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Preface

Decisions in general—good ones and bad ones—shape our world and direct our
lives. The success of the world society at local and global scale depends on its
ability to make the right decisions.

Engineers in particular, play an important role for society as they are directly
involved in establishing the basis for societal decision making.

The value of decisions is and will always be relative to the objectives as well as
the assumed boundary conditions. From a theoretical perspective, if we know what
we want and if we know how to get there, the task is straight forward. In reality,
however, the situation is quite different, we might be able to agree on what we
want but we are rarely sure on how to get there. The reason for this is simple but
challenging, we do not exactly know what the consequences of different decision
alternatives are because we do not completely understand the world we are living
in. Our knowledge is limited and imprecise, and we make errors.

Statistics and probability theory is often presented to students in general, and in
engineering in particular, as a topic of value in itself and for this reason it is seldom
really appreciated for what it can be used for, namely as a basis for assessing infor-
mation and organizing the process of acquiring knowledge in pursuit of supporting
decision making.

This book has exactly this aim, namely to present statistics and probability the-
ory in the context of supporting engineering decision making. It is assumed that the
reader has only little or no prior knowledge on the subject of statistics and prob-
ability theory, why this book would be appropriate for undergraduate engineering
students. Moreover, unlike many standard textbooks on the same subject, the per-
spective of the present book is to focus on the use of the theory for the purpose of
engineering model building and decision making.

The book is subdivided into the following seven chapters, each consisting of one
or more lectures as fitting for a typical semester (see also Fig. 1):

Chapter 1 Engineering decisions under uncertainty
Chapter 2 Basic probability theory
Chapter 3 Descriptive statistics
Chapter 4 Uncertainty modeling

vii
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Fig. 1 Illustration of the modules of the course and their didactical roles

Chapter 5 Estimation and model building
Chapter 6 Methods of structural reliability
Chapter 7 Bayesian decision analysis

Chapter 1 first provides a motivation for the application of statistics and proba-
bility as a basis for developing engineering models and for risk based decision mak-
ing. Thereafter, Chap. 2 introduces the basic theory of probability. Subsequently,
in Chap. 3 a selection of tools is provided, which enables engineers to assess and
communicate data in a condensed form, namely descriptive statistics. In Chap. 4
an introduction to uncertainty is provided together with a description of the vari-
ous building stones required to represent uncertainties in engineering modeling in
terms of random variables and processes. In Chap. 5 the main focus is directed to
the aspects of postulating models, assessing model parameters and verifying mod-
els. Chapter 6 shows how, on the basis of formulated probabilistic models of un-
certain variables, probabilities of events typical in engineering applications may be
assessed. Finally, in Chap. 7 it is shown how the engineering models of uncertain-
ties and their probabilistic descriptions can be utilized in a systematic framework
for engineering decision making.

It is believed that the reader who has completed the present script, will be able
to:
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• assess data based on observations and/or experiment results and present these in
a standardized and unambiguous form,

• formulate and validate simple engineering models with due consideration of the
associated uncertainties due to lack of knowledge and data as well as natural
inherent variability,

• perform simple probability assessments in order to evaluate the probability of the
appropriate performance of engineering activities,

• formulate and solve simple risk based decision problems.

At the end of each chapter, there is a set of small principal exercises which can
be used to check and practice the acquired knowledge and skills. The solutions to
these are given in the appendix.

Michael Havbro FaberCopenhagen, Denmark
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Chapter 1
Engineering Decisions Under Uncertainty

Lecture 1 (Aim of the Present Lecture) The aim of the present lecture is
to introduce the problem context of societal decision making and to outline
how the concept of risk may provide a means for rational decisions in engi-
neering. Focus is directed to the understanding of the role of the engineer for
the development and maintenance of societal functions.
On the basis of the lecture it is expected that the reader will acquire knowledge
on the following issues:

• What is sustainability?
• What is the role of engineering in society?
• How can aspects of sustainability be related to life safety and cost optimal

decision making?
• What are the main different types of consequences to be considered in risk

assessment?
• Why do possible conflicts exist between economy, safety and environment?
• Why is engineering decision making influenced by uncertainties?
• What is the role of probability and consequence in decision making?
• What is the definition of risk?
• Which are the main phases to be considered in life cycle risk assessments

in engineering decision making?

1.1 Introduction

During the last two decades, there has been a growing awareness that our world
only has limited non-renewable natural resources such as energy and materials but
also limited renewable resources such as drinking water, clean air etc. This led the
Brundtland Commission in 1987 to the conclusion that sustainable development is
defined as a development “that meets the needs of the present without compromis-

M.H. Faber, Statistics and Probability Theory,
Topics in Safety, Risk, Reliability and Quality 18,
DOI 10.1007/978-94-007-4056-3_1, © Springer Science+Business Media B.V. 2012

1



2 1 Engineering Decisions Under Uncertainty

ing the ability of future generations to meet their own needs”. Sustainable decision
making is thus presently understood as based on a joint consideration of society,
economy and environment. In regard to environmental impacts the immediate im-
plications for the planning, design and operation of civil engineering infrastructures
are clear: save energy, save non-renewable resources and find out about re-cycling
of building materials, do not pollute the air, water or soil with toxic substances, save
or even regain arable land and much more.

For civil engineering infrastructure and facilities in general the financial aspect is
also of crucial importance. Civil engineering infrastructure is financed by the public
via taxes, public charges or other. In the end, it is the individuals of society who pay
and, of course, also enjoy the benefits derived from their existence. However, seen
in the light of the conclusions of the Brundtland report (Brundtland [5]), intergen-
erational equity must be accounted for. Our generation must not leave the burden of
maintenance or replacement of too short-lived structures to future generations and
it must not use more of the financial resources than those really available. In this
sense, civil engineering facilities should be optimal not only from a technological
point of view but also from a sustainability point of view.

It is in general a concern how society may maintain and even improve the quality
of life. All activities in society should thus aim at improving the life expectancy
and increasing the gross domestic product (GDP), resulting in the conclusion that
investments into life saving activities must be in balance with the resulting increase
in life expectancy. For the present, it is just stated that this problem constitutes a
decision problem that can be analyzed using cost benefit analysis (see Chap. 7).

At present, approximately 10 to 20% of the GDP of developed countries is being
re-invested into life saving activities such as public health, risk reduction and safety.
For example, the economic burden of degradation of infrastructure amounted to
about 10% of the GDP for the USA in 1997 (see Alsalam et al. [1]). From these
numbers it becomes apparent that the issue of safety and well being of the indi-
viduals in society as well as the durability of infrastructure facilities has a high
importance for the performance of society and the quality of life.

The present book attempts to provide the basic tools for supporting decision mak-
ing in the context of planning, design and maintenance of civil engineering activities
and structures. Engineering facilities such as bridges, power plants, dams and off-
shore platforms are all intended to benefit, in one way or another the quality of life
of the individuals of society. Therefore, whenever such a facility is planned, it is a
prerequisite that the benefit of the facility can be proven considering all phases of
the life of the facility, i.e. including design, manufacturing, construction, operation
and eventually decommissioning. If this is not the case, clearly the facility should
not be established.

1.2 Societal Decision Making and Risk

On a societal level a beneficial engineered facility is normally understood as:

• being economically efficient in serving a specific purpose
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• fulfilling given requirements with regard to the safety of the personnel directly
involved with or indirectly exposed to the facility

• fulfilling given requirements to limit the adverse effects of the facility on the
environment.

Based on these requirements, the ultimate task of the engineer is to make deci-
sions or to provide the decision basis for others in order to ensure that engineered
facilities are established in such a way as to provide the largest possible benefit.

1.2.1 Example 1.1—Feasibility of Hydraulic Power Plant

Consider as an example the decision problem of exploitation of hydraulic power.
A hydraulic power plant project involving the construction of a water reservoir in a
mountain valley is planned. The benefit of the hydraulic power plant is for simplic-
ity assumed to be associated only with the monetary income from selling electricity
to consumers. The decision problem thus is simplified to compare the costs of estab-
lishing, operating and eventually decommissioning the hydraulic power plant with
the incomes to be expected during the service life of the plant. In addition, it must
be ensured that the safety of the personnel involved in the construction and opera-
tion of the plant and the safety of third persons, i.e. the individuals of the society in
general, is satisfactorily high.

Different solutions for establishing the power plant may be considered and their
efficiency can be measured in terms of the expected income relative to the cost
of establishing the power plant. However, a number of factors are important for the
evaluation of the income and the costs of establishing the power plant. These are e.g.
the period of time when the plant will be operating and produce electricity and the
capacity of the power plant. Moreover, the future income from selling electricity will
depend on the availability of water, which depends on the future snow and rainfall.
Further, the market situation may change and competing energy recourses such as
thermal and solar power may cause a reduction of the market price on electricity in
general.

In addition, the different possible solutions for establishing the power plant will
have different costs and different implications for the safety for persons. Obviously,
the more the capacity the power plant will have, the higher the dam and the larger the
construction costs will be. At the same time, the potential flooding (consequence of
dam failure) will be larger in case of dam failure and more people would be injured
or die, see Fig. 1.1.

The safety of the people in a town downstream of the reservoir will also be in-
fluenced by the load carrying capacity of the dam structure relative to the pressure
loading due to the water level in the reservoir. The strength of the dam structure de-
pends in turn on the material characteristics of the dam structure and the properties
of the soil and rock on which it is founded. As these properties are subject to uncer-
tainty of various sources as shall be seen later, the load carrying capacity relative to
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Fig. 1.1 Water reservoir/dam for exploitation of hydraulic power

Table 1.1 Interrelation of benefits, costs and safety for the reservoir

Reservoir
water level

Load carrying capacity
of dam structure

Income Costs Consequence
of dam failure

Probability of
dam failure

Low Low Small Low Small High
Medium Medium Medium
High High Low

Medium Low Medium Low Medium High
Medium Medium Medium
High High Low

High Low Large Low Large High
Medium Medium Medium
High High Low

the loading may be expressed in terms of the probability that the loading will exceed
the load carrying capacity, or equivalently, the probability of dam failure.

Finally, the environmental impact of the power plant will depend on the wa-
ter level in the reservoir: the higher the water level, the more land will be flooded
upstream of the dam structure and various habitats for animals and birds will be de-
stroyed. On the other hand, the water reservoir itself will provide a living basis for
new species of fish and birds and may provide a range of recreational possibilities
for people such as sailing and fishing.

In order to evaluate whether or not the power plant is feasible it is useful to
make a list of the various factors influencing the benefit and their effects. As the
problem may be recognized to be rather complex, only the interrelation of the water
level in the reservoir with the following factors will be considered: the load carrying
capacity of the dam structure, the costs of constructing the dam structure and the
implications on the safety of the people living in a town down-stream the power
plant.

From Table 1.1 which is clearly a simplified summary of the complex interrela-
tions of the various factors influencing the benefit of realizing the power plant, it is
seen that the various factors have different influences and that the different attributes
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Fig. 1.2 Risk contributions from different service life phases to be considered at the planning
stage

such as income, costs and safety are conflicting. In the table it is assumed that the
medium load carrying capacity of the dam structure corresponds to a medium prob-
ability of dam failure but, of course, other combinations are also possible. Consider
the case with a high water level in the reservoir. In this case, the potential income is
large but the costs of constructing the dam structure will also be high. Furthermore,
the potential consequences in case of dam failure will be large as well. Table 1.1
clearly points to the true character of the decision problem, namely that the optimal
decision depends on the consequences should something go wrong, and moreover,
the probability that something goes wrong. The product of these two factors is called
the risk, a measure that will be considered in much more detail in the chapters to
follow.

Furthermore, not only the load carrying capacity of the dam structure is associ-
ated with uncertainty, but, as indicated previously, also the income expected from
the power plant, due to uncertainties in the future market situation. In a similar way,
the costs of constructing the power plant are also uncertain as various difficulties
encountered during the construction, such as unexpected rock formations, delay in
construction works due to problems with material supplies, etc. may lead to addi-
tional costs.

When deciding on whether or not to establish the hydraulic power plant it is thus
necessary to be able to assess consequences and probabilities—two key factors for
the decision problem.

Both consequences and probabilities vary through the life of the power plant and
this must be taken into account as well. In the planning phase it is necessary to
consider the risk contributions from all subsequent phases of its life-cycle including
decommissioning, see Fig. 1.2.

It is important to recognize that different things may go wrong during the differ-
ent phases of the service life, including events such as mistakes and errors during
design and failures and accidents during construction, operation and decommission-
ing. The potential causes of errors, mistakes, failures and accidents may be numer-
ous, including human errors, failures of structural components, extreme load situa-
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tions and not least natural hazards. Careful planning during the very first phase of a
project is the only way to control the risks associated with such events.

As an illustration, the dam structure must be designed such that the safety of the
dam is ensured in all phases of the service life, taking into account yet another factor
of uncertainty, namely the future deterioration, but also the quality of workmanship,
the degree of quality control implemented during construction and not least the fore-
seen strategies for the inspection and maintenance of the structures and mechanical
equipment during the operation of the power plant. As a final aspect concerning
the structures, these should at the end of the service life be in such a condition that
the work to be performed during the decommissioning of the power plant can be
performed safely for both the persons involved and the environment.

A final fundamental problem arises with regard to the question—how large are
the acceptable risks?—what is one prepared to invest and/or pay for the purpose of
getting a potential benefit? The decision problem of whether or not to establish the
hydraulic power plant is thus seen to be a decision problem involving a significant
element of uncertainty.

The mathematical basis for the treatment of such decision problems is known
as decision theory. Important aspects of decision theory are the assessment of con-
sequences and probabilities. In a very simplified manner one can say that risk and
reliability analysis in civil engineering is concerned with the problem of decision
making subject to uncertainty.

1.3 Definition of Risk

In daily conversation risk is a rather common notion used interchangeably with
words like chance, likelihood and probability to indicate that people are uncertain
about the state of the activity, item or issue under consideration. For example, the
risk of getting cancer due to cigarette smoking is discussed, the chance of succeed-
ing to develop a vaccine against the HIV virus in 2020, the likelihood of getting a
“Royal Flush” in a Poker game and the probability of a major earthquake occurring
in the bay area of San Francisco within the next decade.

Even though it may be understandable from the context of the discussion what is
meant by the different words, it is necessary in the context of engineering decision
making that those involved are precise in the understanding of risk. Risk is to be un-
derstood as the expected consequences associated with a given activity, the activity
being e.g. the construction, operation and decommissioning of a power plant.

Considering an activity with only one event with potential consequences C the
risk R is the probability that this event will occur P multiplied with the conse-
quences given the event occurs i.e.:

R = PC (1.1)

If e.g. n events with consequences Ci and occurrence probabilities Pi may result
from the activity, the total risk associated with the activity is assessed through the
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sum of the risks from the individual possible events, i.e.:

R =
n∑

i=1

PiCi (1.2)

This definition of risk is consistent with the interpretation of risk used e.g. in
the insurance industry. Risks may e.g. be given in terms of Euros, Dollars or the
number of human fatalities. Even though most risk assessments have some focus
on the possible negative consequences of events, the definitions in Eqs. 1.1–1.2 are
also valid in the case where benefits are taken into account. In fact, and as will be
elaborated in Chap. 7, in this case the definitions in Eqs. 1.1–1.2 are more general
and consistent with expected utility as basis for decision analysis.

1.4 Self Assessment Questions/Exercises

1. What is meant by the term “sustainable development” and why is it important
for engineering decision making?

2. What is normally understood by the term a beneficial engineered facility or ac-
tivity?

3. How can the risk of an event be defined and how can it be expressed analytically?
4. What is meant by the term “acceptance risks”?
5. Considering an activity with only one event with potential consequences, the

associated risk is the probability that this event will occur multiplied with the
consequences given the event occurs.
Which of the following events is associated with the highest risk?

Event 1 2 3
Event probability 0.10 0.01 0.20
Consequences 100 SFr 500 SFr 100 SFr
Risk



Chapter 2
Basic Probability Theory

Lecture 2 (Aim of the Present Lecture) The aim of the present lecture is
to introduce the basics of set and probability theory. Different interpretations
of the important concept of probability are provided and it is outlined that the
Bayesian probability interpretation facilitates an integration of the other inter-
pretations. The basic axioms of probability theory are given and the important
results regarding conditional probabilities and the associated Bayes’ rule are
outlined.
On the basis of the lecture it is expected that the reader should acquire knowl-
edge and skills with regard to:

• Which are the different interpretations of probability?
• What is a sample space and how can events be illustrated?
• What is an event and what is a complementary event?
• How are intersections and unions of sets defined?
• How can operations involving intersections and unions of events be per-

formed?
• Which are the axioms of probability theory?
• Which are the implications of mutual exclusivity between events?
• What is a conditional probability and how may it be evaluated?
• Which are the implications of independence?
• What is Bayes’ rule, and how can it be interpreted?
• How can Bayes’ rule be applied for probability updating?

2.1 Introduction

Probability theory forms the basis of the assessment of probabilities of occurrence
of uncertain events and thus constitutes a cornerstone in risk and decision analysis.
Only when a consistent basis has been established for the treatment of the uncer-

M.H. Faber, Statistics and Probability Theory,
Topics in Safety, Risk, Reliability and Quality 18,
DOI 10.1007/978-94-007-4056-3_2, © Springer Science+Business Media B.V. 2012
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10 2 Basic Probability Theory

tainties influencing the probability that events with possible adverse consequences
may occur, it is possible to assess the risks associated with a given activity and thus
to establish a rational basis for decision making.

The level of uncertainty associated with a considered activity or phenomenon
may be expressed by means of purely qualitative statements such as “the chance is
good” or “the likelihood is low” but may also be quantified in terms of numbers or
percentages. However, the different words all carry the meaning of probability. In
the following section this notion, and especially the theoretical framework for its
quantification, will be investigated in more detail.

2.2 Definition of Probability

The purpose of the theory of probability is to enable the quantitative assessment
of probabilities but the real meaning and interpretation of probabilities and proba-
bilistic calculations is not a part of the theory. Consequently, two people may have
completely different interpretations of the probability concept, but still use the same
calculus. In the following sections three different interpretations of probability are
introduced and discussed based on simple cases. A formal presentation of the ax-
ioms of probability theory is provided in Sect. 2.4.

2.2.1 Frequentistic Definition

The frequentistic definition of probability is the typical interpretation of probability
by the experimentalist. In this interpretation the probability P(A) is simply the rel-
ative frequency of occurrence of the event A as observed in an experiment with n

trials, i.e. the probability of an event A is defined as the number of times that the
event A occurs divided by the number of experiments that are carried out:

P(A) = lim
NA

nexp
for nexp → ∞ (2.1)

NA = number of experiments where A occurred, nexp = total number of experi-
ments.

If a frequentist is asked what is the probability of achieving a “head” when flip-
ping a coin, she/he would principally not know what to answer until she/he would
have performed a large number of experiments. If say after 1000 experiments (flips
with the coin) it is observed that “head” has occurred 563 times, the answer would
be that the probability of achieving a “head” is 0.563. However, as the number of
experiments is increased the probability would converge towards 0.5. In the mind of
a frequentist, probability is a characteristic of nature.
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2.2.2 Classical Definition

The classical probability definition originates from the days when probability cal-
culus was founded by Pascal and Fermat.1 The inspiration for this theory can be
found in the games of cards and dice. The classical definition of the probability of
the event A can be formulated as:

P(A) = nA

ntot
(2.2)

nA = number of equally likely ways by which an experiment may lead to A, ntot =
total number of equally likely ways in the experiment.

According to the classical definition of probability, the probability of achieving
a “head” when flipping a coin would be 0.5 as there is only one possible way to
achieve a “head” and there are two equally likely outcomes of the experiment.

In fact there is no real contradiction to the frequentistic definition, but the follow-
ing differences may be observed:

• The experiment does not need to be carried out as the answer is known in advance.
• The classical theory gives no solution unless all equally possible ways can be

derived analytically.

2.2.3 Bayesian Definition

In the Bayesian interpretation the probability P(A) of the event A is formulated as
a degree of belief that A will occur:

P(A) = degree of belief that A will occur (2.3)

Coming back to the coin-flipping problem the Bayesian would argue that there
are two possibilities, and as she has no preferences as to “head” or “tail” she would
judge the probability of achieving a “head” to be 0.5.

The degree of belief is a reflection of the state of mind of the individual per-
son in terms of experience, expertise and preferences. In this respect the Bayesian
interpretation of probability is subjective or more precise—person-dependent. This
opens up the possibility that two different persons may assign different probabilities
to a given event and thereby contradicts the frequentist interpretation that probabil-
ities are a characteristic of nature.

The Bayesian statistical interpretation of probability includes the frequentistic
and the classical interpretation in the sense that the subjectively assigned probabil-
ities may be based on experience from previous experiments (frequentistic) as well
as considerations of e.g. symmetry (classical).

1Blaise Pascal, philosopher and mathematician, 1623–1662; Pierre de Fermat, jurist and mathe-
matician, 1601–1665. Definition (2.2) is often named after Pierre-Simon de Laplace, mathemati-
cian, 1749–1827.
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The degree of belief is also referred to as a prior belief or prior probability, i.e.
the belief, which may be assigned prior to obtaining any further knowledge. It is
interesting to note that Immanuel Kant2 developed the philosophical basis for the
treatment of subjectivity at the same time as Thomas Bayes3 developed the mathe-
matical framework later known as Bayesian statistics.

Modern structural reliability and risk analysis is based on the Bayesian interpre-
tation of probability. However, the degree of freedom in the assignment of prob-
abilities is in reality not as large as indicated in the above. In a formal Bayesian
framework the subjective element should be formulated before the relevant data are
observed. Arguments of objective symmetrical reasoning and physical constraints,
of course, should be taken into account.

2.2.4 Practical Implications of the Different Interpretations
of Probability

In some cases probabilities may adequately be assessed by means of frequentistic
information. This is e.g. the case when the probability of failure of mass produced
components are considered, such as pumps, light bulbs and valves. However, in
order to utilize reported failures for the assessment of probability of failure for such
components it is a prerequisite that the components are in principle identical, that
they have been subject to the same operational and/or loading conditions and that
the failures can be assumed to be independent.

In other cases when the considered components are e.g. bridges, high-rise build-
ings, ship structures or unique configurations of pipelines and pressure vessels, these
conditions are not fulfilled. This is because the number of identical structures may
be very small (or even just one) and the conditions in terms of operational and
loading conditions are normally significantly different from structure to structure.
In such situations, the Bayesian interpretation of probability is far more appropri-
ate.

The basic idea behind Bayesian statistics is that lack of knowledge should be
treated by probabilistic reasoning, similarly to other types of uncertainty. In reality,
decisions have to be made despite the lack of knowledge and probabilistic tools are
a great help in this process.

2.3 Sample Space and Events

Considering e.g. the compressive strength of concrete, this material characteristic
may be estimated by performing laboratory experiments on standardized test spec-
imens (cylinders or cubes). The test results will, however, be different from one

2Immanuel Kant, philosopher, 1724–1804.
3Thomas Bayes, reverent and mathematician, 1702–1761.
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another and the concrete compressive strength shall thus be assumed to be an uncer-
tain quantity or a random quantity. The set of all possible outcomes of the concrete
compressive strength experiments is called the sample space (denoted Ω) for the
random quantity—the concrete compressive strength. In this example the sample
space is the open interval Ω =]0;∞[, i.e. the set of all positive real numbers. In
this case, the sample space is furthermore continuous but in other cases (e.g. when
considering the outcome of throwing a dice) the sample space can also be discrete
and countable.

An event is defined as a subset of a sample space and thus a set of sample points.
If the subset is empty (i.e. contains no sample points) it is said to be impossible. An
event is said to be certain if it contains all sample points in the sample space (i.e. the
event is identical to the sample space).

Consider the events E1 and E2 shown in Fig. 2.1. The subset of sample points
belonging to the event E1 or the event E2 is denoted as the union of the events E1
and E2 written as E1 ∪ E2.

The subset of sample points belonging to E1 and E2 is called the intersection
of E1 and E2 and is written as E1 ∩ E2. The intersection of these two events is
illustrated in the right portion of Fig. 2.1.

The two events are said to be mutually exclusive if they are disjoint (i.e. if they
have no common sample points). In this case, the intersection of E1 and E2 is empty
(i.e.E1 ∩ E2 = ∅), where ∅ denotes the empty set.

Consider the event E in the sample space Ω . The event containing all sample
points in Ω , which are not included in E is called the complementary event to E

and denoted Ē. It then follows directly that E ∪ Ē = Ω and that E ∩ Ē = ∅.
It can be shown that the intersection and union operations obey the following

commutative, associative and distributive laws:

E1 ∩ E2 = E2 ∩ E1

E1 ∩ (E2 ∩ E3) = (E1 ∩ E2) ∩ E3

E1 ∪ (E2 ∪ E3) = (E1 ∪ E2) ∪ E3 (2.4)

E1 ∩ (E2 ∪ E3) = (E1 ∩ E2) ∪ (E1 ∩ E3)

E1 ∪ (E2 ∩ E3) = (E1 ∪ E2) ∩ (E1 ∪ E3)

Fig. 2.1 Venn diagrams illustrating the union of events (left) and the intersection of events (right)
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From which the following laws (called De Morgan’s laws) may be derived:

E1 ∩ E2 = Ē1 ∪ Ē2

E1 ∪ E2 = Ē1 ∩ Ē2

(2.5)

2.4 The Three Axioms of Probability Theory

Probability theory is based on the following three axioms:

Axiom 1

0 ≤ P(E) ≤ 1 (2.6)

for any given event E ⊂ Ω where P is the probability measure.

Axiom 2

P(Ω) = 1 (2.7)

where Ω is the sample space.

Axiom 3 Given that E1,E2, . . . is a sequence of mutually exclusive events (i.e.
E1 ∩ E2 = ∅ etc.) then:

P

( ⋃
i ≥1

Ei

)
=

∑
i ≥1

P(Ei) (2.8)

These three axioms of probability theory form the sole basis of the theory of
probability.

2.5 Conditional Probability and Bayes’ Rule

Conditional probabilities are of special interest in risk and reliability analysis as they
form the basis of the updating of probability estimates based on new information,
knowledge and evidence.

The conditional probability of the event E1 given that the event E2 has occurred
is written as:

P(E1|E2) = P(E1 ∩ E2)

P (E2)
(2.9)

It is seen that the conditional probability is not defined if the conditioning event
is the empty set, i.e. when P(E2) = 0.

The event E1 is said to be probabilistically independent of the event E2 if:

P(E1|E2) = P(E1) (2.10)
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Fig. 2.2 Illustration of the rule of Bayes

implying that the occurrence of the event E2 does not affect the probability of E1.
From Eq. 2.9 the probability of the event E1 ∩ E2 may be given as:

P(E1 ∩ E2) = P(E1|E2)P (E2) (2.11)

and it follows immediately that if the events E1 and E2 are independent, then:

P(E1 ∩ E2) = P(E1)P (E2) (2.12)

Based on the above findings, the important Bayes’ rule can be derived.
Consider the sample space Ω divided into n mutually exclusive events E1,E2,

. . . ,En (see also Fig. 2.2, where the case of n = 8 is considered).
Furthermore, let the event A be an event in the sample space Ω . Then the proba-

bility of the event A, i.e. P(A), can be written as:

P(A) = P(A ∩ E1) + P(A ∩ E2) + · · · + P(A ∩ En)

= P(A|E1)P (E1) + P(A|E2)P (E2) + · · · + P(A|En)P (En)

=
n∑

i=1

P(A|Ei)P (Ei) (2.13)

this is also referred to as the total probability theorem.
From Eq. 2.9 there is P(A|Ei)P (Ei) = P(Ei |A)P (A) implying that:

P(Ei |A) = P(A|Ei)P (Ei)

P (A)
(2.14)

Now by inserting Eq. 2.14 into Eq. 2.13, the Bayes’ rule results:

P(Ei |A) = P(A|Ei)P (Ei)∑n
j=1 P(A|Ej )P (Ej )

(2.15)

In Eq. 2.14 P(Ei |A) is called the posterior probability of Ei , the conditional
term P(A|Ei) is often referred to as the likelihood (i.e. the probability of observing
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a certain state given the true state). The term P(Ei) is the prior probability of the
event Ei (i.e. prior to the knowledge about the event A).

As mentioned previously, the Bayes’ rule is extremely important, and in order to
facilitate its appreciation a few illustrative applications will be given in the following
section.

2.5.1 Example 2.1—Using Bayes’ Rule for Concrete Assessment

A reinforced concrete beam is considered. From experience it is known that the
probability that corrosion of the reinforcement has initiated (the event CI) is
P(CI) = 0.01. However, in order to know the condition more precisely an inspec-
tion method (non-destructive) has been developed.

The quality of the inspection method may be characterized by the probability that
the inspection method will indicate initiated corrosion given that corrosion has initi-
ated P(I |CI) (the probability of detection or equivalently the likelihood of an indi-
cation I given corrosion initiation CI) and the probability that the inspection method
will indicate initiated corrosion given that no corrosion has initiated P(I |CI) (the
probability of erroneous findings or the likelihood of an indication given no corro-
sion initiation).

For the inspection method at hand the following characteristics have been estab-
lished:

P(I |CI) = 0.8

P(I |CI ) = 0.1

An inspection of the concrete beam is conducted with the result that the inspec-
tion method indicates that corrosion has initiated. Based on the findings from the
inspection, what is the probability that corrosion of the reinforcement has initiated?

The answer is readily found by application of Bayes’ rule:

P(CI|I ) = P(I |CI)P (CI)

P (I |CI)P (CI) + P(I |CI )P (CI )
= P(I ∩ CI)

P (I)
(2.16)

With P(I), the probability of obtaining an indication of corrosion at the inspec-
tion:

P(I) = P(I |CI)P (CI) + P(I |CI )P (CI ) = 0.8 · 0.01 + 0.1 · (1 − 0.01) = 0.107

and P(I ∩ CI) the probability of receiving an indication of initiated corrosion and
at the same time to have initiated corrosion:

P(I ∩ CI) = P(I |CI)P (CI) = 0.8 · 0.01 = 0.008
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Thus, the probability that corrosion of the reinforcement has initiated given an
indication of initiated corrosion by the inspection method is:

P(CI|I ) = 0.008

0.107
= 0.075

The probability of initiated corrosion, given an indication of initiated corrosion,
is surprisingly low. This is due to the high probability of an erroneous indication
of initiated corrosion by the inspection method relative to the small probability of
initiated corrosion (i.e. the inspection method is not sufficiently accurate for the
considered application).

2.5.2 Example 2.2—Using Bayes’ Rule for Bridge Upgrading

An old reinforced concrete bridge is reassessed in connection with an upgrading of
the allowable traffic (see also Schneider [11]). The concrete compressive strength
class is unknown but concrete cylinder samples may be taken from the bridge and
tested in the laboratory.

The following classification of the concrete is assumed:

B1 : 0 ≤ σc < 30

B2 : 30 ≤ σc < 40

B3 : 40 ≤ σc

where σc is the compressive strength of concrete.
Even though the concrete class is unknown, experience with similar bridges sug-

gests that the probability of the concrete of the bridge belonging to class B1, B2
and B3 is 0.65, 0.24 and 0.11, respectively. This information comprises the prior
information—prior to any experiment result.

The test method is not perfect in the sense that even though the test indicates a
value of the concrete compressive strength belonging to a certain class, there is a
certain probability that the concrete belongs to another class. The likelihoods for
the considered test method are given in Table 2.1.

It is assumed that one test is performed and it is found that the concrete compres-
sive strength is equal to 36.2 MPa, i.e. in the interval of class B2.

Using Bayes’ rule, the probability that the concrete belongs to one of the different
classes may now be updated. The posterior probability that the concrete belongs to
class B2 is given by:

P(B2|I = B2) = 0.61 · 0.24

0.61 · 0.24 + 0.28 · 0.65 + 0.32 · 0.11
= 0.40

The posterior probabilities for the other classes may be calculated in a similar
manner, the results are given in Table 2.1.
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Table 2.1 Summary of prior probabilities, likelihoods of experiment outcomes and posterior prob-
abilities given one test result in the interval of class B2

Concrete class Prior probability Likelihood P (I |Bi) Posterior probability

I = B1 I = B2 I = B3

B1 0.65 0.71 0.28 0.01 0.50

B2 0.24 0.18 0.61 0.21 0.40

B3 0.11 0.02 0.32 0.66 0.10

2.6 Self Assessment Questions/Exercises

1. A person is asked what is the probability for achieving a “head” when flip-
ping a coin. The person after 1000 experiments (flips with the coin) observes
that “head” has occurred 333 times and hence answers that the probability for
“head” is 0.333. On which interpretation of probability is this estimation based
on?

2. How can the conditional probability of an event E1, given that the event E2 has
occurred, be written?

3. In probability theory the probability, P(A), of an event A can take any value
within the following boundaries:
0 ≤ P(A) ≤ 1 �
−1 ≤ P(A) ≤ 1 �
−∞ < P(A) < ∞ �

4. If the intersection of two events, A and B corresponds to the empty set ∅, i.e.
A ∩ B = ∅, the two events are:
Mutually exclusive. �
Independent. �
Empty events. �

5. Which the following expressions is(are) correct?
The probability of the union of two events A and B is equal to the sum of the
probability of event A and the probability of event B , given that the two events
are mutually exclusive. �
The probability of the union of two events A and B is equal to the probability of
the sum of the two events A and event B , given that the two events are mutually
exclusive. �
The probability of the intersection of two events A and B is equal to the product
of the probability of event A and the probability of event B , given that the two
events are mutually exclusive. �
The probability of the intersection of two events A and B is equal to the product
of the probability of event A and the probability of event B , given that the two
events are independent. �

6. The probability of the intersection of two mutually exclusive events is equal to:
The product of the probabilities of the individual events. �
The sum of the probabilities of the individual events. �
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The difference between the probabilities of the individual events. �
One (1). �
Zero (0). �

7. Which of the following statements is correct?
An event A is defined as a subset of a sample space Ω . �
A sample space Ω is defined as a subset of an event A. �

8. The probability of the union of two not mutually exclusive events A and B

is given as: P(A ∪ B) = P(A) + P(B) − P(A ∩ B). It is provided that the
probability of event A is equal to 0.1, the probability of event B is 0.1 and
the probability of event B given event A, i.e. P(B|A) is 0.8. Which result is
correct?
P(A ∪ B) = −0.6 �
P(A ∪ B) = 0.12 �
P(A ∪ B) = 0.04 �

9. For an event A in the sample space Ω , event Ā represents the complementary
event of event A. Which one(s) of the following expressions are correct?
A ∪ Ā = Ω �
A ∩ Ā = Ω �
A ∪ Ā = ∅ �

10. The commutative, associative and distributive laws describe how to:
Operate with intersections of sets. �
Operate with unions of sets. �
None of the above. �

11. Research in ETH is often funded by the Swiss National Foundation of research
(SNF). The normal procedure is that a Professor submits a proposal for a new
project. Experts working for SNF read the proposal and they may come to one
of the following decisions:
D1: the proposal is accepted and the project will be funded.
D2: the proposal should be revised by the Professor and resubmitted to SNF.
D3: the proposal is not accepted and hence no funding is provided.
Professor Muster works at ETH. During the past few years he has submit-
ted many proposals to SNF. Based on experience, over many years, Professor
Muster in general assesses that when he submits a proposal the probabilities
associated with the possible final decisions of SNF are as follows:

P(D1) = 0.45, P (D2) = 0.35, P (D3) = 0.2

By coincidence, just at the time when Professor Muster considers to submit a
new proposal to SNF, he meets Dr. Beispiel. Dr. Beispiel used to work at SNF
as one of the experts who review proposals and make the final decisions. Pro-
fessor Muster kindly asks Dr. Beispiel to have a look at the new proposal before
submitting it to SNF with the purpose of assessing the probabilities that the pro-
posal would be accepted as it is. Of course Dr. Beispiel cannot say with certainty
what will be the final SNF decision. However, his assessment can be considered
as an indication, Ij , of the final decision of SNF. Based on experience from pre-
vious assessments and final decisions the conditional probabilities, P(Ij |Di),



20 2 Basic Probability Theory

of the indications Ij of Dr. Beispiel given the final decisions Di of SNF are as
summarized in the following table.

SNF final
decision Di

Dr. Beispiel’s indicative assessment Ij
I1 I2 I3

D1 P(I1|D1) = 0.86 P(I2|D1) = 0.1
D2 P(I1|D2) = 0.2 P(I3|D2) = 0.06
D3 P(I2|D3) = 0.1 P(I3|D3) = 0.9

a. Complete the above table.
b. Having read the new proposal Dr. Beispiel explains to Professor Muster

that if he would still have been working with SNF he would have asked
for revisions and resubmission. Based on this new information—what is the
probability that the final decision of SNF is the same as the assessment of
Dr. Beispiel?



Chapter 3
Descriptive Statistics

Lecture 3 (Aim of the Present Lecture) The aim of the present lecture is
to introduce descriptive statistics in terms of numerical summaries and graph-
ical representations. It is outlined how data can be represented in a standard-
ized manner numerically as well as in the form of different graphs.
On the basis of the lecture it is expected that the reader should acquire knowl-
edge and skills with regard to:

• What is the purpose of descriptive statistics?
• In what principally different ways can data be assessed and communicated?
• What are the assumptions underlying descriptive statistics?
• Which are the different “central numerical measures” and what do they

describe?
• What is a measure of dispersion and which such measures are available?
• What does peakedness and skewness refer to?
• What is the significance of correlation and how may it be calculated?
• Which are typical graphical representations of data sets?
• What is the difference between a sample histogram and a frequency distri-

bution?
• What information is contained in a Quantile-Quantile plot?
• What are the main components of a Tukey box plot?
• In what way can numerical summaries be related to graphical representa-

tions?

3.1 Introduction

In order to assess the knowledge of a given quantity of interest, one of the first steps
is to investigate the data available, such as observations and test results. For this
purpose, descriptive statistics is useful. Descriptive statistics do not assume anything
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22 3 Descriptive Statistics

in terms of the degree or nature of the randomness underlying the data analyzed but
are merely a convenient tool to reduce the data to a manageable form suitable for
further analysis, as well as for communication of the data in a standardized format
to other professionals.

In the following section numerical summaries will first be introduced. These
can be considered to be numerical characteristics of the observed data containing
important information about the data and the nature of uncertainty associated with
these. These are also referred to as sample characteristics. Thereafter, graphical
representations are introduced as means of visual characterization and as a useful
tool for data analysis. Descriptive statistics play an important role in engineering
risk analysis as a standardized basis for assessing and documenting data obtained
for the purpose of understanding and representing uncertainties in risk assessment.

3.2 Numerical Summaries

3.2.1 Central Measures

One of the most useful numerical summaries is the sample mean. If the data set is
collected in the vector x̂ = (x̂1, x̂2, . . . , x̂n)

T the sample mean x̄ is simply given as:

x̄ = 1

n

n∑

i=1

x̂i (3.1)

The sample mean may be interpreted as a central value of the data set. If, on the
basis of the data set, one should give only one value characterizing the data, one
would normally use the sample mean.

Another central measure is the mode of the data set i.e. the most frequently oc-
curring value in the data set. When data samples are real values, the mode in general
cannot be assessed numerically, but may be assessed from graphical representations
of the data as will be illustrated in Sect. 3.3.

It is often convenient to work with an ordered data set which is readily estab-
lished by rearranging the original data set x̂ = (x̂1, x̂2, . . . , x̂n)

T such that the data
are arranged in increasing order as x̂o

1 ≤ x̂o
2 ≤ · · · ≤ x̂o

i ≤ · · · ≤ x̂o
n−1 ≤ x̂o

n . The ith
value of an ordered data set is denoted by x̂o

i .
The median of the data set is defined as the middle value in the ordered list of

data if n is odd. If n is even the median is taken as the average value of the two
middle values (see also the examples below).

3.2.2 Example 3.1—Concrete Compressive Strength Data

Consider the data set given in Table 3.1 corresponding to concrete cube compressive
strength measurements. In the table the data are listed both unordered, e.g. in the
order they were observed and ordered according to increasing values.
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Table 3.1 Concrete cube
compressive strength
experiment results in MPa

i Unordered x̂i Ordered x̂o
i

1 35.8 24.4

2 39.2 27.6

3 34.6 27.8

4 27.6 27.9

5 37.1 28.5

6 33.3 30.1

7 32.8 30.3

8 34.1 31.7

9 27.9 32.2

10 24.4 32.8

11 27.8 33.3

12 33.5 33.5

13 35.9 34.1

14 39.7 34.6

15 28.5 35.8

16 30.3 35.9

17 31.7 36.8

18 32.2 37.1

19 36.8 39.2

20 30.1 39.7

The sample mean for the data set is readily evaluated using Eq. 3.1 and found
to be equal to 32.67 MPa. All the observed values are different and therefore the
mode cannot be determined without dividing the observations into intervals as will
be shown in Sect. 3.3. However, the median is readily determined as being equal to
33.05 MPa.

3.2.3 Example 3.2—Traffic Flow Data

Consider the data shown in Table 3.2. The data correspond to the daily traffic flow in
both directions through the Gotthard tunnel for the month of January 1997 obtained
within a project carried out by the Swiss Federal Highways Office (ASTRA).

For this data set the sample mean values of the traffic flow in direction 1 and
direction 2 may be calculated from either the unordered or ordered data sets to be
equal to 4697.39 and 5660.77 respectively. The corresponding median values can
be read from the ordered data sets as 4419 and 5100 respectively (there are in total
31 observations in the data sets, so the median corresponds to observation 16).
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Table 3.2 Daily traffic flow through the Gotthard tunnel, January 1997

i Direction 1 Direction 2

date unordered x̂i ordered x̂o
i date unordered x̂i ordered x̂o

i

1 01.01 3087 3087 01.01 3677 3677

2 02.01 4664 3578 02.01 7357 4453

3 03.01 4164 3710 03.01 9323 4480

4 04.01 3710 3737 04.01 11748 4560

5 05.01 4029 3906 05.01 10256 4635

6 06.01 4323 4029 06.01 4453 4648

7 07.01 4041 4041 07.01 4815 4672

8 08.01 3737 4085 08.01 4757 4757

9 09.01 4103 4103 09.01 4672 4791

10 10.01 5457 4164 10.01 5401 4815

11 11.01 4563 4323 11.01 5688 4880

12 12.01 3906 4359 12.01 6308 4928

13 13.01 4419 4366 13.01 4946 4946

14 14.01 4359 4368 14.01 4635 5005

15 15.01 4667 4371 15.01 5100 5013

16 16.01 5098 4419 16.01 4791 5100

17 17.01 6551 4563 17.01 5235 5220

18 18.01 4371 4588 18.01 4560 5235

19 19.01 3578 4664 19.01 5729 5281

20 20.01 4366 4667 20.01 5005 5318

21 21.01 4368 4727 21.01 4480 5398

22 22.01 4588 4739 22.01 4880 5401

23 23.01 5001 4741 23.01 4928 5679

24 24.01 7118 5001 24.01 5398 5688

25 25.01 4727 5098 25.01 4648 5729

26 26.01 4085 5193 26.01 6183 6183

27 27.01 4741 5457 27.01 5220 6308

28 28.01 4739 5892 28.01 5013 7357

29 29.01 5193 6551 29.01 5281 9323

30 30.01 5892 7118 30.01 5318 10256

31 30.01 7974 7974 31.01 5679 11748

3.2.4 Dispersion Measures

The variability or the dispersion of the data set around the sample mean is also an
important characteristic of the data set. The dispersion may be characterized by the
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sample variance s2 given by:

s2 = 1

n

n∑

i=1

(x̂i − x̄)
2 (3.2)

The sample standard deviation s is defined as the square root of the sample vari-
ance. From Eq. 3.2 it is seen that the sample standard deviation s is assessed in terms
of the variability of the observations around the sample mean value x̄.

Thus, the sample variance is the mean of the squared deviations from the sample
mean and is in this way analogous to the moment of inertia as used in structural
engineering.

As a means of comparison of the dispersions of different data sets, the dimen-
sionless sample coefficient of variation ν is convenient. The sample coefficient of
variation ν is defined as the ratio of the sample standard deviation to the sample
mean, i.e. given by:

ν = s

x̄
(3.3)

The sample variance for the concrete cube compressive strengths of Table 3.1
may be evaluated using Eq. 3.2 and is found to be 16.36 MPa2. The sample standard
deviation is thus 4.04 MPa. For the considered concrete cube compressive strength
data the sample coefficient of variation is equal to 0.12. In the same manner the
sample coefficient of variation for the traffic flow data in Table 3.2 is equal to 0.21
and 0.30 for direction 1 and direction 2 respectively. It is seen that the coefficient of
variation for direction 2 is higher than for direction 1. That indicates that the data
observed in direction 2 are more dispersed than in direction 1.

3.2.5 Other Measures

Whereas the sample mean, mode and median are central measures of a data set and
the sample variance is a measure of the dispersion around the sample mean, it is also
useful to have some characteristic indicating the degree of symmetry of the data set.
To this end, the sample coefficient of skewness, which is a simple logical extension
of the sample variance is suitable. The sample coefficient of skewness η is defined
as:

η = 1

n

∑n
i=1 (x̂i − x̄)3

s3
(3.4)

This coefficient is positive if the mode of the data set is less than its mean value
(skewed to the right) and negative if the mode is larger than the mean value (skewed
to the left). For the concrete cube compressive strengths (Table 3.1) the sample co-
efficient of skewness is −0.12. For the traffic flow data (Table 3.2) the observations
in directions 1 and 2 have a skewness coefficient of 1.54 and 2.25 respectively. The
coefficients are positive and that show that both distributions are skewed to the right.
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In a similar way the sample coefficient of kurtosis κ is defined as:

κ = 1

n

∑n
i=1 (x̂i − x̄)4

s4
(3.5)

which is a measure of how closely the data are distributed around the mode (peaked-
ness). Typically one would compare the sample coefficient of kurtosis to that of a
normal distribution (introduced in Chap. 4), which is equal to 3.0. The kurtosis for
the concrete cube compressive strength (Table 3.1) is evaluated as equal to 2.23, i.e.
the considered data set is less peaked than the normal distribution. For the traffic
flow data (Table 3.2) it is equal to 5.48 and 7.44 for directions 1 and 2 respectively.

3.2.6 Sample Moments and Sample Central Moments

In Eqs. 3.2, 3.4 and 3.5 the sample central moments are used. These are denoted as
“central” as they are always taken about mean. The equations show that the sam-
ple mean x̄ is subtracted from the particular observations x̂i . In general the central
sample moments can be defined as:

zj = 1

n

n∑

i=1

(x̂i − x̄)
j

In Eqs. 3.4 and 3.5 the 3rd and 4th central sample moment are divided by the
quadratic standard deviation to assess the skewness and the kurtosis. The “sim-
ple” (non-central) sample moments do not use the sample mean in their definition.
Hence, the general definition is:

mj = 1

n

n∑

i=1

x̂
j
i

3.2.7 Measures of Correlation

Observations are often made of two characteristics simultaneously as shown in
Fig. 3.1 where pairs of data observed simultaneously are plotted jointly along the
x-axis and the y-axis (this representation is also called a two-dimensional scatter
diagram as outlined in Sect. 3.3).

As a characteristic indicating the tendency toward high-high pairings and low-
low pairings, i.e. a measure of the correlation between the observed data sets, the
sample covariance sXY is useful, and is defined as:

sXY = 1

n

n∑

i=1

(x̂i − x̄)(ŷi − ȳ) (3.6)
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Fig. 3.1 Two examples of paired data sets

The sample covariance has the property that, if there is a tendency in the data
set that the values of x̂i and ŷi are both higher than x̄ and ȳ at the same time, and
the trend is linear, then most of the terms in the sum will be positive and the sam-
ple covariance will be positive. The opposite trend will result in a negative sample
covariance. Such behavior is referred to as correlation.

In the scatter diagram to the left in Fig. 3.1 there is only little correlation between
the observed data pairs whereas the opposite is evident in the example to the right.

The sample covariance may be normalized with respect to the sample standard
deviations of the individual data sets sX and sY and the result is called the sample
correlation coefficient rXY defined as:

rXY = 1

n

∑n
i=1 (x̂i − x̄)(ŷi − ȳ)

sXsY
(3.7)

The sample correlation coefficient has the property that it is limited to the interval
−1 ≤ rXY ≤ 1 and the extreme values of the interval are only achieved in case the
data pairs are perfectly correlated, implying that the points on the scatter diagram lie
on a straight line. For the example shown in Fig. 3.1 there is almost zero correlation
at the left hand side and almost full positive correlation at the right hand side.

3.3 Graphical Representations

Graphical representations provide a convenient basis for assessing data as well as
communicating these to other persons. There exist a relatively large number of dif-
ferent possible graphical representations of data, of which some are better suited
than others depending on the purpose of the representations. Some are better for
representing the characteristics of data sets containing observations of one charac-
teristic, e.g. the concrete compressive strength and others are better for representing
the characteristics of two or more data sets e.g. the simultaneously observed traffic
flows. In the following sub-sections the most frequently applied graphical represen-
tations are introduced and discussed with the help of examples.
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Fig. 3.2 One-dimensional scatter diagram of the traffic flow in the Gotthard tunnel (direction 1)

3.3.1 One-Dimensional Scatter Diagrams

The simplest graphical representation is the scatter diagram which provides a means
to represent observations contained in one or more data sets. The scatter diagram
may be constructed by plotting the observed values of the data set along an axis
labeled according to the scale of the observations. In a one-dimensional scatter di-
agram the minimum and maximum values of the data set can be readily observed.
Furthermore, as long as the number of data points is not very large, the central value
of the observed data may be observed directly from the plot. In the case where a
data set contains a large number of data, some of these may be overlapping and this
makes it difficult to distinguish the individual observations. In such cases, it may be
beneficial to apply another graphical representation such as histograms, as described
subsequently.

Consider again the traffic flow data from Table 3.2. For each of the two directions
a one-dimensional scatter diagram can be produced by plotting the data along one
axis. In Fig. 3.2 the resulting scatter diagram is shown for direction 1. It can be seen
from Fig. 3.2 that the lowest value of the data lies close to 3000 while the highest
lies close to 8000. Moreover, a high concentration of observations is observed in the
range 4000 to 5000, indicating that the central value of this data is in that range.

3.3.2 Histograms

A frequently applied graphical representation of data sets is the histogram. Con-
sider again as an example the traffic flow data from Table 3.2 for direction 2. The
data are further processed and the observed number of cars is subdivided into inter-
vals, see Table 3.3. For each interval the midpoint is determined and the number of
observations within each interval is counted. Thereafter, the frequencies of the mea-
surements within each interval are evaluated as the number of observations within
one interval divided by the total number of observations. The cumulative frequen-
cies are estimated by summing up the frequencies for each interval in increasing
order. This is a common way to estimate the cumulative frequencies especially in
cases where the exact observations are not known but instead the frequency of ob-
servations within an interval is known. In the following, for illustration purposes, the
cumulative frequencies are estimated from available observations. However, when
observations are readily available the cumulative frequency plot can be replaced by
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Table 3.3 Summary of the observed traffic flow in the Gotthard tunnel (direction 2)

Interval
(number of cars)
[102/day]

Interval midpoint
(number of cars)
[102/day]

Number of
observations

Frequency
[%]

Cumulative
frequency

30–40 37.5 1 3.2258 0.0323

40–45 42.5 2 6.4516 0.0968

45–50 47.5 10 32.2581 0.4194

50–55 52.5 9 29.0323 0.7097

55–60 57.5 3 9.6774 0.8065

60–65 62.5 2 6.4516 0.8710

65–70 67.5 0 0.0000 0.8710

70–75 72.5 1 3.2258 0.9032

75–80 77.5 0 0.0000 0.9032

80–85 82.5 0 0.0000 0.9032

85–90 87.5 0 0.0000 0.9032

90–95 92.5 1 3.2258 0.9355

95–100 97.5 0 0.0000 0.9355

100–105 102.5 1 3.2258 0.9677

105–110 107.5 0 0.0000 0.9677

110–115 112.5 0 0.0000 0.9677

115–120 117.5 1 3.2258 1.0000

Fig. 3.3 Histogram and frequency distribution representations of the observed traffic flow in the
Gotthard tunnel (direction 2)

a plot similar to a quantile plot (see Sect. 3.3.3) but a slightly different representa-
tion. Figures 3.3 and 3.4 show the graphical representation of the processed data of
Table 3.3.

It has to be noted that a histogram may reduce the information provided by the
data examined. The interval width plays an important role for the resolution of the
representation of the observations. However, there are no general guidelines con-
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Table 3.4 Summary of the observed traffic flow in the Gotthard tunnel (direction 2) using 6 inter-
vals

Interval
(number of cars)
[102/day]

Interval midpoint
(number of cars)
[102/day]

Number of
observations

Frequency
[%]

Cumulative
frequency

35–50 42.5 13 41.9355 0.4194

50–65 57.5 14 45.1613 0.8710

65–80 72.5 1 3.2258 0.9032

80–95 87.5 1 3.2258 0.9355

95–110 102.5 1 3.2258 0.9677

110–125 117.5 1 3.2258 1.0000

Fig. 3.4 Cumulative frequency plot of the observed traffic flow in the Gotthard tunnel (direction 2)

cerning the choice of the interval width. In most applications, the goal is to identify
an interval, which with a sufficient resolution, can represent the observations and
this may comprise an iterative process where several different subdivisions are ap-
plied and the results are evaluated. In Benjamin and Cornell [4] it is suggested to
subdivide the interval between the maximum and minimum value into k intervals
where k is given by:

k = 1 + 3.3 log10 (n) (3.8)

where n is the number of data points in the data set.
Using the above formula for the observations in Table 3.2, k equals 5.92. By

rounding up, 6 intervals should have been applied for the subdivision of observations
while as shown in Table 3.3 the number of intervals used is equal to 17. Figure 3.5
illustrates the frequency distribution of the traffic flow data using the 6 intervals
given in Table 3.4.

Compared with the frequency distribution in Fig. 3.5 it can be seen that using a
smaller number of intervals the resolution of the graphical representation is signifi-
cantly reduced.
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Table 3.5 Summary of the observed concrete cube compressive strength measurements

Interval
(compressive strength)
[MPa]

Interval midpoint
(compressive strength)
[MPa]

Number of
observations

Frequency
[%]

Cumulative
frequency

23–26 24.5 1 5 0.05

26–29 27.5 4 20 0.25

29–32 30.5 3 15 0.40

32–35 33.5 6 30 0.70

35–38 36.5 4 20 0.90

38–41 39.5 2 10 1.00

Fig. 3.5 Frequency distribution representation of the observed traffic flow in the Gotthard tunnel
(direction 2) using a small number of intervals

For the concrete compressive strength observations the application of Eq. 3.8
seems to work well. Equation 3.8 in this case gives a value of k = 5.29 and by
rounding up 6 intervals should be used for this data set. The data organized accord-
ing to the result of Eq. 3.8 are given in Table 3.5.

Figures 3.6 and 3.7 show the graphical representation of the processed data of
Table 3.5. It is seen from Fig. 3.6 that the rule implied from Eq. 3.8 works fine and
the resulting frequency distribution provides a good resolution of the observations.

3.3.3 Quantile Plots

Quantile plots are graphical representations containing information that is similar
to the cumulative frequency plots introduced above. A quantile is related to a given
percentage, e.g. the 0.65 quantile of a given data set of observations is the obser-
vation for which 65% of all observations in the data set have smaller values. The
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Fig. 3.6 Histogram and frequency distribution representations of the observed concrete cube com-
pressive strength

Fig. 3.7 Cumulative frequency plot of the observed concrete cube compressive strength

0.75 quantile is also called the upper quartile (see also the Tukey box plots in the
next section) while the 0.25 quantile is called the lower quartile. The median is thus
equal to 0.5 quantile.

In order to construct a quantile plot the observations in the data set are arranged
in ascending order. The quantile Qυ is equal to a given observation x̂o

i in the ordered
data set where the index of the quantile, υ , is given by:

υ = i

n + 1
(3.9)

As an example consider the traffic flow data from Table 3.2. In Table 3.6 the data
are ordered in ascending order and the corresponding quantile indices are shown.
The median (i.e. the 0.5 quantile) has been highlighted.

As mentioned in Sect. 3.3.2, when the observations are known it is preferable to
use their quantiles to represent the cumulative distribution instead of the frequency
of observations within interval. So for example, in the case of the traffic flow data
for direction 2 (Table 3.4) the cumulative distribution can be plotted the data val-
ues and the respective quantile indices. Similarly, the cumulative distribution of the
concrete cube compressive strength data can be plotted using the respective quantile
indices shown in Table 3.7. Figure 3.8 illustrates the two cumulative distribution
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Table 3.6 Quantile values of
the traffic flow observations
in the Gotthard tunnel

i Direction 1
ordered x̂o

i

Direction 2
ordered x̂o

i

υ

1 3087 3677 0.0313

2 3578 4453 0.0625

3 3710 4480 0.0938

4 3737 4560 0.1250

5 3906 4635 0.1563

6 4029 4648 0.1875

7 4041 4672 0.2188

8 4085 4757 0.2500

9 4103 4791 0.2813

10 4164 4815 0.3125

11 4323 4880 0.3438

12 4359 4928 0.3750

13 4366 4946 0.4063

14 4368 5005 0.4375

15 4371 5013 0.4688

16 4419 5100 0.5000

17 4563 5220 0.5313

18 4588 5235 0.5625

19 4664 5281 0.5938

20 4667 5318 0.6250

21 4727 5398 0.6563

22 4739 5401 0.6875

23 4741 5679 0.7188

24 5001 5688 0.7500

25 5098 5729 0.7813

26 5193 6183 0.8125

27 5457 6308 0.8438

28 5892 7357 0.8750

29 6551 9323 0.9063

30 7118 10256 0.9375

31 7974 11748 0.9688

plots mentioned above. The median of the data set can be directly read from such a
representation by finding the value that corresponds to the 0.5 quantile.

The cumulative frequency plots can be distinguished from the quantile plots by
the different axes titles. The x-axis of the quantile plot contains the quantile index,
which in contrast can be found on the y-axis of the cumulative frequency plot. The
latter connects the particular points of cumulative frequency values by drawing steps
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Table 3.7 Quantile values of
the observed concrete cube
compressive strength [MPa]

i Ordered x̂o
i υ

1 24.4 0.048

2 27.6 0.095

3 27.8 0.143

4 27.9 0.190

5 28.5 0.238

6 30.1 0.286

7 30.3 0.333

8 31.7 0.381

9 32.2 0.429

10 32.8 0.476

11 33.3 0.524

12 33.5 0.571

13 34.1 0.619

14 34.6 0.667

15 35.8 0.714

16 35.9 0.762

17 36.8 0.810

18 37.1 0.857

19 39.2 0.905

20 39.7 0.952

Fig. 3.8 Cumulative distribution plot of the traffic flow data of direction 2 (left) and the concrete
cube compressive strength (right)

in between (Fig. 3.8). The quantile plot simply illustrates the values by unconnected
points (Fig. 3.9).

In Fig. 3.9 the quantile plots for the traffic flow data for both directions are il-
lustrated. In order to facilitate the comparison of the data these have been plotted
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Fig. 3.9 Quantile plots of the observed traffic flow in the Gotthard tunnel

on the same scale. It can be seen that the quantiles for the data in direction 2 are
slightly higher than the corresponding ones for direction 1. For direction 1 the me-
dian (the 0.5 quantile) is close to 4500 (the real value read from Table 3.6 is 4419).
The corresponding value in direction 2 is slightly higher than 5000 (5100 read from
Table 3.6). The approximate values for the upper and lower quantiles may also be
observed from the quantile plots. Thus for example the lower quartile (0.25 quan-
tile) in direction 1 is approximately equal to 4000 while the upper quartile (0.75
quantile) is close to 5000.

The slope of the quantile plot indicates the concentration of the data; a steep
slope corresponds to a low concentration and a flat slope to a high concentration.
The highest local concentration occurs when there are many observations with ex-
actly the same value and this appears on the quantile plot by a horizontal series of
points. For direction 1 the slope is quite flat up to about the 0.7 quantile. Thereafter
the slope increases and thus the concentration of the data is smaller. This matches
the information provided by the one-dimensional scatter plot in Fig. 3.2. The 0.7
quantile corresponds to a value close to 5000. It can be seen from Fig. 3.2 that for
larger observed traffic flow values the concentration of the observations decreases.

Quantile plots may also provide information regarding the symmetry of data. If
the observations in the data set are symmetrically dispersed around the median then
the shape of the quantile plot in the upper half is a double mirrored image of the
shape from the lower half. From Fig. 3.9 it can be seen that for both directions the
data are not symmetric and that for direction 2 the asymmetry is more pronounced.

Following the same procedure as described above, the concrete cube compressive
strength data are plotted in Fig. 3.10, against the respective quantile values given in
Table 3.7. It can be seen that the quantile plot has an almost constant slope over the
whole range of observations.

From Table 3.7 it can be seen that no observation corresponds directly to the me-
dian of the data set. In general the evaluation of a quantile which does not correspond
to a given observation must be based on an interpolation. This may be performed
by first calculating the hypothetical ith observation x̂o

i equal to a given quantile Qυ

with the index υ:

υ = i

n + 1
(3.10)
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Fig. 3.10 Quantile plots of the observed concrete cube compressive strength

Solving Eq. 3.10 for i yields:

i = υ(n + 1) (3.11)

If i is an integer, the ith observation x̂o
i exists and is equal to Qυ . If i is not an

integer it will have a value consisting of an integer part, say k, and a fractional part,
say p. The quantile Qυ = x̂o

i using interpolation is given as:

x̂o
i = (1 − p)x̂o

k + px̂o
k+1 (3.12)

For example, in the case of the concrete cube compressive strength data (Ta-
ble 3.7) looking for the upper quartile (0.75 quantile) gives a value of i equal to:

i = 20 · 0.75 + 0.75 = 15.75

thus k = 15 and p = 0.75.

Therefore, based on Eq. 3.12 the 0.75 quantile is:

0.25x̂o
15 + 0.75x̂o

16 = 0.25 · 35.8 + 0.75 · 35.9 = 35.875

3.3.4 Tukey Box Plots

Tukey box plots provide information about several sample characteristics of the ob-
servations contained in a data set, see Fig. 3.11.

The median is typically represented by a circle or a horizontal line within the box.
The upper and lower sides of the box indicate the values of the upper and the lower
quartiles, respectively. The distance between these quartiles is called the interquar-
tile range, r ; 50% of the data are located within this range. A large interquartile
range indicates that the observations are widely dispersed around the median and
vice versa.
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Fig. 3.11 Tukey box plot with indication of the characteristics of the data set

Table 3.8 Sample
characteristics for the Tukey
box plot for the traffic flow
data in the Gotthard tunnel
(Table 3.2)

Statistic Direction 1 Direction 2

lower adjacent value 3087 3677

lower quartile 4085 4757

median 4419 5100

upper quartile 5001 5688

upper adjacent value 5892 6308

outside values 6551 7357

7118 9323

7974 10256

11748

Another feature of the Tukey box plot is the adjacent values. The upper adjacent
value is defined as the largest observation less than or equal to the upper quartile
plus 1.5r . The lower adjacent value is defined as the smallest observation greater
than or equal to the lower quartile minus 1.5r . If an observation has a value outside
the adjacent values, the observation is called an outside value and is shown in the
box plot by a single point.

In Table 3.8 the sample characteristics needed to construct the Tukey box plots
for the traffic flow data are given. The Tukey box plot for this data is shown in
Fig. 3.12.

The symmetry of the observations represented in a Tukey box plot may be par-
tially assessed. From Fig. 3.12 can be seen that in direction 1 the observations with
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Fig. 3.12 Tukey box plots of the traffic flow data in the Gotthard tunnel

Fig. 3.13 Tukey box plot of
the concrete cube
compressive strength data
[MPa]

values in the lower and the upper range are more symmetric than the ones in direc-
tion 2. It is seen that the observed values of traffic flow in direction 2 are systemati-
cally larger than for direction 1.

In Fig. 3.13 the Tukey box plot for the concrete cube compressive strength data is
given based on the evaluation of the respective sample statistics given in Table 3.9.
For this set of data there are no outside values as the upper adjacent value is the
maximum value of the data and the lower adjacent value corresponds to the lower
value of the data.
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Table 3.9 Statistics for the
Tukey box plot for the
concrete cube compressive
strength data [MPa]
(Table 3.1)

Statistic Value

lower adjacent value 24.40

lower quartile 28.90

median 33.05

upper quartile 35.88

upper adjacent value 39.70

Fig. 3.14 Q-Q plot of the traffic flow observations in the two directions

3.3.5 Q-Q Plots and Tukey Mean-Difference Plot

Quantile-quantile plots (or in short Q-Q plots) provide an efficient means of compar-
ing observations from different data sets. For example in the case of the traffic flow
data a comparison may be made between the number of cars in one direction and
the number of cars in another direction. To do so, the corresponding quantiles may
be compared, i.e. the 0.25 quantile of the observations for direction 1 with the 0.25
quantile of the observations for direction 2 etc. For this purpose the corresponding
quantiles are plotted against each other in a Q-Q plot.

The data sets as given in Table 3.6 contain the same number of observations and
therefore their Q-Q plot may be made by plotting the evaluated quantiles against
each other, see Fig. 3.14.

If the data sets compared do not have the same number of observations then the
quantiles for the observations of one data set are evaluated first and subsequently the
corresponding quantiles for the other data set are established by interpolation. From
Fig. 3.14 it is seen that the traffic flow is higher over the full range of observations
for direction 2 as compared to direction 1. If the Q-Q plot would result in a line
close to the y = x line, then the data would have nearly identical distributions.

Another graphical representation that facilitates the comparison of the observa-
tions contained in two different data sets is the Tukey mean-difference plot. Here
ŷo
i − x̂o

i is plotted against (ŷo
i + x̂o

i )/2, where ŷo
i and x̂o

i are the observations of the
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Table 3.10 Values for the
Tukey mean-difference plot
of the traffic flow data in the
Gotthard tunnel

Direction 1 Direction 2 ŷo
i − x̂o

i (ŷo
i + x̂o

i )/2

3087 3677 590 3382.0

3578 4453 875 4015.5

3710 4480 770 4095.0

3737 4560 823 4148.5

3906 4635 729 4270.5

4029 4648 619 4338.5

4041 4672 631 4356.5

4085 4757 672 4421.0

4103 4791 688 4447.0

4164 4815 651 4489.5

4323 4880 557 4601.5

4359 4928 569 4643.5

4366 4946 580 4656.0

4368 5005 637 4686.5

4371 5013 642 4692.0

4419 5100 681 4759.5

4563 5220 657 4891.5

4588 5235 647 4911.5

4664 5281 617 4972.5

4667 5318 651 4992.5

4727 5398 671 5062.5

4739 5401 662 5070.0

4741 5679 938 5210.0

5001 5688 687 5344.5

5098 5729 631 5413.5

5193 6183 990 5688.0

5457 6308 851 5882.5

5892 7357 1465 6624.5

6551 9323 2772 7937.0

7118 10256 3138 8687.0

7974 11748 3774 9861.0

ordered data sets being compared. The evaluation of the means and differences for
the traffic flow data is provided in Table 3.10.

In Fig. 3.15 the Tukey mean-difference plot is given for the traffic flow data.
The Tukey mean-difference plot indicates that there is a systematic difference

of 600 cars per day for traffic situations corresponding to a mean traffic flow of up
to 6000 cars per day. Thereafter, the differences in the two directions seem to be
proportional in the mean traffic flow.
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Fig. 3.15 Tukey mean-difference plot for the traffic flow data

Fig. 3.16 Plotted data sets

3.4 Self Assessment Questions/Exercises

1. What is the purpose of descriptive statistics?
2. Within which interval can the coefficient of correlation of two data sets lie? What

do the extreme values of the interval express?
3. What is the role of the interval width chosen for building up a histogram for the

representation of a data set?
4. Which characteristics of a data set can be represented with a Tukey box plot?
5. How can Q-Q plots be used?
6. Provide a rough estimate of the correlation coefficient of the data sets plotted in

Fig. 3.16.
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Fig. 3.17 Histogram of concrete cover depth measurements

Table 3.11 Statistical terms
a b c

Mean

Coefficient of variation

Standard deviation

Median

Sample size

Quartile

A rXY ≈ · · · B rXY ≈ · · ·
C rXY ≈ · · · D rXY ≈ · · ·

7. A number of statistical terms are shown in Table 3.11. Check if the terms have
something to do with (a) location parameter, (b) dispersion parameter or (c) none
of the above.

8. Measurements were taken of the concrete cover depth of a bridge column. The
histogram of the measured values has been plotted in Fig. 3.17.
The sample mean is equal to 0.16 mm. �
The sample mean is equal to 15 mm. �
The mode of the data set is equal to 15 mm. �

9. Which of the following are features of a symmetrical frequency diagram?
The variance is equal to the coefficient of variation. �
The mode is equal to the median. �
The skewness is equal to zero. �
None of the above. �



Chapter 4
Uncertainty Modeling

Lecture 4 (Aim of the Present Lecture) The aim of the present lecture is
to provide a fundamental understanding of uncertainty and how this affects
engineering decision making. Furthermore, random variables are introduced
and it is explained how they may be characterized depending on the given
situation.
On the basis of the lecture it is expected that the reader will acquire knowledge
and skills with regard to:

• Why do uncertainties influence engineering problems and decision mak-
ing?

• Which are the principally different types of uncertainties?
• Why is it useful to differentiate between different types of uncertainties?
• Which types of uncertainties can be reduced?
• In what way can uncertainties depend on time?
• In what way can scale influence uncertainties?
• What is a random variable and how can it be characterized?
• How are cumulative distribution and probability density functions related?
• What is a discrete and what is a continuous probability distribution?
• How are the moments of a random variable defined?
• How is the expectation operation defined?

4.1 Introduction

A central role for engineers is to provide basis for decision making with regard to the
cost efficient safeguarding of personnel, environment and assets in situations where
uncertainties are at hand. A classical example is the decision problem of choosing
the height of a dike. The risk of dike flooding can be reduced by increasing the
height of the dike; however, due to the inherent natural variability in the water level

M.H. Faber, Statistics and Probability Theory,
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a certain probability of dike flooding in a given reference period will always remain.
Risk assessment within the theoretical framework of decision analysis (introduced
in Chap. 7) can help us in deciding on the optimal dike height by weighing the
benefits of reduced dike flooding risks with the costs of increasing the dike height.
However, a prerequisite for the risk assessment is that the means for assessing the
probability of dike flooding are established, and this in turn requires that a proba-
bilistic model for the future water level is available.

4.2 Uncertainties in Engineering Problems

For the purpose of discussing the phenomenon uncertainty in more detail, let us
initially assume that the universe is deterministic and that our knowledge about the
universe is perfect. This implies that it is possible by means of e.g. a set of exact
equation systems and known boundary conditions by means of analysis to achieve
perfect knowledge about any state, quantity or characteristic which otherwise cannot
be directly observed or has yet not taken place. In principle, following this line of
reasoning, the future as well as the past would be known or assessable with certainty.
Considering the dike flooding problem it would thus be possible to assess the exact
number of floods which would occur in a given reference period (the frequency of
floods) for a given dike height and an optimal decision can be achieved by cost
benefit analysis.

Whether the universe is deterministic or not is a rather deep philosophical ques-
tion. Despite the obviously challenging aspects of this question its answer is, how-
ever, not a prerequisite for purposes of engineering decision making because even if
the universe is deterministic our knowledge about it is still in part incomplete and/or
uncertain.

In engineering decision analysis subject to uncertainties such as Quantitative
Risk Analysis (QRA) and Structural Reliability Analysis (SRA) a commonly ac-
cepted view point is that uncertainties should be interpreted and differentiated with
regard to their type and origin. In this way it has become standard to differentiate
between uncertainties due to inherent natural variability, model uncertainties and
statistical uncertainties. Whereas the first mentioned type of uncertainty is often
denoted aleatory (or type 1) uncertainty, the two latter types are referred to as epis-
temic (or type 2) uncertainties. Without further discussion here, it is just stated that,
in principle, all prevailing types of uncertainties should be taken into account in
engineering decision analysis within the framework of Bayesian probability theory.

Considering again the dike example it can be imagined that an engineering model
might be formulated where future extreme water levels are predicted in terms of a
regression of previously observed annual extremes. In this case the uncertainty due
to inherent natural variability would be the uncertainty associated with the annual
extreme water level. The model chosen for the annual extreme water level events
would by itself introduce model uncertainties and the parameters of the model would
introduce statistical uncertainties as their estimation would be based on a limited
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Fig. 4.1 Illustration of uncertainty composition in a typical engineering problem

number of observed annual extremes. Finally, the extrapolation of the annual ex-
treme model to extremes over longer periods of time would introduce additional
model uncertainties. The uncertainty associated with the future extreme water level
is thus composed as illustrated in Fig. 4.1. Whereas the inherent natural variability
is often understood as the uncertainty caused by the fact that the universe is not de-
terministic, it may also be interpreted simply as the uncertainty which cannot be re-
duced by means of collection of additional information. It is seen that this definition
implies that the amount of uncertainty due to inherent natural variability depends
on the models applied in the formulation of the engineering problem. Presuming
that a refinement of models corresponds to looking in a more detailed manner at the
problem at hand, one could say that the uncertainty structure influencing a problem
is scale dependent.

Having formulated a model for the prediction of future extreme water levels and
taking into account the various prevailing types of uncertainties, the probability of
flooding within a given reference period can be assessed and, just as in the case
of a deterministic and perfectly known universe, the optimum dike height can be
decided, based on a cost-benefit assessment.

It is interesting to notice that the type of uncertainty associated with the state of
knowledge has a time dependency. Following Fig. 4.2 it is possible to observe an un-
certain phenomenon when it has occurred. In principle, if the observation is perfect
without any errors the knowledge about the phenomenon is perfect. The modeling
of the same phenomenon in the future, however, is uncertain as this involves models
subject to natural variability, model uncertainty and statistical uncertainty. Often,
but not always, the models available tend to lose their precision rather fast so that
phenomena lying just a few days or weeks ahead can be predicted only with signifi-
cant uncertainty. An extreme example of this concerns the prediction of the weather.

The above discussion shows another interesting effect, namely that the uncer-
tainty associated with a model concerning the future, transforms from a mixture of
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Fig. 4.2 Illustration of the time dependence of knowledge

aleatory and epistemic uncertainty to a purely epistemic uncertainty when the mod-
eled phenomenon is observed. This transition of the type of uncertainty is significant
because it facilitates that the uncertainty is reduced by utilization of updating based
on observations.

4.3 Random Variables

The performance of an engineered system, facility or installation (in the following
referred to as a system) may usually be modeled in mathematical and physical terms
in conjunction with empirical relations.

For a given set of model parameters the performance of the considered system
can be determined on the basis of this model. The basic random variables are de-
fined as the parameters that represents the available knowledge as well as the asso-
ciated uncertainty in the considered model.

The basic random variables must be able to represent all types of uncertainties
that are included in the analysis. The uncertainties, which must be considered are,
as previously mentioned, the physical uncertainty, the statistical uncertainty and the
model uncertainty. The physical uncertainties are typically uncertainties associated
with the loading environment, the geometry of the structure, the material properties
and the repair qualities. The statistical uncertainties arise due to incomplete sta-
tistical information e.g. due to a small number of material tests. Finally, the model
uncertainties must be considered to take into account the uncertainty associated with
the idealized mathematical descriptions used to approximate the actual physical be-
havior of the structure.
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Modern methods of reliability and risk analysis allow for a very general rep-
resentation of these uncertainties ranging from non-stationary stochastic processes
and fields to time invariant random variables, see e.g. Melchers [10]. In most cases
it is sufficient to model the uncertain quantities by random variables with given
cumulative distribution functions and distribution parameters estimated on basis of
statistical and/or subjective information. Therefore the following is concerned with
a basic description of the characteristics of random variables.

4.3.1 Cumulative Distribution and Probability Density Functions

A random variable, which can take on any value, is called a continuous random
variable. The probability that such a random variable takes on a specific value is
zero. The probability that a continuous random variable, X, is less than or equal to
a value, x, is given by the cumulative distribution function:

FX(x) = P(X ≤ x) (4.1)

In general, capital letters denote a random variable and small letters denote an
outcome or realization of a random variable. An example of a continuous cumulative
distribution function is illustrated in Fig. 4.3A).

For continuous random variables the probability density function is given by:

fX(x) = dFX(x)

dx
(4.2)

An example of a continuous probability density junction is illustrated in
Fig. 4.3B).

The probability of an outcome in the interval [x;x + dx] where dx is small, is
given by P(X ∈ [x;x + dx]) = fX(x)dx.

Random variables with a finite or infinite countable sample space are called dis-
crete random variables. For discrete random variables the cumulative distribution
function is given as:

PX(x) =
∑

xi<x

pX(xi) (4.3)

where pX(xi) is the probability density function given as:

pX(xi) = P(X = xi) (4.4)

A discrete cumulative distribution function and probability density function is
illustrated in Fig. 4.4.
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Fig. 4.3 Illustration of A) a cumulative distribution function and B) a probability density function
for a continuous random variable

Fig. 4.4 Illustration of A) a cumulative distribution function and B) a probability density function
for a discrete random variable

4.3.2 Moments of Random Variables and the Expectation Operator

Probability distributions may be defined in terms of their parameters or moments.
Often cumulative distribution functions and probability density functions are written
as FX(x;p) and fX(x;p) respectively to indicate the parameters p (or moments)
defining the functions. Whether the cumulative distribution and density function are
defined by their moments or by their parameters is a matter of convenience and it is
generally possible to establish one from the other.

The ith moment λi of a continuous random variable is defined by:

λi =
∫ ∞

−∞
xifX(x)dx (4.5)

and for a discrete random variable by:

λi =
n∑

j=1

xi
jpX(xj ) (4.6)

The mean (or expected value) of a continuous random variables X is defined as
the first moment:

μX = E[X] =
∫ ∞

−∞
xfX(x)dx (4.7)
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For a discrete random variable S, the mean is given as:

μX = E[X] =
n∑

j=1

xjpX(xj ) (4.8)

where E[·] denotes the expectation operator.
Similarly the variance, σX

2, is described by the second central moment, i.e. for
continuous random variables it is:

σX
2 = Var[X] = E

[
(X − μX)2]=

∫ ∞

−∞
(x − μX)2fX(x)dx (4.9)

and for discrete random variables it is:

σX
2 = Var [X] =

n∑

j=1

(xj − μX)2pX(xj ) (4.10)

where Var[X] denotes the variance of X.
The ratio between the standard deviation σX and the expected value μX of a

random variable X is denoted the coefficient of variation VX and is given by:

VX = σX

μX

(4.11)

The coefficient of variation provides a useful descriptor for the variability of a
random variable around its expected value.

4.3.3 Example 4.1—Uniform Distribution

As an example consider a continuous random variable with a uniform (constant)
probability density function in the interval [a;b] as illustrated in Fig. 4.5.

The probability density function for a uniformly distributed random variable X

is easily seen to be:

fX(x;a, b) =

⎧
⎪⎨

⎪⎩

0, x < a
1

b−a
, a ≤ x ≤ b

0, x > b

(4.12)

remembering that the area under the probability density function must integrate to 1.
In Eq. 4.12, a and b are the parameters of the probability density function.

The cumulative distribution function for a uniformly distributed random variable
X is thus:

FX(x;a, b) =

⎧
⎪⎨

⎪⎩

0, x < a∫ x

a
fX(y;a, b) dy = ∫ x

a
1

b−a
dy = (x−a)

(b−a)
, a ≤ x ≤ b

1, x > b

(4.13)
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Fig. 4.5 Continuous random
variable with a uniform
density function

The first moment i.e. the mean value (see Eq. 4.7) of a continuous random vari-
able X with uniform distribution is thus:

μX = E [X] =
∫ b

a

xfX(x;a, b) dx =
∫ b

a

x

b − a
dx = x2

2(b − a)

∣∣∣∣
b

a

= (b + a)

2
(4.14)

and the variance σ 2
X (see Eq. 4.9) is given through the second central moment:

σ 2
X = E

[
(X − μX)2]=

∫ b

a

(x − μX)2fX(x;a, b) dx =
∫ b

a

(x − μX)2

(b − a)
dx

=
1
3x3 − x2μX + xμX

2

(b − a)

∣∣∣∣∣

b

a

= 1

12
(b − a)2 (4.15)

Lecture 5 (Aim of the Present Lecture) The aim of the present lecture is
to introduce the properties associated with the main characteristics of vectors
of random variables and how to assess these characteristics. Furthermore, it
is described how probabilistic characterizations of functions of random vari-
ables can be established.
On the basis of the lecture it is expected that the reader will acquire knowledge
and skills with regard to:

• How can the expectation operation be performed on a linear combination
of random variables?

• How can the expectation operation be performed on a linear combination
of functions of random variables?

• Which rule applies for the expectation operation of functions of random
variables?
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• What is the relation between the expectation operation and the variance
operation?

• Which are the properties of the expectation and the variance operator?
• What is a random vector and what is a joint moment?
• How is the covariance between two random variables defined?
• How is the correlation coefficient defined and what information does it con-

tain?
• What is a marginal probability distribution?
• What is a conditional probability distribution?
• How can the probability distribution for the sum of two random variables

be established?
• How can the probability distribution for a function of random variables be

established?

4.3.4 Properties of the Expectation Operator

It is useful to note that the expectation operation possesses the following properties,
where a, b and c are constants and X is a random variable:

E[c] = c

E[cX] = cE[X]
E[a + bX] = a + bE[X]

E[g1(X) + g2(X)] = E[g1(X)] + E[g2(X)]
(4.16)

The implication of the last equation is that expectation, like differentiation or
integration, is a linear operation. This linearity property is useful since it can be used,
for example, to find the following formula for the variance of a random variable X

in terms of more easily calculated quantities:

Var [X] = E
[
(X − μX)2]= E

[
X2 + μ2

X − 2μXX
]= μ2

X + E
[
X2]− 2μXE [X]

= μ2
X + E

[
X2]− 2μ2

X = E
[
X2]− μ2

X (4.17)

By application of Eq. 4.17 the following properties of the variance operator
Var [·] can easily be derived:

Var[c] = 0

Var[cX] = c2Var[X]
Var[a + bX] = b2Var[X]

(4.18)

where a, b and c are constants and X is a random variable.
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From Eq. 4.17 it is furthermore seen that in general it is E[g(X)] �= g(E[X]). In
fact for convex functions g(x) it can be shown that the following inequality is valid
(Jensen’s inequality):

E[g(X)] ≥ g(E[X]) (4.19)

where the equality holds if g(X) is linear.

4.3.5 Random Vectors and Joint Moments

If a n-dimensional vector of continuous random variables X = (X1,X2, . . . ,Xn)
T ,

is considered the joint cumulative distribution function is given by:

FX(x) = P (X1 ≤ x1 ∩ X2 ≤ x2 ∩ · · · ∩ Xn ≤ xn) (4.20)

and the joint probability density function is:

fX(x) = ∂n

∂x1∂x2 · · · ∂xn

FX (x) (4.21)

An example of a joint probability density function is illustrated in Fig. 4.6 in the
form of a binormal distribution.

The covariance CXiXj
between Xi and Xj is defined by:

CXiXj
= Cov[Xi,Xj ] = E

[
(Xi − μXi

)(Xj − μXj
)
]

=
∫ ∞

−∞

∫ ∞

−∞
(xi − μXi

)(xj − μXj
)fXiXj

(xi, xj ) dxi dxj (4.22)

and is also called the joint central moment between the variables Xi and Xj .
The covariance expresses the linear dependence between two variables. It is evi-

dent that CXiXi
= Var[Xi]. On the basis of the covariance the correlation coefficient

is defined by:

ρXiXj
= CXiXj

σXi
σXj

(4.23)

It is seen that ρXiXi
= 1. The correlation coefficients can only take values in the

interval [−1;1].
A negative correlation coefficient between two random variables implies that if

the outcome of one variable is large compared to its mean value, the outcome of the
other variable is likely to be small compared to its mean value. A positive correla-
tion coefficient between two variables implies that if the outcome of one variable is
large compared to its mean value, the outcome of the other variable is also likely
to be large compared to its mean value. If two variables are independent their cor-
relation coefficient is zero and the joint density function is the product of the one-
dimensional density functions. In many cases it is possible to obtain a sufficiently
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Fig. 4.6 Joint probability density function (binormal distribution)

accurate approximation to the n-dimensional cumulative distribution function from
the one-dimensional distribution functions of the n variables and their parameters,
and the correlation coefficients.

Finally using Eqs. 4.17, 4.18 and 4.22 it can be shown that the expected value
E[Y ] and the variance Var[Y ], where Y is a linear function of the random vector
X = (X1,X2, . . . ,Xn)

T i.e.:

Y = a0 +
n∑

i=1

aiXi (4.24)

are given by:

E[Y ] = a0 +
n∑

i=1
aiE[Xi]

Var[Y ] =
n∑

i=1
a2
i Var[Xi] + 2

(
n∑

i=1

n∑
j=i+1

aiajCXiXj

) (4.25)

4.3.6 Example 4.2—Linear Combinations and Random Variables

Consider the linear function Y = 5 + 2X1 + 3X2. The expected values of the ran-
dom variables X1 and X2 are E[X1] = 7 as well as E[X2] = 4. The variances are
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Var[X1] = 1 and Var[X2] = 1.5. Both random variables X1 and X2 are assumed to
be independent, hence the covariance is CX1X2 = 0.

The expected value E[Y ] is determined as follows:

E[Y ] = a0 +
n∑

i=1

aiE [Xi] = a0 + a1E [X1] + a2E [X2]

= 5 + 2E [X1] + 3E [X2] = 5 + 2 · 7 + 3 · 4 = 31

The variance Var (Y ) is determined as follows:

Var [Y ] =
n∑

i=1

a2
i Var [Xi] + 2

⎛

⎝
n∑

i=1

n∑

j=i+1

aiajCXiXj

⎞

⎠= a2
1Var [X1] + a2

2Var [X2]

= 22Var [X1] + 32Var [X2] = 4 · 1 + 9 · 1.5 = 17.5

4.3.7 Conditional Distributions and Conditional Moments

The conditional probability density function for the random variable X1, conditional
on the outcome of the random variable X2 is denoted fX1|X2(x1|x2) and defined by:

fX1|X2(x1|x2) = fX1,X2(x1, x2)

fX2(x2)
(4.26)

in accordance with the definition of conditional probability given previously. Fig-
ure 4.7 illustrates the conditional probability density function fX1|X2(x1|x2 = 0.5t)

of the binormal distribution illustrated in Fig. 4.6.
As for the case when probabilities of events were considered two random vari-

ables X1 and X2 are said to be independent when there is:

fX1|X2(x1|x2) = fX1(x1) (4.27)

By integration of Eq. 4.26 the conditional cumulative distribution FX1|X2(x1|x2)

is obtained as:

FX1|X2(x1|x2) =
∫ x1
−∞ fX1,X2(z, x2) dz

fX2(x2)
(4.28)

and finally by integration of Eq. 4.28 weighed with the probability density function
of X2, i.e. fX2(x2) the unconditional cumulative distribution FX1(x1) is achieved
by the total probability theorem:

FX1(x1) =
∫ ∞

−∞
FX1|X2(x1|x2)fX2(x2) dx2 (4.29)
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Fig. 4.7 Conditional probability density function

The conditional moments of jointly distributed continuous random variables fol-
low straightforwardly from Eq. 4.7 by use of Eq. 4.27 and the conditional expected
value μX1|X2 and the conditional variance of e.g. the jointly distributed random vari-
ables X1 given X2 are evaluated by:

μX1|X2 = E[X1|X2 = x2] =
∫ ∞

−∞
x1fX1|X2 (x1|x2) dx1

(σ
X1 |X2

)2 = E
[
(X1 − μX1|X2)

2|X2 = x2
]

(4.30)

=
∫ ∞

−∞
(x1−μX1|X2)

2fX1|X2(x1|x2) dx1

4.3.8 The Probability Distribution for the Sum of Two Random
Variables

Based on the result in Eq. 4.26 the probability density function for the random vari-
able Y = X1 + X2 may be derived for a given joint probability density function
fX1,X2(x1, x2). First the conditional probability density function of Y given X1 = x1

is considered i.e.:

Y = x1 + X2 ⇔ X2 = Y − x1 (4.31)
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Fig. 4.8 The marginal probability density functions for a binormal distribution

where the conditional probability density function of X2 given X1 = x1 is:

fX2|X1(x2|x1) = fX1,X2(x1, x2)

fX1(x1)
(4.32)

thus the probability density function for Y given X1 = x1 can be written as:

fY |X1(y|x1) = fX2|X1(y − x1|x1) (4.33)

and the joint probability density function for fY,X1(y, x1):

fY,X1(y, x1) = fX2|X1(y − x1|x1)fX1(x1) = fX2,X1(y − x1, x1) (4.34)

from which one can get the marginal probability density function of Y by integrating
out over the definition domain of x1 i.e.:

fY (y) =
∫ ∞

−∞
fX2,X1(y − x1, x1) dx1 (4.35)

Figure 4.8 illustrates both the marginal probability density functions of a binor-
mal distribution.

For the special case where the variables X1 and X2 are independent, Eq. 4.35 can
be written in the form of a convolution integral:

fY (y) =
∫ ∞

−∞
fX2(y − x1)fX1(x1) dx1 (4.36)
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4.3.9 Example 4.3—Density Function for the Sum of Two Random
Variables—Special Case Normal Distribution

The total load L on a structural element, consisting of a live load N and self-weight
G and expressed as L = N + G is to be determined. Both the random variables—
live load N and self weight G are assumed to follow the Normal distribution and to
be independent—hence the covariance is CGN = 0.

With the aid of the convolution integral it is possible to show that a sum of two
Normal distributions follows a Normal distribution (see also the section on central
limit theorem on page 62):

fL(l) =
∫ ∞

−∞
fG (l − n)fN (n)dn

=
∫ ∞

−∞
1

σG

√
2π

exp

(
−1

2

(
l −n−μG

σG

)2
)

1

σN

√
2π

exp

(
−1

2

(
n−μN

σN

)2
)

dn

= 1√
σ 2

G + σ 2
N

√
2π

exp

⎛

⎝−1

2

(l − (μN + μG))2

√
σ 2

G + σ 2
N

⎞

⎠

= 1

σL

√
2π

exp

(
−1

2

(l − (μL))2

σL

)
(4.37)

The convolution of two Normal distributions can be assessed by Eq. 4.25. The
expected values and variances of workload N and self-weight G are:

E[N ] = 1 kN/m2, Var[G] = 0.2
(
kN/m2)2

,

E[G] = 3 kN/m2, Var[G] = 0.3
(
kN/m2)2

The expected value of the total load L is determined by:

E[L] = 0 + 1 · E[G] + 1 · E[N ] = 3 + 1 = 4 kN/m2

The variance of the total load L is determined by:

Var[N ] = 12 · Var[G] + 12 · Var[N ] + 0 = 0.32 + 0.22 = 0.13
(
kN/m2)2

The density functions of the three random variables N , G and L are illustrated
in Fig. 4.9.
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Fig. 4.9 Sum of two random variables

4.3.10 The Probability Distribution for Functions of Random
Variables

In some cases it is interesting to be able to derive the cumulative distribution func-
tion FY (y) for a random variable Y which is given as a function of another random
variable X i.e. Y = g(X), with given cumulative distribution function FX(x). Under
the condition that the function g(x) is monotonically increasing and furthermore,
represents a one-to-one mapping of x into y, a realization of Y is only smaller than
y0 if correspondingly the realization of X is smaller than x0 which in turn is given
by x0 = g−1(y0). In this case the cumulative distribution function FY (y) can be
readily determined by:

FY (y) = P(Y ≤ y) = P
(
X ≤ g−1(y)

)
(4.38)

which is also written as:

FY (y) = FX

(
g−1(y)

)
(4.39)

In accordance with Eq. 4.2 the probability density function fY (y) is simply given
by:

fY (y) = dFX(g−1(y))

dy
(4.40)

which immediately leads to:

fY (y) = dg−1(y)

dy
fX

(
g−1(y)

)
(4.41)
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and:

fY (y) = dx

dy
fX(x) (4.42)

It is noticed that the application of Eqs. 4.41 and 4.42 necessitates that g(x) is at
least one time differentiable in regard to x.

Now if the function g(x) instead of being monotonically increasing is monoton-
ically decreasing, a realization of Y smaller that y0 corresponds to a realization of
X larger than x0, in which case it is necessary to change the sign of the derivative
dx/dy in Eq. 4.42. Generally, for monotonically increasing or decreasing one-to-
one functions g(x) there is:

fY (y) =
∣∣∣∣
dx

dy

∣∣∣∣fX(x) (4.43)

As shown in e.g. Thoft-Christensen and Baker [13] the relationship given in
Eq. 4.34 can be generalized to consider the case of jointly distributed random vari-
ables.

Consider the random vector Y = (Y1, Y2, . . . , Yn)
T with individual components

given as one-to-one mapping monotonically increasing or decreasing functions gi ,
i = 1,2, . . . , n of the components of the random vector X = (X1,X2, . . . ,Xn)

T as:

Yi = gi(X) (4.44)

then there is:

fY(y) = |J|fX(x) (4.45)

where |J| is the numerical value of the determinant of J given by:

J =

⎡

⎢⎢⎣

∂x1
∂y1

· · · ∂x1
∂yn

...
. . .

...
∂xn

∂y1
· · · ∂xn

∂yn

⎤

⎥⎥⎦ (4.46)

Finally, the expected value E[Y ] of a function g(X) of the random vector X =
(X1,X2, . . . ,Xn)

T is given by:

E[Y ] =
∫ ∞

−∞
· · ·

∫ ∞

−∞
g(x)fX(x) dx1 · · ·dxn (4.47)

4.3.11 Example 4.4—Probability Distribution for a Function
of Random Variables

The costs C of a project consist of fixed costs of 10,000 CHF and variable costs of
100 CHF for each working hour H , that is C = 10,000 + 100H . For the random
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Fig. 4.10 Schematic representation of the distribution of a random variable H and the derived
distribution for a random variable C

variable H , the probability distribution is given. How can the probability distribution
for C be derived?

The relationship of the two random variables is monotonically increasing and
one-to-one. The costs C are less than any particular value c only if the number
of hours H is less than a particular value h, that is FC(c) = P [C ≤ c] = P [H ≤
g−1(c)] = FH (g−1(c)) (Fig. 4.10).

With c = g(h) = 10,000 + 100h and h = g−1(c) = (c − 10,000)/100 for this
example we get:

FC(c) = FH

(
c − 10,000

100

)

By applying Eq. 4.43, the probability density function can be established. By

inserting dh
dc

= dg−1(c)
dc

= d(c−10,000)/100
dc

= 1
100 we get:

fC(c) = dh

dc
fH (h) = dg−1(c)

dc
fH

(
g−1(c)

)= 1

100
fH

(
c − 10,000

100

)

For a probability density function fH (h) = 2.2 − 0.02h in the range of 100 ≤
h ≤ 110, the following probability density function for fC(c) is obtained:

fC(c) = 1

100
(2.2 − 0.02)

(
c − 10,000

100

)
= 0.042 − 0.000,002c

20,000 ≤ c ≤ 21,000

The range values for c is obtained from the function c = 10,000 + 100h.
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In this simple case with a linear function, the shape of the density function does
not change, as can be seen in Fig. 4.10. As an example of a case where the shape
of the probability density function changes, consider the function Q = keλT . Q,
the number of bacteria in a tank, can increase starting from an initial population
size k with a growth rate λ, until the tank is emptied after a random time pe-
riod T .

Lecture 6 (Aim of the Present Lecture) The aim of the present lecture is
to first summarize typical probability distribution functions applied in engi-
neering uncertainty modeling. Thereafter, it is outlined how the Normal and
the Lognormal probability distributions may be derived on the basis of the
central limit theorem. Furthermore, as an introduction on how to model un-
certain phenomena with random variability over time, random sequences and
their characterization are introduced.
On the basis of the lecture it is expected that the reader will acquire knowledge
and skills with regard to:

• What does the central limit theorem say?
• What is a standardized random variable?
• How can the variance of a linear combination of correlated Normal dis-

tributed random variables be calculated?
• How can the Lognormal distribution be derived?
• In what way can uncertain phenomena depend on “time”?
• What is a random sequence?
• What is a Bernoulli trial and what does it describe?
• For what can the Binomial distribution be used?
• What is a Geometric distribution and where can it be applied?

4.3.12 Probability Density and Distribution Functions

In Table 4.1 a selection of probability density and cumulative distribution functions
is given with the definition of their distribution parameters and moments. With a
given expectation operator and standard deviation, the parameters of the distribu-
tions can be assessed and the corresponding distributions can be drawn. In case of a
non-shifted lognormal or exponential distribution, ε is equal to zero.

Illustrations for the distribution types given in Table 4.1 are shown in Fig. 4.11.
The relevance of the different distribution functions given in Table 4.1 in con-

nection with the probabilistic modeling of uncertainties in engineering risk and re-
liability analysis is strongly case dependent and the reader is suggested to consult
the application specific literature for specific guidance. In the following, however,
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Table 4.1 Probability distributions, Schneider [11]

Distribution type Parameter Mean and standard deviation

Uniform distribution, a ≤ x ≤ b

fX(x) = 1
b−a

a

b

μ = a+b
2

σ = b−a√
12

FX(x) = x−a
b−a

Normal distribution

fX(x) = 1
σ
√

2π
exp

(− 1
2

(
x−μ

σ

)2) μ

σ > 0

μ

σFX(x) = 1
σ
√

2π

∫ x

−∞ exp
(− 1

2

(
t−μ
σ

)2)
dt

Shifted Lognormal, x > ε

fX(x) = 1
(x−ε)ζ

√
2π

exp
(− 1

2

( ln(x−ε)−λ
ζ

)2) λ

ζ > 0

ε

μ = ε + exp
(
λ + ζ 2

2

)

σ = exp
(
λ + ζ 2

2

)√
exp(ζ 2) − 1FX(x) = Φ

( ln(x−ε)−λ
ζ

)

Shifted Exponential, x ≥ ε

fX(x) = λ exp(−λ(x − ε)) ε

λ > 0

μ = ε + 1
λ

σ = 1
λ

FX(x) = 1 − exp(−λ(x − ε))

Gamma, x ≥ 0

fX(x) = bp

Γ (p)
exp(−bx)xp−1 p > 0

b > 0

μ = p
b

σ =
√

p

bFX(x) = Γ (bx,p)
Γ (p)

where:

Γ (bx,p) = ∫ bx

0 tp−1 exp(−t) dt

Γ (p) = ∫∞
0 tp−1 exp(−t) dt

Beta, a ≤ x ≤ b

fX(x) = Γ (r+t)
Γ (r)Γ (t)

(x−a)r−1(b−x)t−1

(b−a)r+t−1
a

b

r > 0

t > 0

μ = a + (b − a) r
r+t

σ = b−a
r+t

√
rt

r+t+1FX(x) = Γ (r+t)
Γ (r)Γ (t)

∫ x

a
(u−a)r−1(b−u)t−1

(b−a)r+t−1 du

a brief introduction to the central limit theorem and the derived Normal and Log-
normal distributions is given.

4.3.13 The Central Limit Theorem and Derived Distributions

The central limit theorem states:
The probability distribution for the sum of a number of random variables ap-

proaches the Normal distribution as the number becomes large.
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Fig. 4.11 Illustration of probability density and cumulative distribution functions for different dis-
tribution types. Mean μ = 160 and standard deviation σ = 40 are the same for all the distributions
except the Exponential distribution for which the expected value and the variance are equal
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This result, which indeed is one of the most important results in probability the-
ory, will not be derived here but instead the general conditions for the validity of the
theorem will be outlined.

In principle, the theorem is valid as long as the number of independent contribu-
tions to the sum is “large”. This implies that the sum may not be dominated by one
or just a few random variables and furthermore, that the dependency between the
random variables in the sum is not too strong. There is no requirement on the type
of distributions of the random variables entering the sum, but if the distributions are
skewed the number of variables in the sum which is required for the validity of the
theorem increases.

4.3.14 Example 4.5—Central Limit Theorem

For the purpose of illustration, consider the problem of assessing the accumu-
lated error in repeated measurements. The length of a structural member is be-
ing measured using a ruler of length 2 m with the smallest measuring unit equal
to 1 mm. It is assumed that all measurements are rounded off to the closest unit
on the ruler and thus it is assumed that each measurement is subject to a mea-
surement uncertainty which is uniformly distributed in the range ±0.5 mm. If the
length of a considered structural member is smaller or equal to 2 m, the length
can be measured by one measurement. It is clear that in this case the measure-
ment uncertainty follows the uniform distribution as outlined in the above. How-
ever, if the member length is between 2 m and 4 m two measurements are required,
if the member length is between 4 m and 8 m three measurements are required
and so on. In Fig. 4.12, the histograms of the corresponding resulting measure-
ment errors are illustrated under the assumption that consecutive errors are indepen-
dent.

From Fig. 4.12, it is seen that whereas the sample histogram for one measure-
ment is clearly uniform, the histogram approaches a bell shape already for four
repeated measurements and for most practical purposes may be considered to be
Normal distributed already for eight repeated measurements. The analytical form
of the probability density function for the accumulated errors may be derived by
repeated use of the result concerning the probability density function for the sum of
random variables given in Eq. 4.34. In Benjamin and Cornell [4], it is heuristically
shown that the analytical probability density functions has the form of a Normal
distribution.

4.3.15 The Normal Distribution

The significant practical importance of the central limit theorem lies in the fact
that even though only weak information is available regarding the number of con-
tributions and their joint probability density function rather strong information is
achieved for the distribution of sum of the contributions.
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Fig. 4.12 Sample histograms for errors accumulated in 1, 2, 4 and 8 repeated measurements

The Normal probability distribution is thus applied very frequently in practi-
cal problems for the probabilistic modeling of uncertain phenomena which may be
considered to originate from a cumulative effect of several independent uncertain
contributions.

The Normal distribution has the property that the linear combination S of n Nor-
mal distributed random variables Xi , i = 1,2, . . . , n:

S = a0 +
n∑

i=1

aiXi (4.48)

is also Normal distributed. The distribution is said to be closed in respect to sum-
mation.

Figure 4.13 shows the probability density and distribution function of a Normal
distributed random variable. The area between the interval of μ−σ ≤ x ≤ μ+σ for
the density function corresponds to 68.3% of the total area of the density function
which always has the value 1.

One special version of the Normal distribution should be mentioned, namely the
Standard Normal distribution. In general a standardized (sometimes referred to as
a reduced) random variable is a random variable which has been transformed such
that it has an expected value E[X] = 0 and a variance V [X] = 1, i.e. the random
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Fig. 4.13 Example of the density and distribution function of a normally distributed random vari-
able defined by the parameters μ = 160 and σ = 40

Fig. 4.14 Illustration of the relationship between a Normal distributed random variable and a
standard Normal distributed random variable

variable Y defined by:

Y = X − μX

σX

(4.49)

is a standardized random variable. If the random variable X follows the Normal
distribution the random variable Y is standard Normal distributed. In Fig. 4.14 the
process of standardization is illustrated.

It is common practice to denote the cumulative distribution function for the stan-
dard Normal distribution by Φ(x) and the corresponding density function by ϕ(x).
These functions are broadly available in software packages such as MS Excel and
Matlab.
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4.3.16 The Lognormal Distribution

A random variable Y is said to be Lognormal distributed if the variable Z = ln(Y ) is
Normal distributed. It thus follows that if an uncertain phenomenon can be assumed
to originate from a multiplicative effect of several uncertain contributions, then the
probability distribution for the phenomenon can be assumed to be Lognormal dis-
tributed.

The Lognormal distribution has the property that if:

P =
n∏

i=1

Y
ai

i (4.50)

and all Yi are independent Lognormal random variables with parameters λi , ζi and
εi = 0 as given in Table 4.2 then also P is Lognormal with parameters:

λP =
n∑

i=1

aiλi (4.51)

ζ 2
P =

n∑

i=1

a2
i ζ

2
i (4.52)

4.4 Stochastic Processes and Extremes

Random quantities may be “time variant” in the sense that they take on new re-
alizations at new trials or at new times. If the new realizations of the time variant
random quantity occur at discrete times and take on discrete realizations, the ran-
dom quantity is usually denoted a random sequence. Well known examples are se-
ries of throws of dice; more engineering relevant examples are flooding events. If
the realizations of the time variant quantity occur continuously in time and take on
continuous realizations the random quantity is usually denoted a random process
or stochastic process. Examples include wind velocity, wave heights, snowfall and
water levels.

In some cases random sequences and random processes may be represented in
a given problem context in terms of random variables e.g. for the modeling of the
“point in time” value of the intensity of the wind velocity, or the maximum (extreme)
wind velocity during one year. However, in many cases this is not possible and
then it is necessary to model the uncertain phenomena by a random process. In the
following, first an important type of random sequence will be introduced, namely the
sequence of Bernoulli trials from which the Binomial distribution has been derived.
Thereafter, a description of the Poisson counting process is given and finally the
continuous Normal or Gaussian processes are described. It should be noted that
numerous other types of random processes have been suggested in the literature of
which most have been derived from the mentioned.
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4.4.1 Random Sequences—Bernoulli Trials

A sequence of experiments with only two possible mutually exclusive outcomes is
called a sequence of Bernoulli trials. Typically the two possible events of a Bernoulli
trial are referred to as a success or a failure. If it is assumed that the probability of
success of a Bernoulli trial is constant equal to p then the probability density of
Y successes in n trials pY (y) i.e. the Binomial distribution (or sometimes denoted
B(n,p)) can be shown to be equal to:

pY (y) =
(

n

y

)
py(1 − p)n−y, y = 0,1,2, . . . , n (4.53)

where
(
n
y

)
is the binomial operator defined as:

(
n

y

)
= n!

y!(n − y)! (4.54)

The cumulative distribution function for Y is thus given as:

P(Y ≤ y) = PY (y) =
y∑

i=0

(
n

i

)
pi(1 − p)n−i , y = 0,1,2, . . . , n (4.55)

In Fig. 4.15 some examples of the Binomial distribution are shown for n = 5.
The expected value and the variance of Y , i.e. E[Y ]and Var[Y ] can be shown to

be given as:

EY = np (4.56)

Var[Y ] = np(1 − p) (4.57)

It is often of significant interest to assess the statistical characteristics of the ran-
dom “time” or random number of trials n until the first success occurs. The proba-
bility density of this event, provided that the trials are independent, is given by the
so-called Geometric distribution:

pN(n) = p(1 − p)n−1 (4.58)

and the corresponding cumulative distribution function by:

PN(n) =
n∑

i=1

p(1 − p)i−1 = 1 − (1 − p)n (4.59)

The mean value and the variance of the Geometric distribution are given by:

E[N ] = 1

p
(4.60)
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Fig. 4.15 Binomial distribution for p = 0.15 and p = 0.50, respectively

Var[N ] = 1 − p

p2
(4.61)

Especially the result given in Eq. 4.60 is of practical value as it gives the average
“time” until success.

4.4.2 Example 4.6—Quality Control of Concrete

During the control procedures for the concrete quality on a building site not all of
the tested specimens fulfilled the requirements to be used for structural purposes.
The “rate of success” is the probability p that one specimen does not fulfil the
requirements. According to the recent measurements p = 0.2. If we want to know
after how many tests one specimen may fail the requirements we could assess the
average return period which corresponds to the estimation operator described in
Eq. 4.60.

E[N ] = 1

p
= 1

0.2
= 5

Lecture 7 (Aim of the Present Lecture) The aim of the present lecture is
to provide an understanding on how to model and probabilistically describe
events that occur at discrete time points. In addition, continuous random pro-
cesses are introduced and their main characteristics are provided. Finally, ex-
treme events and their modeling are introduced and the concept of return pe-
riod is explained.
On the basis of the lecture it is expected that the reader will acquire knowledge
and skills with regard to:

• What is a simple Poisson process and where can it be applied?
• What are the properties which must be fulfilled before we can assume a

Poisson process?
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• What does homogeneity refer to for a Poisson process?
• According to what distribution can the time between realizations of a Pois-

son process be modeled?
• Which distribution does the sum of independent exponentially distributed

variables follow and for what can this distribution be applied?
• What is a continuous random process?
• How can a Normal process be characterized?
• What does stationarity mean and how is it defined?
• What is an extreme value and what is required to model it probabilistically?
• Which are the different types of extreme value distributions?
• How are extreme value models and return periods related?

4.4.3 The Poisson Counting Process

The most commonly applied family of discrete processes in structural reliability are
the Poisson processes. Due to the fact that Poisson processes have found applica-
tions in many different types of engineering problems, a large number of different
variants of Poisson processes has evolved. In general, the process N(t) denoting the
number of points in the interval [0; t[is called a simple Poisson process if it satisfies
the following conditions:

• The probability of one event in the interval [t; t + Δt[is asymptotically propor-
tional to the length of the interval Δt .

• The probability of more than one event in the interval [t; t + Δt[ is a function of
a higher order term of Δt for Δt → 0.

• Events in disjoint intervals are mutually independent.

The Poisson process may be defined completely by its intensity ν(t):

ν(t) = lim
Δt→0

1

Δt
P (one event in [t; t + Δt[ ) (4.62)

If ν(t) is constant in time the Poisson process is said to be homogeneous, other-
wise it is non-homogeneous.

In general, the probability of n events in the interval [0; t[ of a Poisson process
with intensity ν(t) can be given as:

Pn(t) =
(∫ t

0 ν(τ) dτ
)n

n! exp

(
−
∫ t

0
ν(τ) dτ

)
(4.63)

with mean value E[N(t)] and variance Var[N(t)]:

E [N(t)] = Var [N(t)] =
∫ t

0
ν(τ) dτ (4.64)
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The probability of no events in the interval [0; t[ i.e. P0(t) is especially interest-
ing considering reliability problems. This probability may be determined directly
from Eq. 4.63 as:

P0(t) = exp

(
−
∫ t

0
ν(τ) dτ

)
(4.65)

implying that the time until and between events is Exponential distributed.
From Eq. 4.65 the cumulative distribution function of the waiting time until the

first event T1, i.e. FT1(t1) may be straightforwardly derived. Recognizing that the
probability of T1 > t is P0(t) there is:

FT1(t1) = 1 − exp

(
−
∫ t1

0
ν(τ) dτ

)
(4.66)

Consider now the sum of n independent and Exponential distributed waiting
times T given as:

T = T1 + T2 + · · · + Tn (4.67)

It can be shown by repeated application of the result on the probability distri-
bution for the sum of two random variables (see Eq. 4.34) that T is Gamma dis-
tributed:

fT (t) = ν(νt)(n−1) exp(−νt)

(n − 1)! (4.68)

4.4.4 Continuous Random Processes

A random process X(t) is a random function of time, meaning that for any point in
time, the value of X(t) is a random variable. A realization of a random process (e.g.
water level variation) is illustrated in Fig. 4.16.

A stochastic process X(t) is said to be Normal or equivalently Gaussian
if any set of random variables X(ti), i = 1,2, . . . , n is jointly Normal dis-
tributed.

In accordance with the definition of the mean value of a random variable the
mean value of all the possible realizations of the stochastic process at time t is given
by:

μX(t) =
∫ ∞

−∞
xfX(x; t) dx (4.69)

The correlation between all the possible realizations at two points in time t1
and t2 as illustrated in Fig. 4.17 is described through the autocorrelation function
RXX(t1, t2). Auto means that the function refers to only one realization.

The autocorrelation function is defined by:

RXX(t1, t2) = E [X(t1)X(t2)] =
∫ ∞

−∞

∫ ∞

−∞
x1x2fXX(x1, x2; t1, t2) dx1 dx2 (4.70)
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Fig. 4.16 Realization of the water level variation as function of time

Fig. 4.17 Realization of a stochastic process with density functions of all possible realizations at
two different points in time, t1 and t2

The auto-covariance function is defined as:

CXX(t1, t2) = E
[
(X(t1) − μX(t1))(X(t2) − μX(t2))

]

=
∫ ∞

−∞

∫ ∞

−∞
(x1 − μX(t1))(x2 − μX(t2))fXX(x1, x2; t1, t2) dx1 dx2

(4.71)

for t1 = t2 = t the autocovariance function becomes the covariance function:

σ 2
X(t) = CXX(t, t) = RXX(t, t) − μ2

X(t) (4.72)

where σX(t) is the standard deviation function. The autocorrelation function can
hence be expressed as:

RXX(t1, t2) = CXX(t1, t2)

σX(t1)σX(t2)
(4.73)

The above definitions for the scalar process X(t) may be extended to cover
also vector valued processes X(t) = (X1(t),X2(t), . . . ,Xn(t))

T having covari-
ance functions CXiXj

= Cov[Xi(t1),Xj (t2)]. For i = j these become the auto-
covariance functions and when i �= j these are termed as cross-covariance func-
tions. An illustration of realizations of two stochastic processes with density
functions of all possible realizations at two different points in time is shown in
Fig. 4.18.
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Fig. 4.18 Realizations of two stochastic processes with density functions of all possible realiza-
tions at two different points in time, t1 and t2

Fig. 4.19 Realizations of a stochastic process with three out-crossings out of the safe domain D

in the time interval [0; t]

Finally the correlation function may be defined as:

ρ
[
Xi(t1),Xj (t2)

]= Cov[Xi(t1),Xj (t2)]
σXi

(t1)σXj
(t2)

(4.74)

Typically the correlation function is an exponentially decaying function in
time.

Having defined the mean value function and the autocovariance function for the
stochastic process X(t) the probability that the process remains within a certain safe
domain D in the time interval [0; t] may be evaluated by:

Pf (t) = 1 − P(N(t) = 0|X(0) ∈ D)P (X(0) ∈ D) (4.75)

where N(t) is the number of out-crossings of the random process out of the domain
D in the time interval [0, t]. This is illustrated in Fig. 4.19.
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Fig. 4.20 Realizations of a stationary and a non stationary stochastic process

4.4.5 Stationarity and Ergodicity

When the mean value function μX(t) and the autocorrelation function RXX(t) of
a stochastic process X(t) do not depend on time, the process is said to be weakly
stationary. Only if all the moments of a random process are independent of time,
is the random process said to be strictly stationary. Illustrations of a stationary and
non-stationary stochastic process are shown in Fig. 4.20.

A consequence of stationarity is that the autocovariance functions and autocorre-
lation function only depend on the time difference τ = t1 − t2. In this case Eq. 4.70
may be written as:

RXX(τ) = E [X(t)X(t + τ)] (4.76)

It should be noted that for weakly stationary Normal stochastic processes, the
requirements for strict stationarity are automatically fulfilled as the Normal distri-
bution function is completely defined by the first two moments.

Stationarity, in principle, implies that the process cannot start or stop. However,
for practical purposes, this requirement may be relaxed if the process is considered
at a sufficient time after its start and/or before its end. Further, stationarity may
be assumed even for slowly varying stochastic processes if sufficiently short time
intervals are considered.

If, in addition to stationarity, the mean value function and the autocorrelation
function of a stochastic process may be defined by a time average over one real-
ization of the stochastic process, the process is said to be weakly ergodic. If all
moments of the process may be defined in this way, the process is said to be strictly
ergodic.
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The assumption of ergodicity is especially important for the estimation of the
statistical characteristics of stochastic processes when only one or a few realizations
of the process are available, provided they are sufficiently long. If, for example, an
engineer wants to model the water temperature at a coastline with a random variable,
assuming ergodicity, she/he can use data from one single measurement station to
estimate the distribution parameters as long as the data stream is long enough. In
practice, ergodicity is, in such cases, often assumed unless, of course, evidence of
physical understanding supports the contrary.

4.4.6 Statistical Assessment of Extreme Values

In risk and reliability assessments, extreme values (small and large) of random pro-
cesses in a specified reference period are often of special interest. This is e.g. the
case when considering the maximum sea water level, maximum wave heights, min-
imum ground water reservoir level, maximum wind pressures, strength of weakest
link systems, maximum snow loads, etc.

For continuous time-varying loads, which can be described by a scalar, i.e. the
water level or the wind pressure, one can define a number of related probability
distributions. Often the simplest, namely the “arbitrary point in time”, distribution
is considered.

If x(t∗) is a realization of a single time-varying load at time t∗ then FX(x) is the
arbitrary point in time cumulative distribution function of X(t) defined by:

FX(x) = P(X(t∗) ≤ x) (4.77)

In Fig. 4.21 first observations of half yearly maximum values of wind speeds
are plotted together with histograms showing the corresponding sample frequency
distributions. In the same figure the equivalent presentations are also provided for
observations corresponding to maximums observed over periods of one and five
years.

From Fig. 4.21 it is seen that there is a clear tendency that the mean value of
the sample frequency histograms increases with increasing length of the considered
period. At the same time, the standard deviation is seen to be decreasing.

For practical purposes, the observations of half yearly maxima may be assumed
to be statistically independent and provide the basis (random “half yearly” point in
time model) for the further modeling of the statistical characteristics of extremes for
longer periods by extreme value considerations.

In the following section some results are given concerning the extreme events
of trials of random variables and random processes, see also Madsen et al. [9] and
Benjamin and Cornell [4]. Taking basis in the tail behavior of cumulative distribu-
tion functions, asymptotic results are given leading to the extreme value distribu-
tions.
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Fig. 4.21 Time series and corresponding sample frequency histograms of recorded half yearly,
annual and five year maximum observed wind velocities

4.4.7 Extreme Value Distributions

When extreme events are of interest, the arbitrary point in time distribution of the
load variable is not of immediate relevance but rather the distribution of the maximal
values of the considered quantity over a given reference period.

If the random process X(t) may be assumed to be ergodic, the distribution of the
largest extreme in a reference period T , F max

X,T (x) can be thought of as being gener-
ated by sampling values of the maximal realization xmax from successive reference
periods T .

The cumulative distribution function of the largest extreme in a period of nT ,
F max

X,nT (x), (with n being an integer) may be determined from the cumulative distri-



4.4 Stochastic Processes and Extremes 77

Fig. 4.22 Normal extreme value probability density functions

bution function of the largest extreme in the period T , F max
X,T (x), by:

F max
X,nT (x) = [

F max
X,T (x)

]n (4.78)

which follows from the multiplication law for independent events. The correspond-
ing probability density function may be established by differentiation of Eq. 4.78
yielding:

f max
X,nT (x) = nF max

X,T (x)n−1f max
X,T (x) (4.79)

In Fig. 4.22 the case of a Normal distribution with mean value equal to 10 and
standard deviation equal to 3 is illustrated for increasing n.

Similar to the derivation of Eq. 4.78 the cumulative distribution function for the
extreme minimum value in a considered reference period T , F min

X,nT (x) may be found
as:

F min
X,nT (x) = 1 − (

1 − F min
X,T (x)

)n
(4.80)

Subject to the assumption that the considered process is ergodic, it can be shown
that the cumulative function for an extreme event F max

X,nT (x) converges asymptoti-
cally (as the reference period nT increases) to one of three types of extreme value
distributions, type I, type II, or type III. To which type the distribution converges de-
pends only on the tail behavior (upper or lower) of the considered random variable
generating the extremes, i.e. F max

X,T (x). In the following sections the three types or
extreme value distributions will be introduced and it will be discussed under what
conditions they may be assumed. In Table 4.2 the definition of the extreme value
probability distributions and their parameters and moments is summarized.

4.4.8 Type I Extreme Maximum Value Distribution—Gumbel Max

For upwards unbounded distribution functions FX(x) where the upper tail falls off
in an exponential manner, such as the case of the exponential function, the Normal
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Table 4.2 Probability distributions, Schneider [11]

Distribution type Parameter Mean and standard deviation

Extrem Typ I—Gumbel max
−∞ ≤ x ≤ ∞
fX(x) = α exp(−α(x −u)−exp(−α(x −u))) u

α > 0

μ = u + 0.577216
α

σ = π

α
√

6FX(x) = exp(− exp(−α(x − u)))

Extreme Type I—Gumbel min
−∞ ≤ x ≤ ∞
fX(x) = α exp(α(x − u) − exp(α(x − u))) u

α > 0

μ = u − 0.577216
α

σ = π

α
√

6
FX(x) = 1 − exp(− exp(α(x − u)))

Extreme Type II—Fréchet max
ε ≤ x ≤ ∞, u, k > 0

fX(x) = k
u−ε

(
u−ε
x−ε

)k+1 exp
(−(

u−ε
x−ε

)k) u > 0

k > 0

ε

μ = ε + (u − ε)Γ
(
1 − 1

k

)

for k > 1

σ = (u − ε)

√
Γ
(
1 − 2

k

)− Γ 2
(
1 − 1

k

)

for k > 2

FX(x) = exp
(−(

u−ε
x−ε

)k)

Extreme Type III—Weibull min
ε ≤ x ≤ ∞, u, k > 0

fX(x) = k
u−ε

(
x−ε
u−ε

)k−1 exp
(−(

x−ε
u−ε

)k) u > 0

k > 0

ε

μ = ε + (u − ε)Γ
(
1 + 1

k

)

σ = (u − ε)

√
Γ
(
1 + 2

k

)− Γ 2
(
1 + 1

k

)

k ≈ (
σ
μ

)−1.09

FX(x) = 1 − exp
(−(

x−ε
u−ε

)k)

distribution and the Gamma distribution, the cumulative distribution of extremes in
the reference period T i.e. F max

X,T (x) has the following form:

F max
X,T (x) = exp

(− exp(−α(x − u))
)

(4.81)

with corresponding probability density function:

f max
X,T (x) = α exp

(−α(x − u) − exp(−α(x − u))
)

(4.82)

which is also called the Gumbel distribution for extreme maxima. The mean value
and the standard deviation of the Gumbel distribution may be related to the param-
eters u and α as:

μXmax
T

= u + γ

α
= u + 0.577216

α

σ
Xmax

T
= π

α
√

6

(4.83)

where γ is Euler’s constant.
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The Gumbel distribution has the useful property that the standard deviation is
independent of the considered reference period, i.e. σXmax

nT
= σXmax

T
and that the mean

value μXmax
nT

depends on n in the following simple way:

μXmax
nT

= μXmax
T

+
√

6

π
σXmax

T
ln(n) (4.84)

4.4.9 Type I Extreme Minimum Value Distribution—Gumbel Min

In case that the cumulative distribution function FX(x) is downwards unbounded
and the lower tail falls off in an exponential manner, symmetry considerations lead
to a cumulative distribution function for the extreme minimum F min

X,T (x) within the
reference period T of the following form:

F min
X,T (x) = 1 − exp

(− exp(α(x − u))
)

(4.85)

with corresponding probability density function:

f min
X,T (x) = α exp

(
α(x − u) − exp(α(x − u))

)
(4.86)

which is also called the Gumbel distribution for extreme minima. The mean value
and the standard deviation of the Gumbel distribution can be related to the parame-
ters u and α as:

μXmin
T

= u − γ

α
= u − 0.577216

α

σ
Xmin

T

= π

α
√

6
(4.87)

4.4.10 Type II Extreme Maximum Value Distribution—Fréchet
Max

For cumulative distribution functions downwards limited at zero and upwards un-
limited with a tail falling off in the form:

FX(x) = 1 − β

(
1

x

)k

(4.88)

the cumulative distribution function of extreme maxima in the reference period T

i.e. F max
X,T (x) has the following form:

F max
X,T (x) = exp

(
−
(

u

x

)k
)

(4.89)
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with corresponding probability density function:

f max
X,T (x) = k

u

(
u

x

)k+1

exp

(
−
(

u

x

)k
)

(4.90)

which is also called the Fréchet distribution for extreme maxima. The mean value
and the variance of the Fréchet distribution can be related to the parameters u and k

as:

μXmax
T

= uΓ

(
1 − 1

k

)

σ 2
Xmax

T
= u2

[
Γ

(
1 − 2

k

)
− Γ 2

(
1 − 1

k

)] (4.91)

where it is noticed that the mean value only exists for k > 1 and the standard de-
viation only exist for k > 2. In general it can be shown that the ith moment of the
Fréchet distribution exists only when k > i.

4.4.11 Type III Extreme Minimum Value Distribution—Weibull
Min

Finally, in the case where the cumulative distribution function FX(x) is downwards
limited at ε and the lower tail falls off towards ε in the form:

F(x) = c(x − ε)k (4.92)

leads to a cumulative distribution function for the extreme minimum F min
X,T (x) within

the reference period T of the following form:

F min
X,T (x) = 1 − exp

(
−
(

x − ε

u − ε

)k
)

(4.93)

with corresponding probability density function:

f min
X,T (x) = k

u − ε

(
x − ε

u − ε

)k−1

exp

(
−
(

x − ε

u − ε

)k
)

(4.94)

which is also called the Weibull distribution for extreme minima. The mean value
and the variance of the Weibull distribution can be related to the parameters u, k and
ε as:

μXmin
T

= ε + (u − ε)Γ

(
1 + 1

k

)

σ 2
Xmin

T

= (u − ε)2
[
Γ

(
1 + 2

k

)
− Γ 2

(
1 + 1

k

)] (4.95)
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Fig. 4.23 Maximum water levels with threshold for the 100-year return period flood event

4.4.12 Return Period for Extreme Events

The return period TR for an extreme event corresponding to x may be defined by:

TR = nT = 1

(1 − F max
X,T (x))

T (4.96)

where T is the reference period for the cumulative distribution function of the ex-
treme events F max

X,T (x). If, for example, the annual probability of an extreme load
event is 0.02, the return period for this load event is 50 years.

4.4.13 Example 4.7—A Flood with a 100-Year Return Period

The concept of the return period is often applied in the area of flood protection. In
Fig. 4.23, the 100-year return period flood event is defined by the exceedance of a
water level of 8 m. The yearly maximum water level is higher than this threshold
on average every 100 years, although waiting times between two consecutive events
can differ from this average.

The threshold defining an event with return period TR is called the character-
istic value xc . This value has a probability of exceedance of p = 1/TR and can
be determined as a quantile value of the corresponding extreme value distribu-
tion.

For the Gumbel max distribution, it is possible to calculate the characteristic
value approximately. By manipulation of Eq. 4.81 it can be shown, by utilizing a
Taylor expansion to the first order of ln(p) in p = 1, that the characteristic value xc

corresponding to an annual exceedance probability of p and corresponding return
period TR = 1/p for a Gumbel max distribution for large return periods can be
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Fig. 4.24 Extreme value distribution of the yearly maximum water level with characteristic value
for the 100-year return period flood event

written as:

xc ≈ u + 1

α
ln(TR) (4.97)

which shows that the characteristic value increases with the logarithm of the con-
sidered return period.

For this example, using a Gumbel max distribution with parameters u = 6 and
α = 2.3 and a return period TR = 100, a characteristic value xc = 8 is obtained.
The threshold value of 8 m defining the 100-year return period flood event is shown
in Figs. 4.23 and 4.24. While Fig. 4.24 shows the density function of the yearly
maximum water level using a Gumbel max distribution with parameters as speci-
fied above, Fig. 4.23 has been obtained based on a simulation of the Gumbel max
distribution with the same parameters.

4.5 Self Assessment Questions/Exercises

1. What types of uncertainties can be distinguished and how do these depend on
the time and scale of modeling?

2. What is understood by the terms aleatory and epistemic uncertainties?
3. What is meant by the term “continuous random variable”?
4. Using the properties of the expectation operator, how may the following nota-

tions be rewritten? (Note that a and b are constants and X is a random variable)
a. E[a + bX]
b. Var[a + bX]

5. Write down the names of the axes of the probability density and the cumula-
tive distribution functions of the random variable X illustrated in Figs. 4.25
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Fig. 4.25 Illustration of a probability density function

Fig. 4.26 Illustration of a cumulative distribution function

and 4.26. Identify the locations of the mean, the mode and the median in
the illustration of the probability density function. Show also the value of
the median in the illustration of the cumulative distribution function shown in
Fig. 4.26.

6. State the central limit theorem.
7. What is a standardized random variable and how is it defined?
8. What is a Bernoulli trial and what does it describe?
9. What is a Poisson process and where can it be applied?

10. The probability density function of a continuous random variable X, defined in
the interval [0,10], is illustrated in Fig. 4.27. Calculate the probability that X

may exceed the value of 5.
11. It is given that the operational life (until breakdown) T of a diesel en-

gine follows an exponential distribution, FT (t) = 1 − e−λt , with parame-
ter λ and mean value, μT = 1/λ, equal to 10 years. Calculate the prob-
ability that the engine breaks down within 2 years after placed in opera-
tion.
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Fig. 4.27 Function of a
continuous random
variable X

12. In a city there are on average 5 snowfall events in a year. Assume that the
occurrence of snowfall events follows a Poisson process. The number of snow-
fall events in t years, X, is described by the discrete cumulative distribution

function P(X = k) = (νt)k

k! e−νt with annual mean rate ν. How large is the prob-
ability of no snowfall in the next year? How large is the probability of exactly
5 snowfall events in the next year?



Chapter 5
Estimation and Model Building

Lecture 8 (Aim of the Present Lecture) The aim of the present lecture
is to provide an overview of how to establish probabilistic models and to in-
troduce the basic tools for assessing the validity of model assumptions. First,
the problem of selecting appropriate probability distribution functions for the
purpose of modeling uncertainties with basis in observations of uncertain
phenomena is treated, and it is shown how the concept of probability pa-
per can provide a pragmatic basis for this purpose. Then, the required theory
and methodology for the estimation of parameters of probability distributions
based on data is introduced. To this end, the method of moments and the
maximum likelihood method as well as their limitations and applications are
illustrated and discussed.
On the basis of the lecture it is expected that the reader will acquire knowledge
and skills with regard to:

• What are the steps involved in establishing a probabilistic model for a ran-
dom variable?

• What is a probability paper and how is it constructed? How is it related to
a quantile plot?

• In what regions of the probability paper is it especially important that the
plotted quantiles fit a straight line?

• What is the principle behind the method of moments and how can it be
applied to estimate the parameters of a probability distribution?

• What is the principle behind the maximum likelihood method and how can
it be applied to estimate the parameters of a probability distribution?

• What is sample likelihood and how is it quantified?
• How can the statistical uncertainty associated with estimated distribution

parameters be quantified?
• What is the information matrix and how does this relate to the covariance

matrix of the estimated parameters?

M.H. Faber, Statistics and Probability Theory,
Topics in Safety, Risk, Reliability and Quality 18,
DOI 10.1007/978-94-007-4056-3_5, © Springer Science+Business Media B.V. 2012
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5.1 Introduction

An important task in risk and reliability analysis is to establish probabilistic models
for the further statistical treatment of uncertain variables.

In the literature, a large number of probabilistic models for load and resistance
variables may be found. For example, in the Probabilistic Model Code developed
by the Joint Committee on Structural Safety (JCSS [8]) where probabilistic models
may be found for the description of the strength and stiffness characteristics of steel
and concrete materials, soil characteristics and for the description of load and load
effects covering many engineering application areas. However, it is not always the
case that an appropriate probabilistic model for the considered problem is available.
Moreover, in engineering fields, such as in environmental engineering and hydrol-
ogy standardization of the probabilistic modeling is relatively less developed. In
such situations it is necessary that methodologies and tools are readily available
for the statistical assessment of frequentistic information (e.g. observations and test
results) and the formulation of probabilistic models of uncertain variables.

In practice two situations may thus be distinguished, namely the situation where
a new probabilistic model is formulated from the very beginning and the situation
where an already existing probabilistic model is updated on the basis of new infor-
mation, e.g. observations or experimental results. The formulation of probabilistic
models may be based on data (frequentistic information) alone, but most often data
is not available to the extent where this is possible. In such cases, it is usually pos-
sible to base the model building on physical arguments, experience and judgment
(subjective information). If also some data are available, the subjective information
may be combined with the frequentistic information and the resulting probabilistic
model is in effect of a Bayesian nature.

It should be emphasized that on the one hand the probabilistic model should aim
for simplicity. On the other hand, the model should be accurate enough to allow
for including important information collected during the lifetime of the considered
technical system thereby facilitating the updating of the probabilistic model. In this
way, uncertainty models, which initially are based entirely on subjective information
will, as new information is collected, eventually be based on objective information.

In essence, the model building process consists of five steps:

• Assessment and statistical quantification of the available data
• Selection of distribution function
• Estimation of distribution parameters
• Model verification
• Model updating

Typically, the initial choice of the model, i.e. underlying assumptions regard-
ing distributions and parameters may be based mainly on subjective information,
whereas the assessment of the parameters of the distribution function and the veri-
fication of the models is performed on the basis of the available data. The principle
for establishing a probabilistic model is illustrated in Fig. 5.1.

As the probabilistic models are based on both frequentistic information and sub-
jective information, these are Bayesian in nature.
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Fig. 5.1 Illustration of the formulation of probabilistic models for uncertain variables

In the following sections only the probabilistic modeling of random variables
will be considered, but the described approach applies with some extensions also to
the probabilistic modeling of random processes and random fields.

5.2 Selection of Probability Distributions

In general the distribution function for a given random variable or stochastic process
is not known and must thus be chosen on the basis of frequentistic information,
physical arguments or a combination of both.

A formal classical approach (described in detail in Sect. 5.9) for the identification
of an appropriate distribution function on the basis of statistical evidence is to:

• Postulate a hypothesis for the distribution family.
• Estimate the parameters for the selected distribution on the basis of statistical

data.
• Perform a statistical test to attempt to reject the hypothesis.

If it is not possible to reject the hypothesis, the selected distribution function may
be considered to be appropriate for the modeling of the considered random variable.
If the hypothesis is rejected, a new hypothesis must be postulated and the process
repeated.

This procedure follows closely the classical frequentistic approach to statistical
analysis. However, in many practical engineering applications this procedure has
limited value. This is not only due to the fact that the amount of available data most
often is too limited to form a solid basis for a statistical test, but also because the
available tests applied in situations with little frequentistic information may lead to
false conclusions.

In practice, however, it is often the case that physical arguments can be formu-
lated for the choice of distribution functions and statistical data are therefore merely
used for the purpose of checking whether the postulated distribution function is
plausible.

A practically applicable approach for the selection of the distribution function
for the modeling of a random variable is thus:
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• First, to consider the physical reasons why the quantity at hand may belong to
one or the other distribution family;

• Second, to check whether the statistical evidence is in gross contradiction with
the assumed distribution by using e.g. probability paper as explained in the sub-
sequent, or if relevant, the more formal approaches given in Sect. 5.9.

5.2.1 Model Selection by Use of Probability Paper

Having selected a probability distribution family for the probabilistic modeling of a
random variable, the probability paper is an extremely useful tool for the purpose
of checking the plausibility of the selected distribution family.

A probability paper for a given distribution family is constructed such that the cu-
mulative probability distribution function (or the complement) for that distribution
family will have the shape of a straight line when plotted on the paper. A probability
paper is thus constructed by a non-linear transformation of the vertical axis (y-axis).

For a Normal distributed random variable the cumulative distribution function is
given as:

FX (x) = Φ

(
x − μX

σX

)
(5.1)

where μX and σX are the mean value and the standard deviation of the Normal
distributed random variable and where Φ(·) is the standard Normal probability dis-
tribution function. Equation 5.1 can be re-written as:

x = Φ−1(FX(x))σX + μX (5.2)

Now by plotting x against Φ−1(FX(x)), see also Fig. 5.2, it is seen that a straight
line is obtained with the slope depending on the standard deviation of the random
variable X and the intercept on with the y-axis depending on the mean value of the
random variable. Such a plot is sometimes called a quantile plot, see also Sect. 3.3.

Also in Fig. 5.2 the scale of the non-linear y-axis is given corresponding to the
linear mapping of the observed cumulative probability densities. In probability pa-
pers, typically, only this non-linear scale is given.

Probability papers may also be constructed graphically. In Fig. 5.3 the graphical
construction of a Normal probability paper is illustrated.

Various types of probability paper are readily available for use. Given an ordered
set of observed values x̂o

i = (x̂o
i , x̂o

i , . . . , x̂o
N
)
T of a random variable, the cumulative

distribution function may be evaluated as:

FX(x̂o
i ) = i

N + 1
(5.3)

In Table 5.1 an example is given for a set of observed concrete cube compressive
strength values together with the cumulative distribution function values as calcu-
lated using Eq. 5.3. In Fig. 5.4 the cumulative distribution values are plotted on a
Normal distribution probability paper.
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Fig. 5.2 Illustration of the non-linear scaling of the y-axis for a Normal distributed random vari-
able

Fig. 5.3 Illustration of the graphical construction of a Normal distribution probability paper

A first estimate of the distribution parameters may be readily determined from
the slope and the position of the best straight line through the plotted cumulative
distribution values. In Sect. 5.3 the problem of parameter estimation is considered
in more detail.

From Fig. 5.4 it is seen that the observed cumulative distribution function fits
relatively well with a straight line. This might also be expected considering that the
observed values of the concrete compressive strength are not really representative
for the lower tail of the distribution, where due to the non-negativity of the com-
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Fig. 5.4 Concrete cube compressive strength data plotted in a probability paper for the Normal
distribution

Table 5.1 Ordered set of
observed concrete cube
compressive strengths and the
calculated cumulative
distribution values

i x̂o
i FX(x̂o

i ) Φ(FX(x̂o
i ))

1 24.4 0.048 −1.668

2 27.6 0.095 −1.309

3 27.8 0.143 −1.068

4 27.9 0.190 −0.876

5 28.5 0.238 −0.712

6 30.1 0.286 −0.566

7 30.3 0.333 −0.431

8 31.7 0.381 −0.303

9 32.2 0.429 −0.180

10 32.8 0.476 −0.060

11 33.3 0.524 0.060

12 33.5 0.571 0.180

13 34.1 0.619 0.303

14 34.6 0.667 0.431

15 35.8 0.714 0.566

16 35.9 0.762 0.712

17 36.8 0.810 0.876

18 37.1 0.857 1.068

19 39.2 0.905 1.309

20 39.7 0.952 1.668

pressive strength it might be assumed that a Lognormal distribution would be more
suitable.

The estimation of the probabilities of values which are outside the measured
range can be done by extrapolation (see Fig. 5.4). The probability paper may also
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be used for extreme phenomena such as the maximum water level, to estimate the
values of the water level with a certain return period (see e.g. Schneider [11]). How-
ever, as always when extrapolating, extreme care must be exercised.

5.3 Estimation of Distribution Parameters

There are, in principle, two different methods to estimate the distribution parameters
on the basis of data, namely the methods of point estimates and the methods of
interval estimates. In the following section, however, only two of the methods of
point estimates will be explained, namely the method of moments and the method
of maximum likelihood as these have proven especially useful in practical risk and
reliability engineering analysis.

5.3.1 The Method of Moments

Using the method of moments, the parameters of the distribution can be estimated
by equating the moments obtained from the sample and the moments obtained from
the distribution.

Assuming that the considered random variable X may be modeled by the prob-
ability density function fX(x;Θ), where Θ = (θ1, θ2, . . . , θk)

T are the distribution
parameters, the first k moments λ = (λ1, λ2, . . . , λk)

T of the random variable X

may be written as:

λj (θ) =
∫ ∞

−∞
xjfX(x| θ) dx

= λj (θ1, θ2, . . . , θk) (5.4)

If the random sample, from which the distribution parameters Θ = (θ1, θ2, . . . ,

θk)
T are to be estimated, is collected in the vector x̂ = (x̂1, x̂2,, . . . , x̂n)

T , the corre-
sponding k sample moments may be calculated as:

mj = 1

n

n∑
i=1

x̂
j
i (5.5)

By equating the k sample moments to the k moments of the random variable
X, a set of k equations with the k unknown distribution parameters is obtained, the
solution of which gives the point estimates of the distribution parameters.
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Fig. 5.5 Schematic representation of the method of maximum likelihood

5.3.2 The Method of Maximum Likelihood

This method may be somewhat more difficult to use than the method of moments
but has a number of very attractive properties, which makes it especially applicable
in engineering risk and reliability analysis.

The principle of the method is that the parameters of the distribution function
are fitted such that the probability (likelihood) of the observed random sample is
maximized.

Let the random variable of interest X have a probability density function
fX(x; θ) where θ = (θ1, θ2, . . . , θk)

T are the distribution parameters to be esti-
mated.

If the random sample from which the distribution parameters θ = (θ1, θ2, . . . , θk)
T

are to be estimated are collected in the vector x̂ = (x̂1, x̂2,, . . . , x̂n)
T , the likelihood

L(Θ|x̂) of the observed random sample is defined as:

L(θ |x̂) =
n∏

i=1

fX(x̂i | θ) (5.6)

The maximum likelihood point estimates of the parameters θ = (θ1, θ2, . . . , θk)
T

may now be obtained by solving the following optimization problem:

min
θ

(−L(θ |x̂)) (5.7)

The principle is illustrated in Fig. 5.5, where it can be seen that the distribution func-
tion is shifted to maximize the likelihood of the observations by means of changing
the distribution parameters.

Instead of the likelihood function it is advantageous to consider the log-
likelihood l(θ |x̂) i.e.:
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l(θ |x̂) =
n∑

i=1

ln(fX(x̂i | θ)) (5.8)

One of the most attractive properties of the maximum likelihood method is that
when the number of samples i.e. n is sufficiently large the distribution of the param-
eter estimates converges towards a Normal distribution with mean values μΘ equal
to the point estimates, i.e.:

μΘ = (θ∗
1 , θ∗

2 , . . . , θ∗
n )

T (5.9)

The covariance matrix CΘΘ for the point estimates may readily be obtained by:

CΘΘ = H−1 (5.10)

where H is the Fisher information matrix with components determined by the sec-
ond order partial derivatives of the log-likelihood function taken in the maximum,
i.e.:

Hij = −∂2l(θ |x̂)

∂θi∂θj

∣∣∣∣
θ=θ∗

(5.11)

With the Fisher information matrix the uncertainties associated with the point
estimates and the statistical uncertainties are considered (with a large number of
samples, the uncertainties decrease).

5.3.3 Example 5.1—Parameter Estimation

Consider again the experimental results of the concrete cube compressive strength
values given in Table 5.1. Assuming that the concrete cube compressive strength is
Normal distributed, it is required now to estimate the parameters on the basis of the
experiment results.

With Eqs. 4.5, 4.7 and 4.17 it can be shown that the first two moments of the
Normal distribution are given as:

λ1 = μ

λ2 = μ2 + σ 2 (5.12)

Analyzing the sample data, the first two sample moments can be found using the
following equation:

mj = 1

n

n∑
i=1

x̂
j
i

m1 = 1

n

n∑
i=1

x̂i = 32.67 (5.13)

m2 = 1

n

n∑
i=1

x̂2
i = 1083.36
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The point estimates of the parameters μ and σ may now be determined by solving
the equations:

μ = 32.67

μ2 + σ 2 = 1083.36
(5.14)

giving:

μ = 32.67

σ = 4.05
(5.15)

Using the method of maximum likelihood, the maximum likelihood function is
readily written as:

L(θ |x̂) =
n∏

i=1

fX(x̂i | θ) =
(

1√
2πθ2

)n

exp

(
−1

2

n∑
i=1

(x̂i − θ1)
2

θ2
2

)
(5.16)

and correspondingly the log-likelihood function as:

l(Θ|x̂) = n ln

(
1√

2πθ2

)
− 1

2

n∑
i=1

(x̂i − θ1)
2

θ2
2

(5.17)

where n is the number of observations of the concrete cube compressive strength
x̂ = (x̂1, x̂2,, . . . , x̂n)

T .
The mean values of the estimates may be determined by solving the following

equations:

∂l

∂θ1
= 1

θ2
2

n∑
i=1

(x̂i − θ1) = 0

∂l

∂θ2
= − n

θ2
+ 1

θ3
2

n∑
i=1

(x̂i − θ1t)
2 = 0

(5.18)

yielding:

θ1 = 1

n

n∑
i=1

x̂i

θ2 =
√∑n

i=1 (x̂i − θ1)
2

n

(5.19)

which, by using the sample data gives:

θ1 = μ = 32.665 θ2 = σ = 4.04

Not surprisingly, the same result as that obtained using the method of moments
is obtained here.
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As mentioned previously, the covariance matrix CΘΘ for the parameters esti-
mates may be determined through the information matrix H containing the second-
order partial derivatives of the log-likelihood function, see Eq. 5.17. The information
matrix may be found to be:

H =
⎛
⎜⎝

n

θ2
2

2
∑n

i=1 (xi−θ1)

θ3
2

2
∑n

i=1 (xi−θ1)

θ3
2

− n

θ2
2

+ 3
∑n

i=1 (xi−θ1)
2

θ4
2

⎞
⎟⎠ (5.20)

whereby the covariance matrix is evaluated using the sample data as:

CΘΘ = H−1 =
(

0.818 0
0 0.409

)
=
(

Var[θ1] 0
0 Var[θ2]

)
(5.21)

In probabilistic modeling, where the concrete cube compressive strength enters
as a random variable, it is then possible to take into account the statistical uncer-
tainty associated with the estimates of the distribution parameters for the distri-
bution function, simply by including the distribution parameters in the reliability
analysis as Normal distributed variables with the evaluated mean values and covari-
ances.

Lecture 9 (Aim of the Present Lecture) This lecture introduces Bayesian
estimation methods. The use of these methods makes it possible to update an
existing probabilistic model with newly available data. Bayesian regression
analysis makes use of this principle. The basic principle here is that the re-
lation between two random variables is represented through a regression line
which can be updated based on new data.
On the basis of the lecture it is expected that the reader will acquire knowledge
and skills with regard to:

• Which kind of information is typically contained in an a priori model of the
probabilistic distribution of a random variable?

• How is the information from new data and the a priori information weighted
in Bayesian estimation methods?

• What is a conjugated prior distribution?
• What are the basic assumptions made in linear regression?
• What principle is behind the least squares method?
• How are the uncertainties quantified in a regression model?
• How can a regression model be updated in line with Bayesian regression

analysis?
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5.4 Bayesian Estimation Methods

A typical situation in risk and reliability analysis is that a prior probabilistic model
for a random variable is available, e.g. a distribution function and its corresponding
distribution parameters have been chosen and estimated based on previous exper-
imental results, experience and professional judgment. As soon as additional data
becomes available, it is desired to update the distribution parameters of the prior
probabilistic model on the basis of this data, weighing the confidence in the prior
model consistently with the evidence provided by the new data.

Consider a random variable X with density function fX(x). If θ denotes a vector
of parameters defining its distribution, the density function of the random variable
X can be written as:

fX(x, θ) (5.22)

If X is Normal distributed, then θ would contain the mean and the standard de-
viation of X.

If the parameters are uncertain, fX(x, θ) can be considered as a conditional den-
sity function: fX(x|θ). θ denotes a realization of the random variable Θ . The initial
probability density function for the parameters Θ is f ′

Θ (θ) and is denoted the prior
density function.

It is assumed that n observations (realizations) of the random variable X are
available, thereby building up the sample x̂ = (

x̂1, x̂2, . . . , x̂n

)T . The realizations are
assumed to be independent. The updated density function f ′′

Θ (θ |x̂) of the uncertain
parameters Θ , given the realizations x̂, is denoted the posterior density function and
is given by (see JCSS [8]):

f ′′
Θ (θ |x̂) = L(x̂|θ)(x̂|θ)f ′

Θ (θ)∫
L(x̂|θ)f ′

Θ (θ) dθ
(5.23)

where L(x̂|θ) =∏n
i=1 fX(x̂i | θ) is the likelihood corresponding to the given obser-

vations assuming that the distribution parameters are θ . The integration in Eq. 5.23
is over all possible realizations of Θ . The updated density function of the random
variable X given the realization x̂ is denoted the predictive density function and is
defined by:

fX(x|x̂) =
∫

fX(x|θ)f ′′
Θ (θ |x̂) dθ (5.24)

Given the distribution function for the random variable X, the prior distribution
is often chosen such that the posterior distribution will be of the same type as the
prior distribution (conjugated prior). In the literature, a number of prior, posterior
and predictive distribution functions can be found, see e.g. JCSS [8]. Analytical
solutions concerned with the following problems can be found for:

• Normal distribution with unknown mean
• Normal distribution with unknown standard deviation
• Normal distribution with unknown mean and standard deviation
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• Gumbel distribution
• Weibull distribution
• Exponential distribution
• Bernoulli distribution
• Poisson distribution
• Multidimensional Normal distribution with unknown means
• Multidimensional Normal distribution with unknown standard deviations
• Multidimensional Normal distribution with unknown means and standard devia-

tions

The parameters in the prior distribution can be chosen or calculated in such a
way that the prior reflects:

• the known (initial) observations of the random variable X from which estimates
of the parameters in the prior distribution can be calculated, and/or

• the subjective knowledge on the distribution of the parameters Θ in the distribu-
tion of X.

In this way, it is possible to choose a prior distribution reflecting a range of situa-
tions from a very good prior knowledge of the parameters (small standard deviation)
to almost no knowledge of the parameters (large standard deviation).

5.4.1 Example 5.2—Yield Stress of a Steel Bar

As an example on the updating of random variables consider the probabilistic mod-
eling of the yield stress of steel. The prior probabilistic model for the yield stress
is assumed to be Normal distributed with known (deterministic) standard deviation
σfy = 17.5 MPa and uncertain mean value μfy . The mean value μfy is assumed
to be Normal distributed with a mean value μ′ = 350 MPa and standard deviation
σ ′ = 10 MPa.

Assume now that yield stress tests are performed on 5 steel samples taken from
a batch of the same steel material. The results of the yield stress tests are f̂y =
(365,347,354,362,348)T .

Based on the test results, the prior probabilistic model for the mean value of
the yield stress can be updated using natural conjugate probability distributions as
mentioned earlier.

In the case considered with a Normal distributed random variable with uncertain
mean and known standard deviation, the posterior probability density as given in
Eq. 5.23 may be reduced to (JCSS [8])

f ′′(μfy ) = 1√
2πσ ′′ exp

(
−1

2

(
μfy − μ′′

σ ′′

)2
)

(5.25)



98 5 Estimation and Model Building

Fig. 5.6 Illustration of prior and posterior probability density and likelihood functions for the
mean value of the steel yield stress

where

μ′′ =
μ′
n

+ x̄
n′

1
n′ + 1

n

(5.26)

and

σ ′′ =

√√√√√
σ 2

fy

n′ · σ ′2

n

σ ′2

n′ + σ ′2

n

(5.27)

and

n′ =
σ 2

fy

σ ′2 (5.28)

x̄ is the sample mean of the observations, n′ is the sample size assumed for the
prior distribution of μfy and n is the sample size for the new sample. In the present
example n′ = 3.06. Based on the new observations, the posterior parameters are
μ′′ = 353.22 and σ ′′ = 6.16.

Figure 5.6 illustrates the prior and the posterior probability density functions for
μfy .

The likelihood of the observation can be established as:

L(μfy | f̂y) =
5∏
1

1√
2πσfy

exp

⎛
⎝−1

2

(f̂yi − μfy )
2

σfy

2

⎞
⎠ (5.29)

The likelihood function is also shown in Fig. 5.6. It is seen from Fig. 5.6 that the
effect of the test results can be quite significant. According to JCSS [8] the predictive
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Fig. 5.7 Illustration of original and predictive probability distribution function for the steel yield
stress

probability density function for the steel yield stress may be determined as:

ffy
(fy | f̂y) = 1√

2πσ ′′′ exp

(
−1

2

(
fy − μ′′

σ ′′′

)2
)

(5.30)

where

σ ′′′2 = σ ′′2 + σ 2
fy

(5.31)

In Fig. 5.7 the predictive probability distribution and the probability distribution
function for the steel yield stress based on the prior information of the mean value
are shown.

The 5% quantile, which is a typical characteristic value for the steel yield stress,
has changed from 317 MPa to 322 MPa as a result of the Bayesian updating process
(see Fig. 5.7).

5.5 Bayesian Regression Analysis

Bayesian regression analysis is a very useful modeling tool in engineering where
(semi-)empirical relationships based on experimental evidence play a big role. In
this section, only the special, but in practice useful, case of univariate linear models
is considered. A probabilistic model for a random variable Y is to be developed
where Y is a linear function of a random variable X. The relationship between X

and Y can be expressed as follows:

Y = β0 + β1X + ε (5.32)
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where β0 and β1 are model parameters, i ∈ {1,2, . . . , n} is the index of test result,
and εi is a realization of the residual ε. It is assumed that the residual ε is Normal
distributed with zero mean and standard deviation σε . Hence it is seen that Y for
given x is also Normal distributed. It is assumed that n experiment or test results
are available (x̂, ŷ)

T . The first step involves assessing the prior distribution of the
model parameters. In the next step, the model is updated with new measurements.

5.5.1 Linear Regression: Prior Model

The model parameters β0 and β1 can be assessed by using the least squares method.
For this, the model error εi is assessed for each point by determining the difference
between the measured and predicted values of yi . The model parameters which
minimize the sum of all squared error terms are then obtained. The squared error
terms are used in order to account for positive and negative errors equally.

min
n∑

i=1

ε2
i = min

n∑
i=1

(ŷi − (β0 + β1x̂i ))
2 (5.33)

To minimize this function we set its partial derivatives with respect to β0 and β1

to be equal to zero:

0 =
n∑

i=1

(ŷi − β0 − β1x̂i )
2 ∂

∂β0
= −2

n∑
i=1

(yi − β0 − β1xi)

0 =
n∑

i=1

(ŷi − β0 − β1x̂i )
2 ∂

∂β1
= −2

n∑
i=1

(ŷi − β0 − β1x̂i )x̂i

(5.34)

The set of equations obtained from Eq. 5.34 can be written as:

n∑
i=1

ŷi = β1

n∑
i=1

x̂i + β0

n∑
i=1

1 (5.35)

n∑
i=1

x̂i ŷi = β1

n∑
i=1

x̂2
i + β0

n∑
i=1

x̂i (5.36)

This equation system can be described in matrix notation:

(
1T × ŷT

x̂T × ŷT

)
=
(

x̂T × 1T 1T × 1T

x̂T × x̂T x̂T × 1T

)(
β1
β0

)
(5.37)

or condensed:

X̂T ŷ = X̂T X̂β (5.38)
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The vector ŷ contains the test results ŷi while the matrix X contains ones in
the first column and the test results x̂i in the second column. Equation 5.38 can be
reformulated as:

β = (
X̂T X̂

)−1
X̂T ŷ (5.39)

where:

X̂T X̂ =
(

1 · · · 1
x̂1 · · · x̂n

)⎛⎜⎝
1 x̂1
...

...

1 x̂n

⎞
⎟⎠=

(
n · 12 ∑n

i=1 x̂i∑n
i=1 x̂i

∑n
i=1 x̂2

i

)
(5.40)

and

X̂T ŷ =
(

1 · · · 1
x̂1 · · · x̂n

)⎛⎜⎝
ŷ1
...

ŷn

⎞
⎟⎠=

( ∑n
i=1 ŷi∑n

i=1 x̂i ŷi

)
(5.41)

Equation 5.39 can also be derived using the Method of Maximum Likelihood. In
a simple linear regression, the following solutions for β0 and β1 exist:

β0 = 1

n

n∑
i=1

ŷi − β1
1

n

n∑
i=1

x̂i = ȳ − β1x̄ (5.42)

β1 =
1
n

∑n
i=1 ŷi x̂i − ȳ 1

n

∑n
i=1 x̂i

1
n

∑n
i=1 x̂2

i − x̄ 1
n

∑n
i=1 x̂i

=
1
n

∑n
i=1 ŷi x̂i − ȳx̄

1
n

∑n
i=1 x̂2

i − x̄2
= sXY

s2
X

(5.43)

The standard deviation of the error term ε is assessed by:

σε =
√∑n

i=1 ε2
i

n − k
(5.44)

where n is the number of measurements and k is the number of parameters in β .
The variance of the error term can be written in matrix form as:

σ 2
ε = (

y − X̂β
)T (

y − X̂β
)
/(n − k) (5.45)

The conditional distribution of Ŷ given β and X̂ follows a Normal distribution
with the following parameters:

E
(
Ŷ |β; X̂

)= β X̂ (5.46)

Var
(
Ŷ |β; X̂

)= σ 2
ε (5.47)

The uncertainty of the parameters β can be represented using the covariance
matrix, where the parameter variances are contained in the diagonal:

Cov(β) = σ 2
ε Vβ with Vβ = (

X̂T X̂
)−1

(5.48)



102 5 Estimation and Model Building

In case the random variable Ŷ needs to be modeled using not only one, but k

components in X̂, the model can be generalized to:

yi = βo +
k∑

j=1

xijβj + εi (5.49)

The parameters β can also be assessed through Eq. 5.39 with the only difference
being that the matrix X holds one column for each of r components.

5.5.2 Example 5.3—Tensile Strength of Timber: Prior Model

In the grading of timber materials it is normal to classify the sawn timber tensile
strength based on the tensile modulus of elasticity. To be able to do this it is nec-
essary to determine the correlation between the tensile strength X and the tensile
modulus of elasticity Y on the basis of measured values.

Using the experiment results from Table 5.2 the parameters β0 and β1 can now
be assessed for the model Y = β0 + β1X + ε:

X̂ =

⎛
⎜⎜⎝

1 19.11
1 12.30
1 14.83
1 13.18

⎞
⎟⎟⎠ ŷ =

⎛
⎜⎜⎝

8426
7092
7347
7917

⎞
⎟⎟⎠

β = (
X̂T X̂

)−1
X̂T ŷ

=

⎡
⎢⎢⎣
(

1 1 1 1
19.11 12.30 14.83 13.18

)⎛⎜⎜⎝
1 19.11
1 12.30
1 14.83
1 13.18

⎞
⎟⎟⎠

⎤
⎥⎥⎦

−1

×
(

1 1 1 1
19.11 12.30 14.83 13.18

)
⎛
⎜⎜⎝

8426
7092
7347
7917

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

366.19 236.05 284.40 252.87
236.05 152.29 183.41 163.11
284.40 183.41 220.93 196.46
252.87 163.11 196.46 174.71

⎞
⎟⎟⎠

−1 (
30782
461554

)

=
(

8.29 −0.54
−0.54 0.04

)(
30782

461554

)
=
(

5374.12
156.27

)
=
(

β0
β1

)
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Table 5.2 Measured values
of tensile strength and tensile
modulus of elasticity of sawn
timber

Tensile strength x̂ [MPa] Tensile modulus of elasticity ŷ [MPa]

19.11 8426

12.30 7092

14.83 7347

13.18 7917

Fig. 5.8 Regression model and test results

The standard deviation of the error term can be determined as follows:

n∑
i=1

ε2
i =

n∑
i=1

(ŷi − (β0 + β1x̂i ))
2

= (8426 − (5374.12 + 156.27 · 19.11))2 + · · ·
+(7917 − (5374.12 + 156.27 · 13.18))2

= 39′8287

σε =
√∑n

i=1 ε2
i

n − k
=
√∑n

i=1 ε2
i

n − 2
=
√

39′8287

4 − 2
= 446.25 MPa

Hence, the regression equation is (see Fig. 5.8):

Y = 5374.12 + 156.27X + ε ε ∼ N(0,446.25)
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The uncertainties of the parameters β are determined in the following way:

Vβ = (
X̂T X̂

)−1

=

⎡
⎢⎢⎣
(

1 1 1 1
19.11 12.30 14.83 13.18

)⎛⎜⎜⎝
1 19.11
1 12.30
1 14.83
1 13.18

⎞
⎟⎟⎠
⎤
⎥⎥⎦

−1 (
8.29 −0.54

−0.54 0.04

)

Cov (β) = σ 2
ε Vβ = 446.25

(
8.29 −0.54

−0.54 0.04

)
=
(

3′700.4 −241.6
−241.6 16.3

)

5.5.3 Updating Regression Coefficients: Posterior Model

In the foregoing section, linear regression has been introduced as a useful tool to
investigate the linear relationship between two random variables. This section shows
how the prior model for the regression coefficients β can be updated based on new
measurements. It is assumed that in addition to the parameters β ′ and V′

β from the
prior model, the new measurements y and X are given.

The parameters for the posterior model are then derived from the following equa-
tion:

(V′′
β)−1 = (V′

β)−1 + X̂T X̂ (5.50)

β ′′ = V′′
β

(
(V′

β)−1β ′ + X̂T ŷ
)

(5.51)

5.5.4 Example 5.4—Updating Regression Coefficients
(Determined in Example 5.3)

The prior model in Example 5.3 describes the correlation between the tensile
strength X and the tensile modulus of elasticity Y of timber:

β ′ =
(

5374.12
156.27

)
V′

β =
(

8.29 −0.54
−0.54 0.04

)

Now, the prior model is updated with two new test results, as indicated in Ta-
ble 5.3.

X =
(

1 18.04
1 24.10

)
y =

(
7581
9661

)

(V′′
β)−1 = (V′

β)−1 + X̂T X̂

=
(

8.29 −0.54
−0.54 0.04

)
+ XT X

=
(

8.29 −0.54
−0.54 0.04

)
+
[(

1 1
18.04 24.10

)(
1 18.04
1 24.10

)]
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Table 5.3 Additional test
results used for updating Tensile strength x̂ [MPa] Tensile modulus of elasticity ŷ [MPa]

18.04 7581

24.10 9661

Fig. 5.9 Updated regression model

=
(

8.29 −0.54
−0.54 0.04

)
+
(

2 42.14
42.14 906.25

)
=
(

10.29 41.6
41.6 906.29

)

β ′′ = V′′
β

(
(V′

β)−1β ′ + X̂T ŷ
)

=
(

10.29 41.6
41.6 906.29

)−1[( 8.29 −0.54
−0.54 0.04

)T(5374.12
156.27

)T

+
(

1 1
18.04 24.10

)(
7581
9661

)]

=
(

3.11 −0.17
−0.17 0.01

)[(
30782
461554

)
+
(

17242
369591

)]

=
(

3.11 −0.17
−0.17 0.01

)(
48024

831159

)
=
(

4827.58
187.66

)
=
(

β ′′
0

β ′′
1

)

Hence, the updated regression equation is (see Fig. 5.9):

Y = 4827.58 + 187.66X + ε
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Lecture 10 (Aim of the Present Lecture) The aim of the present lecture
is to introduce the concept of testing for statistical significance. First, it is ex-
plained how the statistical properties of sample characteristics depend on the
sample size, i.e. the amount of data available, and in this way, the quantifica-
tion of statistical uncertainty is addressed. Then it is shown how hypotheses
related to the statistical properties of probabilistic models may be tested on
the basis of data.
On the basis of the lecture it is expected that the reader will acquire knowledge
and skills with regard to:

• What are the distribution functions applied in sample statistics and what
are the principles on the basis of which they are derived?

• What does it mean that the Chi-square distribution is regenerative?
• How is the Chi-distribution related to the law of Pythagoras?
• How does the expected value of the sample mean depend on the number of

samples?
• How does the variance of the sample mean depend on the number of sam-

ples?
• How can an unbiased estimator for the sample variance be established?
• What is a confidence interval and how can it be established?
• What is a hypothesis and how can it be tested?
• What is a null-hypothesis and what is an alternate hypothesis?
• What is a type I error and what is a type II error?
• What is the meaning of statistical significance?
• How can tests of the mean of a random variable be performed?

5.6 Probability Distributions in Statistics

Throughout the classical statistical theory some distribution functions are repeat-
edly used for assessment and testing purposes. These include the important Chi-
square distribution, the Chi-distribution, the t-distribution and the F-distribution.
Here, only the first two distributions are briefly introduced in accordance with
Benjamin and Cornell [4]. The distributions are all related and may be derived
from the Normal distribution as shown in e.g. Benjamin and Cornell [4]. The
numerical evaluation of the distributions may be performed using standard com-
mercial spread sheets such as e.g. Microsoft Excel or tabulations as given in Ap-
pendix C.
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Fig. 5.10 Chi-square distributions with different degrees of freedom (n). With increasing n the
chi-square distribution approximates a normal distribution

5.6.1 The Chi-Square (χ2)-Distribution

When Xi , i = 1,2, . . . , n are standard Normal distributed independent random vari-
ables the sum of the squares of the random variables Yn i.e.:

Yn =
n∑

i=1

X2
i (5.52)

is said to be Chi-square distributed (some times written as χ2-distributed) with prob-
ability density function:

fYn (yn) = y
(n/2−1)
n

2n/2Γ (n/2)
exp (−yn/2) , yn ≥ 0 (5.53)

with mean value μYn = n (also referred to as the degrees of freedom) and variance
σ 2

Yn
= 2n. In Eq. 5.53 Γ (·) is the complete Gamma function defined by:

Γ (x) =
∫ ∞

0
e−t tx−1 dt (5.54)

As it shall be seen later, the Chi-square distribution is often applied for assessing
the statistical characteristics of squared errors but can also be applied in various
engineering assessments involving squares of Normal distributed variables such as
e.g. the drag component of wave and wind loads and kinetic energy components.
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The Chi-square distribution is regenerative in the sense that the sum of two Chi-
square distributed variables i.e. Yn1 +Yn2 is also Chi-square distributed with n1 +n2
degrees of freedom.

From the additive character of the Chi-square distribution (Eq. 5.52), it is seen,
from application of the central limit theorem, that for sufficiently large n the Chi-
square distribution converges towards a Normal distribution with mean value μYn =
n and variance σ 2

Yn
= 2n, see also Fig. 5.10.

5.6.2 The Chi (χ)-Distribution

When a random variable Z is given as the square root of a Chi-square distributed
random variable Yn, the variable Z is said to follow a Chi-distribution (sometimes
written as χ -distributed) with probability density function:

fZ (z) = z(n−1)

2n/2−1Γ (n/2)
exp(−z2/2), z ≥ 0 (5.55)

The mean value μz and the variance σ 2
z are given by:

μz = √
2
Γ ((n + 1)/2)

Γ (n/2)
(5.56)

σ 2
z = n − 2

Γ 2 ((n + 1)/2)

Γ 2(n/2)
(5.57)

The Chi-distribution is e.g. used for the assessment of the distances measured
using the principles of Pythagoras or Euclidean norms, and for the assessment of
the statistical characteristics of standard deviations.

5.7 Estimators for Sample Descriptors—Sample Statistics

When frequentistic information becomes available e.g. in the form of experimen-
tal results, a first step is often to try to assess the data simply as they are, with-
out too many assumptions regarding the probabilistic characteristics of the mech-
anism/process which generated them. Such an assessment typically concerns the
numerical summaries as described in Chap. 3, e.g. the sample moments, but could
in principle be any sample characteristic of the observed data which is found to be
of interest in a given situation. In statistical terms, such characteristics are called
sample statistics, and in the following section the statistical characteristics of such
sample statistics will be considered in some detail. To this end, the uncertainty as-
sociated with parameter estimators will be assessed and confidence intervals on the
estimators will be introduced. Finally, significance testing is introduced as a means
of evaluating the significance of the variability of statistical data.
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5.7.1 Statistical Characteristics of the Sample Average

As an example, consider the case where the permeability of a particular soil is of
interest in an engineering decision problem. Due to various effects such as inherent
natural variability in the soil composition and the consolidation, the permeability
of the considered soil is associated with significant uncertainty. As an engineering
model, it is assumed that this uncertainty can be taken into account in the formu-
lation of the decision problem by modeling the permeability by a random variable
X with distribution function FX(x;p). Having selected the family of distribution
functions, i.e. the distribution function FX(x), it is still needed to estimate the pa-
rameters p, and as will be seen in the following sections, this can be done by the
method of moments or the maximum likelihood method, provided that experiment
results x̂ = (x̂1, x̂2, . . . , x̂n)

T are available.
In order to better appreciate the uncertainty associated with statistical character-

istics such as distribution parameters p, the statistical properties of these parameters
are now considered. It is assumed that experiment results of the yet unknown values
are collected in the vector X. If the experiments are conducted independently, the re-
alizations can be modeled as independent random variables Xi , i = 1,2, . . . , n with
cumulative distribution functions FXi

(xi;p) = FX(x;p), i = 1,2, . . . , n. Based on
the probabilistic model of the realizations Xi , i = 1,2, . . . , n it is possible to as-
sess the statistical characteristics of the unknown sample mean X̄ and the unknown
sample variance S2 given by:

X̄ = 1

n

n∑
i=1

Xi (5.58)

S2 = 1

n

n∑
i=1

(Xi − X̄)
2

(5.59)

The sample mean X̄ and the sample variance S2 are random variables given in
terms of functions of the experiment outcomes Xi , i = 1,2, . . . , n. Such functions
are in general called sample statistics and include, as mentioned previously, any
characteristic of the considered distribution of interest.

In order to assess the uncertainty by which the sample mean X̄ is associated, it is
interesting to consider its expected value E[X̄] and variance Var[X̄]. The expected
value is given as:

E[X̄] = E

[
1

n

n∑
i=1

Xi

]
= 1

n

n∑
i=1

E[Xi] = 1

n
nμX = μX (5.60)

which shows that the expected value of the sample mean is indeed equal to the ex-
pected value of the underlying random variable, in this case the soil permeability.
It was expected that the sample mean is a good estimator for the expected value of
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Fig. 5.11 Illustration of the probability density function of a sample average for different sample
sizes n

a random variable. However, due to the fact that the sample mean would be a real-
ization of a random variable, it is clear that the sample mean will normally not turn
out to be exactly equal to the expected value of the underlying random variable.

The variability of the sample mean around its expected value can be assessed
through the variance of the sample mean Var[X̄] given by:

Var[X̄] = E
[
(X̄ − μX)

2]= E
[
(X̄ − E[X̄])2]

(5.61)

Equation 5.61 may be rewritten as:

Var[X̄] = Var

[
1

n

n∑
i=1

Xi

]
= 1

n2
Var

[
n∑

i=1

Xi

]
= 1

n2

n∑
i=1

Var[Xi]

= 1

n2

n∑
i=1

E
[
(Xi − μX)2]= 1

n
σ 2

X (5.62)

from which it is seen that the variance of the sample mean Var[X̄] decreases linearly
as a function of the number of samples. Considering the probability that the sample
mean X̄ will lie within a certain range around the expected value of X i.e. μX ±kσX ,
it is seen from Eq. 5.62 that the band width factor k may be reduced by a factor of
2 by increasing the number of experiments by a factor of 4. To reduce k by a factor
of 4, the number of experiments must be increased by a factor of 16. It is seen that
it becomes increasingly expensive in terms of experiments to reduce the uncertainty
associated with the sample mean. In Fig. 5.11 the probability density function of a
sample mean is illustrated for different values of the sample size n.
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5.7.2 Statistical Characteristics of the Sample Variance

Whereas the sample average is of interest as an estimator of the mean value μX

of a random variable, the sample variance S2 is of interest as an estimator of the
variance σ 2

X . The expected value of the sample variance is determined by taking the
expectation of the sample variance as given by Eq. 5.59, i.e.:

E[S2] = E

[
1

n

n∑
i=1

(Xi − X̄)2

]
= 1

n
E

[
n∑

i=1

((Xi − μX) − (X̄ − μX))2

]

= 1

n

(
n∑

i=1

E
[
(Xi − μX)2]− nE

[
(X̄ − μX)

2])

= 1

n

(
nE

[
(Xi − μX)2]− nE

[
(X̄ − μX)

2])

= 1

n

(
nσ 2

X − n
σ 2

X

n

)
= σ 2

X − 1

n
σ 2

X = (n − 1)

n
σ 2

X (5.63)

In the step going from the third line to the fourth line in Eq. 5.63 the assumption
of independence has been used, i.e. using that E[XiXj ] = 0 for i 	= j . From Eq. 5.63
it is noticed that the expected value of the sample variance is different from the
variance of the underlying random variable. Even though this difference is small for
large sample sizes n, this is disturbing and essentially means that the estimator S2

is biased, i.e. its mean value is different from σ 2
X . An estimator of the variance σ 2

X

which is unbiased S2
unbiased may, however, easily be constructed from S2 as:

S2
unbiased = n

n − 1
S2 = 1

n − 1

n∑
i=1

(Xi − X̄)
2

(5.64)

It is noted (refer to Sect. 5.3) that the biased estimator S2 for the variance is
applied in both the methods of moments and the maximum likelihood method.

The goodness of an estimator cannot, however, be judged alone on the basis of
whether or not it is biased. Another characteristic of estimators commonly used
is the efficiency, i.e. the mean square error, associated with an estimator. If the
estimator S2 of the parameter σ 2

X is considered, the mean square error is given by:

E
[(

S2 − σ 2
X

)2]
(5.65)

The efficiency of the estimator S2 can be shown to be better than the efficiency
of the estimator S2

unbiased and then the choice stands between a less efficient but un-
biased estimator or a more efficient but biased estimator. A number of other criteria
such as invariance, consistency, sufficiency and robustness may be considered when
comparing estimators. These characteristics will not be considered here but it is sim-
ply noted that the maximum likelihood method estimators in general have equally
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good or better characteristics than any other estimators. For more details the reader
is referred to Benjamin and Cornell [4] where further references to specialized lit-
erature are also provided.

5.7.3 Confidence Intervals

As seen in the previous section, estimators are associated with statistical uncertainty
and thus it is essential that this uncertainty is quantified and taken into account in
the considered problem context. A classical approach for the quantification and the
communication of this uncertainty is by the use of confidence intervals. The 1 − α

confidence interval on an estimate defines an interval within which the estimated
parameter will occur with a predefined probability, with α being the significance
level (see Fig. 5.12).

If the case is considered where the standard deviation σX of an uncertain variable
X is known with certainty and the mean value is unknown, then the double sided
and symmetrical 1 − α confidence interval on the mean value is given by:

P

[
−kα/2 <

X̄ − μX

σX
1√
n

< kα/2

]
= 1 − α (5.66)

where n is the number of samples planned for the estimation of the mean value.

Fig. 5.12 Double sided and symmetrical 1 − α confidence interval on the mean value
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Considering the case of a Normal distributed yield stress of mild construction
steel, and assuming that the standard deviation of the yield stress is known to be 20
MPa and the mean value is unknown, the 0.95 confidence interval of the mean value
is given by:

P

[
−1.96 <

X̄ − μX

20 1√
n

< 1.96

]
= 1 − 0.05 (5.67)

where −1.96 and 1.96 are the simple lower 2.5 and upper 2.5 percentile values
of the standard Normal cumulative distribution function (see also Table C.1 and
Appendix B.1) and determined by:

kα/2 = Φ−1
(

1 − α

2

)
(5.68)

where Φ−1(·) is the inverse standard Normal cumulative distribution function.
Assuming that 16 experiments are planned, Eq. 5.67 yields:

P [−9.8 < X̄ − μX+ < 9.8] = 0.95 (5.69)

A 95% confidence interval for the true mean μX can then be derived with a given
sample mean. Using Eq. 5.69, a confidence interval for the sample mean can also be
established based on a hypothesis for the true mean, which simply states that with
a probability of 0.95, the sample average of the steel yield stress will lie within an
interval of ±9.8 MPa of the true mean value.

From Eq. 5.66 it is seen that the confidence interval limits depend on α, n and
σX . Typically α is chosen as 0.1, 0.05 and 0.01 in engineering applications. Nar-
row confidence intervals may be achieved by increasing the number of experiments,
which on the other hand, may be expensive to achieve and in some cases not even
possible for practical reasons.

5.8 Testing for Statistical Significance

In practical engineering problems, the engineer is often confronted with the chal-
lenge of deriving simple operational conclusions based on an often small set of data
exhibiting a high degree of variability. An example of such a situation is the geotech-
nical engineer attempting, by means of a limited number of “on-site” vane tests, to
verify that an empirical soil strength model based on soil specimen laboratory tests
is unbiased. Another example is the materials expert pursuing to verify, by analysis
of the chloride content of drilled concrete cylinders samples, that the mean value of
the surface concentration of chlorides on a concrete structure can be assumed equal
to the value assumed in the design basis for the structure. Yet another kind of prob-
lem is the selection and/or verification of probabilistic models as shall be seen later
in Sect. 5.9.

It is essential that the basis for conclusions in problems such as those outlined
above is made consistently from case to case (and from engineer to engineer), and
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that the variability of the observed data and the amount of data is taken appropriately
into account. One approach which facilitates the support of such conclusions is the
formulation and testing of hypothesis—hypothesis testing, which will be introduced
in the following section.

Consider the example concerning the surface concentration of chlorides on a
concrete structure. In the design basis for the structure, it was assumed that the sur-
face concentration of chlorides (measured in percentage of total concrete weight)
would be 0.3%. Suppose now that the materials expert has studied the chloride
contents of concrete cylinders taken from 10 different locations of the considered
structure. Even though the materials expert has collected a data set of 10 surface
concentration values, the observed mean value, also called the sample average X̄

(in general terms one of several possible sample statistics, i.e. functions of the
tested or otherwise observed data), will in some cases be below and in some cases
above the true mean μX of the surface chloride concentration. The question is if
it can be concluded, on the basis of the observed statistic, that the sample aver-
age deviates statistically significantly from the assumed mean value. To arrive at
the solution of such problems hypothesis testing includes operating rules that de-
scribe how to reach a conclusion, which provides a means for assessing the per-
centage α of times where the reached conclusions are wrong in one way or the
other.

5.8.1 The Hypothesis Testing Procedure

Continuing with the example introduced in the foregoing, a first step is the for-
mulation of the null-hypothesis H0, i.e. expressing that the true mean value μX of
the surface chloride concentration is equal to the assumed value of 0.3%. The next
step is to formulate an operating rule on the basis of which the null-hypothesis can
be either accepted or rejected given the test results. An operating rule could be to
accept the null-hypothesis H0 if the sample average X̄ of the surface chloride con-
centration is within the interval 0.3% ±Δ or otherwise to reject it. Rejecting the
null-hypothesis implies accepting the alternate hypothesis H1 that the true mean
value μX is different from the assumed value. Typically, the value Δ is selected
such that the probability α if the sample average X̄ being outside the interval given
by Δ is small, say 0.1.

Two types of errors may occur, namely, rejecting the null-hypothesis H0 when
it is true or accepting it when it is false. These two different types of errors are
referred to as Type I and Type II errors respectively (Table 5.4). It is impor-
tant to note that performing Type I as well as Type II errors may be associated
with severe consequences. The selection of an appropriate value for α should re-
flect this. A possible approach for the selection of α is using Bayesian decision
analysis. The general principles of Bayesian decision analysis are introduced in
Chap. 7.
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Table 5.4 Type I and Type II
errors Judgment Truth

H0 is right H1 is right

Acceptance of H0 Right judgment Type II error

Acceptance of H1 Type I error Right judgment

Fig. 5.13 Illustration of the difference between the confidence interval and the interval for hy-
pothesis testing

In summary the procedure is:

• Formulate a null-hypothesis H0 expressing that the desired condition is fulfilled
and formulate the alternate hypothesis H1. Both hypotheses should be formulated
in terms of a sample statistic.

• Formulate an operating rule such that the formulated null-hypothesis H0 may
easily be either accepted or rejected on the basis of the observation of the sample
statistic. Operating rules are typically formulated by means of a constant Δ.

• Select a significance level α for conducting the test (i.e. the probability of oc-
currence of a Type I error). This should be done with due consideration of the
consequences of performing this type of error.

• By statistical analysis of the sample statistic, identify the value of Δ resulting in
a probability α of performing a Type I error.

• Perform the planned testing, evaluate the corresponding sample statistic and
check which hypothesis is supported by the experiment.

• Provided that the null-hypothesis H0 is not supported by the experiment, it is
classified as significant at the α -significance level and rejected; otherwise it is
accepted.

Figure 5.13 shows the difference between the confidence interval and the interval
for hypothesis testing. If the interest concerns the expected value of a random vari-
able, the confidence interval indicates a range deduced by the sample where the true
mean lies with a certain probability. In hypothesis testing, an interval is specified
where the sample mean has to be located so that the hypothesis for the true mean of
the population can be accepted.

In the following section a selection of typical cases for significance testing will
be presented.
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5.8.2 Testing of the Mean with Known Variance

The example of the surface concentration of chlorides on a concrete structure is
considered again. Based on extensive experience obtained from the assessment of
many structures, the variance of the chloride surface concentration is assumed to be
equal to σ 2

x = (0.04)2 = 0.0016.
Let the null hypothesis H0 be formulated as the true mean μx being equal to

0.3%. The alternate hypothesis H1 is then simply given by μx 	= 0.3%. The con-
sidered statistic is the sample average X̄ which may be assumed to be Normal dis-
tributed. The operating rule specifies that the null hypothesis H0 should be accepted
at the α-significance level if:

0.3 − Δ ≤ X̄ ≤ 0.3 + Δ (5.70)

where Δ is determined such that the probability of X̄ being outside the interval is
equal to α i.e.:

P
(
0.3 − Δ ≤ X̄ ≤ 0.3 + Δ

)= 1 − α (5.71)

Choosing α = 0.1, Δ can be determined from Eq. 5.71 as (see also Ap-
pendix B.1.2):

Φ

(
Δ

0.04√
10

)
− Φ

(−Δ

0.04√
10

)
= 0.9 ⇒ Φ

(
Δ

0.04√
10

)
−
(

1 − Φ

(
Δ

0.04√
10

))
= 0.9

⇒ 2Φ

(
Δ

0.04√
10

)
− 1 = 0.9 ⇒ Δ

0.04√
10

= Φ−1
(

0.9 + 1

2

)

⇒ Δ = 0.04√
10

· 1.645 = 0.0208 (5.72)

yielding Δ = 0.0208. If the observed sample average over 10 samples lies within
the interval [0.28;0.32], the null hypothesis μx = 0.3% cannot be rejected at the
α = 0.1 significance level.

Assuming that investigations of the material expert resulted in the following data
set x̂ = (0.33,0.32,0.25,0.31,0.28,0.27,0.29,0.3,0.27,0.28)T the sample aver-
age is equal to x̄ = 0.29. This is seen to be within the boundaries of the interval
given by Δ and the null hypothesis H0 cannot be rejected.

5.8.3 Some Remarks on Testing

In the foregoing, a simple case of testing of the mean with known variance has been
introduced for the assessment of observed data. In the literature, several other tests
such as the testing of the mean with unknown variance, the testing of the variance
and the testing for comparison of two or more data sets can be found.
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For all these tests, it should be noted that the different ways of formulating the
null hypothesis H0 and the different choices of the significance level α have an im-
pact on the probability of the Type I and Type II errors, respectively. The optimal
choice is a decision problem which can be solved by considering a proper weighing
of costs and benefits. This is also reflected in the way different organizations for-
mulate their null hypothesis H0. An organization buying goods from a producing
organization tends to postulate that the quality of the goods is below a given cri-
terion, unless it can be shown by testing to be statistically significantly above the
specified criterion. This encourages the producing organization to attempt to reduce
the variance of the quality of the produced goods.

Lecture 11 (Aim of the Present Lecture) The aim of the present lecture
is to address the problem of model verification and comparison. Having es-
tablished a probabilistic model in terms of a probability distribution and es-
timated probability distribution parameters, the issue here is how to evaluate
the appropriateness of the established model by means of data. Furthermore,
in order to provide guidance on the comparison of the goodness of equally
acceptable models, a basis for the comparison of two or more models is pro-
vided.
On the basis of the lecture it is expected that the reader will acquire knowledge
and skills with regard to:

• How can probabilistic models be evaluated and validated on the basis of
statistical tests?

• What is the idea behind the χ2-goodness of fit test and how is it performed?
• How is the χ2-goodness of fit test applied for the testing of the validity of

continuous random variable models?
• What is the idea behind the Kolmogorov-Smirnov goodness of fit test and

how is it performed?
• How is the Quantile-plot related to the Kolmogorov-Smirnov goodness of

fit test?
• How conclusive are statistical tests for the purpose of model verification

and what must be kept in mind?
• How can probabilistic models be compared with regard to appropriateness?

5.9 Model Evaluation by Statistical Testing

In Sect. 5.2.1, a highly qualitative method—the probability paper—was introduced
for the identification of a family or type of probability distributions representing
data obtained from observations or experimental results. This method, in conjunc-
tion with a physical understanding of the mechanism generating the observed data,
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represents a very pragmatic approach for establishing at least a preliminary model
assumption. The next step in model building typically concerns the assessment of
the parameters of the assumed distribution function and to this end the method of
moments and the maximum likelihood method were introduced. From the forego-
ing sections it is obvious that the quality of the established model is a combina-
tion of the appropriateness of the selected probability distribution and the estimated
parameters, i.e. the goodness of fit. It would thus be of significant interest to be
able to assess the goodness of fit in a quantitative way thereby enabling for a sys-
tematic and consistent way of justifying or rejecting model assumptions. For this
purpose, the classical statistical distribution tests, i.e. the goodness of fit tests have
been developed. A number of different types of tests have been developed in the
past, in part with very specialized and, consequently, limited applicability over dif-
ferent application areas. In the following sections, two such tests—the χ2- and the
Kolmogorov-Smirnov goodness of fit tests—will be explained as these have gained
some importance in a broader range of engineering application areas.

In principle the χ2-goodness of fit test is applicable only for discrete probability
distributions. However, it may easily be adapted to continuous probability distribu-
tions as shall be seen in the following. The Kolmogorov-Smirnov goodness of fit
test, on the other hand, is only applicable for continuous probability distributions.

5.9.1 The Chi-Square (χ2)-Goodness of Fit Test

The χ2-goodness of fit test is applicable for discrete cumulative distribution func-
tions P(xi) e.g. defined by:

P(xi) =
i−1∑
j=1

p(xj ) (5.73)

Intuitively, postulating a cumulative distribution function of the type as given in
Eq. 5.73, the differences between predicted frequencies Np,i (using the assumed
model) and the observed frequencies No,i , should indicate the quality of the postu-
lated cumulative distribution function; this is the idea behind the χ2-test.

Assume that the random variable Xj is sampled n times. Then the expected value
and the variance of Xj i.e. E[Xj ]and Var[Xj ] are given by (see also Sect. 4.3):

E[Xj ] = np(xj ) = Np,j

Var[Xj ] = np(xj )(1 − p(xj )) = Np,j (1 − p(xj ))
(5.74)

In accordance with the central limit theorem and provided that the postulated
model is correct, it is reasonable to assume that the standardized random deviations
of the sample frequency histogram from the postulated frequency histogram εj i.e.:

εj = No,j − Np,j√
Np,j (1 − p(xj ))

(5.75)
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are standard Normal distributed. This however assumes that the number of samples
of each of the xj values is large enough for the central limit theorem to be valid.
If, however, not just the absolute values of the deviations but rather the squared
deviations ε2

j , summed up over all possible values of the discrete random variable
i.e. for j = 1,2, . . . , k, are considered, it is known from Sect. 5.6.1 that this sample
statistic is Chi-square distributed:

ε2 =
k∑

j=1

ε2
j =

k∑
j=1

(No,j − Np,j )
2

Np,j (1 − p(xj ))
(5.76)

Due to the fact that the numbers of realizations of the discrete random variables
are dependent, the statistic given by Eq. 5.76 does not in fact have k degrees of
freedom but only k − 1. Furthermore, for the same reason, each term in Eq. 5.76
shall be reduced with the factor (1 − p(xj )) whereby finally the modified statistic
ε2
m is obtained:

ε2
m =

k∑
j=1

(No,j − Np,j )
2

Np,j

(5.77)

which is Chi-square distributed with k − 1 degrees of freedom.
Following the principles given in Sect. 5.8, it is thus possible to formulate and

test, at the α-significance level, the null-hypothesis H0 that the postulated distribu-
tion function is not in contradiction with the observed data. The operating rule states
that the null hypothesis cannot be accepted if ε2

m ≥ Δ where the critical value Δ with
which the sample statistic shall be compared can be calculated from Table C.3 such
as:

P(ε2
m ≤ Δ) = 1 − α (5.78)

It should be underlined that the alternate hypothesis H1 is less informative in
the sense that this hypothesis in principle envelopes all possible distributions and
distribution parameters except those of the postulated probability distribution.

As an example, consider that a Normal distribution with mean value μ = 33 and
standard deviation σ = 5 is postulated as being representative for the data of the ob-
served concrete compressive strengths presented in Table 5.1—this postulate is the
null hypothesis H0. It is clear that the concrete compressive strength is a continuous
variable but this can be discretized by dividing the continuous sample space into
intervals. The probability of a realization of the continuous random variable in each
of the intervals is given as the probability that the outcome of the random variable
is smaller that the upper boundary of the interval minus the probability that the out-
come of the random variable is smaller than the lower boundary of the interval. It is
then possible, adopting the same procedure as explained in the above, for discrete
random variables to plot the histograms with the observed and predicted frequen-
cies, No,i and Np,i , respectively, for the different data ranges i = 1,2, . . . , k in one
figure, see Fig. 5.14.
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Fig. 5.14 Predicted and
sample histograms for the
compressive strength of
concrete (data from Table 5.1)

Fig. 5.15 Predicted and
sample histograms for the
compressive strength of
concrete with lumped data for
the lower interval (see
Fig. 5.14)

From Fig. 5.14 it is seen that the chosen discretized implies that the number of
different data ranges k is equal to 4. However, it is noted that the observed and the
predicted frequencies in the lower interval is relatively small and it is doubtful if the
conditions prevailing the Normal distribution assumption are fulfilled. To overcome
this problem, it is recommended in the literature, see e.g. Benjamin and Cornell [4]
to lump the data in adjacent intervals such that the number of observations in each
interval is about 5 or larger. Lumping the frequencies in the two lower intervals
yields the histograms shown in Fig. 5.15.

Following the approach outlined in the foregoing, the statistic given in Eq. 5.77
is now evaluated as summarized in Table 5.5.

Finally, in order to either reject or accept the null-hypothesis H0, the sample
statistic, as calculated in Table 5.5, must be compared with a critical value Δ given
by Eq. 5.78. In the present case, if the test is performed at a 5% significance level, the
value Δ = 5.9915 can be calculated from a Chi-square distribution with 2 degrees
of freedom. By comparison of the sample statistic in Table 5.5, i.e. 0.406829 with
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Table 5.5 Calculation sheet for the χ2-goodness of fit test of the concrete compressive strength
example (raw data are given in Table 5.1)

Interval xj Number of
observed values
No,j

Predicted
probability
p(xj )

Predicted number
of observations
Np,j = 20p(xj )

Sample statistic
equation 5.77

0–30 5 0.274253 5.485061 0.042896

30–35 9 0.381169 7.623373 0.248591

35–∞ 6 0.344578 6.891566 0.115342

Sum 0.406829

Table 5.6 Calculation sheet for the χ2-goodness of fit test of the concrete compressive strength
example with reduced number of degree of freedom (raw data in Table 5.1)

Interval xj Number of
observed values
No,j

Predicted
probability
p(xj )

Predicted number
of observations
Np,j = 20p(xj )

Sample statistic
equation
(No,j −Np,j )2

Np,j

0–30 5 0.229425 4.588507 0.036902

30–35 9 0.459861 9.197211 0.004229

35–∞ 6 0.310714 6.214283 0.007389

Sum ε2
m = 0.044852

the critical value Δ = 5.9915, it is seen that the null hypothesis cannot be rejected
at the 5% significance level.

In the foregoing example not only the type of distribution, but also the param-
eters of the distribution were postulated. In practice, it is often the case that the
parameters of the distribution are estimated first and thereafter the test for distri-
bution type is performed. This is, in principle, possible following exactly the same
approach as outlined in the above, with the modification that the number of degrees
of freedom is reduced with the number of parameters estimated from the available
data. If, as in the example concerning the concrete cube compressive strength, it is
assumed that first the experiment data are used to assess the standard deviation of
the distribution as shown in Sect. 5.6, the number of degrees of freedom is reduced
to 1.

Postulating as before, a Normal distribution with mean equal to μ = 33 but now
with the standard deviation found in Sect. 5.3, i.e. σ = 4.05, the calculations are
modified as shown in Table 5.6.

With only 1 degree of freedom the critical level Δ is reduced to Δ = 3.84 but the
null-hypothesis still cannot be rejected at the 5% significance level.

From the above, it is seen that the available data simply do not permit that both
of the distribution parameters are first estimated and thereafter the distribution and
parameters postulates tested. The number of degrees of freedom is not sufficient. In
engineering applications this problem is not unusual as the available data are gen-
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erally sparse. In other areas, such as in production industries, the available amount
of data is generally very substantial and the merits of statistical testing are more
obvious.

5.9.2 The Kolmogorov-Smirnov Goodness of Fit Test

Whereas the χ2-goodness of fit test takes basis in a statistic quantifying the squared
errors between the observed sample histogram and the predicted postulated his-
togram, the goodness of fit test due to Kolmogorov-Smirnov utilizes a sample statis-
tic formulated in terms of the cumulative distributions. The χ2-goodness of fit test
can be applied in cases where both distribution and parameters are postulated, as
well as in cases where only the distribution is postulated and the parameters es-
timated, using the same data utilized for the testing. This is not the case for the
Kolmogorov-Smirnov test. Here both the distribution family and parameters must
be postulated.

If the observed cumulative distribution function Fo(x̂
o
i ) is written as:

Fo(x̂
o
i ) = i

n
(5.79)

where x̂o
i is the ith smallest observation in the sample of size n and the postu-

lated cumulative distribution function is Fp(x), then the following statistic may
be utilized for significance testing of the null hypothesis that the observed data
do not deviate statistically significantly from the postulated distribution func-
tion:

εmax = n
max
i=1

[∣∣Fo(x̂
o
i ) − Fp(x̂o

i )
∣∣]= n

max
i=1

[∣∣∣∣ in − Fp(x̂o
i )

∣∣∣∣
]

(5.80)

The distribution of the statistic εmax is tabulated for relevant values of α and n in
Table 5.7.

The null hypothesis H0 may be formulated expressing that the observed data
follows the postulated cumulative distribution function.

The operating rule specifies that the null hypothesis H0 cannot be accepted at the
α-significance level if: εmax ≥ Δ where the critical value Δ can be calculated such
that:

P(εmax ≤ Δ) = 1 − α (5.81)

where Δ is determined from Table 5.7 (or Table C.4).
Consider again the example concerning the compressive strength of concrete.

As before, it is postulated that the data is representative for a Normal distribu-
tion with mean value μ = 33 and a standard deviation equal to σ = 5. By in-
spection of Fig. 5.16 it is seen that the largest deviation between the observed
cumulative distribution function and the predicted postulated probability distribu-
tion occurs for the 18th data point corresponding to a concrete cube compressive
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Table 5.7 Tabulated values of the Kolmogorov-Smirnov statistic for different significance levels
α and sample size n

α n

1 5 10 15 20 25 30 40 50 60 70 80

0.01 0.9950 0.6686 0.4889 0.4042 0.3524 0.3166 0.2899 0.2521 0.2260 0.2067 0.1917 0.1795

0.05 0.9750 0.5633 0.4093 0.3376 0.2941 0.2640 0.2417 0.2101 0.1884 0.1723 0.1598 0.1496

0.1 0.9500 0.5095 0.3687 0.3040 0.2647 0.2377 0.2176 0.1891 0.1696 0.1551 0.1438 0.1347

0.2 0.9000 0.4470 0.3226 0.2659 0.2315 0.2079 0.1903 0.1654 0.1484 0.1357 0.1258 0.1179

Fig. 5.16 Comparison between the observed concrete cube compressive strength data and the
postulated Normal distribution

strength of 37.1 MPa. For this value the postulated cumulative distribution function
yields:

Fp(x̂o
18) = Φ

(
37.1 − 33

5

)
= Φ (0.82) = 0.794 (5.82)

and the observed cumulative distribution function yields:

Fo(x̂
o
18) = i

n
= 18

20
= 0.9 (5.83)

whereby the sample statistic becomes εmax = 0.9 − 0.794 = 0.106. From Table 5.7
the critical value Δ for n = 20 and a 5% significance level is 0.29. Since the sample
statistic 0.106 is smaller than the critical value 0.29, the null hypothesis cannot be
rejected.
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5.9.3 Model Comparison

In the foregoing sections statistical tests were introduced as means for evaluating the
goodness of fit of a given postulated distribution function to observed data. These
tests can, however, only be applied to assess the plausibility of a given distribution
being representative for the observed data. Other postulated distribution functions
could also be representative for the observed data. The question thus remains how to
select between two postulated distributions which both cannot be rejected by testing
as possible candidates. To this end two possibilities might be considered, namely
by comparison of the sample likelihood defined by Eq. 5.6 or by comparison of the
likelihood of the sample statistics given by Eq. 5.77 or Eq. 5.80. Direct comparison
of the sample statistic for the χ2-goodness of fit test is not a consistent means for
comparison as the number of degrees of freedom may be different for the cases
considered.

As an example consider the two cases where the χ2-goodness of fit test was
applied first for testing the goodness of fit for a postulated Normal distribution with
postulated parameters μ = 33, σ = 5 and thereafter a postulated Normal distribution
for which the parameters were estimated from the data set, i.e. μ = 33, σ = 4.05.
For the first case the sample statistic is equal to 0.4068 and the number of degrees
of freedom is 2. For the second case the sample statistic is equal to 0.44852 and the
number of degrees of freedom is equal to 1.

The sample likelihood (see Eq. 5.6) of the first case (σ = 5) is L(θ | x̂) = 2.74 ·
10−23 and smaller than that of the second L(θ | x̂) = 1.24 · 10−21. This shows that
the postulate made in the second case is more probable than the postulate made in
the first case.

Alternatively, the corresponding likelihood values of the density function can be
compared. This can be calculated with Eq. 5.53:

fYn (yn) = y
(n/2−1)
n

2n/2Γ (n/2)
exp (−yn/2)

= 0.4068(2/2−1)

22/2Γ (2/2)
exp (−0.4068/2) = 0.408

fYn (yn) = y
(n/2−1)
n

2n/2Γ (n/2)
exp (−yn/2)

= 0.044852(1/2−1)

21/2Γ (1/2)
exp (−0.044852/2) = 1.842

Based on the obtained likelihood values of 0.408 and 1.842, it can be said that
the postulation made in the second case is more probable than the postulate made in
the first case.
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Fig. 5.17 Probability paper for the Gumbel distribution

5.10 Self Assessment Questions/Exercises

1. In Fig. 5.17, data of the annual observed maximum values of precipitation per
hour (rainfall) are plotted on a probability paper for the Gumbel distribution.
The “best-fit” line is also shown. Can an engineer accept the Gumbel distribu-
tion as being suitable for the modeling of the annual maximum precipitation per
hour?

2. The Maximum Likelihood Method (MLM) enables engineers to calculate the
distribution parameters of a random variable on the basis of data. Which of the
following statement(s) is (are) correct?
The MLM provides point estimates of the distribution parameters. �
The MLM provides information about the uncertainty associated with the esti-
mated parameters. �
The MLM provides no information about the uncertainty associated with the
estimated parameters. �

3. From past experience it is known that the shear strength of soil can be de-
scribed by a Lognormal distribution. 15 samples of soil are taken from a site
and an engineer wants to use the data in order to estimate the parameters of the
Lognormal distribution. The engineer:
May use a probability paper to estimate the parameters of the Lognormal dis-
tribution. �
May use the maximum likelihood method to estimate the parameters of the
Lognormal distribution. �
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May use the method of moments to estimate the parameters of the Lognormal
distribution. �
None of the above. �

4. Which are the steps involved in establishing a probabilistic model?
5. Express in words the following mathematical expression, where X̄ is the sam-

ple average of a random variable X and μX is the true mean of the random
variable:

P [μX − 9.8 < X̄ < μX + 9.8] = 0.95

6. What are the main steps of hypothesis testing?
7. An engineer wants to test the null hypothesis that the mean value of the con-

crete cover depth of a concrete structure corresponds to design assumptions.
In a preliminary assessment, a limited number of measurements of the con-
crete cover depth are made, and after performing the hypothesis test the en-
gineer accepts the null hypothesis. After a few years, a comprehensive survey
of the concrete cover depth is carried out and several measurements are made.
The survey shows that the mean value of the concrete cover depth does not
fulfill the design assumptions. Which of the following statement(s) is(are) cor-
rect?
In the preliminary survey the engineer has performed a Type I error. �
In the preliminary survey the engineer has performed a Type II error. �
In the preliminary survey the engineer has performed a Type I and a Type II
error. �

8. Describe in a few words the significance of the use of probability paper in
model selection and how it can be constructed.

9. In order to perform a χ2 test, how does the data need to be divided?
10. What are the main differences between the χ2 and the Kolmogorov-Smirnov

goodness of fit tests?
11. Based on experience, it is known that the concrete compressive strength may

be modeled by a Normal distributed random variable X with mean value
μX = 30 MPa and standard deviation σX = 5 MPa. The compressive strengths
of 20 concrete cylinders are measured. An engineer wants to test the null hy-
pothesis H0 that X follows a Normal distribution with the above given pa-
rameters. He/she carries out a χ2 goodness of fit test by dividing the sam-
ples into 3 intervals. He/she calculates a Chi-square sample statistic equal to
ε2
m = 0.41. Can the engineer accept the null hypothesis at the 5% significance

level?
12. An engineer wants to examine and compare the suitability of two distribution

function model alternatives for a random material property. Measurements of
the material property are taken. The engineer uses the two model alternatives to
calculate the Chi-square sample statistics and the corresponding sample likeli-
hoods. The results are given in Table 5.8.
Which of the following statement(s) is(are) correct?
The engineer may accept model 1 at the 5% significance level. �
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Table 5.8 Statistical model characteristics

Model Degrees of freedom Chi-square sample statistic Sample likelihood

1 2 0.410 0.815

2 1 0.407 0.524

The engineer may accept model 2 at the 5% significance level. �
Model 1 is more suitable than model 2. �
None of the above. �



Chapter 6
Methods of Structural Reliability

Lecture 12 (Aim of the Present Lecture) The aim of the present lecture is
to introduce the basic theory and tools facilitating the representation of events
in terms of random variables and to calculate the probability of occurrence of
such events. The classical error accumulation law is introduced first and this
is then set in perspective to more modern and more general tools to assess
probabilities.
On the basis of the lecture it is expected that the reader will acquire knowledge
on the following issues:

• How can events be represented in terms of basic random variables?
• What is a limit state function and what is a safety margin?
• What is the meaning of a reliability index and how does it relate to a failure

probability?
• How to calculate the reliability index for a linear safety margin when all

basic random variables are Normal distributed?
• How to calculate the reliability index in the case of nonlinear safety mar-

gins?
• What is the idea behind the Monte Carlo method?
• What are the steps in the Monte Carlo method and how are they performed?

6.1 Introduction

The first developments of First Order Reliability Methods, also known as FORM
methods, took place in the 1960s. Since then the methods have been refined and
extended significantly and by now they form one of the most important methods for
reliability evaluations in structural reliability theory. Several commercial computer
codes have been developed for FORM analysis and the methods are widely used in
practical engineering problems and for code calibration purposes.

M.H. Faber, Statistics and Probability Theory,
Topics in Safety, Risk, Reliability and Quality 18,
DOI 10.1007/978-94-007-4056-3_6, © Springer Science+Business Media B.V. 2012
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In the present chapter first the basic idea behind FORM methods is highlighted
and thereafter the individual steps of the methods are explained in detail.

Finally, the basic concepts of Monte Carlo methods are outlined.

6.2 Failure Events and Basic Random Variables

In reliability analysis of technical systems and components the main problem is
to evaluate the probability of failure corresponding to a specified reference period.
However, other non-failure states of the considered component or system may also
be of interest, such as excessive damage, unavailability, etc.

In general, any state which may be associated with consequences in terms of
costs, loss of lives and impact to the environment is of interest. In the following
section no differentiation will be made between these different types of states. For
simplicity, all these events will be referred to as being failure events, bearing in
mind, however, that also non-failure states may be considered in the same manner.

It is convenient to describe failure events in terms of functional relations. If they
are fulfilled, the considered event will occur. A failure event may be described by a
functional relation, the limit state function g(x), in the following way:

F = {g(x) ≤ 0} (6.1)

where the components of the vector x are realizations of the basic random variables
X representing all the relevant uncertainties influencing the probability of failure. In
Eq. 6.1 the failure event F is simply defined as the set of realizations of the function
g(x), which is zero or negative.

As already mentioned, events other than failure may also be of interest. In e.g.
reliability updating problems, events of the following form are highly relevant:

I = {h(x) = 0} (6.2)

where I is an inspection event and h(x) refers to the basic uncertain variables rep-
resenting the inspection event.

Having defined the failure event, the probability of failure PF may be determined
by the following integral:

PF =
∫

g(x)≤0
fX(x) dx (6.3)

where fX(x) is the joint probability density function of the random variables X. This
integral is, however, non-trivial to solve and numerical approximations are expedi-
ent. Various methods for the solution of the integral in Eq. 6.3 have been proposed
including numerical integration techniques, Monte Carlo simulation and asymptotic
Laplace expansions. Numerical integration techniques very rapidly became ineffi-
cient for increasing size of the vector X and are in general irrelevant. In the fol-
lowing section the focus is directed toward the widely applied and quite efficient
FORM methods, which furthermore are consistent with the solutions obtained by
asymptotic Laplace integral expansions.



6.3 Linear Limit State Functions and Normal Distributed Variables 131

6.3 Linear Limit State Functions and Normal Distributed
Variables

For illustrative purposes first the case where the limit state function g(x) is a linear
function of the basic random variables X is considered. Then the limit state function
may be written as:

g(x) = a0 +
n∑

i=1

aixi (6.4)

The safety margin is then defined as M = g(X). Failure can be defined by:

M ≤ 0 (6.5)

If the basic random variables are Normal distributed, the linear safety margin M

defined through

M = a0 +
n∑

i=1

aiXi (6.6)

is also Normal distributed with mean value and variance:

μM = a0 +
n∑

i=1

aiμXi

σ 2
M =

n∑
i=1

a2
i σ

2
Xi

+ 2

⎛
⎝ n∑

i=1

n∑
j=i+1

aiajCXiXj

⎞
⎠ (6.7)

=
n∑

i=1

a2
i σ

2
Xi

+ 2

⎛
⎝ n∑

i=1

n∑
j=i+1

aiajρij σXi
σXj

⎞
⎠

ρij are the correlation coefficients between the variables Xi and Xj .
Defining the failure event by Eq. 6.1, the probability of failure can be written as:

PF = P(g(X) ≤ 0) = P(M ≤ 0) (6.8)

which in this simple case reduces to the evaluation of the standard Normal distribu-
tion function:

PF = Φ

(
0 − μM

σM

)
= Φ(−β) (6.9)

where the reliability index β (Cornell [6] and Basler [3]) is given as:

β = μM

σM

(6.10)
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Fig. 6.1 Illustration of the two-dimensional case of a linear limit state function and Normal dis-
tributed variables X

In the case where the basic random variables are uncorrelated, the reliability in-
dex β as defined in Eq. 6.10 has a geometrical interpretation as illustrated in Fig. 6.1
where a two dimensional case is considered.

In Fig. 6.1 the limit state function g(x) has been transformed into the limit state
function g(u) by standardization of the random variables as:

Ui = Xi − μXi

σXi

(6.11)

such that the random variables Ui have mean values equal to zero and standard
deviation values equal to one.

The reliability index β has the simple geometrical interpretation as the smallest
distance from the line (or generally the hyper-plane) forming the boundary between
the safe domain and the failure domain, i.e. the domain defined by the failure event.
It should be noted that this definition of the reliability index due to Hasofer and
Lind [7] does not depend on the limit state function but rather the boundary between
the safe domain and the failure domain. The point on the failure surface with the
smallest distance to the origin is commonly called the design point or the most likely
failure point.

It is seen that the evaluation of the probability of failure in this simple case re-
duces to a simple evaluation in terms of mean values and standard deviations of the
basic random variables, i.e. the first and second order information.

6.3.1 Example 6.1—Reliability of a Steel Rod—Linear Safety
Margin

Consider a steel rod under pure tension loading. The rod will fail if the applied
stresses on the rod cross-sectional area (a = 10 mm2) exceed the steel yield strength.
The yield strength r of the rod and the annual maximum stress in the rod s are as-
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sumed to be uncertain, modeled by uncorrelated Normal distributed variables R and
S, respectively. The mean values and the standard deviations of the yield strength
and the loading force are given as μR = 350 MPa, σR = 35 MPa and μS = 1500 N,
σS = 300 N respectively.

The limit state function describing the event of failure may be written as:

g(x) = ar − s

whereby the safety margin M may be written as:

M = aR − S

The mean value and standard deviation of the safety margin M are thus:

μM = 10 · 350 − 2000 = 2000 N

σM =
√

102 · 352 + 3002 N

whereby the reliability index may be calculated as:

β = 2000

461
= 4.33

Finally the annual failure probability is determined as:

PF = Φ(−β) = Φ(−4.33) = 7.5 · 10−6 [a−1]

6.4 The Error Propagation Law

The results given in Eq. 6.7 have been applied to study the statistical characteristics
of errors ε accumulating in accordance with some differentiable function h(x), i.e.:

ε = h(x) (6.12)

where x = (x1, x2, . . . , xn)
T is a vector of realizations of the basic random

variables X representing measurement uncertainties with mean values μX =
(μX1,μX2, . . . ,μXn)

T and covariances CXiXj
= ρijσXi

σXj
where σXi

are the stan-
dard deviations and ρij the correlation coefficients. The idea is to approximate the
function h(x) by its Taylor expansion including only the linear terms, i.e.:

ε ∼= h(x0) +
n∑

i=1

(xi − xi,0)
∂h(x)

∂xi

∣∣∣∣
x=x0

(6.13)

where x0 = (x1,0, x2,0, . . . , xn,0)
T is the point in which the linearization is per-

formed, normally chosen as the mean value point.
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Fig. 6.2 Illustration of the error propagation law: The transformation of the density function fY (y)

according to the relation y = g(x) and the linear approximation of the relation between the two
random variables

∂h(x)
∂xi

|
x=x0

, i = 1,2, . . . , n are the first order partial derivatives of h(x) taken in

x = x0. From Eqs. 6.13 and 6.7 it is seen that the expected value of the error E[ε]
can be assessed by:

E [ε] ∼= h(μX) (6.14)

and its variance Var[ε] can be determined by:

Var[ε] ∼=
n∑

i=1

(
∂h(x)

∂xi

∣∣∣∣
x=x0

)2

σ 2
Xi

+ 2
n∑

i=1

n∑
j=i+1

(
∂h(x)

∂xi

∣∣∣∣
x=x0

)(
∂h(x)

∂xj

∣∣∣∣
x=x0

)
ρijσXi

σXj
(6.15)

It is important to notice that the variance of the error as given by Eq. 6.15 depends
on the linearization point, i.e. x0 = (x1,0, x2,0, . . . , xn,0)

T .
In Fig. 6.2 the basic principle of the error propagation law is represented for

the (two-dimensional and therefore still representable) case that a random variable
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Y depends on only one random variable X: y = g(x). The function y = g(x) is
linearized in the mean value point and the relationship between Y and X is approx-
imated with y = g(μX) + ∂g(x)

∂x
|
X=μX

(X − μX).
The distribution of the derived random variable y represented on the ver-

tical axis in Fig. 6.2 illustrates the approximated distribution resulting from
the error propagation law. Depending on the form of the transformation func-
tion h(x), the distribution can differ from the true distribution for y signifi-
cantly.

6.4.1 Example 6.2—Error Propagation Law

As an example of the use of the error propagation law consider a right an-
gle triangle ABC, where C is the right angle. The lengths of the 2 catheti a

and b are measured. Due to measurement uncertainty a and b are modeled as
independent Normal distributed random variables with expected values μa =
12.2, μb = 5.1 and standard deviations σa = 0.4 and σb = 0.3, respectively.
It is assumed that a critical condition will occur if the hypotenuse c is larger
than 13.5 and the probability that this condition should happen is to be as-
sessed.

Based on the probabilistic model of a and b, the statistical characteristics of the
hypotenuse c given by:

c =
√

a2 + b2

may be assessed through the error propagation model given by Eqs. 6.14–6.15,
yielding (see also Appendix B):

E [c] =
√

μ2
a + μ2

b

Var [c] =
n∑

i=1

(
∂h(x)

∂xi

∣∣∣∣
x=x0

)2

σ 2
Xi

= μ2
a

μ2
a + μ2

b

σ 2
a + μ2

b

μ2
a + μ2

b

σ 2
b

which by inserting for a and b their expected values yield:

E[c] =
√

12.22 + 5.12 = 13.22 [km]

Var[c] = 12.22

12.22+5.12 0.42 + 5.12

12.22+5.12 0.32 = 0.15 [km2]

As seen from the above, the variance of the hypotenuse c depends on the chosen
linearization point. If, instead of the mean value point, a value corresponding to the
mean value plus two standard deviations was chosen, the variance of c would have
been:
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Var[c] =
n∑

i=1

(
∂h(x)

∂xi

∣∣∣∣
x=x0

)2

σ 2
Xi

= (μa + 2σa)
2

(μa + 2σa)
2 + (μb + 2σb)

2
σ 2

a + (μb + 2σb)
2

(μa + 2σa)
2 + (μb + 2σb)

2
σ 2

b

= 132

132 + 5.72
0.42 + 5.72

132 + 5.72
0.32 = 0.149

which can be shown to imply a 0.3% reduction of the probability that the hypotenuse
is larger than 13.5. Even though such a change seems small, it could be of impor-
tance in a practical situation where the consequences of errors can be significant.

6.5 Non-linear Limit State Functions

When the limit state function is non-linear in the basic random variables X, the
situation is not as simple as outlined in the previous section. An obvious approach
is, however, considering the error propagation law explained in the foregoing, to
represent the failure domain in terms of a linearization of the boundary between
the safe domain and the failure domain, i.e. the failure surface. Still, the question
remains how to do this appropriately.

Hasofer and Lind [7] suggest performing this linearization in the design point
of the failure surface represented in normalized space. The situation is illustrated in
the 2-dimensional space in Fig. 6.3.

In Fig. 6.3 a principal sketch is given, illustrating that the failure surface is lin-
earized in the design point u∗ by the line g′(u) = 0. The α-vector is the outward
directed Normal vector to the failure surface in the design point u∗ i.e. the point on
the linearized failure surface with the shortest distance β to the origin.

As the limit state function is in general non-linear, one does not know the design
point in advance. This has to be found e.g. by solving the following optimization
problem:

β = min
u∈{g(u)=0}

√√√√ n∑
i=1

u2
i (6.16)

This problem may be solved in a number of different ways. Provided that the limit
state function is differentiable, the following iteration scheme may be followed:

αi = − ∂g
∂ui

(βα)[∑n
i=1

(
∂g
∂ui

(βα)
)2]1/2 , i = 1,2, . . . , n (6.17)

g(βα1, βα2, . . . , βαn) = 0 (6.18)

First, a design point is guessed u∗ = βα and inserted into Eq. 6.17 whereby a new
Normal vector α to the failure surface is achieved. Then this α-vector is inserted into
Eq. 6.18, from which a new β-value is calculated.



6.5 Non-linear Limit State Functions 137

Fig. 6.3 Illustration of the linearization proposed by Hasofer and Lind [7] in standard Normal
space

The iteration scheme will converge in a few (say normally 6–10) iterations and
provides the design point u∗ as well as the reliability index β and the outward nor-
mal to the failure surface in the design point α. As already mentioned, the reliability
index β may be related directly to the probability of failure. The components of the
α-vector may be interpreted as sensitivity factors giving the relative importance of
the individual random variables for the reliability index β .

Second Order Reliability Methods (SORM) follow the same principles as FORM.
However, as a logical extension of FORM, the failure surface is expanded to the
second order in the design point. The result of a SORM analysis may be given
as the FORM β multiplied with a correction factor evaluated on the basis of the
second order partial derivatives of the failure surface in the design point. The SORM
analysis becomes exact for failure surfaces given as a second order polynomial of
the basic random variables. In general, however, the result of a SORM analysis
can be shown to be asymptotically exact for any shape of the failure surface as β

approaches infinity. The interested reader is referred to the literature for the details
of SORM analysis, e.g. Madsen et al. [9].

6.5.1 Example 6.3—FORM—Non-linear Limit State Function

Consider again the steel rod from Example 6.1. However, now it is assumed that the
cross sectional area of the steel rod A is also uncertain.
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The steel yield strength R is Normal distributed with mean values and standard
deviation μR = 350 MPa, σR = 3 MPa5 and the loading S is Normal distributed
with mean value and standard deviation μS = 1500 N, σS = 300 N. Finally, the
cross sectional area A is assumed Normal distributed with mean value and standard
deviation μA = 10 mm2 σA = 1 mm2.

The limit state function may be written as:

g(x) = ra − s

Now the first step is to transform the Normal distributed random variables R, A

and S into standardized Normal distributed random variables, i.e.:

UR = R − μR

σR

UA = A − μA

σA

US = S − μS

σS

The limit state function may now be written in the space of the standardized
Normal distributed random variables as:

g(u) = (uRσR + μR)(uAσA + μA) − (uSσS + μS)

= (35uR + 350)(1uA + 10) − (300uS + 1500)

= 350uR + 350uA − 300uS + 35uRuA + 2000

The reliability index and the design point may be determined in accordance with
Eqs. 6.17 and 6.18 as (see also Appendix B):

β = −2000

350αR + 350αA − 300αS + 35βαRαA

αR = −1

k
(350 + 35βαA)

αA = −1

k
(350 + 35βαR)

αS = 300

k

with:

k =
√

(350 + 35βαA)2 + (350 + 35βαR)2 + (300)2

which by calculation gives the iteration history shown in Table 6.1.
From Table 6.1 it is seen that the basic random variable S modeling the load on

the steel rod is slightly dominating with an α-value equal to 0.6087. Furthermore it
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Table 6.1 Iteration history for the non-linear limit state example

Iteration Start 1 2 3 4 5

β 3.0000 3.6719 3.7392 3.7444 3.7448 3.7448

αR −0.5800 −0.5602 −0.5612 −0.5610 −0.5610 −0.5610

αA −0.5800 −0.5602 −0.5612 −0.5610 −0.5610 −0.5610

αS 0.5800 0.6101 0.6085 0.6088 0.6087 0.6087

is seen that both the variables R and A are acting as resistance variables as their α-
values are negative. The annual failure probability for the steel rod is determined as:

PF = Φ(−β) = Φ(−3.7448) = 9.02 · 10−5 [a−1]

6.6 Simulation Methods

Consider again the probability integral defined in Eq. 6.3:

Pf =
∫

g(x)≤0
fX(x) dx (6.19)

It has been seen that FORM methods may successfully be applied for the eval-
uation of this integral. The integral may also be estimated by so-called simulation
techniques. In the literature, a large variety of simulation techniques may be found
and a treatment of these will not be given in the present text. Here it is just noted
that simulation techniques have proven their value especially for problems where the
representation of the limit state function is associated with difficulties. Such cases
are e.g. when the limit state function is not differentiable or when several design
points contribute to the failure probability.

However, as all simulation techniques have their origin in the so-called crude
Monte Carlo Method, the principles of this simulation technique will be briefly
outlined below.

The basis for simulation techniques is well illustrated by rewriting the probability
integral in Eq. 6.19 by means of an indicator function:

PF =
∫

g(x)≤0
fX(x) dx =

∫
I

[
g(x) ≤ 0

]
fX(x) dx (6.20)

where the integration domain is changed from the part of the sample space of the
vector X = (X1,X2, . . . ,Xn)

T for which g(x) ≤ 0 to the entire sample space of X
and where I[g(x) ≤ 0] is an indicator function equal to 1 if g(x) ≤ 0 and otherwise
equal to zero. Equation 6.20 is in this way seen to yield the expected value of the
indicator function I [g(x) ≤ 0]. Therefore, if now N realizations of the vector X, i.e.
xj , j = 1,2 . . . ,N are sampled it follows from sample statistics that:
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PF = 1

N

N∑
j=1

I
[
g(x) ≤ 0

]
(6.21)

is an unbiased estimator of the failure probability PF .
The principle of the crude Monte Carlo simulation technique rests directly on the

application of Eq. 6.21. A large number of realizations of the basic random variables
X, i.e. xj , j = 1,2 . . . ,N are generated (or simulated) and for each of the outcomes
xj it is checked whether or not the limit state function taken in xj is positive. All the
simulations for which this is not the case are counted (nF ) and after N simulations
the failure probability PF may be estimated through:

PF = nF

N
(6.22)

which then may be considered a sample expected value of the probability of failure.
In fact, for N → ∞ the estimate of the failure probability becomes exact. However,
simulations are often costly in computation time and the uncertainty of the estimate
is thus of interest. It is easily realized that the coefficient of variation of the estimate
is proportional to 1/

√
nF .

6.6.1 Example 6.4: Monte Carlo Simulation

Consider the limit state function g(x) ≤ 0 = B − K with K being the expected
costs of a construction project, and B the budget. K is Lognormal distributed with
mean value μK = 50000 [CHF]. Due to the uncertainties in the performance of the
project, the coefficient of variation of the costs is 0.2. The budget is modeled as
a Normal distributed random variable with mean value μB = 100000 [CHF] and
standard deviation σB = 5000 [CHF].

Performing a Monte Carlo simulation with n = 100000, 19 simulations are found
to lie outside of the positive range; in Fig. 6.4 these simulations lie under the straight
line, which represents the linear limit state function. The probability of failure is
calculated as PF = nF

N
= 19

100000 = 1.9 · 10−4. This value will vary due to the rather
small number of simulations (105) in every new Monte Carlo simulation performed.

If Monte Carlo simulation is pursued to estimate a probability in the order
of 10−6 it must be expected that approximately 108 simulations are necessary to
achieve an estimate with a coefficient of variance in the order of 10%. A large num-
ber of simulations are thus required using crude Monte Carlo simulation and all
refinements of this crude technique have the purpose of reducing the variance of the
estimate. Such methods are for this reason often referred to as variance reduction
methods.

The simulation of the N outcomes of the joint density function in Eq. 6.21 is in
principle simple and may be seen as consisting of two steps. Here the steps will be
illustrated assuming that the n components of the random vector X are independent.

In the first step, a “pseudo random” number with a uniform distribution between
0 and 1 is generated for each of the components in xj i.e. xji , i = 1,2,3, . . . , n. The
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Fig. 6.4 Monte Carlo Simulation with 100000 realizations of the two random variables, budget B

and costs K , and evaluation of the limit state function g(x) ≤ 0 = B − K

Fig. 6.5 Principle for simulation of a random variable

generation of such numbers may be facilitated by built-in functions of basically all
programming languages and spreadsheet software.

In the second step, the outcomes of the “pseudo random” numbers zji are trans-
formed to outcomes of xji by:

xji = F−1
Xi

(zji) (6.23)

where FXi
(·) is the cumulative distribution function for the random variable Xi .

The principle is also illustrated in Fig. 6.5.
This process is continued until all components of the vector xj have been gener-

ated.
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Fig. 6.6 Position determination of a ship

6.7 Self Assessment Questions/Exercises

1. How may failure events be represented in terms of basic random variables in the
context of structural reliability theory?

2. What is the geometrical interpretation of the reliability index and how does it
relate to the failure probability?

3. Using the Monte Carlo Simulation method, a sample expected value of the prob-
ability of failure is estimated. How may the accuracy in the estimation of the
probability of failure be increased?

4. Consider a timber beam subjected to an annual maximum bending moment L.
The bending strength of the beam R is modeled by a Normal distributed random
variable with mean μR = 30 kN m and standard deviation σR = 5 kN m and the
annual maximum bending moment is modeled by a Normal distributed random
variable with mean μL = 9 kN m and standard deviation σL = 2 kN m. It is
assumed that R and L are independent. The timber beam fails when the applied
moment exceeds the bending strength. Calculate the reliability index β and the
probability of failure of the timber beam.

5. Consider a steel rod that carries a deterministic load, S = 35 kN m. The resis-
tance, R, of the rod is given by the following product: R = A ·fy , where A is the
area of the rod, equal to 100 mm2 and fy is the yield stress modeled as a Normal
distributed random variable with mean μfy = 425 · 10−3 kN/mm2 and standard
deviation σfy = 25 · 10−3 kN/mm2. Formulate a safety margin, M , for the steel
rod and estimate the reliability of the rod. Draw the probability density function
of the safety margin and indicate the safe and failure regions.

6. The position of a ship is measured by two fixed points A and B located at the
coast, see Fig. 6.6.

Angles α and β have been measured from the basis line AB at the same time.
Determine the error in b if the following information is provided:

α = 6 km ± 0.005 km

β = 0.813 rad ± 0.011 rad

γ = 1.225 rad ± 0.011 rad

where, for instance, c = 6 km±0.005 km means that the mean value of c is 6 km
and the standard deviation of c is 0.005 km.



Chapter 7
Bayesian Decision Analysis

Lecture 13 (Aim of the Present Lecture) The aim of the present lecture is
to illustrate how the basic knowledge acquired through the present course pro-
vides a strong basis for engineering decision making. By establishing proba-
bilistic engineering models that are consistent with the available knowledge,
it is shown how risk or expected consequences can be utilized to identify and
rank different engineering decision alternatives. To this end on the basis of a
simple example, the three principally different types of decision analysis are
introduced, namely the prior-, posterior- and the pre-posterior decision anal-
ysis. Whereas the prior and the posterior decision analyses only differ in the
available information at hand at the time of decision making and may serve as
a direct basis for the planning of engineering activities involving changes of
the state of nature, the pre-posterior analysis forms a strong basis for the plan-
ning of collection of information through e.g. experiments in the laboratory
or in the field.
On the basis of the lecture, it is expected that the reader should acquire knowl-
edge and skills with regard to:

• What must be identified before a decision analysis can be performed?
• What is a utility function and what role does it play in decision making?
• How are risk and utility related?
• How is a decision event tree constructed?
• How can expected utility be calculated based on branching probabilities

and consequences?
• How can the uncertainty associated with information be accounted for in

decision analysis?
• What is the difference between prior and posterior decision analysis?
• What is the idea behind the pre-posterior decision analysis?
• How can the value of information be assessed?

M.H. Faber, Statistics and Probability Theory,
Topics in Safety, Risk, Reliability and Quality 18,
DOI 10.1007/978-94-007-4056-3_7, © Springer Science+Business Media B.V. 2012
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7.1 Introduction

The ultimate task for an engineer is to establish a consistent decision basis for the
planning, design, manufacturing, construction, operation and management of engi-
neering facilities such that the overall life cycle benefit of the facilities is maximized
and such that the given requirements to the safety of personnel and environment
specified by legislation or society are fulfilled.

As the available information (regarding, e.g., soil properties, loading, material
properties, future operational conditions and deterioration processes in general) is
incomplete or uncertain, the decision problem is subject to uncertain information.

The present chapter introduces some fundamental issues of decision making sub-
ject to uncertain information. General aspects of decision theory are considered and
illustrated using a simple example. Finally, the risk analysis decision problem is
defined in general terms within the context of decision theory.

7.2 The Decision/Event Tree

In practical decision problems such as feasibility studies, reassessment of existing
structures or decommissioning of facilities that have become obsolete, the number
of alternative actions can be extremely large and a framework for the systematic
analysis of the corresponding consequences is therefore expedient.

A decision/event tree as illustrated in Fig. 7.1 may conveniently represent the
decision problems.

For the purpose of illustration, the decision/event tree in Fig. 7.1 considers the
following very simple decision problem. In the specifications for the construction of
a production facility using large amounts of fresh water, it is specified that a water
source capable of producing at least 100 units of water per day must be available. As
it is known that the underground at the location of the planned production facility
actually contains a water reservoir, one option is to develop a well locally at the site
of the production facility. However, as the capacity of the local water reservoir is not
known with certainty another option is to get the water from an alternative location
where a suitable well already exists.

The different options are associated with different costs and different potential
consequences. The costs of establishing a well locally is assumed to be equal to
10 monetary units. If the already existing well is used, it is necessary to construct
a pipeline. As the existing well is located far away from the planned production
facility, the associated costs are assumed to be equal to 100 monetary units.

Based on experience from similar geological conditions, it is judged that the
probability that a local well will be able to produce the required amount of water
is 0.4. Correspondingly, the probability that the well will not be able to fulfill the
given requirements is 0.6.

The consequence of establishing locally a well, which turns out to be unable
to produce the required amount of water, is that a pipeline to the existing—but
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Fig. 7.1 Decision/event tree

distant—well must be constructed. It is assumed that in this case all the water for
the production facility is supplied from this well.

The task is now to analyze the decision problem making consistent use of all
the information available to the engineer, including his/her degree of belief in the
possible states, his/her subsequent observed data and his/her preferences among the
various possible action/state pairs.

To this end, use will be made of the fact that decisions shall be based on expected
values of the corresponding consequences. This issue is addressed further in the
following section.

7.3 Decisions Based on Expected Values

Consider the simple case where the engineer must choose between actions a1 and
a2. The consequence of action a2 is C with certainty whereas the consequence of
action a1 is uncertain. The state of nature may be θ1, in which case the consequence
is A and the state of nature may be θ2 in which case the consequence is B . The
decision/event tree is illustrated in Fig. 7.2.

Before the true state of nature is known, the optimal decision depends upon the
likelihood of the various states of the nature θ and the consequences A, B and C.

A further analysis of the decision problem requires the numerical assessment of
the preferences of the decision maker. It is assumed that the decision maker prefers
B to A, C to A, and B to C. This statement of preferences may be expressed by any
function u such that:

u(B) > u(C) > u(A) (7.1)

The task is to find a particular function u, namely the utility function, such that
it is logically consistent to decide between a1 and a2 by comparing u(C) with the
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Fig. 7.2 Decision/event tree
illustrating a basic decision
problem

expected value of the utility of the action a1, namely:

pu(A) + (1 − p)u(B) (7.2)

where p is the probability that the state of nature is θ1.
Assuming that u(A) and u(B) have been given appropriate values, the question

is—what value should u(C) have in order to make the expected value a valid de-
cision criterion? If the probability of θ1 being the state of nature p is equal to 0,
the decision maker would choose a1 over a2 because she/he prefers B to C. On
the other hand, if the probability of θ1 being the state of nature is equal to 1 she/he
would choose a2 over a1. For a value of p somewhere between 0 and 1, the decision
maker will be indifferent to choosing a1 over a2. This value p∗ may be determined
and u(C) is assigned as:

u(C) = p∗u(A) + (1 − p∗)u(B) (7.3)

From Eq. 7.3 it is seen that u(C) will lie between u(A) and u(B) for all choices
of p∗ and therefore the utility function is consistent with the stated preferences.
Furthermore, it is seen that the decision maker should choose the action a1 to a2

only if the expected utility given this action E[u|a1] is greater than E[u|a2]. This
is realized by noting that for all p greater than p∗ and with u(C) given by Eq. 7.3.
There is:

u(C) > pu(A) + (1 − p)u(B)
�
�

p∗ u(A) + (1 − p∗)u(B) > p u(A) + (1 − p)u(B) (7.4)
�
�

u(B) + (u(A) − u(B))p∗ > u(B) + (u(A) − u(B))p
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This means that if u(C) is properly assigned in consistency with the decision
makers stated preferences (i.e. B preferred to C preferred to A) and the indiffer-
ence probability p∗, the ranking of the expected values of the utility determines the
ranking of actions.

7.4 Decision Making Subject to Uncertainty

Having formulated the decision problem in terms of a decision/event tree, with
proper assignment of utility and probability structure, the numerical evaluation of
decision alternatives may be performed.

Depending on the state of information at the time of the decision analysis, three
different analysis types are distinguished, namely prior analysis, posterior analysis
and pre-posterior analysis. Each of these are important in practical applications of
decision analysis and are therefore discussed briefly in the following.

7.5 Decision Analysis with Given Information—Prior Analysis

When the utility function has been defined and the probabilities of the various state
of nature corresponding to different consequences have been estimated, the analy-
sis is reduced to the calculation of the expected utilities corresponding to the dif-
ferent action alternatives. In the following examples the utility is represented in a
simplified manner through the costs whereby the optimal decisions now should be
identified as the decisions minimizing expected costs, which then is equivalent to
maximizing expected utility.

At this stage, the probabilistic description P [θ ] of the state of nature θ is usually
called a prior description and called P ′[θ ].

To illustrate the prior decision analysis the decision problem from Sect. 7.2 is
considered again. The decision problem is stated as follows. The decision maker
has a choice between two actions:

a1: Establish a new well
a2: Establish a pipeline from an existing well

The possible states of nature are the following two:

θ1: Capacity insufficient
θ2: Capacity sufficient

The prior probabilities are:

P ′[θ1] = 0.60
P ′[θ2] = 0.40

Based on the prior information alone, it is easily seen that the expected cost E′[C]
amounts to:
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Fig. 7.3 Simple decision
problem with assigned prior
probabilities and utility

E′ [C] = min
{

P ′ [θ1] · (100 + 10) + P ′ [θ2] · 10;100
}

= min {70;100} = 70 monetary units

The decision/event tree is illustrated in Fig. 7.3 together with the expected costs
(in boxes).

It is seen that action alternative a1 yields the smallest expense (largest expected
utility) so this action alternative is the optimal decision.

7.6 Decision Analysis with Additional Information—Posterior
Analysis

When additional information becomes available, the probability structure in the de-
cision problem may be updated. Having updated the probability structure the deci-
sion analysis is unchanged in comparison to the situation with given—prior infor-
mation.

Given the result of an experiment zk , the updated probability structure (or just
the posterior probability) is called P ′′[θ ] and may be evaluated by use of the Bayes’
rule:

P ′′[θi] = P [zk| θi]P ′[θi]
∑

j P [zk| θj ]P ′[θj ] (7.5)

which may be explained as:
(

Posterior probability of θi

with given sample outcome

)

=
(

Normalizing

constant

)

·
(

Sample likelihood

given θi

)

·
(

prior probability

of θi

)

(7.6)
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Fig. 7.4 Illustration of updating of probability structures

The normalizing factor is to ensure that P ′′[θi] forms a proper probability. The
mixing of new and old information appears through the sample likelihood P [zk| θi]
and the prior probability P ′[θi]. The likelihood is the probability of obtaining the
observation zk given the true state of nature θi .

In Fig. 7.4 an illustration is given of corresponding prior and posterior probabil-
ity density functions together with likelihood functions. In the first case, the prior
information is strong and the likelihood is weak (e.g. due to a small sample size). In
the second case, the prior information and the likelihood are of comparable strength.
In the last case, the prior information is relatively weak in comparison to the likeli-
hood.

To illustrate the posterior decision analysis, the water supply decision problem
is considered again.

It is assumed that information about the capacity of the local reservoir can be
estimated by the implementation of a less expensive test well and a subsequent pump
test. It is assumed that the cost of establishing a test well is equal to 1 monetary unit.
However, the information obtained from the pump test is only indicative as the result
of the difference in scale from the test well to the planned local well.

It is further assumed that the pump test can provide the following different
information—i.e. indicators regarding the capacity of the local reservoir.

The capacity of the reservoir is:

• Larger than the given production requirements by 5% i.e. larger than 105 water
volume units per day.

• Less than 95% of the required water production, i.e. less than 95 water volume
units.

• Between 95 and 105 water units.

The information from the pump test is subject to uncertainty and the likelihood
of the actual capacity of the local reservoir given the three different indications
described above are given in Table 7.1.

Given that a test well is established and a trial pump test conducted with the
result that a capacity smaller than 95 water volume units is indicated, a posterior
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Table 7.1 Likelihood of the
true capacity of the reservoir
given the trial pump test
results

Indicators True capacity of the reservoir

θ1: less than 100 θ2: more than 100

I1 : capacity > 105 0.1 0.8

I2 : capacity > 95 0.7 0.1

I3 : 95 ≤ capacity ≤ 105 0.2 0.1

Fig. 7.5 Illustration of
decision/event tree for water
supply decision problem

decision analysis can be performed to identify whether the optimal decision is to
establish a well locally or if it is more optimal to construct a pipeline to the existing
well.

Therefore, the posterior probabilities given the new information P ′′[θ | z] can be
given as:

P ′′[θ1| I2] = P [I2| θ1]P ′[θ1]
P [I2| θ1]P ′[θ1] + P [I2| θ2]P ′[θ2]

= 0.7 · 0.6

0.7 · 0.6 + 0.1 · 0.4
= 0.42

0.46
= 0.913

P ′′[θ2| I2] = P [I2| θ2]P ′[θ2]
P [I2| θ1]P ′[θ1] + P [I2| θ2]P ′[θ2]

= 0.1 · 0.4

0.7 · 0.6 + 0.1 · 0.4
= 0.04

0.46
= 0.087

which are also shown in Fig. 7.5. Having determined the updated probabilities the
posterior expected values E′′[C| I2] of the utility corresponding to the optimal ac-
tion alternative is readily obtained as:
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E′′[C| I2] = min
{

P ′′[θ1| I2] · (100 + 10) + P ′′[θ2| I2] · 10;100
}

= min{101.3;100} = 100 monetary units

and indicated in boxes in Fig. 7.5.
Considering the additional information, it is seen that the optimal decision has

been switched to action a2 as compared to the prior decision analysis.

7.7 Decision Analysis with ‘Unknown’
Information—Pre-posterior Analysis

Often the decision maker has the possibility to ‘buy’ additional information through
an experiment before actually making his/her choice of action. If the cost of this
information is small in comparison to the potential value of the information, the
decision maker should perform the experiment. If several different types of exper-
iments are possible, the decision maker must choose the experiment yielding the
overall largest expected value of utility.

If the example from the previous sections is considered again, the decision prob-
lem could be formulated as a decision to decide whether or not to perform the trial
pump tests. The pre-posterior decision analysis facilitates this.

The situation prior to performing the experiment has already been considered
in Sect. 7.5. There it was found that the expected cost based entirely on the prior
information E′[C] is 70 monetary units.

In this situation the experiment is planned but the result is still unknown. In this
situation the expected cost, disregarding the experiment cost, can be found as:

E[C] =
n

∑

i=1

P ′[Ii]E′′[C| Ii] =
n

∑

i=1

P ′[Ii] min
j=1,...,m

{

E′′[C(aj )| Ii]
}

(7.7)

where n is the number of different possible experiment findings and m is the number
of different decision alternatives. In Eq. 7.7 the only new term in comparison to the
previous section is P ′[Ii] which may be calculated by:

P ′[Ii] = P [Ii | θ1]P ′[θ1] + P [Ii | θ2]P ′[θ2] (7.8)

With reference to Sects. 7.5 and 7.6 the prior probabilities of obtaining the dif-
ferent indications by the tests are P ′ [I1], P ′ [I2] and P ′ [I3] and given by:

P ′[I1] = P [I1| θ1]P ′[θ1] + P [I1| θ2]P ′[θ2] = 0.1 · 0.6 + 0.8 · 0.4 = 0.38

P ′[I2] = P [I2| θ1]P ′[θ1] + P [I2| θ2]P ′[θ2] = 0.7 · 0.6 + 0.1 · 0.4 = 0.46

P ′[I3] = P [I3| θ1]P ′[θ1] + P [I3| θ2]P ′[θ2] = 0.2 · 0.6 + 0.1 · 0.4 = 0.16

The posterior expected cost terms in Eq. 7.7 are found to be:

E′′ [C| I1] = min
{

P ′′[θ1| I1] · (100 + 10) + P ′′[θ2| I1] · 10;100
}
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= min {0.158 · 110 + 0.842 · 10;100}
= min {25.8;100} = 25.8 monetary units

E′′ [C| I2] = min
{

P ′′[θ1| I2] · (100 + 10) + P ′′[θ2| I2] · 10;100
}

= min {0.913 · 110 + 0.087 · 10;100}
= min {101.3;100} = 100 monetary units

E′′ [C| I3] = min
{

P ′′[θ1| I3] · (100 + 10) + P ′′[θ2| I3] · 10;100
}

= min {0.75 · (100 + 10) + 0.25 · 10;100}
= min {85;100} = 100 monetary units

where the posterior probabilities P ′′[θi | I1] and P ′′[θi | I2] are determined as already
shown in Sect. 7.6 for P ′′[θi | I3]. The expected cost corresponding to the situation
where the experiment with the experiment costs CP is therefore:

E[C] = E′′ [C| I1]P ′[I1] + E′′ [C| I2]P ′[I2] + E′′ [C| I3]P ′[I3]
= (25.8 + CP ) · 0.38 + (100 + CP ) · 0.46 + (85 + CP ) · 0.16

= (69.4 + CP ) monetary units

By comparing this result with the expected cost corresponding to the prior infor-
mation, it is seen that the experiment should be performed if the cost of the experi-
ment is less than 0.6 monetary units:

E′ [C] − E [C] = 70 − (69.4 + CP ) = 0.6 − CP

The 0.6 monetary units in this case correspond to the value of information.

7.8 The Risk Treatment Decision Problem

Having introduced the fundamental concepts of decision theory, it will now be con-
sidered how these carry over to the principally different types of risk analysis.

The simplest form of risk analysis, i.e. a simple evaluation of the risks associated
with a given activity and/or decision alternative may be related directly to the prior
decision analysis. In the prior analysis the risk is evaluated on the basis of statistical
information and probabilistic modeling available prior to any decision and/or activ-
ity. A simple decision/event tree in Fig. 7.6 illustrates the prior analysis. In a prior
analysis the risk for each possible activity/option may e.g. be evaluated as:

R = E [U ] =
n

∑

i=1

Pi Ci (7.9)

where R is the risk, U the utility, Pi is the ith branching probability and Ci the
consequence of the event of branch i.
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Fig. 7.6 Decision/event tree
for prior and posterior
decision analysis

A prior analysis, in fact, corresponds closely to the assessment of the risk associ-
ated with a known activity. A prior analysis thus forms the basis for the comparison
of risks between different activities.

A posterior analysis is, in principle, of the same form as the prior analysis; how-
ever, changes in the branching probabilities and/or the consequences in the deci-
sion/event tree reflect that the considered problem has been changed as an effect
of risk reducing measures, risk mitigating measures and/or collection of additional
information.

A posterior analysis may thus be used to evaluate the effect of activities, which
factually have been performed. For example, for assessment of existing facilities,
the testing and inspection of the “as built” facility would be expected to reveal many
gross design and construction errors, leading to a more accurate reliability analysis.

A pre-posterior analysis may be illustrated by the decision/event tree shown in
Fig. 7.7. Using pre-posterior analysis, optimal decisions with regard to activities
that may be performed in the future, e.g. the planning of risk reducing activities
and/or collection of information may be identified. An important prerequisite for
pre-posterior analysis is that decision rules need to be formulated for specifying the
future actions that will be taken on the basis of the results of the planned activities.

In a pre-posterior analysis, the optimal investigation a∗ is identified through:

min
a

E′
Z

[

E′′
Z[C(a(z), z)]] = min

a
E′

Z

[
n

∑

i=1

Pi
′′(a(z), z)Ci(a(z))

]

(7.10)

where a(z) are the different possible actions that can be taken on the basis of the
result of the considered investigation z and E[·] is the expected value operator. ′ and
′′ refer to the probabilistic description of the events of interest based on prior and
posterior information respectively. In Eq. 7.10 the expected utility has been asso-
ciated only with expected costs; hence the optimal decision is identified through
a minimization. If utility, more generally, is associated with expected benefits, the
optimization should be performed through maximization.

Pre-posterior analyses form a strong decision support tool and have been inten-
sively used for the purpose of risk based inspection planning. However, so far pre-
posterior decision analysis has been grossly overlooked in risk assessments.
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Fig. 7.7 Decision/event tree for pre-posterior decision analysis

It is important to note that the probabilities for the different events represented
in the prior or posterior decision analysis may be assessed by logic tree analysis,
classical reliability analysis and structural reliability analysis or any combination of
these. The risk analysis thus in effect includes all these aspects of systems and com-
ponent modeling in addition to providing the framework for the decision making.

7.9 Self Assessment Questions/Exercises

1. What must be identified before a decision analysis can be performed?
2. What is a utility function?
3. What is the difference between prior and posterior decision analysis?
4. What is the idea behind the pre-posterior decision analysis?
5. After the occurrence of an event of heavy snowfall, you need to decide whether

to clean up the snow from a roof or not. In the following some information is
provided to assist you in the decision making process.
The clean up of the roof can be made by the local fire department. This option is
associated with a cost equal to 4000 SFr. In the case of collapse of the roof due
to the snow load, the associated cost is equal to 1000000 SFr.
The probability of collapse of the roof has been estimated using First Order Re-
liability Methods (FORM). If the snow is dry (denoted asSD), the probability of
collapse is: Pf (SD) = 10−3. If the snow is wet (denoted as SW ), the probability
of collapse is: Pf (SW) = 6.2 · 10−3. Based on experience, it can be said that
tells that the probability of having wet snow on the roof is P(SW) = 0.6. In case
where there is no snow (denoted as SN ), on the roof the probability of collapse
is equal to: Pf (SN) = 5 · 10−4.
With the aid of a melting test, the characteristics of the snow can be ascertained.
The test costs 1000 SFr. The test indication of the snow property, ISD or ISW , is
correct only in 75% of the cases. As the uncertainty of the indication is indepen-
dent of the snow properties, P(ISD|SD) = P(ISW |SW).
Build an appropriate event tree and use it to find out which decision alternative—
“clean up”, “do nothing” or “carry out test” is the most beneficial one in terms
of cost.



Appendix A
Answers to Self Assessment Questions

A.1 Chapter 1

1.1 According to the so-called Brundtland Commission [5], sustainable develop-
ment is defined as development “that meets the needs of the present with-
out compromising the ability of future generations to meet their own needs”.
Consideration of sustainable development leads to sustainable decision making
which may be understood as based on a joint consideration of society, economy
and environment (for more see Sect. 1.1).

1.2 A beneficial engineered facility is understood as: being economically efficient
in serving a specific purpose, fulfilling given requirements with regard to the
safety of the personnel, and fulfilling given requirements to limit the adverse
effects of the facility on the environment (for more, see Sect. 1.2).

1.3 As discussed in Sect. 1.3 when considering an activity with only one event with
potential consequences C, the risk R is the probability P that this event will
occur multiplied with the consequences given the event occurs i.e.:

R = PC

1.4 The term “acceptable risks” points out to “what is one prepared to invest and/or
pay for the purpose of getting a potential benefit” (for more, see Sect. 1.2).

1.5 As discussed in Sect. 1.3, the risk of an event is calculated by Eq. 1.1 such as:
R = PC. Hence the given table can easily be completed and it can be seen that
event 3 is associated with the higher risk.

Event 1 2 3
Event probability 0.1 0.01 0.2
Consequences 100 SFr 500 SFr 100 SFr
Risk 10 5 20

M.H. Faber, Statistics and Probability Theory,
Topics in Safety, Risk, Reliability and Quality 18,
DOI 10.1007/978-94-007-4056-3, © Springer Science+Business Media B.V. 2012
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A.2 Chapter 2

2.1 The estimation is based on the frequentistic interpretation of probability. In
the frequentistic interpretation, the probability P(A) is simply the relative fre-
quency of occurrence of the event A as observed in an experiment with n trials.
It is mathematically defined as (for more, see Sect. 2.2):

P(A) = lim
NA

nexp
for nexp → ∞

2.2 Following the Bayes’ rule (see Sect. 2.5), the conditional probability of the
event E1 given that the event E2 has occurred is written as:

P(E1|E2) = P(E1 ∩ E2)

P (E2)

2.3 In probability theory, the probability P(A) of an event A can take any value
within the following boundaries:
0 ≤ P(A) ≤ 1 �
−1 ≤ P(A) ≤ 1 �
−∞ ≤ P(A) ≤ ∞ �

2.4 If the intersection of two events, A and B corresponds to the empty set ∅, i.e.
A ∩ B = ∅, the two events are:
Mutually exclusive. �
Independent. �
Empty events. �

2.5 Which of the following expressions is(are) correct?
The probability of the union of two events A and B is equal to the sum of the
probability of event A and the probability of event B , given that the two events
are mutually exclusive. �
The probability of the union of two events A and B is equal to the probability
of the sum of event A and event B , given that the two events are mutually
exclusive. �
The probability of the intersection of two events A and B is equal to the prod-
uct of the probability of event A and the probability of event B , given that the
two events are mutually exclusive. �
The probability of the intersection of two events A and B is equal to the prod-
uct of the probability of event A and the probability of event B , given that the
two events are independent. �

2.6 The probability of the intersection of two mutually exclusive events is equal
to:
The product of the probabilities of the individual events. �
The sum of the probabilities of the individual events. �
The difference between the probabilities of the individual events. �
One (1). �
Zero (0). �
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2.7 Within the theory of sample spaces and events, which of the following state-
ments is(are) correct?
An event A is defined as a subset of a sample space Ω . �
A sample space Ω is defined as a subset of an event A. �

2.8 The probability of the union of two not mutually exclusive events A and B

is given as: P(A ∪ B) = P(A) + P(B) − P(A ∩ B). It is provided that the
probability of event A is equal to 0.1, the probability of event B is 0.1 and
the probability of event B given event A, i.e. P(B|A) is 0.8. Which result is
correct?
P(A ∪ B) = −0.6 �
P(A ∪ B) = 0.12 �
P(A ∪ B) = 0.04 �

2.9 For an event A in the sample space Ω , event Ā represents the complementary
event of event A. Which of the following hold?
A ∪ Ā = Ω �
A ∩ Ā = Ω �
A ∪ Ā = ∅ �

2.10 The commutative, associative and distributive laws describe how to:
Operate with intersections of sets. �
Operate with unions of sets. �
None of the above. �

2.11 Following the principles explained in Sect. 2.5 we obtain:
a) The table is completed as follows:

SNF final
decision Di

Dr. Beispiel’s indicative assessment Ij
I1 I2 I3

D1 P(I1|D1) = 0.86 P(I2|D1) = 0.1 P(I3|D1) = 0.04
D2 P(I1|D2) = 0.2 P(I2|D2) = 0.74 P(I3|D2) = 0.06
D3 P(I1|D3) = 06 P(I2|D3) = 0.1 P(I3|D3) = 0.9

b) Using the Bayes’ Rule the probability that the final decision made by SNF
is the same with the indicative assessment of Dr. Beispiel is:

P (D2| I = D2)

= P(I = D2|D2)P (D2)
∑3

i=1 P(I = D2|Di)P (Di)

= P(I = D2|D2)P (D2)

P (I = D2|D1)P (D1) + P(I = D2|D2)P (D2) + P(I = D2|D3)P (D3)

= 0.74 · 0.35

(0.1 · 0.45) + (0.74 · 0.35) + (0.1 · 0.2)

= 0.799
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A.3 Chapter 3

3.1 The main purpose of the use of descriptive statistics is to assess the characteris-
tics and the level of uncertainty of a given quantity of interest without assuming
anything in terms of the degree or nature of the randomness underlying the data
analyzed (see also Sect. 3.1).

3.2 By definition, the sample coefficient of correlation may lie in the interval
[−1;1]. In both extreme cases, there are linear relationships between two data
sets (see also Sect. 3.2).

3.3 The interval width plays a role for the resolution of the representation of the
observations. If the interval width is too large, the histogram tells little about
relative occurrences of individual phenomena. If the width is too small, the
relative occurrences in each interval fluctuate due to the random nature of the
phenomena (see also Sect. 3.3).

3.4 As discussed in Sect. 3.3, five characteristics of a data set are normally pre-
sented in a Tukey box plot: the lower adjacent value, the lower quartile, the
median, the upper quartile and the upper adjacent value. Outside values can
also be shown on a Tukey box plot.

3.5 Q-Q plots provide an efficient means of comparison of observations of two
different data sets (see also Sect. 3.3).

3.6 Provide an estimate of the correlation coefficient of the data sets plotted in the
following figure.

A rXY ≈ +0.8 B rXY ≈ +0.4

C rXY ≈ 0 D rXY ≈ −0.4

3.7 A number of statistical terms are shown in the following table. Check if the
terms have something to do with (a) location parameter, (b) dispersion parame-
ter or (c) none of the above.

a b c

Mean �
Quartile �
Sample size �
Median �
Standard deviation �
Coefficient of variation �

3.8 Measurements were taken of the concrete cover depth of a bridge column. The
histogram of the measured values has been plotted.
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The sample mean, x̄, is equal to 0.16 mm. �
The sample mean, x̄, is equal to 15 mm. �
The mode of the data set is equal to 15 mm. �

3.9 Which of the following are features of a symmetrical probability density func-
tion?
The variance is equal to the coefficient of variation. �
The mode is equal to the median. �
The skewness is equal to zero. �
None of the above. �

A.4 Chapter 4

4.1 Inherent natural variability may be interpreted simply as the uncertainty which
cannot be reduced by means of collection of additional information. This defi-
nition implies that the amount of uncertainty due to inherent natural variability
depends on the models applied in the formulation of the engineering prob-
lem. Presuming that a refinement of models corresponds to looking in more
detail at the problem at hand, one could say that the uncertainty structure in-
fluencing a problem is scale dependent. The type of uncertainty associated
with the state of knowledge has a time dependency. In principle, if the ob-
servation is perfect without any errors the knowledge about the phenomenon
is perfect. The modeling of the same phenomenon in the future, however, is
uncertain as this involves models subject to natural variability, model uncer-
tainty and statistical uncertainty. The above discussion shows another interest-
ing effect that the uncertainty associated with a model concerning the future
transforms from a mixture of aleatory and epistemic uncertainty to a purely
epistemic uncertainty when the modeled phenomenon is observed (see also
Sect. 4.2).
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4.2 Epistemic uncertainty involves statistical uncertainty and model uncertainty.
Epistemic uncertainty may be reduced by e.g. collecting additional informa-
tion. On the other hand, aleatory uncertainty is related to the random nature
of phenomena, and thus cannot be reduced by collecting information (see also
Sect. 4.2).

4.3 A continuous random variable is a random variable which can take on any
value (see also Sect. 4.3).

4.4 With the help of Eqs. 4.16 and 4.18,
a) E[a + bX] = a + bE[X]
b) Var[a + bX] = b2 · Var[X]

4.5 The required characteristics of the random variable are shown in the following
illustrations.

4.6 According to the central limit theorem, “the probability distribution for the
sum of a number of random variables approaches the Normal distribution as
the number becomes large”.

4.7 The standard Normal distribution is a special case of the Normal distribution.
A standardized random variable is a random variable that has been transformed
such as its expected value is equal to zero and its variance is equal to one (see
also Eq. 4.48).
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4.8 A sequence of experiments with only two possible mutually exclusive out-
comes is called a sequence of Bernoulli trials. Typically, the two possible
events of a Bernoulli trial are referred to as a success or a failure (see also
Sect. 4.4).

4.9 Poisson process is a family of discrete processes, which may be used for mod-
eling the number of occurrences of events (see also Sect. 4.3).

4.10 The probability of exceeding the value of 5 is calculated as:

P(X > 5) =
∫ 10

5

3

1000
x2 dx = x3

1000

∣
∣
∣
∣

10

5
= 0.875

4.11 The probability that the engine breaks down within 2 years after placed in
operation is calculated as:

P(T ≤ 2 years) = FT (2) = 1 − e(− 2
10 ) = 0.181

4.12 The probability of no snowfall in the next year is equal to 0.067. The probabil-
ity of exactly 5 snowfalls in the next year is equal to 0.176. The probabilities
are calculated as:

P(X = 0) = (5 · 1)0

0! e−5·1 = 0.0067 and P(X = 5) = (5 · 1)5

5! e−5·1 = 0.176

A.5 Chapter 5

5.1 The data seem to fit well on a straight line and hence the assumption of a
Gumbel distribution can be accepted by the engineer.

5.2 The Maximum Likelihood Method (MLM) enables engineers to calculate the
distribution parameters of a random variable on the basis of data. Which of the
following statement(s) is(are) correct?
The MLM provides point estimates of the distribution parameters. �
The MLM provides information about the uncertainty associated with the es-
timated parameters. �
The MLM provides no information about the uncertainty associated with the
estimated parameters. �

5.3 From past experience it is known that the shear strength of soil can be de-
scribed by a Lognormal distribution. 15 samples of soil are taken from a site
and an engineer wants to use the data in order to estimate the parameters of the
Lognormal distribution. The engineer: may use a probability paper to estimate
the parameters of the Lognormal distribution. �
may use the maximum likelihood method to estimate the parameters of the
Lognormal distribution. �
may use the method of moments to estimate the parameters of the Lognormal
distribution. �
None of the above. �
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5.4 The procedure of establishing a probabilistic model, as described in Sect. 5.1,
consists of five steps:
1) Assessment and statistical quantification of the available data
2) Selection of distribution function
3) Estimation of distribution parameter
4) Model verification and
5) Model updating.

5.5 The probability that the sample average of the steel yield stress will lie within
an interval of ±9.8 MPa of the true mean value μX is 0.95 (see also Sect. 5.3,
Eq. 5.22).

5.6 The hypothesis testing procedure, as described also in Sect. 5.4, consists of
the following steps/actions:
1) Formulate a null hypothesis, H0
2) Formulate an operating rule, H1
3) Select a significance level, α

4) Identify the value resulting in a probability α of performing a Type I error
5) Perform the testing, obtain the sample statistic
6) Judge the null hypothesis.

5.7 An engineer tests the null hypothesis that the mean value of the concrete cover
depth of a concrete structure corresponds to design assumptions. In a pre-
liminary assessment a limited number of measurements of the concrete cover
depth are made, and after performing the hypothesis test the engineer accepts
the null hypothesis. After a few years, a comprehensive survey of the con-
crete cover depth is carried out, i.e. many measurements are made. The survey
shows that the mean value of the concrete cover depth does not fulfill the de-
sign assumptions. Which of the following statement(s) is(are) correct?
In the preliminary survey the engineer has performed a Type I error. �
In the preliminary survey the engineer has performed a Type II error. �
In the preliminary survey the engineer has performed a Type I and a Type II
error. �

5.8 Probability papers are useful for checking the plausibility of a selected distri-
bution family. A probability paper for a given distribution family is constructed
such that the cumulative probability distribution function (or the complement)
for that distribution family will have the shape of a straight line when plotted
on the paper. A probability paper is thus constructed by a non-linear transfor-
mation of the y-axis (see also Sect. 5.2).

5.9 It is suggested that the data are lumped in a way that each interval con-
tains about 5 or more observations. If the data are realizations from a
continuous distribution function, then they must be descritized (see also
Sect. 5.9).

5.10 Both tests are used to assess the goodness of fit of the assumed model with
data. The Chi-square test is used basically for discrete distribution func-
tions, while the Kolmogorov-Smirnov test is used for continuous distribu-
tion functions. However, by the descretization of a continuous distribution
function, the Chi-square test can be used also for the continuous distribu-
tion functions. Another difference is that whereas the Chi-square test can
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be applied for the cases where the distribution parameters are already esti-
mated from the same data, the Kolmogorov-Smirnov test cannot be applied
when the distribution parameters are estimated from the same data (see also
Sect. 5.9).

5.11 Following the introduction of the χ2 goodness of fit test in Sect. 5.9, the
number of degrees of freedom of the Chi-square sample statistic ε2

m are
k − 1 = 3 − 1 = 2, where k the number of intervals into which the sam-
ples were divided. The null hypothesis Ho that X follows a Normal distri-
bution with the given parameters can be tested using the following operating
rule:

P(ε2
m ≥ Δ) = α;

where Δ is the critical value with the sample statistic shall be compared. Using
Table C.3 and for a significance level of 5% it is observed that Δ = 5.9915,
a value that is larger than ε2

m = 0.41. Hence the null hypothesis cannot be
rejected at the 5% significance level.

5.12 An engineer wants to examine and compare the suitability of two distri-
bution function model alternatives for a random material property. Mea-
surements are taken of the material property. The engineer uses the two
model alternatives to calculate the Chi-square sample statistics and the cor-
responding sample likelihoods. The results are given in the following ta-
ble:

Model Degrees of freedom Chi-square sample statistic Sample likelihood

1 2 0.410 0.815
2 1 0.407 0.524

Which of the following statement(s) is(are) correct?
The engineer may accept model 1 at the 5% significance level. �
The engineer may accept model 2 at the 5% significance level. �
Model 1 is more suitable than model 2. �
None of the above. �

A.6 Chapter 6

6.1 It is convenient to describe failure events in terms of functional relations. If
fulfilled, the considered event will occur. A failure event may be described by
a functional relation, the limit state function g(x), such as: F = {g(x) ≤ 0},
where the components of the vector x are realizations of the so-called basic
random variables X representing all the relevant uncertainties influencing the
probability of failure (see also Sect. 6.2).
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6.2 The reliability index may be defined as the shortest distance between the
curve represented by the limit state function and the origin. The reliability in-
dex β is related to the probability of failure PF as: PF = Φ(−β) (see also
Sect. 6.3).

6.3 The estimate of the failure probability becomes exact as the number of simula-
tion approaches infinity (see also Sect. 6.6).

6.4 The reliability index β can be calculated by Eq. 6.10, Sect. 6.3: β = μM

σM
. The

mean μM and standard deviation σM of the safety margin M = R − L can be
calculated by applying the properties of the expectation operator (see Sect. 4.3)
on the safety margin expression. This gives:

μM = μR − μL = 30 − 9 = 21 kNm and

σM =
√

σ 2
R + σ 2

L =
√

52 + 22 = 5.39 kNm

Hence the reliability index is equal to:

β = μM

σM

= 21

5.39
= 3.9

The annual probability of failure of the timber beam is:

PF = P(M ≤ 0) = Φ(−β) = Φ(−3.9) = 4.8 · 10−5

where Φ(−3.9) = 4.8 · 10−5, can be found from Table C.1.
6.5 The safety margin can be written as:

M = R − S = A · fy − S = 100 · fy − 35

Since the yield stress fy is Normal distributed, M is also Normal distributed
and its mean and standard deviation can be calculated as follows:

μM = E[M] = E[100 · fy − 35] = 100 · μfy − 35

= 100 · 425 · 10−3 − 35 = 7.5 kN

The variance is calculated as:

σ 2
M = Var[M] = Var[100 · fy − 35] = Var[100 · fy] − Var[35] =

= 1002 · σ 2
fy

− 0 = 1002 · (25 · 10−3)
2 = 6.25 kN2

The standard deviation is then:

σM =
√

σ 2
M = √

6.25 = 2.5 kN
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The probability of failure of the rod is then (following Eq. 6.8, Sect. 6.3):

Pf = P(M ≤ 0) = P

(

ZM ≤ 0 − μM

σM

)

= Φ

(
0 − μM

σM

)

= Φ

(
0 − 7.5

2.5

)

= Φ(−3) = 0.00135

Whereas the reliability of the rod is simply:

Reliability = 1 − Pf = 1 − 0.00135 = 0.99865

(Note: The standard Normal distribution value corresponding to −3 is taken
from Table C.1. It is easier to draw the probability density function of the stan-
dardized safety margin i.e. of ZM . The area under the density function to the
right of −3 in the x-axis represents the safe region.)

6.6 Using Fig. 6.5 and basic principles of geometry,

b

sin (β)
= c

sin(π − α − β)
⇒ b = f (c, α, β) = c · sin (β)

sin (α + β)

Using the properties of the expectation operator (see Sect. 4.3),

E[b] = E

[

c · sin(β)

sin(α + β)

]

= E[c] · sin(β)

sin(α + β)

= 6 · sin(1.225)

sin(1.225 + 0.813)
= 6.32 km
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The error associated with the measurement of side is represented by the stan-
dard deviation σ [b] and is estimated as:

V [b] =
[
∂f

∂c

]2

· σc
2 +

[
∂f

∂α

]2

· σα
2 +

[
∂f

∂β

]2

· σβ
2

∂f

∂c
= sin(β)

sin(α + β)

∂f

∂α
= ∂

∂α

(

c · sin(β)

sin(α + β)

)

= ∂

∂α

(
c · sin(β) · sin (α + β)−1)

= −c · sin (β) · cos (α + β)

(sin (α + β))2

∂f

∂β
= ∂

∂β

(

c · sin(β)

sin(α + β)

)

= ∂

∂β

(
c · sin(β) · (sin(α + β))−1)

= (
c · cos(β) · (sin(α + β))−1

+ (−1) · (sin(α + β))−2 · cos (α + β) · (1) · c · sin(β)
)

= c ·
(

cos (β)

sin (α + β)
− sin (β) · cos (α + β)

(sin (α + β))2

)

= c ·
(

cos (β) · sin (α + β) − sin (β) · cos (α + β)

(sin (α + β))2

)

= c ·
(

sin (α + β − β)

(sin (α + β))2

)

= c ·
(

sin (α)

(sin (α + β))2

)

And eventually:

V [b] =
[
∂f

∂c

]2

· σ 2
c +

[
∂f

∂α

]2

· σ 2
α +

[
∂f

∂β

]2

· σ 2
β

=
[

sinβ

sin(α + β)

]2

· σ 2
c +

[
c · sinβ · cos(α + β)

(sin(α + β))2

]2

· σ 2
α

+
[

c · sinα

(sin(α + β))2

]2

σ 2
β

= 1.05372 ·0.0052 +3.18942 ·0.0112 +5.46712 ·0.0112

= 0.004875 km2



A.7 Chapter 7 167

The error in b is calculated by:

σ [b] = √
0.004875 = 0.0698 km

A.7 Chapter 7

7.1 The probabilistic models concerning events of interest and the consequences
for each event and action.

7.2 Utility function is a numerical assessment of the preferences of the decision
maker (see also Sect. 7.3).

7.3 Prior decision analysis is based on existing information and experience for a
first estimate of the probability of the considered events. In posterior decision
analysis new information is used to update the above probabilities and carry out
a reassessment of the decision problem (see also Sects. 7.6 and 7.7).

7.4 In pre-posterior decision analysis the decision maker can evaluate whether it is
useful or not to “buy” new information that will enable to make her/his final
decision (see also Sect. 7.8).

7.5 Using the information provided,

P(SN) = 0.6

P(ST) = 0.4

P(IST |ST) = 0.75

P(ISN |SN) = 0.75

P(IST |SN) = 1 − P(IST |ST) = 1 − 0.75 = 0.25

P(ISN |ST) = 1 − P(ISN |SN) = 1 − 0.75 = 0.25

Using the Bayes’ rule,

P(ST|IST) = P(IST |ST) · P(ST)

P (IST |ST) · P(ST) + P(IST |SN) · P(SN)

= 0.75 · 0.4

0.75 · 0.4 + 0.25 · 0.6
= 0.6667

P(ST|ISN) = P(ISN |ST) · P(ST)

P (ISN |ST) · P(ST) + P(ISN |SN) · P(SN)

= 0.25 · 0.4

0.25 · 0.4 + 0.75 · 0.6

= 2

11
= 0.18182
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P(SN|IST) = P(IST |SN) · P(SN)

P (IST |SN) · P(SN) + P(IST |ST) · P(ST)

= 0.25 · 0.6

0.25 · 0.6 + 0.75 · 0.4

= 1

3
= 0.3333

P(SN|ISN) = P(ISN |SN) · P(SN)

P (ISN |SN) · P(SN) + P(ISN |ST) · P(ST)

= 0.75 · 0.6

0.75 · 0.6 + 0.25 · 0.4

= 9

11
= 0.8181

P(ISN) = P(ISN |SN) · P (SN) + P(ISN |SD) · P (SD)

= 0.75 · 0.6 + 0.25 · 0.4 = 0.55

P(IST) = P(IST |SN) · P (SN) + P(IST |ST) · P (ST)

= 0.25 · 0.6 + 0.75 · 0.4 = 0.45

The event tree can now be completed. An example of calculation is provided
in the following. Consider the branch associated with the activity “clean up the
roof”. If the roof is cleaned up there are two events that may occur according to
the problem:

• the roof may collapse (due to various reasons)
• the roof will not collapse (survival of the roof)

These events are associated with some probability as shown in the event tree
branches:

Pf (OS) = 5 · 10−4 and Ps(OS) = 1 − 5 · 10−4 = 0.9995.

Hence the expected cost of this action is:

E[Cclean up] = Pf (OS) · 1004000 + Ps(OS) · 4000

= 5 · 10−4 · 1004000 + 0.9995 · 4000

= 4500 SFr

In a similar way the rest of the event tree may be completed.
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It can be seen that the action associated with the smaller cost is not to clean up
the roof.



Appendix B
Examples of Calculations

B.1 Chapter 5

B.1.1 Equation 5.67

Calculation of the standard Normal distribution Φ(·):
If Z is a standard Normal distributed random variable then: p = P(Z ≤ z) =

Φ(z). If for example z = 0.2 from Table C.1 it is: Φ(0.2) = 0.5793.
Calculation of the inverse standard Normal distribution Φ−1(·):
If Z is a standard Normal distributed random variable then: Φ−1(p) = z. If for

example p = 0.5793 from Table C.1 it is: Φ−1(0.5793) = 0.2.
So in Eq. 5.68 if the significance level α is assumed equal to 10% then it is:

kα/2 = Φ−1
(

1 − α

2

)

= Φ−1
(

1 − 0.1

2

)

= Φ−1 (0.95)

which from Table C.1, as explained above, yields (approximately): Φ−1 (0.95) =
1.65 (1.645 approximately if you carry out interpolation).

B.1.2 Equation 5.71

From Eq. 5.70 the Normal distributed random variable X̄ is transformed to a stan-
dard Normal distributed random variable such as:

P
(
0.3 − Δ ≤ X̄ ≤ 0.3 + Δ

) = 1 − α ⇒

P

(
0.3 − Δ − μX̄

σX̄

≤ X̄ − μX̄

σX̄

≤ 0.3 + Δ − μX̄

σX̄

)

= 1 − α ⇒

P

(
0.3 − Δ − μX

σX/
√

n
≤ X̄ − μX̄

σX/
√

n
≤ 0.3 + Δ − μX̄

σX/
√

n

)

= 1 − α ⇒
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P

(
0.3 − Δ − 0.3

0.04/
√

10
≤ X̄ − 0.3

0.04/
√

10
≤ 0.3 + Δ − 0.3

0.04/
√

10

)

= 1 − 0.1 ⇒

P

( −Δ

0.04/
√

10
≤ X̄ − 0.3

0.04/
√

10
≤ Δ

0.04/
√

10

)

= 0.9

Following the standardization of X̄ a new variable Z results

Z = X̄ − μX̄

σX̄

= X̄ − μX

σX/
√

n

that is standard Normal distributed with mean equal to 0 and standard deviation
equal to 1. So form the above equation we can write:

P

( −Δ

0.04/
√

10
≤ X̄ − 0.3

0.04/
√

10
≤ Δ

0.04/
√

10

)

= 0.9 ⇒

P

(

Z ≤ Δ

0.04/
√

10

)

− P

(

Z ≥ −Δ

0.04/
√

10

)

= 0.9 ⇒

Φ

(
Δ

0.04/
√

10

)

−
(

1 − Φ

(
Δ

0.04/
√

10

))

= 0.9 ⇒

2Φ

(
Δ

0.04/
√

10

)

− 1 = 0.9 ⇒

Φ

(
Δ

0.04/
√

10

)

= 0.95 ⇒ Δ

0.04/
√

10
= Φ−1(0.95) ⇒

Δ = 0.04√
10

1.645 = 0.0208

where the value of Φ−1(0.95) = 1.645 is found with the help of Table C.1.

B.1.3 Examples on Chi-Square Significance Test

The degrees of freedom in the Chi-square significance test are defined as:

k − 1 − l

where k is the number of intervals to which the available data are arranged and l is
the number of the parameters of the assumed distribution which are calculated from
the data directly.

In the example in Sect. 5.9.1, first both the distribution (Normal) and the pa-
rameters (mean and standard deviation) are postulated i.e. assumed for the concrete
compressive strength data. This means that l = 0 since no parameter is calculated
from the data.
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The data are arranged into 3 intervals and so k = 3. Following the above expres-
sion for the degrees of freedom the sample statistic (see Eq. 5.77) has k − 1 − l =
3 − 1 − 0 = 2 degrees of freedom.

Subsequently, for the same example, the distribution (Normal) and the mean
value are postulated i.e. assumed while the standard deviation (parameter of
the assumed distribution) is calculated from the data and hence l = 1. So in
that case, the degrees of freedom of the sample statistic are: k − 1 − l = 3 −
1 − 1 = 1.

The critical value Δ can be found from Table C.3 using the degrees of freedom
and the probability

P(ε2
m ≤ Δ) = 1 − α

(
⇔ P(ε2

m ≥ Δ) = α
)

B.2 Chapter 6

B.2.1 Example 6.2

The variance of c is estimated as follows:

Var[c] =
n∑

i=1

(
∂h(x)

∂xi

∣
∣
∣
∣
x=x0

)2

σ 2
Xi

=
⎛

⎝
∂

(√
a2 + b2

)

∂a

∣
∣
∣
∣a=ηa,

b=ηb

⎞

⎠

2

σ 2
α +

⎛

⎝
∂

(√
a2 + b2

)

∂b

∣
∣
∣
∣a=ηa,

b=ηb

⎞

⎠

2

σ 2
b

=
⎛

⎝ 2μa

2
√

μ2
a + μ2

b

⎞

⎠

2

σ 2
a +

⎛

⎝ 2μb

2
√

μ2
a + μ2

b

⎞

⎠

2

σ 2
b = μ2

a

μ2
a + μ2

b

σ 2
a + μ2

b

μ2
a + μ2

b

σ 2
b

B.2.2 Example 6.3

The reliability index is obtained by solving g(u) = 0 to β . g(u) is already given in
the example:

g(u) = 350uR + 305uA − 300uS + 35uRuA + 2000

This can be re-written as:

g(u) = g(βα) = 350βαR + 35βαA − 300βαS + 35β2αRαA + 2000
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And from Eq. 6.18:

g(u) = 0 ⇒ 350αRβ + 305αAβ − 300αSβ + 35αRαAβ2 + 2000 = 0 ⇒
β = −2000

350αR + 305αA − 300αS + 35βαRαA

From Eq. 6.17:

αR = − ∂g
∂uR

(βα)
√

∑n
i=1

(
∂g
∂ui

(βα)
)2

∂g

∂uR

(350βαR + 35βαA − 300βαS + 35β2αRαA + 2000) = 350 + 35βαA

∂g

∂uA

(350βαR + 35βαA − 300βαS + 35β2αRαA + 2000) = 350 + 35βαR

∂g

∂uS

(350βαR + 35βαA − 300βαS + 35β2αRαA + 2000) = 300

Hence:

αR = − ∂g
∂uR

(βα)
√

∑n
i=1

(
∂g
∂ui

(βα)
)2

= −350 + 35βαA

k

where

k =
√

(350 + 35βαA)2 + (350 + 35βαR)2 + 3002

Similarly αA and αS may be found.
The aim is to calculate β so that it represents the smallest distance to the ori-

gin. The starting values of β , αR , αA and αS are assumed (see Table 6.1, Column
“Start”). The next step (column for iteration 1) is calculated as follows:

β = −2000

350αR + 305αA − 300αS + 35βαRαA

= −2000

350(−0.58) + 305(−0.58) − 300(0.58) + 35 · 3(−0.58)(−0.58)
= 3.6719

αR = −350 + 35 · 3(−0.58)

k
= −0.5701

αR = −350 + 35 · 3(−0.58)

k
= −0.5701

αR = −300

k
= 0.5916

where k =
√

(350 + 35 · 3(−0.58))2 + (350 + 35 · 3(−0.58))2 + 3002.
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The iterations are continued until the value of β converges to one value (in this
example convergence occurs after the 4th iteration).



Appendix C
Tables

Table C.1 Cumulative distribution function of the standard normal distribution Φ(z)

z Φ(z) z Φ(z) z Φ(z) z Φ(z) z Φ(z)

0.00 0.5000 0.50 0.6915 1.00 0.8413 1.50 0.9332 2.00 0.9772

0.01 0.5040 0.51 0.6950 1.01 0.8438 1.51 0.9345 2.10 0.9821356

0.02 0.5080 0.52 0.6985 1.02 0.8461 1.52 0.9357 2.20 0.9860966

0.03 0.5120 0.53 0.7019 1.03 0.8485 1.53 0.9370 2.30 0.9892759

0.04 0.5160 0.54 0.7054 1.04 0.8508 1.54 0.9382 2.40 0.9918025

0.05 0.5199 0.55 0.7088 1.05 0.8531 1.55 0.9394 2.50 0.9937903

0.06 0.5239 0.56 0.7123 1.06 0.8554 1.56 0.9406 2.60 0.9953388

0.07 0.5279 0.57 0.7157 1.07 0.8577 1.57 0.9418 2.70 0.9965330

0.08 0.5319 0.58 0.7190 1.08 0.8599 1.58 0.9429 2.80 0.9974449

0.09 0.5359 0.59 0.7224 1.09 0.8621 1.59 0.9441 2.90 0.9981342

0.10 0.5398 0.60 0.7257 1.10 0.8643 1.60 0.9452 3.00 0.9986501

0.11 0.5438 0.61 0.7291 1.11 0.8665 1.61 0.9463 3.10 0.9990324

0.12 0.5478 0.62 0.7324 1.12 0.8686 1.62 0.9474 3.20 0.9993129

0.13 0.5517 0.63 0.7357 1.13 0.8708 1.63 0.9484 3.30 0.9995166

0.14 0.5557 0.64 0.7389 1.14 0.8729 1.64 0.9495 3.40 0.9996631

(continued on the next page)
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Table C.1 (Continued)

z Φ(z) z Φ(z) z Φ(z) z Φ(z) z Φ(z)

0.15 0.5596 0.65 0.7422 1.15 0.8749 1.65 0.9505 3.50 0.9997674

0.16 0.5636 0.66 0.7454 1.16 0.8770 1.66 0.9515 3.60 0.9998409

0.17 0.5675 0.67 0.7486 1.17 0.8790 1.67 0.9525 3.70 0.9998922

0.18 0.5714 0.68 0.7517 1.18 0.8810 1.68 0.9535 3.80 0.9999277

0.19 0.5753 0.69 0.7549 1.19 0.8830 1.69 0.9545 3.90 0.9999519

0.20 0.5793 0.70 0.7580 1.20 0.8849 1.70 0.9554 4.00 0.9999683

0.21 0.5832 0.71 0.7611 1.21 0.8869 1.71 0.9564 4.10 0.9999793

0.22 0.5871 0.72 0.7642 1.22 0.8888 1.72 0.9573 4.20 0.9999867

0.23 0.5910 0.73 0.7673 1.23 0.8907 1.73 0.9582 4.30 0.9999915

0.24 0.5948 0.74 0.7704 1.24 0.8925 1.74 0.9591 4.40 0.9999946

0.25 0.5987 0.75 0.7734 1.25 0.8944 1.75 0.9599 4.50 0.9999966

0.26 0.6026 0.76 0.7764 1.26 0.8962 1.76 0.9608 4.60 0.9999979

0.27 0.6064 0.77 0.7794 1.27 0.8980 1.77 0.9616 4.70 0.9999987

0.28 0.6103 0.78 0.7823 1.28 0.8997 1.78 0.9625 4.80 0.9999992

0.29 0.6141 0.79 0.7852 1.29 0.9015 1.79 0.9633 4.90 0.9999995

0.30 0.6179 0.80 0.7881 1.30 0.9032 1.80 0.9641 5.00 0.9999997

0.31 0.6217 0.81 0.7910 1.31 0.9049 1.81 0.9649

0.32 0.6255 0.82 0.7939 1.32 0.9066 1.82 0.9656

0.33 0.6293 0.83 0.7967 1.33 0.9082 1.83 0.9664

0.34 0.6331 0.84 0.7995 1.34 0.9099 1.84 0.9671

0.35 0.6368 0.85 0.8023 1.35 0.9115 1.85 0.9678

0.36 0.6406 0.86 0.8051 1.36 0.9131 1.86 0.9686

0.37 0.6443 0.87 0.8078 1.37 0.9147 1.87 0.9693

0.38 0.6480 0.88 0.8106 1.38 0.9162 1.88 0.9699

0.39 0.6517 0.89 0.8133 1.39 0.9177 1.89 0.9706

0.40 0.6554 0.90 0.8159 1.40 0.9192 1.90 0.9713

0.41 0.6591 0.91 0.8186 1.41 0.9207 1.91 0.9719

0.42 0.6628 0.92 0.8212 1.42 0.9222 1.92 0.9726

0.43 0.6664 0.93 0.8238 1.43 0.9236 1.93 0.9732

0.44 0.6700 0.94 0.8264 1.44 0.9251 1.94 0.9738

0.45 0.6736 0.95 0.8289 1.45 0.9265 1.95 0.9744

0.46 0.6772 0.96 0.8315 1.46 0.9279 1.96 0.9750

0.47 0.6808 0.97 0.8340 1.47 0.9292 1.97 0.9756

0.48 0.6844 0.98 0.8365 1.48 0.9306 1.98 0.9761

0.49 0.6879 0.99 0.8389 1.49 0.9319 1.99 0.9767
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Table C.2 Quantiles q of the t-distribution

νa F(q)

0.75 0.8 0.85 0.9 0.95 0.975 0.99 0.995

1 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657

2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925

3 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841

4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604

5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032

6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707

7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499

8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355

9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250

10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169

11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106

12 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055

13 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012

14 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977

15 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947

16 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921

17 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898

18 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878

19 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861

20 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845

21 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831

22 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819

23 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807

24 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797

25 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787

26 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779

27 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771

28 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763

29 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756

(continued on the next page)
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Table C.2 (Continued)

νa F(q)

0.75 0.8 0.85 0.9 0.95 0.975 0.99 0.995

30 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750

40 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704

50 0.679 0.849 1.047 1.299 1.676 2.009 2.403 2.678

60 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660

70 0.678 0.847 1.044 1.294 1.667 1.994 2.381 2.648

80 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639

90 0.677 0.846 1.042 1.291 1.662 1.987 2.368 2.632

100 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626

∞ 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576

aDegrees of freedom.

Table C.3 Quantiles q of the Chi-square distribution

νa F(q)

0.75 0.90 0.95 0.98 0.99 0.995 0.999

1 1.3233 2.7055 3.8415 5.4119 6.6349 7.8794 10.8276

2 2.7726 4.6052 5.9915 7.8240 9.2103 10.5966 13.8155

3 4.1083 6.2514 7.8147 9.8374 11.3449 12.8382 16.2662

4 5.3853 7.7794 9.4877 11.6678 13.2767 14.8603 18.4668

5 6.6257 9.2364 11.0705 13.3882 15.0863 16.7496 20.5150

6 7.8408 10.6446 12.5916 15.0332 16.8119 18.5476 22.4577

7 9.0371 12.0170 14.0671 16.6224 18.4753 20.2777 24.3219

8 10.2189 13.3616 15.5073 18.1682 20.0902 21.9550 26.1245

9 11.3888 14.6837 16.9190 19.6790 21.6660 23.5894 27.8772

10 12.5489 15.9872 18.3070 21.1608 23.2093 25.1882 29.5883

11 13.7007 17.2750 19.6751 22.6179 24.7250 26.7568 31.2641

12 14.8454 18.5493 21.0261 24.0540 26.2170 28.2995 32.9095

13 15.9839 19.8119 22.3620 25.4715 27.6882 29.8195 34.5282

14 17.1169 21.0641 23.6848 26.8728 29.1412 31.3193 36.1233

(continued on the next page)
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Table C.3 (Continued)

νa F(q)

0.75 0.90 0.95 0.98 0.99 0.995 0.999

15 18.2451 22.3071 24.9958 28.2595 30.5779 32.8013 37.6973

16 19.3689 23.5418 26.2962 29.6332 31.9999 34.2672 39.2524

17 20.4887 24.7690 27.5871 30.9950 33.4087 35.7185 40.7902

18 21.6049 25.9894 28.8693 32.3462 34.8053 37.1565 42.3124

19 22.7178 27.2036 30.1435 33.6874 36.1909 38.5823 43.8202

20 23.8277 28.4120 31.4104 35.0196 37.5662 39.9968 45.3147

21 24.9348 29.6151 32.6706 36.3434 38.9322 41.4011 46.7970

22 26.0393 30.8133 33.9244 37.6595 40.2894 42.7957 48.2679

23 27.1413 32.0069 35.1725 38.9683 41.6384 44.1813 49.7282

24 28.2412 33.1962 36.4150 40.2704 42.9798 45.5585 51.1786

25 29.3389 34.3816 37.6525 41.5661 44.3141 46.9279 52.6197

26 30.4346 35.5632 38.8851 42.8558 45.6417 48.2899 54.0520

27 31.5284 36.7412 40.1133 44.1400 46.9629 49.6449 55.4760

28 32.6205 37.9159 41.3371 45.4188 48.2782 50.9934 56.8923

29 33.7109 39.0875 42.5570 46.6927 49.5879 52.3356 58.3012

30 34.7997 40.2560 43.7730 47.9618 50.8922 53.6720 59.7031

aDegrees of freedom.

Table C.4 Critical values of the Kolmogorov-Smirnov test

na αb

0.01 0.02 0.05 0.1 0.2

1 0.995 0.990 0.975 0.950 0.900

2 0.929 0.900 0.842 0.776 0.684

3 0.829 0.785 0.708 0.636 0.565

4 0.734 0.689 0.624 0.565 0.493

5 0.669 0.627 0.563 0.509 0.447

6 0.617 0.577 0.519 0.468 0.410

7 0.576 0.538 0.483 0.436 0.381

8 0.542 0.507 0.454 0.410 0.358

9 0.513 0.480 0.430 0.387 0.339

10 0.489 0.457 0.409 0.369 0.323

11 0.468 0.437 0.391 0.352 0.308

12 0.449 0.419 0.375 0.338 0.296

13 0.432 0.404 0.361 0.325 0.285

14 0.418 0.390 0.349 0.314 0.275

15 0.404 0.377 0.338 0.304 0.266

(continued on the next page)
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Table C.4 (Continued)

na αb

0.01 0.02 0.05 0.1 0.2

16 0.392 0.366 0.327 0.295 0.258

17 0.381 0.355 0.318 0.286 0.250

18 0.371 0.346 0.309 0.279 0.244

19 0.361 0.337 0.301 0.271 0.237

20 0.352 0.329 0.294 0.265 0.232

21 0.344 0.321 0.287 0.259 0.226

22 0.337 0.314 0.281 0.253 0.221

23 0.330 0.307 0.275 0.248 0.217

24 0.323 0.301 0.269 0.242 0.212

25 0.317 0.295 0.264 0.238 0.208

26 0.311 0.290 0.259 0.233 0.204

27 0.305 0.284 0.254 0.229 0.200

28 0.300 0.279 0.250 0.225 0.197

29 0.295 0.275 0.246 0.221 0.194

30 0.290 0.270 0.242 0.218 0.190

31 0.285 0.266 0.238 0.214 0.187

32 0.281 0.262 0.234 0.211 0.185

33 0.277 0.258 0.231 0.208 0.182

34 0.273 0.254 0.227 0.205 0.179

35 0.269 0.251 0.224 0.202 0.177

36 0.265 0.247 0.221 0.199 0.174

37 0.262 0.244 0.218 0.196 0.172

38 0.258 0.241 0.215 0.194 0.170

39 0.255 0.238 0.213 0.192 0.168

40 0.252 0.235 0.210 0.189 0.166

n > 40 1.63/
√

n 1.52/
√

n 1.36/
√

n 1.22/
√

n 1.07/
√

n

aSample size.
bSignificance level.

Table C.5 Gamma function Γ (x) = ∫ ∞
0 e−t tx−1 dt

x Γ (x) x Γ (x) x Γ (x) x Γ (x) x Γ (x) x Γ (x)

0.00010 9999.4 0.0010 999.42 0.010 99.43 0.10 9.514 1.0 1.000 5.5 52.3

0.00012 8332.8 0.0012 832.76 0.012 82.77 0.12 7.863 1.1 0.951 5.6 61.6

0.00014 7142.3 0.0014 713.71 0.014 70.87 0.14 6.689 1.2 0.918 5.7 72.5

0.00016 6249.4 0.0016 624.42 0.016 61.94 0.16 5.811 1.3 0.897 5.8 85.6

(continued on the next page)
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Table C.5 (Continued)

x Γ (x) x Γ (x) x Γ (x) x Γ (x) x Γ (x) x Γ (x)

0.00018 5555.0 0.0018 554.98 0.018 55.00 0.18 5.132 1.4 0.887 5.9 101.3

0.00020 4999.4 0.0020 499.42 0.020 49.44 0.20 4.591 1.5 0.886 6.0 120.0

0.00022 4544.9 0.0022 453.97 0.022 44.90 0.22 4.150 1.6 0.894 6.1 142.5

0.00024 4166.1 0.0024 416.09 0.024 41.11 0.24 3.786 1.7 0.909 6.2 169.4

0.00026 3845.6 0.0026 384.04 0.026 37.91 0.26 3.478 1.8 0.931 6.3 201.8

0.00028 3570.9 0.0028 356.57 0.028 35.16 0.28 3.217 1.9 0.962 6.4 240.8

0.00030 3332.8 0.0030 332.76 0.030 32.78 0.30 2.992 2.0 1.000 6.5 287.9

0.00032 3124.4 0.0032 311.93 0.032 30.70 0.32 2.796 2.1 1.046 6.6 344.7

0.00034 2940.6 0.0034 293.54 0.034 28.87 0.34 2.624 2.2 1.102 6.7 413.4

0.00036 2777.2 0.0036 277.20 0.036 27.24 0.36 2.473 2.3 1.167 6.8 496.6

0.00038 2631.0 0.0038 262.58 0.038 25.77 0.38 2.338 2.4 1.242 6.9 597.5

0.00040 2499.4 0.0040 249.43 0.040 24.46 0.40 2.218 2.5 1.329 7.0 720.0

0.00042 2380.4 0.0042 237.52 0.042 23.27 0.42 2.110 2.6 1.430 7.1 869.0

0.00044 2272.2 0.0044 226.70 0.044 22.19 0.44 2.013 2.7 1.545 7.2 1050

0.00046 2173.3 0.0046 216.82 0.046 21.21 0.46 1.925 2.8 1.676 7.3 1271

0.00048 2082.8 0.0048 207.76 0.048 20.30 0.48 1.845 2.9 1.827 7.4 1541

0.00050 1999.4 0.0050 199.43 0.050 19.47 0.50 1.772 3.0 2.000 7.5 1871

0.00052 1922.5 0.0052 191.74 0.052 18.70 0.52 1.706 3.1 2.198 7.6 2275

0.00054 1851.3 0.0054 184.61 0.054 17.99 0.54 1.645 3.2 2.424 7.7 2770

0.00056 1785.1 0.0056 178.00 0.056 17.33 0.56 1.589 3.3 2.683 7.8 3377

0.00058 1723.6 0.0058 171.84 0.058 16.72 0.58 1.537 3.4 2.981 7.9 4123

0.00060 1666.1 0.0060 166.10 0.060 16.15 0.60 1.489 3.5 3.323 8.0 5040

0.00062 1612.3 0.0062 160.72 0.062 15.61 0.62 1.445 3.6 3.717 8.1 6170

0.00064 1561.9 0.0064 155.68 0.064 15.11 0.64 1.404 3.7 4.171 8.2 7562

0.00066 1514.6 0.0066 150.94 0.066 14.64 0.66 1.366 3.8 4.694 8.3 9281

0.00068 1470.0 0.0068 146.49 0.068 14.19 0.68 1.331 3.9 5.299 8.4 11406

0.00070 1428.0 0.0070 142.29 0.070 13.77 0.70 1.298 4.0 6.000 8.5 14034

0.00072 1388.3 0.0072 138.32 0.072 13.38 0.72 1.267 4.1 6.813 8.6 17290

0.00074 1350.8 0.0074 134.57 0.074 13.00 0.74 1.239 4.2 7.757 8.7 21328

0.00076 1315.2 0.0076 131.01 0.076 12.65 0.76 1.212 4.3 8.855 8.8 26340

0.00078 1281.5 0.0078 127.64 0.078 12.32 0.78 1.187 4.4 10.136 8.9 32569

0.00080 1249.4 0.0080 124.43 0.080 12.00 0.80 1.164 4.5 11.632 9.0 40320

0.00082 1218.9 0.0082 121.38 0.082 11.69 0.82 1.142 4.6 13.381 9.1 49974

0.00084 1189.9 0.0084 118.48 0.084 11.40 0.84 1.122 4.7 15.431 9.2 62011

0.00086 1162.2 0.0086 115.71 0.086 11.13 0.86 1.103 4.8 17.838 9.3 77036

0.00088 1135.8 0.0088 113.07 0.088 10.87 0.88 1.085 4.9 20.667 9.4 95809

0.00090 1110.5 0.0090 110.54 0.090 10.62 0.90 1.069 5.0 24.000 9.5 119292

0.00092 1086.4 0.0092 108.13 0.092 10.38 0.92 1.053 5.1 27.932 9.6 148696

0.00094 1063.3 0.0094 105.81 0.094 10.15 0.94 1.038 5.2 32.578 9.7 185551

0.00096 1041.1 0.0096 103.60 0.096 9.93 0.96 1.025 5.3 38.078 9.8 231792

0.00098 1019.8 0.0098 101.47 0.098 9.72 0.98 1.012 5.4 44.599 9.9 289868
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A
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B
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Bayesian probability theory, 44
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Biased, 111
Biased estimator, 111
Binomial distribution, 67, 68
Binomial operator, 68

C
Central limit theorem, 62, 118
Central measures, 22
Chance, 6
Characteristic value, 81
Chi-distribution, 106, 108
Chi-square distribution, 106, 107
Coefficient of variation, 49
Confidence intervals, 108, 112
Consequences, 5
Consistency, 111
Convolution integral, 56
Correlation, 26

Correlation coefficient, 27, 52
Cost benefit analysis, 2, 44
Covariance, 52

D
De Morgan’s laws, 14
Decision making, 2
Decision problem, 5
Decision theory, 6
Degrees of freedom, 107, 119
Design point, 136
Dispersion, 24
Dispersion measures, 24
Distribution

conjugated prior, 96
Fréchet, 80
geometric, 68
Gumbel, 78, 79
lognormal, 62
normal probability, 65
prior, 97
standard normal, 65
Weibull, 80

E
Engineering model, 44
Ergodic

strictly, 74
weakly, 74

Ergodicity, 74, 75
Error propagation law, 133
Event, 10, 13
Expectation operation, 51
Expected value, 48
Experimentalist, 10
Exponential distributed, 71
Extreme events, 76
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Extreme value distribution, 77, 75
Extreme values, 75

F
F-distribution, 106
Failure, 68
Failure domain, 136
Failure events, 130
First Order Reliability Methods

(FORM), 129
Fisher information matrix, 93
Fréchet

max, 79
Fréchet distribution, 80
Frequency

cumulative, 28
relative, 10

Function
autocorrelation function, 71
conditional probability density, 54
correlation function, 73
covariance function, 72
cross-covariance function, 72
joint cumulative distribution, 52
joint density function, 52
joint probability density, 52
marginal probability density

function, 56
n-dimensional cumulative

distribution, 53
standard deviation function, 72

G
Gamma distributed, 71
Gamma function, 107
Gaussian processes, 67
Geometric distribution, 68
Graphical representations, 22, 27
Gumbel

max, 77
min, 79

Gumbel distribution, 78, 79

H
Histogram, 28
Hypothesis testing, 114

I
Information

frequentistic, 12, 86
subjective, 86

Information matrix, 95
Intensity, 70
Interquartile range, 36

Intersection, 13
Interval estimates, 91
Invariance, 111

J
Jensen’s inequality, 52

K
Kolmogorov-Smirnov, 118
Kolmogorov-Smirnov-test, 122
Kurtosis, 26

L
Laplace expansions, 130
Law

associative, 13
commutative, 13
De Morgan’s, 14
distributive, 13

Least squares method, 100
Likelihood, 6, 15
Limit state function, 130
Linearization, 136
Lognormal distributed, 67

M
Mean, 48
Mean square error, 111
Median, 22
Method of maximum likelihood, 91
Method of moments, 91
Mode, 22
Model building, 86
Moment, 48

conditional, 55
joint central, 52
second central, 49

Monte Carlo method, 130, 139
Monte Carlo simulation, 139, 140
Mutually exclusive, 13

N
Non-failure states, 130
Normal distribution, 62
Null-hypothesis, 114, 115

O
Observations, 21
Operating rule, 114, 115, 116
Outside value, 37

P
Parameter, 48
Point estimates, 91, 93
Point in time, 67
Poisson counting process, 67, 70
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Posterior analysis, 148
Posterior decision analysis, 149, 153
Posterior density function, 96
Pre-posterior analysis, 151
Pre-posterior decision analysis, 153
Predictive density function, 96
Prior analysis, 147, 153
Prior belief, 12
Prior decision analysis, 147
Prior density function, 96
Probabilistic models, 86
Probability, 4, 6

conditional, 14
posterior, 15
prior, 12, 16

Probability definition
Bayesian, 11
classical, 11
frequentistic, 10

Probability density function, 47
predictive, 99

Probability of failure, 130
Probability paper, 88
Probability theory, 9
Process

random, 67, 71
stochastic, 67, 71

Pseudo random, 140

Q
Quantile plots, 31
Quantile-quantile plots, 39
Quantitative risk analysis, 44
Quartile

lower, 32
upper, 32

R
Random sequence, 67
Random variable

uniformly distributed, 49
Reference period, 76
Return period, 81
Risk, 5, 6

acceptable, 6
Robustness, 111

S
Safe domain, 136
Safety margin, 131
Sample

characteristics, 22
coefficient of variation, 25
covariance, 26

mean, 22
standard deviation, 25
variance, 25

Sample average, 111
Sample characteristic, 108
Sample likelihood, 124
Sample mean, 109
Sample statistics, 108, 109, 114
Sample variance, 109, 111
Scatter diagram, 26, 28
Second Order Reliability Methods, 137
Significance level, 112
Significance testing, 108
Simulation techniques, 139
Skewness, 25
Stationarity, 74
Stationary

strictly, 74
weakly, 74

Statistical uncertainty, 112
Statistics

Bayesian, 12
descriptive, 21

Structural reliability analysis, 44
Subjective, 11
Success, 68
Sufficiency, 111
Summaries

numerical, 22
Sustainable, 1

T
t-distribution, 106
Test results, 21
Time variant, 67
Total probability theorem, 15, 54
Tukey box plots, 36
Tukey mean-difference plot, 39
Type I and Type II errors, 114, 117

U
Unbiased, 111
Unbiased estimator, 111
Uncertainties, 5, 44

aleatory, 44
epistemic, 44
model, 44
physical, 46
statistical, 44, 46

Union, 13
Utility

expected, 7

V
Value of information, 152



190 Index

Variability
inherent natural, 44

Variable
continuous random, 47
discrete random, 47
random, 46

Variance, 49
Variance operator, 51

Variance reduction methods, 140
Vector valued processes, 72

W
Waiting time, 71
Weibull

distribution, 80
min, 80
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