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Preface 

This monograph is an attempt to provide a mathematical treatment for 
the procedure known as kriging, which is a popular method for interpo­
lating spatial data. Kriging is superficially just a special case of optimal 
linear prediction applied to random processes in space or random fields. 
However, optimal linear prediction requires knowing the covariance struc­
ture of the random field. When, as is generally the case in practice, the 
covariance structure is unknown, what is usually done is to estimate this 
covariance structure using the same data that will be used for interpolation. 
The properties of interpolants based on an estimated covariance structure 
are not well understood and it is common practice to ignore the effect of 
the uncertainty in the covariance structure on subsequent predictions. My 
goal in this monograph is to develop the rriathematical tools that I believe 
are necessary to provide a satisfactory theory of interpolation when the co­
variance structure is at least partially unknown. This work uses these tools 
to prove a number of results, many of them new, that provide some insight 
into the problem of interpolating with an unknown covariance structure. 
However, I am unable to provide a complete mathematical treatment of 
kriging with estimated covariance structures. One of my hopes in writ­
ing this book is that it will spur other researchers to take on some of the 
unresolved problems raised here. 
I would like to give a bit of personal history to help explain my devo­
tion to the mathematical approach to kriging I take here. It has long been 
recognized that when interpolating observations from a random field pos­
sessing a semivariogram, the behavior of the semivariogram near the origin 
plays a crucial role (see, for example, Matheron (1971, Section 2-5)). In 
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the mid 1980s I was seeking a way to obtain an asymptotic theory to sup­
port this general understanding. The asymptotic framework I had in mind 
was to take more and more observations in a fixed and bounded region of 
space, which I call fixed-domain asymptotics. Using this approach, I sus­
pected that it should generally be the case that only the behavior of the 
semivariogram near the origin matters asymptotically for determining the 
properties of kriging predictors. Unfortunately, I had no idea how to prove 
such a result except in a few very special cases. However, I did know of 
an example in which behavior away from the origin of the semivariogram 
could have an asymptotically nonnegligible impact on the properties of 
kriging predictors. Specifically, as described in 3.5, the semivariograms cor­
responding to exponential and triangular auto covariance functions have the 
same behavior near the origin, but optimal linear interpolants under the 
two models do not necessarily have similar asymptotic behavior. I believed 
that there should be some mathematical formulation of the problem that 
would exclude the "pathological" triangular auto covariance function and 
would allow me to obtain a general theorem on asymptotic properties of 
kriging predictors. Soon after arriving at the University of Chicago in the 
fall of 1985, I was browsing through the library and happened upon Gaus­
sian Random Processes by Ibragimov and Rozanov (1978). I leafed through 
the book and my initial reaction was to dismiss it as being too difficult for 
me to read and in any case irrelevant to my research interests. Fortunately, 
sitting among all the lemmas and theorems and corollaries in this book was 
a single figure on page 100 showing plots of an exponential and triangu­
lar autocovariance function. The surrounding text explained how Gaussian 
processes corresponding to these two auto covariance functions could have 
orthogonal measures, which did not make an immediate impression on me. 
However, the figure showing the two autocovariance functions stuck in my 
mind and the next day I went back to the library and checked out the book. 
I soon recognized that equivalence and orthogonality of Gaussian measures 
was the key mathematical concept I needed to prove results connecting the 
behavior of the semivariogram at the origin to the properties of kriging 
predictors. Having devoted a great amount of effort to this topic in subse­
quent years, I am now more firmly convinced than ever that the confluence 
of fixed-domain asymptotics and equivalence and orthogonality of Gaussian 
measures provides the best mathematical approach for the study of kriging 
based on estimated covariance structures. I would like to thank Ibragimov 
and Rozanov for including that single figure in their work. 
This monograph represents a synthesis of my present understanding of 
the connections between the behavior of semivariograms at the origin, the 
properties of kriging predictors and the equivalence and orthogonality of 
Gaussian measures. Without an understanding of these connections, I be­
lieve it is not possible to develop a full appreciation of kriging. Although 
there is a lot of mathematics here, I frequently discuss the repercussions of 
the mathematical results on the practice of kriging. Readers whose main 
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interests are in the practice of kriging should consider skipping most of the 
proofs on a first reading and focus on the statements of results and the 
related discussions. Readers who find even the statements of the theorems 
difficult to digest should carefully study the numerical results in Chap­
ters 3 and 6 before concluding that they can ignore the implications of this 
work. For those readers who do plan to study at least some of the proofs, a 
background in probability theory at the level of, say, Billingsley (1995) and 
some familiarity with Fourier analysis and Hilbert spaces should be suffi­
cient. The necessary second-order theory of random fields is developed in 
Chapter 2 and results on equivalence and orthogonality of Gaussian mea­
sures in Chapter 4. Section 1.3 provides a brief summary of the essential 
results on Hilbert spaces needed here. 
In selecting topics for inclusion, I have tried to stick to topics pertinent 
to kriging about which I felt I had something worthwhile to say. As a con­
sequence, for example, there is little here about nonlinear prediction and 
nothing about estimation for non-Gaussian processes, despite the impor­
tance of these problems. In addition, no mention is made of splines as a way 
of interpolating spatial data, even though splines and kriging are closely 
related and an extensive literature exists on the use of splines in statistics 
(Wahba 1990). Thus, this monograph is not a comprehensive guide to sta­
tistical approaches to spatial interpolation. Part I of Cressie (1993) comes 
much closer to providing a broad overview of kriging. 
This work is quite critical of some aspects of how kriging is com­

monly practiced at present. In particular, I criticize some frequently used 
classes of models for semivariograms and describe ways in which empirical 
semivariograms can be a misleading tool for making inferences about semi­
variograms. Some of this criticism is based on considering what happens 
when the underlying random field is differentiable and measurement errors 
are negligible. In some areas of application, nondifferentiable random fields 
and substantial measurement errors may be common, in which case, one 
could argue that my criticisms are not so relevant to those areas. However, 
what I am seeking to accomplish here is not to put forward a set of method­
ologies that will be sufficient in some circumscribed set of applications, but 
to suggest a general framework for thinking about kriging that makes sense 
no matter how smooth or rough is the underlying random field and whether 
there is nonnegligible measurement error. Furthermore, I contend that the 
common assumption that the semivariogram of the underlying random field 
behaves linearly in a neighborhood of the origin (which implies the random 
field is not differentiable), is often made out of habit or ignorance and not 
because it is justified. 
For those who want to know what is new in this monograph, I provide a 

summary here. All of 3.6 and 3.7, which study the behavior of predictions 
with evenly spaced observations in one dimension as the spacing between 
neighboring observations tends to 0, are new. Section 4.3 mixes old and 
new results on the asymptotic optimality of best linear predictors under 
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an incorrect model. Theorem 10 in 4.3, which shows such results apply to 
triangular arrays of observations and not just a sequence of observations, 
is new. So are Corollaries 9 and 13, which extend these results to cases 
in which observations include measurement error of known variance. The 
quantitative formulations of Jeffreys's law in 4.4 and the plausible approx­
imations in 6.8 giving asymptotic frequentist versions of Jeffreys's law are 
published here for the first time, although some of these ideas appeared in 
an NSF grant proposal of mine many years ago. Section 6.3, which points 
out an important error in Matheron (1971), is new, as is 6.7 on the asymp­
totic behavior of the Fisher information matrix for a periodic version of 
the Matern model. Finally, the extensive numerical results in 3.5, 6.6 and 
6.8 and the simulated example in 6.9 are new. 
This work grew out of notes for a quarter-long graduate class in spatial 
statistics I have taught sporadically at the University of Chicago. However, 
this book now covers many more topics than could reasonably be addressed 
in a quarter or even a semester for all but the most highly prepared stu­
dents. It would be a mistake not to get to Chapter 6, which has a much 
greater focus on practical aspects of kriging than the preceding chapters. I 
would recommend not skipping any sections entirely but instead judicially 
omitting proofs of some of the more technical results. The proofs in 3.6 
and 6.7 depend critically on evenly spaced observations and do not provide 
much statistical insight; they are good candidates for omission. Other can­
didates for omission include the proofs of Theorem 1 and Theorems 10-12 
in Chapter 4 and all proofs in 5.3 and 5.4. There are exercises at the end 
of most sections of highly varying difficulty. Many ask the reader to fill in 
details of proofs. Others consider special cases of more general results or 
address points not raised in the text. Several ask the reader to do numerical 
calculations similar to those done in the text. All numerical work reported 
on here, unless noted otherwise, was done in S-Plus. 
There are many people to thank for their help with this work. Terry 
Speed pointed out the connection between my work and Jeffreys's law (see 
4.4) and Wing Wong formulated the Bayesian version of this law described 
in 4.4. Mark Handcock calculated the predictive densities given in 6.10 
using programs reported on in Handcock and Wallis (1994). Numerous 
people have read parts of the text and provided valuable feedback including 
Stephen Stigler, Mark Handcock, Jian Zhang, Seongjoo Song, Zhengyuan 
Zhu, Ji Meng Loh, and several anonymous reviewers. Michael Wichura 
provided frequent and invaluable advice on using 'lEX; all figures in this text 
were produced using his P.£CIEX macros (Wichura 1987). Mitzi Nakatsuka 
typed the first draft of much of this work; her expertise and dedication are 
gratefully acknowledged. Finally, I would like to gratefully acknowledge the 
support of the National Science Foundation (most recently, through NSF 
Grant DMS 95-04470) for supporting my research on kriging throughout 
my research career. 
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I intend to maintain a Web page containing comments and corrections 
regarding this book. This page can be reached by clicking on the book's title 
in my home page http://galton. uchicago. edu/faculty/stein.html. 

Chicago, Illinois 
December 1998 

Michael L. Stein 
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1 
Linear Prediction 

1.1 Introduction 

This book investigates prediction of a spatially varying quantity based on 
observations of that quantity at some set of locations. Although the notion 
of prediction sometimes suggests the assessment of something that has not 
yet happened, here I take it to mean the assessment of any random quantity 
that is presently not known exactly. This work focuses on quantities that 
vary continuously in space and for which observations are made without 
error, although Sections 3.7,4.2,4.3,6.6 and 6.8 do address some issues re­
garding measurement errors. Our goals are to obtain accurate predictions 
and to obtain reasonable assessments of the uncertainty in these predic­
tions. The approach to prediction I take is to consider the spatially varying 
quantity to be a realization of a real-valued random field, that is, a family 
of random variables whose index set is IRd. 
Much of this work focuses on the properties of predictors that are linear 
functions of the observations, although 1.4 describes a cautionary example 
on the potential inefficiencies of "optimal" linear predictors. Section 1.2 
defines and derives best linear prediction of random fields based on a fi­
nite number of observations. Section 1.3 briefly reviews some properties of 
Hilbert spaces, which are a powerful tool for studying general linear predic­
tion problems. Section 1.5 considers best linear unbiased prediction, which 
applies when the mean function of the random field is known up to a vec­
tor of linear parameters. Best linear unbiased prediction is frequently used 
in spatial statistics where it is commonly called universal kriging. Section 
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1.6 summarizes some basic themes of this work and briefly considers how 
these themes relate to practical issues in the prediction of random fields. 
Section 1.7 succinctly states my main recommendations for the practice of 
predicting random fields. Readers who can only spare 30 seconds on this 
book might want to skip directly to 1. 7. 
Chapter 2 provides a detailed discussion of properties of random fields 

relevant to this work. For now, let us introduce some essential definitions 
and notation. For a random variable X, I use E(X) to indicate its ex­
pected value and var(X) for its variance. For random variables X and Y, 
cov(X, Y) = E(XY) - E(X)E(Y) is the covariance of X and Y. Suppose 
{Z(x) : x E ]Rd} is a real-valued random field on ]Rd and x, y E ]Rd. The 
mean function of Z is EZ(x), which I often denote by m(x). The covari­
ance function is cov{ Z(x), Z(y)}, which I often denote by K(x, y). Finally, 
a random field is Gaussian if all of its finite-dimensional distributions are 
Gaussian (multivariate normal). See Appendix A for a brief summary of 
results on multivariate normal distributions. 

1.2 Best linear prediction 

Suppose we observe a random field Z on ]Rd at Xl, ... , Xn and wish to pre­
dict Z(xo). I call the quantity to be predicted the predictand. If the law of 
Z is known, then inference about Z(xo) should be based upon the condi­
tional distribution of Z(xo) given the observed values of Z(xt), ... , Z(xn). 
In practice, specifying the law of a random field can be a daunting task. 
Furthermore, even if we are willing to believe that we know the law of 
Z, calculating this conditional distribution may be extremely difficult. For 
these reasons, it is common to restrict attention to linear predictors. 
Suppose Z has mean function m(x) and covariance function K(x, y). If 

m and K are known, then we can obtain the mean and variance of any 
linear combination of observations of Z. For random vectors X and Y, 
define cov(X, yT) = E{(X - EX)(Y - Ey)T}, where the expected value 
of a random matrix is just the matrix of expected values and yT is the 
transpose of y. Suppose we observe Z = (Z(Xl)' ... ' Z(xn))T and wish to 
predict Z(xo) using a predictor of the form Ao + >..TZ. The mean squared 
error (mse) of this predictor is just the squared mean of the prediction error 
plus its variance and is given by 

E{ Z(xo) - Ao - ~Tz} 2 = {m(xo) - Ao - ~T m} 2 + ko - 2~Tk + ~TK~, 

where m = EZ, ko = K(xo, xo), k = cov {Z, Z(xo)} and K = cov (Z, ZT). 
It is apparent that for any choice of ~, we can make the squared mean term 
o by taking AO = m(xo) - ~T m, so consider choosing ~ to minimize the 
variance. For any ~, v E ]Rn, 

var{Z(xo) - (~+ vfZ} 
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= ko - 2(~ + v)Tk + (~+ v)TK(~ + v) 

= ko - 2~Tk + ~TK'\ + vTKv + 2(K~ - kf v. (1) 

Let us next show k is in C(K), the column space of K. Consider p. E R.n 
such that var(p.TZ) = p.TKp. = O. Then 0 = cov(-"yTZ, p.TZ) = -yTKp. for 
all -y E R.n, so Kp. = O. In addition, 0 = cov{Z(xO),p.TZ} = kTp., so that 
Kp. = 0 implies kT p. = O. Thus, k is orthogonal to the null space of K and 
hence k E C(KT) = C(K), as required. Consequently, there exists ~ such 
that K~ = k, and for such ~, 

var{Z(xo) - (~+ V)TZ} = ko - 2~Tk + ~TK~ + vTKv 

?: ko - 2~Tk + ~TK~ 
for all v since vTKv = var(vTZ) ?: O. Thus, since ~TZ achieves this lower 
bound, it necessarily minimizes the variance of the prediction error. We call 
any linear predictor that minimizes the mean squared error among all linear 
predictors the best linear predictor or BLP. The preceding argument proves 
that the BLP always exists. Exercise 1 asks you to show it is essentially 
unique. If K is invertible, the values of >'0 and ~ that give the BLP are 

~ = K-1k and 

>'0 = m(xo) - k T K- 1m 
(2) 

and the resulting mse is ko - k T K- 1k. 
If Z is Gaussian, then (see Appendix A) we have the much stronger 
result that the conditional distribution of Z(xo) given Z = z is N(>'o + 
~Tz,ko - kTK-1k), where >'0 and.\ are given by (2) and N(J.L, (12) is the 
univariate normal distribution with mean J.L and variance (12. Thus, for a 
Gaussian random field with known mean and covariance functions, finding 
the conditional distribution of the process at Xo is straightforward. 
We see that for Gaussian Z, the BLP gives the conditional expectation, 
so that the BLP is the best predictor (in terms of minimizing mse), linear 
or nonlinear (Rice 1995, p. 140). Thus, there is a temptation to believe that 
BLPs work well for processes that are not too far from Gaussian. However, 
as the example in 1.4 demonstrates, it is important to be careful about 
what one means by a process being close to Gaussian. 

Exercises 

1 Show that the BLP is unique in the sense that if >'O+~TZ and J.Lo+p.TZ 
are both BLPs for Z(xo), then E(>.o + ~TZ - J.Lo - p.TZ)2 = O. 

2 Suppose Xo, Xl and X 2 are random variables with mean 0 and variance 
1, cov(Xo, Xl) = cov(Xl, X 2 ) = p with Ipl ~ 2-1/ 2 and cov(Xo, X 2 ) = 

O. Find the BLP of Xo based on Xl and X 2 • Find the mse of the BLP. 
Note that unless p = 0, X 2 plays a role in the BLP despite the fact that 
it is uncorrelated with Xo. Why is there the restriction Ipi ~ 2-1/ 2? 
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3 Suppose X o, Xl"'" Xn are random variables with mean 0, variance 
1 and COV(Xi,Xj) = P for i i= j. Find the BLP of Xo based on 
Xl,'" ,Xn . Find the mse of the BLP. 

1.3 Hilbert spaces and prediction 

A classical problem in stochastic processes is to predict the future of a 
process based on having observed it up to the present. More specifically, 
for a process Z on lR. with finite second moments, consider finding the BLP 
of Z(t), t > 0 based on observing Z(s) for all s ~ 0, so that s = 0 is the 
present time. Wiener (1949) and Kolmogorov (1941) studied this problem 
for weakly stationary processes. Linear algebra, which worked fine when 
there were only a finite number of observations, is not an adequate tool 
in this setting. The right approach is to view the set of possible linear 
predictors as a Hilbert space. For background material on Hilbert spaces, 
see, for example, Akhiezer and Glazman (1981), although Section 5.6 of 
Cramer and Leadbetter (1967) contains pretty much everything you will 
need to know about Hilbert spaces to read this work. 
Very briefly, a Hilbert space is a complete inner product space, or a­
linear space possessing an inner product and containing all of its limit 
points under the metric defined by the inner product. A linear space £. is 
a set of elements x, y, ... satisfying the conditions: 

(a) there is an operation called addition and denoted by + such that £. 
is an Abelian (commutative) group with respect to addition; 

(b) multiplication of elements of £. by (real or complex) scalars a, b, ... 
is defined and satisfies a(x + y) = ax + ay, (a + b)x = ax + bx, 
a(bx) = (ab)x, Ix = x and Ox = 0, where 0 is the zero element of the 
group. 

A linear space is an inner product space if for each x, y E £. there is a (real 
or complex) number (x, y) such that 

(c) (x, y) = (y, x), where, for a complex number z, Z is its complex 
conjugate, 

(d) (ax+by,z) = a(x,z) +b(y,z) and 
(e) (x,x) 2: 0 with equality if and only if x = O. 

We say x is orthogonal to y, written x.l y, if (x,y) = O. 
For any x E £., define its norm, written Ilxl!' by the positive square 
root (x, X)1/2. If we define Ilx - yll as the distance between x and y, the 
inner product space is a metric space. The inner product space is com­
plete and hence a Hilbert space if for any sequence Xl, X2, . .. such that 
limm,n-->oo Ilxm - Xn II = 0 there exists x E £. such that limn-->oo Ilxn - xII = 
O. The Hilbert space is called separable if it has a countable dense subset. 
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We are mostly concerned with Hilbert spaces for which scalar multiplication 
is restricted to reals and the inner product is real. 
For any subset X of a Hilbert space 1t, the linear manifold spanned by 

X, denoted by Mo, is the set of all linear combinations alXl + ... anXn 

with n finite and Xl, ..• ,Xn EX. The closed linear manifold spanned by X, 
denoted by M, is just Mo together with its limit points under the metric 
defined by the inner product. Note that M is itself necessarily a Hilbert 
space. Any set whose closed linear manifold is M is called a basis for 
M, so that X is automatically one basis for M. In this work, we generally 
only consider Hilbert spaces with finite or countable bases. Every separable 
Hilbert space possesses a finite or countable basis (Exercise 4). 
For studying prediction, the crucial concept is that of projection of an 
element of a Hilbert space onto a subspace. Suppose 1t is a Hilbert space 
and 9 a subspace. Given hE 1t, there exists a unique element 9 E 9 such 
that 

Ilh - gil = inf Ilh - g'll 
9'Eg 

(3) 

(Exercise 5). We call 9 the projection of h onto g. An important property 
of the projection 9 is that it is the unique element in 9 satisfying h - 9 1- g' 
for all g' E 9 (Exercise 6). That is, the error of approximation is orthogonal 
to all elements of g. 
The Hilbert spaces we encounter most frequently in this work are those 
generated by a random field Z on some set R. More specifically, consider 
a random field Z on a set R C ]Rd with mean function m and covariance 
function K. Let 1t'k be the real linear manifold of {Z(x) : x E R} for some 
R C ]Rd. For 9 and h in 1t'k, define the inner product (g, h) = E(gh). The 
closure of 1t'k with respect to this inner product is a Hilbert space, which 
I denote by 1tR(m, K). 
To characterize the BLP in terms of such a Hilbert space, we need 
to make sure the constant term is in the space of possible predictors. 
Specifically, letting Q be the set on which Z is observed, all linear pre­
dictors of h E 1tR(m, K) are of the form c + g, where c is a scalar and 
9 E 1tQ(m, K). Let g(h) be the unique element in 1tQ(m, K) satisfying 
cov{h - g(h),g'} = 0 for all g' E 1tQ(m,K) (see Exercises 5 and 6) and 
set c(h) = Eh - Eg(h). Then c(h) + g(h) is the BLP of h, which follows 
from E[{h - c(h) - g(h)}(c' + g')] = 0 for all real d and all g' E 1tQ(m, K) 
(Exercise 7). We use this characterization in the next section to verify that 
a particular linear predictor is the BLP. 

Exercises 

4 Show that every separable Hilbert space has a finite or countable basis. 

5 For a Hilbert space 1t, a subspace 9 and h E 1t, show that there is a 
unique element 9 E 9 such that (3) holds. 
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6 (Continuation of 5). Show that 9 is the unique element in 9 satisfying 
h - 9 1. g' for all g' E g. 

7 Using the definitions in the last paragraph of this section, show that 
E[{h - c(h) - g(h)}(c' + g')] = 0 for all real c' and all g' E fiQ(m, K). 
Use this in conjunction with Exercise 3 to verify that c(h)+g(h) is the 
BLP of h. 

1.4 An example of a poor BLP 

Although much of this work focuses on linear prediction, it is important 
to keep in mind that "best" linear predictors can sometimes be highly 
inefficient compared to the best nonlinear predictors when the underlying 
random field is not Gaussian. This section presents an example showing 
that a stochastic process can in one sense be nearly Gaussian and yet 
a BLP performs infinitely worse than the best nonlinear predictor under 
this model. Thus, in reading Chapters 3-5, where we study properties of 
linear predictors in some depth, keep in mind that these results are largely 
irrelevant for some non-Gaussian random fields. 
Suppose N is a Poisson process with constant intensity ,X on 1R, so 
that for a Borel set A, N(A) is the number of events of the process in 
A and E{N(A)} is ,X times the Lebesgue measure of A. Define Z(t) = 

N «t - 1, t + 1]). Then m(t) = 2,X and K(s, t) = (2 - Is - tl)+'x, where t+ 
means the positive part of t (Exercise 8). Observe Z on R = [-2, -IJ U [1,2] 
and consider predicting Z(O). A partial realization of N, where the xs rep­
resent the locations of events of N, and the corresponding values of Z on 
R is given in Figure 1. It is possible to show that with probability 1, 

Z(O) = {# positive jumps of Z on [-2, -I]} 

+ {# negative jumps of Z on [1, 2J} , (4) 

so that the mse of the best predictor is 0 (Exercise 9). For the realization 
shown in Figure 1, Z(O) = 3 and we see there is 1 positive jump on [-2, -IJ 
and 2 negative jumps on [1, 2J. This optimal predictor of Z(O) is decidedly 
nonlinear. On the other hand, the BLP of Z(O) is 

~ ,x + ~ {Z(I) + Z( -I)} - ~ {Z(2) + Z( -2)}, (5) 

which follows by showing that the error of the BLP has mean 0 and is 
uncorrelated with Z(t) for all t E R (Exercise 10). The mse of the BLP is 
~ ,x, so the ratio of the mse of the BLP to the mse of the best nonlinear 
predictor is infinite for all ,x. This is despite the fact that as ,x ----> 00, 

{ZO-2,X}/,Xl/2 converges weakly (Billingsley 1968) to a Gaussian process! 

Exercises 

8 Show that for Z as defined in this section, K(s, t) = (2 -Is - tl)+'x. 
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FIGURE 1. A partial realization of the process Z described in 1.4. The xs on 
the horizontal axis indicate events of the Poisson process N. Values for Z(t) are 
plotted for t E R = [-2, -1] U [1,2]. 

9 Verify that (4) holds with probability 1. 

10 Verify that (5) gives the BLP of Z(O) by using the characterization for 
the BLP in the last paragraph of 1.3. 

1.5 Best linear unbiased prediction 

Suppose we have the following model for a random field Z, 

Z(x) = m(x)T (3 + c(x), (6) 

where c is a mean 0 random field with known covariance structure, m is a 
known function with values in ]RP and (3 is a vector of p unknown coeffi­
cients. We observe Z = (Z(Xl),' " ,Z(Xn))T and wish to predict Z(xo). If 
{3 were known, we could use the BLP 

(7) 

where M = (m(xd'" m(xn ){ and K and k are defined as in 1.2. 
If {3 is unknown but all covariances are known, a natural approach is 
to replace {3 in (7) by the generalized least squares estimator (3 = 
(MTK-1M)-lMTK-1Z, assuming K is nonsingular and M is offull rank. 
The estimator (3 is best linear unbiased for {3 (see Exercise 11). 
An alternative approach is to minimize the mse of prediction among all 
predictors of the form Ao + "xTZ subject to the unbiasedness constraint 
E(Ao + "xTZ) = EZ(xo) for all {3. The unbiasedness constraint is identical 
to Ao + "xTM{3 = m(xo)T {3 for all (3, or 

Ao = 0 and MT"x = m(xo). (8) 

Our goal then is to minimize E{Z(xo) - "xTZP subject to"x satisfying (8). 
If "x solves this constrained minimization problem, then "xTZ is called a 
best linear unbiased predictor (BLUP) for Z(xo). To solve this problem, 
first note that there exists a LUP (linear unbiased predictor) if and only if 
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m(xo) E C(MT), so let us suppose so from now on. If A satisfies MTA = 

m(xo), then any LUP can be written as (A + V)TZ where MT v = o. 
Considering (1) and (8), ATZ is a BLUP if (KA - k)Tv = 0 for all v 
satisfying MT v = 0, or equivalently, if there exists a vector p, such that 
KA - k = Mp,. Thus, ATZ is a BLUP if 

for some p" where 0 is a matrix of zeroes. This set of linear equations has 
a solution if and only if m(xo) E C(MT) (Exercise 12). If K and M are of 
full rank, then 

From (9) it can then be shown that (Exercise 13) 

A ={K-1 - K-1M(MTK-1M)-lMTK-l}k 

+ K-1M(MTK-1M)-lm(xo), (10) 

so that the resulting predictor is 

ATZ = kTK-l(Z - M.8) + m(xof.8, 
which is identical to what we obtained by replacing {3 in the BLP by the 
generalized least squares estimator .8. The mse of the BLUP is 

(11) 

where 'Y = m(xo) - MTK- 1 k and ko = K(xo, xo) as in 1.2 (Exercise 14). 
Best linear unbiased prediction is called kriging in the geostatistical lit­

erature, named after the South African mining engineer D. G. Krige (Krige 
1951; Journel and Huijbregts 1978). If m(x) == 1, so that the mean of the 
process is assumed to be an unknown constant, then best linear unbiased 
prediction is called ordinary kriging. Best linear unbiased prediction for 
more general m is known as universal kriging and best linear prediction 
with the mean assumed 0 is called simple kriging. Simple kriging is gen­
erally called objective analysis in the atmospheric sciences (Thiebaux and 
Pedder 1987 and Daley 1991, Chapter 4). Goldberger (1962) described best 
linear unbiased prediction for regression models with correlated errors but 
did not explicitly consider the spatial setting. Cressie (1989, 1990) provides 
further discussion on the history of various forms of kriging. 
As noted in 1.3, A useful characterization of the BLP is that its error 

is orthogonal (uncorrelated) to all possible linear predictions. The BLUP 
has a similar characterization, which is implicit in the derivation of (10). 
Suppose a random field Z is of the form given in (6). The random variable 
L~=l D:j Z(y j) is called a contrast if it has mean 0 for all {3, or equivalently, 

if L~=l D:jm(Yj) = o. A BLUP of Z(xo) based on some set of observations 
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Z(X1), .. . ,Z(xn ) is characterized by the following two properties: its error 
is a contrast and its error is orthogonal to any contrast of the observations 
(Exercise 15). It follows that to find BLUPs and to evaluate their mses, 
it is only necessary to know the covariance structure of all contrasts of 
the random field. This property is of value when using intrinsic random 
functions (see 2.9), which is a class of models for which variances of linear 
combinations that are not contrasts are undefined. 
The BLUP has a Bayesian interpretation (Kitanidis 1986 and Omre 
1987). Let N(p" E) be the multivariate normal distribution with mean 
vector p, and covariance matrix E. Suppose Z is given by (6), where 
the random field E: is Gaussian and independent of the random vector {3 
which has prior distribution N(p" a 2V) for some positive definite V. Define 
W(a2 ) = (MT K- 1 M + a-2V-1 )-1. Then the posterior distribution of {3 
given Z is (Exercise 16) 

For making predictions about Z(xo), the natural Bayesian solution is to use 
the conditional distribution of Z(xo) given Z but averaging over the poste­
rior of {3 given Z. This distribution is known as the predictive distribution 
of Z(xo) (Zellner 1971, Section 2.8) and is given by (Exercise 17) 

Z(xo) I Z'" N( kTK- 1Z + -yTW(a 2 ) (MTK- 1Z + a-2V- 1p,) , 

ko - k T K-1k + -yTW(a2 )-y). (13) 

Letting a2 grow means letting the prior on {3 get increasingly uninforma­
tive, and as a 2 -+ 00 (assuming M is of full rank), the limiting predictive 
distribution of Z(xo) given Z is Gaussian with the BLUP as its conditional 
expectation and conditional variance given by (11). 

Exercises 

11 Show that if j3 is the generalized least squares estimator for {3, then for 
any fixed vector q E RP, qTj3 is the BLUP for qT{3. Since the quantity 
being predicted here is not random, q T j3 is more commonly called the 
best linear unbiased estimator. Thus, we have that best linear unbiased 
estimation is just a special case of best linear unbiased prediction. 

12 Show that if a LUP exists, then the BLUP exists and is unique in the 
sense that the BLP was shown to be unique in Exercise 1. 

13 If K and M are of full rank, verify that (9) implies (10). 

14 Show that (11) gives the mse of the BLUP. 
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15 Show that a BLUP based on some set of observations is characterized 
by the following two properties: its error is a contrast and its error is 
orthogonal to any contrast of the observations. 

16 Verify (12). 

17 Verify (13). 

18 Suppose as in Exercise 2 that XO,Xl ,X2 are random variables with 
variance 1, cov(Xo, Xl) = COV(XI' X 2 ) = p for ipi :$ 2- 1/ 2 and 
cov(Xo, X 2 ) = 0 but now assume that all three random variables have 
an unknown common mean. Find the BLUP of Xo based on Xl and 
X 2 . Find the mse of the BLUP. Compare your results to those for 
Exercise 2. 

19 Suppose as in Exercise 3 that X o, Xl"'" Xn are random variables 
with variance 1 and COV(Xi,Xj) = P for i -I- j. Find the BLUP of Xo 
based on Xl, ... ,Xn if all XiS have a common unknown mean. Find 
the mse of this BLUP. Find the BLUP of Xo based on Xl"'" Xn 
and its mse if EX i = {3i for some unknown constant {3. Compare your 
results with those of Exercise 3. 

1.6 Some recurring themes 

There are four recurring and interrelated themes that underlie my approach 
to problems in spatial prediction. In order to provide the reader with some 
guidance as to what is most important in the upcoming chapters, it is 
worthwhile to spell out these themes here. I make a number of statements 
without justification in the present section and I hope that the reader who 
questions these statements will be thereby motivated to continue on to the 
rest of the work. 
The first of these themes is the contrast between interpolation and ex­

trapolation. Although these words do not have a sharp distinction in the 
spatial setting, by interpolation I mean predictions at locations that are 
"surrounded" by available observations or, alternatively, are not near or 
beyond the boundaries of the region in which there are observations. By 
extrapolation, I mean predictions at locations beyond the boundaries of the 
observation region. My main goal in this work is to develop a mathematical 
framework that is most appropriate for studying interpolation problems. In 
most problems in which spatial prediction is contemplated, interpolation 
will be of greater interest than extrapolation, since one would generally 
take observations in any region in which prediction were to be done unless 
there were some physical impediment to doing so. To the extent that some­
one is interested in extrapolation, which is generally the case in time series 
analysis, the results and approach taken in this work are decidedly less 
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relevant. Sections 3.4-3.6, 6.8 and 6.9 provide some comparisons between 
interpolation and extrapolation. 
This focus on interpolation leads to the second theme, which is that the 
properties of interpolation schemes depend mainly on the local behavior of 
the random field under study. In particular, 3.4-3.6 provide theoretical and 
numerical evidence that the behavior of a random field over longer distances 
is much less relevant when interpolating than when extrapolating. Ac­
cordingly, Chapter 2, which provides background material on second-order 
properties of random fields, emphasizes their local behavior. Chapter 2 fo­
cuses on random fields on lRd with covariance functions K(x,y) depending 
only on x -y, in which case, I call the function K(x - y) = K(x, y) the 
autocovariance function of the random field. If the auto covariance function 
is continuous, then it can be written as the Fourier transform of a positive 
finite measure. In most cases of practical interest, this measure has a den­
sity with respect to Lebesgue measure known as the spectral density. More 
specifically, the spectral density / satisfies 

K(x) = r exp(iwT x)/(w)dw 
llRd 

for all x E lRd. It turns out that the local behavior of a random field is 
intimately related to how the spectral density / behaves for large values of 
Iwl. Generally speaking, the more quickly the spectral density decreases as 
Iwl increases, the smoother the random field. 
As in many areas of statistics, it is not possible to make much progress on 
the theory of spatial interpolation from finite sample results. Thus, much of 
the theory in the following chapters is asymptotic. The third theme of this 
work is that the most appropriate asymptotic framework for problems of 
spatial interpolation is to consider taking more and more observations in a 
fixed region, which I call fixed-domain asymptotics. Most existing asymp­
totic theory concerning inference for stochastic processes and random fields 
based on discrete observations allows the observation region to grow with 
the number of observations, which I call increasing-domain asymptotics. 
Chapter 3, and 3.3 in particular, detail my arguments for preferring fixed­
domain asymptotics for studying spatial interpolation. For now, I would 
point out that if the goal is to develop a theory that shows the relation­
ship between the local behavior of a random field and the properties of 
interpolation methods, then the fixed-domain approach is quite natural in 
that the degree of differentiability of the random field, which is a funda­
mental aspect of its local behavior, plays a central role in any fixed-domain 
asymptotic results. 
The final theme is the connection between what aspects of a random 
field model are important for purposes of spatial interpolation and what 
aspects of the model can be well estimated from available data. This issue 
is particularly crucial when using fixed-domain asymptotics because there 
will commonly be parameters of models that cannot be consistently esti-
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mated as the number of observations in a fixed region increases. However, 
at least for Gaussian random fields, results in 4.3 demonstrate that models 
that cannot be distinguished well based on observations in a fixed region 
yield asymptotically indistiguishable spatial interpolants. These results are 
an example of what Dawid (1984, p. 285) calls Jeffreys's law: "things we 
shall never find much out about cannot be very important for prediction." 
Sections 4.4 and 6.8 provide some quantitative formulations of Jeffreys's 
law. 
The following subsections describe a few implications for the practice of 

spatial statistics that arise from the consideration of these themes, with a 
focus on those implications that suggest problems with current common 
practices and conceptions. 

The Matern model 

The second theme states that properties of spatial interpolants depend 
strongly on the local behavior of the random field. In practice, this local 
behavior is not known and must be estimated from the same data that 
will be used to do the interpolation. This state of affairs strongly suggests 
that it is critical to select models for the covariance structures that include 
at least one member whose local behavior accurately reflects the actual 
local behavior of the spatially varying quantity under study. A number of 
commonly used models for the covariance structure, including the spherical 
(see 2.10), the exponential and the Gaussian (see 2.7) provide no flexibil­
ity with regard to this local behavior and essentially assume it is known 
a priori. An alternative model that I recommend for general adoption is 
the Matern model (see 2.7, 2.10 and 6.5). This model includes a parame­
ter that allows for any degree of differentiability for the random field and 
includes the exponential model as a special case and the Gaussian model 
as a limiting case. 

BLPs and BL UPs 

Best linear unbiased prediction provides an elegant and satisfying solution 
to the problem of linear prediction when the mean function of the ran­
dom field is of the form m(x)T f3 with f3 unknown. However, when best 
linear unbiased prediction is used in practice, the components of mare 
quite commonly highly regular functions such as monomials and have little 
impact on the local behavior of the random field. Thus, considering our 
second theme, it should also be the case that such highly smooth mean 
functions have little impact on spatial interpolation. In fact, under fixed­
domain asymptotics, BLUPs generally do as well asymptotically as BLPs 
(that is, assuming f3 is known), but one also does as well asymptotically 
by just setting f3 = 0 (see 4.3). It seems to me that many texts in spatial 
statistics and geostatistics place too great an emphasis on modeling mean 
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functions and on BLUPs, perhaps because it distracts attention from the 
more important but less well understood problem of modeling and estima­
tion of the local behavior of random fields. In particular, intrinsic random 
function models (see 2.9), although of some mathematical interest, are not 
a helpful generalization of stationary random fields for spatial interpolation 
problems because the mean functions are just polynomials in the coordi­
nates and the local behavior of these models is indistinguishable from the 
local behavior of stationary models. 
In arguing for less emphasis on modeling the mean function when the 

goal is spatial interpolation, it is important to exclude mean functions that 
do have a strong effect on the local behavior of a random field. As an exam­
ple, when interpolating monthly average surface temperatures in a region 
based on scattered observations, one might use altitude as a component 
of m. In a mountainous region, variations in altitude may largely explain 
local variations in average temperatures and hence, including altitude as a 
component of m may have a profound effect on the spatial interpolation of 
average temperatures. 

Inference for differentiable random fields 

The most commonly used geostatistical tool for making inferences about 
spatial covariance functions is the empirical semivariogram. Specifically, for 
a random field Z observed at locations Xl, ... ,Xn , the empirical semivar­
iogram at a distance h is the average of HZ(Xi) - Z(Xj)P over pairs of 
points (Xi, Xj) that are very nearly a distance of h apart. Although the 
empirical semivariogram can be a useful tool for random fields that are not 
differentiable, it is much less useful and can even be seriously misleading 
for differentiable random fields. Indeed, Matheron (1971, 1989) states that 
"statistical inference is impossible" for differentiable random fields. Section 
6.2 explains what he means by this statement and shows why it is incor­
rect. At the heart of the problem is his unstated and erroneous presumption 
that the empirical semivariogram contains all possible information about 
the local behavior of a random field. Once one is willing to consider meth­
ods for estimating spatial covariance structures that are not based on the 
empirical semivariogram, inference for differentiable random fields is just 
as possible as it is for nondifferentiable ones. In particular, in Sections 6.4, 
6.9 and 6.10, I advocate the use of likelihood-based or Bayesian methods 
for estimating the parameters of a random field. These methods are just as 
appropriate for differentiable as for nondifferentiable random fields. 

Nested models are not tenable 

It is fairly common practice in the geostatisticalliterature to model covari­
ance structures as linear combinations of spherical semivariogram functions 
with different ranges (see 2.7 for definitions). See Journel and Huijbregts 
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(1978, p. 167), Wackernagel (1995, p. 95) and Goovaerts (1997, p. 159) for 
examples where such models are advocated or employed. However, because 
all spherical semivariograms correspond to random fields with the same lo­
cal behavior, there is little to be gained for purposes of spatial interpolation 
in employing such models. Furthermore, there is little hope of estimating 
the parameters of such models with any degree of accuracy for datasets 
of the size that generally occur in geological applications. I believe such 
models would not be employed if users had a proper appreciation of the 
inherent uncertainties in empirical semivariograms. 

1.7 Summary of practical suggestions 

Use the Matern model. Calculate and plot likelihood functions for unknown 
parameters of models for covariance structures. Do not put too much faith 
in empirical semivariograms. 



2 
Properties of Random Fields 

2.1 Preliminaries 

This chapter provides the necessary background on random fields for under­
standing the subsequent chapters on prediction and inference for random 
fields. The focus here is on weakly stationary random fields (defined later 
in this section) and the associated spectral theory. Some previous exposure 
to Fourier methods is assumed. A knowledge of the theory of characteristic 
functions at the level of a graduate course in probability (see, for example, 
Billingsley (1995), Chung (1974), or Feller (1971)) should, for the most 
part, suffice. When interpolating a random field, the local behavior of the 
random field turn out to be critical (see Chapter 3). Accordingly, this chap­
ter goes into considerable detail about the local behavior of random fields 
and its relationship to spectral theory. 
For a real random field Z on R with E{Z(x)2} < 00 for all x E R, the 
covariance function K(x, y) = cov{Z(x), Z(y)} must satisfy 

n 

E CjckK(Xj,Xk) 20 (1) 
j,k=l 

for all finite n, all Xl, ... , Xn E R and all real CI, ... , en, which follows by 
noting 
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A function K satisfying (1) is said to be positive definite on R x R. We have 
just demonstrated that (1) is necessary for there to exist a random field 
with covariance function K and mean function EZ(x) = m(x). It is also 
sufficient, which follows by showing that for K positive definite, there exists 
a Gaussian random field with this covariance function and mean function 
m. Specifically, take the joint distribution of (Z(XI), ... , Z(xn)) to be mul­
tivariate normal with mean (m(xI), ... , m(xn)) and covariance matrix with 
jkth element K(xj, Xk). This family of finite-dimensional distributions sat­
isfies the consistency conditions of Kolmogorov's theorem (Billingsley 1995, 
Section 36) and hence there exists a random field (Gaussian by definition) 
with these finite-dimensional distributions (Gihman and Skorohod 1974, 
p. 147). 

Stationarity 

If we do not make any assumptions restricting the class of random fields 
we wish to consider, making inferences about its probability law from ob­
serving a single realization of the field is hopeless. A common simplifying 
assumption is that the probabilistic structure in some sense looks similar 
in different parts of R. Supposing R = ]Rd for instance, one way to define 
this concept is through strict stationarity: for all finite n, Xl, ... ,X n E ]Rd, 

h, ... , tn E]R and X E ]Rd, 

Pr{Z(xI + x) :::; iI, ... , Z(xn + x) :::; tn} 

= Pr {Z(XI) :::; iI, ... , Z(xn) :::; tn}. 

A different type of stationarity is defined in terms of the first two moments 
of Z. Suppose the covariance function of Z depends on x and y only through 
x -y. Then there is a function K on ]Rd, which I call the auto covariance 
function for Z, such that cov{Z(x), Z(y)} = K(x - y) for all x and y 
in ]Rd. A random field is called weakly stationary if it has finite second 
moments, its mean function is constant and it possesses an auto covariance 
function. Note that a strictly stationary random field with finite second 
moment is also weakly stationary. For describing strength of associations 
between random variables it is more natural to consider correlations than 
covariances, so we sometimes make use of the autocorrelation function of 
a weakly stationary random field, defined as C(x) = K(x)/ K(O) assuming 
K(O) > O. 
Since weak stationarity is a less restrictive assumption than strict sta­

tionarity whenever the second moments are finite, it is tempting to claim in 
practice that one is only assuming weak stationarity and then make infer­
ences that only depend on specifying the first two moments of the random 
field. This temptation is perhaps encouraged by results in discrete time 
series showing that certain asymptotic properties of the periodogram (the 
squared modulus of the discrete Fourier transform of the observations) do 
not depend on the time series being Gaussian (Priestley 1981, Section 6.2). 



2.2 The turning bands method 17 

However, as the example in Section 1.4 demonstrates, considering only the 
first two moments can lead to infinitely suboptimal predictions. A further 
example illustrating problems that can occur by just considering the first 
two moments of a random field is given in 2.2. 

Isotropy 

Stationarity can be thought of as an invariance property under the trans­
lation group of transformations of the coordinates. For a random field on 
lid, we can also consider invariance under rotations and reflections. I call a 
random field Z on lid strictly isotropic if its finite-dimensional joint distri­
butions are invariant under all rigid motions. That is, for any orthogonal 
d x d matrix H and any x E lid, 

Pr {Z(HXl + x) ~ h, ... , Z(HXn + x) ~ tn} 
= Pr {Z(xt} ~ tl, ... , Z(Xn) ~ tn} 

for all finite n, Xl, ... ,Xn E lid and tl, ... ,tn E JR. A random field on JRd 
is weakly isotropic if there exists a constant m and a function K on [0,00) 
such that m(x) = m and cov {Z(x), Z(y)} = K(lx - yl) for all x,y E lid, 
where I . I indicates Euclidean distance. I call the function K on [0,00) the 
isotropic auto covariance function for Z. Note that I am implicitly assuming 
a (strictly/weakly) isotropic random field is always (strictly/weakly) sta­
tionary. The isotropy condition amounts to assuming there is no reason to 
distinguish one direction from another for the random field under consider­
ation. A simple but useful extension of isotropic random fields is to random 
fields that become isotropic after a linear transformation of coordinates. We 
say Z exhibits a geometric anisotropy if there exists an invertible matrix 
V such that Z(Vx) is isotropic (Journel and Huijbregts 1978, p. 177). 

Exercise 

1 Show that a Gaussian random field on JRd is strictly stationary if and 
only if it is weakly stationary. Show that a Gaussian random field on 
JRd is strictly isotropic if and only if it is weakly isotropic. 

2.2 The turning bands method 

The turning bands method (Matheron 1973) is a procedure for simulating 
isotropic random fields on lid based on simulating processes on JR. The 
method is clever and useful but I am mainly introducing it here as a further 
example of the problems that can occur by just considering the first two 
moments of a random field. Define bd to be the unit ball in lid centered at 
the origin, so that its boundary 8bd is the unit sphere. Matheron gives the 
following procedure for generating a weakly isotropic random field in JRd. 
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(i) For an auto covariance function B on JR, simulate a stochastic process 
Yon JR with EY(t) = 0 and cov {Y(t), Y(s)} = B(t - s). 

(ii) Independently ofY, choose a random unit vector V from the uniform 
distribution on 8b d • 

(iii) Let Z(x) = Y(xTV) for x E JRd. 

The resulting random field Z is weakly isotropic: it has mean 0 since 
EZ(x) = E [E {Y(xTV) IV}] = 0 and 

cov {Z(x), Z(y)} = E [E {Y(XTV)Y(yTV) I V}] 

= E{B (x - yfV)} 

= ( B(x_y)Tv)U(dv), (2) 
Jabd 

where U is the uniform probability measure on 8b d • By symmetry consid­
erations, cov {Z(x), Z(y)} depends on x and y only through Ix - yl, so we 
can write cov{Z(x),Z(y)} = K(lx - yD. In JR3, 

K(r) = 4~ 1027r 107r B(r cos </» sin</> d</> d(J 

= 10 1 
B(rt) dt. 

The inverse relationship is given by B(r) = (d/dr) {rK(r)} (Exercise 2). 
Is this a sensible algorithm for simulating isotropic random fields? Clearly 
not in general, since Z(x) is constant on planes of the form xTV = c for 
any real c. The problem is that the first two moments of the random field 
do not adequately describe its properties. 
Another subtle point arises by taking Y in step (i) of the algorithm 
to be Gaussian and then supposing, based on (iii), that Z must also be 
Gaussian. However, Z cannot be Gaussian with covariance function given 
by (2), since a Gaussian random field with this covariance function would 
not be constant along certain planes. The resolution of this apparent para­
dox is that conditionally on V = v, Z is Gaussian but not isotropic, and 
unconditionally, Z is isotropic but not Gaussian. 
The conclusion I draw from this example and that in 1.4 is that anyone 
who claims to be only making assumptions about the first two moments of 
a random field is being naive at the least. To make sensible predictions, it 
is unavoidable at least implicitly to make further assumptions about the 
law of the random field. 
Of course, Matheron (1973) did not intend for anyone to use the algo­
rithm described here to simulate isotropic random fields in practice. To use 
the turning bands method to simulate an approximately isotropic Gaussian 
random field in JRd, what is done in practice is to simulate a large number 
of independent realizations of Gaussian processes Y1 , Y2 , ••• , Yn on JR with 
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auto covariance function B and then set 
1 n 

Z(x) = lfi I)j(xTVj ), 

n j=l 

where the VjS are random unit vectors independent of Yb ... , Yn . If, in ad­
dition, V 1, ... , V n are independent and uniformly distributed on the unit 
sphere, then Z has covariance function given by (2). For n large, a central 
limit effect should make at least the low-order finite-dimensional distribu­
tions approximately normal. There may be some advantages in choosing 
the VjS more systematically to obtain a more evenly spaced distribution 
on 8bd • For example, for d = 3, Journel and Huijbregts (1978, p. 503) sug­
gest taking n = 15 and the VjS to be along the lines joining the midpoints 
of opposite edges on a regular icosahedron centered at the origin. 
Note that the approximate Gaussianity of Z should hold even if the Yis 
are not Gaussian due to the central limit theorem effect. Thus, the turning 
bands method cannot be used directly to simulate a non-Gaussian random 
field. For a random field Z such that, for example, log Z is Gaussian, we can 
of course use turning bands to simulate log Z and then transform pointwise 
to obtain Z. See Cressie (1993) for further discussion on simulating random 
fields. 

Exercise 

2 In using the turning bands method to simulate an isotropic random 
field on IR3 with K as its isotropic auto covariance function, show that 
B in step (i) of the algorithm is given by (d/drHrK(r)}. 

2.3 Elementary properties of autocovariance 
functions 

Suppose Z is weakly stationary on IRd with auto covariance function K. 
Then K must satisfy 

K(O) ~ 0, 

K(x) = K( -x) and 

IK(x)1 $ K(O). 

The first two conditions are trivial and the last follows from the Cauchy­
Schwarz inequality. We say the real-valued function K is positive definite 
if 

n 

L CjckK(Xj - Xk) ~ 0 
j,k=l 
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for all finite n, all real CI, ... ,Cn and all Xl, ... ,Xn E ]Rd. This condition is 
necessary and sufficient for there to exist a weakly stationary random field 
with auto covariance function K by the same argument as given in 2.1 for 
positive definite functions on ]Rd x ]Rd. 
Some other properties of positive definite (p.d.) functions include the 

following. 

If KI and K2 are p.d., then alKI +a2K2 is p.d. for all nonnegative al 
~~. ~ 

If Kb K 2, ... are p.d. and lim Kn{x) = K{x) for all X E ]Rd, then K 
n-+oo 

is p.d. (4) 

If KI and K2 are p.d., then K{x) = KI{X)K2{X) is p.d. (5) 

The proofs of (3) and (4) are straightforward. The easiest way to prove 
(5) is to consider independent mean 0 Gaussian random fields Zl and Z2 
with autocovariance functions KI and K2, respectively, and to show that 
K is the auto covariance function of the random field Z defined by Z{x) = 
Zl (X)Z2{X). 

Exercise 

3 If Ko is a p.d. autocovariance function on ]Rd for all () E ]R and is 
continuous in () for all x, show that fIR Ko{x)Jl{d(}) is p.d. if Jl is a 
positive finite measure on ]R and fIR Ko{O)Jl{d(}) < 00. 

2.4 Mean square continuity and differentiability 

There is no simple relationship between the autocovariance function of a 
random field and the smoothness of its realizations. However, it is possible 
to relate the autocovariance function to what are known as mean square 
properties of a random field. For a sequence of random variables X I, X 2 , ••• 

and a random variable X defined on some common probability space, define 
L2 

Xn -+ X to mean E{Xn _X)2 -+ 0 and EX2 < 00. We say {Xn} converges 

in L2 if there exists X such that Xn £ X. 
Suppose Z is a random field on ]Rd. Then Z is mean square continuous 
at X if 

lim E {Z{y) - Z{x)}2 = O. 
y-+x 

For Z weakly stationary with autocovariance function K, E {Z{y) - Z{x)}2 
= 2 {K{O) - K{x - y)}, so that Z is mean square continuous at x if and 
only if K is continuous at the origin. Since a weakly stationary random 
field is either mean square continuous everywhere or nowhere, we can say 
Z is mean square continuous if and only if K is continuous at the origin. 
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The mean square continuity of Z does not imply that its realizations are 
continuous. The process Z in Section 1.4 is mean square continuous but 
Pr(Z is continuous on JR) = o. 

If K is continuous at 0, then it is continuous everywhere, which follows 
by noting 

IK(x) - K(y)1 = Icov {Z(x) - Z(y), Z(O)}I 

~ [var{Z(x) - Z(y)}var{Z(0)}]1/2 

= [2 {K(O) - K(x - y)} K(0)]1/2 

-to 

as y -t x. On the other hand, for a weakly stationary process on JR, if K is 
not continuous at the origin, it may have other discontinuities (Exercises 4 
and 5). 
Mean square differentiability has a similar definition as an L2 limit. A 
process Z on JR with finite second moments is called mean square differen­
tiable at t if {Z(t + hn ) - Z(t)}/hn converges in L2 for all sequences {hn } 

converging to 0 as n -t 00 with limit independent of {hn }. If such a limit 
exists, we call it Z'(t). A weakly stationary process Z on JR is either mean 
square differentiable everywhere or nowhere. For Z weakly stationary with 
autocovariance function K, define the process 

Z ( ) = Z(t + h) - Z(t) 
h t h' 

which has auto covariance function 

1 
Kh(t) = h2 {2K(t) - K(t + h) - K(t - h)}. 

If K is twice differentiable, then 

lim Kh(t) = -K"(t), 
h->O 

so that -K" is positive definite by (4). In Section 2.6 I prove that Z is mean 
square differentiable if and only if K"(O) exists and is finite, and that if Z 
is mean square differentiable, then Z' has auto covariance function - K". 
To define higher-order mean square derivatives, we say Z is m-times mean 
square differentiable if it is (m - I)-times mean square differentiable and 
z(m-l) is mean square differentiable. By repeated application of the stated 
results in the preceding paragraph on the mean square differentiability of 
a process, it follows that Z is m-times mean square differentiable if and 
only if K(2m) (0) exists and is finite and, if so, the autocovariance function 
of z(m) is (_I)mK(2m). 

The following example shows that Z can have analytic realizations and 
not be mean square differentiable. Let Z(t) = cos(Xt + Y) where X and 
Yare independent random variables with X following a standard Cauchy 
distribution (Le., has density 1/ {rr(1 + x 2 )} for x E JR) and Y following a 
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uniform distribution on [0,271"] (Le., has density 1/(271") on [0,271"]). Then 
EZ(t) = 0 and 

cov {Z(s), Z(t)} = E {cos(Xs + Y) cos(Xt + Y)} 

= ~Ecos {X(s - t)} + ~Ecos{X(s + t) + 2Y} 
_ 1 -Is-tl 
-2 e , 

so Z is weakly stationary (it is also strictly stationary) and mean square 
continuous but not mean square differentiable, even though all realizations 
of Z are analytic. 

Exercises 

4 Find a p.d. autocovariance function on ~ that is discontinuous at t = 
-1, 0 and 1 and continuous elsewhere. 

5 Find a p.d. autocovariance function on ~ that is discontinuous at all 
tEll. 

6 For Z(t) = cos(Xt+Y), where X and Yare independent random vari­
ables with distributions as given in the last paragraph of 2.4, consider 
predicting Z(t) for t > 0 based on observing Z(s) for all s $ O. Find 
the conditional expectation of Z(t) and the BLP of Z(t) (see 3.4) and 
compare. Why is the conditional expectation not a linear predictor? 

2.5 Spectral methods 

Spectral methods are a powerful tool for studying random fields. In Fourier 
analysis, it is somewhat more natural to consider complex-valued functions 
rather than restricting to real-valued functions. We say Z is a complex 
random field if Z(x) = U(x) + iV(x), where U and V are real random 
fields. If U and V are jointly weakly stationary, by which we mean U and 
V are weakly stationary and that cov{ U (x), V (y)} depends only on x -y, 
then Z is weakly stationary and we define 

K(y) = cov { Z(x + y), Z(x) } 

= cov {U(x + y), U(x)} + cov {V(x + y), V(x)} 

+ i [cov {U(x), V(x + y)} - cov {U(x + y), V(x)}] 

as the auto covariance function of Z. Then K( -x) = K(x) and for Cl, •.. , en 
complex 

n 

E CjckK(Xj - Xk) ~ 0, 
j,k=l 
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since the left side equals EI r:7=1 CjZ(Xj) -Er:7=1 cj Z(Xj)1 2 • A function 
K satisfying this condition for all finite n, all Xl, ... , Xn E IRd and all 
complex CI, •.. ,en is said to be a positive definite complex function on IRd. 

Spectral representation of a random field 

As an example of a complex random field, suppose WI, ..• ,Wn E IRd and 
let Zl,"" Zn be mean 0 complex random variables with E(ZiZj) = 0 if 
i =1= j and EIZil2 = k Consider 

n 

Z(x) = L Zk exp(iw[ x), (6) 
k=l 

so that Zk is the complex random amplitude for Z at frequency Wk. Then 
Z is a weakly stationary complex random field in IRd with auto covariance 
function K(x) = r:~=l fk exp( iw[ x). 
Equation (6) is an example of a spectral representation of a random field. 
By taking L2 limits of sums like those in (6) in an appropriate manner, 
spectral representations of all mean square continuous weakly stationary 
random fields can be obtained (Yaglom 1987a). That is, all mean square 
continuous weakly stationary random fields are, in an appropriate sense, 
L2 limits of linear combinations of complex exponentials with uncorrelated 
random amplitudes. To make this concept more precise, we need to consider 
complex random measures, which map Borel sets on IRd into complex-valued 
random variables. Suppose M is a complex random measure on IRd. Since 
it is a measure, M(~l U ~2) = M(~d + M(~2) for disjoint Borel sets ~l 
and ~2' In addition, suppose that for some positive finite measure F and 
all Borel sets, 

EM(~) = 0, 

EIM(~W = F(~) 

and for all disjoint Borel sets ~l and ~2' 

E { M(~I)M(~2) } = o. 

I assume such a random measure exists; see, for example, Gihman and 
Skorohod (1974) for mathematical details. Next consider how to interpret 
the integral 

Z(X) = ( exp(iwT x)M(dw). JRd (7) 

The idea is to think of the integral as a limit in L2 of sums of the form (6). 
For simplicity, suppose that with probability 1, M is identically 0 outside 
[-1, 1Jd. Now set j = (jl,'" ,jd)T, ~n(j) = Xi=l (n- l Uk - 1), n- l jk] (so 
that ~n(j) is the cube with edges of length n- l and "upper right corner" 
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at n-1j), Sn = {-n, -n + 1, ... , n}d and define 

Zn(x) = L exp(in-1jT x)M(~n(j», (8) 
jESn 

which is a sum of the form given in (6). It is possible to show that for any 
x, Zn(x) converges in L2 (Exercise 7) and the integral on the right side 
of (7) is defined to be this limit. More specifically, by defining Fn(~) = 
LjESn F(~n(j)1{n-lj E ~} we get 

E{Zn(x)Zn(Y)} = L exp{in-ljT(x_y)}F(~n(j) 

= [ exp{iwT(x-y)}Fn(dw). lad 
Since Fn converges weakly to F (Exercise 8) and exp {iWT(X - y)} is 
bounded and uniformly continuous for wE [-1, 1]d, 

E{Zn(x)Zn(Y)} -+ [ exp {iWT(X - y)}F(dw) lad 
as n -+ 00 for any fixed x and y (see Chapter 1 of Billingsley (1968) for 
definitions and results on weak convergence of measures on metric spaces). 
In conjunction with the L2 convergence of Zn(x) for all x, this implies that 
the autocovariance function of Z is (Exercise 8) 

K(x) = [ exp(iwT x)F(dw). (9) lR.d 
The function F is called the spectral measure or spectrum for Z. 

Bochner's Theorem 

It is easy to see that for any finite positive measure F, the function K given 
in (9) is p.d., since 

.t CiCkK(Xj - Xk) = .t CiCk!ad exp{iwT(Xj - xk)}F(dw) 
J,k=l J,k=l 

= [ It Cj exp(iwT Xj)1
2 
F(dw) 

lR.d j=1 

~ o. 
Furthermore, all continuous positive definite complex functions are of the 
form (9) with F a positive measure of finite mass. 

Theorem 1 (Bochner's Theorem). A complex-valued function K on ~d 
is the autocovariance function for a weakly stationary mean square contin­
uous complex-valued random field on ~d if and only if it can be represented 
as in (9) where F is a positive finite measure. 
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A proof of this fundamental result is given in Gihman and Skorohod 
(1974, p. 208). Although the following argument does not constitute a 
proof, it is instructive to use the existence of spectral representations to 
indicate why the Fourier transform of a measure assigning negative mass 
to any measurable set cannot be a positive definite function. For simplicity, 
suppose Z is a complex process on R with spectral measure F. Suppose 
Wl < W2 are not mass points of F and set I = (Wl' W2). Proceeding formally, 
consider the process Y defined by 

1 100 eiW2U _ eiW1 U 
Y(t) = -2 . Z(t - u) duo 

11" -00 ZU 

Using the spectral representation of Z and again proceeding formally, 

Y(t) = ~ f eiW2U ~ eiW1U { f eiw(t-u) M(dw)} du 
211" i lR m ilR 
= ~ f eiwt { f ei(W2-W)U ~ ei(Wl-W)U dU} M(dw) 
211" i lR ilR W, 
= 1 eiwt M(dw) 

(10) 

(see Exercise 9 for the last step). The autocovariance function of Y is 
II eiwtF(dw) and in particular EIY(0)1 2 = F(I), which must be nonnega­
tive, so that F must be a positive measure. We are a long way from proving 
Bochner's Theorem even in R, but the physical intuition should be clear. 
Given any process Z, we can define another process Y that is made up of 
only those frequencies in the spectral representation contained in the inter­
val I. The transformation from Z to Y defined by (10) is called a band-pass 
filter. Since F(I) = EIY(0)1 2 ~ 0 for any interval I, F must be a positive 
measure. 

If F has a density with respect to Lebesgue measure, I call this density 
the spectral density and generally denote it by f. When the spectral density 
exists, we have the inversion formula (Yaglom 1987a, p. 332) 

f(w) = (2!)d lad exp(-iwTx)K(x)dx. (11) 

Exercises 

7 Show that Zn(x) as defined in (8) converges in L2. If you have trouble 
proving this, show that the subsequence Z2n (x) converges in L2. 

8 For Zn as defined in (8), show that Fn converges weakly to F. Show 
that (9) gives the auto covariance function for Z as defined in (7). 

9 For Wl < W2, evaluate 

ei(W2-W)U _ ei(Wl-W)U 
. du 
zu 
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for all real w. 

10 Use the inversion formula (11) to determine which of these functions 
on IR are positive definite: 

(i) e- iti cos t. 

(ii) e- iti (1 - Ill). 

(iii) (1 - t2 )+. 

2.6 Two corresponding Hilbert spaces 

A technique that is used on several occasions in this work is to turn 
questions about Hilbert spaces of random variables into questions about 
Hilbert spaces of sums of complex exponentials and their limits. Ibrag­
imov and Rozanov (1978) make extensive use of this idea. Suppose Z 
is a mean a weakly stationary real random field on IRd with autocovari­
ance function K and corresponding spectrum F. For a subset R of IRd , 

let 'JiR(F) = 'JiR(O, K) be the closed linear manifold of Z(x) for x E R, 
where the a in 1tR(O, K) refers to the mean of Z. Similarly, define £R(F) 
to be the closed linear manifold offunctions of w of the form exp(iwT x) for 
x E R under the inner product (cp, J.t)F = fnl cp(w)J.t(w) F(dw). If we identify 
L:7=1 ajZ(xj) with L:7=1 aj exp(iwTxj) and extend this correspondence 
to respective limits of such sums, 1tR(F) and £R(F) are essentially two 
ways of describing the same Hilbert space since 

cov{tajZ(Xj), ~bkZ(Yk)} 

= (t aj exp(iwT Xj), f bk exp(iwT Yk)) . 
j=1 k=1 F 

Indeed, if Z(x) = JlRd exp(iwTx)M(dw) is the spectral representation for 
Z, then for V E £R(F), the corresponding random variable in 'JiR(F) is 
given by JR V(w)M(dw) (Gihman and Skorohod 1974, p. 244). 

A n application to mean square differentiability 

Let us make use of this correspondence to prove two results stated in 2.4 for 
a weakly stationary process Z on 1R: first, we show that Z is mean square 
differentiable if and only if K"(O) exists and is finite and, second, that if Z is 
mean square differentiable, then Z' has autocovariance function - K". Since 
a constant mean obviously does not affect the mean square differentiability 
of a process, assume EZ(t) = O. Because of the correspondence between 
£IR(F) and 1t1R(F), to study the convergence of Zh(t) = {Z(t+h)-Z(t)}jh 
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as h ~ 0 in 1i'R,(F) it is completely equivalent to study the convergence of 
Th(W) = (eiw(t+h) - eiwt)/h as h ~ 0 in £'R,(F). But limh--+o Th(W) = iweiwt 
for every w, so that Th converges in £IR(F) if and only if it converges to 
iweiwt in £'R,(F) (Exercise 11). Obviously, fIR w2 F(dJ..J) < 00 is necessary for 
this convergence, since otherwise iweiwt ¢ £IR(F). But fIR w2 F(dJ..J) < 00 is 
also sufficient, since it implies 

by a simple application of the Dominated Convergence Theorem. It is well 
known (Chung 1974, Theorem 6.4.1; Lukacs 1970, Section 2.3) that the 
finiteness of the second moment of a finite positive measure is equivalent 
to its Fourier transform possessing a second derivative at the origin, which 
proves that Z is mean square differentiable if and only if K is twice differen­
tiable at the origin. Furthermore, fIR w2 F( dJ..J) < 00 implies that K is twice 
differentiable with -K"(t) = fIR w2eiwt F(dJ..J), so that K"(O) exists implies 
K is twice differentiable. The claim that when K is twice differentiable, Z' 
has auto covariance function - K" follows by showing that 

lim COV{Zh(S), Zk(t)} = -K"(s - t), 
h--+O,k--+O 

where Zh = {Z(t + h) - Z(t)}/h as in 2.4. 

Exercises 

11 For a sequence of complex-valued functions Tl, T2, ••. on IR converging 
pointwise to the function T, prove that Tn converges in £IR(F) if and 
only if it converges to T in £IR(F). Suggestion: use a subsequence argu­
ment similar to the one in the proof of Theorem 19.1 (the completeness 
of LP spaces) of Billingsley (1995). 

12 For R = [0,1] and K(t) = e-1tl , show that every element of £R(F) can 
be written in the form a+(l +iw) fol eiwtc(t)dt for some real constant a 
and real-valued function c that is square-integrable on [0, 1]. This result 
is a special case of (1.3) of Ibragimov and Rozanov (1978, p. 30). 

2.7 Examples of spectral densities on R 

This section describes some commonly used classes of spectral densities and 
a class of spectral densities that should be commonly used. I consider only 
real processes here, in which case, we can always take the spectral density 
to be an even function. 
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Rational spectral densities 

Rational functions that are even, nonnegative and integrable have cor­
responding auto covariance functions that can be expressed in terms of 
elementary functions (Yaglom 1987a, pp. 133-136). For example, for posi­
tive constants ¢ and a, if few) = ¢(a2 +w2)-1, then K(t) = 1!'¢a-le-altl, 
which can be obtained by contour integration (Carrier, Krook and Pear­
son 1966, p. 80). Since K does not even have a first derivative at 0, we 
have that the corresponding process Z is not mean square differentiable. 
Alternatively, we reach the same conclusion by noting J~oo w2 f(w)dw = 00. 
As a second example, suppose few) = ¢(a2 + W2)-2, which implies 

K(t) = ~1!'¢a-3e-altl(1 + altl). In this case, J~oow2f(w)dw < 00 and 
J~oow4f(w)dw = 00, so the corresponding process Z is once but not twice 
mean square differentiable. This result is not so easy to see via the auto­
covariance function. However, if care is taken, it is possible to calculate 
directly -K"(t) = ~1!'¢a-le-altl(l- alt!) for all t, including t = O. Alter­
natively, one can get this result from -K"(t) = ¢ J~oo w2(a2 +w2)-2eiwtdw 
by using contour integration. 
The general form for a rational spectral density for a real process on lR. 

is given by 

(12) 

where Pn and Qm are polynomials with real coefficients of order nand m, 
respectively, m > n, and Qm has no zeroes on the imaginary axis (Exer­
cise 13). These last two conditions ensure the integrability of f. Processes 
on lR. with rational spectral densities can be thought of as continuous time 
analogues of the familiar autoregressive moving-average models for discrete 
time series (Priestley 1981, Chapter 3). A process Z with spectral density 
given by (12) has exactly m-n-l mean square derivatives. Thus, the class 
of processes with rational spectral densities includes processes with exactly 
p mean square derivatives for any nonnegative integer p. However, later in 
this section I describe a class of processes with even greater flexibility in 
their local behavior. 

Principal irregular term 

Before giving any further examples of spectral densities, it is worthwhile 
to consider more generally the behavior of autocovariance functions in a 
neighborhood of O. A natural way to describe this behavior of an auto­
covariance function K(t) is to take a series expansion in It I about O. For 
K(t) = 1!'¢a-le-altl, we have K(t) = 1!'¢a-1 -1!'¢ltl + O(ltI2) as It I ! O. It 
follows that K is not differentiable at 0 due to the nonzero coefficient for 
Itl. For K(t) = ~1!'¢a-3e-altl (1 + alt!), 

K(t) = ~1!'¢a-3 - ~1!'¢a-lltI2 + ~1!'¢ltI3 + O(ltI4 ) (13) 
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as It I L O. The nonzero coefficient multiplying Itl3 implies that K is not 
three times differentiable as a function of t at t = O. Note that a function 
of the form bo + blt2 + b2 1tl3 + O(t4) as t -t 0 need not be even twice 
differentiable at 0 (see Exercise 14). However, we also know K is p.d. The 
following result is an easy consequence of Theorem 2.3.1 of Lukacs (1970) 
(Exercise 15). 

Theorem 2. If K is p.d. on lR and K(t) = 2:j=o Cjt2j + o(t2n) as t -t 0, 
then K has 2n derivatives. 

Theorem 2 in conjunction with (13) does imply that K(t) = ~rr¢)(l-3e-oltl x 
(1 + alt\) is twice differentiable. 
For an auto covariance function K, let us informally define its principal 
irregular term as the first term in the series expansion about 0 for K as 
a function of It I that is not proportional to It I raised to an even power 
(Matheron 1971, p. 58). For K(t) = rr¢a-le-oltl, the principal irregular 
term is -rr¢ltl, and for K(t) = ~rr¢a-3e-oltl(1 + alt\) it is ~rr¢ltI3. In 
both cases, the coefficient of the principal irregular term does not depend 
on a. This fact suggests that for either class of models, the local behavior 
of the corresponding process is not much affected by a. Note that f(w) = 
¢(a2 +W2)-1 rv ¢w-2 and f(w) = ¢(a2 +w2 )-2 rv ¢w-4 as w -t 00, so that 
the high frequency behavior of the spectral densities also does not depend 
on a. Section 2.8 explores this close connection between the high frequency 
behavior of the spectral density and the coefficient of the principal irregular 
term of the auto covariance function more generally. 

It is not so easy to give a formal definition of the principal irregular term, 
since as we show in (16), it need not be of the form altl.8. One possible 
definition is to call 9 a principal irregular term for K if g(t)r2n -t 0 and 
Ig(t)lr2n- 2 -t 00 as t -t 0 and K is of the form K(t) = 2:j=o Cjt2j + 
g(t) + o(lg(t)l) as t -t O. It follows from Theorem 2 that the corresponding 
process is exactly n times mean square differentiable. 
A problem with this definition for a principal irregular term 9 is that 
any function h such that h(t)Jg(t) -t 1 as t LOis also a principal irregular 
term. If g(t) = altl.8 is a principal irregular term for K, I call f3 the power 
and a the coefficient of the principal irregular term. Note that if such a and 
f3 exist they must be unique, so there is no ambiguity in their definition. 
For models used in practice, if there is a principal irregular term, it can 
usually be taken to be of the form g(t) = a:ltl.8 for f3 positive and not an 
even integer or g(t) = a:t2k log It I for some positive integer k. 

Gaussian model 

A somewhat commonly used form for the autocovariance function of a 
smooth process on lR is K(t) = ce-ot2 , for which the corresponding spec­
tral density is f(w) = ~c(rra:)-1/2e-w2 /(40). Because of its functional form, 
it is sometimes called the Gaussian model (Journel and Huijbregts 1978, 
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p. 165). This name is unfortunate, as it apparently suggests that this model 
is of central importance in the same way as Gaussian probability distribu­
tions. Nothing could be farther from the truth. Note that K is infinitely 
differentiable, and correspondingly, all moments of the spectral density are 
finite, so that the corresponding Z has mean square derivatives of all or­
ders. In fact, a much stronger result holds: for any t > 0, as n ---+ 00, 

E7=o Z(j)(O)tj fj! ---+ Z(t) in £2 (Exercise 16). That is, it is possible to pre­
dict Z(t) perfectly for all t > 0 based on observing Z(s) for all s E (-f,O] 
for any f > O. Such behavior would normally be considered unrealistic for 
a physical process. One might argue that a process cannot practically be 
observed continuously in time, but we show in 3.5 that even with discrete 
observations, the use of this auto covariance yields unreasonable predictors. 
Figure 1 plots e-t2 / 2 and e- 1tl (1 + Itl). Both functions are of the form 
1 -~t2 + O(ltI3 ) as t ---+ O. It is difficult from looking at these plots to see 
that the first function is analytic whereas the second only has two deriva­
tives at the origin. One important practical conclusion we can draw is that 
plots of empirical auto covariance functions are likely to be a poor way to 
distinguish between possible models for the autocovariance function of a 
smooth process. 

Triangular autocovariance functions 

A class of autocovariance functions that we have seen before and will see 
again is K(t) = c(a -Itl)+ for c and a positive. Such auto covariance func­
tions are sometimes called triangular due to the shape of the graph of K. 
Although these autocovariance functions are not commonly used in applica­
tions, some BLPs under this model have unusual behavior (see 3.5) and it is 
important to explore the reasons for this behavior in order to develop a good 
understanding of the properties of BLPs. Using the inversion formula (11) 

1.0 

0.8 

0.6 

0.4 \ 

I \ 

/ 
, 

0.2 / 
..... 

,/ "- ..... 

0.0 
-8 -4 0 4 8 

t 

FIGURE 1. Plots of e-t2j2 (solid line) and e-1tl(1 + It I) (dashed line). 
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FIGURE 2. Plot of the spectral density f(w) = (1- cosw)jw2 for the triangular 
autocovariance function K ( t) = 7r -1 (1 - I t I) + . 

(Exercise 17), the corresponding spectral density is cw- 1 {I - cos( aw)} / w2 , 

plotted in Figure 2. The oscillating behavior of the spectral density would 
be unrealistic for many physical processes. More specifically, there would 
usually be no reason for assuming the spectrum has much more mass near 
the frequency (2n + l)w than near 2nw for n large, which is the case for 
the spectral density (1 - cos w) / w2 . We show in 3.5 that the fact that some 
BLPs under this model have strange properties is a direct consequence of 
the oscillations of the spectral density at high frequencies. 

Matern class 

A class of autocovariance functions that I believe has considerable prac­
tical value is obtained from spectral densities of the form f(w) = ¢(a 2 + 
W 2 )-v-l/2 for II > 0, ¢ > 0 and a > O. The corresponding autocovariance 
function is 

(14) 

where /(v is a modified Bessel function (Abramowitz and Stegun 1965, 
pp. 374-379). I call this class of auto covariance functions the Matern class 
after Bertil Matern (Matern 1960, 1986). The critical parameter here is II: 

the larger II is, the smoother Z is. In particular, Z will be m times mean 
square differentiable if and only if II > m, since J~oo w2m f(w)dw < 00 if 
and only if II > m. When II is of the form m + ~ with m a nonnegative 
integer, the spectral density is rational and the auto covariance function is 
of the form e- a1tl times a polynomial in It I of degree m (Abramowitz and 
Stegun 1965, 10.2.15). For example, as we have already seen, when II = ~, 
K(t) = w¢a-le-altl and when II = ~, K(t) = ~w¢a-3e-altl(1 + alt!). 
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We can also determine the mean square smoothness of a process in the 
Matern class through its behavior at the origin. Using results on Bessel 
and gamma functions from Abramowitz and Stegun (1965, Section 9.6 and 
6.1.18), for K as in (14) with v not an integer and m < v < m + 1, 

K(t) = f= b .t2j - 7f¢ . Itl 2v + O(ltI2m+2) as t ---+ 0 (15) 
j=o 3 r(2v + 1) sm(v7f) 

for appropriate real constants bo, ... , bm depending on ¢, v and a 
(Exercise 18). For K as in (14) and v = m + 1 a positive integer, 

m 2( l)mA. 
K(t) = '""' b ·t2j + - 'I' t2m+21og It I + O(t2m+2) as t ---+ 0 (16) 

~ 3 (2m+2)! 
3=0 

for appropriate constants bo, ... , bm depending on ¢, m and a. Note that in 
both (15) and (16) the coefficient multiplying the principal irregular term 
does not depend on a and that few) '" ¢lwl-2v- 1 as Iwl ---+ 00, so that the 
high frequency behavior of f also does not depend on a. Theorem 2 together 
with (15) and (16) implies that (altl)vKv(altl) is 2m times differentiable 
if and only if v > m. Thus, we recover the fact that the corresponding 
process Z is m times mean square differentiable if and only if v > m. 
We can obtain a more precise result on the local behavior of a process 
with auto covariance function given by (14). Specifically, termwise differen­
tiation of either (15) or (16) can be justified, from which it follows that for 
m < v < m+ 1, 

var {z(m)(h) - z(m)(o)} '" 2¢ h2(v-m) (17) 
r(2v - m + 1) sin(v7f) 

as h 1 0 and for v = m + 1, 
var{Z(m)(h) - z(m)(o)} '" 2¢h 2 10gh (18) 

as h 1 0 (Exercise 18). Thus, the continuous parameter v has a direct in­
terpretation in the time domain as a measure of smoothness of the process, 
with larger values of v corresponding to smoother processes. 
In comparison, if Z has a rational spectral density and exactly m mean 
square derivatives, it is possible to show that for some c > 0, 

as h ! O. Therefore, in terms of the local behavior of Z, rational spectral 
densities only cover the Matern models with v = m + ~. Of course, this 
conclusion is transparent in the spectral domain, since a rational spectral 
density f for a process with exactly m mean square derivatives must satisfy 
few) '" Cw-2m- 2 as W ---+ 00 for some C> o. 
We can use the fact that functions in the Matern class are positive definite 
to show that e- 1t16 is positive definite for 0 < 6 < 2 (we already know it is 
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positive definite for {j = 2). Specifically, for 0 < v < 1, 

altl"K,,(altJ) = "Y - ,8latI2" + O(t2) 

in a neighborhood of 0, where 

n2,,-1 ~ 
"Y = and ,8 = -:-::-----:---:--=-:-----,-
sin(vn)r(l - v) 2,,+1 sin(vn)r(1 + v) 

(see Exercise 18). Then Bn(t) = Cn {anltJ"K,,(anltJ)}n is p.d. for an and 
en positive and taking Cn = "Y-n, an = n- 1/(2,,) yields 

Bn(t) ---+ e-(,Bh)l t I2V 

for every fixed t. By (4), e-(,BhWlo is p.d. for 0 < {j < 2 and hence so is 
e- 1t1 o. Finally, e- ltlO is not p.d. for {j > 2, which can be seen by noting that 
the second derivative of this function is 0 for t = 0, which would imply 
var{Z'(O)} = O. Yaglom (1987b, p. 48) provides some historical notes on 
determining the positive definiteness of the function e- 1t1 o. 

Exercises 

13 Show that if f is the spectral density of a real process on R and is 
rational, then f can be written as in (12). 

14 Show that the function t4 cos(t-3) (defined by continuity at t = 0) is of 
the form bo+b1t2+b2ItI3+0(t4) as t ---+ 0 but is not twice differentiable 
at O. 

15 Look up Theorem 2.3.1 of Lukacs (1970) and show that Theorem 2 
follows. 

16 Suppose Z is a weakly stationary process on R with analytic autoco­
variance K. Show that L:7=o Z(j)(O)tj Ii! ---+ Z(t) in £2 as n ---+ 00 for 
any t > O. 

17 Using the inversion formula (11), show that the spectral density 
corresponding to K(t) = c(a -ltJ)+ is cn- 1{1 - cos(wa)}/w2 . 

18 Verify (15) and (16) by looking up the relevant series expansions for 
modified Bessel functions in, for example, Abramowitz and Stegun 
(1965). Give explicit expressions for bo, . .. ,bm in both cases. Verify 
(17) and (18). 

2.8 Abelian and Tauberian theorems 

We have now seen a number of examples in which the tail behavior of the 
spectrum is closely related to the smoothness at the origin of the auto­
covariance function. General results on properties of the transform of a 
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measure in terms of properties of the measure are known as Abelian the­
orems; results on the converse problem of finding properties of a measure 
in terms of those of its transform are known as Tauberian theorems (Feller 
1971; Bingham, Goldie and Teugels 1987). 
Pitman (1968) proved both Abelian and Tauberian theorems useful for 

our purposes. We first need to define the notion of a regularly varying 
function. A function h: (0, 00) --t [0, 00) is said to have index p at 00, or 
to be regularly varying at 00 with index p, if for every A > 0, 

heAt) 
h(t) --t AP as t --t 00. 

Obviously, h(t) = tP or any function for which h(t)rp converges to a 
positive finite constant as t --t 00 has index p, but so does tP(logt)q for any 
real q (Exercise 19). A function h: (0,00) --t [0,00) is said to have index p 
at 0 if h(1/t) has index -p at 00. See Bingham, Goldie and Teugels (1987) 
for a comprehensive account of regularly varying functions. For a positive 
finite measure F on JR, define the tail area of the spectrum 

H(x) = F(JR) - F(( -00, xl) + F(( -00, -xl) 

and the cosine transform U(t) = JR.costxF(dx). Pitman (1968) also gives 
results for the sine transform of F, but this is 0 when F is the spectrum of 
a real process. 

Theorem 3 (Abelian Theorem). Suppose, for an integer n ~ 0, /-L2n = 
JR. x2n F(dx) < 00. Define 

n t2r 

U2n (t) = ~(-1r~~r)! - U(t). 

If H has index -7 at 00 with 2n < 7 < 2n + 2 then U2n (t) rv S(7)H(1/t) 
as t ! 0, where 8(7) = 71"/ {2r(7) sin (~71"7)} for 7> O. If 7 = 2n + 2, then 

(19) 

Pitman (1968) gives the proof for this general result. I only consider 
the special case for which H(x) rv cx- r as x --t 00 for some c > 0 and 
o < 7 < 2. Note that the function U2n is generally a principal irregular 
part of U. 
Using integration by parts, 

/-Lo - U(t) 100 

:.....:...----'--'- = H (x) sin tx dx, 
t 0 

so that 

/-Lo - U(t) roo H(x/t) . 
H(1/t) = 10 H(1/t) smxdx. 
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Since H is bounded and H{x) '" cx-T as x -+ 00, there exists a finite 
constant A such that H{x) :::; A{1 + X)-T for all x > 0 and H(x) :2: !cx-T 
for all x sufficiently large. Hence, for all x > 0 and all t sufficiently small, 

I H(x/t) sinxl < 2A 
H(1/t) - c(t + X)T' 

which is integrable on [0, p] for any finite p. Furthermore, for any x > 0, 

r H(x/t) . -T . lfo H(1/t) smx = x smx, 

so that 

lifo foP ~~~~:~ sinxdx = foP x-Tsinxdx 

for any finite p. Let q be the smallest integer such that 27rq 2:: p. Then 

I roo H{x/t). I 
1p H(1/t) smxdx 

H{p/t) 1 00 I r27r(Hl) (X). I :::; 27r H(1/t) + H(1/t) ]; 127rj H t smxdx 

< 27r H (P/t) ~ ~ IH (27rj) _ H (27r(j + 1») I 
- H(1/t) + H(1/t) ~ t t 

3=q 

< 47rH(P/t) 
- H(1/t) , 

which can be made arbitrarily small by taking t small and p large. It follows 
that 

lim roo ~t~t~ sinx dx = roo x-T sinx dx = 8(7), 
t!O 10 1 t 10 

where the last equality is by 3.761.4 of Gradshteyn and Ryzhik (1994). 
Thus, J.L0 - U(t) '" 8(7)H(1/t), proving the theorem when H(x) '" cx-T 
for 0 < 7 < 2. 

Theorem 4 (Tauberian Theorem). 
and 0 < 7 < 2, then 

H( ) '" 1- U{1/x) 
X 8(7) 

If J.L0 - U(t) is of index 7 as t t 0 

as x -+ 00. 

This is part of Theorem 5 of Pitman (1968). Even if we restrict to 
J.L0 - U(t) '" ctT as t t 0, the proof is quite a bit more delicate than 
for Theorem 3. 

Exercises 

19 Show that tP(logt)q has index past -+ 00 for any real q. 
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20 In the proof of the special case of Theorem 3, use the Second Mean 
Value Theorem for Integrals (see Spivak (1980, p. 367) or Phillips 
(1984, p. 302) for a more general version) to provide an alternative 
argument to justify that J;{H(x/t)/H(1/t)}sinxdx can be made 
arbitrarily small by taking t small and p large. This is the argument 
Pitman (1968) uses. The Second Mean Value Theorem for Integrals 
was unfamiliar to me prior to my reading Pitman's paper but is a 
result well worth knowing. 

21 If H(x) rv x-210gx as x -+ 00, find an explicit expression in terms of 
elementary functions for a function U2 satisfying (19). 

22 For the autocovariance function e-1t16 on lR with 0 < 8 < 2, show that 
the corresponding spectral density is asymptotic to CW- 6- 1 as w -+ 00 
and find C as a function of 8. 

2.9 Random fields with nonintegrable spectral 
densities 

This section explores what one might mean by a random field with 
nonintegrable spectral density. Bochner's Theorem tells us that the corre­
sponding random field cannot be both weakly stationary and mean square 
continuous. 

Intrinsic random functions 

If f is nonintegrable in a neighborhood of the origin, then the corresponding 
random field is nonstationary and corresponds to what Matheron (1973) 
calls an intrinsic random function. Intuitively, there is then so much vari­
ation at low frequencies that the random field cannot have some constant 
level of variation about its mean. For example, consider the function on 
lR f(w) = Iwl-a for some a E (1,3). If this were the spectral density of a 
weakly stationary process Z, then we would have 

var{~CjZ(tj)} = l:I~Cj eXP(iwtj)12IWI-adw. (20) 

Formally evaluating this expression for n = 1, C1 = 1 and any t1 gives 
var{Z(tt}} = J~oo Iwl-adw = 00. However, if L:;=1 Cj = 0, then 

n 2 

II:>j exp(iwtj )I = O(w2 ) (21) 
j=1 

in a neighborhood of the origin (Exercise 23), so the integral on the right 
side of (20) is then finite for 1 < a < 3. Furthermore, using L:;=1 Cj = 0 
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to justify the following second equality, 

i:lt Cj eXP(iwtj)12Iw,-<>dw 

n 

7r "" 1 1<>-1 = -( ) . {1 ( )} ~ CjCk tj - tk r a sm -27r a-I . k 
J. =1 

by 3.823 of Gradshteyn and Ryzhik (1994). We see that the function 

G(t) = _ 7rIW-1 
r(a) sin {~7r(a - I)} 

behaves like an auto covariance function in that '£},k=l CjCkG(tj - tk) ~ 0 
whenever ,£7=1 Cj = o. It is possible to show that for 1 < a < 3, there 
exist processes (nonstationary, of course) for which 

var{ t CjZ(t j )} = -¢t cjckltj - tkl<>-1 
J=l J,k=1 

for some ¢ > 0 whenever '£7=1 Cj = O. Brownian motion is an example of 
such a process with a = 2. A Gaussian process with 1 < a < 3 but a # 2 is 
known as a fractional Brownian motion (Mandelbrot and Van Ness 1968); 
see Voss (1988) for an elementary introduction to such processes. 
Let us consider extending these ideas to positive symmetric measures F 

on ffi.d satisfying 

(22) 

for a nonnegative integer r. If we restrict attention to C1, ... , Cn E ffi. 
and X1, ... ,Xn E ffi.d such that ,£7=1 Cj cxp(iwTxj) = O(lwl r +1) in w, 

then (22) implies fIR d l,£7=1Cjexp(iwT xj)1 2F(dw) < 00 (Exercise 24). 
For x = (X1, ... ,Xd) and 0: = (a1, ... ,ad), define xO: = TI~=lX?i and 
let Dr be the set of all d-tuples whose components are nonnegative in­
tegers summing to at most r. Then if ,£7=1 Cjx,! = 0 for all 0: E Dr, 

flR d 1'£]=1 Cj exp(iwTXj)12 F(dw) < 00, as required. Since the Fourier trans­
form of F will not be defined in the ordinary sense when F has infinite mass 
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in any neighborhood of the origin, we need to modify our definition of its 
transform. Set Qr(t) = 2:;=0 ( _t2 )j /(2j)!, which is just the first r + 1 
nonzero terms in the Taylor series for cos t. Define 

G(x) = 1 {cos(wT x) - Qr(wT x)} F(dw) + 1 cos(wT x)F(dw), (23) 
bd bd 

where bd is the ball of radius 1 centered at the origin and the superscript C 
indicates complement. Since I cos(wT x) - Qr(wT x)1 = O(lwI2r+2) for any 
fixed x, the first integral on the right side of (23) is well defined for F 
satisfying (22). Furthermore, if 2:7=1 Cjxj = 0 for all Q E Dr, then 

j~l CjCkG(Xj - Xk) = lJ~Cj exp(iwT Xj )j2 F(dw). (24) 

The choice of bd in (23) is arbitrary; we could just as well use any bounded 
region containing a neighborhood of the origin and (24) would still hold. 
Matheron (1973) shows that for any positive, symmetric measure F satis-

fying (22) there is a real random field Z for which var{ 2:7=1 cjZ(Xj)} is 

given by flR d 12:7=1 Cj exp(iwT Xj)12 F(dw) whenever 2:7=1 Cjxj = 0 for all 
Q E Dr. Matheron calls such a random field an intrinsic random function of 
order r, or r-IRF. In addition, he calls G a generalized covariance function 
for Z if it is symmetric and 

n n 

var{L: cjZ(Xj)} = L: CjCkG(Xj - Xk) (25) 
j=l j,k=l 

whenever 2:7=1 Cjxj = 0 for all Q E Dr. To be consistent with the ter­
minology used here, I call G a generalized autocovariance function. A 
symmetric real-valued function G on lR.d is said to be conditionally positive 
definite of order r if 2:7,k=1 CjCkG(Xk - Xj) 2: 0 whenever 2:7=1 Cjxj = 0 
for all Q E Dr, so that any generalized auto covariance function for an 
r-IRF is conditionally positive definite of order r. A minor adaptation of 
Theorem 2.1 of Matheron (1973) gives that a continuous symmetric G on 
lR.d is conditionally positive definite of order r if and only if it can be written 
in the form 

G(x) = r [cos(wT x) - Qr(wT x)l {Iwl ~ I}] F(dw) + P(x), 
}IRd 

where F is a positive symmetric measure satisfying (22) and P is an even 
polynomial of order at most 2r + 2 that is conditionally positive definite 
of order r. It is trivially true that every even polynomial of order at most 
2r is conditionally positive definite of order r, since for any such poly­
nomial P, 2:7,k=l CjCkP(Xj - Xk) = 0 whenever 2:7=1 Cjxj = 0 for all 
Q E Dr. It follows that if G is a generalized autocovariance function for 
the r-IRF Z, then so is G plus any even polynomial of order at most 2r. 
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An even polynomial of order 2r + 2 mayor may not be conditionally pos­
itive definite of order r. For example, for 'L.]=l Cj = 0 and h, ... , tn E JR, 

'L.?'k=l CjCk( tj - tk)2 = -2 ('L.]=l Cjtj) 2, so that P( t) = -at2 is condition­
ally positive definite of order 0 if and only if a ~ O. Micchelli (1986) gives 
useful conditions under which functions of x that depend only on Ixl are 
conditionally positive definite. 
IRFs can be written as a sum of a very smooth IRF and a stationary 
random field. Specifically, suppose F has infinite mass in any neighborhood 
of 0 but has finite mass on any set bounded away from O. The form of G 
in (23) implies that the corresponding r-IRF Z can be written as Zl + Z2 
where Zl and Z2 are uncorrelated random fields, Zl has spectral measure 
F(dw)1 {Iwl ::::; 1} and hence is very smooth but nonstationary and Z2 has 
spectral measure F( dw) 1 {Iw I > 1} and hence is stationary. In particular, 
in one dimension zt+l) will be a stationary analytic process with spec­
tral measure w2r+2 F(dw)1 {Iwl ::::;.1}. Matheron (1973, Theorem 1.5) gives 
a different decomposition of an r-IRF into a very smooth r-IRF and a sta­
tionary random field. These decompositions imply that in terms of the local 
behavior of a random field, r-IRFs do not provide any additional flexibility 
over stationary random fields. In spectral terms, the spectrum of an r-IRF 
must have finite mass on any set bounded away from 0, so that r-IRFs 
are no more general than stationary random fields in their high frequency 
behavior. 
There is a nice mathematical connection between r-IRFs and best linear 
unbiased prediction. If we suppose the mean function of an r-IRF Z is of the 
form EZ(x) = 'L.aED r f3axa, where the f3as are unknown, then the variance 
of the error of any linear unbiased predictor depends on the covariance 
structure only through a generalized auto covariance function G for Z and 
is independent of the equivalent form of the generalized autocovariance 
function that is selected (Exercise 26). Hence, if Z(x) possesses a linear 
unbiased predictor, then we can find its BLUP and the mse of the BLUP 
from just knowing G. In other words, the r-IRF model only defines the 
covariance structure for contrasts of the random field Z, but in order to 
determine BLUPs and their mses, that is all we need to know (see 1.5). 

Semivariograms 

In practice, the most frequently used class of IRFs is the O-IRFs. For a 
O-IRF Z with generalized autocovariance function G, var{Z(x) - Z(y)} = 
2G(0) - 2G(x - y). Define the semivariogram 'Y of a O-IRF by 'Y(x) = 
~ var {Z(x) - Z(O)}. Then -'Y is a generalized autocovariance function for 
Z. The semivariogram is commonly used for modeling random fields in the 
geostatisticalliterature (Journel and Huijbregts 1978; Isaaks and Srivastava 
1989; Cressie 1993). See Cressie (1988) for some historical notes on semi­
variograms. One reason for its popularity is that there is a convenient way 
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to estimate ,(x). For simplicity, suppose the observations Xl, ... ,X n form 
some repeating pattern so that there are vectors x for which Xi - Xj = X 
for many pairs of observations Xi and Xj. For such a vector x, an unbiased 
estimator of ,(x) is 

where n(x) is the number of pairs of observations whose difference equals 
x. Note that E{ Z(Xi) - Z(Xj) P can be determined from, because Z(Xi)­
Z(Xj) satisfies (25) with r = O. If the observations are irregularly located, it 
is usually necessary to average over pairs of points whose difference is nearly 
x, although how one defines "nearly" is a nontrivial problem (Cressie 1993, 
pp. 69-70). Although plots of these estimates versus X or, more commonly, 
lxi, can be helpful in identifying structures in spatial data, they do not 
directly provide a method for estimating the function , at all X up to 
some magnitude, which is what we need for prediction. Chapter 6 provides 
further discussion on estimating semivariograms. 

Generalized random fields 

By considering spectral densities that are not integrable at infinity, we get 
what are known as generalized random fields. The random field is gener­
alized in the sense that its pointwise evaluation is not defined, but only 
certain linear functionals of it. In terms of the spectral representation of 
the random field given in (7), there is so much variation at high frequen­
cies that the Fourier transform of the random measure does not converge 
pointwise. The best-known generalized process is white noise, which can 
be thought of as a continuous time analogue to a sequence of independent 
and identically distributed observations. White noise has constant spectral 
density over all of R The name derives from the fact that white light is ap­
proximately an equal mixture of all visible frequencies of light, which was 
demonstrated by Isaac Newton. For d = 1, the autocovariance function 
corresponding to the density 27fc should then be K(t) = 27fC J::-'DO eiwtdw. 
However, this integral is 00 for t = 0 and is undefined in the ordinary 
sense for t -I- O. Using the theory of generalized functions (Gel'fand and 
Vilenkin 1964), it is possible to show that a reasonable definition for K(t) 
is c8t , where 8t is the Dirac delta-function, a generalized function satisfying 
J::-'DO 8tg(t) dt = g(O) for all sufficiently smooth g. To see this relationship 
between the Dirac delta-function and the uniform spectral density on JR., 

consider evaluating var {J::-'DO h(t)Z(t) dt} when Z is white noise and h is 
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square integrable. From the time domain, proceeding formally, 

var {I: h(t)Z(t) dt} = i: i: h(s)h(t) cov {Z(s), Z(t)} ds dt 

= C i: i: h(s)h(t)bs_tdsdt 

= C i: h(t)2dt. 

From the spectral domain, letting H(w) = J~oo h(t)eiwtdt and again 
proceeding formally, 

var {I: h(t)Z(t) dt} 

= i: i: h(s)h(t) {I: 27rCeiW(S-t)dw} dsdt 

= 27rC i: {I: h(S)eiWSds} {I: h(t)e-iwtdt} dw 

= 27rC i: IH(w)1 2 dw 

= C i: h(t)2dt, 

where the last equality is by Parseval's relation. If h(t) = l{a < t < 
b}/(b - a), then var {J~oo h(t)Z(t) dt} = c/(b - a), so that the variance of 
an average of Z over an interval tends to 00 as the length of the interval 
tends to O. This result is in line with my previous statement that white 
noise is not defined pointwise. 
One way to think about white noise is as a generalized derivative of 
Brownian motion, so that the spectral density of white noise should be w2 

times the spectral density of Brownian motion, which is the case since, as 
we noted earlier, the spectral density for Brownian motion is proportional 
to w-2 . Equivalently, Brownian motion can be interpreted as an integral of 
white noise. This result is the continuous time analogue to a random walk 
being a sum of independent and identically distributed random variables. 
Gel'fand and Vilenkin (1964) provide a rigorous development of random 
fields that includes nonintegrability of the spectral density at both the 
origin and infinity as special cases. Yaglom (1987a, Section 24) provides a 
more accessible treatment of these topics. 

Exercises 

23 For 'L/;=1 Cj = 0, show that (21) holds for w in a neighborhood of the 
origin. 
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24 If ell'" ,en E JR and Xl, ... ,Xn E JRd satisfy Lj=l ej exp(iwTxj) = 
O(lwlr+l) in w, show that (22) implies 

25 Show that the function K(s, t) = Isla + IW -Is -W is positive definite 
on JR x JR for 0 < 0: < 2. 

26 For 0: > 0 and L·J the greatest integer function, show that G(t) = 
(_1)l+La/2Jltla is a generalized autocovariance function for an Lo:/2J­
IRF on lR. Find the corresponding spectral measure. 

27 Forapositiveintegerm, show that thefunctionG(t) = (_1)m- 1 ItI2m x 
log It I is conditionally positive definite of order m. Find the correspond­
ing spectral measure. 

28 Extend the preceding two exercises to isotropic random fields on JRd. 

29 Suppose the mean function of an r-IRF Z is of the form EZ(x) = 
LaEDr f3axa, where the f3as are unknown. Show that the variance 
of the error of any linear unbiased predictor depends on the covari­
ance structure only through a generalized autocovariance function G 
for Z and is independent of the equivalent form of the generalized 
auto covariance function that is selected. 

2.10 Isotropic auto covariance functions 

The class of all continuous auto covariance functions on JRd can be char­
acterized as the Fourier transforms of all finite positive measures on JRd. 
Adding the requirement that the random field be weakly isotropic, we now 
seek an analogous characterization of isotropic autocovariance functions 
for random fields on JRd. In addition, we consider smoothness properties 
of isotropic autocovariance functions at positive distances. A number of 
the topics in this section follow the development in Section 22.1 of Yaglom 
(1987a). 

Characterization 

Suppose K(r), r ~ 0, is an isotropic autocovariance function in JRd; that is, 
there exists a weakly isotropic complex-valued random field Z on JRd such 
that cov {Z(x), Z(y)} = K (Ix - yl) for all x,y E JRd. For X E JRd, we have 
K (Ixl) = K (I - xl) = K (Ixl), so that K must be real. So, if Z(x) = V(x)+ 
iW(x) with V and W real, then cov {V(x), W(y)} = cov {V(y), W(x)}. 
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By Bochner's Theorem, there exists a positive finite measure F such that 
for all x E ]Rd 

K (Ixl) = r exp(iwT x)F(dw). 
lRd 

Since K(x) = K( -x), without loss of generality, we can take F to be 
symmetric about the origin. Furthermore, by isotropy, 

K(r) = r K(rlxI)U(dx), 
labd 

where U is the uniform probability measure on 8bd , the d-dimensional unit 
sphere. Thus, 

K(r) = r {r exp(irwT X)F(dW)} U(dx) 
labd lIRd 

= r {r exp(irwT X)U(dX)} F(dw) 
lJRd labd 

= r {r cos(rwT X)U(dX)} F(dw), 
lJRd labd 

since the imaginary part of the integral drops out due to the symmetry 
of F. It is clear that the inner integral over x depends on w only through 
its length Iwl, so take w to point in the direction of the "north pole" and 
switch to spherical coordinates with (jJ measuring the angle from the pole. 
For given (jJ, the region of integration over the other d - 2 coordinates of 
8b d is a (d - I)-dimensional sphere of radius sin(jJ, so using the fact that 
the surface area of a unit sphere in d dimensions is Ad = 27rd/ 2 /r(d/2), 

r cos(rwT x) U(dx) 
labd 

1 r 
= Ad lo cos(rlwlcos<!»Ad_l(sin<!»d-2d<!> 

( 
2 ) (d-2)/2 

= r(d/2) rlwl J(d-2)/2(rlwl) 

using a standard integral representation for the ordinary Bessel function 
J" (see 9.1.20 of Abramowitz and Stegun 1965). Thus, 

r ( 2 ) (d-2)/2 
K(r) = r(d/2) lIRd rlwl J(d-2)/2 (rlwl) F(dw). 

Letting G(u) = Irwl<u F(dw), then for r > 0, 

K(r) = 2(d-2)/2r(d/2) 100 (ru)-(d-2)/2 J(d-2)/2(ru) dG(u), (26) 
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where Gis nondecreasing, bounded on [0,00) and G(O) = O. The right side 
of (26) is known as the Hankel transform of order !(d - 2) of G. We have 
the following. 

Theorem 5. For d ~ 2, a Junction K is a continuous isotropic autocovari­
ance Junction Jor a random field on IRd iJ and only iJ it can be represented 
as in (26) with G nondecreasing, bounded on [0,00) and G(O) = O. 

For dodd, (26) can be expressed in terms of elementary functions. For 
example, for d = 3, K(r) = IoOO(ru)-l sin(ru)dG(u). It is often difficult to 
determine whether a given function can be written as in (26). Christakos 
(1984) and Pasenchenko (1996) give sufficient conditions for a function to 
be an isotropic auto covariance function that can be easily verified in some 
circumstances. 
Let Dd be the class of continuous isotropic auto covariance functions in 

d dimensions and Doo = n~l Dd the class of functions that are isotropic 
continuous auto covariance functions in all dimensions. By considering a d­
dimensional weakly isotropic random field along m coordinates, m < d, we 
obtain an m-dimensional weakly isotropic random field, so that Dd C Dm. 
Thus, Dl :::) D2 :::) ... :::) Doo· 
To characterize the elements of Doc, define 

Ad(t) = 2(d-2)/2r(dj2)C(d-2)/2 J(d-2)/2(t) 

oc (-Ie)j 
= r(dj2) L 'Ir (~+ .) 

j=O J. 2 J 

t 2 t4 

= 1- 2d + 8d(d + 2) 

so that for fixed t, 

(27) 

This suggests that a function is in Doc if and only if it has the representation 

100 2 2 
K(r) = 0 e-r U dG(u) (28) 

for G bounded nondecreasing on [0,00). To prove that all functions of this 
form are in Doc, note that the density (27r)-d/2 exp{ -lxl2 j(2a2 )} on IRd 
has joint characteristic function exp(-a2 IwI2 j2), so that e-r2u2 E Dd for 
all d and all r ~ 0, hence e-r2u2 E Doc. Then Iooo e-r2u2 dG(u) can be 
expressed as a pointwise limit of positive sums of functions of the form 

2 2 
e- r u , so a function of the form (28) with G bounded nondecreasing on 
[0,00) is in Doc. 
Schoenberg (1938) proved the converse result. His argument was to first 

show the convergence in (27) is uniform in t; I refer the reader to Schoen­
berg's paper for this part of the proof. Write G in (26) as Gd now to indicate 
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its dependence on d and set, without loss of generality, Gd(O) = o. Define 
Cd by Cd(U) = Gd{ (2d)1/2U}. If K E '000 , then for all d, 

K(r) = 100 Ad{ (2d)1/2ru} dCd(u), 

where the Cd s are uniformly bounded since K(O) = Cd( 00). By Helly's 
selection principle, there is a subsequence {Cd; }:1 converging vaguely to 
monotone G with G(O) = 0 (Chung 1974, p. 83). Now, for given r ~ 0 and 
all j, 

/K(r) -100 e-r2u2 dG(U)/ 

::::; /100 Ad;{(2dj)1/2ru}dCd;(u)-1°O e-r2u2dCd;(U)/ 

+ /100 e-r2u2 dCd;(u) -100 e-r2u2 dG(U)/. 

The first term on the right side tends to 0 as j --+ 00 because of the 
uniform convergence in (27) and {Cd;} uniformly bounded. The second 
tends to 0 for any given r > 0 by the vague convergence of {Cd;} and 
e-r2u2 --+ 0 as U --+ 00 (Chung 1974, Theorem 4.4.1). Since neither K(r) 
nor fooo e-r2u2 dG(u) depend on j, the two functions must be identical. 

Lower bound on isotropic autocorrelation functions 

Define the isotropic autocorrelation function C(r) = K(r)j K(O). A func­
tion C is an isotropic autocorrelation function for a random field on ]Rd if 
and only if it is of the form C(r) = fooo Ad(ru)dG(u), where fooo dG(u) = 1 
and G is nondecreasing. Thus, for all r, 

For d = 2, 

for d = 3, 

C(r) ~ inf Ad(S). 
s~o 

C(r) ~ inf Jo(s) ~ -0.403, 
s~o 

. sins 
C(r) ~ mf - ~ -0.218 

s~o s 

and for d = 00, C(r) ~ O. For all finite d, the infimum of Ad(S) is attained 
at a finite value of s, so the lower bounds on C are achievable (Exercise 30). 
For d = 00, the bound cannot be achieved since e- t2 > 0 for all t, so that 
K(r) > 0 for all r if K E '000 (unless K(O) = 0). 
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Inversion formula 

The relationship (26) has a simple inversion if 1000 rd- I IK(r)1 dr < 00. In 
this case, there exists a nonnegative function f with 1000 ud- I f(u) du < 00 
such that 

and 

(Yaglom 1987a). Note that if K and / are the functions on lRd 

such that K(x) = K(lxl) and /(w) = f(lwl), then the conditions 
1000 rd- 1 IK(r)1 dr < 00 and 1000 U d- I f(u) du < 00 are equivalent to the 
absolute integrability of K and /, respectively. 

Smoothness properties 

We have shown in 2.4 that an autocovariance function on lR that is contin­
uous at ° is continuous. For continuous isotropic autocovariance functions 
in more than one dimension, we can make stronger statements about the 
smoothness of K(r) for r ~ 0. From standard properties of Bessel func­
tions, IJI/(t)1 < GI/(l + ItI)-I/2 for some constant GI/ and all t, t-I/ JI/(t) is 
bounded and (djdt) {t-I/ JI/(t)} = -t-I/ JI/+l(t). From (26), for d ~ 3 and 
r > 0, 

K' (r) = 2Cd- 2)/2r(dj2) ! {lOO (ru)-Cd-2)/2 JCd-2)/2(ru) dG(u) } 

= _2Cd- 2)/2r(dj2) 100 u(ru)-Cd-2)/2 Jd/2(ru) dG(u), 

where differentiating inside the integral can be justified by G bounded and 
the preceding properties of JI/ (note that for d ~ 3, the last integrand is 
bounded). More generally, for K E V d , K is L~(d -l)J times differentiable 
on (0,00) (see Trebels (1976) or Exercise 31). 
Although K E V 2 may not be differentiable on (0,00) (see Exercise 32 for 
an example), we can draw a stronger conclusion than that K is continuous, 
which is automatically true since K E VI is continuous. For an interval I, 
let us say that a function f is Lipschitz with parameter a or f E Lip(a), 
if there exists G finite such that If(s) - f(t)1 S; Gis - tI''' for all s, tEl. 
Then I claim K E V 2 implies K E Lip (~) on I = [a, 00) for any a > 0. To 
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prove this, note that for s > t ~ a, 

IK(s) - K(t)1 

:S 100 
IJo(su) - Jo(tu)1 dG(u) 

:s rt u(s - t) sup IJ1 (e)1 dG(u) + roo ( 200)1/2 dG(u) Jo tu~~~su Jut 1 + tu 

rt u 200 
:SOl(S-t) Jo (1+tu)1/2 dG(u) + (1 + tuo) 1/2 {G(oo)-G(O)} 

:s {OI(S - t)uo + 200 } {G(oo) - G(O)}. 
(1 + auo)1/2 

Choosing Uo = (s - t)-1 yields the desired result. Similarly, for d ~ 4 and 
even, it is possible to show that K«d-2)/2) is Lip(!) on any interval [a, 00) 
with a > 0 (Exercise 31). Since a continuous function is not necessarily 
Lip(a) for any a > 0 and a function that is Lip(l) is absolutely continuous 
and hence nearly differentiable, it is not unreasonable to characterize a 
function that is Lip(!) as being! times differentiable. Using this loose 
interpretation, we might now say that K E 'Od implies K is !(d -1) times 
differentiable on (0,00). 
Additional smoothness beyond continuity at the origin for K E 'Od should 
imply additional smoothness away from the origin. For example, consider 
whether K(r) = (1 - r)+ is in '02. We have already seen that K is in Dl 
and since it is not differentiable at r = 1, it is not in V3. Using the inversion 
formula (29), we can show that K fj. '02 by showing that Jo1 Jo(ur)r(1 -
r) dr is negative for some u ~ O. More specifically, by applying asymptotic 
expansions for Jo and J1 (Abramowitz and Stegun 1965, p. 364), as u ---+ 00, 

11 Jo(ur)r(1 - r) dr 

= 11 Jo(ur)rdr -11 Jo(ur)r2dr 

= u- 1 J1(u) - u-31u r2 Jo(r) dr + O(u-3 ) 

= (~) 1/2 {u-3/ 2 cos ( U _ 3;) _ ~ U-5/2 sin( u _ 3;) } 
_ (~) 3/2 u-31u 

r2 {cos (r -~) + sIr sin (r -~) 

- 12:r2 cos (r - ~) + O(r-3 ) } dr + O(u-3 ) 
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(2)1/2 311" 
= -; U- 5/ 2 sin( u - 4) + O(u-3 ), (30) 

which can be obtained by repeated integration by parts (Exercise 33). Thus, 
for some u sufficiently large f is negative, so that K(r) = (1 - r)+ is not 
in D2. 
More generally, for some K E D2, suppose K(r) = 1 -"Ir + oCr) as 

r ! o. Then I claim that K is differentiable on (0,00) and that K'(r) 
is in Lip(~) on [a, (0) for any a > O. To prove this claim, first apply 
Theorem 1 of Bingham (1972), which is a Tauberian theorem for Hankel 
transforms. This theorem shows that K(r) = 1- "Ir + oCr) as r ! 0 implies 
G(oo) - G(u) rv Glu as u -+ 00 for an appropriate positive constant G. 
Using the properties of Bessel functions described earlier, it follows that 
(Exercise 35) 

K'(r) = -100 uJ1(ur) dG(u) (31) 

for r > o. An argument similar to the one proving the Lip(~) property 
of elements of D2 yields K'(r) is in Lip(~) on [a,oo) for any a > 0 as 
claimed (Exercise 36). I am unaware of a general result on what some 
degree of smoothness at 0 for an element of Dd implies about its smoothness 
elsewhere. Thinking of an element ofDd as being a function on JR by setting 
K( -r) = K(r), then for any E > 0, I would expect K to have at least ~(d-
1) - E more "derivatives" away from the origin than it does at the origin, 
where, for a positive noninteger t, a function is said to have t derivatives 
at a point if in some neighborhood of this point it has l t J derivatives and 
this ltJth derivative is Lip(t -ltJ). 
To see why I have included the -E term in this conjecture, consider the 

following example. Pasenchenko (1996) shows that K(r) = {I - r1/2} + 
is in D2 • This function is in Lip(~) in a neighborhood of 0 but K is not 
differentiable at 1. Hence, the proposition that K E Dd has ~(d - 1) more 
derivatives away from the origin than at the origin is false using the defini­
tion of fractional derivatives given here. Of course, such a proposition may 
be true under a different definition of fractional differentiation. 

Matern class 

The Matern class of functions 

K(r) = ¢(artK,,(ar), ¢ > 0, a > 0, v > 0, 

which we saw in (14) to be positive definite on JR, are in fact all in Doo. This 
can be verified by using tl;te inversion formula and (6.576.7) of Gradshteyn 



2.10 Isotropic autocovariance functions 49 

and Ryzhik (1994) to obtain the corresponding isotropic spectral density 

(32) 

which is nonnegative and satisfies Jooo f(u)Ud-1du < 00. This model is used 
by Handcock (1989), Handcock and Stein (1993) and Handcock and Wallis 
(1994). Matern (1960) appears to be the first author to have recommended 
these functions as a sensible class of models for isotropic random fields 
in any number of dimensions. I believe this class of models has much to 
recommend it. As we show in Chapter 3, the smoothness of a random field 
plays a critical role in interpolation problems. Furthermore, there is often 
no basis for knowing a priori the degree of smoothness of some physical 
process modeled as a random field. Thus, it is prudent to use classes of 
models that allow for the degree of smoothness to be estimated from the 
data rather than restricted a priori. The Matern model does allow for great 
flexibility in the smoothness of the random field while still keeping the 
number of parameters manageable. 

It is often convenient to describe the smoothness of an isotropic random 
field through the principal irregular term of the isotropic auto covariance 
function. Extending the definition I gave in 2.7 for processes on lR in the 
obvious way, I call 9 a principal irregular term for the isotropic autoco­
variance function K if g(r)r-2n -4 0 and Ig(r)lr-2n- 2 -4 00 as r ! 0 and 
K is of the form K(r) = '2:/;=0 cjr2j + g(r) + o(lg(r)l) as r ! o. As in the 
one-dimensional setting, if g(r) = olrl,8 is a principal irregular term for K, 
I call (3 the power and 0 the coefficient of the principal irregular term. It 
follows from (15) and (16) that for the Matern model with v a noninteger, 
2v is the power of the principal irregular term and when v is a positive 
integer, there is a principal irregular term proportional to r211 log r. 
For statistical purposes, the parameterization in (32) may not be best. 
In particular, for fixed 0, f becomes more and more concentrated around 
the origin as v increases. In particular, suppose Ca ,1I is the isotropic au­
tocorrelation function corresponding to f(w) = ¢(02 + IwI 2)-II-d/2. Then 
limll-+oo Ca ,/(r) = 1 for all r ~ 0 (Exercise 39). One way to solve this prob-
lem is to use the class of models f(w) = t/1{ 0 2 (v + !d) + Iw 12} -1l-d/2 (see 
Exercise 39 for the limiting behavior of the corresponding autocorrelation 
functions as v -400). I implicitly use this parameterization in the numer­
ical studies in 3.5 and elsewhere. Handcock and Wallis (1994) recommend 
the alternative parameterization 

ac(v, p) 
gT/(u) = --~~-:/=, 

(
4V )/+d 2 
_+u2 
p2 

(33) 
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where 'IJ = (0', V, p) and 

( ) _ r(v + ~)(4v)V 
c v, P - 7I'd/2r(v)p2v 

The corresponding isotropic auto covariance function is 

_ 0' (2vl/2r)V (2vl/2r) 
K.,.,(r) - ( K-v , 2v - 1r v) p p 

which has the nice property that it does not depend on d. In either parame­
terization, v has the same interpretation as a measure of the differentiability 
of the random field. The parameter 0' in (33) is just var{Z(x)}. Finally, p 
measures how quickly the correlations of the random field decay with dis­
tance. It is thus closely related to what is known as the practical range of 
an isotropic auto covariance function in the geostatistical literature, which 
is informally defined as the distance at which the correlations are nearly 
0, say 0.05, for example (Journel and Huijbregts 1978, p. 164). Figure 3 
plots the auto covariance functions corresponding to g.,., for 0' = 1, v = 1 
and several values of p and shows how the correlations decay more slowly 
as p increases. Although a-I has a similar interpretation in (32), p has 
the attractive feature that its interpretation is largely independent of v, 
which is not the case for a. To illustrate this point, Figure 4 plots the au­
tocorrelation functions corresponding to p = 1 for v = 1,2 or 3 under (33) 
and Figure 5 plots the autocorrelation functions corresponding to a = 1 
for v = 1,2 or 3 under (32). The autocorrelation functions in Figure 4 
are much more similar at longer distances than those in Figure 5. Another 
way to see that the interpretation of p is only weakly dependent on v is to 
consider the limit of (33) as v ~ 00. Specifically, for fixed 0', p and u, 

(34) 

and the corresponding isotropic autocovariance function is K (r) = 

O'e- r2 / p2. This calculation shows that for fixed p and 0' and two differ­
ent but large values of v, the corresponding covariance functions are nearly 
the same. 
An alternative to the Matern class of models that is sometimes used 

is K(r) = Ce-ar'Y (Diggle, Tawn and Moyeed 1998; De Oliveira, Kedem 
and Short 1997). These functions are also in '000 for all C and a positive 
and all 1 E (0,2], which follows by the same reasoning as held in the one­
dimensional setting treated in 2.7. For 1 > 2, we noted that K ~ VI so it 
is not in Vd for any d. The power of the principal irregular part of K is 1, 
so in terms of local behavior of the random field, 1 corresponds to 2v in 
the Matern model when 1 < 2 and, roughly speaking, 1 = 2 corresponds 
to v = 00. We see that K(r) = Ce-ar'" has no elements providing similar 
local behavior as the Matern class for 1 ::; v < 00. Thus, although the 
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FIGURE 3. Plots of Matern autocovariance functions under the parameterization 
given in (33) with u = 1, II = 1 and several values of p. Solid line corresponds to 
p = 2, dashed line to p = 1 and dotted line to p = 4. 
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FIGURE 4. Plots of Matern autocovariance functions under the parameterization 
given in (33) with u = 1, p = 2 and several values of II. Solid line corresponds to 
II = 1, dashed line to 11=2 and dotted line to II = 3. 

Matern class has no more parameters than this model, it provides much 
greater range for the possible local behavior of the random field. The fact 
that its use requires the calculation of a Bessel function does not create 
a serious obstacle to its adoption as programs that calculate all manners 
of Bessel functions are readily available (Cody 1987). Section 6.5 provides 
further discussion on the use of the Matern model. 
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FIGURE 5. Plots of Matern autocorrelation functions under the parameterization 
given in (32) with a = 1 and several values of v. Solid line corresponds to v = 1, 
dashed line to v = 2 and dotted line to v = 3. 

Spherical model 

Perhaps the most commonly used model for isotropic autocovariance func­
tions in geological and hydrological applications is the spherical: for positive 
constants c and p, 

K (r) = { c (1 - 2: r + 2:3 r3 ), r ~ p 

0, r > p. 

(35) 

This function is in V3 but is not in V4 (Exercise 40). The parameter p 
is called the range parameter and is the distance at which correlations 
become exactly O. Its popularity in the geostatistical literature (Journel 
and Huijbregts 1978, p. 116; Isaaks and Srivastava 1989, p. 374; Bras and 
Rodriguez-Iturbe 1985, p. 418; Christakos 1992, p. 71; Wackernagel 1995, 
p. 42; Kitanidis 1997, p. 56; and Goovaerts 1997, p. 88) is a bit of a mys­
tery to me. Perhaps its superficially simple functional form is attractive or 
perhaps there is a mistaken belief that there is some statistical advantage 
in having the autocorrelation function being exactly 0 beyond some finite 
distance. However, the fact that this function is only once differentiable at 
r = p can lead to problems when using likelihood methods for estimating 
the parameters of this model (see 6.4). Furthermore, in three dimensions, 
the corresponding isotropic spectral density (Exercise 40) has oscillations 
at high frequencies similar to the spectral density corresponding to the 
triangular autocovariance function in one dimension (Figure 2 in 2.7). As 
I argued in 2.7, such oscillations would generally not make much physi­
cal sense. Stein and Handcock (1989) show that when using the spherical 
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model in three dimensions, certain prediction problems have rather patho­
logical behavior. I consider the spherical model to be a poor substitute for 
the exponential model, since both have linear behavior at the origin, but 
the exponential model has none of the pathologies of the spherical. 
There can, in some circumstances, be a computational advantage in us­
ing a model such as the spherical for which the covariance is identically 0 
beyond some distance. Specifically, if p in (35) is much smaller than the 
dimensions of the observation region, then most of the covariances between 
the observations will be 0, which saves storage space and makes it possible 
to use sparse matrix methods to more efficiently calculate kriging predic­
tors (Cohn et al. 1998). For this reason, Gaspari and Cohn (1999) give a 
large number of isotropic autocovariance functions that are identically 0 
beyond a fixed distance. However, I suspect that all of the examples of 
autocovariance functions derived in Gaspari and Cohn (1999) will, like the 
spherical model, lead to problems when using likelihood-based methods for 
estimating unknown parameters. If the computational advantage of having 
the auto covariance function identically 0 beyond some distance is needed 
in a particular application, I would suggest at least using an autocovari­
ance function that has two more derivatives away from the origin than it 
does at the origin. For example, consider K(r)2, where K(r) is a spheri­
cal autovariance function as in (35). Equation (5) in 2.3 implies that this 
function is in V 3 • Furthermore, like the spherical model, it behaves linearly 
at the origin and is identically 0 beyond a certain distance, but unlike the 
spherical model, it has two derivatives on (0,00). 

Exercises 

30 Using standard properties of Bessel functions given in, say, Chapter 9 of 
Abramowitz and Stegun (1965), show that for any d 2': 2, the infimum 
of Ad(S) for S 2': 0 is attained at a finite value of s. Use this to show 
that if r > 0, there is an isotropic autocorrelation function C E Vd 
such that C(r) = infs~o Ad(S). 

31 Show that K E Vd implies K is L~(d - l)J times differentiable on 
(0,00). For d 2': 4 and even, show that K E Vd implies K((d-2)/2) is 
Lip( ~) on any interval [a, (0) with a > O. 

32 Show that the isotropic autocovariance function for a random field on 
JR.2 corresponding to the isotropic spectral density f(u) = u- 5/ 2 (1 -
cosu) is not differentiable at u = 1 by the following steps. 

(i) Find the isotropic autocovariance function by using (29), inte­
gration by parts and formulas 6.669.1, 6.669.2 and 6.561.14 of 
Gradshteyn and Ryzhik (1994). 
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(ii) Show that the resulting function is continuous but not differen­
tiable at 1 by using properties of hypergeometric functions given, 
for example, in Chapter 15 of Abramowitz and Stegun (1965). 

33 Provide the details for (30). 

34 By considering the correlation. of Z(f) - Z(O) and Z(l + f) - Z(1) as 
flO, show that {(I - r)+}''' ¢ VI if 0 < 'Y < 1. 

35 Verify (31). 

36 Using (31), show that if K E V 2 and K'(O+) exists and is finite, then 
K'(r) is in Lip(!) on [a,oo) for any a > O. 

37 (P6Iya's criteria). Prove that if K is even and is continuous, nonnega­
tive, nonincreasing and convex on [0,00) then it is in VI by using (3), 
(4) and the fact that (l-ltl)+ is in VI. 

38 For a weakly isotropic random field in IRd , d ::::: 2, the results given in 
this section do not resolve whether such functions must be continuous 
away from the origin. Read Crum (1956) and determine to what extent 
the results in this paper resolve this issue. 

39 Show that if Oo,v is the isotropic autocorrelation function correspond­
ing to few) = ¢(a2 + IwI2)-v-d/2, lim,,--+oo Oo,v(t) = 1 for all t. For 
few) = ¢{a2(11+ !d) + Iw12} -v-d/2, find the limiting behavior of the 
corresponding isotropic autocorrelation function as 11 -+ 00 for fixed a. 

40 Consider a Poisson process N on 1R3 with constant intensity .x, so that 
for A a Borel subset of 1R3 , N(A) is the number of events of the process 
in A. Let Z(x) = N(b 3 (r) + x), the number of events in the ball in 
1R3 of radius r centered at x. Show that the isotropic auto covariance 
function of Z is of the form given in (35). Find the corresponding 
spectral density. Show that K as given in (35) is not in V 4 . 

2.11 Tensor product autocovariances 

An easy way to generate auto covariance functions on IRd is to take 
products of one dimensional autocovariance functions. Specifically, for au­
to covariance functions K I , ... , Kd on IR and x = (Xl, ... , Xd), K(x) = 
KI (xt) ... Kd(Xd) is an auto covariance function on IRd , which can be proven 
using (5). For some mathematical problems, they are easier to study than 
isotropic autocovariance functions, which has led to their rather widespread 
use in mathematical works (Ylvisaker 1975; Papageorgiou and Wasilkowski 
1990; Wozniakowski 1991; Ying 1993; Ritter 1995; and Miiller-Gronbach 
1998). However, the extreme dependence of these models on the choice of 
axes would appear to make them untenable for most physical processes 
defined on continuous space. 
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As an example of the physically unrealistic behavior such models imply, 
consider K(u, v) = e-Iul-Ivl for u and v real. Suppose Z has mean ° and this 
auto covariance function and we wish to predict Z(O,O) based on observing 
Z(t,O) and Z(O, t). Then straightforward calculations yield that the BLP 
of Z(O, 0) is .>.Z(O, t) + '>'Z(t, 0), where.>. = l/(et + e-t ) = 1/(2 sinh t) and 
the mse of the BLP is tanht (Exercise 41). As t ! 0, .>. = ~ - it2 + O(t3 ) 

and the mse is t+O(t3 ). Note that the simple predictor ~Z(t,O)+ ~Z(O, t) 
also has mse t+O(t3 ) as t ! 0, so that the BLP is very nearly the average of 
the two observations for t small. Next, consider adding a third observation 
at (t, t). Now the BLP of Z(O,O) is e-t Z(O, t) + e-t Z(t, 0) - e-2t Z(t, t) 
with mse (1 - e-2t )2 (Exercise 41). As t ! 0, its mse is 4t2 + O(t3 ), so by 
adding a third observation that is further away from (0,0) than the other 
two observations, the mse decreases from O(t) to O(t2). 
The reason for this huge drop in mse is that the random field is locally 
almost additive. For a function feu, v) = It (u) + h(v), note that f(O,O) = 
f(u,O) + f(O, v) - feu, v), which is very nearly the form of the BLP for 
Z(O,O) in terms of Z(O, t), Z(t,O) and Z(t, t) when t is small. Indeed, 
var {Z(O, 0) - Z(O, t) - Z(t, 0) + Z(t, t)} = 4t2 + O(t3 ) as t ! 0, so this 
additive approximation does as well asymptotically as the BLP. 

If instead of having the first two observations along the axes, we predict 
Z(O, 0) based on observations at (2- 1/ 2t, 2- 1/ 2t) and (_2- 1/ 2 t, 2- 1/ 2 t) and 
then add a third observation at (0,21/ 2t), so that the observations have 
been rotated 45° from the previous setting, the mse of the BLP is O(t) 
and not oCt) in both cases, so that there is no order of magnitude decrease 
in the mse when the third observation is added. Thus, predictions based 
on this model are highly sensitive to the choice of axes and should not 
be used unless there is some very good reason for thinking the observed 
random field possesses the required axis dependence. Ripley (1995) has 
also criticized work in the numerical analysis of deterministic functions 
that makes use of assumptions depending strongly on the choice of axes. 
Finally, note that the only real functions on IRd that are isotropic and 
factor into functions of each coordinate are of the form cexp( -alxI2 ) (Ex­
ercise 42). This fact was used by Maxwell in his famous work on the kinetic 
theory of gases to argue that the velocity distribution in an ideal gas must 
be spherical Gaussian (Ruhla 1992). The function ce-ar2 is in Doc for all 
c and a nonnegative, so in any number of dimensions cexp( -alxI 2 ) is pos­
itive definite for a and c nonnegative. However, as I previously argued in 
the one-dimensional setting, random fields possessing these autocovariance 
functions are unrealistically smooth for physical phenomena. 

Exercises 

41 Suppose Z is a weakly stationary mean ° random field on IR2 with 
auto covariance function K(u, v) = e-1ul-l vl for u and v real. Show that 
the BLP of Z(O, 0) based on observing Z(t, 0) and Z(O, t) is .>.Z(O, t) + 
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)'Z(t, 0), where), = 1j(et +e-t ) = 1j(2sinht) and the mse of the BLP 
is tanh t. Next, consider adding a third observation at (t, t). Show that 
the BLP of Z(O,O) is e-t Z(O, t) + e-t Z(t, 0) - e-2t Z(t, t) with mse 
(1 - e-2t )2. 

42 Show that the only real functions on ad that are isotropic and factor 
into functions of each coordinate are of the form cexp( -alxI2 ) for a 
and creal. 



3 
Asymptotic Properties of Linear 
Predictors 

3.1 Introduction 

Suppose we observe a Gaussian random field Z with mean function m and 
covariance function K at some set of locations. Call the pair (m, K) the 
second-order structure of the random field. If (m, K) is known, then as 
noted in 1.2, the prediction of Z at unobserved locations is just a matter 
of calculation. To review, the conditional distribution of Z at an unob­
served location is normal with conditional mean that is a linear function of 
the observations and constant conditional variance. In practice, (m, K) is 
at least partially unknown and it is usually necessary to estimate (m, K) 
from the same data we use to do the prediction. Thus, it might be natural 
to proceed immediately to methods for estimating second-order structures 
of Gaussian random fields. However, until we know something about the re­
lationship between the second-order structure and linear predictors, it will 
be difficult to judge what is meant by a good estimate of the second-order 
structure. In particular, it will turn out that it is possible to get (m, K) 
nonnegligibly wrong and yet still get nearly optimal linear predictors. More 
specifically, for a random field possessing an autocovariance function, if the 
observations are tightly packed in a region in which we wish to predict the 
random field, then the low frequency behavior of the spectrum has little 
impact on the behavior of the optimal linear predictions. 
One way to study the behavior of linear predictors when the second­
order structure is not perfectly known is to consider the behavior of linear 
predictors that are optimal under some incorrect second-order structure. 
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This approach has been used in the atmospheric sciences (Daley 1991, 
Section 4.9) and in the geostatisticalliterature (Diamond and Armstrong 
1984) as well as in my own work (Stein 1988, 1990a, 1990b, 1993, 1997, 1999 
and Stein and Handcock 1989). I generally denote the actual second-order 
structure for a random field Z by (mo, Ko) and the incorrect second-order 
structure used to generate and evaluate linear predictors by (ml, K 1 ). I call 
linear predictors that are best under an incorrect model pseudo-BLPs. 
To be more specific, suppose we observe Z for all x in some set Q c R 
and wish to predict Z(xo), Xo E R\Q. Define ej (Z(xo), Q) to be the error 
of the best linear predictor if (mj, K j ) is the correct second-order structure 
and let Ej indicate expected value under (mj, K j ). One measure as to 
how well predictions based on KI do when Ko is the correct covariance 
function is Eo {edZ(xo), Q)2 } I Eo {eo (Z(xo), Q)2 }, the ratio of the mse 
of the suboptimal pseudo-BLP to that of the BLP. This ratio is necessarily 
at least 1. More specifically, 

EOel(Z(xo), Q? Eo[{el(Z(xo), Q) - eo(Z(xo), Qn + eo(Z(xo), Q)]2 
Eoeo(Z(xo), Q)2 Eoeo(Z(xo), Q)2 

-1 + EO{el(Z(xO),Q) - eo(Z(xo),Q)F (1) 
- Eoeo(Z(xo), Q2 ' 

which follows from the orthogonality of the error of a BLP with all linear 
combinations of the observations. In addition to the quality of point pre­
dictions, another concern is the accuracy of assessments of mse. If we not 
only compute our prediction under (ml, K 1 ) but also assess its mse under 
this model, this amounts to presuming the mse is E1el(Z(XO),Q)2. The 
quantity 

E1el(Z(XO), Q)2 
Eoel(Z(XO), Q)2 

(2) 

is then the ratio of the presumed mse of the pseudo-BLP to its actual mse. 
If both (1) and (2) are near 1, then little is lost by using (ml, Kd instead 
of the correct (mo, Ko), at least as far as predicting Z(xo) goes. 
This chapter considers two ways of investigating the relationship between 
second-order structures and linear prediction. One way is to study (1) and 
(2) for various pairs of second-order structures, observations and predic­
tands. The second is to study the spectral characteristics of prediction 
errors by making use of the correspondence between linear combinations 
of values of a random field and linear combinations of complex exponen­
tials described in 2.6. It turns out that this second approach is helpful in 
studying the first. 
There are two basic themes to this chapter. One is the differences in 
the behavior of pseudo-BLPs when interpolating (predicting at locations 
"surrounded" by observations) and extrapolating (predicting at locations 
outside the range of observations). The second is the lack of sensitivity of 
predictions to misspecifications in the spectrum at low frequencies when 
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neighboring observations are highly correlated. In addition, there is an 
important interaction between these themes: the low frequency behavior 
of the spectrum matters much less when interpolating than extrapolating. 
These findings imply that when interpolation is the goal, the focus in model 
selection and estimation of spectra should be on high frequency behavior. 

3.2 Finite sample results 

There are some theoretical results we can give on the ratios in (1) and 
(2) that do not require asymptotic arguments nor specific considerations of 
the observation locations. Let us first review some relevant definitions on 
Hilbert spaces and random fields. Suppose Z is a real-valued random field 
on a closed set R C ]Rd possessing second-order structure (m, K) with m 
continuous on R and K continuous on R x R. Let 1t~ be the real linear 
manifold of random variables Z(x) for x E Rand 1tR(m, K) the closure of 
1t~ with respect to the inner product defined by E(hIh2) for hI and h2 in 
1t~. For hI, h2 E 1tR(m, K), define mean and covariance operators m and 
K such that Ehi = m(hl ) and cov(hl , h2) = K(hl , h2). Thus, we use K 
(and m) to indicate both a function and an operator, the meaning being 
apparent from context. For example, K (Z(x), Z(y)) = K(x, y), where K 
is an operator on 1tR(m, K) x 1tR(m, K) on the left side of the expression 
and K is a function on R x R on the right side. 
Suppose 

O . f E I h2 E I h2 b 
< a = ill E h 2 $ sup E h 2 = < 00. 

hE'H~ 0 hE'H~ 0 
(3) 

Then, as sets, 1tR(mO, Ko) = 1tR(mt, Kd, so call this set 1tR. The con­
dition (3) simplifies matters because now there is no need to worry about, 
say, a BLP under 1tR(mo, Ko) not being an element of 1tR(ml, Kd. One 
situation where (3) holds is if R = ]Rd, mo = mi and Ko and KI are auto­
covariance functions with corresponding spectral densities fo and It such 
that fo/ It is bounded away from 0 and 00. 
Under (3), we can give some simple bounds on the effects of using the 
wrong second-order structure. Define ej(h, Q) to be the error of the BLP 
of h E 1tR based on observing Z on Q and let 1t-Q be those elements h 
of 1tR for which Eoeo(h, Q)2 > O. Equation (3) implies a simple bound for 
the ratio in (2) on assessing mses of pseudo-BLPs: 

E Iel(h,Q)2 E Iel(h,Q)2 b 
a < inf < sup < . 

hE'H_Q EOel (h, Q)2 - hE'H_Q EOel (h, Q)2 -
(4) 

It is not possible to sharpen these bounds without further assumption. 
Under (3), it is possible to show that Eoeo(h, Q)2 = 0 if and only if 
Eoeo(h,Q)2 = EIeo(h,Q)2 = EIel(h,Q)2 = Eoel(h,Q)2 = 0 (Exercise 
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1). Thus, the restriction to 1t-Q is not a significant one. Cleveland (1971) 
obtains a more interesting bound for the ratio in (1) on the efficiency of 
pseudo-BLPs. 

Theorem 1. If rno = ml = 0 and (3) holds, then for all h E 1t_Q' 

(5) 

PROOF. Following Cleveland (1971), let Pj , j = 0,1, be the operator 
that maps h into its BLP under K j based on 1tQ. We can then call P j an 
orthogonal projection operator, since Pjh is the unique element of1tQ such 
that h - Pjh is orthogonal to all elements of 1tQ under the inner product 
defined by K j . For h E 1t-Q' if Poh = Plh, (5) trivially holds, so assume 
from now on that Poh i- Plh. In this proof and subsequently, I use ej to 
denote ej(h, Q) when it is clear what is being predicted and what are the 
observations. Define z = Pleo, which is not 0 when Poh i- Plh. Let R j be 
the orthogonal projection operator onto the space spanned by z under the 
inner product K j . Then Rleo = {Kl(Pleo,eo)/Kl(Pleo, Pleo)}Pleo = 
PleO, so eo - Rleo = h - Plh. Furthermore, Ko(eo, z) = 0, so Roeo = 0 
and hence eo - Roeo = h - Poh. It follows that there is no loss in generality 
in taking the prediction space to be one-dimensional, h orthogonal to the 
prediction space under Ko and Ko(h, h) = 1. Let 9 be a basis for the 
prediction space with Ko(g,g) = 1 and S be the space spanned by 9 and 
h. By (3), we can choose a basis Sl, S2 for S so that for v = VlSl + V2S2, 
where Vl,V2 are scalars, Ko(v,v) = vr + v~, Kl(v,v) = thvr + ,82v~ and 
a ~,81 ~,82 ~ b. Let h = hls l +h2s2, 9 = glSl +g2S2, where gl,g2,h l and 
h2 are scalars, and now take Pj to be orthogonal projection onto the space 
spanned by 9 under inner product K j , so Plh = {Kl(h,g)/Kl(g,g)}g. 
Then Poh = 0, Eo(h - POh)2 = 1 and by (1) 

Eo(h - Pl h)2 
Eo(h - Poh)2 

= 1 + E O(P l h)2 

= 1 + {Kl(h,9)}2 
K l (g,9) 

_ 1 + {,8lh19l + ,82h292}2 
- ,8lgr + ,82g~ 

,8tgr(gt + hn + ,8~g~(g~ + h~) + 2,8l,82glg2(hl h2 + 9192) 
(,8lgr + ,82g~)2 

From Ko(g, g) = Ko(h, h) = 1 and Ko(g, h) = 0, we get gr + hr = 1, 
g~ + h~ = 1 and glg2 + hlh2 = 0 (draw a picture of two orthogonal unit 
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vectors in 1~.2 to see this), so 

Eo(h - P1 h)2 _ {3~g~ + {3~g~ 
Eo(h - POh)2 - ({31g~ + {32g~)2 

which can be verified by calculus, or as a consequence of Kantorovich's 
inequality (Rao 1973, p. 74). Then Theorem 1 follows from a ::; {31 ::; {32 ::; b 
and the fact that ({32 - (31)2/(4(31{32) is increasing as {32 increases or as {31 
decreases on the region 0 < {31 < {32. Cleveland (1971) further shows that 
this bound cannot be sharpened without adding restrictions on the space 
of predictors. 0 

The fact that b - a is squared on the right side of (5) is worth noting. 
Specifically, suppose a = 1 + E1 and b = 1 + E2, where both E1 and E2 
are small, so that all variances are only slightly misspecified under (0, K 1 ). 

Then the right side of (5) is approximately 1 + HE2 - (1)2. For example, 
if -E1 = E2 = E, then 1 + HE2 - Et}2 = 1 + E2, which is much nearer to 1 
than either a = 1 -E or b = 1 + E, the bounds in (4). Thus, we see that 
slight misspecifications of the model can potentially have a much larger 
effect on the evaluation of mses of pseudo-BLPs than on the efficiency of 
the pseudo-BLPs. 
One other simple finite sample result we can give is that if Eoh2 ~ E1h2 
for all hE 'HR, then E1e~ ::; E1e~ ::; Eoe~ ::; Eoe~. Consequently, 

Eoe~ Eoe~ 1 
--2~--2~ , 
E 1e1 Eoeo 

(6) 

so that if variances under K1 are always smaller than under the correct K o, 
the effect of this misspecification is greater on the evaluation of the mse 
than on the efficiency of the prediction. There does not appear to be any 
comparable result when K1 always gives larger variances than under Ko. 
Both (6) and the comparison of the inequalities in (4) and (5) provide 

some support for the general notion that misspecifying the covariance struc­
ture of a random field has a greater impact on evaluating mses than on 
efficiency of point predictions, which has been noted as an empirical find­
ing by Starks and Sparks (1987). Many of the examples and much of the 
asymptotic theory in the rest of this chapter also support this finding. 

Exercise 

1 Assuming (3) holds, show that Eoeo(h, Q)2 = 0 if and only if 
Eoeo(h, Q)2 = E1eo(h, Q)2 = E 1e1 (h, Q)2 = EOe1 (h, Q)2 = O. 

3.3 The role of asymptotics 

Asymptotic methods provide powerful tools for obtaining approximate re­
sults in mathematics and statistics. The most common way to employ 
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asymptotics in statistics is to consider what happens as the number of 
observations increases. A key question is exactly how this should be done 
when studying prediction problems for random fields. For someone with 
a background in statistics, especially in time series analysis, a natural 
approach would be to let the observation region grow with the number 
of observations so that the distance between neighboring observations re­
mains at least roughly constant. This approach was taken for predicting 
area averages of random fields by Quenouille (1949), Matern (1960) and 
Dalenius, Hajek and Zubrzycki (1961). A numerical analyst, on the other 
hand, would more likely consider what happens as the number of obser­
vations within a fixed and bounded observation region increases so that 
the distance between neighboring observations tends to 0 (Novak 1988; 
Traub, Wasilkowski and Wozniakowski 1988). Although studying a prob­
lem from more than one perspective is generally a good idea, I believe that 
the numerical analyst's asymptotic approach is by far more informative for 
interpolation problems and is the approach I take here. I call asymptotics 
based on a growing observation region increasing-domain asymptotics and 
that based on increasingly dense observations in a fixed and bounded region 
fixed-domain asymptotics. Cressie (1993) uses the term "infill asymptotics" 
for this second concept. 
A natural argument for using different asymptotics in spatial settings 
than in time series is the directional nature of time. That is, since it is not 
possible to go back in time, it does not make sense to think about taking 
more and more observations in a fixed interval of time. On the other hand, 
in a fixed region of space, it is possible, at least in principle, to take more 
and more observations in that region of space as long as the process does 
not vary over time. However, I feel this argument is slightly off the mark. 
For any given problem we have a given sample size from which we wish to 
make predictions. We use asymptotics not because we actually plan to take 
more and more observations but because we hope the approximations we 
obtain will be useful for the specific problem at hand. Thus, the fact that 
we could conceivably take more observations in our fixed region of space is 
irrelevant to drawing inferences from our given set of observations. 
The directionality of time is related to the differences in appropriate 
asymptotics for temporal and spatial problems, but not, I believe, through 
the observation sequences that are physically possible. Rather, the differ­
ence is due to the types of predictions we are likely to want to make in 
the two settings. In time series, we usually want to predict the future, or 
extrapolate. In spatial settings, we usually want to interpolate: predict the 
process at a location that is, roughly speaking, surrounded by observations. 
After all, if we wanted to predict a spatial process in some region, we would 
take observations in that region and not some nearby region unless there 
were some physical impediment to doing so. 
One reasonable expectation about the behavior of a good interpolant of 

a process Z at Xo is that it should depend mainly on observations near Xo. 
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It follows that for a weakly stationary process, the behavior near the origin 
of the auto covariance function is critical for interpolation. It turns out that 
it is slightly more accurate to focus on the high frequency behavior of the 
spectrum, although, as described in 2.6 and 2.8, the two are closely related. 
A corollary of sorts of this consideration is that the low frequency behavior 
of the spectrum should have little effect on interpolation. The results in the 
rest of this chapter provide support for this notion. Furthermore, the results 
show that focusing on the high frequency behavior works much better when 
interpolating than extrapolating. 

3.4 Behavior of prediction errors in the frequency 
domain 

Suppose Z is a mean 0 weakly stationary random field with spectrum F 
and spectral representation Z(x) = IR.d exp(iwT x)M(dw). We can gain 
some insight into prediction problems by studying the spectral representa­
tion of prediction errors. Recall from 2.6 that £R.d(F) is the closed linear 
manifold of the functions exp(iwT x) for x E JRd with respect to the inner 
product defined by F. For a random variable h E 1iR.d (F), let H be the cor­
responding function in £R.d(F), so that h = IR.d H(w)M(dw) and var(h) = 
IR.d IH(w)12F(dw) (see 2.5). Next, for a symmetric Borel set B, define 
ZB(X) = IB exp(iwT x)M(dw), the random field obtained by filtering out 
frequencies not in B. Taking B symmetric makes Z B real whenever Z is 
real. Defining hB = IB H(w)M(dw), we get var(hB) = IB IH(w)12 F(dw). 
Then we may reasonably call 

var(hB) _ IB IH(w)12F(dw) 
var(h) - IR.d IH(w)12F(dw) 

(7) 

the fraction of the variance of h attributable to the set of frequencies B. 
This section examines how (7) behaves for prediction errors in some simple 
interpolation and extrapolation problems on JR. 

Some examples 

As a first example, suppose f(w) = (1 + W 2 )-1 so that K(t) = 71'e- 1tl . 
Consider the extrapolation problem of predicting Z(O) based on Z( -c5) for 
some c5 > O. The BLP of Z(O) is e-li Z( -c5) with mse 71'(1 - e-2li ) and the 
BLP is unchanged if further observations are added at locations less than 
-c5, which follows by noting cov{Z(t) , Z(O) _e-li Z( -c5)} = 0 for all t < -c5. 
The prediction error is Z(O) - e- li Z( -c5) and the corresponding function 
in £R.d(F) is Vli(W) = 1- e-(l+iw)li, so that 

IVli(W)1 2 = 2e-li(coshc5 - coswc5). 
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If To is a positive function of 6 and 6To - 0 as 6 ! 0, then 

J~~61V6(w)12(1 + w2)-ldw 6Tfj 

J~co 1V6(w)12(1 +W2)-ldw rv-;-
(8) 

as 6 ! 0 (Exercise 2). Thus, even if To is large, as long as 6Tfj is small, only 
a small fraction of the variance of the prediction error is attributable to 
the frequencies [-To, To]. 
For the same spectral density, now consider the interpolation problem of 

predicting Z(O) based on Z(6) and Z(-6). The BLP is ~sech(6){Z(6) + 
Z( -6)} and the mse is 7l"tanh(6) (Exercise 3). Moreover, these results are 
unaffected by taking additional observations outside [-6,6] (Exercise 3). 
In this case, the function corresponding to the prediction error is Vo(w) = 

1- sech(6)cos(w6). Thus, !Vo(w)j2 = 4sech2(6) {sin2(!6w) +sinh2(~6)}2 
and if To is positive and 6Tfj - 0 as 6 ! 0, then 

as 6 ! 0 (Exercise 4). For 6Tfj small, the fraction of the variance of the 
prediction error attributable to [-Tfj, Tfj] is much smaller than for the 
extrapolation problem. 
As a second example, let us consider a smoother process: f(w) = (2 + 

w2)-2 so that K(t) = 2-3/ 27l"exp(-21/2Itj) (1 + 21/2Itl). For an extrapola­
tion problem, consider predicting Z(O) based on Z( -6j) for j = 1, ... , 10. 
Taking B = [-T, T], Table 1 gives values of (7) for various values of T 
and 6. It appears that for 6T not too large, (7) is very nearly proportional 
to 6T, which is also what happened for the previous spectral density. For 
the corresponding interpolation problem, predict Z(O) based on Z(6j) for 
j = ±1, ... , ±1O. For fixed T, it now appears that (7) is proportional 
to 65 for 6 sufficiently small, whereas (7) was proportional to 63 when 
f(w) = (1 + W2)-1. 

For both spectral densities, whether extrapolating or interpolating, the 
fraction of variance of the prediction error attributable to the frequency 
band [-T, T] is small when 6 and 6T are small. However, when extrapo­
lating, the rate of convergence appears to be linear in 6 regardless of the 
smoothness of the process, and when interpolating, it is of order 63 for the 
rougher process and appears to be of order 65 for the smoother process as 
long as T is not too large. These results suggest that optimal interpolations 
are only weakly affected by the low frequency behavior of the spectrum, 
particularly for smoother processes. We return to this problem in greater 
generality in 3.5. 
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Relationship to filtering theory 

Christakos (1992), following up on some discussion in Carr (1990), notes 
that the prediction error process can be viewed as a high-pass filter of sorts. 
More specifically, he considers best linear unbiased prediction of Z (xo) 
based on observations Z(xd, ... , Z(x n ) when EZ(x) = ,8Tm (x) and m 
contains a constant function as a component. In this case, if L~=1 AiZ(Xi) 
is the BLUP of Z(xo), then setting AO = -1, the prediction error is 
L~=o AiZ(Xi) with L~=o Ai = O. Since a BLUP is generally expected to 
depend mainly on those observations near the predict and Z(xo), the error 
of the BLUP is, roughly speaking, a local difference operator and hence 
behaves like a high-pass filter (Schowengerdt 1983). Neither Christakos 
(1992) nor Carr (1990) provide any quantitative theory supporting this 
viewpoint. The results in this chapter and in Stein (1999) show that it is 
possible to provide such a quantitative theory. Note that we are consider­
ing simple kriging prediction here, for which L~=o Ai = 0 generally does 
not hold. Nevertheless, under appropriate conditions, the prediction error 
process still has most of its variation attributable to the high frequency 
components of Z. 

Exercises 

2 Verify (8). 

3 Show that if f(w) = (1 + W 2 )-I, then the BLP of Z(O) based on 
Z(8) and Z(-8) is ~sech(8){Z(8)+Z(-8)} with mse 7rtanh(8). In 
addition, show that these results are unaffected by taking additional 
observations outside [-8, 8J. 

4 Verify (9). 

5 Produce results similar to those in Table 1 for f(w) = (3 +w2)-3. 

TABLE 1. Values of (7) for B = [-T, T] with few) = (2 +W2)-2 when predicting 
Z(O) based on Z( -6j) for j = 1, ... ,10 (extrapolation) and based on Z(6j) for 
j = ±1, ... , ±1O (interpolation). 

Extrapolation Interpolation 
.l..T 
211" 8 = 0.05 8 = 0.1 8 = 0.05 8 = 0.1 

0.1 0.0100 0.0200 1.99 x 10-8 6.31 X 10-7 

0.2 0.0200 0.0400 5.75 x 10-8 1.83 X 10-6 

0.5 0.0500 0.100 7.95 x 10-7 2.53 X 10-5 

1 0.100 0.200 1.60 x 10-5 5.10 X 10-4 

2 0.200 0.400 4.52 x 10-4 1.43 X 10-2 

5 0.499 0.913 4.20 x 10-2 7.68 X 10-1 
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TABLE 2. Interpolating with an incorrect model. Observations at ±8j for j = 
1, ... ,2/8 and predict at o. 

Case 1: mo = mi = 0, Ko(t) = e-1tl , 

8 Eoe~ EoeVEoe~ - 1 

0.2 0.19738 0.0129 
0.1 0.09967 0.0020 
0.05 0.04996 0.00026 

Case 2: mo = mi = 0, Ko(t) = e-1tl (1 + It!), 

8 

0.2 
0.1 
0.05 

Eoe~ 

2.1989 x 10-3 
2.7771 X 10-4 

3.4804 X 10-5 

EoeVEoe~ -1 

2.9 x 10-3 
1.5 X 10-4 

8.3 X 10-6 

Ki(t) = ~e-2Itl 

Eiei/Eoe~ -1 

-0.0498 
-0.0118 
-0.0028 

Ki(t) = ~e-2Itl(1 + 21tl) 

Eiei/Eoe~ -1 

-0.0432 
-0.0104 
-0.0026 

3.5 Prediction with the wrong spectral density 

If the low frequencies of the spectrum contribute little to the variance of 
prediction errors, we might then expect that misspecifying the spectrum at 
low frequencies would have little impact on the predictions. This is in fact 
the case as the rest of this chapter shows. 

Examples of interpolation 

Suppose we observe a stationary process Z at 8j for j = ±1, ... , ±n and 
wish to predict Z(O). Furthermore, let (mo, Ko) be the correct second­
order structure and (mi' Kd the presumed second-order structure. Table 2 
gives results for 8 = 0.2,0.1 and 0.05, n = 2/8 and two different pairs of 
autocovariance functions. 
The first case compares Ko(t) = e- 1tl with Ki(t) = ~e-2Itl, for which 
it is possible to give analytic answers (Exercise 6). For now, just consider 
the numerical results in Table 2. Note that the values of Eoei/ Eoe~ and 
Ei ei/ Eoe~ are both near 1, especially for smaller 8, despite the fact that 
a superficial look at Ko and Ki suggests the two autocovariance functions 
are rather different; after all, Ko(O) = 1 and Ki(O) = ~. It is helpful 
to consider series expansions in powers of It I of the two functions about 
the origin: Ko(t) = 1 -It I + ~t2 + 0 (ItI3) and Ki(t) = ~ - It I + t2 + 
o (ItI3). We see that -It I is a principal irregular term for both functions. 
The fact that the power of the principal irregular term is 1 for both Ko 
and Ki is the key factor in making Eoei/ Eoe~ near 1 for 8 small. The 
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additional fact that the coefficient of the principal irregular term is -1 for 
both models is what makes EleV Eoe~ near 1 for 8 small. So, for example, 
if we had Ko(t) = e- Itl and K2(t) = e- 2Itl , then EoeV Eoe~ = EoeV Eoe~ 
but E2e~/ Eoe~ = 2EleV Eoe~ so that the values of E2e~/ Eoe~ are near 2 
for 8 small, despite the fact that we now have Ko(O) = K 2(0) = 1. We can 
also see the similarities of the autocovariance functions Ki(t) = aile-ailtl 
with ao = 1 and al = 2 through the spectral densities: the spectral density 
Ii corresponding to Ki is li(W) = l/{7r(a~ +w2)} = 7r- 1W-2{1- a~w-2 + 
O(w-4 )} as W -t 00. Thus, for i = 0, 1, li(W) '" 7r- 1W-2 as W -t 00. 
The second pair of second-order structures presented in Table 2 is 

rno = rnl = 0, Ko(t) = e- ltl(l + It I) and Kl(t) = ke-2Itl(1 + 21tl). Here we 
see that EoeV Eoe~ is extremely close to 1, especially for smaller 8 and that 
EleVEoe~ is quite close to 1, although not nearly as close as EoeVEoe~. 
Again, the results support the notion that misspecifying the autocovari­
ance function mainly affects the evaluation of mses. To see why these two 
auto covariance functions should yield similar linear predictions and assess­
ments of mses, note that Ko(t) = 1 -~t2 + !ltl3 - kt4 + 0 (ItI5) and 
Kl (t) = k -tt2 +! Itl3 - tt4 + 0 (ItI5). For both auto covariance functions, 
! Itl3 is a principal irregular term. Comparing the models in the spectral 
domain, the spectral densities both are of the form 2/(7rw4 ) + O(w-6 ) as 
W -t 00, so that the similar high frequency behavior for the two models is 
readily apparent. 

An example with a triangular autocovariance function 

Before we conclude that it is always sufficient to find a principal irregular 
term of an auto covariance function to determine the approximate prop­
erties of linear predictors as observations get dense, consider the pair of 
autocovariance functions: Ko(t) = e- Itl and the triangular auto covariance 
function Kl(t) = (l-ltI)+. Both are of the form 1 -It I + O(t2) as t -t 0, 
so they correspond to processes with similar local behavior. Suppose we 
observe Z(j/n) for j = ±1, ... , ±n and wish to predict Z(O). The BLP 
(assuming rno = ml = 0) under Ko is given in Exercise 3 of 3.3 and 
depends only on Z(l/n) and Z( -l/n). The BLP under Kl is 

n+1 
- -- {Z(l) + Z(-l)} 

4n+1 
(10) 

(Exercise 7). The fact that for all n, Z{±l) and Z{±{n-1)/n) appear in the 
BLP, whereas Z(±2/n), ... , Z(±(n-2)/n) do not, should seem strange, but 
it is a consequence of the lack of differentiability of Kl at 1. Furthermore, 
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the role of these relatively distant observations is not negligible, since 

as n ---4 00, whereas the mse of the BLP under Kl is asymptotically ~n-1 
(Exercise 7). To compare BLPs under the two models, let ej(n) be the pre­
diction error using K j and observations Z(±k/n) for k = 1, ... , n. Then 
as n ---4 00, Eoeo(n)2 '" n-1, E1eo(n)2 '" n-l, E1e1(n)2 '" ~n-1 and 
EOe1 (n)2 '" ~n-1 (Exercise 7). Thus, even asymptotically, there are non­
negligible differences between both the actual and presumed performances 
of the linear predictors under the two models. Note though, that if one uses 
Ko when K1 is the truth, the presumed mse is asymptotically correct; that 
is, Eoeo(n)2 / E1eo(n)2 ---4 1 as n ---4 00. 
The corresponding spectral densities for this situation are fo(w) = 

71"-1(1 + W 2 )-1 and It(w) = 71"-1(1 - cosw)/w2 , so that It(w)/fo(w) = 
(1 - cosw){1 + O(w-2 )} as w ---4 00, whereas in the previous two cases, 
It (w)/ fo(w) converged to 1 as w ---4 00. It is instructive to look at the func­
tions corresponding to the prediction errors in this last example. Letting ej 
be the function corresponding to ej, Figure 1 plots lej(w)12 for j = 0, 1 and 
n = 5. Now 1t(271"k) = 0 for all nonzero integers k, so that e1 has a smaller 
mse than eo under It because leI (w W partially matches the oscillations in 
It, being small when It(w) is large and vice versa. 
This example shows that under fixed-domain asymptotics, it is not 
always the case that two autocovariance functions sharing a common prin­
cipal irregular term yield asymptotically the same BLPs. However, it is 
still possible that two spectral densities behaving similarly at high frequen-

8.------------------------------------------, 

6 

2 

O+---~~_r--=---_,--------,_--~~_r--=---~ 

o 271" 471" 671" 871" 1071" 
w 

FIGURE 1. For the prediction problem described in this subsection with n = 5, 
plots of leo(wW (dashed line) and Ie! (wW (solid line) as functions of w. Dotted 
vertical lines indicate zeroes of h. 
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cies give asymptotically the same BLPs. Indeed, Theorem 10 in Chapter 4 
comes very close to proving such a result. 

More criticism of Gaussian autocovariance functions 

Table 3 gives results for a pair of second-order structures that yield 
startlingly different linear predictions: mo = ml = 0, Ko(t) = e- iti (1 + It!) 
and Kl(t) = e-t2 / 2 • Under Ko, the process is exactly once mean square 
differentiable and under Kl it is infinitely mean square differentiable, so 
such a result is not surprising. However, as shown in Figure 1 of 2.7, plots of 
the auto covariance functions give no obvious sign of the radically different 
natures of the two models. Consider predicting Z(O) based on observing 
Z(±8j) for j = 1, ... , n. If Ko is the truth, then the mse of the BLP goes 
down with 8 but is essentially the same for all n ~ 5. If Kl is the truth, 
then the mse of the BLP goes down sharply with 8 and furthermore, can go 
down substantially as n increases. In particular, for 8 = 0.4, the mse goes 
from 1.72 x 10-9 to 4.79 X 10- 11 when n is increased from 10 to 20. This 
decrease occurs despite the fact that the added observations at ±8j for 
j = 11, ... ,20 have correlation of at most 6.25 x 10-5 with the predict and 
Z(O). Using results in 3.6, it is possible to show via numerical integration 
that when predicting Z(O) based on observations at 0.4j for all nonzero 
integers j, the mse is 1.94 x 10-11 , which is in turn quite a bit smaller than 
4.79 x 10- 11 , the mse when Z(O.4j) is observed for 0 < Ijl::; 20. 
Next, consider what happens if Ko is the truth but Kl is presumed to be 
the auto covariance function for Z. The ratio of mses, EoeU Eoe~, ranges 
from 1.48 to 3.76 and increases as 8 decreases and n increases. The ratio of 
the presumed and actual mses of the pseudo-BLP, EleUEoe~, ranges from 
0.171 down to 7.53 x 10-10 , decreasing sharply with 8 but also decreasing 
robustly as n increases when 8 is small. Thus, by acting as if Kl were the 

TABLE 3. Predicting Z(O) based on Z(±6j) for j = 1, ... ,n with mo = ml = 0, 
Ko(t) = e-1tl (1 + It!) and Kl (t) = e- t2 /2. 

8 n Eoe~ Eoe~ Ele~ Ele~ 

0.8 5 0.115 0.170 2.90 x 10-2 7.42 X 10-2 

10 0.115 0.207 2.51 x 10-2 7.42 X 10-2 

20 0.115 0.212 2.49 x 10-2 7.42 X 10-2 

0.6 5 0.0532 0.0786 6.19 X 10-4 1.11 X 10-2 

10 0.0532 0.128 1.94 X 10-4 1.11 X 10-2 

20 0.0532 0.172 1.55 X 10-4 1.11 X 10-2 

0.4 5 0.0169 0.0211 4.81 X 10-7 5.28 X 10-4 

10 0.0169 0.0328 1.72 X 10-9 5.30 X 10-4 

20 0.0169 0.0636 4.79 X 10-11 5.30 X 10-4 
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truth when Ko was correct, our predictions will not be all that bad but 
we may be wildly overoptimistic about their mses. On the other hand, if 
K 1 is correct but Ko is presumed to be the auto covariance function of Z, 
our predictions are severely inefficient for small {j but at least our presumed 
mses are badly conservative, which is usually a more tolerable mistake than 
being badly overoptimistic. 
I strongly recommend not using auto covariance functions of the form 

Ce-at2 to model physical processes. If the discussion of the theoretical 
properties in 2.7 does not convince you of this, the mse of 4.79 x 10-11 in 
Table 3 for predicting Z(O) when observing Z(O.4j) for j = ±1, ... ,±20 
should. Considering that var{Z(O)} = 1 and that the maximum correlation 
between Z(O) and the observations is e-o.42 / 2 = 0.923, this mse is implau­
sibly small for any physical process. Unfortunately, a number of books on 
geostatistics (Carr 1995; Christakos 1992; Isaaks and Srivastava 1989; Jour­
nel and Huijbregts 1978; and Kitanidis 1997) suggest Ce- at2 as a sensible 
example of an auto covariance function for a mean square differentiable pro­
cess. Furthermore, the Gaussian model is the only model for differentiable 
processes available for fitting semivariograms to spatial data in SAS (SAS 
Institute, Inc. 1997, p. 626), S+SPATIALSTATS (Kaluzny, Vega, Cardoso 
and Shelly 1998, p. 91) and VARIOWIN (Pannetier 1996, p. 50). Goovaerts 
(1997) does recognize some of the serious problems with this model but does 
not give any alternative models for mean square differentiable processes. 
The Matern models (Sections 2.7 and 2.10) include a parameter that con­
trols the differentiability of the process and I recommend their adoption as 
an alternative to Ce-at2 as a model for differentiable processes. 

Examples of extrapolation 

Let us next reconsider the two pairs of auto covariance functions in Ta­
ble 2 when there are only observations on one side of 0 so that we 
are extrapolating rather than interpolating. Table 4 compares these two 
pairs of second-order structures for predicting Z(O) based on Z( -oj), 
j = 1,2, ... ,2/6. For the first case mo = ml = 0, Ko(t) = e-/t / and 
Kl(t) = ~e-2/t/, we see again that EoeVEoe~ and EleVEoe~ are both 
near 1, especially for {j small. However, these ratios are not as close to 1 as 
in the interpolation case, particularly so for EoeV Eoe~. Exercise 6 gives an­
alytic results for this problem. Note that the prediction problem itself is not 
all that much easier in the interpolation case, since, as 6 1 0, Eoe~ rv 6 when 
interpolating and Eoe~ rv 26 when extrapolating. What is true is that if we 
use the model K(t) = a-1e-a /t /, or equivalently, f(w) = 1/{1r(o? + w2 )}, 

the value of a is much less critical when interpolating than extrapolating. 
The difference between the extrapolation and interpolation problems is 
more dramatic for the second pair of second-order structures with mo = 

ml = 0, Ko(t) = e-/t / (1 + It!) and Kl(t) = ge-2/t/ (1 + 2Itl). Table 4 shows 
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TABLE 4. Extrapolating with an incorrect model. Observations at -8j for j == 
1, ... ,2/8 and predict at O. 

Case 1: mo = ml = 0, Ko(t) = e- 1tl , Kl(t) = !e-2Itl 

8 Eoe~ EoeVEoe~ -1 EleVEoe~ -1 

0.2 0.3297 0.067 -0.217 
0.1 0.1813 0.041 -0.126 
0.05 0.0952 0.023 -0.069 

Case 2: mo = ml = 0, Ko(t) = e-1tl (1 + ltD, Kl(t) = le-2Itl (1 + 21tl) 

8 Eoe~ EoeVEoe~ -1 EleVEoe~ -1 

0.2 1.35 x 10-2 0.392 -0.506 
0.1 2.04 x 10-3 0.251 -0.341 
0.05 2.82 x 10-4 0.143 -0.207 

that the values of EoeV Eoe~ and El eV Eoe~ are not nearly as close to 1 
when extrapolating as when interpolating. 
Let us look more carefully at the transition between interpolation and 

extrapolation. More specifically, consider what happens when there are 
observations at -j/20 for j = 1, ... ,20 and at j /20 for j = 1, ... ,p for var­
ious values of p. For the exponential auto covariance functions a-le-altl, 
the transition is immediate: for all p ~ 1, we get the same results as in 
Table 2. Table 5 shows that the transition is more gradual for the second 
case in Tables 2 and 4. We see that once p = 2, the mse of the optimal 
predictor does not change much by adding further observations. The ef­
fect on the misspecification of the mse of the pseudo-BLP as measured by 
E1eV Eoe~ -1 settles down at around p = 3. However, the loss of efficiency 
in using the pseudo-BLP as measured by EoeV Eoe~ -1 drops dramatically 
with every increase in p up through p = 5. Thus, we see that a prediction 
location may need to be quite far from the boundary of the observation 
region to be fully in the "interpolation" setting. 

Pseudo-BLPs with spectral densities misspecijied at high 
frequencies 

Let us next consider some pairs of spectral densities that both decay al­
gebraically at high frequencies but at different rates. Tables 6 and 7 show 
numerical results comparing extrapolation and interpolation. Specifically, 
consider predicting Z(O) based on observations at 8j for j = -2/8, ... ,-1 
for the extrapolation case and j = ±1, ... ,±2/8 for the interpolation case. 
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TABLE 5. The transition from extrapolation to interpolation. Observe Z(0.05j) 
for j = -20, ... , -1 and j = 1, ... ,p and predict Z(O) for mo = ml = 0, Ko(t) = 
e- 1tl (1 + It!) and Kl (t) =:: ~e-2Itl (1 + 2It!). 

p Eoe~ EoeUEoe~ -1 E1eUEoe~ - 1 

0 2.815599 X 10-4 1.427 X 10-1 -2.069 X 10-1 

1 4.930707 X 10-5 3.398 X 10-2 -5.778 X 10-2 

2 3.555431 X 10-5 1.891 X 10-3 -5.786 X 10-3 

3 3.485779 X 10-5 1.219 X 10-4 -2.798 X 10-3 

4 3.480768 X 10-5 2.183 X 10-5 -2.611 X 10-3 

5 3.480417 X 10-5 7.901 X 10-6 -2.591 X 10-3 

6 3.480392 X 10-5 8.644 X 10-6 -2.591 X 10-3 

20 3.480390 X 10-5 8.317 X 10-6 -2.591 X 10-3 

The spectral densities used are C(K)(K + w2)-1< for K = 1, 2 and 3, where 
C(K) is chosen to make var{Z(O)} = 1. Values for 8 of 0.2, 0.1 and 0.05 
are considered. For all of these examples, no matter what the value of 8 
and what two values of v correspond to the true and presumed spectral 
densities, EoeU Eoe~ is larger when extrapolating than interpolating, par­
ticularly so for smaller 8. (It is not true that BoeU Eoe~ is always larger 
when extrapolating; see Exercise 11 in 3.6 for an example.) Another ap­
parent pattern is that the penalty due to using the wrong spectral density 
is smaller if the presumed spectral density decays more quickly at high fre­
quencies than the actual spectral density rather than the other way around. 
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FIGURE 2. Plots of auto covariance functions used in Tables 6 and 7. Solid line 
corresponds to K = 1, dashed line to K = 2 and dotted line to K = 3. 
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The reader is strongly encouraged to try other examples of pairs of 
second-order structures and other locations of observations and predic­
tands, including two-dimensional examples, to gain a better understanding 
of how changing second-order structures affects linear predictions. When 
using the autocovariance function e- t2 /2, numerical instabilities may limit 
the examples one can consider. The problem is that for even a moderate 
number of observations close together, this autocovariance function im­
plies that certain linear combinations of the observations have extremely 
small variance, so that the covariance matrix of the observations is nearly 
singular. That is why the smallest value for 6 in Table 3 is 0.4. 

TABLE 6. Mean squared errors for predicting Z{O) based on Z{6j) for j = 
1, ... ,2/6 (extrapolation) and based on Z{±Oj) for j = 1, ... ,2/6 (interpolation) 
under three spectral densities and for 6 = 0.2, 0.1 and 0.05. The three spectral 
densities are f{w) = c{It){1t + w2 )-tt for It = 1,2,3, where c{lt) is chosen to make 
var{Z{O)} = 1. See Figure 2 for plots of the autocovariance functions. 

Presumed value of K 

True K 1 2 3 6 
Extrapolation 

1 0.3295 0.653 1.999 0.2 
0.1813 0.417 1.572 0.1 
0.0952 0.238 1.002 0.05 

2 8.72 x 10-2 3.25 X 10-2 5.59 X 10-2 0.2 
2.55 x 10-2 5.33 X 10-3 1.09 X 10-2 0.1 
6.92 x 10-3 7.65 X 10-4 1.74 X 10-3 0.05 

3 6.48 x 10-2 8.75 X 10-3 4.39 X 10-3 0.2 
1.80 x 10-2 7.58 X 10-4 2.24 X 10-4 0.1 
4.75 x 10-3 5.59 X 10-5 9.02 X 10-6 0.05 

Interpolation 

1 0.1974 0.2483 0.3195 0.2 
0.0997 0.1256 0.1620 0.1 
0.0500 0.0630 0.0813 0.05 

2 1.23 x 10-2 6.13 X 10-3 6.79 X 10-3 0.2 
1.71 x 10-3 7.83 X 10-4 8.68 X 10-4 0.1 
2.25 x 10-4 9.84 X 10-5 1.09 X 10-4 0.05 

3 3.40 x 10-3 2.99 X 10-4 2.43 X 10-4 0.2 
2.54 x 10-4 9.82 X 10-6 7.90 X 10-6 0.1 
1.73 x 10-5 3.11 X 10-7 2.49 X 10-7 0.05 
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Exercises 

6 For a process Z on JR, consider the two models (0, Ko) and (0, K 1 ), 

where Ki(t) = ai1e-a,ltl. If Z is observed at ±8j for j = 1, ... , n, then 
by a trivial extension of Exercise 3, the BLP of Z(O) under (0, K i ) is 

TABLE 7. Some comparisons for the results in Table 6. Unbracketed numbers in 
off-diagonal entries of the tables are ratios of the mse of the pseudo-BLP to that 
of the BLP. Numbers in angled brackets are limiting values for these ratios as 
given by Theorem 3 in 3.6. Numbers in parentheses of diagonal entries of upper 
table are ratios of mses of the BLPs under extrapolation to the mses of BLPs 
under interpolation. 

Presumed value of K, 

True K, 1 2 3 8 

Extrapolation 

1 (1.67) 1.98 6.06 0.2 
(1.82) 2.30 8.67 0.1 
(1.90) 2.50 10.53 0.05 

(2.73) (12.88) 

2 2.68 (5.30) 1.72 0.2 
4.79 (6.80) 2.05 0.1 
9.05 (7.77) 2.28 0.05 
(oo) (2.55) 

3 14.8 2.00 (18.0) 0.2 
80.5 3.38 (28.4) 0.1 
526.9 6.62 (36.2) 0.05 
(00) (00) 

Interpolation 

1 1.258 1.619 0.2 
1.260 1.626 0.1 
1.261 1.627 0.05 
(1.261) (1.628) 

2 2.00 1.107 0.2 
2.18 1.109 0.1 
2.28 1.109 0.05 
(2.39) (1.110) 

3 14.0 1.229 0.2 
32.1 1.242 0.1 
69.3 1.246 0.05 
(00) (1.248) 
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~ sech(6ai){ Z(O) + Z( -o)}. Calculate Eie; and use the result to show 
that as 0 ! 0, 

and 

so that 

and 

2 

Eie~ = 0 - i 03 + 0(04 ) 

E 2 2 2 
~ = 1 ao - a l 62 0(63) 
E 2 + 3 + . 
Oel 

If, instead, Z is observed at just -OJ for j = 1, ... ,n, the BLP of Z(O) 
under (0, K j ) is e-ajo Z(O). Show that as 0 ! 0, 

Eoe~ = 1 + (ao - at)2 0 + 0(02) and 
Eoeo 2ao 
E 2 2 2 

le~ = 1 + ao - alo + 0(02). 
Eoel 2ao 

7 Suppose Z has known mean 0 and is observed at j In for j = 
±1, ... ,±n. Verify that (10) gives the BLP for Z(O) under (0, K l ) for 
Kl(t) = (1-ltl)+. For Ko(t) = c ltl , prove that as n -t 00, Eoeo(n)2 rv 
n-t, Eleo(n)2 rv n-t, Elel(n)2 rv ~n-l and Eoel(n)2 rv ~n-l. 

8 When comparing linear predictions under two second-order structures 
with the same covariance functions, show that Eoe~ = El e~ and 
Eoe~ = Ele~, so that EoeVEoe~ = (EleVEoen- l . Thus, when only 
the mean function is misspecified, the effect on the mse due to using 
the wrong mean is the same as the effect on the evaluation of the mse. 

9 For a process Z on JR, consider the two models (mo, K) and (ml' K), 
where K(t) = a-le-altl and mi(t) == l1-i. If Z is observed at ±oj for 
j = 1, ... ,n, show that the BLP of Z(O) under (mi' K) is 

~ sech(ao) {Z(O) + Z( -o)} + l1-i{1 - sech(ao)}. 

Furthermore, show that as 0 ! 0, 

2 a2 3 4 
Eiei = 0 -"30 + 0(0 ) 

and 
4 

Eo(eo - et)2 = (11-1 - 11-0)2~ 04 + 0(05 ). 



76 3. Asymptotic Properties of Linear Predictors 

Conclude that 

Eoe~ = (EIe~) -1 = 1 + ~(J.tI _ J.to)2a483 + 0(84). 
Eoeo Eoe l 4 

Do similar asymptotic calculations when Z is observed at -8j for j = 

1, ... ,n. Compare your results for the two cases. 

10 Suppose a weakly stationary process Z on 1R has known auto covariance 
function K(t) = a-Ie-altl, unknown constant mean J.t and that Z is 
observed at -8j for j = 1, ... ,n. 

(i) Find the BLUE of J.t and the mse of this estimator. Show that 
if 8n tends to a positive constant as 8 1 0, then the mse of the 
BLUE tends to a positive constant. 

(ii) Find the BLUP or ordinary kriging predictor of Z(O). Find the 
mse of this predictor and examine its dependence on 8 and n, 
paying particular attention to small values of 8. Show that the 
BLUP is asymptotically optimal relative to the BLP (which as­
sumes J.t is known) as 8 1 0 no matter how n changes with 8 (as 
long as n > 0), despite the fact that the BLUE for J.t may not be 
consistent. 

(iii) Repeat parts (i) and (ii) when Z is observed at ±8j for j = 
1, ... ,n. Compare your results for the two cases. 

3.6 Theoretical comparison of extrapolation and 
interpolation 

The previous two sections examined the relationship between the second­
order structure and interpolating or extrapolating in some specific 
instances. This section provides a theoretical basis for supporting the con­
clusions drawn based on these examples. The approach I use is to consider 
extrapolation and interpolation based on infinite sequences of observations, 
for which there are well-known exact results on the properties of BLPs. 
More specifically, for a mean 0 weakly stationary process Z on 1R and 

some 8 > 0, this section compares predicting Z(O) based on observing 
Z(8j) for all negative integers j with predicting Z(O) based on observing 
Z (8 j) for all integers j -=I- O. The first setting corresponds to the classi­
cal extrapolation problem addressed by Kolmogorov (1941) and Wiener 
(1949) and the second is an interpolation problem whose general solution 
is given, for example, in Hannan (1970). Of course, for any given spectrum, 
the mse when interpolating must be no bigger than when extrapolating, 
so that interpolating is easier than extrapolating in this sense. However, 
as I indicated in the previous section, there is a second sense in which in­
terpolation is easier than extrapolation: the actual mse of pseudo-BLPs is 
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generally less sensitive to misspecification of the spectrum at high (see Ta­
ble 7) or low (compare Tables 2 and 4) frequencies when interpolating than 
when extrapolating. Considering what happens as 8, the spacing between 
observations, tends to 0 provides some insight into this phenomenon. 
For infinite sequences of observations, it is not appropriate to call what 
happens as 8 1 0 fixed-domain asymptotics unless we want to allow our fixed 
domain to be unbounded. However, for many prediction problems, only 
those observations relatively near the location at which we are predicting 
the process will have a nonnegligible impact on the prediction. Thus, it 
will often be the case that results for predicting Z(O) based on observing 
Z(8j) for all integers j =I- 0 with 8 small will be very similar to those based 
on observing Z(8j) for integers 0 < Ijl :::; c/8 for a positive constant c. 
Exercise 12 can be used to show this is not always the case. Whether or 
not the observation sequence is infinite, 8 1 0 does correspond to shrinking 
the distance between neighboring observations, so we might call both of 
these settings "shrinking interval" asymptotics. 
Results on prediction problems when both the observations and the pre­

dictands fall on a regular lattice are usually stated in terms of discrete 
time series observed on the integers. To see the connection between the 
spectral density of a process Z on lR and the process obtained by observing 
Z every 8 time units, suppose that Z has spectral density f and define 
Z6(j) = Z(8j), so that ZI5 is a process on Z. Then for all integers j and k, 

cov {Z6(j), ZI5(k)} = 1: exp{iw8(j - k)}f(w)dw 

17r / 6 00 

= -7r/15 exp{ iw8(j - k)} e].;oo few + 27f£8-1) dw 

= 1: exp{ iw(j - k)} j6 (w) dw, 

where 

(11) 

Thus, we can view P as the spectral density on (-7f, 7f] of the process Zti 
on Z and, indeed, weakly stationary stochastic processes on the integers 
are generally taken to have spectral distributions on (-7f, 7f]. To avoid any 
possible ambiguities, I always use a -to indicate a spectral density on 
(-7f,7f] for a process on Z. 

An interpolation problem 

Dropping the 8s for now, let Z be a mean 0 weakly stationary process on 
the integers with spectral density ion (-7f, 7f] and consider the interpola-
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tion problem of finding the BLP of Z(O) based On observing Z(j) for all 
integers j ::j= O. Since the BLP will obviously have mean 0 (Ao = 0 in the nO­
tation of 1.2), we can restrict attention to predictors with mean 0 in order 
to find the BLP. The space of linear predictors with mean 0 is equivalent 
to the closed real linear manifold £-0(1) of functions exp(iwj) On (-7f, 7f] 
for integers j ::j= 0 under the inner product defined by the spectral density 
j. The BLP of Z(O) corresponds to the function H E £-o(]) satisfying 
Drr {I - H(w)} exp( -iwj)](w)dw = 0 for all integers j ::j= O. By the com­
pleteness and orthogonality of the functions {exp(iwj)}jEZ in the space 
of square integrable functions on (-7f, 7f] (see, for example, Akhiezer and 
Glazman 1981), we must have {1-H(w)} ](w) constant almost everywhere 
on (-7f, 7f]. Suppose 111 is integrable on (-7f, 7f], so that, in particular 1 
is positive almost everywhere on (-7f, 7f]. It follows that H must be of the 
form H(w) = 1 + bl j(w) for almost every wE (-7f, 7f] for some constant b. 
But HE £-0(1) implies Drr H(w)dw = 0, so 

A 27f 
H(w) = 1 -- rr - . 

f(w) 1-rr f(II)-ldll 
(12) 

The mean square prediction error is then 47f2/ J::rr ](w)-ldw. Furthermore, 

when l(w)-l is not integrable, the mean square prediction error is 0 (Ex­
ercise 13). Hannan (1970, page 164) gives a generalization of these results 
to vector-valued time series. Defining ei to be the prediction error under 
Ii, 

2 47f2 Drr{/0(w)ll1(w)2}dw 
Eoe1 = 2 ' 

{ J::rr ]1 (W )-ldw } 
(13) 

which we need to assess the effect of using the wrong spectral density for 
prediction. 

An extrapolation problem 

Next consider the classical extrapolation problem of finding the BLP of 
Z(O) when observing Z(j) for all negative integers j. This problem is math­
ematically more difficult than the interpolation case and I only present its 
solution; details are provided in many sources including Hannan (1970), 
Priestley (1981) and Yaglom (1962). Let £_(/) be the closed real linear 
manifold of exp(iwj) for integers j < 0 with respect to the inner product 
defined by 1 and define 

(T2 = 27fexp[2~ 1: log{/(W)}dW]. 

Theorem 2 (Hannan 1970)). Suppose Z is a mean 0 process on the 
integers with spectral density 1 satisfying (T2 > O. The function in £_(1) 
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corresponding to the BLP of Z(O) based on Z(j) for j < 0 is 

00 

E a(j) exp( -iwj) 
H(w) = =-=j:=-l ____ _ 

E a(j) exp( -iwj) 
j=O 

where the a(j)s satisfy 

:c "fa(j)zj = exp{c(o) + 2 "fc(j)zj}, 
V 211" j=O j=l 

for j =f 0 and 

1 /,.. -
c(j) = -4 exp( -iwj) logf(w) dw 

11" _,.. 

a 
!<C. = exp{ c(O)}. 
V 211" 

In addition, if a2 = 0, then perfect prediction is possible. 

For our purposes, we only need this result to obtain Eoe~. Using the 
subscript k on ak, ak(j) and Ck(j) to indicate that these quantities are 
defined in terms of ik, we have 

Eoe~ = i: io(w)l~al(j)eXp(-iWj)I-2dw 
= ;! i: io(w) exp{ -2 jJ;oo C1(j) exp( -iWj)}dw 

= exp {21 r 10gil(W) dw} r ~o(w) dw, 
11" L,.. L,.. h(w) 

where the last step uses th~ fact that !he C1{j)S are the coefficients in 
the Fourier series for ~ logh. Taking h = fo recovers the well-known 
Kolmogorov formula of Eoe~ = a~. 

Asymptotics for BLPs 

Suppose Z is a mean 0 weakly stationary process on lR with spectral density 
fo (on JR) but we instead presume that h is the spectral density and we 
wish to predict Z(O). Define ei(in,6) to be the prediction error under fi 
with observations at 6j for integers j =f 0 and ei(ex, 6) the prediction error 
under fi with observations at oj for integers j < O. Suppose that for some 
a: > 1, fo(w) rv clwl-a as Iwl -+ 00 so that there exists T such that 
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~c:::; fo(w)lwl'" :::; 2c for all Iwl ~ T. Consider approximating 

{ 1 171' N(w) } Eoeo(ex,8)2 = 271'c8",-1 exp 271' -71' log c~"'-1 dJ.JJ (14) 

as 8 1 0, where R is defined as in (11) with fi in place of f. For 8 :::; 71'/T, 
we have 

-6 6T -6 -6 

1 71' log fo (w) dJ.JJ = 1 log fo (w) dJ.JJ + 171' log fo (w) 1{lwl > 8T} dJ.JJ. 
-71' C8",-1 -6T C8",-1 -71' c8",-1 

(15) 
For two functions a and b on a set T, I write a(t) « b(t) if there exists C 
finite such that la(t)1 :::; Cb(t) for all t E T. The first integral on the right 
side of (15) tends to 0 as 8 1 0, which follows from 

-6 

log fo (w) «log {1 + 8-'" fo(w/8)} 
c8",-1 

for all 8 sufficiently small. For Q: > 1, define 
00 

ry",(w) = L Iw + 271'jl-"'· (16) 
j=-oo 

The second integral on the right side of (15) converges to J.:71' logry",(w) dw 
since the integrand converges to logry",(w) for all w E (-71',71'] other than 
w = 0 and is dominated by the integrable function Ilogry",(w)l. Applying 
these results to (14) gives 

Eoeo(ex,8)2 '" 271'c8"'-1exp{~171' IOgry",(w)dJ.JJ}. (17) 
271' -71' 

Similarly (Exercise 14), 

471'2c8a - 1 
Eo eo (in, 8? "" r ()-1 . 

-71' ry", w dJ.JJ 
(18) 

Of course, the right side of (18) must be no greater than the right side of 
(17), which can be directly verified by Jensen's inequality. A less trivial 
consequence of (17) and (18) is that the mse is of order 8",-1 whether 
extrapolating or interpolating. 
We can now look at the behavior of the prediction errors in the spectral 

domain. Let F be a positive finite measure on R with density f and let 
C(F) be the class of functions square integrable with respect to F. Suppose 
Vo(w; ex) is the function in C(F) corresponding to the prediction error for 
the extrapolation problem with spacing 8 and spectral density f, so that 
Ee(ex,8)2 = J~oo IVo(w;ex)1 2f(w)dw. It follows from Theorem 2 that 

IVo(w;exW = exp{-21 171' IOgj6(V)dV}-__ 1- (19) 
71' -71' f6(8w) 
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(Exercise 15). For two positive functions a and b on some set D, write 
a(x) x b(x) if there exist positive finite constants Co and C1 such that Co ~ 
a(x)/b(x) ~ C1 for all xED. If few) x (1 + Iwl)-<>, then for Iwl < 7r6-1 , 

!V6(W; exW x 6<>(1 + Iwl)<> 

and for 0 < T < 7rO- 1 , 

J~T !V6(W; ex)12 few) dw 
Ee(ex, 0)2 x 6T (20) 

(Exercise 15). For the interpolation problem, let Vo(w; in) be the function 
in C(F) corresponding to the prediction error. From (12), 

IVo(w; in)12 = {p(ow) r.:j:(W)-ldw} 2 , 

so that if few) x (1 + Iwl)-<>, then for Iwl < 7r6-1 , 

!V6(W; in)12 x 02<>(1 + Iw1)2<> 

and for 0 < T < 7r0- 1 , 

JT IVi (w· in)12f(w) dw 
-T 6 '. x 6<>+1(T + T<>+1) 

Ee(m, 0)2 

(21) 

(22) 

(Exercise 16). Equations (20) and (22) agree with (8) and (9) in 3.4 for 
few) = (1 + W2)-1 and support the numerical results in Table 1 of 3.4 for 
few) = (2+W2)-2. For fixed T, when extrapolating, the rate of convergence 
of the fraction of the variance of the prediction error attributable to the 
frequencies [-T, TJ is linear in 0 as 6 ~ 0 irrespective of Q. In contrast, 
when interpolating, this rate of convergence is of order 6<>+1 as 0 ~ o. Thus, 
the low frequencies make much less of a contribution when interpolating, 
especially if the process is smooth. 

Inefficiency of pseudo-BLPs with misspecijied high frequency 
behavior 

Let us next look at the behavior of interpolations and extrapolations when 
the spectral density is misspecified. Define 

Eoe1(ex,0)2 
T01 (ex, 0) = E ( 0)2 oeo ex, 

- ~ ex ~ 17r 10 f1 (w) dw 17r fo (w) dw { -6}-6 
- 27r P 27r -7r g jg(w) -7r !few) 
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and 

The following theorem describes the asymptotic behavior of TOI (ex, 6) 
and TOI (in, 6) when fo and II both decay algebraically at high frequencies 
but at different rates. In particular, this theorem allows us to make sense 
of the numerical results in Tables 6 and 7. Define Ltoc to be the class of 
real-valued functions on Ii that are integrable on all bounded intervals. All 
results in Theorem 3 are limits as 6 ! O. 

Theorem 3. Suppose fi(w) '" cilwl-ai as Iwl- 00. If fo/II E Ltoc' then 
fOT 0:1 > 0:0 - 1, 

( ) 1 { 1 171" "Ia1 (w) } 171" "Iao(W) 
TOI eX,6 - -2 exp -2 log --( -) rh.J --( -) rh.J 

7r 7r -71" "10.0 W -71" "Ia1 w 
(23) 

fOT 0:1 = 0:0 - 1, 

( ) 1 { 1 171" "Ia1 (W)} 1 TOI ex, 6 '" - exp - log --( -) rh.J log 6-
7r 27r -71" "lao W 

(24) 

and fOT 0:1 < 0:0 - 1, 

TOl(ex,6)", [~exp{~171" log "Ia1(W) rh.J}I°O fo(w) rh.J]6l+a1-ao. 
27rco 27r -71" "Iao(w) -00 lI(w) 

(25) 
Furthermore, if fo/ Rand 1/ fo are in Ltoc' then fOT 0:1 > (0:0 - 1)/2, 

(. C) J::7I""Iao(W)"Ia1(W)-2dwJ::7I""Iao(W)-ldw 
TOI In,u - 2' 

{J::7I" "Ia1 (w)-ldw} 
(26) 

(27) 

and fOT 0:1 < (0:0 - 1)/2, 

( . C) c~ J~oo fo(w)lI(w)-2rh.J r7l" "10.0 (W)-lrh.J c1+20.1-0.0 
TOI In, u '" 2 u . 

Co {J::7I" "10.1 (w )-ldw } 
(28) 

Before proving these results, some comments are in order. For both in­
terpolation and extrapolation, we can use II rather than the correct fo and 
still get the optimal rate of convergence for the mse as long as 0:1 is not 
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too much smaller than ao; that is, the process is not too much rougher 
under h than under fo. However, for extrapolation, we need a1 > ao - 1 
for this to hold, whereas for interpolation, we only need a1 > (ao - 1)/2. 
A second point is that whenever the optimal rate is obtained, the limit 
for either T01 (ex, 15) or T01 (in, 15) depends on fo and II only through ao 
and a1 and is independent of the behavior of fo and II on any bounded 
set. Thus, the range of problems for which the low frequency behavior has 
asymptotically negligible effect as 15 ! 0 is larger when interpolating. When 
a1 > ao - 1, so that both interpolation and extrapolation give the asymp­
totically best rate, Table 8 shows that the limit of TOl (in, 15) tends to be 
much smaller than TOl (ex, 15). A reasonable conjecture is that for all ao 
and a1> lim6!0 TOl (ex, t5)/T01 (in, 15) 2:: 1. We do know that this limit is +00 
whenever a1 ::::; ao - 1. 
Let us now return to Tables 6 and 7 and see how these results relate to 

Theorem 3. First, as I have already noted, Theorem 3 does not directly 
apply to the setting in Tables 6 and 7 in which there are only a finite 
number of observations. However, numerical calculations show that the 
results in these tables do not noticeably change by increasing n. For inter­
polation, Theorem 3 suggests that the ratios EoeV Eoe~ should tend to a 
finite constant except when fo(w) = (3 + w2)-3 and h (w) = (1 + w2)-1, 
in which case, it should be proportional to 15-1 • The numerical results fit 
these patterns well, particularly for a1 > ao, when the dependence of 
EoeV Eoe~ on 15 is extremely weak. For extrapolating, Theorem 3 suggests 
the ratios tend to a finite constant in those entries above the main diag­
onal of the table. When fo(w) = (3 + w2)-3 and h(w) = (2 + w2)-2, or 
fo(w) = (2+W2)-2 and h(w) = (1+W2)-1, then the ratio should grow like 
15- 1. When fo(w) = (3 + w2 )-3 and h(w) = (1 + w2)-I, the ratio should 
grow like 15-3 • Although the numerical results roughly correspond to these 
patterns, the agreement is not nearly as good as when interpolating. It 
appears that the asymptotics "kick in" for larger values of 15 when interpo­
lating than when extrapolating, providing another argument for the greater 
relevance of shrinking interval asymptotics for interpolation problems. 

PROOF OF THEOREM 3. The proofs of (23) and (26) are similar to that 
of (17) (Exercise 17). When a 1 < ao - 1, (25) follows from 

15010 - 011 exp {~171" log ~~(w) dw} ---T C1 exp {~171" log 1101 1 (w) dw} 
271" -71" fo (w) Co 271" -71" 1101 0 (w) 

and 
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TABLE 8. Limiting values of rOt (in, 8) and rOl (ex, 8) as given by Theorem 3 for 
various values of ao and at. For each ao, the largest value for at is ao + 4.8, 
which facilitates comparisons of how these limits depend on at - ao as ao varies. 

ao 
2 4 6 

al in ex in ex in ex 

1.2 1.655 3.878 +00 +00 +00 +00 
1.6 1.053 1.171 16.55 
2.0 1 1 2.392 
2.4 1.022 1.081 1.426 +00 
2.8 1.070 1.285 1.154 +00 4.645 
3.2 1.128 1.606 1.050 2.302 2.110 
3.6 1.193 2.071 1.010 1.122 1.498 
4.0 1.261 2.728 1 1 1.248 
4.4 1.331 3.649 1.007 1.068 1.123 
4.8 1.404 4.939 1.024 1.247 1.057 +00 
5.2 1.478 6.749 1.048 1.534 1.021 2.265 
5.6 1.552 9.294 1.077 1.952 1.005 1.116 
6.0 1.628 12.88 1.110 2.546 1 1 
6.4 1.704 17.95 1.144 3.381 1.004 1.067 
6.8 1.781 25.13 1.181 4.552 1.013 1.241 
7.2 1.220 6.196 1.027 1.522 
7.6 1.260 8.507 1.044 1.931 
8.0 1.300 11.77 1.064 2.510 
8.4 1.342 16.31 1.085 3.324 
8.8 1.384 22.90 1.109 4.464 
9.2 1.134 6.062 
9.6 1.159 8.309 
10.0 1.186 11.47 
10.4 1.214 15.94 
10.8 1.242 22.28 

as 8 ! O. Similarly, (28) follows for al < (ao - 1)/2 by showing 

and 

8-2 r !!(w) dw ~ roo lo(w)2 dw 
J-1r 11 (W)2 Loo /I(w) 
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as 8 1 O. Equation (24) follows by showing that when 0:1 = 0:0 - 1, 
-6 f'" .r..~(w) dw'" 2C0 810g8- l , 

-",fl(w) Cl 

which is a consequence of 

f '" I ~8(w) - COlC1 I dw = 0(8 log 8-1) (29) 
_'" Jf(w) 1 + Iwl/8 

as 8 1 0 (Exercise 18). The proof of (27) is similar (Exercise 18). D 

Presumed mses for pseudo-BLPs with misspecijied high 
frequency behavior 

As described in 3.1, another measure of the effect of using h rather than 
the correct fo is the ratio of the mse of the pseudo-BLP evaluated under 
h to the mse of the pseudo-BLP under the true spectral density fo. Define 

801 (ex, 8) = E lel(ex,8)2 _ '" _ 2~ (30) 
Eoel(ex,8)2 L", f8(w)ff(w)-ldw 

and 

. 8 Elel(in,8)2 J::", jf(w)-1dw 
80l(m, ) = Eoel(in,8)2 = J::", i8(w)jf(W)-2dw . (31) 

How to do the comparisons is now not so simple since, as opposed to the 
results in (23) and (26) for rOl (ex, 8) and rOl (in, 8), the values of Co and Cl 
matter asymptotically for all 0:0 and 0:1. One informative choice is to allow 
Cl to depend on 8 and take cl(8) to satisfy cl(8)(27f/8)-<>1 = co(27f/8)-<>o; 
that is, for 8 small, make the two spectral densities nearly the same at 
frequency 27f I 8, which is arguably the highest frequency about which we 
get information for observations spaced 8 apart since exp(i27ftI8) makes 
one complete cycle in 8 units of t. For observations spaced 8 apart, 27f/8 is 
known as the Nyquist frequency (Priestley 1981, Yaglom 1987a). All results 
in Theorem 4 are limits as 8 1 O. 

Theorem 4. Suppose fo '" colwl-<>o and h '" Iwl-<>l as Iwl --; 00. For 
the purposes of this theorem only, define 

jf(w) = cl(8)8-1 . f h (w +827fj ) 
)=-00 

in (30) and (31), where cl(8) = co(27f/8)<>'-<>o. If folh E L~oc' then for 
0:1 > 0:0 - 1, 
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for a1 < ao - 1, 

for a1 < (ao - 1)/2, 

(2 )a1-ao f7r ()-ldw C 8) 7r Co _ 7r 'flcq W 8ao-2a1-1 
SOl Ill, rv f~oo fo(w)!t(w)-2dw 

and for a1 = (ao - 1)/2, SOl (in, 8) rv ~ (27r )a1 -ao / log 8- 1 . 

The proof of Theorem 4 is left as Exercise 19. 
We see that in all cases, Eo eo (ex, 8)2 ::::: E1 e1 (ex, 8)2 and Eoeo (in, 8)2 ::::: 

E1e1(in,8)2, which provides some support for choosing c1(8) ::::: 8ao - a1 . 
Theorems 3 and 4 together imply that when interpolating, for example, the 
pseudo-BLPs have the optimal rate of convergence and the presumed mses 
are of the same order of magnitude as the actual mses when a1 > (ao -1) /2. 
However, when a1 ::; (ao - 1)/2, pseudo-BLPs have sUboptimal rates of 
convergence but the presumed mses still converge to 0 at the faster rate 
obtained by the mse for the BLP. 

Pseudo-BLPs with correctly specified high frequency behavior 

We next develop some asymptotic results that elucidate the numerical re­
sults given in Tables 2 and 4 of the previous section. Suppose fo and !t 
are of the form fi(w) = clwl-a + di lwl-,6 + o(lwl-,6) as Iwl --+ 00, where 
(3 > a > 1, so that fo(w)/ !t(w) --+ 1 as Iwl --+ 00. Furthermore, the larger 
the value of {3 - a, the more similar the two spectral densities are at high 
frequencies. Thus, to the extent that the behavior of the BLPs is dom­
inated by the high frequency behavior of the spectrum, larger values of 
(3 - a should correspond to smaller effects from using !t rather than fo. 
Again, all results in Theorems 5 and 6 are limits as 8 1 o. 
Theorem 5. Suppose that for i = 0,1, Ji(w) ::::: (1 + Iwl)-a and fi(w) = 

clwl-a + di lwl-,6 + o(lwl-,6) as Iwl --+ 00, where {3 > a > 1. For {3 < a + ~, 

( 8) - 1 rv (d 1 - do)2 [1 7r 'fl,6(w)2 dw 
r01 ex, 4 2 ( )2 7rC -7r 'fla w 

_~ {17r 'fl,6(w) dw}2] 82(,6-a) (32) 
27r -7r 'fla(w) 
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and for (3 > a + ~, 

8 100 {fo(w) fo(w)} 
r01(ex,8) -1 '" 27f -00 h(w) -I-log h(w) dw. (33) 

Furthermore, for (3 < ~a + ~, 

(34) 

and for (3 > ~a + ~, 

(.) { 100 {fo(w) - h(w)F /111' ()-1 } 8a+1 
r01 In,8 - 1 '" C -00 fo(w)h(w)2 dw -11' 'f/a W dw . 

(35) 

Theorem 6. Under the same conditions on fo and h as in Theorem 5, 
for (3 < a + 1, 

SOl (ex, 8) - 1 '" {d1 - do 111' 'f/f3 ((w )) dw} 8f3 - a , (36) 
27fC -11' 'f/a W 

and for (3 > a + 1, 

( 8) - 1 '" ~ 100 h(w) - fo(w) dw 
801 ex, 27f -00 fo(w) . (37) 

Furthermore, for (3 < 2a + 1, 

(. 8) 1 (d1 - do) r.1I' 'f/f3(w)'f/a(w)-2dw 8f3 - a (38) 
801 In, - '" J1I' ()-ld ' 

C -11' 'f/a W W 

and for (3 > 2a + 1, 

8 (in 8) -1 '" J~oo {Iwla - cfo(w)h(w)-2} dw 8a+1 (39) 
01 , Joo (w)-ldw 

-00 'f/a 

The proofs of (32) and (33) are given at the end of this section; (34)-(39) 
are left as exercises. Note that the conditions given imply that all of the 
integrals in (32)-(39) are well defined and finite. The condition fi(w) ;:::: 
(1 + Iwl)-a for all wand i = 0,1 is stronger than necessary but simplifies 
the proofs considerably. 
The results for interpolation and extrapolation have a number of features 
in common and one major difference. In both cases, the relative increase in 
mse due to using h rather than fo, given by r01 (-,8) - 1, is of order 82(f3- a ) 

when (3 is not too large. Furthermore, again when (3 is not too large, for 
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the predictor obtained under h, the relative misspecification of its mse 
obtained by using h rather than 10 to evaluate its mse, given by SOl (·,8)-1, 
is of order 8!3-a. Thus, for fJ not too large, using h rather than 10 has a 
much smaller effect on the actual mse of the predictor than on its presumed 
mse. The major difference between interpolation and prediction is in what 
it means for fJ to be too large. For example, TOl (ex, 8) - 1 is only of order 
8 and not 82(!3-o.) for fJ > 0 + ~, whereas TOl (in, 8) - 1 is of order 82(!3-o.) 
for fJ < ~o +~. Similarly, assuming J~oo{h(w) - 10(wH/o(w)-ldw =f. 0, 
SOl (ex, 8) - 1 is only of order 8 and not 8!3-o. for fJ > 0 + 1, whereas 
SOl (in, 8) - 1 is of order 8!3-0l for fJ < 20 + 1. 
Comparing the asymptotic results in Theorems 3 and 4 to the numer­

ical ones in Table 7 shows that the asymptotics tend to give much more 
accurate approximations for finite 8 when interpolating than when extrap­
olating. A similar result holds when comparing Theorems 5 and 6 to the 
numerical outcomes in Tables 2 and 4. For the first pair of spectral den­
sities in Tables 2 and 4, 0 = 2 and fJ = 4; for the second pair, 0 = 4 
and fJ = 6. Theorems 5 and 6 thus suggest that when extrapolating, both 
EoeV Eoe~ - 1 and El eV Eoe~ - 1 should be of order 8 for either pair of 
spectral densities. When interpolating, EoeV Eoe~ - 1 should be of order 
83 for the first pair and order 84 for the second, and El eV Eoe~ - 1 should 
be of order 82 for both pairs. Although these rates qualitatively agree with 
the numerical outcomes, there is again evidence that for the values of 8 
considered in Tables 2 and 4, the asymptotic formulae give considerably 
more accurate results for interpolation than extrapolation. 
One general conclusion from Theorems 5 and 6 is that as 8 1 0, the low 
frequency behavior of the spectral density has asymptotically negligible im­
pact on both interpolations and extrapolations. This result has important 
implications for the modeling of frequently observed processes when the 
goal is prediction. In particular, it implies that when neighboring observa­
tions are strongly correlated, one's focus in choosing models and methods 
of estimation should be to get the high frequency behavior as accurately 
as possible and not worry so much about the low frequency behavior. The 
theoretical and numerical results also suggest that this strategy of focusing 
on the high frequencies is likely to work better when interpolating than ex­
trapolating. Indeed, when extrapolating more than a small distance from 
the last observation, getting the high frequency behavior of the spectral 
density correct does not guarantee asymptotically optimal predictions. For 
example, suppose lo(w) = 1/{7r(1 +w2 )} and h(w) = 1/{7r(4+ w2 )} as in 
the first example in Tables 2 and 4 and that we wish to predict Z (t) for 
some t > 0 based on observing Z(8j) for integers j ~ O. Then independent 
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of 8, 

1 -2e-3t + e-4t 

1 -e-2t 

E1er 1 - e-4t 

and 

Eoer = 2(1 - 2e-3t + e-4t ) . 

(40) 

For t = 0.5, this gives Eoei/Eoe5 = 1.0901 and E1ei/Eoer = 0.6274. This 
example is reconsidered in 4.4. 

PROOF OF (32) AND (33). Let us first consider why these results are 
plausible. Write 

where 

-6 

~o (w) = 1 + 8{3-a R(w) + S6(W) 
Jf(w) , 

R(w) = do - d1 • 1]{3(w) 
C 1]a(w) , 

so that for any fixed w f. 0 in (-7r, 7r], S6(W) = 0(8{3-a). If S6(W) were 
0(8{3-a) uniformly in w E (-7r, 7r], then we could say 

suggesting 

82({3-a) [ r 1 { r }2] 
TOl(ex, 8) - 1 rv 47r L7r R(W)2dw - 27r L7r R(w)dw , 

which is the same as (32). This argument overlooks what happens for w 
near 0 and gives a wrong result for f3 > Q: + ~. However, this calculation 
does correctly suggest that frequencies not too near the origin contribute 
a term of order 82({3-a) to TOl(ex,8) - 1. For (3 > Q: +~, 82({3-a) = 0(8), 
which suggests the following heuristic justification for (33). 

Tal (ex, 8) 
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= exp {_2-17r log ~~(w) dJJJ} [1 + 2-17r {~~(W) -I} dJJJ] 
271" -7r 11 (w) 271" -7r 11 (w) 

= exp _2- log ~o (w) dJJJ { 
61/2 -6 } 

271" 161/ 2 ff(w) 

[ 
61/2 { -/j }] 

X 1 + -21 1 ~~(w) -1 dJJJ + 0(6) 
71" _6 1 / 2 11 (w) 

{ 6 16 -
1
/
2 lo(w) } = exp - - log -- dJJJ 

271" _/j-1/2 It(w) 

X [1 + 2~ 1/j{j~1:/22 {~~~:~ - I} dJJJ] + 0(6) 

6 16 -
1
/
2 {/o(w) lo(w)} 

= 1 + -2 -I ( ) - 1 -log -I () dJJJ + 0(6) 71" _6-1/2 1 W 1 W 

6 100 {/o(w) lo(w) } 
= 1 + 271" -00 It (w) - 1 -log It (w) dJJJ + 0(6), (42) 

where I have used R(w) '" 6- 1 /i(w/6) uniformly for Iwl < 61/ 2 as 6 t 
O. Note that it is important to combine the two integrals before letting 

the limits of integration go to ±oo since IJ.:o [{fo(w)/ It(w)} - 1) dJJJl and 

IJ~ooIOg{fo(w)/ It (w)} dJJJl are +00 for (3 ~ a+ 1 but J~oo[{/o(w)/ It (w)}-

1 -log{fo(w)/ It (w)})dw is finite (and nonnegative) for all (3 > a + ~. 
To provide a rigorous proof of (32), we need to consider the behavior of 

S/j(w) more carefully for (3 < a+~. First, for Iwl < 6, S/j(w) «1+18/wl.B-0! 

so that J~/j IS6(W)ldJJJ «6. Next, define 

so that Iw/61.B p~(w) « 1 and lim{j!o Iw/61.B p~(w) = 0 for all w # 0 in (-71",71"). 
Then for 6::; Iwl ~ 71", 
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by using Iwl'1J,(w) ~ 1 on Iwl :S 7f for all 'Y > 1. Thus, 

l~'W'~7r ISo(w)1 dw 

« 8(3-0. 17r Iwlo.-(31 ~ 1(3 Ipg(w) - pf (w) I dw + 82«(3-0.) 

= 0(8(3-0.), 

so that J::7r IS8(W)ldw = 0(8(3-0.). Now 

17r log ~~(w) dw = 2 ro log ~(w) dw + 217r log ~~(w) dw. 
-7r fl (w) Jo fl (w) 8 fl (w) 

Since i8(w) ~ N(w), the first term on the right side is 0(8) and 

17r log ~8(w) dw - r {8(3-0. R(w) + S8(W) - ~82«(3-0.) R(W)2} dw 
8 ff(w) Jo 
« 18 {8(3-0.IR(w)1 + IS8(W)1 + 82«(3-0.) R(W)2} dw 

+ 17r {83«(3-a) IR(wW + 8(3-uIR(w)So(w)1 + So (W)2 + ISo(wW} dw 

= 0(82«(3-a)) 

for (3 < a + ~ by straightforward calculations using the properties of R(w) 
and S8(W). Thus, the heuristic calculation in (41) is correct for {3 < a + ~ 
and (32) follows. 
To prove (42) for (3 > a + ~, first note that as 810, 

181/ 2 log {~8(W) fr(W/8)} dw« r8 8Udw + 181 / 2 wUdw = 0(8) 
_0' / 2 n(w) fo(w/8) Jo 8 

and 

17r IIOg ~~(w) - 8(3-u R(w) - S8(w)ldW 
8 ' / 2 fleW) 

«17r {82«(3-U) R(w)2 + S8(W)2} dw = 0(8). 
8'/2 

Moreover, 

8 ' / 2 8- 1 / 2 1 log fo(w/8) dw = 81 log fo(w) dw 
_8' /2 fr(w/8) _8-1/2 fr(w) 
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so that 
-0 0- 1 / 2 

1
7r log ~o (w) dJ..; - 81 log fo(w) dJ..; 
-7r Jt(W) _6- 1/ 2 h(w) 

-2 r {8,8-aR(w) + 80 (w)}dJ..; =0(8). 
}61/ 2 

Similarly, 

6- 1 / 2 / 
Now, L6-1/210g {Jo(w)1 h(w)} dJ..; = 0(8- 1 2), so 

[ 
8 10- 1/2 fo(w) 

r01(ex,8) = 1- -2 log-f ( ) dJ..; 
7r _6-1/2 I w 

-.! r {8,8-aR(w) + 86(w)} dJ..; + 0(8)] 
7r }61/2 

[1 8 10- 1
/
2 {fo(w) I} dJ..; 

x + 27r _0- 1 / 2 h(w)-

+.! r {8,8-0 R(w) + 80(w)} dJ..; + 0(8)] 
7r }01/2 

0- 1
/

2 
{ ( )} =1+~1 fo(w) _1_log fo w dJ..; 

27r _0-1/2 h(w) h(w) 

_ [.! r {8,8-a R(w) + 80 (w)} dw] 2 + 0(8) 
7r } 01/2 

= 1 + ~ 1 00 {fo(w) _ 1 _ log fo(w) } dw + 0(8) 
27r -00 h(w) h(w) 

proving (33). o 

Exercises 

11 Give an example of a pair of auto covariance functions for a mean 0 
weakly stationary process for which rOI(in, 1) = 00 but rOI(ex, 1) < 00. 

12 Suppose Z is a mean 0 weakly stationary process with triangular au­
to covariance function K ( t) = (1 - I t I) +. For n a positive integer, find 
the BLP for Z(O) when Z is observed at j In for all integers j -::f O. Do 
the same when Z is observed at j In for all integers j < O. 
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13 For a mean 0 weakly stationary time series on Z with spectral density 
j on (-11",11"], show that perfect prediction of Z(O) is possible if Z(j) 
is observed for all j =1= 0 when 1/ j is not integrable. 

14 Prove (18). 

15 Verify (19) and (20). 

16 Verify (22). 

17 Prove (23) and (26). 

18 Prove (29). Show that (24) follows. Prove (27). 

19 Prove Theorem 4. 

20 Develop an asymptotic theory for interpolation and extrapolation simi­
lar to that in Theorems 5 and 6 when fo = h, fo satisfies the conditions 
in Theorem 5, mo(t) = 0 for all t and m1(t) is some given function. 

21 State and prove asymptotic results for the borderline cases not treated 
in Theorems 5 and 6. Specifically, consider T01 (ex, 8) when (3 = 0:: + ~, 
TOl(in,8) when (3 = ~O:: +~, SOl (ex, 8) when (3 = 0:: + 1 and sOl(in,8) 
when (3 = 20:: + 1. 

22 Write a program that efficiently calculates 'TJa(W) as defined in (16) 
correctly to six significant digits for all 0:: > 1 and 0 < W < 11". Note 
that just truncating the infinite sum in the definition of 'TJa is not an 
efficient method, particularly for 0:: near 1. 

23 It is possible to give a closed form expression for 'TJa when 0:: is a posi­
tive even integer (see, for example, Carrier, Crook and Pearson (1966, 
p. 97)). Do so for 0:: = 2 and 0:: = 4. 

24 Write a program to calculate via numerical integration the ratios (23) 
and (26) in Theorem 3. Note that special care is needed in (23) when 
0::1 + 1 -0::0 is near 0 and in (26) when 20::1 + 1 -0::0 is near O. 

25 Suppose that EZ(t) = (3Tm(t), where m is a known vector-valued 
function and (3 is an unknown vector. Assume Z has spectral density 
f satisfying few) ::::: (1 + Iwl)-a for some 0:: > 1. For the interpolation 
problem considered in this section, find conditions on m under which 
the BLUP and the BLP are identical. Do the same for the extrapolation 
problem. For definiteness, assume 8 = 1 in each case. 

26 Prove (34) and (35). As a way to get started on (34), consider what 
would happen if fi(w) = clwl-a + dilwl-,B for all wand i = 0, 1. 

27 Prove Theorem 6. As a way to get started on (36) and (38), consider 
what would happen if fi(w) = clwl-a + dilwl-,B for all wand i = 0,1. 
As a way to get started on (35), approximate new) by 8-1 fi(w/8). 
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3.7 Measurement errors 

Until now, we have been assuming that the random field Z is continuous 
and that it can be observed at specified locations without error. This sce­
nario is, of course, an idealization. For many physical quantities, the whole 
notion of its value at a single point is ill defined. For example, a concentra­
tion of a substance is inherently an average over some region of space (see 
Vanmarcke (1983) and Cressie (1996) for further discussion). So, when we 
say Z(x), we often are referring to an average over some region containing 
x whose dimensions are small compared to the distance between neighbor­
ing observations. We may also be implicitly assuming that this average is 
insensitive to modest changes in the region over which we are taking an 
average. Even if the quantity of interest can, for all practical purposes, be 
taken to be well defined pointwise, there are inevitably errors, however tiny, 
in the measured values of both x and Z(x). 
The usual approach in spatial statistics is to ignore errors in x and to 
assume that errors in Z(x) are additive or perhaps multiplicative. Diggle, 
Tawn and Moyeed (1998) consider more general error structures, but still 
of the form that the conditional distribution of the observation at x given 
the actual value of Z(x) does not depend on Z at any other location. Chan, 
Hall and Poskitt (1995) note that if the height of a surface is measured by 
a stylus, then the error at a particular x can naturally depend on values of 
Z in a neighborhood of x. In this section, I consider the simplest possible 
setting for measurement errors: observation locations Xl, ... ,Xn are known 
without error and the observations are 

Yi = Z(Xi) + Ui for i = 1, ... ,n, 

where the Uis are independent and identically distributed with mean 0 and 
common variance 0'2 and independent of Z. I further assume the Uis are 
N(O,0'2) when considering estimation of covariance structures. 
In practice, it is commonly found that even the closest observations in 

space differ by far more than the technical errors in the measurement pro­
cess; see Laslett, McBratney, Pahl and Hutchinson (1987) for a convincing 
example of this phenomenon. Such variation is called the nugget effect in 
the geostatistical literature (Cressie 1993, pp. 59-60). Standard practice 
is to model both measurement errors and nugget effects by introducing a 
discontinuity at the origin in the auto covariance function of the observa­
tions. As Cressie (1993, pp. 127-130) points out, whether we consider this 
local variation in the observations due to measurement error or a nugget 
effect does have an impact on the evaluation of mses when predicting the 
random field at a point. However, I suspect that when there is a substantial 
nugget effect, its magnitude must significantly vary with the region over 
which the observations are averages, in which case, it is not clear to me that 
prediction at a point is meaningful. Furthermore, when predicting area av­
erages over sufficiently large regions, there will be effectively no difference 
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in either the prediction or the evaluation of its mse depending on whether 
the spatial discontinuity in the observations is attributed to measurement 
error, a nugget effect or some combination of the two. For the purposes 
of this work, I ignore the distinction and presume that any discontinuity 
at the origin in the auto covariance function of the observations is due to 
measurement error. 
Given that measurement errors are inevitable, an essential first issue is 
to determine when they matter. In particular, for what sorts of prediction 
problems can we act as if (7'2 = 0 and still get nearly optimal predictions 
and accurate assessments of mse even though (7'2 is in fact positive but 
small? For any (7'2 > 0 and any finite set of observations, the answer to 
this question will depend on the predictand. For example, suppose model 
o is the correct model, which includes a measurement error with positive 
variance, and model 1 is the same model except that (7'2 is taken to be O. 
Let ei(x) be the error of the BLP of Z(x) under model i. Then if x is an 
observation location, clearly E1el(X)2 = 0 and Eoel(X)2 > 0, so that the 
presumed mse of the pseudo-BLP under model 1 is infinitely too small. 
Thus, we cannot have uniformly good assessments of mse when ignoring 
measurement errors, no matter how small the value of (7'2. However, if we 
consider predicting Z at locations not too near any of the observations, we 
may be able to obtain nearly optimal predictions and accurate assessments 
of mse when ignoring a sufficiently small measurement error. 

Some asymptotic theory 

One way in which we can investigate this issue is to consider the inter­
polation problem addressed in 3.6: a mean 0 weakly stationary process Z 
on 1R with spectral density f is observed at oj for j =I- 0 and we wish to 
predict Z(O). Suppose the observations are Y6(j) = Z(oj) + Uj for j =I- 0, 
where the UjS have mean 0, are uncorrelated and have common variance 
(7'~. Allowing the error variance to depend on 0 may appear unconventional 
to some, but it provides us with a way of assessing how the smoothness 
of Z relates to the level of measurement errors that can be safely ignored. 
Define Z6 and P as in 3.6. The spectral density of Y6(j) on (-7f, 7f] is then 
p(w) + (27f)-1(7'~. It follows that the mse of the BLP of Z(O) based on 
Y6(j) for j =I- 0 is 

/

11' { 1 }-1 - (7'~. 
-11' P(w)+27f(7'~ d!.JJ 

Next, suppose that f(w) ,..,. cw-o. as w - 00 for some c > 0 and some 0: > 
1. Then for any fixed w E (-7f, 7f] other than w = 0, p(w) ,..,. COo.-17]0.(w) 
as 0 ! 0, where 7]0. is defined as in (16). Thus, a plausible conjecture is that 
if (7'~ = 0(00.-1) as 6 ! 0, the measurement error will have asymptotically 
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negligible effect on predicting Z(O) and assessing the mse of prediction. To 
prove this assertion, define jg(w) = jO(w) + (271")-ICT~ and it(w) = jO(w) 
as functions on (-71", 7I"j, so that jg is the actual spectral density for the Yo 
process and it is the presumed spectral density obtained by ignoring the 
measurement errors. Take ei(8) to be the error of the BLP of Z(O) under 
model i with observations Yo(j) for all j f:. o. 
Theorem 7. Suppose f(w) rv cw-o as w ~ 00 for some c > 0 and Q > 1. 
IfCT~ = 0(80<-1) as 810, then 

471"2C8o - 1 

Eoeo(8)2 rv EOel(8)2 rv Elel(8)2 rv f~11" "lo«w)-ldw . 

The proof of Theorem 7 is similar to the proofs in 3.6 and is left as an 
exercise (Exercise 28). The next result gives asymptotic approximations to 
Eoeo(8)2 for various circumstances for which CT~ is not 0(80 - 1). 

Theorem 8. Suppose f is as in Theorem 7. As 810, if CT~ = Mo<-1 for 
some fixed b > 0, then 

Eoeo(8)2 rv Mo - 1 [ 271" -1 - 1] , I: {I + 2;C "lo(w) } dw 

(43) 

if CTU8o- 1 ~ 00 and 8CT~ ~ 0 as 810, then 

Eoeo(8)2 rv ~c u 
(2 )1/0 (:~) 1-1/0, 
Qsm (~) 

(44) 

if CT~ = r /8 for some fixed r > 0, then 

Eoeo(8)2 ~ r {'Xl f2(W] ( ) dw 
J-co r + 71" w 

(45) 

and if 8CT~ ~ 00 as 810, then 

Eoeo(8)2 ~ I: f(w) dw. (46) 

The proof of Theorem 8 is left as a series of exercises (Exercises 29-31). 
Theorems 7 and 8 imply that the measurement error has asymptotically 
negligible impact on predictions of Z(O) if and only if CT~ = 0(80 - 1 ). Thus, 
the smoother Z is, the smaller CT~ needs to be before it can be ignored. 
Such a result makes sense, since even small measurement errors can make 
it quite difficult to extract information about the derivatives of Z and hence 
seriously degrade predictions that exploit the existence of these derivatives. 
As a consequence of this result, one should be quite reluctant to leave out 
a measurement error term from a model for observations from a highly 
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smooth random field, even if the measurement errors are expected to be 
quite small. 
Equation (44) includes the case a~ = a 2 > 0 independent of 8, which is 
the most common asymptotic regime to consider (see, for example, Stein 
(1993b)). However, the more general result for aU8o.- 1 --+ 00 and 8a~ --+ 0 
is no more difficult to obtain. 
As a~ increases, we have to average a greater number of observations in 

order to reduce the contribution of the measurement error to the prediction 
error. Hence, we should expect that if a~ is sufficiently large, even if 8 is 
small, observations outside any fixed bounded interval will have a nontrivial 
impact on the prediction of Z{O). The case 8a~ = r > 0 given by (45) 
addresses this setting. Here we see that the low frequency behavior of f 
does affect the asymptotic mse. Furthermore, Exercise 32 asks you to show 
that the BLP makes nonnegligible use of observations outside any fixed 
neighborhood of the origin. In contrast, I conjecture that (43) and (44) 
still hold if Y6U) is observed only for j satisfying 0 < 81jl < a for any fixed 
a> o. 
Finally, (46) just says that if the noise is too large, one might as well 

predict Z{O) by 0, which has mse var {Z{O)} = I~oo f{w) rkv. 

Exercises 

28 Prove Theorem 7. 

29 Prove (43). 

30 Prove (44). 

31 Prove (45) and (46). Show that (46) still holds if one observes Y6{j) 
for all integers j. 

32 Suppose that f is as in Theorem 7 and that observations are restricted 
to those YoU) for which j satisfies 0 < 81J1 < a for some fixed a > O. 
Show that if a~ = r / 8 for some fixed r > 0, 

liminfEoeo(8)2 > rjOO f{Wj{) rkv. 
o!o -00 r + 211" W 

3.8 Observations on an infinite lattice 

Section 3.6 gave some theory for predicting a mean 0 weakly stationary 
process Z at the origin based on observing Z at 8j for all integers j =J 0 or 
for all integers j < O. The arguments were based on having exact results for 
the spectral representation of the optimal predictions in these two settings. 
There is no easy way to extend these results if we wanted to predict, for 
example, Z{2- 1/2 8), or I01 Z{t) dt. If, however, we observe Z at 8j for all 
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integers j, then all possible linear prediction problems become in a sense 
trivial. Furthermore, the same approach works just as well for a random 
field in any number of dimensions observed at 8j for all j E Zd, the d­
dimensional integer lattice. For this setting, this section provides a simple 
bound on the fraction of the variance of the prediction error attributable 
to some set of frequencies. This result is then used to obtain bounds on 
the effects on prediction of using the wrong second-order structure. The 
bounds in this section are uniform over all possible linear predictions. 

Characterizing the BLP 

Suppose Z is a real mean 0 weakly stationary random field on Rd with 
spectrum F and we observe Z at 8j for all j E Zd. Let 1i(F) be the closed 
real linear manifold of the random variables Z (x), x E Rd , with respect to 
the inner product defined by F and let 1ili(F) be the subspace of 1i(F) 
generated by Z(8j) for j E Zd. Similarly, let £(F) be the closed real lin­
ear manifold of the functions exp(iwT x) for x E Rd with respect to the 
inner product defined by F and £li(F) the subspace of £(F) generated by 
exp(i8wTj) for j E Zd. Since exp(i8wTj) has period 27r/8 in all coordinates 
for any j E Zd, it is apparent that all elements of £li(F) can be taken to 
have period 27r/8 in each coordinate. Thus, if H E £(F) is the function 
corresponding to the random variable h E 1i(F) we wish to predict, then 
the function ih corresponding to the BLP can be characterized as the best 
periodic approximant to H. 
More specifically, by Exercise 6 in 1.3, we seek a periodic function Hli 
such that 

kd {H(W) - Hli(W)} exp( -i8wTj)F(dw) = 0 for all j E Zd (47) 

so that H - Hli is orthogonal to £li(F). Defining Ad(r) = (-7rr,7rrjd, (47) 
is equivalent to 

x exp(-i8wTj)F(dw + 27r8- 1k) = 0 

for all j E Zd, where, for a set B and a point x, B + x is defined as {y : 
y-x E B}. Defining the measure Fli on Ad(8- 1 ) by Fli(B) = L:kEZd F(B+ 
27r8- 1k) for Borel sets B c Ad(8-1), it is obvious that for all k E Zd, 
F(· + 27r8- 1k) is absolutely continuous with respect to Fli on Ad(8- 1 ). Let 
r(·; k) be a Radon-Nikodym derivative of F(· + 27r8- 1k) with respect to 
Fli. Then (47) is equivalent to 

r eXP(-i8wTj ){ L H(w + 27r8- 1k)r(w; k) - Hli(W)}Fo(dW) = 0 
J Ad(li- 1 ) kEZd 
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for all j E Zd. By a basic theorem in multiple Fourier series (Stein and 
Weiss 1971, p. 248), 

{ 2: H(w + 2m5- 1k)T(Wj k) - HO(W)}FO(dW) 
kEZd 

must be the 0 measure, so that 

Ho(w) = 2: H(w + 27r0- 1k)T(Wj k) (48) 
kEZd 

almost everywhere with respect to Fo. Since there necessarily exists Ho E 

Co(F) satisfying (47) (see Exercises 5 and 6 in 1.3), for any Radon-Nikodym 
derivative T, Ho(w) as defined in (48) is in Co(F) and hence gives the 
function corresponding to the BLP of h. 

Bound on fraction of mse of BLP attributable to a set of 
frequencies 

Suppose for the rest of this section that F has density f with respect 
to Lebesgue measure, in which case, we can take T(Wj k) = f(w + 
27r0-1k)/E jEZd f(w + 27r0-1j). For a symmetric Borel set B C Ad (0-1), 
define 

E~ f(w + 27r0- 1j) 
Mo(F,B) = ess sup E f( 2 0-1') , 

wEB jEZd W + 7r J 

where ess sup is essential supremum, E~ indicates summation over all j E 

Zd other than 0 and % is defined to be o. Corresponding to the prediction 
error of any BLP is a V E C(F) orthogonal to Co(F). The mse of this BLP 
is then given by IIVII}. The following result, given in Stein (1999), bounds 
the fraction of the mse of the BLP attributable to some range of frequencies 
contained in Ad(0-1). 

Theorem 9. Suppose V E C(F) is orthogonal to Co(F). Then for 
symmetric Borel sets B c Ad (0-1), 

hlV (W)1 2 f(w)dw ~ Mo(F,B)IIVII~. (49) 

Furthermore, if 

2:' F(· + 27r0-1j) is absolutely continuous with respect to F(·) on B, 

(50) 
then 

IB lV(w)12 f(w) dw 
sup IIVII} = Mo(F, B), (51) 
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where the supremum is over all V E L,(F) orthogonal to L,li(F) satisfying 
IIVII} > O. If there are no such V, define this supremum as O. 

PROOF. Equation (49) holds trivially if IIVII} = 0 or Mli(F, B) = 1, so 
assume otherwise. Define a function Vo,B(W) with period 27r8- 1 in each co­
ordinate, Vo,B(W) = V(w) for wEB and Vo,B(W) = 0 for W E Ad (8- 1)\B. 
Then Mli(F, B) < 1 and B symmetric imply Vo,B E L,li(F) (Exercise 33). 
Thus, 

so that 

0= [ V(W)Vli,B(W)f(w) dw JR,d 

= L IV(w)1 2 f(w) dw 

+ E' 1 V(w + 27r8- 1j)Vo,B(W)f(w + 27r8-1j)dw, 
j B 

L lV(w)1 2 f(w) dw 

$ ~' L IV(w + 27r8- 1j)Vli,B(W)I f(w + 27r8-1j) dw 
J 

,; { ~' llV(w + 2~5-'j)I' f(w + 2~5-'j) dw 

x ~' L !Vli,B(W)1 2 f(w + 27r8- 1j) dw 
}

1/2 

$ [{ IIVII} - L !V(w)12 f(w) dW} 
M (F B) [ ] 1/2 

x 1_~li(F,B)JB!V(w)12f(W)dW , 

where the second inequality uses the Cauchy-Schwarz inequality. Straight­
forward calculation yields (49). 
To prove (51), note that it is trivial if Mli(F, B) = 0, so assume otherwise. 

Define r(w) = E~ r(w;j). Given f E (0, Mli(F, B)), let B€ be the subset of 
B on which r(w) > Mli(F, B)-f. By the definition of M[j(F,B), E~ F(B€+ 
27r8- 1j) > 0, so that by assumption, F(B€) > O. Next, define a function U 
by 

U( 2 8-1 .) _ { 1, for j = 0, wE B€; 
w + 7r J - 1 _ l/r(w), for j =I- 0, wE BE 
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and 0 otherwise. Then U E .c(F), U is orthogonal to .co(F) and 11U11~ > 0 
(Exercise 34). Furthermore, IB IU(w)12 f(w) dw = F(B,) and E~ f(w + 
27r8-1j)/ f(w) = r(w)/{l- r(w)} almost everywhere on B" so that 

11U1I~ = F(B,) + L. { r(~) - I} 2 ~, f(w + 27r8- 1j) dw 
J 

= F(B,) + L. {rL) -I} f(w)dw 

F(Bf ) 

< ( . - Mo F,B) - to 

Thus, IB IU(w)1 2 f(w) dw/IIUII~ ~ Mo(F, B) - to, which implies (51) since 
to can be taken arbitrarily small. 0 

The condition in (50) always holds whenever Mo(F, B) < 1. If Mo(F, B) 
= 1, then (50) can be false, in which case, (51) can also be false. In par­
ticular, when Mo(F, B) = 1 and the support of F does not intersect B, 
then IB lV(w)12 f(w) dw is trivially 0 for any V so that the left side of (51) 
equals 0, not 1. 
As a specific example of Theorem 9, suppose there exist Q > d and 
positive Co and C1 such that 

(52) 

Then for bd(r) the d-dimensional ball of radius r centered at the origin, 

(53) 

where ~d(Q) = E~ Ijl-a (Exercise 35). We see that for r fixed and 8 ! 0, 
Mo (F, bd (r)) tends to 0 more quickly when f tends to 0 more quickly at 
high frequencies. As an extreme example, suppose f has bounded support 
B, in which case, the process is said to be bandlimited. If B is contained in 
Ad (8- 1 ) then Mo(F, B) = 0, which implies IB lV(w)12 f(w) dw = O. Thus, 
IIVII~ = 0 since f has 0 mass outside B so that Z may be recovered without 
error at all x. We have just proven a simple version of what is known as 
the sampling theorem for random fields (Jerri 1977). 

Asymptotic optimality of pseudo-BLPs 

Theorem 9 provides a useful tool for proving results on the asymptotic 
properties of pseudo-BLPs as 8 ! 0 when h(w)/ fo(w) tends to a positive 
finite constant as Iwl ~ 00. It does not appear to yield useful results if 
i1(w)/fo(w) tends to 0 or 00 as Iwl ~ 00, so I do not have any results 
analogous to Theorems 3 and 4 for this setting. The next result basically 
says that spectral densities with similar high frequency behavior produce 
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uniformly similar linear predictions for small 8. Let 1Lli(Fi ) be the set of 
those h in 1t(Fi ) for which Eiei(h, 8)2 > 0 and £_li(Fi ) is the corresponding 
set of functions. 

Theorem 10. For some c > 0, suppose h(w)/fo(w) --+ C as Iwl --+ 00, 
fo ;::::: h, !1 is bounded away from 0 on any bounded set and !1 (w) --+ 0 as 
Iwl --+ 00. Then 

(54) 

(55) 

and 

(56) 

PROOF. The result for general c is a trivial consequence of the result for 
c = 1, so assume c = 1. Since fo ;::::: h, 1t(Fd = 1t(Fo) as sets, so the left 
sides of (54)-(56) are well defined. For H E £(Fi ), define 

Lj fi(W + 211"8- 1j)H(w + 211"8- 1j) 
Hli,F;(W) = Lj h(w + 211"8- 1j) - H(w), 

so that if H corresponds to hE 1t(Fi) , Hli,F; corresponds to ei(h, 8). Setting 
t/J(w) = {!1(w) - fo(w)}/ h(w), 

IIIHli,FllI~l -IIHli,Flll~ol 

= ILd h(w)t/J(w) IHli,Fl (w)1 2 dwl 
:s; 1 !1(w)It/J(w)IIHli,Fl (w)1 2dw + m(8-1)IIHli,FJ~l' (57) 

Ad(li- l ) 

where m(r) = sUPwEAd(r)C 1t/J(w)l. Note that !1(w)/fo(w) --+ 1 as Iwl--+ 00 
implies m(r) --.0 as r --. 00. 
Under the stated conditions, It/JI is bounded by a finite constant t/Jo and 

Mli(Ft, B) --. 0 as 8 1 0 for any fixed bounded set B. Given I: > 0, we can 
choose r E such that It/J(w) I < I: on Ad(rE)c. Thus, for all 8 sufficiently small, 

1 h(w)It/J(w)IIHli,Fl(w)12dw 
Ad(li- l ) 

:s; t/Jo j !1(W) IHli,Fl (w)1 2 dw 
Ad(r.) 

+1:1 !1(W)IHli,Fl (W)1 2dw 
Ad(li-l )\Ad(r.) 

:s; {t/JOMli (F1, Ad (rE)) + I:} IIHli,Flll~l. 
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Now t: is arbitrary, Mo (F1' Ad(r.)) --+ 0 as 8 1 0 and 'l/JoMo(F1' Ad (r.)) + t: 
is independent of H, so 

. JAd(O-') 1'I/J(w)lh(w) I Ho,F, (w)1 2 dw 
hm sup 2 = 0, 
oLO HEC-6(f,) IIHo,F,IIF, 

which together with (57) and mer) --+ 0 as r --+ 00 implies (54). Equation 
(55) follows from (54) by switching the roles of 10 and h. 
To prove (56), consider bounding IIH6,F, -H6,Fo II~o' Define 16 by hew) = 

10(w) for wE Ad(8- 1), hew) = hew) elsewhere and let Fo be the spectral 
measure with density h. Then 

IIHo,F, - HO,Foll~o ::; 211 Ho,Fo - HO,F611~o + 211 Ho,F6 - HO,F,II~o' (58) 

Define u(r) = sUPwEAd(r)C 'I/J(w) and fer) = infwEAd(r)c 'I/J(w). Applying 
Theorem 1 in 3.2 with b = 1 + u(8-1 ) and a = 1 + £(8- 1) yields 

2 < {u(8- 1)_£(8-1)}2 2 

IIHo,Fo - Ho,FJFo - 4 {I + u(8-1 )}{1 + £(8-1)} IIHo,Fo liFo' (59) 

The function r(w) = HO,F6(W) - HO,F, (w) has period 211'8- 1 in each 
coordinate and for w E Ad (8- 1 ), 

r(w) = h(w)~(w)Ho,F' (w) . 
10(w) + E j h(w + 211'8- 1j) 

Since 10 ::=:: h, there exist positive finite constants a and b such that a ::; 
10(w)/ hew) ::; b for all w. Thus, 

IIHo,F6 - H6,F,II~o 

= r 10(w)lr(w)12dw 
JRd 

=! Llo(w + 211'8- 1j)1 h(w)'I/J,(w)Ho,F,(W) .12 dw 
Ad(o-') . 10(w) + E h(w + 211'8- 1J) 

J j 

max(l, b) 1 2 2 ::; h(w)'I/J(w) IHo,F, (w)1 dw, 
a Ad(o-') 

so that for H E C._ O(F1 ), 

IIHo,F, - Ho,Fo lI~o 
{u(8- 1 ) _£(8- 1)}2 2 

< 2 {I + u(8-1)} {I + £(8-1)} IIHo,Fo liFo 

(60) 

+ 2 max(l, b) r h(w)'I/J(w? IHo,F,(w)12 dw. (61) 
a JAd(o-') 

Using (58)-(61), (56) follows by an argument similar to the one leading 
to (54). It is possible to give a simpler argument showing that (56) follows 
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from (54) and (55) (see the proof of the asymptotic efficiency of the pseudo­
BLP in Theorem 8 of Chapter 4). The bound in (61) is needed to obtain 
the rates of convergence in Theorem 12. 0 

Rates of convergence to optimality 

Theorem 10 used Theorem 9 to show that when b (w) / fo (w) - 1 as 
Iwl- 00, all linear predictors under the incorrect b are uniformly asymp­
totically optimal and the presumed mses are uniformly asymptotically 
correct. Under additional assumptions on fo and b, Theorem 9 can also 
be used to bound the right sides of (57) and (61) and hence obtain rates 
of convergence for the effect of misspecifying the spectral density. We need 
the following lemma. 

Lemma 11. For a nonnegative function u on R d , a > d and Co,C1,D 
and (3 positive, suppose that Co ~ b(w)(1 + Iwl)<> ~ C1 and u(w) ~ 
D (1 + Iwl)-.e for all w. Then for any H E C(F1), 

r b(w)u(w) IH6,F1 (w)1 2 dw JA d(S-I) 

~ DIIHo,F, II~l [2 (~).e + (3~1 (~) <> ed(a) 17r6- 1 (1 + r)<>-.e-1dr]. 

PROOF. Using the bound on u, 

where 

r b(w)u(w) IHo,F1 (W)1 2 dw J Ad(6- 1 ) 

~ 1 b(w)u(w) 1 Ho,Fl (w)1 2 dw 
bd(7r6- 1 ) 

+ D (~).e r b(w) 1 Ho,Fl (w)1 2 dw 
7r J Ad(O-l )\bd(7r6- 1 ) 

7r6- 1 0 .e 
~ D 1 (1 + r)-.ep(r) dr + D (;;:) II Ho,F1 II~l' 

p(r) = r b(v) IH6,F, (v)1 2 JL(dv) 
Jabd(r) 

and JL(dv) indicates the surface measure on 8bd (r). Defining P(r) = 
J; p(s) ds, Theorem 9 implies P(r) ~ Mo(Fl. bd(r»IIHo,F"'~,. By defini­
tion, P(7rO-1 ) ~ IIHo,F"'~l. Integrating by parts, 

7r6- 1 1 (1 + r)-.ep(r) dr 
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= (1 + i) (3 P(7r6- 1) + f3 10'11"0- 1 
(1 + r)-(3-1 P(r) dr 

{ 
6 (3 71"0- 1 

} ~ (:;;:) + f31 (1 + r)-(3-1 Mo(FI, bd(r» dr IIHo,FJ}l. 

Lemma 11 then follows from (53). o 

Lemma 11 yields the following result, taken from Stein (1999), on the 
effects on linear prediction of misspecifying the spectral density. 

Theorem 12. If fo(w) x JI(w) x (1 + Iwl)-<> and for some 'Y > 0, 
11/J(w) I « (1 + Iwl)-'Y, then 

IE1el(h,6)2 - Eoel(h,6)21 {6min(<>,'Y), 
sup 2« 

hE'H_6(Fd EOel{h,6) 6<> log(6- 1), 

(62) 

and 

(63) 
a: = 2'Y. 

PROOF. To prove (62), just apply Lemma 11 and the bound on 11/J1 to 
(57). To prove (63), apply Lemma 11 and the bound on 1/J2 to (61). 0 

Except possibly in the case a: = 'Y in (62) and a: = 2'Y in (63), these 
bounds are sharp in the sense that there exist fo and JI satisfying the 
stated conditions for which both conclusions are false if 0(·) is replaced 
by 0(·) (Stein 1999). Stein (1999) also gives some analogous results for 
a process observed unevenly on a bounded interval, but the arguments 
are much more difficult and the conditions on the spectral densities are 
somewhat restrictive. The general approach is similar to that taken here 
in that the key result is a bound of the type given by Theorem 9 on the 
fraction of the mse of a BLP attributable to a given range of frequencies. 

Pseudo-BLPs with a misspecijied mean function 

Suppose that both the mean and covariance functions of Z are possibly 
misspecified. Take Eij to be expectation under (mi, K j ) and eij (h, 6) to be 
the error of the BLP of h under (mi, Kj). Then (Exercise 36) 

Eoo(ell - eoo)2 = Eoo(eol - eoo)2 + Eoo(elO - eoo)2 (64) 

and 

Eooe~l - Elle~l = (Eole~l - Elle~d + (ElOe~l - Elle~l). (65) 

Thus, the effect of misspecifying both the mean and covariance functions 
on either the actual mse of prediction or the evaluation of the mse can be 
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decomposed into a term giving the effect of just misspecifying the covari­
ance function and a term giving the effect of just misspecifying the mean 
function. In light of these decompositions, let us next consider the effect of 
misspecifying just the mean function on linear prediction. 

Theorem 13. Suppose (mo,Ko) = (mo,K) and (ml,Kl ) = (ml,K), 
where K is an autocovariance function with spectrum F possessing spectral 
density f bounded away from 0 on any bounded set and few) ---. 0 as 
Iwl ---. 00. If m = ml - mo is square-integrable and of the form m(x) = 

JIRd exp( -iwT x)~(w) dw, where 

r 1~(wW 
i[td few) dw < 00, (66) 

then 

1· Eo{eo(h,8)-el(h,8)}2 0 
1m sup = . 
610 hE1L6(Fo) Eoeo(h,8)2 

PROOF. It is a simple matter to show that EOel (h, 8)2 is unchanged 
by subtracting the same fixed function from mo and ml, so there is 
no loss in generality in taking mo identically O. Next, for any V E 

C(F), the mean of the corresponding random variable in 'Jt(F) is 
~d ~(w)V(w) dw (Exercise 37). By (66), for E > 0, we can choose r, so that 
Jbd(r,)C 1~(w)12 f(w)-ldw < Eo Using Theorem 9, V E C(F) and orthogonal 
to C6 (F) imply 

ILd ~(w)V(w) dwl2 

:=:; 211 ~(w)V(w) dwl2 + 211 ~(w)V(w) dwl2 
bd (r,) bd (r,)C 

:=:; 2 r 1~(wW dw 1 f(w)lV(w)1 2dw 
iIRd few) bd(r,) 

+ 21 1~(w)12 dw r f(w)lV(w)1 2dw 
bd(r,)c few) i[td 

:=:; 2 Ld I~~r dw M6(F, bd(r,))IIVII} + 2EIIVII} 

and Theorem 13 follows since M6 (F, bd (r,)) ---. 0 as 8 1 0 and E is 
arbitrary. 0 

There is no need to prove a separate result for Elel(h,n)2/Eoel(h,n)2 
since Eoel(h,n)2 = Eleo(h,n)2 and Eoeo(h,n)2 = Elel(h,n)2 when only 
the mean function is misspecified (see Exercise 8). As an example of when 
(66) holds, suppose d = 1 and few) ;::::: (1 + w2 )-P for some positive integer 
p. Then (66) holds if and only if m is square integrable, m(p-l) exists and is 
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absolutely continuous and has almost everywhere derivative m(p) satisfying r: {m(P)(t) r dt < 00 

(see 1II.4.1 of Ibragimov and Rozanov (1978)). The fact that m must be 
square integrable eliminates such obvious candidates for a mean function 
as a nonzero constant. Results in 4.3 show that if the observations and 
predictands are restricted to a bounded region, it is generally possible to 
obtain asymptotically optimal predictions if the mean is misspecified by a 
nonzero constant. Thus, for assessing the effect of a misspecified mean, the 
infinite lattice setting is somewhat misleading as to what happens in the 
fixed-domain setting. 
Under stronger assumptions on ~ we can obtain rates of convergence in 

Theorem 13. Specifically, suppose f(w) x (1 + Iwl)-<> for some a > d and 
1~(w)12 / f(w) « (1 + Iwl)-d-'Y for some 'Y > 0, so that (66) holds. Larger 
values of 'Y correspond to smoother mean functions m. 

Theorem 14. If, in addition to the conditions of Theorem 13, f(w) x 
(1 + Iwl)-<> and 1~(wW / f(w) « (1 + Iwl)-d-'Y for some 'Y > 0, 

2 2 { 8 min(<>,'Y) Eoe1 - Eoeo ' 
sup 2« 

hE1t_6(F) Eoeo 8<> {log 181P, a = 'Y. 

PROOF. For V E £(F) and orthogonal to £6(F), 

/ [ ~(w)V(w) dwl2 :5 21 [ ~(w)V(w) dW/
2 

JlRd Jbd(1f6- 1) 

+ 21 [ {(w)V(w) dwl2 
Jbd(1f6-1 )c 

(67) 

By the Cauchy-Schwarz inequality, 

I [ ~(w)V(w) dwl2 
Jbd(1f6-1 )c 

:5 [ 1~(w)12 dw [ f(w)lV(w)1 2dw 
Jbd(1f6- 1)C f(w) Jbd(1f6-1)C 

« [00 r-'Y-1drllVlI} 
J6- 1 

«PIIVII}. (68) 

Similar to the proof of Lemma 11, define p(r) = Jabd(r) f(w)1/2V(W)JL(dw) 

and P(r) = J; p(s)ds. Then 

P(r)« {rd [ f(W)IV(W) 12dW}1/2« {rdM6(F,bd(r))} 1/211V1IF' 
Jbd(r) 
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so that using integration by parts as in the proof of Lemma 11, 

{ r ~(w)V(w) dW}2 
lbd(7ro- 1 ) 

« {;.''-' (1+ r)-h+dll'p(r) dr r 
« P(7r8- 1 )28'Y+d 

+ IIVII~ [;."-' (1 + r)-HH'll' {r' M,(F, b,{r))} >I' dr r 
« 0' IIV II~ + 6'11V1I~ [;.''-' (1 + r) {(.-,ll'l -1 dr r 

{ 
8min(a,'Y) IIVII~, a =I 7 

« 
8a(log8)211V11~, a = 7. 

(69) 

Theorem 14 follows from (67)-(69). o 

Exercises 

33 In the proof of Theorem 9, verify that Mo(F, B) < 1 and B symmetric 
imply Vo,B E .co(F). 

34 In the proof of Theorem 9, verify that U E .c(F), U is orthogonal to 
.co(F) and 11U11~ > o. 

35 Prove (53). 

36 Prove (64) and (65). 

37 Using the definitions in Theorem 13, show that for any V E 
.c(F), the mean of the corresponding random variable in 1f.(F) is 

Irrtd ~(w)V(w) dw. In addition, show that /flRd ~(w)V(w) dW/ is finite. 

38 Suppose Z is a mean 0 weakly stationary process on IR with spectral 
density f(w) = l{lwl < 7r}. Show that if Z is observed on Z then the 
observations are all uncorrelated and yet perfect interpolation at all 
t E IR is possible. 
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Equivalence of Gaussian Measures 
and Prediction 

4.1 Introduction 

The basic message of the results of 3.8 is that for interpolating a mean 0 
weakly stationary random field based on observations on an infinite square 
lattice, the smaller the distance between neighboring observations in the 
lattice, the less the low frequency behavior of the spectrum matters. This 
suggests that if our goal is to interpolate our observations and we need to 
estimate the spectral density from these same observations, we should focus 
on getting the high frequency behavior of the spectral density as accurately 
as possible while not worrying so much about the low frequency behavior. 
Supposing that our observations and predictions will all take place in some 
bounded region R, a useful first question to ask is what can be done if we 
observe the process everywhere in R. Answering this question will put an 
upper bound on what one can hope to learn from some finite number of 
observations in R. 
One simple way to formulate the question of what can be learned from 
observations on R is to suppose that there are only two possible probability 
measures for the process on R and to determine when one can tell which 
measure is correct and which is not. For example, consider a mean 0 Gaus­
sian process on lR with two possible auto covariance functions: Ko(t) = e- 1tl 

and Kl(t) = ~e-2Itl. If we observe this process for all t E [0, T] with T < 00, 
then it turns out that it is not possible to know for sure which autocovari­
ance function is correct, despite the fact that we have an infinite number 
of observations. Fortunately, as demonstrated in 3.5, these models can give 
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very similar interpolations. Indeed, under quite general conditions, mea­
sures that cannot be correctly distinguished with high probability based 
on a large number of available observations yield very similar predictions 
(see 4.3). 
Let us first introduce some terminology. For two probability measures Po 
and PIon a measurable space (n, F), say that Po is absolutely continuous 
with respect to PI if for all A E F, PI(A) = 0 implies Po(A) = O. Define 
Po and PI to be equivalent, written Po == PI, if Po is absolutely continuous 
with respect to PI and PI is absolutely continuous with respect to Po. Thus, 
Po == PI means that for all A E F, Po(A) = 0 if and only if PI (A) = o. 
Define Po and PI to be orthogonal, written Po 1. PI, if there exists A E F 
such that Po(A) = 1 and PI(A) = O. In this case, we also have Po(N) = 0 
and PI (AC) = 1. Thus, suppose we know that either Po or PI is the correct 
probability measure. If Po 1. Pl, then based on observing wEn, it is 
possible to determine which measure is correct with probability 1. On the 
other hand, if Po == PI, then no matter what is observed, it is not possible 
to determine which measure is correct with probability 1. More specifically, 
consider a decision rule of the following form. For some A E F, choose Po 
if A occurs and choose Pt otherwise. If Po == PI, then for any B E F such 
that Po(B) > 0 (so that PI(B) > 0), we cannot have both Po(A I B) = 1 
and PI(N I B) = 1. Indeed, if Po(A I B) = 1 then PI(AC I B) = O. Thus, 
there is no event B receiving positive probability under either measure such 
that, conditionally on B, perfect discrimination between the measures is 
possible. Of course, measures may be neither equivalent nor orthogonal; a 
trivial example is to take n = {O, 1, 2}, have Po assign probability ~ to {O} 
and {1} and probability 0 to {2} and PI assign probability ~ to {1} and 
{2} and 0 to {O}. In this case, we would know which measure were correct if 
W = 0 or 2, but we would not know if W = 1. An interesting property about 
Gaussian measures is that in great generality they are either equivalent or 
orthogonal. 
Section 4.2 looks at the problem of determining equivalence and orthog­

onality of measures for Gaussian random fields observed on a bounded 
region. There is a great deal known about this problem for Gaussian ran­
dom fields possessing an autocovariance function. The treatment in 4.2 
largely follows that of Ibragimov and Rozanov (1978, Chapter III). Other 
references include Yadrenko (1983), Gihman and Skorohod (1974) and Kuo 
(1975). 
Two critical weaknesses of the theoretical results in 3.6-3.8 on the behav­

ior of pseudo-BLPs are that they require observations over an unbounded 
domain and that they require regularly spaced observations. Using results 
on equivalence of Gaussian measures, Section 4.3 proves that if the pre­
sumed spectral density has similar high frequency behavior as the actual 
spectral density, pseudo-BLPs are asymptotically optimal under fixed­
domain asymptotics even when the observations are not regularly spaced. 
It may seem curious that properties of Gaussian measures are helpful 
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in obtaining results on linear predictors, which only depend on the first 
two moments of the random field. However, characterizations of equivalent 
Gaussian measures provide a convenient means for showing that the low 
frequency behavior of the spectral density has little impact on the behavior 
of linear predictions. 
Section 4.4 provides a first attempt to consider the effect of estimating 
the law of a random field on subsequent predictions. In particular, 4.4 gives 
a quantitative Bayesian formulation of Jeffreys's law (Dawid 1984), which 
states that aspects of a probability law that cannot be determined from a 
large amount of data cannot have much impact on prediction. This law is 
of particular interest and value when employing fixed-domain asymptotics, 
since there will naturally be parameters of models that cannot be consis­
tently estimated based on an increasing number of observations in a fixed 
domain. 

4.2 Equivalence and orthogonality of Gaussian 
measures 

This section develops the basic theory for determining the equivalence or or­
thogonality of Gaussian measures for random fields. For finite-dimensional 
random vectors, it is trivial to determine the equivalence or orthogonal­
ity of two possible Gaussian distributions: Gaussian random vectors on 
]R.d have equivalent measures if their distributions are both nonsingular or 
if they are both singular and the hyperplanes that form their respective 
supports are the same; otherwise, they are orthogonal. It is in the infinite­
dimensional setting that determining the equivalence or orthogonality of 
Gaussian measures becomes difficult. 
Suppose Z is a random field on ]R.d with mean function m and covariance 
function K. For a closed set R C ]R.d, let G R (m, K) be the Gaussian measure 
for the random field on R with second-order structure (m, K). When there 
is no chance for confusion, I,write G(m,K) for GR(m,K). Furthermore, I 
use Pj as shorthand for the Gaussian measure G( mj, K j ). 

Conditions for orthogonality 

Reasonably elementary arguments can be used to establish orthogonality 
in many cases. Note that to establish Po ..L PI, we only have to find a set A 
such that Po(A) = 1 and P1(A) = O. To establish equivalence, we have to 
show something about a whole class of sets. The following result is helpful 
in establishing orthogonality. Po ..L PI if there exists AI, A 2 , • •. E :F such 
that 

(1) 
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(Exercise 1). 
Since Gaussian random fields are determined by their first two moments, 
all statements about their equivalence or orthogonality can also be written 
in terms of the first two moments. For example, as a simple application of 
(1), consider a random field Z on some set R with two possible Gaussian 
measures Po and Pl' If there exists a sequence of linear combinations Yn = 
Ej:l AjnZ(Xjn), Xln ,· .• , xrnn E R such that 

(2) 

or 

(3) 

then Po 1.. PI follows from (1) (Exercise 2). For example, suppose Z is a 
mean 0 stationary Gaussian process on JR, R = [0,1], Ko(t) = e- 1tl and 
KI(t) = e- 1tl (1 + ltD so that Z is mean square differentiable under PI but 
not Po. Let Yn = Z(n- l ) - Z(O). Then the limit in (2) is 0 and Po 1.. Pl. 
More generally, suppose Z is a mean 0 stationary Gaussian process on 

JR with spectral density h under Pj and R = [0,1]. If Z is not infinitely 
mean square differentiable under Jt and fo(w)/Jt(w) --.. 0 as w --.. 00, then 
Po 1.. Pl. To prove this, note that the condition on Jt implies there exists a 
positive integer p such that J:O w2p Jt(w)dw = 00 (see Section 2.6). Define 
the linear operator fl.. by fl..Z(t) = c l {Z(t + f) - Z(t)}. Then 

E; {(.:I..)PZ(On' ~ E; { ,~ ~ m( -1)P-'Z(k')}' 

~ 1: I,~ ~ (i) (_e,w')'I' f;(w)dw 

= i: {~sin (~f) fP fJ(w) dw. 

Given fJ > 0, we can choose T such that fo(w)/ Jt(w) < fJ for Iwl > T. As 
f ! 0, 

r {~sin(W2f)}2Ph(W)dw--" r w2Ph(w)dw<00 
J1wl<T f J1wl<T 

for j = 0, 1 and 

r {~sin (W2f) }2P Jt (w) dw 
J1wl>T f 

~ r {~ (~ . Wf) }2P Jt(w) dw --.. 00. 
JT<lwl<7r/. f 11" 2 
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Thus, 

since lo(w)/ hew) < 0 for Iwl > T, so Po 1- PI follows by the arbitrariness 
of 0 and (2). 

If mo = ml and 10 x h, then neither (2) nor (3) can happen. However, 
we may still be able to prove orthogonality of Gaussian measures by con­
sidering sequences of sums of squares of linear combinations of Z. Suppose 
Z is a stationary Gaussian process on [0,1] with auto covariance function 
K satisfying K(t) = C - Dltl + o(ltl) as t ~ a for some D > O. Define 

(4) 

Then 

EUn = n {K(O) - K (~)} ~ D 

as n ~ 00. Now X 1 ,X2 ,X3 ,X4 jointly Gaussian with mean 0 and 
COV(Xi,Xj) = O'ij implies cOV(X1X 2 ,X3 X 4 ) = 0'130'24 + 0'140'23 (see 
Appendix A), so 

varUn 

= ~var [{z (~) -Z(O)f] 

+ ~ ~(n - j) COy [{ Z (~) - Z(O) f ' {Z e: 1) -Z (~) f] 
=2n{K(0)-K(~) f 

n-l {(j) (j+l) (j_l)}2 + ~(n - j) 2K ;;: - K ---:;;- - K ---:;;- (5) 

If K has a bounded second derivative on (0,1] then EUn = D + O(n- 1 ) 

and var Un = 2n- 1 D2 + O(n-2) (Exercise 3). That is, we can esti­
mate D with asymptotically the same mse as when the first differences, 
Z(j/n) - Z(U - 1)/n) for j = 1, ... ,n, are independent and identi­
cally distributed N(O, 2Dn- 1 ). Note that if Z were Brownian motion with 
var{Z(t) - Z(O)} = 2Dltl, then the first differences would be independent 
and identically distributed N(O, 2Dn- 1 ). 

So, for j = 0,1, suppose K j is an autocovariance function on ~ with 
Kj(t) = Cj -Djltl +o(ltl) as t ~ 0 for some Dj > 0 and K j has a bounded 
second derivative on (0,1]. If Do =I- Dl and R = [0,1], then GR(O,Ko) 1-
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L2 L2 
GR(O,Kd, since under GR(O, Ko), Un -+ Do and under GR(O,Kd, Un -+ 

D I · 

Although assuming K j has a bounded second derivative on (0,1] sim-
plifies matters considerably, the following result implies that Kj(t) = 
Cj - Djltl + o(ltl) as t -+ ° for j = 0,1 with Do and DI unequal and 
positive is sufficient to conclude GR(O,Ko) ..1. GR(O,KI) for R any interval 
of positive length (Exercise 4). 

Theorem 1. For a mean 0 stationary Gaussian process on lR with auto­
covariance function satisfying K(t) = C - Dltl + o(ltl) as t -+ ° for some 
D> ° and Un as defined in (4), var(Un) -+ ° as n -+ 00. 

A proof using spectral methods is given at the end of this section. 
Exercise 25 outlines a proof in the time domain. 
I conjecture that the conditions of Theorem 1 imply the stronger result 

var(Un) = O(n-I) as n -+ 00. For example, if K(t) = (~-Itlt, then 
since K is not even once differentiable on (0,1], one might imagine this 
case would violate my conjecture. However, direct calculation shows that 
we still have var(Un ) = O(n-I) (Exercise 8). 
Before attempting to develop a general theory of equivalence and orthog­
onality of Gaussian measures, let us consider one more example: R = [0, 2], 
mo = ml = 0, Ko(t) = (1-ltl)+ and KI(t) = e- 1tl . Define 

Then as n -+ 00 (Exercise 9), EoWn -+ -1, EIWn -+ 0, varo Wn -+ ° 
and varl Wn -+ 0, so that GR(O,Ko) ..1. GR(O, K I), despite the fact that 
the auto covariance functions behave similarly at the origin. Recall that the 
triangular auto covariance function Ko(t) = (1 - Itl)+ produced strange 
linear predictions (Section 3.5), so it is encouraging that we should be able 
to distinguish between Ko and KI based on observations on [0,2]. It is 
important that we chose R = [0,2]; it is possible to show that if R = [0, TJ, 
then GR(O, Ko) ..1. GR(O, Kd ifT > 1 and GR(O, Ko) == GR(O, K I) ifT::; 1 
(see Exercise 19). However, it is also true that if T ::; 1, Ko produces no 
unusual predictors on [0, T]. 

Gaussian measures are equivalent or orthogonal 

Suppose mo and ml are continuous functions on lRd , Ko and Klare continu­
ous and p.d. on lRd x lRd and R is a closed subset of lRd • We now demonstrate 
that the Gaussian measures Po = GR(mo,Ko) and PI = GR(mbKd are 
always either equivalent or orthogonal. We follow the approach oflbragimov 
and Rozanov (1978, pp. 74-77). The following notation and assumptions 
are used throughout the rest of this section and in 4.3. For a random field 
Z on lRd , let 1t~ be the real linear manifold of Z(x) for x E R and let 
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1tR(m, K) be the closure of 1t~ with respect to the norm given by second 
moments under (m, K). The continuity assumptions about mj and K j im­
ply that 1tR(mj, K j ) is separable for j = 0,1 (Exercise 10). If there is a 
basis for 1tR(mo, Ko) and 1tR(ml, Kd that is linearly independent under 
one of the covariance functions but not the other, then trivially Po ..1 PI, so 
assume there exists hI, h2' ... in 1t~ forming a linearly independent basis 
for both 1tR(mo, Ko) and 1tR(ml, K I). For example, taking hi = Z(Xi) 
with XI,X2, .•• dense in R yields a basis for 1tR(mj,Kj ) and if the XiS are 
distinct, the hiS will commonly be linearly independent (although see Exer­
cise 16 in 2.7). Ibragimov and Rozanov (1978, Lemma 1 of Chapter 3) show 
that two Gaussian measures on the a-algebra generated by hI, h2, ... are 
equivalent if and only if they are equivalent on the a-algebra generated by 
Z(x) for X E R, so I do not explicitly consider the distinction between these 
two a-algebras subsequently. To determine when Po and PI are equivalent 
or orthogonal (or neither), it makes no difference if we subtract a sequence 
of constants from the hiS, so without loss of generality, assume Eohi = 0 for 
all i. Now we can linearly transform hI, . .. ,hn to hIn, ... ,hnn such that 
for j, k = 1, ... , n, 

Ko(hkn' hjn) = 8kj and KI(hkn , hjn) = a~n8kj, (7) 

where 8kj = 1 if k = j and is 0 otherwise. Set mkn = ml(hkn ). Note that 
here we are considering m and Ki to be operators on spaces of random 
variables rather than functions on regions of Euclidean space. 
Likelihood ratios playa critical role in statistical theory. In particular, 
the famous Neyman-Pearson Lemma (Casella and Berger 1990, p. 366) 
shows that for testing one simple hypothesis (a hypothesis containing only 
one probability law for the observations) against another simple hypothesis, 
tests based on the likelihood ratio are optimal in a well-defined sense. Thus, 
it should not be surprising that likelihood ratios can be used to determine 
equivalence and orthogonality of Gaussian measures. Based on observations 
hI"'" hn' the likelihood ratio of PI to Po, denoted by Pn, is just the joint 
density of hI, . .. ,hn under PI divided by their joint density under Po. 
Direct calculation yields (Exercise 11) 

(8) 

Using the definitions in (7), we have (Exercise 11) 

EologPn =! t{-lOga~n - + + 1- (mkn)2}, 
2 k=l 0' kn akn 

I n (1 2)2 + 2 2 (1 ) ~ -akn mkn 
varO ogPn = 2" L..J 4 ' 

k=I akn 
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1~( 2 2 2) EllogPn = "2 ~ -log(}"kn + (}"kn - 1 + mkn 
k=l 

and 

varl(logpn) = ~ t {(1- (}"~n)2 + 2(}"~nm%n}' 
k=l 

(9) 

Define the entropy distance between the measures Po and PI based on 
hI"'" hn by 

n ( 2 ) 1 2 1 2 mkn 
= "2 L (}"kn + (}"2 - 2 + mkn + ~ . 

k=l kn kn 
(10) 

The quantity EllogPn is known as the Kullback divergence of Po from 
PI based on hI"'" hn, so that Tn is a symmetrized Kullback divergence. 
Section 4.4 discusses an interesting connection between Kullback divergence 
and prediction. Now EllogPn is monotonically increasing in n (Exercise 12) 
and hence so is -Eo 10gPn. Thus, Tn is monotonically increasing in n, so it 
tends to a limit, possibly infinite. 

Lemma 2. If Tn ~ 00, then Po 1.. Pl. 

PROOF. (Ibragimov and Rozanov 1978, p. 76). From (10) and the mono­
tonicity of Tn, either infk,n (}"~n = 0 or sUPk,n (}"~n = 00 implies both that 
Tn ~ 00 and, from (2), Po 1.. Pl. Thus, from now on, suppose 

(11) 

so that 

and 

n (12) 
;::: Tn ;::: L {(1 - (}"~n)2 + m%n} . 

k=l 

Define the event 

An = {logPn - EologPn ~ !Tn}. 

By Chebyshev's inequality, 
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and 

PI(An ) = 1 - PI (-logPn + Eo 10gPn 2: -~rn) 

= 1 - PI (-logPn + EllogPn 2: ~rn) 

2: 1 -4varl(~Ogpn) -t l. 
rn 

Thus Po 1- Pl. 

Lemma 3. If rn -t r < 00 then Po == Pl. 

o 

PROOF. (Ibragimov and Rozanov 1978, p. 77). Suppose there exists A E 
.r such that Po (A) = 0 and PI (A) > O. Let P2 = Po + Pl. Then there exists 
a sequence of events AI, A 2 , ... such that An is measurable with respect to 
the a-field generated by hI' ... ' hn and P2 (A 0 An) -t 0 as n -t 00, where 
o indicates symmetric difference (Exercise 13). Thus, 

Po(A 0 An) -t 0 and PI (A 0 An) -t 0 as n -t 00. (13) 

Consider.r~ = {0,0,An,A~}. For wE 0, define 

for wEAn 

for W E A~. 

Then 

Po(An) 1 - Po(An) 
EllogXn = PI (An) log PI (An) + {I - PI (An)} log 1- PI(An ) . 

By (13), PI(An) -t PI(A) > ° and Po(An) -t Po(A) = 0 so -EllogXn-t 
00. By Exercise 12, -Ellog Xn :S -Ellogp;;-l :S rn so that rn -t 00, which 
yields a contradiction. Hence, we cannot have Po(A) = 0 and PI(A) > O. 
Similarly, there cannot exist A E .r with PI (A) = 0 and Po(A) > o. The 
lemma follows. 0 

Combining these two lemmas yields the following. 

Theorem 4. Po and PI are either equivalent or orthogonal and are 
orthogonal if and only if r n -t 00. 

As the following corollary notes, we can determine the equivalence or 
orthogonality of Po and PI by first considering the equivalence or or­
thogonality of G(O, Ko) and G(m}, Ko) and then that of G(O, Ko) and 
G(O, KI). 

Corollary 5. G(O, Ko) == G(ml' K I) if and only if G(O, Ko) == G(ml' Ko) 
and G(O, Ko) == G(O, KI). 

PROOF. If (11) is false, then G(O, Ko) ..l G(ml' Kd and G(O, Ko) ..l 
G(O, Kd, so the corollary holds in this case. If (11) is true, then from 
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(12), Tn tends to a finite limit if and only if both E~=l (1 - (1~n)2 and 
E~=l m~n are bounded in n. 0 

Determining equivalence or orthogonality for periodic random 
fields 

Quite a bit is known about how to establish equivalence of Gaussian 
measures for processes possessing an auto covariance function; see Ibrag­
imov and Rozanov (1978, Chapter III) for processes on IR and Yadrenko 
(1983) for random fields. The proofs in these works are rather technical. 
By restricting attention to periodic processes, the problem of establishing 
equivalence or orthogonality of Gaussian measures becomes straightfor­
ward. We prove results in this simple case and then just state the 
corresponding results for nonperiodic processes. 
A process with period 271" in each coordinate will have a spectrum with 
support on 'l.d. For j E 'l.d, take j > 0 to mean j !- 0 and the first nonzero 
component of j is positive. Consider the Gaussian random field on IRd with 
spectral representation 

Z(x) = X(O) + L: {X(j) cos(jT x) + Y(j) sin(jT x)}, (14) 
j>O 

where the X(j)s and Y(j)s are independent Gaussian random variables 
with EX(j) = J.t(j) , EY(j) = lI(j) , var{X(O)} = f(O) and var{X(j)} = 
var{Y(j)} = 2f(j) for j > O. Then EZ(x) = J.t(0) + Ej>o{J.t(j) COS(jTx) + 
1I(j) sin(jT x)} and 

K(x - y) = cov {Z(x), Z(y)} = L: f(j) cos {jT(X - y)} (15) 
jEZd 

if we set f( -j) = f(j). Under these conditions, for the sum (14) to exist 
as an £2 limit of finite sums for all x, it is necessary and sufficient that 
E f(j) < 00 and E j>O{J.t(j)2 + 1I(j)2} < 00. Indeed, by a relatively simple 
version of Bochner's Theorem, it is not difficult to show that a function K 
from IRd to the reals is a continuous positive definite function on IRd with 
period 271" in each coordinate if and only if it can be written as in (15) 
with all f(j)s nonnegative, f even and E f(j) < 00. We see that f is the 
spectral density of the process with respect to counting measure on the 
integer lattice. 
The explicit representation in (14) of a periodic random field as a sum 
of independent random variables makes it relatively easy to study. In par­
ticular, for two such Gaussian measures with mean functions mo and ml 
having period 271" in each coordinate and auto covariance functions defined 
by spectral densities fo and II on 'l.d, it is a simple matter to determine 
their equivalence or orthogonality. First, as previously noted, we can as­
sume without loss of generality that the mean under Po is 0 and let J.t(j) 
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and v(j) be the Fourier coefficients for the mean under Pl. Letting j 1, h, ... 
be some listing of those j in Zd for which j > 0, the sequence of random 
variables X(O), Y(jd, X(jd, Y(j2), X(j2), ... forms a basis for the Hilbert 
space of random variables generated by Z(x) for x E (0,2rrJd under the 
inner product defined by 10. Defining Tn as in (10) and T = limn -+oo Tn, we 
get 

'" [{/I(j) - 10(j)}2 {(0)2 (0)2} {II}] 
T = .~ lo(j)/I(j) + /-t J + v J lo(j) + /I(j) , 

JE .... 

where /-t and v are taken to be even functions and yeO) = O. This definition 
is appropriate even when some J;(j)s are 0 as long as % is defined to be 0 
and a positive number over 0 is defined to be 00. By Theorem 4, Po and PI 
are equivalent if T is finite and are otherwise orthogonal. If lo(j) ;::::: /I(j), 
which is necessary for equivalence, then T < 00 if and only if 

In one dimension, we can rewrite (16) in terms of the mean and au­
to covariance functions when lo(j) ;::::: /I(j) ;::::: (1 + j2)-p for j E Z and 
some positive integer p. First consider the case where the autocovari­
ance functions are equal. Set Po = G(0,27r](0,K) and PI = G(0,27r](mI,K) 
where K(t) = 'L'f=-oo I(j) cos(jt) and mI(t) = /-to + 'L'f=I {/-t(j) cos(jt) + 
v(j) sin(jt)}. Then 'L'f=0{j.t(j)2 + V(j)2} /I(j) is finite if and only if 

'L'f=0{/-t(j)2 + v(j)2}Pp is, which in turn is equivalent to m~P-I) existing 
and being absolutely continuous on lR. with almost everywhere derivative 
m~p) satisfying 

(17) 

(Exercise 14). Now consider the case where the means are both 0 and de­
fine k(t) = Ko(t) - KI(t). Then (16) holds if and only if 'LjEz{/I(j) -
IO(j)pj4p < 00, which in turn holds if and only if k(2p-I) exists and is ab­
solutely continuous on lR. with almost everywhere derivative k(2p) satisfying 
(Exercise 14) 

Determining equivalence or orthogonality for nonperiodic 
random fields 

(18) 

The results for non periodic random fields possessing a spectral density with 
respect to Lebesgue measure look quite similar to those for periodic random 
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fields but are considerably harder to prove. Let us first consider results in 
the spectral domain. Define Qd to be those functions 1 : JRd - JR such that 

I(w) X 14>(w)1 2 as Iwl- 00 (19) 

for some function 4> that is the Fourier transform of a square-integrable 
function with bounded support, where a(w) x b(w) as Iwl - 00 means 
there exists a finite constant A such that a(w) x b(w) on Iwl > A. Then 
for 10 E Qd and any bounded region R C JRd, GR(O,Ko) == GR(0,K1) if 
for some C < 00, 

r {/I(w) - 10(W)}2 dw < 00. 
J1wl>c lo(w) 

(20) 

This result is a minor extension of Theorem 4 in Yadrenko (1983, p. 156). 
Moreover, Yadrenko (1983) gives nontrivial sufficient conditions for or­
thogonality of Gaussian measures with different spectral densities, but the 
results are rather messy. Ibragimov and Rozanov (1978, Theorem 17 of 
Chapter III) state that for a process on JR, (20) is necessary and sufficient 
for equivalence of the Gaussian measures on any finite interval. However, 
the claim of necessity is false (Exercise 15) and furthermore, appears to 
be unintended by the authors in light of the discussion on page 107 on 
conditions for orthogonality. A reasonable conjecture is that if (20) does 
not hold then there exists a bounded region on which the corresponding 
Gaussian measures are orthogonal. 
The condition 10 E Qd does not have an analogue for periodic random 
fields, so it is worth further scrutiny. For simplicity, I only consider processes 
on JR here. Exercise 16 asks you to show that if 1 is a spectral density on 
JR and I(w) x w- a as w - 00 for some a > 1, then 1 satisfies (19). 
Now let us consider what kinds of spectral densities Qd excludes. Suppose 
4>(w) = J~oo c(t)eiwtdt, where c has bounded support and is not 0 on a set 
of positive measure. Denoting by C2 the convolution of c with itself, we have 
that 14>12 is the Fourier transform of C2. Now C2 has bounded support and is 
not 0 on a set of positive measure, so C2 cannot be analytic on the real line. 
This lack of smoothness in C2 implies that 14>12 cannot be arbitrarily small 
at high frequencies. To see this, note that c square integrable implies 14>12 is 
integrable, so that C2(t) = (211")-1 J~oo 14>(w)1 2e- iwtdw. Thus, for example, 
14>12 cannot possess a Laplace transform in a neighborhood of the origin, 
since that would imply that C2 is analytic on the real line (Exercise 17). 
Therefore, Ql excludes spectral densities such as e-1wl and e-w2 • 

If 10 possesses a Laplace transform in a neighborhood of the origin, 
then (20) no longer implies the equivalence of the corresponding Gaussian 
measures. More specifically, two nonidentical stationary Gaussian measures 
are orthogonal on any interval of positive length if either of them has a 
spectral density possessing a Laplace transform in a neighborhood of the 
origin. This can be proven by first recalling (Exercise 16 in 2.7) that if 
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a stationary Gaussian process Z with analytic autocovariance function is 
observed on [-T,O] for T > 0, then for any t E JR, Z(t) can be predicted 
without error with probability one. Next, Yaglom (1987a, p. 234) shows 
that the autocovariance function K of a Gaussian process observed on all 
of lR can be obtained at any given t ~ ° with probability one if 

lim T- I [T K(t)2dt = 0. (21) 
T-+oo 10 

If the spectral density exists, then (21) follows from the Riemann-Lebesgue 
Lemma, which says that the Fourier transform of an integrable function 
tends to ° as its argument tends to ±oo (Stein and Weiss 1971, p. 2). 
Now suppose that Ko and Kl are two autocovariance functions, and Ko is 
analytic and has a spectral density. Then for any T > 0, GT(O, Ko) == 
GT(O,KI ) if and only if Ko = K I , where GT(m,K) = G[O,T](m,K) 
(Ibragimov and Rozanov (1978, p. 95) or Exercise 18). The reason an­
alytic autocovariance functions are not excluded from (16) for periodic 
processes is that the perfect extrapolation of the process from [0,211"] to JR, 
although possible, does not provide any new information about the auto co­
variance function K, and hence K cannot be reconstructed with probability 
one. Of course, (21) is not satisfied for a periodic process with continuous 
autocovariance K unless K is identically 0. 
Let us next consider spectral conditions for equivalence if only the mean 

function is misspecified. For a closed region R C lRd and f bounded, Ya­
drenko (1983, p. 138) shows GR(O, K) == GR(ml, K) if and only if mi can 
be extended to a square-integrable function on all of lRd whose Fourier 
transform mi satisfies 

[ I ml(W)12 d 
lR,d f(w) W < 00. 

If R = lRd , then there is no need to extend mI. Comparing this result to 
Theorem 13 of 3.8, if f is bounded away from ° and 00 on bounded sets, we 
see that GRd (0, K) == GR,d (ml' K) implies the uniform asymptotic optimal­
ity of pseudo-BLPs using the wrong mean function based on observations 
at oj for all j E Zd as 0 ! 0. 
In one dimension, analogous to (17) and (18) in the periodic setting, there 

are results in the time domain on the equivalence of Gaussian measures. 
Consider Gaussian measures GT(O, K) and GT(ml, K) for T > 0, where K 
has spectral density f. If for some positive integer p, 

f(w)w 2p x 1 as w --+ 00, (22) 

then GT(O, K) == GT(ml, K) if and only if m~P-I) exists and is absolutely 
continuous on [0, T] with almost everywhere derivative m~p) satisfying 

[T 2 

10 {m~P)(t)} dt < 00 (23) 
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(Ibragimov and Rozanov, 1978, p. 92), which can be compared with (17). 
Since (22) means Z is exactly p - 1 times mean square differentiable under 
G(O, K), loosely speaking, we see that (23) says that if the difference of 
mean functions has one more derivative than the stochastic part of Z, the 
two models are equivalent. 
Next consider Gaussian measures GT(O, Ko) and GT(O, Kd for a sta­

tionary process Z on lR. Define k(t) = Ko(t) - Kl(t). For 10 satisfying 
(22), GT(O, Ko) == GT(O, K 1 ) if and only if k(2p-l) exists and is absolutely 
continuous on (-T, T) with almost everywhere derivative k(2p) satisfying 

rT 2 10 {k(2P)(t)} (T - t) dt < 00, (24) 

which follows from Theorems 13 and 14 of Ibragimov and Rozanov (1978, 
Chapter III). Note that (22) implies K~2P-2) is not differentiable at 0, so 
for equivalence we require that the difference between the autocovariance 
functions be smoother than either of them separately. If, say, h(w) ~ lo(w) 
for all w, then we can define independent ° mean Gaussian processes X and 
Y with spectral densities 10 and h - 10, respectively, so that GT(O, Ko) 
is the law of X on [0, T] and GT(O, Kd is the law of X + Y on [0, T]. 
In this case, (24) has the loose interpretation that we cannot distinguish 
between X and X + Y if Y has one more derivative than X. Note that (24) 
allows us to verify the claim of the preceding section that if Ko(t) = e- 1tl 
and Kl (t) = (1 - Itl)+, then GT(O, Ko) == GT(O, K 1 ) if and only if T ::; 1 
(Exercise 19). 

Measurement errors and equivalence and orthogonality 

This subsection examines the equivalence and orthogonality of Gaussian 
measures on a sequence of observations of a random field with measurement 
error. Let us suppose that the observation locations are all contained in a 
region R and that the sequence is dense in R. The basic message is: if 
the variance of the measurement error is different under the two measures, 
then the measures are orthogonal and, if the variances are equal, then the 
measures are equivalent if and only if the Gaussian measures for the random 
field on R are equivalent. 
To be more specific, for i = 0,1, let GR(mi, Ki ) be two Gaussian mea­
sures for a random field Z on a region R and let X = {Xl,X2''''} be 
a sequence of points in R. For j = 1,2, ... , define Yj = Z(Xj) + Ej, 
where under model i, El, E2,'" are independent of Z and independent 
and identically distributed N(O, un Thus, under model i, the distribu­
tion of (Y1 , Y2, ... , Yn)T is N(EiZn,COVi(Zn, Z;;) + u~I), where Zn = 
(Z(xd, ... , Z(Xn))T. Write GX(mi' Ki , un for the probability measure of 
Y1 ,}2, ... under model i. 
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Theorem 6. Suppose all points in R are limit points oj R, Z is mean 
square continuous on R under GR(mo, Ko) and that X is a dense sequence 
oj points in R. Ifa3 -# a~, then Gx (mo,Ko,a3) ..1 Gx(mI, K 1,an. Ifa3 = 
a~, then Gx(mo,Ko,a5) == Gx(ml,K1,an if and only ifGR(mo,Ko) == 
GR(m1,K1). 

PROOF. I just provide an outline of a proof, leaving the details as a series 
of exercises. The key point to the proof is to show that 1tR(mO, Ko) is 
contained in the Hilbert space generated by Y1 , Y2 , ••. (Exercise 21). This 
result can be proven by noting that for any x E R, we can find an 1 0 such 
that d(x, n) = I:;=1 1 {Ix - xjl ~ an} -+ 00 as n -+ 00, so that 

1 n £2 

d(x,n) ~ 1{Ix - xjl ~ an}}'j -+ Z(x) (25) 

as n -+ 00 under GR(mO, Ko). It follows that if Z is not mean square 
continuous on R under GR(ml, Kt}, then GR(mO, Ko) ..1 GR(m1, K 1) and 
Gx(mo,Ko,a3)..l Gx(ml,K1,an, whether or not a3 = a~ (Exercise 22), 
so let us now suppose Z is mean square continuous on R under either mea­
sure. We can then correctly recover the measurement error variance with 
probability 1 under either model (Exercise 23), so that Gx(mo,Ko,a3)..l 
Gx(m1,Kl,an if a3 -# ar If a3 = a~ and GR(mo,Ko) == GR(m1,K1), 
then the two Gaussian measures on the a-algebra generated by {Z(x) : 
x E R} and 101,102, ••• are equivalent. In addition, Yl, Y2 , ••. are mea­
surable on this a-algebra, so that Gx(mo, Ko, a3) == GX(m1, K 1, a~) 
(Exercise 24). Finally, if a3 = a~ but GR(mo,Ko) ..1 GR(ml,Kt}, then 
the fact that 1tR(mi, K i ) is contained in the Hilbert space generated by 
Yb Y2 , ••• under Gx(mi,Ki ,an implies Gx(mo, Ko,a5) ..1 GX(mb K1,a~) 
(Exercise 24). 0 

Proof of Theorem 1 

We now return to proving Theorem 1, stated earlier in this section. Let 
F be the spectral distribution function for the process, so that if F is the 
spectral measure, F(w) = F((-oo,w]). Recalling that Ad(r) = (-rrr,rrrjd, 
then 

2K (~) - K e : 1) -K e ~ 1 ) 
= 2 (Xl eiwj / n (1- cos~) dF(w) Loo n 

= 2 r eiwj / n (1 - cos~) dFn(w), 
JA1(n) n 

where Fn(w) = I:f=_ooF((rrn(2j -1),2rrjn+w]) for wE A1(n) and the 
integrals are interpreted in the Riemann-Stieltjes sense. Using F symmetric 
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about 0, it follows that 

n-1 {(j) (j+l) (j_l)}2 ~(n-j) 2K ; -K 71 -K 71 

From (5), it suffices to show (26) tends to 0 as n -+ 00. First, 

In -
1 I ~(n _ j)ei(W-v)j/n 

3=1 

= I nei(w-v)/n{l_ ei(w-v)/n} - ei(w-v)/n{1 - ei(w-v)} I 
{I - ei(w-v)/np 

« 1 + nsin I w2~v I 

for V,W E A1(n) (Exercise 5). Thus, 

n-1 {(j) (j+l) (j_l)}2 ~(n-j) 2K ; -K 71 -K 71 

1 1 W 2v2 - -«2" . Iw-vl dFn(w)dFn(v). 
n A2(n) 1 + nsm 2n 

(26) 

(27) 

Suppose {en} and {dn } are positive sequences such that en -+ 00, 

Cn = o(n1/2), dn -+ 00 and dn/en -+ 0 as n -+ 00. Divide A2(n) 
into three regions: R1 = A2(en); R2, the part of A2(n)\R1 for which 
nsin I(w - v)/(2n)1 < dn; and R 3 , the rest of A2(n) (see Figure 1). Now, 
Cn = o(n1/ 2 ) implies 

as n -+ 00. By Pitman's Tauberian theorem (Theorem 4 of 2.8), F( -t) I'V 

Cit as t -+ 00 for a positive constant C. Thus, defining Hn(w) = Fn(1fn)­
Fn(w), we have Hn(w) « l/w for 0 < w ::::; 1fn (Exercise 6). For 0: > 1, 

r wOdFn(w) = _wo Hn(W)I~n + 0: rn wo - 1 Hn(w) dw 
l(o,'lrn] 10 

«no - 1 , (28) 
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I 
1l"n 

____ L __ _ 

1-1l"n 

I 

FIGURE 1. Regions of integration in proof of Theorem 1. Horizontal stripes 
indicate R 1 , diagonal stripes indicate R2 and unstriped area is R3. 

so that 

1 
«~d n n 

as n -+ 00, since dn -+ 00. Finally, 
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where if v + dn ~ 1l'n, Fn(v + dn) = Fn(1l'n) + Fn(v + dn - 21l'n). Now, for 
any positive integer jo and all v E (en - dn, 1l'n], 

v{ Fn(v + dn) - Fn(v - dn)} (29) 
jo 

~ v L: {Fn(21l'jn + v + dn) - Fn(21l'jn + v - dn)} + 21l'nF( -21l'jon). 
j=-jo 

Since F( -t) '" Cit as t -+ 00, given € > 0, we can choose jo such that 
21l'nF( -21l'jon) < € for all n sufficiently large. Again using Pitman's Taube­
rian theorem, it is possible to show that the first term on the right side of 
(29) tends to 0 uniformly for all v E (cn - dn, 1l'n] (Exercise 7). Since € is 
arbitrary, it follows that v{ Fn(v + dn) - Fn(v - dn)} -+ 0 uniformly for 
all v E (en - dn, 1l'n] (Exercise 7), so by (28), the contribution to (26) from 
R2 tends to 0 as n -+ 00. Since the first term on the right side of (5) is 
O(n- l ), the theorem follows. Exercise 25 outlines a time-domain proof of 
Theorem 1. 

Exercises 

1 Prove (1). 

2 Use (1) to show that (2) or (3) imply Po ..1 Pl. 

3 Suppose Un is defined as in (4) and K(t) = C - Dltl + o(ltl) as t -+ 0 
for some D > O. If K has a bounded second derivative on (0,1] then 
EUn = D + O(n-l) and varUn = 2D2n- 1 + O(n-2). If, in addition, 
K" is continuous on (0,1]' show that EUn = D + o:n- l + o(n- l ) 

and varUn = 2D2n- 1 + (3n- 2 + o(n-2) as n -+ 00 and give explicit 
expressions for 0: and (3. 

4 Use Theorem 1 to show that if Kj(t) = Cj - Djltl + o(ltl) as t -+ 0 
for Dj > 0 for j = 0,1 with Do =/; D I , then G R(O, Ko) ..1 G R(O, Kd on 
any interval of positive length. 

5 Verify (27). 

6 Verify the claim in the proof of Theorem 1 that Hn(w) « w- l for 
0< w ~ 1l'n. 

7 In the proof of Theorem 1, show that the first term on the right side of 
(29) tends to 0 uniformly for all v E (en - dn, 1l'n]. Show that it follows 
that v{ Fn(v + dn) - Fn(v - dn)} -+ 0 as n -+ 00 uniformly for all 
v E (en - dn, 1l'n]. 

8 For K(t) = (~ -Itlt, show that for Un as given in (4), varU2n '" 
an- l and VarU2n+1 '" {3n- 1 as n -+ 00. Find 0: and (3. 

9 For Wn as defined in (6) and Z a Gaussian process, show that as 
n -+ 00, EoWn -+ -1, EI Wn -+ 0, varo Wn -+ 0 and varl Wn -+ 0 for 
R = [0,2], mo = ml = 0, Ko(t) = (1 -Itl)+ and KI(t) = e- 1tl . 
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10 Show that for a mean square continuous random field Z on JRd, the 
closed real linear manifold of Z(x) for x E JRd is a separable Hilbert 
space. 

11 Verify the expressions for logPn in (8) and for the mean and variance 
of 10gPn under Po and P1 in (9). 

12 Consider probability spaces (n,:F, Po) and (n,:F, P1) with P1 abso­
lutely continuous with respect to Po and let P be the Radon-Nikodym 
derivative of P1 with respect to Po. If :F' c :F is a a-algebra on n, 
show that 

Eo[log{Eo(p-11:F')}] ~ 10g{Eo(P-l)}. 

Note that to apply this result in the proof of Lemma 3, we should 
take n = JRn, :F the Borel sets on JRn and :F' to be :F~ as defined in 
Lemma 3. 

13 In the proof of Lemma 3, verify that there exists a sequence of events 
A1, A2 , ••• where An is measurable with respect to the a-field generated 
by hi, . .. , hn such that P2(A 0 An) --t a as n --t 00. 

14 Consider a Gaussian process on JR with period 271". For a positive in­
teger P, suppose lo(j} ~ h(j) ~ (1 + P)-P for j E Z. Show that 
GIR(a, Ko) = GIR(m, Ko) if and only if m(p-l) exists and is absolutely 
continuous and has almost everywhere derivative satisfying (17). In ad­
dition, for k = Ko-Kl, show that GIR(a, Ko) = GIR(a, Kd ifand only if 
k(2p-l) exists and is absolutely continuous and has almost everywhere 
derivative satisfying (18). 

15 Show by example that for d = 1 the integral in (2a) can be infinite and 
yet GT(a, Ko) == GT(a, K 1) for some positive T. 

16 Show that if I is a spectral density on JR and I(w) ~ w-a as w --t 00 for 
some a > 1, then I satisfies (19). This result is (4.31) in Chapter III 
of Ibragimov and Rozanov (1978). 

17 Show that if a function on JR possesses a Laplace transform in a neigh­
borhood of the origin, then its Fourier transform is analytic on the real 
line. 

18 Applying (21), provide the details showing that if Ko and Kl are 
two auto covariance functions on JR, Ko is analytic and has a spectral 
density, then GT(a, Ko) == GT(a, K1) for T > a if and only if Ko = K 1. 

19 If Ko(t) = e- 1tl and Kl(t) = (l-ltl)+, show that (24) implies that 
GT(a, Ko) == GT(a, Kd if and only if T ~ l. 

20 If T > a, Ko(t) = e- 1tl and in a neighborhood of the origin, Kl(t) = 
Kl (a) - It I + Dltl'"Y + o(ltl'"Y) as t --t a for 'Y E (1,~] and some D 1= a, 
show that GT(a, Ko) .L GT(a, Kl). 
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In Exercises 21-24, assume that the conditions of Theorem 6 hold. 

21 Show that (25) holds and hence that 1tn(mo, Ko) is contained in the 
Hilbert space generated by Y1, Y2 , .... 

22 If Z is not mean square continuous on R under G n(ml, Kd, show that 
Gn(mo,Ko)..L Gn(ml,Kd and Gx (mo,Ko,0'3)..L Gx(ml,Kl'O'~)' 

23 Show that it is possible to recover 0'3 with probability 1 from 
Y17 Y2 , ... under Gx (mo,Ko,0'3). Hence, show Gx(mo,Ko,0'3) ..L 
GX(mb K17 an if 0'3 ¥= O'~. 

24 Suppose Gn(mo,Ko) == Gn(m17Kl)' Prove that Gx (mo,KO,0'2) 
Gx(m17 K 1 , 0'2). Suppose Gn(mo, Ko) ..L Gn(ml, K 1 ) and Z is mean 
square continuous on R under both models. Prove that Gx (mo , Ko, 0'2) 
is orthogonal to Gx (m1! K17 0'2). 

25 Prove Theorem 1 by completing the following argument. Suppose for 
n = 1,2, ... that X1n, ... , Xnn is a sequence of random variables sat­
isfying var X in = 1 for all i and n, COV(Xin, Xjn) depends only on 
i - j and n for all i,j ~ n and all n, and for any fixed j > 1, 
cov(X1n, X jn ) -+ 0 as n -+ 00. Let Xn = n-1 E;=l X jn . The plan 
is to prove var X n -+ 0 as n -+ 00 and then to show that this result 
implies Theorem 1. 

i. Given f > 0 and j finite, choose no > j such that for all n 2: no 
and 1 < k ~ j, cov(X1n,Xkn) < f/j. Let En be the covariance 
matrix of (X1n , ... ,X jn ). Using Theorem 8.1.3 of Golub and Van 
Loan (1996), show that for all n 2: no, the eigenvalues of En are 
all in [1 - f, 1 + fl. 

ii. Let tTkn = COV ((Xkn , ... ,Xk+j_l,n)T, Xln)' Prove tTfnE,;;-ltTkn $ 
1 for all 1 ~ k ~ n - j and all n 2: j. 

iii. Show that tTfntTkn $ 1/(I-f) for all n 2: no and alII ~ k $ n- j. 

iv. Show that 

t, cov(X1n, X jn ) ~ nl/2{~ COV(Xln, X jn)2} 1/2 

v. Show that 

tcOV(X1n,Xjn)2 ~ (~+ 1) 1 ~ f' 

j=l J 

vi. Show that var Xn -+ 0 as n -+ 00. 

vii. Prove Theorem 1. 



4.3 Applications of equivalence of Gaussian measures to linear prediction 129 

4.3 Applications of equivalence of Gaussian 
measures to linear prediction 

Suppose Po and PI are equivalent Gaussian measures for a random field 
Z on a closed set R and let 'H. be the Hilbert space generated by Z(x) 
for x E R. Then there is only a finite amount of information in 'H. for 
distinguishing between Po and Pl. Furthermore, if 'H. is separable with ba­
sis hI, h2 , ..• , then for n large, most of the information for distinguishing 
between these measures is contained in 'H.n, the Hilbert space generated 
by hI," . ,hn. Under Po, eo(h, n) is independent of 'H.n, by which I mean 
that eo(h, n) is independent of all elements of 'H.n. If eo(h, n) were not 
nearly independent of 'H.n under PI, then that would mean that h con­
tained a nonnegligible amount of information for distinguishing PI from 
Po not contained in 'H.n. This suggests eo(h,n) ~ el(h,n) when Po == Pl. 
Furthermore, if Elel(h,n)2 is not approximately Eoel(h,n)2, then again 
h would contain a nonnegligible amount of information not contained in 
'H.n for distinguishing the measures, suggesting Elel(h,n)2 ~ EOel(h,n)2 
when Po == Pl. The goal of this section is to formalize this argument for 
arbitrary separable Hilbert spaces of Gaussian random variables and then 
apply it to obtain results on the asymptotic optimality of pseudo-BLPs 
under fixed-domain asymptotics. 
I use the following notation throughout this section. Let hI, h2 , • •• be a 
sequence of random variables that are linearly independent under (0, Ko), 
let 'H.0 be the real linear manifold of this sequence and define 'H.(m, K) to 
be the closure of 'H.0 with respect to the inner product given by (m, K). 
As noted in 4.2, we can take the mean under Po to be 0 without loss 
of generality and I generally do so throughout this section. Let ml be 
a real linear functional on 'H.0. Take 'l/JI, 'l/J2, ... to be the Gram-Schmidt 
orthogonalization of hI, h2, ... under (0, Ko) so that Ko('l/Jj, 'l/Jk) = Ojk. 
Define 

(30) 

As in the previous section (see (7)), let hln , . .. ,hnn be a linear transfor-
mation of hI, ... ,hn such that for j, k = 1, ... ,n, Ko(hkn' hjn) = Okj and 
KI(hkn,hjn ) = crJnOkj and set mkn = ml(hkn ). 
The next theorem shows how to determine the equivalence or orthogo­
nality of Gaussian measures in terms of the bjks and J..I.js. It combines (2.20) 
and the last equation on page 78 in Ibragimov and Rozanov (1978). 

Theorem 7. Suppose varo h ;::::: varl h for h E 'H.0 . Then G{O, Ko) _ 
G(mI, Kd if and only if 

00 

~ b~k < 00 (31) 
j,k=l 



130 4. Equivalence of Gaussian Measures and Prediction 

and 
00 

LJ.l; < 00. (32) 
j=1 

PROOF. There exists an nxn orthogonal matrix A such that A('ljJI ... 'tjJn)T 
= (h 1n , ... , hnn)T. Letting K be the covariance matrix under K1 of 
'tjJ1,"" 'tjJn, it follows that o-?n,"" o-;n are the eigenvalues of K and hence 
that (1 - o-]n)2 for j = 1, ... ,n are the eigenvalues of (I - K)2. Since the 
trace of a matrix equals the sum of the eigenvalues, we have 

n n 

L(1- o-Jn)2 = tr{(1 - K)2} = L b;k' (33) 
j=1 j,k=l 

Letting m = (J.l1,'" ,J.ln)T, then A orthogonal implies IIAml12 = Ilm112, or 
n n 

LmJn=LJ.l;· (34) 
j=l j=1 

Define Q = 2::rk=l b;k and f3 = 2::;1 J.lJ, so that by (33) and (34), 
2::7=1 (1 - O-;n)2 -+ Q and 2::7=1 mJn -+ f3 as n -+ 00. Theorem 4 and (12) 
imply that Q and f3 are finite if and only if G(O,Ko) == G(m1,Kd. 0 

Asymptotically optimal pseudo-BLPs 

If (0, Ko) is the correct second-order structure, we can apply Theorem 7 
to show that pseudo-BLPs under a second-order structure (m1' Kd satis­
fying G(O, Ko) == G(m1' K 1) are asymptotically optimal and the presumed 
mses of the pseudo-BLPs are asymptotically correct. The following result 
combines Theorem 3.1 and Corollary 3.1 of Stein (1990a). 

Theorem 8. Suppose (0, Ko) and (ml' K 1) are two possible second-order 
structures on 1{o with G(O,Ko) == G(m1,K1)' Let 1Ln be made up of 
elements h of 1{(0, Ko) for which Eoeo(h, n)2 > 0. Then 

1. I Eleo('tjJ, n)2 - Eoeo('tjJ, n)21 ° 1m sup = , 
n--+oo'l/JE'H._ n Eoeo('tjJ,n)2 

(35) 

(36) 

(37) 

and 

(38) 
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Before proving this result, a few comments on the assumed conditions 
are in order. The restriction to 'It-n is just to avoid dividing by OJ if we 
defined % to be 0, the suprema in (35)-(38) could be over 1t(0, Ko) in­
dependent of n. A more consequential condition is that the sequence of 
observations is also the basis for all possible predictands. This condition 
generally excludes "distant" extrapolations such as hI, h2' ... being a dense 
sequence of observations of a process Z on, say, [0,1] and predicting Z(2). 

PROOF OF THEOREM 8. For 1/; E 'It(O, Ko), we can write 1/; = 2:;1 Cj1/;j, 
the limit existing in L2 under either (0, Ko) or (m!, Kt), where 2: c~ < 00. 
Then the error of the BLP for 1/; given 'ltn under (0, Ko) is 

CXl 

eo(1/;, n) = L Cj1/;j. 
j=n+l 

Define bjk and {Lj as in (30). If Eoeo( 1/;, n)2 > 0, then as n -+ 00, 

{ 

CXl } 1/2 CXl 

::; L b~k + L {L~, 
j,k=n+l j=n+l 

(39) 

by twice applying the Cauchy-Schwarz inequality. The right side of (39) 
does not depend on 1/; and, by Theorem 7, tends to ° as n -+ 00, so (35) 
follows. Switching the roles of Ko and Kl yields (36). Next, since Ele~ ::; 
Ele~, 

Eoel(1/;,n)2 Eoel(1/;,n)2 E1el(1/;,n)2 E1eo(1/;,n)2 
----'-'-'--....:...".=='""-;..':-'-~ 
Eoeo(1/;,n)2 E1el(1/;,n)2 . E1eo(1/;,n)2 . Eoeo(1/;,n)2 

Eoel(1/;,n)2 E1eo(1/;,n)2 < .-:::::::-~..':-'-~ 
- E1el(1/;,n)2 Eoeo(1/;,n)2' 

so (37) follows from (35) and (36). Again switching the roles of Ko and Kl 
yields (38). 
Note that we have only used the properties of Gaussian measures through 
the result that equivalence of Gaussian measures implies (31) and (32). 
Thus, (35)-(38) follow from (31) and (32), whether or not the elements of 
'ito are jointly Gaussian. 0 

We can combine Theorems 6 and 8 to prove that if a random field Z is 
observed with measurement error whose variance is the same under either 
model, the conclusions of Theorem 8 on the behavior of pseudo-BLPs still 
apply. 
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Corollary 9. Suppose Z is a random field on Rd , Xl, X2, ... is a sequence 
of points in R ~ Rd and Yj :::: Z(Xj) + fj for j :::: 1,2, ... where the EjS 
have mean 0, are uncorrelated with Z and each other and have variance a 2 

under either (mo, Ko) or (mI, K I). For'IjJ E HR(O, K o), define ei('IjJ, n) to 
be the error of the BLP of'IjJ based on YI , ... , Yn when Z has second-order 
structure (mi, Ki). Assume all points in R are limit points of R, Z is mean 
square continuous under (0, K o), GR(O, Ko) == GR(ml, Kt} and Xl, X2, ... 
are dense in R. Then (35)-(38) in Theorem 8 all hold where, independent 
ofn, 11.-n is defined as all nonzero elements of11.R(0,Ko). 

The proof is left to the reader (Exercise 26). 

Observations not part of a sequence 

Taking the observations to be a sequence forming a basis for the Hilbert 
space of possible predictands is convenient mathematically but excludes 
some settings of interest in fixed-domain asymptotics. For example, for 
R:::: [0,1], it excludes taking observations at jfn for j :::: 0, ... , n and letting 
n -+ 00, since the observations are not nested as n increases. Furthermore, 
if R :::: [0, T], it excludes taking 11.n to be the Hilbert space generated by 
Z(t) for t E [0, T - En] with En ! 0 as n -+ 00, which was considered in 
Stein (1990d). The following result covers both of these settings. 

Theorem 10. Suppose (0, Ko) and (ml, Kt) are two possible second-order 
structures on 11.0 with G(O, Ko) == G(ml, Kt}. For n :::: 1,2, ... , let 11.n be 
a sequence of subspaces of 11.(0, Ko) such that for any given h E 1i(0, K o), 
Eoeo(h, n)2 -+ 0 as n -+ 00. Then (35)-(38) hold. 

In contrast to Theorem 8, we have the additional assumption that 
Eoeo(h, n)2 -+ 0 as n -+ 00 for any h E 11.(0, Ko). This condition is an 
immediate consequence of the formulation of Theorem 8 (Exercise 27), so 
it is unnecessary to include it as an assumption in that result. The role 
of this assumption in Theorem 10 is to ensure that 11.n "approximates" 
11.(0, Ko) well when n is large, so that most of the information in 11.(0, Ko) 
for distinguishing between G(O, Ko) and G(ml' K I) is contained in 1in 
when Z is Gaussian. 

PROOF OF THEOREM 10. I provide an outline of a proof; the details are 
left as a series of exercises. Under the inner product defined by (0, K o), let 
uf , u~ , ... be an orthonormal basis for 11.n of length On and vf, v~, ... an 
orthonormal basis for its orthogonal complement of length "In (both On and 
"In may be 00) so that the two sequences together form an orthonormal 
basis for 1i(O,Ko). Define a']k :::: KI(u,],u'kJ - 8j k, b']k:::: KI(vj,v;n - 8j k, 
cjk :::: KI (u'], vi:), !lj :::: EI uj and /L'] :::: EI vj. Let 11.-n be the subset of 
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Defining Q and {3 as in the proof of Theorem 7, then similar to (33) and 
(34), 

j,k=l j=l k=l j,k=l 

and 
On '"Yn 

~)vj)2 + L)JLj? = {3 
j=l j=l 

for all n. Thus, (35) holds if 

(40) 

and 
On 

lim "(Vj)2 = {3. 
n~oo~ 

(41) 
j=l 

Consider (40); the proof of (41) is left as an exercise (Exercise 28). As in (7), 
let hI, h2, ... be a linearly independent basis for fi(O, Ko) and hlp, ... , hpp 
a linear transformation of hI"'" hp such that Ko(hjp , hkp) = 8jk and 
K1 (h jp , hkp) = o"]p8jk for j, k :::; p. From Theorem 7, L~=1 (1 - a;p)2 con­
verges to a finite limit as p -+ 00; call this limit Q. Thus, given € > 0, we 
can find p such that L~=1 (1 - a;p)2 > Q - €. Define qjp to be the BLP of 
hjp based on fin and Qip the covariance matrix of (qfp"'" q;p) under K i . 

Then Qop -+ I as n -+ 00 and Qfp converges to the diagonal matrix with 
diagonal elements a~p, ... ,a;p (Exercise 29). Using (33) it can be shown 
that 

p 

1~~ tr [{I - (QOp)-1Qlp} 2] = L(l- a;p)2 (42) 
j=1 

(Exercise 30). FUrthermore, for all n, 

On 

tr [{I - (Qop)-1Qlp} 2] :::; L (ajk)2 (43) 
j,k=1 

(Exercise 31), and (40) follows since € is arbitrary. o 

As we show in Theorem 12, the condition G(O, Ko) == G(O, Kd is stronger 
than necessary to obtain uniformly asymptotically optimal predictions. We 
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do have a converse of sorts to Theorem 10 when only the mean is misspeci­
fied. Let S be the subspace of 7t(0, K) generated by the observations. Note 
that S is fixed so that the following result is not asymptotic. Furthermore, 
if Z is in fact Gaussian, taking Gs(O, K) == Gs(m, K) is not restrictive in 
practice, since it would be silly to use a model that is demonstrably wrong 
with probability 1 based on the available observations. 

Theorem 11. Let (0, Ko) = (0, K) and (ml' K I ) 

Gs(O, K) == Gs(m, K) and Grt(O, K) .1 Grt(m, K), then 

I EleO(h,S)2 - Eoeo(h,S)21 
sup = 00. 

h~S(O,K) Eoeo(h, S)2 

(m,K). If 

PROOF. Let S.L be the orthogonal complement to S under the inner 
product defined by K; that is, S.L is made up of those h E 7t(0, K) 
for which Eo(h'ljJ) = ° for all 'ljJ E S. It is possible to construct an or­
thonormal basis {Tj}~l for S.L such that J.Lj = m(Tj) is finite for all j 
(Exercise 32). Then Gs(O, K) == Gs(m, K) and Grt(O, K) .1 Grt(m, K) im­
ply GS-L (0, K) .1 GS-L (m, K) so that E~l J.L; = 00 (Exercise 33). Defining 
Tp = E~=l J.LjTj, the theorem follows since eO(Tp,S) = Tp and 

as p ~ 00. o 

A theorem of Blackwell and Dubins 

Theorem 8, which says that second-order structures corresponding to equiv­
alent Gaussian measures yield asymptotically similar linear predictions, 
is essentially a special case of a much more general result on comparing 
conditional distributions for equivalent measures due to Blackwell and Du­
bins (1962). Let Po and PI be two probability measures on a sequence of 
random variables Xl, X 2 , ... and let PO' and PI' be the corresponding con­
ditional measures given Fn = a(X I , . .. ,Xn ), the a-algebra generated by 
Xl"'" X n . Under a mild technical condition, the Main Theorem of Black­
well and Dubins (1962) says that if PI is absolutely continuous with respect 
to Po, then the variation distance between PO' and PI' tends to ° with PI-
probability 1. (The variation distance between two measures (11, F, P) and 
(11, F, Q) is the supremum over A E F of IP(A) - Q(A)I.) Theorem 8 is a 
straightforward consequence of this result. Specifically, for Gaussian mea­
sures Po and PIon Xl, X 2 , ... , if PI is absolutely continuous with respect 
to Po, then Theorem 4 implies Po == Pl' For h in the Hilbert space 7t gen­
erated by X I, X 2, ... , we have as a special case of the Main Theorem of 
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Blackwell and Dubins (1962), 

PI {lim sup IPcf(h:::; t) - P{'(h :::; t)1 = o} = 1. (44) 
n->oo hE1t,tEIR 

Using the fact that the conditional distribution of h given Fn is Gaussian 
under Po or PI, it is possible to show (44) holds if and only if 

1· varo(h I Fn) 1 d 1m sup = an 
n->oohE1t_ n varl(h I Fn) 

(45) 

lim sup EI {Eo(h I Fn) - EI(h I Fn)}2 = O. (46) 
n->oo hE1t-n varl(h I Fn) 

Taking h to be eo(h, n) in (46) yields 

1. EI{eo(h,n)-el(h,n)}2 
1m sup = 0, 
n->oohE1L n E lel(h,n)2 

(47) 

which is the same as (38). Combining (47) and (45) yields 

1. I Eoeo(h, n)2 - Eleo(h, n)21 0 1m sup = 
n->oo hE1t_n Eleo(h, n)2 

(48) 

and Theorem 8 follows, since (47) and (48) are only statements about the 
first two moments of the process and do not require Gaussianity. That 
is, for a random field on R, Theorem 8 only requires the equivalence of 
the Gaussian measures defined by the second-order structures (0, Ko) and 
(ml' KJ), not that the random field actually be Gaussian. However, as I 
have already discussed (see, for example, 1.4), focusing on linear predictors 
and their unconditional mses can be a serious mistake if the random field 
is not Gaussian. 
The result of Blackwell and Dubins also yields conclusions about non­
linear predictions of Gaussian processes. Thus, for example, consider a 
Gaussian process Z on R = [0,1] with GR(mo,Ko) == GR(ml,KI) and 
h, t2,'" a dense sequence of observations on [0,1]. Then the conditional 
distribution of, say, fol eZ(t)dt given Z(tl), ... , Z(tn) is very nearly the same 
under GR(mo,Ko) and GR(ml,KI) for n large. 

Weaker conditions for asymptotic optimality of pseudo-BLPs 

Theorem 10 of Chapter 3 showed that pseudo-BLPs based on observations 
at O'j for j E Zd are asymptotically optimal and the evaluations of mse are 
asymptotically correct as 8 1 0 if !J(w)/ fo(w) -+ 1 as Iwl -+ 00. Theo­
rem 12 shows that a similar result holds for the fixed-domain setting when 
fo E Qd. The condition !J(w)/fo(w) -+ 1 as Iwl -+ 00 is in practice sub­
stantially weaker than required to obtain equivalence of the corresponding 
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Gaussian measures. For example, in one dimension, if fo(w) x w-O< for 
some a > 1 as w -+ 00, then Ibragimov and Rozanov (1978, p. 107) note 
that W1/2{JO(W) - h(w)}/ fo(w) -+ 00 as w -+ 00 implies the corresponding 
Gaussian measures are orthogonal on any interval of positive length. 

Theorem 12. Consider continuous autocovariance functions Ko and Kl 
with corresponding spectml densities fo and h for a mean 0 process Z on 
IRd • For R a bounded subset of IRd , suppose 'Jin , n = 1,2, ... is a sequence 
of subspaces of 'JiR(O, Ko) satisfying Eoeo(h, n)2 -+ ° as n -+ 00 for all 
h E 'JiR(O, Ko). If fo E Qd and h(w)/ fo(w) -+ c as Iwl -+ 00 for some 
positive finite c, then 

1· Eoe1(h,n)2 1 
1m sup = 

n-+CXl hE1t-n Eoeo(h, n)2 

and 

PROOF. Given f > 0, there exists C. finite such that 

sup I h(w) -11 < f. 
Iwl>c, cfo(w) 

Define 

( ) _ {C-1h (W) 
g. w - fo(w) 

for Iwl ~ C., 
for Iwl > C •. 

(49) 

(50) 

Using the subscript f to indicate a calculation done assuming g. is the 
spectral density, 

Eoe1(h,n)2 

= Eo [{ el (h, n) - e.(h, n)} + e.(h, n)]2 

~Eo{e1(h,n)-e.(h,n)}2 (51) 

+ 2 [Eo {el(h,n) - e.(h,n)}2 Eoe.(h,n)2f/2 + Eoe.(h,n)2. 

By (20), G R(O, fo) == G R(O, g.), so by Theorem 8, 

1· Eoe.(h,n)2 1 
1m sup = . 

n-+CXl hE1t-n Eoeo(h, n)2 
(52) 

Set fO =! so that fo(w) ~ 2c-1h(w) for alllwi ~ C.o • Using GR(O,fo) == 
GR(O,g.o) and Exercise 2 in 4.2, there exists ao < 00 such that 

Eoh2 ~ aoE.oh2 for all h E 'JiR(O, Ko). 

For all f > 0, let us choose C. ~ C'o ' which we can always do. Then 
g.o(w) ~ 2g.(w), so that Eoh2 ~ 2aoE.h2 for all f. By Theorem 10, for 
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any particular f, 

1· IE,e,(h,n)2 11 0 1m sup - = 
n->oo hE'H- n Eoeo(h, n)2 

so that for all n sufficiently large, 

Eo {el(h,n) - e,(h,n)}2 4 E, {el(h,n) - e,(h,n)}2 
Eoeo(h,n)2 ~ 0:0 E,e,(h,n)2 

for all h E 'H.- n , where 0:0 is independent of f. But by Theorem 1 of 
Chapter 3, 

(53) 

By (51)-(53), 

-1' EOel (h, n)2 40:0f2 4 ( ao ) 1/2 1 
1m sup < -- + f -- + 

n->oo hE'H- n Eoeo(h, n)2 - 1 -f2 1 -f2 

and (49) follows since f is arbitrary. The proof of (50) is left as Exercise 34. 
A result similar to Theorem 12 is given in Stein (1993a), although the proof 
there is not valid if JI (w) / fo (w) is unbounded. 0 

The conditions in Theorem 12 are still stronger than necessary. For 
example, if fo satisfies (19) and there exists a density h such that 

r {h(W) - fo(W)}2 dw < 00 (54) 
j'R,d fo(w) 

and for some positive finite c, 

lim h(w) = c 
1"'1->00 JI(w) 

then (49) and (50) hold (Exercise 35 or Stein (1993a)). 

(55) 

Whether fo E Qd or something like it is needed in Theorem 12 is un­
known. This condition is invoked in the proof to show that the Gaussian 
measures corresponding to the spectral densities fo and g, are equivalent 
so that Theorem 10 can be invoked. Theorem 10 in 3.8 regarding observa­
tions on an infinite lattice does not require any assumptions analogous to 
fo E Qd, which suggests that Theorem 12 may hold even if fo ¢. Qd. 
Similar to Corollary 9 of Theorem 8, we can obtain a corollary to 
Theorem 12 for a random field observed with known measurement error 
a 2 • 

Corollary 13. For n = 1,2, ... , let Xn = {Xln, ... ,Xjnn} be a finite sub­
set of a bounded set R and set}jn = Z(Xjn) + fjn for j = 1, ... ,In, where 
the fjnS have mean 0, are uncorrelated with each other and with Z and have 
common variance a2 not depending on the model for Z. For 1/1 E H R (0, Ko), 
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define ei('I/J, n) to be the error of the BLP of'I/J based on YIn, ... , }jnn when 
Z has second-order structure (0, Kd. Suppose Ko and KI are continuous 
autocovariance functions with corresponding spectral densities fo and h for 
a mean 0 random field Z on ]Rd. Assume fo E Qd and h(w)lfo(w) --+ 1 
as Iwl --+ 00. If R is a bounded subset of]Rd such that all points in R are 
limit points in Rand 

lim sup inf Ix - yl = 0, 
n--+oo xER yEXn 

(56) 

then (49) and (50) hold with c = 1, where 1i-n is taken as all nonzero 
elements of1iR(O,Ko). 

Corollary 13 can be proven by first obtaining an analog to Theorem 8 
for observations with measurement error and then essentially repeating the 
proof of Theorem 12. The condition (56) just says that every point in R is 
near a point in Xn when n is large. 

Rates of convergence to asymptotic optimality 

In 3.8, we were able to give rates of convergence to 0 in (35)-(38) under 
additional conditions on fo and h. Obtaining rates is much more difficult 
with observations confined to a bounded region, although I have obtained 
some limited results in one dimension (Stein 1990b, 1999). No rate re­
sults are presently available in more than one dimension for random fields 
possessing a spectral density with respect to Lebesgue measure. 
Stein (1990a) gives some rates of convergence in one and two dimensions 
for the easier problem of the mean function being misspecified. The basic 
message is that if ml -mo is much smoother than the stochastic component 
of Z, the effect of using ml rather than the correct mo disappears rapidly 
as the observations get denser in the region of interest. 

Asymptotic optimality of BL UPs 

Theorem 8 can be used to prove that there is asymptotically little differ­
ence between BLPs and BLUPs (see 1.5) if EZ(x) = (3T m(x) and the 
components of m are much smoother than the stochastic component of Z, 
despite the fact that the BLUE of {3 will not be consistent in this case 
(Stein 1990a, Theorem 5.2). The basic idea of the proof is to show that 
the BLUP cannot do too much worse than a pseudo-BLP based on a fixed 
but incorrect value for {3. Thus, this result is hardly a victory for best lin­
ear unbiased prediction, but merely is a restatement of the fact that the 
mean often does not matter asymptotically for prediction when using fixed­
domain asymptotics. Exercise 10 of Chapter 3 gives an explicit example of 
the asymptotic optimality of BLUPs. 
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Exercises 

26 Prove Corollary 9. 

27 Under the conditions of Theorem 8, show that for all h E 1t(0, K o), 
Eoeo(h, n)2 -+ 0 as n -+ 00. 

28 Prove (41). 

29 In the proof of Theorem 8, show that Q(j -+ I as n -+ 00 and Q1 
converges to the matrix with elements u?p, . .. ,u~p along the diagonal 
and 0 elsewhere. 

30 Prove (42). 

31 Prove that (40) follows from (42) and (43). 

32 In the proof of Theorem 11, show that it is possible to construct an 
orthonormal basis {rj}~l for S.L such that J.'j = mh) is finite for all 
j. 

33 Under the conditions of Theorem 11, show that Gs(O, K) == Gs(m, K) 
and G'H.(O, K) ..1 G'H.(m, K) imply GS-L (0, K) ..1 GS-L (m, K). 

34 Prove (50). 

35 Show that (54) and (55) imply (49) and (50). 

36 Suppose Z is a mean 0 weakly stationary random field on Rd with 
actual auto covariance function Ko and presumed auto covariance func­
tion K 1 • For a bounded set R s;:; R d , define the function Kj(x,y) on 
R x R by Kj(x,y) = Kj(x - y). Suppose that for j = 0, 1, K j can be 
extended to a function on Rd x Rd such that Kj (x, y) depends only on 
x - y and inld IKj(x, O)ldx < 00. Define 

1 ( {.T}-fJ(w) = (2rr)d JlRd exp -zw x Kj(x, 0) dx. 

If fo satisfies (20) and h(w)lfo(w) -+ C as Iwl-+ 00 for some positive, 
finite c, show that (47) and (48) follow for 1tn defined as in Theorem 10. 

37 Suppose Z is a mean 0 weakly stationary process on R, Ko(t) = e- iti 
and Kl(t) = (1 - Itl)+. Suppose R = [0, T] and that 1tn is as in 
Theorem 10. 

(i) For T < 1, use P6lya's criteria (Exercise 37 of Chapter 2) and the 
previous exercise to show that (47) and (48) hold for 1tn defined 
as in Theorem 10. 

Show that (47) and (48) also hold for T = 1 by filling in the details of 
the following argument. 
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(ii) Define the function ¢a(t) by taking it to have period 4a- I and 
setting ¢a(t) = 1- altl for It I ~ 2a- I . Show that ¢a is p.d. for all 
a> O. 

(iii) Define 'ljJ(t) = ~ J02 ¢a(t) da. Show that 'ljJ is p.d. and that 'l/J(t) = 

I-It I on [-1,1]. 

(iv) Show that 'ljJ has spectral density 

f(w) = ~ ~ 1{lwl ~ (2j + 1)7f} . 
7f3 L....- (2j + 1)3 
]=0 

(v) Prove that 7f(1 + w2 )f(w) ~ 1 as w ~ 00. 

4.4 Jeffreys's law 

Dawid (1984) discusses principles of forecasting, which he defines as mak­
ing predictions about the n + 1 th element of an uncertain sequence based 
on observing the first n elements of that sequence. He is specifically con­
cerned with this problem when there is a parametric family of models 
p = {Pe : e E e} on this infinite sequence of observations with e unknown. 
He notes that even if e cannot be consistently estimated as the number of 
observations increases, it should still be possible to obtain forecasts based 
on estimated values of e that do asymptotically as well as forecasts using 
the true e. Again, a more succinct statement is "things we shall never find 
much out about cannot be very important for prediction" (Dawid 1984, 
p. 285). Dawid calls this principle Jeffreys's law based on the following 
statement of Jeffreys (1938, p. 718): "When a law has been applied to a 
large body of data without any systematic discrepancy being detected, it 
leads to the result that the probability of a further inference from the law 
approaches certainty whether the law is true or not." 
Dawid (1984) considers the Main Theorem of Blackwell and Dubins 
(1962) to be a mathematical statement of Jeffreys's law, so that Theorem 8 
can be thought of as an example of this law. The Kullback divergence can 
be used to obtain a more quantitative connection between discrepancies 
between Gaussian measures and linear prediction. Consider two probabil­
ity measures Po and PIon (D, F). Suppose Y is an F-measurable random 
vector and, for simplicity, assume that under Pj , Y has density Pj with 
respect to Lebesgue measure. Then I(Po, PI; V), the Kullback divergence 
of PI from Po based on Y, is given by Eo log {Po (Y)/PI (Y)}. The larger 
the value of I(Po, PI; V), the more information in Y, on average, for deter­
mining that PI is the wrong measure when Po is correct. Note that Tn as 
defined in (10) is just I(Po, PI; (hI, . .. ,h n )) + I(PI , Po; (hl' ... ,h n )). See 
Kullback (1968) for the role of the Kullback divergence in estimation prob­
lems and Christakos (1992, Chapter 2, Section 13; Chapter 9, Section 8; and 
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Chapter 10, Section 9) for a rather different use of information measures 
in modeling and prediction of random fields. 
Suppose Y is a vector of observations, Z is the predictand and assume 
(Y, Z) has a joint density with respect to Lebesgue measure under either 
Po or Pl. Then a measure of the additional information in Z not contained 
in Y for distinguishing between Po and PI when Po is true is 

Po(Y, Z) Po(Y) Po(Z I Y) 
Eo log PI(Y, Z) -EologPI(Y) =EologPI(ZIY)' 

where Pj generically indicates the marginal or conditional density of a ran­
dom vector under Pj . If (Y, Z) is Gaussian under Po and PI and ej is the 
error of the BLP of Z under Pj , then 

E I Po(Z I Y) _ 1 (Eoe~ 1 I Eoe~) EO(el - eo)2 o og - - -- - - og -- + ---=--'::--::::-n-=-''-
PI(Z I Y) 2 Ele~ Ele~ 2Ele~ 

(57) 

(Exercise 38). Now consider a sequence of prediction problems in which 
Y n is observed, Zn is the predictand, (Y n, Zn) is jointly Gaussian un­
der Po or PI and ej (n) is the prediction error under Pj . Suppose that as 
n - 00, there is asymptotically negligible harm in using PI rather than Po 
for predicting Zn: Eo{el(n) - eo(n)p/Eoeo(n)2 - 0 and {Eoel(n)2 -
Elel(n)2}/Eoel(n)2 - 0 as n - 00, which is exactly the case in 
Theorem 10 when c = 1. Then 

(Exercise 39). Thus, the additional information in Zn for distinguishing the 
measures is approximately ~ times the square of the relative misspecifica­
tion of the mse plus ~ times the relative increase in mse due to using Pl. 
Note that the two terms on the right side of (58) do not necessarily tend 
to 0 at the same rate, although results in Chapter 3 (compare (32) to (36) 
or (34) to (38)) suggest that they sometimes do. 

A Bayesian version 

It is possible to give an exact quantification of Jeffreys's law by taking 
a Bayesian perspective. Let P = {Po : () E e} be a finite-dimensional 
parametric family of distributions for (Y, Z). Suppose ((), Y, Z) have a 
joint density with respect to Lebesgue measure and use P generically to 
denote a marginal or conditional density, so that, in particular, p((}) is the 
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prior density for 8. Define the predictive density for Z given Y 

Then 

p(Z I Y) = Ie p(Z 18, Y)p(81 Y) d8 

feP(Z 18, Y)p(Y 18)p(8)d8 
= 

fe p(Y I 8)p( 8) d8 

E [I {p(Z 18, Y),p(Z I V)} I Y] = E [I {p(81 Y, Z),p(81 V)} I Y], (59) 
which was suggested to me by Wing Wong. The proof of (59) is just to note 
that both sides of it equal 

{ p(8, Z I Y) I } 
E log p( 8 I Y)p( Z I Y) Y . 

This expression is 0 if 8 and Z are conditionally independent given Y, so 
that both sides of (59) measure the conditional dependence of 8 and Z given 
Y. To see why (59) can be viewed as a quantification of Jeffreys's law, we 
need to take a closer look at both sides of this equality. For any particular 
80 , I {p(Z 180 , Y),p(Z I V)} measures how far the predictive distribution 
for Z diverges from the conditional distribution for Z we would obtain 
if 8 = 80 were known. The left side of (59) is then just the average of 
this divergence over all possible values of 8. Thus, the left side of (59) 
measures how much information 8 contains about Z that is not already 
contained in Y. Similarly, the right-hand side of (59) is a measure of how 
much information Z contains about 8 that is not already contained in Y. 
The conclusion I draw from (59) is a sharpening of Jeffreys's law: if the 
quantity we wish to predict tells us very little new about the parameters 
of our model, then our predictions will be close to those we would obtain 
if we knew the true values of the parameters. 
Let us now reexamine (40) in 3.6 in light of this result. To review, 
suppose Z is a mean 0 Gaussian process on IR observed at Z(-j/n) for 
j = O, ... ,n, Ko(t) = e- iti and Kl(t) = ~e-2iti. For any finite interval 
R, GR(O, Ko) == GR(O, Kd, so that even if n is large, it will be difficult 
to distinguish between these measures. Now consider predicting Z(t) for 
t > O. Since prediction of Z(t) does not depend on n under either model, 
denote the prediction error for Z(t) under Kj by ej(t). Using (40) in 3.6, 
Figure 2 plots EOel(t)2/Eoeo(t)2 and Elel(t)2/Eoel(t)2 as functions of t. 
Both functions are near 1 for t small, which, considering (58), implies that 
Z ( t) for t small does not provide much new information for distinguish­
ing the measures. For larger t, Z(t) does provide nonnegligible additional 
information for distinguishing between the measures and this is reflected 
particularly in Elel(t)2/Eoel(t)2, which tends to ~ as t ---+ 00. Thus, the 
statement "things we shall never find much out about cannot be very im­
portant for prediction" (Dawid 1984) is incorrect in this setting because 
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FIGURE 2. Ratios of mean squared errors for predicting Z(t) from Z(O) when 
Ko(t) = e-iti and Kl (t) = ~e-2iti. Solid curve gives EoeV Eoe~ and dashed curve 
EleVEoe~. 

it does not anticipate the possibility that what is to be predicted provides 
substantial additional information for distinguishing the measures. 

Exercises 

38 Prove (57). 

39 Prove (58). 



5 
Integration of Random Fields 

5.1 Introduction 

This chapter studies the prediction of integrals of random fields based on 
observations on a lattice. The goal here is not to give a full exposition of 
the topic (see Ritter (1995) for a more detailed treatment) but to make 
two specific points about properties of systematic designs. The first is that 
simple averages over observations from systematic designs can be very poor 
predictors of integrals of random fields, especially in higher dimensions. 
The second is that, at least for random fields that are not too anisotropic, 
the problem with this predictor is the simple average aspect of it, not the 
systematic design. These two points are of interest on their own, but they 
are also critical to understanding a serious flaw in an argument of Matheron 
(1971) purporting to demonstrate that statistical inference is "impossible" 
for differentiable random fields (see 6.3). 
Suppose Z is a mean 0 weakly stationary random field on ~d. Define 

Om = {I, ... , m}d and let h be the vector of length d with each component 
equal to ~. Consider predicting I(Z) = Iro,lld Z(x) dx based on observing 
Z at m-l(j - h) for j E Om. This set of observations is called a centered 
systematic sample because it places an observation at the center of each 
cube of the form X~=l [m-l(ja - 1), m- l ja] for j = (jl, ... ,jd) E Om (see 
Figure 1). A natural predictor of the integral is just the simple average 
of the observations, Zm = m-d LjEQm Z(m-l(j - h)). Although it may 
be natural, it is not necessarily a good predictor. Section 5.2 looks at the 
asymptotic mse ofZ m as m ~ 00. Results in 5.3 and 5.4 show that if Z has 
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FIGURE 1. Centered systematic sample for d = 2 and m = 5. Dots indicate 
design points and dashed lines the squares in which the design points are centered. 

spectral density f satisfying f(w) x (1+iwl)-P, then Zm is asymptotically 
optimal for p < 4 and its mse tends to 0 at a slower rate than the mse of the 
BLP for p > 4. Section 5.4 also shows how to obtain an easily computed 
predictor that is asymptotically optimal as m --+ 00 for any particular p. 
In principle, if the autocovariance function K is known I it is possible to 
find the BLP of I(Z), which I denote by 2m. However, this requires calcu­
lating cov {I(Z), Z(m-1(j - h))} for all j E (1m, which will generally need 
to be done numerically and could be a formidable task for m d large. Cal­
culating the mse can also be quite difficult since it requires the calculation 
of a 2d-dimensional integral, which again must generally be done numeri­
cally. Theorem 7 of Section 5.4 gives asymptotically valid and fairly readily 
computable approximations to the mse of the BLP or any asymptotically 
optimal predictor under certain conditions on f. Section 5.5 provides some 
numerical results for d = 1 indicating the applicability of the large sample 
results to finite samples. 

5.2 Asymptotic properties of simple average 

The even spacing of the observations in a centered systematic sample sug­
gests the use of spectral methods for analyzing the behavior of Z m' If Z 
has mean 0 and spectral density f, then 

var{I(Z)-Zm} (1) 

= [ f(W)1 [ exp(iwTx)dx- E -;'exP {im- 1wT(j_h)}1
2
dW. 

lad J[O,l]d jEQm m 
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It follows that 

where 

d sin2(~) { d (W )}2 
gm(W) = f(w) !! m2 sin2 (~) 1-!! sinc 2~ , 

W = (WI,." ,Wd)T and sinct = rl sint (Exercise 2). Thus, 

var{I{Z) - Zm} = L 1 gm(W + 27rmj)dw 
jEZd Ad(m) 

= L 1 gm(Wjj) dw, (2) 
jEZd IRd 

where 

d sin2 (~) 
gm(Wjj) = f(w + 271'mj) IT 2' 2 (w ) 

O!=I m sm ~ 

{ ITd {-l)j" 2m sin (~)}2 { A ( )} x 1- 1wE dm. 
O!=I WO! + 271'mjO! 

The key to finding the asymptotic mse of Zm is to determine whether 
the term j = 0 or the terms j =I- 0 dominate the sum on the right side of 
(2). We first need some preliminary approximations for gm(Wjj). For any 
fixed wand j =I- 0, 

d 

gm{Wjj) '" f(w + 27rmj) IT sinc2 (~O! ) 
O!=I 

(3) 

as m ~ 00. And, for fixed w, 

as m ~ 00, so that 

(4) 

as m ~ 00 for fixed w, where 

d 

G{w) = 5~6IwI4f(w) IT sinc2 (~O!) . 
O!=I 
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Results for sufficiently smooth random fields 

Which terms in the sum over j on the right side of (2) dominate depends 
on how fast f decays at high frequencies. Equations (2)-(4) can be used 
to show that if f(w) = o(lwl-4 ) as Iwl ---+ 00, the term j = 0 dominates 
the sum. The following result is taken from Stein (1993c). Tubilla (1975) 
obtains a similar result in terms of the auto covariance function rather than 
the spectral density under much stronger conditions than assumed here. 

Theorem 1. If f(w) = o(lwl-4 ) as Iwl ---+ 00, 

m 4 var{I(Z)-Zm}---+ ( G(w)dw. JRd 
PROOF. For fixed w, m 4 gm(w; 0) is dominated by G(w) and G is 
integrable (Exercise 3), which combined with (4) implies 

m4 { gm(w;O)dw---+ ( G(w)dw 
JRd JRd (5) 

by the dominated covergence theorem. As in Chapter 3, let E~ indicate 
summation over all j E 7l.d other than o. If f(w) = o(lwl-4 ) as Iwl ---+ 00, 
then 

, d 

m 4 L gm(w;j) II (1 + w~) ---+ 0 
<>=1 

as m ---+ 00 uniformly for w E Ad(m) (Exercise 4), which implies 

m41 L' gm(w;j) dw ---+ O. 
Rd j 

Combining (5) and (7) yields Theorem 1. 

(6) 

(7) 

o 

Note that for d ;::: 5, the mse of order m-4 is larger than the reciprocal 
of the number of observations, or m-d • Since we can always get an mse of 
order m-d by taking a uniform simple random sample on [0, l]d of size m d 

and averaging the observations, it is tempting to conclude that the cen­
tered systematic sample is a poor design in higher dimensions. We show in 
5.4 (Exercise 16) that under a quite weak condition on the spectral den­
sity, centered systematic sampling together with an appropriate and easily 
computed weighting of the observations yields a predictor with mse that 
is o(m-d ). Thus, it is not true that centered systematic sampling performs 
worse asymptotically than a simple average based on a simple random sam­
ple in high dimensions. It is possible to argue that these asymptotic results 
are misleading when d is very large, since m d then grows so quickly with d 
as to make them irrelevant to practice. However, that is a rather different 
argument than claiming that systematic sampling is asymptotically inferior 
to simple random sampling. 
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Results for sufficiently rough random fields 

Theorem 1 showed that when IwI 4 few) -+ 0 as Iwl -+ 00, the j = 0 term 
in (2) dominates the mse. The following result essentially shows that when 
Iwl 4 f(w) -+ 00 as Iwl -+ 00, the terms j =I- 0 dominate the mse. 

Theorem 2. Suppose for some p satisfying d < p < 4, few) x Iw/-P as 
/w/ -+ 00. Then 

d 

var {f(Z) - Zm} '" r L:' few + 21l"mj) II sinc2 (~<» dw. 
J Ad(m) j <>=1 

PROOF. For w E Ad(m) and j =I- 0, 

d 2 

gm(Wjj) II {sinc (~<» } -x (m/j/)-P 
<>=1 

(8) 

(Exercise 5) so that 

which combined with 

r gm(Wj 0) dw « m-4 (1 + (m)3- p ), (9) J[td 
where (m)q = mq for q =I- 0 and (m)O = logm (Exercise 6), yields 

var{I(Z) - Zm} '" L:' r 9m(W;j)dw (10) 
j JJRd 

as m -+ 00. To simplify this result, note that for w E Ad(m) and j =I- 0, 

I ~gm-,-::(w.:..::..:.;j)--:-:- _ IT sinc2 (_W<» I 
few + 21l"mj) <>=1 2 

< IT sin2 (~) [I {I - IT (-I)ja 2m sin (~) }2 - 11 
- <>=1 m2 sin2 (~) <>=1 W<> + 21l"mj<> 

+ 11 - n sinc2 (~~)Il· 
Now, for w E Ad(m) and j =I- 0, 

IId sin2 (~) lId. 2 (W<» 
2 • 2 (!£...) « SIllC 2 ' 

<>=1 m S1n 2m <>=1 

<>=1 
lId (-l)jo 2m sin (~) II /w<>/ 

2 . « -/·-1 W<> + 1l"mJ<> . ...L m J<> <>:)aTO 
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and 

so that 

and 

lid gm(w;j) dw - f f(w + 21l"mj) IT sinc2 (~",) dwl 
IR Ad(m) ",=1 

d 

« (mljD-pm -2 f Iwl 2 n sinc2 (~",) dw 
Ad(m) ",=1 

« (mljD-pm-21 w~ dw 
O<Wd<···<Wl <7rm n!=l (1 + w~) 

« m-p-1Ijl-p· 

Theorem 2 then follows from (10). o 

We can obtain a yet simpler result by making stronger assumptions about 
f. The following is essentially a special case of Theorem 2 of Stein (I993c); 
its proof is left as an exercise. 

Theorem 3. Suppose f(w) x Iwl-P as Iwl -+ 00 for some p < 4 and 
there exists a function I: Rd -+ ]R such that for any v E ]Rd and w =f. 0 

lim tP f(v + tw) = I(w). 
t-co 

(11) 

Then 

m P var {I(Z) - Zm} -+ (21l")d- p E'IO). 

Note that (11) holds if, for example, f(w) rv IAwl-P as Iwl -+ 00 for some 
nonsingular d x d matrix A, in which case I(w) = IAwl-p • 

Exercises 

1 For a weakly stationary, mean square continuous random field Z on 
]Rd, show that I(Z) can be defined as an L2 limit of finite sums. 

2 Verify var {I(Z) - Zm} = fllld gm(w) dw. 

3 Show that m4gm(W; O)jG(w) is bounded in m and w. Show that Gis 
integrable if f(w) « Iwl- 3-£ for some E > 0 as Iwl -+ 00. 

4 Verify (6). 
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5 Show that (8) holds for wE Ad(m) and j =f O. 

6 Verify (9). 

7 Prove Theorem 3. 

8 Find a simple expression for the asymptotic mse ofZ m under (11) with 
p = 4 (Stein 1993c). 

9 For f(w) ~ Iwl-4 as Iwl --+ 00, show that 

var{J(Z)-Zm} "'m-4 [ G(w)dw 
JRd 

d 

+ [ L I f(w + 27l"mj) II sinc2 (~o) dw. 
JAd(m) j 0=1 

Show that the second term on the right side is O(m-4) but not o(m-4). 
By combining these results with Theorem 5 in 5.4, show that Zm is 
not asymptotically optimal when f(w) ~ Iwl-4 as Iwl --+ 00 but does 
have mse converging at the optimal rate. 

5.3 Observations on an infinite lattice 

As we saw in 3.8, it is straightforward to calculate certain properties of 
BLPs if the observations are on the infinite lattice 6j, j E Zd for some 
8 > O. Here we consider the slightly more general setting where the mean 
o weakly stationary process Z is observed at points 8 (j - v) for j E Zd, 
where 8 > 0 and v is a fixed point in [O,l)d. The reason for including v 
is that by taking v = h we get that a centered systematic sample of size 
m d is a subset of the infinite lattice with 8 = m-1• Therefore, the mse of 
the BLP based on the infinite lattice provides a lower bound for the mse of 
any linear predictor based on the centered systematic sample. In particular, 
if a sequence of integration rules based on centered systematic samples of 
size m d has asymptotically the same mse as the BLP based on observing 
Z at m-1 (j - h) for all j E Zd, then this sequence of rules is necessarily 
asymptotically optimal relative to all linear predictors based on centered 
systematic samples. 

Asymptotic mse of BLP 

This section considers predicting J(Zj v) = iRd v(x)Z(x) dx, where both 
iRd v(x)2dx and var {J(Zj vn are positive and finite. In 5.2 we took 
v(x) = l{x E [O,l]d}. Let f be the spectral density of Z and set V(w) = 
fRdv(x)exp(iwTx)dx, so that var{I(Zjvn = fRdf(w)IV(w)1 2dw. Note 
that we have not assumed v is integrable so we have to interpret its Fourier 
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transform V as an L2 limit of Fourier transforms of integrable functions 
(Stein and Weiss 1971, Section 1.2). Define 

8(t) = r L I f(w + 271'tj)lV(wWdw 
J Ad(t) j 

and let i8 (Z; v) be the ELP of I(Z; v) based on observing Z at 8(j - v) 
for all j E Zd and some fixed v E [0, l)d. The following is a special case of 
Theorem 4 of Stein (1995a). 

Theorem 4. If f(w) ~ (1 + Iwl)-P, then var {I(Z; v) - i8(Z; v)} rv 

8(8- 1 ) as 81 o. 
PROOF. I only consider the case v = 0 here as it simplifies the notation. 
See Stein (1995a) for the more general case. The basic idea of the proof is 
to show that there is a family of linear predictors depending on 8 that has 
8(8-1 ) as its asymptotic mse and then to show that the ELP cannot do 
better asymptotically. 
The following simple result is helpful. Suppose {cn } is a sequence of 
nonnegative and measurable functions on Rd and {an} and {bn} are se­
quences of measurable complex functions on Rd such that flR d {lan (w)1 2 + 
Ibn (w)l2}cn (w)dw < 00 for all nand 

. flR d Ibn (w)l2c n (w) dw 
hm =0. 
n ...... oo flR d lan (w)1 2cn (w) dw 

Then 

as n --+ 00 (Exercise 10). 
Now every linear predictor based on observing Z at 8j for all j E Zd 

corresponds to a function in £8 (1), the closed real linear manifold of the 
functions exp(i8wT j) for j E Zd with respect to the norm defined by f. 
Thus, to find a family of predictors that has mse asymptotically equal 
to 8(8-1), it suffices to find U8 E £8(1) such that flR d f(w)IU8(W) -
V(w)1 2dw rv 8(8-1 ) as 8 1 o. Let U15 (w) = V(w) for w E A d(8- 1) and 
take UI5 to have period 271'8- 1 in each coordinate, so that U8 E £15(1) 
(Exercise 11). Next, 

r f(w)lV(wWdw «8P r W(wWdw = o(8P), (13) 
JAd(I5-1)C JA d (I5-1)C 

where the last step holds because v square integrable implies V is as well. 
Then 

(14) 
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follows from (12), (13), Uo(w) = V(w) on Ad (8- 1 ) and fAd(O-l)C f(w) x 
lUo(w)1 2dw = 8(8-1) x 8P• 

We next show that the BLPs cannot do better asymptotically than the 
predictors corresponding to Uo. The element of Co (f) corresponding to the 
BLP io(Z; v) is (see 3.8) 

~ E j f(w + 271"8- 1j)V(w + 271"8-1j) 
Vo(w) = E j f(w + 271"8-1j) , 

so that 

var {J(Z; v) - io(Z; v) } 

~ ( f(w) I Uo(w) - Uo(w) + "C6(w) - V(wWdw 
J Ad(O-l)c 

~ ( f(w) { IUo(w)I-IUo(w) - Vo(w)I-IV(w)1 }2 dw 
JAd(O-lY 

f"V 8(8-1), (15) 

where the last step follows from (12), (13) and 

( f(w)IUo(w) - "C6(wWdw 
JAd(O-l)C 

= ( IV(w) - Vo(w)12 L:' f(w + 271"o-1j) dw 
JAd(O-l) j 

«8P 1 f(W)-21L:' f(w + 271"8-1j) {V(w) - V(w + 271"8-1j) }1 2 
dw 

Ad(O-l) j 

«83p { (1 + IwI)2P IV(w)12dw 
JAd(O-l) 

+ ( L:'f(w + 271"8-1j)lV(w+ 271"o-1j)1 2dw 
JAd(O-l) j 

= o(8P ). (16) 

Exercise 12 asks you to provide the details for (16). Theorem 4 follows from 
(14) and (15). 0 

Let us examine what makes this proof work. If f(w) x (1 + Iwl)-P, 
then any family of predictors to with mse tending to 0 as 8 1 0 must have 
corresponding functions in to E Co (f) satisfying f B Ito (w) - V (w Wdw -+ 0 
as 8 1 0 for any bounded set B. Since to is periodic and V is "small" at 
high frequencies, for 8 small, there is then no way to avoid a contribution 
to the mse from frequencies outside Ad (8- 1 ) of approximately 8(8- 1 ). 
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Asymptotic optimality of simple average 

Theorems 2 and 4 yield that Z m is asymptotically optimal for J (Z) if 
f(w) x (1 + IwD-P for p < 4. For p > 4, it turns out that Zm has mse 
tending to 0 at a slower rate than the mse of the BLP, which follows from 
Theorem 1 in 5.2 and Theorem 5 in the next section. Stein (1995a) shows 
that for v sufficiently smooth and p < 4, var {J(Zj v) - Zm(V)} fV S(m), 
where 

Hence, Zm(v) is asymptotically optimal for p < 4. Stein (1995a) also shows 
how to modify this predictor so that it is asymptotically optimal for p ~ 4 
using a generalization of the procedure outlined in the next section. 

Exercises 

10 Prove (12). 

11 Show that the function Uo defined in the proof of Theorem 4 is in 
£0(1). 

12 Provide the details for (16). 

13 Show by example that the conclusion of Theorem 4 may not hold if 
only f(w) x Iwl-P as Iwl -t 00 is assumed. 

5.4 Improving on the sample mean 

Let us consider improving upon Zm as a predictor of J(Z) when Z is 
smooth. In 5.2, we showed that if f(w) x (1 + IwD-P with p > 4, then for 
the integral on the right side of (1), frequencies in Ad(m) produce a term of 
order m- 4 in the mse and frequencies outside Ad(m) a term of order m- p • 

We see that we need to find a better approximation to /rO,1jd exp(iwTx)dx 
at low frequencies than is given by E jE9m m-d exp {im- 1wT (j - h)}. 

Approximating Jo1 exp(ivt)dt 

For d = 1, we seek a more accurate approximation to J01 exp(ivt)dt = 
exp(iv/2)sinc(v/2) than 

1 ~ {. -1 (. 1)} exp(~)sin(~) 
m L.J exp zm v J - "2 = . (V) 

j=1 msm 2m 
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for 1111 ~ m7r. Although there is more than one way to do this, let us 
consider functions of the form 

1 m {' (. I)} W J--
4>m(lI; a q ) = - L exp m 2 

m j=1 

1 ~ [{ill(j-~)} {ill(m-j+~)}] + - L.J aj exp + exp , 
m m m 

j=1 

where a q = (ab ... , aq ) and m > 2q. Straightforward calculation yields 

4>m(lI;aq ) = exp C;) [~ sin (i) {csc (2:) + 2 t,aj sinC: ~ II) } 

+ ! cos (i) t, aj cos C : ~ II) ] . 
Using 

csc(t) = c 1 + t (_I)t- 12(22l- 1 -1)B2lt2l-1 + 0 (It I2k+ 1) 

l=1 (2£)! 

for It I ~ 1r /2, where Bn is the nth Bernoulli number (Abramowitz and 
Stegun 1965, 4.3.68), we get that if 

and 

then 

q 

Laj(2j-1)2r=0 for r=0, ... ,8 

j=1 

q 22r- 1 1 
"ak(2k - 1)2r-l = -- B2r £ 1 L.J 2r or r = , ... ,8, 
k=1 

I (ill). (II) I 11I1 2S+1 exp 2' smc "2 - 4>m(lI; aq) « m 2s+2 

(17) 

(18) 

(19) 

for 1111 ~ 7rm (Exercise 14). Furthermore, by taking q = 28 + 1, (17) 
and (18) give 28 + 1 equations in the 28 + 1 components of a2s+1 
and this system of linear equations has a unique solution (Exercise 15), 
denoted by 8.2s+1' For example, 8.3 = (1/12, -1/8, 1/24) and 8.5 = 
(101/640, -2213/5760, 143/384, -349/1920, 103/5760). 
We see that by modifying just the weights assigned to observations near 
the ends of the interval, we are able to get a sharper approximation to 
exp(ill/2) sinc(II/2) at low frequencies. Another way to think about these 
modifications is in terms of the Euler-Maclaurin formula, which, for a func­
tion h on [0,1], gives approximations to Jo1 h(t) dt in terms of the values of 
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h at j In for j = 0, ... ,n and derivatives of h at 0 and 1. For h possessing 
2k - 1 derivatives on [0, IJ, define the kth order Euler-Maclaurin rule 

Rk(h) = 2~ {h(O) + h(l)} + ~ ~ h (~) 
k 

_ ~ B21 {h(2£-l)(I) _ h(21-l)(O)} t:. (2l)!n2£ ' 

where the last sum is set to 0 if k = 0 so that k = 0 corresponds to the 
trapezoidal rule. If h has a bounded derivative of order 2k + 2 on [0,1]' 
then 

III h( ) ( )1 IB2k+21 1 (2k+2)()1 
t dt - Rk h ~ (2k 2)' 2k+2 sup h t ° +.n O:::;t::;I 

(Abramowitz and Stegun 1965, p. 886). We can use Rk(h) to integrate a 
stochastic process if it possesses 2k - 1 mean square derivatives. Alter­
natively, as in Benhenni and Cambanis (1992), we can approximate the 
derivatives at the endpoints using finite differences and avoid the need to 
observe these derivatives. This approach gives rules very similar in spirit 
to the ones described in the preceding paragraph. 

Approximating f[O,l]d exp( iwT x)dx in more than one dimension 

As the number of dimensions increases, the use of Z m to predict 
I(Z) becomes increasingly problematic. We need to find a better ap­
proximation at low frequencies to J[O,l]d exp(iw T x)dx than is given by 

LjEQ"" m-dexp{im-lwT(j - h)}. For 8 > 1, n:=l ¢>m(wQja2s+d pro­
vides such an approximation. More specifically, for m ~ 48 + 2, define the 
predictor 

Zm,s = m- d L bjZ(m-l(j - h)), 
jEQm 
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where bj = n:=l (3jq' (3j = 1 if 2s + 2::::; j ::::; m -2s - 1 and (3j = (3m-j = 
1 + aj for 1 ::::; j ::::; 2s + 1. Note that Zm,O = Zm. We then get 

tml Ill, ,in, (~.) - f1 ~m(W.;ii'.+,{ f(w) dw 

r w 4s+4 d W 

« J;. I m I II sinc2 ( 201.) (1 + Iwl)-P dw 
Ad(m) 01.=1 

«m-4s - 4 r (1 + wd4s+2- p IT 1: w2 dw 
}O<Wd<",<Wl <7rm 01.=2 01. 

«m-4s - 4 (1 + (m)4s+3- P) 

= o(m-P ) 

if 4s + 4> p. 

Asymptotic properties of modified predictors 

By using Zm,s for 4s + 4> p, we again get the high frequencies of f domi­
nating the mse as we did for Zm when p < 4. In particular, by an argument 
similar to the proof of Theorem 2, we get the following generalization of 
that result. 

Theorem 5. Suppose for some p > d, f(w) :::::: Iwl-P as Iwl -+ 00. Then 
for 4s + 4> p, 

d 

var {I(Z) - Zm,s} rv r L' f(w + 27rmj) II sinc2 (~OI.) dw. 
} Ad(m) j 01.=1 

Theorems 4 and 5 imply the following. 

Corollary 6. If f(w) :::::: (1 + Iwl)-P and 4s + 4 > p, then Zm,s is an 
asymptotically optimal predictor for I(Z). 

We also have an analogue to Theorem 3. 

Theorem 7. If f satisfies (11), then for 4s + 4> p, 

var {I(Z) - Zm,s} rv m-p (27r)d- p L'lu). 
j 

The fact that, independent of d, Zm is asymptotically optimal for p < 4 
and converges at a suboptimal rate for p > 4 is noteworthy (see Exercise 9 
of 5.2 for the case p = 4). We must have p > d for f to be integrable so 
that the range of p for which Z m is asymptotically optimal narrows as d 
increases from 1 to 3 and Zm is not asymptotically optimal for any p when 
d ~ 4. Since the suboptimality of Zm for p ~ 4 is due to poorly chosen 
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weights given to observations near an edge of [0,1]d and, as d increases, 
more of the observations are near an edge of [0, l]d, it is not surprising that 
the constraints on an isotropic random field Z become increasingly severe 
as d increases in order for Z m to be asymptotically optimal. 

Are centered systematic samples good designs? 

If asymptotically optimal predictors are used, Ritter (1995) showed that 
centered systematic sampling cannot do too much worse than any other 
sampling design for random fields that are not too far from isotropic. More 
specifically, suppose {Dj}~l is a sequence of finite subsets of [0, l]d with 
Dj containing nj points and nj -t 00 as j -t 00. If f(w) ;::::: Iwl-P as 
Iwl -t 00, then the sequence of BLPs of I(Z) based on the points in Dj 
cannot have mses that are o(njP) as j -t 00 (Ritter 1995). Thus, centered 
systematic sampling achieves the best possible rate of convergence to a for 
the mse. Furthermore, results in Stein (1995b) suggest that if the random 
field is isotropic, centered systematic samples will sometimes do very nearly 
as well asymptotically as the best possible designs. If the random field 
possesses a tensor product autocovariance function (see 2.11), then BLPs 
based on centered systematic sampling can be badly suboptimal (Ylvisaker 
1975; Ritter 1995). 

Exercises 

14 Verify (19) for 1/.11 ::; 7rm. 

15 Show that for q = 28 + 1, there is a unique solution to (17) and (18). 
16 Show that if f(w) = o(lwl-d) as Iwl -t 00, then for 48 + 4 > d, 

var{I(Z) - Zm,s} = o(m-d ). Thus, under this mild condition on f, 
the mse ofthe BLP based on the centered systematic sample is o(m-d ) 

as m -t 00 and hence is better asymptotically than taking a uni­
form simple random sample on [O,I]d of size m d and averaging the 
observations. 

17 Continuation of 16. For d = 1, show by example that if no conditions 
are placed on f, then m var{I(Z) - Zm} may not tend to 0 as m -t 00. 

18 Prove Theorem 5. 

19 Prove Theorem 7. 

5.5 Numerical results 

This section looks at some results for finite m and d = 1. Stein (1993c) 
provides some numerical results for d = 2. As a first example, suppose 
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TABLE 1. Mean squared errors for predicting I(Z) when K(t) = exp( -4Itl)(1 + 
41tl + 16t 2 /3). 

m mse(Zrn) mse(Zrn) mse(Zrn,t} 
16 2.78 X 10-8 3.53 X 10-7 3.70 X 10-8 

32 3.48 X 10-10 2.14 X 10-8 4.16 X 10-10 

48 2.64 X 10-11 4.21 X 10-9 3.02 X 10- 11 

K(t) = exp( -4Itl)(1 + 41tl + 16t 2 /3), for which the corresponding spectral 
density is few) = 213/ {37r(16 +W2)3}. The results in Table 1 for predict-
ing feZ) = J01 Z(t) dt at least qualitatively agree with the asymptotics. 
Specifically, since p = 6 > 4, the simple average Zm is badly suboptimal, 
particularly for larger m. The modified predictor Zrn,1 performs much bet­
ter, although even for m = 48, it has mse 14% larger than that of the 
BLP Zrn. Note that all integrals required to obtain these results can be 
computed analytically (Exercise 20), so that numerical integration is not 
needed. 
Theorem 5 shows that asymptotically there is no penalty for using Zm,s 
with 8 larger than necessary. For finite m, using 8 too large does tend to 
give larger mses. Table 2 shows what happens when predicting feZ) and the 
auto covariance function is K(t) = e- 1tl . Here, few) ;:::::: (1 + Iwl)-2 so that 
Zrn,s is asymptotically optimal for all nonnegative integers 8. We see that 
Zrn is very nearly optimal for all m considered, Zm,1 does somewhat worse 
but is still within 2% of optimal even for m = 16, and Zm,2 does noticeably 
worse, although it is within 5% of optimal for m = 48. Comparing Tables 1 
and 2, it is apparent that the penalty for choosing 8 too small is much more 
severe than for choosing 8 too large, as the asymptotic results predict. 
The fact that it is possible to find an asymptotically optimal predictor 
for f (Z) by choosing any integer 8 such that 48 + 4 > p and then us­
ing Zm,s indicates that prediction of integrals is particularly insensitive 
to misspecification of the spectral density. The results of Chapter 4 show 
that all prediction problems are insensitive to misspecification of low fre­
quency behavior under fixed-domain asymptotics. The results here indicate 
that integrals may be predicted nearly optimally without knowing the high 
frequency behavior of the spectral density well, either. 

TABLE 2. Mean squared errors for predicting I(Z) when K(t) = e- 1tl . 

16 6.499 X 10-4 

32 1.627 X 10-4 

48 7.232 X 10-5 

6.510 X 10-4 

1.628 X 10-4 

7.234 X 10-5 

6.595 X 10-4 

1.638 X 10-4 

7.265 X 10-5 

7.474 X 10-4 

1.748 X 10-4 

7.591 X 10-5 
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Exercises 

20 For K(t) = exp(-altl) (1 +altl + ~a2t2), find cov{Z(s),fo1 Z(t)dt} 
for 0 ::; s ::; 1 and var { fo1 Z ( t) dt}. 

21 Reproduce the results in Table 1. Try to extend these results to larger 
m. You may run into numerical problems for m not much larger than 
64. For example, for m = 64, S-Plus gives the condition number (the 
ratio of the largest to smallest eigenvalue) of the covariance matrix of 
the observations as 4.6 x 109 and refuses to calculate its QR decom­
position due to its apparent near singularity. A good project would 
be to develop methods other than using higher-precision arithmetic to 
ameliorate these numerical difficulties. 



6 

Predicting With Estimated 
Parameters 

6.1 Introduction 

Chapters 3 and 4 examined the behavior of pseudo-BLPs. Although the re­
sults given there provide an understanding of how linear predictors depend 
on the spectral density of a stationary random field, they do not directly 
address the more practically pertinent problem of prediction when parame­
ters of a model must be estimated from the same data that are available for 
prediction. The reason I have avoided prediction with estimated parameters 
until now is that it is very hard to obtain rigorous results for this problem. 
The basic difficulty is that once we have to estimate any parameters of the 
covariance structure, "linear" predictors based on these estimates are no 
longer actually linear since the coefficients of the predictors depend on the 
data. 
The sort of theory one might hope to develop is that, as the number of 

observations increases, it is generally possible to obtain: 

(A) asymptotically optimal predictors, and 
(B) asymptotically correct assessments of mean squared prediction errors 

even when certain unknown parameters are estimated. Such general results 
do exist for predicting future values of a time series observed on the integers 
with finite-dimensional parameter spaces (Toyooka 1982 and Fuller 1996, 
Section 8.5). Gidas and Murua (1997) prove that if a continuous time series 
is observed at 8,28, ... ,To, where both 8-1 and 8T tend to infinity, then (A) 
and (B) are generally possible for predictions a fixed amount of time after 
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To. The results in all of these works require that the unknown autocovari­
ance function can be consistently estimated as the number of observations 
increases. Under fixed-domain asymptotics, the results on equivalence of 
Gaussian measures in 4.2 show that there can quite naturally be parame­
ters that cannot be consistently estimated as the number of observations 
increases. Indeed, Yakowitz and Szidarovszky (1985, Section 2.4) essentially 
claim that the impossibility of consistently estimating the auto covariance 
function based on observations in a fixed region implies that (A) and (B) 
are unachievable. The results in Chapter 4 show that, at least for Gaussian 
random fields, this line of reasoning is inadequate. Specifically, Theorems 8 
and 10 in 4.3 demonstrate that there is no need to distinguish between 
equivalent Gaussian measures in order to obtain asymptotically optimal 
predictions. 
These theorems do not by themselves imply (A) and (B). Indeed, direct 
analogues to Theorems 8 and 10 in 4.3 will not generally be possible for 
predictions based on estimated models. The problem, as I discuss in 6.8, 
has to do with the uniformity of these results over all possible predictions. 
If one restricts the class of predictands appropriately, then I expect that 
rigorous results in support of (A) and (B) are obtainable. Putter and Young 
(1998) provide the first step of an approach to proving (A) and (B) for 
predictions based on estimated parameters, although much remains to be 
done to obtain any such result when using, as I advocate, the Matern model 
for the autocovariance function. 
This chapter provides theorems, heuristic derivations, numerical calcula­
tions and a simulated example concerning the estimation of auto covariance 
functions and prediction of random fields based on these estimates. Sec­
tion 6.2 describes Matheron's notion of microergodicity, which is closely 
related to equivalence and orthogonality of measures and which plays a 
crucial role in thinking about whether (A) and (B) should be possible un­
der fixed-domain asymptotics. Section 6.3 demonstrates a crucial flaw in an 
argument due to Matheron (1971, 1989) that purports to show that (B) is 
unachievable for predicting integrals of sufficiently smooth random fields. 
Section 6.4 describes maximum likelihood and restricted maximum likeli­
hood estimation for the parameters of the covariance function of a Gaussian 
random field. In many settings, as the number of observations increases, 
maximum likelihood estimates are asymptotically normal with mean equal 
to the true value of the parameter vector and covariance matrix given by 
the inverse of the Fisher information matrix. Section 6.4 briefly describes 
such standard asymptotic results and explains why they often do not hold 
under fixed-domain asymptotics. 
Section 6.5 advocates the Matern class as a canonical class of autocovari­
ance functions for spatial interpolation problems. Recall from 2.10 that the 
general form of the Matern spectral density of an isotropic random field on 
Rd is f(w) = ¢(0i. 2 + IwI2 )-v-d/2. The critical parameter here is ZI, which 
controls the degree of differentiability of the underlying random field. Any 
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class of models that does not include a parameter allowing for a varying 
degree of differentiability of the random field is, in my opinion, untenable 
for general usage when interpolating random fields. Thus, in particular, a 
standard semivariogram model such as the spherical (see 2.10) should not 
be used unless there is some credible a priori reason to believe the semi­
variogram must behave linearly near the origin. The same criticism applies 
to the exponential model, even though it is a special case of the Matern 
model with II = ~. 
Section 6.6 investigates numerically the Fisher information matrix for 

the parameters of the Matern model in various settings, including cases in 
which there are measurement errors. An important finding of 6.6 is that 
evenly spaced observations can lead to great difficulty in estimating the 
parameters of the Matern model. 
Theorem 1 in Section 6.7 derives fixed-domain asymptotic properties of 
maximum likelihood estimates for a class of periodic random fields closely 
related to the Matern class. I would expect that similar results hold for 
estimating the parameters of the (nonperiodic) Matern class itself, but 
cannot prove such a claim. 
Section 6.8 considers some properties of the commonly used plug-in 

method for prediction and assessment of mses, in which unknown parame­
ters of the auto covariance function are estimated and then these estimates 
are treated as if they were the truth. In particular, I give an approximate 
frequentist formulation of Jeffreys's law relating the additional informa­
tion a predictand has about unknown parameters beyond that contained 
in the observations to the effect on the prediction of having to estimate 
these parameters. This approximation should be compared to the exact 
Bayesian formulation of Jeffreys's law given in 4.4. The approximation is 
easily computed and provides the basis of a numerical study on the effect 
of estimation on subsequent predictions. 
Section 6.9 considers an example based on simulated data showing serious 

problems with some commonly used methods in spatial statistics when the 
process under investigation is differentiable. 
Section 6.10 describes and advocates the Bayesian approach as the best 

presently available method for accounting for the effect of the uncertainty 
in the unknown parameters on predictions. However, it turns out that the 
prior distributions on unknown parameters that are a necessary part of any 
Bayesian analysis need to be chosen with some care. 

6.2 Microergodicity and equivalence and 
orthogonality of Gaussian measures 

Matheron (1971, 1989) discusses fixed-domain asymptotics and its relation­
ship to issues of statistical inference. In these works he considers the notion 
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of microergodicity for random fields observed on a bounded domain. For 
a class of probability models {Po: 8 E e} for a random field on a given 
bounded domain R and a function h on e, he effectively defines h(8) to be 
microergodic if, for any 8 E e, h(8) can be determined correctly with prob­
ability 1 based on observing a single realization of the random field on R. It 
immediately follows that if there exists 8o'(h E e such that h(8o) =I h(8 1 ) 

but Poo == POl' then h( 8) is not microergodic. On the other hand, if for all 
8, 8' E e, h( 8) =I h( 8') implies Po ..1 PO" it is at least plausible that one 
can determine the correct value of h(8) with probability 1. This would fol­
low if e were a countable set (Exercise 3), but can be false if the parameter 
space is uncountable (Exercise 4). Since Matheron does not give a precise 
mathematical definition of microergodic, for convenience, I define h( 8) to 
be microergodic iffor all 8,8' E e, h(8) =I h(8') implies Po ..1 PO" 
In practice, determining when h( 8) can be estimated well based on a large 

number of observations of the random field Z spread throughout R is more 
important than determining microergodicity, although the two problems 
are related. Suppose Xl> X2, ... is a dense sequence of points in R and Zn = 

T A A 

(Z(xt), . .. ,Z(X n)) . Let On be an estimator of 8 based on Zn. Then h(8n) 
is said to be a consistent estimator of h(O) if h(On) converges in probability 
to h( 8) under Po for all values of 0 E e. We might generally expect that 
if h(8) is microergodic, then there exists a sequence of estimators On such 
that h(On) is consistent for h(8). However, such a result cannot be true 
without some further assumptions (see Exercise 4) and, even when it is 
true, is often difficult to prove. Wald's classic paper on the consistency 
of maximum likelihood estimates (Wald 1949; Ferguson 1996, Chapter 17) 
provides considerable insight into the issues involved in proving consistency 
of estimators. 
For Gaussian measures, we can use the results in 4.2 to determine which 
functions of a parameter are microergodic. For example, suppose Z is a 
stationary Gaussian process, R = [0, 1] and the class of probability models 
is Po = GR(O,Ko), where 0 = «(h,02), e = (0,00) x (0,00) and Ko(t) = 
01e-02jtj is the class of autocovariance functions. From (24) in 4.2, it follows 
that Po == Po, if and only if 0102 = 0i O~ and they are otherwise orthogonal. 
Thus, 0102 is microergodic, but neither 01 nor O2 are. Ying (1991) provides 
detailed results on the estimation of 8 for this model based on observations 
in a bounded interval. As an example of a micro ergodic quantity when there 
is no finite-dimensional model for the autocovariance function, suppose that 
Z is a stationary Gaussian process, R = [0,1] and let e index the class of 
all auto covariance functions K on R for which K'(O+) exists and is in 
(-00,0). Theorem 1 in 4.2 shows that for all such autocovariance functions 
K, K'(O+) can be determined with probability 1 and hence is microergodic. 

If we consider some class of models for a stationary mean 0 Gaussian 
process on R = [0,1] with K"(O) existing and finite, then whether K"(O) 
is microergodic depends on the class of models. If the class of models 
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is all auto covariance functions for which K" (0) exists and is finite, then 
K"(O) is not microergodic. To see this, consider Ko(t) = e- 1tl (1 + Itl) and 
K 1(t) = ~e-2Itl(1 +2It/), for which KO"(O) = -1 and K1"(0) = -~. Since, 
by (24) in 4.2, GR(O,Ko) == GR(O,KI), K"(O) is not microergodic. If the 
class of models is Ko(t) = (he-92Itl (1 +02It/), 8 = (01, (2) E (0,00) x (0, 00), 
then -0101 = K"(O) is still not microergodic, but 2010t = KIII(O+) is (Ex­
ercise 5). On the other hand, if the class of models is Ko(t) = OK(t) where 
o E (0,00), K is an auto covariance function possessing a spectral density 
and K"(O) exists, then 0 and hence KO"(O) is microergodic, which follows 
from Exercise 6. However, assuming the auto covariance function is known 
up to a scalar multiplier is highly restrictive. Finally, if Ko(t) = (he- 02t2 

with 8 = ((h,02) E (0,00) x (0,00), then 8 is microergodic (Exercise 8) 
and hence so is Ko"(O). This last example makes use of the unusual prop­
erties of processes with analytic auto covariance functions and should be 
considered atypical. 

Observations with measurement error 

This subsection argues that measurement errors should generally have no 
effect on which parameters of a model for a continuous random field are 
microergodic. To be more specific, consider the infinite sequence of observa­
tions Yi = Z(Xi) + Ui for i = 1,2, ... where Z is a mean square continuous 
Gaussian random field on Rd, the Uis are independent N(0,0"2) random 
variables that are independent of Z and X1,X2, ... is a dense sequence in 
some set R C ~d such that every point in R is a limit point of R. Further­
more, suppose the mean and covariance function for Z on R are known up 
to some finite-dimensional parameter 8 E e and denote by Po the Gaussian 
measure for Z on R as a function of 8. 

If h( 8) is microergodic when Z is observed everywhere on R, then as 
discussed in the preceding subsection, we would commonly expect that 
h(8) can be consistently estimated based on Zn = (Z(xd, ... , Z(xn)f 
as n --) 00. If so, then we should generally have that h(8) is consistently 
estimable based on Y n = (Y1 , ••. , Yn)T as n --) 00. To see why this should 
be the case, note that for any fixed j, Z(Xj) can be predicted arbitrarily 
well in terms of Y n as n --) 00 (see the proof of Theorem 6 in 4.2). Thus, if 
8 can be estimated well based on Zno, then by choosing n sufficiently large, 
Y n can be used to predict each component of Zno arbitrarily well, which 
suggests that 8 can also be estimated well based on Y n. Furthermore, 0"2 
will also be consistently estimable based on Y n as n --) 00. Exercise 9 asks 
you to prove this by using the fact that if IXi - Xj I is small, then E(Yi _ }j)2 
equals 2(12 plus something small. 
These arguments suggest that whatever parameters can be consistently 
estimated when noise-free observations are available can still be consistently 
estimated from noisy observations. In addition, the measurement error vari­
ance is always consistently estimable. However, we should also expect good 
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estimators of the micro ergodic parameters of Z based on Y n to be substan­
tially less precise than good estimators based on Zn. Stein (1990c, 1993b) 
considers estimating parameters of periodic stochastic processes observed 
with measurement error. 

Exercises 

1 For a stochastic process Z observed on [0, 1], define the empirical 
semivariogram for i'(t) for 0 ::; t < 1 by 

1 11
-

t 
i'(t) = ( ) {Z(s + t) - Z(s)}2ds. 

2 1 -t 0 

Show that if Z is mean square differentiable, then 

2 For a weakly stationary process Z on lR with continuous semivari­
ogram 'Y, show that varU01 Z(t) dt} = 0 if and only if the spectrum's 
support is contained in the set {nj : j E Z\ {O}}. Next, show that 
for Z a stationary Gaussian process with continuous semivariogram, 
var {Jol Z(t?dt} = 0 if and only if var{Z(O)} = O. Finally, combining 
this result with Exercise 1, show that for a stationary mean square 
differentiable Gaussion process Z, var{i''' (O)} = 0 if and only if 'Y is 
identically O. 

3 For () E e, let {n, oF, Po} be a family of probability models on a mea­
surable space (n, oF). Consider a function h on e whose range is at 
most countable and suppose that h( ()) i- h( ()') implies Po ..l Po'. Show 
that there is a measurable function X on n such that for all (} E e, 
X = h(()) with probability 1 under Po. 

4 Let e be the set of all subsets of the positive integers. Suppose 
Xl, X 2 , ... is an infinite sequence of binary random variables. If () E e 
is not the empty set, then for j = 1,2, ... , Xj = 1 if j E () and Xj = 0 
otherwise, so that the sequence of random variables is in fact determin­
istic. If () is the empty set, then the Xjs are independent and identically 
distributed with Pr(X = 0) = Pr(X = 1) = ~. Define h(()) to equal 1 
if () is the empty set and 0 otherwise. Show that () and hence h(()) is 
micro ergodic as defined in this section. Show that there does not exist 
a function h of Xl, X 2 , ... such that h = h(()) with probability 1 under 
Po for all () E e. Conclude that it is not possible to estimate h(()) 
consistently based on Xl, ... , X n as n --> 00. 

5 Suppose Z is a mean 0 stationary Gaussian process on lR and Ko(t) = 
()le-02Itl(1 + ()2Itl), () = (()l, ()2) E (0, (0) x (0, (0). For R = [0,1]' show 
-()1():j = K"(O) is not microergodic, but 2()1()i = KIII(O+) is. 
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6 Suppose Z is a mean 0 stationary Gaussian process on lR. with auto­
covariance function of the form KIJ(t) = ()K(t), where K possesses a 
spectral density with respect to Lebesgue measure and is not identically 
O. Show that for R = [0,1] and B =1= ()', GR(O,BK)..l GR(O, ()'K). 

7 Suppose Z is a mean 0 stationary Gaussian process on lR. with auto­
covariance function of the form KIJ(t) = ()K(t). If the support of the 
spectrum corresponding to K is discrete, find necessary and sufficient 
conditions for e to be microergodic. 

8 Suppose Z is a mean 0 stationary Gaussian process on lR. with auto co­
variance function of the form Ko(t) = ()ICIJ2t2 with (J = (()1, ()2) E 
(0,00) x (0,00). For R = [0,1]' show that (J and hence KIJ"(O) is 
microergodic. 

9 For Y n as defined in the last subsection, show that it is possible to 
estimate the measurement error variance (72 consistently as n --t 00. 

Hint: consider an average of ~(Y; - Yj)2 over selected pairs (i,j) for 
which IXi - Xj I is small. 

6.3 Is statistical inference for differentiable 
processes possible? 

Matheron (1989, p. 90) states that for an isotropic random field observed on 
a bounded region whose isotropic semivariogram 'Y satisfies 'Y(h) rv Ch 2 as 
h 1 0 for some C > 0, "statistical inference is impossible." Let us examine 
what he means by this statement and what is wrong with his reasoning. 
Matheron correctly notes that, at least for Gaussian random fields, it is 

not generally possible to recover C based on observations in a bounded re­
gion. The reader who has understood Chapter 4 should think "So what? We 
do not need to know C in order to obtain asymptotically optimal predic­
tions in this bounded region nor to accurately assess their mses." However, 
Matheron (1971, Section 2-10-3) gives an example that appears to under­
mine this argument. I describe only a special case of his example, which 
is sufficient to show his error. Suppose Z is a stationary Gaussian pro­
cess on lR. and we wish to predict J(Z) = fol Z(t)dt based on observing 
Z (( i - 0.5)n -1) for i = 1, ... ,n. Matheron studies the mse of the predictor 
Zn = n- 1 E~=1 Z((i - 0.5)n- 1 ), and although his analysis is incorrect, 
some of his conclusions are still relevant. Theorem 1 in 5.2 shows that if 
Z has spectral density f satisfying f(w) = o(lwl-4 ) as Iwl --t 00, then the 
mean squared prediction error is asymptotically of the form rn -4, where 
r = (1/144) f~oo w2 sin2 (w/2)f(w)dw. (Matheron's results imply that the 
mse will be of order n-5 for sufficiently smooth processes, but this er­
ror does not affect the basic thrust of his argument. See Exercise 11 for 
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further details.) Now T depends nontrivially on the low frequency behav­
ior of f, so it is apparent that T will only be microergodic under very 
special assumptions on the class of models. In particular, if we only as­
sume f{w) = o{jwj-4) as jwj --+ 00, then T cannot be determined based 
on observations on [0,1]. Hence, based on observing Z({i - 0.5)n-1) for 
i = 1, ... ,n, it is impossible to get an asymptotically correct assessment of 
the mean squared prediction error of Zn. 
The careful reader of Chapter 5 should see the problem in this reasoning: 
if f{w) = o{w-4) as w --+ 00, then Zn is not asymptotically optimal, which 
was shown in 5.4. Jeffreys's law does not guarantee that we will be able 
to accurately assess the mse of poor predictors! What we should expect to 
be able to do is to find an asymptotically optimal predictor of I{Z) and to 
assess its mse accurately. 

An example where it is possible 

Let us look at a specific case of how one could both predict I{Z) well and 
accurately assess the mean squared prediction error when a differentiable 
and stationary Gaussian process Z is observed at (i - 0.5)n- 1 for i = 
1, ... ,n. Suppose the spectral density f of Z satisfies f{w) '" rPw-6 as 
w --+ 00 for some unknown positive constant rP. A more challenging and 
realistic problem would be to assume f{w) '" rPw-p as w --+ 00 with both rP 
and p unknown (see Section 6.7 for a related problem), but even the simpler 
problem when it is known that p = 6 is an example of what Matheron 
considers "impossible." Istas and Lang (1997) show how one can go about 
consistently estimating both p and rP under certain additional regularity 
conditions on the autocovariance function. See Constantine and Hall (1994) 
and Kent and Wood (1997) for related work on estimating p when p < 3. 
By Corollary 6 in 5.4, Zn,l as defined in 5.4 is asymptotically optimal 
and Theorem 7 in 5.4 yields 

{I( ) -} rP ~ ·-6 7rrP 
var Z - Zn,l '" 167r5n6 L-,.J = 15 120n6 ' 

i=l ' 

where the last step uses 23.2.16 in Abramowitz and Stegun (1965). Thus, 
if we can estimate rP consistently as n --+ 00, then we can obtain an asymp­
totically valid estimate of the mse of the asymptotically optimal predictor 
Zn,l. I believe it is impossible to estimate ¢ consistently from the sample 
semivariogram, although I do not know how to prove this claim. However, it 
is possible to estimate rP consistently by taking an appropriately normalized 
sum of squared third differences of the observations. More specifically, defin­
ing the operator 6, by 6,Z{t) = c1{Z{t + €) - Z{t)}, then f{w) '" rPw-6 
as w --+ 00 implies 
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rv i: ¢W-6 {~sin c;) r dw 

117r¢ 

lOE 
(1) 

as E ! 0 (Exercise 12). Consider the following estimator of ¢ based on 
observing Z at (i - 0.5)n- 1 for i = 1, ... ,n, 

¢n = 11~n2 ~ {(61/n)3Z C -nO.5 ) } 
2 (2) 

Equation (1) implies that E¢n ---+ ¢ as n ---+ 00 and it is furthermore 
possible to show that var¢n ---+ 0 as n ---+ 00 (Exercise 13), so that ¢n is a 
consistent estimator of ¢. 

Exercises 

10 For a weakly stationary process Z on JR with spectral density f and 
auto covariance function K with J:x, w2 f(w) dw < 00, show that 

100 W2 sin2 (~) f(w) dw = ~{K"(1) - K"(O)}. 
-00 2 2 

It immediately follows from Theorem 1 in Chapter 5 that if f(w) = 
o(lwl-4), 

var{I(Z) - Zn} rv 28~n4 {K"(1) - K"(O)}. 

Prove this result using an argument in the time domain under the 
additional assumption that K( 4) exists and is continuous. 

11 For a weakly stationary process Z on JR, define X in = J(1::1)/n {Z(t) -

Z(i - 0.5)/n)}dt for i = 1, ... , n, so that I(Z) - Zn = E~=l X in . 
Matheron (1971) obtains an incorrect rate of convergence for var{I(Z) 
- Zn} because he calculates the mse by ignoring the correlations be­
tween the Xins for i = 1, ... , n. Suppose Z has spectral density f 
satisfying f(w) rv ¢w-P as w ---+ 00 for some ¢ > 0 and p > 1. For what 
values of p is var{I(Z) - Zn} '" E~=l var(Xin )? For what values of 
pis var{I(Z) - Zn} ~ E~=l var(Xin)? Note that Wackernagel (1995, 
p. 60) also ignores the correlations of the Xins when approximating 
var{I(Z) - Zn}. 

12 Fill in the details for (1). 

13 For ¢n as defined in (2), prove that var ¢n ---+ 0 as n -+ 00. The ar­
gument is somewhat reminiscent of Theorem 1 in Chapter 4, although 
quite a bit simpler because of the assumption that f(w) '" ¢w-6 as 
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W -+ 00. The key step in the proof is to show 

cov{ (Ll1/ n )3 Z(O), (Ll1/ n )3 Z(t)} 

= 100 
4>6 {2nsin (2W )} 

6 eiwtw + o(n2 ) 
-00 w n 

uniformly in t. 

6.4 Likelihood Methods 

Maximum likelihood estimation plays a central role throughout statistics 
and is no less appropriate or useful for estimating unknown parameters in 
models for random fields. This section describes maximum likelihood esti­
mation and a variant known as restricted maximum likelihood estimation 
for estimating the parameters of Gaussian random fields. Kitanidis (1997) 
provides an elementary introduction to the use of likelihood methods in 
spatial statistics. 
Suppose Z is a Gaussian random field on IRd with mean and covariance 
structure as in 1.5: Z(x) = m(x)T (3 + e(x), where m is a known vector­
valued function, (3 is a vector of unknown coefficients and e has mean 0 
with covariance function cov{e(x),e(y)} = KB(X,y) for an unknown pa­
rameter lJ. Observe Z = (Z(xt}, ... , Z(Xn))T. The likelihood function is 
just the joint density of the observations viewed as a function of the un­
known parameters. A maximum likelihood estimate (MLE) of the unknown 
parameters is any vector of values for the parameters that maximizes this 
likelihood function. It is completely equivalent and often somewhat easier 
to maximize the logarithm of the likelihood function, often called the log 
likelihood. Let K(lJ) be the covariance matrix of Z as a function of lJ and 
assume K(lJ) is nonsingular for all lJ. Define M = (m(xd ... m(xn))T and 
assume it is of full rank. Then (see Appendix A) the log likelihood function 
is 

l(lJ,{3) = -~log(27r)- ~log det{K(lJ)}- ~(Z_M{3)TK(lJ)-l(Z-M{3). 

One way to simplify the maximization of this function is to note that for 
any given lJ, l( lJ, (3) is maximized as a function of (3 by 

(3) 

where W(lJ) = MTK(lJ)-lM. Thus, the MLE of (lJ,{3) can be found by 
maximizing 

• n 
l(lJ, (3(lJ)) = -2"log(27r) - ~ log det{K(lJ)} (4) 

- ~ZT {K(lJ)-l - K(lJ)-lMW(lJ)-lMTK(lJ)-l}Z 
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(Exercise 14). Maximizing the likelihood over some parameters while hold­
ing others fixed is called profiling and the function l(O, 13(0)) is called the 
profile log likelihood for 0 (McCullagh and NeIder 1989, p. 254). 

Restricted maximum likelihood estimation 

The MLE has a minor defect in this setting. If we knew /3 = /30, we 
would presumably estimate 0 by maximizing l(O,/3o) as a function of o. 
By construction (Exercise 15), 

for all 0, so that Mj3(O) is always "closer" to Z than is M/3o. As a con­
sequence, the MLE of 0 will tend to underestimate the variation in the 
process, at least relative to what we would get if we knew /3 = /30. For 
example, if K(O) = (}V, where V is known and () is a scalar, then j3«(}) 
does not depend on () and 0 = n-1(Z - Mj3)TV- 1(Z - Mm, which has 
expected value (n - p)n- 1(), where p is the rank of M. Common practice 
would be to estimate () unbiasedly by n(n - p)-lO. For more complicated 
models for the covariance function, obvious adjustments for the bias of the 
MLE are not available. 
An alternative approach to estimating 0 is to consider the likelihood 

function of the contrasts, the linear combinations of the observations whose 
joint distribution does not depend on /3 (see 1.5). By construction, this 
likelihood will not depend on /3 and hence we can obtain an estimate of 0 
by maximizing this function over just O. This approach is commonly known 
as restricted maximum likelihood (REML) estimation and was described 
by Patterson and Thompson (1971) in the context of variance component 
estimation, who called the method modified maximum likelihood. Kitanidis 
(1983) was the first to propose applying REML to the estimation of spatial 
covariances. The idea is that if little is known about /3 a priori, the contrasts 
should contain essentially all ofthe information about O. Furthermore, since 
the distribution of the contrasts does not depend on /3, the "overfitting" 
problem that occurs when using ordinary maximum likelihood should not 
occur. In particular, if K«(}) = (}V, then the REML estimate of () is the 
usual unbiased estimate. A number of simulation studies in the time series 
setting have demonstrated the general superiority of REML estimation 
to ML estimation (Wilson 1988; McGilchrist 1989; and Tunicliffe-Wilson 
1989). 
To calculate the log likelihood of the contrasts, consider the set of con­
trasts Y = {I - M(MTM)-lMT}Z, where we have assumed M is of full 
rank p. The random vector Y forms a basis for all contrasts of Z. There 
are then n - p linearly independent contrasts, so that any n - p linearly 
independent components of Y also form a basis for all contrasts. Now Y 
has a singular normal distribution, so writing down its likelihood is not 



6.4 Likelihood Methods 171 

trivial. One solution is to consider the likelihood of n - p linearly indepen­
dent contrasts. McCullagh and NeIder (1989, p. 247) give the log likelihood 
for 8 directly in terms of Y: 

£(8; Y) = -n ; p log(21l') - ~ log det{K(8)} - ~ log det{W(8)} 

_~yT {K(8)-1 _ K(8)-lMW(8)-lMTK((})-1 }Y. (6) 

Exercises 7.8-7.13 of McCullagh and NeIder (1989) outline a derivation of 
this result. Any maximizer 9 of this expression is called a REML estimate 
of 8. The REML estimate of f3 is then given by (3(9), where (3(8) is defined 
as in (3). 
An advantage of REML over ML estimation in estimating covariance 
structures for Gaussian random fields is that REML can be applied to esti­
mating generalized auto covariance functions of IRFs (see 2.9), whereas ML 
cannot. The problem is that a generalized auto covariance function for an 
IRF does not define the covariance structure of all of the observations, so 
that the likelihood for all of the observations is also not defined. However, 
a generalized autocovariance function together with the Gaussian assump­
tion does define the joint density of the contrasts of the observations, so one 
can use REML for estimating the parameters of a generalized autocovari­
ance function. Indeed, REML and best linear unbiased prediction of IRFs 
form a coherent conceptual package, since in the modeling, estimation and 
prediction one only needs to consider contrasts of the random field. 

Gaussian assumption 

The likelihood functions given in the previous subsections all assume that 
the random field is Gaussian. This is a highly restrictive assumption so 
that it is reasonable to be concerned about the performance of likelihood­
based methods based on a Gaussian model when the random field is in fact 
not Gaussian. In particular, such methods will generally perform poorly if 
there are even a small number of aberrant observations. However, methods 
that are functions of the empirical semivariogram such as least squares and 
generalized least squares (Cressie 1993, Section 2.6) will also be sensitive to 
aberrant values even though they do not explicitly assume that the random 
field is Gaussian. Cressie and Hawkins (1980) and Hawkins and Cressie 
(1984) describe "robust" procedures for estimating semivariograms that 
are less sensitive to distributional assumptions than procedures based on 
the empirical semivariogram. However, these procedures do not fully take 
into account the dependencies in the data and thus may be considerably 
less precise than likelihood-based estimates when the Gaussian assumption 
is tenable. A good topic for future research would be the development 
of models and computational methods for calculating likelihood functions 
for non-Gaussian random fields. Diggle, Tawn and Moyeed (1998) make 
an important step in this direction and demonstrate that Markov Chain 
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Monte Carlo methods provide a suitable computational tool for some non­
Gaussian models. 

Computational issues 

One potentially serious obstacle to employing likelihood methods is com­
puting the likelihood function. In general, if there are n observations, 
calculating the determinant of W(O) and quadratic forms in W(O)-l each 
require O(n 3 ) calculations. In particular, for irregularly scattered observa­
tions in more than one dimension, an O(n 3 ) calculation is usually necessary 
to calculate the values of the likelihood function exactly. Thus, if there 
are more than several hundred observations, exact likelihood calculations 
are often infeasible. However, if the observations are on a regular lattice, 
then it is possible to compute the likelihood function exactly with fewer 
calculations (Zimmerman 1989). In this setting, it is also possible to use 
spectral methods to approximate the likelihood (Whittle 1954; Guyon 1982; 
Dahlhaus and Kiinsch 1987; and Stein 1995c), in which case, the approx­
imate likelihood can be calculated very efficiently by making use of the 
fast Fourier transform (Press, Flannery, Teukolsky and Vetterling 1992, 
Chapter 12). 
Vecchia (1988) describes a general method for efficiently approximating 
the likelihood function for spatial data. Let P(Zl, ... , zn) be the joint density 
of (Z(Xl)' ... , Z(xn)) evaluated at (Zl' ... ' zn) and write other joint and 
conditional densities similarly. Next, write 

n 

P(Zl, ... ,Zn) =p(zd I1p(Zj I zl, ... ,zj-d 
j=2 

and then approximate p(Zj I Zl, ... , Zj-l) by the conditional density of 
Z(Xj) given just the min(m,j -1) observations among Z(Xl)' ... ' Z(Xj_l) 
that are nearest to Xj in Euclidean distance, where m is much smaller 
than n. The smaller the value of m, the more efficient the computation but 
the worse the approximation to the true joint density. The ordering of the 
observations affects the results, but Vecchia (1988) found this effect to be 
small in the examples he studied and suggests ordering by the values of 
anyone of the coordinate axes of the observation locations. 
A somewhat related method for approximating the likelihood is to divide 
the observation region into some number of subregions, calculate the like­
lihood for each subregion separately and then multiply these likelihoods 
together. Similar to Vecchia's procedure, smaller subregions lead to eas­
ier computation but worse approximations of the likelihood. Stein (1986) 
recommended such a procedure for minimum norm quadratic estimators 
(Rao 1973), which also require computing quadratic forms of n x n in­
verse covariance matrices. I would recommend using subregions containing 
at least 100 observations, in which case, it should be feasible to carry out 
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the necessary computations for many thousands of total observations. Nei­
ther this approach nor Vecchia's should involve much loss of information 
about those parameters governing the local behavior of the random field, 
which are exactly those that will matter most when interpolating. Further­
more, even if it is possible to calculate the exact likelihood for all of the 
data, calculating the likelihood separately for subregions might be desir­
able as a way of looking for possible nonstationarities in the random field. 
For example, Haas (1990, 1995) deliberately uses only observations near 
the predictand's location when estimating the semivariogram to allow for 
possible nonstationarities. 
To compute MLEs, it is generally necessary to find the maximum of the 
likelihood numerically. It is common practice to select starting values for 
the unknown parameters and then use an iterative procedure such as con­
jugate gradient (Press, Flannery, Teukolsky and Vetterling 1992) to locate 
a maximum of the function. If the function has more than one local maxi­
mum, there is no guarantee that such algorithms will converge to the global 
maximum. Indeed, if one uses a model for the auto covariance function such 
as the spherical (see 2.10), which yields likelihood functions that are not 
twice differentiable, then it is quite possible to obtain likelihood functions 
that have more than one local maximum (Ripley 1988). However, when us­
ing the Matern model, I am unaware of any examples of likelihood functions 
with more than one local maximum. What is possible is for the likelihood 
not to possess a maximum in the interior of the parameter space. For exam­
ple, the supremum of the likelihood function may in some cases be obtained 
as the parameter II, which controls the differentiability of the random field, 
tends to 00. 
I do not believe the results in Warnes and Ripley (1987) and Ripley 
(1988) purporting to show multiple maxima in the likelihood when fitting 
an exponential autocovariance function. Nevertheless, it is worth pointing 
out that the various purported multiple maxima in their example corre­
spond to parameter values that will give nearly identical predictions and 
mses when interpolating, since the slopes at the origin of the correspond­
ing semivariograms are nearly the same for all of the local maxima. The 
example in Warnes and Ripley (1987) does correctly show that the likeli­
hood function can have long ridges along which it is nearly constant, which 
could lead to numerical problems when using iterative procedures for find­
ing the maximum. Their presence is not a sign of a problem with likelihood 
methods but rather an entirely correct indication that the data provide es­
sentially no information for distinguishing between parameter values along 
the ridge. If, rather than just trying to maximize the likelihood, one plots 
the log likelihood function, or at least some judiciously chosen profile log 
likelihoods, then these ridges should be detected. 
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Some asymptotic theory 

This subsection summarizes some standard asymptotic theory for MLEs 
and describes why such results will often not hold under fixed-domain 
asymptotics. Suppose we observe a random vector X whose distribution 
is from a family of distributions Po for 6 E e c IRP and we propose 
to estimate 6 via maximum likelihood. One way to try to maximize the 
likelihood is by finding critical points of the likelihood function. Specifi­
cally, define the score function S(6) = m(6; X)/86, the random vector 
whose components are the partial derivatives of £(6; X) with respect to 
the components of 6. Assuming these derivatives exist and are continuous, 
any MLE in the interior of e must be a solution to the score equations, 
S(6) = O. Let 60 be the true value of 6 and define the Fisher information 
matrix I(60) = covoo{S(60 ), S(60)T}. Let i(6) be the p x p matrix whose 
jkth component is -82£(6; X)/8()j8()k. Under certain regularity conditions, 
Eoo i(60) = I(60) (Exercise 18). If I(60) is "large" (in the sense that its 
smallest eigenvalue is large) and I(60 )-li(60 ) ~ I with high probability, 
then standard asymptotic theory suggests that the MLE is approximately 
N(6 0,I(60)-I) (Ferguson 1996; Ibragimov and Has'minskii 1981). 
To give a more careful statement of this result that includes the settings 
of concern in this work, suppose that Po for 6 E e is a family of probabil­
ity measures for a random field Z and Xl, X2 , ••. is a sequence of random 
vectors of observations from Z. As n increases, we should be thinking that 
Xn becomes increasingly informative about 6. In many works on asymp­
totics of MLEs, it is assumed that the observations making up Xn contain 
the observations making up Xj for all j < n, but this will not be the case 
for the example in 6.7, which considers evenly spaced observations under 
fixed-domain asymptotics. Use the subscript n to indicate a quantity cal­
culated with Xn as the observation vector. Then if the smallest eigenvalue 
of In(60 ) tends to infinity as n --t 00, we generally have 

(7) 

where In(60 )1/2 is some matrix square root of In(60 ) (Ibragimov 

and Has'minskii 1981). More informally, one might say On - 60 !; 
N(O,In (60)-1 ). 
Although (7) is part of the folklore of statistical theory, it is often difficult 
to prove rigorously that MLEs have this behavior. It is usually consider­
ably easier to prove that any consistent sequence of solutions of the score 
equations has asymptotic behavior given by (7); see, for example, Sweet­
ing (1980). Mardia and Marshall (1984) and Cressie and Lahiri (1993) give 
some results for random fields under increasing-domain asymptotics. Note 
that under fixed-domain asymptotics, if there is a nonmicroergodic parame­
ter, then 6 cannot be consistently estimated and we should generally expect 
(7) to be false. Exercises 18-20 examine some fundamental properties of 
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likelihoods, score equations, Fisher information and their relationship to 
the asymptotics of MLEs. 
When (J is not microergodic, we might expect something like (7) to hold 
for the microergodic part of (J. To be more precise, suppose we can write 
(J = (p7, TT)T, where p. is microergodic and no nontrivial function of 
T is microergodic. Results in Crowder (1976) suggest that if T is just 
set to some fixed value rather than estimated and p. is estimated by a 
consistent sequence of solutions to the score equations 8i/8p. = 0, then 
the asymptotic behavior of these estimates will be the same as if T were 
known. Considering Crowder's results, a reasonable conjecture is that if 
all components of (J are estimated by maximizing the likelihood, then the 
asymptotic behavior of jJ,n will be the same as if T were known; that is, 
I n(p.o)1/2(jJ,n - p.o) .£. N(O, I). Ying (1991) proves a very special case of 
this result for an exponential auto covariance function in one dimension. 

Exercises 

14 Verify (4). 

15 Verify (5). 

16 Show that if one defines the likelihood in terms of g((J), where g is an 
invertible function on e, then g(O) is an MLE for g((J) if and only if 0 
is an MLE for (J. Thus, MLEs are invariant under arbitrary invertible 
transformations of the parameters. 

17 Suppose a random vector X of length n has a density with respect 
to Lebesgue measure p(. I (J) depending on a parameter (J. If Y = 
h(X), where h is an invertible function from IRn to IRn possessing 
continuous first partial derivatives, show that i((J; Y) - i((J; X) does 
not depend on (J and, hence, it does not matter whether we use X or 
Y in finding an MLE for (J. Thus, MLEs are invariant under smooth 
invertible transformations of the observations. 

The next three exercises review basic properties about likelihood func­
tions and provide a heuristic justification of (7). Assume throughout 
these exercises that {P(J : (J E e} is a class of probability models for 
the observations with true value (Jo and that switching the order of 
differentiation and integration is permissible. 

18 Show that E(JoS((Jo) = O. Show that I((Jo) = E(Joi((Jo). 

19 Consider random vectors X and Y whose joint distribution is speci­
fied by P(J. Show that I((Jo; X) + I((Jo; Y) - I((Jo; (X, V)) is positive 
semidefinite, where the argument after the semicolon in I(·;·) indi­
cates the observations for which the Fisher information matrix is to be 
calculated. Show that I((Jo; X) + I((Jo; Y) = I((Jo; (X, V)) if X and 
Y are independent for all (J. 
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20 Suppose Xl, X2 , ••. is as in the last subsection and that the subscript 
n generically indicates quantities based on X n . By taking a first-order 
Taylor series in the score function about 80 , give a heuristic argument 
showing that any consistent sequence of solutions On of the score equa­
tions should satisfy On ~ 80 + in(80 )-ISn(80). As n -+ 00, suppose 
In(80)-lin(80) -+ I in probability (a weak law of large numbers) and 

In(80)-1/2Sn(80) ~ N(O, I) (a central limit theorem). Show that (7) 
plausibly follows. 

6.5 Matern model 

For statistical methodologies to be broadly and effectively employed, it is 
important to have canonical models that work reasonably well in a wide 
range of circumstances. For the purposes of interpolating spatial data in d 
dimensions, I recommend the following model: Z(x) = I-' + c(x), where I-' 
is an unknown constant and c is a mean 0 stationary isotropic Gaussian 
random field with autocovariance function from the Matern class; that is, 
with spectral density ¢(a2 + IwI2)-v-d/2 for unknown positive parameters 
¢, 1I and a (see Sections 2.7 and 2.10). In making this recommendation, I do 
not mean to imply that all, or even most, spatial data can be reasonably 
modeled in this fashion. However, by making prudent extensions to this 
model where appropriate by including, for example, geometric anisotropies 
(2.10), measurement errors or by taking a pointwise transformation of the 
observations (often logarithmic), one could distinctly improve on present 
practice in spatial statistics. Diggle, Tawn and Moyeed (1998) describe a 
notable extension by combining Gaussian random fields and generalized 
linear models (McCullagh and NeIder 1989) into a single class of models 
for spatial data. 
The most important reason for adopting the Matern model is the inclu­
sion of the parameter 1I in the model, which controls the rate of decay of 
the spectral density at high frequencies, or equivalently, the smoothness 
of the random field. As the results in Chapters 3 and 4, particularly 3.6, 
indicate, the rate of decrease of the spectral density at high frequencies 
plays a critical role in spatial interpolation. Unless there is some theoret­
ical or empirical basis for fixing the degree of smoothness of a random 
field a priori, I can see no justification for the common practice of select­
ing semivariogram models such as the spherical, exponential or Gaussian 
that provide no flexibility in this degree of smoothness. Using empirical 
semivariogralllS for model selection can work disastrously for smooth pro­
cesses as the example in 6.9 demonstrates. Empirical semivariograms are 
less likely to mislead for random fields that are not differentiable. However, 
I believe that even in these instances far too much faith is generally placed 
in empirical semivariograms as a tool for model selection. 
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Since one would never leave out an overall scale parameter, the presence 
of ¢ in the model is also essential. In addition, although Theorem 8 in 
4.3 implies that one could leave J1. out of the model with asymptotically 
negligible effect, it is hard to argue for arbitrarily taking the mean of Z 
to be 0 unless there is some substantive reason to believe that it is. The 
serious issue is whether the parameter a is helpful, since it has negligible 
impact on the high frequency behavior of the spectral density. The results 
in Chapters 3 and 4 show that varying a will have little effect on inter­
polations if the observations are sufficiently dense. Furthermore, in three 
or fewer dimensions, a cannot be consistently estimated based on obser­
vations in a fixed domain, which follows from (20) in 4.2. Indeed, Wahba 
(1990) essentially argues that a should just be set to o. This leaves us with 
the model for the spectral density of ¢lwl-2v - d , which is not integrable in 
a neighborhood of the origin for v > O. Thus, this function is not a spectral 
density for a stationary random field. It is, however, the spectral density 
of an IRF (intrinsic random function) of order L2vJ (see 2.9). 
Although leaving a out of the model is a defensible position, there are a 
number of reasons why I mildly favor its inclusion. First, the mathematical 
arguments for excluding a are asymptotic and hence should not be con­
sidered universally compelling. Particularly for predictands located near or 
outside the boundaries of the observation region, the value of a can matter 
substantially. Furthermore, if the correlations of the random field die out at 
a distance much shorter than the dimensions of the domain of the observa­
tions, it may be possible to obtain a decent estimate of a. Handcock, Meier 
and Nychka (1994) give an example concerning measurements of electrical 
conductivity in soil that provides clear evidence of the need for positive a 
both to fit the covariance structure of the data well and to provide sensible 
interpolations. Second, if the available observations include a substantial 
measurement error, then I suspect that badly misspecifying the low fre­
quency behavior of the spectral density could lead to serious bias in ML or 
REML estimates of v even for moderately large sample sizes. Measurement 
error makes estimating the high frequency behavior of a random field much 
more difficult, so that the low frequency behavior can then have a larger 
influence on parameter estimates. This greater influence may produce sub­
stantially biased ML estimates of the high frequency behavior if the low 
frequency behavior is poorly specified. An example of severe systematic 
error in ML estimates due to misspecification of a model at low frequencies 
when the underlying process is deterministic is given in Section 6.3 of Stein 
(1993b). Using the Matern model of course does not guarantee that the low 
frequency behavior of the spectral density is correctly specified. However, 
allowing a to be estimated from the data does provide substantial addi­
tional flexibility to the model while only adding one parameter. Further 
study of this issue is in order. 
My final reason for including a is that I find it somewhat unnatural to 
link the high frequency behavior of the spectral density and the order of the 
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polynomial of the mean of the random field, which setting a-: = 0 requires. 
Specifically, for the spectral density ¢ Iw 1- 2v-d, the corresponding random 
field must be an IRF of order at least l/J J and hence its mean is implicitly 
taken to be a polynomial of order at least l/J J with unknown coefficients 
(see 2.9). I would prefer to be able to assume the mean is constant no 
matter how large /J is. 
The fact that the order of the polynomial mean must increase with /J if 
one sets a-: = 0 causes a bit of difficulty with REML estimation of ¢ and /J. 

Specifically, suppose one models Z as a Gaussian IRF with spectral density 
¢lwl-2v - d , where the order r of the IRF is the lowest feasible: r = l/J J. 
Then the number of linearly independent contrasts out of n observations 

is n - (dt~JJ), assuming this number is nonnegative (Exercise 21). This 
number jumps downward as /J increases at each integer value of /J, which 
means that the likelihood of the contrasts for, say, /J = 0.5 is not based on 
the same information as for any /J > 1. If one is fairly certain a priori that 
II < 1, then this problem does not arise. 
On the whole, I would advise leaving a-: in the model. However, if ex­

amination of the likelihood function yields no substantial evidence against 
a-: = 0, one can then set a-: = 0, adopt the appropriate order IRF model and 
end up with a slightly more parsimonious model for the covariance struc­
ture. As long as all predictions are interpolations, I do not see that much 
harm can come from doing so. Furthermore, certain numerical difficulties 
that may occur with Matern autocovariance functions when /J is large can 
be avoided by using a-: = O. More specifically, for the Matern model with 
/J large, the principal irregular term of the autocovariance function (see 
2.7) is dominated by many "regular" terms (even order monomials) in a 
neighborhood of the origin, which may lead to numerical inaccuracies when 
calculating likelihood functions or BL UPs based on this model. 

Exercise 

21 Show that the number of monomials of order at most p in d dimensions 

is (dtP). 

6.6 A numerical study of the Fisher information 
matrix under the Matern model 

The asymptotic theory of MLEs described in 6.4 suggests that calculat­
ing the Fisher information matrix I and its inverse in various settings is 
a fruitful way of learning about the behavior of MLEs. This section re­
ports numerical calculations of I and I-I for observations from a mean 
o Gaussian process Z on R with spectral density from the Matern model, 
fo(w) = ¢(a-:2 + W 2 )-v-I/2. I first consider cases without measurement er-
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ror and then some with measurement error. In interpreting the results, it 
is helpful to keep in mind that a mainly affects the low frequency behavior 
of Z whereas ¢ and II both have a critical impact on the high frequency 
behavior of Z. 
For a Gaussian random vector with known mean 0, the Fisher infor­
mation matrix takes on a fairly simple form. Specifically, if Y follows a 
N(O, E(6)) distribution, then the jkth element of I(6) is 

Ljk(6) = ~ tr {E(6)-lEj(9)E(9)-lEk(9)}, (8) 

where Ej(6) = 8E(9)/8()j (Exercise 22). To carry out this calculation 
for observations from a Gaussian random field under the Matern model 
requires differentiating the modified Bessel function ICv with respect to 
II. This can be conveniently done when II is an integer (Abramowitz 
and Stegun 1965, 9.6.45). In particular, (8/811)ICv(t)lv=1 = r1ICo(t) and 
(8/811)IC,At)lv=2 = 2r2ICo(t) + 2r l IC1(t). 
The sets of observation locations on IR I consider include 40 or 80 observa­
tions, varying levels of spacings between observations, and evenly spaced or 
randomly located observations. Specifically, in the evenly spaced case, there 
are observations at 8, 28, ... ,n8 for n = 40 or 80, where 8 ranges between 
0.02 and 1. When the sample size is 40, the randomly located observations 
were generated from a single realization of 40 independent and uniformly 
distributed random variables on [0,40]. Figure 1 shows these 40 values, 
which I denote by tt, ... , t40' When I refer to 40 random locations with 
spacing 8, I mean the set of observation locations {8tl' ... ,8t40}' When I 
refer to 80 random observations with spacing 8, I mean the set of locations 
{8tl,'" ,8t40}U{8(h + 40), ... , 8(t40 + 40)}. The reason for repeating and 
shifting the initial 40 locations rather than generating an independent set 
of 40 random locations on [40,80] is to make the cases of 40 and 80 ran­
dom locations more readily comparable. In particular, by Exercise 19 and 
the stationarity of Z, repeating the same pattern twice yields a value of I 
for 80 observations that is at most double the value for 40 observations. 
The extent to which this value is not doubled then measures the degree 
of redundancy in the information in the two halves of the 80 observation 
sample. 

No measurement error and 1/ unknown 

Suppose Z is a Gaussian process on IR with known mean 0 and with spectral 
density from the Matern class with (¢, II, a) = (1,1,1). This process is just 
barely not mean square differentiable, since Z is mean square differentiable 
under the Matern model for II > 1. Figure 2 shows the auto covariance 

leo()( )IE)()(~ )( )( )e( )()~)( >*)I( 

o 10 20 30 40 
FIGURE 1. Locations of random observations on [0,40]. 
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FIGURE 2. Plots of Matern autocovariance functions used in examples. Solid 
line corresponds to 8 = (1,1,1) and dashed line to 8 = (24,2,2). 

function for Z. Let I", indicate the diagonal element of I corresponding 
to ¢, let I'" indicate the diagonal element of I-I corresponding to ¢ and 
define Iv, IV, ICi and ICi similarly. Figure 3 plots Iv and ICi for the various 
spacings, sample sizes and patterns. There is no need to plot I", as it just 
equals nl(2¢2), where n is the sample size. Note that asymptotic theory 
suggests, for example, that 1/Iv is the approximate variance of the MLE of 
v if ¢ = 1 and a = 1 are known. For v, random locations are substantially 
more informative than evenly spaced locations, especially for larger spac­
ings 8. These results make sense in light of the critical role v plays in the 
local behavior of Z. Groups of points that are close together are particularly 
informative about v and randomly located observations provide groups of 
points that are more tightly bunched than evenly spaced points with the 
same value of 8. For all 8 and even or random spacing, doubling the sample 
size very nearly doubles Iv, which means that the information about v in 
the observations on (0,408] is nearly independent of the information in the 
observations on (408,808] (see Exercise 19). 
For I Ci , the picture is rather different. Now, larger values of 8 yield greater 
information, which makes sense for a parameter that mainly affects low 
frequency behavior. For smaller 8, even and random spacing give nearly 
the same values for I Ci . In addition, for even spacing, when n = 40 and 
8 = 0.1, In is 6.33, whereas by doubling the number of observations (n = 
80) and halving the spacing (8 = 0.05), In increases only slightly to 6.40. 
For the nonmicroergodic parameter a, these results are expected, since 
ICi should tend to a finite value as the observations in a fixed interval 
become increasingly dense. For larger 8, even spacing produces somewhat 
larger values for ICi than random locations. I do not have a convenient 
story for this result, although it is not entirely unexpected in light of a 
theoretical result in Stein (1990b, Section 5) showing that even spacing is 
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asymptotically optimal in a certain sense for estimating 0: when the spectral 
density is assumed to be of the form 1/(0:2 + w2 ). Finally, for larger 8, 
doubling the sample size does approximately double Icy" but for smaller 8, 
ICY. is less than doubled, which indicates that the information about 0: in the 
observations in (0,408] and in those in (408,808] is somewhat redundant. 
Figures 4 and 5, which show the diagonal elements of I-I and the ap­
proximate correlations of the MLEs implied by (7), deserve similar scrutiny 
and explanation. One noteworthy result in Figure 4 is that ICY. is not mono­
tonically decreasing as 8 increases, despite the fact that ICY. is monotonically 
increasing, which is related to the fact that the approximate correlations 
of 0: with ¢ and f) increase with 8 (see Figure 5). Outcomes in Figure 5 
deserving notice include the fact that the approximate correlation of ¢ and 
f) is essentially independent of sample size and is distinctly lower for all 8 
when the observations are randomly located. 

It is not possible to take asymptotic results such as (7) seriously for at 
least some of these examples. In particular, for 40 evenly spaced observa­
tions and 8 = 1, we have I¢ = 5.62, but it certainly cannot be the case that 
¢ is approximately N(l, 5.62) since ¢ is always nonnegative. Even in this 
situation, I believe that I-I provides at least qualitative insight about the 
variability of the MLE. An alternative interpretation is to imagine observ­
ing N independent realizations of the process Z at the same set of locations. 
If ON is the MLE of 0 based on these N independent and identically dis­
tributed random vectors, then ON is approximately N(Oo, N-II- 1 ) for N 
sufficiently large, where I is the Fisher information matrix for observations 
from a single realization of the process. For a space-time process observed 
at a fixed set of spatial locations at sufficiently distant points in time, it 
may be reasonable to assume that observations from different times are 
independent realizations of a random field. 

No measurement error and ZJ known 

The results of the previous subsection show the random design clearly dom­
inating the evenly spaced design in terms of having smaller values for the 
diagonal elements of the inverse Fisher information matrix. Before jumping 
to any conclusions that random designs are always better, it is worthwhile 
to consider how this result depends on the model selected. In particular, 
consider the same setting as in the previous subsection but assume that v 
is known and only ¢ and 0: need to be estimated. Figure 6 shows that the 
evenly spaced designs are now quite competitive with the random designs 
and even have slightly lower values for ICY. for some 8. Although I do not 
advocate treating v as fixed, keep in mind that using the exponential model 
is the same as using the Matern model with v = ~ assumed known. 
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FIGURE 3. Diagonal values of Fisher information matrix for Matern model with 
(c/>,v,o.) = (1,1,1). 
+ indicates 40 evenly spaced observations with spacing 6. 
EEl indicates 80 evenly spaced observations with spacing 6. 
x indicates 40 randomly placed observations on [0,406]. 
® indicates the same 40 randomly placed observations on [0,406] together with 
each of these observation locations plus 406, for a total of 80 observations. 

Observations with measurement error 

If Z is observed with error then it should be more difficult to estimate 
the parameters governing the law of Z. To investigate how this loss of 
information depends on the variance of the measurement error, which I 
denote by T, I consider those settings from the previous subsection with 
80 observations, evenly spaced and random, and fJ = 0.1. In addition to 
(cp, v, ex) = (1,1,1), I also consider (cp, v, ex) = (24,2,2). The auto covariance 
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FIGURE 4. Diagonal values of inverse Fisher information matrix for Matern 
model with (¢, v, a) = (1,1, I). Symbols have same meaning as in Figure 3. 
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FIGURE 5. Approximate correlations of MLEs of parameters based on inverse 
Fisher information matrix for Matern model with parameters (1,1,1). Symbols 
have same meaning as in Figure 3. 

functions for these two models are plotted in Figure 2. The values of 7" I 
consider are 10-4 ,10-3 ,10-2 ,10-1 and 1. Although the value 10-4 may 
seem small, note that it means the standard deviation of the measurement 
error divided by the standard deviation of the process is 0.7%, which strikes 
me as quite plausible for many physical quantities. 



The reason for including two different values of v is to see whether in­
creasing r has more effect on our ability to estimate larger or smaller values 
of v. Theoretical results in Stein (1993a) and the intuition that estimating 
the degree of differentiability of a random process with noisy observations 
should be harder for smoother processes suggest that r should have more 
of an impact on the ability to estimate v when 1/ is 2 rather than 1. Results 
in Tables 1 and 2 support this expectation: for evenly spaced observations, 
when r goes from 10-4 to 10-2 , ZV increases by a factor of 1.55 when v = 1 
but by a factor of 5.13 when v = 2. 
On the other hand, r is much easier to estimate when 1/ = 2 than when 

1/ = 1, especially for smaller r and evenly spaced observations. In particular, 
for evenly spaced observations and r = 10-4 , IT /r2 is 1,893 for v = 1 and 
1.507 for 1/ = 2. This large value for IT /r2 for v = 1 suggests that these 
data provide essentially no information for distinguishing the true value 
for r of 10-4 from either r = 0 or much larger values such as r = 10-3. 
Fortunately, in this case we have f(w) '" w-3 as w ~ 00, so that 0: = 3 in 
the notation of Theorem 7 of 3.7, and since r/oo.- 1 = 0.01 is small, this 
theorem suggests that at least for certain predictions, acting as if r = 0 
will produce nearly optimal predictors. 
The other diagonal elements of Z depend on r as should be expected. 
Specifically, parameters that are more related to high frequency behavior 
should be more affected by increasing r than parameters affecting mostly 
low frequency behavior. The results in Tables 1 and 2 are in line with this 
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TABLE 1. Diagonal values of Fisher information matrix and its inverse for 
(cP, v, a) = (1,1,1) for various values of r based on 80 observations with spacing 
6 = 0.1. Results for evenly spaced observations indicated by F and random design 
indicated by R (see Figure 3 for details). 

r 

10-4 10-3 10-2 10-1 1 

rjJ2I", F 39.33 34.51 19.70 8.996 4.002 
R 33.33 24.47 14.96 7.947 3.717 

v2Iv F 1130 927.0 358.5 72.64 11.09 
R 1225 662.6 241.1 61.19 10.17 

0:2Iet F 10.83 10.83 10.77 10.53 9.517 
R 10.81 10.80 10.73 10.44 9.285 

r2Ir F 0.005481 0.4036 7.625 22.48 31.71 
R 2.862 7.736 17.10 26.17 32.72 

I'" frjJ2 F 1.324 1.375 1.750 3.550 12.66 
R 0.4158 0.6510 1.231 3.072 12.25 

Iv/v2 F 0.07240 0.07693 0.1125 0.3282 1.949 
R 0.01036 0.02227 0.06282 0.2550 1.753 

Iet/0:2 F 0.3878 0.3974 0.4657 0.7702 2.729 
R 0.2025 0.2538 0.3689 0.6908 2.076 

T/r2 F 1893 22.03 0.5840 0.09044 0.04618 
R 0.3990 0.1806 0.07989 0.04938 0.03770 

heuristic as I et decreases only slightly as r increases but I", and particularly 
Iv decrease sharply. 

In comparing random and evenly spaced designs, for r = 10-4 and v = 1 
or 2, the random design does drastically better in terms of the diagonal 
elements of Z-l. The evenly spaced design is much more competitive for 
larger r and, for the parameters other than r, actually has slightly lower 
values on the diagonal ofZ- 1 for v = 2 when r is sufficiently large. However, 
for r = 1, it is fair to say that estimating (rjJ, v, 0:) is essentially hopeless 
when v = 1 or 2. When v is known, then the other parameters are much 
easier to estimate. For example, when v = 2 is known and r = 1, then 
for the evenly spaced design, I'" frjJ2 is 1.787 as opposed to 160.1 when v is 
unknown and Iet /0:2 is 0.1528 as opposed to 2.462 when v is unknown. 

Conclusions 

One overall pattern that emerges from these calculations is that random 
designs can often yield better parameter estimates than evenly spaced de­
signs of comparable density, sometimes dramatically so. However, if our 
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TABLE 2. Diagonal values of Fisher information matrix and its inverse for 
(¢, v, 0:) = (24,2,2) for various values of T. Observation locations are same as 
in Table l. 

r 
10-4 10-3 10-2 10-1 1 

¢2I<p F 30.02 19.05 11.94 7.299 4.038 
R 20.41 14.89 10.33 6.657 3.745 

v2Iv F 2791 1223 501.1 193.4 67.27 
R 1579 831.5 394.7 166.4 60.47 

0i.2IOI. F 58.91 58.54 57.54 54.84 46.63 
R 58.64 58.22 57.17 53.97 44.84 

r2IOI. F 2.196 12.12 22.05 28.72 33.14 
R 14.22 20.42 25.74 30.20 33.76 

I<P /¢2 F 2.573 4.003 9.138 30.06 160.1 
R 2.066 4.018 9.796 33.33 179.6 

Iv/v2 F 0.02673 0.04799 0.1371 0.5790 3.935 
R 0.01973 0.04786 0.1484 0.6457 4.396 

IOI./0i.2 F 0.1122 0.1486 0.2610 0.6320 2.462 
R 0.09819 0.1494 0.2750 0.6900 2.752 

r/r2 F 1.507 0.1442 0.05976 0.04183 0.03521 
R 0.07993 0.05475 0.04308 0.03657 0.03287 

goal is to predict Z at unobserved locations, it does not follow that ran­
dom designs should be preferred when using the Matern model. If one wants 
to predict well throughout some region R, then there is a certain logic to 
some sort of regular pattern of observations throughout R, although if v is 
large, it may be appropriate to include some observations slightly outside 
R. Presumably, one should try to reach some compromise between designs 
that lead to good estimates of the unknown parameters as well as accurate 
predictions of Z based on the available observations and the estimated pa­
rameters. See Laslett and McBratney (1990), Pettitt and McBratney (1993) 
and Handcock (1991) for further discussion of these issues. The example 
in 6.9 demonstrates that adding even a few closely packed observations to 
an evenly spaced design can sometimes dramatically improve parameter 
estimation. 
Finally, although all of the examples in this section consider only pro­
cesses on ~, I have run some examples on ~2 with qualitatively similar 
results. Obviously, there is considerable scope for calculations of I and 
I-I in further settings and for simulations of the actual distributions of 
MLEs to compare to the asymptotic approximations. 
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Exercises 

22 Verify (8). 

23 Repeat the numerical calculations in Tables 1 and 2 for different values 
of the spacing 8. How do the comparisons between the fixed and ran­
dom designs change with 8? How do the comparisons between II = 1 
and II = 2 change with 8? 

6.7 Maximum likelihood estimation for a periodic 
version of the Matern model 

It is generally difficult to determine the asymptotic properties of estima­
tors of the parameters of any model under fixed-domain asymptotics. One 
situation where it is possible to make progress is for periodic random fields 
observed on a lattice. This leads us to considering estimation for the class 
of periodic random fields whose spectral measures place all of their mass 
on 7L,d and the mass at j is ¢(o.2 + IjI2)-v-d/2 for j E 7L,d. The hope is that 
any asymptotic results we obtain for these periodic models will be similar 
to those for the Matern model, although that remains to be proven. 

Discrete Fourier transforms 

Suppose Z is a mean 0 stationary Gaussian process with spectral measure 
F and we observe Z at 8j for j E Qm = {1, ... , m}d. The discrete Fourier 
transform of these observations at a frequency w E lR.d is defined as 

Z(w) = L Z(8j)exp(-iwTj). 
jEQm 

Note that Z(w) has period 27T in each coordinate, so there is no loss in 
information in restricting attention to frequencies in (-7T, 7Tjd. Consider 
further restricting to just frequencies w in (-7T, 7Tjd of the form 27Tm-1p, 
which is equivalent to considering only p E Bm, where Bm = { -L~(m-
l)J, - L~(m - l)J + 1, ... , L~mJ} d. Now, for j E Qm, 

L Z(27Tm-1p) exp(i27Tm- 1jT p) = m d Z(8j) (9) 
pES".. 

(Exercise 24), so this further restriction to p E Bm also involves no loss 
of information. If m is highly composite, Z(27Tm- 1p) can be efficiently 
calculated for all p E Bm using the fast Fourier transform (Press, Flannery, 
Teukolsky and Vetterling 1992). Indeed, even if m is not highly composite, 
these calculations can still be done quite efficiently by implementing a d­
dimensional version of the fractional fast Fourier transform (Bailey and 



6.7 MLE for periodic version of the Matern model 189 

Swarztrauber 1991). Alternatively, one can add zeroes to the dataset so 
that the expanded dataset does have m highly composite, although then 
one gets Z at a different set of frequencies (Bloomfield 1976, p. 73; Priestley 
1981, p. 577). 
Define the measure Ffj on Ad(6'-l) by Ffj(-) = L:kEZd F(· + 27r6'-1k). It is 
then a straightforward calculation (Exercise 25) to show that for p, q E 7ld , 

E {Z(27rm-1p)Z(27rm-1q)} 

d 

= rr exp{i7rm-1(qu - pun (10) 
u=1 

j rrd sin2 (~m6'wu) ( ) 
x . (1 -1) . (1 -1) Ffj dw , Ad(fj-l) u=1 sm 26'wu - 7rpu m sm 26'wu - 7rqum 

where the integrand is defined by continuity for those w for which the 
denominator is O. Here and subsequently in this section, a subscript u 
indicates the uth component of a vector so that, for example, Pu is the uth 
component of p. 

Periodic case 

If Z has period 27rm6' in each coordinate, a great simplification occurs in 
(10). This periodicity implies that F is a discrete measure placing all of 
its mass on points (m6') -1 k for k E 7ld , so that Fo puts all of its mass 
on points of the form 27r(m6')-1p for p E Bm. Since n:=l sin2 (~m6'wu) 
has a zero of order 2d at all such points, the only way (10) can be 
nonzero for w = 27r(m8)-1r, r E Bm , is if sin {7rm-1(ru - pun = 0 and 
sin {7rm-1(ru - qu)} = 0 for u = 1, ... , d, which for p, q, r E Bm can only 
occur if p = q = r. Thus, for p, q E Bm , 

E {Z(27rm-1p)Z(27rm-1q)} = {m2d Fo(27rm- 1p) , P = q 
0, p~q. 

The fact that for p ~ q, E {Z(27rm-1p)Z(27rm-1q)} = 0 irrespective 

of the particular values of F ( m6') -1 k) for k E tld allows us to obtain a 
relatively simple expression for the likelihood function. Define p > 0 to 
mean p ~ 0 and the first nonzero component of p is positive, define p 2: 0 
as p > 0 or p = 0 and say p < 0 if P "l O. For p E Bm, let 

for p 2: 0 and 

Xp = L Z(6'j) cos(27rm-1pTj) 
jEQm 

Xp = L Z(6'j) sin(27rm-1pTj) 
jEQm 
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for P < O. Using Z(w) = Z( -w ), it follows that from {Xp : P E Bm} one 
can recover {Z(21Tm-lp) : p E Bm} and hence the original observations. 
Thus, by Exercise 17 in 6.4, we can find the MLE for 0 by maximizing 
the likelihood with {Xp : p E Bm} as the vector of observations. Using 
the cosine transform for p ;?: 0 and the sine transform for p < 0 in the 
definition of Xp is notationally convenient, since the real random variables 
Xp for p E Bm are then uncorrelated with mean 0 and 

var(Xp) = ~m2dF6(21Tm-lP)fm(P) (11) 

for p E Bm , where fm(P) = 1 unless all components of 2p are 0 or m, in 
which case, fm(P) = 2 (Exercise 26). 
Suppose Z is a stationary mean 0 Gaussian random field on IRd with 

period 21T in each coordinate and spectral measure with mass 1(J(j) for 
j E 7i} and no mass elsewhere for 0 E e. If Z is observed at 21Tm- 1j for 
j E (1m, then {Xp : P E Bm} is a one-to-one function of the vector of m d 

observations Zm. Furthermore, the Xps are independent mean 0 Gaussian 
random variables with variances given by (11), so by Exercise 17 in 6.4, 
the log likelihood for 0 is of the form 

£(0; Zm) = constant - ~ L 10g{ m2dfm(p) L 1(J(p + mj )} 
pEBm jEZd 

1 )(2 

- 2" ~ m2dfm(P) EP 1(J(p + mj) , (12) 
pE m jEZd 

where the constant does not depend on 0 and hence has no impact on the 
maxima of the function. Call 8m a maximum likelihood estimator (MLE) of 
o if it maximizes (12) for 0 E e. Suppose that 1(J(j) = f/J(a 2 + IjI2)-II-d/2, 
0= (f/J, v,a) and e = (0, (0)3. We know that the MLE cannot be consistent 
for any function of 0 that is not microergodic and we expect that it is 
consistent for any function of 0 that is microergodic. From (20) in 4.2, we 
see that f/J and v are microergodic in any number of dimensions but that a 
is microergodic if and only if d ~ 4. 

Asymptotic results 

This section provides asymptotic results for Zm = Zm(OO), the Fisher in­
formation matrix for 0 based on Zm. Let 8m be an MLE for 0 based on 
Zm. As indicated in 6.4, we might then expect 

Z;,{2(8m - ( 0 ) !:" N(O, I) 
if 0 is microergodic. When d :::; 3 so that a is not microergodic, as discussed 
in 6.4, it is possible to give a plausible conjecture about the asymptotic 
behavior for the MLE of f/J and v using results of Crowder (1976). 
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Let us first give exact expressions for the elements of Zm in the current 
setting. Defining 

ej(p,m,a,v) = L (a2 + Ip+mjI2)-V-d/2 Iogi (a2 + Ip+mjI2), 
jEZd 

and using l as shorthand for leO; Zm) we have (Exercise 27) 

and 

( 8l) md 
var 8¢ = 2¢2' 

var(8l) = ~ L {e1(p,m,a,v)}2, 
8v 2 B eo(p, m, a, v) 

pE m 

(8l) 1 2(2 d)2,", {eo(p,m,a,v+1)}2 var - = -a v + L..,.; , 
8a 2 B eo(p,m,a,v) 

pE m 

(8l 8l) 1 L el(p,m,a,v) 
cov 8¢' 8v = -2¢ B eo(p,m,a,v) , 

pE m 

cov(8l, 8l) = a(2v+d) L eo(p,m,a,v+1) 
8¢ 8a 2¢ B eo(p, m, a, v) 

pE m 

( 8l 8l) _ 1 (2 d) L 6(p,m,a,v)eo(p,m,a,v+ 1) cov -, - - -a v + . 
8v 8a 2 B eo(p,m,a, v)2 

pE m 

(13) 

Corresponding to common practice in theoretical statistics, (13) and the 
subsequent equations do not explicitly distinguish between an arbitrary 
value of a parameter and its true value. A more accurate way to write (13) 
would be 

var80 (!!) = ~~, 
but insisting on this level of explicitness would lead to rather ugly-looking 
expressions for the remainder of this section. 
To state the asymptotic behavior of Z;;.l, we first need some notation. 
Define 

and 

" I + "1-2V-d-2 h () L.JjEZd X J 
v x = EjEZd Ix + jl-2v-d 

for x E IRd • For the rest of this section, it is convenient to write cer­
tain integrals over the unit cube Cd = [-~, ~] d as expectations over the 
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random vector U having uniform distribution on Cd. Thus, for example, 
Egv = E{gv(U)} = fCd gv(x) dx and cov(gv, hI') = cov{gv(U), hv(U)} = 

fCd gv(x)hv(x) dx - EgvEhv. Next, consider two sequences of k x t ma­
trices Am and Bm with elements am(i,j) and bm(i,j), respectively. For 
a positive sequence tt, t2, ... , I take Am = Bm{l + O(tm)} to mean 
am(i,j) = bm(i,j){l + O(tm)} for 1 ::; i ::; k and 1 ::; j ::; t. Similarly, 
Am rv Bm means am(i,j) rv bm(i,j) for 1 ::; i ::; k and 1::; j ::; t. Finally, 
for symmetric matrices, I use . to indicate elements of the matrix defined 
by its symmetry. 

Theorem 1. Suppose d ~ 5. As m ~ 00, for some € > 0, 

X-I = 1 Qm {I + O(m-<n, 
m {var(gv) var(hv) - cov(gv, hI' )2}md 

where Qm is symmetric and has jkth element qm(j, k) with 

qm(1, 1) = 2¢2 [var(hv) log2 m + 2 {EgvEh~ - EhvE(gvhv)} logm 

+ Eg~Eh~ - {E(gvhv)} 2], 
qm(1, 2) = ¢{ var(hv) logm + EgvEh~ - EhvE(gvhv)}, 

1 
qm(2,2) = 2" var(hv), 

(14) 

¢m2 
qm(1, 3) = - a(2v + d) { cov(gv, hI') logm + EgvE(gvhv) - Eg~Ehv}, 

(2 3) = _ m2 cov(gv, hI') 
qm , a(2v +d) 

and 
2m4 var(gv) 

qm(3,3) = a2(2v + d)2. 

Ford = 4, 

-1 1 
Im rv () R.n, var gv 

where R.n has jkth element rm(j, k) with 

(1 1) _ 2¢21og2 m 
rm ,- 4' m 

(1 2) = ¢logm rm , 4 ' m 
1 

rm(2, 2) = 2m4 ' 

(1 3) = _ ¢ cov(gv, hI') log m 
rm , rr2a(2v + 4)m2 ' 

(15) 
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and 

as m -+ 00. Finally, for d ~ 3, define Zm(r/J, v) as the Fisher information 
matrix for (r/J, v) assuming a is known. Then 

-1 1 
Zm(r/J,v) = () d var gv m 

(16) 

[
2(log2 m + 210gmEgv + Eg~) 

x 1 
~ logm+ Egv 

as m -+ 00 for some co > o. 
There are a number of interesting features to these results. First consider 

d ~ 4. We then have that all elements of Z:;;,I tend to 0 as m -+ 00, 
which is what we would expect from microergodicity considerations. Thus, 
I conjecture that the asymptotic normality for Om stated in (7) holds for 
d ~ 4, and I assume so from now on. In addition, for convenience, I make 
statements that presume the limiting covariance matrix of ZU,2 (Om - 8) is 
the identity matrix, even though this convergence of the moments of the 
distribution does not necessarily follow from the convergence in distribution 
of ZU,2(Om - 8) given in (7). As Cox and Hinkley (1974, p. 282) point out, 
the convergence in distribution is what is crucial if we want to obtain 
asymptotically valid confidence intervals for the unknown parameters. 
Let us now consider d ~ 5 in more detail. In this case, the rates of conver­

gence for each diagonal element of (14) are all different, and hence, so are 
the asymptotic variances for the components of O. Only fI has asymptotic 
variance of the "usual" order in parametric inference of m-d , the reciprocal 
of the number of observations. The estimator ¢ has asymptotic variance of 
the slightly larger order m-d log2 m and a has asymptotic variance of order 
m 4 - d • Since gv and hv do not depend on a, the asymptotic covariance ma­
trix of (¢, fI) does not depend on a. Furthermore, using corr for correlation, 
corr(¢,a) and corr(fI,a) both tend to 0 as m -+ 00, which suggests (¢,fI) 
is asymptotically independent of a. The numerical results in Figure 5 of 
6.5 indicate that m may need to be quite large before these correlations 
are near O. 
Another consequence of (14) to note is that 1- corr(/iJ,fI) '" -ylog-2 m , 

where -y = Ehe {var(gv)var(hv) - cov(gv,hv)2} /{2var(hv)2}, which is 
positive. The fact that the correlation tends to 1 as m -+ 00 should 
not be entirely surprising considering the approximate correlations for 
¢ and fI very near to 1 we found in Figure 5 for the Matern model. 
One implication of this correlation tending to 1 is that there is no 
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way to normalize 8 componentwise so that it has a nonsingular limit­
ing distribution: for any functions TJl, TJ2 and TJ3 on the positive integers, 
(TJl (m)(c,b - cp), TJ2(m) (v - v), TJ3(m)(& - a)) cannot converge in law to a 
nonsingular distribution. However, it is possible to show (Exercise 28) that 
if (7) holds then 

where 

[ 

c,b ';/ _ (logm + Eg,,)(v - v) 

(2m d)1/2 v _ v ~ N(O, E(v)), 

a(2v + d) ( _ ) 
--'---'0;---'- a - a 

m 2 

1 
E(v) = 2 

var(g,,) var( h,,) - cov(g", h,,) 

[ 
var(g" ) var( h,,) - cov (g", h" ) 2 

X cov(g", h")Eh,, 

cov(g", h")Eg,, + var(g")Eh,, 

var(h,,) 

-2 cov(g" , hIll 

(17) 

(18) 

For d = 4, (7) and (15) imply corr(c,b, v) - 1, although the approximation 
in (15) is not sharp enough to allow an asymptotic approximation of 1 -
corr(c,b, v) as in the d 2: 5 case. Exercise 37 outlines how to obtain an 
asymptotic approximation to 1 -corr(c,b, v) for d = 4. 
When d :::; 3, a is not microergodic. As discussed in 6.4, we should not 
expect 8m to be asymptotically normal in this case, since the proof of such 
a result requires that the MLE be consistent. However, as I noted in 6.4, we 
might expect asymptotic normality to hold for the microergodic parameters 
cp and v. In particular, a reasonable conjecture is that if (cp,v,a) are all 
estimated by maximizing the likelihood, then the asymptotic behavior of 
(c,b, v) will be the same as if a were known; that is, 

[
c,b-Cp 1 (2m d)1/2 2¢ - (logm + Eg,,) (v - v) ~ N(O,I). 

var(g,,)1/2(v-v) 

If the mean of Z were an unknown constant and we used REML to 
estimate 8, then Theorem 1 would also apply to the Fisher information 
matrix for the contrasts. Specifically, the likelihood of the contrasts just 
leaves the term p = ° out of the sums over Bm in (12) and it follows that 
the asymptotic results in Theorem 1 are unchanged (although the result in 
Exercise 37 for d = 4 changes slightly). 

If the observations are made with independent Gaussian measurement 
errors with mean 0 and constant variance (12, common sense and the results 
in 6.6 suggest that the estimation of (cp, v, a) should be more difficult than 
when there is no measurement error. However, the discussion in 4.2 suggests 
that whatever parameters can be consistently estimated when there is no 



6.7 MLE for periodic version of the Matern model 195 

measurement error can still be consistently estimated when there is. In the 
present setting, the Xps, p E Bm are still independent Gaussians when 
there are measurement errors, so it is in principle possible to carry out an 
asymptotic analysis similar to the one in Theorem 1. Rather than doing 
that, I just indicate how we might expect the rates of convergence to change 
by considering results in Stein (1993). In that work, I essentially studied 
the d = 1 case here except that the parameter Ct was omitted. Specifically, 
I assumed that /9(j) = I/>ljl-211-1 for j =I- 0 and /9(0) = O. If there are no 
measurement errors, a minor modification of Theorem 1 here shows that the 
diagonal elements of the inverse Fisher information matrix for (I/>, II) are of 
the orders of magnitude m-1log2 m and m-1 as in (16) for d = 1. However, 
if there are measurement errors of variance (12 (independent of m), then the 
diagonal elements of the inverse Fisher information matrix for (I/>, II, (12) are 
of the orders m-1/(211) log2 m, m- 1/(211) and m- 1, respectively. Thus, the 
convergence rates for ¢ and f) are lower when there is measurement error 
and the effect is more severe for larger values of II. 

PROOF OF THEOREM 1. As an example of how to approximate the ele­
ments of Xm as m increases, consider cov(af/al/>, of/all). First note that 
6(0,m,Ct,II)/~o(0,m,Ct,II)« logm. Next, for p =I- 0, 

6(p,m,Ct,II) = m- 211 - d .2:: (:: + Im_lp+jI2)-II-d/2 
jEZd 

x {2log m+10g (:: + Im-lp+jI2)} 

= 2m- 211 - d .2:: Im-1p + jr211 - d (logm + log Im-1p + jl) 
jEZd 

+ 0 (lpl-2m-211- d logm) (19) 

(Exercise 29) and similarly 

~o(p, m, Ct, II) = m- 211 - d .2:: Im-1p + jl-211-d + O(lpl-2m-211- d). 
jEZd 

Then (Exercise 30) 

'" 6(p, m, Ct, II) d ",'-1 
~ ~ ( m Ct II) = 2m logm + 2 ~ 911(m Ipl) + R m , 
pEBm 0 p, , , pEBm 

where the prime on the sum indicates p = 0 is excluded and 

Rm «logm .2::' Ipl-2 « (1 + (m)d-2) logm. 
pEBm 

The definition of the Riemann integral suggests 

m- d .2::' 911(m-1Ipl) -+ E911 

PEB m 

(20) 
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as m ~ 00, which is true, but we require a slightly sharper result. 
Specifically, it is possible to show 

m-d L:' g,,(m-llp!) = Eg" + Oem-E) (21) 
pEBm 

for some to > 0 (Exercise 31). Thus, for some to > 0, 

-d ( of 8i) 1 1 -E 
m coy o¢' ov = -~ logm - ~Eg" + Oem ). 

Similarly, 

m-dvar (~~) = 2log2 m + 4 log mEg" + 2Eg~ + Oem-E) 
for some f > O. 
Next, consider var(of/oa). First, since 

eo(p, m, 0., v + 1) ;:;:::: (1 + Ip!)-2, 
eo(p, m, 0., v) 

it follows that var(8i/oa) is bounded in m for d ~ 3 and tends to 00 for 
d ~ 4. More specifically, 

( Of) 1 2 2 " 1 
var 00. ~ 20. (2v + d) LJ

d 
(0.2 + Ip12)2 

pEZ 

(22) 

(23) 

for some to> 0 when d ~ 5 (Exercise 33). The case d = 4 requires particular 
care. It is possible to show that 

L: {eo(p,m,a,v+ 1)}2 '" L:' hll(m- l lp!)2, (24) 
B eo(p,m,a,v) B 

pE m pE m 

from which it follows 

(logm)-l var (;!) ~ a 2 (2v + 4)211'2 (25) 

(Exercise 34). Exercise 37 outlines how to obtain a sharper result for 
var(ol/oa) when d = 4. Now consider cov(8i/o¢, ol/oa). For d = 1, 

( of Of) a(2v + 1) ~ 1 
COy o¢' 00. ~ - 2¢ LJ 0.2 + p2 ' 

p=-oo 

for d ~ 3, 

2-d (8i Of) __ a(2v + d)Eh O( -E) 
m coy o¢' 00. - 2¢ " + m 
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for some f > 0 and for d = 2, 

(1 )-1 (8t 8t) a(2v + 2)71" 
og m coy 8¢' aa ~ - ¢ . 

Finally, consider cov(8t/8v,8i/8a). For d = 1, 

( 8t at) 1 ~ log(a2 + p2) 
COY 8v' 8a ~ '2 a (2v + 1) p~oo a2 + p2 ' 

for d 2:: 3, 

m2- dcov (;~, ;!) = a(2v + d) {logmEhy + E(gyhy)} + O(m-E) 

for some f > 0 and for d = 2, 

( 8t 8t) ,,' log Ipi 2 
COY 8v' 8a rv a(v + 1) p7B'm lPf2 rv 7ra(v + 1) log m. 

Putting these results together for d 2:: 5 gives 

Im = m d 8m{1 + O(m-E)} (26) 

for some f > 0, where 8m has jkth element 8m(j, k) given by 

m d 

8m(1, 1) = 2¢2' 

and 

m d m d 

8m(1,2) = ----;p logm- ---;pEgy, 

(1 3) = _ a(2v + d)md - 2 Eh 
8m , 2¢ y, 

8m(2,2) =2md (log2 m + 2 log mEgy + Eg~), 
8m (2,3) =md- 2a(2v + d){logmEhy + E(gyhy)} 

8m (3,3) = ~md-4a2(2v + d)2 Eh~. 

It follows that for some f > 0 (Exercise 35), 

m 3d- 4a 2(2v + d)2 
det(Im) = 2¢2 [Eg~Eh~ - (Egy)2 Eh~ - Eg~(Ehy)2 

+2EgyE(gyhy)Ehy - {E(gyhy)}2] + O(m3d- 4- E ). (27) 

We see that the terms of order m3d- 41og2 m and m3d- 4log m all exactly 
cancel, which explains why it was essential to get, for example, var(8i/8v) 
beyond the leading term 2m d log2 m in order to approximate I;;/. Now 
(Exercise 36) 

Eg~Eh~ - (Egy)2 Eh~ - Eg~(Ehy? + 2EgyE(gyhy)Ehy - {E(gyhy)}2 
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(28) 

which is nonnegative by the Cauchy-Schwarz inequality and can be shown 
to be positive (Exercise 36). Equation (14) of Theorem 1 follows. 
Next consider d = 4. The only element of Im as given in (26) that is 
now incorrect is var(8f./8a), which we have shown is a 2(2v+4)211'2Iogm+ 
o(logm). It follows that 

det(Im) '" (11';) 2 (2v + 4)2 var(gll)m8Iogm, 

which yields (15). Finally, for d :::; 3, the proof of (16) in Theorem 1 is 
immediate from the results already given. 0 

Exercises 

24 Verify (9). 

25 Verify (10). 

26 Verify (11). 

27 Derive the covariance matrix of the score function for the setting in 
this section. 

28 Verify that (18) holds if (7) is true. 

29 Verify (19). 

30 Verify (20). 

31 Verify (21). 

32 Verify (22). 

33 Verify (23). 

34 Verify (24) and show that (25) follows. 

35 Verify that (27) follows from (26). 

36 Verify (28) and show that the result is positive for all v > O. 

37 (Only for the truly brave or truly foolish.) Show that for d = 4, 

var (!!) = 211'2logm + GII,a + O(m-f) (29) 

for some to > 0, where 

GII,a = 1 Ixr4dx -1I'2{1 + 2log(2a)} + Aa + B II , 
C4 \b4 (1/2) 
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and finally, 

B 1 { 2U211+6(X) U211+6(X)2 
II = C4 IxI 211+6U211+4(x)2 + U211+4(x)2 

2 1 } 
-lxI211+8U211+4(X) - Ixl 4 dx, 

where ull(x) = E~ Ix+jl-Il. To obtain (29), prove the following results: 

E {eo(p,m,a,v+1)}2 -1 {eo(x,m,a,v+1)}2 dX 
B eo(p, m, a, v) mC4 eo (x, m, a, v) 

pE m 

= A" + O(m-'), 

1 {eo(x,m,a,v + 1)}2 dx -1 (a: + IXI2)-2 dx 
mC4 eo(x,m,a,v) C4 m 

= BII + O(m-'), 

and 

r (a: +IXI2)-2 dX=7r2{2Iogm-2Iog(2a)-1}+O(m-') 
lb4(1/2) m 

for some f > O. Use (29) to show that 1- corr«(/J, f)) '" 'Y/log2m and 
find an expression for 'Y. 

6.8 Predicting with estimated parameters 

When unknown parameters of the covariance structure are estimated from 
the available data, perhaps the most commonly used method for predict­
ing random fields and assessing the mses of these predictions is the plug-in 
method: estimate the second-order structure in some manner and then pro­
ceed as if this estimated second-order structure were the truth (Christensen 
1991, Section 6.5; Zimmerman and Cressie 1992). To be more specific, sup­
pose Z(x) = m(x)T (3 + c;(x) for x E ]Rd, where m is a known vector-valued 
function, {3 is a vector of unknown parameters and c; is a mean 0 Gaus­
sian random field with auto covariance function in some parametric family 
K8, (J E e. We observe Z = (Z(xt}, ... , Z(Xn))T and wish to predict 
Z(xo). If (J were known, we could then predict Z(xo) using the BLUP. 
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Define the vector-valued function A(8) = (Al(8), ... , An(8)f by letting 
A(8)TZ be the BLUP of Z(xo) under the model Ko. Assume the BLUP 
exists, which is equivalent to assuming m(xo) is in the column space of 
(m(xt) ... m(xn)) (see 1.5). If iJ is some estimator of 8 based on Z then 
A(iJfz is the corresponding plug-in predictor. This plug-in predictor is 
sometimes called the EBLUP, where the E can be thought of as meaning 
"estimated" or "empirical" (Zimmerman and Cressie 1992). Zimmerman 
and Zimmerman (1991) and Cressie and Zimmerman (1992) describe re­
sults of some simulation studies showing that plug-in methods can often 
work well even with fairly small datasets. 
Let us now consider quantities analogous to Eoe~, Eoe~ and Ele~ in 
Chapters 3 and 4. It is convenient to define AO (8) = -1 for all 8 so that 
the prediction error of the BLUP as a function of 8 is 

n 

e(8) = e(8; Z(xo)) = L Ai(8)Z(Xi). 
i=O 

Define the function 
n 

M(8) = L Ai(8)Aj(8)Ko(Xi - Xj), (30) 
i,j=O 

so that if 80 is the true value of 8 then M(8o) is the mse of the BLUP. 
The error of the plug-in predictor is e(iJ) and the plug-in estimate of its 
mse is 

n 

M(iJ) = L Ai(iJ)Aj(iJ)K,,(Xi - Xj)' (31) 
i,j=O 

Note that M(iJ) does not have a direct interpretation as an expectation 
over the probability law for the random field Z. Nevertheless, (31) is the 
natural analogue to what was called El ef in Chapters 3 and 4, since it is 
the presumed mse of our predictor if we ignore the fact that iJ is not the 
same as 80 , 
The natural analogue to Eoe~ is 

(32) 

where Eo indicates expectation under the true model. Suppose the esti­
mator iJ depends on Z only through its contrasts, which I denote by Y. 
Zimmerman and Cressie (1992) point out that existing procedures, includ­
ing ML and REML, do yield estimates that are functions of the contrasts, 
and I assume that this is the case in the remainder of this section. It follows 
that e(iJ)-e(80 ) is also a function ofthe contrasts and is hence independent 
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of e(Oo) when Z is Gaussian. Thus, 

(33) 

so that Eoe(6)2 ~ M(Oo). It may seem obvious that the BLUP should 
have a smaller mse than a plug-in predictor, which replaces the true 00 

with an estimator. However, (33) does require that e(Oo) and e(6) - e(Oo) 
be uncorrelated. Although assuming Z to be Gaussian is stronger than 
necessary for this uncorrelatedness to hold (Christensen 1991, Section 6.5), 
it is not difficult to construct examples of non-Gaussian processes for which 
Eoe(6)2 < M(Oo) (see Exercise 38). 
Before proceeding to more difficult problems, it is worth noting that in 
the simple setting where the autocovariance function K is known up to a 
scalar multiple, there is a satisfactory finite sample frequentist solution to 
the prediction problem. More specifically, suppose K9 = OK, the rank of 
(m(xl) ... m(xn)) is p and 0 is the REML estimate of 0, given in 6.4. Since 
the BLUP of Z(xo) does not depend on 0, the EBLUP and the BLUP 
are the same. It is then a simple extension of standard results on pre­
diction intervals in regression problems with independent Gaussian errors 
(Seber 1977, Section 5.3) to show that e(O)/M(O)1/2 follows a t distribution 
with n - p degrees of freedom, which can be used to give exact frequentist 
prediction intervals. 
More generally, there is no entirely satisfactory frequentist solution to 
making inferences based on EBLUPs. Harville and Jeske (1992) and Zim­
merman and Cressie (1992) consider a more sophisticated method for 
estimating Eoe(6)2 than the plug-in estimator of mse M(6) in (31). Their 
method involves three separate approximations. First, they derive an exact 
relationship between Eoe~ and Eoe(6)2 that holds under highly restrictive 
conditions and then assume this relationship is approximately true more 
generally. Next, they further approximate this result as a function of 00 

using Taylor series. Finally, they replace 00 in this expression by 6. Unfor­
tunately, Zimmerman and Cressie (1992) report simulation results showing 
that when neighboring observations are strongly correlated, this approach 
can sometimes produce worse answers than M(6). 
To carry out a simulation study such as the one in Zimmerman and 
Cressie (1992), it is only necessary to simulate the observations and not 
the predictands. To be more specific, consider approximating Eoe( 6)2 via 
simulation under some given Gaussian model for a random field Z, some set 
of observations and a particular predictand. Use the subscript 0 to indicate 
the true model. Calculate Eoe~ once and for all. Simulate n realizations of 
the observations under the true model. For the jth realization, let 6(j) be 
the estimator for 0, eo(j) the error of the BLUP and e(6(j), j) the error of 
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the EBLUP. Then 

has expected value Eoe(0)2 and, furthermore, converges with probability 1 
to Eoe(0)2 as n ---t 00 if, for example, the n realizations are independent. 
The value of Eoe~ + {e(O) - e(Oo)} 2 for a single realization of the obser­
vations has a direct interpretation as a conditional mse. Specifically, since 
Z is Gaussian, the conditional law of e(O) given the contrasts Y = Y 

is N ( e( O(y)) - eo, Eoe~ ), where, for clarity, I have made explicit the 
dependence of 0 on y. It follows that 

Eo{ e(0(y))2 I Y = y} = Eoe~ + {e(O(y)) - eo} 2. (34) 

In some circumstances, quite a bit can be learned by calculating {e( 0) -
eo} 2 for a small number of simulations, perhaps one. See 6.9 for an example. 
Simulation may also provide the basis for a more accurate assessment 

of Eoe(0)2 than is given by the plug-in method. Specifically, one could 
approximate mses by using repeated simulations of the observations from 
the estimated model, which Davison and Hinkley (1997, p. 15) call para­
metric simulation and Efron and Tibshirani (1993, p. 53) call parametric 
bootstrap. Conceptually, the idea is simple. Obtain the REML estimate 0 
of the unknown parameters of the autocovariance function from the data 
and then do repeated simulations of the observations assuming that KiJ 
is the actual auto covariance function. The value of f3 used in the simula­
tions is irrelevant to the error of EBLUPs so we may as well set f3 = o. 
Let O*(j) be the REML estimate of 0 for the jth simulation and compute 
e(O*(j),j) - e(O,j) for each simulation. Then estimate the distribution of 
e(O) by convolving the empirical distribution of e(O*(j),j) - e(O,j) for 
j = 1, ... , n with a N(O, M(O)) distribution. More specifically, estimate 
Pr{e(O) :::; t I Oo} by 

Pr (t. 0) = ~ ~ CI> (t -{e(O*(j)~j) - e(o,j)}) 
n, n~ M(O)1/2 ' 

where <P is the cumulative distribution function of a N(O, 1) random vari­
able. Putter and Young (1998) also recommend parametric simulation in 
this setting and prove essentially that it will work well whenever plug­
in methods work well. The much more interesting question of when it 
works better than plug-in methods is unresolved for the problem of spatial 
interpolation. 
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Jeffreys's law revisited 

In 4.4, we studied the close connection between the effect of not knowing 
certain parameters of a random field model on a prediction and the addi­
tional information the predict and provides about the unknown parameters. 
In particular, (59) in 4.4 provides an exact Bayesian quantification of this 
notion. This section studies some approximate frequentist analogues to re­
sults in 4.4 for Gaussian random fields. In Plausible Approximation 1, this 
subsection gives an approximate frequentist version of (59) in 4.4 for plug­
in predictions when the unknown parameters are estimated by maximum 
likelihood. Plausible Approximation 2 approximates the Kullback diver­
gence of plug-in predictive distributions from the predictive distribution 
with the parameters known in terms of the mse of the BLP and the actual 
and presumed mses of the plug-in predictor. This result is very similar to 
(58) in 4.4 for pseudo-BLPs. 
Throughout this subsection, let Y be the vector of observations, Z the 
predict and and suppose the distribution of (Y, Z) is Gaussian and is known 
up to a parameter 0 with true value 00 , In this subsection, 0 refers to all 
unknown parameters in the distribution of (Y, Z) and not just to unknown 
parameters of the covariance structure. Let 0 be an estimator of 0 based 
on Y. Define p(Z I Yj 0) to be the conditional density of Z given Y as a 
function of O. If 00 were known, we would use p(Z I Yj ( 0 ) to make pre­
dictions about Z. The plug-in estimator for this conditional distribution 
is p(Z I Yj 0). A plausible measure of the effect of using the plug-in con­
ditional density rather than the actual conditional density with 00 known 
is 

D(O 0' Z I Y) = E {lOg p(Z I Yj ~o) } 
0, , 0 p(Z I Yj 0) , 

(35) 

the Kullback divergence of the plug-in conditional density from the con­
ditional density evaluated at 00 , Note that the right side of (35) is an 
expectation over both Y and Z. The main results of this section are two 
plausible approximations to D(Oo, OJ Z I Y). 
For random vectors Wand X with joint distribution indexed by a pa­

rameter 0, let I(Oj X) be the Fisher information matrix for 0 when X is 
observed. Furthermore, define 

I(Oj W I X) = COVe [:0 10gp(W I Xj 0), {:O 10gp(W I X; O)} T]. 

We have 

I(Oj (W, X)) = I(O; X) + I(O; W I X) (36) 

(Exercise 39), so that I(O; W I X) is the expected increase in Fisher in­
formation for 0 when W is observed in addition to X. Thus, for example, 
if Wand X are independent, I(O; W I X) = I(Oj W) (Exercise 19 in 6.4) 
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and if W is a function of X, Z(8j W I X) is a matrix of zeroes. Define 
i(8j W I X) to be the matrix with -82 10gp(W I Xj 8)/8(}j8(h as its jkth 
element so that Eoi(80 j W I X) = Z(80 j W I X) (see Exercise 18 in 6.4). 
Finally, let e(Zj 8) be the error of the BLP of Z evaluated as if 8 were the 
true parameter value. 

Plausible Approximation 1. If 8 is the MLE of 8 based on Y and 

8 ~ 80 with high probability, (37) 

then 

D(80 ,8jZ I Y) ~ tr{Z(80 jy)-lZ(80 jZ I Y)}. (38) 

Plausible Approximation 2. If 8 is some estimator for 8 based on Y 
such that 

and 

then 

with high probability 

Eo{ e(Zj 8) - e(Zj ( 0 )} 2 

M(80 ) 
is small, 

A 1 A 2 
D(80 , 8j Z I Y) ~ 4M(80 )2 Eo{ M(8) - M(80)} 

(39) 

(40) 

1 A 2 
+ 2M(80 ) Eo{ e(Zj 8) - e(Zj ( 0 )} • (41) 

The right side of (38) is a measure of the relative increase in informa­
tion contained in Z that was not contained in Y. Thus, (38) provides an 
approximate frequentist analogue to (59) in 4.4 on the connection between 
prediction and estimation. If the covariance matrix of (Y, Z) is known and 
its mean vector is linear in 8, then (38) is an equality (Exercise 40). The 
condition (37) that 8 ~ 80 with high probability is troubling in the present 
context, since we would like to be able to apply (38) in settings where 
there are nonmicroergodic parameters. Considering the very small impact 
that parameters having negligible effect on the high frequecy behavior of 
the model can have on interpolation, as is demonstrated in 3.5-3.7 and 
Stein (1999), I believe that there are circumstances under which (38) can 
be rigorously justified even when 8 cannot be consistently estimated. More 
specifically, for interpolation problems, I expect that the uncertainty in the 
estimation of nonmicroergodic parameters can be ignored in obtaining the 
leading term in an approximation to D(80 , 8j Z I V). White (1973) and 
Cox and Hinkley (1974, p. 357-358) consider Plausible Approximation 1 
when Y and Z are independent. 
Plausible Approximation 2 is a direct analogue to (58) in 4.4 on the 
behavior of pseudo-BLPs. Note that (39) and (40) do not require 8 ~ 80 . 
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In particular, under fixed-domain asymptotics, the parameters that cannot 
be estimated consistently should have asymptotically negligible impact on 
the mses of interpolants, so it is quite plausible to have (37) false but (39) 
and (40) true in this setting. 
The two approximations in this section are stated in terms of BLPs, 
plug-in BLPs and, in the case of Plausible Approximation 1, MLEs. It is 
possible to state analogous results for BLUPs and EBLUPs by letting 8 
just refer to the parameters of the covariance structure and replacing the 
MLE by the REML estimator in Plausible Approximation 1 (Exercise 45). 

HEURISTIC DERIVATION OF PLAUSIBLE ApPROXIMATION 1. Define 
S(8; Z I Y) = 810gp(Z I Y; 8)/88. Under (37) and ignoring terms that 
are plausibly of lower order, 

D(80,0; Z I Y) ~ -Eo [log {I + (0 - 80)TS(80; Z I Y) 

1 "T "}] -2(8 - 80 ) i(80 ; Z I Y)(8 - 80 ) 

~ -Eo { (0 - 80fS(80 ; Z I Y) } 

1 {" T A} + 2Eo (8 - 80 ) i(80 ; Z I Y)(8 - 80 ) 

1 {A T }2 + 2Eo (8 - 80 ) S(80 ;Z I Y) . (42) 

Now 0 is a function of Y, so 

Eo { (0 - 80fS(80 ; Z I Y) } 

= Eo [(0 - 80 )T E {S(80 ; Z I Y) I Y}] = 0 (43) 

(Exercise 41) and 

Eo {(O - 80)TS(80; Z I Y) } 2 = Eo { (0 - 80 )Ti(80 ; Z I Y)(O - 80 ) } 

(44) 
(Exercise 42). Next, (Y, Z) Gaussian implies that 

Eo {i(80 ; Z I Y) I Y} = Z(8 0 ; Z I Y) (45) 

(Exercise 42), so that 

Eo { (0 - 80fi(80 ; Z I Y)(O - 80 ) } 

= tr Eo {(O - 80)(0 - 80fi(80 ; Z I Y) } 

= tr Eo [(0 - 80 )(0 - 80)TEo {i(80 ; Z I Y) I V}] 
~ tr {Z(80 ; y)-lZ(80 ; Z I Y)}, (46) 
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where I have assumed (37) implies 8 -(Jo ~ N(O,I((Jo;y)-l). Then (38) 
follows from (42)-(44) and (46). 0 

HEURISTIC DERIVATION OF PLAUSIBLE ApPROXIMATION 2. Since (Y, Z) 
is Gaussian, 

A 1 {M(8) e(Z; 8)2 } 
D((Jo, (Jj Z I Y) = "2Eo log M((Jo) - 1 + M(8) (47) 

(Exercise 43). Using (39), 

E {I M(8)} ~ E {M(8) - M((Jo)} _ ~E {M(8) - M((JO)}2 
o og M((Jo) 0 M((Jo) 2 0 M((Jo) 

(48) 
Next, since e(Zj (Jo) is independent ofY and hence independent of e(Zj 8)­
e(Z; (Jo) and M(8), 

E {e(Z; !)2} = E {M(~O)} + E {e(Zj 8) - :(Z; (Jo)) 2 (49) 
o M((J) 0 M((J) 0 M((J) 

(Exercise 44). Now 

E {M((Jo)} ~ 1 _ E {M(8) - M((Jo) } E {M(8) - M((Jo) }2 
o M(8) 0 M((Jo) + 0 M((Jo) , 

(50) 
and by (40), 

{e(Z; 8) - e(Z; (Jo)} 2 ~ 1 {. A .}2 
Eo M(8) ~ M((Jo) Eo e(Z, (J) - e(Z, (Jo) . (51) 

Combining (47)-(51) yields (41). o 

Numerical results 

Plausible Approximation 1 suggests that it would be instructive to compute 
tYI = tr{Z((Jo;y)-lZ((Jo;Z I V)} in various settings to learn about the 
effect of estimation on subsequent predictions. As I discussed in the previ­
ous subsection, I believe that f}.Z is at least qualitatively informative even 
in situations where not all components of (J are microergodic so that the 
argument for Plausible Approximation 1 does not apply. This subsection 
numerically examines the behavior of f}.Z for mean 0 stationary Gaussian 
processes on lR. under two particular Matern models. 
We consider interpolation and extrapolation problems in which the ob­
servations are, for the most part, evenly spaced with distance {j between 
neighboring observations and the predictand is a distance {j' from the near­
est observation, where {j' is either {j or 0.50. Figure 7 shows some results 
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when {j' = {j. More specifically, suppose there are observations at {jj for 
j = 1, ... ,40 and 42, ... ,81 and we wish to predict at 41{j (interpola­
tion) or 0 (extrapolation). For various values of {j and the Matern models 
(cp, v, a.) = (1,1,1) or (24,2,2), Figure 7 gives the values for !!;I. Several 
general trends emerge. First, !!;I depends much more strongly on {j when 
interpolating than when extrapolating, with the result that !!;I is smaller 
when interpolating for smaller {j but is generally larger for larger {j. Fur­
thermore, the difference between the cases v known and unknown is larger 
when interpolating. In particular, for smaller {j, when interpolating, l:l.Z is 
quite near to 0.0125, which is what we would get if only cp were unknown. 
Thus, to the extent that Plausible Approximation 1 is relevant in this set­
ting, the additional effect of uncertainty about a. on interpolation is quite 
small when {j is small. 
Figure 8 considers observations at {jj for j = 1, ... ,80, in which case, 

there is no way to have an interpolation problem in which the distance 
from the predictand to the nearest observation equals the distance between 
neighboring observations. Instead, I consider interpolating at 40.50 and, 
to have a comparable extrapolation problem in which the predict and is 
0.50 from the nearest observation, predicting at 0.50. Thus, we now have 
{j' = 0.50. Let us first consider v unknown. In this case, when interpolating, 
l:l.Z is in all instances considerably greater than when {j' = {j. However, when 
extrapolating, l:l.Z sometimes increases and sometimes decreases from the 
results with {j' = {j. Indeed, we now have that when v is unknown, !!;I is 
always larger when interpolating than extrapolating in the cases examined 
here. When v is known, the values of !!;I are generally quite similar to 
those for {j' = {j whether interpolating or extrapolating. 
Considering the numerical results in 3.5 and the theorems in 3.6 on the 

effect of misspecifying the spectral density on interpolation and extrapola­
tion, the results here showing that !!;I is often larger when interpolating 
than extrapolating need some explanation. To review, 3.6 studied the effect 
of misspecifying the spectral density on predicting at 0 based on observa­
tions either at {jj for all negative integers j (extrapolation) or at {jj for all 
nonzero integers j (interpolation). As {j ! 0, results in 3.6 show that the 
effect of misspecifying the spectral density at either high or low frequen­
cies on the actual mse of a pseudo-BLP is smaller when interpolating than 
when extrapolating (Theorems 3 and 5 in 3.6). Furthermore, the effect of 
misspecifying the spectral density at low frequencies on the assessment of 
mse of pseudo-BLPs is also smaller when interpolating (Theorem 6 in 3.6). 
However, because of the difficulty of comparing spectral densities with dif­
ferent high frequency behavior when evaluating mses, evaluating the effects 
of such misspecifications on the assessment of mses when interpolating and 
extrapolating is problematic, although Theorem 4 in 3.6 attempts to ad­
dress this problem. Thus, when v is unknown, so that the estimated high 
frequency behavior of the spectral density will be different from the actual 
high frequency behavior, we should not necessarily expect !!;I to be smaller 
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FIGURE 7. Values of fYI for Matern model with (t/J, II, a) = (1,1,1) or (t/J, II, a) = 
(24,2,2). In the top figure, all parameters are considered unknown and in the bot­
tom figure II is considered known and t/J and a unknown. The observations are at 
6j for j = 1, ... , 40 and j = 42, ... , 81. The predictands are at 416 (interpolation) 
and 0 (extrapolation). 

+ indicates (t/J, II, a) = (1,1,1) and the predict and at 416. 
ED indicates (t/J,II,a) = (24,2,2) and the predictand at 416. 
x indicates (t/J, II, a) = (1,1,1) and the predictand at O. 
® indicates (t/J, II, a) = (24,2,2) and the predict and at O. 

If only t/J is unknown, then fYI = 0.0125 in all cases. 

when interpolating than extrapolating even for 6 small. Nevertheless, we 
should note that the setting studied in 3.6 is most comparable to the 6' = 6 
case in Figure 7, for which the numerical results here show that for suffi­
ciently small 6, ta is smaller when interpolating than when extrapolating, 
whether or not II is known. 
Plausible Approximations 1 and 2 give us a way of gaining an understand­

ing as to why ta is always larger for interpolating than for extrapolation 
when 6' = 0.5 = 6 with II unknown. Specifically, to the extent that they 
are both relevant, a large value of !:lI indicates either a large inefficiency 
for the EBLUP or a large error in the plug-in assessment of mse of the 
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FIGURE 8. Values of tl.I for Matern model with (ifJ, v,o) = (1,1,1) or (ifJ, v, 0) = 
(24,2,2). In the top figure, all parameters are considered unknown and in the 
bottom figure v is considered known and ifJ and 0 unknown. The observations 
are at 8j for j = 1, ... ,80. The predictands are at 40.58 (interpolation) and 0.58 
( extrapolation). 

+ indicates (ifJ, v, 0) = (1,1,1) and the predict and at 40.58. 
E9 indicates (</>, v, 0) = (24,2,2) and the predict and at 40.58. 
X indicates (ifJ, v, 0) = (1,1,1) and the predict and at 0.58. 
® indicates (ifJ, v, 0) = (24,2,2) and the predictand at 0.58. 

No results are given for (ifJ, v, 0) = (24,2,2) and 8 = 0.02 due to numerical 
difficulties. For (ifJ, v, 0) = (24,2,2), 8 = 1 and the predict and at 40.5, M = 
0.6278, which is omitted from the top figure. 

EBL UP or both. Table 3 shows the effect of misspecifying 1/ on the effi­
ciency of pseudo-BLPs when the true spectral density is the Matern model 
with (¢, 1/, a) = (24,2,2) and the presumed spectral density is the Matern 
model with (¢, 1/, a) = (24, y, y) for values of y near 2. The observations and 
predictands are as in Figures 7 and 8 with 8 = 0.2; results for other values of 
8 are qualitatively similar. In all cases, the effect of misspecifying the model 
is much larger when extrapolating than when interpolating, particularly so 
when 8' = O.M. Furthermore, the difference between interpolation and 
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TABLE 3. Relative increases in mse due to using Matern model with parameters 
1/ = O! = Y instead of the correct values 1/ = O! = 2. Observations and predictands 
are as in Figures 7 and 8 with 6 = 0.2. Distance from predictand to nearest 
observation is denoted by 6', so that 6' = 0.2 for the setting in Figure 7 and 
6' = 0.1 for the setting in Figure 8. 

Interpolation Extrapolation 

y b' = 0.2 b' = 0.1 b' = 0.2 b' = 0.1 

1.6 2.57 x 10-2 8.24 X 10-3 5.59 X 10-2 6.04 X 10-2 

1.7 1.32 x 10-2 4.10 X 10-3 3.00 X 10-2 3.18 X 10-2 

1.8 5.43 x 10-3 1.62 X 10-3 1.27 X 10-2 1.33 X 10-2 

1.9 1.26 x 10-3 3.65 X 10-4 3.06 X 10-3 3.14 X 10-3 

2 0 0 0 0 
2.1 1.10 x 10-3 3.00 X 10-4 2.84 X 10-3 2.84 X 10-3 

2.2 4.11 x 10-3 1.10 X 10-3 1.10 X 10-2 1.09 X 10-2 

2.3 8.72 x 10-3 2.27 X 10-3 2.40 X 10-2 2.34 X 10-2 

2.4 1.46 x 10-2 3.72 X 10-3 4.14 X 10-2 4.00 X 10-2 

extrapolation turns out to be much larger when the misspecified Matern 
model has parameter values (24, y, 2), so that only II, and not both II and 
a, is incorrect. These results clearly show that the larger values for fl.I 
in Figure 8 when interpolating and II is unknown cannot be attributed to 
inefficiencies in the interpolant due to having to estimate II. In conjunc­
tion with Plausible Approximation 2, this finding leads me to attribute the 
relatively large values for fl.I in Figures 7 and 8 when interpolating to 
inaccuracies in the plug-in assessment of mse of the EBLUP, although a 
full-scale simulation study would provide a more definitive way of resolving 
this matter. 

Some issues regarding asymptotic optimality 

Section 4.3 gave results showing the uniform asymptotic optimality of 
pseudo-BLPs and pseudo-BLUPs under a fixed but misspecified autoco­
variance function when the corresponding spectral density has the correct 
high frequency behavior. It is not possible to obtain a directly comparable 
result for EBLUPs using the Matern model for the auto covariance function 
or any other model that includes a parameter controlling the rate of decay 
of the spectral density at high frequencies. The fundamental obstacle is the 
mismatch in Hilbert spaces for the true and estimated models. Specifically, 
if f; < II, then there will be elements in 1iR(F) (the Hilbert space generated 
by Z(x) for x E R under the inner product defined by F) that are not in 
1iRCF), so that it will not even be possible to define an EBLUP for all 
elements in 1iR(F). It may be possible to obtain uniformly asymptotically 
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optimal point predictions, that is, replacing the supremum over 1Ln in 
Theorems 8, 10 and 12 in 4.3 by a supremum over all Z(x) for x E R. 
However, I do not think uniform asymptotically correct assessment of mses 
is possible even if one restricts to point predictions. The problem is that for 
any fixed set of observations, as the predict and location tends towards one 
of the observations, even a tiny error in ii will lead to unboundedly large 
relative errors in the assessment of mses. If there are measurement errors, 
then I believe it is possible to obtain uniformly asymptotically correct as­
sessment of mses, since the problems in assessing mse for a predictand very 
near to an observation should no longer occur. The approach taken in Put­
ter and Young (1998) may be helpful in solving these problems, but the 
results in that work are not nearly strong enough to provide any answers 
at present. 

Exercises 

38 Consider the setting of Exercise 6 in 2.4 and assume, for simplicity, 
that the mean of Z is known to be O. Argue that under any reasonable 
choice for the estimated autocovariance function of the process, the 
plug-in predictor has a smaller mse than the BLP. 

39 Verify (36). 

40 Show that (38) is an equality if the covariance matrix of (Y, Z) is 
known and its mean vector is linear in 8. 

41 Suppose X and Yare random vectors whose joint distribution is in the 
parametric family P6 for some 8 E e. Let 8(8; (X, V)) be the score 
function for 8 based on the observation (X, V). Under suitable regu­
larity conditions, prove E6o{8(8o; (X, Y))IX} = 0 with probability 1. 
This result can be thought of as expressing a martingale property of 
the score function. Show that (43) follows. 

42 Verify (44) and (45). 

43 Verify (47). 

44 Verify (49). 

45 State and provide heuristic derivations of Plausible Approximations 1 
and 2 appropriate for BL UPs, EBL UPs and REML estimates assuming 
8 contains just the unknown parameters for the covariance structure. 

6.9 An instructive example of plug-in prediction 

As I have suggested previously, it is for differentiable random fields that I 
find present practice in spatial statistics to be seriously flawed. This sec­
tion considers an example based on simulated data that more explicitly 
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demonstrates some of the problems that can occur when predicting smooth 
random fields. 
Suppose Z is a stationary Gaussian process on IR with mean 0 and au­

tocovariance function K(t) = e-O.4ltl(l + O.4lt!) so that Z is exactly once 
mean square differentiable (see 2.7). We observe this process at the 20 loca­
tions -9.5, -8.5, ... ,8.5,9.5 and wish to predict it at -10, -9, ... , 10 and 
at ±1O.5 when the mean of Z and its autocovariance function are unknown. 
Figure 9 plots the simulated values of the observations and indicates the lo­
cations of the predictands; the actual simulated values are given in Table 4. 
We see that our predictions include both interpolations and extrapolations. 
The empirical semivariogram (see 2.9) is a staple of the kriging literature 

as a tool for selecting models for semivariograms and estimating the pa­
rameters in these models. Figure 10 plots the empirical semivariogram up 
to distance 10 for the simulated realization in Figure 9. Distances greater 
than 10 are not plotted because of the severe lack of reliability of em­
pirical semivariograms at distances more than half the dimensions of the 
observation region, which corresponds to common geostatistical practice 
(Journel and Huijbregts 1978, p. 194). Figure 10 also plots the actual semi­
variogram. It is critical to note the rather large and apparently systematic 
differences between the actual and empirical semivariograms at the shorter 
distances. Far from being unusual, this phenomenon should be expected 
in light of the strong correlations that exist in the empirical semivari­
ogram at different distances. For example, using i to indicate the empirical 
semivariogram, corr{i(l), i(2)} = 0.981, corr{i(l), i(3)} = 0.938 and 
corr{ 1'(2), i(3)} = 0.880 (Exercise 46). Thus, the empirical semivariogram 
can appear quite regular and still be substantially in error. Of course, the 
fact that the empirical semivariogram has correlated values is well known 
(Cressie 1985, 1993), but I believe that the consequences of these poten­
tially large correlations are not generally sufficiently appreciated. If one 
had a regression problem with observations that were equal to the underly­
ing regression function plus independent errors that was as smooth as the 
empirical semivariogram in Figure 10, then it would be sound to conclude 
that the regression function could be well estimated. It is a difficult psy­
chological adjustment to look at Figure 10 and recognize that the strong 
correlations present can easily yield a smooth empirical semivariogram so 
different from the actual semivariogram. 
Considering the apparent quadratic behavior at the origin of the em­

pirical semivariogram in Figure 10, it would now be within the realm of 
accepted present practice in spatial statistics to fit a Gaussian semivari­
ogram, 'Y(t; ¢, a) = ¢(1 - e-at2 ) to the data. Although Goovaerts (1997) 
recommends never using the Gaussian semivariogram without a measure­
ment error term, note that there is no measurement error term here and 
the true semivariogram is quadratic near the origin. Since, as noted in 3.5, 
software in spatial statistics commonly includes the Gaussian as the only 
semivariogram model that is quadratic near the origin, it would be hard 
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FIGURE 9. Simulated realization of Gaussian process with mean 0 and autoco­
variance function K(t) = e-o.4Itl(1 + O.4ltl). The xs on the horizontal axis are 
the locations of predictands and the Is are the locations of the observations. 

TABLE 4. Simulated values of process pictured in Figure 9. The last three rows 
are the additional observations used towards the end of this section. 

t Z(t) t Z(t) 

-9.5 2.3956811 0.5 0.4109609 
-8.5 2.2767195 1.5 0.4647669 
-7.5 1.9736058 2.5 1.2113779 
-6.5 1.8261141 3.5 1.9055446 
-5.5 1.3136954 4.5 2.1154852 
-4.5 0.2550507 5.5 1.7372076 
-3.5 -0.0741740 6.5 0.8333657 
-2.5 0.2983559 7.5 0.2932142 
-1.5 0.4023333 8.5 -0.1024508 
-0.5 0.4814850 9.5 0.0926624 

-0.25 0.4267716 
0.0 0.4271087 
0.25 0.4461579 

to fault the practitioner who adopted the Gaussian model in this case. Of 
course, the Gaussian model is severely in error in the sense that it implies 
Z has analytic realizations when in fact the process has only one deriva­
tive. Nevertheless, it is instructive to compare plug-in predictors based 
on the REML estimate and an "eyeball" estimate that fits the empirical 
semivariogram very well at the shorter distances. 

If we suppose Z is Gaussian with mean p, and semivariogram of the form 
¢(1 - e-at ) with (p" ¢, a) unknown, the REML estimate of (J = (¢, a) 
is 8 = (0.667,0.247). Figure 11 replots the empirical semivariogram to­
gether with ')'(tj 8). The REML estimate yields a fitted semivariogram with 
slightly larger curvature near the origin than the empirical semivariogram. 
Figure 11 also plots ')'(tj 8) for my eyeball estimate 8 = (1,0.12}j this eye-
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FIGURE 10. Empirical and actual semivariograrns for data shown in Fig­
ure 9. Smooth curve is the actual semivariogram and +s are the empirical 
semivariogram. 
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FIGURE 11. Empirical and estimated semivariograms for data shown in Figure 
9. Using the Gaussian model for the semivariogram, solid line indicates REML 
estimate and dashed line indicates eyeball estimate. 

ball estimate matches the empirical semivariogram distinctly better than 
the REML estimate at the shorter distances. Furthermore, comparing Fig­
ures 10 and 11 shows that the eyeball estimate is visually closer to the true 
semivariogram than the REML estimate. Is this evidence that the REML 
estimate is inferior to the eyeball fit in this example? 

Behavior of plug-in predictions 

This subsection considers predicting Z at the locations indicated in Figure 9 
assuming the mean of Z is an unknown constant. Figure 12 plots the BLUPs 
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under the true model as well as the plug-in predictors or EBLUPs using 
the Gaussian model and 6 or 8 to estimate 8. Near the middle of the 
observation region, both EBLUPs are almost identical to the BLUPs. As 
one gets nearer to the edges of the observation region and, particularly, 
outside the observation region, the EBLUPs, especially using the eyeball 
estimate 8, can be substantially different from the BLUPs. Define eo(t) as 
the error of the BLUP of Z(t) and e(t; 6) and e(t; 8) as the errors of the 
EBLUPs of Z(t). Take Eo to mean expectation under the true model for 
Z and let y be the observed value of the contrasts Y of the observations. 
Define M(t; 8) as in (30) with t taking the place of xo, so that, for example, 
M(t; 6) is the plug-in estimate of the mse when predicting Z(t) using the 
REML estimate 6. Finally, take 

(52) 

and C( t; 8, y) = Eo { e( t; 8)2 I Y = y} to be the conditional mses of the 
EBLUPs given the contrasts. Table 5 gives the mses of the BLUPs, the 
conditional mses of the EBLUPs and the plug-in estimates of the mse. By 
symmetry, Eoeo(t)2, M(t; 6) and M(t; 8) are even functions of t, hence 
the pairing of predictands in Table 5. In contrast, C(t; 6, y) and C(t; 8, y) 
depend on the particular values of the observations around t and are not 
symmetric in t. The values for the conditional mses support our conclusions 
from Figure 12. Specifically, for predictands near the middle of the observa­
tion range, the conditional mses of the EBLUPs are not much larger than 
the unconditional mses of the BLUPs. On the other hand, near or outside 
the boundaries of the observation region, C(t; 6, y)/M(t; 80 ) and especially 
C(t; 8,y)/M(t; 80 ) can be large. Thus, although the REML estimate of 6 
produces poor plug-in predictions when extrapolating, the eyeball estimate 
8 produces much worse plug-in extrapolations. 
The most striking result in Table 5 is the severely overoptimistic values 
for the plug-in estimates of mse. Not only are they much smaller than the 
conditional mses of the corresponding plug-in predictors, they also are gen­
erally much smaller than the mses of the BL UPs. Furthermore, although the 
plug-in mses based on either estimate share this overoptimism, the problem 
is much worse for the eyeball estimate; in some cases, M(t; 8)/C(t; 8, y) is 
less than 10-6 • The next subsection considers why even 6 produces such 
unrealistic plug-in mses. 

Cross-validation 

One method that is sometimes suggested for diagnosing misfits of semivari­
ograms is cross-validation (Cressie 1993, pp. 101-104). Specifically, suppose 
we have observations Z(xt} , ... , Z(x n ) and plan to predict at other loca­
tions using an EBLUP where the mean of Z is taken to be an unknown 
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FIGURE 12. BLUPs and EBLUPs for simulation in Figure 9. The es are observed 
values, os are BLUPs, +s are EBLUPs using the REML estimate iJ and xs are 
EBLUPs using the eyeball estimate 9. 

constant. Let.:y be an estimate of the semivariogram and define Z_j(Xj) as 
the EBLUP of Z(Xj) using all of the observations other than Z(Xj) and .:y 
for the semivariogram. Furthermore, let a_j(xj)2 be the plug-in estimate 
of the rose of Z_j(Xj) as a predictor of Z(Xj). Because we know the ac­
tual value of Z(Xj), we can compare Z(Xj) - Z_j(Xj) with a_j(xj) for 
j = 1, ... ,n. For example, Cressie (1993, p. 102) notes that if.:y is a good 
estimate of the semivariogram, we should expect 

(53) 

to be near 1, so that a value of (53) far from 1 is a sign of a poorly fit 
semivariogram. However, it does not follow that a value near 1 means that 
the fit is adequate. Actually, Cressie (1993) recommends computing the 
square root of (53), but since I have been reporting mean squared errors 
rather than root mean squared errors throughout this work, I use (53) here 
for consistency. 
For the example in this section, (53) equals 210.4 for the eyeball estimate 
of the semivariogram and equals 1.223 for the REML estimate. Thus, cross­
validation correctly identifies the eyeball estimate as a poor fit but does not 
detect a problem with the Gaussian model for the REML estimate, which 
is in stark contrast with the results in Table 5. Of course, the results in 
Table 5 would not be available in practice since they depend on knowing 
the true model. 
Let us consider why Table 5 and cross-validation give such different con­
clusions for the REML estimate. First, as evidence that the results of this 
simulation are not a fluke, I ran four further simulations for the same set­
ting and got values for (53) of 1.172, 0.953, 1.589 and 1.475 when fitting 
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TABLE 5. Performance of two EBLUPs when using the Gaussian model for the 
semivariogram. The two parameter estimates are the REML 6 and an eyeball 
estimate 6 (see Figure 11). M(tj iJ} is, for example, the plug-in value for the mse 
of the EBLUP based on iJ (see (31)) and C(tj 6, y) is the conditional mse of the 
EBLUP based on 6 (see (52}). All figures other than in the first column are 1,000 
times their actual values, so that, for example, M(1O.5j 60 ) equals 0.0766. 

t M(tj6o) C(tjiJ,y) M(tjiJ) C(tj 6, y) M(tj 6) 

-10.5 76.6 147 91.2 259 5.86 
10.5 436 9067 

-10 18.2 28.1 12.2 38.9 0.414 
10 97.2 1071 

-9 3.31 3.79 0.447 4.00 4.53 x 10-3 
9 9.25 35.3 

-8 2.78 2.81 0.106 2.82 3.75 x 10-4 
8 4.10 7.98 

-7 2.74 2.80 0.0489 2.80 7.21 x 10-5 
7 3.00 3.90 

-6 2.74 2.85 0.0315 2.86 2.27 x 10-5 
6 2.75 2.80 

-5 2.74 2.81 0.0244 2.80 9.91 x 10-6 
5 2.98 2.81 

-4 2.74 3.38 0.0210 3.36 5.48 x 10-6 
4 2.98 2.85 

-3 2.74 2.96 0.0192 2.94 3.61 x 10-6 
3 3.03 2.91 

-2 2.74 2.75 0.0182 2.75 2.74 x 10-6 
2 2.82 2.78 

-1 2.74 2.88 0.0177 2.91 2.35 x 10-6 
1 2.83 2.87 

o 2.74 2.99 0.0176 3.05 2.23 x 10-6 

the parameters of the Gaussian semivariogram using REML. REML is try­
ing its best to fit the poorly chosen model to the observations, which are 
spaced 1 unit apart. In doing so, it yields plug-in mses that are not too far 
off if the predict and is no closer than 1 unit from the nearest observation, 
which is the case when cross-validating. A further indication that this fit­
ted model is not so bad when the predictand is no closer than 1 unit from 
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any observation is that when using all 20 observations to predict at 10.5 or 
-10.5, which are also 1 unit away from the nearest observation, the plug-in 
mses for the REML estimate are relatively accurate (see Table 5). How­
ever, when trying to predict at locations that are only 0.5 units away from 
the nearest observation, the badly misspecified Gaussian semivariogram 
implies a highly unrealistic correlation structure between the observations 
and predictand, which is a problem that cross-validation based on evenly 
spaced observations cannot uncover. One should not conclude from these 
simulations that cross-validation is not a useful technique in spatial statis­
tics, merely that it is not a foolproof method for detecting problems with 
a model, particularly if the observations are evenly spaced. 

Application of Matern model 

Let us reconsider this simulated dataset using the Matern model for the 
spectral density, fo(w) = ¢(a. 2 + IwI2)-v-d/2, where () = (¢,I/,a.) and 
e = (0,00)3. This model includes the truth, () = (0.128/n, 1.5,0.4), so 
we might expect to do much better using likelihood methods than we did 
when we used the Gaussian semivariogram model. The REML estimate of 
() is iJ = (5.389,3.787,1.262). Note that if; = 5.389 is much larger than the 
true value ¢ = 0.128/n = 0.0407, which, from Theorem 1 in 6.7, is what 
we should expect when D > 1/. If we use the parameterization suggested by 
Handcock and Wallis (1994) and described in 2.10, the parameter estimates 
do not look quite so bad. Specifically, ." = (CT, 1/, p) = (1,1.5,1.624) and 
r, = (0.871,3.787,3.084). 
Table 6 gives conditional and plug-in mses for EBLUPs based on using 
the Matern model and the REML estimates. Contrasting the results in 
Tables 5 and 6, the plug-in mses are somewhat more accurate than for 
the REML estimates and the Gaussian model, but they are still off by 
about one order of magnitude for the interpolations. However, even this 
apparent improvement is somewhat fortunate. Let pf(l/) be the profile log 
likelihood of the contrasts; that is, as a function of 1/, the supremum over 
¢ and a. of the log likelihood of the contrasts. Recall (see 2.10) that the 
Gaussian model is obtained by letting 1/ --+ 00 in the Matern model, so that 
pf( 00) equals the log likelihood of the contrasts under the Gaussian model 
evaluated at the REML estimates for that model (Exercise 47). The plot of 
pf(l/) in Figure 13 shows that there is little basis in the data for choosing 
between 1/ = 3.787 and any larger value. Indeed, pf(3.787) -pf( 00) = 0.504, 
which corresponds to a likelihood ratio of eO. 504 = 1.655 and indicates that 
the Gaussian model provides a quite good fit to the available data, even 
though it is a terrible model for the process. 
Table 6 also gives prediction information when 1/ is set to 15 and the 
likelihood of the contrasts is maximized with respect to ¢ and a.. Taking 
1/ = 15 assumes the process is 14 but not quite 15 times mean square 
differentiable. When extrapolating or interpolating near the edges of the 
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TABLE 6. Performance of two EBLUPs when use Matern model for the semi­
variogram. The two parameter estimates are 8, the REML, and 8(15), obtained 
by arbitrarily setting the parameter v to 15 and then maximizing the likelihood 
of the contrasts over the other parameters. As in Table 5, all figures other than 
in the first column are 1,000 times the actual figures. 

t M(tj 60 ) C(tj 8, y) M(tj 6) 

-10.5 76.6 102 94.7 
10.5 145 

-10 18.2 22.1 16.0 
10 33.6 

-9 3.31 3.56 1.20 
9 4.63 

-8 2.78 2.79 0.607 
8 3.01 

-7 2.74 2.82 0.505 
7 2.77 

-6 2.74 2.89 0.481 
6 2.78 

-5 2.74 2.77 0.475 
5 2.94 

-4 2.74 3.18 0.474 
4 2.88 

-3 2.74 2.87 0.473 
3 2.91 

-2 2.74 2.75 0.473 
2 2.79 

-1 2.74 2.85 0.473 
1 2.82 

o 2.74 2.94 0.473 

C(tj 6(15), y) 

135 
316 

26.6 
71.5 

3.73 
7.52 

2.81 
3.68 

2.81 
2.89 

2.87 
2.77 

2.80 
3.03 

3.35 
3.00 

2.94 
3.04 

2.75 
2.82 

2.88 
2.83 

3.00 

M(tj 6(15)) 

92.4 

13.2 

0.584 

0.173 

0.0986 

0.0754 

0.0662 

0.0621 

0.0601 

0.0593 

0.0589 

0.0587 

observation region, the plug-in mses are quite similar whether one uses the 
Gaussian model and REML or the Matern model with v = 15 and REML. 
However, when interpolating near the middle of the observation region, the 
Gaussian model gives plug-in roses less than ~ as large as the Matern model 
with v = 15. 
The large uncertainty about v combined with its critical impact on as­
sessment of mses of interpolants implies that it is essentially impossible to 
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FIGURE 13. Profile log likelihood of the contrasts for 1/ using the 20 simulated 
observations. The. indicates (ii, pi(ii». 

obtain defensible mses from these data without strong prior information 
about v. The fact that the plot of pl(v) alerts us to this situation is a 
great strength of using the Matern model together with likelihood meth­
ods. Note, though, that it is essential to study the likelihood function and 
not just find its maximum. 
Considering the numerical results in 6.6, the fact that the likelihood 
function provides so little information about v is not surprising. As those 
results show, evenly spaced observations make estimation of v particularly 
difficult. I simulated three additional observations at -0.25,0 and 0.25 (see 
Table 4) and for these 23 observations, recomputed the profile log likelihood 
of the contrasts (see Figure 14). We now obtain the much better estimate 
for v of 1. 796 and, in addition, have strong evidence against large values 
for v. In particular, exp{pl(1.796) - pl(oo)} = 1.27 X 105 • Table 7 shows 
that the plug-in predictors now perform well for both interpolations and 
extrapolations and the plug-in estimates of mse are all reasonable. Table 7 
also shows properties of the plug-in predictors if the Gaussian model is fit 
to these data using REML. Figure 15 plots the estimated auto covariance 
functions under both the Matern and Gaussian models. Note that the es­
timated Gaussian model has far greater curvature near the origin after the 
additional three points are included in the analysis. I leave it to the reader 
to explain why the plug-in estimates of mse under the Gaussian model are 
now far too conservative for the predictions at ±4, ... , ±1O but are still 
badly overoptimistic at ±1 (Exercise 48). 

Conclusions 

The reader could argue that I have only shown the detailed results of 
one simulation, which could be misleading. This is possible, although the 
simulation shown was the first one I ran. To the reader who doubts the 
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FIGURE 15. True and estimated semivariograms using 3 additional observations. 
The solid line indicates the truth, the dashed line the REML estimate under the 
Matern model and the dotted line the REML estimate under the Gaussian model. 

representativeness of this single simUlation, I strongly recommend running 
some of your own. 
The main lesson from this example is that standard practice in spatial 
statistics is seriously flawed for differentiable processes. Specifically, plot­
ting the empirical semivariogram and then selecting a model that, to the 
eye, appears to fit its general shape can lead to severe model misspeci-
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TABLE 7. Performance of two EBLUPs with additional three observations when 
using Matern or Gaussian model for the semivariogram and estimating param-
eters by REML. All figures other than in the first column are 1,000 times the 
actual values. 

Matern model Gaussian model 

t M(tj6o) C(tj8,y) M(tj 8) C(tj8,y) M(tj 8) 

-10.5 76.6 79.1 116 680 411 
10.5 79.9 201 

-10 18.2 18.6 25.7 140 142 
10 19.0 48.5 

-9 3.31 3.34 3.94 9.71 28.9 
9 3.37 5.58 

-8 2.78 2.78 3.09 3.70 22.1 
8 2.78 3.23 

-7 2.74 2.75 3.01 2.77 20.9 
7 2.74 2.85 

-6 2.74 2.76 3.00 2.75 20.7 
6 2.74 2.85 

-5 2.74 2.74 3.00 2.86 20.4 
5 2.75 3.18 

-4 2.74 2.80 3.00 3.59 19.3 
4 2.74 6.35 

-3 2.74 2.77 2.99 4.01 15.2 
3 2.74 18.3 

-2 2.70 2.72 2.91 6.38 6.05 
2 2.70 21.3 

-1 2.21 2.31 2.11 8.87 0.280 
1 2.27 21.3 

0 0 0 0 0 0 

fication. The problem is that the empirical semivariogram is a poor tool 
for distinguishing exactly how smooth a differentiable process is. Further-
more, for differentiable processes, one needs to be careful about judging 
the quality of a parametric estimate of the semivariogram by how well it 
fits the empirical semivariogram. Finally, evenly spaced observations can 
cause substantial difficulties in predicting if the parameter v in the Matern 
model needs to be estimated. The inclusion of even a few additional ob-
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servations that have smaller spacing than the rest of the observations can 
dramatically improve the estimation of the semivariogram. 

Exercises 

46 If the random vector Z of length n has distribution N(O, E), show 
that for fixed, symmetric n x n matrices A and B, cov(ZT AZ, 
ZTBZ) = 2tr(AEBE) (see Appendix A for relevant results on mul­
tivariate normal distributions). Using this result, write a computer 
program to calculate the correlations for the empirical semivariogram 
i' at distances 1,2, ... , 10 for n observations evenly spaced 1 unit apart. 
Use your program to calculate these correlations when n = 20,40 and 
60 and (i) K(t) = e-o.4Itl (1 + 0.4Itl), (ii) K(t) = e-o.2Itl (1 + 0.21tl) and 
(iii) K(t) = e-O.75t2. Comment on the results. See Genton (1998) for 
further examples of the correlations in empirical semivariograms. 

47 Suppose we model Z as a Gaussian random field with isotropic auto­
covariance function from the Matern model and mean function known 
except for a vector of linear regression coefficients. We observe Z at 
some finite set of locations and let pl(lI) be the profile log likelihood 
of the contrasts as a function of II. Show that 

lim pl(lI) = l({I, {2), 
11-+00 

where l(6,6) is the log likelihood of the contrasts under the model 
K(r) = {le-e2r2 for the isotropic auto covariance function and ({1,{2) 
is the REML estimate for (6,6). 

48 Tell a story explaining the last two columns of Table 7. 

6.10 Bayesian approach 

The Bayesian approach to prediction provides a general methodology for 
taking into account the uncertainty about parameters on subsequent pre­
dictions. In particular, as described in 4.4, if Y is the vector of observations, 
Z the predictand and 0 the vector of unknown parameters, the Bayesian 
solution to making inferences about Z is to use the predictive density 

p(Z I Y) = fa p(Z I 0, Y)p(O I Y) dO, 

where p(O I Y) is the posterior density for 0 given by 

p(Y I O)p( 0) 
p(O I Y) = feP(Y I OI)p(O') dO' 

(54) 

(55) 

with p( 0) the prior density for O. Although some scientists and statisti­
cians are uncomfortable with basing inferences on what is necessarily a 
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somewhat arbitrarily chosen prior distribution for the unknown parame­
ters, it strikes me as a rather small additional leap of faith beyond that 
required in assuming, for example, that the spatial process under consider­
ation is a realization of an isotropic Gaussian random field with isotropic 
autocovariance function of some particular form. See Berger (1985), for ex­
ample, for further discussion concerning the theory behind the Bayesian 
approach to statistics and Gelman, Carlin, Stern and Rubin (1995) for a 
recent treatment of the practical application of Bayesian methods. 
This section briefly addresses a few issues that arise in selecting prior 

distributions when using the Matern model. Suppose Z is an isotropic 
Gaussian random field on IRd with spectral density from the Matern class. 
Since, in principle, prior densities should represent the investigator's uncer­
tainties about the unknown parameters prior to having collected the data, 
it is helpful if the parameterization for the model is chosen so that the 
individual parameters have natural and easily understood interpretations. 
To this end, the parameterization of Handcock and Wallis (1994) (see 2.10) 
is a sensible choice. To review, the isotropic spectral density is of the form 

where", = (CT, v, p) and 

9f1(U) = ( ) v+d/2' 4v 2 -+U p2 

CTC(V, p) 

f(v + ~) (4vy 
c(v, p) = 7rd/2f(v)p2v 

(56) 

The parameter v measures the differentiability of the random field, CT = 

var{ Z(x)} and p measures how quickly the correlations of the random field 
decay with distance. 
Let us now consider placing a prior density on '" = (CT, v, p) assuming, 

for simplicity, that the mean of Z is known to be O. Because of the concep­
tual and practical difficulties of converting one's knowledge about unknown 
parameters into a probability distribution, one possible solution is to select 
the "flat" prior density p(",) = 1 on (0,00)3. Since this function integrates 
to 00, it is not a probability density on the parameter space and is called 
an improper prior (Berger 1985, p. 82). Improper priors often yield proper 
(integrable) posterior distributions, but this is not the case in the present 
setting. Figures 13 and 14 showing the profile log likelihoods for v for the 
two simulated datasets considered in 6.9 illustrate the problem: the profile 
likelihoods do not tend to 0 as /I --t 00. Indeed, for any fixed positive values 
of CT and p and any vector of observations Z = (Z(xt}, ... , Z(x n )) with 
observed value z, the likelihood tends to a positive limit as /I --t 00 (see 
Exercise 47 in 6.9 for a related reSUlt). It follows that Ie p(z I ",)d", = 00, 
so that (55) does not give a meaningful result. We could try to use just the 
numerator of (55) as the (nonintegrable) posterior for "', but the resulting 



6.10 Bayesian approach 225 

predictive distribution for Z(xo) is then also not integrable. The same prob­
lem would occur for any improper prior of the form pea, 1/, p) = pea, p)p(l/) 
with p( 1/) not integrable at 00. A similar but more subtle problem can occur 
when using a prior whose marginal density for p is not integrable at 00 (see 
Exercise 50). 
For the random field Z(x) = m(x)T ,8+c(x), where c is a mean 0 isotropic 
Gaussian random field with spectral density gfj as given by (56) and ,8 is a 
vector of length q of unknown regression coefficients, Handcock and Wallis 
(1994) suggest the prior density 

1 
p(,8,.,.,) = 0'(1 + p)2(l + 1/)2' (57) 

which is identical to assuming that 

p(,8, 0', 1/ j(l + 1/), pj(l + p)) = 0'-1 (58) 

on IRq x (0,00) x (0,1)2 (Exercise 51). Thus, for every fixed,8 and 0', p(,8,.,.,) 
is an integrable function of p and 1/. Exercise 52 asks you to show that if 
there are at least q + 1 observations, the posterior density for ,8 and .,., 
obtained using (57) as the prior is proper. 

In using the prior (57), one should bear in mind that, unlike 1/, p is 
not dimensionless and has units of distance. Therefore, the meaning of 
the marginal prior density pep) = (1 + p)-2 depends on the units used to 
measure distance. If we want our results to be the same whether we measure 
distances in meters or kilometers, we should normalize distances in some 
manner. One possible normalization is to set the distance between the two 
most distant observations to 1. In conjunction with (57), this normalization 
provides an "automatic" prior that could be employed by users who are 
either ill-equipped for or uninterested in developing a prior that reflects 
their knowledge of the random field under study. 

Application to simulated data 

This subsection compares posterior predictive densities to plug-in predic­
tive densities for the 20 initial and 3 additional simulated observations 
considered in 6.9. For the posterior predictive distribution I use the prior 
described in the preceding subsection. Mark Handcock calculated the pos­
terior predictive distributions using programs reported in Handcock and 
Wallis (1994). The plug-in predictive distributions pc· I D, &) are based 
on taking e(O)jM(O)1/2 to follow a standard t distribution with 22 de­
grees of freedom. As described in 6.8, using this t distribution does provide 
for an appropriate accounting of the effect of the uncertainty in 0' on the 
predictions. However, this plug-in predictive distribution does not take di­
rect account of the effect of uncertainty in the parameters 1/ and a on the 
predictions. 
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Figure 16 gives these two predictive distributions for the predictions at 
-10.5 (an extrapolation) and -1 (an interpolation); comparisons at other 
locations are qualitatively similar. As expected, the posterior predictive 
densities show somewhat greater spread than the plug-in densities. Based 
on a single simulation, it is not possible to conclude that one procedure 
is better than the other. Although the posterior predictive density is more 
appropriate from the Bayesian perspective, I would guess that it also gen­
erally has better frequentist properties than the plug-in predictive density. 
The parametric simulation procedure described in 6.8 is likely to be a better 
competitor to the posterior predictive density than is the plug-in predic­
tive density. A resolution of these issues requires either a large advance 
in higher-order asymptotic theory for spatial prediction problems, or more 
realistically, a large and well-designed simulation study to compare the 
properties of different methods for predicting with estimated covariance 
structures. 
I have deliberately chosen not to provide posterior predictive densities 
based on just the 20 evenly spaced initial simulated observations in 6.9. My 
reason for this omission is that I find it inappropriate to even undertake 
such a calculation when, as demonstrated in Figure 13, the uncertainty in 
l/ is so great. The problem, as the results in Tables 5 and 6 demonstrate, is 
that the assessment of mses of prediction varies dramatically over a range 
of l/ values for which the data provide almost no basis for distinguishing. 
As a consequence, the posterior predictive density will depend strongly on 
the prior placed on the parameters of the Matern model. Since prior distri­
butions on these parameters will necessarily be chosen rather arbitrarily, 
there will consequently be considerable arbitrariness in the posterior pre­
dictive densities. If asked to produce a predictive density in this situation 
I would point to the results in Tables 5 and 6 and refuse to do so. If that 
strategy failed I would show how the posterior predictive density varies 
dramatically with the choice of prior and suggest that whoever is asking 
for the predictive density choose which prior to use. 

Exercises 

49 Consider the random field Z(x) = m(x)T (3 + c(x), where c is a mean 
o Gaussian random field with covariance function from some model 
K 8 • For a vector of observations Z = (Z(xt}, ... , Z(xn))T and the 
improper prior density p({3,.,,) = 1, show that (6) gives the logarithm 
of the marginal posterior density for 0 (Harville 1974). 

50 This problem gives a simple example of how one can end up with an 
improper posterior density by using an improper marginal prior density 
on the parameter p in (56). Suppose Z is a stationary Gaussian process 
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FIGURE 16. Plug-in predictive densities p{x I (ii, a)) and posterior predictive 
densities p{x) for the same data as in Figure 14. Top figure is for predicting at 
-10.5 and bottom figure is for -1. Solid line corresponds to plug-in predictive 
density and dashed line to posterior predictive density under prior recommended 
by Handcock and Wallis (1994). 

on R with unknown mean IL and spectral density of the form 

9cr,p(W) = ( 2 ) , 
7rp "2 +w2 

P 
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which is just (56) with d = 1 and II = ~ known. Suppose further 
that for some 0 > 0, Z is observed at oj for j = 1, ... , n. Use the 
result of the previous exercise to find an explicit expression for the 
marginal posterior for (J' and p for the prior p(J.£, (J', p) = 1. Show that 
this marginal posterior is not integrable. Hint: the covariance matrix 
for the observations is explicitly invertible; see, for example, Section 5 
of Stein (1990b). 

51 Show that (57) implies (58). 

52 Using the prior in (58), show that if n > q and the rank of 
(m(xd, ... ,m(xn)) is q, then the posterior for ({3,.,,) is proper. 



Appendix A 
Multivariate Normal Distributions 

This appendix gives a brief summary of properties of multivariate normal 
distributions. For proofs and further results, see, for example, Anderson 
(1984), Muirhead (1982) or Rao (1973, Chapter 8). 
The random variable X is said to follow a univariate normal distribution 
with mean J.t and variance (7'2 ~ 0, written N(J.t, (7'2), if it has density 

1 {(X - J.t)2} 
p(x) = (211")1/2(7' exp - 2(7'2 

for (7'2 > 0 and Pr(X = J.t) = 1 for (7'2 = o. The random vector X of 
length q is said to follow a multivariate normal distribution if aTX follows 
a univariate normal distribution for every a E IRq (Muirhead 1982, p. 5). 
Every multivariate normal distribution has a well-defined mean vector 
and covariance matrix. Furthermore, if X is a multivariate normal random 
vector of length q with E(X) = p and covariance matrix cov(X, XT) = E, 
then for any fixed vector a E IRq, aTX is N(aTp,aTEa). More generally, 
if A is a matrix with q columns, AX is N(Ap, AEAT). If E is positive 
definite, then X has density 

p(x) = (211")qI2{:et(E)P/2 exp {-~(x - pfE-I(X - p)}. 

Suppose the multivariate normal random vector X is partitioned into 
two components: X = (X[ Xn T , where Xl has ql components and X 2 

has q2 components. Then we can write the distribution of (X[ Xn T as 
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where for i = 1,2, I'i has length qi and for i,j = 1,2, Eij is a qi x qj 
matrix. Then the conditional distribution of Xl given X2 = X2 is N(1'1 + 
E 12E 22 (X2 - 1'2), Ell - EI2E22E2t}, where E22 is any generalized inverse 
of E22 (for an invertible matrix, the generalized inverse is unique and equals 
the ordinary inverse). 
Finally, if X = (X}, ... , Xn)T is N(O, E) and Uij is the ijth element 
of E, then for i,j, k,f. = 1, ... ,n, E(XiXjXk) = 0 and E(XiXjXkXl) = 
UijUkl + UikUjl + UilUjk· 
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Symbols 

Matrices and vectors 

C(M) the column space of a matrix M 
det determinant 
h equals ~1 
I the identity matrix 
MT the transpose of a matrix M 
1 a vector of all ones 
tr 
o 

Sets 
AC 
A\B 
AoB 
IRd 

Zd 

xt=IAi 

trace 
a vector of zeroes 

the complement of A 
for Be A, those elements in A that are not in Bj equals AnBc 
the symmetric difference of A and Bj equals (A U B)\(A n B) 
d-dimensional Euclidean space 
d-dimensional integer lattice 
for subsets AI, ... , Ad of JR., the subset of JR.d whose elements 
have ith component in Ai for i = 1, ... , dj also written Al x 
••• X Ad 
for A c JR., shorthand for xt=IA 
for B C ]Rd and x E ]Rd, the set of points y for which y -x E B 
(-rrr,rrrjd 
the d-dimensional ball of radius r centered at the originj bd = 

bd (l) 
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the surface of this ball 

{- l~(m -1)J,-l4(m -l)J + 1,···,l4mJ}d, where d is 
understood by context 

[_1. 1.]d 
2' 2 

{I, ... , m}d, where d is understood by context 

Hilbert spaces associated with a random field Z on IRd with R c IRd 

Ji~ the real linear manifold of the random variables Z(x) for x E R 
(generally not a Hilbert space unless R is finite) 

JiR(m, K) the closure of Ji~ with respect to the inner product defined 
by the second-order structure (m, K) 

JiR(F) the same as JiR(O, K) if K is the autocovariance function 
corresponding to the spectrum F; Ji(F) = Ji'Rd (F) 

.cR(F) the closed real linear manifold of functions of w of the form 
exp(iwT x) for x E R under the inner product defined by F 

Probabilities and expectations 

corr 
cov 
E 
GR(m,K) 

var 

correlation 
covariance 
expected value 
the Gaussian measure for the random field on R with second­
order structure (m, K) 
the multivariate normal distribution with mean vector m and 
covariance matrix :E 
shorthand for G R (mj, K j ) 

probablility 
variance 

Classes of functions 

Vd all d-dimensional continuous isotropic autocovariance func­
tions 

Lip(Q) 

Functions 

for Q > 0, a function f on an interval I is called Lip(Q) on I 
if there exists finite C such that If(s) - f(t)1 :::; Cis - tlO! for 
all s, tEl 

all real-valued functions on IR that are integrable over all 
bounded intervals 
those functions f : IRd -t IR such that f(w) :;,:: 14>(w)1 2 as 
Iwl -t 00 for some function 4> that is the Fourier transform of 
a square integrable function with bounded support 

cosh the hyperbolic cosine function, coshx = 4(eX + e- X ); other 
hyperbolic functions used are sinhx = ~(eX - e- X), tanhx = 
sinh x/cosh x and sech x = 1/ cosh x 
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r the gamma function 
{ijk equals 1 if j = k and 0 otherwise 
J y ordinary Bessel function of order II 

JC y modified Bessel function of the second kind of order II 

sinc for t =1= 0, sinct = t- l sint and sincO = 1 
1 { . } for an event A, 1 {A} = 1 if A is true and is 0 otherwise 
x+ the positive part of the real number X; equals X if x > 0 and 

equals 0 otherwise 
l x J the greatest integer less than or equal to the real number x 
Ixl the Euclidean norm of x = (Xl' ... ' Xd)T; equals (xi + ... + 

X~)1/2 

z the complex conjugate of the complex number z 

Relationships 

for functions f and 9 on some set R, write f(t) rv g(t) as t -+ to 
if f(t)/g(t) -+ 1 as t -+ to 

« for real-valued functions f and 9 on R, write f(t) « g(t) if 
there exists C finite such that If(t)1 ~ Cg(t) for all t E R; 
same as f(t) = O(g(t)) 

;:,:: for nonnegative functions f and 9 on R, write f(t) ;:,:: g(t) if 
f(t) « g(t) and g(t) « f(t); write f(t) :::::: g(t) as t -+ to if, 
given any sequence tl, t2, ... such that ti -+ to, there exists N 
finite such that f(t i ) :::::: g(ti) for all i > N 

..1 orthogonal; can refer either to the orthogonality of two el­
ements in a Hilbert space (have inner product 0) or to the 
orthogonality of two probability measures 
equivalence for probability measures 

Abbreviations 

BLP 
BLUP 
EBLUP 
IRF 
LUP 
MLE 
mse 
p.d. 
REML 

best linear predictor 
best linear unbiased predictor 
estimated best linear unbiased predictor 
intrinsic random function 
linear unbiased predictor 
maximum likelihood estimator 
mean squared error 
positive definite 
restricted maximum likelihood 

Miscellaneous 

:E~ for j E Zd, the sum over all element of Zd except the origin 



References 

Abramowitz, M. and Stegun, 1. (1965). Handbook of Mathematical Functions, 
ninth ed. Dover, New York. 

Akhiezer, N. 1. and Glazman, 1. M. (1981). Theory of Linear Operators in Hilbert 
Space, trans. E. R. Dawson. Pitman Publishing, Boston. 

Anderson, T. W. (1984). An Introduction to Multivariate Analysis, second ed. 
Wiley, New York. 

Bailey, D. H. and Swarztrauber, P. N. (1991). The fractional Fourier transform 
and applications. SIAM Rev. 33 389-404. 

Benhenni, K. and Cambanis, S. (1992). Sampling designs for estimating integrals 
of stochastic processes. Ann. Statist. 20 161-194. 

Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis, second 
ed. Springer-Verlag, New York. 

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. 
Billingsley, P. (1995). Probability and Measure, third ed. Wiley, New York. 
Bingham, N. H. (1972). A Tauberian theorem for integral transforms of the 
Hankel type. 1. London Math. Soc. 5 493-503. 

Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. 
Cambridge University Press, New York. 

Blackwell, D. and Dubins, L. E. (1962). Merging of opinions with increasing 
information. Ann. Math. Statist. 33882-886. 

Bloomfield, P. (1976). Fourier Analysis of Time Series: An Introduction. Wiley, 
New York. 

Bras, R. L. and Rodrfguez-Iturbe, 1. (1985). Random Functions and Hydrology. 
Addison-Wesley, Reading, MA. 

Carr, J. R. (1990). Application of spatial filter theory to kriging. Math. Ceol. 22 
1063-1079. 



236 References 

Carr, J. R. (1995). Numerical Analysis for the Geological Sciences. Prentice-Hall, 
Englewood Cliffs, NJ. 

Carrier, G. F., Krook, M. and Pearson, C. E. (1966). Functions of a Complex 
Variable: Theory and Technique. McGraw-Hill, New York. 

Casella, G. and Berger, R. L. (1990). Statistical Inference. Brooks/Cole, Pacific 
Grove, CA. 

Chan, G., Hall, P. and Poskitt, D. S. (1995). Periodogram-based estimators of 
fractal properties. Ann. Statist. 23 1684-1711. 

Christakos, G. (1984). On the problem of permissible covariance and variogram 
models. Water Resources Research 20 251-265. 

Christakos, G. (1992). Random Field Models in Earth Sciences. Academic Press, 
San Diego. 

Christensen, R. (1991). Linear Models for Multivariate, Time Series, and Spatial 
Data. Springer-Verlag, New York. 

Chung, K. L. (1974). A Course in Probability Theory, 2nd ed. Academic Press, 
New York. 

Cleveland, W. S. (1971). Projection with the wrong inner product and its appli­
cation to regression with correlated errors and linear filtering of time series. 
Ann. Math. Statist. 42 616-624. 

Cody, W. J. (1987). SPECFUN-a portable special function package, in 
New Computing Environments: Microcomputers in Large-Scale Scientific 
Computing, ed. A. Wouk. SIAM, Philadelphia, 1-12. 

Cohn, S. E., da Silva, A., Guo, J., Sienkiewicz, M. and Lamich, D. (1998). As­
sessing the effects of data selection with the DAO Physical-space Statistical 
Analysis System. Mon. Wea. Rev. 1262913-2926. 

Constantine, A. G. and Hall, P. (1994). Characterizing surface smoothness via 
estimation of effective fractal dimension. J. Roy. Statist. Soc. B 56 96-113. 

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. Chapman & Hall, 
London. 

Cramer, H. and Leadbetter, M. R. (1967). Stationary and Related Processes: 
Sample Function Properties and Their Applications. Wiley, New York. 

Cressie, N. (1985). Fitting variogram models by weighted least squares, J. 
Internat. Assoc. Math. Geol. 17 563-586. 

Cressie, N. (1988). Variogram. Entry in Encyclopedia of Statistical Sciences, 
vol. 9, Eds. S. Kotz and N. L. Johnson. Wiley, New York, 489-491. 

Cressie, N . (1989). The many faces of spatial prediction, in Geostatistics, vol. 1, 
Ed. M. Armstrong. Kluwer, Dordrecht, 163-176. 

Cressie, N. (1990). The origins of kriging. Math. Geol. 22 239-252. 
Cressie, N. (1993). Statistics for Spatial Data, revised ed. Wiley, New York. 
Cressie, N. (1996). Change of support and the modifiable areal unit problem. 

Geographical Systems 3 159-180. 
Cressie, N. and Hawkins, D. M. (1980). Robust estimation of the variogram, 1. 

J. Internat. Assoc. Math. Geol. 12 115-125. 
Cressie, N. and Lahiri, S. N. (1993). The asymptotic distribution of REML 
estimators. J. Multivariate Anal. 45 217-233. 

Cressie, N. and Zimmerman, D. L. (1992). On the stability of the geostatistical 
method. Math. Geol. 24 45-59. 

Crowder, M. J. (1976). Maximum likelihood estimation for dependent observa­
tions. J. Roy. Statist. Soc. B 38 45-53. 



References 237 

Crum, M. M. (1956). On positive-definite functions. Proc. London Math. Soc., 
Third Ser. 6 548-560. 

Dahlhaus, R. and Kiinsch, H. (1987). Edge effects and efficient parameter 
estimation for stationary random fields. Biometrika 74 877-82. 

Dalenius, T., Hajek, J. and Zubrzycki, S. (1961). On plane sampling and re­
lated geometrical problems. Proceedings of the Fourth Berkeley Symposium on 
Mathematical Statistics and Probability 1 125-150. 

Daley, R. (1991). Atmospheric Data Analysis. Cambridge University Press, New 
York. 

Davison, A.C. and Hinkley, D. V. (1997). Bootstrap Methods and Their 
Application. Cambridge University Press, New York. 

Dawid, A. P. (1984). Statistical theory: The prequential approach. J. Roy. Statist. 
Soc. A 147 278-290. 

De Oliveira, V., Kedem, B. and Short, D. A. (1997). Bayesian prediction of 
transformed Gaussian random fields. J. Amer. Statist. Assoc. 92 1422-1433. 

Diamond, P. and Armstrong, M. (1984). Robustness of variograms and 
conditioning of kriging matrices. J. Internat. Assoc. Math. Geol. 16563-586. 

Diggle, P. J., Tawn, J. A. and Moyeed, R. A. (1998). Model-based geostatistics 
(with discussion). Appl. Statist. 47 299-350. 

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. 
Chapman & Hall, New York. 

Feller, W. (1971). An Introduction to Probability Theory and Its Applications, 
vol. II. Wiley, New York. 

Ferguson, T. S. (1996). A Course in Large Sample Theory. Chapman & Hall, 
London. 

Fuller, W. A. (1996). Introduction to Statistical Time Series. Wiley, New York. 
Gaspari, G. and Cohn, S. E. (1999). Construction of correlation functions in two 
and three dimensions. Q. J. R. Meteorol. Soc. 125 723-757. 

Gel'fand, I. M. and Vilenkin, N. Ya. (1964). Generalized Functions, vol. 4, trans. 
A. Feinstein. Academic Press, New York. 

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (1995). Bayesian Data 
Analysis. Chapman & Hall, London. 

Genton, M. G. (1998). Variogram fitting by generalized least squares using an 
explicit formula for the covariance structure. Math. Geol. 30 323-345. 

Gidas, B. and Murua, A. (1997). Estimation and consistency for linear function­
als of continuous-time processes from a finite data set, I: Linear predictors. 
Department of Statistics, University of Chicago Report No. 447. 

Gihman, I. I. and Skorohod, A. V. (1974). The Theory of Stochastic Processes, 
vol. 1. Springer-Verlag, Berlin. 

Goldberger, A. S. (1962). Best linear unbiased prediction in the generalized linear 
regression model. J. Amer. Statist. Assoc. 57369-375. 

Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations, third ed. Johns 
Hopkins University Press, Baltimore. 

Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. Oxford 
University Press, New York. 

Gradshteyn, I. S. and Ryzhik, I. M. (1994). Table of Integrals, Series, and 
Products, fifth ed. Academic Press, Orlando. 

Guyon, X. (1982). Parameter estimation for a stationary process on a 
d- dimensional lattice. Biometrika 69 95-105. 



238 References 

Haas, T. C. (1990). Lognormal and moving-window methods of estimating acid 
deposition. J. Amer. Statist. Assoc. 85 950-963. 

Haas, T. C. (1995). Local prediction of a spatio-temporal process with an 
application to wet sulfate deposition. J. Amer. Statist. Assoc. 90 1189-1199. 

Handcock, M. S. (1989). Inference for spatial Gaussian random fields when the ob­
jective is prediction. Ph. D. dissertation, Department of Statistics, University 
of Chicago. 

Handcock, M. S. (1991). On cascading Latin hypercube designs and additive 
models for experiments. Commun. Statist. A 20 417-439. 

Handcock, M. S., Meier, K. and Nychka, D. (1994). Discussion of "Kriging and 
splines: An empirical comparison of their predictive performance" by G. M. 
Laslett (1994). J. Amer. Statist. Assoc. 89 401-403. 

Handcock, M. S. and Stein, M. L. (1993). A Bayesian analysis of kriging. 
Technometrics 35 403-410. 

Handcock, M. S. and Wallis, J. R. (1994). An approach to statistical spatial­
temporal modeling of meteorological fields (with discussion). J. Amer. Statist. 
Assoc. 89 368-390. 

Hannan, E. J. (1970). Multiple Time Series. Wiley, New York. 
Harville, D. A. (1974). Bayesian inference for variance components using only the 
error contrasts. Biometrika 61 383-385. 

Harville, D. A. and Jeske, D. R. (1992). Mean squared error of estimation or 
prediction under a general linear model. J. Amer. Statist. Assoc. 87724-731. 

Hawkins, D. M. and Cressie, N. (1984). Robust kriging~a proposal. J. Internat. 
Assoc. Math. Geol. 16 3-18. 

Ibragimov, I. A. and Has'minskii, R. Z. (1981). Statistical Estimation: Asymptotic 
Theory, trans. S. Kotz. Springer-Verlag, New York. 

Ibragimov, I. A. and Rozanov, Y. A. (1978). Gaussian Random Processes, trans. 
A. B. Aries. Springer-Verlag, New York. 

Isaaks, E. H. and Srivastava, R. M. (1989). An Introduction to Applied 
Geostatistics. Oxford University Press, New York. 

Istas, J. and Lang, G. (1997). Quadratic variations and estimation of the local 
Holder index of a gaussian process. Ann. Inst. Henri Poincare 33 407-436. 

Jeffreys, H. (1938). Science, logic and philosophy. Nature 141 716-719. 
Jerri, A. J. (1977). The Shannon sampling theorem~its various extensions and 
applications: A tutorial review. Proc. IEEE 65 1565-1596. 

Journel, A. G. and Huijbregts, C. J. (1978). Mining Geostatistics. Academic 
Press, New York. 

Kaluzny, S. P., Vega, S. C., Cardoso, T. P. and Shelly, A. A. (1998). 
S+SpatialStats: User's Manual for Windows and Unix. Springer, New York. 

Kent, J. T. and Wood, A. T. A. (1997). Estimating the fractal dimension of a 
locally self-similar Gaussian process by using increments. J. Roy. Statist. Soc. 
B 59 679-699. 

Kitanidis, P. K. (1983). Statistical estimation of polynomial generalized covari­
ance functions and hydrologic applications. Water Resources Research 19 
909-921. 

Kitanidis, P. K. (1986). Parameter uncertainty in estimation of spatial functions: 
Bayesian analysis. Water Resources Research 22499-507. 

Kitanidis, P. K. (1997). Introduction to Geostatistics: Applications in Hydrogeol­
ogy. Cambridge University Press, New York. 



References 239 

Kolmogorov, A. N. (1941). Interpolation und Extrapolation von stationiiren 
zufiiligen Folgen. Izv. Akad. Nauk SSSR 5 3-14. 

Krige, D. G. (1951). A statistical approach to some basic mine valuation problems 
on the Witwatersrand. Journal of the Chemical, Metallurgical and Mining 
Society of South Africa 52 119-139. 

Kullback, S. (1968). Information Theory and Statistics. Dover, Mineola, NY. 
Kuo, H. (1975). Gaussian Measures in Banach Spaces, Lecture Notes in 
Mathematics No. 463. Springer-Verlag, New York. 

Laslett, G. M. and McBratney, A. B. (1990). Further comparison of spatial 
methods for predicting soil pH. Soil Sci. Am. J. 54 1553-1558. 

Laslett, G. M., McBratney, A. B., Pahl, P. J. and Hutchinson, M. F. (1987). 
Comparison of several spatial prediction methods for soil pH. J. Soil Sci. 38 
325-341. 

Lukacs, E. (1970). Chamcteristic Functions. Griffin, London. 
Mandelbrot, B. B. and Van Ness, J. W. (1968). Fractional Brownian motions, 
fractional noises and applications. SIAM Rev. 10 422-437. 

Mardia, K. V. and Marshall, R. J. (1984). Maximum likelihood estimation of 
models for residual covariance in spatial regression. Biometrika 73 135-146. 

Matern, B. (1960). Spatial Variation. Meddelanden fran Statens Skogsforskn­
ingsinstitut, 49, No.5. Almaenna Foerlaget, Stockholm. Second edition (1986), 
Springer-Verlag, Berlin. 

Matheron, G. (1971). The Theory of Regionalized Variables and its Applications. 
Ecole des Mines, Fontainebleau. 

Matheron, G. (1973). The intrinsic random functions and their applications. J. 
Appl. Probab. 5439-468. 

Matheron, G. (1989). Estimating and Choosing: An Essay on Probability in 
Pmctice, trans. A. M. Hasofer. Springer-Verlag, Berlin. 

McCullagh, P. and Neider, J. A. (1989). Genemlized Linear Models, second ed. 
Chapman & Hall, London. 

McGilchrist, C. A. (1989). Bias ofML and REML estimators in regression models 
with ARMA errors. J. Statist. Comput. Simul. 32 127-136. 

Micchelli, C. A. (1986). Interpolation of scattered data: distance matrices and 
conditionally positive definite functions. Constr. Approx. 2 11-22. 

Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley, New 
York. 

Miiller-Gronbach, T. (1998). Hyperbolic cross designs for approximation of 
random fields. J. Statist. Plann. Inference 66 321-344. 

Novak, E. (1988). Deterministic and Stochastic Error Bounds in Numerical 
Analysis, Lecture Notes in Mathematics No. 1349. Springer-Verlag, Berlin. 

Omre, H. (1987). Bayesian kriging-merging observations and qualified guesses 
in kriging. Math. Geol. 19 25-39. 

Pannetier, Y. (1996). VARIOWIN: Software for Spatial Data Analysis in 2D. 
Springer-Verlag, New York. 

Papageorgiou, A. and Wasilkowski, G. W. (1990). On the average complexity of 
multivariate problems. J. Complexity 6 1-23. 

Pasenchenko, O. Yu. (1996). Sufficient conditions for the characteristic function 
of a two-dimensional isotropic distribution. Theor. Probab. Math. Statist. 53 
149-152. 



240 References 

Patterson, H. D. and Thompson, R. (1971). Recovery of inter-block information 
when block sizes are unequal. Biometrika 58 545-554. 

Pettitt, A. N. and McBratney, A. B. (1993). Sampling designs for estimating 
spatial variance components. Appl. Statist. 42 185-209. 

Phillips, E. R. (1984). An Introduction to Analysis and Integration Theory. Dover, 
New York. 

Pitman, E. J. G. (1968). On the behaviour of the characteristic function of a 
probability distribution in the neighbourhood of the origin. J. Austral. Math. 
Soc. A 8 422-443. 

Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1992). 
Numerical Recipes, second ed. Cambridge University Press, New York. 

Priestley, M. B. (1981). Spectral Analysis and Time Series. Academic Press, 
London. 

Putter, H. and Young, G. A. (1998). On the effect of covariance function 
estimation on the accuracy of kriging predictors. Manuscript. 

Quenouille, M. H. (1949). Problems in plane sampling. Ann. Math. Statist. 20 
355-375. 

Rao, C. R. (1973). Linear Statistical Inference and Its Applications, second ed. 
Wiley, New York. 

Rice, J. A. (1995). Mathematical Statistics and Data Analysis, second ed. 
Wadsworth, Belmont, CA. 

Ripley, B. D. (1988). Statistical Inference for Spatial Processes. Cambridge 
University Press, New York. 

Ripley, B. D. (1995). Review of Number-Theoretic Methods in Statistics, by K-T. 
Fang and Y. Wang. J. Roy. Statist. Soc. A 158 189-190. 

Ritter, K (1995). Average Case Analysis of Numerical Problems. Unpublished 
thesis, Erlangen. 

Ruhla, C. (1992). The Physics of Chance: Prom Blaise Pascal to Neils Bohr, 
trans. C. Barton. Oxford University Press, New York. 

SAS Institute Inc. (1997). SAS/STAT Software: Changes and Enhancements 
Through Release 6.12. SAS Institute Inc., Cary, NC. 

Schoenberg, I. J. (1938). Metric spaces and completely monotone functions. Ann. 
Math. 39811-841. 

Schowengerdt, R. A. (1983). Techniques for Image Processing and Classification 
in Remote Sensing. Academic Press, New York. 

Seber, G. A. F. (1977). Linear Regression Analysis. Wiley, New York. 
Spivak, M. (1980). Calculus, second ed. Publish or Perish, Berkeley, CA. 
Starks, T. H. and Sparks, A. R. (1987). Rejoinder to "Comment on 'Estimation 
of the generalized covariance function. II. A response surface approach' by 
T. H. Starks and A. R. Sparks." Math. Geol. 19789-792. 

Stein, E. M. and Weiss, G. (1971). Introduction to Fourier Analysis on Euclidean 
Spaces. Princeton University Press, Princeton, NJ. 

Stein, M. L. (1986). A modification of minimum norm quadratic estimation of a 
generalized covariance function for use with large data sets. Math. Geol. 18 
625-633. 

Stein, M. L. (1988). Asymptotically efficient prediction of a random field with a 
misspecified covariance function. Ann. Statist. 16 55-63. 



References 241 

Stein, M. L. (1990a). Uniform asymptotic optimality of linear predictions of a 
random field using an incorrect second-order structure. Ann. Statist. 18850-
872. 

Stein, M. L. (1990b). Bounds on the efficiency of linear predictions using an 
incorrect covariance function. Ann. Statist. 18 1116-1138. 

Stein, M. L. (1990c). A comparison of generalized cross validation and modified 
maximum likelihood for estimating the parameters of a stochastic process. 
Ann. Statist. 18 1139-1157. 

Stein, M. L. (1990d). An application of the theory of equivalence of Gaussian 
measures to a prediction problem. IEEE 1rans. Inform. Theory 34 580-582. 

Stein, M. 1. (1993a). A simple condition for asymptotic optimality of linear 
predictions of random fields. Statist. Probab. Letters 17 399-404. 

Stein, M. L. (1993b). Spline smoothing with an estimated order parameter. Ann. 
Statist. 21 1522-1544. 

Stein, M. L. (1993c). Asymptotic properties of centered systematic sampling for 
predicting integrals of spatial processes. Ann. Appl. Probab. 3874-880. 

Stein, M. L. (1995a). Predicting integrals of random fields using observations on 
a lattice. Ann. Statist. 23 1975-1990. 

Stein, M. 1. (1995b). Locally lattice sampling designs for isotropic random fields. 
Ann. Statist. 23 1991-2012. 

Stein, M. L. (1995c). Fixed domain asymptotics for spatial periodograms. J. 
Amer. Statist. Assoc. 90 1277-1288. 

Stein, M. L. (1997). Efficiency of linear predictors for periodic processes using an 
incorrect covariance function. J. Statist. Plann. Inference 58 321-33l. 

Stein, M. L. (1999). Predicting random fields with increasingly dense observa­
tions. Ann. Appl. Probab., to appear. 

Stein, M. L. and Handcock, M. S. (1989). Some asymptotic properties of kriging 
when the covariance function is misspecified. Math. Ceol.21171-190. 

Sweeting, T. J. (1980). Uniform asymptotic normality of the maximum likelihood 
estimator. Ann. Statist. 8 1375-138l. 

Thiebaux, H. J. and Pedder, M. A. (1987). Spatial Objective Analysis with 
Applications in Atmospheric Science. Academic Press, London. 

Toyooka, Y. (1982). Prediction in a linear model with estimated parameters. 
Biometrika 69 453-459. 

Traub, J. F., Wasilkowski, G. W. and Wozniakowski, H. {1988}. Information­
Based Complexity. Academic Press, New York. 

Trebels, W. {1976}. Some necessary conditions for radial Fourier multipliers. Proc. 
Amer. Math. Soc. 58 97-103. 

Tubilla, A. (1975). Error convergence rates for estimates of multidimensional 
integrals of random functions. Department of Statistics, Stanford University 
Report No. 72. 

Tunicliffe-Wilson, G. {1989}. On the use of marginal likelihood in time series 
model estimation. J. Roy. Statist. Soc. B 51 15-27. 

Vanmarcke, E. {1983}. Random Fields. MIT Press, Cambridge, MA. 
Vecchia, A. V. {1988}. Estimation and identification for continuous spatial 
processes. J. Roy. Statist. Soc. B 50 297-312. 

Voss, R. F. {1988}. Fractals in nature: From characterization to simulation, in The 
Science of Fractal Images, Eds. H. O. Peitgen and D. Saupe. Springer-Verlag, 
New York. 



242 References 

Wackernagel, H. (1995). Multivariate Geostatistics. Springer, Berlin. 
Wahba, G. (1990). Spline Models for Observational Data. SIAM, Philadelphia. 
Wald, A. (1949). Note on the consistency of the maximum likelihood estimate. 

Ann. Math. Statist. 20595-601. 
Warnes, J. J. and Ripley, B. D. (1987). Problems with likelihood estimation of 
covariance functions of spatial Gaussian processes. Biometrika 74 640-642. 

White, L. V. (1973). An extension of the general equivalence theorem to non­
linear models. Biometrika 60 345-348. 

Whittle, P. (1954). On stationary processes in the plane. Biometrika 49 305-314. 
Wichura, M. J. (1987). The PJCIEX manual. Department of Statistics, University 
of Chicago Report No. 205. 

Wiener, N. (1949). Extrapolation, Interpolation, and Smoothing of Stationary 
Time Series. MIT Press, Cambridge, MA. 

Wilson, P. D. (1988). Maximum likelihood estimation using differences in an 
autoregressive-l process. Comm. Statist. Theory Methods 17 17-26. 

Wozniakowski, H. (1991). Average case complexity of multivariate integration. 
Bull. Amer. Math. Soc. 24 185-194. 

Yadrenko, M. I. (1983). Spectral Theory of Random Fields. Optimization 
Software, New York. 

Yaglom, A. M. (1962). An Introduction to the Theory of Stationary Random 
FUnctions. Dover, New York. 

Yaglom, A. M. (1987a). Correlation Theory of Stationary and Related Random 
FUnctions, vol. I. Springer-Verlag, New York. 

Yaglom, A. M. (1987b). Correlation Theory of Stationary and Related Random 
FUnctions, vol. II. Springer-Verlag, New York. 

Yakowitz, S. J. and Szidarovszky, F. (1985). A comparison of kriging with 
nonparametric regression methods. J. Multivariate Anal. 1621-53. 

Ying, Z. (1991). Asymptotic properties of a maximum likelihood estimator with 
data from a Gaussian process. J. Multivariate Anal. 36280-396. 

Ying, Z. (1993). Maximum likelihood estimation of parameters under a spatial 
sampling scheme. Ann. Statist. 21 1567-1590. 

Ylvisaker, D. (1975). Designs on random fields. In A Survey of Statistical Design 
and Linear Models, Ed. J. N. Srivastava, North-Holland, Amsterdam, 593-608. 

Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics. Wiley, 
New York. 

Zimmerman, D. L. (1989). Computationally exploitable structure of covariance 
matrices and generalized covariance matrices in spatial models. J. Statist. 
Comput. Simulation 32 1-15. 

Zimmerman, D. L. and Cressie, N. (1992). Mean squared prediction error in the 
spatial linear model with estimated covariance parameters. Ann. Inst. Statist. 
Math. 44 27-43. 

Zimmerman, D. L. and Zimmerman, M. B. (1991). A Monte Carlo compari­
son of spatial semivariogram estimators and corresponding ordinary kriging 
predictors. Technometrics 33 77-91. 



Index 

Abelian theorems, 34 
Abramowitz, M., 31-33, 43, 47, 53, 

54, 154, 155, 167, 179 
absolutely continuous, 110 
Akhiezer, N. 1., 4, 78 
Anderson, T. W., 229 
Armstrong, M., 58 
asymptotics, see also fixed-domain 

asymptotics, increasing­
domain asymptotics, 61-63, 
77 

autocorrelation function, 16 
isotropic, 45 
autocovariance function, 16, 19 
complex random field, 22 
exponential, 12, 74, 139, 142, 

173,176 
Gaussian, 12, 29, 50, 55, 69, 166, 

176, 212, 218, 220 
generalized, 38, 171 
isotropic, 42-53 
Matern, 31-33, 48-51, 161, 
176-188,210,211,218,224 

practical range, 50 
spherical, 12, 13, 52, 54, 162, 173, 

176 
tensor product, 54, 157 

triangular, 30, 52, 67, 114, 139 

Bailey, D. H., 188 
band-pass filter, 25 
Bayesian prediction, 9, 223-226 
selection of priors, 224 

Benhenni, K., 155 
Berger, J. 0., 224 
Berger, R. L., 115 
Bessel function 
modified, 31, 179 
ordinary, 43 
best linear prediction, 2-3, 79, 98 
of integral, 150 
spectral properties, 63-65, 80, 

99-101 
best linear unbiased estimation, 7, 

9,76 
best linear unbiased prediction, 

7-9, 12,39,76,93, 138, 178, 
214 

and intrinsic random functions, 
39 

and kriging, 8 
Bayesian interpretation, 9 

Billingsley, P., ix, 6, 15, 16, 24, 27 
Bingham, N. H., 34, 48 



244 Index 

Blackwell, D., 134, 135, 140 
Bloomfield, P., 189 
Bochner's Theorem, 24, 36 
Bras, R. L., 52 
Brownian motion, 37, 41 

Cambanis, S., 155 
Cardoso, T. P., 70 
Carlin, J. B., 224 
Carr, J. R., 65, 70 
Carrier, G. F., 28, 93 
Casella, G., 115 
centered systematic sample, 144, 

157 
Chan, G., 94 
Christakos, G., 44, 52, 65, 70, 140 
Christensen, R., 199, 201 
Chung, K. L., 15, 27, 45 
Cleveland, W. S., 60, 61 
closed linear manifold, 5 
Cody, W. J., 51 
Cohn, S. E., 53 
complete, 4 
conditionally positive definite, 38 
consistent, 163, 165 
Constantine, A. G., 167 
contrast, 8, 170 
convergence in L 2 , 20 
covariance, 2 
Cox, D. R., 193, 204 
Cramer, H., 4 
Cressie, N., ix, 8, 19, 39, 40, 62, 94, 

171, 174, 199-201, 212, 215, 
216 

Crook, M., 93 
cross-validation, 215 
Crowder, M. J., 175, 190 
Crum, M. M., 54 

Dahlhaus, R., 172 
Dalenius, T., 62 
Daley, R., 8, 58 
Davison, A. C., 202 
Dawid, A. P., 12, 111, 140, 142 
De Oliveira, V., 50 
Diamond, P., 58 
Diggle, P. J., 50, 94, 171, 176 
discrete Fourier transform, 188 
Dubins, L. E., 134, 135, 140 

EBLUP, 199-211, 215 
Efron, B., 202 
entropy distance, 116 
equivalent, 110-129, 162-166 
Euler-Maclaurin formula, 154 
extrapolation, 10, 58, 62, 63, 65, 

70-72, 76, 78, 207, 210, 215, 
226 

eyeball estimate, 213 

Fast Fourier transform, 188 
Feller, W., 15, 34 
Ferguson, T. S., 163, 174 
filtering theory, 65 
Fisher information, 174, 178-187, 

190 
fixed-domain asymptotics, 11, 62, 

68,77, 129, 158, 162, 174 
Flannery, B. P., 172, 173, 188 
Fourier transform 
discrete, 188 
inversion formula, 25, 46 

fractional Brownian motion, 37 
Fuller, W. A., 160 

Gaspari, G., 53 
Gaussian measures, equivalence 

and orthogonality, 111-128 
Gaussian random field, 2 
BLP is conditional expectation, 3 
conditional distribution, 3 
Gel'fand, I. M., 40, 41 
Gelman, A., 224 
generalized autocovariance 

function, 38 
generalized random field, 40-41 
Genton, M. G., 223 
geometric anisotropy, 17 
Gidas, B., 160 
Gihman, I. I., 16, 23, 25, 26, 110 
Glazman, I. M., 4, 78 
Goldberger, A. S., 8 
Goldie, C. M., 34 
Golub, G. H., 128 
Goovaerts, P., 14, 52, 70, 212 
Gradshteyn, I. S., 35, 37, 48, 53 
Guyon, X., 172 

Haas, T. C., 173 



Hajek, J., 62 
Hall, P., 94, 167 
Handcock, M. S., x, 49, 52, 58, 177, 

187, 218, 224, 225, 227 
Hankel transform, 44 
inversion formula, 46 
Hannan, E. J., 76, 78 
Harville, D. A., 201, 226 
Has'minskii, R. Z., 174 
Hawkins, D. M., 171 
Hilbert space, 4-5, 26, 59, 210 
projection, 5 
separable, 4, 5 
Hinkley, D. V., 193, 202, 204 
Huijbregts, C. J., 8, 13, 17, 19, 29, 

39, 50, 52, 70, 212 
Hutchinson, M. F., 94 

Ibragimov, I. A., viii, 26, 27, 107, 
110, 114-118, 120-122, 127, 
129, 136, 174 

increasing-domain asymptotics, 11, 
62, 174 

infill asymptotics, see also 
fixed-domain asymptotics, 
62 

inner product space, 4 
complete, 4 
interpolation, 10, 58, 62, 64-66, 71, 

72,76,77,207,210,215,226 
intrinsic random function, 36-39, 

171,177,178 
Isaaks, E. H., 39, 52, 70 
isotropy, 17 
strict, 17 
weak,17 
Istas, J., 167 

Jeffreys, H., 140 
Jeffreys's law, 12, 111, 140-143, 

162, 167, 203-206 
Bayesian version, 141 
Jerri, A. J., 101 
Jeske, D. R., 201 
Journel, A. G., 8, 13, 17, 19, 29, 39, 

50, 52, 70, 212 

Kaluzny, S. P., 70 
Kedem, B., 50 

Index 245 

Kent, J. T., 167 
Kitanidis, P. K, 9, 52, 70, 169, 170 
Kolmogorov, A. N., 4, 76 
Kolmogorov formula, 79 
Krige, D. G., 8 
kriging, see also best linear 

prediction, best linear 
unbiased prediction, 8 

ordinary, 8 
simple, 8 
universal, 8 
Krook, M., 28 
Kullback, S., 140 
Kullback divergence, 116, 140, 203 
Kiinsch, H., 172 
Kuo, H., 110 

Lahiri, S. N., 174 
Lang, G., 167 
Laslett, G. M., 94, 187 
Leadbetter, M. R., 4 
likelihood ratio, 115 
linear manifold, 5 
closed,5 
linear space, 4 
Lipschitz, 46 
Lukacs, E., 27, 29, 33 

Mandelbrot, R R, 37 
Mardia, K V., 174 
Marshall, R. J., 174 
Matern, B., 31, 49, 62 
Matheron, G., vii, x, 13, 17, 18, 29, 

36, 38, 39, 144, 161, 162, 
166, 168 

maximum likelihood, see also 
restricted maximum 
likelihood, 163, 169, 178, 
188-198, 204 

asymptotic theory, 174-176 
McBratney, A. B., 94, 187 
McCullagh, P., 170, 171, 176 
McGilchrist, C. A., 170 
mean square continuous, 20 
mean square differentiable, 21, 26, 

69 
measurement error, 94-97, 182, 194 
and equivalence and 
orthogonality, 122 



246 Index 

measurement (continued) 
and microergodicity, 164 
effect on BLP, 95 
Meier, K., 177 
metric space, 4 
Micchelli, c. A., 39 
microergodic, 162-166, 174, 180, 

204 
Moyeed, R. A., 50, 94, 171, 176 
Muirhead, R. J., 229 
Miiller-Gronbach, T., 54 
Murua, A., 160 

NeIder, J. A., 170, 171, 176 
nested models, 13 
Neyman-Pearson Lemma, 115 
nonlinear prediction, 6 
norm, 4 
Novak, E., 62 
nugget effect, 94 
Nychka, D., 177 
Nyquist frequency, 85 

Objective analysis, 8 
Omre, H., 9 
ordinary kriging, 8 
orthogonal, 110-128, 162-166 

Pahl, P. J., 94 
Pannetier, Y., 70 
Papageorgiou, A., 54 
parametric bootstrap, 202 
parametric simulation, 202, 226 
Pasenchenko, O. Yu., 44, 48 
Patterson, H. D., 170 
Pearson, C. E., 28,93 
Pedder, M. A., 8 
Pettitt, A. N., 187 
Phillips, E. R., 36 
Pitman, E. J. G., 34-36 
plug-in method, 199-211, 214, 225 
P6lya's criteria, 54, 139 
positive definite, 16, 19 
complex, 23 
conditionally, 38 
Poskitt,94 
practical range, 50 
predictand, 2 
predictive density, 223 

Press, D. S., 172, 173, 188 
Priestley, M. B., 16, 28, 78, 85, 189 
principal irregular term, 28-29, 49, 

66,178 
coefficient of, 29 
Matern class, 32 
power of, 29 
prior distribution, 224 
profile log likelihood, 170 
projection, 5 
pseudo-BLP, 58, 66-76, 81-93, 

101-108, 110, 129-138, 207, 
210 

efficiency, 58, 60, 81 
presumed mse, 58, 59, 85 
Putter, H., 161, 202, 211 

Quenouille, M. H., 62 

Random field, 1 
complex, 22 
Gaussian, 2 
generalized, 40-41 
integral, 166 
integration of, 144 
periodic, 118, 188 
spectral representation, 23-24 
Rao, C. R., 61, 172, 229 
regularly varying function, 34 
restricted maximum likelihood, 

169-171,178,194,205 
Rice, J. A., 3 
Ripley, B. D., 55, 173 
Ritter, K., 54, 144, 157 
Rodriguez-Iturbe, I., 52 
Rozanov, Y. A., viii, 26, 27, 107, 

110, 114-118, 120-122, 127, 
129, 136 

Rubin, D. B., 224 
Ruhla, C., 55 
Ryzhik, I. M., 35, 37, 49, 53 

S+SPATIALSTATS, 70 
sampling theorem, 101, 108 
SAS, 70 
Schoenberg, I. J., 44 
Schowengerdt, R. A., 65 
score function, 174 
Seber, G. A. F., 201 



second-order structure, 57 
semivariogram, see also 

autocovariance function, 39 
empirical, 40, 171, 176, 212, 221 
separable, 4 
Shelly, A. A., 70 
Short, D. A., 50 
simple kriging, 8, 65 
Skorohod, A. V., 16, 23, 25, 26, 110 
Sparks, A. R., 61 
spectral density, 25 
nonintegrable, 36-42 
rational, 28 

spectral measure, 24 
spectral representation, 23-24, 26, 

63 
Spivak, M., 36 
splines, ix 
Srivastava, R. M., 39, 52, 70 
Starks, T. H., 61 
stationarity, 16-17 
strict, 16 
weak, 16, 20, 23 
Stegun, I., 31-33, 43, 47, 53, 54, 

154, 155, 167, 179 
Stein, E. M., 99, 121, 151 
Stein, M. L., 49, 52, 58, 65, 97, 99, 

105, 130, 132, 137, 138, 147, 
149-151,153,157,165,172, 
177, 180, 185, 195,204,228 

Stern, H. S., 224 
Swarztrauber, P. N., 189 
Sweeting, T. J., 174 
systematic designs, 144 
Szidarovszky, F., 161 

Tauberian theorems, 34, 35, 48, 
124 

Tawn, J. A., 50, 94,171,176 
Teugels, J. L., 34 
Teukolsky, S. A., 172, 173, 188 
Thiebaux, H. J., 8 
Thompson, R., 170 
Tibshirani, R. J., 202 
Toyooka, Y., 160 
Traub, J. F., 62 
Trebels, W., 46 
Tubilla, A., 147 
Tunicliffe-Wilson, G., 170 

Index 247 

turning bands, 17 

Universal kriging, 8 

Van Loan, C. F., 128 
Van Ness, J. W., 37 
Vanmarcke, E., 94 
variation distance, 134 
VARIOWIN, 70 
Vecchia, A. V., 172 
Vega, S. C., 70 
Vetteriing, W. T., 172, 173, 188 
Vilenkin, N. Ya., 40, 41 
Voss, R. F., 37 

Wackernagel, H., 14, 52, 168 
Wahba, G., ix, 177 
Wald, A., 163 
Wallis, J. R., x, 49, 218, 224, 225, 

227 
Warnes, J. J., 173 
Wasilkowski, G. W., 54, 62 
Weiss, G., 99, 121, 151 
White, L. V., 204 
white noise, 40 
Whittle, P., 172 
Wichura, M. J., x 
Wiener, N., 4, 76 
Wilson, P. D., 170 
Wood, A. T. A., 167 
Wozniakowski, H., 54, 62 

Yadrenko, M. I., 110, 118, 120, 121 
Yaglom, A. M., 23, 25, 28, 33, 41, 

42, 46, 78, 85, 121 
Yakowitz, S. J., 161 
Ying, Z., 54, 163, 175 
Ylvisaker, D., 54, 157 
Young, G. A., 161, 202, 211 

Zellner, A., 9 
Zimmerman, D. L., 172, 199-201 
Zimmerman, M. B., 200 
Zubrzycki, S., 62 



Springer Series in Statistics 
(continued from p. jj) 

Kotz/Johnson (Eds.): Breakthroughs in Statistics Volume II. 
Kotz/Johnson (Eds.): Breakthroughs in Statistics Volume ffi. 
Kres: Statistical Tables for Multivariate Analysis. 
KiichlerlS(Jrensen: Exponential Families of Stochastic Processes. 
Le Cam: Asymptotic Methods in Statistical Decision Theory. 
Le CamlYang: Asymptotics in Statistics: Some Basic Concepts. 
Longford: Models for Uncertainty in Educational Testing. 
Manoukian: Modem Concepts and Theorems of Mathematical Statistics. 
Miller, Jr.: Simultaneous Statistical Inference, 2nd edition. 
MostellerlWallace: Applied Bayesian and Classical Inference: The Case of the 
Federalist Papers. 

Parzen/fanabelKitagawa: Selected Papers of Hirotugu Akaike. 
Pollard: Convergence of Stochastic Processes. 
Pratt/Gibbons: Concepts of Nonparametric Theory. 
Ramsay/Silverman: Functional Data Analysis. 
Raoffoutenburg: Linear Models: Least Squares and Alternatives. 
ReadiCressie: Goodness-of-Fit Statistics for Discrete Multivariate Data. 
Reinsel: Elements of Multivariate Time Series Analysis, 2nd edition. 
Reiss: A Course on Point Processes. 
Reiss: Approximate Distributions of Order Statistics: With Applications 
to Non-parametric Statistics. 

Rieder: Robust Asymptotic Statistics. 
Rosenbaum: Observational Studies. 
Ross: Nonlinear Estimation. 
Sachs: Applied Statistics: A Handbook of Techniques, 2nd edition. 
SiirndaVSwenssonlWretman: Model Assisted Survey Sampling. 
Schervish: Theory of Statistics. 
Seneta: Non-Negative Matrices and Markov Chains, 2nd edition. 
Shaoffu: The Jackknife and Bootstrap. 
Siegmund: Sequential Analysis: Tests and Confidence Intervals. 
Simonoff: Smoothing Methods in Statistics. 
Singpurwall and Wilson: Statistical Methods in Software Engineering: Reliability 
and Risk. 

Small: The Statistical Theory of Shape. 
Stein: Interpolation of Spatial Data: Some Theory for Kriging 
Tanner: Tools for Statistical Inference: Methods for the Exploration of Posterior 
Distributions and Likelihood Functions, 3rd edition. 

Tong: The Multivariate Normal Distribution. 
van der VaartlWellner: Weak Convergence and Empirical Processes: With 
Applications to Statistics. 

Vapnik: Estimation of Dependences Based on Empirical Data. 
Weerahandi: Exact Statistical Methods for Data Analysis. 
West/Harrison: Bayesian Forecasting and Dynamic Models, 2nd edition. 
Wolter: Introduction to Variance Estimation. 
faglom: Correlation Theory of Stationary and Related Random Functions I: 
Basic Results. 


