsection summarizes some standard asymptotic theory for MLEs
and describes why such results will often not hold under fixed-domain
asymptotics. Suppose we observe a random vector X whose distribution
is from a family of distributions Py for 8 € © C RP and we propose
to estimate @ via maximum likelihood. One way to try to maximize the
likelihood is by finding critical points of the likelihood function. Specifi-
cally, define the score function S(0) = 8¢(6;X)/86, the random vector
whose components are the partial derivatives of ¢(6; X) with respect to
the components of 8. Assuming these derivatives exist and are continuous,
any MLE in the interior of © must be a solution to the score equations,
S(0) = 0. Let 6, be the true value of 8 and define the Fisher information
matrix Z(6p) = covg,{S(6p),S(8p)T}. Let i(0) be the p x p matrix whose
jkth component is —92¢(0; X)/86,;00y.. Under certain regularity conditions,
Eg,i(60) = Z(6¢) (Exercise 18). If Z(6y) is “large” (in the sense that its
smallest eigenvalue is large) and Z(6y)~'i(6g) =~ I with high probability,
then standard asymptotic theory suggests that the MLE is approximately
N(69,Z(60)~!) (Ferguson 1996; Ibragimov and Has'minskii 1981).

To give a more careful statement of this result that includes the settings
of concern in this work, suppose that Py for @ € © is a family of probabil-
ity measures for a random field Z and X, X3, ... is a sequence of random
vectors of observations from Z. As n increases, we should be thinking that
X,, becomes increasingly informative about 6. In many works on asymp-
totics of MLEs, it is assumed that the observations making up X,, contain
the observations making up X; for all j < m, but this will not be the case
for the example in 6.7, which considers evenly spaced observations under
fixed-domain asymptotics. Use the subscript n to indicate a quantity cal-
culated with X,, as the observation vector. Then if the smallest eigenvalue
of Z,,(60) tends to infinity as n — oo, we generally have

T,.(60)"/%(8,, — 8p) 5 N(0,1), (7)

where Z,(6p)'/? is some matrix square root of Z,(6p) (Ibragimov

and Has'minskii 1981). More informally, one might say 0, — 6, 5

N(Oyzn(GO)_l)'

Although (7) is part of the folklore of statistical theory, it is often difficult
to prove rigorously that MLEs have this behavior. It is usually consider-
ably easier to prove that any consistent sequence of solutions of the score
equations has asymptotic behavior given by (7); see, for example, Sweet-
ing (1980). Mardia and Marshall (1984) and Cressie and Lahiri (1993) give
some results for random fields under increasing-domain asymptotics. Note
that under fixed-domain asymptotics, if there is a nonmicroergodic parame-
ter, then @ cannot be consistently estimated and we should generally expect
(7) to be false. Exercises 18-20 examine some fundamental properties of
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likelihoods, score equations, Fisher information and their relationship to
the asymptotics of MLEs.

When 6 is not microergodic, we might expect something like (7) to hold
for the microergodic part of 8. To be more precise, suppose we can write
0 = (u7,77)T, where p is microergodic and no nontrivial function of
7 is microergodic. Results in Crowder (1976) suggest that if 7 is just
set to some fixed value rather than estimated and p is estimated by a
consistent sequence of solutions to the score equations 8¢/8u = 0, then
the asymptotic behavior of these estimates will be the same as if 7 were
known. Considering Crowder’s results, a reasonable conjecture is that if
all components of 0 are estimated by maximizing the likelihood, then the
asymptotic behavior of fi, will be the same as if 7 were known; that is,
T (100) Y2 (ftn — po) A N(0,I). Ying (1991) proves a very special case of
this result for an exponential autocovariance function in one dimension.

Exercises
14 Verify (4).
15 Verify (5).

16 Show that if one defines the likelihood in terms of g(@), where g is an
invertible function on ©, then g() is an MLE for g(0) if and only if 8
is an MLE for 6. Thus, MLEs are invariant under arbitrary invertible
transformations of the parameters.

17 Suppose a random vector X of length n has a density with respect
to Lebesgue measure p(- | 6) depending on a parameter 6. If Y =
h(X), where h is an invertible function from R” to R"™ possessing
continuous first partial derivatives, show that €(8;Y) — £(0; X) does
not depend on 6 and, hence, it does not matter whether we use X or
Y in finding an MLE for 8. Thus, MLEs are invariant under smooth
invertible transformations of the observations.

The next three exercises review basic properties about likelihood func-
tions and provide a heuristic justification of (7). Assume throughout
these exercises that {Py : @ € ©} is a class of probability models for
the observations with true value 6y and that switching the order of
differentiation and integration is permissible.

18 Show that E(;OS(GO) = 0. Show that I(a(]) = Egoi(oo).

19 Consider random vectors X and Y whose joint distribution is speci-
fied by Py. Show that Z(6g; X) + Z(6o; Y) — Z(0o; (X,Y)) is positive
semidefinite, where the argument after the semicolon in Z(-;-) indi-
cates the observations for which the Fisher information matrix is to be
calculated. Show that Z(6y; X) + Z(60;Y) = Z(0o;(X,Y)) if X and
Y are independent for all 6.
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20 Suppose X, Xgo,... is as in the last subsection and that the subscript
n generically indicates quantities based on X,,. By taking a first-order
Taylor series in the score function about 6y, give a heuristic argument
showing that any consistent sequence of solutions 8,, of the score equa-
tions should satisfy 0, ~ 6y + in(60)"1S,(6p). As n — oo, suppose
T..(60)'i,(69) — I in probability (a weak law of large numbers) and

T,.(80)~1/28,,(80) 5 N(0,1) (a central limit theorem). Show that (7)
plausibly follows.

6.5 Matérn model

For statistical methodologies to be broadly and effectively employed, it is
important to have canonical models that work reasonably well in a wide
range of circumstances. For the purposes of interpolating spatial data in d
dimensions, I recommend the following model: Z(x) = p + £(x), where p
is an unknown constant and € is a mean 0 stationary isotropic Gaussian
random field with autocovariance function from the Matérn class; that is,
with spectral density ¢(a? + |w|?)~¥~%/2 for unknown positive parameters
¢, v and a (see Sections 2.7 and 2.10). In making this recommendation, I do
not mean to imply that all, or even most, spatial data can be reasonably
modeled in this fashion. However, by making prudent extensions to this
model where appropriate by including, for example, geometric anisotropies
(2.10), measurement errors or by taking a pointwise transformation of the
observations (often logarithmic), one could distinctly improve on present
practice in spatial statistics. Diggle, Tawn and Moyeed (1998) describe a
notable extension by combining Gaussian random fields and generalized
linear models (McCullagh and Nelder 1989) into a single class of models
for spatial data.

The most important reason for adopting the Matérn model is the inclu-
sion of the parameter v in the model, which controls the rate of decay of
the spectral density at high frequencies, or equivalently, the smoothness
of the random field. As the results in Chapters 3 and 4, particularly 3.6,
indicate, the rate of decrease of the spectral density at high frequencies
plays a critical role in spatial interpolation. Unless there is some theoret-
ical or empirical basis for fixing the degree of smoothness of a random
field a priori, I can see no justification for the common practice of select-
ing semivariogram models such as the spherical, exponential or Gaussian
that provide no flexibility in this degree of smoothness. Using empirical
semivariograms for model selection can work disastrously for smooth pro-
cesses as the example in 6.9 demonstrates. Empirical semivariograms are
less likely to mislead for random fields that are not differentiable. However,
I believe that even in these instances far too much faith is generally placed
in empirical semivariograms as a tool for model selection.
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Since one would never leave out an overall scale parameter, the presence
of ¢ in the model is also essential. In addition, although Theorem 8 in
4.3 implies that one could leave y out of the model with asymptotically
negligible effect, it is hard to argue for arbitrarily taking the mean of Z
to be 0 unless there is some substantive reason to believe that it is. The
serious issue is whether the parameter a is helpful, since it has negligible
impact on the high frequency behavior of the spectral density. The results
in Chapters 3 and 4 show that varying a will have little effect on inter-
polations if the observations are sufficiently dense. Furthermore, in three
or fewer dimensions, a cannot be consistently estimated based on obser-
vations in a fixed domain, which follows from (20) in 4.2. Indeed, Wahba
(1990) essentially argues that a should just be set to 0. This leaves us with
the model for the spectral density of ¢|w|~2¥~¢, which is not integrable in
a neighborhood of the origin for ¥ > 0. Thus, this function is not a spectral
density for a stationary random field. It is, however, the spectral density
of an IRF (intrinsic random function) of order |2v| (see 2.9).

Although leaving a out of the model is a defensible position, there are a
number of reasons why I mildly favor its inclusion. First, the mathematical
arguments for excluding a are asymptotic and hence should not be con-
sidered universally compelling. Particularly for predictands located near or
outside the boundaries of the observation region, the value of a: can matter
substantially. Furthermore, if the correlations of the random field die out at
a distance much shorter than the dimensions of the domain of the observa-
tions, it may be possible to obtain a decent estimate of a. Handcock, Meier
and Nychka (1994) give an example concerning measurements of electrical
conductivity in soil that provides clear evidence of the need for positive a
both to fit the covariance structure of the data well and to provide sensible
interpolations. Second, if the available observations include a substantial
measurement error, then I suspect that badly misspecifying the low fre-
quency behavior of the spectral density could lead to serious bias in ML or
REML estimates of v even for moderately large sample sizes. Measurement
error makes estimating the high frequency behavior of a random field much
more difficult, so that the low frequency behavior can then have a larger
influence on parameter estimates. This greater influence may produce sub-
stantially biased ML estimates of the high frequency behavior if the low
frequency behavior is poorly specified. An example of severe systematic
error in ML estimates due to misspecification of a model at low frequencies
when the underlying process is deterministic is given in Section 6.3 of Stein
(1993b). Using the Matérn model of course does not guarantee that the low
frequency behavior of the spectral density is correctly specified. However,
allowing o to be estimated from the data does provide substantial addi-
tional flexibility to the model while only adding one parameter. Further
study of this issue is in order.

My final reason for including « is that I find it somewhat unnatural to
link the high frequency behavior of the spectral density and the order of the
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polynomial of the mean of the random field, which setting o = 0 requires.
Specifically, for the spectral density ¢|w|~2*~¢, the corresponding random
field must be an IRF of order at least || and hence its mean is implicitly
taken to be a polynomial of order at least |v]| with unknown coefficients
(see 2.9). I would prefer to be able to assume the mean is constant no
matter how large v is.

The fact that the order of the polynomial mean must increase with v if
one sets a = 0 causes a bit of difficulty with REML estimation of ¢ and v.
Specifically, suppose one models Z as a Gaussian IRF with spectral density
#lw|~2~<, where the order r of the IRF is the lowest feasible: r = |v].
Then the number of linearly independent contrasts out of n observations

isn— (d"LLULJ”J), assuming this number is nonnegative (Exercise 21). This
number jumps downward as v increases at each integer value of v, which
means that the likelihood of the contrasts for, say, v = 0.5 is not based on
the same information as for any v > 1. If one is fairly certain a priori that
v < 1, then this problem does not arise.

On the whole, I would advise leaving a in the model. However, if ex-
amination of the likelihood function yields no substantial evidence against
a = 0, one can then set a = 0, adopt the appropriate order IRF model and
end up with a slightly more parsimonious model for the covariance struc-
ture. As long as all predictions are interpolations, I do not see that much
harm can come from doing so. Furthermore, certain numerical difficulties
that may occur with Matérn autocovariance functions when v is large can
be avoided by using @ = 0. More specifically, for the Matérn model with
v large, the principal irregular term of the autocovariance function (see
2.7) is dominated by many “regular” terms (even order monomials) in a
neighborhood of the origin, which may lead to numerical inaccuracies when
calculating likelihood functions or BLUPs based on this model.

Exercise

21 Show that the number of monomials of order at most p in d dimensions

: d+p
is (417).

6.6 A numerical study of the Fisher information
matrix under the Matérn model

The asymptotic theory of MLEs described in 6.4 suggests that calculat-
ing the Fisher information matrix Z and its inverse in various settings is
a fruitful way of learning about the behavior of MLEs. This section re-
ports numerical calculations of Z and Z~! for observations from a mean
0 Gaussian process Z on R with spectral density from the Matérn model,
fo(w) = ¢(a® 4+ w?)~~1/2 1 first consider cases without measurement er-
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ror and then some with measurement error. In interpreting the results, it
is helpful to keep in mind that a mainly affects the low frequency behavior
of Z whereas ¢ and v both have a critical impact on the high frequency
behavior of Z.

For a Gaussian random vector with known mean 0, the Fisher infor-
mation matrix takes on a fairly simple form. Specifically, if Y follows a
N(0,3%(0)) distribution, then the jkth element of Z(6) is

Z;x(0) = 5 tr {2(6)7'%;(0)=(0) "' =(6)} (8)

where X;(0) = 0X(0)/06, (Exercise 22). To carry out this calculation
for observations from a Gaussian random field under the Matérn model
requires differentiating the modified Bessel function K, with respect to
v. This can be conveniently done when v is an integer (Abramowitz
and Stegun 1965, 9.6.45). In particular, (8/0v)K, (t)|,=1 = t"*Ko(t) and
(8/OV)K, (t)]y=2 = 26720 (t) + 267 1K1 (2).

The sets of observation locations on R I consider include 40 or 80 observa-
tions, varying levels of spacings between observations, and evenly spaced or
randomly located observations. Specifically, in the evenly spaced case, there
are observations at 6, 26,...,né for n = 40 or 80, where § ranges between
0.02 and 1. When the sample size is 40, the randomly located observations
were generated from a single realization of 40 independent and uniformly
distributed random variables on [0,40]. Figure 1 shows these 40 values,
which I denote by t1,...,t40. When I refer to 40 random locations with
spacing 6, I mean the set of observation locations {6t;,...,6ts0}. When I
refer to 80 random observations with spacing é, I mean the set of locations
{6t1,...,6ta0} U{6(t1 +40),...,8(ts0 + 40)}. The reason for repeating and
shifting the initial 40 locations rather than generating an independent set
of 40 random locations on [40, 80] is to make the cases of 40 and 80 ran-
dom locations more readily comparable. In particular, by Exercise 19 and
the stationarity of Z, repeating the same pattern twice yields a value of T
for 80 observations that is at most double the value for 40 observations.
The extent to which this value is not doubled then measures the degree
of redundancy in the information in the two halves of the 80 observation
sample.

No measurement error and v unknown

Suppose Z is a Gaussian process on R with known mean 0 and with spectral
density from the Matérn class with (¢,v, @) = (1,1, 1). This process is just
barely not mean square differentiable, since Z is mean square differentiable
under the Matérn model for v > 1. Figure 2 shows the autocovariance
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FIGURE 1. Locations of random observations on [0, 40].
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FIGURE 2. Plots of Matérn autocovariance functions used in examples. Solid
line corresponds to € = (1,1,1) and dashed line to 6 = (24,2, 2).

function for Z. Let 7, indicate the diagonal element of Z corresponding
to ¢, let Z¢ indicate the diagonal element of Z~! corresponding to ¢ and
define Z,,, 7%, I, and Z* similarly. Figure 3 plots Z, and Z,, for the various
spacings, sample sizes and patterns. There is no need to plot Zy as it just
equals n/(2¢?), where n is the sample size. Note that asymptotic theory
suggests, for example, that 1/Z, is the approximate variance of the MLE of
vif =1 and o =1 are known. For v, random locations are substantially
more informative than evenly spaced locations, especially for larger spac-
ings 6. These results make sense in light of the critical role v plays in the
local behavior of Z. Groups of points that are close together are particularly
informative about v and randomly located observations provide groups of
points that are more tightly bunched than evenly spaced points with the
same value of §. For all § and even or random spacing, doubling the sample
size very nearly doubles Z,,, which means that the information about v in
the observations on (0, 406] is nearly independent of the information in the
observations on (408, 806] (see Exercise 19).

For 7, the picture is rather different. Now, larger values of § yield greater
information, which makes sense for a parameter that mainly affects low
frequency behavior. For smaller §, even and random spacing give nearly
the same values for Z,. In addition, for even spacing, when n = 40 and
6 = 0.1, Z,, is 6.33, whereas by doubling the number of observations (n =
80) and halving the spacing (6§ = 0.05), Z,, increases only slightly to 6.40.
For the nonmicroergodic parameter «, these results are expected, since
T, should tend to a finite value as the observations in a fixed interval
become increasingly dense. For larger 6, even spacing produces somewhat
larger values for Z, than random locations. I do not have a convenient
story for this result, although it is not entirely unexpected in light of a
theoretical result in Stein (1990b, Section 5) showing that even spacing is
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asymptotically optimal in a certain sense for estimating o when the spectral
density is assumed to be of the form 1/(a? + w?). Finally, for larger 6,
doubling the sample size does approximately double Z,, but for smaller 8,
Z, is less than doubled, which indicates that the information about « in the
observations in (0,406] and in those in (408, 806] is somewhat redundant.

Figures 4 and 5, which show the diagonal elements of Z~! and the ap-
proximate correlations of the MLEs implied by (7), deserve similar scrutiny
and explanation. One noteworthy result in Figure 4 is that Z* is not mono-
tonically decreasing as § increases, despite the fact that Z, is monotonically
increasing, which is related to the fact that the approximate correlations
of & with ¢ and ¥ increase with & (see Figure 5). Outcomes in Figure 5
deserving notice include the fact that the approximate correlation of qAS and
U is essentially independent of sample size and is distinctly lower for all é
when the observations are randomly located.

It is not possible to take asymptotic results such as (7) seriously for at
least some of these examples. In particular, for 40 evenly spaced observa-
tions and § = 1, we have I% = 5.62, but it certainly cannot be the case that
¢ is appr0x1mately N(1,5.62) since ¢ is always nonnegative. Even in this
situation, I believe that Z~! provides at least qualitative insight about the
variability of the MLE. An alternative interpretation is to imagine observ-
ing N independent realizations of the process Z at the same set of locations.
If Oy is the MLE of 6 based on these N independent and identically dis-
tributed random vectors, then 8 is approximately N(6g, N~1Z~!) for N
sufficiently large, where Z is the Fisher information matrix for observations
from a single realization of the process. For a space-time process observed
at a fixed set of spatial locations at sufficiently distant points in time, it
may be reasonable to assume that observations from different times are
independent realizations of a random field.

No measurement error and v known

The results of the previous subsection show the random design clearly dom-
inating the evenly spaced design in terms of having smaller values for the
diagonal elements of the inverse Fisher information matrix. Before jumping
to any conclusions that random designs are always better, it is worthwhile
to consider how this result depends on the model selected. In particular,
consider the same setting as in the previous subsection but assume that v
is known and only ¢ and o need to be estimated. Figure 6 shows that the
evenly spaced designs are now quite competitive with the random designs
and even have slightly lower values for Z% for some 6. Although I do not
advocate treating v as fixed, keep in mind that using the exponential model

is the same as using the Matérn model with v = % assumed known.
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FIGURE 3. Diagonal values of Fisher information matrix for Matérn model with
(¢,v,@) = (1,1,1).

indicates 40 evenly spaced observations with spacing §.

indicates 80 evenly spaced observations with spacing §.

indicates 40 randomly placed observations on [0, 406].

indicates the same 40 randomly placed observations on [0,406] together with
each of these observation locations plus 406, for a total of 80 observations.

® X & +

Observations with measurement error

If Z is observed with error then it should be more difficult to estimate
the parameters governing the law of Z. To investigate how this loss of
information depends on the variance of the measurement error, which I
denote by 7, I consider those settings from the previous subsection with
80 observations, evenly spaced and random, and § = 0.1. In addition to
(¢,v,a) = (1,1,1), I also consider (¢, v, a) = (24, 2,2). The autocovariance
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FIGURE 4. Diagonal values of inverse Fisher information matrix for Matérn
model with (¢,v,a) = (1,1,1). Symbols have same meaning as in Figure 3.
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FIGURE 5. Approximate correlations of MLEs of parameters based on inverse
Fisher information matrix for Matérn model with parameters (1,1, 1). Symbols
have same meaning as in Figure 3.

functions for these two models are plotted in Figure 2. The values of 7 I
consider are 1074,1073,1072,10~! and 1. Although the value 10~* may
seem small, note that it means the standard deviation of the measurement
error divided by the standard deviation of the process is 0.7%, which strikes
me as quite plausible for many physical quantities.
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FIGURE 6. Diagonal values of inverse Fisher information matrix for Matérn
model with (¢, v,a) = (1,1,1) when v = 1 is known. Symbols have same meaning
as in Figure 3.

The reason for including two different values of v is to see whether in-
creasing 7 has more effect on our ability to estimate larger or smaller values
of v. Theoretical results in Stein (1993a) and the intuition that estimating
the degree of differentiability of a random process with noisy observations
should be harder for smoother processes suggest that 7 should have more
of an impact on the ability to estimate v when v is 2 rather than 1. Results
in Tables 1 and 2 support this expectation: for evenly spaced observations,
when 7 goes from 10~ to 1072, Z" increases by a factor of 1.55 when v = 1
but by a factor of 5.13 when v = 2.

On the other hand, 7 is much easier to estimate when v = 2 than when
v = 1, especially for smaller 7 and evenly spaced observations. In particular,
for evenly spaced observations and 7 = 1074, Z7 /72 is 1,893 for v = 1 and
1.507 for v = 2. This large value for Z7 /72 for v = 1 suggests that these
data provide essentially no information for distinguishing the true value
for 7 of 10™* from either 7 = 0 or much larger values such as 7 = 1073,
Fortunately, in this case we have f(w) ~ w™3 as w — oo, so that @ = 3 in
the notation of Theorem 7 of 3.7, and since 7/6%~! = 0.01 is small, this
theorem suggests that at least for certain predictions, acting as if 7 = 0
will produce nearly optimal predictors.

The other diagonal elements of Z depend on 7 as should be expected.
Specifically, parameters that are more related to high frequency behavior
should be more affected by increasing 7 than parameters affecting mostly
low frequency behavior. The results in Tables 1 and 2 are in line with this
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TABLE 1. Diagonal values of Fisher information matrix and its inverse for
(¢,v,@) = (1,1,1) for various values of 7 based on 80 observations with spacing
6 = 0.1. Results for evenly spaced observations indicated by F and random design
indicated by R (see Figure 3 for details).

-
10—* 10-3 102 107! 1

T, F 39.33 34.51 19.70 8.996 4.002
R 33.33 24.47 14.96 7.947 3.717

V2T, F 1130 927.0 358.5 72.64 11.09
R 1225 662.6 241.1 61.19 10.17

a?Z, F 10.83 10.83 10.77 10.53 9.517
R 10.81 10.80 10.73 10.44 9.285

2T, F 0.005481 0.4036 7.625 22.48 31.71
R 2.862 7.736 17.10 26.17 32.72

I%/¢? F 1.324 1.375 1.750 3.550 12.66
R 0.4158 0.6510 1.231 3.072 12.25

7v /v? F 0.07240  0.07693 0.1125 0.3282 1.949
R 0.01036  0.02227  0.06282 0.2550 1.753

7% /a? F 0.3878 0.3974 0.4657 0.7702 2.729
R 0.2025 0.2538 0.3689 0.6908 2.076

Im/r? F 1893 22.03 0.5840 0.09044 0.04618
R 0.3990 0.1806 0.07989  0.04938 0.03770

heuristic as Z,, decreases only slightly as 7 increases but Z4 and particularly
7, decrease sharply.

In comparing random and evenly spaced designs, for 7 = 10~% and v = 1
or 2, the random design does drastically better in terms of the diagonal
elements of Z~!. The evenly spaced design is much more competitive for
larger 7 and, for the parameters other than 7, actually has slightly lower
values on the diagonal of Z~! for v = 2 when 7 is sufficiently large. However,
for 7 = 1, it is fair to say that estimating (¢, v, @) is essentially hopeless
when v = 1 or 2. When v is known, then the other parameters are much
easier to estimate. For example, when v = 2 is known and 7 = 1, then
for the evenly spaced design, I%/¢? is 1.787 as opposed to 160.1 when v is
unknown and Z%/a? is 0.1528 as opposed to 2.462 when v is unknown.

Conclusions

One overall pattern that emerges from these calculations is that random
designs can often yield better parameter estimates than evenly spaced de-
signs of comparable density, sometimes dramatically so. However, if our
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TABLE 2. Diagonal values of Fisher information matrix and its inverse for
(¢, v, ) = (24,2,2) for various values of 7. Observation locations are same as
in Table 1.

-
104 103 102 101 1

?%T, F 30.02 19.05 11.94 7.299 4.038
R 20.41 14.89 10.33 6.657 3.745

V2T, F 2791 1223 501.1 193.4 67.27
R 1579 831.5 394.7 166.4 60.47

2T, F 58.91 58.54 57.54 54.84 46.63
R 58.64 58.22 57.17 53.97 44.84

2T, F 2.196 12.12 22.05 28.72 33.14
R 14.22 20.42 25.74 30.20 33.76
I¢/¢? F 2.573 4.003 9.138 30.06 160.1
R 2.066 4.018 9.796 33.33 179.6

Iv/v? F 0.02673 0.04799  0.1371 0.5790 3.935
R 0.01973 0.04786  0.1484  0.6457 4.396
/o F 0.1122 0.1486  0.2610  0.6320 2.462
R 0.09819 0.1494  0.2750  0.6900 2.752

I7/7? F 1.507  0.1442 0.05976 0.04183  0.03521
R 0.07993 0.05475 0.04308 0.03657 0.03287

goal is to predict Z at unobserved locations, it does not follow that ran-
dom designs should be preferred when using the Matérn model. If one wants
to predict well throughout some region R, then there is a certain logic to
some sort of regular pattern of observations throughout R, although if v is
large, it may be appropriate to include some observations slightly outside
R. Presumably, one should try to reach some compromise between designs
that lead to good estimates of the unknown parameters as well as accurate
predictions of Z based on the available observations and the estimated pa-
rameters. See Laslett and McBratney (1990), Pettitt and McBratney (1993)
and Handcock (1991) for further discussion of these issues. The example
in 6.9 demonstrates that adding even a few closely packed observations to
an evenly spaced design can sometimes dramatically improve parameter
estimation.

Finally, although all of the examples in this section consider only pro-
cesses on R, I have run some examples on R? with qualitatively similar
results. Obviously, there is considerable scope for calculations of Z and
Z-! in further settings and for simulations of the actual distributions of
MLEs to compare to the asymptotic approximations.
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Exercises
22 Verify (8).

23 Repeat the numerical calculations in Tables 1 and 2 for different values
of the spacing §. How do the comparisons between the fixed and ran-
dom designs change with 67 How do the comparisons between v = 1
and v = 2 change with 47

6.7 Maximum likelihood estimation for a periodic
version of the Matérn model

It is generally difficult to determine the asymptotic properties of estima-
tors of the parameters of any model under fixed-domain asymptotics. One
situation where it is possible to make progress is for periodic random fields
observed on a lattice. This leads us to considering estimation for the class
of periodic random fields whose spectral measures place all of their mass
on Z? and the mass at j is ¢(a? + |j|2)~»~%? for j € Z. The hope is that
any asymptotic results we obtain for these periodic models will be similar
to those for the Matérn model, although that remains to be proven.

Discrete Fourier transforms

Suppose Z is a mean 0 stationary Gaussian process with spectral measure
F and we observe Z at §j for j € G, = {1,...,m}%. The discrete Fourier
transform of these observations at a frequency w € R? is defined as

Z(w) = Z(8j) exp(—iw"}).

Jj€Gm

Note that Z(w) has period 27 in each coordinate, so there is no loss in
information in restricting attention to frequencies in (—m,n]¢. Consider
further restricting to just frequencies w in (=, 7]¢ of the form 2rm~!p,
which is equivalent to considering only p € By,, where By, = { — |1(m -

D), —L3m = 1D)] +1,..., 3m]}". Now, for j € Gm,

Z Z(2rm~'p) exp(i2rm~jTp) = m?Z(6j) (9)
PEBm

(Exercise 24), so this further restriction to p € B,, also involves no loss
of information. If m is highly composite, Z(me_lp) can be efficiently
calculated for all p € B,, using the fast Fourier transform (Press, Flannery,
Teukolsky and Vetterling 1992). Indeed, even if m is not highly composite,
these calculations can still be done quite efficiently by implementing a d-
dimensional version of the fractional fast Fourier transform (Bailey and
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Swarztrauber 1991). Alternatively, one can add zeroes to the dataset so
that the expanded dataset does have m highly composite, although then
one gets Z at a different set of frequencies (Bloomfield 1976, p. 73; Priestley
1981, p. 577).

Define the measure Fs on Ag(67!) by Fs(-) = Y ycza F(-+2n67 k). It is
then a straightforward calculation (Exercise 25) to show that for p,q € Z¢,

E{Z(27rm"1p)2(27rm—1q)}

d
= [ exp{imm ™" (qu — pu)} (10)

d sin® ( %méwu)

X Fs(dw),
/Ad(,g_l) oo sin (%&uu - Wpum_l) sin (%éwu - wqum—l) o(dw)

where the integrand is defined by continuity for those w for which the
denominator is 0. Here and subsequently in this section, a subscript u
indicates the uth component of a vector so that, for example, p,, is the uth
component of p.

Periodic case

If Z has period 2mmé in each coordinate, a great simplification occurs in
(10). This periodicity implies that F' is a discrete measure placing all of
its mass on points (mé)~'k for k € Z%, so that Fjs puts all of its mass
on points of the form 2r(m8)~'p for p € By,. Since [[¢_, sin? (3méw.)
has a zero of order 2d at all such points, the only way (10) can be
nonzero for w = 2r(mé)~'r, r € By, is if sin {xm~(r, —p,)} = 0 and
sin {rm~1(r, — gqu)} = 0 for u = 1,...,d, which for p,q,r € B, can only
occur if p = q = r. Thus, for p,q € B,

5 A NP\ 2dFg(2rm~1p) =
E!Z@2mm 'p)Z(2rm-1q)} ={ ™ *¢ P), P=q
{2emm 1) Zmm )} = { p-d
The fact that for p # q, F {Z (2wm'1p)2(2wm—1q)} = 0 irrespective

of the particular values of F((mé)~'k) for k € Z? allows us to obtain a
relatively simple expression for the likelihood function. Define p > 0 to
mean p # 0 and the first nonzero component of p is positive, define p > 0
asp>0orp=0andsay p<O0ifp#0. For p € B, let

Xp= Z Z(63) cos(2rm™~pTj)
jegm
for p > 0 and

Xp =Y Z(8j)sin(2rm~'p”j)
J€Gm
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for p < 0. Using Z(w) = Z(~w), it follows that from {Xp : p € By} one
can recover {Z(2rm~'p) : p € B,,} and hence the original observations.
Thus, by Exercise 17 in 6.4, we can find the MLE for 8 by maximizing
the likelihood with {X : p € B,,} as the vector of observations. Using
the cosine transform for p > 0 and the sine transform for p < 0 in the
definition of X, is notationally convenient, since the real random variables
Xp for p € B, are then uncorrelated with mean 0 and

var(Xp) = 4m Fs (2rm~"p)em(p) (1)

for p € B,,, where €,,(p) = 1 unless all components of 2p are 0 or m, in
which case, €,,(p) = 2 (Exercise 26).

Suppose Z is a stationary mean 0 Gaussian random field on R? with
period 27 in each coordinate and spectral measure with mass fg(j) for
j € Z? and no mass elsewhere for @ € ©. If Z is observed at 2rm~'j for
j € Gm, then {X, : p € By} is a one-to-one function of the vector of m?
observations Z,,. Furthermore, the Xs are independent mean 0 Gaussian
random variables with variances given by (11), so by Exercise 17 in 6.4,
the log likelihood for 6 is of the form

£(0;Z,,) = constant — % Z log{mzdem(p) Z fo(p+ mj)}

pEB, jezd
1 X2
— = 5 P —, (12)
2 m?de,(p) Y. fo(p +mj)
PEBm jezd

where the constant does not depend on @ and hence has no impact on the
maxima of the function. Call 8,,, a maximum likelihood estimator (MLE) of
0 if it maximizes (12) for @ € ©. Suppose that fo(j) = ¢(a? + |j|?) ¥ ~%/2,
0 = (¢,v,a) and © = (0,00)3. We know that the MLE cannot be consistent
for any function of @ that is not microergodic and we expect that it is
consistent for any function of @ that is microergodic. From (20) in 4.2, we
see that ¢ and v are microergodic in any number of dimensions but that o
is microergodic if and only if d > 4.

Asymptotic results

This section provides asymptotic results for Z,,, = Z,,(6o), the Fisher in-
formation matrix for @ based on Z,,. Let 6,, be an MLE for 6 based on
Z,,. As indicated in 6.4, we might then expect

T%(6,, — 85) 5 N(0,T)

if 6 is microergodic. When d < 3 so that « is not microergodic, as discussed
in 6.4, it is possible to give a plausible conjecture about the asymptotic
behavior for the MLE of ¢ and v using results of Crowder (1976).
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Let us first give exact expressions for the elements of Z,, in the current
setting. Defining

gipmav) =Y (& +Ip+mi?) ™" log? (a® + Ip +mj|?),
jezd

and using ¢ as shorthand for £(0;Z,,) we have (Exercise 27)

#(5) - 5 -
:
(o) =t 3 (i)
(% 2) - ¥ Gloman
(3 8)- 257 5 ey

PEB,.

and

V(ae ae) = 10(21/-}-(1) Z {1(p,m,a,u)§0(p,m,a,v+l) .

3—1;’ 55 p€EB., 60(pamaa7 V)2

Corresponding to common practice in theoretical statistics, (13) and the
subsequent equations do not explicitly distinguish between an arbitrary
value of a parameter and its true value. A more accurate way to write (13)

would be
or md
e (3g) = 25

but insisting on this level of explicitness would lead to rather ugly-looking
expressions for the remainder of this section.

To state the asymptotic behavior of Z.!, we first need some notation.
Define

Yjeza X +3172log |x +j|
Djeze X +i[72 ¢

gu(x) =

and
Sjeza X +j|72 742
djeza X +jI72

for x € R? For the rest of this section, it is convenient to write cer-

h,(x) =

o . d .
tain integrals over the unit cube ¢4 = [—%, %] as expectations over the
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random vector U having uniform distribution on ¢4. Thus, for example,
Eg, = E{g,,(U } = f gv(x)dx and cov(g,, h,) = cov{g,(U), h,(U)} =

f gu(x x)dx — Eg,,Eh Next, consider two sequences of k x £ ma-
trlces Am and B, with elements a,,(%,5) and b,,(3, ), respectively. For
a positive sequence ti,tz,..., I take A,, = B,{1 + O(t,n)} to mean

am(2,7) = bn(2,7){1 + O(tm)} for 1 < i < k and 1 < j < £. Similarly,
A,, ~ B, means a,,(i,7) ~ bp(i,j) for 1 <i <k and 1 < j < ¢ Finally,
for symmetric matrices, I use - to indicate elements of the matrix defined
by its symmetry.
Theorem 1. Suppose d > 5. As m — oo, for some € > 0,

1
~ {var(g,) var(h,) — cov(g,, h,)?

-1 _
m

Frmd Qe {1t+om™)}, (@19
where Q,,, is symmetric and has jkth element g, (j, k) with
am(1,1) =24 [var(h,) log? m + 2 { Eg, Eh% — Eh,E(g,h.)} logm
+ Eg2ERZ - {E(g,h)}’]
am(1,2) = ¢{ var(h,)logm + Eg, Eh? — Eh, E(g,h,)},

am(2,2) = % var(h,),

om? 2
m]-a =T TTaT uyul v uu_EuEua
am(1,3) a(2y+d){cov(g h,)logm + Eg,E(g,h,) 92Eh, }
m? cov(gy, h,)
m(2,3) = - ———-—*
4m(2,3) a(2v + d)
and
2m? var(g,)
am(3,3) = 2@+ dR
Ford=4,
1
-1
m Val‘(g,,) R"H (15)
where R, has jkth element r,,(j, k) with
202 log® m
rm(17 1) = Tv
dlogm
Tm(152) - m4 I
1
m 272 =51
T ( ) 2m4
vy hy) L
ro(1,3) = ¢ cov(gy,h,) ogm’

w2a(2v + 4)m?
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___cov(gy, hv)
rm(2,3) = w2 (2v + 4)m?
and
var(gy)
m(3, =
rm(3,3) m2a2(2v + 4)2logm

as m — oo. Finally, for d < 3, define Z,,,(¢,v) as the Fisher information
matriz for (¢,v) assuming a is known. Then

1
-1 —
2(log?m + 2logmEg, + Eg?)
X 1 | E 1 | {1+0(m™)}
P ogm + kg, 25

(16)

as m — oo for some € > 0.

There are a number of interesting features to these results. First consider
d > 4. We then have that all elements of I;Ll tend to 0 as m — oo,
which is what we would expect from microergodicity considerations. Thus,
I conjecture that the asymptotic normality for 6, stated in (7) holds for
d > 4, and I assume so from now on. In addition, for convenience, I make
statements that presume the limiting covariance matrix of T2 (0., — 0) is
the identity matrix, even though this convergence of the moments of the
distribution does not necessarily follow from the convergence in distribution
of TV %(6,, — 0) given in (7). As Cox and Hinkley (1974, p. 282) point out,
the convergence in distribution is what is crucial if we want to obtain
asymptotically valid confidence intervals for the unknown parameters.

Let us now consider d > 5 in more detail. In this case, the rates of conver-
gence for each diagonal element of (14) are all different, and hence, so are
the asymptotic variances for the components of 0. Only © has asymptotic
variance of the “usual” order in parametric inference of m~9, the reciprocal
of the number of observations. The estimator ¢ has asymptotic variance of
the slightly larger order m~¢ log2 m and & has asymptotic variance of order
mi-¢, Since g, and h, do not depend on «, the asymptotic covariance ma-
trix of (¢, ?) does not depend on a. Furthermore, using corr for correlation,
corr(@, @) and corr(, &) both tend to 0 as m — oo, which suggests (¢, D)
is asymptotically independent of & The numerical results in Figure 5 of
6.5 indicate that m may need to be quite large before these correlations
are near 0.

Another consequence of (14) to note is that 1 — corr(cZS, b)) ~ ylog™?m,
where v = Eh2 {var(g,) var(h,) — cov(gy,h,)?} /{2var(h,)?}, which is
positive. The fact that the correlation tends to 1 as m — oo should
not be entirely surprising considering the approximate correlations for
¢ and U very near to 1 we found in Figure 5 for the Matérn model.
One implication of this correlation tending to 1 is that there is no
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way to normalize 6 componentwise so that it has a nonsingular limit-
ing distribution: for any functions 71,72 and 73 on the positive integers,
(m(m)(¢ — ¢),m2(m)(? — v),n3(m)(& — a)) cannot converge in law to a
nonsingular distribution. However, it is possible to show (Exercise 28) that
if (7) holds then

¢2—;¢ — (logm + Eg,)(? — v)
(2m?)!/? b—wv 5N(O,2(), (7
a(271;;— d) (- a)
where
=(v) S (18)

=var(g,,) var(h,) — cov(g,, h,)?

var(g, ) var(h,) — cov(g,, h, )?
X cov(gy,h,)Eh, var(h,,)
cov(gy, h,)Eg, + var(g,)Eh, —2cov(g,,h,) 4var(g,)

For d = 4, (7) and (15) imply corr(#, #) — 1, although the approximation
in (15) is not sharp enough to allow an asymptotic approximation of 1 —
corr(éb,l?) as in the d > 5 case. Exercise 37 outlines how to obtain an
asymptotic approximation to 1 — corr(qﬁ, D) for d = 4.

When d < 3, o is not microergodic. As discussed in 6.4, we should not
expect 0, to be asymptotically normal in this case, since the proof of such
a result requires that the MLE be consistent. However, as I noted in 6.4, we
might expect asymptotic normality to hold for the microergodic parameters
¢ and v. In particular, a reasonable conjecture is that if (¢,v,a) are all
estimated by maximizing the likelihood, then the asymptotic behavior of
(¢, 7) will be the same as if & were known; that is,

(2md)1/? ¢2—'¢¢ — (logm + Eg,)(# —v) | £ N(0,I).
var(g,)"/?(0 - v)

If the mean of Z were an unknown constant and we used REML to
estimate 6, then Theorem 1 would also apply to the Fisher information
matrix for the contrasts. Specifically, the likelihood of the contrasts just
leaves the term p = 0 out of the sums over B, in (12) and it follows that
the asymptotic results in Theorem 1 are unchanged (although the result in
Exercise 37 for d = 4 changes slightly).

If the observations are made with independent Gaussian measurement
errors with mean 0 and constant variance o2, common sense and the results
in 6.6 suggest that the estimation of (¢, v, &) should be more difficult than
when there is no measurement error. However, the discussion in 4.2 suggests
that whatever parameters can be consistently estimated when there is no
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measurement error can still be consistently estimated when there is. In the
present setting, the Xps, p € B, are still independent Gaussians when
there are measurement errors, so it is in principle possible to carry out an
asymptotic analysis similar to the one in Theorem 1. Rather than doing
that, I just indicate how we might expect the rates of convergence to change
by considering results in Stein (1993). In that work, I essentially studied
the d = 1 case here except that the parameter a was omitted. Specifically,
I assumed that f(j) = ¢|j|~2*~! for j # 0 and fs(0) = 0. If there are no
measurement errors, a minor modification of Theorem 1 here shows that the
diagonal elements of the inverse Fisher information matrix for (¢, v) are of
the orders of magnitude m~! logZ m and m~! as in (16) for d = 1. However,
if there are measurement errors of variance o2 (independent of m), then the
diagonal elements of the inverse Fisher information matrix for (¢, v, 0?) are
of the orders m~1/(2*) log2m, m~1/(2) and m™!, respectively. Thus, the
convergence rates for (}3 and ¥ are lower when there is measurement error
and the effect is more severe for larger values of v.

PROOF OF THEOREM 1. As an example of how to approximate the ele-
ments of Z,, as m increases, consider cov(9€/0¢,d¢/dv). First note that
£1(0,m,a,v)/€ (0, m,a,v) < logm. Next, for p # 0,

a2 9 —v—d/2
§l(p)m,aa V) =m 24 Z (m + |m—1p +j| )

jezd
a?
x {210gm + log (;ﬁ +|m™!p +j|2)}

=2m™ =% 3" Im™'p + j| 72~ (log m + log Im~'p + j|)
jezd
+0 (Ip|2>m=2~%logm) (19)
(Exercise 29) and similarly
é0(pym, 0,0) =m0 3 m~1p 4 |24 1 O(|p| m~2~9),
jezd
Then (Exercise 30)

pP,m,a,v ’ _
Z gl m,a y; = 2md10gm+22 gu(m 1]p]) + R, (20)
pEBm 0 p7 B

where the prime on the sum indicates p = 0 is excluded and

’
R, < logm Z Ip|™2 < (1 4+ (m)?~2)log m.
PEBm

The definition of the Riemann integral suggests

m™¢ Z gv(m l|p| — Eg,
pGBm
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as m — oo, which is true, but we require a slightly sharper result.
Specifically, it is possible to show

m=4 3" g, (m|p|) = Eg, + O(m™) (21)
pPEBm
for some € > 0 (Exercise 31). Thus, for some € > 0,
oL ot 1 1
—d —€
m~% cov —=logm — —FEg, + O(m™°).
(3 5) =~ osm = 5B +0m™

Similarly,
—d ot 2 2 —€
m~var | o ) = 2log“m + 4logmEg, + 2Eg,; + O(m™¢)

for some € > 0.
Next, consider var(8¢/dc). First, since
§o(p,m,a v+ 1)
éo(p,m, a,v)

it follows that var(90¢/0a) is bounded in m for d < 3 and tends to oo for
d > 4. More specifically,

=< (1+p)7%

var <g§) d %02(21/ + d)z Z m (22)
pEZd
for d < 3 (Exercise 32),
m~ % var (9{) 1 o?(2v + d)?Eh2 + O(m™¢) (23)
Oa 2

for some € > 0 when d > 5 (Exercise 33). The case d = 4 requires particular
care. It is possible to show that

Z {ﬁo(p,m,a,u+ 1)} Z hu( —1|p} (24)

peB,, §0(p,m,a,l/) pEBm,

from which it follows
(logm)~! var (gﬁ-) — o?(2v + 4)%7? (25)

(Exercise 34). Exercise 37 outlines how to obtain a sharper result for
var(84/8c) when d = 4. Now consider cov(8¢/d¢,0¢/0a). For d = 1,

oL ot a2v+1) & 1
°V<a¢’53> T 2% Za2+p2’

p=—00

for d > 3,

2—d o¢ 86) _a(2v+d) —e
m*~%cov (8(]5 %)= 2% Eh, + O(m™¢)
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for some € > 0 and for d = 2,

_ ot ot a(2v + 2)w
1 ot ot _olev + 2)m
(logm)~" cov <6¢’3a) — 5 .
Finally, consider cov(9¢/0v,8¢/da). For d = 1,
oL of 1 > log(a? +p?)
cov ((7);’3_(1) — 204(21/-+-1) E e

p=—00

for d > 3,

197

m?~? cov (8@ 83) = a(2v + d) {logmFEh, + E(g,h,)} + O(m™°)

v’ da

for some € > 0 and for d = 2,

8L o¢ ’ log|p| 2
cov (&j, Ba) a(v+ 1)p§ BE ma(v +1)log” m.

Putting these results together for d > 5 gives
I, = m?S,{1+0(m )}
for some € > 0, where S,, has jkth element s,,(j, k) given by

d
m
sm(1,1) Zﬁg,
d d
sm(1,2) = — % logm — %Eg.,,
d—2
om(1,3) = = A& FIMT by

2¢
5m(2,2) =2m?(log> m + 2logmEg, + Eg?),
sm(2,3) =m®2a(2v + d){logmEh, + E(g,h,)}
and

5m(3,3) = %md_4a2(2u + d)?Eh2.

It follows that for some € > 0 (Exercise 35),
m394a2(2v + d)?
202

+2Eg,E(g,h,)Eh, — {E(g,,h,,)}z] + O(de—-ll-—e).

det(Z,,) =

[Eg2ER? — (Eg,)*ERZ — EgZ(Eh,)*

(27)

We see that the terms of order m3¢~—*log® m and m3¢~*logm all exactly
cancel, which explains why it was essential to get, for example, var(8¢/0v)
beyond the leading term 2m?log®m in order to approximate ZI.,!. Now

(Exercise 36)

Eg.Eh; — (Eg,)?Eh’ — Eg.(Eh,)? + 2Eg, E(g,h,)Eh, — {E(g,h.)}?
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= var(g, ) var(h,) — cov(gy, h,)?, (28)

which is nonnegative by the Cauchy-Schwarz inequality and can be shown
to be positive (Exercise 36). Equation (14) of Theorem 1 follows.

Next consider d = 4. The only element of Z,, as given in (26) that is
now incorrect is var(8€/0c), which we have shown is o?(2v +4)27% log m +
o(logm). It follows that

2
det(Z,,) ~ (%—?) (2v + 4)% var(g,)m®logm,,

which yields (15). Finally, for d < 3, the proof of (16) in Theorem 1 is
immediate from the results already given. m]
Exercises

24 Verify (9).

25 Verify (10).

26 Verify (11).

27 Derive the covariance matrix of the score function for the setting in
this section.

28 Verify that (18) holds if (7) is true.

29 Verify (19).

30 Verify (20).

31 Verify (21).

32 Verify (22).

33 Verify (23).

34 Verify (24) and show that (25) follows.

35 Verify that (27) follows from (26).

36 Verify (28) and show that the result is positive for all v > 0.
37 (Only for the truly brave or truly foolish.) Show that for d = 4,

var (3—2) = 2n?logm + C, o + O(m™°) (29)

for some € > 0, where

)

o =/ Ix|~*dx — 72{1 + 2log(20)} + A, + B,,
ca\bsa(1/2)

A, = lim / (@ +[x)2dx - Y (@® + [p?)

m-—o0
pPEBm
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and finally,

B, =/ { 202, +6(x) + o2v+6(x)?
C4

X[ +602,14(x)2  O2u4+4(X)?

2 R P
[x|2v+8a9, 44(x)  |x|* ’

where 0, (x) = Z'J |x+j|~#. To obtain (29), prove the following results:

§0(p,m,a,u+1)}2_ {fo(x,m,a,u+1)}2
2 { £(p, m,2,) /m Lxman |

pEBn
=Aa+0(m—€),
éo(x,m,a,v +1) 2 _/ 22— \ -2
/mc4{ bo(x,m,a,v) dx ., — Il dx
= B, +0(m™),

a? 2 -2
/64 (52—+le) dx

2 -2
= / (a_2 + |x|2) dx +/ |x|~*dx + O(m™°)
ba(1/2) \T ca\bs(1/2)

and

2 -2

/ (9—2— + |x|2> dx = 72{2logm — 2log(2a) — 1} + O(m™°)
ba(1/2) \

for some € > 0. Use (29) to show that 1 — corr(e,?) ~ 7/ log?m and

find an expression for ~y.

6.8 Predicting with estimated parameters

When unknown parameters of the covariance structure are estimated from
the available data, perhaps the most commonly used method for predict-
ing random fields and assessing the mses of these predictions is the plug-in
method: estimate the second-order structure in some manner and then pro-
ceed as if this estimated second-order structure were the truth (Christensen
1991, Section 6.5; Zimmerman and Cressie 1992). To be more specific, sup-
pose Z(x) = m(x)7T B +¢(x) for x € R?, where m is a known vector-valued
function, @ is a vector of unknown parameters and € is a mean 0 Gaus-
sian random field with autocovariance function in some parametric family
Kg, 8 € ©. We observe Z = (Z(x1),...,2(x,))" and wish to predict
Z(xg). If @ were known, we could then predict Z(xg) using the BLUP.
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Define the vector-valued function A(8) = (A(8),..., . (0))T by letting
A(0)TZ be the BLUP of Z(x¢) under the model Ky. Assume the BLUP
exists, which is equivalent to assuming m(xg) is in the column space of
(m(x,)...m(x,)) (see 1.5). If @ is some estimator of @ based on Z then
A(é)TZ is the corresponding plug-in predictor. This plug-in predictor is
sometimes called the EBLUP, where the E can be thought of as meaning
“estimated” or “empirical” (Zimmerman and Cressie 1992). Zimmerman
and Zimmerman (1991) and Cressie and Zimmerman (1992) describe re-
sults of some simulation studies showing that plug-in methods can often
work well even with fairly small datasets.

Let us now consider quantities analogous to EgeZ, Ege? and Eje? in
Chapters 3 and 4. It is convenient to define A\g(@) = —1 for all 8 so that
the prediction error of the BLUP as a function of 8 is

e(8) = e(8; Z(x0)) = >_ Xi(6) Z(x).
i=0
Define the function

M(0) = ) Xi(0)X;(0)Ko(x; — x;), (30)

1,j=0

so that if @y is the true value of @ then M(6,) is the mse of the BLUP.
The error of the plug-in predictor is e(8) and the plug-in estimate of its
mse is

M(B) = > X(0)X;(0)Ky(xi — x;). (31)
4,j=0
Note that M (9) does not have a direct interpretation as an expectation
over the probability law for the random field Z. Nevertheless, (31) is the
natural analogue to what was called E;e? in Chapters 3 and 4, since it is
the presumed mse of our predictor if we ignore the fact that 0 is not the
same as 0.
The natural analogue to Ege? is

Eoe(é)2 = E() {zn: /\I(é)Z(Xz)} , (32)
=0

where Eq indicates expectation under the true model. Suppose the esti-
mator 6 depends on Z only through its contrasts, which I denote by Y.
Zimmerman and Cressie (1992) point out that existing procedures, includ-
ing ML and REML, do yield estimates that are functions of the contrasts,
and I assume that this is the case in the remainder of this section. It follows

that e(8)—e(8y) is also a function of the contrasts and is hence independent
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of e(6g) when Z is Gaussian. Thus,
Eoe(8)? = M(80) + Eo{e(8) — e(60)}’, (33)

so that Ege(8)2 > M(6p). It may seem obvious that the BLUP should
have a smaller mse than a plug-in predictor, which replaces the true 6
with an estimator. However, (33) does require that e(6g) and e(6) — e(6)
be uncorrelated. Although assuming Z to be Gaussian is stronger than
necessary for this uncorrelatedness to hold (Christensen 1991, Section 6.5),
it is not difficult to construct examples of non-Gaussian processes for which
Eoe(0)? < M(8) (see Exercise 38).

Before proceeding to more difficult problems, it is worth noting that in
the simple setting where the autocovariance function K is known up to a
scalar multiple, there is a satisfactory finite sample frequentist solution to
the prediction problem. More specifically, suppose K¢ = 0K, the rank of
(m(x1)...m(x,)) is p and 6 is the REML estimate of 8, given in 6.4. Since
the BLUP of Z(x¢) does not depend on 6, the EBLUP and the BLUP
are the same. It is then a simple extension of standard results on pre-
diction intervals in regression problems with independent Gaussian errors
(Seber 1977, Section 5.3) to show that e(6)/M(8)/2 follows a ¢ distribution
with n — p degrees of freedom, which can be used to give exact frequentist
prediction intervals.

More generally, there is no entirely satisfactory frequentist solution to
making inferences based on EBLUPs. Harville and Jeske (1992) and Zim-
merman and Cressie (1992) consider a more sophisticated method for
estimating Ege(8)? than the plug-in estimator of mse M(8) in (31). Their
method involves three separate approximations. First, they derive an exact
relationship between Ege? and Eoe(é)2 that holds under highly restrictive
conditions and then assume this relationship is approximately true more
generally. Next, they further approximate this result as a function of 6y
using Taylor series. Finally, they replace 6 in this expression by 6. Unfor-
tunately, Zimmerman and Cressie (1992) report simulation results showing
that when neighboring observations are strongly correlated, this approach
can sometimes produce worse answers than M(0).

To carry out a simulation study such as the one in Zimmerman and
Cressie (1992), it is only necessary to simulate the observations and not
the predictands. To be more specific, consider approximating Ege(é)2 via
simulation under some given Gaussian model for a random field Z, some set
of observations and a particular predictand. Use the subscript 0 to indicate
the true model. Calculate Ege? once and for all. Simulate n realizations of
the observations under the true model. For the jth realization, let 8(j) be

~

the estimator for 6, eg(j) the error of the BLUP and e(6(j), ) the error of
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the EBLUP. Then
1 « ) S
Eoed + - _}:;{eo(J) —e(6(5),4)}
J:

has expected value Ege(é)2 and, furthermore, converges with probability 1
to Ege(é)2 as n — oo if, for example, the n realizations are independent.
The value of Ege3 + {e(8) — e(6o) }2 for a single realization of the obser-
vations has a direct interpretation as a conditional mse. Specifically, since
Z is Gaussian, the conditional law of e(@) given the contrasts Y = y

is N (e(()(y)) —eo,Eoe%), where, for clarity, I have made explicit the
dependence of 0 on y. It follows that

Eo{e(@(y))® | Y =y} = Eoel + {e(8(y)) — e0}”. (34)

In some circumstances, quite a bit can be learned by calculating {e(é) —

€o }2 for a small number of simulations, perhaps one. See 6.9 for an example.
Simulation may also provide the basis for a more accurate assessment
of Ege(6)? than is given by the plug-in method. Specifically, one could
approximate mses by using repeated simulations of the observations from
the estimated model, which Davison and Hinkley (1997, p. 15) call para-
metric simulation and Efron and Tibshirani (1993, p. 53) call parametric
bootstrap. Conceptually, the idea is simple. Obtain the REML estimate 6
of the unknown parameters of the autocovariance function from the data
and then do repeated simulations of the observations assuming that Kj
is the actual autocovariance function. The value of 3 used in the simula-
tions is irrelevant to the error of EBLUPs so we may as well set 8 = 0.
Let 6*(j) be the REML estimate of @ for the jth simulation and compute
(é*(j) §) —e(8, ) for each simulation. Then estimate the distribution of
e(@) by convolving the empirical distribution of e(0%(5),4) — e(8,4) for
Jj=1,...,n with a N(O,M (0)) distribution. More specifically, estimate
Pr{e(§) < t| 6o} by

1~ (¢ {e(6(),4) —e(6,4)}
Prn t 0 EZ:: ( ~ ) )

M(8)\/2

where @ is the cumulative distribution function of a N(0,1) random vari-
able. Putter and Young (1998) also recommend parametric simulation in
this setting and prove essentially that it will work well whenever plug-
in methods work well. The much more interesting question of when it
works better than plug-in methods is unresolved for the problem of spatial
interpolation.
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Jeffreys’s law revisited

In 4.4, we studied the close connection between the effect of not knowing
certain parameters of a random field model on a prediction and the addi-
tional information the predictand provides about the unknown parameters.
In particular, (59) in 4.4 provides an exact Bayesian quantification of this
notion. This section studies some approximate frequentist analogues to re-
sults in 4.4 for Gaussian random fields. In Plausible Approximation 1, this
subsection gives an approximate frequentist version of (59) in 4.4 for plug-
in predictions when the unknown parameters are estimated by maximum
likelihood. Plausible Approximation 2 approximates the Kullback diver-
gence of plug-in predictive distributions from the predictive distribution
with the parameters known in terms of the mse of the BLP and the actual
and presumed mses of the plug-in predictor. This result is very similar to
(58) in 4.4 for pseudo-BLPs.

Throughout this subsection, let Y be the vector of observations, Z the
predictand and suppose the distribution of (Y, Z) is Gaussian and is known
up to a parameter @ with true value 8. In this subsection, @ refers to all
unknown parameters in the distribution of (Y, Z) and not just to unknown
parameters of the covariance structure. Let 0 be an estimator of 6 based
on Y. Define p(Z | Y; ) to be the conditional density of Z given Y as a
function of . If 8y were known, we would use p(Z | Y;8p) to make pre-
dictions about Z. The plug-in estimator for this conditional distribution
isp(Z |Y; é) A plausible measure of the effect of using the plug-in con-
ditional density rather than the actual conditional density with 8y known
is

D(60,0;Z | Y) = E {mgLZ'Y’—oP)} , (35)
p(Z]Y;0)
the Kullback divergence of the plug-in conditional density from the con-
ditional density evaluated at 6. Note that the right side of (35) is an
expectation over both Y and Z. The main results of this section are two
plausible approximations to D(6y, A | Y).

For random vectors W and X with joint distribution indexed by a pa-
rameter 0, let Z(0;X) be the Fisher information matrix for 8 when X is
observed. Furthermore, define

) d T

I(6;W | X) = covg | 55 logp(W | X; ), {% logp(W | X; 0)} } -

We have
Z(6; (W,X)) =Z(6;X) + Z(6; W | X) (36)

(Exercise 39), so that Z(0; W | X) is the expected increase in Fisher in-
formation for @ when W is observed in addition to X. Thus, for example,
if W and X are independent, Z(8; W | X) = Z(0; W) (Exercise 19 in 6.4)
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and if W is a function of X, Z(8; W | X) is a matrix of zeroes. Define
i(6; W | X) to be the matrix with —92log p(W | X; 8)/86,00. as its jkth
element so that Egi(6o; W | X) = Z(0¢; W | X) (see Exercise 18 in 6.4).
Finally, let e(Z;0) be the error of the BLP of Z evaluated as if 6 were the
true parameter value.

Plausible Approximation 1. If 0 is the MLE of 0 based on'Y and
0 ~ 6y with high probability, (37)
then
D(60,6;Z | Y) ~ tr {Z(60;Y) ' Z(60;Z | Y)}. (38)
Plausible Approximation 2. If 0 is some estimator for 8 based on'Y
such that
M(8)

~ 1 with high probabilit 39
M(80) gh p y (39)
and
Eo{e(Z;8) — e(Z;60)}°
is small, 40
M{(8o) “0)
then
1
D(60,6;2 | Y) ~ ooz Bo{M(6) - — M(60)}
1 2
2M( Eg{e (Z;6) - —e(Z;80)}". (41)

The right side of (38) is a measure of the relative increase in informa-
tion contained in Z that was not contained in Y. Thus, (38) provides an
approximate frequentist analogue to (59) in 4.4 on the connection between
prediction and estimation. If the covariance matrix of (Y, Z) is known and
its mean vector is linear in @, then (38) is an equality (Exercise 40). The
condition (37) that @ ~ 6 with high probability is troubling in the present
context, since we would like to be able to apply (38) in settings where
there are nonmicroergodic parameters. Considering the very small impact
that parameters having negligible effect on the high frequecy behavior of
the model can have on interpolation, as is demonstrated in 3.5-3.7 and
Stein (1999), I believe that there are circumstances under which (38) can
be rigorously justified even when 8 cannot be consistently estimated. More
specifically, for interpolation problems, I expect that the uncertainty in the
estimation of nonmicroergodic parameters can be ignored in obtaining the
leading term in an approximation to D(6g,60;Z | Y). White (1973) and
Cox and Hinkley (1974, p. 357-358) consider Plausible Approximation 1
when Y and Z are independent.

Plausible Approximation 2 is a direct analogue to (58) in 4.4 on the
behavior of pseudo-BLPs. Note that (39) and (40) do not require 8 ~ 6.
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In particular, under fixed-domain asymptotics, the parameters that cannot
be estimated consistently should have asymptotically negligible impact on
the mses of interpolants, so it is quite plausible to have (37) false but (39)
and (40) true in this setting.

The two approximations in this section are stated in terms of BLPs,
plug-in BLPs and, in the case of Plausible Approximation 1, MLEs. It is
possible to state analogous results for BLUPs and EBLUPs by letting 6
just refer to the parameters of the covariance structure and replacing the
MLE by the REML estimator in Plausible Approximation 1 (Exercise 45).

HEURISTIC DERIVATION OF PLAUSIBLE APPROXIMATION 1. Define
S(0;Z | Y) = 8logp(Z | Y;6)/86. Under (37) and ignoring terms that
are plausibly of lower order,
D(60,0;Z | Y) ~ —Eq [log {1 + (8- 80)TS(60;Z | Y)
~3(6—60)Ti(60; Z | Y)(6 - 90)}]
~—Eo {(0 - 60)7S(80; 2| ) }
+1E, {(é —00)Ti(80: Z | Y)(0 — oo)}
1B {(0-00TS0sZ| V). @)
Now 6 is a function of Y, so
Bo {(6—60)"S(60:Z | )}
= Eo [(6-60)"E{S(605;Z | Y) | Y}] =0 (43)
(Exercise 41) and
Eo {0 60788021 )} = Bo {(B - 60)7(80: 2 | Y)(8 - 60)]}
(Exercise 42). Next, (Y, Z) Gaussian implies that
Eo{i(60;Z | Y) | Y} =T(00;Z | Y) (45)
(Exercise 42), so that
Eo {(6 — 60)7i(80; 2 | Y)(8 - 60) }
= tr By { (6 - 60)(0 - 60)7i(60; Z | Y)}
— tr o (6 - 60)(8 — 0)Fo {i(60; Z | Y) | Y}
~ tr{Z(60;Y) 'I(60;Z | Y)}, (46)
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where I have assumed (37) implies & — 8y ~ N(0,Z(8o; Y)™!). Then (38)
follows from (42)—(44) and (46). O

HEURISTIC DERIVATION OF PLAUSIBLE APPROXIMATION 2. Since (Y, Z)
is Gaussian,

N ; AL )"
D(60,0;Z|Y) = %Eg {log ]]\y((:o)) — 1+ (]\j,(Z)) } (47)

(Exercise 43). Using (39),

M@) | [M@®) -M@) 1, M@ -M@)\
e o | ~ o Gy ™ | 5] My )
(48)

Next, since e(Z; 6) is independent of Y and hence independent of e(Z; 8) —

e(Z;0q) and M(0),

e(Z;0)?| M(8o) {e(Z;0) — e(Z;60)}
EO{W}—EO{W}+EO A (49)

(Exercise 44). Now

EO{M(H_O)_} ~ 1_E0{M(é)—M(00)}+EQ{M(9)——M(90)}2’

M(6) M (6o) M (6o)
(50)
and by (40),
{e(Z;0) - e(Z;60)} 1 P a2
Eo 710) ~ 160 5o {e(Z,B) - e(Z,BO)} . (51)
Combining (47)-(51) yields (41). O

Numerical results

Plausible Approximation 1 suggests that it would be instructive to compute
AT = tr {Z(60;Y) 1Z(80; Z | Y)} in various settings to learn about the
effect of estimation on subsequent predictions. As I discussed in the previ-
ous subsection, I believe that AZ is at least qualitatively informative even
in situations where not all components of @ are microergodic so that the
argument for Plausible Approximation 1 does not apply. This subsection
numerically examines the behavior of AZ for mean 0 stationary Gaussian
processes on R under two particular Matérn models.

We consider interpolation and extrapolation problems in which the ob-
servations are, for the most part, evenly spaced with distance § between
neighboring observations and the predictand is a distance §’ from the near-
est observation, where &' is either § or 0.56. Figure 7 shows some results
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when § = 6. More specifically, suppose there are observations at 65 for
j =1,...,40 and 42,...,81 and we wish to predict at 41§ (interpola-
tion) or 0 (extrapolation). For various values of § and the Matérn models
(¢,v,0) = (1,1,1) or (24,2,2), Figure 7 gives the values for AZ. Several
general trends emerge. First, AZ depends much more strongly on § when
interpolating than when extrapolating, with the result that AZ is smaller
when interpolating for smaller § but is generally larger for larger §. Fur-
thermore, the difference between the cases v known and unknown is larger
when interpolating. In particular, for smaller §, when interpolating, AZ is
quite near to 0.0125, which is what we would get if only ¢ were unknown.
Thus, to the extent that Plausible Approximation 1 is relevant in this set-
ting, the additional effect of uncertainty about o on interpolation is quite
small when § is small.

Figure 8 considers observations at §j for 7 = 1,...,80, in which case,
there is no way to have an interpolation problem in which the distance
from the predictand to the nearest observation equals the distance between
neighboring observations. Instead, I consider interpolating at 40.56 and,
to have a comparable extrapolation problem in which the predictand is
0.56 from the nearest observation, predicting at 0.56. Thus, we now have
6" = 0.568. Let us first consider v unknown. In this case, when interpolating,
AT is in all instances considerably greater than when §’ = §. However, when
extrapolating, AZ sometimes increases and sometimes decreases from the
results with §' = é. Indeed, we now have that when v is unknown, AT is
always larger when interpolating than extrapolating in the cases examined
here. When v is known, the values of AZ are generally quite similar to
those for 8’ = § whether interpolating or extrapolating.

Considering the numerical results in 3.5 and the theorems in 3.6 on the
effect of misspecifying the spectral density on interpolation and extrapola-
tion, the results here showing that AT is often larger when interpolating
than extrapolating need some explanation. To review, 3.6 studied the effect
of misspecifying the spectral density on predicting at 0 based on observa-
tions either at 67 for all negative integers j (extrapolation) or at §; for all
nonzero integers j (interpolation). As § | 0, results in 3.6 show that the
effect of misspecifying the spectral density at either high or low frequen-
cies on the actual mse of a pseudo-BLP is smaller when interpolating than
when extrapolating (Theorems 3 and 5 in 3.6). Furthermore, the effect of
misspecifying the spectral density at low frequencies on the assessment of
mse of pseudo-BLPs is also smaller when interpolating (Theorem 6 in 3.6).
However, because of the difficulty of comparing spectral densities with dif-
ferent high frequency behavior when evaluating mses, evaluating the effects
of such misspecifications on the assessment of mses when interpolating and
extrapolating is problematic, although Theorem 4 in 3.6 attempts to ad-
dress this problem. Thus, when v is unknown, so that the estimated high
frequency behavior of the spectral density will be different from the actual
high frequency behavior, we should not necessarily expect AZ to be smaller
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FIGURE 7. Values of AZ for Matérn model with (¢, v,a) = (1,1,1) or (¢, v,a) =
(24,2, 2). In the top figure, all parameters are considered unknown and in the bot-
tom figure v is considered known and ¢ and a unknown. The observations are at
6jforj=1,...,40 and j = 42,...,81. The predictands are at 418 (interpolation)
and 0 (extrapolation).

+ indicates (¢,v,a) = (1,1, 1) and the predictand at 416.

@ indicates (@, v, a) = (24,2,2) and the predictand at 416.

x indicates (¢, v,a) = (1,1, 1) and the predictand at 0.

® indicates (¢, v, @) = (24, 2,2) and the predictand at 0.
If only ¢ is unknown, then AZ = 0.0125 in all cases.

when interpolating than extrapolating even for § small. Nevertheless, we
should note that the setting studied in 3.6 is most comparable to the §’ = §
case in Figure 7, for which the numerical results here show that for suffi-
ciently small §, AZ is smaller when interpolating than when extrapolating,
whether or not v is known.

Plausible Approximations 1 and 2 give us a way of gaining an understand-
ing as to why AZ is always larger for interpolating than for extrapolation
when § = 0.5 = § with v unknown. Specifically, to the extent that they
are both relevant, a large value of AZ indicates either a large inefficiency
for the EBLUP or a large error in the plug-in assessment of mse of the
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FIGURE 8. Values of AZ for Matérn model with (¢, v, @) = (1,1,1) or (¢, v,a) =
(24,2,2). In the top figure, all parameters are considered unknown and in the
bottom figure v is considered known and ¢ and a unknown. The observations
are at §j for j = 1,...,80. The predictands are at 40.56 (interpolation) and 0.56
(extrapolation).

+ indicates (¢, v,a) = (1,1,1) and the predictand at 40.56.

@ indicates (¢, v, a) = (24,2,2) and the predictand at 40.56.

x indicates (¢,v,a) = (1,1, 1) and the predictand at 0.56.

® indicates (¢, v,a) = (24,2,2) and the predictand at 0.56.
No results are given for (¢,v,a) = (24,2,2) and § = 0.02 due to numerical
difficulties. For (¢,v,a) = (24,2,2), § = 1 and the predictand at 40.5, AT =
0.6278, which is omitted from the top figure.

EBLUP or both. Table 3 shows the effect of misspecifying v on the effi-
ciency of pseudo-BLPs when the true spectral density is the Matérn model
with (¢,v,a) = (24,2,2) and the presumed spectral density is the Matérn
model with (¢, v, a) = (24, y, y) for values of y near 2. The observations and
predictands are as in Figures 7 and 8 with § = 0.2; results for other values of
6 are qualitatively similar. In all cases, the effect of misspecifying the model
is much larger when extrapolating than when interpolating, particularly so
when 6 = 0.56. Furthermore, the difference between interpolation and
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TABLE 3. Relative increases in mse due to using Matérn model with parameters
v = a = y instead of the correct values v = a = 2. Observations and predictands
are as in Figures 7 and 8 with § = 0.2. Distance from predictand to nearest

observation is denoted by &, so that &

8" = 0.1 for the setting in Figure 8.

0.2 for the setting in Figure 7 and

Interpolation Extrapolation
y 8 =0.2 8 =0.1 8 =0.2 § =0.1
1.6 2.57x 1072 8.24 x 1073 5.59 x 1072 6.04 x 10~2
1.7 1.32x 1072 4.10 x 1073 3.00 x 1072 3.18 x 102
1.8 543 x 1073 1.62 x 10~3 1.27 x 1072 1.33 x 10~2
1.9 1.26 x 1073 3.65 x 104 3.06 x 1073 3.14 x 1073
2 0 0 0 0
2.1 1.10 x 1073 3.00 x 10~4 2.84 x 1073 2.84 x 1073
2.2 411 x 1073 1.10 x 10~3 1.10 x 1072 1.09 x 102
2.3 8.72x 1073 2.27 x 1073 2.40 x 1072 2.34 x 1072
24 1.46 x 1072 3.72 x 1073 4.14 x 1072 4.00 x 10~2

extrapolation turns out to be much larger when the misspecified Matérn
model has parameter values (24, y,2), so that only v, and not both v and
a, is incorrect. These results clearly show that the larger values for AT
in Figure 8 when interpolating and v is unknown cannot be attributed to
inefficiencies in the interpolant due to having to estimate v. In conjunc-
tion with Plausible Approximation 2, this finding leads me to attribute the
relatively large values for AZ in Figures 7 and 8 when interpolating to
inaccuracies in the plug-in assessment of mse of the EBLUP, although a
full-scale simulation study would provide a more definitive way of resolving
this matter.

Some issues regarding asymptotic optimality

Section 4.3 gave results showing the uniform asymptotic optimality of
pseudo-BLPs and pseudo-BLUPs under a fixed but misspecified autoco-
variance function when the corresponding spectral density has the correct
high frequency behavior. It is not possible to obtain a directly comparable
result for EBLUPs using the Matérn model for the autocovariance function
or any other model that includes a parameter controlling the rate of decay
of the spectral density at high frequencies. The fundamental obstacle is the
mismatch in Hilbert spaces for the true and estimated models. Specifically,
if ¥ < v, then there will be elements in H(F') (the Hilbert space generated
by Z(x) for x € R under the inner product defined by F') that are not in
Hpr(F), so that it will not even be possible to define an EBLUP for all
elements in Hr(F). It may be possible to obtain uniformly asymptotically
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optimal point predictions, that is, replacing the supremum over H_, in
Theorems 8, 10 and 12 in 4.3 by a supremum over all Z(x) for x € R.
However, I do not think uniform asymptotically correct assessment of mses
is possible even if one restricts to point predictions. The problem is that for
any fixed set of observations, as the predictand location tends towards one
of the observations, even a tiny error in ¥ will lead to unboundedly large
relative errors in the assessment of mses. If there are measurement errors,
then I believe it is possible to obtain uniformly asymptotically correct as-
sessment of mses, since the problems in assessing mse for a predictand very
near to an observation should no longer occur. The approach taken in Put-
ter and Young (1998) may be helpful in solving these problems, but the
results in that work are not nearly strong enough to provide any answers
at present.

Exercises

38 Consider the setting of Exercise 6 in 2.4 and assume, for simplicity,
that the mean of Z is known to be 0. Argue that under any reasonable
choice for the estimated autocovariance function of the process, the
plug-in predictor has a smaller mse than the BLP.

39 Verify (36).

40 Show that (38) is an equality if the covariance matrix of (Y,Z) is
known and its mean vector is linear in 0.

41 Suppose X and Y are random vectors whose joint distribution is in the
parametric family Py for some 0 € ©. Let S(0;(X,Y)) be the score
function for @ based on the observation (X,Y). Under suitable regu-
larity conditions, prove Eg,{S(6o; (X,Y))|X} = 0 with probability 1.
This result can be thought of as expressing a martingale property of
the score function. Show that (43) follows.

42 Verify (44) and (45).
43 Verify (47).
44 Verify (49).

45 State and provide heuristic derivations of Plausible Approximations 1
and 2 appropriate for BLUPs, EBLUPs and REML estimates assuming
0 contains just the unknown parameters for the covariance structure.

6.9 An instructive example of plug-in prediction
As I have suggested previously, it is for differentiable random fields that I

find present practice in spatial statistics to be seriously flawed. This sec-
tion considers an example based on simulated data that more explicitly
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demonstrates some of the problems that can occur when predicting smooth
random fields.

Suppose Z is a stationary Gaussian process on R with mean 0 and au-
tocovariance function K (t) = e~%4It/(1 4 0.4/t|) so that Z is exactly once
mean square differentiable (see 2.7). We observe this process at the 20 loca-
tions —9.5,—8.5,...,8.5,9.5 and wish to predict it at —10,—9,...,10 and
at £10.5 when the mean of Z and its autocovariance function are unknown.
Figure 9 plots the simulated values of the observations and indicates the lo-
cations of the predictands; the actual simulated values are given in Table 4.
We see that our predictions include both interpolations and extrapolations.

The empirical semivariogram (see 2.9) is a staple of the kriging literature
as a tool for selecting models for semivariograms and estimating the pa-
rameters in these models. Figure 10 plots the empirical semivariogram up
to distance 10 for the simulated realization in Figure 9. Distances greater
than 10 are not plotted because of the severe lack of reliability of em-
pirical semivariograms at distances more than half the dimensions of the
observation region, which corresponds to common geostatistical practice
(Journel and Huijbregts 1978, p. 194). Figure 10 also plots the actual semi-
variogram. It is critical to note the rather large and apparently systematic
differences between the actual and empirical semivariograms at the shorter
distances. Far from being unusual, this phenomenon should be expected
in light of the strong correlations that exist in the empirical semivari-
ogram at different distances. For example, using 4 to indicate the empirical
semivariogram, corr{9(1),4(2)} = 0.981, corr{%(1),%(3)} = 0.938 and
corr{9(2),4(3)} = 0.880 (Exercise 46). Thus, the empirical semivariogram
can appear quite regular and still be substantially in error. Of course, the
fact that the empirical semivariogram has correlated values is well known
(Cressie 1985, 1993), but I believe that the consequences of these poten-
tially large correlations are not generally sufficiently appreciated. If one
had a regression problem with observations that were equal to the underly-
ing regression function plus independent errors that was as smooth as the
empirical semivariogram in Figure 10, then it would be sound to conclude
that the regression function could be well estimated. It is a difficult psy-
chological adjustment to look at Figure 10 and recognize that the strong
correlations present can easily yield a smooth empirical semivariogram so
different from the actual semivariogram.

Considering the apparent quadratic behavior at the origin of the em-
pirical semivariogram in Figure 10, it would now be within the realm of
accepted present practice in s;z)atial statistics to fit a Gaussian semivari-
ogram, y(t; ¢, @) = ¢(1 — e~*") to the data. Although Goovaerts (1997)
recommends never using the Gaussian semivariogram without a measure-
ment error term, note that there is no measurement error term here and
the true semivariogram is quadratic near the origin. Since, as noted in 3.5,
software in spatial statistics commonly includes the Gaussian as the only
semivariogram model that is quadratic near the origin, it would be hard
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FIGURE 9. Simulated realization of Gaussian process with mean 0 and autoco-
variance function K(t) = e %4/*/(1 + 0.4|t|). The xs on the horizontal axis are
the locations of predictands and the |s are the locations of the observations.

TABLE 4. Simulated values of process pictured in Figure 9. The last three rows
are the additional observations used towards the end of this section.

t Z(t) t Z(t)
-9.5  2.3956811 0.5  0.4109609
-85  2.2767195 1.5  0.4647669
~7.5  1.9736058 2.5  1.2113779
—-6.5  1.8261141 3.5  1.9055446
-55  1.3136954 45  2.1154852
—-4.5  0.2550507 55  1.7372076
—-3.5  —0.0741740 6.5  0.8333657
-2.5  0.2983559 7.5  0.2932142
-1.5  0.4023333 8.5 —0.1024508
—0.5  0.4814850 9.5  0.0926624
—-0.25  0.4267716

0.0  0.4271087
0.25  0.4461579

to fault the practitioner who adopted the Gaussian model in this case. Of
course, the Gaussian model is severely in error in the sense that it implies
Z has analytic realizations when in fact the process has only one deriva-
tive. Nevertheless, it is instructive to compare plug-in predictors based
on the REML estimate and an “eyeball” estimate that fits the empirical
semivariogram very well at the shorter distances.

If we suppose Z is Gaussian with mean y and semivariogram of the form
#(1 — e~ **") with (u,¢,a) unknown, the REML estimate of 8 = (¢, )
is 6 = (0.667,0.247). Figure 11 replots the empirical semivariogram to-
gether with +(t; 8). The REML estimate yields a fitted semivariogram with
slightly larger curvature near the origin than the empirical semivariogram.
Figure 11 also plots 7(¢; ) for my eyeball estimate 6 = (1,0.12); this eye-



214 6. Predicting With Estimated Parameters

1.0 N Tt
T+
+

) +
A(t) +

0.5

_|._
+
0-0 L L L T T T T T B L
0 5 10
t

FIGURE 10. Empirical and actual semivariograms for data shown in Fig-
ure 9. Smooth curve is the actual semivariogram and +s are the empirical
semivariogram.
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FIGURE 11. Empirical and estimated semivariograms for data shown in Figure
9. Using the Gaussian model for the semivariogram, solid line indicates REML
estimate and dashed line indicates eyeball estimate.

ball estimate matches the empirical semivariogram distinctly better than
the REML estimate at the shorter distances. Furthermore, comparing Fig-
ures 10 and 11 shows that the eyeball estimate is visually closer to the true
semivariogram than the REML estimate. Is this evidence that the REML
estimate is inferior to the eyeball fit in this example?

Behavior of plug-in predictions

This subsection considers predicting Z at the locations indicated in Figure 9
assuming the mean of Z is an unknown constant. Figure 12 plots the BLUPs



6.9 An instructive example of plug-in prediction 215

under the true model as well as the plug-in predictors or EBLUPs using
the Gaussian model and 6 or @ to estimate 6. Near the middle of the
observation region, both EBLUPs are almost identical to the BLUPs. As
one gets nearer to the edges of the observation region and, particularly,
outside the observation region, the EBLUPs, especially using the eyeball
estimate 8, can be substantially different from the BLUPs. Define eo(t) as
the error of the BLUP of Z(t) and e(t; §) and e(t; ) as the errors of the
EBLUPs of Z(t). Take Ey to mean expectation under the true model for
Z and let y be the observed value of the contrasts Y of the observations.
Define M (t;0) as in (30) with ¢ taking the place of xg, so that, for example,
M(t; 8) is the plug-in estimate of the mse when predicting Z(t) using the
REML estimate 6. Finally, take

C(t:8,y) = Bo {e(t:0)*| Y =y} (52)

and C(t;é,y) = Fy {e(t; é)z | Y = y} to be the conditional mses of the
EBLUPs given the contrasts. Table 5 gives the mses of the BLUPs, the
conditional mses of the EBLUPs and the plug-in estimates of the mse. By
symmetry, Eoeo(t)?, M(t;0) and M(t;0) are even functions of ¢, hence
the pairing of predictands in Table 5. In contrast, C(t; 0, y) and C(t; 0, y)
depend on the particular values of the observations around ¢ and are not
symmetric in ¢. The values for the conditional mses support our conclusions
from Figure 12. Specifically, for predictands near the middle of the observa-
tion range, the conditional mses of the EBLUPs are not much larger than
the unconditional mses of the BLUPs. On the other hand, near or outside
the boundaries of the observation region, C(t; 0, ¥)/M (t; 89) and especially
C(t;0,y)/M(t; 8y) can be large. Thus, although the REML estimate of 6
produces poor plug-in predictions when extrapolating, the eyeball estimate
6 produces much worse plug-in extrapolations.

The most striking result in Table 5 is the severely overoptimistic values
for the plug-in estimates of mse. Not only are they much smaller than the
conditional mses of the corresponding plug-in predictors, they also are gen-
erally much smaller than the mses of the BLUPs. Furthermore, although the
plug-in mses based on either estimate share this overoptimism, the problem
is much worse for the eyeball estimate; in some cases, M(t;0)/C(t;0,y) is
less than 1076, The next subsection considers why even ] produces such
unrealistic plug-in mses.

Cross-validation

One method that is sometimes suggested for diagnosing misfits of semivari-
ograms is cross-validation (Cressie 1993, pp. 101-104). Specifically, suppose
we have observations Z(x;),...,Z(x,) and plan to predict at other loca-
tions using an EBLUP where the mean of Z is taken to be an unknown
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FIGURE 12. BLUPs and EBLUPs for simulation in Figure 9. The es are observed
values, os are BLUPs, +s are EBLUPs using the REML estimate @ and xs are
EBLUPs using the eyeball estimate 6.

constant. Let 4 be an estimate of the semivariogram and define Z_j (x;) as
the EBLUP of Z(x;) using all of the observations other than Z(x;) and 4
for the semivariogram. Furthermore, let 6_;(x;)? be the plug-in estimate
of the mse of Z_; (x;) as a predictor of Z(x;). Because we know the ac-
tual value of Z(x;), we can compare Z(x;) — Z_;(x;) with 6_;(x;) for
j =1,...,n. For example, Cressie (1993, p. 102) notes that if 4 is a good
estimate of the semivariogram, we should expect

Z {Z(x,) Z—J xJ)} (53)

6-j(x;)?

to be near 1, so that a value of (53) far from 1 is a sign of a poorly fit
semivariogram. However, it does not follow that a value near 1 means that
the fit is adequate. Actually, Cressie (1993) recommends computing the
square root of (53), but since I have been reporting mean squared errors
rather than root mean squared errors throughout this work, I use (53) here
for consistency.

For the example in this section, (53) equals 210.4 for the eyeball estimate
of the semivariogram and equals 1.223 for the REML estimate. Thus, cross-
validation correctly identifies the eyeball estimate as a poor fit but does not
detect a problem with the Gaussian model for the REML estimate, which
is in stark contrast with the results in Table 5. Of course, the results in
Table 5 would not be available in practice since they depend on knowing
the true model.

Let us consider why Table 5 and cross-validation give such different con-
clusions for the REML estimate. First, as evidence that the results of this
simulation are not a fluke, I ran four further simulations for the same set-
ting and got values for (53) of 1.172, 0.953, 1.589 and 1.475 when fitting
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TABLE 5. Performance of two EBLUPs when using the Gaussian model for the
semivariogram. The two parameter estimates are the REML 0 and an eyeball
estimate O (see Figure 11). M(t; 0) is, for example, the plug-in value for the mse
of the EBLUP based on (see (31)) and C(t; 0, y) is the conditional mse of the

EBLUP based on (see (52)). All figures other than in the first column are 1,000
times their actual values, so that, for example, M (10.5;8) equals 0.0766.

t M50 Ct8,y) M) Coy)  M0)

—10.5 76.6 147 91.2 259 5.86
10.5 436 9067
—-10 18.2 28.1 12.2 38.9 0.414
10 97.2 1071
-9 3.31 3.79 0.447 4.00 4.53 x 1073
9 9.25 35.3
-8 2.78 2.81 0.106 2.82 3.75 x 1074
8 4.10 7.98
-7 2.74 2.80 0.0489 2.80 7.21 x 1073
7 3.00 3.90
-6 2.74 2.85 0.0315 2.86 2.27 x 1078
6 2.75 2.80
-5 2.74 2.81 0.0244 2.80 9.91 x 10~©
5 2.98 2.81
-4 2.74 3.38 0.0210 3.36 5.48 x 10~¢
4 2.98 2.85
-3 2.74 2.96 0.0192 2.94 3.61 x 10~6
3 3.03 2.91
-2 2.74 2.75 0.0182 2.75 2.74 x 10—©
2 2.82 2.78
-1 2.74 2.88 0.0177 2.91 2.35 x 10~
1 2.83 2.87
0 2.74 2.99 0.0176 3.05 2.23 x 108

the parameters of the Gaussian semivariogram using REML. REML is try-
ing its best to fit the poorly chosen model to the observations, which are
spaced 1 unit apart. In doing so, it yields plug-in mses that are not too far
off if the predictand is no closer than 1 unit from the nearest observation,
which is the case when cross-validating. A further indication that this fit-
ted model is not so bad when the predictand is no closer than 1 unit from
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any observation is that when using all 20 observations to predict at 10.5 or
—10.5, which are also 1 unit away from the nearest observation, the plug-in
mses for the REML estimate are relatively accurate (see Table 5). How-
ever, when trying to predict at locations that are only 0.5 units away from
the nearest observation, the badly misspecified Gaussian semivariogram
implies a highly unrealistic correlation structure between the observations
and predictand, which is a problem that cross-validation based on evenly
spaced observations cannot uncover. One should not conclude from these
simulations that cross-validation is not a useful technique in spatial statis-
tics, merely that it is not a foolproof method for detecting problems with
a model, particularly if the observations are evenly spaced.

Application of Matérn model

Let us reconsider this simulated dataset using the Matérn model for the
spectral density, fo(w) = ¢(a? + |w|?)~Y~%/2, where 8 = (¢,v,a) and
© = (0,00)3. This model includes the truth, 8 = (0.128/x,1.5,0.4), so
we might expect to do much better using likelihood methods than we did
when we used the Gaussian semivariogram model. The REML estimate of
0 is 6 = (5.389,3.787,1.262). Note that ¢ = 5.389 is much larger than the
true value ¢ = 0.128/7 = 0.0407, which, from Theorem 1 in 6.7, is what
we should expect when o > v. If we use the parameterization suggested by
Handcock and Wallis (1994) and described in 2.10, the parameter estimates
do not look quite so bad. Specifically, n = (o,v,p) = (1,1.5,1.624) and
7 = (0.871,3.787,3.084).

Table 6 gives conditional and plug-in mses for EBLUPs based on using
the Matérn model and the REML estimates. Contrasting the results in
Tables 5 and 6, the plug-in mses are somewhat more accurate than for
the REML estimates and the Gaussian model, but they are still off by
about one order of magnitude for the interpolations. However, even this
apparent improvement is somewhat fortunate. Let pf(v) be the profile log
likelihood of the contrasts; that is, as a function of v, the supremum over
¢ and o of the log likelihood of the contrasts. Recall (see 2.10) that the
Gaussian model is obtained by letting ¥ — oo in the Matérn model, so that
pl(00) equals the log likelihood of the contrasts under the Gaussian model
evaluated at the REML estimates for that model (Exercise 47). The plot of
pl(v) in Figure 13 shows that there is little basis in the data for choosing
between v = 3.787 and any larger value. Indeed, pf(3.787) — pf(oo0) = 0.504,
which corresponds to a likelihood ratio of €%-594 = 1.655 and indicates that
the Gaussian model provides a quite good fit to the available data, even
though it is a terrible model for the process.

Table 6 also gives prediction information when v is set to 15 and the
likelihood of the contrasts is maximized with respect to ¢ and «. Taking
v = 15 assumes the process is 14 but not quite 15 times mean square
differentiable. When extrapolating or interpolating near the edges of the
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TABLE 6. Performance of two EBLUPs when use Matérn model for the semi-
variogram. The two parameter estimates are 8, the REML, and 6(15), obtained
by arbitrarily setting the parameter v to 15 and then maximizing the likelihood
of the contrasts over the other parameters. As in Table 5, all figures other than
in the first column are 1,000 times the actual figures.

t  M(t60) C(t0,y) M(t0) C6(15),y) M(t;6(15)

-10.5 76.6 102 94.7 135 924
10.5 145 316
—10 18.2 22.1 16.0 26.6 13.2
10 33.6 71.5
-9 3.31 3.56 1.20 3.73 0.584
9 4.63 7.52
-8 2.78 2.79 0.607 2.81 0.173
8 3.01 3.68
=7 2.74 2.82 0.505 2.81 0.0986
7 2.77 2.89
—6 2.74 2.89 0.481 2.87 0.0754
6 2.78 2.77
-5 2.74 2.77 0.475 2.80 0.0662
5 2.94 3.03
—4 2.74 3.18 0.474 3.35 0.0621
4 2.88 3.00
-3 2.74 2.87 0.473 2.94 0.0601
3 2.91 3.04
-2 2.74 2.75 0.473 2.75 0.0593
2 2.79 2.82
-1 2.74 2.85 0.473 2.88 0.0589
1 2.82 2.83
0 2.74 2.94 0.473 3.00 0.0587

observation region, the plug-in mses are quite similar whether one uses the
Gaussian model and REML or the Matérn model with v = 15 and REML.
However, when interpolating near the middle of the observation region, the
Gaussian model gives plug-in mses less than % as large as the Matérn model
with v = 15.

The large uncertainty about v combined with its critical impact on as-
sessment of mses of interpolants implies that it is essentially impossible to
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FIGURE 13. Profile log likelihood of the contrasts for v using the 20 simulated
observations. The e indicates (2, pé(9)).

obtain defensible mses from these data without strong prior information
about v. The fact that the plot of pé(v) alerts us to this situation is a
great strength of using the Matérn model together with likelihood meth-
ods. Note, though, that it is essential to study the likelihood function and
not just find its maximum.

Considering the numerical results in 6.6, the fact that the likelihood
function provides so little information about v is not surprising. As those
results show, evenly spaced observations make estimation of v particularly
difficult. I simulated three additional observations at —0.25,0 and 0.25 (see
Table 4) and for these 23 observations, recomputed the profile log likelihood
of the contrasts (see Figure 14). We now obtain the much better estimate
for v of 1.796 and, in addition, have strong evidence against large values
for v. In particular, exp{pf(1.796) — p€(co)} = 1.27 x 10°. Table 7 shows
that the plug-in predictors now perform well for both interpolations and
extrapolations and the plug-in estimates of mse are all reasonable. Table 7
also shows properties of the plug-in predictors if the Gaussian model is fit
to these data using REML. Figure 15 plots the estimated autocovariance
functions under both the Matérn and Gaussian models. Note that the es-
timated Gaussian model has far greater curvature near the origin after the
additional three points are included in the analysis. I leave it to the reader
to explain why the plug-in estimates of mse under the Gaussian model are
now far too conservative for the predictions at +4,...,+10 but are still
badly overoptimistic at +1 (Exercise 48).

Conclusions

The reader could argue that I have only shown the detailed results of
one simulation, which could be misleading. This is possible, although the
simulation shown was the first one I ran. To the reader who doubts the
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FIGURE 14. Profile log likelihood of the contrasts for v using the original 20
simulated observations plus the three additional observations. The e indicates
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FIGURE 15. True and estimated semivariograms using 3 additional observations.
The solid line indicates the truth, the dashed line the REML estimate under the
Matérn model and the dotted line the REML estimate under the Gaussian model.

representativeness of this single simulation, I strongly recommend running
some of your own.

The main lesson from this example is that standard practice in spatial
statistics is seriously flawed for differentiable processes. Specifically, plot-
ting the empirical semivariogram and then selecting a model that, to the
eye, appears to fit its general shape can lead to severe model misspeci-
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TABLE 7. Performance of two EBLUPs with additional three observations when
using Matérn or Gaussian model for the semivariogram and estimating param-
eters by REML. All figures other than in the first column are 1,000 times the
actual values.

Matérn model Gaussian model
t  M(t;80) C(t0,y) M(t8) C0,y) M(t;6)
-10.5 76.6 79.1 116 680 411
10.5 79.9 201
-10 18.2 18.6 25.7 140 142
10 19.0 48.5
-9 3.31 3.34 3.94 9.71 28.9
9 3.37 5.58
-8 2.78 2.78 3.09 3.70 22.1
8 2.78 3.23
-7 2.74 2.75 3.01 2.77 20.9
7 2.74 2.85
—6 2.74 2.76 3.00 2.75 20.7
6 2.74 2.85
-5 2.74 2.74 3.00 2.86 20.4
5 2.75 3.18
—4 2.74 2.80 3.00 3.59 19.3
4 2.74 6.35
-3 2.74 2.77 2.99 4.01 15.2
3 2.74 18.3
-2 2.70 2.72 291 6.38 6.05
2 2.70 21.3
-1 2.21 2.31 2.11 8.87 0.280
1 2.27 21.3
0 0 0 0 0 0

fication. The problem is that the empirical semivariogram is a poor tool
for distinguishing exactly how smooth a differentiable process is. Further-
more, for differentiable processes, one needs to be careful about judging
the quality of a parametric estimate of the semivariogram by how well it
fits the empirical semivariogram. Finally, evenly spaced observations can
cause substantial difficulties in predicting if the parameter v in the Matérn
model needs to be estimated. The inclusion of even a few additional ob-
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servations that have smaller spacing than the rest of the observations can
dramatically improve the estimation of the semivariogram.

Exercises

46 If the random vector Z of length n has distribution N(0,X), show
that for fixed, symmetric n» x n matriccs A and B, cov(ZTAZ,
ZTBZ) = 2tr(AXBX) (see Appendix A for relevant results on mul-
tivariate normal distributions). Using this result, write a computer
program to calculate the correlations for the empirical semivariogram
4 at distances 1,2, ..., 10 for n observations evenly spaced 1 unit apart.
Use your program to calculate these correlations when n = 20,40 and
60 and (i) K (t) = e~ %4tI(1+0.4|t|), (ii) K(t) = e~*2*(1+0.2t|) and
(iii) K(¢) = €07, Comment on the results. See Genton (1998) for
further examples of the correlations in empirical semivariograms.

47 Suppose we model Z as a Gaussian random field with isotropic auto-
covariance function from the Matérn model and mean function known
except for a vector of linear regression coefficients. We observe Z at
some finite set of locations and let p4(v) be the profile log likelihood
of the contrasts as a function of v. Show that

Vli{gopf(l/) = Z(éla 52)a

where £(£;,&;) is the log likelihood of the contrasts under the model

K(r) = £1e=62™ for the isotropic autocovariance function and (€1,6)
is the REML estimate for (£1,&32).

48 Tell a story explaining the last two columns of Table 7.

6.10 Bayesian approach

The Bayesian approach to prediction provides a general methodology for
taking into account the uncertainty about parameters on subsequent pre-
dictions. In particular, as described in 4.4, if Y is the vector of observations,
Z the predictand and 6 the vector of unknown parameters, the Bayesian
solution to making inferences about Z is to use the predictive density

p(Z|Y) = /e p(Z |6,Y)p(6 | Y)do, (54)

where p(0 | Y) is the posterior density for @ given by

p(Y | 6)p(0)
6|Y)= 55
PO = Y To)p@) ar (%)
with p(@) the prior density for 6. Although some scientists and statisti-
cians are uncomfortable with basing inferences on what is necessarily a
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somewhat arbitrarily chosen prior distribution for the unknown parame-
ters, it strikes me as a rather small additional leap of faith beyond that
required in assuming, for example, that the spatial process under consider-
ation is a realization of an isotropic Gaussian random field with isotropic
autocovariance function of some particular form. See Berger (1985), for ex-
ample, for further discussion concerning the theory behind the Bayesian
approach to statistics and Gelman, Carlin, Stern and Rubin (1995) for a
recent treatment of the practical application of Bayesian methods.

This section briefly addresses a few issues that arise in selecting prior
distributions when using the Matérn model. Suppose Z is an isotropic
Gaussian random field on R? with spectral density from the Matérn class.
Since, in principle, prior densities should represent the investigator’s uncer-
tainties about the unknown parameters prior to having collected the data,
it is helpful if the parameterization for the model is chosen so that the
individual parameters have natural and easily understood interpretations.
To this end, the parameterization of Handcock and Wallis (1994) (see 2.10)
is a sensible choice. To review, the isotropic spectral density is of the form

oc(v,
golu) = —20) (56)
4v 2
()
where = (o, v, p) and
I(v+ £)(4v)”
c(v,p) = Tl 4 5)(4)

7rd/2r‘(y)p2u .

The parameter v measures the differentiability of the random field, o =
var{Z(x)} and p measures how quickly the correlations of the random field
decay with distance.

Let us now consider placing a prior density on 1 = (o,v, p) assuming,
for simplicity, that the mean of Z is known to be 0. Because of the concep-
tual and practical difficulties of converting one’s knowledge about unknown
parameters into a probability distribution, one possible solution is to select
the “flat” prior density p(n) = 1 on (0,00)3. Since this function integrates
to oo, it is not a probability density on the parameter space and is called
an improper prior (Berger 1985, p. 82). Improper priors often yield proper
(integrable) posterior distributions, but this is not the case in the present
setting. Figures 13 and 14 showing the profile log likelihoods for v for the
two simulated datasets considered in 6.9 illustrate the problem: the profile
likelihoods do not tend to 0 as v — co. Indeed, for any fixed positive values
of o and p and any vector of observations Z = (Z(x1),...,Z(x,)) with
observed value z, the likelihood tends to a positive limit as v — oo (see
Exercise 47 in 6.9 for a related result). It follows that fe p(z | n)dn = oo,
so that (55) does not give a meaningful result. We could try to use just the
numerator of (55) as the (nonintegrable) posterior for 7, but the resulting
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predictive distribution for Z(xg) is then also not integrable. The same prob-
lem would occur for any improper prior of the form p(o, v, p) = p(0, p)p(v)
with p(v) not integrable at co. A similar but more subtle problem can occur
when using a prior whose marginal density for p is not integrable at co (see
Exercise 50).

For the random field Z(x) = m(x)7 3+&(x), where ¢ is a mean 0 isotropic
Gaussian random field with spectral density g, as given by (56) and 3 is a
vector of length g of unknown regression coefficients, Handcock and Wallis
(1994) suggest the prior density

1
1+p)2(1+v)*

p(Bm) = (57)

which is identical to assuming that

p(B,0,v/(1+v),p/(1+p)) =07 (58)

on R? x (0,00) x (0,1)? (Exercise 51). Thus, for every fixed 3 and o, p(3,7)
is an integrable function of p and v. Exercise 52 asks you to show that if
there are at least g + 1 observations, the posterior density for 3 and 7
obtained using (57) as the prior is proper.

In using the prior (57), one should bear in mind that, unlike v, p is
not dimensionless and has units of distance. Therefore, the meaning of
the marginal prior density p(p) = (1 + p)~2 depends on the units used to
measure distance. If we want our results to be the same whether we measure
distances in meters or kilometers, we should normalize distances in some
manner. One possible normalization is to set the distance between the two
most distant observations to 1. In conjunction with (57), this normalization
provides an “automatic” prior that could be employed by users who are
either ill-equipped for or uninterested in developing a prior that reflects
their knowledge of the random field under study.

Application to simulated data

This subsection compares posterior predictive densities to plug-in predic-
tive densities for the 20 initial and 3 additional simulated observations
considered in 6.9. For the posterior predictive distribution I use the prior
described in the preceding subsection. Mark Handcock calculated the pos-
terior predictive distributions using programs reported in Handcock and
Wallis (1994). The plug-in predictive distributions p(- | #,4) are based
on taking e(8)/M(8)'/2 to follow a standard ¢ distribution with 22 de-
grees of freedom. As described in 6.8, using this ¢ distribution does provide
for an appropriate accounting of the effect of the uncertainty in o on the
predictions. However, this plug-in predictive distribution does not take di-
rect account of the effect of uncertainty in the parameters v and « on the
predictions.
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Figure 16 gives these two predictive distributions for the predictions at
—10.5 (an extrapolation) and —1 (an interpolation); comparisons at other
locations are qualitatively similar. As expected, the posterior predictive
densities show somewhat greater spread than the plug-in densities. Based
on a single simulation, it is not possible to conclude that one procedure
is better than the other. Although the posterior predictive density is more
appropriate from the Bayesian perspective, I would guess that it also gen-
erally has better frequentist properties than the plug-in predictive density.
The parametric simulation procedure described in 6.8 is likely to be a better
competitor to the posterior predictive density than is the plug-in predic-
tive density. A resolution of these issues requires either a large advance
in higher-order asymptotic theory for spatial prediction problems, or more
realistically, a large and well-designed simulation study to compare the
properties of different methods for predicting with estimated covariance
structures.

I have deliberately chosen not to provide posterior predictive densities
based on just the 20 evenly spaced initial simulated observations in 6.9. My
reason for this omission is that I find it inappropriate to even undertake
such a calculation when, as demonstrated in Figure 13, the uncertainty in
v is so great. The problem, as the results in Tables 5 and 6 demonstrate, is
that the assessment of mses of prediction varies dramatically over a range
of v values for which the data provide almost no basis for distinguishing.
As a consequence, the posterior predictive density will depend strongly on
the prior placed on the parameters of the Matérn model. Since prior distri-
butions on these parameters will necessarily be chosen rather arbitrarily,
there will consequently be considerable arbitrariness in the posterior pre-
dictive densities. If asked to produce a predictive density in this situation
I would point to the results in Tables 5 and 6 and refuse to do so. If that
strategy failed I would show how the posterior predictive density varies
dramatically with the choice of prior and suggest that whoever is asking
for the predictive density choose which prior to use.

Exercises

49 Consider the random field Z(x) = m(x)7 3 + ¢(x), where ¢ is a mean
0 Gaussian random field with covariance function from some model
K. For a vector of observations Z = (Z(x1),...,Z(x,))T and the
improper prior density p(3,n) = 1, show that (6) gives the logarithm
of the marginal posterior density for 8 (Harville 1974).

50 This problem gives a simple example of how one can end up with an
improper posterior density by using an improper marginal prior density
on the parameter p in (56). Suppose Z is a stationary Gaussian process



6.10 Bayesian approach 227

1.0 1

0.5 1

0.0

8_1

0 T
0.1

0.9

FIGURE 16. Plug-in predictive densities p(z | (#,&)) and posterior predictive
densities p(z) for the same data as in Figure 14. Top figure is for predicting at
—10.5 and bottom figure is for —1. Solid line corresponds to plug-in predictive
density and dashed line to posterior predictive density under prior recommended
by Handcock and Wallis (1994).

on R with unknown mean p and spectral density of the form

2124

ga,p(w) = "2—’
G
P
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which is just (56) with d = 1 and v = % known. Suppose further
that for some § > 0, Z is observed at §j for j = 1,...,n. Use the
result of the previous exercise to find an explicit expression for the
marginal posterior for o and p for the prior p(u, o, p) = 1. Show that
this marginal posterior is not integrable. Hint: the covariance matrix
for the observations is explicitly invertible; see, for example, Section 5
of Stein (1990b).

51 Show that (57) implies (58).

52 Using the prior in (58), show that if n > ¢ and the rank of
(m(xy),...,m(xy)) is g, then the posterior for (3,n) is proper.



Appendix A

Multivariate Normal Distributions

This appendix gives a brief summary of properties of multivariate normal
distributions. For proofs and further results, see, for example, Anderson
(1984), Muirhead (1982) or Rao (1973, Chapter 8).

The random variable X is said to follow a univariate normal distribution
with mean y and variance o2 > 0, written N(u,0?), if it has density

1 Y
7o) = s o7 {5

for 02 > 0 and Pr(X = p) = 1 for 6> = 0. The random vector X of
length g is said to follow a multivariate normal distribution if a7 X follows
a univariate normal distribution for every a € R? (Muirhead 1982, p. 5).

Every multivariate normal distribution has a well-defined mean vector
and covariance matrix. Furthermore, if X is a multivariate normal random
vector of length g with E(X) = p and covariance matrix cov(X, XT) = X,
then for any fixed vector a € R, aT’X is N(alu,a’ ¥a). More generally,
if A is a matrix with q columns, AX is N(Au, AXAT). If ¥ is positive
definite, then X has density

p(x) = (27r)q/2{d1et(z)}1/2 exp {—3(x — W)= (x -~ p)}.

Suppose the multivariate normal random vector X is partitioned into
two components: X = (XT XI)T, where X; has q; components and X;
has g components. Then we can write the distribution of (X7 X71)7T as

M1 Y X
N b b
((Nz) (221 222))
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where for ¢ = 1,2, p; has length ¢; and for 4,5 = 1,2, X;; is a ¢; X g
matrix. Then the conditional distribution of X; given Xy = x3 is N(u; +
12X 50 (x2 — p2), 11 — X12X5,391), where X3, is any generalized inverse
of X5, (for an invertible matrix, the generalized inverse is unique and equals
the ordinary inverse).

Finally, if X = (X1,...,X,)7 is N(0,X) and o;; is the ijth element
of X, then for 4,5,k, € = 1,...,n, BE(X;X;X}) = 0 and E(X;X; X X,) =
0ijOke + Oik0j¢ + O340 jk.-
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Symbols

Matrices and vectors

c(M)
det

h

I

MT

1

tr

0

Sets
Ac°
A\B
AoB
]Rd

Zd

Xd 1Ai

i=

Ad
B+x
Ay(r)
ba(r)

the column space of a matrix M
determinant

equals 11

the identity matrix

the transpose of a matrix M

a vector of all ones

trace

a vector of zeroes

the complement of A

for B C A, those elements in A that are not in B; equals AN B¢
the symmetric difference of A and B; equals (AU B)\(AN B)
d-dimensional Euclidean space

d-dimensional integer lattice

for subsets Aj,...,Aq of R, the subset of R whose elements
have ith component in A; for i = 1,...,d; also written A; x
cee X Ad

for A C R, shorthand for x¢_; A

for B C R? and x € R?, the set of points y for whichy—x € B
(—mr, wr)]d

the d-dimensional ball of radius r centered at the origin; by =
ba(1)
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Obg(r)
Bm

Cd

Gm

the surface of this ball
{ - im - 1)}, —|im - 1)) + 1,..., |im]}", where d is
understood by context
44
202

{1,...,m}?, where d is understood by context

Hilbert spaces associated with a random field Z on R% with R C R¢

Hp
Hgr(m, K)
Hr(F)

Lr(F)

the real linear manifold of the random variables Z(x) for x € R
(generally not a Hilbert space unless R is finite)

the closure of H% with respect to the inner product defined
by the second-order structure (m, K)

the same as Hg(0,K) if K is the autocovariance function
corresponding to the spectrum F'; H(F') = Hga(F')

the closed real linear manifold of functions of w of the form
exp(iwT'x) for x € R under the inner product defined by F

Probabilities and expectations

corr

cov
E
GR(m, K)

N(m, X)
P

Pr
var

correlation

covariance

expected value

the Gaussian measure for the random field on R with second-
order structure (m, K)

the multivariate normal distribution with mean vector m and
covariance matrix X

shorthand for Gr(m;, K;)

probablility

variance

Classes of functions

Dy

Lip(e)

Ll

loc

Qd

Functions

cosh

all d-dimensional continuous isotropic autocovariance func-
tions

for @ > 0, a function f on an interval I is called Lip(e) on I
if there exists finite C' such that |f(s) — f(t)| < C|s — t|* for
all s,ter

all real-valued functions on R that are integrable over all
bounded intervals

those functions f : RY — R such that f(w) =< |¢p(w)|? as
|w| — oo for some function ¢ that is the Fourier transform of
a square integrable function with bounded support

the hyperbolic cosine function, coshz = %(em + e~ %); other
hyperbolic functions used are sinhz = %(em —e %), tanhz =
sinhz/ coshz and sechz = 1/coshz
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r the gamma function

Ojk equals 1 if j = k and 0 otherwise

Jy ordinary Bessel function of order v

K. modified Bessel function of the second kind of order v

sinc for t # 0, sinct =t~ 'sint and sinc0 = 1

1{-} for an event A, 1{A} =1 if A is true and is 0 otherwise

zt the positive part of the real number z; equals z if z > 0 and
equals 0 otherwise

lz] the greatest integer less than or equal to the real number z

x| the Euclidean norm of x = (z1,...,74)7; equals (% + --- +
z2)1/2

d

zZ the complex conjugate of the complex number 2

Relationships

~ for functions f and g on some set R, write f(t) ~ g(t) ast — to
if f(t)/9(t) > 1ast—to

< for real-valued functions f and g on R, write f(t) < g(t) if
there exists C finite such that |f(t)] < Cyg(t) for all t € R;
same as f(t) = O(g(t))

= for nonnegative functions f and g on R, write f(t) =< g(¢) if
f(t) < g(t) and g(t) < f(t); write f(t) < g(t) as t — tq if,
given any sequence t;,ts,... such that t; — tg, there exists NV
finite such that f(¢;) < g(¢;) foralli > N

L orthogonal; can refer either to the orthogonality of two el-
ements in a Hilbert space (have inner product 0) or to the
orthogonality of two probability measures

= equivalence for probability measures

Abbreviations

BLP best linear predictor

BLUP best linear unbiased predictor

EBLUP estimated best linear unbiased predictor

IRF intrinsic random function

LUP linear unbiased predictor

MLE maximum likelihood estimator

mse mean squared error

p.d. positive definite

REML restricted maximum likelihood

Miscellaneous

5

for j € Z4, the sum over all element of Z% except the origin
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