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Preface

How should we use data to help us analyse our beliefs? This book is concerned
with the subjectivist analysis of uncertainty, and develops methods that combine
prior judgements with information derived from relevant data. Whenever we move
from broadly data-focused questions, such as ‘Does this data set suggest that a
certain medical treatment is likely to be effective?’, to broadly decision-motivated
questions, such as ‘Are we sufficiently confident, given all that we know about this
treatment, to recommend its widespread use?’, then we must make such a synthesis
of data with more generalized forms of information. Because we may find this hard
to achieve, we need some methodology to help us. This methodology should be
clear, helpful, logically well founded and tractable.

The Bayesian approach to statistics is the natural methodology for this purpose.
This approach treats all uncertainties within a common probabilistic framework,
combining the different sources of information using the rules of probability. This
approach has a sound logical foundation and a well-developed methodology and
is popular and successful in many areas of application.

However, in large-scale applications, the Bayesian approach can easily become
the victim of its own ambition. Representing all uncertainties in probabilistic form
is a daunting task for complicated problems. This is partly because of the intrinsic
difficulties in judging the value of each relevant source of knowledge. However, in
large part, the task is difficult because the Bayesian approach requires us to specify
our uncertainties to an extreme level of detail. In practice, it is usually beyond our
ability to make meaningful specifications for our joint probability distributions for
multiple outcomes.

If we do wish to follow a broadly Bayesian path, then we must either choose
to make specifications that do not correspond to our actual uncertainties or be
more modest about our ability to render our beliefs in probabilistic form. If the
data are plentiful and unambiguous in their message or if the problem is not
sufficiently important to merit careful analysis, then little harm is done by somewhat
misrepresenting our beliefs. However, when the issue is important and data are less
plentiful, then we must be more careful and honest. When we cannot make full
belief specifications, we require alternative methods that respect the limitations on
our abilities to specify meaningful beliefs and allow us to conduct partial analyses
strictly in terms of the actual limited aspects of our beliefs that we are able to
specify.
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The Bayes linear approach offers an appropriate methodology for this pur-
pose. By making expectation, rather than probability, the primitive quantity for the
quantification of uncertainty, we move from a position that requires full probability
specification to a less demanding position in which we specify directly whichever
collection of expectation statements we feel are most relevant for expressing and
modifying our beliefs in the light of observation.

To use such collections of expectation statements effectively, we must rebuild
our approach to the analysis of uncertainty. That is the purpose of this book.
We derive from first principles the Bayes linear approach to statistics, develop-
ing the methodology from practical, theoretical, and foundational viewpoints. Our
approach is subjectivist and emphasizes the twin roles of interpretative measures
to help us understand the implications of our collections of belief statements and
diagnostic measures to help uncover serious conflicts between the various aspects
of our specifications and observations. Modelling proceeds through direct specifica-
tion of beliefs over observable quantities, exploiting second-order exchangeability.
Bayes linear graphical models simplify belief specification and analysis and pro-
vide the natural setting for graphical displays to highlight the key features of the
analysis.

Work on the Bayes linear approach has been going on for many years. Indeed,
in preparing papers and talks, in writing software, and in writing this book we have
been involved in this development throughout our academic lives. The approach
is sufficiently mature to merit a detailed presentation. However, this book is in
no way intended to be an exhaustive treatment of Bayes linear methodology. It
is not even a complete account of our own work in this field, let alone a guide
to all of the enormous volume of other work that has been done from a moment-
based perspective. Rather, this work is a self-contained development of the basic
features of the approach, based around the starting point that expectation is the
natural primitive concept for the theory, and developing the practical and logical
implications of this view in a unified way.

We trust that this work may be of interest and value to those who share our
view, and we would be pleased to convert readers to this way of thinking. However,
we also hope that readers with different foundational opinions will find value in
exploring the implications of alternative views, both out of intellectual interest and
because the approach yields a variety of simple and powerful methods that may
give additional insights into their own procedures. From such perspectives, the
Bayes linear approach may be viewed as achieving ‘90% of the answer for 10%
of the effort’. This is not a recommendation that we should be lazy, but rather
recognition that, when even 10% of the effort is a substantial amount of work, we
are much more likely to be able to carry out a careful, thoughtful, and successful
analysis if we concentrate our efforts where they will have the greatest effect.
Whatever viewpoint we may have, it is important to understand that we often do
have simple alternatives that we may make use of to avoid becoming overwhelmed
by the complexities of more traditional analyses.



PREFACE xix

This book is suitable for a graduate readership. Most of the book is also suitable
for a final-year undergraduate course. Some of the material has been used within
the final-year undergraduate Mathematics programme at Durham University.

The index provided at the end of this book is almost entirely a pointer to
coverage of theoretical material and definitions. Generally, examples directly follow
the theory and so illustrate the material soon after its definition. We use a number
of running examples for this purpose: an index of such examples is given in
Appendix B. Appendix A lists the notation used in this book, together with a page
reference to the main, or first, definition. The Bayes linear programming language
[B/D] was used for most of the calculations needed; see Appendix C.

Writing this book has been both a pleasurable and a frustrating experience:
pleasurable because the approach is both powerful and elegant and it has been
very rewarding to revisit favourite ideas and to build them into a unified whole,
adding illustrations and much extra material to consolidate our treatment; frustrating
because limitations of space and time inevitably mean that in many places our
discussion is curtailed while there still is much to be said. We are very grateful
to our colleagues who have endured so pleasantly all our accounts of these ideas,
to all our collaborators who have contributed so much to the development of the
approach, to Wiley for their near infinite patience in waiting for our manuscript,
and to our families for their love and support.

Michael Goldstein and David Wooff
Durham, August 2006





1

The Bayes linear approach

The subject of this book is the qualitative and quantitative analysis of our beliefs,
with particular emphasis on the combination of beliefs and data in statistical anal-
ysis. In particular, we will cover:

(i) the importance of partial prior specifications for problems which are too com-
plex to allow us to make meaningful full prior specifications;

(ii) simple ways to use our partial prior specifications to adjust our beliefs given
observations;

(iii) interpretative and diagnostic tools that help us, first, to understand the impli-
cations of our collections of belief statements and, second, to make stringent
comparisons between what we expect to observe and what we actually observe;

(iv) general approaches to statistical modelling based upon partial exchangeability
judgements;

(v) partial graphical models to represent our beliefs, organize our computations
and display the results of our analysis.

Our emphasis is methodological, so that we will mostly be concerned with
types of specification and methods of analysis which are intended to be useful in a
wide variety of familiar situations. In many of these situations, it will be clear that
a careful, quantitative study of our beliefs may offer a valuable contribution to the
problem at hand. In other cases, and in particular in certain types of problem that are
conventionally treated by statisticians, the status of a belief analysis may be more
controversial. Therefore, we shall begin our account by giving our views as to the
role of the analysis of beliefs in such problems, and then briefly discuss what we
perceive to be the strengths and weaknesses of the traditional Bayesian approach to
belief analysis. We will briefly describe some of the distinctive features of Bayes

Bayes Linear Statistics: Theory and Methods M. Goldstein and D.A. Wooff
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linear analysis, give an overview of the contents of this book and introduce the
methodology by example.

1.1 Combining beliefs with data

To introduce our approach, compare the following examples. First, we test an
individual for precognitive powers, and observe correct guesses in ten out of ten
flips of a fair coin. Secondly, we test a promising new treatment against a current
treatment for a disease, and observe that the new treatment outperforms the current
treatment in each of ten trials on carefully matched pairs of patients.

The two experiments have, in a sense, yielded the same data, namely ten
successes in ten binary trials. However, in the first case, most people would
be intrigued but remain unconvinced that precognition had been demonstrated,
whereas in the second case most people would be largely convinced of the efficacy
of the new treatment. Such disagreements that might arise in the above analyses
would be based, in the first case, on the extent of our predisposition to accept
the existence of psychic powers, and, in the second, on possible medical grounds
that we might have to be suspicious of the new treatment. Thus, similar data in
different experiments may lead to different conclusions, when judged by the same
person, and the same data may lead to different conclusions when judged by dif-
ferent people. In the above cases, the differences in the conclusions arise from
differences in beliefs, either over the a priori plausibility of the hypotheses in the
two experiments, or disagreements between individual beliefs as to the a priori
plausibility of the hypothesis in a given experiment. More generally, people may
disagree as to the relevance of the data to the conclusions or to any other feature
of the probabilistic modelling required to reach a given conclusion.

Statistical theory has traditionally been concerned with analysing evidence
derived from individual experiments, employing seemingly objective methods
which lead to apparently clear-cut conclusions. In this view, the task of the statis-
tician is to analyse individual data sets and, where necessary, pass the conclusions
of the analysis to subject area specialists who then try to reach substantive conclu-
sions. This viewpoint has the apparent virtue of turning statistics into a well-defined
technical activity, which can be conducted in comparative isolation from the dif-
ficulties involved in making practical decisions. For example, in each of the two
experiments above we may agree that, given a certain null hypothesis (no pre-
cognitive ability, no difference between treatments), the experiment has yielded
a surprising result. This data analysis may be useful and revealing. However, as
we have observed, such surprise may have different implications between exper-
iments and between individuals. Ultimately, whether or not a particular data set
suggests that a new treatment is better than the current treatment is only of interest
if such consideration helps us to address the substantive question as to whether
it is reasonable for us to believe and act as though the new treatment actually is
better.
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Such substantive analyses are much harder than the analysis of individual data
sets, as they must confront and synthesize all of the evidence, including much that is
fragmentary, contradictory, hard to find and difficult to assess, and for which there
may be legitimate grounds for expert disagreement. However, these difficulties are
unavoidable given that we want to reach substantive conclusions.

In practice, statisticians often do present themselves as addressing substantive
issues, and are generally perceived as so doing by their clients. Indeed, the theory of
statistical inference is generally formulated and perceived as an attempt to address
substantive questions, but this may only be achieved within a traditional statistical
analysis when the data set is sufficiently large and unambiguous as to overwhelm all
other sources of prior information. When the statistical analysis is less clear-cut, it
is necessary to synthesize the statistical results with all of the other considerations
which might influence the substantive conclusions of the analysis. However, in
current practice, this synthesis rarely takes place. As a result, the fate of far too
many statistical analyses is to be accepted uncritically, or completely ignored, or
treated in some other equally arbitrary fashion. The only way to avoid this fate is
to frame the statistical analysis within the wider context with which the problem
should be concerned, so that the purpose and construction of the analysis are
directed at those things that we actually wish to know.

However, such a change in orientation requires a change in attitude and
approach. Statisticians are used to being careful and precise in the collection and
quantitative analysis of data. What we must further develop are the corresponding
methods and skills for the specification and quantitative analysis of beliefs. As our
beliefs are of fundamental interest, the study and refinement of these beliefs offer
a central unifying principle for the bewildering variety of problems that we may
confront when analysing uncertain situations.

The most fully developed methodology for such study is the Bayesian approach.
We shall develop an alternative framework for the quantitative elicitation, analysis
and interpretation of our beliefs, with particular emphasis on situations where our
beliefs are at least partly influenced by statistical data. The framework is similar
in spirit to the Bayes formalism. However, it differs in various important ways
which are directed towards clearer and simpler analyses of beliefs, as, for reasons
that we shall discuss in the next section, even the Bayesian approach can easily
become, in practice, a methodology for using beliefs to analyse data, rather than a
methodology for using data to analyse beliefs.

1.2 The Bayesian approach

Suppose that you visit a doctor, as you fear that you might have some particular
disease, which you either have, event D, or you do not have, event Dc. The doctor
gives you a test, which either is positive, event T , or not positive, event T c. Before
testing, you have a prior probability, P(D), that you have the disease. If you take
the test, and the result is positive, then your conditional probability of the disease
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is given by Bayes’ theorem as

P(D|T ) = P(T |D)P(D)

P(T |D)P(D)+ P(T |Dc)P(Dc)
. (1.1)

Using Bayes’ theorem, we replace the question

• Does the data, i.e. the test, suggest that you have the disease?

with the substantive question

• Should you now believe that you have the disease?

The evidence provided by the data, in this case the likelihood ratio,

P(T |D)

P(T |Dc)
,

has been combined with the external evidence as to whether you have the disease,
as summarized by the prior odds ratio,

P(D)

P(Dc)
,

to produce the composite conditional probability P(D|T ).
This form of argument dates back at least to the famous posthumously published

essay of Thomas Bayes. At that time, probabilistic judgements were generally taken
to be subjective quantifications of opinion. Subsequently, however, a different
tradition arose, within which statisticians became reluctant to allow that a general
statement, for example that a new treatment is better than a current treatment,
could meaningfully be given a prior probability. As a result, use of the Bayes
argument fell out of fashion, and probabilistic analysis was only deemed relevant
within statistics to the extent that it applied to the outcomes of well-defined and
repeatable sampling experiments.

While this may even now be a majority view, Bayes methods have recently
grown again in popularity. This is partly due to the influence of decision analysis,
in which the Bayes paradigm fits very naturally, and partly as a consequence of
the critical re-examination of the logical, philosophical and practical basis of sta-
tistical procedures. The strengths of the Bayes approach are, first, that it appears
to be more logical than most other approaches, replacing ad hoc methods with
a unified methodology, and, second, that the approach may be used to address
complex problems which cannot easily be considered within more traditional sta-
tistical paradigms. As a result, the approach has been judged to be successful in
many applications, particularly where the analysis of data has been improved by
combination with expert judgements.

However, perhaps because of the historical development, Bayes methods have
themselves often been viewed as a sophisticated form of data analysis, so that
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much emphasis has been placed on ‘objective Bayes methods’ based on ‘non-
informative priors’ and similar methods which are intended to extract information
from a particular data set, without imposing any particular prior quantifications.
Thus, there has developed a form of ‘objective’ Bayes methodology which is
implicitly based around the idea that we may use beliefs to improve the analysis
of data, in the sense that we may consider that data have a story to tell that is quite
separate from the individual preconceptions that we may bring to the analysis.
Such methods may be interesting, particularly for the analysis of large data sets,
but they cannot address directly the substantive questions that concern us. To do
so, we require the reverse process, namely to use data to help analyse beliefs.
However, there is a fundamental difficulty in carrying out this program within
the Bayes paradigm, namely that honest belief specification for large problems is
usually very difficult.

Even in small problems, with few sources of uncertainty, it can be hard to
distil all of our prior knowledge into a satisfactory full joint prior probability
specification over all of the possible outcomes. In practical problems there may
be hundreds of relevant sources of uncertainty about which we may make prior
judgements. In such problems it is arguably impossible for us to carry out the
Bayes programme, which requires us to specify meaningful probabilistic beliefs
over collections of probability distributions over such high-dimensional structures.
Even were we able to carry out such a full prior specification, we would usually find
that the specification was too time-consuming and too difficult to check, document
and validate to be worth the effort, unless we were working on questions that were
of such importance that they justified the enormous expenditure of effort that is
required simply to apply the paradigm in an honest fashion.

Even if we were able to make such high-dimensional specifications, the result-
ing Bayes analysis would often be extremely computer intensive, particularly in
areas such as experimental design. Computational issues, while of great practi-
cal importance, are secondary to the fundamental difficulty of making meaningful
high-dimensional prior probability specifications. However, such considerations do
support the basic argument that we shall develop in this book, which is as follows.

The more complex the problem, the more we need help to consider the result-
ing uncertainties, but the more difficult it is to carry out a full Bayes analysis.
Essentially, the Bayes approach falls victim to the ambition in its formulation.
Often, the approach is considered to be a description of what a perfectly rational
individual would do when confronted with the problem. The implication is that we
should copy the behaviour of such an individual as closely as we can. However,
as the complexity of problems increases, the disparity between the hypothetical
abilities of the perfectly rational analyst and our actual abilities to specify and
analyse our uncertainties becomes so wide that it is hard to justify the logical or
practical relevance of such a formulation.

Therefore if, in complex problems, we are unable to make and analyse full prior
specifications, it follows that we need to develop methods based around partial
belief specification. We shall develop one such methodology, termed the Bayes
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linear approach. The approach is similar in spirit to the full Bayes approach, and is
particularly appropriate whenever the full Bayes approach requires an unnecessarily
exhaustive description and analysis of prior uncertainty.

Depending on our viewpoint, we may view the Bayes linear approach either
as offering a simple approximation to a full Bayes analysis, for problems where
the full analysis would be too difficult or time-consuming, or as complementary
to the full Bayes analysis, offering a variety of new interpretative and diagnostic
tools which may be of value whatever our viewpoint, or as a generalization of
the full Bayes approach, where we lift the artificial constraint that we require full
probabilistic prior specification before we may learn anything from data.

1.3 Features of the Bayes linear approach

The following are important features of the Bayes linear approach.

1. The approach is subjectivist. We express our prior judgements of uncertainty
in quantitative form, and adjust these uncertainties in the light of observation.

2. We use prior specifications which honestly correspond to prior beliefs. In order
to do this, we must structure our analyses so that the prior specifications that
we require are within the ability of the individual to make.

3. The approach is based on expectation rather than probability as a primitive.
With expectation as a primitive, we may immediately obtain probabilities as
expectations of indicator functions. With probability as a primitive, we need to
determine all probabilities for a quantity before we may assess the expectation.
Therefore, starting with expectation allows us to focus directly on the crucial
uncertainties in the problem.

4. With expectation as a primitive, the fundamental object of interest is the col-
lection of random quantities, which are naturally gathered into inner product
spaces. Therefore, the resulting analysis follows from the geometric structure
implied by the partial belief specification.

5. Beliefs are adjusted by linear fitting rather than conditioning. Therefore, the
Bayes linear approach may be viewed as a simple and tractable approximation
to a full Bayes analysis.

6. There are general temporal relationships between the adjusted beliefs created
by linear fitting and our posterior beliefs. Full conditioning is a special case
of linear fitting whose general temporal relation with posterior beliefs is no
different than for any other linear fit. Therefore the full Bayes analysis may
be also viewed as a particular special case of the Bayes linear approach.

7. As linear fitting is generally computationally simpler than full conditioning,
we may often analyse complex problems, in particular those arising in exper-
imental design, more straightforwardly than under the full Bayes counterpart.
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8. We only specify beliefs over observable quantities, so that all of our belief
statements can be given a direct, physical interpretation. We therefore construct
underlying population models strictly by means of exchangeability judgements
over observables, which is feasible precisely because we take expectation as
the primitive for the theory.

9. Our aim is to develop improved assessments of belief. Partly, this is achieved
by sensible processing of prior and data inputs. However, just as important is
the qualitative interpretation of the belief adjustment. Therefore, we develop
interpretative tools to identify which aspects of our prior judgements and the
data are most influential for which aspects of our conclusions, so that we
may judge whether or not our belief adjustments appear intuitively reasonable,
and compare possible alternative adjustments, based for example on different
sampling frames or experimental designs.

10. When we adjust our beliefs, we similarly need qualitative methods for inter-
preting the resulting collection of changes in belief. Therefore, we develop
interpretative tools to summarize both the magnitude and the nature of the
overall changes in belief, and to display conflict or consistency between the
various sources of evidence which contribute to such changes.

11. Each belief statement made about an observable may be subsequently com-
pared with the value of that observable. Stringent diagnostics are available to
warn us of possible conflicts between our beliefs and reality.

12. There are important special cases, for example certain analyses for multi-
variate Gaussian models, where many aspects of the Bayes and the Bayes linear
approaches correspond. Therefore, many of the interpretative and diagnostic
tools that we describe will also be relevant for such analyses. Further, it is of
general interest to separate those aspects of the Gaussian analysis which follow
directly from the geometric implications of the second-order specification, from
those aspects whose validity depends on the precise form of the Gaussian
density function.

13. Much of the qualitative and quantitative structure of the Bayes linear anal-
ysis may be displayed visually using Bayes linear graphical models. These
models aid the intuitive understanding of expected and observed information
flow through complex systems, and also facilitate efficient local computation
methods for the analysis of large systems.

1.4 Example

As a trailer for the ideas in the book we give the following example. The example
is intended to convey the flavour of our approach, and so we refrain both from
detailed exposition of the methodology and from deep analysis of the problem.
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A factory produces two products. For planning purposes, the factory wishes to
predict sales of the products in each period. In order to do this, various relevant
information will be used, in particular the sales of the two products in the previous
period. For this introduction, it will be sufficient to suppose that this is all that is
explicitly used, though of course the judgements of the sales forecasters will be
called on to formulate the prior beliefs.

For illustration, we shall imagine that sales at a time point soon to come are
used to improve our understanding of sales at a more distant future time point.
Thus, there are four quantities of interest: X1 and X2, the sales of products 1 and
2 at the first time point, and Y1 and Y2, the corresponding sales at the later time
point.

For the simplest form of analysis that we shall describe, the sales forecaster
first specifies prior expectations for the four quantities, together with a variance
matrix over them. We will consider the problem of eliciting and specifying prior
information in the form of expectations, variances, and covariances in Chapter 2.
In the meantime, suppose that we have based our prior specifications on sample
information from previous sales figures, and managerial judgements as to their
relevance in the light of any special circumstances which may be felt appropriate
to the current sales period.

1.4.1 Expectation, variance, and standardization

In this book, we assume basic knowledge of expectation, variance and covariance,
and correlation. Suppose that X and Y are collections of m and n random quan-
tities, respectively. The expectation for X is denoted by E(X), an m× 1 vector
with ith element E(Xi). The variance for X is denoted by Var(X), an m×m vari-
ance–covariance matrix with (i, i)th element Var(Xi) and with (i, j)th element
giving the covariance between Xi and Xj , denoted by Cov(Xi, Xj ). The covari-
ance between X and Y is denoted by Cov(X, Y ), an m× n covariance matrix
with (i, j)th element Cov(Xi, Yj ). The correlation between X and Y is denoted
by Corr(X, Y ), an m× n correlation matrix with (i, j)th element Corr(Xi, Yj ),
assuming finite non-zero variances Var(Xi) and Var(Yj ). We may find it helpful
to refer to the standardized versions of quantities.

Definition 1.1 For a random quantity X, we write the standardized quantity as

S(X) = X − E(X)√
Var(X)

.

1.4.2 Prior inputs

Suppose that, in some appropriate units, the prior mean for each quantity is 100;
the prior variance for X1, X2 is 25; the prior variance for the future sales Y1, Y2
is 100; and the prior correlation matrix over all four quantities is
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X1 X2 Y1 Y2
X1 1.00 −0.60 0.60 −0.20
X2 −0.60 1.00 −0.20 0.60
Y1 0.60 −0.20 1.00 −0.60
Y2 −0.20 0.60 −0.60 1.00

Thus, we might summarize our prior specifications as follows. We have the same
expectation for sales for each product at each time point, but we are much less cer-
tain about the sales figures for the later time point. The correlation matrix specified
expresses the belief that sales of each product are quite strongly positively corre-
lated over the two time periods, but that the products are considered to compete and
so sales of the two products are negatively correlated. Note that in this problem we
do not complete the prior specification by choosing a prior joint probability distri-
bution for these four quantities with the given mean and variance structure. Rather,
our aim is to perform an analysis based solely on the partial prior specification that
we have described.

We intend to use the sales at the first time point to improve our forecasts for
sales at the later time point. Much of our approach deals with simultaneous analysis
of collections of quantities, so, for convenience, we group together the two sales
from the first time point into the collection D = (X1, X2), and the two sales for the
later time point into the collection B = (Y1, Y2). There is no particular significance
to the names B and D, except that we sometimes find it useful to retain D for a
collection of ‘data’ quantities (i.e. quantities which we intend to observe, and so
for which data will become available) and to retain B for a collection of ‘belief’
quantities (i.e. quantities that we wish to predict, and so for which we have prior
beliefs followed by adjusted beliefs).

1.4.3 Adjusted expectations

There are many ways in which we might try to improve our forecasts for the col-
lection B. A simple method, which exploits the prior mean and variance statements
that we have made, is as follows. We can look among the collection of linear esti-
mates, i.e. those of the form c0 + c1X1 + c2X2, and choose constants c0, c1, c2 to
minimize the prior expected squared error loss in estimating each of Y1 and Y2.
For example, we aim to minimize

E([Y1 − c0 − c1X1 − c2X2]2). (1.2)

The choices of constants may be easily computed from the above specifications,
and the estimators turn out to be

ED(Y1) = 1.5X1 + 0.5X2 − 100, (1.3)

ED(Y2) = 0.5X1 + 1.5X2 − 100. (1.4)

We call ED(Y1) the adjusted expectation for Y1 given the information D =
[X1, X2]. Similarly, ED(Y2) is the adjusted expectation for Y2 given D. The
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adjusted expectations have a number of properties which we will come to below
and in later chapters; in particular, they are themselves random quantities, so that
they too have expectations, variances and so forth.

1.4.4 Adjusted versions

We will be concerned not only with the adjusted expectation for a quantity, but also
with the residual component associated with it, which we call the adjusted version
of the quantity. The adjusted version of Y given D is defined to be AD(Y ) =
Y − ED(Y ). In our example, the adjusted versions are

AD(Y1) = Y1 − (1.5X1 + 0.5X2 − 100), (1.5)

AD(Y2) = Y2 − (0.5X1 + 1.5X2 − 100). (1.6)

These adjusted versions have important roles to play in Bayes linear analysis in that
they allow us to quantify the uncertainty expected to remain after an adjustment.
A priori, we expect the residual component to be zero, E(AD(Yi)) = 0.

1.4.5 Adjusted variances

How useful are the adjusted expectations when judged as predictors? One way to
assess how much information about the elements of B we gain by observing the
elements of D is to evaluate the adjusted variance for each quantity. The adjusted
variance for any quantity Y , given a collection of information D, is defined as

VarD(Y ) = Var(AD(Y )) = E([Y − ED(Y )]2),

being the minimum of the prior expected squared error loss in the sense of (1.2).
This is a measure of the residual uncertainty, or, informally, the ‘unexplained’
variance, having taken into account the information in D. The portion of variation
resolved is

Var(Y )− VarD(Y ) = Var(ED(Y )).

For this example the adjusted variances are the same, so that we have

VarD(Y1) = VarD(Y2) = 60,

whereas we began with variances Var(Y1) = Var(Y2) = 100. Consequently, the
value of observing sales at the first time point is to reduce our uncertainty about
sales at the later time point by 40%. We typically summarize the informativeness
of data D for any quantity Y by a scale-free measure which we call the resolution
of Y induced by D, defined as

RD(Y ) = 1− VarD(Y )

Var(Y )
= Var(ED(Y ))

Var(Y )
. (1.7)
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In our example, the variance resolutions are RD(Y1) = RD(Y2) = 0.4. The resolu-
tion lies between 0 and 1, and in general, small (large) resolutions imply that the
information has little (much) linear predictive value, given the prior specification.

In terms of the vector B, we began with a variance matrix Var(B) which we
have decomposed into unresolved and resolved portions, each a matrix:

Var(B) = VarD(B)+ RVarD(B), (1.8)

where RVarD(B) = Var(ED(B)) is our notation for the resolved variance matrix
for the adjustment of the collection B by the collection D, and equals the prior
variance matrix for the adjusted expectation vector. The off-diagonal terms are
adjusted covariances and resolved covariances. For example, the adjusted covari-
ance between Y1 and Y2 given D is the covariance between the two residual
components,

CovD(Y1, Y2) = Cov(AD(Y1), AD(Y2)),

and the resolved covariance is the change from prior to adjusted,

RCovD(Y1, Y2) = Cov(Y1, Y2)− CovD(Y1, Y2).

In our example, the decomposition (1.8) turns out to be

Var(B) =
[

100 −60
−60 100

]
=

[
60 −60
−60 60

]
+

[
40 0

0 40

]
.

The off-diagonal entries here show that Cov(Y1, Y2) = CovD(Y1, Y2) = −60, and
that RCovD(Y1, Y2) = 0. It may seem a little puzzling that we do not seem to have
resolved any of the covariance between Y1 and Y2. Indeed, the variance matrix for
their adjusted versions is singular. We shall discover why this is so, and comment
on it in more detail, later.

1.4.6 Checking data inputs

At some point, we may observe the values of D. In our case, suppose that the sales
at the first time point turn out to be x1 = 109 and x2 = 90.5. (We follow convention
in using lower case for observations and upper case for unknowns.) The first thing
we do is to check that these observations are consistent with beliefs specified about
them beforehand. A simple diagnostic is to examine the standardized change
from the prior expectation to the observed value. In our example, the standardized
changes are

S(x1) = x1 − E(X1)√
Var(X1)

= 109− 100√
25

= 1.8, (1.9)

S(x2) = 90.5− 100√
25

= −1.9. (1.10)

Each (squared) standardized change has prior expectation one. Informally, we might
begin to suspect an inconsistency if we saw a standardized change of more than
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about two standard deviations; and be quite concerned to see standardized changes
of more than about three standard deviations. We do not wish to give rigid rules
or thresholds for interpreting these kinds of measure, as they are largely dependent
on the context of the problem.

1.4.7 Observed adjusted expectations

When the data quantities are observed we may calculate the observed adjusted
expectations. Replacing X1, X2 by x1 = 109 and x2 = 90.5 in (1.3) and (1.4), we
obtain the following assessments:

Ed (Y1) = 1.5× 109+ 0.5× 90.5− 100 = 108.75,

Ed (Y2) = 0.5× 109+ 1.5× 90.5− 100 = 90.25.

We call these values observed adjusted expectations. Notice that our subscript
notation uses lower case, Ed(·), rather than upper case, ED(·) to indicate that the
entire collection D has been observed to be d. The effect of the data here is to
cause our expectations for future sales to follow a similar pattern, i.e. larger and
smaller sales respectively in the two components.

1.4.8 Diagnostics for adjusted beliefs

It is valuable at this stage to check how different the observed adjusted expectation
is from the prior expectation. A simple diagnostic is given by the change from prior
to adjusted expectation, standardized with respect to the variance of the adjusted
expectation. We have that E(ED(Y )) = E(Y ) for any Y and D. Thus, from (1.9),
the standardized change is

S(Ed(Y )) = Ed(Y )− E(Y )√
Var(ED(Y ))

,

where the denominator in the standardization does not depend on the observed
data. We call these standardized changes the standardized adjustments. In our
example, they are:

S(Ed (Y1)) = 108.75− 100√
40

= 1.38, S(Ed (Y2)) = 90.25− 100√
40

= −1.54,

where in each case the squared standardized adjustment has prior expectation one.
As such, the changes in expectation for sales at a future time point are 1.38 and
1.54 standard deviations, relative to variation explained, and so are roughly in line
with what we expected beforehand.

1.4.9 Further diagnostics for the adjusted versions

As time progresses, we eventually discover actual sales, y1 = 112 and y2 = 95.5,
of the two products. It is diagnostically important now to compare our predictions
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with what actually happened. There are two diagnostics to examine. First, we can
compare a quantity’s observation with its prior expectation, irrespective of the
linear fitting on D. The standardized change in expectation for a quantity is given
by (1.9). In our example, the standardized changes in expectation from prior to
observed are S(Y1) = (112− 100)/10 = 1.2 and S(Y2) = −0.45, so these future
sales turned out to be consistent with our prior considerations.

A second diagnostic is given by examining the change from adjusted expec-
tation to actual observation, relative to the associated adjusted variance, as this
was the variation remaining in each Yi after fitting on D, but before observing
Y1 and Y2. By observing the actual sales values y1, y2, we observe the residual
components, i.e. the adjusted versions AD(Yi) = Yi − ED(Yi). Given that they had
prior expectation zero, we wish to see how far the adjusted versions have changed
from zero, relative to their variances

Var(AD(Yi)) = VarD(Yi).

The appropriate standardized change is thus

Sd(yi) = S(Ad (yi)) = yi − Ed(Yi)√
VarD(Yi)

.

In our example, the sales at the later time point, y1 = 112, y2 = 95.5, should
be compared to the adjusted expectations Ed(Y1) = 108.75 and Ed(Y2) = 90.25,
standardizing with respect to the adjusted variances:

VarD(Y1) = VarD(Y2) = 60.

We obtain

Sd(y1) = 112− 108.75√
60

= 0.42 and Sd(y2) = 95.5− 90.25√
60

= 0.68.

The squared standardized changes should again be about one, so our diagnostic
checks suggest that both of our predictions were roughly within the tolerances
suggested by our prior variance specifications. If anything, the adjusted expectations
are, in terms of standard deviations, rather closer to the observed values than
expected.

1.4.10 Summary of basic adjustment

Let us summarize our results so far in the form of tables, shown in Table 1.1. The
analysis results in decomposing the sales quantities into two parts, the first of which
comes from linear fitting on other quantities D, and the second of which is resid-
ual. Summary statistics are calculated for the original and component quantities; all
summaries are additive over components, except for the standardized changes. We
note that the diagnostics reveal nothing untoward: all the standardized changes
are about in line with what was expected beforehand. In each case, the change
from prior to adjusted expectation was slightly larger than expected, one up and
one down; and in each case the standardized change from adjusted expectation to
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Table 1.1 Adjusting future sales Y1, Y2 by previous sales: summary.

Original = Adjusted expectation + Adjusted version

Quantity Y1 = ED(Y1) + AD(Y1)

= 1.5X1 + 0.5X2 − 100 + Y1 − ED(Y1)

Prior E(Y1) = E(ED(Y1)) = E(Y1) + E(AD(Y1)) = 0
expectation 100 = 100 + 0

Prior Var(Y1) = RVarD(Y1) + VarD(Y1)

variance 100 = 40 + 60

Observed y1 = 1.5x1 + 0.5x2 − 100 + y1 − Ed (Y1)

112 = 108.75 + 3.25

Standardized y1−E(Y1)√
Var(Y1)

Ed (Y1)−E(Y1)√
RVarD(Y1)

y1−Ed (Y1)√
VarD(Y1)

change 1.2 1.38 0.42

Quantity Y2 = ED(Y2) + AD(Y2)

= 0.5X1 + 1.5X2 − 100 + Y2 − ED(Y2)

Prior E(Y2) = E(ED(Y2)) = E(Y2) + E(AD(Y2)) = 0
expectation 100 = 100 + 0

Prior Var(Y2) = RVarD(Y2) + VarD(Y2)

variance 100 = 40 + 60

Observed y2 = 0.5x2 + 1.5x2 − 100 + y2 − Ed (Y2)

95.5 = 90.25 + 5.25

Standardized y2−E(Y2)√
Var(Y2)

Ed (Y2)−E(Y2)√
RVarD(Y2)

y2−Ed (Y2)√
VarD(Y2)

change −0.45 −1.54 0.68

observed value was smaller than expected, and closer to the original prior expecta-
tion. Whether this should cause concern cannot be answered solely by examining
single quantities using summaries such as these, useful though they are. In fact, we
need also to analyse changes in our collection of beliefs, which we consider next.

1.4.11 Diagnostics for collections

We showed in §1.4.6 how we check individual data inputs by calculating stan-
dardized changes. To check a collection of data inputs, we need to make a basic
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consistency check, and if this is successful we proceed to calculate a global dis-
crepancy. For the basic consistency check, recall that, for any random quantity X,
if we specify Var(X) = 0 then we expect to observe x = E(X): otherwise either
the variance specification is wrong, or perhaps some error has occurred in collect-
ing the data. For a collection (vector) of random quantities B, with observed value
b, expectation E(B), and variance matrix Var(B), the basic consistency check is
as follows. If Var(B) is non-singular then the value of b − E(B) is unconstrained,
and the basic consistency check is passed. Otherwise, Var(B) has one or more
eigenvalues equal to zero. In this case, suppose that q is an eigenvector corre-
sponding to a zero eigenvalue. Such eigenvectors identify linear combinations of
the Bs having variance zero, as for each such eigenvector q, it is the case that
Var(qT B) = 0. Consequently, in the case of singularity the basic consistency check
lies in verifying that qT b = qT E(B) for every eigenvector q corresponding to a
zero eigenvalue. Failure of the consistency check always corresponds to infinite
values for the corresponding standardized changes. Following a successful basic
consistency check, we calculate measures of discrepancy based on the Mahalanobis
distance.

To return to checking data inputs, we are concerned with differences between
a vector of data d and the vector of prior expectations E(D). The variance matrix
concerned here is

Var(D) =
[

25 −15
−15 25

]
,

which is full rank, so that the basic consistency check is passed. Next, for our
measure of the difference between the data d and their prior expectations E(D),
we calculate the discrepancy, Dis(d), as the Mahalanobis distance between d and
E(D):

Dis(d) = (d − E(D))T Var(D)†(d − E(D))

= [
109− 100 90.5− 100

] [ 25 −15
−15 25

]−1 [
109− 100

90.5− 100

]

= 4.29.

Here, Var(D)† is the Moore–Penrose generalized inverse of Var(D), equivalent to
the usual inverse Var(D)−1 when Var(D) is full rank. The Moore–Penrose inverse
is employed as we make no distinction between the handling of full rank and
singular variance matrices: this is especially useful when analysing the structural
implications of prior specifications. The discrepancy has prior expectation equal to
the rank of the prior variance matrix Var(D), which in our example has rank two.
We thus obtain as a summary statistic of the discrepancy between the observed
values and the prior specification, the discrepancy ratio,

Dr(d) = Dis(d)

rk{Var(D)} = 2.15,
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to be compared to its prior expectation of one. For single observations rather than
collections, the discrepancies are just the squared standardized changes. None of
these measures indicate any substantial problem with our prior formulation.

We showed in §1.4.8 how we calculate a standardized adjustment to check
for a difference between an observed adjusted expectation and the corresponding
prior expectation. As above, we obtain a global diagnostic by making a basic
consistency check and then calculating a measure of discrepancy. The vectors to
be compared are the observed adjustments, Ed(B), and their prior expectations,
E(B). The variance matrix concerned is

Var(ED(B)) = RVarD(B) =
[

40 0
0 40

]
,

which is full rank, so that the basic consistency check is passed. We obtain a global
diagnostic for the observed adjustment by calculating the Mahalanobis distance
between the observed adjusted expectations and the prior expectations, to give the
adjustment discrepancy, Disd(B), where

Disd(B) = (Ed(B)− E(B))T RVarD(B)†(Ed(B)− E(B))

= [
108.75− 100 90.25− 100

] [40 0
0 40

]−1 [
108.75− 100
90.25− 100

]

= 4.29.

As before, this discrepancy measure fails to suggest any substantial problem with
our prior formulation.

For our final collection diagnostic of this section, we showed in §1.4.9 how
to calculate the standardized change from observed adjusted expectation, Ed(Yi),
to actual observation yi , where the standardization is with respect to the vari-
ance remaining in Yi , VarD(Yi), before observing it. As above, we proceed to a
global diagnostic where we wish to measure the discrepancy between the observed
adjusted expectations Ed(B), and the actual observations b = [y1 y2]T , relative to
the variance matrix VarD(B). Another way of thinking about this is that we finally
observe the adjusted versions AD(B) and wish to see whether these observations
are consistent with their prior variance–covariance specifications, Var(AD(B)). For
a basic consistency check, we have that

Var(AD(B)) = VarD(B) =
[

60 −60
−60 60

]
, (1.11)

which is singular. There is one eigenvalue equal to zero, with corresponding eigen-
vector proportional to [1 1]T . Consequently we have specified a variance of zero
for [

1 1
]T

[
AD(Y1)

AD(Y2)

]
= AD(Y1)+ AD(Y2),

and it is thus necessary to verify in this example that the observed adjusted versions
sum to their expected value, which is zero. However, we see from Table 1.1 that
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the observed adjusted versions are 3.25 and 5.25, summing to 8.5 �= 0, so we have
discovered a very serious flaw in our specification. In practice there is no point in
proceeding further with the analysis. Had the basic consistency check not failed,
we would have calculated the adjusted version discrepancy as

(b − Ed (B))T VarD(B)†(b − Ed (B))

= [
112− 108.75 95.5− 90.25

] [ 60 −60
−60 60

]† [
112− 108.75
95.5− 90.25

]
= 0.02.

1.4.12 Exploring collections of beliefs via canonical structure

To this point we have specified prior information, recorded some data, obtained
predictions, calculated the value of the predictions, and compared expected to
actual behaviour, largely focusing on the single quantities of interest, Y1 and Y2,
the sales for two products at a future time point. Little of the analysis turned up
anything surprising: changes in expectation were mostly about in line with what
we expected. However, one of the diagnostics calculated for a collection revealed a
very serious flaw, namely actual observations which should not have been possible
given the prior specifications. This suggests, rightly, that our analysis should focus
on analysing collections of beliefs, rather than on piecemeal analysis for single
quantities. Further, to focus on collections of beliefs will allow us naturally to
address many other relevant questions. For example, it reveals the implications
of correlations between the collections of interest; it allows us to make global
uncertainty and diagnostic assessments for entire collections or any sub-collections
we choose; and it allows us easily to go beyond analysis of single quantities such
as Y1 and Y2 to such quantities as total sales, Y1 + Y2, or the difference between
sales, Y1 − Y2. Answering such questions is an important part of the Bayes linear
approach.

It turns out, whether our interest is in making assessments for simple quantities
such as Y1, or for interesting linear combinations such as Y1 + Y2, or for global
collections such as B = [Y1, Y2], that for all such problems there is a natural
reorganization which we may use to answer these questions directly. The reorga-
nization arises by generating and exploiting an underlying canonical structure.
This structure completely summarizes the global dynamics of belief adjustment for
an analysis. For the two-dimensional problem, this amounts to finding the linear
combinations of Y1 and Y2 about which D is respectively most and least informa-
tive, in the sense of maximizing and minimizing the variance resolution. In our
example, these linear combinations have a particularly simple form; they are Z1
and Z2, where

Z1 = 0.112(Y1 + Y2)− 22.361, (1.12)

Z2 = 0.056(Y1 − Y2). (1.13)
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For convenience, we have centred each Zi so that it has prior mean zero, and scaled
it so that it has prior variance one. We call Z1 and Z2 respectively the first and
second canonical directions. Canonical directions are always uncorrelated. For
our example, Z1 is essentially a linear combination giving total sales, and Z2 is
the difference between sales. As far as the original sales quantities are concerned,
they can be expressed in terms of the canonical quantities as

Y1 = 4.472(Z1 + 2Z2)+ 100,

Y2 = 4.472(Z1 − 2Z2)+ 100.

In addition to calculating the canonical directions, we also calculate their
resolutions RD(Z1) and RD(Z2) from (1.7). We call these the canonical resolu-
tions. The canonical directions and canonical resolutions together comprise the
canonical structure. In our example, the resolutions in the canonical directions are
RD(Z1) = 1 and RD(Z2) = 0.25. In the latter case, the implication is that the min-
imum variance resolution for any linear combination of the two unknown sales
quantities is 0.25, i.e. by observing D we expect to ‘explain’ at least 25% of the
variance for all linear combinations of our future sales quantities, Y1 and Y2.

The resolution of Z1 turns out to be exactly 1. This means that, according
to our prior specifications, there will be no uncertainty remaining in Z1 once we
have observed the previous sales X1, X2. This might appear to be good news:
we are, after all, hoping to reduce our uncertainty about future sales by linear
fitting on these two explanatory quantities. However, let us look a little more
closely at the implications. Z1 is proportional (except for a constant) to total sales:
Y1 + Y2 = 8.944Z1 + 200, so that one implication of our prior specification is that
we shall have no uncertainty about Y1 + Y2 after we have observed X1 and X2.
Indeed, as the adjusted expectations of Y1, Y2 are given above as Ed(Y1) = 108.75
and Ed (Y2) = 90.25 respectively, we shall apparently know certainly that Y1 + Y2
will be 108.75+ 90.25 = 199. Did we really intend our prior specifications to
contain the algebraic implication that we will ‘know’ total future sales in advance?
Most likely we did not; and indeed later we actually observe total sales of y1 + y2 =
112+ 95.5 = 207.5, which flatly contradicts the prior specification, and which
resulted in the failure of the consistency check in the previous section.

Now, what has led to this position? To find out, we obtain the adjusted expec-
tations for the canonical quantities Z1 and Z2. For simplicity we introduce an
obvious notation for the main sums and differences:

X+ = X1 +X2, X− = X1 −X2, Y+ = Y1 + Y2, Y− = Y1 − Y2.

The adjusted expectations for the canonical quantities are:

ED(Z1) = 0.224X+ − 44.722, (1.14)

ED(Z2) = 0.056X−.

The resolution RD(Z1) = 1 corresponds to having an adjusted variance of zero for
ED(Z1), shown as (1.14), so that the correlation between Z1 (where Z1 ∝ Y+)
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and ED(Z1) (where ED(Z1) ∝ X+) must be equal to one. Thus, X+ and Y+ have
a prior correlation of one, and this explains why Y+ becomes ‘known’ as soon as
we observe x+.

Now, while this was a logical consequence of our prior specification, it is quite
possible that we had not realized, when we made our pairwise prior correlation
specifications, that we were building such a strong degree of dependency between
X+ and Y+. Indeed, it will usually be the case, particularly when we come to
specify beliefs over large, complex and highly interdependent collections of quan-
tities, that our initial prior specifications will have surprising and counter-intuitive
consequences, which may cause us to reconsider the basis for our specifications.
It is for this reason that it is vital to carry out a global analysis, by generating and
examining the canonical structure, to ensure coherence and consistency over and
between belief specifications and data. In particular, many defects are not discov-
ered if we carry out analyses piecemeal – for example, nearly all of the analyses
carried out in §1.4.3 to §1.4.10 are unremarkable when Y1 and Y2 are considered
separately, but are revealed to be dubious when we analyse them as a collection.
We did receive a hint of the underlying problem earlier, in §1.4.5, where we noticed
the singularity in the adjusted variance matrix. Singularities showing up here are
directly related to finding canonical resolutions equal to one.

In this particular example, the canonical quantities Z1, Z2 are the suitably
centred and scaled versions of Y+ and Y−. Because of the symmetries involved in
the prior specification, the canonical data quantities ED(Z1), ED(Z2) are likewise
the suitably centred and scaled versions of X+ and X−. Note that these are also
uncorrelated. In later chapters we shall discuss in detail the use of such canonical
structures and explain the relationship with classical canonical correlation analysis.

1.4.13 Modifying the original specifications

In this case, let us suppose that we reconsider our prior specifications. There are
many changes that we might make. Suppose, for simplicity, that we decide not
to change our prior means and variances for the four sales quantities, but just to
weaken one or two of the correlations. In terms of the four sums and differences,
the original prior correlation matrix was:

X− X+ Y− Y+
X− 1
X+ 0 1
Y− 0.5 0 1
Y+ 0 1 0 1

Inspecting the matrix, suppose we decide that it is appropriate to weaken the
correlation between X+ and Y+ to 0.8. With this change, the prior correlation
matrix over sales becomes
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X1 X2 Y1 Y2
X1 1
X2 −0.60 1
Y1 0.56 −0.24 1
Y2 −0.24 0.56 −0.60 1

so that the actual effect is to decrease generally all the correlations between the
sales quantities.

1.4.14 Repeating the analysis for the revised model

We now repeat our analysis with the modified belief specifications. The results are
rather similar, and have similar interpretations. The adjusted expectations are now

ED(Y1) = 100+ 1.3(X1 − 100)+ 0.3(X2 − 100), (1.15)

ED(Y2) = 100+ 0.3(X1 − 100)+ 1.3(X2 − 100),

so that x1 = 109, x2 = 90.5 yields observed adjusted expectations of

Ed(Y1) = 108.85 and Ed(Y2) = 90.35.

These are about the same as for the original prior specifications. As before, the
adjusted variances are the same for the two products,

VarD(Y1) = VarD(Y2) = 67.2,

so that the variance resolutions are 32.8%. Compared to the original specifications,
the weakening of the underlying correlations leads to the explanatory quantities
being less informative for future sales. The standardized changes in expectation
(prior to adjusted) are S(Ed (Y1)) = 1.55 and S(Ed(Y2)) = −1.69, a little larger
than before. Finally, when we observe y1 = 112 and y2 = 95.5, the standardized
changes from adjusted expectation to observed are 0.38 and −0.63 respectively.
Summaries of the basic adjustments are shown in Table 1.2.

In terms of the vector B, the decomposition of the prior variance matrix into
unresolved and resolved portions is now (with the correlation matrices shown
underneath),

Variances:

[
100 −60
−60 100

]
=

[
67.2 −52.8
−52.8 67.2

]
+

[
32.8 −7.2
−7.2 32.8

]
,

Correlations:

[
1 −0.6

−0.6 1

] [
1 −0.79

−0.79 1

] [
1 −0.22

−0.22 1

]
,

so that unlike for the first prior specification, there has been some alteration to the
covariance structure for the residual portions of Y1 and Y2. The understanding of
such changes to the covariance structure is a matter we defer until later.
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Table 1.2 Adjusting future sales Y1, Y2 by previous sales: summary for the modi-
fied structure, giving expectations E(·), variances Var(·), and standardized changes
S(·).

Initial = Adjusted expectation + Adjusted version

Y1 = 0.3X1 + 1.3X2 − 100 + Y1 − (0.3X1 + 1.3X2 − 100)

Prior 100 = 100 + 0
E(·)

Prior 100 = 32.8 + 67.2
Var(·)

Data 112 = 108.85 + 3.15

Change 1.2 1.55 0.38
S(·)

Y2 = 0.3X1 + 1.3X2 − 100 + Y2 − (0.3X1 + 1.3X2 − 100)

Prior 100 = 100 + 0
E(·)

Prior 100 = 32.8 + 67.2
Var(·)

Data 95.5 = 90.35 + 5.15

Change −0.45 −1.69 −0.63
S(·)

For the modified model, we recalculate the canonical structure. The two canon-
ical directions are as in (1.12) and (1.13), with corresponding canonical resolutions
RD(Z1) = 0.64 and RD(Z2) = 0.25. It follows that we expect to ‘explain’ 64% of
the variation in the direction/linear combination Z1 ∝ Y+, and this is the most we
can learn about any linear combination of the two future sales quantities. Otherwise,
the canonical structure is as before.

The canonical structure helps us to understand the implications of our belief
specifications. There are two ideas. The first is that we examine the implications
of our belief specifications as they affect variance reduction, and the second is that
we do this globally, i.e. simultaneously over all linear combinations of interest,
thereby taking account of the relationships expressed between the quantities being
predicted. Our unknowns have been reorganized as a canonical structure which
has two directions, scaled so that the prior variance in each is one, and so that the



22 BAYES LINEAR STATISTICS: THEORY AND METHODS

removed variance in each is the corresponding canonical resolution. Consequently
we will talk of the global structure as having initial uncertainty 1+ 1 = 2 and
resolved uncertainty 0.64+ 0.25 = 0.89, with resolution averaged over the struc-
ture evaluated as 0.89/2 = 0.445. This single number, which we call the system
resolution for our collection B of future sales quantities, is a simple quantification
of the value of the information for the entire collection B. We treat the system
resolution just as we treat resolutions for individual quantities such as Y1. That
is, a system resolution of zero implies that the information contains no potential
to reduce uncertainties in the collection by linear fitting, whereas a system reso-
lution of one implies that the information precisely identifies all the elements of
the collection B. In this way we begin to distance ourselves from the idea that
the individual quantities are the fundamentals of interest, and approach instead the
idea that the collections constitute the fundamentals of interest. This blurring of the
distinction between single quantities and collections of them has many advantages,
particularly as the dimensionality of a problem increases.

1.4.15 Global analysis of collections of observations

In previous sections we saw that piecemeal analyses for individual quantities
such as Y1 provided little or no evidence of the serious flaws present in the
prior belief specification; these flaws were revealed only by calculating and inter-
preting the underlying canonical structure. In a Bayes linear analysis we assess
both the expected value of information sources and diagnostics (such as standard-
ized changes) comparing expected to actual behaviour. Therefore, the question
arises: is it sufficient to examine standardized changes for the single elements of
a collection, or, analogous to the underlying canonical structure, is there a more
informative underlying diagnostic structure? Recall that one motivation for calcu-
lating the canonical structure was to find the linear combination with maximum
variance reduction. Suppose, analogously, that we calculate the linear combination
Y ∗ with the largest squared change in expectation, relative to prior variance. For
the observations x1 = 109, x2 = 90.5, this turns out to be

Y ∗ = 0.0478Y1 − 0.0678Y2 + 2.0000.

This linear combination, which has been centred so that it has prior expectation
zero, has adjusted expectation ED(Y ∗) = 1.078 and, for a reason we shall come
to, a prior variance also of 1.078. Thus, the largest change in expectation from
prior to adjusted for any linear combination of the future sales quantities is about√

1.078 = 1.038 prior standard deviations. It appears that the interplay between
prior specifications and the data used to compute adjusted expectations is about as
expected. As Y ∗ has been deliberately chosen to maximize the squared standard-
ized change in expectation, we now describe how to assess the magnitude of the
maximal change associated with it.

It turns out that Y ∗ has a unique and important role to play in Bayes linear
analysis, and so we introduce a notation and a name for it. For a collection B being
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adjusted by a further collection D observed to be d, we call the linear combination
in B with the largest standardized squared change in expectation the bearing, and
we use the notation Zd(B) for it. It is a simple linear combination of the quantities
being predicted (here, Y1 and Y2), with the coefficients being functions of the data
used to generate the observed adjusted expectation (here, x1 and x2). The bearing
has two useful properties.

1.4.15.1 Summary of direction and magnitude of changes

The bearing summarizes the direction and magnitude of changes between prior
and adjusted beliefs in the following sense: for any quantity Y constructed
from the elements of the collection B, the change in expectation from prior to
adjusted is equal to the prior covariance between Y and the bearing Zd(B) so
that Ed(Y )− E(Y ) = Cov(Y, Zd(B)). In our example it is simple to illustrate this
result: we have

Zd(B) = 0.0478Y1 − 0.0678Y2 + 2,

so that

Cov(Y1, Zd(B)) = Cov(Y1, 0.0478Y1 − 0.0678Y2 + 2)

= 8.85 = 108.85− 100

and

Cov(Y2, Zd(B)) = −9.65 = 90.35− 100.

Changes in expectation for other linear combinations, such as Y+ and Y−, are
obtained as easily. For example,

Ed (Y+) = Cov(Y+, Zd(B)) = −0.8,

Ed (Y−) = Cov(Y−, Zd(B)) = 18.5.

In particular, recalling that we noticed above that Y ∗ has a prior variance equal to
its change in expectation, 1.078, we now observe that this is explained because

Ed(Zd(B))− E(Zd(B)) = Cov(Zd(B), Zd(B)) = Var(Zd(B)).

1.4.15.2 Global diagnostic

The bearing provides a global diagnostic which gives a guide as to how well the
data agree with the prior information. We have already seen that Zd(B) is the
linear combination having the largest squared change in expectation, relative to
prior variance. We will call this change, which we have seen is just Var(Zd(B)),
the size of the adjustment, and introduce the notation Sized(B) for it. It is natural
to compare this maximum data effect with our expectation E(SizeD(B)) for it,
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where expectation is with respect to the data quantities and prior to them being
observed. This expectation turns out to be

E(SizeD(B)) = E(Var(ZD(B))) =
∑

i

RD(Zi),

i.e. the sum of the canonical resolutions. In our example, the size of the adjustment
and its prior expectation are

Var(Zd(B)) = 1.078,

E(Var(ZD(B))) = 0.64+ 0.25 = 0.89.

For a simple global diagnostic we calculate Srd(B), the ratio of these quantities,
which we call the size ratio for the adjustment of B given the observations
D = d . In our example we obtain Srd(B) = 1.078/0.89 = 1.21. This ratio has
expectation one. Large size ratios indicate larger than expected changes in expecta-
tion, suggesting that the data are in sharp disagreement with our prior specifications.
Small size ratios indicate smaller changes in expectation than expected and may
imply that our prior variance specifications were too large. In our example, the size
ratio is fairly close to one, suggesting little conflict between our prior information
and the observations.

1.4.16 Partial adjustments

We have so far addressed the adjustments of both single quantities and collections
by a single collection of information sources. We now move on to explore the
partial effects and implications of individual pieces of information. In the follow-
ing example, each ‘information source’ will be a single random quantity, but the
approach works in just the same way when the individual information sources
are themselves collections of quantities. Some of the reasons for studying partial
adjustments are as follows. First, at the design stage, some of the information
sources may be expensive to observe and so there may be advantages in exclud-
ing them as predictors if they are not individually valuable in helping to reduce
variation in the unknowns. Secondly, at the analysis stage, it is valuable to know
which aspects of the data have led us to our conclusions. Thirdly, at the diagnostic
stage, adjustments are usually based on data from different sources which may or
may not be in general agreement – for example, the data from one information
source may suggest that an adjusted expectation should rise, whilst data from a
different information source may suggest the reverse. In such cases it can easily
happen that an overall adjustment appears quite plausible, but conceals surprising
conflicts between different pieces of evidence. Bayes linear analysis permits us to
explore the interactions between the various sources of beliefs and data in a way
which highlights any such discordant features.

Key to understanding (linear) partial effects is the notion that one informa-
tion source is often at least partly a surrogate for another information source. For
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example, if two vectors U and V are perfectly correlated in the sense that every
linear combination constructed from the elements of U is perfectly correlated with
some linear combination constructed from the elements of V , then we could essen-
tially throw away V as U carries all the relevant information. Thus, when U and
V are correlated, there will be a portion of V which is irrelevant when we also
have U , and vice versa. We introduced in §1.4.4 the notion of, and notation for,
the decomposition of a single random quantity into an adjusted expectation plus
an adjusted version. We now extend this notation to vectors of random quantities.
That is, we write

U = EV (U)+ [U − EV (U)] = EV (U)+ AV (U).

Informally, in a linear framework, EV (U) and AV (U) are respectively (1) the
portion of the information source U that is also carried by V , and (2) the residual
portion of U not duplicated by any part of the information source V .

Before we illustrate the Bayes linear approach to design via partial adjustment,
it may be helpful to consider the usefulness of summaries of partial effects in the
traditional context of stepwise linear regression. In stepwise regression the usual
setting is that of one or more response variables with a large number of explanatory
variables, where it is desired to determine a small subset of explanatory variables
according to some criterion – such as the explanation of a given percentage of vari-
ation in the response variables. Two simple approaches to finding such a subset
are forward selection and backward elimination. The former proceeds by begin-
ning with an empty set of explanatory variables and then sequentially adding to
this set the explanatory variables which are most helpful in explaining remaining
variation in the response variables. The latter proceeds by taking the full set of
explanatory variables and then sequentially removing those explanatory variables
which are least helpful in explaining variation in the response variables. Both these
notions have their analogues in Bayes linear methodology. With regard to forward
addition of variables, the partial effect of interest is the extra percentage of vari-
ance explained in the response variables. With regard to backward deletion of
variables, the partial effect of interest is the reduction in the explained variance of
the response variables attributable to removing an explanatory variable.

In our example so far we have used our information sources X1 and X2 jointly
as D to learn about future sales. Suppose now that we consider how important each
is individually in predicting future sales. We adjust first by X1 and then perform
the partial adjustment by AX1(X2), the adjusted version of X2 given X1, which is
the portion of X2 which has not already been contributed to the adjustment by X1.

Details of the resulting variance resolutions are shown in Table 1.3. For
example, when X1 alone is used, the expected variance resolution in Y1 is
RX1(Y1) = 0.3136, rising to RD(Y1) = 0.3280 when X2 is also used. The partial
resolution contributed by AX1(X2) is thus, by subtraction,

RAX1 (X2)(Y1) = 0.0144.

Table 1.3 shows clearly that X1 is mainly informative for Y1, and that the residual
portion of X2 having taken into account X1 has little extra explanatory power. For
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Table 1.3 Variance implications for individual quantities and their collection.

Resolution given X1 Resolution given X1 and X2 Partial resolution
RX1(·) RX1∪X2 (·) RAX1 (X2)(·)

Y1 0.3136 0.3280 0.0144
Y2 0.0576 0.3280 0.2704
B 0.1640 0.4450 0.2810

explaining variation in Y2, the role is reversed. In the context of this example, if
we were particularly interested in predicting sales of Y1 rather than Y2, and if X2
was expensive to measure, we might decide at this stage not to bother observing
X2 but to depend on only observing X1. Actual design decisions will depend
on context and will take into account issues such as the expense of observing
quantities such as X1 and the utility of reducing variation in quantities such as
Y1. If we are concerned with explaining variation globally across the collection B,
we notice that the variance resolutions are RX1(B) = 0.1640 and RAX1 (X2)(B) =
0.2810 respectively, indicating that both information sources are valuable.

Given data X1 alone, the adjusted expectations are

EX1(Y1) = 1.12(X1 − 100)+ 100,

EX1(Y2) = −0.48(X1 − 100)+ 100.

Consequently, if we observe X1 to be larger than expected, the expectations for Y1
and Y2 are revised upwards and downwards, respectively. These movements are due
to the prior correlations shown in §1.4.13 in that X1 is positively correlated with Y1
and negatively correlated with Y2. The actual observation x1 = 109 gives adjusted
expectations of Ex1(Y1) = 110.08 and Ex1(Y2) = 95.68. These are standardized
changes of ±1.8 standard deviations relative to the variances resolved.

If we now make the partial adjustment by X2, or rather by the adjusted version
AX1(X2), we obtain partial adjusted expectations which provide the formulae to
update the expectations from the current adjusted expectation (given only X1) to
that based on both X1 and X2. In doing so, it is helpful to introduce some extra
notation. Let

E[X2/X1](B) = EX1∪X2(B)− EX1(B)

be the partial adjustment of B by X2 given that we have already adjusted by X1.
Such partial adjustments necessarily have expectation zero. We find that

E[X2/X1](Y1) = 0.18(X1 − 100)+ 0.30(X2 − 100),

E[X2/X1](Y2) = 0.78(X1 − 100)+ 1.30(X2 − 100).

In this case, if we observe X2 to be larger than expected, the partial change in
expectation for both Y1 and Y2 is upward. As we did observe x2 = 90.5, the par-
tial change in expectation is 0.18(109− 100)+ 0.30(90.5− 100) = −1.23 for Y1
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Table 1.4 Exploring the implications of partial adjustment for Y1 and Y2.

Results for Y1

Prior Given X1 Given X1 and X2

Expectation 100.0 110.08 108.80
Variance 100.0 68.64 67.20
Total variance resolved 31.36 32.80
Change in expectation 10.08 −1.28
Change in variance resolved 31.36 1.44
Squared standardized change 3.24 1.05

in expectation

Results for Y2

Prior Given X1 Given X1 and X2

Expectation 100.0 95.68 90.35
Variance 100.0 94.24 67.20
Total variance resolved 5.76 32.80
Change in expectation −4.32 −5.33
Change in variance resolved 5.76 27.04
Squared standardized change 3.24 1.05

in expectation

and 0.78(109− 100)+ 1.30(90.5− 100) = −5.33 for Y2. These are standardized
changes of 1.03 standard deviations relative to the respective resolutions in vari-
ance. A summary for the adjustments is given in Table 1.4. Overall, we notice that
the expectation for Y1 rose and then fell back slightly whilst the expectation for
Y2 fell and then fell again. None of the standardized changes are particularly large
and we conclude that the magnitudes of the changes in expectation are in apparent
agreement with the prior specification.

Because the initial data source X1 is uncorrelated with the partial data source
AX1(X2), notice how the overall adjusted expectations for Y1 and Y2 given in
(1.15) have been decomposed into additive initial and partial adjustments. That is,
we have

ED(·) = EX1(·)+ E[X2/X1](·).

1.4.17 Partial diagnostics

We saw in Table 1.4 that the expectation for Y1 rose and then fell slightly, so that
the two information sources, X1 and AX1(X2), might be said to have contradictory
implications for Y1, whereas the two information sources are apparently comple-
mentary as far as Y2 is concerned. Obviously we can make similar judgements for
whichever quantities are of interest, such as total future sales Y+, but it is simpler
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to calculate a global summary of the implication of two sources of information.
Recall that in §1.4.15 we introduced the bearing for the adjustment to summarize
the magnitude and direction of changes in expectation implied by a data source.
For a partial adjustment we calculate the bearing for the partial adjustment,
which summarizes the magnitude and direction of changes in expectation implied
by the additional partial information source.

In our example, the initial bearing given data x1, the partial bearing given extra
data Ax1(x2), and the overall bearing given all the data d = x1 ∪ x2, are

Initial: Zx1(B) = 0.1170(Y1 − 100)+ 0.0270(Y2 − 100)

Partial: Z[X2/X1](B) = −0.0692(Y1 − 100)− 0.0948(Y2 − 100)

Overall: Zd(B) = Zx1(B)+ Z[X2/X1](B)

= 0.0478(Y1 − 100)− 0.0678(Y2 − 100).

As in §1.4.15, each bearing is associated with a size ratio measuring the discrep-
ancy between data and belief specifications taken as a whole across the collection
being adjusted. In this example, the size ratios for the initial, partial, and overall
adjustments are respectively 3.24, 1.05, and 1.21. None of these, each of which has
prior expectation unity, appears particularly large or disturbing, and we might con-
clude that the changes in expectation implied by the data are in general agreement
with the prior specifications.

As a change in expectation for any quantity such as Y1 can be represented as a
covariance between that quantity and a bearing, we also note that the implications
of the two data sources for changes in expectation are opposite: typically positive
for the first, and typically negative for the second. To formalize this idea, the most
useful single summary is the correlation between the bearings for the two data
sources, which we call a path correlation. In this example, it is

PC(x1, Ax1(x2)) = Corr(Zx1(B), Z[X2/X1](B)) = −0.3633.

The interpretation is that there is a very mild form of conflict between the two
information sources.

We have already seen that the standardized changes in expectation at each stage
for the two quantities are not too surprising in relation to the variance resolved
at each stage. However, we should be aware that an overall adjustment by all
the data can mask (either by cancelling out or by averaging) two surprising and/or
contradictory changes in belief. As an illustration, we repeat the diagnostic analysis
using the canonical structure for the data quantities, which we saw at the foot of
§1.4.12 to be the current sales total and sales difference, X+ and X−. Thus, we
reorganize the data sources to be these canonical data quantities, and use them to
make predictions about future sales.

The analysis proceeds as described in previous sections, but we shall not detail
it as our interest here is only in the diagnostic evidence. Suppose that we carry out
an initial adjustment of B by X+, and then a further partial adjustment by X−,
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which is uncorrelated with X+, so that we have AX+(X−) = X−. We find that the
bearings are

Initial: Zx+(B) = −0.01(Y+ − 200)

Partial: Zx−(B) = 0.0578Y−

Overall: Zd(B) = 0.0478(Y1 − 100)− 0.0678(Y2 − 100),

so that there is a natural and straightforward correspondence between data sources
and what the data source is informative for: previous total sales are informative
for future total sales, and previous sales differences for future sales differences.
Because of the uncorrelatedness of these quantities, observe for example that previ-
ous sales totals X+ are valueless for making linear predictions about a future sales
difference, Y−. The overall bearing Zd(B), which is of course the same however
we reorganize the information sources, has a corresponding size ratio of 1.21. How-
ever, the size ratios for the initial and partial adjustments are respectively 0.0125
and 4.2781. The interpretation here is that the changes in expectation induced by
the first data source, X+, were surprisingly small compared to the expected level
of variance explained, whereas the changes in expectation induced by the second
data source, X−, were perhaps disturbingly large. A plausible explanation would
be that we overstated our prior variability for the sales totals, and that we under-
stated variability for the sales differences, or perhaps that there are errors in the
data. In such cases, we might choose to re-examine our prior specifications and
the data. Note that, as will often be the case, diagnostic inspection based on the
canonical structure gives a clearer picture of potential problems with the overall
prior formulation than is obtained by inspection of the adjustments of the original
quantities.

1.4.18 Summary

A good analysis of even simple problems such as these requires the knowledgeable
use of effective tools. Our analysis here is incomplete as we have only introduced
some of the basic machinery of the Bayes linear approach, and yet we have shown
how fairly simple ideas and procedures lead directly into the heart of a problem,
offering tools that work as well for collections as they do for single quantities, and
that reveal quickly the important aspects of a combined belief and data structure.
We could possibly have made a more detailed prior specification. However, by
concentrating on the reduced belief specifications required for the second-order
structure we have been able to apply a simple and efficient methodology under
which we can control input requirements, and within which the implications of
the belief specifications and any observations can be readily discerned. Various
aspects of the Bayes linear analysis are thus revealed: straightforward specifica-
tion of genuine beliefs, exploration of their implications, their adjustment using
data, and diagnostics comparing expected to actual behaviour. This methodology
works in essentially the same way as we increase the number of quantities in
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the problem, in which case we will find that the role of the canonical structure
becomes increasingly important in clarifying the effects of complex belief adjust-
ments.

1.5 Overview

The Bayes linear approach has been developed to the level where it is usable as a
general framework within which to develop statistical methodology. As with any
such methodology, much work may be required to bring the approach to bear on
particularly challenging practical problems. However, the basic elements of the
approach are sufficiently well developed to merit a unified exposition. Our inten-
tion, in this book, is to present in a systematic way those central methodological
features that we consider to be both essential for and distinctive to the Bayes linear
approach. Thus, we do not address the many aspects of belief specification, sta-
tistical modelling and data analysis which are common to our approach and other
views of statistical analysis. Nor do we attempt to summarize all of the ways in
which moment specification and analysis are currently exploited within statistical
methodology. Instead, by concentrating on the essentials of the approach, we aim to
give at least the outline of a unified methodology for belief analysis from a partic-
ular subjectivist viewpoint based on partial belief specification taking expectation
as primitive. Whether we consider this approach as (the skeleton of) a complete
methodology of itself or as part of a much larger toolkit of approaches to belief
modelling and analysis will depend both on our philosophical viewpoint and on
the types of problem which we wish to address.

The organization of this book is as follows. In Chapter 2, we introduce the
ingredients which we will blend in later chapters, namely prior means, variances
and covariances, assessed as primitive quantities. We give a brief introduction to the
idea of expectation as primitive, and discuss, by example, some simple approaches
to prior specification for means, variances and covariances.

The basics of our approach are threefold: (i) we specify collections of beliefs
and analyse how we expect beliefs to change given our planned data collection;
(ii) we collect information and analyse how our beliefs have actually changed; (iii)
we compare, diagnostically, expected to actual changes in our beliefs. Step (i) is
addressed in Chapter 3, where we explain the basic operations within our approach,
namely the adjustment of collections of expectations and variances, by linear fitting
on data. We develop the basic properties of belief adjustment and describe the natu-
ral geometric setting for the analysis. A general construction is introduced, namely
the belief transform, for interpreting collections of belief adjustments through the
eigenstructure of the transform.

We address steps (ii) and (iii) of our general approach in Chapter 4, which
is concerned with interpretation and diagnostic evaluation of the observed belief
adjustment given data. In particular, we describe the construction and interpretation
of the bearing for a belief adjustment, which is a form of linear likelihood for the
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analysis, which summarizes the overall direction and magnitude of a collection of
adjustments.

Usually, our information comes from different sources: for example, there may
be different time points, different populations, different types of quantity. It is useful
to identify how much information we expect from each source, and then to consider
whether the various data sources are giving consistent or a contradictory informa-
tion. In Chapter 5, we apply the three-step programme – (i) interpret expected
adjustments, (ii) interpret actual adjustments, (iii) compare actual to interpreted
effects – when the data have been divided into portions. We therefore consider
partial belief adjustments and develop the corresponding partial belief transforms
and partial bearings for an adjustment carried out in stages.

Exchangeability (the property that beliefs over a collection of objects would not
be affected by permutation of the order of the objects) is a fundamental subjective
judgement underlying many statistical applications. In principle, exchangeability
judgements allow us to carry out statistical modelling purely in terms of our judge-
ments over observables. Unfortunately, in the usual Bayes formalism, this is very
difficult, and exchangeability tends to be hidden from view. Because of our sim-
plified approach to belief specification, however, it is both feasible and natural
to build statistical models directly from second-order exchangeability judgements
over observables. This process is covered in Chapter 6, where we develop and
interpret the representation theorem for second-order exchangeable random quan-
tities. Chapter 6 is also concerned with how to adjust beliefs over the resulting
exchangeability models. We derive useful general results which greatly simplify
the analysis of such models, through the special properties of the corresponding
belief transforms. In Chapter 7, we extend such analyses to cover collections of
data which are individually second-order exchangeable, and which satisfy natu-
ral second-order exchangeability relationships between each pair of collections. In
Chapter 8, we address the issues that arise in learning about population variances
from exchangeable samples.

To this point, we have treated a particular type of belief transform as our basic
interpretative tool for analysing collections of belief changes. However, this type
of transform is itself a special case of a much wider class of transforms, which are
examined in Chapter 9, all of which are based on comparisons between collections
of variance and covariance specifications. We give the general construction for
such transforms, and illustrate the approach with various problems of comparison
over models and designs.

Graphical models are a powerful tool for graphically representing and evaluat-
ing our beliefs. Bayes linear graphical models, covered in Chapter 10, perform this
task for describing and manipulating our second-order specifications. We may also
display quantitative information, expressing our three-step sequence – expected
effects, observed effects and their comparison – in a natural way on the diagram.
Thus, the diagrams express both the modelling and the analysis of beliefs. Further,
the local computation properties of these models allow us to tackle large problems
in a straightforward and systematic way.
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In Chapter 12, we cover the technical material that we need for efficient imple-
mentation of the Bayes linear approach, assuming a somewhat higher level of
knowledge of matrix algebra than in the rest of the book. The matrix algebra
required is covered in Chapter 11.



2

Expectation

In a quantitative analysis of beliefs, we turn some aspects of prior judgements into
numbers. Each such number is a statement of knowledge, and as such requires
careful consideration. Therefore, we will often need to be modest and specify a
relatively small and carefully chosen collection of quantitative judgements about
aspects of the problem which are meaningful and clearly relevant to the solution
of our problem.

In general, the level of detail at which we choose to describe our beliefs will
depend on:

• how interested we are in the various aspects of the problem;

• our ability to specify each aspect of our uncertainty;

• the level of resources, in terms of time, money and effort that we are willing to
expend on choosing, observing and analysing data relevant to the problem;

• how much detail is required from our prior specification in order to extract the
useful information from the data.

This means that the analysis depends not only upon the observed data but also upon
the level of detail to which we express our beliefs. In the Bayes linear approach, we
concentrate upon the specification and analysis of those limited aspects of uncer-
tainty which are essential to the question at hand. To allow such restricted specifica-
tion, we choose expectation, rather than probability, as the primitive for quantifying
aspects of prior beliefs. In this chapter, we discuss the role of expectation as a prim-
itive concept, and illustrate the direct specification of expectations by example.

2.1 Expectation as a primitive

De Finetti (1974, 1975) gives a careful development of expectation as the basis
for subjectivist theory. He offers the following intuitive operational interpretation
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 2007 John Wiley & Sons, Ltd
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for expectation. Suppose that X is a random quantity, i.e. a numerical quantity
whose value you do not presently know. Consider a ticket which will entitle you
to a cash payoff of precisely X money units, when the value of X is revealed. Call
E(X) the expectation of X, where E(X) is the fair price (as judged by you) for
the ticket on X, meaning that you are indifferent between the sure gain E(X) and
the random gain X.

There are two intuitive properties of price. First, the fair price should not be
greater than the largest payoff from the ticket or less than the smallest payoff from
the ticket, so that

infX ≤ E(X) ≤ supX. (2.1)

Secondly, suppose that you buy two tickets, one on X and one on Y . Together,
you have paid E(X)+ E(Y ) and bought a ticket on X + Y , suggesting that

E(X + Y) = E(X)+ E(Y ). (2.2)

The above arguments are informal, but sufficient for our purpose. We shall discuss
how to make the argument more rigorous in §2.2. The crucial aspect for our
purposes is that we consider expectations directly, as primitive quantities, rather
than as derived quantities calculated from intermediary probability specifications.
Different individuals may validly make different assessments for the expectation
of a random quantity, as they will bring to bear different knowledge, experience,
judgements and abilities. All that we require is that the collection of expectations
should obey the fundamental properties of expectation, namely conditions (2.1)
and (2.2).

For any event, H , we identify H with the corresponding indicator function
H = 1 if H occurs, H = 0 otherwise. The probability of the event H is equiv-
alently the expectation, E(H), of the indicator function for H , and we make no
distinction between probability and expectation in what follows. De Finetti, in his
development, uses the term prevision for probabilities and expectations, so that
P(X) is an ‘expectation’ or a ‘probability’, depending on whether or not X is an
indicator function. Our preference for using E(X) for both cases is solely due to
the more widespread familiarity of the conventional expectation notation.

In certain applications, it may be both feasible and sensible to make a full
probability specification over a partition of possibilities. In such cases, from (2.2),
directly assessed expectations will agree with those expectations calculated by the
usual formulae (at least for finite partitions). However, there are many other ways
in which we may make expectation statements, some of which we shall describe in
this chapter, and we shall usually develop alternative methods of direct prior speci-
fication, particularly for complex problems. The practical superiority of expectation
over probability as the fundamental quantification of belief is that with expecta-
tion as fundamental we can make as many or as few belief specifications as we
deem appropriate, whereas with probability as fundamental we are forced to make
all probability statements over a partition before we may make any expectation
statements.
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We may similarly consider conditional expectation as a ‘called off’ fair price.
Your conditional expectation for X given event H , namely E(X|H), is the fair
price for a ticket which pays X money units if H occurs, while, if H does not
occur, the ticket is discarded, and your price is refunded.

The following coherence argument gives the familiar formula for conditional
expectation. Observe first that the ticket pays X if H occurs, E(X|H) otherwise.
Compare this ticket with a ticket which pays XH , with fair price E(XH), or
equivalently pays X if H occurs and zero otherwise. Both tickets pay the same if H

occurs, so that the difference in the fair price for the two tickets is the fair price for
the ticket which pays E(X|H)(1−H), which has fair price E(X|H)(1− E(H)).
Equating these fair prices gives the required formula, namely

E(XH) = E(X|H)E(H). (2.3)

When X is also an indicator function, then (2.3) gives the usual form for
conditional probability, namely

P(A|B) = P(A ∩ B)

P(B)
.

In subsequent chapters, we shall contrast belief updating by conditioning with more
general linear forms of belief adjustment.

2.2 Discussion: expectation as a primitive

In this section, we briefly consider some of the general issues which arise when
treating expectation as a primitive.

Note, first, that our argument for linearity of expectation, namely property (2.2),
was heuristic rather than formal, as there is no compelling reason why the sum
of a collection of fair prices need be a fair price for the sum. We may address
this in various ways. The simplest is to restrict attention entirely to small money
payoffs, for which the equivalence may seem reasonable. Alternatively, we may
recognize that the equivalence is only precise if all payoffs are in units of utility
and develop the ideas of utility and expectation together. This approach is logically
superior, but might seem somewhat laborious as we do not intend to exploit utility
considerations in the subsequent development. A further approach is to consider
payoffs in a currency for which the linearity of fair prices seems intuitively more
persuasive. Probability currency is particularly appropriate for this purpose. This
currency consists of tickets in a raffle with a fixed prize, so that the various com-
binations of payoffs do not affect the prize to be won, but only the probability
of winning the prize; for a discussion of probability currency, see, for example,
Walley (1991).

We may feel that the concept of a fair price is itself vague, and that it is unclear
what, if any, are the unfortunate consequences of deviating from the linearity of
such prices. De Finetti gives a tighter operational definition for expectation, using
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a quadratic scoring rule as follows. Your expectation E(X) for X is the value that
you would specify if you were subsequently to incur a penalty score L given by

L = c[X − E(X)]2, (2.4)

where c is a constant defining the units of loss. This definition appears to be very
different from the fair price definition for expectation in the preceding section.
However, we may see, informally, that the definitions are equivalent as follows.
You prefer penalty c[X − E(X)]2 to any other penalty c(X − E(X)− d)2. There-
fore you prefer the difference to zero, and expanding both penalties, this cor-
responds to preferring c(E(X)+ d/2) to cX if d > 0, and vice versa if d < 0.
Therefore, defining E(X) through (2.4) is equivalent to making E(X) your fair
price, subject to the same qualifications on the additivity of penalties that we made
above in our discussion of (2.2).

Conditional expectation can be similarly defined in terms of a ‘called off’
quadratic penalty score, as follows. E(X|H) is the value that you would specify if
the penalty L given by (2.4) were replaced by the penalty

LH = cH [X − E(X|H)]2. (2.5)

While operational rules do suggest ways to measure expectations, their primary
function is simply to clarify that expectation is a measurable aspect of your beliefs
in contrast to the relative frequency theory of probability, in which probability
is claimed to be an intrinsic, but unobservable, property of a repeatable experi-
mental set-up. The operational measurements also identify the properties that such
expectations should satisfy.

We have already introduced two measuring devices and we will suggest various
other approaches to prior specification below. It is an interesting philosophical and
psychological question as to whether each approach is really measuring the same
underlying judgements, but for our purposes we will take the pragmatic approach
of using whichever methods seem best suited to the problem at hand.

Similarly, we do not address the important question of imprecision in our judge-
ments, namely that, as we have observed in the example, each operational procedure
might, in a particular problem, lead to a range of judgements. For example, you
might be sure that your fair price for a ticket on X lay in some interval, but be
unwilling to narrow that interval to a single point. Discussion of such judgements,
from somewhat different viewpoints, may be found in Lad et al. (1992) and Walley
(1991). Such interval judgements may be valid and useful, but we do not consider
them here because our interest is primarily in describing simple analyses which
may give insights into complex, high-dimensional problems, while interval-based
analyses are usually considerably more difficult to carry out. Thus, we prefer to
make precise expectation specifications, carry out our analysis and then, if appro-
priate, carry out a sensitivity analysis showing how our conclusions might change
under alternative specifications, and we will describe methodology for this purpose
in our general development.
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By what criteria can you judge the reasonableness of a collection of expectation
assessments? Suppose that you specify expectations E(X1), . . . , E(Xr). De Finetti
offers the following coherence criterion.

Your assessments E(X1), . . . , E(Xr) are coherent if there are no other choices
x1, . . . , xr with the property that, for each possible collection of outcomes for
X1, . . . , Xr , we have∑

i

ci(Xi − xi)
2 <

∑
i

ci[Xi − E(Xi)]
2.

In other words, you do not have a preference for a given overall random penalty
if you have the option of choosing an alternative overall penalty which will cer-
tainly be smaller, whatever the outcome. The necessary and sufficient condition
for a collection of expectations, E(X1), . . . , E(Xr), to be coherent is that the point
(E(X1), . . . , E(Xr)) lies in the closed convex hull of the set of possible values of
the random vector (X1, . . . , Xr) in r-dimensional Euclidean space. This condition
has, as an immediate corollary, the condition (2.1). Applying the condition to the
vector (X1, . . . , Xr,

∑r
i=1 aiXi) gives the general form of (2.2), namely

E

(
r∑

i=1

aiXi

)
=

r∑
i=1

aiE(Xi). (2.6)

The relation (2.3) for conditional expectations follows similarly from the coherence
condition of avoiding sure loss.

Examining (2.6), observe that we have finite additivity for expectations.
Whether we should impose further constraints of countable additivity on these
expectations is an interesting and somewhat controversial question. However, in
this book, we are largely interested in methodology for analysing finite collec-
tions of expectations of bounded random quantities, so this distinction will not be
important.

2.3 Quantifying collections of uncertainties

The most basic features of our uncertainty that we might express are the following:

• judgements as to the magnitudes of various quantities;

• some degree of confidence in the judgements of magnitude;

• some expression as to how strongly judgements about the quantities are inter-
related, so that observation on some of the quantities may be used to modify
judgements on other quantities.

Our framework is as follows. We begin by supplying a list C = [X1, . . . , Xk] of
random quantities, for which we shall quantify aspects of our uncertainty. We term
C the base for our analysis.
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1. For each Xi ∈ C, we specify the expectation, E(Xi), giving a simple quantifi-
cation of our belief as to the magnitude of Xi .

2. For each Xi ∈ C, we specify the variance, Var(Xi), quantifying our uncertainty
or degree of confidence in our judgements of the magnitude of Xi .

3. For each pair Xi, Xj ∈ C, i �= j , we specify the covariance, Cov(Xi, Xj ),
which expresses the relationship between judgements on the quantities, namely
the extent to which observation on Xj may influence our belief as to the
size of Xi .

The only restrictions that we require on the elements of C are that all means and
variances be finite. These expectations and variances are specified directly. In the
remainder of this chapter, we shall discuss, by example, how to make such prior
specifications. We control the level of detail of our investigations by our choice
of the collection C. For example, in a problem of medical diagnosis, we might
just list certain critical symptoms, or include any number of further symptoms and
explanatory factors. Clearly, such a collection will be fluid and elements will be
added and removed for many practical reasons. However, it simplifies our exposi-
tion to suppose that at any particular time we have chosen a particular collection
C and made the corresponding direct first- and second-order belief specifications.

We may choose to include in C various powers or other transforms of vari-
ous observable quantities, so that our choice of C both summarizes the level of
detail for our beliefs that we have chosen to describe, and places limits on the
conclusions that we may draw. The most detailed collection that we could pos-
sibly select would consist of the indicator functions for all of the combinations
of possible values of all of the possible quantities of interest. With this choice of
C, we obtain a full probability specification over an implied outcome space. On
occasions, this special case may be appropriate. Often, in complex problems, a
joint probability distribution may serve as a convenient qualitative approximation
for various aspects of the quantitative beliefs that we might express. However, in
general, full probabilistic specification is unwieldy as our fundamental expression
of the actual belief statements that we choose to make, in that it requires such
an extremely large number of statements of knowledge, expressing judgements to
such a fine level of detail, that typically we would have neither the interest nor
the ability to make most of these judgements in a meaningful way. Therefore,
for large problems we will often restrict attention to small sub-collections of this
maximal collection. One of the themes of this book is that it is useful to have the
choice of working explicitly with small collections of careful belief specifications
rather than being forced to specify in an artificial manner very large collections of
pseudo-belief statements.

As the number of elements increases, even the full second-order specification
may become difficult. However, we only require full second-order specification
over C in order to be able to consider how observation of the values of any
sub-collection, E say, affects judgements over any other sub-collection, F say. It
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may be that we do not really need to assess how each subset E affects each F ,
but rather that we can split C into (not necessarily disjoint or exhaustive) sub-
collections Ci = (Ei, Fi), i = 1, . . . , r , say, and consider only how judgements
over each Fk are affected by information represented in Ek, in which case we
would only need to specify covariances over the pairs (Fk, Ek). What we lose by
such simplification is the ability to consider the impact of the larger data set E

upon our beliefs over the full collection F . Such trade-offs are unavoidable if we
wish to control the complexity of the specification process, rather than pretending
that we can actually quantify every judgement that we could conceivably make.
Thus, in our approach, we select one or several bases Ci , chosen because we feel,
a priori, that the benefits from carrying out the full second-order specification over
each sub-collection outweigh the efforts of making these prior specifications.

2.4 Specifying prior beliefs

This work is concerned with the quantitative analysis of beliefs. Our methods
take as a starting point that a preliminary quantification of beliefs has been made.
We will be concerned with the interpretation, diagnostic evaluation and visual
representation of the implications of our belief statements. All of these analyses
may cause us to reassess our prior evaluations, and thus we should properly view
prior specification as an iterative process, supported by all of the tools that we shall
develop. However, it is useful to give at least some introductory discussion of the
first stages in prior quantification. Therefore, we shall touch briefly on various
guiding principles, which we believe to be helpful in carrying out this process.
These principles are most easily described in a practical context. Therefore, we will
describe in some detail how the specification might be carried out for a particular
example, which we now introduce. Various themes that we shall develop in later
chapters will be introduced informally in this account.

2.4.1 Example: oral glucose tolerance test

Suppose that a doctor works at a clinic where patients are frequently diagnosed
for diabetes. One of the diagnostic tests that has been used is the oral glucose
tolerance (OGT) test. In this test, a patient fasts for 12 hours, usually overnight.
The blood glucose level is then measured (in mmol/litre). The patient takes a
glucose solution (and nothing else) and the blood glucose level is measured again
after 2 hours. The level may also be measured at various intervening times, but,
during the period in which the data that we shall use were collected, in the late
1980s, the World Health Organization ‘diagnosis’ depended only upon these two
values, with responses above certain thresholds suggesting diabetes. A summary
of the possible diagnoses for given blood glucose levels is shown in Table 2.1.

Now, let us suppose that the clinic is occasionally involved in the diagnosis
of diabetes in elderly people (say, over 60). The doctor might find it somewhat
suspicious that the diagnostic levels that are set for the OGT test do not incorporate
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Table 2.1 Oral glucose tolerance tests: diagnosis thresholds (circa 1980s).

Blood glucose Diagnosis for Blood glucose Diagnosis for
level fasting level 2-hour

mmol/litre measurement mmol/litre measurement

under 7 Healthy under 7 Healthy
more than 7 Diabetes 7 to 10 Impaired glucose tolerance

more than 10 Diabetes

any form of correction for age, as it would be a reasonable a priori assumption
that, even for healthy elderly people, the sugar might take longer to be absorbed
into the blood than for healthy young people. She might suspect that the empirical
calibration of the test was based on experiments on comparatively young people,
so that the test would tend to misclassify healthy elderly people as diabetic.

Suppose that the doctor is sufficiently curious about this that she decides to try
to form a reasoned judgement about OGT test levels for elderly people. Suppose
further that when she asks around, she finds that nobody else seems to know
anything about the calibration of the OGT test on healthy elderly people. She
discovers that there is a large literature on the test, which she finds to be somewhat
confusing (as she is a non-specialist), contradictory (as experimental values quoted
in different studies do not quite match up), and largely irrelevant (as everything
that she can find relates to younger people anyway). Furthermore, as she suspected,
she can find nothing on the calibration of the test for elderly people. This example
is intended to be purely illustrative. However, the numbers that we shall use are
derived from an experiment that was carried out by a clinician who was motivated
by the scarcity of available information at the time of the experiment concerning
the calibration of the OGT test for elderly people (see Wickramasinghe et al. 1992),
and so this analysis is intended to be plausible for the individual at that time.

Suppose that the doctor is herself elderly. Indeed, suppose she has actually
retired but still helps out at the clinic on a voluntary basis. Perhaps this is why she
is sensitive to the interpretation of standard medical procedures for old people, and
also why she has time to reflect about what she is doing. The simplest way that
she can see to get any information on the effect of the OGT test on healthy elderly
people is to administer the test on herself. This will provide minimal information
but at least it offers a starting point for any further investigations. The simplicity of
this scenario allows us to introduce some basic ideas in a straightforward manner.

In this example, we consider how the doctor can express in quantitative form
her partial knowledge about the responses of elderly people to the OGT test.
The values that we shall specify are in no way intended to represent best expert
elicitations, but simply to illustrate the types of values that might be expressed
by someone who has access to certain limited information about the quantities. In
subsequent chapters, we will suggest ways in which she might modify her beliefs
in the light of her own, and other, responses to the test.
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2.5 Qualitative and quantitative prior specification

Suppose that we are considering various questions, for which it will be relevant to
quantify aspects of our uncertainties. This quantification is an iterative procedure.
One way to represent this procedure is through the following stages.

1. Identify those quantities for which beliefs are to be specified: wherever pos-
sible, such quantities should be directly observable, though we may need to
introduce essential modelling or explanatory quantities which are unobserv-
able. Loosely, there will be two types of quantities, namely primary quantities
for which the quantification is of direct interest, and secondary quantities which
are of interest mainly in providing information which is relevant to the quan-
tification of beliefs about the quantities of primary interest.

2. Consider what relevant information is available for these quantities.

3. Develop a qualitative representation of beliefs about the quantities, expressing,
as far as possible, the sources of uncertainty and the linkages between our prior
information and the quantities of interest. This representation may be supported
through graphical modelling.

4. Develop the statistical relationships between data and beliefs implied by the
graphical model using basic considerations of exchangeability, temporal devel-
opment and so forth.

5. Specify all numerical uncertainties (in our case, means, variances, and covari-
ances), exploiting the graphical, statistical representation.

6. Check quantifications for consistency, plausibility and coherence.

We have two goals in this process. First, we aim to describe honestly our
uncertainties as reached after careful consideration of the available prior evidence.
In particular, we wish to lay out our prior reasoning in a sufficiently transparent
manner that the plausibility of our reasoning can be judged, potential weaknesses
in our argument can be identified, and the range of plausible disagreement over the
various steps in the prior construction may be quantified. Secondly, we wish our
overall specification to be sufficiently extensive to cover all the important aspects
of the problem under investigation.

In practice, these goals may be contradictory, given constraints of time,
resources and ability. Often, we must compromise between a very careful specifica-
tion over limited aspects of a problem which are comparatively straightforward to
consider and a somewhat rougher elicitation over a much wider collection of mea-
sures which we would like to include in the analysis. Methodology based on partial
aspects of prior specification, by reducing the complexity of the prior elicitation,
may help to limit this conflict, but a substantial element of individual judgement
will always remain.

We now illustrate how we might carry out the above program of qualitative
and quantitative prior specification in the context of our example.
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2.6 Example: qualitative representation of uncertainty

2.6.1 Identifying the quantities of interest

While there are many aspects of the OGT test that we might examine, there are
two obvious quantities of concern, namely the fasting and 2-hour glucose levels
that the doctor will observe upon herself. Call these D0 and D2. The intention is
to observe D0 and D2, and so to modify beliefs about similar readings on other
healthy elderly patients.

In order that we may consider clearly defined observable quantities, we suppose
that the doctor imagines a thought experiment in which an elderly person is chosen
at random from the local population of healthy elderly people with no history of, nor
any family history of, diabetes. In the thought experiment, she envisages giving the
OGT test to the chosen individual and measuring G0, the fasting glucose level, and
G2, the 2-hour glucose level. These values are, of course, hypothetical. However,
they are meaningful to consider – indeed, the doctor may already be considering
whether she should carry out an experiment to measure these quantities on a group
of such individuals. Thus, the base for the analysis is the collection

C = [G0, G2, D0, D2].

The doctor will specify prior means, variances, and covariances for each mem-
ber of C.

2.6.2 Identifying relevant prior information

The doctor considers what she knows about the various quantities. As we have
supposed, she is able to find no information that is directly related to the responses
of elderly people to the OGT test. Thus she decides to find out what she can about
a group which has been widely studied, namely healthy younger people. Again,
suppose that she finds the literature somewhat unclear and is further concerned that
there might even be regional differences in test responses.

To simplify the account, suppose that the doctor finds details of a particular
experiment which was actually carried out in her locality, in which the OGT test
was administered to 15 healthy young people. All that is quoted in the paper are
the sample summary statistics, which are as follows (in mmol/litre):

• The sample mean for the 15 observations of fasting glucose level is 4.16.

• The sample mean for the 15 observations of 2-hour glucose level is 5.5.

• The sample standard deviation for the 15 observations of fasting glucose level
is 0.726.

• The sample standard deviation for the 15 observations of 2-hour glucose level
is 0.949.

• The sample correlation is 0.422.
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(Again, while the example is illustrative, these are the summary statistics, with a
certain amount of rounding, from the study which we have already mentioned, as
performed by Wickramasinghe et al. (1992); analysis of the data is given in Farrow
and Leyland (1991).)

These figures give the doctor some ideas about the effect of the OGT test
upon an ‘average’, healthy young person. She now considers what information she
has about responses of elderly people. All she has to go on here are qualitative
judgements about the similarities between younger and older individuals, coupled
with certain implicit negative information.

For example, if average responses for elderly people were so large that there was
hardly any overlap with scores for young people, then this would, arguably, have
already been noticed and joined the medical folklore. A similar constraint is given
by the diagnostic limits for the OGT test as given by the World Health Organization,
which states that values over 10 mmol/l after 2 hours suggest diabetes, while values
between 7 and 10 mmol/l after 2 hours suggest impaired glucose tolerance. (This
latter diagnosis presupposes that the fasting level was under 7 mmol/l. Fasting
levels over 7 mmol/l are automatically taken to suggest diabetes.) Again, the doctor
doubts that most healthy elderly people would be classified diabetic by the OGT
test, as this would be likely to be noticed, but she finds it quite plausible that many
healthy elderly people would be classified in the intermediary category of impaired
glucose tolerance.

2.6.3 Sources of variation

We construct a qualitative representation of uncertainty by considering the various
sources of variation for our problem. Suppose that the doctor reasons that her
uncertainty for each of G0 and G2 can usefully be thought of as deriving from
three main sources.

1. Her judgements are based in part upon her prior judgement as to typical
responses for healthy young people. She is uncertain as to the value of such a
typical response.

2. She is uncertain as to the magnitude of the difference between typical responses
for a healthy young person and a healthy elderly person.

3. She is uncertain as to how much the actual glucose values that she will observe
will differ from a typical response for this quantity, due simply to differences
between the individuals in the healthy elderly population.

Suppose that as a simplification the doctor makes the judgement that she has
nothing useful to say about how these three sources of uncertainty might be
interrelated. She therefore decides to consider these three aspects of her uncer-
tainty separately and then combine them to give her overall uncertainty for G0
and G2.
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2.6.4 Representing population variation

For our statements of belief to be meaningful and honest, we prefer well-defined
observable quantities for which to make expectation statements, even if we might
have to resort to thought experiments to define these quantities. The need for such
quantities is equally important when we come to consider such abstractions as a
‘typical’ healthy elderly person.

What thought experiment addresses the idea of a ‘typical’ response? We suggest
the following. Imagine that the OGT test was performed on a very large sample
of healthy young people and a similarly large sample of healthy elderly people,
say several thousand for each group. Suppose that in this thought experiment we
evaluated the sample averages for each group. Call Y0, Y2 the sample averages
for fasting and 2-hour glucose levels for the young people and E0, E2 the sample
averages of these quantities for the elderly people. Given a large sample size,
uncertainty about the values of these quantities due to sampling fluctuation will be
negligible in comparison to uncertainty about average behaviour in the population.
These quantities therefore may be used to express beliefs about typical responses.
(This is an informal expression of second-order exchangeability, which will be
considered in detail in a subsequent chapter, where we shall make precise the
relationship between such averages from large samples and the limiting concept of
the corresponding population means.)

2.6.5 The qualitative representation

2.6.5.1 Uncertainty for G0

We have suggested that the doctor might envisage the magnitude of fasting glu-
cose G0 as being comprised of three contributing effects. Relating our thought
experiment to these three effects, she is uncertain about:

• typical young responses, as expressed by uncertainty as to the value of Y0;

• the difference between typical responses for the young and the elderly, as
expressed by uncertainty as to the value of C0 = E0 − Y0;

• the difference between the typical elderly response and the response of a particu-
lar elderly person as expressed by uncertainty as to the value of R0 = G0 − E0.

As such, we write
G0 = R0 + C0 + Y0.

The doctor judges that there are no relationships that she wishes to specify between
these three terms and so she assigns zero covariance for each pair. Therefore she
can partition the expectation and variance of G0 as

E(G0) = E(R0)+ E(C0)+ E(Y0),

Var(G0) = Var(R0)+ Var(C0)+ Var(Y0).
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Thus she assigns the mean and variance for G0 by first assigning a mean and
variance for each of the three terms on the right of the above equations.

2.6.5.2 Uncertainty for G2

As above, the doctor writes

G2 = R2 + C2 + Y2,

where C2 = E2 − Y2 and R2 = G2 − E2. Again, she assigns zero covariance
between each pair. Therefore she partitions the expectation and variance of G2 as

E(G2) = E(R2)+ E(C2)+ E(Y2),

Var(G2) = Var(R2)+ Var(C2)+ Var(Y2).

2.6.5.3 Covariance between G0 and G2

The doctor has partitioned G0 and G2 as R0 + C0 + Y0 and R2 + C2 + Y2, respec-
tively. She decides that her judgements on individual variation (as expressed by
the R components), typical differences between young and elderly (as expressed
by the C components) and typical values for the young (as expressed by the Y

components) are unrelated. She therefore sets all the corresponding covariances
between the three collections of quantities to zero. Equivalently, she decides that
all of her covariance between G0 and G2 can be attributed to the covariances
between each of the pairs of quantities in the decomposition, i.e. that

Cov(G0, G2) = Cov(R0, R2)+ Cov(C0, C2)+ Cov(Y0, Y2).

2.6.5.4 Uncertainties for D0 and D2

The doctor partitions D0 and D2 as

D0 = Z0 + C0 + Y0,

D2 = Z2 + C2 + Y2,

where C0, C2, Y0, and Y2 are as before and Z0, Z2 are the corresponding quantities
to R0 and R2, namely Z0 = D0 − E0 and Z2 = D2 − E2, the individual discrep-
ancies between the doctor’s readings and the average readings for healthy elderly
people at the two time points. As above,

E(D0) = E(Z0)+ E(C0)+ E(Y0),

E(D2) = E(Z2)+ E(C2)+ E(Y2),

Var(D0) = Var(Z0)+ Var(C0)+ Var(Y0),

Var(D2) = Var(Z2)+ Var(C2)+ Var(Y2),

Cov(D0, D2) = Cov(Z0, Z2)+ Cov(C0, C2)+ Cov(Y0, Y2).
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2.6.5.5 Covariance between [G0, G2] and [D0, D2]

The doctor sees no reason why there should be any correlation between either of
the pair (Z0, Z2) and either of the pair (R0, R2). Thus she sets all correlations
between the two pairs equal to zero. This immediately determines the covariances
between (D0, D2) and (G0, G2). We have

Cov(D0, G0) = Cov(Z0 + C0 + Y0, R0 + C0 + Y0) = Var(C0)+ Var(Y0)

and similarly

Cov(D0, G2) = Cov(D2, G0) = Cov(C0, C2)+ Cov(Y0, Y2),

Cov(D2, G2) = Var(C2)+ Var(Y2).

2.6.5.6 Comparing [R0,R2] and [Z0,Z2]

The only differences between the variances and covariances for [G0, G2] and for
[D0, D2] arise from differences in the variance and covariance assessments for
[R0, R2] and for [Z0, Z2]. In this account we will suppose that the doctor sees no
reason why her responses would be more or less variable than those of a randomly
selected healthy elderly patient. Thus she sets

Var(R0) = Var(Z0), Var(R2) = Var(Z2), Cov(R0, R2) = Cov(Z0, Z2),

implying that

Var(D0) = Var(G0), Var(D2) = Var(G2), Cov(D0, D2) = Cov(G0, G2).

Of course, in practice there are reasons why a retired doctor might consider
that she was different from a typical elderly person. We have identified the doctor’s
view of herself as typical of her group for three reasons. First, we have probably
said enough already about how beliefs might be specified in this example, so to
avoid reader burn-out it seems prudent to cut this discussion short. Secondly, we
do not have any data on the effect of the OGT test on retired doctors, but we do
have values that we shall use for the doctor’s response based on tests on typical
samples of healthy elderly people, so we would rather make our protagonist typical
anyway. Finally, it seems reasonable that after reflection the doctor might consider
that the factors which control the reactions to the test were sufficiently complex
that she would be wary of ascribing much difference between her uncertainties for
D0, D2 and for G0, G2, based on what might be purely superficial distinguishing
characteristics. This assessment of her mean and variance structure as numerically
equal to that of all other members of the group is a further example of a second-
order exchangeability specification.

2.6.6 Graphical models

Already, for our simple problem, we have introduced a variety of quantities for
which we have made highly structured qualitative judgements. In order to keep
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Figure 2.1 The doctor’s graphical model.
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track of these relationships, and to communicate to others the qualitative struc-
ture of our argument, it is helpful to have simple graphical representations of
these judgements. Bayes linear graphical models produce very useful pictures
for this purpose. The model for the specification that we have made is given in
Figure 2.1. In this picture, each node represents the corresponding random quan-
tity. Arcs express predictive relationships in the sense that if there is no arc
between a pair of nodes then, informally, the corresponding random quantities
are uncorrelated given their parents. In many problems, we construct our qualita-
tive representation of uncertainty directly by drawing the corresponding diagram.
We shall describe the construction, interpretation, and use of such diagrams in
Chapter 10.

Informally, from the diagram, R0, Y0, C0, Z0 are mutually uncorrelated (they
are not linked by arcs and have no common ancestor group). Similarly
R2, Y2, C2, Z2 are uncorrelated, and the only links between the two groups are
the correlations between the pairs (R0, R2), (Y0, Y2), (C0, C2), and (Z0, Z2), as
these are the only arcs between the two collections. Finally, Gi is influenced by
Ri, Yi, Ci and Di is influenced by Yi, Ci, Zi (for i = 0, 2), and there are no other
relationships between the quantities.
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2.7 Example: quantifying uncertainty

2.7.1 Prior expectations

2.7.1.1 Expectation for D0 and G0

We have the qualitative representation

E(G0) = E(R0)+ E(C0)+ E(Y0).

The doctor now assigns expectations for each term on the right-hand side of the
above equation.

Y0 The sample mean for the responses of the 15 young people is 4.16. The doctor
has no knowledge which would cause her to raise or lower this value, and
so sets her prior expectation for Y0 equal to 4.16.

C0 While the doctor considers that there might be a difference between fasting
glucose levels for young and elderly people, she also regards the 12 hours
of fasting as a sufficiently long period to suggest that age-related slowness
of response to blood sugar levels should not be a relevant factor. Therefore,
she sees no reason a priori for C0 to be positive or negative and she assigns
a zero expectation for C0.

R0 The expectation of R0 is zero, as the typical elderly response E0 is simply an
average of individual responses, each with the same prior expectation as G0.

G0 and D0 The prior expectation for G0, and for D0, is therefore 4.16.

2.7.1.2 Expectation for D2 and G2

This is assessed as for D0 and G0.

Y2 The doctor sets her prior expectation equal to 5.5, the sample mean for the
2-hour responses of the 15 young people.

C2 The belief that blood sugar takes longer to absorb for elderly than for young
people suggests that the prior expectation for C2 should be positive. The
doctor doubts that average responses for healthy elderly people would be
over the ‘impaired glucose tolerance level’ of 7 mmol/l. Therefore she judges
her prior mean for C2 to lie between zero and 1.5 mmol/l. She judges her
uncertainty to be roughly symmetric across this interval and so she selects
the mid-point, which she rounds up to 0.75, as her prior mean for C2.

R2 The expectation of R2 is zero, as for R0.

G2 and D2 The prior expectation for G2, and for D2, is therefore 6.25.
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2.7.2 Prior variances

2.7.2.1 Variance of G0 and D0

In the qualitative representation,

Var(G0) = Var(R0)+ Var(C0)+ Var(Y0).

Variances are now assigned for each term of the above equation.

Y0 The doctor reasons that her judgement is based on a sample mean with variance
0.035, being the sample variance divided by the sample size. This does
not contradict anything that she can think of. Therefore, as her numerical
judgement is based strictly on this survey (to keep the argument in this
chapter simple), she identifies her uncertainty for Y0 with the sample variance
of the estimate for this quantity, which corresponds very roughly to Bayes
updating with a vague prior. She takes Var(Y0) to be 0.05, which is the
sample variance of the sample mean with about a 50% mark-up for natural
scepticism as to possible flaws in the experiment.

C0 The doctor reasons that she has no particular a priori reason to expect C0 to
be large. She would be mildly surprised to find that E0 differed from Y0
by more than 0.75 and very surprised to find that E0 differed from Y0 by
more than 1.5 mmol/l. It seems appropriate to her to view these values as
roughly the one and two standard deviation points of her implicit ‘probability
distribution’ for C0, so she sets Var(C0) to be 0.57.

R0 The sample variance for the young healthy individuals is about 0.5, which
suggests a prior variance for individual variation for young people as 0.5.
The doctor sees no a priori reason why elderly healthy people should be
more or less variable than young healthy people, after a long fasting period,
and so she decides to set Var(R0) at 0.5 as well.

G0 and D0 These variances are the sum of the above terms, i.e. 1.12.

2.7.2.2 Variance of G2 and D2

We make a similar evaluation for Var(G2) and of Var(D2), as follows.

Y2 This is assigned in a similar way to Var(Y0). As the reported sample variance for
the 2-hour glucose values is roughly twice that for fasting glucose, Var(Y2)

is assessed as twice Var(Y0), i.e. 0.1.

C2 The doctor sees no reason why C2 should be negative. She expects C2 to be
positive, but doubts whether the difference would be so large as to classify
the majority of healthy elderly people as having impaired glucose tolerance.
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Thus, she judges a value of 1.5 mmol/l as high for this quantity, as this
value would push many elderly patients into the impaired glucose tolerance
group. A value near zero she judges unlikely, but not impossible. She judges
that C2 is most likely to be in the interval 0.5 to 1.0, and equally likely
to be smaller or larger than this interval. Thus she sets her prior median to
be 0.75, her central 50% prior interval to be [0.5, 1.0], and her lower and
upper 25% intervals to be [−0.5, 0.5) and (1.0, 2.0]. She then decides that
her beliefs about C2 may be roughly described by the following probability
density function:

p(x) =



0.25, −0.5 ≤ x < 0.5,

1, 0.5 ≤ x ≤ 1.0,

0.25, 1.0 < x ≤ 2.0.

A probability distribution such as this will not exactly represent the doctor’s
beliefs. For example, there is no sharp discontinuity in beliefs at 0.5 or
1.0, nor such a clear cut-off at −0.5 and 2. Perhaps she might smooth the
distribution or peak it in the middle. Certainly, this would be important were
she to conduct a full probabilistic analysis. However, the calculations that
we shall make will not be unduly sensitive to mild smoothing. Therefore,
we will leave the density specification in this form to emphasize both that
probabilistic specification is a very useful intermediary device for converting
generalized feelings of uncertainty into expectation-type statements and that
it is a matter of subjective judgement as to when the specification has been
made in sufficient detail to give sensible values for the various expectation
statements that we require. In this case, Var(C2) is set equal to the variance
of the above distribution, which is 1/3. Observe that this value is somewhat
smaller than Var(C0), as the doctor considers that C2 is very likely to be
positive, and she has a plausible upper bound to limit the magnitude of this
quantity.

Note that the approach of successively dividing the region of possible values
into equal probability sub-intervals can be very helpful in prior quantification,
as in many situations we may feel more comfortable in judging two events
as having equal probability than we would in judging more general relative
magnitudes of probabilities. The prior quantiles that we specify may be
exploited in various ways. First, we may simply evaluate the maximum and
minimum variances consistent with the given assessments, to give general
guidance as to the range of allowable specifications that we might make.
Secondly, we might fit standard forms of distribution such as the normal
or log-normal, and assess the corresponding variances. Thirdly, as in our
illustration, we might specify a prior density which captures roughly the
qualitative shape of our prior beliefs, in order to assess the variance.

In any given assessment, we may even use all three approaches, preferably
within some convenient computer-based elicitation environment. A typical
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elicitation tool would allow us to sketch our prior density directly on the
screen or to fit and display simple standard parametric families to our cho-
sen quantiles. For example, in the above analysis, the doctor has specified a
distribution on the interval (−0.5, 2). A simple elicitation tool might trans-
form the interval to (0, 1) and display, for example, the beta distribution with
the same mean and variance as derived above (in this case a beta distribution
with both parameters equal to 59/32).

R2 This is set by the judgement that there should be more variation in the responses
of elderly than of young people after 2 hours, as there should be a general
slowing down with age of the speed with which blood sugar is absorbed, but
this decline is unlikely to be uniform over individuals. The sample standard
deviation in the young group was about 0.95. Doubling this value for elderly
patients would suggest a noticeable proportion of healthy, elderly people
exceeding the critical value of 10. This seems a little high so instead she
raises the standard deviation by about 50%, setting Var(R2) = 2.0.

G2 and D2 These variances are the sum of the above terms, namely 2.43.

2.7.3 Prior covariances

Y0 and Y2 The doctor decides that, because of the relatively high accuracy with
which Y0 and Y2 are determined, her correlation between Y0 and Y2 is neg-
ligible.

C0 and C2 Her prior covariance between C0 and C2 is relatively high, as if she
discovered that elderly people had considerably higher (or lower) fasting glu-
cose levels than their young counterparts, this would strongly suggest large
differences for the 2-hour levels. She sets the correlation between C0 and C2
to be 0.7, giving Cov(C0, C2) = 0.30.

Note that she may support this assessment by considering the quantity
C2 − C0. Either by direct assessment, or by forming prior quantiles for this
quantity, she may form a judgement for Var(C2 − C0). As she has already
assessed Var(C0), Var(C2), this gives an indirect evaluation for Cov(C0, C2).
Let us suppose that this assessment is consistent with the value given above.

R0 and R2 The study on young patients quoted a sample correlation of 0.422
between fasting and 2-hour glucose levels. In our notation, this gives a
sample estimate for the correlation between R0 and R2 for the young group.
The doctor sees no persuasive reason to raise or lower the correlation for the
elderly group. Taking the same value, rounded, for the elderly controls, she
assigns Cov(R0, R2) = 0.42.

G and D From the qualitative representation, we therefore determine that

Cov(G0, G2) = Cov(D0, D2) = 0.72, Cov(D0, G0) = 0.62,

Cov(D0, G2) = Cov(D2, G0) = 0.30, Cov(D2, G2) = 0.43.
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2.7.4 Summary of belief specifications

In our example the doctor has specified the following expectations:

E(G0) = E(D0) = 4.16,

E(G2) = E(D2) = 6.25.

She has specified the following variances and covariances:

Var(G0) = Var(D0) = 1.12,

Var(G2) = Var(D2) = 2.43,

Cov(G0, D0) = 0.62,

Cov(G2, D2) = 0.43,

Cov(G0, D2) = Cov(G2, D0) = 0.3,

Cov(G0, G2) = Cov(D0, D2) = 0.72.

2.8 Discussion: on the various methods for assigning
expectations

It is mistaken to suppose that, because prior expectation statements are subjective,
they are also largely arbitrary. On the contrary, they are no more arbitrary than
any other form of reasoning. We value quantifications of belief as we value any
argument, namely to the extent to which the assessments are developed in a clearly
and carefully reasoned manner. In our example, to keep the discussion fairly simple,
we have cut short the specification process at various stages, in that far more
information is available on all aspects of the prior quantification than we have
made use of, and even the information that we have described could doubtless
have been analysed more carefully. However, this only serves to emphasize that
prior specification is not primarily a psychological issue, but depends instead upon
the careful consideration of the available information.

An element of arbitrariness does enter when we turn our generalized reasoning
about our uncertainties into precise values for our probabilities and expectations.
For example, the doctor in our account above was fairly casual in rounding up or
down her expectation judgements. In a more careful and detailed elicitation, she
would have paid attention to the maximum and minimum values for each of her
quantitative assessments which were consistent with her heuristic arguments, and
thus found bounds for each of her composite expectation and variance specifica-
tions. Such bounds may be exploited in various ways. For example, we may carry
out a sensitivity analysis on the conclusions of any subsequent analysis based on
variation of the prior specifications over the region that we have identified, or, at
the least, over some subset of this region based on identification of the most cru-
cial aspects of our beliefs. Alternatively, we might consider our prior beliefs to be



EXPECTATION 53

imprecise so that we could use the variation over allowable choices of prior inputs
to determine the imprecision in our posterior conclusions; for a detailed treatment
of the role of imprecision in probabilistic analysis, see Walley (1991).

There are no strict rules that we can give for how to quantify prior beliefs
because in every case it will be a personal judgement as to what are the relevant
features of the information about the situation, and how such information should be
turned into quantitative specifications. However, there are various techniques that
are useful to help us to turn our generalized qualitative knowledge into numerical
evaluations. In the example, we have employed a variety of methods. In particular:

1. studying summary statistics from samples in related populations;

2. setting rough bounds, often from negative inferences from specialized knowl-
edge;

3. specifying probability quantiles;

4. specifying probability distributions consistent with those quantiles;

5. identifying one and two standard deviation intervals, from which variances can
be judged;

6. introducing underlying ‘population means’;

7. partitioning variances and covariances into terms corresponding to uncorrelated
components;

8. assessing a covariance by considering the variance of the difference of the
corresponding quantities;

9. constructing graphical models to display the qualitative relationships between
the quantities of interest.

While all of the above are methods that we have often found helpful in specifying
our beliefs, they are in no way intended to be exhaustive of the general approaches
which have been put forward for the elicitation of probabilities and expectations. It
is an interesting and important question as to which are the most appropriate meth-
ods of prior specification for any problem. We have emphasized in our account
the scientific as opposed to the psychological basis for the specification, and sug-
gested ways in which the various ingredients going into a prior judgement might
be separated out and analysed with as much care as possible. However, even for
simple problems, we do not have unlimited time or resources, and we must draw
a line somewhere; this itself is a matter of judgement.

Is it meaningful to ask whether the doctor has got the numbers correct. Well,
she could probably give better numbers if she thought more deeply and consulted
more ‘experts’ – at least the numbers would be better in the twin senses that she
might feel more confident in her assertions and she might feel that her assertions
were more firmly grounded in reality. However, we should also recognize that the
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collection of arguments that the doctor has brought to bear even in our simplified
account is probably more stringent than many people ever bring to bear on any
argument about anything in their entire lifetime. It is reasonable to expect that
the process of laying out our beliefs in numerical form, and carefully arguing the
value for each number in our prior specification, should help us to make better
judgements because we cannot escape into unexamined generalities, and we are
forced to consider how the various aspects of our beliefs relate to each other.

However, we only gain this benefit if the numbers that we specify reflect
meaningful judgements. In particular, it is often difficult to strike an appropriate
balance between the desire to specify uncertainties about a large number of aspects
of a problem (in order to bring to bear as many relevant sources of information as
we can) and the need to specify only those uncertainties that we have the ability
and patience to evaluate meaningfully.

We must recognize that we may not have the capability to investigate our
problems as deeply as we might ideally wish. Even in our example problem, which
was chosen to be as small as possible while still retaining some genuine content,
and even with a bare minimum level of detail in the doctor’s specifications, there is
still a substantial effort required to produce the numbers that we require, provided
that a genuine attempt is made to produce these values in a thoughtful manner.
As problems become more complex, the gap between a ‘perfect argument’ and
the belief quantifications that we can genuinely produce grows ever wider. Thus,
our priority is to construct methods which are as simple as possible and allow
us to utilize whatever limited aspects of our prior judgements we are able to
specify, without imposing the pretence that a much wider class of hypothetical
quantifications, for example all of the quantifications that are required for a many-
dimensional prior probability distribution, have also been assessed.

In this chapter, we have just introduced some basic issues that arise in quan-
tifying beliefs. A good starting point for investigating the literature on elicitation
is the discussion meeting on this topic organized by the Royal Statistical Society.
Kadane and Wolfson (1998), O’Hagan (1998), Craig et al. (1998) and the accom-
panying discussion give a variety of viewpoints and an extensive list of references
for pursuing work in this area; for a more recent overview, see Garthwaite et al.
(2005) and references therein. The paper by Farrow (2003) is interesting in giving
constructive methods for building large subjective covariance structures.
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Adjusting beliefs

Suppose that we have specified means, variances, and covariances for a collection
of random quantities. If the values of some of the quantities become known, then
this will cause us to reassess our judgements over the remaining quantities. In this
chapter, we describe the adjustment of expectations and variances by linear fitting
on observed quantities. We derive the basic properties of such belief adjustments
and discuss the foundational interpretation of this form of analysis. We describe the
canonical analysis for a collection of belief adjustments. This analysis summarizes
all of the implications of the implied changes in beliefs, by the construction of
the belief transform associated with the adjustment, and has a natural geometric
interpretation.

3.1 Adjusted expectation

We have a collection, C, of random quantities, for which we have specified prior
means, variances, and covariances. Suppose now that we observe the values of a
subset, D = {D1, . . . , Dk}, of C. We intend to modify our beliefs about various
quantities, B = {B1, . . . , Br}, in C, given the values of the collection D.

A simple method by which we can modify our prior expectation statements is
to evaluate the adjusted expectation for each quantity. The adjusted expectation
of a random quantity X, given observation of a collection of quantities D, written
ED(X), is the linear combination

ED(X) =
k∑

i=0

hiDi

which minimizes

E


[

X −
k∑

i=0

hiDi

]2 (3.1)

Bayes Linear Statistics: Theory and Methods M. Goldstein and D.A. Wooff
 2007 John Wiley & Sons, Ltd
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over all collections h = (h0, h1, . . . , hk), where D0 is the unit constant, i.e. D0 = 1.
ED(X) is also called the Bayes linear rule for X given D.

The minimization in (3.1) is determined by the prior mean, variance, and covari-
ance specifications for X and the vector D = (D1, . . . , Dk). We make the following
definition.

Definition 3.1 The adjusted expectation of a random quantity X, given observation
of a collection of quantities D, written ED(X), is

ED(X) = E(X)+ Cov(X, D)Var(D)†(D − E(D)). (3.2)

(Observe that we follow the simplification, here and subsequently, of using the
same notation to refer to the set of quantities D = {D1, . . . , Dk} when signifying
the collection of quantities used for an adjustment, as in ED(X), and to signify the
vector whose elements are (D1, . . . , Dk), as in the right-hand side of (3.2).)

The matrix Var(D)† in (3.2) is the Moore–Penrose generalized inverse, namely
the generalized inverse constructed strictly from the space of positive eigenvectors.
When Var(D) is non-singular, Var(D)† = Var(D)−1 is simply the usual matrix
inverse.

When Var(D) is invertible, we may show that (3.2) minimizes (3.1), by observ-
ing that, for any choice h∗ = (h1, . . . , hk), the value of h0 minimizing E([X −
hT∗D − h0]2) is h0 = E(X − hT∗D) = E(X)− hT∗E(D), and with this choice for h0,

E([X−hT

∗D−h0]2) = Var(X − hT

∗D) = Var(X)+ hT

∗Var(D)h∗ − 2hT

∗Cov(D, X).

Setting the derivative of this relation to zero gives (3.2).
An alternative indirect derivation of (3.2) follows by checking that, with ED(X)

as defined by (3.2), we have

E([X − ED(X)]Di) = 0, i = 0, 1, . . . k, (3.3)

so that, for any scalars b0, b1, . . . , bk, and corresponding linear combination
Db =

∑k
i=0 biDi ,

E([X − ED(X)−Db]2) = E([X − ED(X)]2)+ E(D2
b),

from which it is immediate that ED(X) minimizes (3.1). A full direct derivation
for (3.2) in the general case is given in §12.4.

3.2 Properties of adjusted expectation

Property 3.2 Adjusted expectation obeys the following properties, which follow
directly from (3.2).

3.2.1: Adjusted expectation is linear. For any quantities X1, X2 and constants
a1, a2 we have

ED(a1X1 + a2X2) = a1ED(X1)+ a2ED(X2). (3.4)
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3.2.2: Adjusted expectation is conglomerable, which means that expectations
over adjusted expectations yield prior expectations, namely, for any X,

E(ED(X)) = E(X). (3.5)

Definition 3.3 We define the adjusted version of X given D, AD(X), to be the
‘residual’ form

AD(X) = X − ED(X). (3.6)

Property 3.4 Adjusted versions obey the following properties:

3.4.1:
E(AD(X)) = 0; (3.7)

3.4.2:
Cov(AD(X), D) = 0, (3.8)

3.4.3:
Cov(AD(X), ED(X)) = 0. (3.9)

3.3 Adjusted variance

Definition 3.5 The adjusted variance, of X given D, denoted VarD(X), is defined
to be

VarD(X) = E([X − ED(X)]2) = Var(AD(X)). (3.10)

Substituting for ED(X) from (3.2), the value of VarD(X) is determined by our
prior variances and covariances as

VarD(X) = Var(X)− Cov(X, D)Var(D)†Cov(D, X). (3.11)

We write X as the sum of the two uncorrelated components

X = AD(X)+ ED(X),

so that we can split Var(X) as

Var(X) = Var(AD(X))+ Var(ED(X)). (3.12)

Definition 3.6 The variance of X resolved by D, RVarD(X), is defined as

RVarD(X) = Var(ED(X)) = Cov(X, D)Var(D)†Cov(D, X). (3.13)

We therefore write the variance partition for X as

Var(X) = VarD(X)+ RVarD(X). (3.14)
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Definition 3.7 A simple scale-free quantification of the effect of an adjustment is
the resolution, RD(X), defined as

RD(X) = RVarD(X)

Var(X)
= 1− VarD(X)

Var(X)
. (3.15)

RD(X) lies between zero and one. If RD(X) is near zero then either the collection
D is not expected to be informative for X, relative to our prior knowledge about X,
or our beliefs have not been specified in sufficient detail to exploit the information
contained in D.

Definition 3.8 We define the adjusted covariance, CovD(X, Y ), to be

CovD(X, Y ) = Cov(AD(X), AD(Y ))

= E([X − ED(X)][Y − ED(Y )])

= Cov(X, Y )− Cov(X, D)Var(D)†Cov(D, Y ),

and similarly the resolved covariance, RCovD(X, Y ), to be

RCovD(X, Y ) = Cov(ED(X), ED(Y ))

= Cov(X, D)Var(D)†Cov(D, Y ).

3.4 Interpretations of belief adjustment

We now discuss the various interrelated interpretations of adjusted expectations
and variances. First, if we take a Bayesian view based on complete probabilis-
tic specification of all uncertainties, then we may view adjusted expectations as
offering simple tractable approximations to their full Bayes counterparts, which are
useful in problems which are sufficiently complex that the full specification and
analysis would be too time-consuming. For example, in many problems arising
in Bayesian experimental design, we must compare each of a large collection of
possible designs, where each design must be evaluated by a preposterior analysis
based on the expected value of information provided by samples from that design.
Such assessments are notoriously computer-intensive, and the Bayes linear coun-
terpart to the full Bayes analysis may be the only version of the design choice
problem which is tractable. In addition, the Bayes linear analysis leads to vari-
ous interpretative measures and diagnostic tests which offer insights which will be
relevant to any full Bayes analysis. The Bayes linear ‘approximation’ is exact in
certain cases. The most important is when we adjust on the indicator functions for
an event partition, as we shall discuss below. More generally, the approximation
is exact whenever the posterior mean is linear in the elements of the condition-
ing set, for example when all of the quantities are jointly normal. Because of the
importance of both the normal form and the mean square approximation, the form
of the Bayes linear estimator has appeared widely in the literature. Of particular
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importance are the papers by Stone (1963) and Hartigan (1969), which are among
the first to discuss the role of such assessments in Bayes analysis in the context of
partial prior specification.

An alternative interpretation is to view the quantity ED(X) as an ‘estimator’ of
the value of X, which combines the data with simple aspects of our prior beliefs in
an intuitively plausible manner and which leads to a useful methodology. Further,
on occasions, our prior judgements may be constructed by simple computations on
available data (for example, using sample variance matrices as proxies for prior
variance matrices, which may be an acceptable approximation when analysing a
large data set). In such cases, adjusted expectation can be viewed as complementary
to certain standard estimators in multivariate analysis.

However, usually we do not view expectation as an estimate. For example,
probabilities are expectations of the corresponding indicator functions, but we
rarely view the probability as an estimate for the indicator function. Just as we
view expectation as a primitive, we may similarly view adjusted expectation as
a basic quantification of certain further aspects of our beliefs. Indeed, we have
already observed that, in de Finetti’s formal development of expectation, the prin-
ciple operational definition that he offers is that our expectation for X is the value
x which we would choose under penalty (2.4). In this view, adjusted expectation
simply expresses the extension of our choice of preferences from the certain choice
x to the random choice

LD = c

[
X −

k∑
i=0

xiDi

]2

. (3.16)

A particular case of interest is when the collection D represents a partition, i.e.
{D1, . . . , Dk} are the indicator functions for a partition, so that each Di is 1 or
0, and

∑
i Di = 1. In this case, expanding the penalty (3.16) gives the equivalent

form,

LD =
k∑

i=1

cDi(X − xi)
2. (3.17)

By comparison with the operational definition of conditional expectation, as the
value chosen to minimize the score (2.5), we see that each xi should be chosen as
the corresponding conditional expectation, so that

ED(X) =
k∑

i=1

E(X|Di)Di. (3.18)

Therefore, in the special case where D represents a partition, the adjusted expec-
tation for X is numerically equal to the conditional expectation for X. Under
this view, adjusted expectation is a natural generalization of conditional expecta-
tion, where we drop the restriction that we must only ‘condition’ on the indicator
functions for a partition.
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In line with our various interpretations of belief adjustment, we may give
corresponding interpretations to adjusted variance. We may view VarD(X) as:

• a simple, easily computable upper bound on full Bayes preposterior risk, under
quadratic loss, for any full prior specification consistent with the given mean
and variance specifications;

• the ‘mean squared error’ of the estimator ED(X);

• a primitive expression, interpreted as we would a prior variance, but applied to
the ‘residual variation’ when we have extracted the variation in X ‘accounted
for’ by D.

We have described three alternative views of adjusted expectation, each of
which has merit in certain contexts and reflects various contrasting views that may
be held concerning the revision of beliefs. Our concern in this book is to describe
the practical machinery of our approach. Therefore, for the most part, we will move
between these three interpretations, viewing adjusted expectation as an intuitively
plausible numerical summary statement about our beliefs given the data, based
on certain clearly defined aspects of our prior beliefs. As with any other formal
analysis that we might carry out, adjusted expectations offer logical information
in quantitative form which we may use as we deem appropriate to improve our
actual posterior judgements.

However, there remain various important questions concerning the relationship
between belief adjustment based upon partial prior specification and the coherent
revision of beliefs. There are various foundational arguments to suggest why we
should view adjusted expectation as a primitive, the precise sense in which adjusted
expectation may be viewed as an ‘estimator’, and the general properties which may
be claimed for the estimate. Further, such arguments reverse our first interpretation
above by identifying a full Bayes analysis as a simple special case of the general
analysis which we advocate. A full foundational analysis would take us beyond the
intended scope of this book. We shall content ourselves here with a brief description
of the general relationship between belief adjustment and belief revision which
underlies our approach.

3.5 Foundational issues concerning belief adjustment

Suppose that we are now making expectation statements and that we intend to
revise these statements at some future time point, t say. Part of the informa-
tion that we shall use to revise our beliefs is the observation of the collection
D = {D1, . . . , Dk}.

To link belief statements at different times requires some form of temporal
coherence condition. The condition that we shall employ is the temporal sure
preference condition. The temporal sure preference condition is as follows: if it
is logically necessary that we will prefer a certain small random penalty U to W at
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some given future time, then we should not now have a strict preference for penalty
W over U . To separate changes in belief from changes in utility, we may suppose
that the penalties are paid in probability currency, for example in numbers of tickets
for a lottery with a fixed prize. With this penalty scale, our preferences obey the
expectation preference property, namely that preferring penalty A to penalty B is
equivalent to assigning E(A) < E(B), as expectation for the penalty corresponds
to probability of the reward.

The reasons why we base our development on the requirement that future
sure preference should be respected by today’s preference are as follows. First,
the principle does appear to be reasonable in a very wide range of problems of
uncertainty. Secondly, temporal sure preference is a very weak requirement on our
current preferences, as we only require that it should apply to sure preferences
which are a very small sub-collection of our future preferences. Further, temporal
sure preference may be viewed as a natural extension to the familiar principle
of avoiding sure loss, based, in this case, in accumulating penalties over time, in
the sense that if we break temporal sure preference then we appear to be happy
to pay to switch between penalties A and B now, in the certain knowledge that
we will subsequently be prepared to pay again to switch back to the penalty we
currently hold. Temporal sure preference is not a basic rationality criterion, but
rather an operationally testable property of our current beliefs about our future
beliefs, which we will often find it reasonable to accept. It is the minimal principle
which is sufficient to derive an operational account of the inferential content of
the subjectivist theory, for individuals with limited abilities to enumerate future
possibilities and to specify beliefs over such possibilities. When we are unwilling,
in particular circumstances, to accept the principle, then we must either modify
aspects of our beliefs, or develop from first principles any links that we are prepared
to assert between current and future beliefs.

We use the temporal sure preference principle as follows. Suppose that D =
(D1, . . . , Dk) is a vector of random quantities, whose values will definitely be a
part of the information set which is known to us by time t , at which time we shall
declare a revised expectation, Et (X), for X. From our operational definition for
expectation, at time t , we must prefer Lt = c[X − Et (X)]2 to any other penalty of
this form, and in particular Lt will be our preferred choice of penalty of the form

L(h, h0, h1, . . . , hk) = c

[
X − hEt (X)−

∑
i

hiDi

]2

.

From the temporal sure preference principle, Lt must be our preferred choice
of penalty of form L(h, h0, h1, . . . , hk) now, and by the expectation preference
property, we must therefore currently assess that

E([X − Et (X)]2) = inf
h,h0,h1,...,hk

E


[

X − hEt (X)−
∑

i

hiDi

]2

 .
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Therefore, Et (X) is the Bayes linear rule for X in the collection

(Et (X), D1, . . . , Dk),

which implies the following relationships between our adjusted expectation, our
actual posterior expectation, and the value of the outcome X, namely

X = Et (X)+ Rt(X), Et (X) = ED(X)+ St (X), (3.19)

where Rt(X), St (X) have zero expectation and are uncorrelated with each other
and with all the elements of D. Therefore, ED(X) is informative for Et (X) in
precisely the same way that Et (X) is informative for X. In this sense, ED(X) may
be viewed as a prior inference for the actual posterior judgement that we shall
make, having observed various data, of which the collection D is known to be a
part. There is no implication that ED(X) will fully express our genuine revised
belief concerning the expectation of X. Rather, a certain portion of the variance in
Et (X) is resolved by assessment of ED(X), and the ratio Var(ED(X))/Var(Et (X))

is a simple measure of the value of the belief adjustment in revising our beliefs.
We may interpret conditional probabilities in just this way, from (3.18), namely

as prior inferences for posterior beliefs via the equation

Et (X) =
∑

i

E(X|Di)Di + St (X), (3.20)

where now E(St (X)|Di) = 0, for all i. Thus, it is not usually incoherent to appear
to behave a priori as though we shall use Bayes conditioning to update our beliefs.
However, we need an additional and much stronger temporal principle in order
to move from zero conditional expectations for each St , as given in (3.20), to an
a priori belief that each such quantity is identically zero, as required in standard
interpretations of Bayesian conditioning. Such a principle must rely on the notions
that we may anticipate, a priori, all possible outcomes that we might observe, that
we may, at this time, quantify our posterior beliefs given each such combination
of outcomes, and that we will in no way change these assessments, for example by
further reflection, before we observe the conditioning events. Unlike the temporal
sure preference principle which is weak enough to apply with great generality, this
Bayesian temporal principle is so demanding that it will rarely, if ever, apply to
the real problems that we face. Thus, it is preferable to view conditioning as a
special case of prior inference, while recognizing that in certain simple standard
situations we may be able to treat conditional and posterior expectations as though
they were the same with only small loss of precision.

In summary, our view is that posterior judgements will always be subjective, for
the same reason that prior judgements are subjective, namely that the full reasoning
that we shall bring to bear is too complex to allow of a complete logical description
in advance. The relations between actual posterior revisions and belief analysis
based on partial prior specifications are stochastic, rather than deterministic, and
statements of the form (3.19) encapsulate all that can be said about the relationship
between the formal (full or linear) Bayes inference and our actual posterior beliefs.
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3.6 Example: one-dimensional problem

We begin with a simple hypothetical problem in which we intend using one quantity
X, as yet unobserved, to help reduce uncertainty about another quantity Y . To
carry out the Bayes linear analysis we need expectations and variances for X and
Y , together with a covariance between them. Suppose that these are Var(X) =
Var(Y ) = 1, Cov(X, Y ) = 0.6 = Corr(X, Y ), E(X) = 2, and E(Y ) = 1. By (3.2),
Y has adjusted expectation

EX(Y ) = E(Y )+ Cov(X, Y )

Var(X)
(X − E(X))

= 1+ 0.6(X − 2)

= 0.6X − 0.2.

The conglomerability property (3.5) is easily verified:

E(0.6X − 0.2) = 1 = E(Y ).

If instead we had specified correlations of 0.8 or 0.4 between X and Y , we
would have arrived at EX(Y ) = 0.8X − 0.6 or EX(Y ) = 0.4X + 0.2. Thus, view-
ing EX(Y ) as an estimator of Y , observe that this estimator is weakly or strongly
dependent on X according to the degree of relationship expressed beforehand, as
the prior correlation between Y and X.

The adjusted variance for Y is given by (3.11) as

VarX(Y ) = Var(Y )− Cov(X, Y )2

Var(X)
= 1− 0.62 = 0.64.

Thus in this case the adjusted variance depends only on the magnitude of the
correlation between X and Y : all the uncertainty in Y will be removed when
Corr(X, Y ) = 1 (as then Y is linearly equivalent to X), whereas X is useless
for adjusting Y when X and Y are uncorrelated. The resolved variance here is
RVarX(Y ) = 0.36, and as the prior variance was 1, the resolution – loosely the
proportion of prior variance explained – is RX(Y ) = 0.36 also.

In this first example the adjustment of Y by X has resulted in the following
partition into adjusted expectation (estimator) and residual quantity, with properties:

Y = EX(Y ) + Y − EX(Y )

= 0.6X − 0.2 + (Y − 0.6X + 0.2)

= Adjusted expectation + Residual quantity

E(Y ) = E(EX(Y )) + E(Y − EX(Y ))

= E(Y ) + 0
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Var(Y ) = Var(EX(Y )) + Var(Y − EX(Y ))

= RVarX(Y ) + VarX(Y )

= 0.36 + 0.64

= Resolved variance + Adjusted variance

3.7 Collections of adjusted beliefs

We have described how to adjust prior expectations for a single quantity, X, using
observations on a collection D = {D1, . . . , Dk}. We evaluate adjusted expectations,
adjusted versions, and adjusted variances for a collection B = {B1, . . . , Br } of
elements in the same way. We consider B, D as vectors, of dimension r and k,
respectively.

Definition 3.9 The adjusted expectation for collection B given collection D is
calculated componentwise as in (3.2), giving

ED(B) = E(B)+ Cov(B, D)Var(D)†(D − E(D)). (3.21)

Definition 3.10 We define the adjusted version of the collection B given D to be
the ‘residual’ vector

AD(B) = B − ED(B). (3.22)

Property 3.11 The properties of adjusted expectations for a random vector are as
for a single quantity:

3.11.1: For any conformable matrices A1, A2 and random vectors B1, B2,

ED(A1B1 + A2B2) = A1ED(B1)+ A2ED(B2). (3.23)

3.11.2:
E(ED(B)) = E(B) (3.24)

so that
E(AD(B)) = 0, (3.25)

the r-dimensional null vector.

3.11.3:
Cov(D, AD(B)) = 0 (3.26)

so that
Cov(ED(B), AD(B)) = 0, (3.27)

the r × k null matrix.
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Therefore, just as for a single quantity X, we partition the vector B as the sum of
two uncorrelated vectors, namely

B = ED(B)+ AD(B), (3.28)

so that we may partition the variance matrix of B into two variance components

Var(B) = Var(ED(B))+ Var(AD(B)). (3.29)

We call
RVarD(B) = Var(ED(B))

the resolved variance matrix for B by D. We call

VarD(B) = Var(AD(B))

the adjusted variance matrix, for B by D. VarD(B) is calculated as in (3.11),
namely

VarD(B) = Var(B)− Cov(B, D)Var(D)†Cov(D, B), (3.30)

so that
RVarD(B) = Cov(B, D)Var(D)†Cov(D, B). (3.31)

We define the adjusted covariance matrix, CovD(B1, B2), to be

CovD(B1, B2) = Cov(AD(B1), AD(B2))

= E([B1 − ED(B1)][B2 − ED(B2)]
T )

= Cov(B1, B2)− Cov(B1, D)Var(D)†Cov(D, B2),

and similarly the resolved covariance matrix, RCovD(B1, B2), to be

RCovD(B1, B2) = Cov(ED(B1), ED(B2))

= Cov(B1, D)Var(D)†Cov(D, B2).

3.8 Examples

3.8.1 Algebraic example

To introduce the issues involved in carrying out analyses for higher-dimensional
problems, consider the following hypothetical problem in which there are two
unknowns Y1 and Y2 of interest, and two as yet unobserved quantities X1 and X2
which we could use to learn about Y1 and Y2. We gather these quantities into the col-
lections (vectors) B = [Y1, Y2] and D = [X1, X2]. For convenience we will specify
for each of the four quantities a variance of one and an expectation of zero. We
will also suppose that Cov(Y1, Y2) = v, where |v| < 1; Cov(X1, X2) = u, where
|u| < 1; and that each pair (Yi, Xj ) has the same covariance, Cov(Xi, Yj ) = ρ.



66 BAYES LINEAR STATISTICS: THEORY AND METHODS

Notice, before we carry out any adjustments, that we cannot distinguish (as far as
the specified beliefs are concerned) between Y1 and Y2 or between X1 and X2, so
that we expect a large degree of symmetry in the analysis. The vector of expec-
tations and the joint covariance (and in this case correlation) matrix over these
quantities are

E

([
D

B

])
= E






X1
X2
Y1
Y2




 =




0
0
0
0


 , (3.32)

Var

([
D

B

])
=

[
Var(D) Cov(D, B)

Cov(B, D) Var(B)

]
= Var






X1
X2
Y1
Y2




 =




1 u ρ ρ

u 1 ρ ρ

ρ ρ 1 v

ρ ρ v 1


 .

(3.33)

Prior to any adjustment, we must first ensure that the belief specifications
are coherent: generally this means that we must ensure that the joint variance–
covariance matrix over all quantities is non-negative definite. In order to do this
we employ the following theorem.

Theorem 3.12 The matrix (3.33) is non-negative definite if and only if the following
three properties hold:

3.12.1: Var(D) is non-negative definite;

3.12.2: Cov(D, B) ∈ range{Var(D)};
3.12.3: Var(B)− Cov(B, D)Var(D)−Cov(D, B) is non-negative definite for

any choice of generalized inverse for Var(D).

In general, to avoid cluttering the flow of the statistical treatment we defer the
matrix algebra required for implementation of Bayes linear methods to Chapter 11,
and the implementation itself to Chapter 12, and make forward references to them
as necessary. Thus, the general form for checking non-negative definiteness con-
ditions for partitioned matrices can be found as Theorem 11.35.

To return to our example, the first condition is trivially satisfied by design.
Indeed, as we have specified |u| < 1, we can take the inverse of Var(D) in sub-
sequent equations, rather than a generalized inverse. The second condition, which
requires that Cov(D, B) be in the linear span of the columns of Var(D) (see Defi-
nition 11.23), is also satisfied in this example as Var(D) has full column rank. The
third condition is satisfied when

[
1 v

v 1

]
−

[
ρ ρ

ρ ρ

] [
1 u

u 1

]−1 [
ρ ρ

ρ ρ

]
=


1− 2ρ2

1+u
v − 2ρ2

1+u

v − 2ρ2

1+u
1− 2ρ2

1+u


 (3.34)
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is non-negative definite. This reduces to the requirement that

|ρ| ≤ 1

2

√
(1+ u)(1+ v). (3.35)

By (3.21), which is the vector analogue of (3.2), the collection B has adjusted
expectation

ED(B) = E(B)+ Cov(B, D)Var(D)†(D − E(D))

i.e.

[
ED(Y1)

ED(Y2)

]
=

[
0
0

]
+

[
ρ ρ

ρ ρ

] [
1 u

u 1

]−1 ([
X1
X2

]
−

[
0
0

])

=
[ ρ

1+u
(X1 +X2)

ρ
1+u

(X1 +X2)

]
. (3.36)

Thus, Y1 and Y2 have the same adjusted expectation – hardly surprising, because
of the symmetry amongst the prior specifications that we have noted. Observe
that increasing or decreasing the correlation between the Yi, Xj pairs results in a
straightforward strengthening or weakening of how changes in X1 and X2 affect
the estimators.

By (3.30), which is the vector analogue of (3.11), the collection B has adjusted
variance matrix

VarD(B) = Var(B)− Cov(B, D)Var(D)†Cov(D, B).

In fact, we have already calculated this matrix in (3.34) as

VarD(B) =
[

VarD(Y1) CovD(Y1, Y2)

CovD(Y2, Y1) VarD(Y2)

]
=


1− 2ρ2

1+u
v − 2ρ2

1+u

v − 2ρ2

1+u
1− 2ρ2

1+u


 . (3.37)

Observe that one of the conditions for non-negative definiteness of the joint vari-
ance–covariance matrix is thus equivalent to ensuring that the adjusted variance
matrix is non-negative definite.

The implication of the adjustment for reducing uncertainty in Y1, Y2 is as fol-
lows. We began with variances of one for Y1 and Y2, and the expected value of
fitting on the data quantities X1 and X2 is to reduce each of these variances to
1− 2ρ2/(1+ u). As the prior variances are one in each case, the resolutions are
the same as the resolved variances. For example,

RD(Y1) = 1− VarD(Y1)

Var(Y1)
= 2ρ2

(1+ u)
. (3.38)

Consequently, large proportions of variation in the Yj s would be explained for large
ρ and small u. This is the case when there is little overlap in the two data sources,
and when the data sources are strongly correlated with the Yj s. Correspondingly,
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small proportions of variation in the Yj s would be explained for small ρ and
large u. The adjusted covariances are changed by the same amounts: from v to
v − 2ρ2/(1+ u). Notice, therefore, that the adjusted correlation matrix (i.e. the
adjusted variance matrix in correlation form) is

 1 v(1+u)−2ρ2

(1+u)−2ρ2

v(1+u)−2ρ2

(1+u)−2ρ2 1


 .

The correlation between Y1 and Y2, given the data quantities, can be stronger or
weaker than at the outset, depending on the sign of v and the magnitude of ρ.

3.8.1.1 Degeneracy in the variance matrices

We are careful throughout this book to allow variance matrices exhibiting degen-
eracies – in other words, we allow that there may be one or more (but not all!)
linear combinations of the random quantities having variance zero. In this example
we have insisted that |u| < 1, |v| < 1 for algebraic convenience. However, let
us examine briefly what happens in the case of degeneracy, which occurs – for
example – when we allow u = 1. In this case we would have a non-negative def-
inite variance matrix

Var(D) =
[

1 1
1 1

]
,

corresponding to which the linear combination X1 −X2 has variance zero. The
Moore–Penrose generalized inverse (see Lemma 11.9) is

Var(D)† = 1

4

[
1 1
1 1

]
.

It is then straightforward to check for non-negative definiteness as we did in (3.34):
the condition we obtain is that we need

|ρ| ≤ 1√
2

√
(1+ v),

suggesting that (3.35) can be extended to handle |u| ≤ 1. This is indeed so, but
to make certain we need also to have checked Property 3.12.2 for this degenerate
case. To do so, we need to make sure that

[I − Var(D)Var(D)†]Cov(D, B) = 0

(see Lemma 11.28), and this is true in this case, establishing the result.
What happens if we employ an alternative generalized inverse? One such alter-

native is

Var(D)− = 1

4

[−7 1
−7 17

]
.
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Suppose that we form adjusted expectations as in (3.36), but using this generalized
inverse. We then obtain

ED(Y1) = ED(Y2) = 1

2
ρ(−7X1 + 9X2). (3.39)

Now compare (3.36) and (3.39): we have

Moore–Penrose: ED(Yi) ∝ (X1 +X2), (3.40)

an alternative: ED(Yi) ∝ (X1 +X2)− 8(X1 −X2). (3.41)

Thus, for the Moore–Penrose inverse, the adjusted expectation only depends on
(X1 +X2), the single non-zero eigenvector of Var(D). For the alternative gener-
alized inverse (and, indeed, any other choice of generalized inverse) the adjusted
expectation depends on both eigenvectors.

The two forms (3.40), (3.41) are numerically the same when all zero eigen-
vectors have observed values equal to their expectations, i.e. in cases where the
data are consistent with their prior specifications, but otherwise the answers will
be different. Consequently, the Moore–Penrose generalized inverse is the inverse
which cannot lead to adjusting by ‘impossible information’ as, uniquely, it guaran-
tees that adjusted expectations are formed from linear combinations with positive
variance.

3.8.2 Oral glucose tolerance test

For this example we return to the oral glucose tolerance test problem introduced
in Chapter 2. The problem is described in §2.4.1, the quantities of interest are
described in §2.6.1, and the results of a process of belief elicitation for the problem
are summarized in §2.7.4, and restated below, with the variance matrix also shown
in correlation form for convenience. We gather the quantities of interest into the
collections (vectors) B = {G0, G2} and D = {D0, D2}.

E(B) =
[

E(G0)

E(G2)

]
=

[
4.16
6.25

]
, E(D) =

[
E(D0)

E(D2)

]
=

[
4.16
6.25

]
, (3.42)

Var(B) =
[

Var(G0) Cov(G0, G2)

Cov(G0, G2) Var(G2)

]
=

[
1.12 0.72
0.72 2.43

]
, (3.43)

Var(D) =
[

Var(D0) Cov(D0, D2)

Cov(D0, D2) Var(D2)

]
=

[
1.12 0.72
0.72 2.43

]
, (3.44)

Cov(B, D) =
[

Cov(G0, D0) Cov(G0, D2)

Cov(G2, D0) Cov(G2, D2)

]
=

[
0.62 0.30
0.30 0.43

]
, (3.45)
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Corr(B, B) = Corr(D, D) =
[

1 0.436
0.436 1

]
, (3.46)

Corr(B, D) =
[

Corr(G0, D0) Corr(G0, D2)

Corr(G2, D0) Corr(G2, D2)

]
=

[
0.554 0.182
0.182 0.177

]
. (3.47)

Some of the principal features of the doctor’s variance and covariance specifi-
cations are as follows.

• A person is diagnosed as having at least impaired glucose tolerance if the 2-
hour blood glucose level is beyond the threshold of 7.0. For a typical elderly
person, the prior expectation E(G2) = 6.25 and variance Var(G2) = 2.43 lead
to crude two and three standard deviation intervals for G2 of about (3.13, 9.37)

and (1.57, 10.93) respectively. In each case, the upper boundary is well beyond
the diagnostic threshold, reflecting the doctor’s belief that the OGT test might
misdiagnose many elderly patients.

• She is less sure about the 2-hour measurements than she is about the fasting
measurements. Further, she has assigned a correlation of about 0.436 between
G0 and G2 and between D0 and D2.

• Her covariances specified between B and D imply that G0 and D0 are moderately
related (a correlation of about 0.554), whereas G2 and D2 are only weakly
related, with the correlation between them being about 0.177. She has also
specified about the same degree of relationship (a correlation of about 0.182)
between D0 and G2.

• Informally, the strength of correlation between two quantities determines the
degree to which one quantity can be used to help learn about another. We have
here a moderate correlation, 0.554, between D0 and G0, and small correlations
of 0.182 between D0 and G2 and 0.177 between D2 and G2, suggesting that the
fasting measurement D0 will be more informative than the 2-hour measurement
D2 in learning about both unknowns G0 and G2.

By (3.21), the collection B has adjusted expectation

ED(B) = E(B)+ Cov(B, D)Var(D)†(D − E(D))

i.e.

[
ED(G0)

ED(G2)

]
=

[
4.16
6.25

]
+

[
0.62 0.30
0.30 0.43

] [
1.12 0.72
0.72 2.43

]−1 ([
D0
D2

]
−

[
4.16
6.25

])

=
[

0.5858D0− 0.0501D2+ 2.0363
0.1904D0+ 0.1206D2+ 4.7047

]
.

It can be difficult to tell whether a small coefficient truly indicates unimportance
because of the different expectations and scalings of D0 and D2. For this reason,
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it can be useful to examine the standardized adjusted expectations,

ED(G0) = (0.62)S(D0)− (0.08)S(D2)+ 4.16,

ED(G2) = (0.20)S(D0)+ (0.19)S(D2)+ 6.25,

where S(Di) is shorthand for the standardized representation of Di (see Defini-
tion 1.1). Now each coefficient multiplies a quantity that has expectation zero and
variance unity, so that the coefficients are more readily comparable. (The constants
added in each case are the initial expectations for G0 and G2.) We see that the
adjusted expectation for G0 depends essentially on D0, plus a base value of 4.16;
whereas the adjusted expectation for G2 depends upon a rather larger base value,
plus essentially an average of the before-and-after blood glucose readings.

By (3.30), the collection B has adjusted variance matrix

VarD(B) = Var(B)− Cov(B, D)Var(D)†Cov(D, B).

In terms of the basic variances and covariances, this is[
VarD(G0) CovD(G0, Y2)

CovD(Y2, G0) VarD(Y2)

]
=

[
1.12 0.72
0.72 2.43

]

−
[

0.62 0.30
0.30 0.43

] [
1.12 0.72
0.72 2.43

]−1 [
0.62 0.30
0.30 0.43

]

=
[

0.7718 0.5658
0.5658 2.3211

]
. (3.48)

Thus, adjusting uncertainty in G0 reduces initial variance Var(G0) = 1.12 to
adjusted variance VarD(G0) = 0.7718; and reduces initial Var(D2) = 2.43 to
adjusted variance VarD(D2) = 2.3211. The variance resolutions are 31.09% and
4.48% respectively, so we expect that the value of the measurements that the doctor
makes upon herself (D0 and D2) will be to remove about a third of the uncertainty
in G0, the fasting glucose level in a typical elderly person, but only a small fraction
of the uncertainty in the typical elderly person’s 2-hour glucose level.

In summary, the implication of the adjustment is to decompose each quantity
into a residual component which we call the adjusted version and a fitted component
which we call the adjusted expectation. As such, for each quantity we decompose
the initial variation into portions remaining and resolved. The decompositions are
shown in Table 3.1.

One of the questions of interest for this example is whether blood glucose levels
act in the same way for healthy young and healthy elderly patients fed glucose as
part of the OGT test. The suspicion is that glucose levels are generally higher for the
elderly, and may also take longer to drop to the fasting level after ingestion of glu-
cose, so that the 2-hour measurement may falsely indicate diabetes. This suggests
that we examine the difference between the fasting measurement and the 2-hour
measurement (i.e the blood glucose levels before and 2 hours after ingesting the
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Table 3.1 Summary of decompositions.

G0 = Adjusted version + Adjusted expectation
= G0 − ED(G0) + ED(G0)

= G0 − (0.56D0 − 0.05D2 + 2.04) + 0.56D0 − 0.05D2 + 2.04

Var(G0) = VarD(G0) + RVarD(G0)

= Var(G0 − ED(G0)) + Var(ED(G0))

1.12 = 0.77 + 0.35
100% = 68.91% + 31.09%
initial = remaining uncertainty + resolved uncertainty

Var(G2) = VarD(G2) + RVarD(G2)

2.43 = 2.32 + 0.11
100% = 95.52% + 4.48%

glucose). Thus we construct Gh = G2 −G0 and explore how we may use the doc-
tor’s own measurements to reduce uncertainties about it. We obtain E(Gh) = 2.09,
Var(Gh) = 2.11, Cov(Gh, D0) = −0.32, and Cov(Gh, D2) = 0.13. A priori, a two
standard deviation interval for Gh is given by 2.09± 2.91, corresponding to a ten-
tative belief that the blood glucose level after 2 hours is still greater than the
fasting level, but allowing for the possibility that we may be wrong. The adjusted
expectation and standardized adjusted expectation for Gh are

ED(Gh) = E(Gh)+ Cov(Gh, D)Var(D)†(D − E(D)) (3.49)

= 2.09+ [−0.32 0.13
] [1.12 0.72

0.72 2.43

]−1 ([
D0
D2

]
−

[
4.16
6.25

])
(3.50)

= −0.3954D0 + 0.1707D2 + 2.6683 (3.51)

= −0.4185 S(D0)+ 0.2660 S(D2)+ 2.09. (3.52)

The adjusted variance for Gh is

VarD(Gh) = Var(Gh)− Cov(Gh, D)Var(D)†Cov(D, Gh)

= 2.11− [−0.32 0.13
] [1.12 0.72

0.72 2.43

]−1 [−0.32
0.13

]

= 1.9613. (3.53)

The adjusted variance of 1.9613 is hardly reduced from the prior variance of
2.11 – a reduction of only about 7% in fact – and so the data are not expected
to be very informative for the difference between the two glucose measurements.
Indeed, the two adjusted standard deviation interval around our prior expectation
continues to include zero. The adjusted expectation is intuitively reasonable: larger
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than expected observed values of D0 (D2) will cause us to revise downwards
(upwards) our expectations for the difference. We return, in §3.11.3, to why the
data are expected to be so uninformative for Gh.

3.8.3 Many oral glucose tolerance tests

Using only a single pair of observations on herself, we have seen only a small fall in
adjusted variance for the quantities of interest. Suppose the doctor now decides that
she could take more observations into account, perhaps by taking measurements
from a sample of further healthy elderly people, perhaps from patients attending
her clinics for check-ups. Indeed, let us suppose that she takes a sample of n

such people, that she labels her measurements as Di0 and Di2 for the ith person
measured, and that she collects these into the vector Di (any confusion between
D0, D2, Di should be resolved from context). Assuming that these n people form
a random sample of the typical elderly people that she has in mind, expectation
and variance–covariance specifications are as in (3.42) to (3.45). That is,

E(Di) =
[

E(Di0)

E(Di2)

]
=

[
4.16
6.25

]
, (3.54)

Var(Di) =
[

Var(Di0) Cov(Di0, Di2)

Cov(Di0, Di2) Var(Di2)

]
=

[
1.12 0.72
0.72 2.43

]
, (3.55)

Cov(B, Di) =
[

Cov(G0, Di0) Cov(G0, Di2)

Cov(G2, Di0) Cov(G2, Di2)

]
=

[
0.62 0.30
0.30 0.43

]
. (3.56)

We also need to take into account covariances between different patients. For i �= j ,

Cov(Di, Dj ) =
[

Cov(Di0, Dj0) Cov(Di0, Dj2)

Cov(Di2, Dj0) Cov(Di2, Dj2)

]
=

[
0.62 0.30
0.30 0.43

]
. (3.57)

Suppose we now carry out the adjustment of B by this information. One
approach is to arrange the n pairs of observations D10, D12, . . . , Dn0, Dn2 into the
2n× 1 vector Dn. The 2× 2n covariance matrix Cov(B, Dn) and the 2n× 2n vari-
ance matrix Var(Dn) are readily constructed from (3.54) to (3.57), and then we can
apply the adjusted expectation and adjusted variance rules (3.21) to (3.31). Amongst
the results we obtain are adjusted variances for G0 and G2 as the sample size
increases from n = 1 to n = 100 patients. These adjusted variances, together with
the adjusted variance for the 2-hour fasting difference, Gh = G0 −G2, are sum-
marized in Figure 3.1. This shows that the extra reduction in variance in all three
quantities is both quite small and very slow as more information arrives. The prior
variance for Gh is Var(Gh) = 2.11, which is expected to reduce to VarD1(Gh) =
1.9613 for n = 1, VarD2(Gh) = 1.9031 for n = 2, VarD3(Gh) = 1.8676 for n = 3,
and so forth, reducing to VarD100(Gh) = 1.6757 for n = 100. Meanwhile, the
adjusted variances for G0 and G2 converge swiftly to 0.50 and 2.00, respectively.
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Figure 3.1 The fall in adjusted variance for G0, G2, and Gh as more information arrives.

As far as the last part of this example is concerned, a number of interpretational
and methodological issues have begun to surface. We begin to see, for example,
the notion of exploring the implications of differing sample sizes for adjustments,
together with measuring the value of acquiring extra information, and explaining
the rate at which evidence accumulates. The assessment of extra evidence is treated
in detail in Chapter 5. Understanding the rate at which evidence accumulates will
follow through calculating the underlying canonical structure for the problem: we
begin to address this in the remainder of this chapter. In relation to increasing
samples sizes, it would appear that the basic calculation of adjusted expectations
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and adjusted variances requires inverting here a 2n× 2n matrix. Whilst this can be
done, for larger sample sizes we quickly exceed the capacity of whatever computer
we use to perform the calculations. It is clear from (3.54) to (3.57) that there
is substantial symmetry amongst the belief specifications. It should come as no
surprise that there is a way of exploiting such symmetries through the notion of
exchangeability. We shall show in Chapter 6 how we fully exploit exchangeability,
both to ease the computational burden and to help understand and utilize the
underlying structure of a problem such as this. Amongst other things, we shall
see, for this glucose-level example, that we need only calculate a 2× 2 inverse to
obtain full results for whatever sample size we desire.

In relation to the convergence of adjusted variances seen in Figure 3.1, notice
that the limits are the values

Var(G0)− Cov(D0, G0) = 1.12− 0.62 = 0.50,

Var(G2)− Cov(D2, G2) = 2.43− 0.43 = 2.00.

We will see in general in Chapter 6 why we see such behaviour, which aspects of
uncertainty are being resolved, and how this can be interpreted. Indeed, in §6.6 we
shall return to this example and show how such convergence links to the idea of
unresolvable residual variation for an individual, in the context of learning about
a population mean.

3.9 Canonical analysis for a belief adjustment

We have described how to adjust a belief specification by linear fitting on data.
In complex problems, it is often far from obvious how our collection of beliefs
is affected by belief adjustment. Usually, therefore, it is important for us not only
to obtain collections of adjusted values but also to understand and interpret the
overall changes in belief over the whole collection of quantities of interest. Such
an analysis, which we call canonical analysis, is helpful both in identifying the
strengths and weaknesses of competing data sets that we may choose to collect and
also in uncovering surprising and possibly unintended consequences of a particular
belief adjustment that may cause us to re-examine our overall belief specification.
In this section, we introduce some of the tools that we shall use for this purpose.

3.9.1 Canonical directions for the adjustment

When we evaluate a collection {ED(B1), . . . , ED(Bk)} of adjusted expectations,
we also implicitly evaluate the adjusted expectation and variance for each linear
combination,

∑
i hiBi , of the elements of B, by the linearity of adjusted expectation

(3.4), as

ED(hT B) = ED

(
r∑

i=1

hiBi

)
=

r∑
i=1

hiED(Bi) = hT ED(B) (3.58)
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and
RVarD(hT B) = hT RVarD(B)h. (3.59)

For a general vector C, we denote by 〈C〉 the collection of linear combina-
tions, hT C =∑

i hiCi , of elements of C. Often, we are principally interested in
how our beliefs change over 〈B〉, given an adjustment by D. For example, if
B = {B1, . . . , Bk} represents a partition, then a typical element of 〈B〉 is a linear
combination a1B1 + . . .+ akBk , i.e. the random quantity which takes value ai if
outcome Bi occurs. In this case, therefore, 〈B〉 is the collection of random vari-
ables defined over the partition, which will often be of more interest than are the
individual partition probabilities.

One way to assess the information about 〈B〉 that we expect to receive by
observing D is as follows. We first identify the particular linear combination
Y1 ∈ 〈B〉 for which we expect the adjustment by D to be most informative in
the sense that Y1 maximizes the resolution RD(Y ) over all elements Y ∈ 〈B〉 with
non-zero prior variance. From (3.15), this is equivalent to minimizing the ratio of
adjusted to prior variance. We then proceed to identify directions for which we
expect progressively less information. By analogy with similar types of canonical
variable calculations in traditional multivariate analysis, we make the following
definition.

Definition 3.13 The j th canonical direction for the adjustment of B by D is the
linear combination Yj which maximizes RD(Y ) over all elements Y ∈ 〈B〉 with
non-zero prior variance which are uncorrelated a priori with Y1, . . . , Yj−1. We
scale each Yj to have prior expectation zero and prior variance one. The values

λi = RD(Yi) = RVarD(Yi) (3.60)

are termed the canonical resolutions.

We will also refer to the canonical directions as canonical quantities. The number
of canonical directions that we may define is equal to the rank,

rB = rk{Var(B)}, (3.61)

of the variance matrix of the elements of B. The number of positive canonical
resolutions depends on the covariance matrix between B and D.

Definition 3.14 The number of positive canonical directions is

rT = rk{Cov(D, B)} ≤ min(rk{Var(B)}, rk{Var(D)}). (3.62)

When this covariance matrix is zero, none of the canonical resolutions are non-zero
and D is uninformative for linear adjustment of B. We will often be interested in
finding the largest and the smallest resolutions given D for any element of 〈B〉,
namely λ1 for the element Y1, and λrB for YrB .
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We find the canonical quantities as follows. Suppose that Var(B) is positive
definite, and so has full rank. The canonical directions and resolutions are found
by sequentially maximizing the ratio

RD(hT B) = hT RVarD(B)h

hT Var(B)h
. (3.63)

As Var(B) is positive definite, we may write Var(B) = AT A, where A is invertible,
so that we may rewrite (3.63) as

RD(hT B) = uT Mu

uT u
, (3.64)

where Ah = u and
M = (AT )−1RVarD(B)A−1.

It is straightforward to show, from (3.64), that the canonical resolutions are the
eigenvalues, λi , of M , with corresponding canonical directions hT

i B, where hi =
A−1ui and ui is the eigenvector of M corresponding to λi . Noting that u is an
eigenvector of M with eigenvalue λ if and only if h = A−1u is an eigenvector
of Var(B)−1RVarD(B) with the same eigenvalue λ, we may therefore identify the
canonical directions and resolutions with the eigenstructure of Var(B)−1RVarD(B).
We have shown the following.

Theorem 3.15 The j th canonical resolution for the adjustment of B by D is the
j th largest eigenvalue of the matrix

Var(B)−1RVarD(B).

The j th canonical direction is the linear combination hT B, where h is the eigen-
vector of this matrix corresponding to this eigenvalue, scaled to prior expectation
zero and variance one.

When Var(B) is not of full rank, then we may replace Var(B)−1 by the corre-
sponding generalized inverse. We discuss the more general case in §12.7.

3.9.2 The resolution transform

In the preceding section, we showed that the canonical directions and resolu-
tions for the adjustment of B by D are given by the eigenstructure of a matrix
Var(B)†RVarD(B). This matrix has a central role in Bayes linear statistics. In this
section we explore some of its properties.

Definition 3.16 The resolution transform matrix is defined as

TB:D = Var(B)†RVarD(B)

= Var(B)†Cov(B, D)Var(D)†Cov(D, B). (3.65)
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When it is obvious from the context that the adjustment is evaluated over the
collection B, then we will sometimes simplify the notation by removing the explicit
dependence on B and denote the resolution transform by

TD = TB:D.

We can calculate the canonical directions Y1, . . . , YrB by finding the normed right
eigenvectors of TB:D , which we write as v1, . . . , vrB , ordered by eigenvalues

1 ≥ λ1 ≥ λ2 ≥ . . . ≥ λrB ≥ 0

and scaled, for each i, as vT

i Var(B)vi = 1, so that

Yi = vT

i (B − E(B)) and VarD(Yi) = 1− λi. (3.66)

In practice, this eigenstructure is often extracted from the equivalent form

Var(B)TB:D = RVarD(B),

in order to avoid numerical problems which may arise where some or all of the
variance specifications contain linear combinations with variance zero; see §12.7
for a full discussion. The resolution transform matrix has rank

rk{TB:D} = rT,

and this is the number of positive eigenvalues, and thus canonical resolutions, as
noted in (3.62).

For any U ∈ 〈B〉, we can write U = hT B for some h. We may consider TB:D
as a linear operator over 〈B〉 by defining

TB:D(U) = (TB:Dh)T B. (3.67)

The resolution transform is of intrinsic interest as the object which summarizes,
through the eigenstructure, all of the effects of the belief adjustment over 〈B〉.
Much of the interest of this transform derives from the following property.

Property 3.17 For any X = gT B, U = hT B ∈ 〈B〉, we have

RCovD(X, U) = Cov(X, TB:D(U)). (3.68)

Result (3.68) follows as

Cov(gT B, TB:DhT B) = gT Var(B)TB:Dh

= gT Var(B)Var(B)†Cov(B, D)Var(D)†Cov(D, B)h

= RCovD(gT B, hT B).
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3.9.3 Partitioning the resolution

The collection {Y1, Y2, . . .} forms a mutually uncorrelated ‘grid’ of directions over
〈B〉, summarizing the effects of the adjustment. Each quantity, X ∈ 〈B〉, may be
resolved along the canonical directions as

X − E(X) =
∑

i

Cov(X, Yi)Yi . (3.69)

From (3.68), we have

RVarD(X) = Cov(X, TB:D(X))

= Cov

(∑
i

Cov(X, Yi)Yi,
∑

i

λiCov(X, Yi)Yi

)

=
∑

i

λi[Cov(X, Yi)]
2. (3.70)

We can exploit this as follows.

Definition 3.18 For any X ∈ 〈B〉, the resolution partition for X is the decomposi-
tion of the overall resolution for X by D into the orthogonal resolutions accounted
for by each of the canonical directions:

RD(X) =
∑

i

ci (X)λi, (3.71)

where ci (X) = [Corr(X, Yi)]
2 (3.72)

and
∑

i

ci (X) = 1. (3.73)

The resolution partition shows that we expect to learn most about those elements
of 〈B〉 which have large correlations with those canonical directions with large
resolutions.

Definition 3.19 By analogy with the resolution for a single random quantity, we
define the resolved uncertainty for 〈B〉 given adjustment by D to be

RUD(B) =
rB∑
i=1

λi = tr{TB:D}. (3.74)

The resolved uncertainty is the sum of the resolutions for any collection of rB
elements of 〈B〉 with prior variance one, which are a priori uncorrelated.

Definition 3.20 We define the system resolution for B to be the average resolved
uncertainty for the collection, namely

RD(B) = RUD(B)

rB
= 1

rB

rB∑
i=1

λi. (3.75)
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The system resolution provides qualitatively similar information for the collection
B to that expressed by the resolution for a single quantity, X. RD(B) is the average
of the resolutions for each canonical direction, so that a value near one implies that
we expect substantial reduction in variance for most elements of 〈B〉, while a value
near zero indicates that there are a variety of elements for which the adjustment is
not expected to be informative.

3.9.4 The reverse adjustment

We may similarly evaluate the canonical directions for the adjustment of D by B,
based on the eigenstructure of

TD:B = Var(D)†RVarB(D).

The relationship between the sets of canonical directions is analogous to that for
the canonical variables constructed in a traditional canonical correlation analysis
and is as follows.

Property 3.21 If vi is an eigenvector of TB:D with eigenvalue λi , so that

TB:Dvi = Var(B)†Cov(B, D)Var(D)†Cov(D, B)vi = λivi, (3.76)

then we must also have
TD:Bv̌i = λi v̌i , (3.77)

where
v̌i = Var(D)†Cov(D, B)vi. (3.78)

Typically we scale each v̌i so that the resulting canonical direction has prior vari-
ance one. In summary, the canonical directions for the original adjustment, Yi , and
for the reverse adjustment, Y̌i , are defined respectively as

Yi = vT

i (B − E(B)) (3.79)

Y̌i = 1√
λi

vT

i Cov(B, D)Var(D)†(D − E(D)) (3.80)

= 1√
λi

ED(Yi). (3.81)

Thus, the non-zero canonical resolutions of B by D and of D by B, namely the
eigenvalues of TD:B and TB:D, are the same, and the canonical directions for the
adjustment of D by B are the scaled adjusted expectations for the rT directions with
λi > 0. For any directions with λi = 0, we have ED(Yi) = 0. In particular, just as
the quantities {Y1, . . . , YrB } are mutually uncorrelated, so also are the quantities
{ED(Y1), . . . , ED(YrB )} mutually uncorrelated, and each Yi is uncorrelated with
each ED(Yj ), j �= i, with

Cov(Yi, Y̌j ) = 0, i �= j; Cov(Yi, Y̌i ) =
√

λi. (3.82)
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3.9.5 Minimal linear sufficiency

Definition 3.22 The collections Y+ and Y̌+, consisting respectively of eigenvectors
of TB:D and TD:B corresponding to positive eigenvalues λi , are the minimal linear
sufficient collections of elements of 〈B〉 and 〈D〉 for the adjustment of B by D. We
call the collection Y̌+ the heart of the transform, denoted H(D/B).

The number of such eigenvectors corresponding to positive eigenvalues is rT. The
property of minimal sufficiency follows because (i) the adjustment of B by Y̌+ is
identical to the adjustment by D and there is no proper subset of 〈Y̌+〉 for which
this is true, and (ii) the adjustment of Y+ by D is numerically equivalent to the
adjustment of B by D and there is no proper subset of Y+ for which this is true,
so that

TB:D = TB:H(D/B). (3.83)

Therefore, we only need to measure the values in Y̌+ and assess changes in expec-
tation over Y+, although the observed values of the eigenvectors Y 0 corresponding
to zero eigenvalues may play a useful diagnostic role for our prior specifications.
We let H

⊥(D/B) represent the orthogonal complement of H(D/B) in D, a space
which is spanned by the eigenvectors corresponding to the eigenvectors Y 0.

3.9.6 The adjusted belief transform matrix

Sometimes, it is more convenient to make calculations based on an alternative
transform, given as follows.

Definition 3.23 The adjusted belief transform matrix for the adjustment of B by
D is

SB:D = I− TB:D,

where I is the identity matrix.

As with the resolution transform, when the collection B is obvious from context,
we may simplify the notation and write

SD = SB:D.

For any Y, U ∈ 〈B〉, we have

CovD(Y, U) = Cov(Y, SB:D(U)), (3.84)

so that SB:D ‘transforms’ adjusted covariance to prior covariance. Observe that
SB:D and TB:D have essentially the same eigenstructure, as W is an eigenvector of
TB:D with eigenvalue λ if and only if W is an eigenvector of SB:D with eigenvalue
1− λ.
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3.10 The geometric interpretation of belief adjustment

While, for simplicity, we have presented the basic results on belief adjustment in
matrix form, there is a natural underlying geometry for representing and analysing
belief adjustment. The framework is as follows.

For any collection of individual random quantities C, we may construct the
vector space where each Ci ∈ C is a vector and finite linear combinations of vec-
tors,

∑
i hiCi , are the corresponding combinations of random quantities. We denote

this space as 〈C〉. Covariance imposes an inner product on 〈C〉, namely (X, Y ) =
Cov(X, Y ). Variance acts as a norm over this space, namely ‖X‖2 = Var(X). As
the unit constant has zero length under this norm, we identify all quantities which
differ by a constant, or equivalently suppose that we have subtracted the prior
expectation from each quantity and equate with zero all quantities with zero vari-
ance. The squared length of a vector therefore corresponds to the prior variance.
As we adjust beliefs, the expected length of each vector is reduced by an amount
equal to the resolved variance. If C is a finite collection, then we denote 〈C〉 with
covariance inner product as [C], the (partial) belief structure over the base C. If
C is an infinite collection, then we define [C] to be the closure of the corresponding
inner product space over 〈C〉.

Orthogonality in [C] corresponds to lack of correlation. For example, if E, F

are the indicator functions corresponding to two events, then (E, F ) = 0 if and
only if E, F are independent. Two subspaces E and F are orthogonal, written
E ⊥ F , if all elements of E are uncorrelated with all elements of F .

In this formalism, the adjusted expectation ED(X) for any X ∈ [C] is the
orthogonal projection of X into [D], namely the element Y ∈ 〈D〉 minimizing
‖X − Y‖. The adjusted variance is the squared distance between the element X

and the subspace [D], and the resolved variance is the squared length of the adjusted
expectation. As ED(X) is the projection of X into D, we have

(X − ED(X)) ⊥ [D], (3.85)

and in particular (X − ED(X)) ⊥ ED(X), so that

‖X‖2 = ‖X − ED(X))‖2 + ‖ED(X)‖2,

which is the geometric form for the variance partition (3.14).
The projection ED(.) from B to D and the projection EB(.) from D to B are

adjoint transformations, that is: for X ∈ [B] and Y ∈ [D] we have, from (3.85),
that

(X, EB(Y )) = (X, Y ) = (ED(X), Y ).

Therefore, resolved covariance may be represented as

RCovD(X, Z) = (ED(X), ED(Z)) = (X, EB(ED(Z))) = (X, TB:D(Z)), (3.86)

where TB:D is the resolution transform defined as the composition of the projection
from [B] to [D] and the adjoint projection from [D] to [B], namely

TB:D(X) = EB(ED(X)). (3.87)
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TB:D is a self-adjoint operator over [B], as for each X, Z ∈ [C],

(X, TB:D(Z)) = RCovD(X, Z) = (TB:D(X), Z).

The resolution matrix defined by (3.65) is a coordinate representation of TB:D(·).
If

X = h1B1 + . . .+ hrBr ∈ 〈B〉,
h = [h1, . . . , hr ]T ,

u = [u1, . . . , ur ]T ,

then
TB:D(X) = u1B1 + . . .+ urBr

if and only if TB:Dh = u. In particular, TB:Dh = λh if and only if we have
TB:D(X) = λX.

If rB is finite, then, as TB:D is self-adjoint, the operator has a full set of
orthogonal unit eigenvectors Y1, . . . , YrB , with eigenvalues

1 ≥ λ1 ≥ . . . ≥ λrB ≥ 0.

The eigenvectors form an orthonormal basis for [B]. We may therefore express
each X ∈ [B] as X =∑

i (X, Yi)Yi . Therefore, from (3.86),

RVarD(X) =
∑

i

λi(X, Yi)
2,

so that the eigenstructure of TB:D has the properties that we have previously
identified, and, in particular, the ith canonical direction is Yi , the eigenvector of
TB:D corresponding to the ith largest eigenvalue, with canonical resolution λi .

We represent belief adjustment within this structure as follows.

Definition 3.24 If we adjust each member of the collection {B} by D, then we
obtain a new collection {AD(B1), . . . , AD(Bk)}. The belief structure with this base
is termed the adjusted belief structure of B by D and is written [B/D].

We may view [B/D] as representing a belief structure over the linear space
〈AD(B)〉. However, it is also useful to view [B/D] as an inner product space con-
structed over 〈B〉 but with the covariance inner product replaced by the adjusted
covariance inner product

(X, Y )D = CovD(X, Y ) = Cov(AD(X), AD(Y )). (3.88)

Let I represent the identity operator I(X) = X. The adjusted belief structure may
be represented by the adjusted belief transform

SB:D = I− TB:D,
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using the relation, for all X, Y ∈ [B], that

(X, Y )D = (X, SB:D(Y )). (3.89)

In this formalism, finite and infinite collections of quantities may be analysed in
identical fashion. For example, conditioning for continuous probability measures
may be expressed through projections between the corresponding belief structures.
For this case, these are the Hilbert spaces of (equivalence classes of) functions
(differing by a constant) defined over the underlying probability spaces which are
square integrable with respect to the prior probability measure, where the inner
product between two functions is covariance. As we are mainly interested, in this
account, in properties of the adjustment of finite collections, we will not here con-
sider those features which are specific to infinite collections of adjustments. General
statements of all results from functional analysis that we use may be found, for
example, in Bachman and Narici (1966).

3.11 Examples

3.11.1 Simple one-dimensional problem

We continue with our simple one-dimensional example first presented in §3.6.
The results of the previous sections concern the implications of using one col-
lection of quantities for learning about another collection of quantities, and are
thus obvious and less interesting for one-dimensional problems. However, the
basic definitions still apply and we will calculate them and discuss them briefly
before passing on to the more interesting multivariate problems given in succeeding
examples.

For a one-dimensional problem, the resolution transform matrix is, by (3.65),
a single number:

TY :X = RVarX(Y )

Var(Y )
= 0.36.

This ‘matrix’ has one eigenvalue, λ1 = 0.36, and one eigenvector v1 = α1, where
α is any appropriate scalar. The single canonical direction in this example is
thus W1 ∝ αY + const , where α is chosen so that W has prior variance one, i.e.
α = 1/

√
Var(Y ) = 1, and where we arrange the canonical direction to have prior

expectation zero. Thus, there is here a single canonical direction W1 = Y − 1 with
canonical resolution λ1 = 0.36. A canonical resolution of 0.36 indicates that 36%
of the uncertainty about Y (or any linear transformation of Y such as 3Y − 2) is
expected to be resolved by observing X.

3.11.2 Algebraic example

We return now to the simple hypothetical problem introduced in §3.8.1. By (3.65),
the resolution transform matrix is
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TB:D = Var(B)†Cov(B, D)Var(D)†Cov(D, B) (3.90)

=
[

1 v

v 1

]−1 [
ρ ρ

ρ ρ

] [
1 u

u 1

]−1 [
ρ ρ

ρ ρ

]

= 2ρ2

(1+ u)(1+ v)

[
1 1
1 1

]
. (3.91)

Here TB:D is symmetric, although this will not usually be so, and has all its entries
equal to 2ρ2/[(1+ u)(1+ v)]. The eigenvalues of (3.91) are

λ1 = 4ρ2

(1+ u)(1+ v)
and λ2 = 0,

with corresponding eigenvectors

ψ1 = α1

[
1
1

]
and ψ2 = α2

[
1
−1

]
, (3.92)

for some appropriate α1 and α2. The resulting canonical directions are thus

W1 = ψT

1 B = α1(Y1 + Y2) and W2 = ψT

2 B = α2(Y1 − Y2).

We define the canonical directions to have prior variance one, so we need to
choose α1, α2 so that Var(W1) = Var(W2) = 1, and so take α1 = 1/

√
2(1+ v)

and α2 = 1/
√

2(1− v). The quantities Y1, Y2 have prior expectation zero, so we
require no extra centring. Therefore, the canonical resolutions and directions are

λ1 = 4ρ2

(1+ u)(1+ v)
, W1 = 1√

2(1+ v)
(Y1 + Y2) (3.93)

λ2 = 0, W2 = 1√
2(1− v)

(Y1 − Y2). (3.94)

Now let us interpret the canonical structure. The quantity in [B] (i.e. the linear
combination of Y1, Y2) with the greatest variance explanation, relative to prior
variance, is the normed sum W1. Furthermore, the proportion of variance explained
is λ1, which will be large when ρ is large and u and v are small – that is, when
the Xis and Yj s are strongly correlated and when the Xi’s and Yj ’s have small
variances. Similarly, the proportion of variance explained will be small when ρ is
small and u and v are large – that is, when the Xis and Yj s are weakly correlated
and when the Xis and Yj s have large variances. Notice that the largest possible
reduction in variance is one, yielding the restriction

λ1 ≤ 1 ⇒ 4ρ2

(1+ u)(1+ v)
≤ 1,

which we saw earlier in (3.35) as a condition ensuring coherence of the belief
specifications.
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The implication from considering the second canonical quantity, W2, is that
we learn least about the normed difference between Y1 and Y2. Furthermore, as
the corresponding canonical resolution is λ2 = 0, we can in fact learn nothing
about this quantity: the data quantities D = [X1, X2] are expected to be entirely
uninformative for it. Even for such a simple two-dimensional problem as this,
this structural implication of our belief specifications may have been far from
obvious. It actually arises because the same correlation of ρ has been specified
between each Yi and Xj . To digress slightly, if we amend our covariance specifi-
cations by setting Cov(Y1, X2) = Cov(Y2, X1) = 0, then we find that the canonical
quantities remain proportional to Y1 + Y2 and Y1 − Y2, but that the correspond-
ing canonical resolutions become ρ2/[(1+ u)(1+ v)] and ρ2/[(1− u)(1− v)],
respectively. The actual values are not as important here (the two sets of belief
specifications are not directly comparable for this purpose) as the qualitative change
in structure: the alternative belief specifications lead to a situation in which it
is possible to reduce variation in all linear combinations constructed from Y1
and Y2.

To return to our original specifications, we have had the perhaps unwelcome
news that we cannot learn about Y1 − Y2. The consequences for learning about
other linear combinations such as Y1 alone, or 2Y1 − Y2, depend on how strongly
correlated each such linear combination is with the canonical directions, because
of (3.69) and (3.71). Take, for example, Y1. Its covariances (and correlations, as
all the quantities are standardized) with the canonical quantities are

Cov(Y1, W1) = Cov(Y1, α1(Y1 + Y2)) =
√

1+ v

2

Cov(Y1, W2) = Cov(Y1, α2(Y1 − Y2))=
√

1− v

2
.

Therefore, by (3.69) we may write

Y1 =
√

1+ v

2
W1 +

√
1− v

2
W2, (3.95)

and it is immediately clear that Y1 is more strongly related to W1 than to W2 when
v is positive.

By (3.71), the proportion of variance in Y1 explained by the data quantities can
be partitioned into additive contributions from each of the canonical quantities. We
have here, by (3.72),

c1(Y1) = [Corr(Y1, W1)]
2 = 1+ v

2
, (3.96)

c2(Y1) = 1− v

2
. (3.97)
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Thus, by (3.71), the resolution in Y1 by adjusting by D must be equal to

RD(Y1) = c1(Y1)λ1 + c2(Y1)λ2

= 1+ v

2

4ρ2

(1+ u)(1+ v)
+ 1− v

2
× 0

= 2ρ2

1+ u
, (3.98)

as we saw in (3.38). The canonical analysis has thus revealed that the amount of
variation in Y1 accounted for is due to how much we learn in the canonical direction
W1, and to how strongly Y1 and W1 are correlated. There is no contribution to
variance resolution in the second canonical direction W2 as nothing can be learnt
about this direction. Notice also that

RD(W1) = λ1 = 4ρ2

(1+ u)(1+ v)
≥ RD(Y1) = 2ρ2

1+ u
≥ RD(W2) = λ2 = 0,

(3.99)
illustrating that resolutions for all linear combinations of Y1 and Y2 are bounded
by the maximal and minimal canonical resolutions for the adjustment.

The arguments work similarly for other quantities of interest, for example
Y ∗ = 2Y1 − Y2. As we have

Corr(Y ∗, W1) =
√

1+ v

2(5− 4v)

Corr(Y ∗, W2) = 3

√
1− v

2(5− 4v)
,

it follows from (3.71) that

RD(Y ∗) = 1+ v

2(5− 4v)

4ρ2

(1+ u)(1+ v)
+ 3

1− v

2(5− 4v)
× 0

= 2ρ2

(5− 4v)(1+ u)
. (3.100)

Compare (3.100) with (3.98). For positive v we expect to learn less about Y ∗ than
we do about Y1 because Y ∗ is more weakly related to the canonical direction W1,
the only direction in which we expect to learn anything. Notice how simple it is
to deduce from the canonical structure the expected effects of belief adjustment
for any linear combination of the adjusted quantities, simply through correlations
with the canonical quantities and their resolutions.

A simple guide as to the value of the data quantities for explaining variation in
the quantities in the collection of interest taken as a whole is given by the average
canonical resolution (3.75). Such measures are especially useful when applied to
very complicated models with many quantities where it is impractical to assess the
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effects of belief adjustment at the lowest level of individual quantity, and where it is
efficacious to make assessments over possibly quite large collections of unknowns.
In this simple hypothetical example, Var(B) has rank two (there are two axes of
variation), with canonical resolutions respectively 4ρ2/[(1+ u)(1+ v)] and zero,
so that the average resolution is RD(B) = 2ρ2/[(1+ u)(1+ v)].

The canonical quantities may, of course, themselves be adjusted directly. Gather
them into the collection W = [W1, W2] and adjust by the collection D. We know
already that the prior and resolved variance matrices are

Var(W) =
[

1 0
0 1

]
, RVarD(W) =

[
λ1 0
0 λ2

]
=

[
4ρ2

(1+u)(1+v)
0

0 0

]
.

We can calculate the adjusted expectations directly, by (3.21), or by exploiting the
linearity of adjusted expectation (3.23). We have from (3.93), (3.94),

W =

 1√

2(1+v)

1√
2(1+v)

1√
2(1−v)

− 1√
2(1−v)


B. (3.101)

Thus, recalling that we obtained ED(B) as (3.36),

ED(W) =

 1√

2(1+v)

1√
2(1+v)

1√
2(1−v)

− 1√
2(1−v)


ED(B) (3.102)

=

 1√

2(1+v)

1√
2(1+v)

1√
2(1−v)

− 1√
2(1−v)


[ ρ

1+u
(X1 +X2)

ρ
1+u

(X1 +X2)

]
(3.103)

i.e.

[
ED(W1)

ED(W2)

]
=

[ 2ρ

(1+u)
√

2(1+v)
(X1 +X2)

0

]
. (3.104)

Notice that ED(W2) = 0 is forced as we have already discovered that the data
quantities X1 and X2 are useless for predicting W2, and so the adjusted expectation
cannot differ from the prior expectation of zero.

Just as the effects of belief adjustment on uncertainties can be deduced through
the canonical quantities, so too can adjusted expectations for any linear combination
of the quantities of interest be immediately deduced from the canonical structure.
For example, we have from (3.95) that

Y1 =
√

1+ v

2
W1 +

√
1− v

2
W2

so that

ED(Y1) =
√

1+ v

2
ED(W1)+

√
1− v

2
ED(W2)
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=
√

1+ v

2
ED(W1) (3.105)

= ρ

1+ u
(X1 +X2),

as we found before in (3.36). Notice that only W1 appears in (3.105), illustrating
that only the canonical quantities which correspond to positive canonical resolutions
are necessary to assess the belief adjustment over the collection B of interest. In
this context, W1 is minimal linear sufficient for the collection B.

In fact we can develop this idea of minimal linear sufficient collections (dis-
cussed in §3.9.5) further. Suppose that we reverse our notion of adjustment in this
example and think instead of adjusting D by B (rather than B by D). The calcu-
lations are in general as straightforward as the other calculations in this example.
However, in this case, thanks to the symmetry in the specifications, we can obtain
all the results for the adjustment of D by B by taking the results of the adjustment
of B by D, and simply swapping v with u and X with Y wherever they appear.
For example, the canonical resolutions and canonical quantities for the reverse
adjustment are (swapping u, v and X, Y in (3.93), (3.94)):

λ̌1 = 4ρ2

(1+ u)(1+ v)
, W̌1 = 1√

2(1+ u)
(X1 +X2), (3.106)

λ̌2 = 0, W̌2 = 1√
2(1− u)

(X1 −X2). (3.107)

Notice that the canonical resolutions for the two adjustments TB:D and TD:B must
be identical, λ1 = λ̌1, λ2 = λ̌2, by (3.76).

It is clear so far from (3.36) and (3.104) that the adjusted expectations for
any quantity constructed from the basic quantities of interest in B seem to depend
only upon multiples of the sum X1 +X2, now identified as the sole canonical
quantity W̌1 for the reverse adjustment having a positive resolution. Indeed, this
single quantity is minimal linear sufficient for the collection D for adjusting the
collection B. As we have already discovered that W1 is minimal linear sufficient for
B, we conclude that all aspects of adjustment in either direction are carried solely
by W1, W̌1, and covariances with the other quantities of interest. The canonical
structure for the reverse adjustment can, in fact, be deduced directly from the
canonical structure for the main adjustment. For example, by (3.81) we have

W̌1 = 1√
λ1

ED(W1)

=
√

(1+ u)(1+ v)

4ρ2

2ρ

(1+ u)
√

2(1+ v)
(X1 +X2), by (3.93), (3.104)

= 1√
2(1+ u)

(X1 +X2),
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which we found in (3.106). That is, the canonical quantities for the reversed adjust-
ment are the scaled adjusted expectations for the canonical quantities of the main
adjustment.

The findings in this section trail some important ideas which we will develop
later. Two important special cases are as follows. First, full exchangeability arises
when u = v = ρ, so that this is the case where we sample two individuals from a
population and where we want to predict values for two other individuals. There
are obvious simplifications we can make to the formulae of this section in this
case, but the feature that learning takes place via means remains key. We will
explore some of the issues by extending this example to full exchangeability in
§6.13. Secondly, this example provides a foretaste of analysing co-exchangeable
samples from two populations. Again, we develop the example in this context
more fully in §7.3, and again we will see that the relationships between the two
samples comes through the corresponding sample means. Such mean linkage is
a fundamental consequence of exchangeability which we will strongly exploit in
subsequent chapters.

3.11.3 Oral glucose tolerance test

For this example we return to the oral glucose tolerance test problem for which we
have already calculated adjusted expectations and adjusted variances in §3.8.2. The
canonical directions are found by calculating the eigenstructure of the resolution
matrix given by (3.65):

TB:D =
[

1.12 0.72
0.72 2.43

]−1 [
0.62 0.30
0.30 0.43

] [
1.12 0.72
0.72 2.43

]−1 [
0.62 0.30
0.30 0.43

]

=
[

0.3336 0.1345
−0.0354 0.0050

]
.

This resolution matrix is asymmetric, as will often be the case. The canonical quan-
tities are constructed from the eigenvalues and right eigenvectors of this matrix.
For practical implementations of the theory, it is more convenient to calculate the
canonical structure from a symmetrized version of TB:D; details may be found in
Chapter 12. The canonical quantities are found to be

W1 = 1.0059G0 − 0.1136G2 − 3.4745, (3.108)

W2 = 0.3020G0 − 0.7039G2 + 3.1431, (3.109)

with corresponding canonical resolutions

λ1 = 0.3184, λ2 = 0.0202. (3.110)

The overall resolution is RUD(B) = 0.3184+ 0.0202 = 0.3386, whereas there are
two different axes of variation as the rank of the prior variance matrix over B is
two. Thus, the resolution for the overall collection is

RD(B) = 0.3386/2 = 0.1694, (3.111)
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so that the collection of measurements D that the doctor makes upon herself is
expected on average to reduce by about 17% uncertainties in the collection B of
measurements for a typical elderly person. Notice that both canonical resolutions
are positive, unlike the situation in the previous example, so that W1 and W2
together are necessary to constitute a minimal linear sufficient collection for B.

It is useful to portray the canonical quantities in terms of the standardized
versions (Definition 1.1) of G0 and G2:

W1 = 1.0645 S(G0)− 0.1771 S(G2), (3.112)

W2 = 0.3196 S(G0)− 1.0972 S(G2). (3.113)

Thus, the linear combination of quantities in 〈B〉 about which we expect to learn
most is W1, and we expect to remove about 31.84% of our uncertainty in this direc-
tion. Any other linear combination of elements in 〈B〉 which is highly correlated
with W1 will likewise have a similar variance reduction. The second canonical
quantity W2 represents the direction in which we expect to learn least. Its resolu-
tion of only about 2.02% suggests that we learn almost nothing about both W2 and
linear combinations highly correlated with W2. The magnitude of the coefficients in
(3.112) indicates that the first canonical quantity is more strongly related to G0 than
to G2, whereas the reverse is true for the second canonical quantity. Therefore, tak-
ing into account the canonical resolutions of about 31.84% and 2.02% respectively,
the data quantities (D0 and D2, the doctor’s own fasting and 2-hour measurements)
are expected to be much more informative for G0 (the typical elderly person’s fast-
ing glucose measurement) than for G2 (the corresponding 2-hour measurement).
This confirms what we saw in §3.8.2, where we calculated VarD(G0) = 31.09%
and VarD(G2) = 4.48%. Notice that these resolutions are necessarily bounded by
the canonical resolutions:

λ2 = 0.0202 < 0.0448, 0.3109 < 0.3184 = λ1.

As the second canonical resolution is so small, we conclude that, for the purpose
of learning about G0 and G2, the information contained in [D] is essentially one-
dimensional: we reduce uncertainty only in the direction of W1. Examination of
the standardized form of the first canonical direction W1 above shows that G0 is
the major component, whereas G2 is the major component of W2. Hence, we are
learning mostly in the direction of G0, and learning very little in the direction of
G2. This can be confirmed by examining the resolution partition, exploiting (3.71),
which is as follows.

Resolution partition
Quantity W1 W2 Total
G0 0.3103 0.0005 0.3109
G2 0.0263 0.0185 0.0448

This shows that the overall explained proportion of variance for G0 is 31.09%,
i.e. 31.03%+ 0.06%, with most of the learning in the direction W1, and a trivial
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contribution of 0.06% in the direction of W2. The corresponding breakdown for
G2 is RD(G2) = 0.0448 = 0.0263+ 0.0185, so that the two canonical directions
offer modest but more balanced variance reductions for G2.

Now we return briefly to the difference quantity Gh = G2 −G0 which we
constructed in §3.8.2. It should now be clear that we could have deduced its
adjusted expectation and variance without physically constructing it, using (3.69)
and (3.71). We found earlier that Gh had variance 2.11 and adjusted variance
1.9613, so that the proportion of resolved variance is RD(Gh) = 0.0705. Now we
can discover through the canonical structure just why we are doing so badly here.
We have Corr(Gh, W1) = −0.4107 and Corr(Gh, W2) = −0.9118, so that there is
a very strong correlation between Gh and the second canonical direction, about
which we expect to explain very little. The resolution partition turns out to be,
from (3.71),

RD(Gh) = (−0.41072)0.3148+ (−0.91182)0.0202

= 0.0537+ 0.0168 = 0.0705, (3.114)

making it clear that most of what we learn about Gh comes through a quite tenuous
link with the first canonical quantity, rather than through the much more strongly
related second canonical quantity, which is relatively useless for prediction.

3.11.3.1 Many tests

Suppose, as in §3.8.3, that we intend to make multiple measurements from a large
sample of similar individuals. As above, organize our two quantities of interest, G0
and G2, into the collection B, and arrange the sample of n measurements as the
collection Dn, as in §3.8.3. This collection contains 2n elements. We can calculate
the canonical structure for the adjustment of B by Dn for any desired value of n.
The resolution transform remains a 2× 2 matrix even though we are now adjusting
by a 2n-dimensional information space. We have already calculated the canonical
structure for n = 1 above, as (3.108) and (3.110), so let us see what happens when
we increase the sample size. For n = 2 we obtain

W1 = 1.0059G0 − 0.1136G2 − 3.4745,

W2 = 0.3020G0 − 0.7039G2 + 3.1431,

λ1 = 0.4071, λ2 = 0.0353;

and for n = 3 we obtain

W1 = 1.0059G0 − 0.1136G2 − 3.4745,

W2 = 0.3020G0 − 0.7039G2 + 3.1431,

λ1 = 0.4488, λ2 = 0.0471.
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We can continue with larger n, but the main features are already obvious: the
canonical directions seem to be the same, regardless of sample size, whilst the
canonical resolutions gradually increase in magnitude. These features turn out to
be the foundations of Bayes linear analysis for sampling from exchangeable pop-
ulations. We will see in Chapter 6 why the canonical directions are indeed the
same for all sample sizes; we will derive a formula which shows exactly how the
corresponding canonical resolutions increase as the sample size increases; and we
will explain how and why this core structure is so helpful in understanding the
analysis of beliefs for such problems.

3.12 Further reading

Lindley (1965) and Savage (1971) are early and enormously influential develop-
ments of the basic principles of Bayesian statistics. Bernardo and Smith (1994),
O’Hagan and Forster (2004) and Robert (2001) each give an excellent overview
of the standard Bayesian approach to statistics. The seminal works by de Finetti
(1974, 1975) develop the Bayesian approach from a viewpoint in which expec-
tation rather than probability is the natural primitive. Lad (1996) is a valuable
complement to these volumes, giving much useful background and deriving many
implications of this approach. The role of subjectivity in Bayesian statistics remains
controversial; for a current account of relevant issues, see Goldstein (2006) and
the accompanying discussion.

Stone (1963) and Hartigan (1969) are important in the early treatment of the role
of partial prior specification using moments in Bayes analysis. Mouchart and Simar
(1980) contains a useful summary of basic least squares results for Bayesian anal-
ysis. The particular form of the Bayes linear development that we have described
begins with Goldstein (1975a,b), where some of the basic properties of Bayes linear
adjustment are described in geometric form. Goldstein (1974) considers Bayes lin-
ear adjustment when we only specify bounds for our prior variance specifications.
This analysis is extended in Goldstein (1984) which considers how we may make
Bayes linear assessments when our prior specification consists of probability quan-
tiles for the variables. The canonical form for the belief adjustment is described in
Goldstein (1981), and the structure of adjusted belief spaces is described in Gold-
stein (1988a). The relationship between the Bayes linear approach and traditional
regression modelling is explored in Goldstein (1976), and this analysis is extended
in Goldstein (1980).

The practical and philosophical issues arising in the use of the Bayes linear
approach are discussed in general terms in Goldstein (1987a,b, 1994a). Goldstein
(1999) gives a short overview of the Bayes linear approach. Wooff (1992), Gold-
stein and Wooff (1995) and Wooff and Goldstein (2000b) describe the Bayes linear
approach as related to the computing language [B/D] which we have created for
carrying out Bayes linear analyses, and which was used to carry out the calculations
in this book.
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The foundational treatment that we have described, based on temporal coher-
ence relations between beliefs at different time points, is developed in Goldstein
(1983b, 1985, 1986b, 1997). While this book is concerned with the analysis of
finite collections of beliefs, this approach also casts light on problems arising in
infinite collections; see, for example, Goldstein (2001) which demonstrates how
the linear geometric formulation may help to clarify puzzling paradoxes arising in
finitely additive specifications. In Goldstein and Shaw (2004), belief adjustment is
generalized to Bayes linear kinematics which describe how adjustments may be
determined when, rather than observing data, we simply change our prior judge-
ments about the values that the data might take, allowing us to mix probabilistic
and expectation-based calculations within the same analysis.

Because of the strong relationship between Gaussian models and Bayes linear
analyses, much applied Gaussian work has direct relevance to the Bayes linear
approach; for example, much of West and Harrison (1997) may be recast from
a Bayes linear viewpoint. A particular area in which Bayes linear methods have
been applied is the analysis of computer simulators for complex physical systems,
in particular for problems with large input and output spaces; see Craig et al.
(1996, 1997, 2001) and Goldstein and Rougier (2005). For an application of the
Bayes linear approach in the water industry, for which much of the data com-
prises judgements by experts at various levels of detail, see O’Hagan et al. (1992).
For further applications, see O’Hagan (1987), Kuo (1988), Mukhopadhyay and
Vidakovic (1995), Wooff et al. (1998), Coolen et al. (2001) and Little et al. (2004).



4

The observed adjustment

We have explained how to construct adjusted expectations given a collection of
observations. After we make the observations and evaluate these adjustments, we
need informative summaries to help us to understand qualitatively the changes
in our beliefs which are suggested by these adjustments. We must also consider
whether the observations suggest that we should re-examine any aspects of our prior
formulation. Therefore, we now develop interpretative and diagnostic methodol-
ogy for analysing the observed adjustment. We begin by considering discrepancy
measures between observations and expectations. We then apply these discrepancy
measures for diagnostic evaluation of adjusted expectation, and develop the bear-
ing, or linear likelihood, for the adjustment, to allow us to interpret the changes in
beliefs implied by the adjustment.

4.1 Discrepancy

Each prior statement that we make describes our beliefs about some random quan-
tity. If we observe this quantity, then we may compare what we expect to happen
with what actually happens. For a single random quantity X, suppose that we have
only specified, a priori, the quantities E(X) and Var(X). Then a simple comparison
is as follows.

Definition 4.1 Given the observed value X = x, we define the standardized obser-
vation, S(x), and the discrepancy between the observation and the prior assessment,
Dis(x), as

S(x) = x − E(X)√
Var(X)

, (4.1)

Dis(x) = [S(x)]2 = [x − E(X)]2

Var(X)
. (4.2)

Bayes Linear Statistics: Theory and Methods M. Goldstein and D.A. Wooff
 2007 John Wiley & Sons, Ltd
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A very large value for Dis(x) might suggest, under some circumstances, that E(X)

has been misspecified or the variability of X underestimated, or the value of x

misrecorded. Similarly, a very small discrepancy might suggest an overestimate
of the variability of X. How large or small such discrepancies must be to warrant
attention, and how such misspecification should be interpreted, will depend on
the context. For example, it is quite different to carry out diagnostic checking
on our own judgements or on the judgements of others, particularly when issues
such as the competence or even the probity of the analysis may be called into
question. It is similarly quite different to carry out diagnostic checking on a small
study, where all prior judgements have been carefully made by experts in the
subject area, or to carry out such checking on the judgements for a large and
complex study, for which many of the prior judgements have been reached by fairly
crude heuristic arguments. In general, the role of simple, systematic diagnostics,
which draw attention to surprising and anomalous features of a prior specification,
increases in importance as the size and complexity of the study grow, and our
confidence decreases that each prior judgement is the product of careful reflection
and that each data value has been correctly recorded.

Therefore, we cannot give general thresholds for discrepancy measures,
although there are certain simple heuristics which may sometimes be useful. For
example, the so-called three-sigma rule (Pukelsheim 1994) states that for any
unimodal continuous random quantity, P(|S(X)| ≤ 3) ≥ 0.95, which might, on
occasion, suggest three standard deviations as a possible diagnostic threshold,
particularly when the qualitative judgement of unimodality is considered to be
applicable. For multimodal distributions, particularly with modes in the tails of
the distributions, we would expect to observe correspondingly larger discrepancy
values.

In general, the principal function of discrepancy measures is comparative. When
we make many observations, then it is useful to have simple measures which direct
our attention to whatever subsets of the observations are sufficiently aberrant from
prior specification to merit careful examination.

4.1.1 Discrepancy for a collection

For a collection of quantities, the natural counterpart to the above discrepancy
measure is as follows.

Definition 4.2 For comparing an observed data vector D = d = (d1, . . . , dk) with
the prior assessments E(D), Var(D) for the vector, calculate the discrepancy as

Dis(d) = (d − E(D))T Var(D)†(d − E(D)). (4.3)

Note that discrepancy is additive over uncorrelated sub-collections of elements of
D, i.e. if D = (D1, D2) where Cov(D1, D2) = 0, then having observed the two
sub-vectors d = (d1, d2), we have

Dis(d) = Dis(d1)+ Dis(d2). (4.4)
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The prior expected value of Dis(D) is given by

E(Dis(D)) = E((D − E(D))T Var(D)†(D − E(D)))

= E(tr{Var(D)†(D − E(D))(D − E(D))T })
= rk{Var(D)}. (4.5)

Definition 4.3 We denote the normalized discrepancy by

Dr(d) = Dis(d)

rk{Var(D)} , (4.6)

termed the discrepancy ratio for d, with prior expectation 1.

A natural heuristic for examining discrepancy ratios is to assess the magnitude
of Dr(d). This specification depends on the value of Var(Dis(D)). We may make
this specification directly, for example from observation of similar discrepancies in
related problems, or we may deduce this discrepancy from a specification of fourth
moments over the elements of D. We might make this specification directly, or
through some distributional approximation. For example, we might judge the quan-
tities D1, D2, . . . , Dk to be approximately multivariate normal. Then Dis(D) has
approximately a chi-squared distribution with r = rk{Var(D)} degrees of freedom,
with

E(Dis(D)) = r and Var(Dis(D)) = 2r.

Having obtained a value for Var(Dis(D)), we might refer to appropriate distribu-
tional tables, or we might choose a simple conservative bound using, for example,
Chebyshev’s inequality, which gives, for any k,

P

(
−k ≤ Dis(D)− r√

2r
≤ k

)
≤ 1− k−2,

which can be reorganized as

P

(
1− k

√
2

r
≤ Dr(D) ≤ 1+ k

√
2

r

)
≤ 1− k−2.

For example, setting k = 3
√

2 gives

P

(
1− 6√

r
≤ Dr(D) ≤ 1+ 6√

r

)
≤ 0.9444 (4.7)

approximately. In comparison, if we use the normal approximation not only to
suggest a reasonable value for Var(Dis(D)) but also to generate a probabilistic
specification for Dis(D), then we arrive approximately at

P

(
1− 2.7√

r
≤ Dr(D) ≤ 1+ 2.7√

r

)
= 0.9444.

Bounds such as these can be helpful in offering simple, somewhat ad hoc, heuristics
for fast routine scanning of large belief specifications. In later sections, we will
look in more detail at the construction and interpretation of different types of
discrepancy measures.
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4.1.2 Evaluating discrepancy over a basis

An equivalent method for evaluating the discrepancy starts by selecting any max-
imal collection of uncorrelated quantities W1, . . . , Wr , where r is the rank of
Var(D), each with prior mean zero and variance one. In what follows, we will
often use the particular choice W+ = (W1, . . . , Wr) which are the standardized
principal components corresponding to the non-zero eigenvalues of Var(D). The
principal components are such that Wi = aT

i (D − E(D)), where ai is the eigen-
vector of Var(D) corresponding to the ith smallest non-zero eigenvalue, and ai is
scaled so that Var(Wi) = 1; see, for example, Krzanowski and Marriott (1994). If
we observe Wi = wi , for i = 1, . . . , r , then we may evaluate the discrepancy as

Dis(d) =
r∑

i=1

w2
i . (4.8)

4.1.3 Discrepancy for quantities with variance zero

If Var(D) is not of full rank, then we may derive a further collection of (k − r)

linearly independent combinations W 0 = (Wr+1, . . . , Wk), each with prior mean
and prior variance equal to zero. The discrepancy measure Dis(d) does not depend
on the observed values wi for these remaining components. We must carry out a
separate consistency check that, for each F ∈ 〈D〉, the collection of linear com-
binations of the elements of D, with Var(F ) = 0, the observed value, F = f ,
is actually equal to the prior expectation E(F ), and it is sufficient to check that
wi = E(Wi) for i = r + 1, . . . , k. If this check fails, then we must reconsider the
status of the zero variances that we have assigned and check the validity of the
data measurements. In all of the analyses that we shall describe, we shall assume
that quantities with zero variance pass this check and take observed values equal
to their expectations.

4.2 Properties of discrepancy measures

Discrepancy may be interpreted as a summary measure over 〈D〉. We separate 〈D〉
into two subspaces, 〈D〉+, 〈D〉0, where 〈D〉+ is the set of linear combinations of the
elements of W+, and 〈D〉0 is the set of linear combinations of the elements of W 0

so that all elements of 〈D〉0 have variance zero while all non-zero members of 〈D〉+
have positive variance. For any F = hT D =∑

i hiDi ∈ 〈D〉, the observed value
of F , when D = d, is the value f =∑

i hidi . We denote by 〈d〉+ the collection of
such linear combinations of elements of d corresponding to elements hT D ∈ 〈D〉+.
For F = hT D ∈ 〈D〉+ with observed value f , we have

Dis(f ) = [hT (d − E(D)]2

hT Var(D)h
. (4.9)

Suppose we want to find the element f ∈ 〈d〉+ with maximum discrepancy.
As Var(D) is non-negative definite, we may write Var(D) = CCT . Therefore, we
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can write Dis(f ) as

Dis(f ) = [uT v]2

uT u
,

where u = CT h, v = C†(d − E(D)). Therefore, Dis(f ) is maximized at u = v, or
equivalently, when h = Var(D)†(d − E(D)). Substituting this value for h into (4.9)
gives

max
f∈〈d〉+

Dis(f ) = [d − E(D)]T Var(D)†[d − E(D)] = Dis(d) (4.10)

The element Ẇd ∈ 〈D〉+ whose observed value achieves this maximum discrep-
ancy is given as follows.

Definition 4.4 The discrepancy vector for d is given by Ẇd , where

Ẇd = ȧd
T (D − E(D))

and
ȧd = Var(D)†(d − E(D)). (4.11)

There is a natural sense in which the discrepancy vector summarizes all of
the diagnostic information in the observation, which follows from the following
geometric property. For any F = hT D ∈ 〈D〉 we have

Cov(F, Ẇd) = hT Var(D)ȧd

= hT (d − E(D)) = f − E(F ). (4.12)

Thus, Ẇd is the element of 〈D〉 which expresses the direction and the magnitude
of the observed vector in relation to the prior belief specifications, in the sense that

Cov(F, Ẇd) = 0 ⇔ f = E(F ). (4.13)

We have therefore shown that there is a single ‘direction’, Ẇd , in 〈D〉 with the
property that all differences between observations and prior expectations are in this
direction. Therefore, it will often be informative to identify this direction in order
to understand how observations differ from expectations. In particular,

Var(Ẇd) = Dis(d), (4.14)

and scaling Ẇd by some multiple, α say, to give discrepancy vector αẆd corre-
sponds to multiplying every distance f − E(F ) by α. The general idea motivating
this construction, namely to find a single random quantity which summarizes all
of the diagnostic information for a collection of random quantities, is useful in
a variety of contexts that we shall develop. In particular, a similar form of data
reduction may be applied to adjusted beliefs, as we shall describe below. The
geometric interpretation underlying all such representations is discussed in §4.10.
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4.2.1 Evaluating the discrepancy vector over a basis

An equivalent method for constructing the discrepancy vector is to select any
maximal collection of uncorrelated quantities, each with prior mean zero and vari-
ance one, for example the standardized principal components W+. If we observe
Wi = wi , i = 1, . . . , r , then we may construct the discrepancy vector as

Ẇd =
r∑

i=1

wiWi, (4.15)

so that Var(Ẇd) =∑r
i=1 w2

i . Note, therefore, the equivalence of (4.8) and (4.14).
Note also that if ẇd is the observed value of Ẇd then, from (4.12) and (4.15), we
again have

Cov(Ẇd, Ẇd) = ẇd − E(Ẇd) =
r∑

i=1

w2
i .

4.3 Examples

4.3.1 Simple one-dimensional problem

We continue with our simple one-dimensional example first presented in §3.6.
There we found that our estimator for Y was EX(Y ) = 0.6X − 0.2, and we calcu-
lated a value for our expected uncertainty for Y after we see X.

Suppose we now observe X to be x. As soon as we make an observation, it
is advisable to see whether it is consistent with the beliefs expressed about it. As
E(X) = 2 and Var(X) = 1, the standardized observation and discrepancy are,
by (4.1),

S(x) = x − 2

Dis(x) = (x − 2)2.

For example, S(4) = 2 and Dis(4) = 4. Whether or not these measures lead us to
doubt any of our specifications depends on the context. If we ourselves had carried
out a very careful prior analysis, a standardized value of 2 might seem to us quite
surprising, whereas the same standardized value obtained as part of a much larger
and more complex prior specification exercise might be rather less surprising. The
implication in the latter case may be that we need to check whether more careful
attention should have been paid to the corresponding prior specification.

4.3.2 Detecting degeneracy

One of the first tasks to perform when data become available is to check the consis-
tency of the observations with the prior specifications made about them, to reveal
potential anomalies. As an example, suppose that we intend using four quantities
X = [X1, X2, X3, X4] to help us learn about some other quantities. Indeed, suppose
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that after a prior specification exercise we arrive at the following expectation vector
and variance matrix:

E(X) =




2
2
3
−1


 , Var(X) =




3 3 3 0
3 7 3 −4
3 3 23 0
0 −4 0 4


 .

Suppose we now observe these quantities and calculate their individual standardized
observations and discrepancies as

x =




2.5
2.6
3.9
−1.2


 , x − E(X) =




0.5
0.6
0.9
−0.2


 , S(x) =




0.29
0.23
0.19
−0.10


 , Dis(x) =




0.08
0.05
0.04
0.01


 .

As such, the observations seem very much (perhaps a bit too much) in line with
the prior specification. Let us, however, carry out a discrepancy analysis. To do
so, we construct the principal components W1, . . . , W4 of Var(X), scaled to have
variance one and centred to have expectation zero. They are:

W1 = 0.0338X1 + 0.0421X2 + 0.1960X3 − 0.0084X4 − 0.7480,

W2 = 0.0768X1 + 0.2479X2 − 0.0738X3 − 0.1711X4 − 0.5992,

W3 = 0.4372X1 + 0.0845X2 − 0.0784X3 + 0.3527X4 − 0.4554,

W4 = 0.5774X1 − 0.5774X2 − 0.0000X3 − 0.5774X4 − 0.5774.

The corresponding observed values are:

w1 = −0.2202,

w2 = −0.1550,

w3 = −0.1282,

w4 = −0.0577.

Observe that Var(X) is not full rank: it has a null space W 0 = (W4). The prin-
cipal component W4, which is proportional to X1 −X2 −X4, has zero variance:
Var(W4) = 0. However, this is contradicted by the fact of the observed value of W4
differing from its expected value. In terms of the original quantities, Var(W4) = 0
implies that we know X1 −X2 −X4 to be equal to its expectation, calculated as
E(X1 −X2 −X4) = 1. However, the observed data obey x1 − x2 − x4 = 1.1 �= 1,
so that the observations are incompatible with their corresponding prior specifica-
tions. There are many possible reasons why such contradictions might occur:

• We might deliberately have constructed a prior variance matrix containing implic-
itly or explicitly zero variances, but find when we see the data that we were
wrong.
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• In constructing beliefs over many quite complicated quantities, we might not
have realized that we were building in such a strong structural relationship.

• The data are not quite what they purport to be.

In some cases we can re-examine Var(X) and decide whether Var(Wi) = 0 was
intended as a logical constraint. In any case, when such contradiction occurs we
would have no choice but to revise our prior specification.

For the range of Var(D) we have W+ = (W1, W2, W3) and the discrepancy
over this space can be determined via (4.8) as

Dis(d) =
3∑

i=1

w2
i = (−0.2202)2 + (−0.1550)2 + (−0.0577)2 = 0.0889.

This can be compared with its expected value of rk{Var(D)} = 3, from which we
conclude that the data do not appear strongly to contradict the prior specification
over W+: perhaps the data in these three dimensions are rather closer to the prior
specification than would be expected.

4.3.3 Oral glucose tolerance test

For this example we return to the oral glucose tolerance test problem. Recall that
our doctor is using herself as a guinea pig in order to learn about the validity of
the OGT test as it is interpreted for healthy elderly patients. In earlier sections we
obtained the adjusted expectation and adjusted variance corresponding to her prior
specifications. Now let us suppose that she proceeds to take the test herself and
records her blood glucose level before and 2 hours after ingesting the requisite
dose of glucose. They turn out to be as follows. D0 is observed to be d0 = 5.4 and
D2 is observed to be d2 = 9.8. (These values are genuine in the sense that they
are taken from a randomly chosen healthy elderly person who did indeed take the
OGT test in the study (Wickramasinghe et al. 1992).)

4.3.3.1 Internal data consistency

An obviously useful check is to examine whether the data are consistent with the
beliefs expressed about them. The simplest way of doing this is to standardize
the data by (4.1). For the data we saw, d0 = 5.4 and d2 = 9.8,

S(d0) = d0 − E(D0)√
Var(D0)

= 1.17, (4.16)

S(d2) = d2 − E(D2)√
Var(D2)

= 2.28. (4.17)

The corresponding discrepancies (4.2) are

Dis(d0) = 1.172 = 1.37

Dis(d2) = 2.282 = 5.19,
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each having prior expectation 1. The observation d2 might be a little suspect: the
doctor’s 2-hour reading is more than two standard deviations distant from her
expectation. The fasting measurement d0 is just over one standard deviation from
her expectation. Notice that, according to the standard World Health Organization
OGT test diagnoses shown in Table 2.1, the doctor would be classified as suffering
from impaired glucose tolerance, and would only marginally escape a presumably
incorrect diagnosis of diabetes. Informally, then, these measurements support the
doctor’s ideas about the OGT test and the elderly.

We can also check the data discrepancy over the collection D taken globally,
by evaluating (4.3) and (4.6). The discrepancy for the collection D is

Dis(d) = [
5.4− 4.16 9.8− 6.25

] [1.12 0.72
0.72 2.43

]−1 [
5.4− 4.16
9.8− 6.25

]
= 5.23,

(4.18)
with discrepancy ratio Dr(d) = 5.23/2 = 2.61 as Var(D) has rank 2. The rule of
thumb (4.7) suggests that ratios in the region of

1+ 6/
√

rk{Var(D)} = 1+ 6/
√

2 = 5.24

or above might cause alarm. Thus, the maximal data discrepancy across the col-
lection of the measurements that the doctor makes upon herself is within what
we would expect from her prior specifications. The corresponding single-quantity
discrepancies were found to be 1.37 for d0 and 5.19 for d2, so it is clear that the
observation d2 contributes most to the discrepancy assessed for the entire collec-
tion. The linear combination having the maximal discrepancy is, by (4.11), the
discrepancy vector

Ẇd = 0.2D0 + 1.4D2 − 9.6 (4.19)

= 0.22 S(D0)+ 2.18 S(D2),

which, as the larger coefficient is for D2, reiterates that the largest discrepancy is
mostly in the direction of D2. Discrepancies for any linear combination in 〈D〉
can be deduced through this one vector. For example, if we want to consider the
difference Dh = D2 −D0 between the doctor’s fasting and 2-hour blood glucose
level, we use the property (4.12) to calculate

dh − E(Dh) = Cov(D2 −D0, Ẇd)

= [−1 1
] [1.12 0.72

0.72 2.43

] [
0.2
1.4

]

= 2.31,

from which we can calculate that the discrepancy for Dh is

2.312/Var(Dh) = 2.53
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as Var(Dh) = 2.11, and consequently that the standardized value of dh is√
2.53 = 1.59.

We could equivalently obtain the discrepancy vector via an orthonormal basis
for Var(D), as discussed in §4.1.2. Such a basis is provided by the principal compo-
nents of Var(D), scaled to have variance one and centred to have expectation zero:

W1 = 0.2439D0 + 0.5517D2 − 4.4628, observed value w1 = 2.261,

W2 = 1.0215D0 − 0.4517D2 − 1.4625, observed value w2 = −0.337.

For example, we may simply compute the discrepancy as

2∑
i=1

w2
i = 2.2612 + (−0.337)2 = 5.23,

as in (4.18), and it is simple to obtain the discrepancy vector as

Ẇd = w1W1 +w2W2,

giving (4.19). For a two-dimensional problem, there is a unique direction F uncor-
related with Ẇd . For this direction we must have f = E(F ). In this example, F

is given by

F ∝ w2W1 −w1W2 = −2.39D0 + 0.84D2 + 4.73.

In k dimensions, there will be k − 1 such uncorrelated directions, for each of which
the observed value is equal to the expected value.

4.4 The observed adjustment

Suppose that we specify beliefs about a quantity, X, and then adjust these beliefs
using a collection D. When we observe the data values,

D = d = (d1, . . . , dk),

then we may evaluate the random quantity ED(X) given in (3.2).

Definition 4.5 The observed adjusted expectation is the value Ed(X), where

Ed(X) = E(X)+ Cov(X, D)Var(D)†(d − E(D)), (4.20)

with interpretation as described in §3.4 and §3.5.

4.4.1 Adjustment discrepancy

We may apply the standardized diagnostics of §4.1 to the observed random quantity
Ed(X), giving the following diagnostics.
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Definition 4.6 The standardized adjustment, Sd (X), is

Sd(X) = S(Ed (X)) = Ed (X)− E(ED(X))√
Var(ED(X))

= Ed(X)− E(X)√
RVarD(X)

, (4.21)

and the corresponding adjustment discrepancy, Disd(X), is

Disd(X) = Dis(Ed(X)) = [Ed (X)− E(X)]2

RVarD(X)
= [Sd(X)]2. (4.22)

The value of Disd(X) may suggest that our beliefs about X appear to be more or
less affected by the data than we had expected. Very large discrepancies may raise
the possibility that we have been overly confident in describing our uncertainty or
that there may be errors in our observations, while very small discrepancies may
suggest that we have been overly modest in valuing our prior knowledge about the
value of X. As with any discrepancy analysis, the investigation is exploratory, and
is intended to identify those areas of the prior specification which might require
further consideration, such as prior assumptions which were intended to simplify a
complex assessment process, and which may have seemed innocuous at the time,
but turn out to be grossly conflicting with the data outcomes.

More generally, such diagnostics provide us with qualitative and quantitative
information. If our observations appear to change substantially certain aspects of
our beliefs, then, usually, we would want to be aware of this. Even when no
simple explanation of a possible discrepancy occurs to us, aspects of our beliefs
which have changed by much less or more than we had expected will often be
of intrinsic interest. Such diagnostics are of particular importance when we make
large collections of belief adjustments, or we are checking belief adjustments made
by someone else, so that we need simple, automatic methods to call our attention
to particular aspects of the assessments which we might usefully re-examine. In
later chapters, we will suggest ways to augment these exploratory measures by
more inferential diagnostics.

4.4.2 Adjustment discrepancy for a collection

When we adjust B = (B1, . . . , Br), by a further collection D, we evaluate the
observed adjusted expectation vector Ed(B) = (Ed(B1), . . . , Ed(Br)). We may
therefore evaluate the discrepancy for the adjustment vector as follows.

Definition 4.7 The adjustment discrepancy for B is evaluated as

Disd(B) = Dis(Ed (B)) = [Ed(B)− E(B)]T RVarD(B)†[Ed (B)− E(B)], (4.23)

with corresponding adjustment discrepancy vector

Ẅd = äd
T [ED(B)− E(ED(B))] = äd

T [ED(B)− E(B)], (4.24)

where

äd = Var(ED(B))†[Ed (B)− E(ED(B))] (4.25)

= RVarD(B)†[Ed (B)− E(B)]. (4.26)
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The adjustment discrepancy has prior expectation

E(DisD(B)) = rk{RVarD(B)},
which we can show to be equal to the column rank of Cov(D, B) (see §12.6), and
is equal to rT, the number of positive canonical resolutions for the corresponding
resolution transform TB:D. Thus, a normalized version is as follows.

Definition 4.8 The adjustment discrepancy ratio for B having observed D = d is
evaluated as

Drd(B) = Disd(B)

rT

, (4.27)

with prior expectation one.

We may use similar heuristic arguments to those supporting relations such as (4.7)
to obtain corresponding guideline intervals such as

P

(
1− 6√

rT

≤ Disd(B)

rT

≤ 1+ 6√
rT

)
≤ 0.9444. (4.28)

for the adjustment discrepancy ratio.

4.4.3 Maximal discrepancy

We have, for any vector h, that

ED(hT B) = hT ED(B).

Thus, we may equate the collection 〈ED(B)〉 with the collection

{ED(F) : F ∈ 〈B〉}.
It is useful to identify the element in 〈B〉+ which leads to this maximal discrepancy.

Definition 4.9 We call
Ÿd(B) = äd

T [B − E(B)] (4.29)

the discrepancy vector in B induced by the adjustment by D, or more simply the
induced discrepancy vector.

Ÿd(B) is the element of 〈B〉+ with the most discrepant adjusted expectation,
namely

Ed (Ÿd(B)) = Disd(B) = Disd(Ÿd(B)) = RVarD(Ÿd(B)) (4.30)

= max
F∈〈B〉+

Disd(F ). (4.31)

Note, from (4.12), that the pair Ẅd, Ÿd(B) satisfy, for each F ∈ 〈B〉,
Cov(Ẅd, F ) = Cov(Ẅd, ED(F)) = Cov(Ÿd(B), ED(F))

= RCovD(Ÿd(B), F ) = Ed (F )− E(F ). (4.32)
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Therefore, Ẅd, Ÿd(B) both summarize the magnitude and direction of change in
beliefs between E(·) and Ed(·), the former with respect to directions given by the
prior variance matrix while the latter is with respect to directions determined by
the resolved variance matrix.

The adjustment discrepancy vector generates the adjustment discrepancy for
each element F ∈ 〈B〉+ according to the relation

Disd(F ) = [Ed (F )− E(F )]2

RVarD(F)
= [RCovD(F, Ÿd(B))]2

RVarD(F)

= [RCorrD(F, Ÿd(B))]2Disd(B) (4.33)

= [RCorrD(F, Ÿd(B))]2Ed(Ÿd(B)),

where RCorrD(F, Ÿd(B)) is the correlation between X and Y using the resolved
variance matrix,

RCorrD(X, Y ) = RCovD(X, Y )√
RVarD(X)RVarD(Y )

. (4.34)

4.4.4 Construction over a basis

An alternative construction for the discrepancy vector is to substitute the orthonor-
mal system derived from the canonical directions Yi for the adjustment as calculated
in (3.81) into the form (4.15), giving, for the positive canonical resolutions λi ,

Ẅd =
∑

i

1

λi

Ed(Yi)ED(Yi), (4.35)

so that

Ÿd(B) =
∑

i

1

λi

Ed(Yi)Yi , (4.36)

Disd(B) =
∑

i

Disd(Yi) =
∑

i

[Ed (Yi)]2

λi

. (4.37)

It can be informative to examine the individual terms in the above sum.

Definition 4.10 The canonical standardized adjustments are the values

Sd(Yi) = Ed (Yi)√
λi

, (4.38)

with prior expectation zero and prior variance one.

There are two types of diagnostic information given by these values. Quantitatively,
any aberrant value may require scrutiny. Qualitatively, we may look for system-
atic patterns. For example, a particularly revealing pattern would be a sequence of
decreasing absolute values, which might suggest qualitatively a false prior classi-
fication between the more and the less informative directions of adjustment.
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4.4.5 Partitioning the discrepancy

It can be informative to partition the overall data discrepancy into those aspects of
the discrepancy which are of relevance to the belief adjustment of interest and those
aspects of the discrepancy which affect residual portions of the data, and which
may therefore suggest problems with aspects of the prior specification which do not
directly influence the adjustment. We therefore partition 〈D〉 into two uncorrelated
subspaces, one spanned by the elements of the adjustment DE = ED(B) and the
other by the residual DR = AED(B)(D). From (4.4), we have, for observed vectors
DE = dE, DR = dR , the relation

Dis(d) = Dis(dE)+ Dis(dR) = Disd(B)+ Dis(dR). (4.39)

We term Dis(dR) = Dis(d)− Disd(B) the residual discrepancy for the adjustment
of B by d. Note, in particular, that if DR is the zero vector, then Dis(d) =
Disd(B).

4.5 Examples

4.5.1 Simple one-dimensional problem

We continue the example of §4.3.1. Having obtained an observed value and assessed
its consistency with beliefs specified about it, we now go ahead and evaluate the
adjusted expectation. For general X = x, we obtain

Ex(Y ) = 0.6x − 0.2,

so that a value of x = 4 leads us to an observed adjusted expectation of
Ex(Y ) = 2.2. Therefore, our prior and adjusted belief specifications are as follows.

Prior E(Y ) = 1 Var(Y ) = 1

Adjusted Ex(Y ) = 2.2 VarX(Y ) = 0.64

Change E(Y )− Ex(Y ) = 1.2 RVarX(Y ) = 0.36

Now we ask the question: was the actual change from prior expectation to adjusted
expectation surprising? Equivalently, was the change in expectation consistent
with the expected change in variance? One way of answering is to compute the
standardized change in expectation, in the form of the standardized adjustment
(4.21) and the adjustment discrepancy (4.22), which turn out in this example to
be S(Ex(Y )) = x − 2 and Disx(Y ) = (x − 2)2 for general x, and S(Ex(Y )) = 2
and Disx(Y ) = 4 for x = 4. These match the standardized values found in §4.3.1,
as they must because EX(Y ) is a simple linear combination of X. The com-
ments therein concerning the magnitude of the discrepancy thus apply equally
here.
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4.5.2 Oral glucose tolerance test

4.5.2.1 Evaluating the adjusted expectation

When we have obtained actual observations and are happy that they are consis-
tent with the beliefs expressed about them, we proceed to evaluating the adjusted
expectations obtained in §3.8.2. We had there:

ED(B) =
[

0.5858D0 − 0.0501D2 + 2.0363
0.1904D0 + 0.1206D2 + 4.7047

]
,

from which we calculate

Ed (B) =
[

Ed (G0)

Ed (G2)

]
=

[
0.5858× 5.4− 0.0501× 9.8+ 2.0363
0.1904× 5.4+ 0.1206× 9.8+ 4.7047

]

=
[

4.7085
6.9140

]
. (4.40)

From the point of view of the doctor, her belief specifications and the observations
d1 = 5.4 and d2 = 9.8 that she makes when she performs the OGT test upon herself
are consistent with her revising her expectations upwards for both G0 and G2. In
the case of the fasting blood glucose measurement, the analysis shows a revision
upwards from 4.16 to 4.71; and in the case of the following 2-hour measurement,
a revision upwards from 6.25 to 6.91.

Informally, as a very rough guide to the locations of G0 and G2, we might
decide to take intervals of about two or three standard deviations in either direction
from the expectation as being fairly likely to contain the relevant locations. For
the prior assessments we have approximately the two and three standard deviation
intervals

G0 : 4.16± 2
√

1.12 = (2.04, 6.28) and 4.16± 3
√

1.12 = (0.99, 7.33),

G2 : 6.25± 2
√

2.43 = (3.13, 9.38) and 6.25± 3
√

2.43 = (1.57, 10.93).

For the assessments after adjusting by [D] we obtain the tighter intervals

G0 : 4.71± 2
√

0.77 = (2.96, 6.46) and 4.71± 3
√

0.77 = (2.08, 7.34),

G2 : 6.91± 2
√

2.32 = (3.86, 9.96) and 6.91± 3
√

2.32 = (2.34, 11.48).

The adjusted expectation for the 2-hour blood glucose measurement is 6.91,
implying that an average healthy elderly patient will have a 2-hour reading on
the borderline between being diagnosed as healthy and being diagnosed as having
impaired glucose tolerance. Put another way, about half of the elderly will be
misdiagnosed according to the thresholds set for the OGT test. Additionally, the
fasting blood glucose level has adjusted expectation 4.71, suggesting that the elderly
have a slightly higher fasting level than do the young. Consequently, the analysis
suggests that there are static differences between the blood glucose levels for the
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young and the elderly; and dynamic differences between their abilities to cope with
fluctuations in blood glucose levels. The three standard deviation interval for G0
contains 7.0, suggesting that some healthy elderly patients would be classified as
having impaired glucose tolerance even before ingesting the extra glucose. The
three standard deviation interval for G2 contains 10.0, suggesting that a proportion
of healthy elderly patients would be wrongly classified as having diabetes.

Suppose we examine Gh = G2 −G0, the difference between the fasting and
2-hour blood glucose level for a typical elderly person, which we constructed in
§3.8.2. We can adjust Gh directly by the data quantities. The prior expectation is
that E(Gh) = 2.09. The adjusted expectation is observed to be Ed(Gh) = 2.2055,
so that the data lead to a small positive change in expectation of 0.1155. Recall
from §3.8.2 that the data were expected to be only weakly informative for learning
about Gh. The prior three standard deviation interval for Gh is (−2.27, 6.45), while
the adjusted interval is (−2.00, 6.41), with little difference between them.

4.5.2.2 Evaluating adjustment discrepancies

In the previous parts of this example, we have (1) obtained actual observations
and checked them for consistency with the beliefs specified about them a priori,
assessments which were made for the single quantities individually and collec-
tively; (2) used the data to form the observed adjusted expectations for the two
quantities of interest. It is now time to check for discrepancies amongst these
adjusted expectations. By (4.21) the individual standardized adjustments are

S(Ed(G0)) = Ed(G0)− E(G0)√
RVarD(G0)

= 0.93, (4.41)

S(Ed(G2)) = Ed(G2)− E(G2)√
RVarD(G2)

= 2.01, (4.42)

with corresponding adjustment discrepancies of Disd(G0) = 0.932 = 0.86 and
Disd(G2) = 2.012 = 4.04. Relative to the expected change (reduction) in vari-
ance, the change in expectation for G0 is about 0.93 standard deviations upward,
a change that does not trouble us greatly. However, the change for G2 is frac-
tionally over two standard deviations, and so is a little larger than we would have
expected. We saw in Table 3.1 that the expected resolution of variance was only
roughly 0.11 or 4.48% of prior, but we have seen a change in expectation of
6.91− 6.25 = 0.66 ≈ 2

√
0.11.

We can use such discrepancies as important diagnostic flags. We have seen in
this case a value larger than expected, and we should consider the following pos-
sibilities. First, the data may be more variable than expected, as Ed (G2) is further
from ED(G2) than expected. Secondly, the resolved variation RVarD(G2) may be
smaller than would be consistent with such a change in expectation, implying that
the prior variance Var(G2) may be too tight. From our earlier check for internal
data consistency, we have already noted (4.17) that the observation d2 = 9.8 is
perhaps suspect, and so in this particular case we would perhaps lean towards the
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former of these two possibilities – perhaps our doctor is not as typical a healthy
elderly person as she believes.

The implication we place upon such a diagnostic depends upon the context.
For example, if this had been the doctor’s first try at elicitation and analysis, she
might have been prepared for fairly wide discrepancies between data and belief
specifications, and might thereafter reconsider her prior specification. On the other
hand, the doctor may have substantial experience in quantifying her knowledge,
and so feel well calibrated, in which case larger discrepancies would be a cause of
concern and might lead to further investigation.

We began the continuation of this example by checking internal data con-
sistency by evaluating the standardized observations and discrepancies for the
individual quantities D0 and D2, and then proceeded to calculating complementary
diagnostics across the collection D globally. We continue the theme of follow-
ing individual quantity considerations by global considerations by calculating the
adjustment discrepancy for the collection B taken as a whole, given by (4.23).
We have already observed that the adjusted variance matrix for B is as given in
(3.48), and the prior variance matrix for B is given in (3.43). Consequently, the
resolved variance matrix for B is

RVarD(B) = Var(B)− VarD(B) =
[

1.12 0.72
0.72 2.43

]
−

[
0.7718 0.5658
0.5658 2.3211

]

=
[

0.3482 0.1542
0.1542 0.1089

]
. (4.43)

We also have that the change in expectation is

Ed(B)− E(B) =
[

4.7085
6.9140

]
−

[
4.1600
6.2500

]
=

[
0.5485
0.6640

]
, (4.44)

so that we obtain the adjustment discrepancy for the collection as

Disd(B) = [
0.5485 0.6640

]T

[
0.3482 0.1542
0.1542 0.1089

]−1 [
0.5485
0.6640

]
= 5.23 = 2.292.

(4.45)
This represents the largest discrepancy for any linear combination of G0, G2, the
elements in B. That is, the standardized change in expectation for any new quantity
Gnew = a + b0G0 + b2G2, for any scalars a, b0, b2, is at most 2.29.

For this example, the linear combination with the most discrepant adjusted
expectation turns out to be, using (4.31),

Ÿd(B) = −3.01G0 + 10.36G2 − 52.20

= −3.19 S(G0)+ 16.14 S(G2),

where Ÿd(B) is the induced discrepancy vector for the adjustment, and we
have displayed it using the standardized and unstandardized forms of G0 and G2.
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This quantity Ÿd(B) has prior expectation zero and observed adjusted expectation
Ed(Ÿd(B)) = 5.23, which is the maximal change in adjusted expectation.

We can determine the change in expectation and the discrepancy for any
constructed linear combination of interest either directly or by exploiting (4.32)
and (4.33). In our example, one of the quantities of concern to the doctor is
the difference between the fasting and 2-hour blood glucose level for a typical
elderly person, which we constructed as Gh = G2 −G0 in §3.8.2. We can use the
resolved variance matrix (4.43) directly to deduce the resolved variance matrix for
Gh and the discrepancy vector Ÿd(B), as both are simple linear combinations of
G0 and G2:[

RVarD(Gh) RCovD(Gh, Ÿd(B))

RCovD(Gh, Ÿd(B)) RVarD(Ÿd(B))

]
=

[
0.1487 0.1155
0.1155 5.2253

]
. (4.46)

Note that this verifies that RVarD(Ÿd(B)) = 5.23 = Disd(B). We deduce immedi-
ately from (4.32) that

Ed(Gh)− E(Gh) = RCovD(Gh, Ÿd(B)) = 0.1155, (4.47)

which is the change in adjusted expectation that we saw at the foot of §4.5.2.1.
Further, the correlation between Gh and Ÿd(B) for this resolved matrix is

RCorrD(Gh, Ÿd(B)) = 0.131,

and by (4.33) the discrepancy for Gh must therefore be

Disd(Gh) = RCorrD(Gh, Ÿd(B))2Disd(B)

= 0.1312 × 5.23 = 0.09.

We can, just as easily, deduce the discrepancy for any other linear combination of
interest, through its resolved correlation with Ÿd(B).

Note that, for this example, the global measure of adjustment discrepancy
Disd(B) in (4.45) is equal to the global measure of data discrepancy Dis(d)

shown in (4.18). Referring back to §4.4.5, this is because there is no part of D

that is uninformative for B, there is no residual subspace DR , and so we have
straightforwardly Dis(d) = Disd(B). On the other hand, for the adjustment of
Gh by D there is a residual subspace DR , and we can deduce its discrepancy
via (4.39) as

Dis(DR) = Dis(d)− Disd(Gh) = 5.23− 0.09 = 5.14,

with prior expectation unity, the rank of the residual subspace. Thus, as far as the
adjustment of Gh is concerned, much of the discrepancy lies in the part of the data
which is not informative for Gh.
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4.6 The size of an adjustment

The discrepancy measures that we have so far discussed each compare changes in
expectation to prior assessments as to the magnitudes of such changes. Thus, large
discrepancies may correspond to small changes in belief, while small discrepancies
may correspond to large changes in belief. However, when we adjust beliefs over
B by observation of D, often it is only the beliefs over B which are of basic
interest, while beliefs involving D are only of interest to assist us in modifying
beliefs over B. A useful qualitative picture of the changes in our beliefs over B is
based on standardizing the change between prior and adjusted expectation by the
prior variance.

Definition 4.11 The size of the adjustment of X by D is

Sized(X) = [Ed(X)− E(X)]2

Var(X)
. (4.48)

Recall that we have decomposed X − E(X) into two uncorrelated components,
namely

X − E(X) = [X − ED(X)]+ [ED(X)− E(X)].

Sized(X) is the ratio of the observed value of the squared magnitude of the second
component, [Ed (X)− E(X)]2 to the variance of the sum of the two components,
as Var(X) = RVarD(X)+ VarD(X). Very large values of Sized(X) therefore might
signal a diagnostic warning as there would be no variance partition consistent
both with the prior variance for X and the observed change in expectation for X.
Of course, the implications of such conflict will depend on the context for the
assessment.

4.6.1 The size of an adjustment for a collection

Just as the discrepancy measure for an observed data vector may be expressed as
the maximum discrepancy for a linear combination of the elements of the vector,
by (4.10), the size of the adjustment of the collection B by D = d is defined to
be the maximum size of adjustment of such a linear combination, namely

Sized(B) = max
X∈〈B〉+

Sized(X). (4.49)

As

Sized(hT B) = [hT (Ed (B)− E(B))]2

hT Var(B)h
,

we deduce, using a similar argument to the derivation of (4.10) and (4.11), that
the choice ḣd for which Sized(hT B) achieves the maximum is

ḣd = Var(B)†[Ed (B)− E(B)], (4.50)

from which we obtain the size for a collection as follows.
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Definition 4.12 The size of the adjustment of the collection B by D = d is

Sized(B) = [Ed (B)− E(B)]T Var(B)†[Ed(B)− E(B)]. (4.51)

4.7 The bearing for an adjustment

Definition 4.13 The bearing for the adjustment of B by D = d is

Zd(B) = ḣd
T
[B − E(B)] = [Ed(B)− E(B)]T Var(B)†[B − E(B)].

The bearing expresses both the direction and the magnitude of the change between
prior and adjusted beliefs, in this case with respect to the prior covariance specifi-
cation. This is because, for any F = uT B ∈ 〈B〉, we have a property analogous to
(4.32), namely that, from (4.50),

Cov(F, Zd(B)) = uT Var(B)ḣd

= uT [Ed(B)− E(B)] = Ed(F )− E(F ). (4.52)

Therefore, for any X which is uncorrelated with Zd(B), we have

Ed(X) = E(X).

Further, if Md = αZd(B), then a bearing of Md represents α times the change
in expectation compared to a bearing of Zd(B), for every element of 〈B〉, and
from (4.52),

Sized(B) = Var(Zd(B)). (4.53)

Therefore, the bearing gives a simple representation of the magnitude and direc-
tion of the changes in belief with respect to the prior variance specification. This
is often more straightforward to interpret than the comparison using the induced
discrepancy vector, as summarized by (4.32), which is based on the adjusted vari-
ance specification, which changes with the data and so may be more complex to
analyse. In particular, representation (4.52) allows us to separate out the effects
of different aspects of a complex adjustment in a systematic fashion, as we shall
describe in the next chapter.

Corresponding to (4.33), we may generate the size of the adjustment for any
element in 〈B〉+, from (4.52) and (4.53), by the relation

Sized(F ) = [Ed(F )− E(F )]2

Var(F )
= [Cov(F, Zd(B))]2

Var(F )

= Corr(F, Zd(B))2Sized(B). (4.54)

In comparison with (4.38), observe that, for any quantity U with prior mean zero
and variance one, we have

Sized(U) = [Ed(U)]2. (4.55)
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4.7.1 Construction via a basis

Suppose that (U1, . . . , UrB ) is any collection of elements of 〈B〉 which are a priori
uncorrelated, with zero mean and variance one. The bearing for the adjustment of
B by D = d, Zd(B), may then be constructed as

Zd(B) =
rB∑
i=1

Ed(Ui)Ui. (4.56)

Zd(B) does not depend on the choice of U1, . . . , UrB . Therefore, from (4.55),

Sized(B) = Var(Zd(B)) =
rB∑
i=1

[Ed (Ui)]
2 =

rB∑
i=1

Sized(Ui). (4.57)

Now consider the full collection of canonical quantities for the adjustment,
(Y1, . . . , YrB ). These form an orthonormal basis for 〈B〉. Therefore, we may
choose Ui = Yi in (4.56), giving

Zd(B) =
rB∑
i=1

Ed (Yi)Yi

=
rT∑
i=1

Ed (Yi)Yi . (4.58)

Note that if rT < rB , the quantities (YrT+1, . . . , YrB ) have variance zero and so
we must have Ed(Yi) = E(Yi) = 0 for i = rT + 1, . . . , rB ; see §4.1.3. Comparing
(4.36) and (4.58), the induced discrepancy vector and the bearing differ only in the
weighting 1/λi . Indeed, the relationship between the coefficients äd for the induced
discrepancy vector Ÿd(B) and the coefficients ḣd for the bearing Zd(B) is

TB:Däd = ḣd . (4.59)

4.7.2 Representing discrepancy vectors as bearings

We began this chapter by discussing discrepancy vectors for collections of observa-
tions. Notice that, for any element F ∈ 〈D〉, with observed value f , we must have
Ed(F ) = f . Therefore the element of 〈D〉 with the largest standardized observation

max
F∈〈D〉

[
f − E(F )√

Var(F )

]2

,

is precisely the bearing Zd(D) of the adjustment of D by D. Thus, in the case
where we adjust a space D by itself, D = d, the various discrepancy quantities
coincide:

Dis(d) = Disd(D) = Sized(D),

ȧd = äd = ḣd ,

Ẇd = Ÿd(D) = Zd(D).
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4.8 Joint bearings

The relationship between the bearing for the adjustment of B by D and the adjust-
ment of D by B follows from the relationship (3.81) between the eigenstructures
of the two canonical structures as follows.

If Y1, Y2, . . . , YrT
and U1, U2, . . . , UrT

are the canonical directions correspond-
ing to non-zero eigenvalues for the adjustment of B by D and of D by B

respectively, with corresponding canonical resolutions λ1, λ2, . . . , λrT
, where rT

is the rank of the resolution transform matrix, then the bearing for the adjustment
of B by D and the adjustment of D by B may both be evaluated from the joint
bearing, Z(B, D), defined as follows.

Definition 4.14

Z(B, D) =
√

λ1Y1U1 +
√

λ2Y2U2 + . . .+√
λrT

YrT
UrT

. (4.60)

For observed D = d, the bearing Zd(B) is evaluated by substituting the observed
values of the vector D or equivalently the observed values Ui = ui , while for
observed B = b, the bearing Zb(D) is evaluated by substituting the observed values
of B or equivalently the values Yi = yi , so that

Zd(B) = Z(B, d) and Zb(D) = Z(b, D). (4.61)

4.9 Size diagnostics

A natural diagnostic for assessing the magnitude of an adjustment is to compare the
largest standardized change in expectation that we observe to our expectation for
the magnitude of the largest change, evaluated prior to observing D. We evaluate
the expectation of this random quantity, SizeD(B), as

E(SizeD(B)) = E([ED(B)− E(B)]T Var(B)†[ED(B)− E(B)])

= tr{E(Var(B)†[ED(B)− E(B)][ED(B)− E(B)]T )}

= tr{TB:D} =
rT∑

i=1

λi = RUD(B). (4.62)

Thus, the expected size of the adjustment is equal to the resolved uncertainty for
the structure. To compare the observed and expected values, we use the following
statistic.

Definition 4.15 The size ratio for the adjustment of B by D is

Srd(B) = Sized(B)

E(SizeD(B))
= Var(Zd(B))

RUD(B)

= [Ed(B)− E(B)]T Var(B)†[Ed(B)− E(B)]∑rT

i=1 λi

. (4.63)
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We anticipate that the ratio will be near one. Large values of the size ratio suggest
that we have formed new beliefs which are surprisingly discordant with our prior
judgements. Values near zero might suggest that we have exaggerated our prior
uncertainty. The size ratio is essentially a ratio of variances. As for our other diag-
nostic measures, we treat the ratio as a simple warning flag drawing our attention
to possible conflicts between prior and adjusted beliefs.

Sometimes, it is useful to have simple rules of thumb to suggest warning levels
for size ratios. As an example, note that were all the canonical quantities for B, D

to be jointly normally distributed, then from (4.60), (4.61) it would follow that

Var(SizeD(B)) = Var

(
rT∑
i=1

λiU
2
i

)
= 2

rT∑
i=1

λ2
i . (4.64)

Then, similarly to the argument leading to (4.7), a simple heuristic which can be
useful in examining the size ratio for the adjustment is given by Chebychev’s
inequality: for any k,

P (−k ≤ SizeD(B)−∑rT

i=1 λi√
2
∑rT

i=1 λ2
i

≤ k) ≤ 1− k−2.

The choice k = 3
√

2 leads to the interval

P


1−

6
√∑rT

i=1 λ2
i∑rT

i=1 λi

≤ SrD(B) ≤ 1+
6
√∑rT

i=1 λ2
i∑rT

i=1 λi


 ≤ 0.9444. (4.65)

In certain circumstances, we might even find it useful to approximate the dis-
tribution of SrD(B), for example by a gamma distribution. Matching the mean and
variance suggests approximating using a two-parameter gamma distribution with
shape and scale parameters

shape =
rT∑
i=1

λi, scale = 2
∑rT

i=1 λ2
i∑rT

i=1 λi

. (4.66)

Any such approximation is useful only as a simple heuristic for setting warning
limits.

4.10 Geometric interpretation

Each of the measures that we have constructed in this chapter is based on the fol-
lowing geometric idea. According to the Riesz representation theorem, any bounded
linear functional G on a closed inner product space I may be represented by a
(unique) element XG ∈ I in the sense that, for any Y ∈ I ,

G(Y) = (Y, XG). (4.67)
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Further, the norm of G is equal to the norm of XG, i.e.

‖G‖2 = max
Y∈I

[G(Y)]2

‖Y‖2
= (XG, XG). (4.68)

The various quantities discussed in the preceding sections of this chapter may
all be constructed by applying the Riesz representation to appropriate choices of
functional and inner product. In each case, the magnitudes of the prior expecta-
tions for the appropriate size measures may be directly evaluated using (4.68).
Thus, the discrepancy vector, Ẇd , follows from applying the Riesz representation
to the functional G(F) = f − E(F ), with inner product being prior variance, as
given by (4.12). The induced discrepancy vector for the adjustment, Ÿd(B), corre-
sponds to the functional G(Y) = Ed(Y )− E(Y ), with inner product being adjusted
covariance, as given by (4.32). The bearing Zd(B) corresponds to the functional
G(Y) = Ed (Y )− E(Y ), with inner product being prior covariance, as given by
(4.52). Notice in particular that the relation (4.59) between the bearing and the dis-
crepancy vector follows from the property (3.89), namely that the belief transform
transforms adjusted to prior covariance.

As we are mainly interested, in this book, in finite-dimensional spaces, we have
preferred to give simple, direct constructions for our interpretative measures. How-
ever, the generalization of these quantities to infinite collections follows naturally
by using the Riesz representation over the corresponding geometric constructions.

4.11 Linear likelihood

The bearing may be interpreted as the linear (normalized) likelihood by analogy
with the special case of a full Bayes analysis, where the bearing vector corre-
sponds to the normalized likelihood function. The correspondence is as follows.
For simplicity, suppose that B = {B1, . . . , Bk} are the indicator functions for a
finite partition, so that each Bi is 1 or 0, and

∑
Bi = 1. Now 〈B〉 is the collection

of linear combinations G =∑
i giBi . This is equivalently the collection of all finite

random variables defined on the probability space with elements {B1, . . . , Bk}. The
bearing, given observed data d, is the random quantity Zd(B) =∑

i ziBi satisfying,
for each F =∑

i fiBi ∈ 〈B〉,
Ed (F )− E(F ) = Cov(F, Zd(B)) =

∑
i

[fi − E(F )]ziP (Bi). (4.69)

Given a full joint probabilistic specification over B and D, so that

D = {D1, . . . , Dr}
also represents a finite partition, from (3.18) adjusted and conditional expectations
are the same, so that for any observed partition member d we have

Ed(F )− E(F ) =
∑

i

[fi − E(F )]P (Bi |d) =
∑

i

[fi − E(F )]
P (d|Bi)

P (d)
P (Bi),

(4.70)
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where P (d) =∑
j P (d|Bj )P (Bj ). Equating (4.69) and (4.70) gives the bearing

for the adjustment as

Zd(B) =
∑

i

P (d|Bi)

P (d)
Bi. (4.71)

Thus Zd(B) is the normalized likelihood vector, namely the random variable which,
if Bi occurs, takes value equal to the normalized likelihood of the observed data
d given Bi .

In conventional likelihood analyses, interest focuses on the individual values
taken, namely the coefficients P (d|Bi)/P (d), while our interest, primarily, is in
the composite random quantity Zd(B). However, the comparison is revealing for
the types of information provided by the bearing, which we may view as extend-
ing likelihood to general linear spaces. The extension of this representation to
continuous probability spaces follows through the Riesz representation theorem as
in §4.10.

4.12 Examples

In §4.5 we illustrated the notion of discrepancy, which relates changes in expecta-
tion to the proportion of variation explained by an adjustment. We now illustrate
a related aspect, the notion of size, which relates changes in expectation to prior
variation.

4.12.1 Algebraic example

We return now to the algebraic example considered in §3.11.2. We found there
the canonical directions W1 and W2 for the adjustment of B by D ((3.93), (3.94)),
and the canonical directions W̌1 and W̌2 for the reverse adjustment of D by B

((3.106), (3.107)). The canonical resolutions are the same, irrespective of direction
of adjustment. In summary, the canonical quantities are:

λ1 = 4ρ2

(1+ u)(1+ v)
, W1 = 1√

2(1+ v)
(Y1 + Y2),

W̌1 = 1√
2(1+ u)

(X1 +X2),

λ2 = 0, W2 = 1√
2(1− v)

(Y1 − Y2),

W̌2 = 1√
2(1− u)

(X1 −X2).

As far as an observed adjustment is concerned, we have a canonical resolution
of zero for W2 and W̌2. As such, for any data to be consistent with these beliefs
we must check that Ed (W2) = 0, i.e. that Ed (Y1 − Y2) = 0, and similarly that
Ed(X1 −X2) = 0.
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Using the non-degenerate canonical quantities we can calculate the bearings
for the two adjustments, using (4.56), as

Zd(B) = Ed (W1)W1 and Zb(D) = Eb(W̌1)W̌1.

Before we observe d and before we observe b, these are identical because W̌1 =
1√
λ1

ED(W1) and W1 = 1√
λ1

ED(W̌1), so that

Z(B, D) = ZD(B) = ZB(D) =
√

λ1W1W̌1

is the joint bearing discussed in §4.8. Suppose we now observe D = d by X1 =
x1, X2 = x2, resulting in observation of W̌1 to be

w̌1 = 1√
2(1+ u)

(x1 + x2),

then Zd(B) is quickly obtained as Zd(B) = √λ1W1w̌1. On the other hand, if
B = b is observed, for example by Y1 = y1, Y2 = y2, then W1 will be observed as

w1 = 1√
2(1+ v)

(y1 + y2),

and the bearing for the reverse adjustment is Zb(D) = √λ1w1W̌1.

4.12.2 Oral glucose tolerance test

By (4.48) the individual sizes for the adjustment are

Sized(G0) = [Ed(G0)− E(G0)]2

Var(G0)
= 0.27 = 0.522,

Sized(G2) = [Ed(G2)− E(G2)]2

Var(G2)
= 0.18 = 0.432.

Thus, relative to the prior variance, the change in expectation for G0 is about
0.52 standard deviations and the change in expectation for G2 is about 0.43 stan-
dard deviations. These changes thus appear relatively consistent with the prior
specification.

Just as we obtained a global measure of discrepancy relating changes in expec-
tation to variance resolved, we now calculate a similar global measure relating
changes in expectation to prior variance, namely the size of the adjustment for
the collection (4.51). With Ed(B)− E(B) given by (4.44) and Var(B) given by
(3.43), we obtain

Sized(B) = [Ed (B)− E(B)]T Var(B)†[Ed (B)− E(B)] (4.72)

= [
0.5485 0.6640

] [1.12 0.72
0.72 2.43

]† [
0.5485
0.6640

]

= 0.3179, (4.73)
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which represents, relative to prior variation, the largest squared change in
expectation for any linear combination of G0, G2, the elements in B. For this
example, the linear combination with the most affected adjusted expectation turns
out to be, using (4.50),

Zd(B) = 0.39G0 + 0.16G2 − 2.60 (4.74)

= 0.41 S(G0)+ 0.25 S(G2), (4.75)

where Zd(B) is the bearing for the adjustment. We have shown the bearing using
both the standardized and unstandardized forms of G0 and G2. The bearing Zd(B)

has prior expectation zero and observed adjusted expectation

Ed(Zd(B)) = 0.3179 = Var(Zd(B)) = Sized(B).

This represents the maximal change in adjusted expectation relative to prior vari-
ation.

The bearing has two principal qualities: it summarizes both the magnitude
and direction of the change in expectation. This means in general that for any
new quantity constructed from the elements in the collection being adjusted, we
can determine both the change in expectation by exploiting (4.52), and its cor-
responding size by exploiting (4.54). For example, we noted above the property
that the changes from prior expectation to adjusted expectation for quantities in B

are equivalent to the covariances of the quantities with the bearing. For example,
for G0,

E(G0)− Ed(G0) = Cov(Zd(B), G0)

= Cov(0.39G0 + 0.16G2 − 2.60, G0)

= 0.39Var(G0)+ 0.16Cov(G0, G2)

= 0.55

can be seen to be the difference between its expectation E(G0) = 4.16 and its
adjusted expectation Ed(G0) = 4.71. In this way, changes in expectation are expres-
sible solely through a covariance with the bearing, and so the magnitude of a
change in expectation for any quantity depends only upon the strength of correla-
tion between the quantity and the bearing, and upon the variance of the bearing.

As a second example, suppose that we take our example of the difference
between the fasting and 2-hour blood glucose level for a typical elderly person,
which we constructed as Gh = G2 −G0 in §3.8.2. Both Gh and the bearing Zd(B)

are simple linear combinations of the original elements G0, G2, so it is trivial to
form their prior covariance matrix: it is[

Var(Gh) Cov(Gh, Zd(B))

Cov(Gh, Zd(B)) Var(Zd(B))

]
=

[
2.1100 0.1155
0.1155 0.3179

]
. (4.76)
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Note that this verifies that Var(Zd(B)) = 0.3179 = Sized(B). We deduce immedi-
ately from (4.52) that

Ed(Gh)− E(Gh) = Cov(Gh, Zd(B)) = 0.1155,

which is the change in adjusted expectation that we saw at the foot of §4.5.2.1, and
which we also calculated via the discrepancy vector (4.47) in §4.5.2.2. We also
have that the prior correlation between Gh and Zd(B) is Corr(Gh, Zd(B)) = 0.141,
so that by (4.54) the size for Gh must be

Sized(Gh) = [Corr(Gh, Zd(B))]2Sized(B)

= 0.1412 × 0.3179 = 0.0063.

We can, just as easily, deduce the size for any other linear combination of interest,
through its resolved correlation with Zd(B).

4.12.2.1 Size diagnostics

For this example, we might be a little surprised that the size for the adjustment of
Gh is so small. It may be that, on reflection, the doctor feels that she has specified
rather too large a prior variance for Gh, and has thus understated the value of her
knowledge. In general, we would expect to find a size not too far from its prior
expectation. As such, we examine the size ratio for the adjustment, defined in
(4.63), which has expectation one.

For the adjustment of the collection B = {G0, G2} by the collection D =
{D0, D2} we have (4.73) that the size is Sized(B) = 0.3179. The expected size
of the adjustment is given (4.62) by the sum of the canonical resolutions for
the adjustment (3.60). We obtained these canonical resolutions in (3.110) as λ1 =
0.3184 and λ2 = 0.0202. Thus we have respectively a prior expectation for the
size and a corresponding size ratio of

E(SizeD(B)) = 0.3184+ 0.0202 = 0.3386, (4.77)

Srd(B) = 0.3179

0.3386
= 0.9389. (4.78)

The value of 0.9389 for this size ratio is quite close to its expectation of unity, so
we have no evidence to warn us of a conflict between data and prior specification.
If we wish, we can construct a simple rule of thumb to guide us as to when size
ratios are large. For example, the upper threshold given by (4.65) is

1+
6
√∑2

i=1 λ2
i∑2

i=1 λi

= 6.65,

so that a size ratio of 0.9389 is well within what we might regard as likely chance
variation.
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4.12.2.2 Canonical adjustment and discrepancy

It can be helpful to explore an adjustment through its canonical structure. For
this example, the adjustment of B by D has two canonical directions, W1 and
W2, which we stated in §3.11.3. These have prior expectation zero. It is simple
to determine the adjusted expectation of each canonical direction as Ed(Wi), for
example from (3.108) we have that

W1 = 1.0059G0 − 0.1136G2 − 3.4745,

where the adjusted expectations for G0, G2 are calculated in §4.5.2.1, so that

Ed(W1) = 1.0059Ed(G0)− 0.1136Ed(G2)− 3.4745

= 1.0059× 4.7085− 0.1136× 6.9140− 3.4745

= 0.4763.

Next, each canonical direction Wi has, by (4.38) and (4.55), discrepancy

Disd(Wi) = Ed (Wi)
2

λi
and size Sized(Wi) = Ed (Wi)

2, representing diagnostics rel-
ative to the resolved variation and the prior variation, respectively. Finally, the
individual canonical direction discrepancies and sizes add to give the discrepancy
and size for the collection B being adjusted. The calculations are summarized in
Table 4.1. The key feature is that the change in expectation for direction W2 is
quite highly discrepant (a large change in expectation compared to the variation
resolved), and it is discrepancy in this direction which contributes most to the dis-
crepancy in the collection. On the other hand, the size for W2 is only 0.0911, so

Table 4.1 Summary of the canonical analysis.

Quantity Resolution Adj.Expect. Discrepancy Size

RD(·) Ed (·) Disd (·) Sized (·)

Wi λi Ed (Wi)
Ed (Wi)

2

λi
Ed (Wi)

2

B
∑

λi

∑
Ed (Wi)

∑ Ed (Wi)
2

λi

∑
Ed (Wi)

2

Quantity Resolution Adj.Expect. Discrepancy Size

RD(·) Ed (·) Disd (·) Sized (·)
W1 0.3184 0.4763 0.7124 0.2268
W2 0.0202 −0.3018 4.5129 0.0911

B 0.3386 5.2253 0.3179
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that this discrepancy has limited impact. With regard to the row for the collection
B in Table 4.1, the canonical resolutions sum to give the resolved uncertainty for
the collection (3.74), which is also the prior expected value for the size of the
adjustment (4.62).
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Partial Bayes linear analysis

We have described a three-stage progression for analysing our beliefs. First, we
interpret the expected adjustments, a priori. Secondly, given observations, we inter-
pret the actual adjustments. Thirdly, we make diagnostic comparisons between
actual and expected beliefs. Often, we want to explore the ways in which different
aspects of the data and the prior specification combine to give the final adjustment.
For example, we might be combining information of different types collected in
different places by different people at different times. We therefore need to identify
which aspects of the data are, a priori, most crucial to the final adjustment, in order
to guide our choice of information collection. We also need ways to interpret and
compare diagnostically the effects of the various portions of the observed data on
our beliefs. Therefore, we now develop expressions for the partial effects of subsets
of the data, as applied to the various interpretative and diagnostic measures that
we have introduced.

5.1 Partial adjustment

In order to separate out the effects on our beliefs of different sub-collections
of data, we evaluate partial adjustments, representing the change in adjustment
resulting as we accumulate data. So, suppose that we intend to adjust our beliefs
about a collection B = {B1, . . . , Br} by observation of two further collections
D = {D1, . . . , Dj } and F = {F1, . . . , Fk} of quantities. We adjust B by the col-
lection (D ∪ F) = {D1, . . . , Dj , F1, . . . , Fk} but separate the effects of the subsets
of data. Therefore, we adjust B in stages, first by D, then adding F .

The simplest case is where the vectors D, F are uncorrelated. In this case, it
is easy to check that the adjusted expectations are additive, namely that

D ⊥ F ⇒ ED∪F (B − E(B)) = ED(B − E(B))+ EF (B − E(B)). (5.1)

Bayes Linear Statistics: Theory and Methods M. Goldstein and D.A. Wooff
 2007 John Wiley & Sons, Ltd



126 BAYES LINEAR STATISTICS: THEORY AND METHODS

When D, F are correlated vectors, then we obtain a modified additivity, by remov-
ing the ‘common variability’ between F and D, as follows. For any vectors D, F ,
the vectors D, AD(F) are uncorrelated, and the collections of linear combinations
〈D ∪ F 〉, 〈D ∪ AD(F)〉 are the same. From (5.1) we therefore have, for any D, F ,
that

ED∪F (B − E(B)) = ED(B − E(B))+ EAD(F )(B − E(B)). (5.2)

We may assess the extra effect of adjusting B by F given that we have already
adjusted by D, defined as follows.

Definition 5.1 The partial adjustment of B by F given D, denoted by E[F/D](B),
is

E[F/D](B) = ED∪F (B)− ED(B). (5.3)

Observe, from (5.2), that

E[F/D](B) = EAD(F )(B − E(B)).

Geometrically, the linearity relation

ED∪F (B) = ED(B)+ E[F/D](B) (5.4)

follows as the orthogonal projection of B into [D ∪ F ] is equivalent to the orthog-
onal projection of B into [D] plus the orthogonal projection of B into the space
spanned by the orthogonal complement of D in F , namely [F/D]. Therefore, the
additional adjustment of B by F , given that we have already adjusted by D, is
the same as the adjustment of B by [F/D]. Equation (5.4) gives the sequential
construction for the overall adjusted expectation, ED∪F (B). The corresponding
adjusted quantity AD∪F (B) can be sequentially constructed as

AD∪F (B) = B − ED∪F (B) = B − ED(B)− E[F/D](B)

= (B − ED(B))− E[F/D](B − ED(B))

= AAD(F )(AD(B)), (5.5)

as E[F/D](ED(B)) = E(AD(B)) = 0. Therefore, to adjust B by D and F , we may
first adjust both B and F by D and then adjust the adjusted form AD(B) by
AD(F). Notice, in particular, that the ‘residuals’ from sequential adjustments are
uncorrelated, i.e.

Cov(AD∪F (B), AD(F)) = 0. (5.6)

This follows as AD∪F (B) is uncorrelated with D ∪ F , and AD(F) ∈ 〈D ∪ F 〉.
We may represent this sequential adjustment alternatively in terms of the

adjusted belief structures, so that we have

[B/(D ∪ F)] = [[B/D]/[F/D]]. (5.7)
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Relations (5.4) and (5.7) summarize the operations that we perform to evaluate
adjusted expectations and variances in stages, namely that we may adjust all beliefs
by D and then further adjust all adjusted beliefs by F .

These relations correspond to the analogous properties for probabilistic con-
ditioning, whereby we progressively condition all probabilities on information
obtained from a sequence of observations. For example, for any three events
A, B, C we have

P(A|B ∩ C) = P(A ∩ B|C)

P(B|C)
.

Thus, we may input pieces of information sequentially in a probabilistic analysis,
updating our beliefs at each stage by simple conditioning on our current distri-
bution. We do not need to refer explicitly to previous evidence, as its evidential
content is covered by the conditioning. In the same way, we can extract a belief
structure from an adjustment, simply by adjusting each of the remaining structures
by this structure.

5.2 Partial variance

In §3.3, we described how the adjustment of collection B by H separated B into
two uncorrelated components,

B = EH (B)+ (B − EH (B)).

Dividing H as H = D ∪ F , we further decompose B − EH (B), and write

B = ED(B)+ [ED∪F (B)− ED(B)]+ [B − ED∪F (B)]

= ED(B)+ E[F/D](B)+ AD∪F (B). (5.8)

The vectors E[F/D](B), ED(B), and AD∪F (B) are mutually uncorrelated. We may
therefore partition VarD(B), the ‘unresolved variation’ from the adjustment by D,
as

VarD(B) = Var(E[F/D](B))+ VarD∪F (B). (5.9)

The second term is the adjusted variance matrix of B given D ∪ F , and the first
is the (partial) resolved variance matrix of B by F given D, namely

RVar[F/D](B) = Var(E[F/D](B)).

Resolved variances are additive in the sense that

RVarD∪F (B) = RVarD(B)+ RVar[F/D](B). (5.10)

We thus have the following partitions of variation:

Var(B) = RVarD(B) + VarD(B) ,
= RVarD(B) + RVar[F/D](B) + VarD∪F (B),

= RVarD∪F (B) + VarD∪F (B).

(5.11)
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The different ways in which we may interpret RVar[F/D](B) correspond to the
different variance partitions above. In particular, we may compare the value of
RVar[F/D](B) to the original variance of B, which we will term a partial res-
olution, or to the adjusted variance of B by D, which we will term a relative
resolution. We now describe the different uses that we make of each comparison.

5.3 Partial resolution transforms

Definition 5.2 For any X ∈ 〈B〉, we assess the further reduction in ‘residual vari-
ation’ from adding F , given D, as the (partial) resolution, namely

R[F/D](X) = RVar[F/D](X)

Var(X)
. (5.12)

We analyse partial resolutions using the partial resolution transform which sum-
marizes the effects of partial adjustments, similarly to the way in which resolution
transforms summarize simple adjustments.

Definition 5.3 The j th partial canonical direction for the adjustment of B by F

given D is the linear combination Wj which maximizes R[F/D](B) over all elements
in 〈B〉 with non-zero prior variance which are uncorrelated with each Wi, i < j ,
scaled so that each Var(Wj ) = 1. The values

ζi = R[F/D](Wi), i = 1, . . . , rP, (5.13)

are termed the partial canonical resolutions.

The partial canonical directions for F given D are evaluated exactly as are the
canonical directions for D, as described in §3.9.1, but the eigenstructure is extracted
from the partial resolution transform matrix which is given as follows, and which
has rank rP.

Definition 5.4 The partial resolution transform matrix is

TB:[F/D] = [Var(B)]†RVar[F/D](B), (5.14)

and the partial adjusted belief transform matrix is

SB:[F/D] = I− TB:[F/D].

Therefore, from (5.10), we have

TB:D∪F = TB:D + TB:[F/D], (5.15)

and, analogously to (3.68), we have

RVar[F/D](Y ) = Cov(Y, TB:[F/D](Y )), (5.16)

and Var[F/D](Y ) = Cov(Y, SB:[F/D](Y )). (5.17)
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The collection (W1, . . . , WrP
) forms a grid of directions over 〈B〉, summarizing

the additional effects of the adjustment. Having adjusted by D, we expect to learn
most additionally from F for those linear combinations of the elements of B which
have large correlations with those partial canonical directions with large resolutions.
The exact relation is as before, namely for any X ∈ 〈B〉,

R[F/D](X) =
rP∑

i=1

ci (X)ζi , (5.18)

where
ci (X) = Corr(X, Wi)

2. (5.19)

Definition 5.5 The system partial resolution is

R[F/D](B) = 1

rP

rP∑
i=1

ζi .

This compares directly to the resolution given D alone, (3.75). System resolutions
are additive in the sense that

RD(B)+ R[F/D](B) = RD∪F (B). (5.20)

5.4 Relative belief adjustment

An alternative representation of the additional adjustment of B by F given D

follows by assessing the adjustment ratio for F directly over the adjusted collection
AD(B).

Definition 5.6 The relative adjustment ratio for B by F given prior adjustment by
D is

RAF (B/D) = VarD∪F (B)

VarD(B)
. (5.21)

The j th relative canonical direction for the adjustment of B by F given D is the
linear combination Uj which minimizes RAF (U/D) over all elements of 〈B〉 with
VarD(U) > 0 for which CovD(U, Ui) = 0, i = 1, . . . , j − 1. We scale each Uj so
that VarD(Uj ) = 1. The values

υj = RAF (Uj/D)

are termed the relative canonical adjustment ratios.

It turns out that the number of non-zero relative canonical adjustment ratios is rP.
The collection (U1, . . . , UrP

) forms a grid of directions over the collection B,
summarizing the additional effects of the adjustment as follows. For any X in 〈B〉,

RAF (X/D) =
rP∑

i=1

rci(X)υi, (5.22)
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where
rci(X) = CorrD(X, Ui)

2, (5.23)

and where CorrD(X, Y ) is the correlation between X and Y in the adjusted vari-
ance matrix VarD(B). The relative canonical directions are the eigenvectors of the
corresponding belief transform. We have defined SB:D as

SB:D = Var(B)†VarD(B),

and we similarly define the relative version of this transform as follows.

Definition 5.7 The relative adjusted belief transform for [B/D] given F is

SB:F(D) = VarD(B)†VarD∪F (B). (5.24)

Just as VarD(Y ) = Cov(Y, SB:DY), we have

VarD∪F (Y ) = CovD(Y, SB:F(D)Y ). (5.25)

Definition 5.8 The relative resolution transform of B by F given D is

TB:F(D) = I − SB:F(D). (5.26)

Relative transforms are multiplicative in the following sense:

SB:D∪F = SB:DSB:F(D). (5.27)

We assess the relative transform SB:F(D) for analyses in which we suppose that
we have already adjusted all beliefs according to D, whereas we assess the partial
transform SB:[F/D] to assess the additional effects of F on B given D. We discuss
how to calculate the relative resolution transform in §12.11.1.

5.5 Example: oral glucose tolerance test

For this example so far, we have adjusted one belief structure, [B], representing
measurements for a typically elderly person, by another belief structure, [D], rep-
resenting measurements our doctor makes upon herself. Have we exhausted our
exploratory possibilities, or are there extra insights to be had by approaching the
problem in a different way? Suppose that we consider the analogy of a traditional
multiple regression, where we aim to predict a response variable Y from a collec-
tion of regressors X1, . . . , Xk . In terms of this analogy, we may be interested not
only in the predictive power of the collection taken as a whole but also in whether
every Xi is useful for the prediction; whether certain subsets of the Xis are more
useful than others; and so forth. Some of our analyses and diagnostics so far for
this example have highlighted some unusual or anomalous features. For example,
we saw:
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• a somewhat surprising observation d2 (4.17), representing the 2-hour post-
glucose measurement that the doctor makes upon herself;

• a rather large change in expectation for G2 (4.42), representing the 2-hour post-
glucose measurement for a typical elderly person;

• that we expect to learn very little about G2, as we found that its resolution is
only 4.48%, shown in Table 3.1.

The evidence seems to point to a surprisingly large value of d2 being at issue.
Suppose, then, that we consider D0 and D2 as being two distinct sources of infor-
mation, separated in time, and suppose that we adjust [B] first by D0, and then by
D2. In what follows we use the notation [D] and [D0 ∪D2] synonymously.

5.5.1 Performing an initial adjustment

We begin by adjusting the collection B = [G0, G2] by D0 alone. For each quan-
tity G0, G2, we calculate the adjusted variances and the resolutions. The adjusted
variance matrix is

VarD0(B) =
[

0.7768 0.5539
0.5539 2.3496

]
. (5.28)

The resolutions for G0, G2 and the system resolution are:

RD0(G0) = 0.3064, RD0(G2) = 0.0331, RD0(B) = 0.1554.

The resolutions are only slightly smaller than those (0.3109, 0.0448, 0.1694, respec-
tively) shown in Table 3.1 and (3.111) for the full adjustment. The single (stan-
dardized) canonical direction for the initial adjustment is

W1 = 1.0507 S(G0)− 0.1324 S(G2), (5.29)

with resolution

RD0(W1) = 0.3109.

The coefficients for the canonical quantity (5.29) suggest that the single piece of
data D0 will be rather more informative for the fasting measurement G0 than for
the 2-hour measurement G2.

In summary, the adjustment of [B] by D0 alone is about in line with what was
expected. Furthermore, the summaries for this adjustment were quite close to the
corresponding results for the full adjustment. The implication is that D2 is not of
much value in helping us to learn about G0 and G2. To explore this further, we
now consider the partial effects of adjusting by the 2-hour measurement, D2, in
addition to D0.
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5.5.2 Partial resolved variances

Every additional adjustment has the potential to reduce further the uncertainty in our
quantities of interest. The extra variance reductions due to these partial adjustments
are called partial resolved variances; and the extra portions of variation that are
resolved relative to prior variation are called partial resolutions. When we adjust
by D2 in addition to D0, the extra reductions in variance for G0 and G2, together
with the partial resolutions, are as follows:

RVar[D2/D0](G0) = 0.0049, R[D2/D0](G0) = 0.0044, (5.30)

RVar[D2/D0](G2) = 0.0286, R[D2/D0](G2) = 0.0118. (5.31)

Thus, the partial effect of adjusting by D2 additionally is negligible: relative to
the initial uncertainty in G2, we achieve a further reduction in uncertainty of only
some 1.18%, and the relative reduction in variance for G0 is smaller still. The
decomposition of the prior variance matrix for the initial and partial adjustments
(5.11) is[

1.12 0.72
0.72 2.43

]
=

[
0.3432 0.1661
0.1661 0.0804

]
+

[
0.0049 −0.0119
−0.0119 0.0286

]
+

[
0.7718 0.5658
0.5658 2.3211

]
.

(5.32)

5.5.3 Partial canonical directions

The solitary partial canonical direction, shown in non-standardized and standard-
ized forms, is

W2/1 = 0.7971G0 − 0.6539G2 + 0.7710

= 0.8435S(G0)− 1.0193S(G2),

corresponding to a canonical partial resolution of

R[D2/D0](W2/1) = 0.0277.

This shows that one effect of the partial adjustment will be to reduce uncertainty in
the overall belief structure [B] by only 0.0277/2 = 1.39%, and this is the maximum
partial resolution for any linear combination in 〈B〉. Note that we divide by two
as this is the dimension of B. Observe from the standardized form that the extra
piece of information D2 is expected to be slightly more informative for G2 than
for G0. The decomposition of the resolution for the initial and partial adjustments
(5.20) is

RD0∪D2(B) = RD0(B) + R[D2/D0](B)

0.1693 = 0.1554 + 0.0139,
(5.33)

emphasizing that the additional partial adjustment is not expected to contribute
much extra in the way of explaining variation in 〈B〉.
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5.5.4 Deducing changes for other linear combinations

For the difference between a typical elderly person’s fasting and 2-hour measure-
ments, Gh = G2 −G0, we can easily deduce the implications of the initial and
partial adjustments. The correlation between Gh and the initial canonical direction
for the adjustment of B by D0 alone is Corr(Gh, W1) = −0.3734, whereas the
correlation between Gh and the partial canonical direction for the adjustment of
[B/D0] by [D2/D0] is Corr(Gh, W2/1) = −0.9892. Consequently, the resolutions
in Gh for the initial and partial adjustments must be, by (3.71) and (5.18),

RD0(Gh) = 0.37342 × 0.3109 = 0.0433,

R[D2/D0](Gh) = 0.98922 × 0.0277 = 0.0272.

The combined resolution is thus, by (5.20),

RD0∪D2(Gh) = RD0(Gh) + R[D2/D0](Gh)

0.0705 = 0.0433 + 0.0272,

which we calculated and showed earlier (3.114). These low resolutions show that
neither measurement is expected to be of significant value for learning about Gh.
Notice that the notation used here for decomposing the resolution for a single
quantity is identical to that for the collection, as seen in (5.33).

5.5.5 Relative belief adjustment

We have seen that D2 is uninformative for [B] in absolute terms. However, it
might still be relatively important in resolving the variation that remains having
observed D0. Where we have a partial adjustment following an initial adjustment,
we can summarize the implications of the adjustment either with respect to the
prior specifications (which we have concentrated on so far), or with respect to the
specifications remaining after being modified for the initial adjustment. Thus, we
can evaluate the partial reductions in uncertainty relative to the prior uncertainty (as
considered above) or to the current adjustment variances. As an example, suppose
we choose to adjust [B] first by [D0] and then relatively by [D2]. For the initial
adjustment, we must adjust not only B but also D2 by D0. Doing so, we obtain
the adjusted variance matrix

Var




AD0(D2)

AD0(G0)

AD0(G2)




 = VarD0




D2

G0
G2




 =


 1.9671 −0.0986 0.2371
−0.0986 0.7768 0.5539

0.2371 0.5539 2.3496


 ,

(5.34)
where AD0(X) is our notation for the adjusted (or residual) vector X − ED0(X)

when X has been adjusted by D0. We saw part of this matrix before as (5.28),
the adjusted variance matrix for G0 and G2 given D0, but have been careful
here to adjust D2 by D0 also as a necessary precursor to the relative adjustment.
Equivalently, (5.34) is the variance matrix for the adjusted versions of D2, G0, G2
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given D0. For the subsequent adjustment by D2, we now treat these as the prior
specifications and discard D0 entirely. If we now adjust (the adjusted versions of)
G0, G2 by (the adjusted version of) D2, we find that the adjusted variance matrix
is

VarD2(AD0(B)) =
[

0.7718 0.5658
0.5658 2.3211

]
= VarD0∪D2(B), (5.35)

which is the same as for the overall adjustment of [B] by [D], shown in (5.32). This
illustrates that the overall adjusted variances for one collection B given another
collection D are the same, whether we adjust partially (as in preceding sections)
or relatively (as in this section).

However, the resolutions that we calculate depend on which specifications we
prefer to regard as prior. For this, relative, adjustment we thus obtain a different
set of resolutions,

RAD0 (D2)(AD0(G0)) = 0.0064,

RAD0 (D2)(AD0(G2)) = 0.0122,

RAD0 (D2)(AD0(B)) = 0.0155.

which are, for individual quantities such as G0, not smaller than the corresponding
partial resolutions. For example, G0 has partial resolution 0.44% relative to the
prior specification, as we saw in (5.30), but partial resolution 0.64% relative to the
initial adjustment by D0. We conclude in this example that D2 appears uninforma-
tive for [B] whether we relate the changes in variance to the initial specification
or to the specification following the initial adjustment by D0.

5.5.6 Withdrawing quantities from the adjustment

In the same way that we can introduce additional quantities into the adjustment, so
too can we determine the effects of withdrawing quantities from the adjustment. We
might do this for various reasons. For example, we might remove uninformative
quantities, or quantities that are relatively unimportant and expensive to observe.
Here, we are particularly interested in investigating the rather peculiar nature of
the specifications over D2.

When we remove D0 from the adjustment at this stage, it as though we are
left with a simple adjustment of [B] by D2. In addition, we learn about the partial
adjustment of [B] by [D0/D2]. For example, the resolutions for the adjustment by
D2 and for the partial adjustment removing D0 are

RD2(B) = 0.0448,

R[D0/D2](B) = 0.2938.

This shows, as we suspected, that D2 alone is not a good source of information
(its effect is at best to reduce uncertainty by less than 5%) and that most of the
information is contained wholly in D0 (when we remove [D0/D2] we also remove
nearly all of our capability to reduce uncertainty in [B]).
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5.6 Partial bearings

When we adjust B by the observed value D = d, there are a variety of interpre-
tative and diagnostic measures that we may evaluate, as described in Chapter 4,
in order to understand the ways in which our expectations have changed and to
identify inconsistencies between beliefs and observations. When we make the fur-
ther adjustment by F = f , then we may evaluate these measures for the overall
adjustment by d ∪ f . In addition, we may obtain similar qualitative insights into
the changes in adjustment that follow when we add f to d, by evaluating each
of the corresponding measures for the partial and relative adjustments by f given
d. For example, corresponding to the canonical standardized adjustments we may
evaluate the partial canonical standardized adjustments or the relative canon-
ical standardized adjustments which are as defined by (4.38), but applied to the
partial and relative adjustment by AD(F). As a general principle, if we want to
concentrate solely on the diagnostic implications of adding f to d, then we evaluate
relative diagnostics. Partial diagnostics are appropriate if we wish to form an over-
all picture of diagnostic issues over the whole adjustment, using measures which
separate the diagnostic effects according to the different stages of the adjustment.

In particular, it is often revealing to perform a diagnostic analysis based on the
partial bearings for the partial adjustment, which are constructed as follows. We
observe the values of D = d and F = f . We therefore may evaluate the observed
value of AD(F), denoted by Ad(f ), which we assess as

Ad(f ) = f − Ed (F ).

Definition 5.9 The size of the partial adjustment, or partial size, is defined to be

Size[f/d](B) = max
X∈〈B〉

[Ed∪f (X)− Ed(X)]2

Var(X)
= max

X∈〈B〉
[E[f/d](X)]2

Var(X)
. (5.36)

Similarly to (4.51), the value of this maximum is

Size[f/d](B) = [Ed∪f (B)− Ed(B)]T Var(B)†[Ed∪f (B)− Ed(B)]. (5.37)

Definition 5.10 The random quantity which achieves this maximum is the bearing
for the partial adjustment, or partial bearing, which we may construct as

Z[f/d](B) =
rP∑

i=1

E[f/d](Ui)Ui, (5.38)

for any collection (U1, . . . , UrP
) mutually uncorrelated with unit prior variance,

where rP is the rank of the partial resolution transform matrix.

From (5.38), we have that partial bearings are additive, in the sense that

Zd∪f (B) = Zd(B)+ Z[f/d](B). (5.39)
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The partial bearing, Z[f/d](B), expresses all changes in expectation over 〈B〉 when
we additionally adjust B by F given a preceding adjustment by D, through the
relation

Ed∪f (X)− Ed (X) = E[f/d](X) = Cov(X, Z[f/d](B)), ∀X ∈ 〈B〉. (5.40)

We can choose to take as our basis the partial canonical directions: Ui = Wi ,
i = 1, . . . , rP. Then, from (5.36) and (5.40), we can represent the partial size as

Size[f/d](B) = Var(Z[f/d](B)) =
rP∑

i=1

[E[f/d](Wi)]
2. (5.41)

The corresponding random quantity is Size[F/D](B), with representation

Size[F/D](B) = Var(Z[F/D](B)) =
rP∑

i=1

[E[F/D](Wi)]
2,

which may be compared to the expected value, namely the sum of the partial
canonical resolutions:

E(Size[F/D](B)) = RU[F/D](B) =
rP∑

i=1

ζi . (5.42)

We may use the observed partial size and its prior expectation to give a partial
size diagnostic corresponding to the full size ratio established in Definition 4.15.

Definition 5.11 The partial size ratio is

Sr[f/d](B) = [Ed∪f (B)− Ed(B)]T Var(B)†[Ed∪f (B)− Ed(B)]∑rP

i=1 ζi

. (5.43)

We may apply each of the diagnostic measures outlined for a simple adjustment
directly to partial adjustments. Thus, we might evaluate simple heuristics corre-
sponding to those suggested by (4.65), which have similar uses for examining the
size ratio for the partial adjustment. For example, if all these canonical directions
were to be normally distributed, then it would follow that

Var(Size[F/D](B)) = 2
rP∑

i=1

ζ 2
i , (5.44)

suggesting the corresponding range

P


1−

6
√∑rP

i=1 ζ 2
i∑rP

i=1 ζi

≤ Sr[f/d](B) ≤ 1+
6
√∑rP

i=1 ζ 2
i∑rP

i=1 ζi


 ≤ 0.9444. (5.45)
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Further, let φi = ζi/ζ1, i = 2, . . . , rP, where 0 < φi ≤ 1. We may then express√∑rP

i=1 ζ 2
i∑rP

i=1 ζi

=
√

1+∑rP

i=2 φ2
i

1+∑rP

i=2 φi

,

where it is simple to show that

1

rP

≤
√

1+∑rP

i=2 φ2
i

1+∑rP

i=2 φi

< 1.

Thus, the upper threshold in (5.45) is in the interval[
1+ 6/

√
rP, 7

)
. (5.46)

This provides a simple heuristic for comparing many size ratios. Similar heuristics
may be developed for many of the other measures that we shall describe.

5.7 Partial data size

A particular special case of partial adjustment occurs when we adjust beliefs about a
random vector, F say, by a further vector D, and subsequently we observe the value
of F . We have described already how we may identify the discrepancy between
the observed value of F and the prior expectation of F with the corresponding size
of the adjustment by F . We may similarly quantify the portion of the discrepancy
between F and E(F ) which relates to the adjustment by D. In the definition for
partial size of the adjustment of B by F given D, we replace B by F and define
the corresponding partial data size of F given D, namely the largest change

Size[f/d](F ) = max
F∈〈F 〉

[f − Ed(F )]2

Var(F )
= Var(Z[f/d](F )).

5.8 Bearing and size for a relative adjustment

Another way in which we can assess the further changes in beliefs when we
additionally adjust B by F given D is to assess directly the bearing for the
adjusted belief structure [B/D] given F . This quantity, denoted by Zf (d)(B),
summarizes all changes in expectation from the partial adjustment with respect to
the directions within the adjusted belief structure, by the relation

CovD(X, Zf (d)(B)) = Ed∪f (X)− Ed(X) = E[f/d](X). (5.47)

Equating (5.40) with (5.47) gives

CovD(X, Zf (d)(B)) = Cov(X, Z[f/d](B)),



138 BAYES LINEAR STATISTICS: THEORY AND METHODS

from which we have the relationship between the two types of partial bearing,

Z[f/d](B) = AD(Zf (d)(B)).

Corresponding to the partial data size, we have the analogous relative measure
for expressing the data discrepancy given that the first stage of the adjustment has
already been made.

Definition 5.12 The relative data size of F given D is the largest change

Size[f/d](AD(F)) = max
F∈〈F 〉

[Ad (f )]2

Var(AD(F))
.

5.9 Path correlation

We now describe the path correlation. This is the correlation between the bearing for
a particular data collection and the partial bearing when further data is introduced.
Path correlation may be interpreted as a measure of conflict or consistency between
the various sources of information based on considering whether the changes in
belief that are induced by each part are similar or contradictory.

From (5.39), when we adjust beliefs in stages, the expected sizes of the respec-
tive adjustments are additive so that

E(SizeD∪F (B)) = E(SizeD(B))+ E(Size[F/D](B)). (5.48)

However, the observed sizes of the adjustments are not additive. The size of each
adjustment is the variance of the corresponding bearing. Therefore, from (5.39),

Var(Zd∪f (B)) = Var(Zd(B))+ Var(Z[f/d](B))+ 2Cov(Zd(B), Z[f/d](B))

(5.49)
so that

Sized∪f (B) = {Sized(B)+ Size[f/d](B)} + 2Cov(Zd(B), Z[f/d](B)). (5.50)

Thus, while
E(Cov(ZD(B), Z[F/D](B))) = 0,

the observed value of this covariance,

Cov(Zd(B), Z[f/d](B)),

may be taken to expresses the degree of support or conflict between the two
collections of evidence in determining the revision of beliefs. As a summary, we
define the path correlation to be

PC(d, [f/d]) = Corr(Zd(B), Z[f/d](B)). (5.51)

The size and magnitude of the path correlation are diagnostics with interpretation
as follows.
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• If the path correlation is near +1 then the size of the adjustment of B by D ∪ F

is much larger than the sum of the size of the adjustment by D and the size of
the partial adjustment by [F/D]; informally, we may view the two collections
of data as complementary, in that their combined effect in changing our beliefs
is greater than the sum of the individual effect of each collection.

• If the path correlation is near −1 then the two collections are giving ‘contra-
dictory’ messages which give smaller overall changes in belief, in combination,
than we would expect from the individual adjustments with D and [F/D]; for
example, each of the individual changes in belief might be surprisingly large
but the overall change in belief might be small, masking these differences. The
importance of such conflict depends on the magnitudes of the various changes
in beliefs, but usually we would wish to distinguish between analyses where
expectations changed but little, because all the sources of data individually
implied small changes, and analyses where individual data sources suggested
large changes in beliefs but these were of a contradictory nature and so cancelled
each other out.

It can be helpful to visualize the bearings graphically. The three bearings Zd(B),
Z[f/d](B), Zd∪f (B) are three elements of 〈B〉, which, from (5.39), may be repre-
sented as three vectors which form the sides of a triangle, abc say. The squared
length of the vertical side ab is equal to Sized∪f (B). The squared lengths of the
other two sides, ac, cb are Sized(B), Size[f/d](B), respectively. The path corre-
lation PC(d, [f/d]) is equal to − cos C, where C is the interior angle at c. The
expected value of the path covariance is always zero, so that the expected triangle is
right-angled. If C > π/2 then the partial adjustment of B by F given D increases
the overall change in beliefs, whereas if C < π/2 then the overall change in belief
is smaller than is suggested by the individual changes in beliefs. In particular,
substantial negative path correlations are of particular importance when the overall
length ac is roughly as expected but the two lengths ab, bc are individually much
larger than expected, so that an overall adjustment which appears to be plausible
is composed of two surprising and contradictory changes in belief.

5.10 Example: oral glucose tolerance test

5.10.1 The initial observed adjustment

We began by adjusting [B] solely by the doctor’s fasting measurement D0. The
adjusted expectations and their observed values, given D0 = d0 = 5.4 alone, are

ED0(G0) = 0.5536 D0 + 1.8571, Ed0(G0) = 4.8464,

ED0(G2) = 0.2679 D0 + 5.1357, Ed0(G2) = 6.5821,

with relatively small standardized changes in adjustment of

Sd0(G0) = Sd0(G2) = 1.17
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standard deviations, relative to her initial judgements. These changes are thus
relatively unsurprising and, comparing them to the adjusted expectations for the
full adjustment given in (4.40), namely 4.7085 and 6.9140 respectively, not much
different from these. The size ratio is

Srd0(B) = Disd0(B)

rT

= 1.37

1
= 1.37,

implying no conflict between (this piece of) data and the prior judgements as
sources of information in the sense that this value is close to unity, its expectation.

Notice in this case that we have the same discrepancy and size values that we
obtained in §4.3.3.1. That is, we have

S(d0) = Sd0(G0) = Sd0(G2) and Dis(d0) = Disd0(B).

This is a consequence of (4.39). Whenever we make a univariate adjustment by a
single random quantity such as D0, these discrepancy statistics must coincide.

We extend this example to multiple observations in Chapter 6. In particular, we
address there issues which arise in examining the consistency of multiple observa-
tions, for example in §6.16.5.

5.10.2 Observed partial expectations

Suppose that we now make the additional partial adjustment of B by D2, where
D2 is observed to be d2 = 9.8. Overall, this leads to the full adjustment by D0 and
D2 shown in (4.40). Our main interest is now in comparing the initial adjustment
by D0 alone with this full adjustment in order to identify the partial effects such
as the change in adjusted expectation:

E[D2/D0](G0) = Ed (G0)− Ed0(G0) = 4.7085− 4.8464 = −0.1379,

E[D2/D0](G2) = Ed (G2)− Ed0(G2) = 6.9140− 6.5821 = +0.3319.

Thus, compared to the initial adjustment by D0, the effect of the partial adjust-
ment by D2 on the evaluation of the adjusted expectation is to revise expectations
downwards for G0, from 4.8464 to 4.7085, and upwards for G2, from 6.5821 to
6.9140.

Suppose that we standardize the changes with respect to the extra portion of
prior variation resolved by the partial adjustment. We obtain

S[d2/d0](G0) = Ed(G0)− Ed0(G0)√
RVarD(G0)− RVarD0(G0)

= E[D2/D0](G0)√
RVar[D2/D0](G0)

= −0.1379√
0.0049

= −1.96. (5.52)

The standardized change for G2 turns out to be the same, but positive:

S[d2/d0](G2) = 1.96.
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Thus, each change in expectation has been 1.96 standard deviations relative to the
partial variance resolved. That is, for such a small change in variance we saw a
fairly large change in expectation by using the observed 2-hour measurement as
well as the observed fasting measurement. The fact that the standardized changes
are the same, except for sign, is a consequence of the partial adjustment being
one-dimensional.

5.10.3 The size of the partial adjustment

In the same way that we can evaluate a size and an expected size for any general
adjustment, we can also evaluate a size and an expected size for a partial adjust-
ment, giving the partial size ratio (5.43), which gives us a useful diagnostic measure
comparing actual to expected changes in behaviour specific to the partial adjust-
ment. For our example, the sizes and size ratios for the full adjustment (shown in
(4.78)), the partial adjustment, and the simple adjustment by D0 only are shown
in Table 5.1. The size ratio for the overall adjustment is roughly Srd(B) = 0.94,
and the size ratio for the simple adjustment by D0 is Srd0(B) = 1.37, neither value
being a surprise.

The partial size ratio corresponding to the partial adjustment is

Sr[d2/d0](B) = Sr[d2/d0]([B/D0]) = 3.85 = 1.962. (5.53)

The interpretation is as in the previous section, a rather larger than expected squared
change in expectation. Note the correspondence between size ratio (5.53) and stan-
dardized change (5.52) for a univariate adjustment. We can also show equivalence
with the relative data size (5.48) in the univariate case. That is, we have

Dis(Ad0(d2)) = 1.962,

so that these diagnostics have an interpretation as the data discrepancy in the
residual part of D2, having adjusted for D0.

We have detected a relatively surprising change in expectation. It is of inter-
est to consider whether similar features reappear if we carry out an adjustment
of B by D2 alone. Doing so, we find that the evaluated adjusted expectations for
the adjustment by D2 solely are Ed2(G0) = 4.5983 and Ed2(G2) = 6.8782, repre-
senting fairly large changes (Sd2(G0) = Sd2(G2) = 2.3 standard deviations) from

Table 5.1 Sizes for the adjustments by D overall, D0 singly, and [D2/D0] par-
tially.

Adjustment

D = [D0 ∪D2] [D2/D0] D0

Size 0.3179 0.1069 0.4268
Expected 0.3386 0.0277 0.3109
Size ratio 0.9389 3.8524 1.3729
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Table 5.2 Sizes for the adjustments D2 and [D0/D2].

Adjustment

D = [D0 ∪D2] [D0/D2] D2

Size 0.3179 0.0115 0.2325
Expected 0.3386 0.2938 0.0448
Size ratio 0.9389 0.0390 5.1862

the initial values of 4.16 and 6.25, respectively. Although these are fairly large
changes, they correspond to only small reductions in uncertainty about G0 and
G2. The sizes of the adjustments are shown in Table 5.2 and display two notewor-
thy features. First, the size ratio for the simple adjustment by D2 is more than five
times as large as expected; and secondly, the size ratio for the partial adjustment
after adjusting by D0 additionally is very much smaller than expected. The former
feature is more or less expected, given the sizes for the similar adjustment shown
in Table 5.1. The latter feature may be interpreted as showing that a partial adjust-
ment by D0 in addition to D2 is expected to enable changes in expectation that do
not materialize.

Comparing Table 5.2 with Table 5.1, we see a size ratio of Srd2(B) = 5.1862
for the simple D2 adjustment, and a size ratio of Sr[d2/d0](B) = 3.8524 for the
partial adjustment by [D2/D0]. Thus, the size ratio for the simple D2 adjustment
is larger than the size ratio for the adjustment where D0 has been extracted. This
might suggest that although we have identified D2 (with its observation d2) above
as having some peculiar features, this is also true of the portion of D0 that is
common to D2.

5.10.4 The bearing for the partial adjustment

We have seen already the bearing for the full adjustment in (4.74). We similarly
calculate the bearing for the adjustment solely on D0, which turns out to be a
vector essentially in the direction of G0. The difference between the two (5.39) is
the bearing for the partial adjustment:

Zd(B) = 0.39G0 + 0.16G2 − 2.60 (5.54)

Zd0(B) = 0.65G0 − 0.06G2 − 2.35 (5.55)

Z[d2/d0](B) = Zd(B)− Zd0(B)

= −0.26G0 + 0.21G2 − 0.25 (5.56)

(note that there is some rounding error involved for the displayed coefficients).
It is solely in the direction Z[d2/d0](B) that expectations can change according to
the new (i.e. not already carried by D0 = d0) information contained in D2 = d2.
Note that this conclusion applies for the data observed: different data would have
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produced a different direction. We can see from the coefficients in (5.56) that
the partial bearing is quite highly correlated with the difference Gh = G2 −G0.
Actual partial changes in expectation can be calculated via (5.40), without further
construction and with little extra computation. For example, the partial change in
expectation for Gh is given by

E[d2/d0](Gh) = Cov(Gh, Z[d2/d0](B)) = Cov(G2 −G0,−0.26G0 + 0.21G2)

= [−1 1
] [1.12 0.72

0.72 2.43

] [−0.26
0.21

]
≈ 0.47.

The adjusted expectation for Gh given d0 alone is 1.7357, a standardized change
of −1.17 from prior. The adjusted expectation given both d0 and d2 is 2.2055, with
the partial change of +0.47 representing a standardized change of +1.96. As these
are univariate adjustments, the standardized changes match those seen earlier. We
could, of course, construct Gh directly and adjust it by D0 and then partially by
D2 to obtain the same results.

5.10.5 The path correlation for the partial adjustment

We see in Table 5.1 a size ratio of Srd0(B) = 1.37 for the adjustment of B by
D0 and a rather larger partial size ratio of Sr[d2/d0](B) = 3.85 for the subsequent
partial adjustment by D2. These both suggest larger changes in expectation than
expected. However, the overall size ratio turns out to be Srd∪f (B) = 0.94 (see
equation (4.78)), suggesting that the change in expectation was close to what was
expected. This conundrum is explained by (5.50).

Compare (5.55) and (5.56), the bearings for the initial and partial adjustments.
Clearly these two directions, which aggregate to form the overall bearing, are
different, so that the overall changes in adjustment (as summarized by the over-
all bearing (5.54)) are the result of two somewhat contradictory changes. This
aspect can be summarized by evaluating the path correlation: the prior correla-
tion between the bearings for the initial and partial adjustments. In this example,
the path correlation (5.51) is

PC(d0, [d2/d0]) = Corr(Zd0(B), Z[d2/d0](B)) = −0.5051,

with
Cov(Zd0(B), Z[d2/d0](B)) = −0.1079,

showing that from the point of view of revising expectations, the data are partly
contradictory. Had this correlation been positive, we would have argued that the
data complemented each other, with the magnitude of correlation indicating the
degree of consistency. Thus, it is the negative covariance (which we see summa-
rized as a path correlation of PC(d0, [d2/d0]) = −0.5051) between the bearings
for the previous and partial adjustments which serves to diminish the size of the
joint adjustment: the changes in expectation for the initial and partial adjustments
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are in different directions, and thus tend to cancel out each other. Numerically, we
find that the overall size is obtained from (5.50) as

0.4268+ 0.1069+ 2× (−0.1079) = 0.3179.

5.11 Sequential adjustment

When we make a collection of sequential adjustments, the one-step changes in
adjustment may be tracked in a stepwise manner giving a picture of the cumulative
effects of the adjustment. Suppose that we intend to adjust B sequentially by the
collections of quantities G1, G2, . . . , Gm. We define the cumulative collection

G[i] =
i⋃

j=1

Gj,

and denote the cumulative adjustment

E[i](B) = EG[i](B).

We may ‘partial out’ any stage of the adjustment as follows.

Definition 5.13 For any i > j , the partial adjustment of B by G[i] given G[j ] is

E[i/j ](B) = E[i](B)− E[j ](B) = E
[
⋃i

k=j+1 Gk/
⋃j

k=1 Gk]
(B). (5.57)

Corresponding to the adjustment E[i](B) is the bearing Z[i](B). The bearing for
the partial adjustment E[i/j ](B) is, by (5.39),

Z[i/j ](B) = Z[i](B)− Z[j ](B),

and the difference between such cumulative adjustments is, by (5.40),

E[i](X)− E[j ](X) = Cov(X, Z[i/j ](B)).

The bearing for the partial adjustment expresses the change, in both magnitude and
direction, in beliefs between stages [j ] and [i].

5.11.1 The data trajectory

For single-step adjustments we arrange the sequence of adjustments as follows.

Definition 5.14 The ith stepwise partial adjustment, E[i/](B), is

E[i/](B) = E[i/i−1](B) = E[Gi/G[i−1]](B), (5.58)

with bearing
Z[i/](B) = Z[i](B)− Z[i−1](B). (5.59)
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Definition 5.15 We refer to the full sequence of stepwise adjusted bearings

Z[1](B), Z[2/](B), . . . , Z[m/](B) (5.60)

as the data trajectory.

For any accumulated adjustment, we may decompose its bearing as follows. For
each j we may write

Z[j ](B) = Z[1](B)+ Z[2/](B)+ . . .+ Z[j/](B), (5.61)

from which we may express the size of the accumulated adjustment as

Size[j ](B) = Size[1](B)+ Size[2/](B)+ . . .+ Size[m/](B)+ 2(C[2] + . . .+ C[j ]),

(5.62)
where

C[r] = Cov(Z[r−1](B), Z[r/](B))

is the covariance between the bearing for the accumulated adjustment up to step
r − 1 and the bearing for the partial adjustment at step r .

To examine the ways in which the individual terms combine to determine the
overall adjustment, we must thus consider:

• the prior expectation for each change to assess which sub-collections of data are
expected to be informative;

• the individual adjusted bearings Z[i/](B) to identify the stages at which larger
than expected changes in belief occur;

• the path correlations derived from the covariances C[i] to see whether the evi-
dence is internally supportive or contradictory.

5.12 The canonical trajectory

The data trajectory expresses the additional information derived at each stage from
a progressive adjustment of belief, and depends, in general, on the order in which
the various adjustments are made. However, there are certain cases where the order
is unimportant, which we now describe.

For any collections B, D, denote by W+ the eigenvectors of the belief transform
TD:B for the adjustment of D by B, corresponding to positive eigenvalues. Now
let M1, . . . , Mk be any partition of the elements of W+ into k disjoint subsets. Let
Zi (B) be the bearing for the adjustment of B by the subset Mi , and Z[i/](B) the
bearing for the adjustment of B by Mi given ∪jMj .
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Property 5.16 Any data trajectory created in this way has the following properties.

5.16.1: Bearings and adjusted bearings are the same,

Zi (B) = Z[i/](B),

for each i, as the elements of W+, and thus of the subsets Mj , are mutually
uncorrelated.

5.16.2: From relation (4.60), as the eigenvectors of TB:D are mutually uncor-
related, the bearings Z1(B), . . . , Zk(B) are a collection of uncorrelated ran-
dom quantities. Therefore, the length of the bearing corresponding to adjust-
ment by any sub-collection Mi1 ∪ . . . ∪Mij is equal to the sum of the lengths
of the individual bearings Zi1(B), . . . , Zij (B). In particular, the expected
length of Zi (B) is equal to the sum of the eigenvalues of TB:D corresponding
to the eigenvectors in Mi .

Therefore data trajectories which are built directly from partitions of the canonical
directions for the belief transform will always have a simple form which is easy to
interpret, as it makes no difference in which order we introduce the various portions
of information, the partial bearings are always uncorrelated and the expected size
of each bearing is the sum of the eigenvalues. In particular, we term the trajectory
for which each Mi contains a single element of W+ the canonical trajectory.
Some of these ideas are illustrated in §7.6.4.3.

5.13 Detection of systematic bias

The size ratio diagnostics discussed above do not take into account the direction of
discrepancy or contradiction. Sometimes it can be useful to look for such discrepan-
cies, for example when assessing for systematic bias in a sequential adjustment for
time series data. Suppose we have a series of random quantities D1, D2, . . . with
prior beliefs E(Di) and Var(Di) for i = 1, 2, . . . , and Cov(Di, Dj ) for i = 1, 2, . . .

and j > i. Suppose that our interest is in observing D1 = d1, updating our beliefs
about the remainder of the sequence, observing D2 = d2 and updating our beliefs
about D3, D4, . . . , and so forth.

For the exploration of systematic bias, consider the sequence of one-step stan-
dardized forecast errors ε1, ε2, . . . , where

εi = Di − E[i−1](Di)√
Var[i−1](Di)

, i = 1, 2, . . . ,

and where E[i−1](Di) and Var[i−1](Di) signify the adjusted expectation and vari-
ance for Di given D1, . . . , Di−1, with E[0](Di) and Var[0](Di) signifying the prior
mean and variance. Key properties of the sequence of one-step forecast errors are
as follows.
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Property 5.17 A sequence of such standardized adjusted expectations is a priori
uncorrelated and has:

5.17.1: E(εi) = 0, ∀i;
5.17.2: Var(εi) = 1, ∀i;
5.17.3: Eε1∪ε2∪...∪εi−1(εi) = 0, ∀i > 2.

The first two properties are obvious. Property 5.17.3 follows directly from (5.6).
If we make the extra assumption that terms in the sequence are conditionally
independent of preceding terms, then it follows that the sequence ε1, ε2, . . . is a
martingale difference sequence. Now define the standardized cumulative sum of
these standardized one-step errors as

Qn = 1√
n

n∑
i=1

εi, n = 1, 2, . . . . (5.63)

Under some quite weak assumptions, for example that at least one of the higher
(r > 2) moments E(|εt |r ) is finite, we may apply the central limit theorem for a
martingale difference sequence (see, for example, Hamilton 1994), from which we
have approximately that Qn has a standard normal distribution, for large n.

For the detection of systematic bias, we calculate and plot the values
Q1, Q2, . . . , as data arrives. The interpretation is similar to that for the cusum
charts used in statistical process control. That is, the sequence should wander
randomly around an expected value of zero, with rare excursions beyond 95%
probability limits of around two standard deviations. If the sequence moves system-
atically away from zero in one direction, the implication is that there are systematic
one-sided discrepancies between the prior specification and the actual observations.

5.14 Examples

5.14.1 Anscombe data sets

Anscombe (1973) discusses four fictitious data sets which have (almost) identical
implications as far as linear fitting is concerned. The data are shown in Table 5.3,
with rows ordered according to the value of x1. The quantities x1, x2, and x3 are the
same. The four data sets have the feature that the second-order summaries (means,
variances, covariances) are approximately identical for each pair. (Bassett et al.
(2000) construct a similar data set with actually identical second-order summaries.)
Anscombe’s purpose was to demonstrate the importance of graphical analysis. We
agree that such analysis is important, but also show here how the data trajectory
can be used to help assess features of an adjustment and to diagnose possible
conflicts.

For each data set, we have 11 pairs of values on variables Y and X. For each,
we assume initially a simple linear relationship of the form

Yi = α + βxi + εi, (5.64)
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Table 5.3 Anscombe data sets.

Data set 1 Data set 2 Data set 3 Data set 4

i y1 x1 y2 x2 y3 x3 y4 x4

1 4.26 4 3.10 4 5.39 4 7.04 8
2 5.68 5 4.74 5 5.73 5 6.89 8
3 7.24 6 6.13 6 6.08 6 5.25 8
4 4.82 7 7.26 7 6.42 7 7.91 8
5 6.95 8 8.14 8 6.77 8 5.76 8
6 8.81 9 8.77 9 7.11 9 8.84 8
7 8.04 10 9.14 10 7.46 10 6.58 8
8 8.33 11 9.26 11 7.81 11 8.47 8
9 10.84 12 9.13 12 8.15 12 5.56 8

10 7.58 13 8.74 13 12.74 13 7.71 8
11 9.96 14 8.10 14 8.84 14 12.50 19

where the quantities {εi} are unobserved error terms expected a priori to have mean
zero and to be uncorrelated with themselves and with other quantities. Our main
interest is in the collection C = [α, β]. To illustrate the data trajectory, Goldstein
(1988b) suggests the following initial prior specification:

E(α) = 0, E(β) = 0, Var(α) = 2, Var(β) = 1, Cov(α, β) = 0, (5.65)

and
Var(εi) = 1, ∀i. (5.66)

To analyse such problems, we construct beliefs for the data quantities {Yi}. We
have, for example,

E(Yi) = E(α + βxi + εi)

= E(α)+ xiE(β)+ E(εi)

= 0,

Var(Yi) = Var(α + βxi + εi)

= x2
i + 3,

Cov(Yi, Yj ) = Cov(α + βxi + εi, α + βxj + εj )

= xixj + 2.

Data sets 1–3 will thus result in an identical specification for the 11 data quanti-
ties. We now organize these data quantities as collections; for example, let D1 =
[Y1,1, Y1,2, . . . , Y1,11] be the collection of data quantities for the first data set. Next,
we perform the adjustment of C, the collection of regression coefficients, separately
by each data collection. We find, as expected, that the basic adjustment is identical
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for each data set Dj . That is,

Edj
(α) = 2.157, Vardj

(α) = 0.582, Rdj
(α) = 0.709,

Edj
(β) = 0.583, Vardj

(β) = 0.007, Rdj
(β) = 0.993.

In addition, the overall data-diagnostic features are the same. That is, for each data
set Dj = dj we have a bearing, size, and size ratio for the collection C of

Zdj
(C) = 1.079 α + 0.583 β, Sizedj

(C) = 1.632, Srdj
(C) = 1.57.

In summary, for each data set Dj , the mean for α is adjusted from zero to 2.157;
the mean for β is adjusted from zero to 0.583; about 71% of the prior variation in α

has been resolved, compared to 99.3% resolution for β; the bearing shows that the
largest changes in expectation relative to prior variance are roughly in the direction
2α + β; the largest such standardized change is 1.63 standard deviations; and the
size ratio of 1.57 shows no particular conflict between the prior specification and
the data.

5.14.1.1 The data trajectory

We now compute the data trajectory for each data set as described in §5.11. For
each data set Dj , we order the pairs (xi, yi) in ascending order of the values of xi

and let Y(k) be the kth such constructed data quantity. We define the cumulative
collection

G[i] =
i⋃

k=1

Y(k).

For example, G[1] = Y(1) is the Y quantity corresponding to the smallest value of
x; G[2] = [Y(1), Y(2)] is the pair of Y quantities corresponding to the two smallest
values of x; and

G[11] =
11⋃

k=1

Y(k) = [Y1, . . . , Y11]

is the full collection. As usual, g[i] represents the observed value of G[i].
We now carry out a sequential adjustment of the collection C by the data

quantities. We begin by adjusting C by Y(1) alone, then partially also by Y(2),
then partially also by Y(3), and so forth. At each stage, we calculate inter alia the
following summaries, where we also indicate shorthand notation.

• E[i](α) = Eg[i](α), the adjusted expectation for α after the ith adjustment. This
shows informally how the mean for α is being sequentially updated.

• E[i](β) = Eg[i](β), the adjusted expectation for β after the ith adjustment. This
shows informally how the mean for β is being sequentially updated.
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• Size[i/](C) = Size[g[i]/g[i−1]](C), the size (5.41) of the partial adjustment of C

by G[i] = g[i], given G[i−1] = g[i−1]. Large values show us that the ith partial
adjustment resulted in a large change in standardized expectation, relative to
prior (i.e. initial) variation.

• E(Size[G[i]/G[i−1]](C)), the expected size (5.42) of the partial adjustment of C

by G[i], given G[i−1].

• Sr[i/](C) = Sr[g[i]/g[i−1]](C), the size ratio (5.43) for the partial adjustment of C

by G[i] = g[i], given G[i−1] = g[i−1]. Large values (much greater than unity)
indicate unexpectedly large changes in expectation, and may indicate a conflict
between data and prior specifications with respect to the partial adjustment. Small
values (smaller than unity) indicate unexpectedly small changes in expectation,
and may indicate perhaps that prior variability was assigned too cautiously.

• C[i/] = PC(g[i], [g[i]/g[i−1]]), the path correlation (5.51) for the partial adjust-
ment. We check to see whether the new evidence introduced at the ith adjustment
is in agreement or conflict with the evidence accumulated for the preceding
adjustments.

These summaries are given in Table 5.4. It is enlightening to examine them
plotted against observation number. For data set 1, they are shown in Figure 5.1.
The updated expectations trend from prior expectation to the full adjusted expecta-
tion given all the data. Although there are subtleties in interpreting such plots, the
likely shape of such a trend, assuming that the data display no serial dependence
between successive observations, is of random fluctuation around the trend from
prior to adjusted expectation. There are no especially worrying features in these
plots. Observations [4] and [9] appear slightly aberrant, and these are picked out
in Figure 5.1(e) as having quite surprising changes in adjustment relative to prior
variance. Figure 5.1(f) shows the sequence of path correlations, each multiplied by
the corresponding size ratio. We do this in order to draw the eye to important fea-
tures, specifically partial adjustments with large path correlations (and especially
those near −1) and with partial size ratios indicating large changes in expectation.

Figure 5.2 shows the summary plots for data set 2. The relationship between Y

and X is roughly quadratic. The departure from linearity is picked out on the path
correlation plot by observation [6], by which time the turning point on the scatter
plot begins to be noticed, and the sequence of positive path correlations becomes a
sequence of negative path correlations, indicating that the new evidence is in conflict
with all that has gone before. Figure 5.2(e) shows a systematically increasing size
ratio, indicating large changes in expectation where small changes were expected;
this is the result of the later sequential changes in expectation for α, β needing to
compensate for the earlier adjustments. The latter points of Figure 5.2(f) indicate
large changes in expectation together with strong consistency of direction of change.

Figure 5.3 shows the summary plots for data set 3. There is one aberrant point,
observation [10], clearly picked out by the path correlation at that stage. Until then,
we see in Figure 5.3(f) a sequence of increasing positive correlations (implying
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Table 5.4 Diagnostic assessments for Anscombe data sets.

Data set 1 Data set 2

i E[i](α) E[i](β) Sr[i/](C) C[i/] E[i](α) E[i](β) Sr[i/](C) C[i/]

1 0.44 0.89 0.95 0.00 0.32 0.65 0.50 0.00
2 0.35 1.00 0.22 0.63 0.18 0.82 0.52 0.63
3 0.14 1.11 0.36 0.36 0.07 0.94 0.52 0.44
4 1.10 0.77 5.29 −0.36 0.28 1.02 0.26 0.49
5 1.21 0.74 0.07 0.39 0.36 1.04 0.03 0.54
6 0.92 0.81 0.50 −0.49 0.27 1.02 0.04 −0.54
7 1.23 0.74 0.67 0.36 0.02 0.96 0.43 −0.47
8 1.54 0.68 0.80 0.55 0.36 0.89 1.23 −0.29
9 1.26 0.73 0.81 −0.68 0.86 0.79 2.52 0.02

10 2.04 0.60 7.39 0.59 1.46 0.69 4.37 0.40
11 2.15 0.58 0.17 0.81 2.15 0.58 6.83 0.68

Data set 3 Data set 4

i E[i](α) E[i](β) Sr[i/](C) C[i/] E[i](α) E[i](β) Sr[i/](C) C[i/]

1 0.56 1.13 1.52 0.00 0.21 0.84 0.73 0.00
2 0.63 1.06 0.10 −0.63 0.20 0.83 0.00 −1.00
3 0.85 0.94 0.41 −0.21 0.19 0.77 1.84 −1.00
4 1.18 0.83 0.61 0.10 0.20 0.81 1.76 1.00
5 1.53 0.73 0.65 0.39 0.19 0.79 0.75 −1.00
6 1.85 0.65 0.62 0.59 0.21 0.84 4.40 1.00
7 2.13 0.59 0.53 0.72 0.20 0.83 0.00 −1.00
8 2.36 0.54 0.44 0.79 0.21 0.85 2.00 1.00
9 2.56 0.50 0.37 0.84 0.20 0.83 2.00 −1.00

10 1.70 0.65 8.94 −0.87 0.21 0.84 0.50 1.00
11 2.15 0.58 3.02 0.74 2.15 0.58 2.78 −0.01

data complementarity) corresponding to small (i.e. unsurprising) size ratios. The
aberrant point has both a strong negative correlation of −0.87 and a very high size
ratio of 8.94, indicating substantial discordancy.

Figure 5.4 shows the summary plots for data set 4. There is one point distant
from the others, observation [11]. However, this point is not especially in conflict
with the preceding evidence, and the associated size ratio is not large enough to
cause alarm.

One informal means of assessing the adequacy of alternative models is via the
path correlation. Suppose, for example, that we fit a quadratic regression to data
set 2, modifying (5.64) to

Yi = α + βxi + γ x2
i + εi. (5.67)

Following Goldstein (1988b), we specify γ to have prior mean zero, prior variance
Var(γ ) = 0.2, and to be uncorrelated with all other quantities. We now construct
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Figure 5.1 Data set 1. (a) Scatter plot of original data; (b) sequential update of expectation
for α; (c) sequential update of expectation for β; (d) partial sizes for sequential adjustments;
(e) partial size ratios for sequential adjustments; (f) successive path correlations multiplied
by size ratios.

new data quantities for this model, and carry out a similar sequence of adjustments
in order to determine the data trajectory. The results are plotted in Figure 5.5. The
path correlations for the quadratic fit settle down quickly to a series of positive
correlations, whilst the corresponding size ratios (which were previously increasing
alarmingly) now give no reason for concern, and the maximal standardized changes
in expectation are now generally quite small for each sequential adjustment. The
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Figure 5.2 Data set 2. (a) Scatter plot of original data; (b) sequential update of expectation
for α; (c) sequential update of expectation for β; (d) partial sizes for sequential adjustments;
(e) partial size ratios for sequential adjustments; (f) successive path correlations multiplied
by size ratios.

quadratic component γ is not plotted but can be seen in Table 5.5, which can be
compared to the appropriate quadrant of Table 5.4.

5.14.2 Regression with correlated responses

The following problem is considered in Box and Tiao (1973, Chapter 8). A certain
chemical process leads to a product Y and a by-product Z. The yields of both
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Figure 5.3 Data set 3. (a) Scatter plot of original data; (b) sequential update of expectation
for α; (c) sequential update of expectation for β; (d) partial sizes for sequential adjustments;
(e) partial size ratios for sequential adjustments; (f) successive path correlations multiplied
by size ratios.

products are thought to be related to the temperature of the process, X∗. Twelve
experiments are performed with different temperature settings (degrees Fahrenheit)
to study the effect of temperature. The data are shown in Table 5.6, and plotted
in panels (a) and (b) of Figure 5.6. In performing the analysis, we transform the
temperature measurements to X = (X∗ − 177.86)/100, where 177.86 is the mean
temperature setting.
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Figure 5.4 Data set 4. (a) Scatter plot of original data; (b) sequential update of expectation
for α; (c) sequential update of expectation for β; (d) partial sizes for sequential adjustments;
(e) partial size ratios for sequential adjustments; (f) successive path correlations multiplied
by size ratios.

5.14.2.1 The model

The model suggested to explain relationships between the quantities is as follows:

Yi = a + bxi + ei (5.68)

Zi = c + dxi + fi, i = 1, . . . , 12. (5.69)
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Figure 5.5 Data set 2, quadratic fit. (a) Scatter plot of original data; (b) sequential update of
expectation for α; (c) sequential update of expectation for β; (d) partial sizes for sequential
adjustments; (e) partial size ratios for sequential adjustments; (f) successive path correlations
multiplied by size ratios.

The model reflects the beliefs that the relationships between the yields Y, Z and the
temperature X are approximately linear in X over the given range of temperature
values. The intercept terms a, c indicate the yields for average temperature settings,
whilst the slopes of the regressions are given by b, d . The models incorporate error
components ei, fi . Separate runs of the experiment are independent; however, in
any particular run it is felt that the error components will be correlated because
slight aberrations in reaction conditions or analytical procedures could simulta-
neously affect both product yields. We will thus suppose that e1, e2, . . . are an
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Table 5.5 Diagnostic assessment for quadratic modelling.

Data set 2, quadratic fit

i E[i](α) E[i](β) E[i](γ ) Size[i/](C) Sr[i/](C) C[i/]

1 0.0883 0.1766 0.1413 0.13 0.13 0.00
2 0.0438 0.1367 0.1585 0.00 0.01 0.13
3 0.1164 0.2250 0.1323 0.01 0.04 −0.15
4 0.1995 0.3862 0.0939 0.03 0.22 0.21
5 0.2272 0.5636 0.0590 0.03 0.43 0.61
6 0.1861 0.7414 0.0296 0.03 0.63 0.75
7 0.0780 0.9166 0.0048 0.03 0.82 0.77
8 −0.0883 1.0858 −0.0160 0.04 0.98 0.76
9 −0.3008 1.2465 −0.0334 0.04 1.09 0.76

10 −0.5481 1.3979 −0.0480 0.05 1.17 0.77
11 −0.8168 1.5380 −0.0603 0.05 1.20 0.78

Table 5.6 Yield of two products for a chemical process.

Temperature Main product By-product
X∗ Y Z

161.30 63.70 20.30
164.00 59.50 24.20
165.70 67.90 18.00
170.10 68.80 20.50
173.90 66.10 20.10
176.20 70.40 17.50
177.60 70.00 18.20
181.70 73.70 15.40
185.60 74.10 17.80
189.00 79.60 13.30
193.50 77.10 16.70
195.70 82.80 14.80

uncorrelated sequence of error components with expectation zero and variance σ 2
e ;

that f1, f2, . . . are an uncorrelated sequence of error components with expectation
zero and variance σ 2

f ; and that all pairs of error components ei, fj are uncorrelated
except for Cov(ei, fi) = σef .

5.14.2.2 Prior beliefs

It is necessary to specify prior beliefs over the four quantities a, b, c, d, and for
the error components. Non-informative reference prior distributions are used for all
these quantities by Box and Tiao (1973). For our illustration, we attempt to portray
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Figure 5.6 Correlated regressions: (a) scatter plot of original data, yield Y versus tempera-
ture X; (b) scatter plot of original data, yield Z versus temperature X; (c) partial size ratios
for sequential adjustments; (d) successive path correlations multiplied by size ratios.

degrees of uncertainty that might plausibly be held by the process production man-
ager. For the error quantities, we specify σ 2

e = 6.25, σ 2
f = 4, and σef = 2.5, so

that the correlation between the two error components for any given run is about
0.5. We chose these error variances by examining the residuals from separate
least squares fits, so that the analysis would not be complicated by obvious con-
flicts between prior beliefs and the data; we shall discuss variance learning in a
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later chapter. We specify the following expectations and covariances between the
regression coefficients:

E






a

b

c

d




 =




75
40
20
−30


 , (5.70)

Var






a

b

c

d




 =




4 −6 −1 0
−6 225 0 −90
−1 0 1 −2.4

0 −90 −2.4 144


 . (5.71)

The variance–covariance specifications indicate rather more uncertainty about the
first regression equation than the second. Each slope quantity is considerably more
uncertain than the corresponding intercept quantity: a production manager may
know roughly the yield for an average temperature, but may have only sketchy
beliefs concerning the direction and magnitude of the slope. We have specified the
same degree of weak negative correlation, −0.3, between slope and intercept for
each regression.

If we suppose that, at any given temperature, the total amount of product
yield (Y + Z) will fluctuate between fairly narrow limits, then the two yields
should be strongly negatively correlated. We choose to introduce this information
into the model by specifying negative correlations (each −0.5) between the two
intercepts and between the two slopes. We treat the slope and intercept for different
regressions as being uncorrelated, as we have exhausted our intuition about the
physical process. This completes the prior specification process.

We must now construct the beliefs for the data quantities. These are obtained
via (5.69), (5.70), (5.71) as

E(Yi) = E(a)+ xiE(b),

E(Zi) = E(c)+ xiE(d),

Var(Yi) = Var(a)+ 2xiCov(a, b)+ x2
i Var(b)+ Var(ei),

Var(Zi) = Var(c)+ 2xiCov(c, d)+ x2
i Var(d)+ Var(fi),

Cov(Yi , Zj ) = Cov(a, c)+ xixj Cov(b, d), i �= j,

= Cov(a, c)+ x2
i Cov(b, d)+ Cov(ei, fi), i = j.

Finally we must construct the beliefs between the regression coefficients and the
data quantities, for example:

Cov(a, Yi) = Var(a)+ xiCov(a, b), Cov(b, Yi) = Cov(a, b)+ xiVar(b),

Cov(c, Yi) = Cov(c, a), Cov(d, Yi) = xiCov(d, b).
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We will arrange the regression coefficients into the collection G = [a, b, c, d], and
the yields as the collections Y = (Y1, . . . , Y12) and Z = (Z1, . . . , Z12).

5.14.2.3 Overall adjustment

Suppose we now calculate the adjustment of G by all the data quantities, Y ∪ Z.
The adjustment is summarized in Table 5.7. Expectations for the four regression
coefficients are roughly in line with the prior specification; the intercept terms
a, c have been revised downwards and the slope terms b, d revised upwards. In
terms of standard deviations of variance resolved, none of the changes from prior
to adjusted appear surprising. The average variance resolution across the belief
structure [G] is 76.4%, and the variance resolution for each of the coefficients is
80% or better. We may also calculate the canonical quantities and summarize the
adjustment in terms of these, as shown in Table 5.8. This shows that there are two
directions W1, W2 in which we expect to resolve better than 93% of the uncertainty,
and two more directions for which the data are expected to be less informative.
The changes in expectation for these quantities are broadly unsurprising, although
the change for W3 is quite large relative to the third canonical resolution of 0.69.
The canonical quantities and the bearing vector are, in terms of the standardized
versions of the regression coefficients,

W1 = 0.52 S(a)− 0.37 S(b)− 0.26 S(c)+ 0.36 S(d),

W2 = 0.56 S(a)+ 0.44 S(b)− 0.27 S(c)− 0.46 S(d),

W3 = 0.39 S(a)− 0.71 S(b)+ 0.57 S(c)− 0.68 S(d),

W4 = 0.89 S(a)+ 0.83 S(b)+ 1.03 S(c)+ 0.85 S(d),

Zy∪z(G) = −2.32 S(a)+ 0.61 S(b)− 2.06 S(c)+ 0.55 S(d),

Table 5.7 Summary of adjusted expectations, standardized changes and variances
for the regression coefficients a, b, c, d.

Expectation Uncertainty

Prior Adjusted Change Prior Adjusted Resolved Resolution

a 75 72.175 −1.48 4 0.377 3.623 0.906

b 40 51.905 0.85 225 29.794 195.206 0.868

c 20 18.993 −1.13 1 0.202 0.798 0.798

d −30 −22.058 0.71 144 19.089 124.911 0.867

G 4 0.944 3.056 0.764
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Table 5.8 Summary of adjusted expectations, standardized changes and variances
for the canonical quantities W1, . . . , W4.

Expectation Uncertainty

Prior Adjusted Change Prior Adjusted Resolved Resolution

W1 0 −0.529 −0.54 1 0.053 0.947 0.947
W2 0 −0.463 −0.48 1 0.068 0.932 0.932
W3 0 −2.131 −2.57 1 0.310 0.690 0.690
W4 0 −1.077 −1.54 1 0.514 0.486 0.486
G 4 0.944 3.056 0.764

with resolutions and corresponding size

RY∪Z(W1) = 0.9472,

RY∪Z(W2) = 0.9323,

RY∪Z(W3) = 0.6900,

RY∪Z(W4) = 0.4864,

Sizey∪z(G) = 6.19,

where Var(Zy∪z(G)) = Sizey∪z(G). W3 contrasts the intercept terms a, c with the
slope terms b, d. Notice that the bearing vector Zy∪z(G) similarly contrasts the
intercept terms a, c with the slope terms b, d, but with more emphasis on the
intercept terms, implying relatively larger standardized changes in expectation for
the intercept terms. The size of the adjustment turns out to be 6.19, with prior
expectation 3.06, giving a size ratio of Sry∪z(G) = 2.03. This is well within the
heuristic upper threshold of 4.09 given by expression (4.65): there appear to be no
major contradictions between prior specifications and data.

5.14.2.4 Partial adjustment: comparing two data sources

We shall now consider two partial adjustments that may be diagnostically useful.
Both concern the way in which we employ the data. The first of these is to check
that the implications of the observations for the two kinds of yield, Y and Z,
are consistent. Therefore, we adjust the regression coefficients G by the set of
observations for the yields for the main product Y , and then adjust partially by
the remaining set of observations for the yields for the by-product Z. We find that
there are only two canonical quantities for the adjustment of G by Y alone:

W1 = 0.89 S(a)− 0.31 S(b), RY∪Z(W1) = 0.8915,

W2 = 0.50 S(a)+ 0.97 S(b), RY∪Z(W2) = 0.8245,

Zy(G) = −1.61 S(a)+ 0.54 S(b), Var(Zy(G)) = Sizey(G) = 3.23.
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Notice that, although Y is 12-dimensional and G is four-dimensional, the canonical
adjustment is two-dimensional. This because our model has Yis constructed from
coefficients a, b but not c, d. Therefore, we should find that the data set Y is
essentially informative for a and b. This does not mean that we cannot use the
data Y to learn about c and d, but that we do so indirectly via their covariances
with a and b. Similarly, the bearing Zy(G) is two-dimensional: the direction of
maximal change relative to prior variation is −1.61S(a)+ 0.54S(b). Notice that
this implies that we cannot expect that the data set Y will induce large changes
in expectation for the coefficient d. This follows because changes in expectation
arise through covariance with the bearing, by (4.52), and because d has zero prior
covariance with a, the major component in this bearing. The size ratio for the
adjustment by Y = y is Sry(G) = 1.88, showing no particular discrepancy.

We now adjust G partially by Z = z in addition to Y = y. This partial adjust-
ment is also two-dimensional, as the Zis are directly informative for c, d and
only indirectly informative for a, b. The partial canonical directions and the partial
bearing turn out to be

U1 = 0.11 S(a)− 0.29 S(b)+ 0.45 S(c)− 0.92 S(d),

U2 = 0.45 S(a)+ 0.34 S(b)+ 1.12 S(c)+ 0.78 S(d),

Z[z/y](G) = −0.71 S(a)+ 0.07 S(b)− 2.06 S(c)+ 0.55 S(d),

with corresponding resolutions and size

RY∪Z(U1) = 0.7652,

RY∪Z(U2) = 0.5748,

Size[z/y](G) = 4.02,

where Var(Z[z/y](G)) = Size[z/y](G). The coefficients for these quantities show,
as would be expected, that the main implications of adjusting partially by Z = z,
in addition to Y = y, are greater resolutions of variance for c and d, and relatively
larger changes in expectations for c and d. However, notice that the additional
information can also indirectly resolve some of the previously unexplained variation
in a, b, and can lead to changes in their expectations. The changes in variance are
shown in Table 5.9. These emphasize the value of the partial adjustment for c, d,
whereas the additional resolution of variance for a, b is minimal. The changes in
expectation are shown in Table 5.10. None of the individual standardized changes
is too alarming, the largest being a standardized change of about 2.4 standard
deviations for the partial change in expectation for coefficient c. However, if we
examine the initial changes in expectation for the regression coefficients (adjusting
by Y = y), and compare these changes to the changes obtained for the partial
adjustment (by Z = z given Y = y), we see that all the partial changes are opposite
in sign to the initial changes. This suggests that the two sets of observations
have somewhat contradictory implications. Indeed, when we calculate the path
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Table 5.9 Initial and partial changes in variance for the coefficients a, b, c, d.

Variance

Prior Resolved by Y Resolved by [Z/Y ] Not resolved

a 4 3.5410 0.0821 0.3769
b 225 189.1326 6.0731 29.7942
c 1 0.2280 0.5700 0.2021
d 144 31.1530 93.7584 19.0887

Resolution

Prior Resolved by Y Resolved by [Z/Y ] Not resolved

a 0 0.8853 0.0205 0.0942
b 0 0.8406 0.0270 0.1324
c 0 0.2280 0.5700 0.2021
d 0 0.2163 0.6511 0.1326

Table 5.10 Initial and partial changes in expectation for the coefficients a, b, c, d.
Standardized changes are given in parentheses.

Expectation

Prior Change, given y Partial change, given [z/y] Final

a 75 −3.4378 0.6125 72.1747
(−1.83) (2.14) (−1.48)

b 40 12.8964 −0.9919 51.9045
(0.94) (−0.40) (0.85)

c 20 0.8057 −1.8126 18.9931
(1.69) (−2.40) (−1.13)

d −30 −3.2249 11.1674 −22.0575
(−0.58) (1.15) (0.71)

correlation (5.51) we find it to be

PC(y, [z/y]) = Corr(Zy(G), Z[z/y](G)) = −0.1468,

so that our global measure of data consistency shows that the two sets of observa-
tions y, z are very weakly contradictory relative to the prior specification.

5.14.2.5 Partial adjustment: sequential adjustment

For the second diagnostic partial adjustment, recall that the experiment concerns
obtaining two yields at each of 12 temperatures x1, . . . , x12. Thus, we are concerned
with checking whether the results obtained from the sequence of measurements
are consistent. To do so, we arrange the pair of measurements corresponding to
temperature xi as the collection Hi = [Yi, Zi]. We now make a series of partial
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Table 5.11 Diagnostics and changes in expectation for the sequential adjustment.

Run Coefficient estimates Diagnostics

i xi E[i](a) E[i](b) E[i](c) E[i](d) Sizei/(G) Sri/(G) C[i/]

1 161.30 74.10 44.58 19.57 −20.87 1.44 1.18
2 164.00 72.24 53.57 20.11 −24.02 1.06 4.71 0.3234
3 165.70 73.05 52.93 19.49 −20.29 0.44 3.53 −0.0468
4 170.10 73.10 53.32 19.42 −20.24 0.00 0.03 0.4501
5 173.90 71.93 48.70 19.82 −16.80 0.54 2.57 0.1927
6 176.20 72.19 51.01 19.51 −18.16 0.13 0.70 −0.0066
7 177.60 71.99 50.36 19.46 −17.87 0.03 0.20 0.5382
8 181.70 72.35 53.64 19.08 −21.03 0.27 1.52 0.0146
9 185.60 71.99 50.43 19.21 −19.42 0.09 0.56 0.0552

10 189.00 72.44 55.10 18.85 −24.10 0.36 2.34 −0.0060
11 193.50 72.04 50.11 19.03 −21.33 0.19 1.29 −0.1086
12 195.70 72.17 51.90 18.99 −22.05 0.02 0.19 −0.0906

adjustments of G by H1, and then partially by H2, and so forth. At each stage,
we examine the ways in which the estimates for the regression coefficients change
and study the various diagnostics. These features are summarized in Table 5.11 and
plotted in Figures 5.6 and 5.7. We do not observe any features to cause us to doubt
the prior specifications or the data. The estimates for the regression coefficients
show some fluctuation, but do not show any peculiar patterns. The estimates for
the coefficient c do fall as more evidence is accumulated, but this is clearly an
artefact of the configuration of the initial observations. None of the size ratios
are overly large, so we do not suspect important contradictions between the data
and the prior specifications. The path correlations (multiplied by the corresponding
size ratio, to emphasize important features) vary between very weakly negative and
quite positive, and show no systematic features. We conclude that the sequential
adjustments do not reveal serious inconsistencies amongst the data.

5.14.2.6 Exploration of systematic bias

We can see whether or not the observed sequences Y1, . . . , Y12 and Z1, . . . , Z12
are well aligned with their prior specifications by using the ideas outlines in §5.13.
We calculate and plot the standardized cumulative standardized one-step forecast
errors, Q1, . . . , Q12, where, for the {Yi} sequence,

Qj = 1√
j

j∑
i=1

εi,

and where the one-step forecast errors are

εi = yi − E[i−1](Yi)√
Var[i−1](Yi)

.
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Figure 5.7 Correlated regressions: (a) sequential update of expectation for a; (b) sequential
update of expectation for c; (c) sequential update of expectation for b; (d) sequential update
of expectation for d .

The plotted values of Qj are shown in the top part of Figure 5.8, with the corre-
sponding values for the {Zi} sequence shown in the bottom part. Both sequences are
persistently lower than the expected value of zero. We deduce that the prior expec-
tations for both the {Yi} sequence and the {Zi} sequence are systematically higher
than the values observed, taking into account all the evidence available prior to each
observation. The magnitude of the differences approaches two standard deviations
for much of the sequences. There is one value, Q2 = −2.303, which dips below the
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Figure 5.8 Correlated regressions: exploring systematic differences between observations
and priors. The values plotted are the standardized cumulative standardized one-step forecast
errors.

two-standard-deviation threshold. However, we would expect some larger values,
especially at the start of such sequences where the normal approximation is not
trustworthy. Taking into account the diagnostics which we checked via the sequen-
tial adjustments of the previous section, we conclude that there is some evidence of
persistent overestimation of the observations, but that this has had only a marginal
influence on the actual adjustment of belief for the regression coefficients.

5.15 Bayes linear sufficiency and belief separation

One of the most important relations in probabilistic modelling is that of conditional
independence. Conditional independence is a sufficiency property. The random
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vectors A, B are conditionally independent given vector C if the conditional dis-
tribution of B given both A and C is the same as the conditional distribution of
B given C alone. The corresponding Bayes linear relation is as follows.

Definition 5.18 C is Bayes linear sufficient for A for adjusting B if

EC∪A(B) = EC(B).

Definition 5.19 If A, B, C are three collections of random quantities, then C sep-
arates A and B, written

�A⊥⊥ B� / C,

if C is Bayes linear sufficient for B for adjusting A. In this case, we say that A and
B are orthogonal given C.

We have various equivalent forms for the belief separation �A⊥⊥ B� / C. These
are based around the adjusted expectation, EC(A), the adjusted belief structure
[A/C], and the belief transform TA:C over A induced by the adjustment by C, as
follows.

Theorem 5.20 If A, B, C are three belief structures, then the following are all
equivalent to the condition that �A⊥⊥ B� / C:

5.20.1: EB∪C(A) = EC(A);

5.20.2: Cov(A, B) = Cov(A, C)Var(C)†Cov(C, B);
5.20.3: EAC(A)(B) = 0;

5.20.4: [A/(B ∪ C)] = [A/C];

5.20.5: TA:(B∪C) = TA:C;

5.20.6: AC(A) ⊥ AC(B);

5.20.7: A ⊥ AC(B).

The above equivalences all follow directly from the definition of belief separation.
For example, Property 5.20.4 follows as

[A/(B ∪ C)] = [[A/C]/[B/C]] = [A/C],

if and only if [A/C] ⊥ [B/C], as for any pair of collections U, V ,

[U/V ] = [U ] ⇔ [U ] ⊥ [V ].

We may automatically generate the separations between two collections of
random quantities through the analysis of the eigenstructure of the corresponding
resolution transforms. From (3.83), the adjustment of B by D is performed strictly
over the space of eigenvectors in H(D/B). It follows that, for any B, D, we have

�B ⊥⊥D� / H(D/B). (5.72)

Further, if H(D/B1) = H(D/B2) = . . . = H(D/Bk) = H , then

�D ⊥⊥ (B1 ∪ . . . ∪ Bk)� / H. (5.73)
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5.16 Properties of generalized conditional independence

Belief separation is a generalized conditional independence property, which shares
many of the general properties of the more familiar conditional independence rela-
tion.

Definition 5.21 A generalized conditional independence property is a tertiary prop-
erty on collections of objects which obeys the following three basic properties, for
any collections B, C, D, F :

5.21.1: �B ⊥⊥ C� / (C ∪D);

5.21.2: �B ⊥⊥ C� / D ⇔ �C ⊥⊥ B� / D;

5.21.3: �B ⊥⊥ (C ∪D)� / F implies and is implied by the pair of conditions

• �B ⊥⊥D� / F ,

• �B ⊥⊥ C� / (D ∪ F).

These properties reflect natural aspects of our intuitive concept of conditional inde-
pendence. Informally, Property 5.21.1 requires that given C and anything else, we
learn nothing about C from any other quantity B. Property 5.21.2 is a natural
symmetry requirement. Property 5.21.3 expresses the notion that we cannot break
the conditional independence by subdividing a collection of quantities into sub-
collections, namely we require the equivalence between the statement that we learn
nothing about B from a collection G given F , and the pair of statements that (i)
we learn nothing about B from any sub-collection D in G, given F , and (ii) having
learnt D as well as F , we still learn nothing about B from the remaining elements
C in G.

It turns out that any tertiary property obeying Properties 5.21.1–5.21.3 will
behave computationally as a conditional independence property; see Smith (1990).
In particular, as we shall show, belief separation obeys these properties, so that
the various rules for belief propagation for probabilistic structures will have direct
analogues for belief adjustment. Therefore, we may build graphical models based
on belief separation which will have many of the same qualitative properties as
do probabilistic graphical models based on probabilistic notions of conditional
independence. We construct such graphical models in Chapter 10. We have the
following result.

Theorem 5.22 Belief separation is a generalized conditional independence
property.

Proof. Properties 5.21.1 and 5.21.2 follow immediately from the definition of
belief separation. Property 5.21.3 follows as

(i) if �B ⊥⊥ (C ∪D)� / F , then immediately we have both �B ⊥⊥D� / F and
�B ⊥⊥ C� / F . Therefore ED∪F (B) = EF (B), so that �B ⊥⊥ C� / (D ∪ F).
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(ii)

�B ⊥⊥ (C ∪D)� / F ⇔ [B/(F ∪ C ∪D)] = [B/F ] (5.74)

⇔ [[B/(D ∪ F)]/[C/(D ∪ F)]] = [B/F ]. (5.75)

The condition �B ⊥⊥ C� / (D ∪ F) establishes that

[[B/(D ∪ F)]/[C/(D ∪ F)]] = [B/(D ∪ F)]

and the condition �B ⊥⊥D� / F implies that [B/(D ∪ F)] = [B/F ]. There-
fore, the pair of conditions establish the right-hand side of (5.74) and so also
the left-hand side of (5.74).)

�

5.17 Properties of belief separation

We may exploit belief separation to simplify the calculations required to carry out
a collection of belief adjustments. The simplest case occurs when �A⊥⊥ B� / C,
where 〈C〉 ⊆ 〈B〉, in which case it is an immediate consequence that

EB(A) = EC(A), VarB(A) = VarC(A). (5.76)

The general form of the above relation is as follows.

Theorem 5.23 If �A⊥⊥ B� / C, then

5.23.1: EB(A) = EB(EC(A)),

5.23.2: VarB(A) = VarC(A)+ VarB(EC(A)),

5.23.3: CovB(A, C) = CovB(EC(A), C),

5.23.4: VarB∪C(A) = VarC(A),

5.23.5: Cov(A, EC(B)) = Cov(A, B) = Cov(EC(A), B).

Proof. We have

EB(A) = EB(EC∪B(A))

= EB(EC(A)+ E[B/C](A))

= EB(EC(A))

as A ⊥ [B/C]. Further

VarB(A) = VarB(A− EC(A)+ EC(A))

= VarB(A− EC(A))+ VarB(EC(A))

= VarC(A)+ VarB(EC(A)).

Property 5.23.3 follows as (A− EC(A)) is uncorrelated with C ∪ B. The remaining
properties follow similarly. �
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Theorem 5.23 is an example of the role of belief separation in local compu-
tation. Bayes linear local computation is similar in purpose to probabilistic local
computation. We simplify the task of evaluating a large collection of belief adjust-
ments by breaking the overall adjustment into a collection of smaller adjustments.
Thus, the above theorem shows that if �A⊥⊥ B� / C then the adjustment of (A, C)

by B is completely determined by the adjustment of A by C and the adjustment
of C by B. In some cases, such staged adjustment is most efficiently carried
out through the corresponding resolution transforms, as outlined in the following
theorem.

Theorem 5.24 Write the normalized eigenvectors of TC:B as Z1, Z2, . . . , and the
normalized eigenvectors of TB:C as W1, W2, . . . , respectively, with corresponding
eigenvalues λ1, λ2, . . . . If �A⊥⊥ B� / C, then we have the following properties.

5.24.1: For any X ∈ 〈A〉,
EB(X)− E(X) =

∑
i

√
λiCov(X, Zi)Wi =

∑
i

√
λiCov(EC(X), Zi)Wi,

(5.77)

VarB(X) = Var(X)−
∑

i

λi[Cov(X, Zi)]
2. (5.78)

5.24.2: For any X ∈ 〈A〉,
TA:B(X) = EA(TC:B(EC(X))).

5.24.3: W is an eigenvector of TA:B , with eigenvalue λ if and only if EC(W)

is an eigenvector of TC:A(TC:B(·)), with eigenvalue λ.

5.24.4: tr{TA:B} = tr{TC:BTC:A}.
5.24.5: If TC:B and TC:A have the same eigenvectors Y1, Y2, . . . , with
eigenvalues θ1, θ2, . . . for TC:B , and φ1, φ2, . . . for TC:A, then the quan-
tities EA(Y1), EA(Y2), . . . are the eigenvectors of TA:B and the quantities
EB(Y1), EB(Y2), . . . are the eigenvectors of TB:A, and with eigenvalues
λi = θiφi , in each case.

Proof. For Property 5.24.1, the canonical directions Zi for the adjustment of C by
B, and the canonical directions Wi for the adjustment of B by C, are related (see
§3.9.4) by EB(Zi) =

√
λiWi . For any X ∈ A we have EC(X) ∈ 〈C〉 and Z1, Z2, . . .

form a basis for 〈C〉 (see §3.9.2). Thus, we may write

EC(X)− E(X) =
∑

i

Cov(EC(X), Zi)Zi,

so that

EB(EC(X)− E(X)) = EB

(∑
i

Cov(EC(X), Zi)Zi

)
,
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so that equation (5.77) follows from Property 5.23.1, as

Cov(X − EC(X), Zi) = 0,

from Property 5.20.7.
The variance property (5.78) follows from Property 5.23.2, as

VarB(X) = VarC(X)+ VarB(EC(X))

= Var(X)− RVarC(X)+ Var(EC(X))− RVarB(EC(X))

= Var(X)− RVarB(EC(X))

= Var(X)−
∑

i

λiCov(EC(X), Zi)
2 by (3.70).

For any X ∈ 〈A〉, we have, from Property 5.23.1 that

EB(X) = EB(EC(X))

so that

TA:B(X) = EA(EB(X))

= EA(EC(EB(EC(X)))) (from Property 5.23.1)

= EA(TC:B(EC(X))),

giving Property 5.24.2
W is an eigenvector of TA:B , with eigenvalue λ if

TA:B(W) = λW,

so that, from Property 5.24.2,

EC(EA(TC:B(EC(W)))) = TC:A(TC:B(EC(W))) = λEC(W),

so that EC(W) is an eigenvector of TC:A(TC:B), with eigenvalue λ. Property 5.24.4
follows as

tr{TA:B} = tr{EA(TC:B(EC(.)))}
= tr{TC:B(EC(EA(.)))} = tr{TC:B(TC:A)}.

Finally, suppose that the transforms TC:B and TC:A have the same eigenvectors
Y1, Y2, . . . , with eigenvalues θ1, θ2, . . . , for TC:B , and φ1, φ2, . . . , for TC:A. Let

Wi = 1√
θi

EB(Yi), Ui = 1√
φi

EA(Yi).
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From (3.81), Ui, Wi are the normalized eigenvectors of TA:C , TB:C respectively.
Therefore, Cov(Ui, Yj ) = 0, for all i �= j , so that from (5.77) we have

EB(Ui) = 1√
φi

Cov(EC(EA(Yi)), Wi)Wi

=
√

φiCov(Yi, Wi)Wi =
√

φiθiWi,

from (3.82). Similarly,
EA(Wi) =

√
φiθiUi

and Property 5.24.5 follows. �
In subsequent sections, we shall construct models based on belief separation.

It will be important in such models to consider which separations are preserved as
we adjust beliefs. We have the following result, giving the conditions under which
belief separation is preserved by partial belief adjustment.

Theorem 5.25 Suppose that A, B, C are three belief structures for which we have
�A⊥⊥ B� / C. For any further belief structure D we have that

�[A/D]⊥⊥ [B/D]� / [C/D]

if and only if �A⊥⊥ B� / (C ∪D). In particular, a sufficient condition for

�[A/D]⊥⊥ [B/D]� / [C/D]

is that �A⊥⊥ (B ∪D)� / C.

Proof. The condition �[A/D]⊥⊥ [B/D]� / [C/D] is equivalent to the condition

(A− ED(A))− EAD(C)(A− ED(A)) ⊥ (B − ED(B))− EAD(C)(B − ED(B))

which reduces to the condition �A⊥⊥ B� / (C ∪D). A sufficient condition to
ensure that �A⊥⊥ B� / (C ∪D) is that �A⊥⊥ B ∪D� / C, from Property 5.21.3.

�

5.18 Example: regression with correlated responses

5.18.1 Exploiting separation

We continue the example from §5.14.2. Organize the quantities as follows. Let
G = [a, b, c, d] be the collection of uncertain quantities. Let

H = Y1, . . . , Y12, Z1, . . . , Z12

represent the quantities which we observed. Suppose that we are interested in
predicting the responses

Yr = a + bxr + er , Zr = c + dxr + fr , r > 12,
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for some, as yet unspecified, design point xr ; and collect these responses as the
structure Hr .

First, we have that Yr , Zr are linear combinations of quantities in G, excepting
the error terms er , fr , which are uncorrelated with all other quantities. It follows
that AG(Hr) ⊥ H . Thus, by Property 5.20.7 we have �Hr ⊥⊥H� / G. That is,
a future observation is separated from past observations by the set of uncertain
quantities. Theorem 5.23 now shows how we may adjust the mean and variance of
Hr by H via the adjustment of G by H . We have Yr ∈ 〈Hr〉, so that, for example,
by Property 5.23.1,

EH (Yr) = EH (EG(Yr)) = EH (EG(a + bxr + er ))

= EH (a + bxr), as a + bxr ∈ 〈G〉 and EG(er) = E(er) = 0,

= EH (a)+ xrEH (b),

which depends only on the chosen value xr and the quantities a, b adjusted by the
data already available. By Property 5.23.2,

VarH (Yr) = VarG(Yr)+ VarH (EG(Yr))

= VarG(a + bxr)+ VarG(er )+ VarH (a + bxr)

= 0+ Var(er )+ VarH (a + bxr),

= Var(er)+ VarH (a)+ 2xrCovH (a, b)+ x2
r VarH (b),

which depends only on an irreducible error variance and on the chosen value xr and
the adjusted variances and covariance for the quantities a, b given the initial data.
The required adjusted expectations and variances are given in Table 5.7, excepting
CovH (a, b) = −0.3372 and Var(er) = 6.25. Figure 5.9 shows the observations,
the prediction as xr varies, EH (a)+ xrEH (b), a two-standard-deviation envelope
for the prediction, and a two-standard-deviation envelope for the underlying mean
component, a + bx. The envelopes are narrowest at

xr = −CovH (a, b)

VarH(b)
= 178.9918,

after rescaling, and wider (more uncertain) as we move away from the observed
region. Note that the second observation, (164, 59.50), appears relatively most
distant from the predicted value for such a temperature: it is this observation
which has the highest diagnostic value in Table 5.11.

5.18.2 Heart of the transform

The heart of the transform for this example is obtained by calculating the canonical
directions and resolutions for the adjustment TH :G of the data quantities H by the
set of uncertain quantities G. As the former is 24-dimensional and the latter is
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Figure 5.9 The original observations, the prediction as temperature varies, a two-standard-
deviation envelope for the prediction, and a two-standard-deviation envelope for the under-
lying mean component.

four-dimensional, the heart of the transform is at most four-dimensional, possibly
less, depending on the covariances between G and H . As it turns out, the heart is
four-dimensional, with canonical resolutions

λ1 = 0.9472, λ2 = 0.9323, λ3 = 0.6900, λ4 = 0.4864,

and corresponding directions W1, . . . , W4, shown in Table 5.12 in the form

W1 = 0.0487 Y1 + . . .+ 0.0147 Z12 − 12.0698
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Table 5.12 The four directions in H comprising the heart of the transform for
the adjustment of G by H .

W1 W2 W3 W4

Y1 0.0487 0.0101 0.0580 0.0181
Y2 0.0442 0.0048 0.0508 0.0109
Y3 0.0414 0.0014 0.0462 0.0064
Y4 0.0341 −0.0072 0.0343 −0.0053
Y5 0.0277 −0.0146 0.0241 −0.0154
Y6 0.0239 −0.0191 0.0178 −0.0216
Y7 0.0216 −0.0219 0.0141 −0.0253
Y8 0.0147 −0.0299 0.0030 −0.0362
Y9 0.0082 −0.0376 −0.0075 −0.0466
Y10 0.0026 −0.0443 −0.0167 −0.0556
Y11 −0.0049 −0.0531 −0.0288 −0.0676
Y12 −0.0086 −0.0574 −0.0347 −0.0734
Z1 −0.0547 −0.0200 0.0930 −0.0036
Z2 −0.0493 −0.0132 0.0842 −0.0127
Z3 −0.0459 −0.0088 0.0787 −0.0185
Z4 −0.0370 0.0023 0.0645 −0.0335
Z5 −0.0293 0.0120 0.0522 −0.0464
Z6 −0.0246 0.0179 0.0447 −0.0543
Z7 −0.0218 0.0214 0.0402 −0.0590
Z8 −0.0135 0.0318 0.0269 −0.0730
Z9 −0.0057 0.0418 0.0143 −0.0862
Z10 0.0012 0.0504 0.0033 −0.0978
Z11 0.0103 0.0618 −0.0113 −0.1131
Z12 0.0147 0.0674 −0.0184 −0.1206

Constant −12.0698 17.1141 −21.3308 37.8097

and so forth. We arrange these directions as the collection W+. These directions
identify the four ‘sufficient statistics’ for the 24 observed data quantities. They
divide the data into two spaces. One, H(H/G), is spanned by W+ and is used
for the belief adjustment. The second space, H

⊥(H/G), which we discuss below,
is not relevant for adjusting G, but instead plays a diagnostic role for our specifi-
cation. The observed values of these four directions are −0.54, 0.48,−2.57, 1.54,
corresponding to prior expectation zero and prior variance one, so that the third
‘sufficient statistic’ is slightly at odds with the belief specification. Note the cor-
respondence with the canonical directions summarized in Table 5.8.

5.18.2.1 Diagnostics in the complementary observed space

There remain 20 directions in the data space [H ] which are not informative for
G, but which have been observed and thus can be compared diagnostically to
prior beliefs specified about them. The simplest construction is to form the partial
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Table 5.13 Squared observed adjustments for the 20 directions in H uninforma-
tive for adjustment of G.

14.0126 0.7170 11.6216 0.0602 0.8846
0.0018 0.4855 0.4776 0.6094 0.0167
0.1690 2.3612 0.5421 1.7612 0.3511
0.1414 0.2387 0.0567 1.0093 0.1033

adjustment of H by H given W+: that is, we adjust H first by the heart W+ and
then by itself. This yields partial canonical directions (Definition 5.3) which we
will label W5, . . . , W24 and arrange as the collection W 0. These directions span
H
⊥(H/G), the orthogonal complement of H(H/G) in H . The squared observed

adjustments for these quantities, E[h/w+](Wi), are shown in Table 5.13. By (5.41),
the partial size of the adjustment can be obtained by summing these squares, giving
Size[h/w+](H) = 35.621. The corresponding size ratio is thus 35.621/20 = 1.78.
As this is relatively close to its expectation, we judge that overall there is no strong
evidence that the data are inconsistent with their prior specifications. There are, it
is true, two quite large squared standardized adjustments in Table 5.13. Inspection
of the first and third partial canonical directions (not shown here), corresponding
to these largest discrepancies, reveals no obvious problems. For such inspection,
we look for any patterns amongst the coefficients, taking into account the nature
of the model. Here, the model encompasses a time sequence, t = 1, 2, . . . , 12, and
pairing of observations, (Yt , Zt ), so that it is natural to look for patterns across
time and for pairs.

We should also examine the partial bearing, which provides the direction in W 0

with maximal squared partial change in adjustment, equal to 35.621. This direction
(not shown here) also has no obvious pattern amongst its coefficients.

5.19 Further reading

The construction and analysis of adjusted belief structures are discussed in Gold-
stein (1988a). The bearing and the data trajectory were introduced and illustrated
in Goldstein (1988b). Our suggested diagnostic measures lend themselves to nat-
ural graphical representations; see Farrow and Goldstein (1996) and Williams
and Goldstein (1999). For a more general discussion of Bayes linear sufficiency,
with application to the types of problem discussed in O’Hagan et al. (1992), see
Goldstein and O’Hagan (1996). Belief separation, as a generalized conditional
independence property, is discussed in Goldstein (1990).



6

Exchangeable beliefs

So far we have been concerned with features which are general to any adjustment of
beliefs. Now, we introduce additional features which are characteristic of statistical
applications, and in particular we exploit the notion of exchangeability as a funda-
mental subjective judgement underlying many statistical models. Because we only
require consideration of second-order beliefs, it turns out to be both feasible and
desirable to use restricted exchangeability to build our second-order models strictly
from prior specifications over observable quantities. We now describe this restricted
notion of exchangeability, and derive the appropriate representation theorem for
second-order exchangeable sequences. We introduce these ideas in the simple con-
text of coin tossing, and then describe the general construction. In the latter part of
the chapter, we show how exchangeable beliefs may be adjusted by observation,
and in particular we show that the canonical structure for the adjustment may be
constructed in a simple and intuitive form.

6.1 Exchangeability

To introduce our approach to statistical modelling, compare the following two
situations.

(A) We want to estimate the proportion, p, of people in some large, finite population
who possess some characteristic, say the number who smoke. Therefore, we
take a random sample, of size n, with replacement. We count how many in
our sample smoke, r say, and we use the ratio r/n, or some appropriate
modification if n is small, as an estimate of p.

(B) We want to estimate the probability, p, that a spun coin lands heads. Therefore,
we spin the coin n times, and count the number of heads, r , that we obtain.
We use the ratio r/n, or some appropriate modification if n is small, as an
estimate of p.

Bayes Linear Statistics: Theory and Methods M. Goldstein and D.A. Wooff
 2007 John Wiley & Sons, Ltd
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Traditional statistical methodology emphasizes the similarity between these two
problems. In each case, we view the observed value r as having a binomial dis-
tribution, with parameters n, p. Depending on our approach to statistics, we may
create some estimate for p or revise a prior probability distribution represent-
ing our beliefs concerning p, performing essentially the same analysis for (A)
and (B).

However, there is a fundamental difference between the two cases. For (A), the
quantity p of interest is a well-defined and, in principle, observable quantity, with
a definite physical meaning, while for (B) p is not observable, even in principle,
is not clearly defined, and has no immediate physical meaning. Therefore, in the
second problem, before we can carry out a meaningful analysis we must first be
clear just what it is that we are learning about.

In a sense, this difficulty arises from the problem of giving a precise statement
of the relative frequency definition of probability. But, as the example suggests,
even if we start from a subjectivist position, we often find that we need to create
quantities such as ‘the probability that a coin lands heads’ in order to learn from
the experience of spinning the coin.

One way that we may appear to avoid this problem is to argue that we are
really interested in certain observable outcomes, such as the event that the coin
will land heads on the next spin, and therefore to use the previous observations
simply to change our predictive probabilities for such future observables. If we
carry out such an analysis purely by specifying beliefs linking different observ-
able outcomes, then our procedure does have a clear meaning, but we must pay
a very high price for this, as the probabilistic specification that we require over
the observables is usually very complex. Therefore, even if we are only inter-
ested in predictive statements about future coin spins, usually we will derive
these predictive statements by supposing that there is an underlying probabil-
ity that the coin will land heads, updating our beliefs about this probability by
observing various spins of the coin, and then using our updated beliefs about
the underlying probability for heads to generate predictive probabilities for future
tosses.

In this way, we move the probability of heads from being a physical quantity
which is of intrinsic interest to a mental construct which we introduce in order
to simplify an analysis which otherwise would prove very complex. How can we
justify the use of this mental construct?

The most careful interpretation of relative frequency probability as a mental
construct comes from the notion of exchangeability. Suppose that we have an in
principle infinite collection of coin spins S = (S1, S2, . . .), where each Si takes
value 1, if heads, or 0, if tails. We say that the collection S is exchangeable if our
beliefs over S are unaffected by any permutation of the subscripts, or equivalently
if, for each k, our probability for obtaining precisely k heads in n spins is the
same irrespective of which subset of n spins we pick from S. In this case, we
may apply the exchangeability representation theorem of de Finetti (see de Finetti
1937), which tells us that we may construct a probability measure Q on the interval
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[0,1] such that our probability of k heads in n spins is given by

∫ 1

0

(
n

k

)
pk(1− p)n−kdQ(p). (6.1)

Our beliefs therefore must be exactly as though we consider that there is a ‘true but
unknown’ probability p that a spin will land heads, so that given p the sequence
of tosses is independent and identically distributed with probability p of heads on
each toss, and we specify a prior probability distribution Q for p. The distribution
Q is uniquely specified by the prior specification over outcomes for the collection
of coin spins.

In principle, this representation resolves our problem. We may construct beliefs
about the unobservable ‘probability’ of spinning a head, by expressing beliefs over
the collection of observables. We may then treat p as if it were an actual random
quantity. For example, if we observe r heads in m spins, our conditional probability
of observing k heads in the next n spins is given by

∫ 1

0

(
n

k

)
pk(1− p)n−kdQ(p|r, m), (6.2)

where Q(.|r, m) is the conditional probability measure that we obtain by updating
beliefs about p using Bayes’ theorem. Thus, we obtain exactly the same answer
if (i) we restrict the prior specification and subsequent conditioning entirely to
statements of belief about observables, i.e. the joint distribution of the first n+m

tosses, or (ii) we treat p as though it were an actual random quantity, and derive
conditional predictive beliefs about future observables from (6.2). Usually (ii) is
technically easier than (i), so that the introduction of unobservable parameters can
be viewed as a natural way of organizing and simplifying both the task of coherent
prior specification and the calculations which are involved in a predictive analysis.
Versions of the exchangeability representation theorem have been developed for
a great many statistical problems, in which there is some form of invariance of
beliefs over permutations of the (possibly transformed) observables.

We can therefore make a strong case for the view that exchangeability is the
fundamental judgement which gives meaning to the kinds of assumptions and
modelling which characterize the usual types of statistical analysis. However, there
is a basic problem with the view that we start with exchangeable beliefs over
observables, and construct probabilistic models directly from these judgements.
Consider the coin spinning example. In order to construct the prior probability
measure p, we must specify, for every k, n, our prior probability for k heads in
n spins. It is extremely difficult to make such prior specifications, even for quite
moderate values of k, n, and it is therefore completely impractical to actually make
all of the prior specifications over observables which are required in order to apply
the exchangeability representation. Therefore, in practice, we cannot construct the
prior measure Q from our stated beliefs over observables, nor can we view the
construction as a pragmatic simplification of beliefs which we could, with a certain
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amount of effort, express. However, logically, we cannot construct these beliefs
in any other way, as the quantity p has no operational meaning outside of the
representation theorem. Therefore, we appear to have no choice but to treat p as
a real but unobservable random quantity which exists separately from our ability
to specify all of the prior beliefs over observables which are necessary in the
representation theorem.

If we cannot apply the representation theorem constructively in the simplest
possible example, namely spinning coins, then in any genuine problem of interest
we will obtain little practical help from the exchangeability representation theorem,
so that a Bayes analysis will usually be conducted entirely in terms of some
parametric model. Thus, while in principle the exchangeability representation is
fundamental to statistical modelling, in practice it is much less important, and it is
unusual for exchangeability to play a constructive role in belief specification and
analysis. The difficulty that we face in using the representation is one which we
have already identified as a frequent problem for the Bayesian approach, namely
that we need to specify prior beliefs to an extreme level of detail before we may
carry out any analysis of aspects of these beliefs.

Further, the full exchangeability specification is not only overly detailed but
also often misleading. In most sampling situations, there are certain sequences
which we might observe which would lead us to question the exchangeability for-
mulation; for example, long alternating sequences of heads and tails might suggest
that the outcome of the previous spin influenced the current spin, perhaps by the
way the coin is facing at start of each spin. In a fully exchangeable specification,
such systematic patterns are ignored, and prior exchangeability always leads to con-
ditional exchangeability for all sequences. Thus, full exchangeability rarely reflects
our actual beliefs, but it would usually be very difficult to anticipate and specify
beliefs over all of the departures from exchangeability that we might observe and,
in any case, this would lose the essential simplicity of the exchangeable analysis.

The problems that we have discussed in applying the exchangeability repre-
sentation show the price that we pay for the requirement of full probabilistic prior
specification. In the Bayes linear approach, however, we work with far more mod-
est belief specifications. For this reason, we will find that we are able to exploit
exchangeability in practice, as well as in principle, so that the statistical models
that we shall construct will be built directly from beliefs over observables. We
shall first introduce our approach for the example of spinning coins.

6.2 Coin tossing

Suppose that we have an in principle infinite collection of coin spins, given by
S = (S1, S2, . . .), where each Si takes value 1, if heads, or 0, if tails. We want to
create a representation for p, the ‘true but unknown probability’ that the coin will
land heads. The relative frequency interpretation of such a probability is based
on a hypothetical physical limit for the proportion of heads in n tosses. The
usual Bayesian representation for this probability under exchangeability replaces
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the hypothetical physical limit with a hypothetical infinite collection of probabil-
ity assessments, which, in practice, we would never be able to make. We now
describe informally an alternative approach to the representation theorem in which
p is constructed strictly on the basis of a small number of actual probability
assessments.

Let us therefore suppose that certain actual beliefs that we may express about
the sequence are not sensitive to the ordering of the sequence. If we only wish to
make a minimal prior specification we may consider the following two numbers.

(i) We consider the probability that an individual spin, Si , lands heads. Suppose
that we judge this probability to be the same for each spin. Call the common
value q1.

(ii) We consider the probability that two individual spins Si and Sj both land
heads. Suppose that we judge this probability to be the same for each pair of
spins i �= j . Call the common value q2.

If the sequence of spins satisfies these conditions, we say that the sequence is
second-order exchangeable. Second-order exchangeability is the simplest possi-
ble belief specification for the sequence of spins. Because the requirements that
such a specification imposes are so weak, they will apply in a great many statistical
problems. Indeed, we can hardly avoid evaluating the values q1, q2 if we want to
analyse the sequence of coin tosses. However, these two values alone will be suf-
ficient to generate the representation that we require for the underlying probability
p of heads. We proceed as follows. Call Pn the proportion of heads in the first n

spins, so that

Pn = 1

n
(S1 + . . .+ Sn).

Conditions (i), (ii) are equivalent to the prior specifications

E(Si) = q1, E(SiSj ) = q2, ∀i �= j. (6.3)

Given these specifications, we have, for any n < m, that

E((Pn − Pm)2) =
(

1

n
− 1

m

)
(q1 − q2). (6.4)

Therefore, Pn is a Cauchy sequence in mean square (i.e. for any ε > 0, there
is an integer Nε for which E((Pn − Pm)2) < ε, ∀n, m > Nε). This condition is
sufficient to ensure that our beliefs are consistent with the existence of a further
random quantity P for which

lim
n→∞E([Pn − P ]2) = 0. (6.5)

The quantity P exists in the closure of the inner product space containing the
sequence of quantities Pn. We will discuss the geometric details of this convergence
in the context of the full second-order representation theorem in §6.4.
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Property 6.1 From (6.5), we may deduce the following properties of P .

6.1.1: Beliefs about P follow from the prior specification (6.3) as

E(P ) = q1, Var(P ) = q2 − q2
1 . (6.6)

6.1.2: If Ri = Si − P , then, for each i,

E(Ri) = 0, Var(Ri) = q1 − q2. (6.7)

6.1.3: The sequence R1, R2, . . . is uncorrelated and each Ri is uncorrelated
with P .

We have therefore constructed the following exchangeability representation for the
coin spins. For each i,

Si = P + Ri, (6.8)

so that our actual exchangeability specifications lead directly to a further quantity,
P , which plays an analogous role to the frequency probability p which emerges
from the full exchangeability representation. The quantity p in the full representa-
tion may be viewed as the relative frequency limit of the sequence Pn, and, given
the value of p, the sequence of spins is independent, with probability p. Similarly,
the second-order beliefs that we have stated must be consistent with the condition
that the relative frequency Pn will converge to P , in the sense of (6.5). Given the
value of P , the sequence of spins is uncorrelated, each with the same variance and
with expectation P .

The difference between the two representations is that, unlike the full represen-
tation theorem, beliefs about P genuinely are constructed from specifications about
observable random quantities. The only beliefs about P that are specified are the
probabilities for the outcomes for one and for two spins, but these specifications
are precisely what we need in order to carry out the Bayes linear analysis.

We now describe informally the basis for such an analysis. Consider first
the framework which is provided by the usual exchangeability representation for
analysing the coin spins. We observe k heads in n spins. How may we update our
beliefs? As we have observed, either we may ignore the representation theorem
and derive all further probability statements concerning the sequence directly from
conditioning on the joint probability distribution that we have specified over the
observables, or we may treat the probability p in the representation theorem as
a real unknown quantity, update beliefs for p using Bayes’ theorem and derive
all statements of belief about the sequence from the revised mixture distribution,
using relations such as (6.2). Each approach gives the same answer for all prob-
ability assessments for future observables, supporting the view that ‘belief’ in p

is an organizing principle which provides an efficient computational algorithm for
updating beliefs over the sequence.

In our development, we have a similar equivalence between the two approaches.
This equivalence is as follows. We have developed an exchangeability representa-
tion (6.8) in which each spin, Si , may be written as Si = P + Ri . We have two
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alternatives approaches. First, we can ignore the representation and directly evalu-
ate adjusted means and variances for future observations given the observed value
of Pn. Secondly, we can evaluate an adjusted mean and variance for P given Pn

and then derive all adjusted beliefs about future spins from representation (6.8),
using the adjusted beliefs for P . We may see that these approaches are equivalent
as follows.

To adjust the further spin Si by Pn, where i > n, is equivalent to writing

Si = αiPn + βi +Qi, (6.9)

where Qi has expectation zero and is uncorrelated with Pn. The adjusted expecta-
tion of Si is given by the observed value of αiPn + βi , while the adjusted variance
is the variance of Qi .

We may similarly write

P = αPn + β +Q, (6.10)

where Q has expectation zero and is uncorrelated with Pn. The adjusted mean
and variance of P are the observed value of αPn + β and the variance of Q,
respectively.

Now, Si = P + Ri , and Ri is uncorrelated with Pn, as Ri is uncorrelated with
P and with each Rj , for j < n. Therefore, if we substitute for P in (6.8) from
(6.10), we will obtain (6.9), i.e. comparing (6.10) with (6.9), we have

αi = α, βi = β, Qi = Q+ Ri.

Therefore, the two approaches to adjusting beliefs about future spins are equivalent.
Formally, we have, for i > n, that (�Pn ⊥⊥ Si� / P ), so that equivalence between
the two updates is as described in Theorem 5.23.

Note from (6.5) that observing a sufficiently large number of spins of the coin
reduces your uncertainty about P to an arbitrarily small value (i.e. Var(Q) goes
to zero with n). Thus, as n→∞, the adjusted beliefs over future spins reduce to
a collection of uncorrelated quantities P ∗ + Ri , where P ∗ is the observed large-
sample relative frequency of heads.

In the next section we turn to the general version of the second-order exchange-
ability representation theorem.

6.3 Exchangeable belief structures

We now describe the general approach to modelling and analysing beliefs over
second-order exchangeable collections. We begin by explaining how we represent
such exchangeable objects and discuss the prior judgements that we must make.

To motivate the discussion, let us suppose that a doctor is examining a collection
of patients. There is a certain collection of r measurements that she makes on each
patient. We collect these measurements as the measurement vector

M = (M1, . . . , Mr).
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For example, suppose that M1 is the blood pressure, M2 is the weight and M3 is the
age for each patient. We have a list of individuals for whom these measurements
are to be evaluated. The value of measurement Mi for patient j in the list is Mij .
In our example, M35 would therefore be the age of patient 5 in the list. Therefore,
for patient j , we have a measurement vector

Mj = (M1j , M2j , . . . , Mrj ).

In common with other writers, we face difficulties in finding a satisfactory notation
able to distinguish between (a) Mj meaning element j of the conceptual measure-
ment vector M , and (b) Mj meaning the vector of measurements for patient j .
In this book, we will leave it to context as to which is intended, clarifying when
necessary.

We shall suppose that the number of individuals is, at least in principle, infinite.
This may be interpreted in two ways: first, as a pragmatic approximation to a very
large finite collection of individuals; or secondly, as for coin tossing, we may
consider our beliefs about hypothetical infinite collections to guide us in our belief
specifications for actual finite collections. We will discuss below the modifications
that we must make when the collection of individuals is necessarily finite.

Now, we want to learn about certain aspects of each element Mi of the mea-
surement vector. Thus, we specify a collection X = (X1, . . . , Xr) of functions
of the elements of M , over which we intend to express and adjust second-order
beliefs. For example, we might choose

X1 = M1, X2 = M2
1 , X3 = M1M2, X4 = M2, X5 = M2

2 ,

and so forth, and we might include indicator functions for the ranges of some of
the quantities. Corresponding to each patient j there is a measurement vector Mj

and a corresponding vector Xj = (X1j , . . . , Xrj ) representing the measurements
and functions of those measurements for that patient. Our intention is to take a
sample of individuals, measure vector Mj and thus vector Xj for each patient j

and therefore adjust beliefs about further vectors Xk . We term X the observation
vector, as all of the analysis will be carried out in terms of observations of the value
of X. Thus, we do not often need to refer to the original measurement vector, M ,
but sometimes it is conceptually helpful to distinguish between the measurements
that we make and the aspects of our beliefs about the measurements over which
we specify and adjust beliefs.

Definition 6.2 The collection of vectors X1, X2, X3, . . . is second-order exchange-
able if the first- and second-order belief specification for the sequence of vectors is
unaffected by any permutation of the order of the vectors, so that

(i) the mean vector and variance matrix is the same for each individual,

E(Xi) = µ, Var(Xi) = �, ∀i; (6.11)
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(ii) the covariance matrix between any two different individuals is the same,

Cov(Xi, Xj ) = �, ∀i �= j. (6.12)

Here, µ is a vector with r elements (µ1, . . . , µr); � is an r × r non-negative
definite matrix with elements {σij }; and � is also an r × r non-negative definite
matrix with elements {γij }. Thus, we make the required prior specification by first
considering our mean and variance specification, µ and �, for a single future case.
We then consider our covariance matrix � between two such cases. We may specify
such covariance directly. However, it will often be more natural to consider the
difference between two individuals, and therefore to assess our variance for the
difference Xi −Xj . If we intend to use observations on X for certain individuals
to adjust beliefs about the value of X for further individuals, then it is unavoidable
that such variance and covariance specifications must be made, over all pairs of
individuals under consideration. The second-order exchangeable specification is the
simplest specification that we can make over such a collection of individuals. As
we will show, this specification over observables leads directly to the representation
theorem for second-order exchangeable vectors, so that our statistical models may
be constructed directly from simple belief specifications over observable quantities.

6.4 The representation theorem

De Finetti’s representation theorem for an infinite exchangeable sequence of ran-
dom vectors summarizes all of the probabilistic relationships which have been
asserted between the infinite collection as follows. These beliefs are shown to be
consistent with the existence of a further ‘random entity’, namely a random joint
probability distribution function, F say, such that beliefs concerning the values of
the sequence, conditional on the value of F , are that the sequence is independent
and identically distributed from F . We have a similar purpose, namely to summa-
rize all of the relationships that we have expressed between the members of the
sequence of vectors X1, X2, . . . , as represented by our second-order exchangeable
specification of means, variances, and covariances over the sequence. Within our
formulation, this means that we must construct a further random vector, M(X),
consistent with the beliefs that we have expressed such that adjusting the sequence
by M(X) results in a sequence of uncorrelated quantities, each with mean zero
and the same variance matrix. Given such a vector M(X), all of the covariances
that we have expressed between the vectors X1, X2, . . . may be represented by
the common relationship between each Xi and M(X). We may therefore update
beliefs about the sequence simply by updating beliefs about M(X).

We now show how the vector M(X) is constructed. Essentially the con-
struction is as for the coin spinning example. We form the sequence of vectors
X̄n = (X̄1n, . . . , X̄rn) of averages, namely

X̄n = 1

n

n∑
j=1

Xj . (6.13)
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This sequence turns out to be Cauchy in expected mean square, and so converges
to a limiting vector, namely M(X), which will have the properties that we require.
We have the following representation theorem.

Theorem 6.3 (Representation theorem for an infinite sequence of second-order
exchangeable random vectors)
If X1, X2, . . . is an infinite second-order exchangeable sequence of random vectors,
with mean and variance structure given by (6.11), (6.12), then we may introduce
the further random vector M(X), termed the population mean vector, and also the
infinite sequence

R1(X), R2(X), . . . ,

termed the individual residual vectors, which satisfy the following properties.

6.3.1: For each individual j ,

Xj =M(X)+Rj (X). (6.14)

6.3.2: The mean and variance for M(X) are

E(M(X)) = µ, Var(M(X)) = �. (6.15)

6.3.3: The collection R1(X),R2(X), . . . is second-order exchangeable, with,
for each individual j ,

E(Rj (X)) = 0, Var(Rj (X)) = � − �, (6.16)

and the vectors R1(X),R2(X), . . . are mutually uncorrelated.

6.3.4: Each Rj (X) is uncorrelated with M(X).

Proof. Denote by 〈X〉+ the inner product space on the collection of elements
Xij , constructed as in §3.10 under the inner product (Y, Z) = Cov(Y, Z), where
we identify all quantities which differ by a constant.

For each j and n < m, we have

‖X̄jn − X̄jm‖2 = Var(X̄jn − X̄jm) =
(

1

n
− 1

m

)
(σjj − γjj ). (6.17)

Any inner product space S may be embedded in the minimal closure of the space,
S∗ say, by adding, for each Cauchy sequence s1, s2, . . . of elements of S for which
the limit point of the sequence does not exist in S, a new element s∗ whose inner
product with each element s ∈ S is (s, s∗) = limn(s, sn).

Denote the minimal closure of 〈X〉+ by [X]. From (6.17), each sequence X̄jn

is a Cauchy sequence in 〈X〉+. Therefore, M(Xj ) = limn X̄jn exists in [X], and
for each Z ∈ [X] we have

(M(Xj ), Z) = lim
n

(X̄jn, Z) = lim
n

1

n

n∑
r=1

Cov(Xjr , Z). (6.18)
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Therefore, for each r, n, j , we have

Cov(M(Xj ), Xrn) = γjr = Cov(M(Xj ),M(Xr)),

so that
Cov(M(X), Xn) = � = Var(M(X)).

Therefore, for each r �= s, we have

Cov(Xs −M(X),M(X)) = Cov(Xr −M(X), Xs −M(X)) = 0,

and the theorem follows. �
We have thus shown that specification of second-order beliefs over any two

vectors Xi , Xj , for i �= j , and the symmetric extension of such beliefs to all pairs
of vectors must correspond to beliefs which are consistent with the existence of a
further vector, M(X), which is the limit of the sample mean vectors. For each Xj

we have
EM(X)(Xj ) =M(X), (6.19)

so that, having adjusted the sequence by M(X), we have a residual sequence

AM(X)(Xj ) = Rj (X) (6.20)

whose elements are uncorrelated with zero mean and the same variance. There-
fore, the representation theorem serves as a basis for the subjectivist modelling of
statistical problems.

As the residual vectors are uncorrelated over individuals, the population
mean M(X) induces the separation of beliefs over individuals. That is, if Dn =
(X1, . . . , Xn) and Dn,r = (Xn+1, . . . , Xn+r ) are collections of measurements for
different groups of individuals, then

�Dn ⊥⊥Dn,r� / M(X). (6.21)

Bayes linear analysis is usually concerned with belief adjustments over collec-
tions of linear combinations of quantities. Thus, we denote by 〈X〉 the collection
of linear combinations of the form

Y =
r∑

i=1

αiXi, (6.22)

where (X1, . . . , Xr) are the elements of the conceptual vector X of observations.
Similarly, for measurements on individual j , 〈Xj 〉 denotes the collection of linear
combinations of the elements of measurement vector Xj , so that the value of
quantity Y in (6.22) for individual j is given by Yj ∈ 〈Xj 〉 determined as

Yj =
r∑

i=1

αiXij . (6.23)
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Second-order exchangeability for X implies second-order exchangeability for the
collection 〈X〉. We extend the exchangeability representation over the linear spaces
〈Xj 〉 as follows. It is straightforward to check that, for each Y as defined by (6.22),
the exchangeability representation for the corresponding sequence of scalars Yj is

Yj =
r∑
i

αiXij ∈ 〈Xj 〉 ⇒ Yj =M(Y )+Rj (Y ),

where

M(Y ) =
r∑

i=1

αiM(Xi),

Rj (Y ) =
r∑

i=1

αiRj (Xi).

6.5 Finite exchangeability

The infinite sequences that form the basis for the second-order exchangeability
representation theorem are either the members of a very large finite population, for
example in survey sampling, or correspond to hypothetical repetitions of some ran-
dom experiment, such as coin tossing. In certain circumstances, however, we may
apply the representation theorem for intrinsically finite sequences. For example,
we might have a fixed number, r say, of possible treatments which we could apply
to some unit, so that X1, . . . , Xr would be the response of the unit under each of
the r treatments. For such cases, there may be no sensible interpretation, even as a
mental construct, to an infinite extension over additional hypothetical treatments.
Therefore, if X1, . . . , Xr is a finite second-order exchangeable sequence, then we
must construct the representation based on the finite average X̄r = (1/r)

∑
i Xi .

In this case, we may still write the same representation, namely, for each i,

Xi = X̄r +Ri (X),

where each Ri (X) is uncorrelated with X̄r , but the residual vectors are correlated,
as

Var(Ri (X)) = r − 1

r
(� − �),

and

Cov(Ri (X),Rj (X)) = − 1

r − 1
Var(Ri (X)), ∀i �= j.

Therefore, the exchangeability representation, which is based on strict orthogo-
nality for infinite sequences, must be modified to correspond to orthogonality of
order 1/r . Large finite collections of random quantities can therefore be treated as
effectively infinite, provided that we do not sample a substantial proportion of the
whole collection, but small collections must be analysed with the above covariance
specification.
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6.6 Example: oral glucose tolerance test

In §3.8.3 we returned to our example concerning the OGT test and examined the
implications, for reducing variation, of observing tests on more than one healthy
elderly individual. We now go back to this example to see how the notion of
exchangeability provides a structure for the features of interest. To do so, we
must return to Chapter 2, in which we obtained qualitative representations for the
components of variation comprising our measurements. There, we considered the
fasting and 2-hour measurements on blood glucose level for a particular elderly
person (G0 and G2) and a similar pair of measurements for our doctor (D0 and
D2). In §2.6 we showed how relationships between these four quantities could be
established through intermediary quantities. In summary, we established

G0 = R0 + C0 + Y0, D0 = Z0 + C0 + Y0,

G2 = R2 + C2 + Y2, D2 = Z2 + C2 + Y2.

Here, Y0 and Y2 represent the fasting and 2-hour measurements for an average
young person, and C0 and C2 represent differences between the fasting and 2-
hour measurements between typical young and typical healthy elderly persons.
The difference between G0 and D0 is that the measurement D0 includes a term Z0
representing individual variation between the doctor’s fasting measurement and the
average such measurement, whilst the measurement G0 includes another term R0
representing the individual variation between that individual’s fasting measurement
and the average such measurement. Further, the quantities R0 and Z0 are judged
to be uncorrelated, uncorrelated with all other quantities, to have expectation zero,
and to have the same prior variance. These judgements arose because we treated
our doctor and another typical elderly person as exchangeable. We specified for
each an underlying mean component C0 + Y0 common to all such typical elderly
persons, and individual variation for each, uncorrelated with any other quantity.

Let us now extend our example. Suppose that we consider taking measure-
ments for a sample of typical elderly patients, and that we make the judgement
that these measurements are second-order exchangeable across individuals. All the
ingredients that we need for the full specification over these measurements are
already in place as we have already considered relationships for and between two
individuals, and these extend to any number of individuals. Using the notation of
§3.8.3, let the fasting and 2-hour measurements be Di0 and Di2 for the ith person
measured, and collect this pair of measurements into the vector Di . Following the
arguments in §2.6, we write these as

Di =
[
Di0
Di2

]
=

[
Ri0 + C0 + Y0
Ri2 + C2 + Y2

]
=

[Ri (D0)+M(D0)

Ri (D2)+M(D2)

]
(6.24)

where

M(D0) = C0 + Y0, M(D2) = C2 + Y2,

Ri (D0) = Ri0, Ri (D2) = Ri2
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are respectively the mean and residual components for the two measurements.
Expectation and variance–covariance specifications for the measurements for a
pair of individuals are given in (3.54) and (3.56). However, it is as meaningful to
show these specifications through their exchangeability representation as:

E(M(D)) = E

([M(D0)

M(D2)

])
=

[
4.16
6.25

]
, (6.25)

E(Ri (D)) = E

([Ri (D0)

Ri (D2)

])
=

[
0
0

]
, ∀i, (6.26)

Var(M(D)) = Var

([M(D0)

M(D2)

])

=
[

Var(C0 + Y0) Cov(C0 + Y0, C2 + Y2)

Cov(C0 + Y0, C2 + Y2) Var(C2 + Y2)

]
(6.27)

=
[

0.62 0.30
0.30 0.43

]
, (6.28)

Var(Ri (D)) = Var

([Ri (D0)

Ri (D2)

])

=
[

Var(Ri0) Cov(Ri0, Ri2)

Cov(Ri0, Ri2) Var(Ri0)

]

=
[

0.50 0.42
0.42 2.00

]
, ∀i, (6.29)

Cov(M(D),Ri(D)) = 0, ∀i, (6.30)

Cov(Rj (D),Ri(D)) = 0, ∀i �= j. (6.31)

Variances and covariances for and between C0, C2, Y0, Y2, R0, R2 are given in
§2.7. With respect to variance–covariance specifications for an individual and any
pair of individuals, the representation has two important consequences. The first is
that we have decomposed the variance matrix for the pair of measurements for an
individual into

Var(Di) = Var(M(D)+Ri (D)) = Var(M(D))+ Var(Ri (D))

=
[

0.62 0.30
0.30 0.43

]
+

[
0.50 0.42
0.42 2.00

]
,

and this is the same for all individuals. The second is that we can express the
covariance matrix between the measurements for two different individuals as
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Cov(Di, Dj ) = Cov(M(D)+Ri (D),M(D)+Rj (D)) = Var(M(D))

=
[

0.62 0.30
0.30 0.43

]
, (6.32)

as for (6.27), and this is the same for all pairs of individuals. In the notation of
§6.3, we thus have

µ =
[

4.16
6.25

]
, (6.33)

� =
[

0.62 0.30
0.30 0.43

]
, (6.34)

� =
[

1.12 0.72
0.72 2.43

]
, (6.35)

� − � =
[

0.50 0.42
0.42 2.00

]
. (6.36)

In §3.8.3 we constructed the difference between the fasting and 2-hour blood
glucose measurement as Gh = G2 −G0. It is simple to demonstrate exchange-
ability over linear spaces for such quantities, (6.23), as follows. Define Dih =
Di0 −Di2 to be the 2-hour difference for individual i. From (6.24) we have

Dih = Di0 −Di2

= [M(D2)+Ri (D2)]− [M(D0)+Ri (D0)]

= [M(D2 −D0)]+ [Ri (D2 −D0)]

=M(Dh)+Ri (Dh),

so that each such 2-hour difference has the representation as an underlying mean
component plus a residual component which has zero expectation and is uncorre-
lated with all other quantities. In the notation of §6.3, it is straightforward to show
that, for the exchangeable sequence of 2-hour differences,

µ = [
2.09

]
, � = [

0.45
]
, � = [

2.11
]
, � − � = [

1.66
]
.

6.7 Example: analysing exchangeable regressions

6.7.1 Introduction

In an industrial process for extracting aluminium by electrolysis from a solution
of alumina, experiments are run, under similar operating conditions, to measure
the percentage concentration of alumina in solution every 10 minutes, terminat-
ing when the concentration falls to a pre-specified level. These experiments are
expensive in terms of both time and money. The measurements are the responses
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Yrt representing, for run r , the concentrations of alumina remaining in solution at
time t from the end of the run; the alumina level is essentially fixed at the end of
the run. In all, there turn out to be 13 equally spaced time points. We considered
this example in Goldstein (1991) and Goldstein and Wooff (1998). We are grate-
ful to our colleague Dr Malcolm Farrow for providing these data and judgements
concerning the process.

We want to learn both about the uncertain quantities underlying the process
and about future runs of the experiment. One way to organize this problem is (a)
to make judgements about the evolution of the process over time, and (b) to make
judgements about the similarity of measurements at the same time point but for
different runs. Suppose that we consider the evolution of the process over time.
Although there are complicating operating features, Faraday’s law and practical
experience suggest that aluminium is extracted at a constant rate over time. This
implies a regression model of the form:

Yrt = ar + tbr + εrt , (6.37)

where ar and br are regression coefficients specific to run r , and the terms {εrt }
express departures from the linear model.

Now let us consider how runs might differ for the same time point. Suppose
we decide that the regression coefficients ar and br are second-order exchangeable
over runs. This corresponds to the judgement that the underlying evolution across
time is the same, but disturbed by variation specific to a run. It is as though we
consider a very large number of similar experiments, in each of which we model
the amount of alumina being extracted at time t , as t times a slope term b plus
an intercept term a. Thus, on a particular run we treat the intercept for that run as
comprising an underlying mean intercept, plus a discrepancy specific to that run.
Similarly, we treat the slope for a particular run as comprising an underlying mean
slope, plus a discrepancy specific to that run. Thus, following Theorem 6.3, we
can decompose each ar and br into uncorrelated mean and residual components,

ar =M(a)+Rr (a), (6.38)

br =M(b)+Rr (b), (6.39)

so that, for example, M(a) is the underlying mean intercept term for all runs, and
Rr (a) is the discrepancy from the intercept obtained for the rth run.

6.7.2 Error structure and specifications

The model becomes fully specified when we have made second-order prior judge-
ments over it. First, we deal with the error terms εrt . These are constructed from
uncorrelated components as follows:

εrt = Ert + Vrt +Hrt ,

Vrt = Vr,t−1 + Frt ,

Hrt = φHr,t−1 + Urt , t ≥ 2.
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These terms express discrepancies from the linear trend as the sum of:

• a pure measurement error for each reading, Ert ;

• a stochastic development of the discrepancy as a random walk with drift, Vrt ;

• an autoregressive term expressing the measurement of the suspended particles
in the chemical analysis, Hrt .

The error quantities are uncorrelated with all other quantities and among them-
selves, except as follows from these belief specifications:

Var(Urt ) = 0.0204, Var(Hr1) = 0.04, Var(Ert ) = 0.01,

φ = 0.7, Var(Frt ) = 0.01.

Further details concerning the reasoning underlying the specification of the error
structure are given in Goldstein (1991).

6.7.3 Regression coefficient specifications

Next we consider specifications for the regression coefficients. These can be judged
via the representation (6.38) or, as follows, directly: we judge each ar to be uncor-
related with each br , with the remaining prior specifications being

E(ar) = 1.4, E(br ) = 0.1,

Var(ar) = 0.058, Var(br ) = 0.0017,

Cov(ar , as) = 0.038, Cov(br , bs) = 0.0016,

for all r and s �= r . In terms of the representation (6.38), these judgements amount
to

E(M(a)) = 1.4, E(M(b)) = 0.1,

Var(M(a)) = 0.038, Var(M(b)) = 0.0016,

Var(Rr (a)) = 0.020, Var(Rr (b)) = 0.0001,

Cov(M(a),M(b)) = 0,

with additionally R1(a), . . . and R1(b), . . . being sequences which are uncorrelated
amongst themselves and uncorrelated with M(a) and M(b), and which have prior
expectation zero. In the notation of §6.3, for the exchangeable sequence of pairs
(ai, bi) of regression coefficients, we have

µ =
[

1.4
0.1

]
,

� =
[

0.038 0
0 0.0016

]
,
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� =
[

0.058 0
0 0.0017

]
,

� − � =
[

0.020 0
0 0.0001

]
.

6.7.4 Structural implications

Our explicit modelling has a number of implications in this example. First, notice
that it is the evolution of the process over time that is exchangeable, as we can
write

ar + tbr =M(a + tb)+Rr (a + tb).

Indeed, by (6.37) and (6.38), each set of runs for a specified time point is exchange-
able and has the representation

Yrt =M(Yt ) +Rr (Yt ) + εrt , (6.40)

=M(a)+ tM(b) +Rr (a)+ tRr (b) + εrt , (6.41)

where M(Yt ) is the underlying mean for the measurement at time t across all
runs, whilst Rr (Yt ) is a residual component measuring the discrepancy at time t

between the measurement and the mean component for run r . We gather the mean
components {M(Y1), . . . ,M(Y13)} into the collection M(Y ), and the mean com-
ponents for the regression coefficients into the collection M(Q) = {M(a),M(b)}.
〈M(Y )〉 can be constructed entirely from the underlying slope and intercept quan-
tities in M(Q), so that

〈M(Y )〉 ≡ 〈M(Q)〉. (6.42)

As such, 〈M(Y )〉 is two-dimensional; as we shall see later, this has consequences
for the belief revision when we adjust by data.

6.8 Adjusting exchangeable beliefs

We now describe the use of exchangeable data for adjusting beliefs over underlying
population quantities and future observables. In the notation of §6.3, we have an
infinite sequence X1, X2, . . . of second-order exchangeable random vectors, where,
for each individual i, the prior mean vector and variance matrix are E(Xi) =
µ, Var(Xi) = � and the covariance matrix for any two different individuals i �= j

is Cov(Xi, Xj ) = �. We construct the exchangeability representation

Xj =M(X)+Rj (X) (6.43)

for each j , according to Theorem 6.3, where each Rj (X) has prior mean zero and
variance matrix � − �, and M(X),R1(X),R2(X), . . . are mutually uncorrelated.

We now consider how beliefs for M(X) and for values of Xj , j > n, are
adjusted when we observe a sample of values Dn = (X1, X2, . . . , Xn). We begin
by discussing some basic sufficiency conditions which simplify the analysis of
exchangeable models.
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6.9 Predictive sufficiency for exchangeable models

In principle, the usual Bayes analysis of an exchangeable sample proceeds as fol-
lows. We specify prior beliefs over all combinations of possible samples. From
these beliefs and the representation theorem for infinite exchangeable sequences,
we may proceed as though the observed sample and all future samples form an
independent and identically distributed sequence drawn from an unknown proba-
bility distribution, F , for which we have a prior distribution P . Having observed
the sample, we may either (i) update predictive beliefs about future observations
directly from the joint distribution over the observable quantities, or (ii) update the
prior distribution P over possible values of F and derive all predictive statements
over future observations directly from the posterior distribution for F . Of course,
(i) and (ii) will give identical results, but usually (ii) will be much simpler than
(i). Further, as the size of the observed sample increases, the posterior distribution
over F usually tends to a point mass on a single probability distribution (roughly,
the empirical distribution of the sample), so that the limiting predictive distribution
is that future observations are independent with common distribution given as the
limiting sample distribution.

The equivalence between the two forms of belief adjustment is similar for
second-order exchangeable sequences. This follows from the belief separation
between Dn and Xj , j > n, induced by M(X), namely, from (6.21), we have

�Dn ⊥⊥Xj� / M(X). (6.44)

Therefore, to adjust beliefs over Xj given Dn, we may adjust beliefs about the
separating collection, in this case M(X), and from these adjusted beliefs derive the
adjusted beliefs about the further observation Xj . To simplify notation, we write,
for any random quantity U , the adjustment by the sample of n observations Dn as

En(U) = EDn(U), Varn(U) = VarDn(U).

Let Xj, j > n, be any further observation. From (6.44) and Property 5.23.1, we
have

En(Xj ) = En(EM(X)(Xj )),

so that, from (6.19), we have

En(Xj ) = En(M(X)). (6.45)

Further, from (6.44) and Property 5.23.2, we have

Varn(Xj ) = Varn(EM(X)(Xj ))+ VarM(X)(Xj )

so that
Varn(Xj ) = Varn(M(X))+ Var(Rj (X)). (6.46)

Equations (6.45) and (6.46) demonstrate the equivalence of the two forms of
adjustment. If we observe a sample Dn = (X1, X2, . . . , Xn), then we may either,
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(i) evaluate adjusted beliefs, En(Xj ), Varn(Xj ), about future vectors, Xj , directly
from the joint covariance structure over the observable quantities, or (ii) evaluate
adjusted beliefs, En(M(X)), Varn(M(X)), over M(X), and derive all predictive
statements over future observations directly from the revised beliefs for M(X)

in (6.43). As we have shown, (i) and (ii) will give identical results, but usually
(ii) will be simpler than (i). As the size of the observed sample increases, the
adjusted variance of M(X) tends to zero, so that in the limit, future observations
are uncorrelated with variance equal to the common variance of each Rj (X).

6.10 Bayes linear sufficiency for sample means

Given the second-order exchangeable sequence X1, X2, . . . , we denote the mean
of the first n vectors as X̄n = (1/n)

∑n
j=1 Xj . We now show that the sample mean

vector is Bayes linear sufficient for the sample Dn for adjusting beliefs both for
the population mean vector M(X) and for future observations Xr, r > n.

First observe that, for any i ≤ n, we have

Cov(X̄n, X̄n) = 1

n

n∑
j=1

Cov(Xj , X̄n) = Cov(Xi, X̄n),

so that
Cov(Xi − X̄n, X̄n) = 0. (6.47)

Therefore, for each i ≤ n,
EX̄n

(Xi) = X̄n. (6.48)

Therefore, as X̄n is of the form

X̄n =M(X)+ 1

n

n∑
j=1

Rj (X), (6.49)

we have

AX̄n
(Xi) = Xi − X̄n = Ri (X)− 1

n

n∑
j=1

Rj (X). (6.50)

Therefore, as Ri (X) ⊥M(X), for each i, we have that

�Dn ⊥⊥M(X)� / X̄n. (6.51)

Therefore, the sample mean is Bayes linear sufficient for adjusting beliefs for the
population mean, and hence is also Bayes linear sufficient for adjusting beliefs over
future observations Xi , for i > n. From (5.76), (6.45), (6.46), we have therefore
derived the following result.
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Theorem 6.4 Let X1, X2, . . . be an infinite second-order exchangeable sequence
of vectors. Then the sample mean vector X̄n from a sample

Dn = (X1, . . . , Xn)

is Bayes linear sufficient for Dn for adjusting both M(X) and any values Xi, i > n,
namely

En(M(X)) = EX̄n
(M(X)), Varn(M(X)) = VarX̄n

(M(X)) (6.52)

and, for any i > n,

En(Xi) = EX̄n
(Xi) = EX̄n

(M(X)), (6.53)

Varn(Xi) = VarX̄n
(Xi) = VarX̄n

(M(X))+ Var(Ri (X)). (6.54)

Therefore, in order to adjust beliefs over the mean vector and future observations,
it is sufficient to adjust M(X) by the sample mean vector.

6.11 Belief adjustment for scalar exchangeable quantities

As an illustration, we now derive the Bayes linear adjustment for a scalar sequence
X1, X2, . . . of second-order exchangeable random quantities, with

E(Xi) = µ, Var(Xi) = σ 2, Cov(Xi, Xj ) = γ, i �= j.

We have, from the representation theorem, for each i, that Xi may be written as
the uncorrelated sum

Xi =M(X)+Ri (X)

where
E(M(X)) = µ, Var(M(X)) = γ,

E(Ri (X)) = 0, Var(Ri (X)) = σ 2 − γ = ψ.

Therefore, we can write the sample mean, from a sample of size n, as

X̄n =M(X)+ R̄n(X),

where R̄n(X) is the mean of the n residuals, so that

E(X̄n) = µ,

Var(X̄n) = γ + 1

n
ψ,

Cov(X̄n,M(X)) = γ.
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As X̄n is Bayes linear sufficient for M(X), we may evaluate the adjusted expec-
tation for M(X) given a sample of n as

En(M(X)) = E(M(X))+ Cov(M(X), X̄n)(Var(X̄n))
−1(X̄n − E(X̄n))

= γ X̄n + 1
n
ψµ

γ + 1
n
ψ

, (6.55)

with corresponding adjusted variance

Varn(M(X)) = Var(M(X))

−Cov(M(X), X̄n)(Var(X̄n))
−1Cov(X̄n,M(X))

=
1
n
ψγ

1
n
ψ + γ

. (6.56)

Therefore, we see that the adjusted expectation weighs the prior expectation and
the data mean in inverse proportion to the expected squared difference between
each quantity and M(X). Note also that (6.56) can be written equivalently as

1

Varn(M(X))
= 1

γ
+ n

ψ

which is the familiar form whereby precision (i.e inverse variance) is additive.

6.12 Canonical structure for an exchangeable adjustment

We now derive the general relationship between exchangeable adjustments for a
vector X based on samples of different sizes. This relationship is based on the
eigenstructure of the resolution transform for the adjustment which changes with
sample size in a very simple way. We denote the resolution transform for the
adjustment of M(X) by Dn as

Tn = TM(X):Dn
.

Theorem 6.5 The eigenvectors of Tn are the same for each n. Further, if eigen-
vector W has eigenvalue λ for T1, then the corresponding eigenvalue λ(n) for W

as an eigenvector of Tn is

λ(n) = nλ

(n− 1)λ+ 1
. (6.57)

Proof. From Theorem 6.4, the sample mean X̄n is Bayes linear sufficient for Dn

for the adjustment of M(X). We therefore evaluate the matrix representation of
Tn as

Tn = Var(M(X))−1Cov(M(X), X̄n)Var(X̄n)
−1Cov(X̄n,M(X)).
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As Var(M(X)) = � and, for each i, Var(Ri (X)) = � − � we have, from (6.49),
that

Var(X̄n) = � + 1

n
(� − �), Cov(M(X), X̄n) = �, (6.58)

so that

Tn =
(

� + 1

n
(� − �)

)−1

�. (6.59)

Therefore, v is an eigenvector of Tn, with eigenvalue λ, so that Tnv = λv, if and
only if

�v = λ

(
� + 1

n
(� − �)

)
v. (6.60)

Rearranging (6.60), we have equivalently that v is an eigenvector of Tn, with
eigenvalue λ if and only if

�v = λ

n− (n− 1)λ
�v. (6.61)

In particular, when n = 1, relation (6.61) reduces to

�v = λ�v. (6.62)

Equating the conditions for λ and v to satisfy relation (6.62) and condition (6.61),
we have that v is an eigenvector of Tn with eigenvalue λ if and only if, for each
n, v is an eigenvector of Tn with eigenvalue λ(n), where

λ = λ(n)

n− (n− 1)λ(n)

,

or equivalently, where

λ(n) = nλ

(n− 1)λ+ 1
,

which gives the result. �
We have, in this proof, assumed positive definite variance matrices for simplic-

ity of exposition. The results also hold when the variance matrices are non-negative
definite; we provide full details in §12.12.

The canonical directions for the adjustment of M(X) by Dn are therefore the
same for each sample size n. We term these directions the canonical directions
induced by exchangeability. As the canonical directions remain the same for all
n, the qualitative features of the adjustment will remain the same for all sample
sizes. This is important both computationally and qualitatively. Qualitatively, as
the canonical directions remain the same, no matter what the sample size, the
underlying features of the adjustment will remain the same for all sample sizes.
Thus, it is simple and natural to compare possible choices of sample size based on
the effects on the underlying eigenstructure.

Computationally, we may exploit (6.57) to simplify any design problem for
which we must choose the sample size to achieve variance reductions over elements
of 〈M(X)〉. For example, we have the following corollary.
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Corollary 6.6 Suppose that W is an eigenvector of T1 with eigenvalue λ > 0. Then
the sample size n required to achieve a proportionate variance reduction of α for
W , 0 < α < 1, i.e. so that Varn(W) ≤ (1− α)Var(W), is

n ≥ α

1− α

1− λ

λ
.

Further, if the minimal positive eigenvalue of T1 is λmin, then a sample size of

n ≥ α

1− α

1− λmin

λmin

is the minimum sample which is sufficient to achieve a proportionate variance reduc-
tion of α for every element of 〈M(X)〉.
For each non-zero eigenvalue λ for T1, we have λ(n) → 1, n→∞. Therefore, as
n→∞, we reduce variance about each such component to zero.

6.12.1 Standard form for the adjustment

If Var(M(X)) is of lower rank than Var(X1), then there will be many alternative
forms for the eigenvectors of each Tn, as there will be many linear combinations
of the elements of 〈M(X)〉 with zero variance. In such cases, there is a natural
choice for the form of the eigenvectors, termed the standard form, that we now
define. Consider the eigenvectors of the corresponding transform T

∗
1 = TX1:M(X).

Any eigenvector αT X1, of T
∗
1 with eigenvalue λ satisfies

E1(EM(X)(α
T X1)) = λαT X1.

However, from (6.19), we have

EM(X)(α
T X1) = αTM(X),

so that
E1(α

TM(X)) = λαT X1.

From §3.9.4, the eigenvalues of T
∗
1 and T1 are the same, and αT X1 is an eigen-

vector of T
∗
1 if and only if EM(X)(α

T X1) = αTM(X) is an eigenvector of T1.
For each eigenvector αT X1 of T

∗
1, we term αTM(X) the standard form for the

corresponding eigenvector for T1. Conversely, if

E1(β
TM(X)) = λβT X1

for some value λ and choice of vector β, then it follows that βTM(X) is an
eigenvector of T1 with eigenvalue λ, so that this property uniquely characterises
the collection of eigenvectors of T1. The argument is the same for each sample
size, so that we have the following corollary.
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Corollary 6.7 If the positive eigenvalues of T1 are distinct, then the canonical
directions induced by exchangeability, expressed in standard form, are the unique
collection of elements of 〈M(X)〉 with the property that, for each n, the adjusted
expectation of eigenvector αTM(X), corresponding to eigenvalue λ(n), is given by

En(α
TM(X)) = λ(n)α

T X̄n. (6.63)

If an eigenvalue of T1 is repeated k times, then we may identify a unique cor-
responding linear subspace 〈M(X)〉λ, of dimension k, such that each element of
〈M(X)〉λ satisfies (6.63) for each n for this value of λ.

We write the standard form of the eigenvectors for T1 as

Wi = αT

i M(X), i = 1, . . . , r,

where each Wi is normalized to prior variance one, with corresponding sample
means W̄jn = αT X̄n. We have shown that

En(Wj ) = λj(n)W̄jn, for each j, n.

Note that, in this parameterization, we have

λj(n) = 1

Var(W̄jn)
.

For any element Y ∈ 〈M(X)〉, we therefore have

En(Y ) =
∑

i

nλi(1)

(n− 1)λi(1) + 1
Cov(Y, Wi)W̄in, (6.64)

Varn(Y ) =
∑

i

1− λi(1)

(n− 1)λi(1) + 1
[Cov(Y, Wi)]

2, (6.65)

Rn(Y ) =
∑

i

nλi(1)

(n− 1)λi(1) + 1
[Corr(Y, Wi)]

2, (6.66)

from (3.71) and (6.57).

6.12.2 Further properties of exchangeable adjustments

In general, for two elements Y, U of 〈X〉, if Var1(M(Y )) < Var1(M(U)), then
it need not follow that Varn(M(Y )) < Varn(M(U)), for each n, and indeed the
inequality may be reversed several times as n increases. However, we have the
following result for the relationship between two different canonical resolutions as
n increases.

Corollary 6.8 Suppose that λ, µ are two eigenvalues of T1 such that λ < µ.
Then λ(n) < µ(n) for each n. Thus, for every pair of canonical quantities Wi , Wj ,
Var1(Wi) < Var1(Wj ) implies Varn(Wi) < Varn(Wj ), for each n.
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Finally, note that, in many applications, it is natural to express the basis for
the population in a more convenient form. As the belief transform reveals the
changes in information over the linear space, we may apply Theorem 6.5 to any
such re-expression, by the following corollary.

Corollary 6.9 Under the conditions of Theorem 6.5, let F be any collection of
quantities for which 〈F 〉 = 〈M(X)〉. The eigenvalues of resolution transform TF =
EF (En(.)) are the same as for Tn and the eigenvectors of TF are the elements of
〈F 〉 corresponding to the eigenvectors of Tn.

6.13 Algebraic example

For this algebraic example, suppose we wish to learn about the mean components,
M(X), for the data quantities in the example discussed in §3.8.1 and §3.11.2.
The data objects there were X1, X2. Suppose that we can instead observe the
exchangeable sequence

X11, X21;X12, X22; . . . , X1n, X2n; . . . ,
where each pair X11, X21 has the same variance matrix as X1, X2. We collect the
ith pair of observables in the sequence as Di = [X1i , X2i], and we let D be the
ordered sequence of quantities

D = [D1, D2, . . . , Dn].

To begin with, we will ignore our results on Bayes linear sufficiency and proceed
as though we had to collect all data quantities into one large vector.

Compared to §3.8.1, we need one further set of belief specifications to describe
the relationships between the exchangeable sequence of observables. For this
example, we will suppose that

Cov(Xij , Xkl) =
{

γ, i = k, j �= l,

0, i �= k, j �= l.
(6.67)

For example, for n = 2, belief specifications for this problem are:

E

([
D1
D2

])
= E






X11
X21
X12
X22




 =




0
0
0
0


 , (6.68)

Var

([
D1
D2

])
=

[
Var(D1) Cov(D1, D2)

Cov(D2, D1) Var(D2)

]

= Var






X11
X21
X12
X22




 =




1 u γ 0
u 1 0 γ

γ 0 1 u

0 γ u 1


 . (6.69)
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For general n, the variance specifications may be written more elegantly using
direct product notation (§11.12.2):

Var(D) = In ⊗
([

1 u

u 1

]
−

[
γ 0
0 γ

])
+ Jn ⊗ γ I2, (6.70)

= In ⊗ (� − �)+ Jn ⊗ �,

with � = γ I2. Suppose also that we construct the data averages for a sample of
size n as

D̄n = 1

n
[D1 +D2 + . . .+Dn].

It is simple to show that D̄n has

Var(D̄n) = � + 1

n
(� − �), (6.71)

Cov(M(X), D̄n) = �. (6.72)

6.13.1 Representation

From (6.67), we deduce the representation

X1i =M(X1)+Ri (X1),

X2j =M(X2)+Rj (X2),

with belief specifications

Var(M(X)) = �,

Var(Ri (X)) = � − �, ∀i,
Cov(Ri (X),M(X)) = 0, ∀i,
Cov(Ri (X),Rj (X)) = 0, ∀i �= j,

E(M(X)) = 0,

E(Ri (X)) = 0, ∀i.

6.13.2 Coherence

In §3.8.1 we specified |u| < 1 for this example, in order that the variance matrix
� be invertible. For the further specifications to be coherent we need the matrices
� − � and � to be non-negative definite (for full details of coherence conditions
for exchangeable adjustments, see §12.12.2). � is non-negative definite for γ ≥ 0.
For � − � to be non-negative definite, we require γ ≤ 1− |u|. However, for this
example we will need to ensure that both matrices are invertible. Thus we shall
impose the condition

0 < γ < 1− |u| < 1.
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6.13.3 Bayes linear sufficiency

We begin by ignoring the simplifications provided by Bayes linear sufficiency, and
obtain the resolution transform by brute force. By (3.65), this is

Tn = Var(M(X))−1Cov(M(X), D)Var(D)−1Cov(D,M(X)). (6.73)

First, notice that

Cov(M(X), D)Var(D)−1Cov(D,M(X))

=[1T

n ⊗ �][In ⊗ (� − �)+ Jn ⊗ �]−1[1n ⊗ �]

=[1T

n ⊗ �][In ⊗ (� − �)−1 − Jn ⊗ (� + (n− 1)�)−1�(� − �)−1][1n ⊗ �]

(by Lemma 11.61; see §11.12.2)

=�

(
� + 1

n
(� − �)

)−1

�

=Cov(M(X), D̄n)Var(D̄n)
−1Cov(D̄n,M(X)).

It follows that the resolution transforms for the sample averages and for the full
set of observations are identical, and this provides an informal demonstration of
Bayes linear sufficiency.

We can obtain the resolution transform for a sample of size n directly as

Tn =
(

� + 1

n
(� − �)

)−1

�

= nγ

[1+ (n− 1)γ ]2 − u2

[
1+ (n− 1)γ −u

−u 1+ (n− 1)γ

]
.

From the resolution matrix we compute the canonical resolutions as follows:

λ1(n) = nγ

1+ u+ (n− 1)γ
, (6.74)

λ2(n) = nγ

1− u+ (n− 1)γ
, (6.75)

where the ordering of the canonical resolutions depends on the sign of u. Tn has
corresponding algebraic eigenvectors proportional to [1 1]T and [1 − 1]T , so that
the canonical quantities are

W1 = α1
[
1 1

] [M(X1)

M(X2)

]
, W2 = α2

[
1 −1

] [M(X1)

M(X2)

]
,



EXCHANGEABLE BELIEFS 205

with α1 and α2 chosen to ensure that Var(W1) = Var(W2) = 1. The canonical
quantities are thus

W1 = 1√
2γ

(M(X1)+M(X2)), (6.76)

W2 = 1√
2γ

(M(X1)−M(X2)). (6.77)

For a sample of size n = 1 we have λ1(1) = γ/(1+ u) and λ2(1) = γ/(1− u), and
it is straightforward to verify the relationship (6.57). It is obvious that the canonical
directions do not depend on the sample size. Indeed, we could have calculated the
canonical structure via (6.62) by solving the eigenvalue problem �−1�v = λv,
without reference to the sample size, and then evaluating the canonical resolutions
for whatever sample size we deem relevant, by (6.57).

The implication of the canonical structure for this example is straightforward to
understand, but, in general, such implications are far from obvious without recourse
to such canonical analysis. Examining the canonical resolutions, we observe that
large values of u imply that one such resolution is large and the other small, so
that there will be one strongly informative direction and one weakly informative
direction. Here, u is partly a measure, in the residual structure, of the correlation
between X1 and X2. The system resolution (3.75) for this example, for n = 1, is

RD1(M(X)) = tr{Tn}
rk{Var(M(X))} =

λ1(1) + λ2(1)

2
=

γ
1+u

+ γ
1−u

2

= γ

1− u2
, (6.78)

<
1

1+ |u| . (6.79)

Note that in (6.78) we should interpret the appearance of γ , which is the underlying
mean component prior variance, as representing the natural scaling. The final result
(6.79) indicates that the larger the value of |u|, the smaller the resolution possible;
in other words, the more highly correlated the information, the less predictive value
it has, all other things being equal.

6.14 Example: adjusting exchangeable regressions

6.14.1 Bayes linear sufficiency

To continue the example of §6.7, suppose that we contemplate n full runs of the
experiment. That is, we obtain n sets of observations, each of which is a vector.
We arrange the n measurements corresponding to a given time point t as the vector

Ỹt =
[
Y1t Y2t . . . Ynt

]T
,
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and we collect the vectors at the 13 time points as the collection

C(n) = (Y1, . . . , Y13).

Suppose we let

Sn(Ỹt ) = 1

n
(Y1t + Y2t + . . .+ Ynt ), t = 1, . . . , 13,

be the average, across all runs, of the observations at time point t , and collect these
averages into the collection

S(n) = [Sn(Ỹ1),Sn(Ỹ2), . . . ,Sn(Ỹ13)]. (6.80)

By Theorem 6.4, this collection of averages, S(n), is Bayes linear sufficient for the
collection of original observations C(n) for adjusting the collection of mean compo-
nents M(Y ). Thus, we do not have to construct explicitly variance and expectations
for the averages Sn(·), but can instead exploit exchangeability. The computational
implementation for such cases is described in full detail in Chapter 12. Here, for
example, we would employ Theorem 12.65 in §12.12.5 to evaluate the adjusted
expectation, adjusted variance, and resolution transform for the quantities being
adjusted.

6.14.2 Adjustment

In practice, three full runs of the experiment were carried out, so that n = 3. The
data are shown in Table 6.1 and plotted in Figure 6.1. We now construct beliefs
over the averaged quantities, using the specifications and relationships given in
§6.7, and use them to adjust M(Y ). A summary of the adjustment is shown in
Table 6.2, together with a column showing the observed averages. For example,

Table 6.1 Data for three runs of the exchangeable regressions experiment.

Time Run1 Run 2 Run 3 Average

1 1.79 1.93 1.54 1.75
2 2.14 1.76 1.48 1.79
3 2.13 1.61 1.57 1.77
4 2.07 2.32 1.28 1.89
5 2.08 1.87 1.50 1.82
6 1.88 1.80 1.79 1.82
7 1.94 2.21 1.88 2.01
8 2.01 2.23 2.11 2.12
9 2.35 2.42 2.48 2.42

10 2.23 2.58 2.28 2.36
11 2.58 2.60 3.39 2.86
12 2.48 2.65 3.44 2.86
13 2.82 2.70 2.80 2.77
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Figure 6.1 The concentrations of alumina remaining in solution at time t from the end of
the experiment: results from three independent experiments.

the underlying mean for a run at time t = 1, M(Y1), has respectively prior and
adjusted expectation

E(M(Y1)) = 1.5, ES(3)(M(Y1)) = 1.6031,

and the change in expectation is about 0.64 standard deviations relative to the
resolved variance in M(Y1); that is,

S(ES(3)(M(Y1))) = ES(3)(M(Y1))− E(M(Y1))√
RVarS(3)(M(Y1))

= 0.64.

The change in variance for M(Y1) from prior to adjusted is calculated as
0.0396− 0.0258 = 0.0138, so that about 65% of prior variance is resolved; that
is,

RS(3)(M(Y1)) = 0.65.

The prior and adjusted means are plotted in Figure 6.2, together with prior and
adjusted three-standard-deviation bounds in each case. It can be seen that expecta-
tions for the mean components are revised upwards in accordance with generally
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Table 6.2 Adjusted expectations, standardized changes, variances, and variance
resolutions for the mean components.

Mean of Expectations Variances

3 runs Prior Adjusted Change Prior Adjusted Res.

M(Y1) 1.7533 1.5 1.6031 0.6414 0.0396 0.0138 0.6528
M(Y2) 1.7933 1.6 1.7013 0.5741 0.0444 0.0133 0.7009
M(Y3) 1.7700 1.7 1.7994 0.5044 0.0524 0.0135 0.7418
M(Y4) 1.8900 1.8 1.8976 0.4405 0.0636 0.0145 0.7719
M(Y5) 1.8167 1.9 1.9958 0.3853 0.0780 0.0162 0.7921
M(Y6) 1.8233 2.0 2.0939 0.3386 0.0956 0.0186 0.8050
M(Y7) 2.0100 2.1 2.1921 0.2994 0.1164 0.0218 0.8127
M(Y8) 2.1167 2.2 2.2902 0.2665 0.1404 0.0257 0.8171
M(Y9) 2.4167 2.3 2.3884 0.2386 0.1676 0.0303 0.8193
M(Y10) 2.3633 2.4 2.4866 0.2148 0.1980 0.0356 0.8201
M(Y11) 2.8567 2.5 2.5847 0.1944 0.2316 0.0417 0.8201
M(Y12) 2.8567 2.6 2.6829 0.1767 0.2684 0.0485 0.8195
M(Y13) 2.7733 2.7 2.7811 0.1613 0.3084 0.0560 0.8185

larger than expected data averages. A substantial portion of the variance in each
mean component is resolved, and we learn proportionately more about the end of
the series than about its beginning.

Theorem 6.4 also explains that adjusted expectations for future runs, Yrt ,
r > n, t = 1, . . . , 13, are the same as for M(Yt ), whilst adjusted variances are
increased by adding Var(Rr (Yt )). Thus the observation at t = 1 for a future
run, Yr1, also has prior expectation 1.5, adjusted expectation 1.6031, and stan-
dardized change 0.64. The change in variance for Yr1 from prior to adjusted is
(0.0396+ 0.0801)− 0.0258 = (0.0138+ 0.0801), where Var(Rr (Y1)) = 0.0801
is the residual variance component.

6.14.3 Resolution transforms

We now calculate the resolution transform for the exchangeable system of §6.7.
Suppose we abbreviate the transform for the adjustment of the collection of mean
components, M(Y ), by the collection of averages S(n) as

Tn = TM(Y ):S(n).

We first evaluate the transform T1 for a sample of size n = 1. This resolution
transform for adjusting M(Y ) by S(1) has two positive canonical resolutions,

λ1(1) = 0.6032,

λ2(1) = 0.2976,
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Figure 6.2 Prior and adjusted means for the concentrations of alumina remaining in solution
at time t from the end of the experiment, with three-standard-deviation bounds.

corresponding to the canonical directions shown in Table 6.3, i.e.

Z1 = 0.10M(Y1)+ 0.05M(Y2)+ . . .+ 0.98M(Y13)− 5.31, (6.81)

Z2 = 3.72M(Y1)+ 1.12M(Y2)+ . . .− 1.42M(Y13)− 5.44. (6.82)

There are only two non-zero canonical resolutions as, from (6.41), we see that
all 13 mean components are formed from linear combinations of the two underlying
regression coefficient components M(a) and M(b). Therefore, the prior variance
matrix Var(M(Y )) has rank two, so that there can be (at most) only two canonical
quantities about which any data source can be informative for M(Y ).

A rough interpretation of the coefficients for the first canonical quantity, Z1,
indicates that the data are expected to be most informative for the tail-weighted
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average of the mean components, whereas the coefficients for the second canon-
ical quantity, Z2, show that the data are expected next, separately, to be most
informative about the difference between the end and the beginning of a run.

6.14.4 Resolution partition for exchangeable cases

Table 6.3 also shows the resolution partition for each mean component. Following
(3.71), we partition the overall reduction in variance for any quantity into additive
contributions from each canonical direction. For a sample of size n = 1 the overall
resolution for M(Y1) is RS(1)(M(Y1)) = 0.4068, attributable to roughly equal
contributions, 0.2155 and 0.1913, in the two informative directions. In contrast,
the contribution to resolution for M(Y13) from the second direction is negligible
compared with that from the first.

The final two columns in Table 6.3 display the resolution partition for the mean
components when n = 3, and demonstrate how we decompose, and thereby trace
the source of, the variance resolutions reported in the last column of Table 6.2. By
Theorem 6.5, the canonical directions for the adjustment of M(Y ) by S(3), are the
same combinations, Z1, Z2, that we evaluated for the adjustment by a sample with
n = 1. From (6.57) we deduce that the corresponding canonical resolutions are

λ1(3) = 3λ1(1)

(3− 1)λ1(1) + 1
= 3× 0.6032

(3− 1)0.6032+ 1
= 0.8202, (6.83)

λ2(3) = 3λ2(1)

(3− 1)λ2(1) + 1
= 3× 0.2976

(3− 1)0.2976+ 1
= 0.5597. (6.84)

Table 6.3 Canonical directions and resolution contributions for the mean compo-
nents.

Coefficient in Contribution from Contribution from

Component Z1 Z2 Z1, n = 1 Z2, n = 1 Z1, n = 3 Z2, n = 3

M(Y1) 0.10 3.72 0.2155 0.1913 0.2930 0.3597
M(Y2) 0.05 1.12 0.3271 0.1362 0.4447 0.2562
M(Y3) 0.04 0.58 0.4217 0.0896 0.5733 0.1685
M(Y4) 0.05 0.40 0.4913 0.0552 0.6680 0.1038
M(Y5) 0.05 0.30 0.5383 0.0320 0.7319 0.0603
M(Y6) 0.06 0.22 0.5680 0.0174 0.7723 0.0326
M(Y7) 0.07 0.15 0.5860 0.0085 0.7967 0.0160
M(Y8) 0.08 0.09 0.5961 0.0035 0.8105 0.0066
M(Y9) 0.10 0.02 0.6012 0.0010 0.8174 0.0019
M(Y10) 0.12 −0.04 0.6031 0.0001 0.8200 0.0001
M(Y11) 0.16 −0.13 0.6030 0.0001 0.8198 0.0003
M(Y12) 0.30 −0.37 0.6016 0.0008 0.8179 0.0015
M(Y13) 0.98 −1.42 0.5994 0.0019 0.8150 0.0035
Constant −5.31 −5.44
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Thus, the implication of a sample size of three rather than a sample size of one is
to increase the explanation of variation from 63% to 82% in the major direction of
interest, and to increase the explanation of variation from 30% to 56% in the minor
direction of interest. The explanation of variation in any other linear combination
of the mean components will lie somewhere between these extremes.

6.14.5 Data diagnostics

The bearing for the adjustment (§4.6) is shown in Table 6.4, i.e. the linear combi-
nation of mean components for which we obtain the largest change in expectation,
relative to its prior variance, is the linear combination

ZS(3)(M(Y )) = 0.89M(Y1)+ 0.78M(Y2)+ . . .− 0.46M(Y13)− 3.75. (6.85)

The standardized change is

SizeS(3)(M(Y )) = 0.2920, (6.86)

corresponding to a prior expectation, before observing the three experiments, of
1.3799. The size ratio for the adjustment (4.63) is thus

SrS(3)(M(Y )) = 0.2920

1.3799
= 0.2116,

with the implication that the data induced smaller changes in expectation than were
expected at the outset.

We also examine the changes in expectation relative to the variation resolved.
The induced discrepancy vector for the adjustment (Definition 4.9) is shown in

Table 6.4 The bearing and discrepancy vector for the adjustment.

Coefficient in Coefficient in
Bearing vector Discrepancy vector

M(Y1) 0.89 3.39
M(Y2) 0.78 1.02
M(Y3) 0.66 0.53
M(Y4) 0.55 0.38
M(Y5) 0.44 0.29
M(Y6) 0.33 0.22
M(Y7) 0.21 0.16
M(Y8) 0.10 0.10
M(Y9) −0.01 0.04
M(Y10) −0.13 −0.01
M(Y11) −0.24 −0.08
M(Y12) −0.35 −0.27
M(Y13) −0.46 −1.06
Constant −3.75 −6.14
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the final column of Table 6.4, i.e. the linear combination of mean components for
which we obtain the largest change in expectation, relative to its resolved variance,
is the linear combination

ŸS(3)(M(Y )) = 3.39M(Y1)+ 1.02M(Y2)+ . . .− 1.06M(Y13)− 6.14. (6.87)

The standardized change is

DisS(3)(M(Y )) = 0.5020, (6.88)

corresponding to a prior expectation, before observing the three experiments, of
2.0. The discrepancy ratio for the adjustment is thus

Dr(S(3))M(Y ) = 0.5020

2
= 0.2510,

about the same as the size ratio. We comment on these, and examine further
diagnostics, in §6.14.8.

6.14.6 Sample size choice

The values of the canonical resolutions also determine the rates at which fresh
information contributes to reducing variation in each canonical direction as we
increase the sample size, n. We quickly resolve almost all the variance in quantities
which are strongly correlated with initially informative canonical directions, but we
need very large sample sizes to learn about quantities that are strongly correlated
with directions that are only weakly informative at the outset. To illustrate this
point, Figure 6.3 plots the proportion of variance resolved in Z1, Z2, and M(Y1)

as we increase the sample size, n. The gain in information is fastest in the direction
of Z1, and slowest in the direction of Z2, and these bound the information gains
for any other quantities correlated with them, such as M(Y1). The bounds follow
as the ordering of the canonical resolutions is preserved when n increases, by
Corollary 6.8, and by Corollary 6.6, as the two canonical resolutions in this case
are the maximal and minimal positive values. Figure 6.3 also illustrates that, for
any positive canonical resolution λ, λ(n) is a monotonic increasing function of
n with limit unity: we can reduce the variance in the corresponding canonical
direction to an arbitrarily small level by taking sufficiently large n.

It is straightforward, using Corollary 6.6, to calculate a sample size to achieve
a desired level of variance resolution across every possible linear combination of
the mean components. For example, if we wish to explain at least α = 90% of the
variance in every such linear combination, we must take a sample size of

n >
α

1− α

1− λmin

λmin
= 0.9

1− 0.9

1− 0.2976

0.2976
= 21.24, (6.89)

i.e. a sample of size n = 22. If, instead, we want to achieve a minimum variance
reduction in a specified linear combination, we can exploit (6.66) numerically. For
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Figure 6.3 Variance resolutions, in the two canonical directions Z1, Z2 and the mean
component M(Y1), for larger sample sizes.

example, suppose that we want to achieve a variance reduction of at least 75%
in the difference between M(Y1) and M(Y2). It is straightforward to show, using
(6.81) and (6.82), that

Corr(M(Y2)−M(Y1), Z1) = 0.9055,

Corr(M(Y2)−M(Y1), Z2) = −0.4244.

Thus, by (6.66), we have that the resolution for a sample size of n for the adjustment
of M(Y2)−M(Y1) is

Rn(M(Y2)−M(Y1)) =
∑

i

nλi(1)

(n− 1)λi(1) + 1
[Corr(M(Y2)−M(Y1), Zi)]

2

= n× 0.6032

(n− 1)0.6032+ 1
0.90552

+ n× 0.2976

(n− 1)0.2976+ 1
(−0.4244)2.
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It is simple numerically to establish that R2(M(Y2)−M(Y1)) = 0.6996 and that
R3(M(Y2)−M(Y1)) = 0.7733, so that a sample size of n = 3 leads to the required
resolution of at least 75%.

6.14.7 Adjustment for an equivalent linear space

We now consider the implications of the data for learning about the underlying
slope and intercept quantities, M(a) and M(b), gathered into the collection M(Q).
By (6.42), adjustment of this collection is equivalent to the adjustment of the
collection M(Y ), and we can apply Corollary 6.9. Thus, the resolution transform
TM(Q):S(1) for the adjustment of M(Q) by S(1) has two canonical directions,

W1 = 2.18M(a)+ 22.64M(b)− 5.31,

W2 = 4.65M(a)− 10.61M(b)− 5.44,

corresponding to canonical resolutions ψ1 = 0.6032 and ψ2 = 0.2976, respec-
tively. This is structurally identical to the canonical structure obtained for the
adjustment of M(Y ) by S(1) in that λi = ψi and Zi = Wi : for example, by (6.41),
the coefficient of M(a) in W1 must equate to the sum of the coefficients in Z1
displayed in Table 6.3. Clearly, the value of new information for larger n will be
the same for both M(Q) and M(Y ). We could add the resolutions for M(a) and
M(b) for increasing sample size to Figure 6.3: we must and do find that they are
bounded by the resolutions for Z1 = W1 and Z2 = W2. This equivalence illustrates
the way in which the resolution transform fully captures the geometric structure
underlying our beliefs over the observables.

6.14.8 Data diagnostics for an equivalent linear space

The adjustment diagnostics for two equivalent linear spaces must be identical. We
have that 〈M(Q)〉 and 〈M(Y )〉 are equivalent. Consequently, comparing to (6.86)
and (6.88), we must have

SizeS(3)(M(Q)) = SizeS(3)(M(Y ))= 0.2920,

DisS(3)(M(Q)) = DisS(3)(M(Y )) = 0.5020.

The bearing and induced discrepancy vector (Definition 4.9) must similarly be
identical. Direct calculation shows that, for the adjustment of the collection M(Q),
comprising the underlying mean slope and intercept, these are respectively

ZS(3)(M(Q)) = 2.76M(a)− 1.15M(b)− 3.75, (6.90)

ŸS(3)(M(Q)) = 4.70M(a)− 4.45M(b)− 6.14. (6.91)

Recalling that we have, for each M(Yt ), M(Yt ) =M(a)+ tM(b), we may check
that (6.90) matches (6.85) and that (6.91) matches (6.87).
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6.14.9 Compatibility of data sources

Where we have exchangeable data, one obvious question is whether the data arising
from different samples appear to be compatible. To investigate, we adjust the
underlying mean regression components, M(Q), sequentially by the data available
from the first, second, and third experiments, and calculate diagnostics for these
adjustments as described in §5.11. For this we must compute the bearings (the
directions of maximal standardized change in expectation) for (1) the adjustment
by data from the first experiment alone; (2) the partial adjustment by data from the
second experiment, over and above data from the first experiment; (3) the partial
adjustment by data from the third experiment, over and above data from the first
two experiments. Suppose we represent these three adjustments as D1, D2, D3,
observed to be d1, d2, d3, respectively. Using our standard notation (§5.6), these
bearings and partial bearings, with their corresponding size ratios, turn out to be:

Zd1(M(Q)) = +2.80M(a)− 4.10M(b)− 3.51, (6.92)

Srd1(M(Q)) = 0.3612, (6.93)

Z[d2/d1](M(Q)) = +1.43M(a)− 2.74M(b)− 1.72, (6.94)

Sr[d2/d1](M(Q)) = 0.2877, (6.95)

Z[d3/d1∪d2](M(Q)) = −1.44M(a)+ 6.71M(b)+ 1.35, (6.96)

Sr[d3/d1∪d2](M(Q)) = 0.4871. (6.97)

Inspecting the size ratios, none of the standardized changes in expectation were
large relative to prior variation. Indeed, there may be a suspicion of systematically
smaller than expected changes in expectation, indicating perhaps that the prior
variances assigned to these quantities overstated the assessor’s uncertainties about
them. We need next to compute the path correlations (§5.9) between these bearings.
Inspecting the vectors in (6.92), (6.94), and (6.96), it seems obvious that the first
two are quite similar, whilst the third appears quite different. The path correlation
for data from the first two experiments turns out to be, using (5.51),

PC(d1, [d2/d1]) = Corr(Zd1(M), Z[d2/d1](M)) = 0.9964,

where M =M(Q) for convenience, whilst the path correlation between data from
the first two experiments and data from the third experiment turns out to be

PC(d1 ∪ d2, [d3/d1 ∪ d2]) = Corr(Zd1∪d2(M), Z[d3/d1∪d2](M))

= Corr(Zd1(M)+ Zd1/d2(M), Z[d3/d1∪d2](M))

= −0.9386.
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Thus, there is substantial agreement between the data from the first two exper-
iments, but there is a portion of the data from the third experiment that is in
substantial disagreement. In this particular example, however, the relevance of
the disagreement is minor, as the corresponding size ratios are all small. Had the
size ratios been larger (i.e. larger than expected changes in expectation), this find-
ing would perhaps have motivated an investigation of the third experiment in an
attempt to discover the root of the discordancy.

One further check we can make is to assess the consistency of the observations
made at different time points. To do so, suppose that we let

Gt = [Y1t , Y2t , Y3t ]

be the collection of observations to be made at time t , and let gt represent the actual
observations. We will again calculate diagnostics pertaining to the adjustment of
M(Q), as these will be the same as the diagnostics for the adjustment of M(Y )

as the two corresponding linear spaces are identical. We will form diagnostics
for the sequence of exchangeable adjustments where we adjust M(Q) by G1,
and then partially by G2, and so forth, until finally we adjust partially by the
three observations G13. At each time point t , the average Ḡt = Y1t + Y2t + Y3t is
Bayes linear sufficient for the collection Gt for any adjustment, including partial
adjustments, of M(Q).

Table 6.5 summarizes the sequential diagnostics for this problem, and these
are also plotted in Figure 6.4. Only one of the partial adjustments stands out.
At time t = 11, the data are discordant with the data at preceding time points
(path correlation −0.73), and there is simultaneously a surprisingly large change
in expectation: the size ratio is 8.66. This combination of features is most evident

Table 6.5 Diagnostic assessment for sequential exchangeable adjustments.

i E[i](M(a)) E[i](M(b)) Size[i/](M(Q)) Sr[i/](M(Q)) C[i/]

1 1.5452 0.1061 0.5782 0.99
2 1.5387 0.1026 0.0086 0.08 −0.54
3 1.5310 0.0902 0.0976 0.81 −0.22
4 1.5310 0.0907 0.0001 0.00 −0.32
5 1.5341 0.0763 0.1298 1.43 0.37
6 1.5385 0.0675 0.0487 0.64 0.73
7 1.5340 0.0736 0.0238 0.38 −0.84
8 1.5313 0.0764 0.0052 0.10 −0.82
9 1.5155 0.0902 0.1256 2.88 −0.81

10 1.5217 0.0855 0.0151 0.41 0.61
11 1.4925 0.1054 0.2694 8.66 −0.73
12 1.4926 0.1053 0.0000 0.00 0.04
13 1.5050 0.0982 0.0357 1.57 0.07
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Figure 6.4 (a) Scatter plot of observed means at each time point; (b) sequential update
of expectation for M(a) (c) sequential update of expectation for M(b); (d) partial sizes
for sequential adjustments; (e) partial size ratios for sequential adjustments; (f) successive
size-weighted path correlations.

in Figure 6.5(f). As a further check, the observations are divided into the set of
all observations at time points up to and including t = 10, D1−10, and all other
observations D11−13, and a diagnostic assessment carried out. The path correlation
turns out to be −0.73, confirming some differences between the beginning and the
end of the process that are not captured by our model. Referring back to Figure 6.1,
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Figure 6.5 Variance resolutions in the two canonical quantities and the three quantities G0,
G2, and Gh for sample sizes up to n = 20.

visually a large change occurs between t = 10 and t = 11 for experiment r = 3.
We will see later (§9.13.2) that the third experiment appears somewhat aberrant,
compared to the other two experiments.

6.15 Predictive adjustment

We now extend the results of §6.12 to the case of predictive adjustment. Thus,
suppose that we observe Dn = (X1, . . . , Xn) and we intend to adjust beliefs over
the further collection of r observations Dn,r = (Xn+1, . . . , Xn+r ).
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We may adjust beliefs over Dn,r by first adjusting beliefs over M(X) and then
using (6.45), (6.46) to adjust beliefs over Dn,r . From Theorem 6.4, the sample
mean X̄n is Bayes linear sufficient for Dn for adjusting M(X) and so is also
Bayes linear sufficient for Dn for adjusting Dn,r . If we denote the sample mean
vector for Dn,r as

X̄n,r = 1

r

n+r∑
j=n+1

Xj ,

then, by a similar argument to (6.51), we have

�Dn,r ⊥⊥M(X)� / X̄n,r .

Therefore, the adjustment of Dn,r by Dn is precisely equivalent to the adjustment
of X̄n,r by X̄n, as (i) adjustment of Dn,r by Dn or X̄n gives precisely the same
results, and (ii) AX̄n,r

(Dn,r ) is orthogonal to Dn, so that any linear combination

of the elements of Dn,r which is orthogonal to the mean vector X̄n,r has adjusted
mean equal to the prior mean.

We now consider the resolution transform for the adjustment of Dn,r by Dn. By
the above argument, this transform may be equivalently assessed as the resolution
transform for the adjustment of X̄n,r by X̄n, which we denote by Tn,r . We show
that the eigenvectors of Tn,r are essentially the same as for Tn, the resolution
transform for the adjustment of M(X) given Dn, and derive the corresponding
eigenvalues. We have the following result.

Theorem 6.10 Suppose that W is an eigenvector of Ts for each s, with correspond-
ing eigenvalue λ(s), and standard form W = αTM(X). Then

Wn,r = αT X̄n,r

is an eigenvector of Tn,r with eigenvalue

λ(n,r) = λ(n)λ(r). (6.98)

Proof. We have �Dn ⊥⊥Dn,r� / M(X). Thus, from Theorem 5.24, W ∗
(n,r)

is an
eigenvector of Tn,r , with eigenvalue λ if and only if EM(X)(W

∗
(n,r)) = W is an

eigenvector of TrTn, with eigenvalue λ. From Theorem 6.5, the transforms Tn, Tr

have the same eigenvectors for each value of n and r , and the result follows. �
Thus, we obtain the eigenvectors of Tn,r from the standard form for the eigen-

vectors of T1 by replacing each linear combination of M(X) by the corresponding
linear combination of X̄n,r and evaluating the eigenvalues by (6.98). Thus, predic-
tive adjustment shares the same qualitative features as does adjustment over the
population structure, with similar implications for design and interpretation.
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We may alternatively derive the result of Theorem 6.10 directly by constructing
the matrix representation of Tn,r , which may be written as

Tn,r = (Var(X̄n,r ))
−1Cov(X̄n,r , X̄n)(Var(X̄n))

−1Cov(X̄n, X̄n,r )

=
(

� + 1

r
(� − �)

)−1

�

(
� + 1

n
(� − �)

)−1

�

= TrTn. (6.99)

As before, for simplicity of exposition we assume that the variance matrices here
are positive definite, deferring consideration of the non-negative definite case to
§12.12. For sample size choice for a predictive adjustment, we have the following
corollary.

Corollary 6.11 Suppose that W is an eigenvector of T1 with corresponding eigen-
value λ > 0. Then the minimal sample size n required to achieve a proportionate
variance reduction α for the canonical direction W ∗

(n,r)
of T(n,r) is, for 0 < α < λ(r),

n ≥ α(1− λ)

λ(λ(r) − α)
. (6.100)

The maximum possible resolution of variance for W ∗
(n,r) is λ(r). The maximum

possible proportionate reduction in variance for any element of 〈Dn,r〉 is thus

rλmax

1+ (r − 1)λmax
, as n→∞,

where λmax is the maximum eigenvalue of T1.

6.16 Example: oral glucose tolerance test

6.16.1 Context of exchangeability

We now continue the example of §6.6 in which we considered an exchangeable
sample for the OGT test problem. In earlier chapters, our focus has been on using
our doctor’s own measurements to learn about the effect of the test on a typical
elderly person, with whom our doctor is exchangeable. In the context of exchange-
ability, we can now see that this involved a predictive adjustment. Consequently, we
first explore the implications of exchangeability for an underlying mean component
for this example.

6.16.2 Mean component adjustment

The underlying quantity that connects individuals is given by M(D), with prior
variance matrix given by (6.32). For an exchangeable sample of size n of measure-
ments D1, . . . , Dn, the adjustment of these mean components has a basic resolution
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transform which is calculated from (6.59) with �, � defined in (6.34) and (6.35).
In practice, we can calculate the resolution transform (6.59) with n = 1 and deduce
the canonical structure for an adjustment by any sample size. The canonical quan-
tities and canonical directions (in standardized and unstandardized forms) for the
adjustment of the mean component by the first observation from an exchangeable
sequence are

λ1 = 0.5643, W1 = 1.3390M(G0)− 0.1512M(G2)− 4.6253, (6.101)

W ∗
1 = 1.0543M(G0)− 0.0992M(G2), (6.102)

λ2 = 0.1420, W2 = 0.8012M(G0)− 1.8676M(G2)− 8.3395, (6.103)

W ∗
2 = 0.6309M(G0)− 1.2247M(G2). (6.104)

One of the great advantages of the Bayes linear approach is that, with respect to
the belief specifications, these quantities completely characterize the adjustment:

• for the underlying mean components, given any sample size;

• for predicting a single other individual, given any sample size;

• for predicting the mean of a further collection of such individuals, given any
sample size;

• for any linear combination of these mean components and/or further such indi-
viduals, given any sample size.

Indeed, with respect to the belief specifications, we can deduce all required results
straightforwardly from (6.101) and (6.103).

6.16.3 Variance reduction for a predictive adjustment

In §3.8.3 we made brute-force calculations to show the implications of a larger
sample size for learning about a typical elderly person’s fasting and 2-hour blood
glucose levels, and the difference between them. We saw in Figure 3.1 that we
appeared to learn relatively little about these quantities, even for quite large sample
sizes. Let us now use the underlying canonical structure to investigate and explain
what is going on here. Theorem 6.10 shows us that the ith canonical resolution
for a predictive adjustment of an individual is

λi(n,1) = λi(n)λi(1). (6.105)

Here, λi(n,1) is the resolved variance in Wi , the ith canonical direction for the
adjustment of the mean component. As n→∞⇒ λi(n) → 1, we can resolve all
of the prior variance in every canonical direction Wi by taking a sufficiently large
sample size. However, for the predictive adjustment, there is an unresolvable por-
tion of prior variation, and from (6.105) it follows that the unresolved portion for
the ith canonical direction is 1− λi(1). For this predictive adjustment for a single



222 BAYES LINEAR STATISTICS: THEORY AND METHODS

Table 6.6 Canonical and maximal canonical resolutions.

Quantity Prior variance Variance resolved Maximal variance resolved
n = 1 n→∞

1 λi(1,1) = λ2
i(1) λi(1)

W1 1 0.3184 0.5643
W2 1 0.0202 0.1420

G0 1 0.3109 0.5536
G2 1 0.0448 0.1770
Gh 1 0.0705 0.2133

individual, the variance resolutions for the canonical quantities are summarized
in the first part of Table 6.6. Notice that the variance resolutions for n = 1 agree
with those reported in (3.110) in §3.11.3. Also notice that the implication of these
belief specifications is that we do not expect to learn very much, particularly in
the second canonical quantity, even by taking very large sample sizes. Even in the
first canonical direction, W1, for which we will learn most, we expect to resolve
only 31.84% of its variance using one observation, up to a maximum of 56.43%
using a very large number of observations.

The minimal and maximal resolutions (6.105) provide bounds on the proportion
of variance resolved for any linear combination of the quantities being adjusted.
It follows that for G0, G2, and Gh = G2 −G0, the proportion of variance we
expect to resolve lies somewhere between about 2% and 31% if we take a sample
size n = 1, and at most somewhere between about 14% and 56% if we take a
huge sample size. It is for this reason that Figure 3.1 shows very little explanation
of variance for these three quantities, for the range of sample sizes shown. It is
simple to calculate what the variance resolutions are, via (6.65), in that for any
linear combination Y in this predictive space we have

Rn(Y ) =
∑

i λi(n)λi(1)(Cov(Y, Wi))
2∑

i (Cov(Y, Wi))2
. (6.106)

The resolutions for G0, G2, and Gh for n = 1 and maximal n are shown in the sec-
ond part of Table 6.6, with their prior variances rescaled to unity for convenience.
We commented at length on the relationships between these three quantities and the
canonical quantities in §3.11.3, and those comments apply equally here, but now
underpinned by the insights which the exchangeability representation provides.

Figure 3.1 suggests that most of the resolvable variance is resolved by a rela-
tively small sample size. Figure 6.5 shows variance resolutions in the two canonical
quantities and the three quantities G0, G2, and Gh for sample sizes up to n = 20.
Notice how the variance resolutions are bounded by the canonical resolutions. The
resolutions for G0 (which is highly correlated with the primary canonical quantity)
quite quickly approach the maximum, suggesting that a fairly small sample size
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would be quite efficient for learning about G0. On the other hand, the information
gains are much slower for G2 and Gh, which are more highly correlated with the
secondary canonical quantity. If we felt that it was important to remove a large
proportion of the explainable variation in Gh, it is clear that we would have to pay
the penalty of taking a very large sample size.

6.16.4 Observed exchangeable adjustments

For this example, a sample of size n = 15 was obtained by taking 15 elderly
healthy individuals, and administering to them the OGT test. These data are a
part of the data set discussed in Farrow and Leyland (1991). We are very grate-
ful to Malcolm Farrow for providing the data and belief judgements for them.
The data are shown in Table 6.7 and plotted in Figure 6.6. Our illustrations using
this example in Chapter 4 were performed using the first of these observations.
Inspecting the scatter plot, we observe that the 2-hour measurement G2 tends to
rise with fasting measurement, G0. This is consistent with the prior correlation
specified between them, Corr(G0, G2) = 0.4364. There are two pairs of observa-
tions, (4.8, 2.3) and (4.6, 3.7), which look unusual. We would not normally expect
the 2-hour measurement to exceed the fasting measurement,

Observed exchangeable adjustments proceed with the observed sample means
summarizing the observed quantities. Before this stage is reached, however, the
data must be checked to ensure that they are consistent with beliefs specified about
them. This is the case whenever Var(D) is full rank, as in this example. Notice
that when Var(D) is not full rank, every vector observation di must be checked
for consistency (using Definition 12.61 of §12.12.3), as the fact that the sample
means, d̄, are consistent does not imply that the individual observations, di , are
consistent.

Next, the sample means are calculated and the adjusted expectations and vari-
ances obtained for n = 15. The calculations are made using the results from earlier

Table 6.7 Blood glucose levels, in mmol/litre, for 15 healthy elderly individuals,
measured before and 2 hours after administration of the oral glucose tolerance test.

Observation 1 2 3 4 5
Blood glucose level, fasting 5.4 4.8 4.0 4.0 5.2
Blood glucose level, 2-hour 9.8 2.3 5.0 8.1 8.9

Observation 6 7 8 9 10
Blood glucose level, fasting 4.5 4.9 4.7 4.6 3.9
Blood glucose level, 2-hour 6.8 7.0 7.7 3.7 4.8

Observation 11 12 13 14 15
Blood glucose level, fasting 4.4 4.6 4.9 6.3 4.1
Blood glucose level, 2-hour 7.9 6.0 9.8 8.4 5.1
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Figure 6.6 Scatter plot of fasting and 2-hour blood glucose levels following the oral glucose
tolerance test on 15 healthy individuals.

in this chapter or, more generally, using those of §12.12.5. The main features are
summarized in Tables 6.8 and 6.9 and are as follows.

• The data for the basic measurements G0 and G2 are generally higher on average
than expected, and by about the same amount, so that the prior judgement that
the 2-hour measurement exceeds the fasting measurement by about 2 mmol/l
seems justified.

• The adjusted expectations for the underlying population means corresponding to
G0 and G2 are roughly 4.65 and 6.66 mmol/l, and so these are the predictions
for a new individual’s two readings.
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Table 6.8 Summary of the adjustment by 15 observations: means and standard
deviations of the observations; and prior and adjusted expectations with standard-
ized change in adjustment, relative to variance resolved.

Data Expectation

Mean SD Prior Adjusted Change

G0 4.6867 0.6065 4.16 4.6530 0.64
G2 6.7533 2.1497 6.25 6.6593 0.71
Gh 2.0667 1.9492 2.09 2.0062 −0.14

Table 6.9 Summary of the adjustment by 15 observations: prior and adjusted
variances and variance resolutions for the mean and predictive components.

Mean component variation Predictive component variation

Prior Adjusted Resolution Prior Adjusted Resolution

G0 0.62 0.0313 0.9495 1.12 0.5313 0.5256
G2 0.43 0.0964 0.7757 2.43 2.0964 0.1373
Gh 0.45 0.0814 0.8192 2.11 1.7414 0.1747

• Relative to variance resolved, neither of the changes in expectation is particularly
surprising: the larger standardized change is Sd(G2) = 0.71 standard deviations
(see §4.4.1). Note that the adjusted expectation and standardized change in
adjustment are identical for the mean and predictive components.

• Variance resolutions for the mean components are quite substantial: 95% and
78% of the variation in M(G0), M(G2) respectively, is resolved by this sam-
ple. However, as suggested by the canonical analysis summarized in Table 6.6,
variance resolutions for the predictive components are much smaller. Given a
sample size of n = 15, the percentage of variance explained for another indi-
vidual’s G2 measurement is only 13.7%. Table 6.6 implies that, whilst this is
small, we cannot do much better even by taking a huge sample size. The rea-
son is straightforward. The mean component for G2 has prior variance 0.43,
all of which can be resolved by taking a sufficiently large sample. The predic-
tive component for G2 has prior variance 0.43+ 2.00 of which the first part,
corresponding to mean component variation, can similarly be resolved fully by
taking a sufficiently large sample size; whereas the second part, corresponding
to variation specific to an individual, can never be resolved through measuring
other individuals.

As in §4.5.2.1, we take intervals of about two or three standard deviations
in either direction from the expectation as being fairly likely to contain the rele-
vant locations. For the prior assessments we have (restating these from §4.5.2.1)



226 BAYES LINEAR STATISTICS: THEORY AND METHODS

approximately the three standard deviation intervals

G0 : 4.16± 3
√

1.12 = (0.99, 7.33),

G2 : 6.25± 3
√

2.43 = (1.57, 10.93).

For the assessments after adjusting by [D] we obtain the tighter intervals

G0 : 4.65± 3
√

0.53 = (2.46, 6.84),

G2 : 6.66± 3
√

2.10 = (2.32, 11.00).

The interpretation is as in §4.5.2.1, though somewhat less dramatic. The evidence
does seem to support the notion that the fasting measurement for healthy elderly
individuals exceeds that for younger people. It also seems plausible that the effect
of the test is to raise the blood glucose level of individuals (young and old) by about
2 mmol/l. The consequence for the elderly is that their normal 2-hour measurement,
which we assess at present as being around 6.66 mmol/l, is only just below the
level of 7.0 mmol/l deemed to be the threshold for impaired glucose tolerance.
The caveat is that we have resolved very little of the variation in the 2-hour
measurement G2, and in the derived quantity Gh, so the evidence for the locations
of these two quantities remains inconclusive.

Globally, the induced discrepancy vector (Definition 4.9) and the bearing (§4.6)
turn out to be

Ÿd(B) = 0.4273G0 + 0.8724G2 − 7.2302,

Zd(B) = 0.4100G0 + 0.0469G2 − 1.9991.

These indicate the maximal changes in expectation with respect to resolved and
prior uncertainty, respectively. The diagnostics for these two quantities reveal
nothing untoward. For example, the adjustment discrepancy (4.22) is Disd(B) =
0.5677, with prior expectation 2 and discrepancy ratio 0.2839; and the size of the
adjustment (4.51) is Sized(B) = 0.2214, with prior expectation λ1(15) + λ2(15) =
0.6379 and size ratio Srd(B) = 0.3470. These indicate smaller than expected
changes in expectation.

6.16.5 Path diagnostics

Finally, we inspect the data for the concordance of individual observations. One
way to do this is to sort the data according to the fasting measurement (this seems
appropriate as we expect these measurements to be better understood than the
2-hour measurements), and then to examine the one-step sequential adjustments
by each fresh data pair for discordancy. The results are shown in Figure 6.7. This
shows, in panel (b), that the arrival of the new evidence leads consistently to higher
and higher adjusted expectations for G0, but that the evidence is more ambiguous
for the 2-hour measurement G2 shown in panel (c). Inspection of panel (f), in which
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Figure 6.7 Path diagnostics, full data set: (a) scatter plot of original data, fasting measure-
ment versus 2-hour measurement; (b) sequential update of expectation for G0; (c) sequential
update of expectation for G2; (d) partial sizes for sequential adjustments; (e) partial size
ratios for sequential adjustments; (f) successive path correlations multiplied by size ratios.

are plotted the successive path correlations, weighted by the corresponding size
ratios, shows no particularly disturbing contradictions: there is one combination of
quite highly positive path correlation with quite high size ratio when we partially
adjust by the measurement (4.8, 2.3); however, recall that we would be mostly
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concerned if we had found large negative combinations. Examining panel (e), we
find that the two largest size ratios correspond to the observations (4.8, 2.3) and
(4.6, 3.7), implying that these are quite unusual observations in relation to the
preceding belief adjustment. These are the two unusual observations noted earlier.
In summary, these two pairs of observations are not strongly discordant with the
other 13 observations, but they are discrepant in the context of the full belief and
data analysis.

As such, one option, for the purpose of comparison, is to exclude this discrepant
pair of observations and recalculate the observed adjustment. The diagnostic anal-
ysis is summarized in Figure 6.8, in which we see no strongly discrepant features.
The recalculated adjustment is summarized in Table 6.10. The adjusted expecta-
tion for G2 is markedly higher than before, and exceeds the threshold for impaired
glucose tolerance. The adjusted expectation for Gh is also higher than before,
Ed(Gh) = 2.4066, suggesting that the normal healthy elderly individuals do react
differently to younger individuals. We might reasonably conclude that the doctor’s
suspicions about the validity of the OGT test for the elderly appear well founded.
We should also be concerned with the two individuals excluded from the final anal-
ysis because their patterns of reaction to the OGT test appear atypical. Exclusion
may seem reasonable on the grounds that we desire our sample of observations to
be representative of elderly healthy individuals with a normal pattern of response.
On the other hand, we run the risk of ignoring genuine features relevant to a
minority of the population.

6.17 Example: predictive analysis for exchangeable regressions

For the exchangeable regressions example of §6.7 and §6.14, suppose that we form
the collection Cf = Y1,f , . . . , Y13,f of values of one future experiment based on
a sample of size n < f , and that we want to assess the implication of using
that sample to learn about the elements of the collection Cf . We can do so by
exploiting Theorem 6.10. In particular, for our actual sample size of n = 3, the
canonical directions of T(3;1) are the projections of the canonical directions for T1,
and there are two positive canonical resolutions which, by (6.98), are equal to

λ1(3,1) = λ1(3)λ1(1) = 3λ1(1)

(3− 1)λ1(1) + 1
λ1(1) = 0.4947,

λ2(3,1) = λ2(3)λ2(1) = 3λ2(1)

(3− 1)λ2(1) + 1
λ2(1) = 0.1666.

The canonical directions are as shown in Table 6.3, except that the each M(Yi) is
replaced by the corresponding predictive component, Yi,f , so that the two canonical
directions are

Z̃1 = 0.10Y1,f + 0.05Y2,f + . . .+ 0.98Y13,f − 5.31, (6.107)

Z̃2 = 3.72Y1,f + 1.12Y2,f + . . .− 1.42Y13,f − 5.44, (6.108)
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Figure 6.8 Path diagnostics, discrepant observations excluded. (a) Scatter plot of original
data, fasting measurement versus 2-hour measurement; (b) Sequential update of expectation
for G0; (c) Sequential update of expectation for G2; (d) partial sizes for sequential adjust-
ments; (e) partial size ratios for sequential adjustments; (f) successive path correlations
multiplied by size ratios.

where (6.107) corresponds to (6.81) and (6.108) corresponds to (6.82). Table 6.11
summarizes the implications of data from the initial three experiments for predicting
the values of a future experiment. Prior and adjusted variances for each quantity are
given together with the resolution partition and total and maximal resolutions. The
data from three initial runs are expected to remove about half of our uncertainty
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Table 6.10 Summary of the adjustment by 13 observations. Shown are the means
and standard deviations of the observations; prior and adjusted expectations with
standardized change in adjustment, relative to variance resolved; and prior and
adjusted variances with resolutions.

Data Expectation Variation

Mean SD Prior Adjusted Change Prior Adjusted Resol.

G0 4.685 0.650 4.16 4.629 0.61 1.12 0.536 0.522
G2 7.331 1.660 6.25 7.035 1.38 2.43 2.107 0.133
Gh 2.646 1.329 2.09 2.407 0.53 2.11 1.750 0.171

Table 6.11 Variances for predicting future observables Y1,F , . . . , Y13,F .

Variances Variance resolutions

Quantity Prior Adjusted in Z1 in Z2 Total Max

Y1,F 0.1197 0.0939 0.0969 0.1190 0.2160 0.3308
Y2,F 0.1348 0.1037 0.1465 0.0844 0.2309 0.3294
Y3,F 0.1533 0.1144 0.1960 0.0576 0.2535 0.3418
Y4,F 0.1752 0.1261 0.2425 0.0377 0.2802 0.3630
Y5,F 0.2005 0.1387 0.2847 0.0234 0.3082 0.3890
Y6,F 0.2292 0.1522 0.3221 0.0136 0.3358 0.4171
Y7,F 0.2613 0.1667 0.3549 0.0071 0.3620 0.4455
Y8,F 0.2968 0.1821 0.3834 0.0031 0.3865 0.4730
Y9,F 0.3357 0.1984 0.4081 0.0009 0.4090 0.4993
Y10,F 0.3780 0.2156 0.4295 0.0001 0.4296 0.5238
Y11,F 0.4237 0.2338 0.4481 0.0001 0.4483 0.5466
Y12,F 0.4728 0.2529 0.4643 0.0009 0.4652 0.5677
Y13,F 0.5253 0.2729 0.4785 0.0021 0.4806 0.5871

in the first predictive canonical quantity, but only one-sixth of the uncertainty in
the second predictive canonical quantity. Comparing the total resolutions for the
mean and predictive adjustments summarized in Table 6.2 and 6.11, we observe
how much smaller are the latter. The maximal resolutions displayed in the final
column show how much variance would be resolved by explaining all of the mean
component variation.

6.17.1 Choice of canonical directions

This is an example where the resolution transform has a rank (rT = 2) smaller than
its dimension (13), and there is thus some arbitrariness in the canonical quantities.
Standard form for such situations is discussed in §6.12.1. As we are here inter-
ested in analysing both mean components and predictive components, we need to
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ensure that the canonical quantities corresponding to adjustments for equivalent
linear spaces match algebraically. This issue is discussed in detail in Chapter 12
(see §12.12.4 in particular). With regard to the results there, in making the com-
putations for this example, we used (12.60) to obtain the resolution transform for
the mean component adjustment, and (12.52) to obtain the resolution transform
for the predictive component adjustment. By Theorem 12.63 and Theorem 12.64,
these transforms then share the same algebraic directions. Note that there is no
arbitrariness in the canonical resolutions.

6.18 Further reading

The fundamental role of exchangeability within the subjectivist approach is devel-
oped in de Finetti (1937), available in Kyburg and Smokler (1964); see also
de Finetti (1974, 1975). The second-order representation theorem was given in
Goldstein (1986a). The basic properties of the adjustment of such exchange-
able structures are described in Goldstein and Wooff (1998). Adjusting exchange-
able beliefs raises certain foundational questions that we do not pursue here; for
example, how do we interpret the analysis of an exchangeable structure which we
expect no longer to be exchangeable by the end of the analysis, so that the mean
quantities in the representation will cease to have meaning? A careful discussion
of such issues is given in Goldstein (1994b).

In Goldstein and Wooff (1997), the properties of the canonical structure for the
adjustment are exploited to choose appropriate sample sizes for balanced experi-
mental design. Extensions of these ideas to handle many variables cross-classified
in many ways are discussed in Shaw and Goldstein (1999). An overview of vari-
ous interpretative and diagnostic tools appropriate for the analysis of exchangeable
structures is given in Farrow and Goldstein (1993) in the context of grouped mul-
tivariate repeated measurement studies, and illustrated by analysis of a crossover
trial. Exchangeability modelling as a basis for partition testing is described in
Coolen et al. (2001); the approach of the example is pursued with a more careful
mixture of Bayes and Bayes linear modelling, exploiting Bayes linear kinematics,
in Goldstein and Shaw (2004). The role of exchangeable belief analysis in iden-
tifying experimental designs which balance gains in information against relevant
financial and ethical costs is outlined in Farrow and Goldstein (1992) and extended
in detail to allow for imprecise utility trade-offs in Farrow and Goldstein (2006).





7

Co-exchangeable beliefs

We now extend our exchangeability representation to partially exchangeable col-
lections of groups of individuals, for which individuals within a group are judged
exchangeable, and the relationship between individuals in different groups obeys
certain natural invariance properties. When such relationships are expressed only
over means, variances and covariances, we term such collections co-exchangeable.
We develop the representation in two stages, by first considering the relation
between an exchangeable group and a single further quantity, and then generalizing
this relation to co-exchangeable collections.

7.1 Respecting exchangeability

Suppose that we have an infinite second-order exchangeable sequence of vectors
X = (X1, X2, . . .), and a further random vector, F .

Definition 7.1 We say that F respects exchangeability over X if

Cov(F, Xi) = �F , (7.1)

a constant for all i.

In this case, all the relationships between F and X may be expressed via the single
relationship between F and the mean vector M(X) as, for each j ,

Cov(F,Rj (X)) = 0. (7.2)

This follows as, for each j ,

Cov(F,M(X)) = lim
n

1

n

n∑
r=1

Cov(F, Xr) = Cov(F, Xj ) = �F , ∀j.

Bayes Linear Statistics: Theory and Methods M. Goldstein and D.A. Wooff
 2007 John Wiley & Sons, Ltd
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7.2 Adjustments respecting exchangeability

We now consider the adjustment of F by samples from X. Thus, we have observa-
tions on a second-order exchangeable collection Dn = (X1, . . . , Xn) using which
we want to adjust beliefs over F . We suppose, for notational simplicity, that M(X)

has been transformed to vector W which is in the standard form (§6.12.1) for
the corresponding exchangeable adjustment. We construct the diagonal matrix of
eigenvalues

�n = diag
{

nλ1

1+ (n− 1)λ1
, . . . ,

nλr

1+ (n− 1)λr

}
, (7.3)

where λi are the eigenvalues for the adjustment of W by a sample of size one on
W . We write the adjusted expectation of F by Dn as En(F ) and the resolution
transform over F induced by Dn as T(n,F )(·). We have the following form for the
belief adjustment.

Theorem 7.2 If F respects exchangeability over X then, for each n, the collection
of sample means W̄n is Bayes linear sufficient for the adjustment of F by Dn. The
adjusted expectation and resolution transforms are:

En(F ) = E(F )+ Cov(F, W)�nW̄n, (7.4)

T(n,F )(·) = EF (Tn(EM(X)(·))), (7.5)

with matrix representation

T(n,F )(·) = Var(F )†Cov(F, W)�nCov(W, F). (7.6)

Proof. We have, from (7.2), that �Dn ⊥⊥ F � / W . As �Dn ⊥⊥W� / W̄n, the adjust-
ment of F by Dn is equivalent to the adjustment of F by W̄n. As Var(W) is the
identity matrix and Var(W1), is diagonal, we may write

En(F ) = EW̄n
(F ) = EW̄n

(EW (F)) (7.7)

= E(F )+ Cov(F, W)�nW̄n. (7.8)

The representation for T(n,F ) follows as

T(n,F )(·) = EF (En(·)) = EF (EW̄n
(·)). (7.9)

�
We may therefore assess T(n,F ) by evaluating Tn and then pre- and post-

multiplying by the projections EF (·), EM(X)(·), respectively. This type of repre-
sentation has two principal advantages. First, we need only evaluate Tn once, and
then apply the representation over whatever collections F we require. Secondly,
Tn has a particularly simple representation, in terms of the natural basis of eigen-
vectors, as, for each eigenvector Z, Tn(Z) = λ(n)Z. As the eigenvectors do not
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change with the sample size n, and the eigenvalues are given for each n by (6.57),
we can easily assess the effect of increasing sample size on the adjustment. In par-
ticular, we may deduce the following corollary describing adjusted expectations
and variances over [F ].

Corollary 7.3 If F respects exchangeability over X and T1 has a full set
of orthonormal standard eigenvectors M(W1),M(W2), . . ., with corresponding
eigenvalues λ1, λ2, . . ., then, for each n and each Z ∈ [F ], we have

En(Z) = E(Z)+
∑

i

nλi

1+ (n− 1)λi

Cov(Z,M(Wi))W̄in, (7.10)

Varn(Z) = Var(Z)−
∑

i

nλi

1+ (n− 1)λi

[Cov(Z,M(Wi))]
2. (7.11)

In particular, the maximal resolved variance for any sample size, for each Z is∑
i

[Cov(Z,M(Wi))]
2. (7.12)

7.3 Example: simple algebraic problem

For a simple algebraic demonstration, we return to the example of §3.8.1, §3.11.2
and §6.13. We began in §3.8.1 with two pairs of quantities, Y1, Y2 and X1, X2, and
explored the adjustment of the Y pair by the X pair. In §6.13 we extended the X

pair to an exchangeable sequence of observables

X11, X21;X12, X22; . . . , X1n, X2n; . . . ,

with belief specifications summarized in (6.70), and we examined these speci-
fications for learning about the underlying mean components for the exchange-
able sequence, M(X). We did this by obtaining the resolution transform Tn =
TM(X):Dn

and its canonical structure for this, pure exchangeable, adjustment.
We now complete the example by adjusting the Y pair by the full exchangeable
sequence of X quantities. To do so we carry out a general exchangeable adjustment
of the Y pair by the X quantities, via the pure exchangeable adjustment carried
out in §6.13.

We have specified all the covariances between these quantities in earlier
chapters. In summary, we form the collections

B = [Y1, Y2], Di = [X1i , X2i], i = 1, 2, . . . , n.

The variance matrix over any pair Di, Dj , i �= j , is given in (6.69), whilst the
variance matrix over B, Di is given in (3.33). In terms of the notation of §7.1, B

respects exchangeability over D. For example, when n = 2 we have the variance
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matrix

Var




D1

D2
B




 =


 Var(D1) Cov(D1, D2) Cov(D1, B)

Cov(D2, D1) Var(D2) Cov(D2, B)

Cov(B, D1) Cov(B, D2) Var(B)




= Var







X11
X21
X12
X22
Y1
Y2






=




1 u γ 0 ρ ρ

u 1 0 γ ρ ρ

γ 0 1 u ρ ρ

0 γ u 1 ρ ρ

ρ ρ ρ ρ 1 v

ρ ρ ρ ρ v 1




. (7.13)

For general n, the variance specifications may be written more elegantly using
direct product notation: Var(D) is given in (6.70), and

Cov(B, D) = 1T

n ⊗
[
ρ ρ

ρ ρ

]
. (7.14)

7.3.1 Coherence

For these specifications to be coherent we need some conditions additional to
the requirements listed in §3.8.1 and §6.13, as follows. Following the coherence
requirements which we detail in §12.12.2 and Definition 12.60, we require the
variance matrix

[
Var(B) Cov(B, D)

Cov(D, B) Var(M(X))

]
=




1 v ρ ρ

v 1 ρ ρ

ρ ρ γ 0
ρ ρ 0 γ


 (7.15)

to be non-negative definite. By Lemma 12.3, this is so when |v| < 1 and when
γ ≥ 0 and when Var(B)− Cov(B, D)Var(M(X))−1Cov(D, B) is non-negative
definite. It is straightforward to show that the last condition is satisfied when

|ρ| ≤ 1

2

√
γ (1+ v). (7.16)

This is a more stringent condition than (3.35).

7.3.2 Resolution transform

By Theorem 7.2, and as B respects exchangeability with D, the data averages

D̄n = 1

n
[D1 +D2 + . . .+Dn]

are Bayes linear sufficient for the adjustment of B by D. We can arrive at the resolu-
tion transform for this adjustment, Tn,B , using (7.6) (or, algebraically, (12.68)). We
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need the standard form (§6.12.1) for the corresponding exchangeable adjustment.
This was obtained in §6.13 as canonical quantities (6.76) and (6.77), with canonical
resolutions (6.74) and (6.75). To find the resolution transform we need to form the
covariances of elements in B with the canonical quantities for the corresponding
exchangeable adjustment:

Cov(Y1, W1) = Cov

(
Y1,

1√
2γ

[M(X1)+M(X2)]

)
= ρ

√
2

γ

= Cov(Y2, W1),

Cov(Y1, W2) = Cov

(
Y1,

1√
2γ

[M(X1)−M(X2)]

)
= 0

= Cov(Y2, W2).

Consequently, we obtain the resolution transform Tn,B , using (7.6), as

Tn,B = Var(B)−1Cov(B, W)�(n)Cov(W, B)

=
[

1 v

v 1

]−1

ρ

√
2
γ

0

ρ
√

2
γ

0


[

nγ
1+u+(n−1)γ

0
0 nγ

1−u+(n−1)γ

][
ρ
√

2
γ

ρ
√

2
γ

0 0

]

= 2nρ2

(1+ v)(1+ u+ [n− 1]γ )

[
1 1
1 1

]
. (7.17)

The eigenvalues of Tn,B are

λ1(n,B) = 4nρ2

(1+ v)(1+ u+ [n− 1]γ )
, (7.18)

λ2(n,B) = 0, (7.19)

with corresponding eigenvectors proportional to [1 1]T and [1 − 1]T , so that the
canonical quantities are

W1(n,B) = α1
[
1 1

] [Y1
Y2

]
, W2(n,B) = α2

[
1 −1

] [Y1
Y2

]
,

with α1 and α2 chosen to ensure that Var(W1(n,B)) = Var(W2(n,B)) = 1. The canon-
ical quantities are thus:

W1(n,B) = 1√
2(1+ v)

(Y1 + Y2), (7.20)

W2(n,B) = 1√
2(1− v)

(Y1 − Y2). (7.21)
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For the special case n = 1, these results should and do match the results of §3.11.2,
where (7.17) corresponds to (3.91) and where the canonical structure (7.18)–(7.21)
corresponds to (3.93), (3.94).

In general, the canonical quantities for a transform Tn,F for a general exchange-
able adjustment are not usually the same for different values of n. However, the
symmetric structure for this example leads to canonical quantities which are not
functions of n. Thus, as for pure exchangeable adjustments, they have the advan-
tage that changes in variance resolution for varying n can be assessed entirely by
inspection of the canonical quantities.

7.4 Co-exchangeable adjustments

We now consider collections of partially exchangeable observations. For example,
we may consider patients undergoing a variety of treatments. Patients under each
particular treatment may be judged to be exchangeable, but we may not judge
patients under different treatments to be exchangeable. However, we will often
be prepared to judge the covariances between responses for patients on different
treatments to be unaffected by reordering within individual patient groups. As such,
suppose that we have a collection of vectors Yin, where, for example, Yin might
be the response vector for the nth patient on treatment i.

Definition 7.4 The sequences Y1, Y2, . . . are co-exchangeable if they satisfy the
following properties.

7.4.1: For fixed i, the sequence Yi = (Yi1, Yi2, . . .) is infinite second-order
exchangeable.

7.4.2: For any pair i �= j , Cov(Yim, Yjn) = �ij , ∀m, n.

For each i �= j , and each n, the vector Yjn respects exchangeability with the
sequence Yi , so that, from (7.2), Cov(Yjn,Rm(Yi)) = 0 for each m. Therefore, for
each i �= j and each m,

Cov(M(Yi),Rm(Yj )) = 0,

so that
Cov(Yim, Yjn) = Cov(M(Yi),M(Yj )). (7.22)

Therefore, all the relationships between the various vectors Yin may be expressed
in terms of the relationships between the mean vectors for the series.

We may therefore generalize the analysis of §7.1 to cover adjustments of co-
exchangeable data structures, by reducing the sample from each collection to the
corresponding sample mean, and then deducing all of the adjustments that we
require from the corresponding adjustments of the population mean vectors by the
corresponding sample means.

For example, suppose that we wish to predict future responses for one group
from current observations on a sample from a different but related group. Thus, we



CO-EXCHANGEABLE BELIEFS 239

have observations on a second-order exchangeable collection Dn = (X1, . . . , Xn)

and we want to predict outcomes for a further collection Fm = (Y1, . . . , Ym),
where Y1, . . . , Ym are a further second-order exchangeable collection which is
co-exchangeable with X, so that Cov(Xi, Yj ) has the same value for each i, j .

We suppose, for notational simplicity, that M(X),M(Y ) have been trans-
formed to vectors W, U which are in the standard form for the corresponding
exchangeable adjustment. We construct the diagonal matrices of eigenvalues

�n = diag
{

nλ1

1+ (n− 1)λ1
, . . . ,

nλr

1+ (n− 1)λr

}
,

�∗m = diag
{

nλ∗1
1+ (n− 1)λ∗1

, . . . ,
nλ∗s

1+ (n− 1)λ∗s

}
,

where λi, λ∗j are the eigenvalues for the adjustment of W, U by a sample of size
one on W, U , respectively.

Theorem 7.5

En(Ūm) = Cov(U, W)�nW̄n, (7.23)

TŪm:W̄n
= Cov(U, W)�nCov(W, U)�∗m, (7.24)

TU :W̄n
= Cov(U, W)�nCov(W, U). (7.25)

Proof. From (7.22), we have

�Dn ⊥⊥ Fm� / (W, U).

As �Dn ⊥⊥W� / W̄n and �Fm ⊥⊥ U� / Ūm, the adjustment of Fm by Dn is equiv-
alent to the adjustment of Ūm by W̄n. As Var(W) and Var(U) are equal to the
identity matrix and Var(W1), Var(U1) are both diagonal, we may write

En(Ūm) = EW̄n
(Ūm) = EW̄n

(EU(Ūm))

= EW̄n
(U) = EW̄n

(EW (U))

= Cov(U, W)�nW̄n.

Similarly,
EŪm

(W̄n) = EŪm
(EU(W)),

so that the operator TŪm:W̄n
= EŪm

(W̄n) may be written as (7.24). Equation (7.25)
follows similarly. �

Replacing Cov(W, U) by the identity matrix gives Theorem 6.10 as a special
case of (7.24). In general, from (7.24), the elements of Ūm will be eigenvectors
of TŪm:W̄n

if and only if Cov(U, W) is diagonal, or equivalently if and only if the
elements of U are eigenvectors of the transform TU :W .
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7.5 Example: analysing further exchangeable regressions

To illustrate co-exchangeable structures, we continue the exchangeable regressions
example analysed in §6.7 and §6.14. That example concerned the amount of alu-
mina extracted over time in an industrial smelter, using a particular solvent. The
experiment can be, and was, run a number of times to gain more precise information
about the rate of extraction for that solvent.

An alternative, but similar, solvent may be used to extract the alumina. Thus,
we envisage a parallel set of experimental runs to determine the rate of extraction
for the new solvent. One question is how informative are the first set of experiments
for a parallel set of experiments using a different solvent. (In practical terms, it
may be feasible only to run experiments using a single kind of solvent.) We can
address this question as follows.

We judge that the two solvents are sufficiently similar in anticipated perfor-
mance for the model for the new solvent to be generally the same as the model for
the old solvent. Thus, we will ‘copy’ the model for the old solvent set out in §6.7,
and use an asterisk to denote quantities which relate to the new solvent. Thus, for
the rth run of the set of experiments for the new solvent, we let Y ∗rt represent the
concentration of alumina in solution at time t , and we model

Y ∗rt = a∗r + tb∗r + ε∗rt (7.26)

similarly to (6.37), and with prior beliefs specified over the further quantities
{a∗r , b∗r , ε∗rt } identically to the priors for {ar , br , εrt }. Summaries and structural
implications under the new model are the same as those for the old model. For
example, the prior variance matrix expressed over the Y ∗s is identical to that for
the Y s, and the structure noted in (6.41) and (6.41) applies similarly. Also, the
underlying slope and intercept quantities have the same second-order structure; for
example E(M(a∗)) = E(M(a)) and E(M(b∗)) = E(M(b)), so that

E(Y ∗rt ) = E(M(a))+ tE(M(b)) = E(Ylt ), ∀r, l. (7.27)

If we are to use the first set of experiments to help us revise our beliefs about
the second set of experiments, we need to make additional judgements about the
relationships between them. As shown in §6.7.4, the model for the old solvent is
completely characterized by judgements about the underlying intercept and slope
quantities, M(a) and M(b), and the error quantities, {εrt }. Similarly, the model for
the new solvent is completely characterized by judgements about the corresponding
intercept and slope quantities for the new model, M(a∗) and M(b∗), and the
error quantities, {ε∗rt }. Consequently, the relationships between the two models are
captured by relationships between these two sets of quantities.

Suppose that we judge the two sets of error components εrt , ε∗lk as being uncor-
related with all other quantities, and that we view the pair of underlying slope
quantities as uncorrelated with the pair of underlying intercept quantities. The
relationship between the pairs (Y ∗rt , Ylk) therefore depends solely on the values
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Cov(M(a),M(a∗)) and Cov(M(b),M(b∗)). Suppose that

Corr(M(a),M(a∗)) = ρa ≥ 0 and Corr(M(b),M(b∗)) = ρb ≥ 0.

Then, for example,

Cov(Y ∗rt , Ylk) = ρaVar(M(a))+ tkρbVar(M(b))), ∀r, l. (7.28)

The observations for the different runs of the experiments using the old solvent at
time t , {Y1t , Y2t , . . .}, are exchangeable; the observations for the different runs of
the experiments using the new solvent at time k, {Y ∗1k, Y ∗2k, . . .}, are also exchange-
able; and the two sets of these quantities are second-order co-exchangeable, for all
t, k, by (7.27) and (7.28).

We now consider the implications of the data C(n) (the observations from the
first set of experiments, analysed in §6.7 and §6.14) for learning about the mean
components for the quantities for the new solvent,

M(Y ∗) = {M(Y ∗1 ), . . . ,M(Y ∗13)}.
We could perform the adjustment by brute force. However, an alternative is to
calculate the adjustment via the standard forms for the separate exchangeable
adjustments, as described in §7.4. To do this, we must obtain the adjustment of
the underlying mean components M(Y ) by data C(n), and for the new solvent
we must obtain the adjustment of the underlying mean components M(Y ∗) by
notional data C∗(m) from a sample of m runs of the experiment using the new
solvent.

We found in §6.14.3 that the adjustment of M(Y ) by the corresponding
exchangeable sample of size n has two canonical quantities, (6.81) and (6.82),
corresponding to positive canonical resolutions, λ11 = 0.6032, λ21 = 0.2976. This
provides the first standard form, which we shall write as

W1 = 0.10M(Y1)+ 0.05M(Y2)+ . . .+ 0.98M(Y13)− 5.31

= g1M(a)+ h1M(b)− 5.31, (7.29)

W2 = 3.72M(Y1)+ 1.12M(Y2)+ . . .− 1.42M(Y13)− 5.44

= g2M(a)+ h2M(b)− 5.44, (7.30)

where g1 = 2.18, g2 = 4.65, h1 = 22.64, h2 = −10.61 are the coefficients reported
in §6.14.7.

Next, we consider the corresponding exchangeable adjustment for the new
solvent. As beliefs for the model for the new solvent are identical to those for
the old solvent, the canonical structure is the same as for the old solvent. This
provides the following standard form for the adjustment: canonical resolutions
λ∗11 = 0.6032, λ∗21 = 0.2976 and canonical quantities

U1 = g1M(a∗)+ h1M(b∗)− 5.31, (7.31)

U2 = g2M(a∗)+ h2M(b∗)− 5.44. (7.32)
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We may now use (7.25) to obtain the resolution transform for the adjustment of
the mean components for the new solvent, M(Y ∗), by the data for the old solvent
C(n). The covariances between the standard forms for the two initial adjustments
are

Cov(Ui, Wi) = ρaVar(M(a))g2
i + ρbVar(M(b))h2

i , i = 1, 2,

Cov(Ui, Wj ) = ρaVar(M(a))g1g2 + ρbVar(M(b))h1h2, i = 1, 2 �= j = 1, 2,

recalling that Cov(M(a),M(b)) = 0 and Cov(M(a∗),M(b∗)) = 0 by specifica-
tion. As U1, U2 are uncorrelated and have variance one, we may thus write the
covariance matrix between Ū = [U1, U2] and W̄ = [W1, W2] as

Cov(Ū , W̄ ) = ρaI2 + (ρb − ρa)Var(M(b))hhT , (7.33)

where h = [h1 h2]T . We can now write down the resolution transform for this
co-exchangeable adjustment via (7.25), TM(Y ∗):C(n), as

[ρaI2 + (ρb − ρa)Var(M(b))hhT ]�(n)[ρaI2 + (ρb − ρa)Var(M(b))hhT ]. (7.34)

One immediate consequence is that if ρa = ρb = ρ > 0 then we have

TM(Y ∗):C(n) = ρ2
TM(Y ):C(n),

so that the canonical directions for the adjustment of M(Y ) by C(n) and the
canonical directions for the adjustment of M(Y ∗) by C(n) are of the same form, but
with the corresponding canonical resolutions multiplied by ρ2, i.e. 0.6032ρ2 and
0.2976ρ2. Hence the data quantities C(n) have similar structural implications for
learning about M(Y ) and M(Y ∗), but are less informative for the latter, depending
on the magnitude of ρ. For ρ = 1, [M(Y ∗)] = [M(Y )] and the implications of the
data for M(Y ∗) are exactly as calculated for M(Y ) in §6.14, in particular §6.14.3.
When ρ = 0, M(Y ∗) is uncorrelated with M(Y ), and the data are valueless for
learning about M(Y ∗). As limn→∞�(n) = I2, we also see in this case that the
most we can learn about any quantity in [M(Y ∗)] (standardized to have variance
one) is ρ2.

If we wish to predict the mean, Ȳ ∗m, of a future sample of m runs of the experi-
ment, then we can use (7.24) instead of (7.25). For the case with ρa = ρb = ρ > 0,
this results in canonical resolutions for the predicted average of

ρ2λi(n)λi(m), i = 1, 2.

These three components represent (1) the basic level of information that C(·)
has for predicting [M(Y ∗)]; (2) the extra information available from observing a
sample of size n rather than a sample of size 1; (3) extra precision inherent in
predicting the average of m observations rather than one observation.
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7.5.1 The resolution envelope

For general ρa, ρb > 0, the canonical directions for the resolution transform (7.34)
change as n varies. However, it remains simple to compute the maximal and mini-
mal resolutions for each potential sample size, given the adjustment for n = 1.
For example, Figure 7.1 plots the canonical resolutions for the adjustment of
M(Y ∗) by C(n) for n = 1, n = 3 and n = 10; and for ρa = 0.7 and non-negative
ρb. This is plausible when we believe that the intercept in one series of experi-
ments is fairly informative for the intercept in a parallel series using a different
solvent, as there is only so much aluminium to extract, but we are much less
confident about the relationship between the rates of extraction. Two canonical
resolutions, λ1 and λ2, are plotted, as M(Y ∗) is two-dimensional, except when
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Figure 7.1 The effect of sample size on maximal and minimal variance resolutions for
adjusting mean components M(Y ∗) by co-exchangeable data C(n) for ρa = 0.7 and
0 < ρb < 1.
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ρb = 0, when λ2 = 0. These form a resolution envelope bounding the resolution
in any linear combination of M(a∗) and M(b∗), including all M(Y ∗i ). Figure 7.1
shows that the minimal canonical resolution is very sensitive to changes in ρb

for about ρb < 0.6 but not for larger values, whilst the reverse is true for the
maximal canonical resolution. Increasing the sample size roughly maintains the
shape of the envelope, but, in lifting and stretching it, exacerbates the sensitivity
problem.

7.6 Example: exchangeability in a population dynamics
experiment

The following is a summary of a population dynamics experiment considered in
Arthur and Farrow (1987), and for subsequent experiments Mitchell et al. (1992).
There are two species of fruit fly, Drosophila melanogaster (DM) and Drosophila
hydei (DH), which are believed to compete. Flies are put into a cage and the
numbers of each species are counted every fortnight for one year. The counts
at time point t = 1 are fixed as follows. In three cages are placed 20 flies of
species DM and 80 flies of species DH. In three further cages are placed 80
flies of species DM and 20 flies of species DH. Subsequent counts are made
at t = 2, . . . , 26. Each such count is materially expensive and extremely time-
consuming. The counts are transformed by taking logarithms, as this is a com-
mon practice among biologists. The data are shown, as raw counts, in Tables 7.1
and 7.2. The transformed data are plotted in Figures 7.2 and 7.3. There is a fair
amount of cage variation. The trend appears to be that the DM species has higher
counts at the end of the year, irrespective of starting count. Figure 7.4, which
shows the averages of the log counts across cages, more clearly suggests this
feature.

7.6.1 Model

The following model, which should be treated as exploratory, was suggested by
a statistician, M. Farrow, in consultation with the experimenter, W. Arthur, and
later slightly modified by us: we consider the original specifications in §9.14. The
counts are modelled as follows. Let Ypsct be the natural log of the number in
species s and cage c at time t , given starting point p. There are two starting
points, corresponding to the different starting numbers of flies of each species in
cages. We write Ypsct as the sum of two uncorrelated components,

Ypsct = Mpst + Rpsct , t = 2, 3, . . . , 26,

where M represents a local mean and R is a residual component representing
individual cage variation. The residuals are modelled as

Rpsct = θsRpsct−1 + ψs(Rpsct−1 − Rpsct−2)+ φsRps′ct−1 +Hpsct ,



CO-EXCHANGEABLE BELIEFS 245

Table 7.1 Cages with 20 D. melanogaster and 80 D. hydei.

Cage 1 Cage 2 Cage 3

t DM DH DM DH DM DH

1 20 80 20 80 20 80
2 14 80 18 94 19 85
3 7 156 20 45 31 349
4 29 271 39 141 53 291
5 36 345 99 193 19 162
6 42 233 92 146 28 337
7 43 341 93 58 45 527
8 43 450 151 125 16 177
9 63 284 98 91 21 139

10 57 321 242 245 84 347
11 60 279 168 340 58 295
12 109 351 163 245 55 179
13 73 236 92 330 46 242
14 177 877 71 226 97 730
15 321 170 129 276 186 469
16 499 388 227 525 156 341
17 358 405 263 416 159 722
18 112 887 109 147 393 1121
19 42 691 293 652 441 940
20 41 1610 282 554 382 739
21 31 935 84 226 64 173
22 71 1055 38 527 27 715
23 108 1546 11 520 19 1231
24 196 1301 9 1142 41 1346
25 264 1091 25 1964 32 836
26 551 564 30 1113 84 1333

where θ, ψ, φ are constants which depend on species. This model is a second-
order autoregression with an additional cross-species term and a slightly unusual
parameterization in the second term, to aid elicitation. The Hpsct quantities are
noise terms with mean 0, variance νs , and are uncorrelated with each other and all
other quantities. The process is initiated with

Rpsc0 = Rpsc1 = 0, ∀p.

The local mean is modelled as

Mpst = Ls +Dpst , t = 2, 3, . . . , 26,

where Ls is the equilibrium level for species s in the presence of the other species
s ′. The deviation of the local mean from the equilibrium is

Dpst = αsDpst−1 + βs(Dpst−1 −Dpst−2)+ γsDps′t−1 +Gpst ,
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Table 7.2 Cages with 80 D. melanogaster and 20 D. hydei.

Cage 1 Cage 2 Cage 3

t DM DH DM DH DM DH

1 80 20 80 20 80 20
2 186 43 96 18 105 28
3 321 202 123 50 309 198
4 255 151 246 70 404 219
5 96 198 208 96 317 220
6 42 262 231 206 132 360
7 55 310 270 201 42 364
8 63 233 292 292 113 868
9 45 170 216 96 77 925

10 75 265 238 200 62 881
11 38 84 165 16 128 1309
12 40 195 196 148 195 834
13 44 23 86 10 363 1776
14 97 159 251 139 391 483
15 152 233 621 135 408 866
16 114 230 431 211 479 875
17 120 396 334 294 477 847
18 166 301 126 245 242 532
19 231 767 77 726 250 703
20 205 403 96 1439 307 1416
21 170 220 75 409 164 295
22 72 370 107 818 253 733
23 58 244 85 413 233 1117
24 41 174 121 359 136 453
25 129 305 60 227 121 851
26 337 106 90 832 82 1093

where Gpst is a noise term with mean 0 and variance

Var(Gpst ) = λt−1ωs, t ≥ 1,

in which 0 < λ < 1 is chosen to ensure that, in the long term, the local means
tend to Ls . The Gpst quantities are uncorrelated with each other and all other
quantities. α, β, γ are constants which depend on species. We initiate the process
with Dps0 = Dps1 chosen to ensure that the local mean Mps1 is equal to the
number of flies put into the cage at t = 1 for starting point p, i.e.

Dp11 = Dp10 = 1

α1α2 − γ1γ2
(α2[υp1 − E(L1)]− γ1[υp2 − E(L2)]),

Dp21 = Dp20 = 1

α1α2 − γ1γ2
(α1[υp2 − E(L2)]− γ2[υp1 − E(L1)]),
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Figure 7.2 Counts of two species of fly in six cages, p = 1: cages with starting counts of
80 DM flies and 20 DH flies. Counts are shown on a log scale.

where υp1, υp2 are the starting counts for the species:

p = 1 : υ11 = ln(20), υ12 = ln(80),

p = 2 : υ21 = ln(80), υ22 = ln(20).

The model induces oscillations in the mean profile, Mst , but these are expected to
die out, partly because the oscillations in the individual series die out, but more
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Figure 7.3 Counts of two species of fly in six cages, p = 2: cages with starting counts of
20 DM flies and 80 DH flies. Counts are shown on a log scale.

because these oscillations are expected to become out of phase for individual series
(Farrow and Goldstein 1996).

7.6.2 Specifications

Constants required for the model were specified as shown in Table 7.3, following
some basic elicitation. We choose λ = 0.9. The equilibrium levels Ls are specified
each to have prior expectation E(Ls) = 6.0, prior variance Var(Ls) = 0.49, and
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Figure 7.4 Mean counts of two species of fly in six cages: (a) cages starting with 80 DM
flies and 20 DH flies; (b) cages starting with 20 DM flies and 80 DH flies. Counts are shown
on a log scale.

Table 7.3 Constants required for the model.

DM DH DM DH

θs 0.45 0.40 βs 0.1 0.1
ψs 0.26 0.10 γs −0.1 −0.1
φs −0.34 −0.18 νs 0.04 0.02
αs 0.85 0.85 ωs 0.2 0.2
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Figure 7.5 Mean counts and prior local means for two species of fly: (a) cages starting with
80 DM flies and 20 DH flies; (b) cages starting with 20 DM flies and 80 DH flies. Counts
are shown on a log scale.

prior covariance Cov(Ls, Ls′) = −0.2. These specifications and starting points are
such that the same second-order specification is made over M11 and M22 and over
M12 and M21. The prior expectations for the local means are shown in Figure 7.5,
and exhibit slow convergence to the same equilibrium point of 6.0. Compared to
the data, the priors for {Mst } look reasonable for cages with starting point p = 2,
but a little high for cages with starting point p = 1. In general, the data do not
appear to track the priors well, except perhaps for D. melanogaster for starting
point p = 2. In particular, the priors for D. hydei look to be far from the observed
means.



CO-EXCHANGEABLE BELIEFS 251

7.6.3 Issues

There are several questions of interest raised in performing and analysing this
experiment, which should be considered as exploratory. We focus briefly on a few
of the issues.

• The equilibrium levels are unknown and of much interest. We consider how the
adjusted expectations for these equilibria change as the experiment progresses
by using all the data up to a certain time point.

• The experiments are costly to perform. As an aspect of design, we exploit
exchangeability to consider sample size implications for increasing the num-
ber of cages to be assessed at each time point, and we examine the behaviour
of the canonical structure to provide information about the duration of the
experiment.

• We consider whether the prior specification appears appropriate, partly through
basic exploration and partly through data diagnostics.

7.6.4 Analysis

We construct the model described above. The counts of flies of the same species
and in cages with the same starting point are second-order exchangeable for each
given time point. That is, for given p, s, t , the sequence

Yps1t , Yps2t , . . .

is an exchangeable sequence. Further, the collection L = [L1, L2] respects exch-
angeability (§7.1) with this sequence. In addition, the mean

S3(Ypst ) = 1

3

3∑
c=1

Ypsct

is Bayes linear sufficient for this sequence for adjusting a collection respecting
exchangeability with it. Thus, we may take advantage of Corollary 7.3 and, from
the point of view of practical implementation, Theorem 12.65, when forming the
adjustment of L by the data.

We could simply use all the data in one go to do this, but we are mainly
interested in various model diagnostics at this stage. Therefore we perform the
sequential adjustment of L by the collections G1, . . . , G26, where

Gt = {S3(Y11t ),S3(Y12t ),S3(Y21t ),S3(Y22t )}
is the collection of averages of all the data available at time t . At each stage we
obtain the adjustment by all the data up to time t inclusive, G[t], and diagnostically
compare changes in adjustment between the full adjustment at time t − 1 and the
full adjustment at time t , to provide the data trajectory described in §5.11.
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Table 7.4 Sequential adjustment: adjusted expectations and variances, partial size
ratio Sr(·) = Sr[Gt/G[t]](L), path correlation C = PC(G[t−1], Gt) and canonical
resolutions. Prior means and variances are given as the first row.

t EG[t] (·) VarG[t](·)
L1 L2 L1 L2 Sr(·) C λ1 λ2

– 6.000 6.000 0.490 0.490
2 6.093 6.158 0.079 0.076 0.879 0.753
3 6.106 6.144 0.078 0.076 0.086 −0.269 0.879 0.759
4 6.105 6.123 0.075 0.073 0.080 −0.912 0.880 0.773
5 6.000 6.047 0.073 0.071 4.161 −0.988 0.880 0.786
6 5.924 6.005 0.071 0.069 1.859 −0.726 0.881 0.799
7 5.850 5.937 0.069 0.068 2.679 0.819 0.881 0.812
8 5.812 5.908 0.067 0.066 0.622 0.986 0.882 0.824
9 5.691 5.772 0.065 0.064 9.163 0.967 0.882 0.836

10 5.745 5.843 0.063 0.062 2.270 −0.983 0.883 0.847
11 5.615 5.680 0.061 0.060 13.016 0.975 0.884 0.858
12 5.627 5.717 0.060 0.058 0.421 −0.931 0.884 0.868
13 5.486 5.525 0.058 0.057 18.157 0.982 0.885 0.878
14 5.609 5.704 0.056 0.055 15.647 −0.989 0.888 0.885
15 5.676 5.671 0.055 0.054 0.957 −0.552 0.896 0.887
16 5.695 5.736 0.053 0.052 1.471 −0.944 0.905 0.888
17 5.702 5.791 0.052 0.051 0.970 −0.876 0.912 0.889
18 5.612 5.750 0.050 0.049 3.789 0.993 0.919 0.890
19 5.633 5.893 0.049 0.048 7.216 −0.833 0.926 0.891
20 5.642 5.953 0.047 0.046 1.340 −0.700 0.932 0.893
21 5.439 5.670 0.046 0.045 57.403 0.842 0.938 0.894
22 5.375 5.865 0.045 0.044 11.418 −0.474 0.943 0.896
23 5.262 5.851 0.043 0.043 5.339 0.997 0.948 0.897
24 5.250 5.813 0.042 0.041 0.748 0.747 0.953 0.899
25 5.260 5.845 0.041 0.040 0.549 −0.760 0.957 0.901
26 5.358 5.833 0.040 0.039 3.819 −0.958 0.960 0.903

The adjusted expectations and adjusted variances for the equilibrium points
L1, L2 are shown in Table 7.4 and graphed in Figure 7.6. Note that the scale cho-
sen is narrower than for the raw data graphed in Figures 7.2 and 7.3, in order to
help reveal detail. However, this does tend to overemphasize changes over time.
The principal features are as follows. First, there is close agreement between the
equilibrium points for the first two species for the first few weeks, diverging there-
after. The accumulation of evidence points to species D. melanogaster having a
higher equilibrium point than D. hydei when both species are present. Secondly,
the adjusted expectations fall in time until about week t = 13, despite the fact
that the species counts tend on average to be larger as time progresses. This tends
to confirm what we saw in Figure 7.5: that the prior values E(Ls) were on the
high side. Thirdly, the three-standard-deviation envelopes do get narrower over
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Figure 7.6 Adjusted expectations and three-standard-deviation intervals for the equilibrium
points, adjusting sequentially by all the data available to time t inclusive.

time, but only marginally so: the prior variances for Ls and the adjusted vari-
ances for Ls given (1) data from week t = 2 and (2) all data up to week t = 26
are:

Var(L1) = 0.490, VarG2(L1) = 0.079, VarG[26](L1) = 0.040,

Var(L2) = 0.490, VarG2(L1) = 0.076, VarG[26](L2) = 0.039.

This shows that the first batch of information, data at week t = 2, resolves a large
amount of the prior variation: the percentage of variation explained is around 84%
of prior. However, by week t = 26, we have resolved only about half the variation
remaining at week t = 2, so that the gain in information is rather slow once we
get past the initial adjustment. Fourthly, while the prior three-standard-deviation
interval for L1 does contain all the adjusted values EG[t](L1), the adjusted values
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for L2 finally fall below the corresponding prior three-standard-deviation interval,
suggesting either that the prior variance was specified too confidently or that the
value specified for E(L2) was too high, or both.

7.6.4.1 Diagnostics

The sequential diagnostic assessment suggests various inconsistencies and incom-
patibilities. The data trajectory is summarized in Table 7.4 and Figure 7.7. The
diagnostic plot reveals several large partial size ratios (§5.43), the largest occurring
at t = 21 for which

Sr[G21/G[20]](L) = 57.4. (7.35)
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Figure 7.7 The data trajectory for the sequential adjustment of equilibrium points as data
accumulate. (a) Successive path correlations multiplied by size ratios; (b) partial size ratios
for sequential adjustments.
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The diagnostic threshold suggested in (5.46) is around [5.24, 7], so the diagnostics
at weeks t = 9, 11, 13, 14, 19, 21, 22, and perhaps week t = 23, all suggest unusu-
ally large changes in expectation relative to prior variance. The path correlations
between the adjustments up to time t − 1 and the partial adjustments at time t are
also shown in Table 7.4 and plotted, weighted by values of the corresponding size
ratio to emphasize important contradictions, in Figure 7.7. We note two particular
features: that the partial adjustment at week t = 21 was highly unusual, but in
the same direction as the aggregated adjustment up to week t = 20 inclusive; and
that the partial adjustment at week t = 14 was highly unusual, and in an opposite
direction to the aggregated adjustment up to week t = 13 inclusive. Returning to
the plots of the data in Figures 7.2 and 7.3, we see that, from week t = 20 to week
t = 21, counts fell for both species substantially in all six cages. This suggests that
there were outside factors involved, perhaps environmental, which caused drops
in counts during that week. For the partial adjustment at week t = 14, the size
ratio is

Sr[G14/G[13]](L) = 15.6,

with corresponding path correlation

PC(G[13], G14) = −0.9893.

Examining the data plots and the counts in Tables 7.1 and 7.2, we notice that many
of the counts were rather higher in week t = 14 than in week t = 13. This led to
relatively large positive changes in adjusted expectation from t = 13 to t = 14,
bucking the trend of generally falling adjusted expectations from the start of the
experiment. Again, we surmise that there may have been outside factors influencing
the experiment during this week.

There are other useful diagnostic assessments we might carry out. For example,
the aggregated adjustment uses all the data, generated from two different starting
points. Are the data from these two starting points telling the same story? To help
find out, we collect all the counts for starting points p = 1, 2 into

Fp = {Ypsct }, s = 1, 2, c = 1, 2, 3, t = 2, 3, . . . , 26,

and adjust L by F1 and then partially by F2. We find nothing much surprising: the
bearing for the first adjustment is

ZF1(L) = −1.78L1 − 0.90L2 + 16.07,

with size ratio SrF1(L) = 0.7510, and the partial bearing for the additional adjust-
ment by F2 is

Z[F2/F1](L) = 0.05L1 − 0.15L2 + 0.66,

with partial size ratio Sr[F2/F1](L) = 0.13. The path correlation between these two
directions is PC(F1, F2) = −0.13. We conclude that the data from the two starting
points are more or less compatible taken as a whole.
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7.6.4.2 Sample size choice

Next, we consider whether the sample size of n = 3 is adequate. For the accu-
mulated adjustment at each week we evaluate the canonical resolutions λ1 and
λ2 for the adjustment for our sample size of n = 3. These resolutions are plotted
in Figure 7.8. Also shown are the maximal canonical resolutions µ1 and µ2, the
resolutions obtained as we let the sample size n→∞, via (7.12). The canonical
directions change over time, as the adjustments are not exchangeable with respect
to time t . There are two key features. The first, and most important, is that the
maximal resolutions for n→∞ are hardly larger than the canonical resolutions for
n = 3, implying that there is virtually no value in taking a larger sample size. This
is contrary to our instincts for the process under study: we have almost certainly
underspecified the amount of residual variation, Var(Rpsct ), compared to variation
for the local means, Var(Mpsct ).
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Figure 7.8 Canonical resolutions, λ1, λ2, and maximal canonical resolutions, µ1, µ2, for
the sequential adjustment of equilibrium points.
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Figure 7.9 Canonical resolutions, λ1, λ2, and corresponding canonical directions, Wt1, Wt2,
at each time point t for the sequential adjustment of equilibrium points.

The other interesting feature is the behaviour of the resolution envelope. The
first canonical resolution rises only very slowly up to about week 14, and quickly
thereafter, while the second canonical resolution rises very quickly up to week
14 and then slowly thereafter. This can be explained by examining Figure 7.9.
Each line represents a canonical direction. A line is drawn from each canonical
resolution point, considered as (0, 0), to the coordinates given by the standardized
coefficients of (L1, L2) for the corresponding direction (this representation does
not preserve graphically the orthogonality between the directions). We observe
that the canonical direction at week t = 2 stays pretty much the same over time,
and that all the learning over time takes place in an orthogonal direction. At
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Table 7.5 The canonical directions, Wt1, Wt2, represented as coefficients of
L1, L2, with L1, L2 standardized to have variance one.

Week Wt1 Wt2

L1 L2 L1 L2

2 0.5463 −0.6438 0.9495 0.8863
3 0.5434 −0.6465 0.9511 0.8843
4 0.5451 −0.6449 0.9501 0.8855
5 0.5444 −0.6456 0.9506 0.8849
6 0.5405 −0.6492 0.9528 0.8823
7 0.5340 −0.6551 0.9564 0.8779
8 0.5248 −0.6635 0.9615 0.8716
9 0.5113 −0.6757 0.9687 0.8622

10 0.4898 −0.6946 0.9798 0.8470
11 0.4509 −0.7273 0.9983 0.8191
12 0.3640 −0.7946 1.0331 0.7540
13 0.0859 −0.9619 1.0920 0.5241
14 0.5347 1.0910 0.9561 −0.0979
15 0.7600 1.0303 0.7888 −0.3719
16 0.8239 0.9953 0.7218 −0.4576
17 0.8514 0.9767 0.6892 −0.4960
18 0.8663 0.9656 0.6704 −0.5172
19 0.8754 0.9584 0.6585 −0.5304
20 0.8814 0.9535 0.6504 −0.5391
21 0.8856 0.9500 0.6447 −0.5453
22 0.8885 0.9475 0.6406 −0.5497
23 0.8907 0.9456 0.6376 −0.5529
24 0.8923 0.9443 0.6354 −0.5552
25 0.8934 0.9433 0.6338 −0.5569
26 0.8942 0.9426 0.6327 −0.5581

about week 14, this takes over as the primary canonical direction. The coeffi-
cients for the two canonical directions, displayed in Table 7.5, reveal that we
know relatively little about the sum of the equilibria at the start of the experi-
ment, but that as time passes it is this sum about which we continue to learn,
whereas we learn only very slowly about the difference between them. In the con-
text of the original motivation for these experiments, which was to explore the
inhibitory influence of one species in competition with another, this is unwelcome
news.

Farrow and Goldstein (1996) also considered a model and the data for this
experiment. They used the same model structure, but with slightly different
specifications for the parameters, and examined some Bayes linear data diagnostics
for the series of observations for starting point p = 1. They similarly found a large
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number of diagnostic warnings, and concluded that the belief specification demon-
strates faster than actual convergence to equilibrium, leading to too much weight
being placed on early observations for learning about the equilibria. This is evident
in our modified model in Figure 7.5. Farrow and Goldstein (1996) also present a
graphical diagnostic, the diagnostic triangle, to facilitate diagnostic monitoring
for changes in expectation for multivariate time series. We compare the specifica-
tions we have used in this chapter to those used in Farrow and Goldstein (1996)
in §9.14.

7.6.4.3 A canonical trajectory

Next, we illustrate a canonical trajectory (§5.12) for this problem. There are sev-
eral such trajectories we might examine, for example for the equilibrium quantities
L1, L2. We choose to examine the canonical trajectory for the 50 unknown local
means for starting point p = 1, {M1st }, s = 1, 2, t = 2, . . . , 26, adjusting by all the
information available up to and including week t = 26, namely three observations
on each {Y1st }. We then repeat to form the canonical trajectory for starting point
p = 2. In both cases, this involves a pure exchangeable adjustment, in that – in
the notation of Theorem 6.3 – we can form a 50-dimensional variance matrix
� expressing variances across the local means and a 50-dimensional variance
matrix � − � expressing variances across the corresponding residual terms {Rpst },
p = 1, 2.

For exchangeable adjustments, there are a variety of ways of organizing the
data into parts so that the partial adjustments are orthogonal: for example, we
could separate out influences from observations from different cages at the same
time point and starting point. One simple arrangement is to construct the canon-
ical quantities for the exchangeable adjustment, also constructing their observed
values as the corresponding linear combinations of the {Ypst }. For a pure exchange-
able adjustment, the constructed quantities are orthogonal both in the mean space
and in the residual space, by design. Therefore, we can simply carry out the
sequential adjustment of the original quantities by the canonical quantities. These
give necessarily orthogonal partial adjustments, and in each case the length of
the bearing is equal to the size of the canonical adjustment and the expected
length of the corresponding bearing is the resolution for that canonical
quantity.

Suppose we write M1 to represent the collection of the 50 local means {M1st },
s = 1, 2, t = 2, . . . , 25, for starting point p = 1. Suppose also that we write M2 for
the corresponding collection of means for starting point p = 2. The belief spec-
ifications over M1 and M2 are identical except for expectations. Consequently,
excepting differences in expectation, the canonical quantities and canonical reso-
lutions are the same for each adjustment. Suppose that we write these canonical
quantities as Z1, . . . , Z50, with corresponding canonical resolutions λ1, . . . , λ50,
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and suppose that we define the cumulative collection

Z[i] =
i⋃

k=1

Zi.

We write z[i] for the observed value of Z[i], and zi for the observed value of Zi . In
fact, for this exchangeable adjustment we have c = 3 cages for each starting point
and so there are three observations, zip1, zip2, zip3, for each canonical quantity for
each starting point.

We could now carry out the sequential adjustment of M1 by each of the
Z1, . . . , Z50 in turn, and so obtain

1. Size[i/](M1) = Size[z[i]/z[i−1]](M1), the size (5.41) of the partial adjustment of
M1 by Z[i] = z[i], given Z[i] = z[i−1];

2. E(Size[Z[i]/Z[i−1]](M1)), the expected size (5.42) of the partial adjustment of
M1 by G[i], given G[i−1].

There is, however, a short-cut which we may use here. It follows because the
successive Zi are uncorrelated, so that [Z[i]/Z[i−1]] = [Zi], and have prior expec-
tation zero and variance unity by design. Therefore, we have

Size[z[i]/z[i−1]](M1) = Sizezi
(M1) = z̄2

i1,

by (4.48), where

Ezi
(Zi) = z̄i1 = 1

3

3∑
j=1

zi1j

is the average of the observations for starting point p = 1; and

E(Size[Z[i]/Z[i−1]](M1)) = E(SizeZi
(M1)) = λi.

Thus, this canonical trajectory may be deduced simply from the canonical structure
provided by adjustment of the local means by the data. The results are identical for
starting point p = 2, in that the canonical quantities and resolutions are the same,
except that the observed values of the canonical quantities differ. For p = 2, we
have instead

Size[z[i]/z[i−1]](M2) = Sizezi
(M2) = z̄2

i2,

where

z̄i2 = 1

3

3∑
j=1

zi2j .
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Table 7.6 Canonical trajectories for the adjustments of the collections of local
means M1 and M2, i = 1, . . . , 25. The expected sizes are the same for both adjust-
ments.

i E(Size[Z[i]/Z[i−1]](·)) = λi Size[z[i]/z[i−1]](M1) Size[z[i]/z[i−1]](M2)

1 0.9988 0.6298 0.0523
2 0.9963 1.7265 1.3205
3 0.9881 0.4946 1.9425
4 0.9826 3.8163 2.8733
5 0.9704 0.7145 3.8555
6 0.9652 0.2375 1.3774
7 0.9548 0.3254 0.0782
8 0.9503 0.0014 0.9322
9 0.9387 0.0620 10.0195

10 0.9325 0.0152 0.1931
11 0.9307 0.0201 0.3143
12 0.9233 0.0033 0.3585
13 0.9147 0.0037 1.7982
14 0.9055 1.3944 0.0387
15 0.9021 4.4850 0.2802
16 0.8942 1.3640 0.1130
17 0.8892 0.1545 2.0725
18 0.8821 2.4387 4.2239
19 0.8769 0.7469 2.9171
20 0.8690 2.1301 6.1409
21 0.8641 0.9739 3.0525
22 0.8544 0.1188 16.6066
23 0.8499 1.2758 0.5850
24 0.8384 0.1610 19.2568
25 0.8346 0.4865 0.0004

The calculations are summarized in Tables 7.6 and 7.7. Figure 7.10 plots the
sizes for the partial adjustments and their expected sizes. We accumulate the par-
tial sizes as their sums provide the sizes for the overall adjustments. Similarly,
we accumulate the expected sizes to provide the expected size for the overall
adjustment.

We observe that the overall sizes of the adjustments are rather larger than
the expected sizes, and particularly so for starting point p = 2. For starting point
p = 1, the major contributions to size are in the directions Z26, Z37, and Z46. For
starting point p = 2, the major contributions to size are in the directions Z22, Z24,
and Z37. We may also plot the size ratios,

Sr[z[i]/z[i−1]](M) = Size[z[i]/z[i−1]](M)

E(Size[Z[i]/Z[i−1]](M))
=

z̄2
ip

λi

, p = 1, 2.
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Table 7.7 Canonical trajectories for the adjustments of the collections of local
means M1 and M2, i = 26, . . . , 50. The expected sizes are the same for both adjust-
ments. The bottom row shows the expected size and size for the full adjustments
of M1 and M2.

i E(Size[Z[i]/Z[i−1]](·)) = λi Size[z[i]/z[i−1]](M1) Size[z[i]/z[i−1]](M2)

26 0.8208 21.7085 2.2741
27 0.8182 0.0000 3.3876
28 0.8025 0.9686 0.1373
29 0.7996 0.1505 0.2382
30 0.7836 2.5627 6.5975
31 0.7784 0.1683 0.7310
32 0.7637 0.1961 1.0748
33 0.7547 1.0964 9.5587
34 0.7424 5.4600 0.5720
35 0.7289 0.1981 0.0092
36 0.7198 0.0193 0.0000
37 0.7009 17.6308 23.5500
38 0.6956 0.8440 0.0619
39 0.6725 0.1750 3.5056
40 0.6681 0.0486 3.9743
41 0.6454 1.0229 0.1429
42 0.6353 0.0259 5.3114
43 0.6178 1.1943 0.5423
44 0.6001 0.1495 0.1491
45 0.5880 6.5359 6.1695
46 0.5595 13.7163 2.0969
47 0.5293 2.6541 0.2180
48 0.5003 4.5518 0.2206
49 0.4611 1.0565 0.4378
50 0.4391 0.5669 1.0281

M 39.7324 106.4809 152.3919

These are shown in Figure 7.11 and emphasize both the number of canonical quan-
tities with unusually large changes in expectation, and that there are more such
unusually large changes for starting point p = 2. We are free to explore such fea-
tures in greater detail as we desire, through examining the canonical quantities with
large changes in expectation, and exploring their relationships with the original
quantities. One interesting feature arising here is that there are large discrepan-
cies for both starting points for canonical quantity Z37. This canonical quantity is
approximately

Z37 ≈ (2.7M1,20 − 2.1M1,21)+ (4.6M2,20 − 6.1M2,21),

identically for both starting points, where the M quantities are in standardized
form (mean zero, variance unity), and where we have ignored coefficients smaller
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than 1.7. Thus, this canonical quantity represents approximately changes in local
mean between weeks t = 20 and t = 21, for both species, and one conclusion is that
the change in adjusted expectation for the differences between these local means
were far larger than expected, for both species and for both starting points. This
corresponds to the feature we observed earlier in (7.35). However, that earlier find-
ing was clouded by the sequential adjustments not being orthogonal. The canonical
trajectory analysis allows us firmly to pinpoint the very unusual behaviour between
weeks t = 20 and t = 21, separated out from earlier behaviour.



8

Learning about population
variances

In the preceding chapters, we showed how second-order exchangeability judge-
ments could be used to adjust beliefs about collections of population means. We
now consider how we may carry out similar analyses to learn about collections
of population variances and covariances. This analysis raises several new fea-
tures. First, our uncertainty about variances must be expressed through fourth-order
moments. Secondly, the quantities which we use to adjust our beliefs, for example
sample variances, often have a more complicated structure than do the sample
means. Thirdly, there are additional coherence constraints involved in construct-
ing collections of adjusted variances and covariances. Finally, the approach raises
interesting questions about the relationship between the analysis of beliefs about
population variances and the corresponding analysis of beliefs about population
means. We begin by considering the simplest case, that of learning about an indi-
vidual population variance when the population mean is known.

8.1 Assessing a population variance with known population
mean

Suppose that X = {X1, X2, . . .} is an infinite exchangeable sequence of scalar
random quantities, where E(Xk) = µ, Var(Xk) = σ 2, and Cov(Xk, Xj ) = γ . As
such, we have the exchangeability representation

Xk =M(X)+Rk(X), k = 1, 2, . . . , (8.1)

where the sequence R1(X),R2(X), . . . is uncorrelated and has expectation
E(Rk(X)) = 0 and variance

Var(Rk(X)) = σ 2 − γ = VR, (8.2)

Bayes Linear Statistics: Theory and Methods M. Goldstein and D.A. Wooff
 2007 John Wiley & Sons, Ltd
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say. Now suppose that the population mean M(X) is known, so that

γ = Var(M(X)) = Cov(Xk, Xj ) = 0.

To learn about the population variance, we must construct a representation for
the corresponding quantity. Thus, let [Rk(X)]2 = (Xk − µ)2 = Vk , and suppose
that we judge that the sequence V1, V2, . . . is also second-order exchangeable. We
therefore have the representation

[Rk(X)]2 = Vk =M(V )+Rk(V ) (8.3)

where E(M(V )) = VR , and the sequence R1(V ),R2(V ), . . . is uncorrelated with
zero mean and constant variance VR(V ) and each element Rk(V ) is uncorrelated
with M(V ). M(V ) represents the population variance. We denote the variance of
M(V ) by VM .

We may specify VM and VR(V ) directly. VM expresses our judgement as to
how much our beliefs about the population variance M(V ) might change were
we able to observe a large sample, while VR(V ) reflects our judgements as to the
shape of the population distribution. In §8.3, we will consider the specification of
these quantities in more detail.

Just as for the sample mean, X̄
(2)
n = 1

n

∑n
i=1(Xi − µ)2 is Bayes linear sufficient

for all of the individual (Xi − µ)2 quantities for adjusting M(V ). We may evaluate
the adjusted expectation for M(V ) given a sample of n from (6.55) and (6.56) as

En(M(V )) = VMX̄
(2)
n + 1

n
VR(V )VR

VM + 1
n
VR(V )

, (8.4)

with corresponding adjusted variance

Varn(M(V )) =
1
n
VR(V )VM

1
n
VR(V ) + VM

. (8.5)

8.2 Assessing a population variance with unknown
population mean

Now suppose, as before, that X = {X1, X2, . . .} is judged to be an infinite
exchangeable sequence of scalar random quantities, where E(Xk) = µ, Var(Xk) =
σ 2, and Cov(Xk, Xj ) = γ . We have the exchangeability representation (8.1) where
the sequence R1(X),R2(X), . . . is uncorrelated and has expectation E(Rk(X)) = 0
and variance, VR , given by (8.2), where γ ≥ 0.

As above, we construct a representation for the corresponding population vari-
ance. Thus, let [Rk(X)]2 = Vk and suppose that the sequence V1, V2, . . . is also
second-order exchangeable. We have the representation (8.3) as above, and, again,
M(V ) represents the population variance.
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The difference between the present case and our previous representation is
that, as M(X) is unknown, the quantities Vk are not observable. Therefore, we
must construct various combinations of the observables which are informative for
M(V ). Suppose that we have a sample, (X1, . . . , Xn), of size n ≥ 2. A simple
construction is to introduce the squared residuals

(Xk − X̄n)
2 = (Rk(X)− R̄n)

2,

where

R̄n = 1

n

n∑
k=1

Rk(X).

By symmetry, the adjusted mean for M(V ) given the squared residuals is a function
of the sum of the squared residuals, which we standardize in the usual way to give
the sample variance

s2
n =

1

n− 1

n∑
k=1

(Xk − X̄n)
2. (8.6)

We can create the following representation for s2
n:

s2
n =

1

n− 1

∑
k

(Rk(X)− R̄n)
2 = 1

n− 1



∑

k

Rk(X)2 − 1

n

[∑
k

Rk(X)

]2



= 1

n

∑
k

Rk(X)2 − 2

n(n− 1)

∑
k<j

Rk(X)Rj (X)

=M(V )+ T , (8.7)

where, from (8.3),

T = 1

n

∑
k

Rk(V )− 2

n(n− 1)

∑
k<j

Rk(X)Rj (X).

Suppose that we consider that the residuals Rj (X) satisfy certain natural fourth-
order uncorrelated properties, as follows. Suppose that, for k �= j �= i, the product
Rk(X)Rj (X) is uncorrelated with M(V ) and Ri (V ), i.e.

Cov(M(V ),Rk(X)Rj (X)) = Cov(Ri (V ),Rk(X)Rj (X)) = 0; (8.8)

and if k > j, w > u, then

Cov(Rk(X)Rj (X),Rw(X)Ru(X)) = 0, unless k = w, j = u. (8.9)

It follows that

E(T ) = 0, (8.10)

VT = Var(T ) = 1

n
VR(V ) + 2

n(n− 1)
[VM + V 2

R], (8.11)

Cov(M(V ), T ) = 0, (8.12)
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so that

E(s2
n) = VR, Var(s2

n) = VM + VT , Cov(s2
n,M(V )) = VM. (8.13)

With these specifications, the adjusted mean and variance for M(V ) given s2
n are

Es2
n
(M(V )) = VMs2

n + VT VR

VM + VT

, (8.14)

Vars2
n
(M(V )) = VMVT

VM + VT

. (8.15)

8.3 Choice of prior values

The quantity VR(V ) reflects our judgements as to the shape of the population dis-
tribution. Suppose we consider the population variance to act as a scale parameter,
so that

Ri (X) =
√
M(V )Zi, (8.16)

where E(Zi) = 0, Var(Zi) = 1, Zi is independent of the value of M(V ), and the
Z1, Z2, . . . are independent. Then, from representation (8.3),

Ri (V ) =M(V )(Z2
i − 1)

so that

VR(V ) = Var(Ri (V )) = (Var(M(V ))+ [E(M(V ))]2)Var(Z2
i )

= (VM + V 2
R)Var(Z2

i ). (8.17)

This is determined by the kurtosis of Zi , given by

Kur(Zi) =
E(Z4

i )

E(Z2
i )

2
= E(Z4

i ), as Var(Z2
i ) = Kur(Zi)− 1.

We may judge the Zi to be approximately Gaussian, for which Kur(Zi) = 3
and Var(Z2

i ) = 2. Otherwise, we might employ a non-Gaussian distribution, for
example one with fatter tails. A possibility is to use a t distribution, but scaled to
have variance 1. That is, we take

Zi =
√

ν

ν − 2
Tν,

where Tν has a t distribution with ν > 4 degrees of freedom. Such a distribution
has kurtosis

Kur(Zi) = 3(ν − 2)

ν − 4
,

leading to the choice

Var(Z2
i ) =

2(ν − 1)

ν − 4
. (8.18)
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Small values for ν lead to higher kurtosis, and thereby to a higher variance for
the residuals of the squares, VR(V ), and thence to a higher variance for VT , with
the implication that the observed value of s2

n receives less weight in the update
formula (8.14). The smallest practicable value for ν is ν = 5, leading to the choice
Var(Z2

i ) = 8. As regards smaller values for Var(Z2
i ), it is straightforward to show

that the kurtosis for a uniform distribution centred on zero is 1.8. Indeed, any
regular unimodal symmetric distribution has kurtosis no smaller than 1.8 (Stuart
and Ord 1994). Thus, it is often appropriate to choose Var(Z2

i ) ≥ 0.8.
Suppose that we are prepared to use a representation of the form (8.16), and

to specify values for Var(Z2
i ) and for VR . From (8.17), our specification will be

completed by specifying VM . Two suggestions are as follows.
First, it is convenient to write VM = cV 2

R for some c > 0, and so instead to
choose c. For convenience, write

κ = 1

n
[(n− 1)Var(Z2

i )+ 2]. (8.19)

Then we may write the proportion of (8.15) resolved, relative to prior, as

Vars2
n
(M(V ))

Var(M(V ))
= 1

1+ n−1
κ

c
c+1

, (8.20)

which decreases monotonically as a function of c between one and [1+ n−1
κ

]−1.
One way of choosing VM is now to explore our attitudes to the implications of
various sample sizes, given κ . If we feel that sample information will quite quickly
reduce remaining variance as a proportion of prior, then we should choose a small
value of c. For κ = 2, a nomogram showing the relationship between sample size
n, scaling choice c, and proportion of the variation in M(V ) explained by that
sample size and that choice of c, is graphed in Figure 8.1. For κ �= 2, simply
replace n in Figure 8.1 by

n′ = (n− 1)κ/2+ 1.

Notice that the construction (8.20) makes plain that higher kurtosis values, as
evidenced via κ > 2, have the same effect as reducing the sample size, and so
weakening the impact of observations on the updated variance.

An alternative method is to make a direct judgement as to the value of our prior
information through the notion of equivalent sample size. We can write (8.14) in
the form

Es2
n
(M(V )) = αs2

n + (1− α)E(M(V )), (8.21)

with

α = VM

VM + VT

.

Suppose that we consider our prior information to be worth a notional sample size
of m. In combination with a sample size n, it is then reasonable to form an adjusted
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Figure 8.1 The proportion of prior variance remaining in M(V ) after adjusting M(V )

by s2
n , for κ = 2 and a range of sample sizes, as a function of c. For κ �= 2, replace n by

n′ = (n− 1)κ/2+ 1.

expectation for M(V ) via (8.21) with relative weighting according to the notional
prior and actual sample sizes, i.e. using α = n/(m+ n). These two methods turn
out to be equivalent. The relationship between them is given by

m = κn(c + 1)

(n− 1)c
≈ κ + κ

c
, c ≈ κ

m− κ
, (8.22)

where the approximation is reasonable for larger n. Finally, note that if we judge
each Zi to have the same kurtosis as a standard normal quantity, then Var(Z2

i ) = 2.
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In this case, we would obtain

VT = 1

n− 1
VR(V ), (8.23)

by combining (8.11) and (8.17). Comparing (8.5) with (8.15), the implication is
that, for roughly normal-shaped distributions for the scale parameter, knowledge
of the population mean is worth roughly one observation in the adjusted variance.

8.4 Example: oral glucose tolerance test

For an example, we return to the oral glucose tolerance test. The most careful way
to assess variances in this example would be through the representation that we
provided in §2.4. However, to simplify the account we will make the specification
directly. Belief specifications for this example were given in §6.6, and in particular
we had a residual variance matrix given as (6.36), and data shown in Table 6.7. We
will learn about variances for the initial glucose measurement, G0. From (6.36),
the residual variance for observation G0i is

Var(Ri (G0)) = 0.50 = VR,

so that E(M(V )) = VR = 0.5. We will assume that a normal distribution is appro-
priate for the scale parameter Zi , and so choose κ = 2 via (8.19).

To specify VM we specify the value c, where VM = cV 2
R . We examine

Figure 8.1 to explore the relationship between c and sample size in the context
of this example. For the purpose of variance learning, the smallest practicable
sample size is n = 4: for this example, we feel that this sample size would not
deliver a substantial reduction in variance – we judge that reduction in variance of
around 20–25% might be achieved. Alternatively, we feel that a sample size of,
say, n = 100 should resolve most of the reducible variation remaining in M(V ).
Thus, for this problem, it appears reasonable to us to choose a value of c = 0.25.
From (8.22), this corresponds to considering our prior information about M(V )

to be worth about m = 10 observations. The actual sample size for this example
is n = 15, so our beliefs lead us to place slightly more emphasis on the sample
information. We could, of course, carry out sensitivity analyses to test for sensitiv-
ity of adjusted expectations and adjusted variances to changes in c. For the chosen
value c = 0.25, we obtain VM = 0.0625 and VT = 0.0446.

We may now carry out the adjustment of M(V ) by s2
n. This proceeds as a

standard observed adjustment, as described in Chapters 3 and 4. The observed
squared residuals Ri (G0) are shown in Table 8.1, with the observed value of s2

n

being

s2
15 =

1

14

15∑
i=1

[g0i − ḡ0]2 = 0.3941.

One of the squared residuals is rather larger than the others: we are free to explore
the implications using the diagnostic procedures described in earlier chapters. The
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Table 8.1 Squared residuals, [g0i − ḡ0]2, in ascending order.

0.0002 0.0075 0.0075 0.0128 0.0348
0.0455 0.0455 0.0822 0.2635 0.3442
0.4715 0.4715 0.5088 0.6188 2.6028

observed adjusted expectation for M(V ) is

Es2
n
(M(V )) = 0.4382, (8.24)

with adjusted variance
Vars2

n
(M(V )) = 0.0260,

representing a reduction of 0.0365, or about 58% of prior. The standardized change
in expectation is −0.3253. Thus, the adjusted expectation is slightly smaller than
the prior expectation, and the magnitude of change is unsurprising. The remaining
variance of around 42% is as suggested in Figure 8.1 for the chosen value of
c = 0.25. We conclude that the G0 measurements are about as variable as we
expected.

Choosing different values for c has little effect on the adjusted expectation
for M(V ) for this example, but does affect the adjusted variation. The choice
c = 0.1 leads to adjusted expectation 0.4588 but with about 60% of prior variation
remaining, whilst the choice c = 0.5 leads to adjusted expectation 0.4259 and about
30% of prior variation remaining.

We repeat the analysis for G2, the 2-hour measurement. There is reason to
suppose that we are rather more uncertain about the 2-hour measurements than for
the fasting measurements: our beliefs related to the 2-hour value combine to some
extent uncertainties for the baseline and for the oral glucose test effect, so that m

in this case should be smaller. As such, we shall compare the results which we
obtain using the same value of c = 0.25 as used for the fasting measurement, and
the value c = 0.5 corresponding approximately to m = 6.

For the choice c = 0.25, the prior expectation for the population variance
M(V ) of the residuals for G2 is

Var(Ri (G2)) = 2.00 = VR,

so that we choose VM = cV 2
R = 1.0. The observed squared residuals Ri (G2) are

shown in Table 8.2, with the observed value of s2
n being

s2
15 =

1

14

15∑
i=1

[g2i − ḡ2]2 = 4.9512.

Clearly, these residuals are typically larger than those for G0, and many are larger
than their expected value of 2.00, including one squared residual nearly ten times
larger than expected. (Particularly large values have been observed both for the G0
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Table 8.2 Squared residuals, [g2i − ḡ2]2, in ascending order.

0.0022 0.0608 0.5675 0.8962 1.3148
1.8135 2.7115 2.7335 3.0742 3.8155
4.6082 9.2822 9.2822 9.3228 19.8322

and G2 measurements. However, these do not correspond to the same individual.)
The prior variance for M(V ) for the choice c = 0.25 is Var(M(V )) = 1. The
adjusted expectation turns out to be

Es2
n
(M(V )) = 3.7216,

with adjusted variance
Vars2

n
(M(V )) = 0.4167,

representing a reduction of 0.5833, or about 58% of prior, as for G0 because of our
choice for c. The standardized change in expectation is 2.2540. Thus, the adjusted
expectation is rather larger than the prior expectation, and we conclude that the
G2 measurements are rather more variable than foreseen.

If instead we downgrade the value of our prior information to c = 0.5, m ≈ 6,
this leads to a higher prior variance specification, Var(M(V )) = 2. We then obtain
instead an adjusted expectation and adjusted variance of

Es2
n
(M(V )) = 4.0659, (8.25)

Vars2
n
(M(V )) = 0.6000,

representing a reduction of 70% of prior variance. The standardized change in
expectation is about 1.75 standard deviations. In summary, we obtain a slightly
higher variance estimate, we remain rather more uncertain about it, and the change
in adjustment is about in line with what we expected. This appears to bear out
our suspicion that the 2-hour measurements are more variable than the earlier
measurements.

8.5 Adjusting the population residual variance in multiple
linear regression: uncorrelated errors

Learning about the population variance from an exchangeable sample with
unknown mean can be viewed as a special case of the more general problem
of learning about the population variability of a quantity Y when the unknown
mean is a linear function of a collection of explanatory variables X1, . . . , Xp. We
have an in principle infinite collection of values (yi, xi1, . . . , xip). We consider
that there are unknown regression coefficients β = (β1, . . . , βp)T , such that we
consider the derived quantities ε1, ε2, . . . to form an uncorrelated exchangeable
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sequence, where

εi = yi − β1xi1 − . . .− βpxip, (8.26)

E(εi) = 0, (8.27)

Var(εi) = VR. (8.28)

To learn about the population residual variance, we construct the representation
for the corresponding quantity. Thus, suppose that we judge the sequence ε2

k to be
second-order exchangeable with representation

ε2
k = Vεk =M(Vε)+Rk(Vε), (8.29)

where E(M(Vε)) = VR , and the sequence R1(Vε),R2(Vε), . . . is uncorrelated with
zero mean and constant variance VR(Vε) and each element Rk(Vε) is uncorrelated
with M(Vε). Here, M(Vε) represents the population residual variance. We denote
the variance of M(Vε) by

Var(M(Vε)) = VMε .

Suppose that we make the corresponding assessments to those of (8.8) and (8.9),
which are:

Cov(M(Vε), εkεj ) = Cov(εkεj ,Ri (Vε)) = 0, k �= j �= i; (8.30)

and if k > j, w > u, then

Cov(εkεj , εwεu) = 0, unless k = w, j = u. (8.31)

8.5.1 Sample information

Given Dn = [(y1, x11, . . . , x1p), . . . , (yn, xn1, . . . , xnp)], a sample of n individu-
als, we may adjust beliefs about both the regression coefficients and the pop-
ulation residual variance. In §8.2, we constructed a simple adjustment for the
population variance based on the sample variance given an exchangeable sam-
ple. We may similarly adjust beliefs about the population residual variance based
on the corresponding unbiased estimator for the population variance. We denote
y = (y1, . . . , yn)

T and X as the n× p matrix whose (i, j)th value is xij , and we
suppose that the matrix XT X is invertible. In the linear model y = Xβ + ε, the
least squares estimator for β is β̂ = (XT X)−1XT y. We shall write

H = X(XT X)−1XT ,

where H is idempotent with tr{H } = p. The vector of fitted values is then

ŷ = Xβ̂ = Hy,
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and the residual vector is
r̂ = y − ŷ.

The usual unbiased estimator for σ 2 is the residual mean square,

σ̂ 2 = 1

n− p
r̂T r̂.

We construct the representation for σ̂ 2 as follows:

σ̂ 2 = 1

n− p
r̂T r̂ = 1

n− p
εT (I −H)ε

= 1

n− p


∑

k

(1− hkk)ε
2
k − 2

∑
k<j

hkj εkεj




=M(Vε)+ Tε,

where, from (8.29), as
∑

k(1− hkk) = n− p,

Tε = 1

n− p


∑

k

(1− hkk)Rk(Vε)− 2
∑
k<j

hkj εkεj


 .

We therefore have, from (8.29), (8.30), (8.31) that

E(Tε) = 0, (8.32)

Cov(M(Vε), Tε) = 0, (8.33)

VTε = Var(Tε) = 1

(n− p)2


 n∑

k=1

(1− hkk)
2VR(Vε) + 4

∑
k<j

h2
kj (VMε + V 2

R)




= 1

(n− p)2


VR(Vε)

n∑
k=1

(1− hkk)
2

−2(VMε + V 2
R)

n∑
k=1

h2
kk + 2p(VMε + V 2

R)


 .

(8.34)

It follows that

E(σ̂ 2) = VR, Var(σ̂ 2) = VMε + VTε , Cov(σ̂ 2,M(Vε)) = VMε .

With these specifications, the adjusted mean and variance for M(Vε) given σ̂ 2 are

Eσ̂ 2(M(Vε)) = VMε σ̂
2 + VTε VR

VMε + VTε

, (8.35)

Varσ̂ 2(M(Vε)) = VMε VTε

VMε + VTε

. (8.36)
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These compare to (8.14) and (8.15), with s2
n replaced by σ̂ 2 and VM and VT

replaced by analogous quantities.

8.5.2 Choice of prior values

We are free to judge appropriate values for VMε and VTε , and so to generate results
from directly specified beliefs. Alternatively, if we are prepared to adopt some
simplifying assumptions, the heuristics discussed in §8.3 lead to reasonable values
for them: the representation εi =

√M(Vε)Zi and the kurtosis choice Var(Z2
i ) = 2

lead to
VR(Vε) = 2(VMε + V 2

R),

from which (8.34) simplifies to

VTε =
1

(n− p)
[2(VMε + V 2

R)] = 1

n− p
VR(Vε), (8.37)

a result which corresponds with (8.23), but with fewer degrees of freedom. We
may now apply the results of §8.3 directly, replacing the sample size n there by
ñ = n− p + 1.

8.6 Example: Anscombe data sets

To apply some of these ideas in practice, we return to the first of the Anscombe
data sets discussed in §5.14.1 and tabulated in Table 5.3. The scatter plot shown
in Figure 5.1(a) gives us no reason to doubt the assumptions made above about
the behaviour of the residuals. These data are artificial and so we shall, simply for
illustration, suppose that our prior information is worth m = 4 observations, with
Gaussian kurtosis choice for the scale parameter giving κ = 2 via (8.19). There are
p = 2 coefficients and the actual sample size is n = 11. Thus, the choice m = 4
and sample size parameter

ñ = n− p + 1 = 10

correspond to a scaling choice c = 1.25 using (8.22). The nomogram (Figure 8.1)
shows that c = 1.25, ñ = 10 corresponds to quite slow variance learning as a
proportion of prior. This seems fair enough for this example: we do not know
much at the start, and do not expect to learn very much more from a sample of
this size. In (5.66) we specified

Var(εi) = 1 = VR = E(M(Vε)).

The choices m = 4, c = 1.25 thus lead to the specifications

VMε = cV 2
R = 1.25,

VTε =
1

n− p
[2(VMε + V 2

R)] = 0.5.
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The residuals from the least squares fit are as follows:

0.039, −0.051, −1.921, 1.309, −0.171, −0.041,
1.239, −0.740, 1.839, −1.681, 0.179

giving a residual mean square of σ̂ 2 = 1.529. Our estimated residual variance is
thus

Eσ̂ 2(M(Vε)) = VMε σ̂
2 + VTε VR

VMε + VTε

= 1.25× 1.529+ 0.5× 1

1.25+ 0.5
= 1.378,

Varσ̂ 2(M(Vε)) = VMε VTε

VMε + VTε

= 0.357.

Our update for the residual variation, Var(εi), is thus 1.378, rather larger than the
prior specification of 0.5.

8.7 Adjusting the population residual variance in multiple
linear regression: correlated errors

Suppose, as previously, that we wish to update our beliefs about the population
residual variance for a linear model, where the residuals are as defined in (8.26),
with E(εi) = 0, but are correlated in the form Var(ε) = VRG, where G is a known
n× n non-negative definite matrix. The correlatedness now makes it more difficult
to exploit a representation such as (8.29). One possibility is as follows, but requires
further assumptions.

In least squares multiple regression, correlated errors may be handled via gen-
eralized least squares (Draper and Smith 1998). Decompose non-negative definite
G via its principal components into G = Q�QT , where Q is an n× r eigenvector
matrix and � is the r × r diagonal matrix of corresponding positive eigenvalues,
0 < r ≤ n. From the linear model Y = Xβ + ε, define

Y ∗ = �−
1
2 QT Y, X∗ = �−

1
2 QT X, ε∗ = �−

1
2 QT ε. (8.38)

We may then restate the linear model as Y ∗ = X∗β + ε∗, and with uncorrelated
error terms, Var(ε∗) = VRIr . This is in the form described in the previous section,
with possibly reduced dimension depending on degeneracy in G, but with the
following important difference. If we express beliefs about third- and fourth-order
relationships amongst the original residuals εi , such as are required for the method-
ology given in §8.5, these beliefs are not preserved by the linear transformation
from ε to ε∗. Indeed, if r < n we cannot even back-transform to recover the ε

quantities from the ε∗ quantities. We can, therefore, proceed further only at the
cost of making an extra assumption:

• we might assume that higher-order beliefs about the ε quantities are preserved,
to a good approximation, under linear transformation. This is tantamount to
assuming a multivariate normal distribution for the ε quantities (Stuart and Ord
1994);
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• we might assume that our exchangeability representation applies directly to the
transformed quantities ε∗.

If we are prepared to allow, as an approximation, the assumption that we may
work with the transformed residuals, we may make a Bayes linear update for the
residual variance VR as follows.

We have transformed to an in principle second-order uncorrelated exchangeable
sequence ε∗1 , ε∗2 , . . . which has expectation E(ε∗1 ) = 0 and variance Var(ε∗1 ) = VR .
As the population mean is known, we may apply the methodology of §8.1, repre-
senting

ε∗2
i =M(V )+Ri (V ).

Observations on the ε∗ quantities are available as the residuals Y ∗ − Ŷ ∗.

8.8 Example: regression with correlated responses

We illustrate with the correlated response example discussed in earlier chapters,
with data shown in Table 5.6 and plotted in Figure 5.6. We organize the linear
model as Y = Xβ + ε, where, in partitioned form,



Y1
...

Y12
Z1

...

Z12



=




1 x1 0 0
...

...
...

...

1 x12 0 0
0 0 1 x1
...

...
...

...

0 0 1 x12







a

b

c

d


+




e1
...

e12
f1

...

f12




and

Var(ε) = Var







e1
...

e12
f1

...

f12






=

[
6.25I12 2.5I12
2.5I12 4I12

]
= 6.25

[
I12 0.4I12

0.4I12 0.64I12

]
,

where I12 is the 12× 12 identity matrix, so that

VR = 6.25

and

G =
[

I12 0.4I12
0.4I12 0.64I12

]
.

G is full rank, so that there are r = n = 24 observable dimensions. We now form
the eigendecomposition of G and thereby form Y ∗ and X∗ as described in (8.38).
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The corresponding errors for this model, ε∗, then are uncorrelated and have variance
VR = 6.25. We now obtain the least squares fit of Y ∗ on X∗ for the transformed
model. The observed residuals for the transformed model are:

1.15 −1.44 −0.54 1.34 −0.31 0.56
0.64 −0.56 1.56 1.83 1.61 −0.02
4.78 −8.15 2.86 4.22 1.27 5.54
2.98 1.36 0.46 −1.58 −6.67 1.32

Applying the methodology of §8.1, the mean of these squared values, which is
X̄

(2)
n = 9.2763, is Bayes linear sufficient for the observed squared residuals for

adjusting M(V ).
We now need to specify the variance components VM and VR(V ): we shall adopt

the suggestion of (8.17) with Gaussian kurtosis choice leading to Var(Z2
i ) = 2 = κ ,

and so specify VR(V ) = 2(VM + V 2
R). The proportion of variance remaining in

M(V ), relative to prior, is given by (8.20) but with n replaced by r + 1. For
illustration, we shall consider our prior information about residual variation to be
worth about m = 10 observations. We have r = 24 observations, corresponding to
using n = 25 for the suggested method (8.20), and this leads to a scaling choice
of about c = 0.25. The nomogram (Figure 8.1) shows that this choice corresponds
to the belief that the sample information will resolve about 75% of our prior
uncertainty in M(V ), which appears order-of-magnitude appropriate.

We now have all the ingredients for the update. We have c = 0.25, so that
VM = cV 2

R = 9.7656. We then can compute

VR(V ) = 2(VM + V 2
R) = 97.6562.

Using (8.4) and (8.5), we find that the adjusted expectation and adjusted variance
for the population residual variance are

En(M(V )) = VMX̄
(2)
n + 1

n
VR(V )VR

VM + 1
n
VR(V )

= 8.38,

Varn(M(V )) =
1
n
VR(V )VM

1
n
VR(V ) + VM

= 2.87.

As such, our sample estimate of population residual variance is a little higher than
we expected, and the Bayes linear adjusted expectation is, as a consequence, also
a little higher. The smallness of the adjusted variance implies that we have tied
this down fairly confidently.

It is worth emphasizing that the method of this section allows us to learn about
a single scale parameter only, assuming known correlation structure. An alternative
methodology, useful when the correlation is unknown, is presented in §8.12 and
thereafter.
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8.9 Example: analysing exchangeable regressions

We illustrate further with the exchangeable regressions example considered in §6.7.
The error specifications for this example, as set out in §6.7.2, are rather compli-
cated, and so it is useful to be able to carry out checks on whether we have these
specifications about right. A simple way of doing so is to assume that the corre-
lation structure arising is appropriate, and to use the methods of this section to
check whether the scale parameter is about right. We may write the model (6.37)
as Y = Xβ + ε, where

Y = [
Y1,1 . . . Y13,1 Y1,2 . . . Y13,2 Y1,3 . . . Y13,3

]T
,

ε = [
εT

1 εT

2 εT

3

]T = [
ε1,1 . . . ε13,1 ε1,2 . . . ε13,2 ε1,3 . . . ε13,3

]T
,

β = [
a1 a2 a3 b1 b2 b3

]T
,

and

X =

1 0 0 x 0 0

0 1 0 0 x 0
0 0 1 0 0 x


 ,

where 1 and 0 are 13× 1 vectors of ones and zeros respectively, and x is the
vector of integers up to 13. The variance matrix Var(ε), which we construct as in
§6.7.2, is 39× 39 block diagonal, with three identical 13× 13 blocks Var(ε1) =
Var(ε2) = Var(ε3), as the error variance matrix is the same for each run r , and
the error terms are uncorrelated across runs. For this illustration we shall ignore
any advantages to be gained through exploiting such repeated structure. We shall
represent the variance structure as a scalar multiple of the pure noise term Var(Ert ),
which we specified to be 0.01 in §6.7.2. The prior variance matrix is thus

Var(ε) = (0.01)


G 0 0

0 G 0
0 0 G


 ,

where G is a non-negative definite matrix which turns out to be


6.0 3.8 2.9 2.3 1.9 1.6 1.4 1.3 1.2 1.1 1.1 1.0 1.0
3.8 7.0 4.8 3.9 3.3 2.9 2.6 2.4 2.3 2.2 2.1 2.1 2.0
2.9 4.8 8.0 5.8 4.9 4.3 3.9 3.6 3.4 3.3 3.2 3.1 3.1
2.3 3.9 5.8 9.0 6.8 5.9 5.3 4.9 4.6 4.4 4.3 4.2 4.1
1.9 3.3 4.9 6.8 10.0 7.8 6.9 6.3 5.9 5.6 5.4 5.3 5.2
1.6 2.9 4.3 5.9 7.8 11.0 8.8 7.9 7.3 6.9 6.6 6.4 6.3
1.4 2.6 3.9 5.3 6.9 8.8 12.0 9.8 8.9 8.3 7.9 7.6 7.4
1.3 2.4 3.6 4.9 6.3 7.9 9.8 13.0 10.8 9.9 9.3 8.9 8.6
1.2 2.3 3.4 4.6 5.9 7.3 8.9 10.8 14.0 11.8 10.9 10.3 9.9
1.1 2.2 3.3 4.4 5.6 6.9 8.3 9.9 11.8 15.0 12.8 11.9 11.3
1.1 2.1 3.2 4.3 5.4 6.6 7.9 9.3 10.9 12.8 16.0 13.8 12.9
1.0 2.1 3.1 4.2 5.3 6.4 7.6 8.9 10.3 11.9 13.8 17.0 14.8
1.0 2.0 3.1 4.1 5.2 6.3 7.4 8.6 9.9 11.3 12.9 14.8 18.0




.
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The matrix G is full rank, and so there are r = n = 39 observable dimensions.
We now apply the methodology of §8.1. We find that the mean of the 39

squared transformed residuals is X̄
(2)
n = 0.0147. Our prior information concerning

the variance specifications is quite thin: the specifications were made carefully, but
were complicated, and so it is not certain that they are as precise as we would
have liked. As such, we judge that we should let the sample values dominate the
prior information: we will suppose that the prior information is worth about m = 8
observations. We are also uncertain as to the distribution we should assume for the
scale effects Zi . As such, we try a range of distributions and compare the results,
using (8.4) and (8.5) to compute the adjusted expectation and adjusted variance
for the population residual variance.

Uniform: Var(Z2
i ) = 0.8. This choice corresponds to choosing c = 0.16, and so

to fast variance learning, relative to the sample size of n = 39. With these
choices we find that

E(M(V )) = 0.01, Var(M(V )) = 0.00342,

En(M(V )) = 0.01395, Varn(M(V )) = 0.00142.

Gaussian: Var(Z2
i ) = 2. This choice corresponds to choosing c = 0.33, and so to

moderately fast variance learning, relative to the sample size of n = 39. With
these choices we find that

E(M(V )) = 0.01, Var(M(V )) = 0.00582,

En(M(V )) = 0.01392, Varn(M(V )) = 0.00242.

Scaled t10: Var(Z2
i ) = 3 by (8.18). This corresponds to choosing c = 0.59, and

so to slower variance learning, relative to the sample size of n = 39. With
these choices we find that

E(M(V )) = 0.01, Var(M(V )) = 0.01172,

En(M(V )) = 0.01392, Varn(M(V )) = 0.00322.

The calculations suggest that the error variance matrix should be scaled up by about
40%. There is very little difference between the adjusted expectations; this is largely
because we have allowed the sample information to dominate the prior. There are
important differences amongst the variances calculated. The variance calculated
under the uniform suggestion implies that we have estimated the population residual
variance quite precisely, and that we are fairly sure that we should be multiplying
the matrix G by more than the prior value of 0.01. The variance calculated under
the t10 suggestion implies that we remain very uncertain as to the appropriate value
for this multiplier.
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8.10 Adjusting a collection of population variances
and covariances

Now suppose that X = (X1, X2, . . .) is a second-order exchangeable sequence of
r-vectors with representation

Xk =M(X)+Rk(X),

where E(Xk) = µ, Var(Xk) = �, Cov(Xk, Xj ) = �, and where the sequence
Rk(X) is uncorrelated and has expectation vector E(Rk(X)) = 0 and variance
matrix

Var(Rk(X)) = � − �,

with µ and non-negative definite matrices �, � dimensioned appropriately.
We may write the vector form of (8.3) as

Rk(X)Rk(X)T = Vk =M(V )+Rk(V ), (8.39)

where M(Vii) is the population residual variance for variable Xi , and M(Vij )

is the population residual covariance between Xi and Xj . All of the elements of
M(V ) are uncorrelated with all of the elements of each Rk(V ). The elements
of each Rk(V ) have expectation zero, variance and covariance specifications for
the elements of Rk(V ) are the same for each k, and the elements of Rj (V ) are
uncorrelated with the elements of Rk(V ) for j �= k. Note that we have

E(M(V )) = � − �.

We may write the sample variance matrix

S2
n =

1

n− 1

∑
k

(Xk − X̄n)(Xk − X̄n)
T (8.40)

in corresponding form to (8.7) as the sum of two elementwise uncorrelated random
matrices, namely

S2
n =M(V )+ T , (8.41)

where

T = 1

n

∑
k

Rk(V )− 1

n(n− 1)

∑
k �=j

Rk(X)Rj (X)T ,

so that
E(T ) = 0 and Cov(M(V ), T ) = 0.

We may use representation (8.41) to generate a full set of variances and covari-
ances between all elements of S2

n and all elements of M(V ). However, this requires
a rather detailed level of prior specification, many of whose judgements may be
difficult and unfamiliar, such as quantifying beliefs about the relation between the
residual variance of Xi and the residual covariance of Xj and Xk . Further, there
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is no guarantee that the adjusted expectation for the overall variance matrix that
results from this calculation will be non-negative definite. For critical problems,
such careful consideration may be worthwhile. However, in many problems, it will
be sufficient to follow a simple alternative approach for updating beliefs over the
residual variance matrix which we now describe.

8.11 Direct adjustment for a population variance matrix

Let B = (B1, B2, . . .) be a collection of random r × r real symmetric matrices
(for example, population and sample variance matrices). Let C = (C1, C2, . . .) be
a basis for the linear space of constant r × r real symmetric matrices. Now form
the vector space on L = B ∪ C and define the inner product (over equivalence
classes) on L as

(A, B) = E(tr{AB}), ∀A, B ∈ L,

corresponding to the metric

‖A− B‖2 = E(‖A− B‖2
F ) (8.42)

where ‖ · ‖F denotes the Frobenius norm of the matrix, namely the sum of the
squares of the elements.

Belief adjustment for scalar random quantities corresponds to orthogonal pro-
jection into subspaces of random quantities that we observe, using the scalar version
of the above norm. Similarly, we may adjust the expectation of random matrices
within the matrix inner product space by orthogonal projection into subspaces of L

spanned by collections of matrices that we observe. While there are many different
features of the matrix about which we may learn within this construction, we will
here only describe the simplest projection, as this is sufficient to give a simple
update for the residual variance matrix.

Thus, suppose that we wish to adjust M(V ) by the space spanned by the sample
variance matrix S2

n and the constant matrices. Term this expectation ES2
n
(M(V )).

From (8.41), we have

ES2
n
(M(V )) = (1− α)E(M(V ))+ αS2

n, (8.43)

where

α = ‖M(V )− E(M(V ))‖2

‖M(V )− E(M(V ))‖2 + ‖T − E(T )‖2
. (8.44)

We may specify α by assessing each scalar variance and covariance which is used
to assess the norms in (8.44). Alternatively, we may specify α directly. A simple
approach is to adapt the equivalent sample size heuristic that we used in §8.3
for constructing prior beliefs. In this heuristic, we consider our prior information
about M(V ) to be comparable to the information that we would have obtained by
observing a notional previous sample variance matrix for X based on a sample of
size m. In this case, the relative weightings on E(M(V )) and S2

n in (8.43) are in
the ratio of m to n, so that we would use α = n/(m+ n).
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8.12 Example: regression with correlated responses

The method for variance learning discussed in §8.8 for this example could address
only a scale parameter for the population residual matrix, whereas we prefer to
learn separately about the three variance components:

Var(ei) = σ 2
e , Var(fi) = σ 2

f , Cov(ei, fi) = σef .

The structure in this example allows us to use (8.43) straightforwardly, as follows.
Suppose that we calculate separately the least squares fits Ŷ for Y on X, and Ẑ

for Z on X. Write H = X(XT X)−1XT , as in §8.5.1. These fits depend on p = 2
parameters in each case. We may write the residuals as

Y − Ŷ = (I −H)e and Z − Ẑ = (I −H)f,

where e, f are the collections (e1, . . . , en) and (f1, . . . , fn) respectively, with
n = 12. Now form the scaled sum-of-squared-residuals matrix as

S2
n =

1

n− p

[
(Y − Ŷ )T (Y − Ŷ ) (Y − Ŷ )T (Z − Ẑ)

(Z − Ẑ)T (Y − Ŷ ) (Z − Ẑ)T (Z − Ẑ)

]
, (8.45)

with observed value [
7.51 −2.63
−2.63 4.76

]
. (8.46)

As I −H is idempotent and as tr{H } = p, it is straightforward to show that

E(S2
n) =

[
σ 2

e σef

σef σ 2
f

]
= E(M(V )) =

[
6.25 2.5
2.5 4

]
, (8.47)

so that S2
n is unbiased sample information on these variance components. We chose,

in §8.12, to regard our prior information as worth m = 10 observations. Thus we
weight our prior and sample variance matrices in the ratio 10 : 12, giving weight
α = 10/22. Our updated variance matrix is thus

10

22

[
6.25 2.5
2.5 4

]
+ 12

22

[
7.51 −2.63
−2.63 4.76

]
=

[
6.94 −0.30
−0.30 4.41

]
. (8.48)

There is very little difference between the prior and updated variances. However,
the sample information about the covariance between the error terms (ei, fi) seems
completely at odds with the prior covariance, being moderately negative rather than
moderately positive, as we felt a priori. There could be several reasons for such
contradiction. First, with hindsight we might now judge that it was inappropriate
to have chosen a positive correlation between the error quantities. In this case,
we might deem it reasonable to give more weight to the sample information. We
might even do this differentially, giving more weight to the sample correlation
information than to the sample variance information. We describe how this can
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be achieved in general in the next section. Secondly, we might judge that the
model we have chosen does not adequately represent the quantities, in which case
we might expect to see model lack of fit confounded with pure error. Finally, of
course, such contradiction can arise via chance fluctuation.

We will often replace the original population residual variance matrix by its
updated version, usually so that we can perform two-stage Bayes linear analysis,
which we describe in §8.15. In all these cases, it is natural to assess the sensitivity
of the results to changes in residual variance matrix. As it happens, for this example
there is very little difference between using the prior residual variance matrix (8.47)
and the updated version (8.48).

8.13 Separating direct adjustment for population variances
and for correlation structure

The method described in §8.11 is simple, and ensures a non-negative definite
form for the adjusted expectation matrix. However, we may wish to input more
aspects of our prior beliefs, and in particular we may feel more confident about
our assessments of some of the population variances than about others. We now
describe a simple modification to the above approach which may be appropriate
when we are able to make more detailed specifications of our uncertainties for the
individual residual variances than we may make for the joint residual covariance
structure. We may carry out the adjustment in stages, as follows.

1. We adjust beliefs about the residual variance for each Xi individually. We
assess the adjusted expectation for each M(Vii), based on the sample vari-
ance s2

n(i) for Xi using the corresponding adjusted expectation (8.14). This
requires a full prior assessment for each of the variances required to spec-
ify Es2

n(i)
(M(Vii)) for each i. Suppose that we collect together these adjusted

expectations into the diagonal matrix Ṽ , where

Ṽii = Es2
n(i)

(M(Vii)). (8.49)

2. We specify our prior correlation matrix for M(V ). Let this prior correlation
matrix be CR(M(V )). We may assess CR(M(V )) directly. It may be dif-
ficult to specify initial correlations or covariances between the elements of
M(V ) which are required in order to specify CR(M(V )). In such cases, we
may fall back on simple heuristics which suggest plausible order-of-magnitude
values, while avoiding the choice of a multivariate correlation structure with
unpleasant hidden consequences. A simple order-of-magnitude approximation
for CR(M(V )) is to derive this matrix from the prior residual variance matrix
E(M(V )). Denote by CF(V ) the correlation matrix derived from the variance
matrix V . We may thus determine, as a reasonable starting point, the prior
correlation matrix for M(V ) as

CR(M(V )) = CF(E(M(V ))) = CF(� − �).
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3. We derive the sample correlation matrix CF(S2
n) from S2

n . We then form the
updated version of the correlation matrix, using the corresponding form to
(8.43), as

CRn(M(V )) = (1− β)CR(M(V ))+ βCF(S2
n). (8.50)

As before, we may use an equivalent sample size argument to value the amount
of information contained in the prior assessment for the correlation matrix as
corresponding to an equivalent sample size m, which suggests an appropriate
value for β to be n/(m+ n). Heuristics for this assessment are discussed in
§8.13.1.

We reassemble the residual variance matrix, with variances given by stage 1, and
correlations by stages 2 and 3, to give the following.

Definition 8.1 The semi-adjusted residual variance matrix is the non-negative def-
inite matrix

E(n)(M(V )) = Ṽ
1
2 CRn(M(V ))Ṽ

1
2 . (8.51)

In forming this adjustment, we have taken various heuristic short-cuts and so use
the term semi-adjusted rather than adjusted.

8.13.1 Assessing the equivalent sample size

We may choose the equivalent sample size m directly. For example, if, in a par-
ticular application, our prior knowledge about the correlation structure is quite
vague, then we could choose a small equivalent sample size. As a sample size of
four is about the smallest practicable actual sample size for learning about vari-
ances, we might choose m = 4 as indicating vague prior knowledge, leading to
β = n/(n+ 4).

Alternatively, the following arguments lead to a suggestion for m. Suppose that
we are prepared to specify with some confidence the sign of a particular correlation,
in addition to its magnitude. An approximate 95% classical confidence interval for
ρ, the population correlation coefficient between two bivariate normally distributed
quantities, can be obtained via Fisher’s z transformation as

1

2
ln

(
1+ r

1− r

)
± 2

√
1

m− 3
,

where r is the sample correlation coefficient and m the sample size. For positive
(negative) r , this interval has lower (upper) boundary zero for

m = 3+ 16

[
ln

(
1+ |r|
1− |r|

)]−2

. (8.52)

Consequently, if we are prepared to accept these simplifying assumptions and can
specify with some confidence the sign of the correlation coefficient, we may take
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this value of m as providing a reasonable equivalent sample size. Note that, as we
might expect, small (large) values of r lead to large (small) values of m.

This method works well when the dimension of M(V ) is small, and, in particu-
lar, when � − � is two-dimensional, there is a single prior correlation to consider,
and the value of r to be used for (8.52) is known. When M(V ) is multivariate,
the choice of r is less obvious. Two possibilities for r are then:

(a) if the correlation terms in � − � are roughly the same in magnitude, we might
use their mean absolute value;

(b) if we are sure about the signs of all the correlations, we can choose as r the
smallest correlation in CR(M(V )), leading to a conservative choice for m.

8.14 Example: oral glucose tolerance test

We continue the example of §8.4, but now treating B = [G0, G2] jointly rather
than separately. The ingredients for the calculations are as follows. We have already
found adjusted expectations for the individual residual variances for G0 and G2 as
0.4382 and 4.0659, respectively; see (8.24) and (8.25). In doing so, note that we
judged our prior information to be rather stronger for learning about the residual
variance for G0. The original residual variance matrix for the collection B is
E(M(V )) = � − �, given in (6.36). The correlation form for this matrix is

CF(E(M(V ))) =
[

1 0.42
0.42 1

]
. (8.53)

The observed variance–covariance and correlation matrices are

S2
n =

[
0.3941 0.6372
0.6372 4.9512

]
, CF(S2

n) =
[

1 0.4562
0.4562 1

]
,

based on a sample of size n = 15.
Next, we specify the prior correlation form as CF(E(M(V ))). If we are rea-

sonably confident that the correlation between G0 and G2 is non-negative and if
we have specified a correlation r = 0.42 in (8.53), the argument given in §8.13.1
leads to deeming this information as though it originates from a sample of size

m = 3+ 16

[
ln

(
1+ 0.42

1− 0.42

)]−2

≈ 23,

by (8.52). Thus, we revise our correlation using (8.50) as

CRn(M(V12)) = 23

23+ 15
0.42+ 15

23+ 15
0.4562 = 0.4343.

For this example, there is only a minor difference between the prior and revised
correlations. Note that there is no necessary relationship between the notions of
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equivalent sample size for variance updating on the one hand (we used m ≈ 10 for
G0 and m ≈ 6 for G2) and correlation updating (we used m = 23) on the other
hand. This is made plain if we consider updating for a two-dimensional case with
variables X and Y , and with X known to be very close to Y . We might have little
prior information about the variances of X and Y , in which case the equivalent
sample sizes for their updating should be quite small. On the other hand, we might
judge that the correlation between X and Y is close to one, and this would be
reflected in a very high prior equivalent sample size for updating the correlation.

We now rescale back to variance–covariance form by scaling according to the
adjusted population variances for G0 and G2, to give

E(n)(M(V )) =
[

0.4382 0.5797
0.5797 4.0659

]
. (8.54)

The semi-adjusted residual variance matrix (8.54) should be compared to the orig-
inal specification given as (6.36):

E(M(V )) = � − � =
[

0.50 0.42
0.42 2.00

]
,

with correlation form shown in (8.53). So far we have commented on differences
piecemeal, as there are only two variances and a correlation to think about. For
larger-scale problems, we can explore differences between the original and semi-
adjusted residual variance matrix either simply, through the matrix norm described
above (8.42), or more generally by examining detailed structural differences using
the methods which we develop in Chapter 9.

8.15 Two-stage Bayes linear analysis

The above account offers a brief introduction to the Bayes linear analysis of vari-
ance structures. This is an important but largely unexplored problem. In general,
we have identified three features which often complicate such analyses. First, the
quantities that form the basis of the exchangeability representations are often not
directly observable. Secondly, the required uncertainty judgements are relatively
unfamiliar. Thirdly, the constraints on the collection of assessments, such as non-
negative definiteness, do not fit naturally into our framework. Thus, rather than
carrying out a full linear analysis on the variance structure, we may often prefer to
fit together certain, individually plausible, Bayes linear components which exploit
our key prior judgements in an intuitively sensible way.

In particular, we may prefer simple approaches to variance estimation for prob-
lems where learning about the population variances is not our principle interest,
but rather we are learning about the variances in order to improve our ability to
learn about the population means. Thus, for many problems based on exchangeable
observations, we may carry out the analysis in two stages.

In the first stage, we carry out the variance assessment as above, result-
ing, for example, in an assessment of the semi-adjusted residual variance matrix
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E(n)(M(V )). In the second stage, we carry out the Bayes linear analysis for
the mean vector. This is exactly as we have described, with the sole difference
that in the representation theorem for exchangeable random vectors (Theorem 6.3)
we replace the prior residual variance matrix Var(Rj (X)) = � − � by the semi-
adjusted version Var(Rj (X)) = E(n)(M(V )).

Provided that we make the judgement that our beliefs about the population
mean vector are independent of our beliefs about population residual variation, then
we may carry out the mean analysis exactly as previously described, with the new
residual variance matrix, as heuristically this matrix now expresses our judgements
about residual variation. We call this procedure a two-stage Bayes linear analysis.
The Bayes linear assessments for the mean are termed variance-modified Bayes
linear assessments.

The simplest such assessment derives from the analysis of a scalar exchangeable
sample X1, X2, . . . , as discussed in §6.11. The Bayes linear adjustment of the
population mean M(X) by the sample mean X̄n is given, as in (6.55), by

En(M(X)) = γ X̄n + 1
n
ηµ

γ + 1
n
η

.

If we carry out a two-stage analysis, we first reassess the value of η, replacing the
prior value by the adjusted value given s2

n, as given by (8.14), namely

η∗ = VMs2
n + VT VR

VM + VT

,

so that the variance modified Bayes linear adjustment is

En∗(M(X)) = γ X̄n + 1
n
η∗µ

γ + 1
n
η∗

, (8.55)

with corresponding modified variance

Varn∗(M(X)) =
1
n
η∗γ

1
n
η∗ + γ

. (8.56)

Provided that we consider that η∗ is a good representation of our current resid-
ual uncertainty, and that this variance analysis did not carry substantial additional
information which would now cause us to modify the values for µ or γ , then
the variance modified forms (8.55), (8.56) will give an improved form for our
adjusted mean and variance for M(X). Certain conventional Bayesian prior distri-
butions, such as the normal gamma prior for normal sampling, would not meet these
requirements, and each problem must be considered carefully to judge whether the
necessary requirements for our analysis will be met.
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8.16 Example: oral glucose tolerance test

We now carry out a two-stage Bayes linear analysis, continuing the example of this
chapter. We repeat the analysis of §6.16, and in particular the example of §6.16.4.
To recapitulate, there we were concerned with making a predictive adjustment of
fasting and 2-hour measurements for a new individual, given measurements on
n = 15 other individuals. A summary of the adjustment was shown in Tables 6.8
and 6.9. For the two-stage Bayes linear analysis, we replace the residual variance
matrix � − � (6.36) by the semi-adjusted residual variance matrix (8.54), but retain
the prior variance matrix for the mean components, � (6.34). The prior variance
matrix � given by (6.35) for a single vector observation needs to be replaced by

�∗ = � + E(n)(M(V )) =
[

1.0582 0.8797
0.8797 4.4959

]
.

As we noted above, the main difference is the increase in variation for an indi-
vidual’s 2-hour measurement. The analysis now proceeds to the second stage, a
standard adjustment of beliefs as in §6.16.4. A summary of the adjustment is shown
in Table 8.3. Comparing this to Table 6.9, the main differences are that the pro-
portions of variation explained for another individual’s measurements G2 and Gh

are much smaller than for the unmodified assessments, to reflect that the residual
variance assessment is higher than before. The variance-modified adjusted expecta-
tions are little changed. Overall, the two-stage analysis better takes into account the
variability in the residual variation, something we probably understated initially.

8.17 Example: analysing exchangeable regressions

In §8.9, we found that the overall error variance matrix for this problem is rather
understated. Consequently, we might reanalyse the data by first updating the error
variance matrix, and then duplicating the analyses we have already shown. We will
discuss one such reanalysis. First, we scale up the overall error matrix Var(εrt ) by
a factor of 1.39, corresponding to our updated value En(M(V )) from §8.9. We

Table 8.3 Summary of the adjustment by 15 observations, following a first stage
to obtain a semi-adjusted residual variance matrix. Shown are the variance-modified
assessments: prior and adjusted expectations with standardized change in adjust-
ment, relative to variance resolved; and prior and adjusted variances with resolu-
tions.

Expectation Variation

Prior Adjusted Change Prior Adjusted Resolution

G0 4.16 4.6528 0.64 1.0582 0.4651 0.5605
G2 6.25 6.6126 0.68 4.4959 4.2416 0.0626
Gh 2.09 1.9598 −0.23 3.7947 3.4689 0.0859
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Table 8.4 Adjusted expectations, standardized changes, and variances for the
mean components, with increased prior variation.

Adjusted expectations Prior Variance resolutions
Component Original Two-stage Variance Original Two-stage

M(Y1) 1.6031 1.5933 0.0396 0.6528 0.6016
M(Y2) 1.7013 1.6924 0.0444 0.7009 0.6550
M(Y3) 1.7994 1.7915 0.0524 0.7418 0.6992
M(Y4) 1.8976 1.8906 0.0636 0.7719 0.7311
M(Y5) 1.9958 1.9898 0.0780 0.7921 0.7520
M(Y6) 2.0939 2.0889 0.0956 0.8050 0.7649
M(Y7) 2.1921 2.1880 0.1164 0.8127 0.7722
M(Y8) 2.2902 2.2872 0.1404 0.8171 0.7759
M(Y9) 2.3884 2.3863 0.1676 0.8193 0.7775
M(Y10) 2.4866 2.4854 0.1980 0.8201 0.7776
M(Y11) 2.5847 2.5846 0.2316 0.8201 0.7769
M(Y12) 2.6829 2.6837 0.2684 0.8195 0.7757
M(Y13) 2.7811 2.7828 0.3084 0.8185 0.7742

will explore the effects of the variance revision for adjusting the mean compo-
nent quantities. The original adjustment is summarized in Table 6.2. The revised,
two-stage, adjustment is summarized in Table 8.4. There are no major differences.
The adjusted expectations are slightly smaller (larger) for components at the begin-
ning (end) of the experiment. The prior variances for the mean components are
unchanged, but the corresponding variance resolutions are slightly smaller, as we
would expect from having made the data noisier.

Table 8.5 Variances for predicting future observables Y1,F , . . . , Y13,F , with
increased prior variation.

Original Two-stage
Quantity Prior Adjusted Resolution Prior Adjusted Resolution

Y1,F 0.1197 0.0939 0.2160 0.1434 0.1196 0.1661
Y2,F 0.1348 0.1037 0.2309 0.1625 0.1334 0.1790
Y3,F 0.1533 0.1144 0.2535 0.1849 0.1483 0.1982
Y4,F 0.1752 0.1261 0.2802 0.2108 0.1642 0.2206
Y5,F 0.2005 0.1387 0.3082 0.2400 0.1813 0.2444
Y6,F 0.2292 0.1522 0.3358 0.2727 0.1995 0.2682
Y7,F 0.2613 0.1667 0.3620 0.3087 0.2188 0.2912
Y8,F 0.2968 0.1821 0.3865 0.3482 0.2392 0.3129
Y9,F 0.3357 0.1984 0.4090 0.3910 0.2607 0.3333
Y10,F 0.3780 0.2156 0.4296 0.4373 0.2833 0.3521
Y11,F 0.4237 0.2338 0.4483 0.4869 0.3070 0.3695
Y12,F 0.4728 0.2529 0.4652 0.5400 0.3318 0.3856
Y13,F 0.5253 0.2729 0.4806 0.5964 0.3577 0.4003
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We would expect to see more differences between the original and two-stage
analyses for the predictive components, which we analysed in §6.17. The differ-
ences are summarized in Table 8.5. The prior variances are naturally rather larger
under the model with scaled-up error variances. Furthermore, the data are noisier,
and so the variance resolutions are not as high as for the original analysis. The
consequence is higher adjusted variances for these components, and especially for
those at the end of the series.

8.18 Further reading

Basic ideas concerning learning about a population variance and using this infor-
mation to modify the adjustment of a population mean are given in Goldstein
(1979). The two-stage adjustment procedure raises interesting coherence questions
which are explored in Goldstein (1983a). Variance learning for the univariate,
locally linear dynamic linear model is developed and applied in Wilkinson (1997).
Issues arising in adjusting beliefs about variance matrices are covered in Wilkinson
(1995) and Wilkinson and Goldstein (1996). The general form for the adjustment
of matrix-like objects is treated in Goldstein and Wilkinson (2001).



9

Belief comparison

In this chapter we discuss the comparison of collections of belief specifications. It
is rare, in complex situations, for any proposed belief specification to correspond
exactly to the uncertainties in the system. The requirements of our specification will
therefore depend on the context for the analysis. For example, we might construct
different possible belief specifications from consideration of competing theoretical
judgements about a physical system, so that accepting one set of judgements could
lead to rejecting the other collections, though we might reserve judgement or end
up rejecting each specification. Alternatively, we might have access to different
specifications, each corresponding to the judgement of a different expert, where
each expert might perform well for certain aspects of the specification reflecting
their area of expertise, while there might be aspects for which each expert would
perform poorly. As a further alternative, we often seek to simplify our specification
in order to simplify the resulting uncertainty analysis. In such cases, we might be
fairly confident that the more complex specification would be more accurate than
simpler forms, but our concern would be that our approximations did not impact
too much on our subsequent analysis of the system.

In each case, we are rarely concerned with a single summary measure for the
comparison. Instead, it is more informative to decompose the full model comparison
into a sequence of simple comparisons which express the main differences between
the specifications. Such methods allow us to judge how successful we are likely
to be in using historical data to distinguish between the competing specifications,
by identifying whether there are areas of substantial disagreement between the
specifications. We may also identify further observations that we expect to be
useful in distinguishing between the specifications. The analysis will also reveal
whether it is important to be able to choose between the specifications in terms
of our ability to make reliable predictions for the future behaviour of the system.
When we make such an informed comparison, we may find that certain aspects
of the data support one specification, other aspects of the data support another

Bayes Linear Statistics: Theory and Methods M. Goldstein and D.A. Wooff
 2007 John Wiley & Sons, Ltd
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specification, and further aspects of the data may appear to contradict all suggested
specifications.

We shall describe a simple and natural geometric representation for the com-
parison of uncertainty specifications which is well suited to informative graphical
display. The approach is general, but is especially well suited to comparing alterna-
tive specifications for exchangeable multivariate samples, where the displays may
be interpreted as multi-variable residual plots on carefully chosen axes of vari-
ation. Our basic tool for developing such informative comparisons is the belief
transform for the comparison. Much of the general development may be illustrated
by comparing variance matrices. Thus, we first present the various ideas in this
context and discuss the geometric considerations underlying this comparison. We
then extend the methodology to cover comparisons between competing expectation
and variance specifications.

9.1 Comparing variance specifications

Suppose that X is a random p-dimensional vector with prior mean zero. We want
to specify the variance matrix for X, and we have two alternative possibilities, the
matrices U1, U2 say, each of full rank, for this choice. For example, U1 might be a
full, careful specification of the variance matrix, while U2 might be some pragmatic
simplification, which will greatly simplify certain analyses. Alternatively, U1 and
U2 might correspond to competing physical hypotheses for the distribution of X.

In either case, there are various comparisons that we may wish to make between
the effects of the different specifications on our beliefs about X. For each element
Y ∈ 〈X〉, we define

V 2
1
(Y ) = Var2(Y )

Var1(Y )
, (9.1)

where Var1(Y ), Var2(Y ) are the variances that we assign for Y using U1, U2,
respectively. A simple comparison that we may make is to evaluate the maximal
value of V 2

1
over 〈X〉, which we denote by

DV 2
1
(X) = max

Y∈〈X〉
V 2

1
(Y ). (9.2)

Similarly, DV 1
2
(X) is the maximal value of V 1

2
, and so the minimal value of

1/V 2
1

over 〈X〉. Thus, if DV 2
1
(X) and DV 1

2
(X) are both near 1, then there is little

predictive difference for X between U1 and U2. If either DV 2
1
(X) or DV 1

2
(X)

is large, then we may identify the corresponding elements of 〈X〉, which have
been assigned very different variances by the two specifications. The forms of
these quantities may give insights into the nature of the differences between the
two variance specifications, while the observed values of these quantities may be
informative in choosing between the two specifications.

To identify these quantities, and develop more detailed comparisons, we intro-
duce the belief transform matrix which we define as

W 2
1
= U−1

1 U2. (9.3)
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This matrix has the following property. For any constant p-vectors, a, b, we have

Cov2(a
T X, bT X) = Cov1(a

T X, (W 2
1
b)T X) (9.4)

as

Cov2(a
T X, bT X) = aT U2b = aT U1U

−1
1 U2b = aT U1W 2

1
b

= Cov1(a
T X, (W 2

1
b)T X).

We may therefore analyse the differences between the two variance specifications
by considering the eigenstructure of W 2

1
. Note that W 2

1
has a full set of orthogonal

eigenvectors, b1, . . . , bp, corresponding to eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λp > 0.

This follows as
W 2

1
b = λb,

if and only if
U
−1/2
1 U2U

−1/2
1 c = λc,

where c = U
1/2
1 b. We construct the quantities Zi = bT

i X, i = 1, . . . , p, norming
each Zi so that Var1(Zi) = 1. We call Z = (Z1, . . . , Zp) the canonical quantities
for the comparison between U1 and U2, with canonical values (λ1, . . . , λp). As,
for each i, U2bi = λiU1bi , we have bT

i U1bj = bT

i U2bj = 0 for λi �= λj , so that
we may construct the canonical quantities to be mutually uncorrelated under each
of the variance specifications U1 and U2.

For each r and Y ∈ 〈X〉, we have from (9.4) that

Cov2(Y, Zr) = λrCov1(Y, Zr). (9.5)

Conversely, any mutually uncorrelated collection of quantities, Z, satisfying (9.5)
must be the canonical quantities for the comparison. In particular, for each r ,
Var2(Zr) = λr . We may write each Y ∈ 〈X〉 as

Y =
p∑

i=1

αi(Y )Zi,

where αi(Y ) = Cov1(Y, Zi). Therefore, for any pair of elements Ỹ , Y ∈ 〈X〉, we
have from (9.5) that

Cov1(Ỹ , Y ) =
p∑

i=1

αi(Ỹ )αi(Y ), (9.6)

Cov2(Ỹ , Y ) =
p∑

i=1

λiαi(Ỹ )αi(Y ). (9.7)
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For any Y ∈ 〈X〉, we have

V 2
1
(Y ) =

∑p

i=1 λiα
2
i (Y )∑p

i=1 α2
i (Y )

. (9.8)

Therefore, V 2
1
(Y ) will be large (small) if and only if Y has large components

corresponding to eigenvectors with large (small) eigenvalues. In particular,

DV 2
1
(X) = λ1, DV 1

2
(X) = 1/λp,

corresponding to the elements Z1, Zp. More generally,

V 2
1
(Zj ) = λj = max V 2

1
(Y ) : Covi (Y, Zk) = 0, i = 1, 2, k < j.

We may make the following canonical decomposition of 〈X〉. We collect the eigen-
vectors of W 2

1
into three groups. We denote by 〈X〉+ the linear space spanned by

all the eigenvectors of W 2
1

which correspond to eigenvalues greater than 1. Each
element Y+ ∈ 〈X〉+ has V 2

1
(Y+) > 1, from (9.8). Similarly, we construct 〈X〉∗ and

〈X〉− as the corresponding linear spaces for eigenvectors with eigenvalues equal
to 1 and less than 1, respectively. Then, any Y∗ ∈ 〈X〉∗ has V 2

1
(Y∗) = 1, and any

Y− ∈ 〈X〉− has V 2
1
(Y−) < 1. 〈X〉 is the orthogonal sum of the three spaces, so that

each Y ∈ 〈X〉 may be uniquely written as the sum of three uncorrelated quantities

Y = Y+ + Y∗ + Y−,

where Y+ ∈ 〈X〉+, Y∗ ∈ 〈X〉∗, and Y− ∈ 〈X〉−. We term 〈X〉+, 〈X〉∗, and 〈X〉−
the expansion, unit, and contraction spaces for the comparison of U1 and U2. It
is often natural to compare the two variance specifications by separately analysing
the three subspaces. In particular, as the variance specification over the unit space
is the same for U1, U2, observations on quantities in this space cannot be used
to distinguish between the two specifications. However, such observations may be
particularly useful for assessing whether the two specifications are both inappro-
priate.

9.1.1 Rank-degenerate case

Consider now the more general case where either or both of the variance matrices
U1, U2 contain a null space, possibly shared. In this case it is possible to obtain
a full set of eigenvectors Z1, Z2, . . . , Zp, but for which variances under either
or both of the specifications may be zero. For the general, possibly rank-deficient
case, we need to solve the generalized eigenvalue problem

U1z = λU2z,

as described in §11.11, where the generalized eigenvectors z provide the canon-
ical quantities. This corresponds to solving for the belief transform W 2

1
, where
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U1W 2
1
= U2. Once we have obtained the generalized eigenvalues and eigenvectors,

we normalize and arrange them as follows. For convenience, we shall label the
two alternative specifications as H1 and H2.

• Let Z++ be the set of orthogonal eigenvectors such that every Zi ∈ Z++ has
positive variance under both specifications. Conventionally, we normalize each
such Zi to have variance 1 under H1, and variance λi under H2.

• Let Z+0 be the set of orthogonal eigenvectors such that every Zi ∈ Z+0 has
positive variance under H1 and zero variance under H2. Conventionally, we
normalize each such Zi to have variance 1 under H1.

• Let Z0+ be the set of orthogonal eigenvectors such that every Zi ∈ Z0+ has
positive variance under H2 and zero variance under H1. Conventionally, we
normalize each such Zi to have variance 1 under H2.

• Let Z00 be the set of orthogonal eigenvectors such that every Zi ∈ Z00 has zero
variance under both specifications.

The results (9.5)–(9.8) must now be amended as follows. For Y ∈ 〈X〉, Y has
different representations under the two specifications. However, for every Zr ∈
Z++, we have

Cov2(Y, Zr) = λrCov1(Y, Zr). (9.9)

Excluding the constant term, under H1 we may write each Y ∈ 〈X〉 as

Y (1) =
∑

Zi∈Z++
α+iZi +

∑
Zi∈Z+0

α0iZi, (9.10)

where

α+i = Cov1(Y, Zi), Zi ∈ Z++,

α0i = Cov1(Y, Zi), Zi ∈ Z+0.

Under H2 we may write each Y ∈ 〈X〉 as

Y (2) =
∑

Zi∈Z++
β+iZi +

∑
Zi∈Z0+

β0iZi, (9.11)

where

β+i = 1

λi

Cov2(Y, Zi) = α+i , Zi ∈ Z++,

β0i = Cov2(Y, Zi), Zi ∈ Z0+,

so that the first components in (9.10) and (9.11) are common. It follows that, for
any Y ∈ 〈X〉, we have

V 2
1
(Y ) =

∑
λiα

2
+i +

∑
β2

0i∑
α2
+i +

∑
α2

0i

. (9.12)
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The summary statistics DV 2
1
(·) and DV 1

2
(·) are not finite in the degenerate rank

case, so that we need to make the comparison separately over Z++, Z+0, Z0+,
and Z00.

9.1.2 Comparison of orthogonal subspaces

Many variance comparisons preserve certain qualitative features of the variance
structure. In particular, suppose that we have two vectors XA, XB of lengths p, q,
respectively, for which

Cov1(XA, XB) = Cov2(XA, XB) = 0. (9.13)

Let UA = (U1, . . . , Up) be the canonical quantities for the comparison between
specifications 1 and 2 for XA, with canonical values λA1, . . . , λAp, and WB =
(W1, . . . , Wq) and λB1, . . . , λBq be the corresponding quantities for XB . Let X =
(XA, XB)T . Any element Y ∈ 〈X〉 is of the form aT YA + bT YB , for vectors a, b

and where YA ∈ 〈XA〉, YB ∈ 〈XB〉, and therefore, for all Y ∈ 〈X〉, we have

λAiCov1(Y, Ui) = Cov2(Y, Ui), ∀i,
λBj Cov1(Y, Wj ) = Cov2(Y, Wj ), ∀j. (9.14)

Therefore, from (9.14), the collection (UA, WB) is a sequence of p + q elements of
〈X〉, mutually uncorrelated under both belief specifications, satisfying the relation
(9.5) for all Y ∈ 〈X〉, and so must be the canonical collection for the comparison,
with canonical values the collection (λAi, λBj ). Thus, for any two vectors satis-
fying (9.13), the canonical quantities and values for the combined vector are the
corresponding quantities and values for the individual sub-vectors.

9.2 Example: variance comparison

To illustrate the canonical structure for the comparison of variance matrices, and
its interpretation, we construct the following quantities. We consider two alter-
native specifications labelled H1 and H2. Suppose that there are quantities X =
X1, X2, . . . , X7 with alternative variance matrices VarH1(X) = U1 and VarH2(X) =
U2, where

U1 =




2 1 5 1 0 0 0
1 4 6 −3 0 0 0
5 6 16 −1 0 0 0
1 −3 −1 4 0 0 0
0 0 0 0 6 −4 7
0 0 0 0 −4 6 −5
0 0 0 0 7 −5 9




, (9.15)
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U2 =




2 1 3 1 0 0 0
1 2 3 −1 0 0 0
3 3 6 0 0 0 0
1 −1 0 2 0 0 0
0 0 0 0 6 0 7
0 0 0 0 0 6 −1
0 0 0 0 7 −1 9




. (9.16)

We assume, without loss of generality, that each Xi has expectation zero under
both specifications.

9.2.1 Canonical structure for the comparison

We now examine the canonical structure for comparing the two specifications. The
comparison is summarized in Table 9.1, which lists the canonical quantities Zi , and
Table 9.2, which shows the variance VarH1(Zi) of each canonical quantity under
H1, and the variance VarH2(Zi) of each canonical quantity under H2, namely the
canonical variate λi . The signs of the canonical quantities are arbitrary; for this
example we have chosen signs to accord with those obtained when we extend the
example in §9.10.

The canonical quantities, Zi , shown are orthogonal for both belief specifica-
tions, and are normed to have variance unity under H1, if possible, and otherwise
to have variance unity in H2, if possible. The canonical quantity, Z7, given for
the common null space is normed so that its squared coefficients sum to unity. We
could instead have switched the normalization so that the canonical quantities have
variance unity under H2, in which case the corresponding canonical quantities are
rescaled versions of the Zi shown, and the corresponding eigenvalues are inverted.
The canonical quantities are located to have expectation zero:

EH1(Zi) = 0, ∀i,

Table 9.1 Canonical quantities for the comparison of variance specifications.

Z1 = − 1√
2
(X1 +X2 −X3)

Z2 = − 1√
14

(X2 −X4)

Z3 = 1
4 (3X5 −X6 − 2X7)

Z4 = X5 −X7

Z5 = 1
2 (X5 +X6)

Z6 = − 1√
18

(5X1 + 4X2 − 3X3 +X4)

Z7 = − 1√
3
(X1 −X2 −X4)



300 BAYES LINEAR STATISTICS: THEORY AND METHODS

Table 9.2 Variances and covariances for the canonical quantities for the compar-
ison of variance specifications. Whenever VarH1(Zi) = 1, VarH2(Zi) = λi .

Y =∑
Xi

i VarH2 (Zi) VarH1 (Zi) CovH1 (Zi, Y ) CovH2 (Zi, Y )

1 0 1
√

81
2 0

2 3
7 1 −

√
7
2 −

√
9
14

3 1
2 1 2 1

4 1 1 −2 −2

5 3 1 3 9

6 1 0 0 −
√

49
2

7 0 0 0 0

although this is irrelevant as far as the variance comparison is concerned. The main
features of the comparison are as follows.

• The canonical structures for the two sets of quantities are orthogonal, and could
have been obtained via separate comparisons of their respective variance matri-
ces, as described in §9.1.2. The two orthogonal sets are XA = {X1, X2, X3, X4}
and XB = {X5, X6, X7}, as is obvious from the direct specification (9.15). Equiv-
alently, from Table 9.1, the collections of canonical quantities

ZA = {Z1, Z2, Z6, Z7} and ZB = {Z3, Z4, Z5}
contain respectively only elements from XA and XB .

• The quantity Z1 ∝ X1 +X2 −X3 has been assigned a variance of unity under
H1 and zero under H2, indicating a qualitative difference in specification.

• The quantities Z2 ∝ X2 −X4 and Z3 ∝ 3X5 +X6 − 2X7 have been assigned a
smaller variance under H2 than under H1.

• The quantity Z4 ∝ X5 −X7 has been assigned a variance of unity under both
H1 and H2, so that the specifications match in this respect.

• The quantity Z5 ∝ X5 +X6 has been assigned a larger variance under H2 than
under H1.

• The quantity Z6 ∝ 5X1 + 4X2 − 3X3 +X4 has been assigned a variance of
unity under H2 and zero under H1, indicating a qualitative difference in speci-
fication.

• The quantity Z7 ∝ X1 −X2 −X4 has been assigned a variance of zero under
both H1 and H2, so that the specifications match in this respect.
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For this example, we have eigenvalues equal to zero in one space and non-zero
in the alternative space, so that DV 2

1
(X) and DV 1

2
(X) are infinitely large. For

the non-degenerate part of the specification, the expansion space 〈X〉+ is spanned
by Z5; the unit space 〈X〉∗ is spanned by Z4; and the contraction space 〈X〉− is
spanned by {Z2, Z3}. With respect to the separation for degeneracy, in the notation
of §9.1.1 we have

Z++ = {Z2, Z3, Z4, Z5}, Z+0 = {Z1}, Z0+ = {Z6}, Z00 = {Z7}.

9.2.2 Consistency checks

We will consider more specifically the implication of observed data later in this
chapter. However, a canonical quantity which has a variance of zero under one
specification and a positive variance under another specification corresponds to a
qualitative difference between specifications which can be directly checked when
there are observed data available. This follows as data must be consistent with
beliefs specified about them (§4.2, §12.3), so that a variance of zero for a canon-
ical quantity implies that its observed value cannot differ from its expectation.
For example, an observation of Z6 not equal to zero would immediately contra-
dict specification H1, but would be consistent with specification H2, whereas an
observation of Z1 not equal to its expectation under H2 would contradict spec-
ification H2, but would be consistent with specification H1. An observation of
Z7 not equal to its expectation under both H1 and H2 would contradict both
specifications.

There may be occasions where some eigenvalues λi are calculated to be tiny
or huge, perhaps as a result of rounding error. Because of machine computation
limitations, it can be impossible to determine whether a small calculated eigenvalue
represents a small but genuine positive variance, or a zero variance plus rounding
error. In such cases the information that the canonical structure can provide, in
relation to the distinction between qualitative and quantitative structure, is not so
sharp. For some of these occasions it may be possible to re-examine the inputs
to the prior specification process, in order to ascertain whether there is genuine
intended structural degeneracy.

9.2.3 Comparisons for further constructed quantities

It is simple to compare specifications for any quantity Y ∈ 〈X〉, via (9.8) or, in the
degenerate rank case, via (9.12). For example, suppose that our main interest is in
the sum Y = X1 + . . .+X7. The latter columns of Table 9.2 show the covariances
of Y with each canonical quantity Zi under both specifications. Observe that for
the quantities Zi ∈ Z++ with positive variances under both specifications we can
verify (9.9), that

CovH1(Y, Zi) = λiCovH2(Y, Zi).
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We may also calculate, via (9.12), that

V 2
1
(Y ) = [ 3

7 × 7
2 + 1

2 × 4+ 1× 4+ 3× 9]+ 49
2

[ 7
2 + 4+ 4+ 9]+ 81

2

= 34.5+ 24.5

20.5+ 40.5

= 0.9672.

Thus, overall the variance for Y is similar under the two specifications, but notice
that the variance in the shared space Z++ is rather higher (34.5 compared to 20.5)
under H2; and that this is counterbalanced by differences in variance (24.5, 40.5)
for qualitatively different aspects of the specifications.

9.2.4 Construction of specifications

The specifications (9.15) were deliberately chosen to exhibit a number of fea-
tures, and were constructed as follows. For both specifications we have XA =
{X1, X2, X3, X4} uncorrelated with XB = {X5, X6, X7}. For XB , we constructed
three uncorrelated quantities F1, F2, F3 with respective variances 1, 1, 1 under H1
and 3, 1, 0.5 under H2, and then constructed

X5 = F1 + F2 + 2F3, X6 = F1 − F2 − 2F3, X7 = F1 + 2F2 + 2F3.

For the set XB , the specifications differ quantitatively (the underlying variances
differ) but not qualitatively (the canonical structure is the same). For the set XA

we began with quantities X1 and X2 with specifications as shown in (9.15), and
then assigned

H1 : X3 = 2X1 +X2, X4 = X1 −X2,

H2 : X3 = X1 +X2, X4 = X1 −X2,

so that each of the specifications for the set XA is rank-deficient. Note that the
alternative specifications for the set XA differ quantitatively (variances differ) and
qualitatively (the eigenstructures of the variance matrices U1 and U2 differ). The
constructions are, as might be expected, clearly exhibited in the canonical structure
summarized in Table 9.1.

9.3 Comparing many variance specifications

Suppose now that we want to compare k possible variance specifications,
U1, . . . , Uk , each of full rank. For any pair Ui, Uj we construct the belief transform
matrix Wj

i
. The basic property of such collections of belief transform matrices is

that they are multiplicative, namely, for any i, j, k,

Wk
i
= Wj

i
Wk

j
, (9.17)
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as
Wk

i
= U−1

i Uk = U−1
i UjU

−1
j Uk = Wj

i
Wk

j
.

In particular, if Z is an eigenvector of both Wj
i

and Wk
j
, with eigenvalues λ j

i
, λ k

j

respectively, then Z is also an eigenvector of Wk
i
, with eigenvalue λk

i
= λ j

i
λ k

j
.

The relationship is the same in the rank-deficient case: if UiWj
i
= Uj , then

UiWj
i
W k

j
= UjWk

j
= Uk , so that Wj

i
Wk

j
= Wk

i
.

In general, to compare the collection of variance matrices we need to compare
all pairs. For example, if we decide that there are substantial differences between
U1 and U2, and that there are substantial differences between U2 and U3, it does
not follow, without further analysis, that there are substantial differences between
U1 and U3. However, there are certain special cases where we can draw such
conclusions, as follows.

We say that the sequence of variance matrices U1, . . . , Uk is a nested sequence
if we can choose a basis Z1, . . . , Zp for 〈X〉 with the property that each Zj

is an eigenvector of each Wi+1
i

with eigenvalue λ i+1
i j

and either λ i+1
i j
≥ 1, i =

1, . . . , p − 1, or λ i+1
i

j
≤ 1, i = 1, . . . , p − 1. In such cases, we can form three

disjoint linear subspaces: 〈X〉+(1...k) with basis vectors all those Zj for which
λ i+1

i
j

> 1, for some i, 〈X〉∗(1...k) whose basis is those Zj for which λ i+1
i

j
= 1, for

all i, and 〈X〉−(1...k) whose basis is those Zj for which λ i+1
i j

< 1, for some i.
We term 〈X〉+(i,j), 〈X〉∗(i,j), 〈X〉−(i,j) the expansion, unit and contraction

spaces for the comparison of Ui and Uj . It follows from (9.17) that if the sequence
is nested, then,

(i) for each i < j , 〈X〉+(i,j) ⊆ 〈X〉+(1...k), 〈X〉−(i,j) ⊆ 〈X〉−(1...k);

(ii) for any Y ∈ 〈X〉+(1...k), 〈X〉−(1...k), 〈X〉∗(1...k), respectively, it is the case that
the sequence Var1(Y ), . . . , Vark(Y ) is monotone non-decreasing, monotone
non-increasing, and constant, respectively.

Therefore, a nested sequence of variance matrices may be compared by the
sequence of ordered pairwise comparisons.

A special type of nested comparison is the orthogonal comparison. We say that
the sequence of variance matrices U1, . . . , Uk is orthogonal if the sequence is
nested with the further property that each collection

〈X〉+(i,i+1), i = 1, . . . , k − 1,

and each collection
〈X〉−(i,i+1), i = 1, . . . , k − 1,

is uncorrelated with each other collection of either type. If U1, . . . , Uk are orthog-
onal, then the comparison between U1 and Uk can be further decomposed into the
k − 1 separate pairwise comparisons, over the collections of mutually orthogonal
quantities.
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9.4 Example: comparing some simple nested hypotheses

To illustrate the above ideas, we develop the following comparisons. We have a
vector of observations Y = (Y1, . . . , Yn). We have three possible belief specifi-
cations for Y . In each case, E(Y ) = 0. The three variance specifications are as
follows.

H1: The sequence is uncorrelated, with constant variance v1.

H2: The sequence is exchangeable, with constant variance v2, and positive covari-
ance c2 between each pair of elements of Y .

H3: Suppose that each observation Yi was made at time point ti . The origin for
time is chosen so that

∑
ti = 0. We consider that there might be a trend

in the observations. Therefore, beliefs about Y are given by the regression
model

Yi = m+ bti + ei,

where m, b, e1, . . . , en are uncorrelated random quantities with, for all i,

E(m) = E(b) = E(ei) = 0, Var(m) = vm, Var(b) = vb, Var(ei) = ve.

We first compare H1 and H2. Under H1 and H2 the variance matrices for Y

are V1 and V2, given by

V1 = v1In, V2 = w2In + c2Jn,

where w2 = v2 − c2 and Jn is the matrix each of whose entries is 1. The corre-
sponding belief transform matrix is

T 2
1
= V −1

1 V2 = 1

v1
(w2In + c2Jn).

The eigenvalues of T 2
1

are

λ1 = w2 + nc2

v1
, λ2 = λ3 = . . . = λn = v2 − c2

v1
.

The normalized eigenvector corresponding to λ1 is

Z1 =
√

n

v1
Ȳn,

where Ȳn = (Y1 + . . .+ Yn)/n. The remaining eigenvectors are any (n− 1) mutu-
ally uncorrelated linear combinations

∑n
i=1 aiYi with

∑n
i=1 ai = 0. For example,

we might choose the cumulative residuals

Rj = Yj − Y1 + . . .+ Yj−1

j − 1
,
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normalized to variance 1 under H1; these are the contrasts deriving from the
Helmert matrix: see Definition 11.58.

In particular, if w2 = v1, then there is a single informative direction, Z1, for
distinguishing between H1 and H2. Note that w2 is the residual variance for each
Yi , namely the common value of Var(Ri (Y )) in the exchangeability representation
Yi =M(Y )+Ri (Y ). Thus the case where w2 = v1 corresponds to the standard
location shift problem, where under H2 an unknown fixed constant, with prior
mean zero, has been added to each Yi .

We now compare H2 and H3. Let us suppose that v1 = w2 = ve, for simplicity.
Under H3, the variance matrix for Y is

V3 = veIn + vmJn + wbtt
T ,

where wb = vb + Var(b). Therefore, the matrix form for the transform T 3
2

is

T 3
2
= V −1

2 V3 = 1

ve

(In − kJn)(veIn + vmJn + wbtt
T ),

where k = um/(num + ve). Therefore, as Jntt
T = 0,

T 3
2
= In + dJn + rttT ,

where d = (vm − um)/(num + ve) and r = wb/ve. There are two eigenvalues not
equal to one, namely

λt = 1+ t(2)r, λd = 1+ nd,

corresponding to eigenvectors Ȳt = (t1Y1 + . . .+ tnYn)/n, and Ȳn, respectively.
Finally, we compare H1 with H3, which we shall form from the comparison

between H1 and H2 and the comparison between H2 and H3, using the relation

T 3
1
= T 2

1
T 3

2
.

As T 2
1

and T 3
2

have the same eigenvectors, T 3
1

also has the same eigenvec-

tors. Therefore, the eigenvectors of T 3
1

with non-unit eigenvalues are Ȳt , Ȳn with
eigenvalues 1+ t(2)r and (1+ n(vm/ve))(1+ nd), respectively. Note that the com-
parisons are nested, so that differences between H1 and H2 or between H2 and H3
imply differences between H1 and H3. If, further, the uncertainty for the level is the
same under both H2 and H3, i.e. if vm = um, then λd = 1 and the comparisons are
orthogonal. In this case, the comparison between H1 and H3 can be decomposed
into the comparison based solely on Ȳn, which distinguishes between H1 and H2,
and the comparison based solely on Ȳt , which distinguishes between H2 and H3.

In this comparison, Ȳt , Ȳn form the expansion space, there is no contraction
space and the unit space is spanned by the residuals

Ri = Yi − Ȳn − ti/t(2)Ȳt ,
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which may be plotted for diagnostic purposes. The eigenvectors do not change
if we allow the error variances in each hypothesis to differ. For example, if we
reduce the variance of each ei in H3 by some fixed amount, then the comparison
is still nested but all of the eigenvectors within the residual space now have a
common eigenvalue less than one, and so comprise the contraction space for the
comparison.

Note that the qualitative features of the analysis do not depend on the precise
numerical quantification for the various constants in the three belief specifica-
tions. Thus, the belief transform directs us qualitatively, through the form of the
eigenvectors, to the general types of features which distinguish between the var-
ious hypotheses and then, through the magnitudes of the eigenvalues, suggests
quantitative guidelines for assessing these differences.

9.5 General belief transforms

The comparison of variance matrices is a special case of a general geometric form
for comparing inner products which also includes the adjusted belief transforms
that we have discussed in earlier chapters. We now describe this general form.

9.5.1 General belief transforms

Suppose that we have a closed inner product space, [B], of linear combinations of
random quantities with inner product (·, ·). For example, the inner product might
be covariance, having identified with zero all elements of [B] with zero vari-
ance. Using this inner product, we define the norm ‖X‖ = √(X, X), for example
standard deviation. Suppose that we want to compare the inner product with a
symmetric positive semi-definite sesquilinear (SPSDS) functional {·, ·} on [B]. An
SPSDS functional {·, ·} satisfies all of the properties of an inner product over
[B], with the exception that we only require that {Y, Y } ≥ 0 for each Y ∈ [B];
for example, {Y, Z} might be the covariance between Y and Z for some variance
specification of less than full rank.

We say that {·, ·} is bounded if the infimum of the values k for which

k‖Y‖‖Z‖ ≥ |{Y, Z}|, ∀Y, Z ∈ [B]

is finite. This infimum is the norm of {·, ·}. A necessary and sufficient condition
for {·, ·} to be a bounded SPSDS functional on [B] is that {·, ·} is of the form

{X, Y } = (X, SY ), (9.18)

where S is a bounded self-adjoint operator over [B]. The norm of S in (9.18) is
equal to the norm of {·, ·}. Therefore each choice {·, ·} may be uniquely identified
with an operator S which we term the (belief) transform for (·, ·) associated with
{·, ·}.

We showed, in §9.1, how to construct the matrix representation for such a
comparison, when comparing two variance specifications for a finite vector via the



BELIEF COMPARISON 307

belief transform matrix, and property (9.4) is the finite-dimensional representation
of the general relation (9.18) in this case. Provided that [B] is finite-dimensional,
we may always construct S by a similar approach to (9.3), as follows. We select a
minimal basis H = (H1, . . . , Hr) for [B]. We construct the matrix representation
V for (·, ·) with respect to H , so that V = (vij ), the r × r matrix whose (i, j)th
entry is vij = (Hi, Hj ). We similarly construct the matrix representation U for
{·, ·} with respect to H , namely U = (uij ), where uij = {Hi, Hj }. Let

W = V −1U.

W is the matrix representation of S with respect to the basis H . To see this, write
any X, Y ∈ 〈B〉 in the coordinate system of H , i.e. if

X =
∑

i

xiHi and Y =
∑

yiHi,

then represent X, Y as

X = (x1, . . . , xr) and Y = (y1, . . . , yr).

We then have, as required,

{X, Y } = XT UY = XT V V −1UY = XT V WY = (X, SY ).

9.5.2 Properties of general belief transforms

If [B] has finite dimension r , then we can choose as basis for [B] the r orthogonal
eigenvectors, Z1, . . . , Zr , of S, each with norm 1. For any X ∈ [B], we have
X =∑r

i=1(X, Zi)Zi , so that

{X, Y } =
r∑

i=1

(X, Zi)(Y, Zi){Zi, Zi} =
r∑

i=1

λi(X, Zi)(Y, Zi).

We may construct the ratio of quadratic forms as

V (X, Y ) = {X, Y }
(X, Y )

=
∑r

i=1 λi(X, Zi)(Y, Zi)∑r
i=1(X, Zi)(Y, Zi)

. (9.19)

In particular, V (X) = V (X, X) will be large (small) if and only if X has large
components corresponding to eigenvectors with large (small) eigenvalues. In par-
ticular, the largest value of V (X) over all elements of [B] which are orthogonal to
Z1, . . . , Zs is λs+1 corresponding to Zs+1, and the smallest value of V (X) over
all elements of [B] orthogonal to Zs, . . . , Zr is λs−1 corresponding to Zs−1. The
norm of S is λ1.

If S has a full set of eigenvectors, then we may make the canonical decompo-
sition of [B] into the expansion, unit, and contraction subspaces [B]+, [B]∗, and
[B]−, corresponding to the subsets of eigenvectors of S with eigenvalues greater
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than, equal to, or less than one, respectively. The value of V (X) is greater than 1,
equal to 1, and less than 1 for X in [B]+, [B]∗, and [B]−, respectively.

Now suppose that we have two SPSDS functionals {·, ·}1, {·, ·}2, that we want
to compare with the inner product (·, ·). We may define the two transforms S1, S2
to compare {·, ·}1, {·, ·}2 with (·, ·). We may further define the transform S 2

1
for

comparing {·, ·}1 with {·, ·}2, provided that {·, ·}2 is bounded with respect to {·, ·}1
and in particular that the zero elements of {·, ·}1 are contained in the zero elements
of {·, ·}2. The belief transforms are multiplicative, namely

S2 = S1S 2
1
. (9.20)

This follows as, for all X, Y ∈ [B],

(X, S2(Y )) = {X, Y }2 = {X, S 2
1
(Y )}1 = (X, S1(S 2

1
(Y ))).

Thus, an eigenvector of S1 and S 2
1

with eigenvalues λ and µ respectively must also
be an eigenvector of S2, with eigenvalue λµ. As such, the transform S 2

1
allows

us to relate the SPSDS functional {·, ·}2 to the original inner product (·, ·) through
the intermediate functional {·, ·}1. This is important when we wish to create the
transform S2 incrementally or when we wish to separate the comparison between
{·, ·}2 and (·, ·) into component parts.

Suppose that we wish to compare a sequence of SPSDS functionals

{·, ·}1, . . . , {·, ·}k.

We term [B]+(i,j), [B]∗(i,j), and [B]−(i,j) the expansion, unit, and contraction
spaces for the comparison of {·, ·}i and {·, ·}j .

As for the comparison of variance matrices, we say that the sequence of SPSDS
functionals is a nested sequence if we can choose a basis Z1, . . . , Zp for [B] with
the property that each Zj is an eigenvector of each S i+1

i
with eigenvalue λij and

either

λij ≥ 1, i = 1, . . . , p − 1, or λij ≤ 1, i = 1, . . . , p − 1.

In such cases, we can form three disjoint linear subspaces: 〈B〉+(1...k) with basis
vectors all those Zj for which λij > 1, for some i, 〈B〉∗(1...k) whose basis is those
Zj for which λij = 1, for all i, and 〈B〉−(1...k) whose basis is those Zj for which
λij < 1, for some i.

Property 9.1 (Properties of nested sequences) If the sequence is nested, then,
from (9.20),

9.1.1: for each i < j ,

[B]+(i,j) ⊆ [B]+(1...k), [B]−(i,j) ⊆ [B]−(1...k);
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9.1.2: for any Y ∈ [B]+(1...k), 〈B〉−(1...k), 〈B〉∗(1...k), respectively, the sequence

{Y, Y }1, . . . , {Y, Y }k
is monotone non-decreasing, monotone non-increasing, and constant, respec-
tively.

Therefore, as for the comparison of variance matrices, a nested sequence of SPSDS
functionals may be compared by the sequence of ordered pairwise comparisons.

We say that the sequence of SPSDS functionals is orthogonal if the sequence
is nested with the further property that each collection

〈B〉+(i,i+1), i = 1, . . . , k − 1,

and each collection
〈B〉−(i,i+1), i = 1, . . . , k − 1,

is uncorrelated with each other collection of either type. If the functionals are
orthogonal, then the comparison between functional 1 and k can be further decom-
posed into the k − 1 separate pairwise comparisons, over the collections of mutually
orthogonal quantities.

9.5.3 Adjusted belief transforms as general belief transforms

In previous chapters, we introduced the adjusted belief transform as a way to
summarize the effect of a belief adjustment. If we are adjusting beliefs about a
collection B by observation of a collection D, then the adjusted belief transform
SB:D is defined by the relation that, for any X, Y ∈ [B],

CovD(X, Y ) = Cov(X, SB:D(Y )).

By comparison with (9.18), SB:D is the belief transform for the inner product
(X, Y ) = Cov(X, Y ), associated with the SPSDS form (X, Y )D = CovD(X, Y ).
Therefore, adjusted belief transforms are a special case of the general transforms
described above. Further, we see that we may define such an adjustment transform
however we choose to assess the adjusted covariance function.

Adjusted belief transforms inherit all of the properties of general belief trans-
forms. In particular, suppose that we adjust B by the two collections D1 and D2.
We have, from (5.15), the additive representation

TB:(D1∪D2) = TB:D1 + TB:[D2/D1], (9.21)

where TB:D = I− SB:D is the resolution transform. We have also, from (5.27), the
multiplicative form corresponding to the general form (9.20),

SB:(D1∪D2) = SB:D1SB:D2(D1), (9.22)
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where SB:D2(D1) is the relative adjusted belief transform for [B/D1] given D2,
satisfying

CovD1∪D2(X, Y ) = CovD1(X, SB:D2(D1)(Y )). (9.23)

Note that combining (9.21) and (9.22) gives the relation

SB:D1TB:D2(D1) = TB:[D2/D1] (9.24)

where TB:D2(D1) = I− SB:D2(D1). Therefore, relations (9.21), (9.22), (9.24) allow
us to move between the additive and multiplicative representations as required. In
particular, we may recreate the adjusted belief transform for the combined effect
of adjustment by D1 ∪D2 from the marginal effects of D1 and the adjusted effect
of D2, which allows efficient local computation of such transforms, as we shall
describe in the following chapter.

9.5.4 Example: adjustment of exchangeable
structures

As a simple example of the representation of multiplicative forms, suppose that
we have an exchangeable sample of p-dimensional vectors Y1, . . . , Yn from the
representation Yi =M(Y )+Ri (Y ). We adjust [M(Y )] by Ȳn, the sample average
of the n vectors. We then take a further sample, Yn+1, . . . , Yn+m. Let Sr be the
adjustment transform based on a sample of size r , and let Ss[r] be the adjustment
transform based on a sample of size s, given a prior sample of size r , as defined
by (9.23). We have, from (9.22), for any m, n, that

Sn+m = SnSm[n]. (9.25)

As from Theorem 6.5, Sn, Sn+m have the same eigenvectors, it follows from
(9.25) that Sm[n] must have the same set of eigenvectors as each Sn. Equivalently
the eigenvectors of Tm[n] = I− Sm[n] are the same as the eigenvectors of Tn, for
each m, n. If, for Tn, Tm[n], the eigenvalue corresponding to eigenvector W is
λ(n), λm[n], respectively, then from (9.25), we have

(1− λ(m+n)) = (1− λ(n))(1− λ(m[n])). (9.26)

As, from (6.57),

λ(n) = nλ(1)

(n− 1)λ(1) + 1
, (9.27)

we obtain, from (9.26), that, for each n, the eigenvalue of the resolution transform
T1[n] corresponding to W is

λ1[n] = λ(1)

nλ(1) + 1
, (9.28)

and the corresponding eigenvalue of Tm[n] is

λm[n] = mλ1[n]

(m− 1)λ1[n] + 1
. (9.29)
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Comparing (9.27) with (9.29), we see that the only difference between Tm and
Tm[n] is that, for the latter, each eigenvalue λ(1) is replaced by the corresponding
value λ1[n]. As λ1[n] is a decreasing function of n, the proportion of the remaining
variance which we may remove with a further sample of m, given a previous sample
of n, is a decreasing function of n for each eigenvector. An interesting feature of
this function is that the change in the resolved precision, i.e. the difference in the
reciprocal of the eigenvalue, is the same in all components, namely, for each λ,

n = 1

λ1[n]
− 1

λ
.

9.5.5 Example: analysing exchangeable regressions

In §6.14.3 we found the canonical resolutions for this example: λ1(1) = 0.6032,
λ2(1) = 0.2976. Our actual sample size for this problem is n = 3, corresponding
to canonical resolutions λ1(3) = 0.8202 (6.83) and λ2(3) = 0.5597 (6.84). These
imply that we resolve at least 56% of the variation for every linear combination
of the mean components. Suppose that for planning purposes we wish to find a
further sample of size m to improve this percentage to 90% of original variation.
We can simply follow the method based on simple exchangeability, giving (6.89).
This requires an overall sample size of 22 to achieve 90% reduction in variation
across the board, suggesting that we need to take m = 22− 3 = 19.

Alternatively, we can use the methods of this section. Our interest is in the
minimal canonical resolution, so we drop the subscript denoting that this is the
second of the two canonical resolutions for the two-dimensional space of mean
components of interest. We have λ(1) = 0.2976 and so, using (9.28),

λ1[3] = λ(1)

3λ(1) + 1
= 0.1572.

This is thus the minimal canonical resolution for T1[3], the resolution transform
for a further adjustment by a sample of size m = 1 given an existing adjustment
by a sample of size n = 3. Relatively, we wish to resolve at least 90% of original
variation. Given our present resolution of 55.97% given n = 3, we thus need to
resolve a further

0.9− 0.5597

1− 0.5597
= 77.29%

of remaining variation. Corollary 6.6 suggests that we need to take

m >
0.7729

1− 0.7729

1− 0.1572

0.1572
= 18.24, (9.30)

i.e. a sample of size m = 19. This, of course, the answer we obtained above. Note,
in particular, the similarity with (6.89). This example emphasizes two features.
First, once we have obtained the relative transform T1[·] and its canonical structure,
we have available the full array of methods offered by exploiting exchangeability,
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as result (9.27) is functionally identical to result (9.29). Secondly, this relative
transform is itself deduced straightforwardly from the original, so that we may
move easily between initial and relative adjustments.

9.6 Comparing expectations and variances

We now extend the comparison of beliefs to quantities with different expecta-
tions and variances under each belief specification. Suppose that X is a random
p-vector with expectation EH1(X) and variance VarH1(X) under specification H1,
and expectation EH2(X) and variance VarH2(X) under specification H2. Initially
we suppose that the variance matrices VarH1(X) and VarH2(X) are full rank. A
natural comparison of the two expectation specifications is as follows.

Definition 9.2 The bearings for the belief comparison are the elements G 2
1
, G 1

2
∈

〈X〉 with the properties

[EH2(G 2
1
)− EH1(G 2

1
)]2

VarH1(G 2
1
)

= max
Y∈〈X〉

[EH2(Y )− EH1(Y )]2

VarH1(Y )
= DE 2

1
(X), (9.31)

[EH1(G 1
2
)− EH2(G 1

2
)]2

VarH2(G 1
2
)

= max
Y∈〈X〉

[EH1(Y )− EH2(Y )]2

VarH2(Y )
= DE 1

2
(X). (9.32)

Informally, if DE 2
1
(X), DE 1

2
(X) are both very large, then we would expect to

be able to distinguish between the two belief specifications by observation of the
vector X, and G 2

1
, G 1

2
identify the aspects of X which are most informative for

the comparison.
We construct the quantities G 2

1
, G 1

2
which achieve these maximal changes as

linear combinations of the canonical quantities for the comparison. Let Z1, . . . , Zp

be the canonical quantities for the comparison between the variance matrices under
H1 and H2, normed to variance one under H1, with corresponding canonical values
λ1, . . . , λp. The signs of the canonical quantities are arbitrary. For future conve-
nience we choose the sign of each Zi so that EH2(Zi) ≥ EH1(Zi). We shall centre
each Zi so that EH1(Zi) = 0. We address the algebraic implementation in §12.13.1.
Similarly, let Z̃1, . . . , Z̃p be the canonical quantities for the reverse comparison
between H2 and H1, normed to variance one under H2, centred so that each
EH2(Z̃i) = 0, with corresponding canonical values λ̃1, . . . , λ̃p. The sign of each
Z̃i is chosen so that EH1(Z̃i) ≥ EH2(Z̃i). The relationship between the canonical
quantities for the two comparisons is that

λ̃i = 1

λi

,

Z̃i = −1√
λi

(Zi − EH2(Zi)).
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Note that we have

EH1(Z̃i) = 1√
λi

EH2(Zi).

We construct G 2
1

and G 1
2

as follows:

G 2
1
=

p∑
i=1

[EH2(Zi)− EH1(Zi)]Zi =
p∑

i=1

EH2(Zi)Zi (9.33)

and

G 1
2
=

p∑
i=1

[EH1(Z̃i)− EH2(Z̃i)]Z̃i =
p∑

i=1

EH1(Z̃i)Z̃i (9.34)

= −
p∑

i=1

1

λi

EH2(Zi)Zi +
p∑

i=1

1

λi

EH2(Zi)
2. (9.35)

To show that G 2
1

and G 1
2
, constructed as above, do indeed maximize the normed

expectation differences, we first derive the following basic property of our con-
struction. We can write any Y ∈ 〈X〉 as Y =∑p

i=1 aiZi , so that we have

CovH1(G 2
1
, Y ) =

p∑
i=1

aiCovH1([EH2(Zi)− EH1(Zi)]Zi, Zi)

=
p∑

i=1

ai[EH2(Zi)− EH1(Zi)] = EH2(Y )− EH1(Y ).

We may make a similar calculation for G 1
2
, so that we have the twin properties

that, for all Y ∈ 〈X〉,

EH2(Y )− EH1(Y ) = CovH1(Y, G 2
1
) (9.36)

= −CovH2(Y, G 1
2
). (9.37)

We may therefore deduce that G 2
1
, as constructed by (9.33), is indeed the element

of 〈X〉 with maximal normed difference in expectation, under H1 as defined by
(9.31), as we have

DE 2
1
(X) = max

Y∈〈X〉
[EH2(Y )− EH1(Y )]2

VarH1(Y )

= max
Y∈〈X〉

CovH1(Y, G 2
1
)2

VarH1(Y )
= VarH1(G 2

1
).
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Note, further, that

VarH1(G 2
1
) =

p∑
i=1

[EH2(Zi)− EH1(Zi)]
2

= EH2(G 2
1
)− EH1(G 2

1
)

= −CovH2(G 2
1
, G 1

2
). (9.38)

Similarly, G 1
2

is the element of 〈X〉 with maximal normed difference in expectation,
under H2 and

DE 1
2
(X) = VarH2(G 1

2
) =

p∑
i=1

1

λi

[EH2(Zi)− EH1(Zi)]
2

= EH1(G 1
2
)− EH2(G 1

2
) (9.39)

= −CovH1(G 2
1
, G 1

2
). (9.40)

We call G 2
1
, G 1

2
the bearings for the belief comparison by analogy with the

development described in §4.6, as, from (9.36), (9.37), for any Y in 〈X〉 which is
uncorrelated with G 2

1
, under specification H1, there is no change in the expectation

of Y in moving from specification H1 to specification H2, and similarly for G 1
2
.

Note the formal similarity of (9.33), (9.34) to (4.56), the construction of the
bearing for a belief adjustment. This corresponds to the interpretation of the bearing
for a belief adjustment as the bearing for the belief comparison between the prior
and the adjusted version of beliefs over X.

9.7 Geometric interpretation

The bearings for the belief comparison arise naturally within the Hilbert space
formalism as follows. Variance and covariance for full rank variance specifications
are represented through the covariance inner products given by

(Xj , Xk)Hi
= CovHi

(Xj , Xk), Xj , Xk ∈ 〈X〉, i = 1, 2. (9.41)

We write I(X, H1) and I(X, H2) to denote these inner product spaces. Define f 2
1

by
f 2

1
(Y ) = EH2(Y )− EH1(Y ), (9.42)

so that f 2
1

is a linear functional on I(X, H1). Provided that f 2
1

is bounded, from the
Riesz representation for linear functionals (see §4.10) we can construct a unique
vector G 2

1
in I(X, H1) satisfying

f 2
1
(Y ) = (Y, G 2

1
)H1 , ∀Y ∈ 〈X〉. (9.43)
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In particular, for the Bayes linear problems that we are mainly concerned with in
the present work, 〈X〉 has a finite number of elements, so that the functional f 2

1
must be bounded, and G 2

1
satisfying (9.43) must exist. Then, as G 2

1
∈ I(X, H1),

we must be able to write G 2
1
=∑p

i=1 aiZi , for scalars a1, . . . , ap. We have, from
this representation, that

CovH1(G 2
1
, Zj ) =

p∑
i=1

aiCovH1(Zi, Zj ) = aj ,

so that
aj = CovH1(G 2

1
, Zj ) = f 2

1
(Zj )

by (9.36). This gives the representation

G 2
1
=

p∑
i=1

f 2
1
(Zi)Zi. (9.44)

9.8 Residual forms for mean and variance comparisons

It is often helpful to transform X so as to separate out, as far as is possible, the
differences in the specifications which arise from differences in the mean speci-
fication from those corresponding to differences in the variance specification. A
simple construction for this purpose is as follows.

Let f = (f1, . . . , fp), where fi = f 2
1
(Zi) = EH2(Zi)− EH1(Zi). Construct

W = (W1, . . . , Wp−1) as any vector of (p − 1) linear combinations
∑

i cjiZi ,
where c1, . . . , cp−1 are a set of p − 1 mutually orthogonal vectors, cj =
(cj1, . . . , cjp), each normed so that cT

j cj = 1 and chosen so that cT

j f = 0 for
each j . W is uncorrelated with G 2

1
under H1, but not necessarily under H2. We

have
EH1(W) = EH2(W),

as, for each i,

f 2
1
(Wi) = EH2(Wi)− EH1(Wi) = cT

i EH2(Z)− cT

i EH1(Z) = cT

i f = 0.

Therefore, instead of assessing the canonical quantities for the comparison between
the two specifications over X, we may prefer to transform X to (G 2

1
, W), so that

all the differences in the mean specification are expressed in the first component,
G 2

1
. We may then derive the canonical quantities for the comparison between H1

and H2 over W , and make a separate comparison for the scalar G 2
1

comparing the
mean and variance under each specification. Equivalently, if our preference is to
make a comparison relative to H2, we can transform X using instead G 1

2
.

The above construction is a special case of a general approach for separating
out mean and variance comparisons. We say that X is expressed in (mean, resid-
ual) or (M, R) form, X+ = (M, R1, . . . , Rp−1)

T , for the comparison of the two
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specifications, if X+ is an orthogonal transformation of X for which EH1(Ri) =
EH2(Ri), i = 1, 2, . . . , p − 1. Thus, all the differences in the mean specification
are expressed in the first component, M , of X+. We call R a residual form for the
comparison between the two specifications. For any such representation, we may
derive the canonical quantities for the comparison over R, and separately compare
the mean and variance specifications over M .

We may generate a wide class of such representations as follows. Choose a
variance matrix, V , for X, Choose any collection of p quantities Ji = jT

i X, which
are mutually uncorrelated under V and scaled so that each has variance one under
V . Then, we may proceed as in the construction of (G 2

1
, W) and define

MV =
∑

i

f 2
1
(Ji)Ji . (9.45)

We term MV the mean direction with respect to V , as, for any Y ∈ 〈X〉, we have

CovV (MV , Y ) = EH2(Y )− EH1(Y ) (9.46)

so that
CovV (Y, MV ) = 0 ⇔ EH1(Y ) = EH2(Y ). (9.47)

Therefore, MV is the element J which maximizes

DV (J ) = [EH2(H)− EH1(J )]2

VarV (J )
(9.48)

over all J ∈ 〈X〉 with VarV (J ) > 0, as, for each such J ,

DV (J ) = [CovV (MV , J )]2

VarV (J )
. (9.49)

Thus, suppose that we select any variance matrix V , construct the quantity MV and
construct another collection of p − 1 random quantities RV1 , . . . , RVp−1 uncorre-
lated with MV under V . Then, from (9.47), the vector

(MV , RV1, . . . , RVp−1)

must be in (M, R) form for comparing the two mean and variance specifications.
Informally, this representation may be viewed as the particular choice of (M, R)
forms which gives the sharpest mean discrepancy evaluation according to variance
specification V .

A particular class of choices of interest is the collection

Vα = αVarH1(X)+ (1− α)VarH2(X), (9.50)

which allows us to norm according to a weighted combination of the two variance
specifications. The vector Mα = MVα may be constructed as

Mα =
∑

i

fi

α + (1− α)λi

Zi, (9.51)
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with

E1(Mα) = 0, Var1(Mα) =
∑[

fi

α + (1− α)λi

]2

,

E2(Mα) =
∑ f 2

i

α + (1− α)λi

, Var2(Mα) =
∑

λi

[
fi

α + (1− α)λi

]2

.

Observe that the construction (G 2
1
, W) corresponds to the choice Mα = M1, cor-

responding to V = VarH1(X). Similarly, setting α = 0 corresponds to the choice
V = VarH2(X). Varying α from one to zero therefore provides comparisons which
are sharp for H1 and H2 separately, or for both H1, H2 jointly, and α = 0.5 is a
natural choice for such an intermediate display. Sometimes, the choices for MV

will be roughly similar for each α. However, if fi decreases with i then it may
be useful to compare different choices of α. As a somewhat extreme example, if
p = 3 and

λ1 = 1002, λ2 = 1, λ3 = 0.012,

f1 = 20, f2 = 5, f3 = 0.2,

then, to a good approximation, we would have

M1 ≈ X∗1, M0.5 ≈ X∗2, M0 ≈ X∗3 ,

reflecting the different types of information obtainable from each mean representa-
tion. Figure 9.1 plots the expectation comparison as a function of α: envelopes cor-
responding to E(Mα)± 2

√
Var(Mα) under each specification are plotted, together

with the observed value of Mα where, for illustration, we suppose that the canonical
quantities are observed to be x∗1 = 5, x∗2 = 0, and x∗3 = −5. We see that, depending
on our choice of standardization, the data plot suggests consistency with neither,
one, or both specifications. For α = 1, the data are consistent with H2 but not H1.
For α = 0, the data are consistent with neither H2 nor H1. For some intermediate
values of α, the data tend to be more consistent with H1.

9.8.1 Rank-degenerate case

When the variance specifications exhibit some form of rank deficiency, it is nec-
essary to separate the canonical quantities as described in §9.1.1 into the collec-
tions Z++, Z+0, Z0+, and Z00. For the collection Z++ we form G 2

1
, G 1

2
and

DE 2
1
(Z++), DE 1

2
(Z++) as above, limiting to the canonical quantities Zi ∈ Z++.

These quantities then compare expectations under the two specifications H1, H2
constrained to the linear combinations with positive variance under both. For all
remaining canonical quantities, these correspond to qualitative (and possibly also
quantitative) differences in specification, and we may directly comment on the
differences in expectation,

f 2
1
(Zi), Zi ∈ {Z+0, Z0+, Z00}.
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Figure 9.1 Expectation comparison: plotted versus α are two-standard-deviation boundaries
for Mα under H1 and H2, and the observed value of Mα .

9.9 The observed comparison

Suppose that data become available, so that we observe X = x, and thereby observe
each canonical quantity Zi to be zi . If one or more of the belief specifications
have rank-degenerate variance matrices, then we can use the observed values of
the eigenvectors corresponding to zero eigenvalues as consistency checks to help
discriminate between the specifications. In particular, any canonical quantity which
has variance zero under a specification should have an observed value equal to its
expectation under that specification; otherwise the specification is contradicted.

For canonical quantities with positive variance under both specifications, define
standardized canonical residuals under each specification as follows. For each such
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canonical quantity Zi , let

Ri1 = Zi, where EH1(Ri1) = 0 and VarH1(Ri1) = 1,

(9.52)

Ri2 = Zi − EH2(Zi)√
λi

, where EH2(Ri2) = 0 and VarH2(Ri2) = 1.

(9.53)

The observed values

ri1 = zi, (9.54)

ri2 = zi − EH2(Zi)√
λi

(9.55)

of the standardized residuals provide evidence for the comparison of the two spec-
ifications, in that small values of ri1 are consistent with H1, and small values of
ri2 are consistent with H2.

This comparison is more straightforward if it is based on the residual form as
constructed in §9.8, as the canonical comparison of the residual form for W only
involves comparison of quantities ri1 = zi , against ri2 = zi/

√
λi .

For variance comparison, we may also evaluate the observed values of the
squared standardized canonical residuals, r2

i1 and r2
i2. Values of r2

i1 close to unity are
consistent with specification H1, whereas values of r2

i2 close to unity are consistent
with specification H2. For both expectation and variance comparisons, it might
be that both specifications are consistent with the data, or that neither is, or that
certain aspects of the data are consistent with one specification and other aspects
consistent with the other specification.

9.9.1 Combined directions

For very large systems, it may be convenient to compare specifications over sub-
spaces, combining directions with similar eigenvalues. In particular, if several
eigenvalues for the comparison are the same, say

λi+1 = λi+2 = . . . = λi+m = λ,

then the corresponding canonical quantities are not uniquely defined. Instead, a
subspace of dimension m, 〈X̃〉, is identified, and any element of this subspace
is also a canonical quantity with eigenvalue λ. In this case, there is no unique
representation in the above form. Instead, a natural reduction of the data is given
by combining the corresponding directions. We now discuss how we might combine
the information from directions with similar eigenvalues.
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Suppose that we wish to combine over the directions

Z̃ = {Z(1), . . . , Z(m)}.
In principle, this might be any subset of directions, but we will restrict attention
to those with positive variance under both specifications; there is no simple useful
summary when combining directions which exhibit different kinds of degeneracy.
To make the comparison, we may define summaries based on the mean variance
under H2 and the means of the squared standardized residuals. We define

λ
Z̃
= 1

m

m∑
i=1

λ(i), (9.56)

R2
z̃1 =

1

m

m∑
i=1

R2
(i)1, (9.57)

R2
z̃2 =

1

m

m∑
i=1

R2
(i)2. (9.58)

Summary residuals (9.57) and (9.58) have expectation unity under H1 and H2
respectively, and so we may interpret their observed values as above.

Alternatively, consider any scaled unit linear combination of the elements of
the form

Z̃u = 1√
m

m∑
i=1

uiZ(i),

where each |ui | = 1. We have

Var1(Z̃u) = 1, Var2(Z̃u) = λ
Z̃
,

so that we can transform Z̃ into a new vector all of whose components inherit the
eigenvalue λ

Z̃
. When we observe the value of Z̃, then we may evaluate several

elements of form uT

(i)Z̃, selected so that each uT

(i)u(j) = 0, i �= j .

9.10 Example: mean and variance comparison

Let us return to the example of §9.2. Suppose that there are alternative expectation
specifications EH1(X5) = −1 and EH2(X5) = 1, with all other quantities having
the same, unchanged, expectation of zero. In relation to the underlying quanti-
ties of §9.2.4, the alternative specifications derive from assigning expectations
−0.5, 1,−0.75 under H1 and 0.5,−1, 0.75 under H2 for F1, F2, F3, respectively.

The canonical directions remain essentially as in Table 9.1, but with one differ-
ence. We conventionally locate each direction to have expectation zero under H1,
so that offsets have been introduced for Z3, Z4, Z5. Note that we now insist on
choosing the signs of the canonical directions so that EH2(Zi) ≥ EH1(Zi) = 0; this
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motivated the choice of sign made in displaying Table 9.1. The modified direc-
tions are shown in Table 9.3. To compare the specifications we concentrate on the
expectations under H2, relative to the alternative variance specifications. These are
summarized in Table 9.4, together with the canonical variances. We can compare
the canonical differences in expectation directly, as follows.

• There are four directions (Z1, Z2, Z6, Z7) where the expectations match. Any
Y ∈ 〈X〉 which can be represented as a linear combination of these quantities
will similarly have matching expectations under the two specifications.

• Expectations match for the qualitatively different structure, as summarized by
the quantities Z1, Z6, and for the direction Z7 with zero variance under both
specifications. If an observed value of Z1 or Z6 becomes available, we may
immediately be able to distinguish between H1 and H2 as an observation for a
linear combination with variance zero cannot differ from its expectation.

Table 9.3 Canonical quantities for the comparison of variance specifications.

Z1 = − 1√
2
(X1 +X2 −X3)

Z2 = − 1√
14

(X2 −X4)

Z3 = 1
4 (3X5 −X6 − 2X7 + 3)

Z4 = X5 −X7 + 1

Z5 = 1
2 (X5 +X6 + 1)

Z6 = − 1√
18

(5X1 + 4X2 − 3X3 +X4)

Z7 = − 1√
3
(X1 −X2 −X4)

Table 9.4 Canonical comparison of expectation specifications: variances, expec-
tations, and residuals for each canonical direction.

i VarH2 (Zi) VarH1 (Zi) EH2 (Zi) EH1 (Zi) |ri1| |ri2|

1 0 1 0 0 0 0

2 3
7 1 0 0 0.2673 0.4082

3 1
2 1 3

2 0 4.7500 4.5962

4 1 1 2 0 0 2.0000

5 3 1 1 0 4.5000 2.0207

6 1 0 0 0 2.1213 2.1213

7 0 0 0 0 0 0
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• There remain three quantities Z3, Z4, Z5, which have different expectations
under H2, of which the largest difference in expectation is in direction Z4,
which turns out to have the same variance under both specifications.

Over the space 〈Z++〉, i.e. Z2, Z3, Z4, Z5, we construct our summary quantities
as follows. The bearing for the comparison, norming under H1 (9.33), is

G 2
1
=

∑
Zi∈Z++

EH2(Zi)Zi =
5∑

i=3

EH2(Zi)Zi

= 0+ 3

2
× 1

4
(3X5 −X6 − 2X7 + 3)+ . . .

= 3.625X5 + 0.125X6 − 2.75X7 + 3.625,

corresponding to maximum squared change in expectation

DE 2
1
(Z++) =

∑
Zi∈Z++

EH2(Zi)
2

= 0+ 1.52 + 22 + 12 = 7.25

= EH2(G 2
1
).

The summaries, norming relative to variance under H2, are

G 1
2
= −

∑
Zi∈Z++

1

λi

EH2(Zi)Zi +
∑

Zi∈Z++

1

λi

EH2(Zi)
2

= −4.4167X5 + 0.5833X6 + 3.5X7 + 4.4167.

DE 1
2
(Z++) =

∑
Zi∈Z++

1

λi

EH2(Zi)
2 = 8.8333,

= EH1(G 1
2
).

Thus, the maximal squared difference in expectation, relative to variation in H1 is
7.25 (2.69 standard deviations), or about 8.83 (2.97 standard deviations) relative
to variation in H2.

It might come as a surprise that the difference in expectation is of such mag-
nitude. The only difference in expectation over the quantities X1, . . . , X7 is for
E(X5) = ±1, where Var(X5) = 6 under both specifications, so that the maximum
squared change in expectation is only 4

6 standard deviation for X5 alone. This can
be explained as follows. X5 is correlated with the other quantities, and so changes
in expectation for X5 do have hidden implications for the remaining quantities,
whether or not their expectations have changed. In other words, it is not sufficient
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simply to assess those quantities which have changes in expectation; we need to
include any other quantities correlated with them.

Indeed, we can show that G 2
1

is proportional to the adjusted version of X5 given
X6, X7, namely A(X6,X7)(X5), where the adjustment is with respect to variation
under H1. This follows because the addition of linear combinations of X6, X7
to X5 cannot change the difference in expectation between H1 and H2, so that
we want to construct the combination with smallest variance: this combination is
A(X6,X7)(X5). The summary DE 2

1
(Z++) is then the ratio of the squared differences

between the two expectations, normed by the adjusted variance VarX6∪X7(X5)

calculated under H1. Given this perspective, we can see clearly that it is a sharper
comparison to examine the adjusted version of X5, rather than the raw version
of X5, in distinguishing between H1 and H2. Our above construction extends
this idea to a general vector of different expectations. Similar arguments hold
whenever we can partition the collection into X = (XA, XB) where XB has the
same expectation under both specifications, as then the minimum relevant variance
matrix is VarXB

(XA) with respect to the adjusted version AXB
(XA).

For a further quantity constructed from 〈Z++〉, we may deduce its change
in expectation directly from the bearing G 2

1
using (9.36). For example, for Y =

X5 +X6 +X7 it is straightforward to show that

CovH1(Y, G 2
1
) = 2 = EH2(Y )− EH1(Y ).

9.10.1 The observed comparison

Suppose that the seven quantities are observed to be

x = [
3 1 4 2 13 −5 14

]T
.

The absolute values of the residuals under each specification for each canonical
quantity are shown in the final columns of Table 9.4. Two of the residuals under
H1 and one of the residuals under H2 are particularly large. To assess the data in
relation to the direction for which expectations differ, the observed value of G 2

1
is

3.625X5 + 0.125X6 − 2.75X7 + 3.625 = 11.625,

with standardized values

H1 :
11.625− EH1(G 2

1
)√

VarH1(G 2
1
)

=11.625√
7.25

= 4.31,

H2 :
11.625− EH2(G 2

1
)√

VarH2(G 2
1
)

=11.625− 7.25√
8.125

= 1.53,

where we have needed to calculate

VarH2(G 2
1
) =

∑
Zi∈Z++

λiEH2(Zi)
2 = 0+ 0.5× 1.52 + 1× 22 + 3× 12 = 8.125.
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This observation is thus consistent with H2 (the residual under H2 is small and its
square is not too far from one) but appears abnormal under H1 (the residual is far
from zero and its square is much larger than one).

With regard to changing the normalization from H1 to H2 (9.50), Figure 9.2
plots the expectation comparison as a function of α. There is some overlap between
the two specifications. However, we see that, regardless of our choice of stan-
dardization, the data plot is far more consistent with specification H2 than H1.
Indeed, the data are consistent with H2, albeit a little less so for α near zero. The
choice α = 1 corresponds to the normalization used for the comparison made in
the previous section.

9.11 Graphical comparison of specifications

Much of the Bayes linear methodology that we have described concerns summary
measures which give interpretative and diagnostic insights into the specification
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Figure 9.2 Expectation comparison plot.
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and analysis of beliefs. Many of these measures are particularly suited to graphical
display. In this section, we introduce the notion of such representations by suggest-
ing a visual approach to the comparison of competing prior specifications through
the graphical display of the eigenstructure of the corresponding belief transform.
There are many different ways to develop such graphical representations. We shall
restrict attention here to displays which correspond directly to the various geometric
features that we have described.

In particular, we are concerned with constructing simple graphical displays
for potentially complicated specifications. Simple visual displays are particularly
important when we are comparing two competing specifications over a complex
interconnected system. Any individual segment of the problem may be scrutinized
by a variety of stringent comparisons. However, if our primary interest is in getting
some qualitative feeling for how well the two specifications are doing over all of
the various aspects of the system, then we need pictures which are designed to
give this kind of overall visual summary. We now describe one such display.

9.11.1 Belief comparison diagram

We now describe a graphical method for comparing, in detail, features of the two
specifications. We suppose that the specifications have p canonical quantities, some
of which might correspond to rank degeneracy under one or both specifications.
For each specification we consider a semicircle divided into p sectors of equal size.
Each sector corresponds to one canonical quantity. Under specification H2, we take
the sector corresponding to Z1 to be the sector starting at 0◦, proceeding anticlock-
wise with the remaining canonical directions, Z2, Z3, . . . , Zp, with the sector for
Zp ending at 180◦. Under specification H1, we take the sector corresponding to
Z1 to be the sector starting at 180◦, proceeding anticlockwise with the remaining
canonical directions, Z2, Z3, . . . , Zp, with the sector for Zp ending at 360◦. We
place the semicircles within a circle so that diagonally opposite sectors correspond
to the same canonical quantity. Note that the upper semicircle corresponds to H2
and the lower semicircle corresponds to H1, reflecting our convention that our
basic standardization is with variances under H1 in the denominator.

Now consider the two sectors corresponding to Zi . In each of the two sectors
we draw an inner arc, where the radius ρi of the inner arc is chosen according
to the value of VarH1(Zi) and VarH2(Zi) = λi . There are six cases to consider,
as shown in Table 9.5. We also shade the outer sector with dark or light shading
as shown in Table 9.5. The inner arc radius summarizes the difference between
the two variance specifications for a canonical quantity, with small radii indicating
large differences. As for the shading,

• dark shading for a lower/upper pair of sectors indicates that the canonical quan-
tity has a higher variance under H1;

• light shading for a lower/upper pair of sectors indicates that the canonical quan-
tity has higher variance under H2;
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Table 9.5 Inner arc radius and shading choices for the pair of sectors correspond-
ing to Zi for the belief comparison diagram.

Radius Outer sector shading

Case VarH1 (Zi) VarH2 (Zi) ρi Upper Lower

1 1 0 0 none dark
2 0 1 0 light none
3 0 0 0 none none
4 1 λi > 1 1/

√
λi light light

5 1 λi = 1 1 none none
6 1 λi < 1

√
λi dark dark

• no shading for a lower/upper pair of sectors indicates that the specifications
match under H1 and H2, including the case where the canonical quantity has
zero variance under both specifications;

• no shading for the upper sector and full dark shading for the lower sector indi-
cates the case where a canonical quantity has variance zero under H2 but not
under H1;

• no shading for the lower sector and full light shading for the lower sector
indicates the case where a canonical quantity has variance zero under H1 but
not under H2.

Generally, a large amount of dark shading within the circle indicates that specifica-
tion H1 gives higher variance than specification H2, for many linear combinations
of 〈X〉, whilst a large amount of light shading indicates that specification H2 gives
higher variance than specification H1. We shall call diagrams constructed in this
way canonical wheels.

9.11.1.1 Example

Consider Figure 9.3(a). This shows the belief comparison for the example discussed
in §9.2, with canonical quantities summarized in Table 9.1. There are seven canon-
ical quantities and so seven sectors in each semicircle. There are two sector pairs
with no shading corresponding to Z4 and Z7 which have variances matching under
each specification. There are two sector pairs with a degree of dark shading for
the canonical quantities Z2, Z3 which have a higher variance under H1. There is
one sector pair with a degree of light shading for the canonical quantity Z5 which
has a higher variance under H2. There are two further sector pairs for Z1 and Z6.
Z1 has positive variance under H1 and zero variance under H2, whilst the reverse
is true for Z6. Consequently, these have no shading in one sector and full shading
in the paired sector. Overall, there appears slightly more dark than light shading,
indicating slightly higher variances under H1.
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Figure 9.3 Belief comparison diagrams: (a) without data; (b) with a data set which is
consistent with H1 but not H2; (c) as (b), but with some sectors combined; (d) as (b), but
with some sectors omitted. The upper semicircle corresponds to H2, the lower to H1.

9.11.2 The observed comparison

Observation of each canonical quantity Zi leads to a pair of residuals, one for each
specification. We superimpose these residuals on the belief comparison diagram
as follows. We plot the residual for Zi corresponding to H1 in the lower sector
corresponding to Zi , and we plot the residual for Zi corresponding to H2 in the
upper sector corresponding to Zi . Each observation is plotted as a roundel shaded
white, and the pair of roundels corresponding to the same canonical quantity are
connected by a dotted line to aid interpretation

With respect to the data comparison, we regard the radius c of the circle as
representing c = 3 standard deviations. We can change this scaling if appropriate.
Thus, we plot the observed value of |r1i | in the lower sector for Zi at a distance
of |r1i | standard deviations from the centre. Under H1, if c = 3 we expect to see
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each plotted observation about one-third of the distance from the centre. Similarly,
we plot |r2i | in the upper sector for Zi .

Occasionally these residuals may be more than c standard deviations dis-
tant from the centre. In this case we plot roundels shaded black on the outer
boundary of the sector. More rarely we may come across observed values of
canonical quantities which have a variance of zero under a given specification.
In this case, the observation must equal its expectation under this specification.
When this is true, we do not plot the residual. However, when the observation
is not equal to its expectation, the specification is contradicted. We indicate such
cases by plotting a white roundel with a black inner on the outer boundary of the
sector.

For an informal interpretation, for any choice c, a particular specification is
consistent with the data if, in most sectors of the semicircle for that specification,
the corresponding roundel appears at a distance roughly 1/c of the way between
the centre of the circle and the boundary. The appearance of many roundels on the
circumference suggests that the specification might have underestimated variability
or misspecified the mean. Points clustered in the centre of the diagram may suggest
that the specification has inflated the variability.

9.11.2.1 Example

We continue using the example of §9.2 with matching expectations

EH1(X) = EH2(X) = 0,

and with X observed as in §9.10.1. The variances for the canonical directions are
shown in Table 9.6, together with their standardized observations. Note that these
differ slightly from those shown in Table 9.4, which were calculated for different
expectation specifications.

Table 9.6 Canonical comparison of variance specifications: variances and resid-
uals for each canonical direction. Expectations are zero under each specification.

i VarH2(Zi) VarH1 (Zi) |ri1| |ri2|

1 0 1 0 0

2 3
7 1 0.2673 0.4082

3 1
2 1 4.0000 5.6569

4 1 1 1.0000 1.0000

5 3 1 4.0000 2.3094

6 1 0 2.1213 2.1213

7 0 0 0 0
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The residuals are plotted in Figure 9.3(b), which has the same variance compar-
ison as in Figure 9.3(a). The plot is interpreted as follows. The direction Z6 has the
residual |r61| = 2.1213 under H1. However, this contradicts the variance specifica-
tion as VarH1(Z6) = 0 and this in turn implies a residual of zero as an observation of
Z6 must match its expectation under H1. The inconsistency is marked by plotting a
white roundel with a black inner on the outer boundary of the sector corresponding
to Z6 under H1. The observation for Z6 does, however, appear consistent with H2.
Direction Z3 has data which are abnormal, beyond three standard deviations, under
both specifications: these are indicated by black roundels on the outer boundary,
where the outer boundary represents c = 3 standard deviations under the appropri-
ate specification. The data appear abnormal for direction Z5 under H1 but not H2.
The data for direction Z4 is as expected under both specifications: white roundels
are plotted at one standard deviation from the centre. The residuals for direction
Z2 are rather smaller than expected, possibly indicating too large a variance in this
direction under both specifications.

9.11.3 Combining information

When 〈X〉 has very high dimension, then there will be many sectors, and the
display may become overly crowded. We may then use the methods described in
§9.9.1 for producing summaries for combined directions. In particular, this may be
appropriate when several eigenvalues are roughly similar. The size of the sector
shown for several directions combined depends on whether our primary interest
is in the detail of the other directions. If so, we represent any combined sector
as having the same area as sectors for single directions. Otherwise, we draw the
sector as having area proportional to the number of directions it represents.

9.11.3.1 Example

Figure 9.3(c) reproduces Figure 9.3(b), but with the sectors corresponding to
Z2, Z3, Z4, Z5 combined; these are the directions with positive variance under both
specifications. For the combination, two of the residuals under H1 (lower semi-
circle) exceed three standard deviations. For such cases, we plot a black roundel
with area proportional to the number of abnormal residuals. On average, the four
combined directions have slightly higher variance under H2 and the data better
support H2.

We may also choose not to show some sectors in order to focus on certain
aspects of the comparison. For example, Figure 9.3(d) reproduces Figure 9.3(b),
except that the sectors corresponding to the rank-degenerate directions Z1, Z6, Z7
have been intentionally omitted.

9.11.4 Residual belief comparison diagrams

When the expectation vector and the variance matrix each differ under the two
specifications, then it may be preferable to choose a display which distinguishes,
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as much as is possible, those comparisons arising from differences in the mean
specification from those arising from differences in the variance specification. In
§9.8, we showed how X could be transformed into a mean quantity M and a
residual vector R with the same expectation under each specification. Therefore,
we may prefer to construct the belief comparison diagram from the residual form
R, as each pair of opposing sectors in such a residual belief comparison diagram
corresponds to a quantity with a common expectation in each specification. All
differences in such a picture relate to variance comparisons, and so the picture is
likely to be more straightforward to interpret. If we choose such a representation,
then we must separately display the value of M . A natural display is a line plot
on which we mark the locations of EH1(M), EH2(M) surrounded by, for example,
three-standard-deviation bands under VarH1(M), VarH2(M). If we observe X = x,
then we mark the observed value M = m as a roundel plotted between the two
lines given by these bands.

9.11.4.1 Example

To illustrate, we return to the example of §9.10.1, for which the variance specifi-
cations for the quantities in 〈Z++〉 are as above, but with alternative expectation
specifications for H1 and H2. For our mean component (9.51) we standardize ini-
tially according to VarH1(·) and so choose α = 1. This choice corresponds to taking
M = M1 = G 2

1
. Summary statistics for G 2

1
were shown in §9.10.1: under H1, G 2

1
has mean zero and standard deviation 2.69, under H2 G 2

1
has mean 7.25 and stan-

dard deviation 2.85, and the observed value is 11.625. These features are plotted
in Figure 9.4(a), showing a broadly similar variance specification (the intervals are
about the same width) but quite different expectation specifications, and with an
observed value which appears compatible with H2 but not H1.

A residual wheel is shown in Figure 9.4(b). As 〈Z++〉 is four-dimensional
and as the mean component G 2

1
has been extracted, the residual space is the

H2

H1

(a) (b)

Figure 9.4 The mean component and the residual wheel, norming under VarH1(·). (a)
Expectations and six-standard-deviation intervals for the mean component, with the observed
mean component. (b) The residual wheel: each direction has expectation zero under H1 and
H2. The upper semicircle corresponds to H2, the lower to H1.
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three-dimensional orthogonal complement of G 2
1

in 〈Z++〉. This gives rise to three
residual directions, R1, R2, R3, for the comparison, each of which has the same
expectation, zero, under H1 and H2. Variances and standardized residuals for these
directions are shown in Table 9.7. Notice that residual direction R1 happens to
coincide with canonical quantity Z2 in Table 9.3 because of the way in which
variances and expectations happen to have been made: the relation between R1
and Z2 corresponds to the orthogonality between (X2, X4) and (X5, X6, X7). As
this orthogonality is preserved under H1 and H2, we get this correspondence for
each value of α. . The data do not much distinguish between the two specifications.
There is one residual direction, R2, having higher variance under H1, for which the
data appear abnormal under both specifications, particularly H2; another residual
direction, R1, where the data appear consistent with the specifications; and finally
a residual direction, R3, where the data appear more consistent with H2.

If instead we standardize by norming according to variation in H2, and so
choose α = 0, we obtain the mean component and residual wheel shown in
Figure 9.5. The main features are similar to those shown in Figure 9.4. The obs-
erved value for the bearing for this comparison, G 1

2
, is consistent with its mean

and standard deviation under H2, but not H1. For the residual wheel, the canonical
directions and the amounts of shading are identical to those for the standardiza-
tion under H1, but are here displayed with left–right and top–bottom reversal and
with light and dark shading switched, as befits the norming under H2 rather than
H1. Contrast the upper central sector corresponding to residual R2 under H1 in
Figure 9.5 with the lower central sector corresponding to residual R2 under H1 in
Figure 9.4. Under the standardization H1, this observed residual is more than three
standard deviations from expectation, whilst under standardization H2, the observed
value has been plotted within the three-standard-deviation boundary. Inspection of
the observed residuals shows, however, that the differences are minor.

9.12 Example: exchangeable regressions

For an example of the comparison of full rank specifications we return to the
exchangeable regressions example of §6.7. Specifications for this example were

Table 9.7 Comparison of residual directions. Expectations are zero under each
specification. Variances are normed to be equal to one under H1 and residuals are
standardized observed values.

i VarH2 (Ri) VarH1 (Ri) |ri1| |ri2|

1 0.4286 1 0.2673 0.4082

2 0.6000 1 3.2967 4.2560

3 2.2308 1 3.6475 2.4421
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H1

H2

(a) (b)

Figure 9.5 The mean component and the residual wheel, norming under VarH2(·). (a)
Expectations and six-standard-deviation intervals for the mean component, with the observed
mean component. (b) The residual wheel: each direction has expectation zero under H1 and
H2. The upper semicircle corresponds to H1, the lower to H2.

shown in §6.7.2 (error specifications) and §6.7.3 (regression coefficient specifica-
tions). We shall label these specifications H1. As an alternative specification, which
we label H2, we consider the adequacy of a model with intercept only and with
much simpler error structure:

Yrt = ar + Ert , (9.59)

where we compensate by specifying a variance for Ert which is four times larger
than under H1. This approximately maintains the magnitude of correlations between
Yrt and Yr,t+1, but has rather smaller variance for each Yrt .

For a given run r , we have for each specification a 13× 13 variance matrix
for the vector of observables, Yr , together with an expectation vector under each
specification. We now compare these specifications.

9.12.1 Basic canonical analysis

The key features are shown in Table 9.8. There are 13 canonical quantities
Z1, . . . , Z13. Comparing the variances, we see that most are similar in that the
eigenvalues λi are not far from unity. The exception is for the first canonical
quantity Z1, which has a much smaller variance under H2 than H1. As a lin-
ear combination of the elements of the observation vector, Y , the quantity Z1 is
approximately

Z1 =+ 0.46Y1 + 0.41Y2 + 0.34Y3 + 0.26Y4 + 0.17Y5 + 0.07Y6 − 0.03Y7

− 0.13Y8 − 0.22Y9 − 0.31Y10 − 0.39Y11 − 0.45Y12 − 0.50Y13 + 2.25.

The pattern provided by the coefficients suggests a time feature. Comparing the
two sets of expectations, we see that the expectations match fairly closely except
in the direction Z1. The maximal difference in expectation, relative to variation
under H1,

DE 2
1
(Yr ) =

∑
EH2(Zi)

2 = 1.78962 + . . .+ 0.00302 = 3.4262,
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Table 9.8 Variance and expectation summaries for the comparison of alterna-
tive specifications for the exchangeable regressions example. Signs of canonical
quantities are chosen so that EH2(Zi) > 0.

i VarH2 (Zi) = λi VarH1 (Zi) max(λi ,
1
λi

) EH2 (Zi) EH1 (Zi) G 2
1

1 0.0603 1 16.58 1.7896 0 1.04
2 0.3098 1 3.23 0.0490 0 0.29
3 0.4825 1 2.07 0.4188 0 0.12
4 0.6661 1 1.50 0.1092 0 0.06
5 0.8398 1 1.19 0.1317 0 0.02
6 1.0742 1 1.07 0.0892 0 -0.01
7 1.3061 1 1.31 0.0416 0 -0.05
8 1.5057 1 1.51 0.0667 0 -0.09
9 1.6778 1 1.68 0.0203 0 -0.13

10 1.8126 1 1.81 0.0396 0 -0.18
11 1.9167 1 1.92 0.0100 0 -0.27
12 1.9884 1 1.99 0.0183 0 -0.53
13 2.0311 1 2.03 0.0030 0 -1.79

is almost entirely in the direction Z1 and it is obvious that the bearing for the
comparison, G 2

1
=∑

EH2(Zi)Zi , will be highly correlated with Z1. The bearing
is summarized in column 7 of Table 9.8, except for its constant term which is 5.53,
so that the bearing is

G 2
1
= 1.04Yr1 + 0.29Yr2 + . . .− 1.79Yr13 + 5.53.

In short, most of the differences between H1 and H2 are captured by Z1.

9.12.2 Mean and residual comparisons

For this example, we have different expectation specifications as well as different
variance specifications and so we tease out differences by applying the methods
of §9.8. In parallel, we examine the consistency of the data under the specifica-
tions.

Figure 9.6 shows the residual wheel and the expectation comparison for each
run separately and for the overall mean of the three runs. We choose to take
α = 1, as we wish to compare relative to specification H1. The line plot dis-
plays the locations of E1(M1), E2(M1), with six-standard-deviation bands based
on Var1(M1), Var2(M1), and marking between them the observed value m1. We
see that M1 has a much higher variance under H1. For each run, the observed value
is closer to its expectation under H1. It is a consequence of the normalization that
E2(M) > E1(M). In summary, the line plots suggest substantially more support
for H1 than for H2. The residual wheels show the residual directions R1, . . . , R12
for each run, these being identical and with identical variance summaries for each
run. There are typically higher variances for the residual components under H2,



334 BAYES LINEAR STATISTICS: THEORY AND METHODS

(a) (b)

(c) (d)

Figure 9.6 The residual wheel and, below each wheel, the corresponding expectation com-
parison. The upper bar and semicircle correspond to H2, the lower to H1. (a) For process
run 1. (b) For process run 2. (c) For process run 3. (d) Comparison of the sample mean.

there being more light shading: the higher variances under H1 for the Yrt are
represented in the mean component rather than by the residuals. The data appear
abnormal under specification H2 for direction R1 for run 3.

The residual wheel and line plot for the mean Ȳ = (Y1 + Y2 + Y3)/3 of the
three runs (Figure 9.6(d)) has a similar interpretation, with H1 rather better sup-
ported than H2. Note that the variance matrices for Ȳ take into account covariances
such as Cov1(Y1, Y2), and so differ from the variance matrices for single runs. Thus,
the canonical directions for the comparison for Ȳ differ from those for the single
runs, though not markedly so in this example.

Any lack of fit exhibited by the plot can be investigated further as desired. The
actual residuals are shown in Table 9.9. For each run, the standardized residuals
for the mean direction summarizing differences in expectation, M1 = G 2

1
, are large

under H2 but appear compatible with H1. Residuals here are calculated as described
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Table 9.9 Standardized residuals under each specification for the mean direction
M1 = G 2

1
and the residual directions Ri , for each of the process runs Yr and the

overall mean Ȳ .

Y1 Y2 Y3 Ȳ

|r1| |r2| |r1| |r2| |r1| |r2| |r1| |r2|
M1 0.22 5.31 0.22 5.31 0.48 7.60 0.05 9.63
R1 0.96 1.73 0.41 0.74 2.09 3.76 2.10 3.74
R2 1.32 1.94 0.07 0.10 1.18 1.74 0.55 0.79
R3 1.28 1.57 1.06 1.31 0.18 0.23 1.12 1.30
R4 0.10 0.11 0.20 0.21 0.10 0.11 0.05 0.06
R5 0.61 0.59 0.11 0.10 1.93 1.86 0.79 0.76
R6 0.30 0.26 0.94 0.82 2.48 2.17 0.72 0.63
R7 0.43 0.35 1.97 1.60 2.02 1.65 2.02 1.65
R8 0.56 0.43 2.12 1.64 2.69 2.08 0.68 0.53
R9 0.79 0.58 0.16 0.12 1.53 1.14 0.49 0.36
R10 0.31 0.22 1.70 1.23 1.42 1.03 0.00 0.00
R11 1.19 0.85 1.36 0.96 0.95 0.68 2.04 1.44
R12 1.28 0.90 0.51 0.36 1.53 1.07 1.32 0.93

in §9.9 for the corresponding linear combination of original quantities. For example,
the standardized residuals for the mean direction M1 are

H1: r1 =
∑

fizi√∑
f 2

i

,

H2: r2 =
∑

fizi −
∑

f 2
i√∑

λif
2
i

,

where z1, . . . , z13, are the observed values of the canonical directions for the com-
parison. The abnormality noted for the process mean Ȳ for residual direction R1
under H2 is revealed as a standardized residual of 3.74, which is perhaps not so
abnormal. Examining the correlations between the residual direction R∗1 and the
original quantities, (Ȳ1, . . . , Ȳ13), these show a pattern of rising correlations from
about zero at time t = 1 to about 0.34 at t = 7, and falling correlations to about
zero at t = 13. This suggests that the model H2 is failing to capture systematic
features of the data. As H2 is a simplification of H1, lacking some time features,
the conclusion is that the simplification is inappropriate.

For the mean of the three processes, Ȳ , we also inspect the plot shown in
Figure 9.7. This plots, as a function of α, envelopes corresponding to

E(Mα)± 2
√

Var(Mα)

under each specification, together with the observed value of Mα . For this example,
the observed value lies within the H1 envelope for all α, and outside the H2
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Figure 9.7 Expectation comparison plot for the aluminium extraction example. Plotted
versus α are two-standard-deviation boundaries for Mα under each specification, together
with the observed value of Mα .

envelope. We conclude that the data are consistent with H1 but not H2, irrespective
of choice of standardization.

With respect to differences between runs under H1, the residuals appear to
cluster near the centre for run 1. For run 2, there are a small number of residuals
with larger values, but none are particularly unusual. For run 3 there are more
large residuals, though none is larger than three standard deviations. We might
suspect, if the runs were taken in time order, that there is some aspect of the run
order (for example, changes in the physical environment) which is not captured by
either specification. To investigate this more fully, we need a more sophisticated
treatment that is capable of accounting for the underlying similarities between runs;
this is the subject of the next section.
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9.13 Comparisons for exchangeable structures

Suppose that we have a collection of second-order exchangeable (§6.3) vectors
X1, X2, . . . , where each Xi is a vector of p random quantities. We specify the
expectation, variance, and covariance for all j �= k as

E(Xj ) = µ, Var(Xj ) = �, Cov(Xj , Xk) = �,

as in (6.11), (6.12). We now suppose that we want to compare two specifications:

H1 : E(Xj ) = µ1, Var(Xj ) = �1, Cov(Xj , Xk) = �1, (9.60)

H2 : E(Xj ) = µ2, Var(Xj ) = �2, Cov(Xj , Xk) = �2. (9.61)

Suppose that we observe X1, . . . , Xn, so that we have n observations of p-
dimensional vectors. The comparison for such exchangeable structures can be
decomposed into separate comparisons over the mean vector and residual vectors
as follows. Let

X̄ = 1

n

n∑
j=1

Xj .

The two specifications give

Ei (X̄) = µi, Vari (X̄) = �i + 1

n
�i,

where �i = �i − �i . Let R be the residual space for the collection X, namely all
linear combinations

∑n
j=1 ajXj with weights aj constrained by

∑
j aj = 0. Note

that, for each element U ∈ R, we have E1(U) = E2(U) = 0. Thus, all of the mean
comparison over X is expressed in the comparison for X̄. Next, we choose any
orthonormal basis for R, namely any collection of n− 1 linear combinations

Ri =
∑
j

aijXj , i = 1, . . . , n− 1,

where, for each i, (i)
∑

j aij = 0, (ii)
∑

j a2
ij = 1, (iii)

∑
j aij akj = 0, i �= k. It is

straightforward to check that

Cov1(X̄,Ri ) = Cov2(X̄,Ri ) = 0, ∀i,
Cov1(Rk,Ri ) = Cov2(Rk,Ri ) = 0, ∀i �= k,

so that, as in §9.1.2, the belief comparison is mutually orthogonal over the individ-
ual sub-vectors X̄,R1, . . . ,Rn−1. Therefore, the belief comparison can be carried
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out separately over X̄, which is the only vector for which expectations differ, and
the sequence R1, . . . ,Rn−1.

For X̄, we carry out the belief comparison described in §9.8, separating out
differences between expectations and variances.

For each residual vector, Ri , the canonical belief comparison is identical
because

Var1(Rj ) = �1, Var2(Rj ) = �2, j = 1, . . . , n− 1, (9.62)

so that for each Rj , the appropriate comparison is �1 to �2. Suppose we make
this comparison, as described in §9.1, and so obtain the canonical quantities
R∗1, . . . ,R∗p corresponding to canonical values λ1, . . . , λp. Note that there are
p such canonical quantities as the variance matrices �i are p-dimensional. This
canonical structure is duplicated for each residual vector Rj , and so if we are
making a graphical comparison, our graphs consist of the following elements:

(a) a line plot, to summarize differences in expectation and variance for the mean
(M) part of the average, X̄, of the exchangeable quantities;

(b) a residual wheel, to summarize differences in variation for the residual (R)
part of X̄;

(c) a single canonical wheel (combining the n− 1 identical such wheels) to sum-
marize differences in variance for the residuals of the exchangeable quantities,
R1, . . . ,Rn−1.

9.13.1 The observed comparison

The graphical comparison for X̄ is as described earlier, augmented by observations.
For the residual collection, a natural graphical display is to construct the canoni-
cal wheel for the comparison of �1, �2, and, for each observation j , to plot, in
the arc corresponding to canonical quantity R∗i , its standardized value, on a line
bisecting the arc and extending from the centre of the wheel. Alternatively, and
especially when n is large, the collection of observed standardized values might
be superimposed in the form of a box plot.

As a further refinement, we might select n− 1 different symbols, or colours,
s1, . . . , sn−1, and plot each observed standardized value using symbol si , to allow
us to identify, for example, whether large values in the different sectors correspond
to the same observation Rj . This may identify which linear contrasts showed most
lack of fit to the belief specification.

9.13.1.1 Identifying temporal and other features

While the above construction applies equally to any choice of basis for R, there
will usually be natural choices for the basis which are sensitive to particular ways
in which exchangeability might break down. For example, if the observations
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were taken in time order, and we thought that there might be a change in the
process at some point, then we might choose the Helmert basis of order n (see
Definition 11.58). The first column corresponds to the mean component X̄. The
remaining n− 1 columns are used to construct the Rj , leading to

R1 ∝ Y2 − Y1, (9.63)

R2 ∝ Y3 − Y1 + Y2

2
, (9.64)

R3 ∝ Y4 − Y1 + Y2 + Y3

3
, (9.65)

and so forth. Alternatively, we might choose the orthonormal basis as the orthogo-
nal polynomials in the index, so that the first residual combination is

∑
i a1iYi , with

a1i = ai + b, where a, b are chosen so that
∑

a1i = 0, the second component is∑
i a2iYi , with a2i = ci2 + di + e, where c, d, e are chosen for orthogonality with

the first component, and so forth. In comparison with the basis designed to identify
individual break points in the series, the orthogonal polynomial basis explores gen-
eral types of overall change across the sequence. There are many ways in which
we could order the data before applying such transformations; for example, we
might choose the order on the basis of a covariate to see whether it should be
included within the formulation.

9.13.1.2 Alternative plots

For large amounts of data, the canonical wheels may become unwieldy as a data
display. An alternative way of displaying the information as follows.

• The canonical directions for the residual comparison may be shown from left to
right, instead of from 0◦ moving anticlockwise.

• For a canonical direction Zi with higher variance under H1, λi < 1, we show
a bar with dark shading hanging downwards from the centre. The amount of
shading is proportional to 1− λi .

• For a canonical direction Zi with lower variance under H1, λi > 1, we show a
bar with light shading reaching upwards from the centre. The amount of shading
is proportional to 1− 1/λi .

• The lines above and below the bars indicate c standard deviations either side of
the centre, with respect to standardized residual observations under H1 and H2.

• Standardized observations corresponding to individual residual directions under
some basis may be shown by different symbols. In order to display the range of
the standardized observations, lines may connect the maximum and minimum
observations within the same sector.

• Standardized observations of more than c standard deviations are plotted just
beyond the c-standard-deviation line.
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9.13.2 Example: exchangeable regressions

We illustrate the graphical comparison of exchangeable data using the exchange-
able regressions data, continuing on from §9.12.2. Here, the measurements are
exchangeable over experiments. We have data for three such experiments, n =
3, and during each such experiment there are p = 13 quantities measured. We
decompose the comparison into a 13-dimensional mean comparison and two 13-
dimensional residual comparisons based on the Helmert basis (9.63). This will
allow us to make some judgements as to differences between runs, as the runs
were taken in time order. Thus, we construct

Ȳ = Y1 + Y2 + Y3

3
, (9.66)

R1 = 1√
2
(Y2 − Y1), (9.67)

R2 = 1√
6

{
Y3 − Y1 + Y2

2

}
. (9.68)

We now form the elements of the graphical comparison that we discussed at the
foot of §9.13. Figure 9.8(d) shows the mean comparison, duplicating Figure 9.6(d).
This contains the line plot and the residual wheel for the comparison of Ȳ , which
we discussed in §9.12.2.

The comparison of specifications corresponding to the residual vector R1 ∝
Y2 − Y1 is shown in Figure 9.8(a). The variance comparison reveals one direction
with much higher variation under H1, 1/λ1 = 9.02, but the remaining directions
are otherwise unexceptional: 1/λ2 = 3.59, λ13 = 2.03. The standardized observed
residuals are shown in Table 9.10 and plotted in Figure 9.8(a). The data appear rea-
sonably consistent with both specifications. The comparison of specifications corre-
sponding to the residual vector R2 ∝ Y3 − (Y1 + Y2)/2 is shown in Figure 9.8(b).
The variance comparison is identical to that for R1, by (9.62). The plot shows two
standardized observed residuals beyond the three-standard-deviation boundary for
the upper semicircle, suggesting that the data are inconsistent with specification H2
in two directions which have lower variation under H2. Under both specifications,
the residuals are rather larger for the residual vector R2 than for R1. This adds to
the suspicion that the third experiment is unusual. As the variance comparisons for
the residual vectors are identical, Figure 9.8(c) shows how we may plot the n− 1
standardized observations on the same underlying canonical wheel for the residual
variance specifications.

Figure 9.9 shows an alternative way, discussed in §9.13.1.2, of displaying the
information. Standardized observations for R1 are shown by squares. Standardized
observations for R2 are shown by circles, and the two are connected to emphasize
the range. Standardized observations of more than c = 3 standard deviations are
plotted just beyond the three-standard-deviation line. For this example, it is again
clear that the residual vector R2 has some very unusual standardized observations
under both specifications, suggesting that there are unanticipated differences
between the third run and the average of the first two runs.
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(a) (b)

(c) (d)

Figure 9.8 The comparison for exchangeable structures. The upper bar and semicircle
correspond to H2, the lower to H1. (a) Comparison of the residual Y2 − Y1. (b) Comparison
of the residual Y3 − (Y1 + Y2)/2. (c) Superimposition of the residuals on the underlying
canonical wheel for the residual variance specifications. (d) Comparison of the sample
mean.

Table 9.10 Standardized residuals for the exchangeable comparison.

R1 ∝ (Y2 − Y1) R2 ∝ {Y3 − (Y1 + Y2)/2}
i VarH2(R) r1i r2i r1i r2i

1 0.1109 −0.4346 −1.3048 −1.5101 −4.5343
2 0.2789 0.1247 0.2361 −1.5891 −3.0090
3 0.4318 0.9436 1.4359 0.8892 1.3532
4 0.6038 0.1593 0.2050 −0.3042 −0.3914
5 0.8374 0.0268 0.0293 −0.2844 −0.3108
6 1.0789 −0.5074 −0.4885 −1.6825 −1.6198
7 1.3092 0.4482 0.3917 −2.5182 −2.2008
8 1.5099 1.7040 1.3867 0.9755 0.7938
9 1.6794 −1.9069 −1.4715 2.8673 2.2126

10 1.8143 0.7028 0.5218 1.4937 1.1089
11 1.9172 1.4177 1.0239 −1.7162 −1.2395
12 1.9888 −0.1052 −0.0746 0.2647 0.1877
13 2.0311 1.2756 0.8951 −0.9352 −0.6562
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Figure 9.9 The comparison for exchangeable structures: an alternative plot for the residual
vectors. Residuals beyond three standard deviations are censored.

9.14 Example: fly population dynamics

In §7.6 we described and analysed a population dynamics experiment. The model
for the experiment was given in §7.6.1, with specifications H1 given in §7.6.2.
Farrow and Goldstein (1996) considered the same model, but with slightly different
specifications H2:

D. melanogaster D. hydei

θs 0.45 0.40
ψs 0.26 0.10
φs −0.34 −0.18
αs 0.2 0.2
βs 0.7 0.7
γs −0.3 −0.3
νs 0.04 0.02
ωs 0.1 0.1
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These were, in fact, the original specifications for the model. At a later point,
we revisited this model and came to the conclusion that the priors for the local
means contained too much oscillation. Further exploration of the prior means and
variances led to the specifications given as H1 in §7.6.2, which we felt were
probably more plausible. Specifically, the differences between H1 and H2 are as
follows. The lower values of αs under H2 allow the prior means for the local
means to tend sooner to the expected equilibria. The higher values of βs under
H2 allow the local means to oscillate more strongly. The values of γs under H2
increase the initial cross-species inhibition, compared to H1. Decreased values for
ωs under H2 indicate a generally lower specification for the noise attached to the
local means.

We now compare the beliefs generated by the two sets of specifications,
and see which – if either – is supported by the data. In terms of the method-
ology of §9.13, we have second-order exchangeable beliefs about the quantities
Yps1t , Yps2t , . . . , Ypsct . Thus, it is appropriate to carry out the comparison sug-
gested therein, namely (1) to summarize differences in expectation and variance
for the mean part of the average, Ȳpst = 1

c

∑c
j=1 Ypsct , of the exchangeable quan-

tities; (2) to plot a residual wheel, to summarize differences in variation for the
residual part of Ȳ ; (3) to plot a single canonical wheel, to summarize differences
in variance for the residuals of the exchangeable quantities.

We organize the comparison for each starting point separately. In §7.6.4.3
we organized the local means for starting points p = 1 and p = 2 into the 50-
dimensional vectors M1, M2. We similarly organize the means of the data quantities
as 50-dimensional vectors Ȳ1, Ȳ2, and the comparison takes place across these 50
dimensions.

9.14.1 Differences for the mean part of the average

Table 9.11 summarizes the difference in mean and variation for the mean part of
the average. Specification H1 is clearly far superior, with small residuals. The data
do not appear to support the specification H2: the observed residuals are over 50
standard deviations for both starting points. Recall that we are normalizing with
respect to H1 here. We could also normalize with respect to variation under H2.
Doing so, we find similar results.

9.14.2 Differences for the residual part of the average

The comparison for the residual part of the average is plotted in Figure 9.10. We
observe that the variance specifications are mostly larger under H1 than under
H2, with 38 of the 50 canonical quantities having larger variance under H1 (dark)
and 12 having higher variance under H2 (light). The canonical resolution for the
comparison ranges from λ1 = 0.0489 to λ50 = 5.37, so that there is one direction
where the variance is approximately 20 times higher under H1, one direction where
the variance is 5.37 times higher under H2, and all other directions differ by
amounts between these two extremes. The variance comparisons for the two starting
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Table 9.11 Variance and expectation summaries for the comparison of alternative
specifications for the mean part, M , for the exchangeable data of the population
dynamics experiment.

Starting point p = 1

Specification E(M) SD(M) Observed Residual
H1 0 92.9775 100.5564 1.0815
H2 8644.8124 159.2392 100.5564 −53.6567

Starting point p = 2

Specification E(M) SD(M) Observed Residual
H1 0 93.0121 −121.7094 −1.3085
H2 8651.2512 159.4768 −121.7094 −55.0109

points are identical as, ignoring species, the model for p = 1 is identical to the
model for p = 2.

Figure 9.10 also plots the observed residuals for each canonical direction. Tri-
angles represent residuals of at least six standard deviations. We expect to see
residuals at about one standard deviation from the centre. The upper half of this
diagram compares observations to beliefs H2, whilst the lower half compares obser-
vations to beliefs H1. We observe no very large residuals under H1 and many for
H2. For starting point p = 1, 18 of the 50 directions have large residuals under
H2. For starting point p = 2, there are also 18 out of 50 directions with very
large residuals under H2, though these are not always the same directions as for
starting point p = 1. We conclude that, normalizing according to variation under
H1, the data do not support H2. With regard to H1, the largest residual is 4.05 for
p = 1 and 4.79 for p = 2, so there is some evidence of contradiction. If instead
we make the comparison normalizing according to variation under H2, we find
similar results but with slightly fewer very large residuals under H2.

9.14.3 Differences for the residual part of the average

Figure 9.11 plots the observed residuals for each canonical direction for the residual
comparison. For each starting point there is a 50-dimensional residual comparison,
using the Helmert basis (9.63). The two sets of specifications differ only for the
local mean quantities, the {Mpst }, and not for the residual quantities, the {Rpsct }.
Consequently, H1 is identical to H2 for this comparison, and so there can be no
canonical directions for which variances differ under the two specifications. As
such, we show only the absolute residuals for each of the 50 directions, to deter-
mine whether the joint residual specification is compatible with the observations.
For these plots, residuals of at least six standard deviations are censored. Circles
correspond to observed residuals for differences in counts between cages 1 and 2,
and squares to differences in counts between cage 3 and the average for cages 1
and 2, corresponding to the same Helmert contrasts used in §9.13.1.1.
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(b) Starting point p = 2.

Figure 9.10 Comparison of the residual part of the average of the exchangeable quantities.
Observed residuals beyond 6σ are censored.

For starting position p = 1, residuals are seen to be generally rather larger
than expected. There are three residuals larger than six standard deviations, all
corresponding to differences between cage 1 and cage 2. The conclusion is that
the data do not seem to be consistent with the residual specification for starting
point p = 1, especially in relation to differences between cage 1 and cage 2.

For starting position p = 2, residuals are seen to be substantially larger than
expected. There are 17 residuals larger than six standard deviations, nearly all
corresponding to differences between cage 3 and the average for cage 1 and cage
2. Residuals for differences between cage 1 and cage 2 appear more compatible
with the belief specification. The conclusion is that the data are not consistent
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(b) Starting point p = 2.

Figure 9.11 Comparison of the residual structure. Observed residuals beyond 6σ are cen-
sored.

with the residual specification for starting point p = 2, especially in relation to
differences between cage 3 and the other two cages.

Overall, these inconsistencies tend to tally with what may be deduced from
inspecting Figure 7.2 and Figure 7.3, and point at least to underestimation of dif-
ferences between cages in the residual component.

9.15 Assessing robustness of specifications

In a complicated analysis, we might have to make thousands of numerical specifi-
cations. Typically, we will make such specifications by imposing pragmatic simpli-
fications, for example treating almost exchangeable units as exchangeable, almost
uncorrelated quantities as uncorrelated, and so forth. We must therefore judge the
robustness of our inferences to such simplifications. In many contexts, H1 is fixed
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so that EH1(·) and VarH1(·) are the specifications that we intend to use, unless our
robustness analyses force us to elaborate our modelling. The specifications EH2(·)
and VarH2(·) typically vary over some class of alternative specifications. As we
are interested in changes in belief over high-dimensional linear spaces, under a
variety of competing specifications, measures of maximal discrepancy will often
be the only practical way to identify important differences. Thus, we employ the
variance and expectation comparison measures (9.2) and (9.31) described above.

With regard to assessing the robustness of prior specifications to changes in the
specification, if EH1(·) = EH2(·), then this may be addressed by evaluating DV 2

1
(·)

and DV 1
2
(·) before observing data. If both summaries are near one, across designs,

then any design choice based on reducing expected posterior variance for some
weighted combinations of the quantities of interest will not be sensitive to model
elaboration. If the two expectations are not equal, then we may separately compare
G 2

1
and the residual forms for the comparison.
After sampling, we carry out two assessments. First, we can use the observed

comparison to assess whether the data appear to be more or less consistent with
the varied specification. Secondly, the Bayes linear adjustment implied by the sam-
pling results in adjusted variances and expectations for the quantities of interest, and
these will differ under alternative prior specifications. Consequently, with regard
to assessing the robustness of posterior specifications to changes in the prior spec-
ification, we may similarly evaluate (9.2) and (9.31) for the alternative posterior
beliefs.

Note that if we only vary the specification EH2(X), but keep the specifica-
tion EH1(X) fixed, then we need only evaluate EH2(Zi) to obtain the expectation
comparison (9.38). Otherwise, varying the specification H2 generally requires recal-
culation of the canonical quantities for the comparison.

9.15.1 Sensitivity analyses for expectations

When constructing a specification for a collection of quantities, one way of looking
at the specification is to consider that it requires qualitative decisions as to structural
relationships between the quantities of interest, followed by quantitative decisions
as to the magnitude of relationship. The former concerns choice of model type; the
latter concerns particular choices for uncertain quantities such as the coefficients
in a linear model. For example, suppose we consider relating a response quantity
Y to an explanatory quantity X. We might consider a regression equation of the
form

Yi = a + bXi + εi,

which constitutes the qualitative choice. We would then need to consider belief
choices for the uncertain quantities a, b, and ε1, ε2, . . . . Assuming that the quan-
tities Xi are fixed, the choices are the second-order belief specifications for a, b,
and the quantities ε1, ε2, . . . , so that the list of possible quantitative choices for
this example is E(a), E(b), E(εi) for all i, Var(a), Var(b), Cov(a, b), Cov(a, εi)

for all i, Cov(b, εi) for all i, and Cov(εi, εj ) for all i, j . For a sensitivity analysis,
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we may proceed by fixing an initial model structure, and then making a specifi-
cation which we shall label as H0. We then explore the effects of perturbing H0
by altering some of the belief specifications to give another specification, and then
comparing the two specifications. We repeat the process by systematically varying
H0 and comparing to the initial specification.

Suppose we are exploring sensitivity of specifications concerning a collection
X which we relate to observables under a given structural model and with a given
set of belief specifications. To carry out the sensitivity analysis, we arrange the
belief choices that we wish to explore as the vector V = (V1, . . . , Vm). We now
make our specification H0 using an initial belief choice, V = v0. This leads to
specifications EH0(X) and VarH0(X). We now choose a sequence of alternative
belief choices,

V = v1, V = v2, . . . , V = vk, . . . ,

which we anticipate covers the range of plausible specifications for the problem at
hand. Given the initial structural model, the alterations lead to new specifications
which we label

H1, H2, . . . , Hk, . . . ,

and to alternative specifications EHk
(X) and VarHk

(X). Each such specification Hk

can now be compared to the original specification H0 using the maximal summaries
(9.2) and (9.31) and the bearings (9.33) for the comparisons.

For the assessment of sensitivity, we now evaluate, for any pair of values
V = vj , V = vk , the bearings G j

0
and G k

0
. These identify, relative to the initial

variance VarH0(X), the directions of maximal difference in expectations under Hj

and Hk , respectively. If these directions are close, we can conclude that there is
little difference between Hj and Hk relative to H0. Consequently, we define the
squared distance between the specifications Hj and Hk , relative to H0, to be the
variance of the adjusted bearing G j/k

0
= G j

0
− G k

0
, so that

d0(j, k) = VarH0(G j/k
0

) = VarH0(G j
0
− G k

0
) (9.69)

=
p∑

i=1

[EHj
(Zi)− EHk

(Zi)]
2. (9.70)

As, for each Y ∈ 〈B〉, we have

EHj
(Y )− EHk

(Y ) = CovH0(Y, G j/k
0

),

we therefore have

max
X∈〈B〉

[EHj
(X)− EHk

(X)]2

VarH0(X)
= VarH0(G j/k

0
). (9.71)

Small values of d0(j, k) therefore imply no practical difference between Hj and
Hk , when considered as alternative specifications to H0, as far as the expectation
specification is concerned.
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For a graphical analysis, we may construct the distance matrix D0 with (j, k)th
entry being the distance d0(j, k). We use multidimensional scaling to produce a
low-dimensional graphical representation of the distance matrix, which we call
a sensitivity map. If two points are close in the map, then the belief specifica-
tion is not sensitive to the choice between them, relative to H0. Interpreting the
major axes gives insight into the dominant features affecting sensitivity, while
clusters of points identify ranges of variation amongst belief choices with similar
effects.

9.15.2 Example: robustness analysis for exchangeable regressions

Consider the exchangeable regressions example discussed above and in Chapter 6.
For this, quantities Yrt are constructed from a number of components (ar , br , t ,
Urt , Hrt , Ert , Vrt , φ), establishing the qualitative structure. A number of belief
statements must then be provided to quantify the specification. For example, E(ar )

and φ must be chosen; the full list of uncertain quantities and their particular
choices in Chapter 6 are as follows:

Var(Urt ) = 0.0204, Var(Hr1) = 0.04, Var(Ert ) = 0.01,

φ = 0.7, Var(Frt ) = 0.01,

E(ar) = 1.4, E(br ) = 0.1,

Var(ar) = 0.058, Var(br ) = 0.0017,

Cov(ar , as) = 0.038, Cov(br , bs) = 0.0016,

for all r and s �= r . We shall call this specification H0. Suppose that we are con-
cerned with the sensitivity of this specification to changes in the prior means
for the two regression coefficients a and b. To do this, we now consider further
specifications H1, . . . , H20 as follows.

• We consider five possible values for the prior mean for a, namely {0, 1, 1.4,
1.8, 2.8}.

• We consider three possible values for the prior mean for b, namely {0, 0.1, 0.2}.
The combination of these 5× 3 possibilities yields specifications H1, . . . , H15, of
which one is identical to H0.

The sensitivity map comparing expectation differences for these specifications
relative to H0 is shown in Figure 9.12. The map can be labelled to indicate which
point corresponds to which specification: we show the labels for the most outlying
points. One of these corresponds to H0, showing that there is some distance between
the base specification and the remaining specifications. There is a central cluster of
points corresponding to specifications with similar implications, which we might
therefore describe as robust.
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Figure 9.12 Sensitivity map for the differences of expectations. Outlying points are labelled
by corresponding values of EHi

(a) and EHi
(b).

The most outlying points generally correspond to specifications with the highest
expectation that we made for the slope quantity, E(b) = 0.4, and with non-zero
intercept expectations. We conclude that the dominating influence for the sensitivity
analysis is a large specification for the prior mean for the slope coefficient, in
combination with different specifications for the prior mean for the intercept. The
specification does not seem sensitive to small changes in the slope specification,
whatever the intercept specification.

9.15.3 Sensitivity analyses for variances

We may similarly assess differences in the variance specification. One natural mea-
sure of distance between variance specifications under Hj and Hk is the Euclidian



BELIEF COMPARISON 351

norm for the difference between them,

dv(j, k) = ||VarHj
(X)− VarHk

(X)||
= [tr{{VarHj

(X)− VarHk
(X)}T {VarHj

(X)− VarHk
(X)}}] 1

2 , (9.72)

which corresponds to the inner product (A · B) = tr{AT B}. Small values of dv(j, k)

imply no practical difference between Hj and Hk , when considered as alternative
variance specifications. For a graphical analysis, we may construct the distance
matrix Dv with (j, k)th entry being the distance dv(j, k), and use multidimen-
sional scaling to produce a low-dimensional graphical representation of the distance
matrix. This can be interpreted similarly to the sensitivity map for expectation
differences.

9.15.4 Example: robustness analysis for variance specifications

To return to the exchangeable regressions example, we consider 12 alternative
specifications as follows.

• We consider three possible values for Var(ar), namely {0.058, 0.068, 0.078},
whilst keeping Cov(ar , as) fixed. This corresponds to weakening the relationship
between an individual observation and the underlying mean component for the
underlying intercept M(a).

• We consider two possibilities for Var(br), namely {0.0017, 0.0020}, whilst keep-
ing Cov(br , bs) fixed. This corresponds to weakening the relationship between
an individual observation and the underlying mean component for the slope
M(b).

Otherwise, we keep the variances for the error components fixed at their usual val-
ues. The combination of these 3× 2 possibilities yields specifications H1, . . . , H6.

• We keep the specifications for the regression coefficients fixed and vary each of
the error component variances once: Var(Ert ) at 0.05 instead of 0.01; Var(Frt )

at 0.05 instead of 0.01; and Var(Hr1) at 0.1 instead of 0.0204. This gives spec-
ifications H7, H8, H9. In each case, we are interested in seeing whether large
changes for the error quantities imply large changes overall.

• We specify a model without a slope component, as in §9.12, and with a single
error component Ert for which we specify variances of {0.01, 0.04, 0.07}. This
gives specifications H10, H11, H12. Specifications H1 and H11 were previously
compared in §9.12.
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Table 9.12 Summary of differences in variance specifications. For each specifi-
cation, we fix Cov(ar , as) = 0.038.

Var(ar ) Var(br ) Cov(br , bs) Var(Ert ) Var(Frt ) Var(Hrt )

H1 0.058 0.0017 0.0016 0.01 0.01 0.0204
H2 0.068 0.0017 0.0016 0.01 0.01 0.0204
H3 0.078 0.0017 0.0016 0.01 0.01 0.0204
H4 0.058 0.0020 0.0016 0.01 0.01 0.0204
H5 0.068 0.0020 0.0016 0.01 0.01 0.0204
H6 0.078 0.0020 0.0016 0.01 0.01 0.0204
H7 0.058 0.0017 0.0016 0.05 0.01 0.0204
H8 0.058 0.0017 0.0016 0.01 0.05 0.0204
H9 0.058 0.0017 0.0016 0.01 0.01 0.1000
H10 0.058 0.0000 0.0000 0.01 0.00 0.0000
H11 0.058 0.0000 0.0000 0.04 0.00 0.0000
H12 0.058 0.0000 0.0000 0.07 0.00 0.0000
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Figure 9.13 Sensitivity map for the differences in variance specifications, labelled by the
specifications.
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The differences between these variance specifications are summarized in
Table 9.12. The sensitivity map comparing these variance matrices is shown in
Figure 9.13, labelled by specification. Note that variation in the second principal
axis is minor compared to variation along the first principal axis. That is, the
differences between specifications can be largely expressed in the x-direction.

There is one main cluster containing the specifications H1, . . . , H6, which we
take to be quite similar. We conclude that the variance and covariance specifications
for the slope and intercept quantities are relatively insensitive to small changes.
Specification H7 is also close to this main cluster, suggesting insensitivity to mod-
ifying Var(Ert ) alone. Specification H9 is also relatively close to this cluster (as
variation in the y-direction is minor) suggesting insensitivity to modifying Var(Hrt )

alone. However, H8 is widely separated from the other specifications, suggesting
that the model is sensitive to changes in specification for Var(Frt ). Finally, there
is a secondary cluster corresponding to the model without a slope coefficient. This
cluster is quite distant from the main cluster, indicating that the variance specifi-
cations for the models with and without the slope component are rather dissimilar.
Further, the grouping in the secondary cluster shows that the specification without
a slope component was not strongly sensitive to the choice for Var(Ert ).

9.16 Further reading

Basic ideas of belief comparison are described in Goldstein (1991), which includes
further examples of the comparisons of specifications for the example in §9.12. Use
of belief comparisons to explore issues of robustness and sensitivity is described
in Goldstein and Wooff (1994).
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Bayes linear graphical models

Graphical models offer compact pictorial representations of the qualitative structure
of our beliefs. Such representations are useful for both the construction and the
analysis of complex belief structures. Bayes linear graphical models perform this
task for second-order specifications. The diagrams which we shall describe are
closely related to Gaussian diagrams, which describe the relationships between
collections of normal random quantities, as such relationships are determined by
the covariance structure of the collection of quantities.

When we construct a belief structure, we often begin by forming qualita-
tive ideas as to how the various ingredients of a problem are related. Graphical
modelling helps us to visualize and then build complex structured multivariate
relationships. Such pictures are particularly helpful for communicating between
members of a group, and certain kinds of graphical model are sometimes termed
knowledge maps to suggest their role of laying out a terrain of relationships to be
explored and quantified. Further, the model reveals the most efficient way to quan-
tify our belief specifications, by identifying which aspects of the full specification
we are required to assess and which may be deduced from the form of our model.

Graphical models are helpful in two different ways in the analysis of the result-
ing belief specifications. First, the diagram helps us to organize the calculations
which are required to solve the diagram, whereby we may break down the anal-
ysis of high-dimensional structures into a series of low-dimensional components
which are sufficient to determine the whole system, and so allows us to use local
computation to solve much larger problems than we could easily assess by direct
computation. Secondly, the diagram provides a natural structure for displaying the
results of a Bayes linear analysis in a simple graphical form.

There exists an extensive literature on graphical modelling for probabilistic sys-
tems; see, for example, Pearl (1988), Jensen (2001), Lauritzen (1996) and Cowell
et al. (1999). In this chapter, we will not aim to survey this whole literature but

Bayes Linear Statistics: Theory and Methods M. Goldstein and D.A. Wooff
 2007 John Wiley & Sons, Ltd
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only to provide a self-contained introduction to those elements of graphical mod-
elling which are most relevant to the Bayes linear approach, deriving all results
directly from the corresponding properties of belief adjustment.

10.1 Directed graphical models

Bayes linear graphical models represent the (linear) belief separations between col-
lections of random quantities. Recall that separation of collections A and B by the
collection C, written �A⊥⊥ B� / C, is the property that C is Bayes linear sufficient
for B for adjusting A. There are two basic forms for the graphical representation
of belief separation, namely directed and undirected graphs.

In this section, we discuss representations of beliefs using a directed acyclic
graph. Such a graph has nodes B1, . . . Br , say, where each node Bi represents a
collection Xi1, . . . Ximi

of random quantities. Certain nodes are joined by directed
arrows, subject to the constraint that there are no directed cycles, namely directed
paths which return to their starting point.

Definition 10.1 If a directed arc goes from node A to node B, then A is termed
a parent of B, B is termed a child of A, and A, B are said to be adjacent or
neighbour nodes. We denote by Pa(B) the set of parents of B.

The arcs express the separations of belief between the nodes by the requirement
that any pair of nodes is separated by the parent nodes. We have the following
definition of a directed graphical model.

Definition 10.2 A model is a directed (second-order) graphical model if, for any
nodes Bi and Bj , we have

�Bi ⊥⊥ Bj� / (Pa(Bi) ∪ Pa(Bj )). (10.1)

While Definition 10.2 is a natural definition, the condition may be laborious to
check for any particular graph. An alternative approach is as follows.

Definition 10.3 We say that any ordering of the nodes with the property that any
parent of a node on the graph is also a predecessor of the node in the list is a node
ordering which is consistent with the graph.

On any directed acyclic graph, we may construct at least one consistent ordering,
by numbering at stage 1 any node with no parents as node 1, and then, at each stage,
m, numbering as node m any node all of whose parents are already numbered.

This algorithm works because if, at any stage, we could not number a node,
then this would imply that each unnumbered node had an unnumbered parent,
which would imply that there was a cycle in the unnumbered nodes. The ordering
so created must be consistent as, by construction, each node is only numbered
when all parents have been numbered.

We have the following alternative definition of a directed graphical model.
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Definition 10.4 A model is a directed (second-order) graphical model if, when
B1, . . . , Br is a consistent ordering on the nodes, then for each k, node Bk is sep-
arated by the parent nodes from all predecessor nodes in the list, namely

�Bk ⊥⊥ B(k − 1)� / Pa(Bk), (10.2)

where B(j) = B1 ∪ . . . ∪ Bj .

There will often be a natural ordering under which property (10.2) is relatively
easy to check, so that we may use this ordering to draw the graph as, for each node
in the ordering, we must only decide which sub-collection of the predecessor nodes
is Bayes linear sufficient for the whole collection of predecessors. However, it is
not immediately obvious whether the two properties that we have introduced are
equivalent, or even whether property (10.2) is dependent on the particular choice
of list ordering, for example whether there may be certain consistent orderings for
a given graph for which (10.2) holds and others for which it does not. However,
we will now show that the two properties are equivalent. In particular, as property
(10.1) is independent of the list ordering, it follows that property (10.2) does not
depend on the choice of consistent list ordering. We have the following equivalence.

Theorem 10.5 Property (10.2) is equivalent to property (10.1).

Proof. Suppose that (10.2) holds for some consistent list ordering B1, . . . , Br . For
each j , we have

�Bj ⊥⊥ B(j − 1)� / Pa(Bj ),

so that, as the list ordering is consistent for each i < j , we have

�Bj ⊥⊥ (Bi ∪ Pa(Bi))� / Pa(Bj ),

so that by Property 5.21.3 we have

�Bi ⊥⊥ Bj� / (Pa(Bi) ∪ Pa(Bj )).

Conversely, suppose that (10.1) holds. We choose a consistent list ordering
B1, . . . , Br . Select any s > 1. As B1 has no parents, we have

�Bs ⊥⊥ B1� / Pa(Bs).

Suppose that �Bs ⊥⊥ Bj � / Pa(Bs), for j = 1, . . . , m− 1, where m < s − 1. As
the list ordering is consistent, it therefore follows that

�Bs ⊥⊥ Pa(Bm)� / Pa(Bs).

From (10.1), we have �Bs ⊥⊥ Bm� / (Pa(Bs) ∪ Pa(Bm)). It therefore follows from
Property 5.21.3 that

�Bs ⊥⊥ Bm� / Pa(Bs).

Thus (10.2) follows by induction. �
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10.1.1 Construction via statistical models

It is often the case in statistical problems that our beliefs are represented through
a series of models each expressing the relationship between a dependent variable
and a collection of explanatory variables. In such cases, it is natural to construct
the Bayes linear graphical model as follows.

We write each random quantity in the model as a node on the diagram.
Optionally, fixed quantities may be added as rectangles on the diagram to aid
interpretation, but have no implications for belief separation for the random quan-
tities connected to them. We construct a list ordering for which any dependent
variable comes later in the list than the explanatory quantities used to define the
model for that quantity. We construct the graph by running through the elements
of the list in order and draw arcs to each from a subset of elements which is jointly
sufficient to separate that element from all other preceding members of the list. In
particular, each dependent variable receives an arc from each explanatory quantity
in the defining equation for that quantity.

10.2 Operations on directed graphs

The graphical model carries information about belief separations, which are repre-
sented by missing arcs on the graph. While we will usually want to create sparse
graphs, with as few arcs as possible, sometimes we will want to introduce addi-
tional arcs or to combine nodes, to facilitate certain calculations and displays that
we shall describe below. Each such operation may conceal various belief separa-
tions which were deducible on the original diagram. However, we must be careful
not to carry out transformations of the diagram which introduce new belief separa-
tions which were not deducible from the original model. Therefore, it is useful to
know under which conditions we may carry out such operations without creating
false inferences.

Definition 10.6 We say that graphical model D1 implies model D2 if every belief
separation for D2 is also a belief separation for D1.

Definition 10.7 We say that an operation on the graph is allowable if the resulting
graph is implied by the original graph.

Theorem 10.8 (Allowable operations on the graph)

10.8.1: Suppose that we have a graph, and a consistent list ordering B1, . . . ,

Br . Then adding a directed arc, from the lower to the higher numbered value,
between any pair of nodes is an allowable operation.

10.8.2: Suppose that two nodes have the same children and the same parents.
Then it is allowable to combine the two nodes into a single node with the
same child and parent sets.
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10.8.3: Suppose that, in a consistent node ordering of a graph, nodes Bi and
Bj , i < j , have the properties that all the nodes Bk in the child set for Bi

have k ≥ j and all the nodes Be in the parent set for Bj have e ≤ i. Then it
is allowable to combine nodes Bi and Bj into a single node with child set
the union of the child sets for the two nodes and parent set the union of the
parent sets for the two nodes.

In particular, if we may group the nodes on the diagram into three disjoint
sets A, B, C so that B has no children in A and C has no children in A or
B, then it is allowable to combine all the nodes in B into a single node, with
parents and children the union of the parent set of B and the union of the
child set of B, respectively.

Proof. For Property 10.8.1, suppose that i < j , and that Bi and Bj are not cur-
rently joined by an arc. If we add a new arc from Bi to Bj , then the only node for
which the parent collection has changed is Bj , which has increased to Pa(Bj ) ∪
Bi . Therefore, all that we need to check is the condition that �Bj ⊥⊥ B(j −
1)� / (Pa(Bj ) ∪ Bi). This follows directly from Property 5.21.3, as �Bj ⊥⊥ B(j −
1)� / (Pa(Bj ), and Bi ∈ B(j − 1).

Property 10.8.2 follows from (10.1), as each parent and child set is unchanged.
For Property 10.8.3, by Property 10.8.1 we may add directed arcs from each of

Bi and Bj to any node in the union of the child sets for the two nodes for which
such an arc is not yet present as, from the conditions imposed on nodes Bi and Bj ,
all nodes in the union of the child sets have higher numbers in the consistent list
ordering than j . Similarly, we may add directed arcs to each of Bi and Bj from
any node in the union of the parent sets for the two nodes for which such an arc
is not yet present. In the resulting graph Bi and Bj have the same children and
the same parents. From Property 10.8.2, we may therefore join Bi and Bj into a
single node as required.

The conditions imposed on collections A, B, C ensure that, for each pair of
nodes in B, these conditions are satisfied, and the result follows. �

Thus, we may choose to incorporate surplus arcs, if we want to track the
information flow into a particularly important node, or combine nodes to clarify
the structure of the graph. For example, there may be a natural time ordering on
the nodes, and we may want to assess how much information about certain future
events we may gain by observing various past events. We may add some extra arcs
to display such information or combine nodes measured at the same time point.
As long as we respect the conditions of Theorem 10.8, the graph will be valid,
although some of the structure of the belief separation may be lost.

Finally, there are certain basic allowable manipulations that we can perform
on the graph which follow as direct consequences of the generalized conditional
independence properties of the graph. Two of the most important and well known
manipulations on the graph are arc reversal and arc removal. We have the following
theorems.
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Theorem 10.9 (Arc reversal) Suppose that node A is a parent of node B, and that
there is no other directed path from A to B. Then it is an allowable operation to
reverse the direction of the arc from node A to node B, provided that, in addition,
we add arcs from each parent of A to B and add arcs from each parent of B to A.

Proof. As there is no other directed path from A to B, no descendent of A may
be an ancestor of B, so that we may construct a consistent list ordering in which
each parent of A or B appears in the list ordering before A and A and B are
consecutive members of the list. Therefore reversing the arc between A and B,
joining the parents of A to B, and joining the parents of B to A corresponds
to a list ordering which is the same as the original list ordering with A and B

interchanged. There can be no directed cycles created by this operation.
Denote the collection of antecedents of A in the original list ordering as D.

The original graph satisfied the properties

�D ⊥⊥ A� / Pa(A), �D ⊥⊥ B� / Pa(B). (10.3)

Denote by Pa(BA) the collection of all parents of B except A. Under the new
ordering the parents of A are Pa(A∗) = Pa(A) ∪ Pa(BA) ∪ B and the parents of
B are Pa(B∗) = Pa(A) ∪ Pa(BA). We need to show that (10.3) implies the same
properties, but with Pa(A), Pa(B) replaced by Pa(A∗), Pa(B∗).

As both Pa(A) ⊆ D and Pa(BA) ⊆ D, from Property 5.21.3 we have

�D ⊥⊥ A� / (Pa(A) ∪ Pa(BA)), �D ⊥⊥ B� / (Pa(A) ∪ Pa(BA) ∪ A).

Again, from Property 5.21.3, we therefore have

�D ⊥⊥ A ∪ B� / (Pa(A) ∪ Pa(BA)),

so that from Property 5.21.3

�D ⊥⊥A� / Pa(A∗), �D ⊥⊥ B� / Pa(B∗).

�

Theorem 10.10 (Node removal) It is an allowable operation to remove a node A

from the graph, provided that we add arcs so that each parent of A becomes a
parent of each child of A. Each child of A must also be connected by an arc, the
directions of the arcs between children being chosen according to a consistent node
ordering, where each arc added between children of A joins the lower numbered
node to the higher numbered node. Each child that receives an arc from another
child in this way must also receive an arc from each parent of that child.

This theorem may be proved most naturally by exploiting further properties of
belief separation that we shall describe in §10.4, and we defer the proof of this
theorem to that section.
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10.3 Quantifying a directed graphical model

In many problems, we begin the task of specifying our beliefs by purely qualitative
consideration of the various belief separations that we wish to impose upon our
collection of beliefs. In such cases, we begin by drawing a diagram satisfying the
required properties and then proceed to quantify the diagram.

We wish to specify the second-order structure expressing beliefs across all of
the elements of all the collections of random quantities represented on the diagram.
This may be a difficult process, for a large diagram, and so must be carried out
systematically, to respect and exploit all of the coherence requirements for the
joint specification. The fundamental simplification of the directed graph is that we
only need to specify beliefs between neighbouring nodes in order to complete the
specification over the whole graph.

Suppose that we have two nodes A and B, where A is the parent of B. We
may specify directly the mean and variance for each node and the covariance
between each. Alternatively, it might be more natural to specify the mean and
variance for A and then to complete the belief specification by considering the
adjusted expectation and variance for B given A. In particular, suppose that we
may directly assess EA(B), VarA(B). Then, as EA(B) is a linear function of A,
we may deduce the corresponding mean, variance, and covariance for B as

E(B) = E(EA(B)), (10.4)

Var(B) = VarA(B)+ Var(EA(B)),

Cov(A, B) = Cov(A, EA(B)).

Now suppose that we have three belief structures A, B, and C, for which
�A⊥⊥ B� / C. By Theorem 5.23, �A⊥⊥ B� / C implies that (A− EC(A)) is
uncorrelated with B, i.e. that

Cov(A, B) = Cov(EC(A), B). (10.5)

Thus, to evaluate Cov(A, B), we assess EC(A), which is determined by the covari-
ance structure Cov(A, C), and then we assess Cov(EC(A), B), which, as EC(A) is
a linear form in C, is determined by Cov(C, B). Therefore, the covariance struc-
ture between the collections A and B is fully determined by the pair of covariance
structures Cov(A, C) and Cov(C, B) and the variance matrix Var(C). For finite
vectors A, C, B with �A⊥⊥ B� / C, we have the matrix representation

Cov(A, B) = Cov(A, C)Var(C)†Cov(C, B), (10.6)

as in Theorem 5.20. Therefore, for a general directed graphical model, the covari-
ance structure over the full model is fully determined by the variance structure for
each node, and the covariance structure between each pair of adjacent nodes. We
may construct the full specification as follows. Construct a consistent list ordering
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B1, . . . , Br of the nodes of the graph. Suppose that we have made a full second-
order specification over B(s − 1), 1 ≤ s ≤ r . We now extend this specification
to the collection B(s). From the belief separation, �Bs ⊥⊥ B(s − 1)� / Pa(Bs), the
covariance structure between Bs and B(s − 1) is fully determined by the covariance
structure between Bs and Pa(Bs) and the covariance structure between B(s − 1)

and Pa(Bs). Therefore, we may construct the full covariance structure between Bs

and B(s − 1) from the individual covariance specifications between Bs and each
member of Pa(Bs). Stepping through the nodes according to the list ordering, we
may therefore sequentially construct the complete belief specification over the full
collection of random quantities by introducing each node Bs in order and specify-
ing the mean and variance for that node, either directly or exploiting the adjustment
based on the parent nodes using (10.4), and then specifying the covariance between
Bs and Pa(Bs).

10.4 Undirected graphs

An alternative way to represent a collection of belief separations is through an
undirected graph. In such a graph, each node represents a collection of random
quantities, and certain pairs of nodes are joined by undirected arcs in order to
reveal various dependencies between the collections. We say that a collection of
nodes C separates the collections A and B of nodes on such an undirected graph
if every path from a node in A to a node in B passes through a node in C. We
relate such a separation on the graph to a separation of beliefs as follows.

We say that an undirected graph has the second-order version of the global
Markov property if, for any three subsets of nodes A, B, C on the graph, if C

separates A from B on the graph, then �A⊥⊥ B� / C.
There is a sense in which the global Markov property is a natural condition

on which to base a sequence of belief adjustments, as this condition is preserved
under belief adjustment. We have the following result.

Theorem 10.11 Suppose that an undirected graphical model is second-order global
Markov. Choose any node, D say, and remove node D and all arcs entering D from
the diagram. The resulting diagram is second-order global Markov for the belief
structure resulting from adjusting all quantities by D.

Proof. Suppose that we remove node D and all arcs entering D from the diagram.
Suppose that on the new diagram all paths from collection A to collection B

pass through collection C. It follows that all paths from A to B on the original
diagram pass through C or D, so that �A⊥⊥ B� / (C ∪D). From Theorem 5.25,
this condition implies that �AD(A)⊥⊥AD(B)� / AD(C), so that separation on the
modified graph corresponds to the separation of adjusted beliefs as required. �

For any directed graphical model, there is an associated undirected graphical
model, termed the moral graph, which displays general belief separations in a
direct fashion. The moral graph is constructed as follows.
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Definition 10.12 The moral graph is constructed by (i) drawing an arc between any
two nodes which are parents of the same child node and which are not currently
joined by an arc (i.e. ‘marrying’ unmarried parents), and (ii) dropping all arrows.

Node separation on the moral graph identifies belief separation as follows.

Theorem 10.13 For any three collections of nodes A, B, C, within a directed
graphical model, construct the moral graph on A, B, C and all ancestors. If C

separates A from B on this graph, then �A⊥⊥ B� / C.

Proof. The proof follows by induction on the size of the graph. That the statement
is true for graphs of size three follows by checking the various cases. We now
suppose that the statement is true for all graphs of size n and deduce that it is true
for all graphs of size n+ 1.

Suppose, then, that the statement is true for all graphs of size n. Now consider
a directed graph of n+ 1 nodes, with a consistent node ordering V1, . . . , Vn, Vn+1.
Choose three collections A, B, C for which, on the moral graph on A, B, C and
ancestors, there is no path from A to B except through C. We must show that
�A⊥⊥ B� / C.

If Vn+1 is not a member of any of the collections A, B, C, then �A⊥⊥ B� / C

from the inductive hypothesis. Suppose node Vn+1 ∈ A; the argument is iden-
tical for B. From the inductive hypothesis, all that we need to show is that
�Vn+1 ⊥⊥ B� / C, as the remaining nodes in A are separated from B by C in the
moral graph on the graph of size n without Vn+1. Let E be the nodes common to
Pa(Vn+1) and to C, and let F and G be the nodes in Pa(Vn+1) and not in C, and in C

but not Pa(Vn+1), respectively. From the defining property of the directed graph, we
have �Vn+1 ⊥⊥ (G ∪ B)� / Pa(Vn+1). Therefore �Vn+1 ⊥⊥ B� / (F ∪ C), by Prop-
erty 5.21.3. Further, all paths from F to B pass through C, as otherwise there
would be a path from Vn+1 to B which does not pass through C. Therefore we
have �F ⊥⊥ B� / C, from the inductive hypothesis, so that �Vn+1 ⊥⊥ B� / C from
Property 5.21.3.

Alternatively, suppose that node Vn+1 is in C. Now, let E denote all the
remaining nodes in C except Vn+1. If there is a path on the moral graph from
A to Pa(Vn+1) which does not pass through E, then there cannot be a path
from B to Pa(Vn+1) which does not pass through E, as all the parents of Vn+1
are joined in the moral graph, so that there would then be a path from A to
B which would not pass through C. Therefore E separates Pa(Vn+1) from at
least one of A and B. Suppose E separates Pa(Vn+1) from A. By the inductive
hypothesis, we have �Pa(Vn+1)⊥⊥ A� / E. However, from the definition of the
graph, we have �Vn+1 ⊥⊥ (A ∪ E)� / Pa(Vn+1). Therefore, from Property 5.21.3,
we have �Vn+1 ⊥⊥ A� / (Pa(Vn+1) ∪ E). Therefore, again by Property 5.21.3, we
have �Vn+1 ⊥⊥A� / E.

Further, if there is no path on the moral graph from A to B except through
C, then, on the moral graph on all nodes except Vn+1, there is no path from A

to B except through E, as any such path would still exist on the graph on n+ 1
vertices. Therefore, from the inductive hypothesis we have �A⊥⊥ B� / E.
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Therefore, as �Vn+1 ⊥⊥ A� / E, we have �A⊥⊥ (B ∪ Vn+1)� / E, so that, from
Property 5.21.3, we have �A⊥⊥ B� / C, as required. �

Observe that the full moral graph on all of the nodes in the directed graph
loses some information about belief separation. In particular, if all paths from A

to B pass through C on the moral graph of A, B, C and ancestors, but there is a
path from A to B which does not pass through C in the full moral graph, then this
belief separation is lost when the full graph is moralized. This could happen, for
example, if there was a node D which was a descendent of both A and B.

10.4.1 Node removal via the moral graph

We now use the moral graph to prove Theorem 10.10, concerning conditions for
removing nodes on a directed graph.
Proof. (Theorem 10.10). Each arc added to the graph when we remove a node
according to the rules stated in the theorem joins a lower numbered node to a higher
numbered node, so that no directed cycles can be introduced by this procedure,
and the original ordering is also a consistent node ordering for the revised graph.

Denote the children of A by B1, . . . , Br , where Bi has the ith lowest number
in the consistent node ordering. Let Pa(B∗i ) denote all parents of Bi in the modified
graph. We must show that, for each i, �Bi ⊥⊥ A(Bi)� / Pa(B∗i ), where A(Bi) is the
collection of all nodes occurring earlier than Bi in the node listing, with A removed.
Therefore, from Theorem 10.13, it is sufficient to show that, on the moral graph
constructed from the original graph on Bi ∪A(Bi) ∪ A, all paths from Bi to a
member of A(Bi) pass through a member of Pa(B∗i ).

As Bi is the highest numbered node among Bi ∪ A(Bi) ∪ A, Bi has no children,
so that any path from Bi on the moral graph on this collection must pass through
a member of Pa(Bi). Either this is a member of Pa(Bi) other than A, so that it is
a member of Pa(B∗i ), or the path passes through A. All paths from A on the moral
graph must

(i) pass through an arc on the original graph, i.e. a member of Pa(A), or one of
the children B1, . . . , B(i−1), of A; or

(ii) pass through an additional arc added from A on the moral graph – these arcs
connect A to each parent of B1, . . . , B(i−1).

Each of the nodes entered in (i) or (ii) is a member of Pa(B∗i ), proving the
theorem. �

10.5 Example

We construct a Bayes linear graphical model for the problem considered in §5.14.2.
Recall that the model is

Yi = a + bxi + ei, Zi = c + dxi + fi, i = 1, . . . , 12, (10.7)
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with prior specifications as in §5.14.2.2; in particular, we have as variance matrix
for G = [a, b, c, d],

Var(G) =




4 −6 −1 0
−6 225 0 −90
−1 0 1 −2.4

0 −90 −2.4 144


 .

We may construct a Bayes linear graphical model for this problem using the proce-
dure of §10.1.1 as follows. We limit attention to pairs of quantities such as Yi, Yj ,
as the implications for the remaining terms follow in an obvious manner.

• We begin by adding nodes to the diagram for the quantities

Yi, Yj , Zi, Zj , a, b, c, d, ei, ej , fi, fj . (10.8)

We also add rectangles for the fixed quantities xi, xj .

• We must construct a consistent ordering for the quantities (10.8). As the quan-
tities Yi, Yj , Zi, Zj are defined by the linear equations, it is natural for these
to appear at the end of the list. Otherwise, any arrangement of the quantities
in the sub-collection G = {a, b, c, d} and the sub-collection Q = {ei, ej , fi, fj }
provides the basis for a consistent node ordering. We take advantage of uncorre-
latedness as follows. Each pair of quantities ei, fi is uncorrelated with all other
quantities, so we begin our list with ei, fi, ej , fj . As a is uncorrelated with d,
and b with c, there may be advantages in appending a, d, b, c to our list in that
order. However, we choose for the sake of illustration to retain the ordering
a, b, c, d so that we use the consistent ordering

ei, fi, ej , fj , a, b, c, d, Yi, Yj , Zi, Zj . (10.9)

• We now consider separations of belief for this ordering. The first node is ei . The
second is fi , which is correlated with ei and so needs an arc ei → fi . The nodes
ej , fj are similarly connected by an arc, but are separated from the first pair.
The next node to consider is node a. This is uncorrelated with all nodes earlier in
the list, and so needs no arcs adding. Indeed, the sub-collection G = {a, b, c, d}
is uncorrelated with the sub-collection Q = {ei, ej , fi, fj } and so there shall be
no arcs between any quantity in G and any quantity in Q for this ordering. The
next node b in the ordering is correlated with a and so an arc a → b is drawn.

We now consider the next node in the list, c, which is correlated with its prede-
cessor a, but not its predecessor b. The question is whether both a and b need
to be parents of c. To answer the question, we may check any of the properties
in Theorem 5.20. We choose Property 5.20.2 as this is fairly straightforward to
compute. It is simple to verify that �c ⊥⊥Q� / a ∪ b. However, we find that it
is not true that �c ⊥⊥ a� / b: by Property 5.20.2, we have

Cov(c, a) = −1 �= Cov(c, b)Var(b)†Cov(b, a) = 0.
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Thus, we require a and b to be parents of c. Notice that b, c are not conditionally
independent given a, even though they are marginally independent.

For the next node in the list, d, it is similarly trivial to check that �d ⊥⊥Q� / a ∪
b ∪ c. However, we find that it is not true that �d ⊥⊥ a� / c ∪ b, not true that
�d ⊥⊥ b� / a ∪ c, and not true that �d ⊥⊥ c� / a ∪ b. Hence, we require a, b, c

to be parents of d.

• Yi is a linear function of a, b, ei (and the fixed quantity xi) and so these all
become parents to node Yi . Zi is a linear function of c, d, fi (and the fixed quan-
tity xi) and so these all become parents to node Zi . Similarly, arcs connecting
parent nodes to Yj and Zj are drawn.

The resultant Bayes linear graphical model is shown in Figure 10.1. Note that
we might obtain different representations, depending on which node ordering we
choose. For example, if we choose instead the ordering a, d, c, b, the resulting

Figure 10.1 Bayes linear graphical model for model (10.7), using the consistent node
ordering (10.9).
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graph has
a → c, d → c, a → b, d → b, c → b.

This is simpler, having one arc fewer, than the graph shown in Figure 10.1.

10.5.1 Plates for duplicated structures

Figure 10.1 shows that the i-subscripted quantities, Ki = {Yi, ei, fi, Zi, xi}, are
separated from the j -subscripted quantities, Kj = {Yj , ej , fj , Zj , xj }, by the sub-
collection of parameters G = {a, b, c, d}. That is, �Ki ⊥⊥Kj � / G. Moreover, Ki

has the same internal structure as Kj , and the arcs between Ki and G are the same
as those between Kj and G. Such duplication is typical when random quantities are
constructed to represent error terms and observables which are connected through
an underlying model. For this example, we have 12 pairs of observables leading
to collections K1, . . . , K12. We can indicate such duplicated structure on the graph
using the notion of a plate: we include a single collection of nodes Ki on the
graph, draw a dashed line around the collection, and indicate how many times this
plate is repeated. A plate for this example is shown in Figure 10.2.

The concept of a plate relies on fundamental properties of the graphical model.
In particular, the plates such as K1, K2, . . . are belief separated by the parameter
set such as G: this is why we only need to show a ‘typical’ member. Furthermore,
because the whole collection is belief separated by the parameter set, we can find
the covariance structure between any two plates. Indeed, one way to calculate
the covariance structure between two plates is to employ the general rules for
quantifying the whole model based on neighbouring nodes, developed in §10.3.
Thus we may, if we wish, calculate Cov(ki, kj ) by

Cov(ki, kj ) = Cov(ki, G)Var(G)†Cov(G, kj )

as in (10.6), for any vectors of quantities ki ∈ Ki, kj ∈ Kj .

10.5.2 Reading properties from the diagram

We may now read directly from the diagram some properties of the specified
model. One of the most important features is that one can automatically read from
the diagram that the joint specification between all the observables is determined
by the specification for a, b, c, d, the specification for each ei, fi pair, and the
covariance specification between each a, b, ei and Yi and between c, d, fj and Zj .
Some belief separations are clear from the diagram and the node ordering. For
example, we have

�Yi ⊥⊥ Yj � / (a, b, ei, ej ) and �Yi ⊥⊥ Zj � / (a, b, c, d, ei, fj ),

directly from Definition 10.2, as the separating set is in each case the union of all
their parents.

Checking whether other belief separations hold requires a bit more effort: we
must employ Theorem 10.13 and construct the moral graph (Definition 10.12).
This is shown in Figure 10.3. For example, suppose that we wish to check further
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Figure 10.2 Bayes linear graphical model for model (10.7) and consistent node ordering
(10.9), with a plate indicating repeated structure.

how Yi and Yj are separated and how Yi and Zj are separated. From the moral
graph, we can see that

�Yi ⊥⊥ Yj � / (a, b, ei) and �Yi ⊥⊥ Zj� / (a, b, ei).

Note that identification of the separating set of nodes may not be unique. For
example, we also have that

�Yi ⊥⊥ Yj � / (a, b, ej ) and �Yi ⊥⊥ Zj � / (c, d, fj ).

10.5.3 Alternative diagrams

Just as there is more than one possible Bayes linear graphical model for this model,
so there are many possible consistent orderings for the nodes in this diagram. One
such ordering is given by (10.9). To illustrate some properties of Theorem 10.8,
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Figure 10.3 The moral graph corresponding to Figure 10.1.

we have, by Property 10.8.1, that it is an allowable operation to draw a directed
arc between a pair of nodes such as ei, Zj , as ei appears higher in the list than Zj .
The direction must be ei → Zj . By Property 10.8.3, we can combine quantities
a, b into a single vector node GY by arranging the sets of nodes as

Group A : ei, ej , fi, fj , Zi, Zj

Group B : a, b

Group C : c, d, Yi, Yj .

Having done so, we may then combine quantities c, d into a single node GZ by
arranging the sets of nodes as

Group A : GY , ei, ej , fi, fj , Yi, Yj

Group B : c, d

Group C : Zi, Zj .
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Figure 10.4 Bayes linear graphical model for model (10.7), organized into collections of
interest.

Such combination shows how we may organize like quantities. For example, by
Property 10.8.3, we may organize quantities as

E = {e1, . . . , e12}, F = {f1, . . . , f12},
Y = {Y1, . . . , Y12}, Z = {Z1, . . . , Z12}, (10.10)

GY = {a, b}, GZ = {c, d}.
A Bayes linear graphical model for this organization is shown in Figure 10.4. This
representation is natural if we wish to study the separate implications of the collec-
tions GY and GZ for collections Y and Z. There are other natural organizations.
We can, if we wish, similarly combine into one node the main quantities of interest,
namely the coefficients G = {a, b, c, d}. In §5.14.2.5 we explored the implications
of adjusting the collection of regression coefficients, G, sequentially by the pairs
of measurements

Hi = {Yi, Zi}, i = 1, 2, . . . , 12.

A Bayes linear graphical model for understanding the influence of the parameters
for the observables is given in Figure 10.5, where the collections are defined as

Qj = {Ej , Fj }, Q[i] = {E1, . . . , Ei, F1, . . . , Fi}, (10.11)

Hj = {Yj , Zj }, H[i] = {Y1, . . . , Yi, Z1, . . . , Zi}. (10.12)

x[i] = {x1, . . . , xi}. (10.13)

This graphical model is simply extended to the full sequence of partial adjustments
we may wish to perform.

10.5.4 Diagrams for inference and prediction

The diagrams we have constructed so far display the influence of parameters on
observables, whereas the statistical question of interest concerns the influence of
observables on parameters. To extend the example in the previous subsection, a
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Figure 10.5 Bayes linear graphical model for model (10.7), organized for understanding
the effects of sequential adjustment.

primary interest is in inference about the parameter set G given observation of all
the measurements up to and including Yi−1, Zi−1, and, in parallel, in prediction
of a future set of observables Yi, Zi . In order to do this we need to reverse the
directions of arcs in the diagrams shown so far.

As an illustration, suppose that we have available data at time i and that we
wish to adjust the parameter sets GY , GZ and the next set of observables, Yj , Zj ,
by this information, and then subsequently adjust the parameter sets by Yj , Zj . To
construct the appropriate Bayes linear graphical model, we begin with Figure 10.1
and carry out the following operations.

1. We drop the boxes representing the fixed values xi, xj , as these are irrelevant
to our purpose.

2. We combine nodes a, b into node GY and nodes c, d into GZ, so that we have
an arc GY → GZ, arcs from Yi, Yj into GY , and arcs from Zi, Zj into GZ .
This is allowable by Property 10.8.2.

3. We remove from the diagram the nodes ei, ej , fi, fj , representing the unob-
servable nuisance quantities. Such removal is allowable by Theorem 10.10: we
use the consistent node ordering (10.9), dropping in the order ei, fi, ej , fj . Fol-
lowing our rules for node removal, we must add arcs Yi → Zi and Yj → Zj .

4. We reverse arcs from the observables Yi, Zi to the parameters. Such reversal
is allowable by Theorem 10.9. Following our rules for node reversal, we must
also add arcs Yi → GZ and Zi → GY .

5. We reverse arcs from the observables Yj , Zj to the parameters. In doing so, it
turns out that we need to add arcs Yj → GZ and Zj → GY . We also need to
add arcs from each of Yi and Zi to each of Yj and Zj .

The resultant diagram is shown in Figure 10.6. An obvious simplification is to
combine nodes Yi, Zi into node Hi and nodes GY , GZ into node G, so that
the diagram has nodes Hi, Hj , G with arcs Hi → G, Hj → G, and Hi → Hj .
Similarly, we could have begun with the Bayes linear graphical model shown in
Figure 10.5 (dropping the nuisance quantities Q[i−1], Qi and the fixed x quantities)
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Figure 10.6 Bayes linear graphical model for model (10.7), following reversal of arcs for
inference and prediction.

Figure 10.7 Predictive and inferential Bayes linear graphical model for model (10.7) orga-
nized into collections of interest: (a) predictive, (b) sequential.

and reversed arcs from the observables to the parameter set, following our rules
for arc reversal. The resultant diagram is shown in Figure 10.7(b) and has nodes
H[i−1], Hi, G with arcs H[i−1] → G, Hi → G, and H[i−1] → Hi . If, instead, we
want only the predictive diagram, we omit stage 5 above, giving Figure 10.7(a),
with arcs from the parameters and the currently observed set into the set we wish
to predict.

10.6 Displaying the flow of information

Graphical models give a qualitative representation of our beliefs in a simple graph-
ical form. These diagrams may also be used to summarize the quantitative flow
of information by incorporating the various numerical measures that we have
described in previous chapters. As with any system of graphical representation, a
balance must be struck so as to provide large amounts of visual information to help
us to understand the implications of our belief specifications and analysis, without
overburdening the picture with so much information that it is difficult to learn
anything at all. We shall describe the elements of a graphical toolkit which allows
us to represent all of the interpretative and diagnostic aspects of a Bayes linear
analysis directly upon the corresponding graph. We would only rarely be interested
in seeing all of the features of the full graphical display that we will now describe.
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In any particular analysis, certain features will be of particular importance, and
the graphical displays should therefore be tuned to highlight these features and to
de-emphasize or suppress the remainder.

To begin, suppose that we have a directed graph with consistent node ordering
B1, . . . , Bk . Suppose that we want to describe the effects of the progressive adjust-
ment of each Bi by the collection of ancestors B(i), or equivalently by the parents,
Pa(Bi). A simple quantification is the system resolution, RPa(Bi)(Bi), namely the
trace of the resolution transform for the adjustment of Bi by Pa(Bi) divided by the
rank of Var(Bi). To simplify notation, we denote this by SRi = RPa(Bi)(Bi).

Suppose that the ordered parent nodes for Bi are Pi1, . . . , Pir . We may decom-
pose the collection Pa(Bi) into the mutually uncorrelated structures D1, . . . , Dr ,
where D1 = Pi1, and each Dj is the adjusted version of Pij given Pi1, . . . , Pi(j−1),
so that

Dj = A(Pi1∪...∪Pi(j−1))(Pij ), j = 2, . . . , r.

Therefore, we can uniquely partition the influence of the parent nodes on Bi into
the influence from the r mutually orthogonal structures Dj .

Denote the j th partial system resolution by Rj(i) = RDj
(Bi). We may decom-

pose the system resolution as the sum of partial resolutions, namely SRi =∑r
j=1 Rj (i), since the partial resolutions are additive, by (5.20). We also eval-

uate the final portion of the resolution of variance for Bi , namely the reduction
obtained from observation on Bi itself, given that we have already adjusted Bi by
B(i). We term this quantity the unresolved variation for Bi given Pa(Bi), denoted
by

Rr+1(i) = RAPa(Bi )
(Bi)(Bi) = 1− SRi.

10.6.1 Node shading

We depict this decomposition of the information on the graph by dividing the
node Bi into r + 1 sectors so that the area of sector j is proportional to the
magnitude of Rj (i). There are various alternative arrangements that we may choose
for the sectors. For example, we may arrange the sectors in ascending node order
anticlockwise from 0 degrees. Alternatively, we may arrange the sectors radially,
from the outside of the circle, with the unresolved uncertainty at the centre. The
former arrangement may be better for displaying small effects and has advantages
for displaying certain of the diagnostics that we will describe below. The latter
arrangement has the advantage that, as the area of the sector is in units of resolved
variance, the width of the sector is in units corresponding to standard deviation,
which is often a more intuitive quantity for assessing the importance of the various
resolutions. Further, we may use the visual image of the node shrinking to a point
as we gain information to give a simple representation of the remaining uncertainty
in the system as we make observations. If we wish to identify the sectors visually
with the corresponding parent nodes, then we shade or colour the outer rims of the
sectors appropriately; see the examples in the following section. The inner portion
of each sector is reserved for displaying diagnostic information; see §10.7.
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Note that this arrangement has the combination property that if we combine
several numerically consecutive parent nodes, then we simply combine the corre-
sponding adjacent sectors. If a node has a large number of parent nodes, we may
therefore decide to combine qualitatively similar types of parent node, to simplify
the display.

10.6.2 Arc labelling

The shading of the node depicts the amounts of information about that node suc-
cessively received from each parent node. This information arrives at nodes along
the arcs from parent nodes. It is useful to display the strength of the information
passing along each arc, to build up a picture as to the most important aspects
of the adjustment. We can express this division of information in terms of par-
tial resolutions. First, we describe labelling for a general scenario with collections
B, D, E, F , where D, E, F are parents of child node B. We represent the infor-
mation leaving a parent node for a child node, and the information arriving at a
child node from a parent node, as follows.

We define the information flows leaving D, E, and F singly to B as RD(B),
RE(B), and RF (B) respectively, representing the worth of each information source
in the absence of any other. The overall resolution at the node B is RD∪E∪F (B),
representing the total information arriving at B.

We measure the information flow arriving at B from F alone as the loss in
resolution at B if node F is withdrawn from the adjustment. In terms of resolutions
of uncertainty, this is

RD∪E∪F (B)− RD∪E(B). (10.14)

We measure the information flow arriving at B from E and from D similarly, by
RD∪E∪F (B)− RD∪F (B) and RD∪E∪F (B)− RE∪F (B) respectively.

The information leaving a node can be smaller than the information arriving
from it. This happens typically when one node is informative for a child node
only in combination with another. Sometimes, the information leaving a node is
also carried partly or wholly by other parents, in which case little or none of the
information will be seen to arrive at the child from this parent. The analogy here
is with stepwise linear regression: the information leaving a node is akin to the
predictive value of entering a single explanatory variable with no other variables
fitted, while the information arriving at a node is akin to the loss in predictive
power when an explanatory variable is withdrawn.

Many different kinds of labelling are possible. Here, we describe one choice.
Where we wish to display such information, an arc is labelled with a rectangle as
follows. The rectangle consists of a bar divided into two. The half bar nearest the
parent node concerns information leaving from the parent node to the child node.
The remaining half bar nearest the child node concerns information arriving at the
child node from that parent.

Figure 10.8 shows the contents of the half-bar nearest the parent node. There
are three regions to consider. The region R→1 + R→2 + R→3 represents all the initial
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Figure 10.8 Arc labels: the half-rectangle nearest the parent node summarizes information
leaving the parent node.

Figure 10.9 Arc labels: the half-rectangle nearest the child node summarizes information
arriving at the child node.

uncertainty in the child node, proportionately 1. We employ arrow notation here as a
simple visual clue: arrows point the way to the centre of the label, the point dividing
the half-bars. The region R→3 represents the proportion of uncertainty remaining
in the child after the child has been adjusted by all parent nodes, 1− RD∪E∪F (B).
The region R→1 + R→2 thus represents the proportion of uncertainty removed in
the child node B by all parents. This corresponds to the proportion of shading in
the child node. The region R→1 represents the resolution in uncertainty in B due
solely to fitting D, i.e. RD(B). Thus, when R→1 is large and R→2 is small, the
implication is that the single source of information D is nearly sufficient for the
parent nodes. When region R→1 is small and R→2 is large, the implication instead
is that the single source of information D is not useful relative to the contributions
made by the other parent nodes.

The other half of the label, nearest the child node, is similarly configured
as shown in Figure 10.9: R←3 is identical to R→3 , and R←1 + R←2 is identical to
R→1 + R→2 . However, the region R←1 represents the resolution in uncertainty in B

which would be lost if D were withdrawn from the adjustment. Thus, when R←1 is
large and R←2 is small, the implication is that much of the resolution in uncertainty
at B is lost if the single source of information D is withdrawn. When R←1 is small
and R←2 is large, the implication instead is that the single source of information
D contributes little extra to the information supplied already by E ∪ F .

We typically shade the regions R→1 and R←1 to emphasize them. For interac-
tive exploration on a computer, the colour shading can represent features such as
parent and child node. This labelling may be modified when the actual resolution
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of information at a child node is small, but it is still important to visualize the
information flow into the node, by de-emphasizing, or removing altogether, the
empty central portion of the box which corresponds to the residual uncertainty and
is given by regions R→3 and R←3 in Figure 10.8 and 10.9, respectively.

We apply such arc labelling to a graph on any consistent ordering of nodes. We
have already recorded, on the node Bi , the cumulative effects of adding information
from each parent node. On each arc, we now record the marginal effects of each
parent node Pij . First, we assess the information leaving the parent by measuring
the effect on Bi of observing Pij alone, i.e. the system resolution for the adjustment
of Bi by Pij , which we denote by U→ij . Secondly, we assess the information arriving
at the child along each arc using the partial system resolution for the adjustment
of Bi by Pij after we have adjusted Bi by all other parents of that node, which we
denote by U←ij .

The arcs carry a lot of information when, in combination, the parent nodes
are highly informative about the child node. Therefore, the shading is intended to
display most prominently the information flow for such nodes. If a large amount of
the part of the box adjacent to Pij is shaded, then the implication is that observa-
tion of this node is, by itself, strongly informative for Bi , while if a large amount
of the portion of the box adjacent to Bi is shaded, then this indicates that obser-
vation of Pij is important for Bi even when all other parent nodes have been
observed.

While this display is very informative on a small diagram, it can become
rather cluttered on a large diagram with many arcs crossing. Therefore, we may
consider alternative representations, for example displaying this information using
the thickness of the arcs. At the end of the arc nearest node Pij the thickness of
the arc is proportional to the ratio U→ij , and at the end of the arc nearest node Bi

the arc thickness is proportional to the ratio U←ij .

10.6.3 Tracking information as it is received

So far, we have described how to display information flow when we have observed
all of the quantities on the diagram according to some consistent node ordering.
However, we will often wish to track information as it is received into a system.
In such cases, we may still identify the effect of information on child nodes in the
way that we have described above. To describe the effect of observing each node
upon all of the nodes in the diagram, we shade each node as though there were
an arc from the node that we have observed to each other node, and then shade
the proportion of the variance resolved by the observation. As we make further
observations, we may shade the additional variance resolved. We may simplify the
diagram by showing only three shadings at each stage, namely variance resolved
before the current observation, variance resolved by the current observation, and
the unresolved variance.
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10.6.4 Example

We continue our example from §10.5, using the Bayes linear graphical model
shown in Figure 10.1, but aggregating like quantities such as Y1, . . . , Y12 into the
collection Y , and similarly for the Zi , Ei and Fi quantities, as in (10.10). For
this illustration, we will explore how observation of parents provides information
about children; later we will be more interested in the implications of observing
children. A consistent node ordering for this diagram is a, b, c, d, E, F, Y, Z. A
Bayes linear graphical model with node shadings only is shown in Figure 10.10.

E a

Y

b

F c

Z d

Figure 10.10 Shading nodes using resolutions and partial resolutions, from adjusting in the
consistent order a, b, c, d, E, F .
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Table 10.1 Resolutions used for the node shadings for Figure 10.10.

Adjustment Overall resolution Partial resolution

[b/a] 0.0400 –
[Y/a] 0.0738 –
[Y/a + b] 0.1430 0.0692
[Y/a + b + E] 1.0000 0.8570
[F/E] 0.2500 –
[c/a] 0.2500 –
[c/a + b] 0.2604 0.0104
[d/a] 0.0000 –
[d/a + b] 0.2604 0.2604
[d/a + b + c] 0.3462 0.0859
[Z/c] 0.0627 –
[Z/c + d] 0.1316 0.0689
[Z/c + d + F ] 1.0000 0.8684

The shadings arise as follows. We adjust each node by its parents, according to
the consistent node ordering given above.

The adjustments we carry out, together with the overall resolutions in variation
for each adjustment and the partial resolution, if any, at each stage, are summarized
in Table 10.1. We first adjust coefficient b by coefficient a. Observation of a

is expected to resolve only 4% of the variation in quantity b. (The correlation
between a and b is −0.2, and the resolution when we adjust a single quantity
by another single quantity is the square of the correlation coefficient, just as for
simple linear regression.) We show this proportion by shading node b by an amount
0.04× 360◦ ≈ 14◦ anticlockwise from 0◦. The node Y has three parents: we adjust
first by node a, leading to a resolution of 0.0738 and an initial node shading
of 0.0738× 360◦ ≈ 27◦ anticlockwise from 0◦. We then adjust the collection Y

additionally by node b: this leads to a total resolution of 0.1430, of which 0.0692
is the partial resolution due to b having already taken into account a. We shade
a further portion, about 25◦, of node Y to reflect the partial contribution of node
b. Finally, we adjust by the third parent, node E, representing individual variation
terms. When we know E in addition to a and b, we know Y and so we resolve
all the variance in Y and we shade the remainder of the node in consequence.
Equivalently, when we observe Y any residual variation is removed.

The adjustment of node d by its parents shows only two shadings. This is
because no variance is resolved by the first adjustment by parent a. This does not
imply that a is not informative. The overall resolution in d given a, b, c is 34.63%,
whereas the resolution in d given b, c alone is 29%: the contribution from a arises
in combination with information from the other nodes.

For interactive investigation, the shadings reflect the source of the resolution.
For example, we might draw the node a and arcs from it in blue, the node b

and arcs from it in red, and the node E and arcs from it in green, and shade by
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these colours when we show the resolutions of variance in node Y . Otherwise, it
is necessary to know the sequence of adjustment when evaluating the graphic, as
is the case here.

The broad inferences that we draw from Figure 10.10 are: that there are rel-
atively substantial error components attached to Y and Z; that a will not tell us
much about b; similarly that c will not tell us much about d; that a resolves a
quarter of the variation in c; and similarly that b resolves a quarter of the vari-
ation in d. The residual uncertainty in Y given a, b is strikingly large. This is a
consequence of the magnitude of the error variances; of the number of Yi terms
in Y (each Yi included brings another piece of error variation); and also of the
correlation structure. For example, a is quite informative about each individual
element Yi but tells us almost nothing about any of the differences between the Y

values, as
Cov(Yi − Yj , a) = (xi − xj )Cov(a, b)

will be typically quite small. Generally, a, b is only a two-dimensional space, and
so can at most resolve variation within a two-dimensional subspace, whatever the
dimension of Y .

The shadings do depend upon the order in which we assign parents for the
adjustment. This is desirable when we have in mind a sequential adjustment, where
there is a natural physical ordering, but less satisfactory when there is no natural
ordering. Here, we could adjust node Y by node b first, and this would change the
way in which node shadings are partitioned, if not the total resolution, and thus
our inferences. One partial solution to this problem is to label the arcs as described
in §10.6.2, which we illustrate below.

One important point to note is that when some parents of a child are aggre-
gated, the resolution of variance in the child through observation of the aggregated
parents is unchanged. For example, we can alter the diagram in Figure 10.10 to the
diagram shown in Figure 10.11 by aggregating the single-quantity nodes a, b into
the collection GY and the nodes c, d into the collection GZ. This is an allowable
operation as we described in §10.5.3. We see then that the total resolution deliv-
ered to node Y by parents a, b jointly matches the resolution delivered by their
aggregate, GY (Table 10.2). The interpretation is similar for the nodes c, d, Z, GZ.
In cases where children with the same parents are aggregated, as here with child
node GZ and parent node GY , the total resolution from the adjustment of the new
child by the new parent cannot be read from the first graph as it depends on the

Table 10.2 Resolutions for the node shadings for Figure 10.11.

Adjustment Overall resolution

[Y/GY ] 0.1430
[Z/GZ] 0.1316
[GZ/GY ] 0.2821
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E GY

Y

F GZ

Z

Figure 10.11 Aggregating parents leaves the total resolution in children unchanged. Adjust-
ments are made in the order GY ,GZ .

nature of the correlation structure between parents and children. Altering the dia-
gram qualitatively does not result in information loss, but can result in the display
of different quantitative features, as in this case.

10.6.4.1 The heart of the transform

We noted above the large residual uncertainty in the Y collection given the param-
eters, largely as a consequence of the amount of variation contributed by the error
quantities E. This gives a slightly misleading picture of the value of the parameters
for predicting the data quantities. As an alternative, we may instead explore the
implication of the parameters for the heart of the transform, H(H/G).

In §5.18.2 we found the heart of the transform for this problem, together with its
orthogonal complement in H , H

⊥(H/G), spanned respectively by the collections
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E a

W+

W0 b

F c

d

Figure 10.12 Adjusting the heart of the transform by the parameters. Adjustments are made
in the consistent order a, b, c, d,E, F .

W+ and W 0. To obtain Figure 10.12, we combined nodes for the data collections
Y and Z into a single node H , this being allowable by Theorem 10.8, and then
separated H into the uncorrelated collections W+ and W 0. Arcs from the parameter
set a, b, c, d into W 0 may be dropped. We then recomputed the adjustment which
gave Figure 10.10, i.e. we adjusted all collections on the graph in the consistent
order a, b, c, d, E, F and shaded accordingly.

We observe that the parameters are strongly informative for the heart of the
transform: about 75% of the variation in W+ is jointly resolved by them, and each
of the parameters makes a substantial contribution; indeed, we can show that this
is so irrespective of the order of adjustment. Only the residual collections E, F are
informative for the complementary collection W 0, each resolving 50% of the vari-
ation, as we would expect as a consequence of the way in which we constructed
the model.
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10.6.4.2 Arc labelling

Figure 10.13 shows the labelling scheme described in §10.6.2. These labels are
based on the information summarized in Table 10.3. The information leaving and
arriving from a parent node is the same where a child has a single parent (for
example, a → b) and where a parent of a child node is uncorrelated with all other
parents (for example, E → Y ). The arc label from node E to node Y is heavily
shaded at both ends, showing that node E is an important influence on node Y . In
contrast, the labels from a to Y and b to Y have little shading, showing that these
carry little information about the collection Y . Almost all the information from a

reaches Y : there is a small amount, 0.0738− 0.0730 = 0.0008, which could be
carried instead by b. In this example, the sum of information arriving at a node
is the total resolution for that node. However, for larger problems this will not
generally be so.

E a

Y

b

F c

Z d

Figure 10.13 Adding labels to the diagram to show information flow.
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Table 10.3 Resolutions for the arc shadings for Figure 10.13.

Parent Information leaving Information arriving Child

a 0.0400 0.0400 b

a 0.2500 0.2500 c

b 0.0000 0.0104 c

a 0.0738 0.0730 Y

b 0.0700 0.0692 Y

E 0.8570 0.8570 Y

a 0.0000 0.0563 d

b 0.2500 0.2500 d

c 0.0400 0.0400 d

E 0.2500 0.2500 F

c 0.0627 0.0615 Z

d 0.0700 0.0689 Z

F 0.8684 0.8684 Z

Where the resolution in the child node is small, it can be difficult to compare
the amount of information leaving and arriving. In this case, we may omit the
central regions of the arc label, given as regions R→3 and R←3 in Figure 10.8
and 10.9, respectively. The central regions are dropped for Figure 10.14. This
labelling emphasizes a parent node’s relative importance given a child node’s
overall resolution, so that the label for b → d shows that b is relatively very
important for learning about d.

One interesting feature to spot here is that the arc label from a to d reveals
that no information leaves a for d, but some information – a resolution of 0.0563
– does arrive. This illustrates graphically the point made above, that two nodes
can be marginally uncorrelated but that one can be informative for the other in
combination with other nodes, here being b, c.

10.6.4.3 Tracking information arriving into the system

In Figure 10.15, each collection represented on the diagram has been adjusted in
sequence by a, then partially by b, c, and finally by d. The colour, or style of
shading, indicates the source node. We do not show arcs. Adjusting the source
node by itself resolves all the variation remaining at that node. The diagram shows
that a has a small influence on all the other nodes except d (with which it is
uncorrelated). Observation of b then resolves some of the variation in d and a
small fraction of the remaining variation in c, Y , and Z. Observation of c and d

tells us nothing more about Y , but does give further information about Z.

10.7 Displaying diagnostic information

As we make observations on elements of the nodes of the graph, this allows us to
carry out diagnostic criticism of the belief structure. In previous chapters, we have
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E a

Y

b

F c

Z d

Figure 10.14 Omitting the central regions of the arc label, so as to concentrate on comparing
the relative importance of the information leaving and arriving.

a

Y

b c

Z

d

Figure 10.15 A sequential adjustment diagram, adjusting in the order a, b, c, d .
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described diagnostic measures that we may evaluate for a Bayes linear analysis.
We now describe how this diagnostic information may be displayed directly on the
influence diagram.

Each of the shadings described in §10.6 is the trace of a full or partial belief
transform. Each such trace is the expectation for the size of the bearing for the cor-
responding adjustment or partial adjustment. Therefore, by comparing the observed
size of each adjustment with the corresponding expected size, we may make a
diagnostic assessment for each arc and node shading. We discussed diagnostics
for simple adjustments in §4.9 and defined the size ratio in (4.63). We discussed
diagnostics for partial adjustments in §5.6 and defined the partial size ratio in
(5.43).

There are two types of diagnostic information that we wish to display. First, our
assessments may be wrong in that we were overconfident, which will be revealed
by observed sizes for many adjustments which are far larger than their prior expec-
tations. Secondly, we may lack confidence, in that we are actually able to predict
the outcomes with greater accuracy than we have allowed in our variance specifi-
cations, which will be revealed by observed sizes for many adjustments which are
far smaller than their prior expectations.

We now discuss how the diagnostics should be calculated and marked on the
diagram to show the areas of agreement and conflict between prior beliefs and
observations.

10.7.1 Node diagnostics

First, we consider the node diagnostics. Each sector for the node corresponds to
a full or a partial adjustment. The size of the bearing, or equivalently the square
of the largest standardized change in expectation for a linear combination of the
elements of the node, has expectation equal to the trace of the corresponding
adjusted resolution transform, which was the basis for the node shading described
in §10.6. If this observed change is markedly larger or smaller than we expect,
then we shade the inner portion of the corresponding sector of the node to display
this. Thus, we evaluate the size ratio for the partial adjustment, namely the ratio
of the observed to expected bearing size. The amount of shading corresponds to
the magnitude of the diagnostic. There is no shading if the size ratio equals its
expected value, namely one. Otherwise, we shade the inner sector dark or light
depending on whether the size ratio is larger or smaller than one. The amount of
shading may be chosen only to highlight extreme diagnostics, for example when
we are trying to tune a very rough prior specification, or to highlight fairly modest
discrepancies, for example when we are monitoring a diagram which has been
successfully used for forecasting, over a considerable period of time. There are
many different choices for the amount of shading, depending on context. Some
possibilities are as follows.

• Choose some probabilistic scale for the quantity, such as a chi-squared variable
with matched degrees of freedom, and mark half of the area as dark when the
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size ratio is in the upper 5% of the distribution, light when the size ratio is in
the lower 5%, and with smooth extrapolation over the rest of the range.

• Transform the size ratio, which is a non-negative number with expectation one,
to a value in (0, 1) which expresses a proportionate degree of discrepancy from
one. Then, shade the corresponding sector by this proportion. We have chosen
this scheme for the diagrams shown in this chapter as follows. Suppose that p

is the size ratio for an adjustment. Let

s =
{

1−√p, if p ≤ 1,

1− 1√
p
, if p > 1.

(10.15)

We now shade the corresponding sector by the proportion s. The rationale behind
this scheme is that p is a variance measure and so a value of p = 4 corresponds
to two standard deviations, and so half-shading. We are free to arrange half-
shading to imply lower or higher levels of discrepancy if we wish.

• Shade all the sector, but with an intensity of colour corresponding to the mag-
nitude of the diagnostic.

While different distributional choices or schemes will give different shadings, the
qualitative aspects of the display should not be greatly affected. We may show
the shading in a variety of ways. In Goldstein and Wooff (1995), we showed
diagnostic shadings by dividing the original sector by angle into two sectors: one
shaded and one not. In this book, we show diagnostic shadings by annular sectors
extending from the centre point. This has the advantage of facilitating comparison
of diagnostic magnitudes using distance from centre.

We could display a variety of further diagnostic information in a similar way.
For example, we could display the path correlations for the adjustment, as described
in §5.9 and defined in (5.51), as follows. The path correlation in the partial adjust-
ment from adding Pij to parents Pi1 ∪ Pi2 ∪ . . . Pi(j−1) is a number between −1
and +1. We may mark this value on the radius separating sectors j − 1 and j by
a dot which is placed a distance from the centre of the circle corresponding to
the path correlation, where the point is on the outer edge if the path correlation
is +1, at the centre of the circle if −1, and so forth. While such displays may be
informative, however, we must be careful to balance such information against the
need to avoid overloading the graphic display with excessive visual detail.

10.7.1.1 Combining sectors

Sometimes we simplify the diagnostic picture by combining all of the sectors
corresponding to the parents into a single sector. We then have two diagnostic
shadings for each node. The first shading expresses the difference between the
overall adjustment vector and the prior expectation. Large diagnostics for this sec-
tor will usually correspond to large diagnostics for certain of the parent nodes, and
may be investigated through the various arc diagnostics that we describe below.
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The shading for the second sector corresponds to the diagnostic assessment for the
difference between the actual vector of values for the node and the adjusted expec-
tation for that vector given all parents. Large diagnostics for this sector suggest
that we may have been overconfident in our beliefs concerning the ability of the
parent nodes to predict the child node. If, in such cases, there are further ancestral
nodes which show similar large diagnostic warnings, but which are not parents of
the node in question, then this may suggest modifications to the qualitative form
for the graphical model.

10.7.2 Arc diagnostics

We show diagnostic information on each arc in a similar way to the nodes. For
the arc labels, the regions R→1 of Figure 10.8 and R←1 of Figure 10.9 correspond
to resolutions provided by an adjustment or a partial adjustment, and to which
there are corresponding size ratios. Therefore, we shade a portion of each region
according to the magnitude of the corresponding size ratio. The proportion of the
area shaded is chosen just as for the node diagnostics: for the diagrams in this
chapter, we choose the scheme given in (10.15). If the observed change is larger
than expected, then we use dark shading, while if the change is less than expected,
we use light shading. Note that if there is a single parent node, then the left and
right diagnostic shading for the arc are the same and are also equal to the diagnostic
shading for the first sector of the child node.

10.7.2.1 Path correlations

Where a child has more than one observed parent, we may add path correlations to
the diagram. We have described above how we separate information from a parent
node to a child node into the information leaving and arriving, where the latter is the
information uniquely attributable to the parent node compared to other information
arriving at the child node from other parents. The path correlation (§5.9) can be
used as a measure of consistency between these sources of information. Thus,
assuming the shading scenario presented in Figure 10.9, we calculate the path
correlation (5.51) as

PC(f ∪ e, [d/f ∪ e]) = Corr(Zf∪e(B), Z[d/f∪e](B)),

being the path correlation between (1) all other data sources f ∪ e; and (2) d,
having taken into account f ∪ e. We mark the path correlation on the diagram
as follows. At the end of an arc we place a small circle. We shade the circle
according to the magnitude of the path correlation, with full shading when the
correlation is ±1 and no shading when the path correlation is zero. When the path
correlation is negative, indicating a contradiction between the data sources, we use
dark shading. Otherwise we use light shading. Our aim, as elsewhere, is to draw
the eye to important diagnostics.

Note that the path correlations entering a node B from two sources, D and F ,
are not normally the same. This is because the path correlations attached to the



388 BAYES LINEAR STATISTICS: THEORY AND METHODS

two arcs are measuring different relationships. Dropping B from the notation for
convenience, one path correlation is

Corr(Zf , Z[d/f ]) = Corr(Zf , Zd∪f − Zf ),

and the other is

Corr(Zd, Z[f/d]) = Corr(Zd, Zd∪f − Zd).

10.7.3 Showing implications across all nodes

So far, we have described how to display diagnostic information given that we have
observed all of the quantities on the diagram. However, we will often wish to track
diagnostic information as we make observations on the a system. In such cases, we
may identify diagnostics for child nodes in the way that we have described above.
To make diagnostic inferences over the whole diagram for each observation, we
follow the corresponding procedure as described in §10.6. There, we suggested that
we may shade each node as though there was an arc from the node that we have
observed to each other node, and then shade the proportion of the variance resolved
by the observation. As we make further observations, we shade the additional
variance resolved. We may then mark a diagnostic shading for the length of the
bearing for the partial adjustment corresponding to each shaded region, exactly
as we have described above. The shading on the node that we have observed at
each stage expresses the diagnostic warnings for the observation given all of the
information gathered about the node from previous observations on the graph. The
shadings on the other nodes corresponding to this partial adjustment show the
diagnostic impact of the observation on the remaining nodes. In particular, if an
observation is very surprising, then this picture displays the effect of the surprising
observation across the whole diagram, so that we can see whether the effect is
localized or whether it has important consequences across the whole collection of
quantities.

10.7.4 Interpreting diagnostic warnings

Because there is much information to be displayed, and little space, we may omit
some regions from the arc label. If we wish our eyes to be drawn to important diag-
nostics, we will want to retain all the label regions shown in Figure 10.8 and 10.9,
as the diagnostics here are properly weighted by the magnitude of corresponding
resolutions of variance. In other words, a large size ratio for an adjustment which
carries little information for a child node may be of less interest to us than a mod-
erate size ratio for an important adjustment. Occasionally, we may wish to present
diagnostic information on the diagram without worrying whether the corresponding
variance resolution is small or large: in such cases we may omit from the arc label
any of the regions R→2 , R→3 , R←3 , R←2 .

There is no automatic method for assessing the implications of diagnostic warn-
ings. Our conclusions will depend on the amount of care and detail that we have
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built into our prior specification, our confidence in the qualitative form and quan-
titative assessment of the prior specification, and the reasons that we may attribute
to surprising outcomes. Qualitative assessment of distributional forms will also
be relevant; for example, large diagnostics may be more revealing for unimodal
distributions while small diagnostics may be more revealing for multimodal distri-
butions.

While each diagnostic warning may be of value, in a complex diagram it
will usually be the overall pattern of the diagnostic information over the whole
diagram which will be of interest. The aim of the display is to enable the analyst
to visualize the diagnostic performance of the belief specification over the entire
system. In particular, such diagrams are of particular value for monitoring systems
where similar collections of observations are made over time. For example, we
may wish to forecast sales of some collection of products, in which case we might
observe similar collections of diagnostic warnings on a weekly basis, or we may
use this diagram as the basis of a diagnostic system for individual patients, so that
patterns which might be hard to interpret in a single instance can be judged on the
basis of a collection of repetitions.

10.7.5 Example: inference and prediction

In our example to this point, our concern has been the representation of uncertain
quantities on a diagram, and tracking the information flow between them, suppos-
ing that we observe some and not others. In particular, we have shown how we
use diagnostic labelling to display the implications of observation of parents and
consequent adjustment of child nodes by parents.

Mostly, we are concerned with adjusting sets of unknowns by data (inference)
and sets of future observables by data (prediction). This will often require arc
reversals on the Bayes linear graphical model, as discussed in §10.5.4. The result-
ing Bayes linear graphical models, which have data nodes as parents of future
observables and sets of unknowns, typically have quite complicated arc structures.
In such cases, we may sometimes drop arcs and error quantities from the diagram
in order to focus on the labelling properties.

The central questions in our example are: what do observations on Y and Z tell
us about the coefficients a, b, c, d, and is what we learn consistent with what we
expected? We explore these questions by adjusting these quantities by Y and then
partially by Z, and by examining the adjustment and the associated diagnostics
graphically. Figure 10.16 shows four styles of labelling and diagnostic shading
from such a sequence of adjustments. Figure 10.16(a) shows basic node labelling
without diagnostics and with arc labels as described in §10.6.2. Nodes Y, Z are
fully shaded as they become known. For interactive use, colour is used to signify
information source: for the node shading in Figure 10.16, dark grey signifies Y

as the information source, and light grey corresponds to Z as information source.
Y is the first information source fitted, so that the shading in the child nodes
shows, proceeding anticlockwise, information arriving from Y , followed by partial
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dY Z

(a)

(b)

(c)

(d)

Figure 10.16 Diagnostic shading of nodes and arcs.

information arriving from Z. Figure 10.16(b) differs only in that the central regions
of the arc labels have been omitted.

Figure 10.16(c) repeats Figure 10.16(a), but with diagnostics added to both
nodes and arcs. Let us begin with the diagnostics for node d, recalling that the
adjustment sequence is of d by Y and then partially by Z. The outer annular sectors
have shadings which show the source nodes: anticlockwise, these are Y and then
Z. The size ratio for the adjustment is Sry(D) = 0.33, rather smaller than expected.
Thus, the inner sector for the adjustment of d by Y is partly shaded light and the
amount of shading is about 1−√0.33 = 43% of the inner sector. The size ratio
for the partial adjustment by Z is Sr[z/y](D) = 1.33, slightly larger than expected.
Thus, the inner sector for the partial adjustment of d by Z, having adjusted for Y ,
is partly shaded dark and the amount of shading is about 1− 1/

√
1.33 = 13% of

the inner sector. As we have now also observed Y = y and Z = z, we may also
form the diagnostics for these quantities, namely Sry(Y ) and Srz(Z), and show
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these on the graph. The inner sector for node Y shows that the observation was
about in line with what was expected: the size ratio is 1.12. Similarly, the inner
sector for node Z shows a size ratio of 1.02. Recall that these nodes represent
collections of 12 quantities: we could, if desired, show such diagnostics for the
individual elements.

The arc diagnostic shadings in Figure 10.16(c) replace the shaded areas of the
arc labels in Figure 10.16(a). Take as an example the arc label from node Z to node
d. Recall that the part of the label nearest Z reflects the information leaving Z,
and represents the adjustment of d by Z alone. The size ratio for this adjustment
is Srz(d) = 0.65. Thus, the region formerly representing resolution in the child
attributable to the parent is partly shaded light and the amount of shading is about
1−√0.65 = 19% of that part of the label. The part of the label nearest d reflects
the information arriving at d from Z once other sources have been taken into
account. In this case, this corresponds to the partial adjustment of d by Z having
already adjusted for Y . We have seen already that the size ratio for this adjustment
is Sr[z/y](D) = 1.33. Thus, we shaded that part of the arc label dark and the amount
of shading is about 13%. In summary, for this arc label the diagnostics show no
major discrepancies with the prior specification, and as a consequence we see little
shading.

Figure 10.16(d) repeats Figure 10.16(c), but with two differences. First, as in
Figure 10.16(b), the central regions of the arc labels have been omitted. This allows
us to concentrate on the diagnostics if we so wish. We note, for example, that the
information both leaving and arriving from Y has a rather small size ratio, implying
that the changes in expectation in d induced by observing Y are in all respects
surprisingly small. Figure 10.16(d) also shows a path correlation diagnostic added
at the end of each arc. In this case, the path correlation at the end of the arc from
Z to d turns out to be

PC([z/y], y) = −1,

and so these two sources of information are contradictory. Note that we should not
read too much into such diagnostics for one-dimensional nodes: for such cases the
path correlation must always be zero or ±1.

Figure 10.17 summarizes the flow of information, without diagnostics, across
all the nodes. The node shadings show that Y explains about 80% of the prior
variation in a, b, and E, and about 20% of the prior variation in c, d, and F .
Having already observed Y , Z appears to be essentially uninformative for a, b, E,
but does then explain about a further 60% of the variation in c, d, F . Examining
the arc labels, those from Y to a, b, E and from Z to c, d, F show that a lot
of information leaves and arrives between these pairs of nodes. However, the
arc labels between Y and c, d, F and between Z and a, b, E show that whilst
some information leaves, essentially none arrives. We conclude that Y is useful
for learning about a, b, E, but not useful for learning about c, d, F if we intend to
observe Z, and vice versa.

In Figure 10.18 we add diagnostic information to the plot. Our eyes are imme-
diately drawn to two features. First, many of the path correlations are fully shaded
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Figure 10.17 Partial adjustment by the observed quantities, without diagnostic shadings.

in black, suggesting that the two data sources are at least mildly in conflict for
most of the adjustments being carried out. The path correlations for the scalar
nodes a, b, c, d are not overly meaningful, as noted above. However, there are
large negative path correlations for the arcs Y → E and Z → F , suggesting that
the information arriving at E from Y is at odds with the information leaving Z

for E, and that the information arriving at F from Z is at odds with the infor-
mation leaving Y for F . The other path correlations, attached to the arcs Y → F

and Z → E, indicate weak positive path correlations: for example, the information
arriving at F from Y is weakly consistent with the information leaving Z for F .
There is, in this example, a symmetry in the diagnostics. The portion of Y that is
uniquely informative for its associated error quantities E is inconsistent with other
information; and the portion of Z that is uniquely informative for its associated
error quantities F is similarly inconsistent with other information. This suggests
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Figure 10.18 Partial adjustment by the observed quantities, with diagnostic shading of nodes
and arc labels.

unwelcome features in the joint specification for the error quantities E, F . In fact,
we saw in §8.12 some evidence that the correlation between each (ei, fi) pair
should be negative, rather than positive as in our prior specification. If, instead, we
take the correlation Corr(ei, fi) to be weakly negative and recompute the adjust-
ment and the path correlations and display these similarly to Figure 10.18, then the
indications of inconsistency disappear. One obvious way to check which, if either,
of the correlation models is supported by the data is to carry out the observed
belief comparison described in §9.9.

Secondly, there is much diagnostic shading for nodes a and c and, to a lesser
extent, F . The diagnostic shadings for a and c are large for both data sources:
this is confirmed by the amount of diagnostic shading shown in the arc labels. The
shadings suggest that changes in expectation for the two intercept terms in model
(10.7) are rather larger than expected under both adjustments. These two features
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Figure 10.19 Sequential adjustment of the parameter set G and future observables by H1,
and then H2, and so forth.

correspond to what we saw in §5.14.2.4 and in Table 5.10. That is, the adjustment of
a by Y leads to a moderate positive change in expectation for a, whereas the partial
adjustment by the contradictory information source Z leads to a moderate reversal.

Figure 10.19 shows the kind of Bayes linear graphical model discussed in
§10.5.4. To avoid crowding the diagram, we limit attention to the six collections
H1, . . . , H5, G, where Hi is the pair of observables Yi, Zi . The initial Bayes linear
graphical model for these quantities has arcs from G to each Hi , excluding nui-
sance and fixed quantities. For prediction and inference we need to reverse arcs
as described in Theorem 10.9. This leads to a Bayes linear graphical model which
has arcs

Hi → G, ∀i, Hi → Hj, ∀j > i.
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We then carry out a sequence of partial adjustments. First, we adjust all nodes on
the diagram by H1. All the variance in H1 becomes resolved by its observation.
Its observed value is mildly surprising, as shown by near-half shading of the inner
portion of the node: the corresponding size ratio is 3.04. For predicting future
observables, about one-third of the variation in H2 is resolved by observation of
H1, as indicated by outer node shading moving anticlockwise from 0◦ to about 120◦
for node H2. The proportion of variation explained for more distant observations
H3, . . . falls slightly at each point, dropping to about 20% for H5. Observed overall
changes in expectation for these nodes are more or less the same as for H1. The
inferential adjustment of node G by node H1 shows an explanation of variance of
again about 30%, with an overall change in expectation similar in magnitude to
those for the observables.

Secondly, we adjust all the nodes (except H1) partially by H2. This resolves
about an extra 10% of the remaining variation in H3, and similar amounts for the
other observables and for the parameter set G. The magnitude of observed changes
in expectation are similar to those for the previous adjustment. We continue making
partial adjustments as time progresses. As far as the parameter set G is concerned,
we receive less and less information from subsequent observations.

The outstanding feature on the diagram concerns node H4. It has very full light
shading of the inner part of the node corresponding to its actual observed value,
suggesting that its forecast given H1, H2, H3 was much closer to its actual value
than would have been expected, given the amount of variation remaining. Parts
of nodes G and H5 are shaded to show the partial adjustment by H4: these too
show quite full light shading, corresponding also to surprisingly small changes in
expectation relative to variance explained.

As far as the arc labels are concerned, there is generally rather more shading
at the sending end than at the receiving end, suggesting that the information car-
ried by a single information source can be largely replaced by information from
other information sources. The path correlations between information sources are
displayed as shaded roundels near the ends of arcs. Most are shaded light to some
degree, indicating that the information sent uniquely by the source node is in
general agreement with the information sent by the other nodes. The exception
concerns information sent uniquely from node H4 to nodes H5 and G: the full
dark shading indicates that this information source contradicts the other remaining
information sources. Closer inspection reveals, for example, that the implication
of data H4 is to increase the expectations across the components of G, whilst the
implication of the other data is to reduce them. The magnitude of the changes in
expectation are small, so that in this case we should not be too concerned about
such contradiction.

10.8 Local computation: directed trees

Graphical structure helps us to quantify beliefs over a graphical model, by restrict-
ing prior specification to neighbouring nodes. We now discuss how to use the local
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graphical structure, in a similar way, to simplify the computation for large graph-
ical models given observations. Local computation for a general graph may be
complex because of complicated interrelationships resulting in there being many
paths between a pair of nodes in the graph. Propagation is much simpler if we may
reduce the diagram to a connected tree.

Definition 10.14 A connected tree is a graph for which every pair of nodes is
connected by one and only one path.

Note that we may often remove undirected cycles from general directed graphs by
introducing new nodes and combining nodes, for example following the conditions
of Theorem 10.8.

In this section, we describe how to propagate beliefs around a directed tree.
Suppose first that we have three belief structures A, B, C for which �A⊥⊥ B� / C.
We have noted, in Theorem 5.20, that the covariance structure between the collec-
tions A and B is determined by the pair of covariance structures Cov(A, C) and
Cov(C, B). In §5.17, we showed how to exploit the belief separation �A⊥⊥ B� / C,
in order to evaluate the adjustment of C ∪ B by A based strictly on the pairwise
evaluations of C by A and of B by C.

Now consider a general directed connected tree. First, note that for any tree,
any node A separates the graph into two parts. Let A← be the collection of all
nodes on the graph which are connected to A by a path which passes through a
child of A, and →A be all nodes joined to A by a path through a parent of A. The
node sets →A, A← must be disjoint, and contain all nodes except A as the tree
is connected. Further, there can be no path on the moral graph from →A to A←
which does not pass through A, as otherwise there would be two paths between a
pair of nodes on the tree. Therefore, for each node A, we have �→A⊥⊥A←� / A.

Further, if A and C are both parents of a node B, then A ∈ C← and C ∈ A←.
Therefore, apart from nodes A and C, sets A← and C← are identical. Therefore, if
A and C are both parents of B, then we can divide the nodes of the diagram into
three collections, U consisting of all nodes connected to A and C through parent
nodes, V consisting of A and C, and W consisting of all nodes connected to A

and C through child nodes. There are no directed arrows from V to U or from
W to U or V . Therefore, from Theorem 10.8, we may merge the A and C into
a single node. The resulting structure will again be a tree, as there are no paths
between A and C on the original tree except for the path through B.

To summarize our discussion above, we have the following theorem.

Theorem 10.15 In a connected directed tree,

10.15.1: for any node A, we have �→A⊥⊥A←� / A;

10.15.2: it is allowable to join the parents of any node into a single node
which has as parents the union of the parent set of the joined nodes, and has
as children the union of the child set of the joined nodes. The resulting graph
is again a directed tree.
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We will now consider how information propagates from the observation of a par-
ticular node A through the tree.

10.8.1 Propagation

The first stage in the propagation is to split the tree. Suppose that A has k children,
labelled A(1), . . . , A(k). We may divide the nodes in the tree into A and k + 1
disjoint groups. The j th group is all nodes B on the tree for which the unique
path from node A to B passes through A(j), for j = 1, . . . , k. Group k + 1 is the
collection of nodes for which the path passes through an ancestor of A. The split
is shown in Figure 10.20. From Theorem 10.13, these k + 1 groups of nodes are
all separated from each other by node A. Therefore, adjustment by A separates
the tree into k + 1 separate diagrams, through which we may separately propagate
information.

Now, we consider how to propagate information forward, i.e. through any one
of the first k groups of nodes. Observe first, from Theorems 5.25 and 10.15, that
the directed graph for the adjusted beliefs within this collection is exactly as for
the original subgraph, and so is itself a tree, where we replace each node B by the
corresponding node AA(B), or equivalently we replace each E(B), Var(B), and
each Cov(B, C) for neighbouring nodes by EA(B), VarA(B), CovA(B, C). Note in
particular that for any node B for which there is not a directed path from A, we have
A ⊥ B so that beliefs are not adjusted for any such node. Each node along each
such directed path separates the children from the ancestors, from Theorem 10.13.
The propagation along each directed path from A therefore follows by the rules
laid out at the beginning of this section.

Finally, we propagate information backwards through subgraph k + 1. We may
propagate beliefs back through the tree in exactly the same way that we propagated
forwards, to determine beliefs within individual nodes. However, adjustment by A

induces dependencies between all of the direct ancestors of A, which removes
the tree structure in this subgraph. From Theorem 10.13, we may retrieve the tree

Figure 10.20 Splitting a directed connected tree.
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structure by working back through ancestors, and at each node, combining all of
the direct ancestors of that node into a single node, which is an allowable operation
from Theorem 10.15. This will give us a properly updated new tree.

If we only observe a subset A∗ of the elements of A, then propagation is as
above, but the tree is not separated at A, and, just as for the other nodes, A is
replaced by AA∗(A).

10.8.2 Example

In order to construct Figure 10.19 we carried out a sequence of partial adjustments
over all the quantities remaining at each stage. That is, we made the global adjust-
ment of the collection {G, H1, H2, H3, H4, H5} by H1 at step one, and so forth.
Local computation over the directed tree provides an alternative as follows. We
begin with the directed tree shown in Figure 10.21(a). It is an allowable oper-
ation to reverse the arc between H1 and G. We now observe the collection of

Figure 10.21 Local computation over a directed tree: (a) initial tree; (b) tree with the first
observable placed at the head of the tree; (c) tree remaining after the evidence from H1 has
been propagated, and the arc from G to H2 reversed. G∗ is an abbreviation for AH1(G),
and similarly for H∗

i
.
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quantities H1 = h1 and propagate the evidence over the remaining nodes. To do
so, we construct the adjusted versions

G∗ = AH1(G), H ∗
2 = AH1(H2), . . . , H ∗

5 = AH1(H5),

and replace the prior variance structure by variances and covariances calculated
over these adjusted versions. In parallel, we update expectations to

E(G∗) = Eh1(G), E(H ∗
2 ) = Eh1(H2),

and so forth. This completes the update for the evidence H1 = h1. Node H1 may
now be dropped from the tree. The algorithm may now continue as above, by
reversing the arc from G to H2, giving Figure 10.21(c), and propagating the evi-
dence H2 = h2.

10.9 Junction trees

While propagation around directed trees is straightforward, it may be difficult to
reduce a complex graph to a suitable directed tree structure. It is easier to describe
procedures to reduce a directed graph to an undirected Markov tree. Therefore, we
now give a general algorithm to reduce any graph to an undirected model, which
will give a general approach to belief propagation. Note that the two approaches
may often be combined, as we may reduce our graph to a directed tree in which
each of the nodes is itself a large subgraph of the original graph.

We now describe how to construct the junction tree, which forms the basis for
local computation in many kinds of graphical model. Proof that the algorithm does
produce the junction tree, with properties as described, is given in, for example,
Lauritzen (1996). Note that various of the steps in the following algorithm are not
uniquely defined. In each case an arbitrary choice may be made.

1. Create the moral graph, by joining all parents and dropping arrows.

2. Triangulate the graph, by adding sufficient edges to ensure that there are no
cycles of length four or more without a chord.

3. Carry out a maximum cardinality search. We may arbitrarily label any node
as node 1. At each stage k, we label as node k the node on the graph with the
largest number of labelled neighbours. (If and only if the graph is triangulated,
at each stage when we label node k, all labelled neighbours of this node will
be neighbours of each other.)

4. Order the cliques. The cliques are the maximal sets of nodes which are all
joined to each other. For each clique, note the highest labelled node, and label
the cliques in the order of these values.

5. Create the junction tree. The nodes of the tree are the cliques. Each clique
is joined to at most one of the lower numbered cliques as follows. From the
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above construction, it turns out that the intersection of the nodes in a clique
and the nodes in all lower numbered cliques will be contained in at least one
of the lower numbered cliques. Place a link between the clique and one of the
lower numbered cliques which contain the intersection.

The basic properties of the junction tree are as follows.

Property 10.16 (Properties of the junction tree)

10.16.1: If the original directed graph represents a second-order graphical
model, then the junction tree is an undirected graph with the second-order
global Markov property.

10.16.2: There is at most one path between any two nodes on the graph.

10.16.3: If a node of the original graph is contained in two nodes on the
junction tree, then it is contained in all nodes on the unique path between
these nodes.

10.16.4: Suppose that nodes A, B are adjacent on the junction tree. Let Z be
the collection of nodes from the original graph which are in the intersection
of A and B. Let U be the collection of nodes in A but not in Z, and let V be
the nodes in B but not in Z. Then we must have �U ⊥⊥ V � / Z.

10.16.5: As a consequence of Property 10.16.4, the covariance between adja-
cent nodes on the junction tree may be derived from the covariances within
each node, as from (10.6) (or, equivalently, Property 5.20.2),

Cov(U, V ) = Cov(U, Z)Var(Z)†Cov(Z, V ).

10.10 Sequential local computation on the junction tree

Beliefs may be propagated around the junction tree as follows. Suppose that D

is a node of the original graph, and that we observe D = d; if we are doing this
analysis at the design stage, before making any observations, to see which nodes
are worth observing, then we proceed as below but we do not pass around actual
values for d.

All that matters for adjusting beliefs across the graph are the observed values
d and the covariance between D and all the other nodes. So, we first pass the
covariance function Cov(D, ·) around the graph. This proceeds as follows.

D is contained in each of some connected sequence of nodes on the junction
tree, so that Cov(D, ·) is already determined for these nodes. For each other node
in turn proceed as follows.

Suppose that we have already assessed Cov(D, A) for node A, and we wish to
pass the covariance to adjacent node B. If node A has subsets U, S and node B
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has V, S, where U, V, S are disjoint, then �U ⊥⊥ V � / S. Therefore, having found
Cov(D, A), we may find Cov(D, B) using (10.6) by

Cov(D, V ) = Cov(D, S)Var(S)†Cov(S, V ).

Within each node on the junction tree, we therefore compute adjusted means,
variances, and covariances via (3.21), (3.30), and (3.31), i.e.

ED(B) = E(B)+ Cov(B, D)Var(D)†(d − E(D)),

VarD(B) = Var(B)− Cov(B, D)Var(D)†Cov(D, B),

RVarD(B) = Cov(B, D)Var(D)†Cov(D, B).

To find the belief transform, for each node B on the original graph, we evaluate
the resolution transform matrix as TB:D = Var(B)†RVarD(B). Now observe the
following.

First, adjustment by a node on the original graph preserves separations in the
junction tree, by Theorem 5.25. Therefore, the new junction tree, with D removed
from all nodes where it occurs on the original junction tree, is a valid junction tree
for the structure where all beliefs are adjusted by D and corresponds to the second-
order global Markov undirected graph on which we remove D and all arcs into D

from the original moral graph by Theorem 10.11. Secondly, for any B, D1, D2 we
have

Cov(B, AD1(D2)) = Cov(AD1(B), AD1(D2)),

so that
RVar[D2/D1](B) = RVar[D2/D1](AD1(B)).

Therefore, we can adjust every node on the diagram by D1, then ‘forget’ the
fact that we have adjusted B by D1 and combine the resolved variance for the
adjustment of B by D1 with the resolved variance of AD1(B) by AD1(D2) and still
get the overall resolved variance for B by D1 ∪D2, namely we can move between
stepwise adjustment and overall adjustment, using relations (5.4) and (5.10), i.e.

ED1∪D2(B) = ED1(B)+ E[D2/D1](B), (10.16)

RVarD1∪D2(B) = RVarD1(B)+ RVar[D2/D1](B). (10.17)

Thus, when we adjust by D2, and subsequently D3, D4, . . . , we may locally com-
pute adjusted means, variances, and covariances by repeating the above steps but
using the current adjusted means, variances, and covariances in precisely the same
way as above.

The only difference comes when we evaluate the resolution transform. This is
because TAD1 (B):[D2/D1] is not the same as TB:[D2/D1]. Therefore, having found
RVar[D2/D1](AD1(B)) in the adjustment stage of the algorithm, we would assess
TB:[D2/D1] as

TB:[D2/D1] = Var(B)†RVar[D2/D1](AD1(B)).

It follows that if we want to evaluate these transforms, then we need to hold the
inverse of the original variance matrix for each node on the original graph.
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10.11 Example: correlated regressions

We continue the example of §10.5. For illustration, we explore the sequential
adjustment of all other quantities by the data quantities. Organize the parameter
quantities as G = {a, b, c, d} and the error and data quantities as Qi and Hi , as
defined in (10.11) and (10.12). The graphical model for this organization is similar
to Figure 10.5, but with all the Qi, Hi explicitly represented, i = 1, . . . , 12. The
moral graph is obtained by marrying all nodes Qi to node G, and by dropping arcs.
Triangulation is trivial as there are no chord cycles of length four or more. The
cliques comprise the 12 collections Ji = {G, Qi, Hi}, i = 1, . . . , 12, each contain-
ing G and each such that �Ji ⊥⊥ Jj � / G. There are many alternative choices of
junction tree possible. For example, we may take J1 as the root of the tree and
link the other cliques to it. Alternatively, we may link J1 to J2, J2 to J3, and so
forth. Note that this model has a simple plate representation. A high-level junction
tree for all such plate representations is obtained trivially in this fashion, and will
contain as many nodes in the junction tree as there are plates.

10.12 Example: problems of prediction in a large brewery

This example is part of an analysis of problems of prediction for a large brew-
ery. The example arises from a project to develop a user-friendly computer-based
decision support tool for use by managers, and is described in Spiropoulos (1995).
We are very grateful to Takis Spiropoulos and Malcolm Farrow for describing the
problem, and making available the specifications and the data. There are many
quantities which have a bearing on decision making at the brewery – for example,
the brewery produces different kinds of beers, demand for beer varies over time,
production targets may be set or not, and may be met or not, depot stocks may be
low or high, and so forth. The brewery staff have some expertise in judging the
relationships between the variables, and assessing the implications of, say, a drop
in depot orders for production volumes. There is some data concerning previous
sales, depot orders, productions, and so forth. Examples of the kinds of question
that need to be answered are: how much beer of each type must be produced next
week, and what depot stocks are likely to be at Christmas.

We will not go into specific details of the elicitation and modelling process
for this problem. Instead, we will present a broad picture of how such a problem
might be tackled, using a Bayes linear approach. By doing so, we may incorporate
valuable prior expert information, without requiring the specification of a joint
probability distribution over all the quantities of interest – something certainly
beyond the capabilities of industrial managers.

10.12.1 Problem summary

The brewery produces four beers. In the packaging plant, beer is drawn from vessels
and packaged into kegs. Filled kegs become part of the stock held at the brewery
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until they are delivered to depots. Individual depots issue orders in advance to the
brewery. These orders are used as information in planning the number of kegs of
each kind of beer to be produced, but the deliveries need not exactly match the
orders. The depots then sell the beer to the retail trade, subject to demand for each
kind of beer. The orders that the depot makes to the brewery depend on the sales
from the depots to the retail trade, as there is a limit to the volume of stock held
at any given depot, and also a limit on the shelf life of a given kind of beer. In
addition, to help predict the depot orders, the following information is available:
previous order figures; the brewery’s demand forecasts; the latest available depot
stocks; and the depots’ demand forecasts. One concern of the packaging plant is to
meet demand from the depots, at the same time avoiding holding too much stock
at the depots, or holding stock for too long.

10.12.2 Identifying the quantities of interest

The general problem was organized by focusing on certain quantities viewed by
brewery staff as important. For simplicity, our analysis deals with weekly totals,
with quantities totalled over depots, so that the analysis proceeds as though there is
only one depot. The main quantities of interest are as follows: (1) the total volume
of each beer sold each week, totalled over all the depots; (2) the previous week’s
forecast for this total, and (3) the forecast for this total made 2 weeks earlier; (4) the
total volume of stock of each beer currently held at all depots; (5) deliveries made
of each kind of beer from the packaging plant to the depots; (6) the total orders for
each kind of beer requested by the depots; (7) the 2-weeks-ahead forecast made
by the depots for the total volume of sales for each kind of beer. Each week, these
seven quantities are observed for each of the four kinds of beer: 28 quantities in
all. We use the following notation for these quantities, where b = 1, 2, 3, 4 indexes
beer type. In fact, beer 1 represents a brand of bitter-style beer; whilst the other
three beers are lager styles, of which beers 2 and 3 are brands which compete in
the same market, and beer 4 has more of a niche market.

• Vbt is the total volume of beer b sold by the depots in week t .

• V
(1)
b,t−1 is the 1-week-ahead forecast (i.e. made at time t − 1) for Vbt .

• V
(2)
b,t−2 is the 2-weeks-ahead forecast (i.e. made at time t − 2) for Vbt .

• Hbt is the total volume of stock of beer b, above a fixed target level, held in
depots at the end of week t .

• Dbt is the total volume of deliveries of beer b sent by the brewery to the depots
during week t .

• Fbt is the latest available depot forecast of total demand for beer b. Depot
demand forecasts are made 2 weeks ahead, so that the forecast for week t is
prepared in week t − 2.
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• Obt is the total order of beer b made by the depots in week t for the next week
t + 1.

For each kind of quantity we gather the four beers into a collection, or vector,
for which we use the same notation, dropping the b subscript, so that:

• Vt is the collection of total volumes of beer sold by the depots in week t .

• V
(1)
t−1 is the 1-week-ahead forecast for Vt .

• V
(2)
t−2 is the 2-weeks-ahead forecast for Vt .

• Ht is the collection of total volumes of stock of beer held in depots at the end
of week t .

• Dt is the collection of total volumes of deliveries of beer sent by the brewery
to the depots during week t .

• Ft is the collection of latest available depot forecasts of total demand in week t

for beer. These forecasts are prepared in week t − 2.

• Ot is the collection of total orders of beer made by the depots in week t for the
next week t + 1.

The principal interest for the brewery in this analysis is to reduce its uncertainties
about the orders quantities Ot, Ot+1, . . . , as the role of the brewery is to fulfil
depot orders.

10.12.3 Modelling

We now describe our modelling for this problem. Any complex problem is
amenable to many different modelling strategies, and we could postulate a variety
of alternative models for the brewery. Our aim is to illustrate, with graphical mod-
els, the Bayes linear analysis of a particular collection of beliefs, and so we leave
aside discussion of the appropriateness of this modelling strategy, except in so far
as problems are highlighted by our diagnostics.

The relationships that we use derive from the beliefs and practices of the
brewery staff. Previous forecasting strategies tended to be based on examining
sales figures over recent weeks and sales figures of corresponding periods in the
previous year. We use a Box–Jenkins style approach, assuming that differencing
sales volumes Vbt once seasonally and once non-seasonally can be expected to
remove seasonal effects and any linear trend. Then, if the resulting differenced
series evinces stationarity with zero mean, a long-term forecast function should
project trends linearly. In fact, previous data did suggest, in the notation of Box
and Jenkins (1970), as appropriate the multiplicative (0, 1, 1)× (0, 1, 1)52 model:

(1− B)(1− B52)Vbt = (1− θb,1)(1− θb,52)εbt , (10.18)
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for some θb,1 and θb,52, where E(εbt ) = 0 and Cov(εbt , εbs) = 0, for t �= s, and
B is the backshift operator such that BVt = Vt−1. We gather the four quantities
εbt into the vector εt , and gather the θs into diagonal matrices:

θ1 = diag{θ1,1, θ2,1, θ3,1, θ4,1},
θ52 = diag{θ1,52, θ2,52, θ3,52, θ4,52}.

The qualitative features of the prior beliefs over the second-order structure may
be expressed through a series of linear relations. Using our vector and matrix
quantities, we model Vt and its 1-week-ahead forecast V

(1)
t−1 as

Vt = V
(1)
t−1 + εt , (10.19)

V
(1)
t−1 = Vt−1 − θ1εt−1 + c

(1)
t−1, (10.20)

c
(1)
t−1 = Vt−52 − Vt−53 − θ52εt−52 + θ1θ52εt−53, (10.21)

where c
(1)
t−1 is a modifying vector of values calculated from the corresponding

values of Vt in previous years. We have from (10.19) that, up to time t , all of the
information useful for linear prediction of Vt is carried by V

(1)
t−1; on the graphical

model, V
(1)
t−1 is the only parent node of Vt . Thus Vt is constructed from its one-

step-ahead forecast, perturbed by εt , to which we return below.
This model is a simplification to the extent that years are not exactly 52 weeks

long, and so the model will drift out of phase over time unless corrected. Also,
no account is taken of exceptional effects such as public holidays, major sporting
fixtures, and so forth, where these do not occur in the same week in each year.
(The model could be modified to take these factors into account.) In practice, the
1-week-ahead forecasts are not known with certainty beforehand as a result of such
irregular exceptional circumstances, and because there is only a limited amount of
historic data available.

The collections {εt } represent what we hope to be stationary mean-zero time
series, one for each kind of beer. Hence we model εt as

εt = Mηt , (10.22)

where ηt is a vector of four uncorrelated random quantities, and M is a 4× 4 matrix
of constants which expresses the relationships between variation across beers.

The 2-weeks-ahead forecasts are modelled as

V
(2)
bt = V

(1)
bt + c

(2)
bt (10.23)

c
(2)
bt = Vb,t−50 − Vb,t−51 − θb,52εb,t−50 + θb,1θb,52εb,t−51, (10.24)

so that c
(2)
t is a vector of values calculated from the corresponding values of Vt in

previous years.
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Prior beliefs about the remaining quantities are expressed through the following
relationships:

Ft = V
(2)
t + φFt−1 − φV

(2)
t−1 + η

(F )
t , (10.25)

Dt = 0.5Ot−1 + 0.5V
(1)
t−1 − 0.5Ht−1 + η

(D)
t , (10.26)

Ht = Ht−1 +Dt − Vt , (10.27)

Ot = Ft−1 −Ht−1 + Ft−2 −Ot−1 + η
(O)
t , (10.28)

where η
(F )
t , η

(D)
t , η

(O)
t are vectors of uncorrelated quantities and φ is a constant.

The specification is completed by quantifying the various prior means and variances
which generate the structure.

Figure 10.22, which is adapted from Goldstein et al. (1993), shows a Bayes
linear graphical model summarizing the basic relationships amongst the quantities
of interest. Each node on the diagram represents a collection, or vector, containing
four beer quantities. For example the node labelled Ot represents the collection
of total orders of beer made by the depots in week t for delivery in week t + 1.
Directed arcs on the diagram from one node (a parent) to another (a child) represent
the potential capacity of the quantities in the parent collection to help explain the
variance in the quantities in the child collection. The existence of an arc implies
potentially relevant predictive information but does not imply a causal relationship.
For example, from Figure 10.22 observe that depot orders in any given week (the
node Ot ) are influenced by quantities in four other collections: Ft−2, Ft−1, Ht−1,
and Ot−1, and are conditionally independent, given these four parent collections,
of any other collections up to and including week t . On the other hand, the depot
orders are themselves predictive not only for next week’s orders, but also for next
week’s deliveries, Dt .

10.12.4 Initialization values and specifications

We now quantify the model. First, we specify values for the constants that we
have introduced: φ, the λ values used to construct M , expressing the relationships
between variation across beers, and the θ values parameterizing (10.18):

φ = 0.4, (10.29)

λ1 = 0.87, λ2 = 0.78, λ3 = 0.58, (10.30)

θ1 = diag{0.95, 0.9, 0.8, 0.8}, (10.31)

θ52 = diag{0.2, 0.7, 0.7, 0.7}, (10.32)

M =




λ1 −1 0 0
λ1(1− λ2) 1− λ2 −1 0

λ1λ2(1− λ3) λ2(1− λ3) 1− λ3 −1
λ1λ2λ3 λ2λ3 λ3 1


 . (10.33)
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Figure 10.22 Bayes linear graphical model for the brewery problem.

Secondly, we specify the second-order structure over the collections of error
components: ηt , η

(F )
t , η

(D)
t , and η

(O)
t . All such quantities are taken to have expec-

tation zero, are uncorrelated, and uncorrelated over time and across beers. Thus
all expectation and covariance specifications for these quantities are zero except
for the variance specifications summarized in Table 10.4, which are constant over
time t .

Some historic data are available, beginning at what we shall take to be week
t = 1. The data consists of observed values of all 28 quantities in the seven collec-
tions: Vt , V

(1)
t , V

(2)
t , Ft , Dt , Ot , Ht . Checking the requirements of our model, and
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Table 10.4 Error component variances.

Beer, b Var(ηbt ) Var(η(F )
bt

) Var(η(O)
bt

) Var(η(D)
bt

)

1 1,840,000 22,500 27,000 25,600
2 17,000 90,000 119,000 136,900
3 38,000 302,500 416,000 184,900
4 18,000 90,000 119,000 78,400
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Figure 10.23 Sales of four kinds of beer over 54 weeks.

recalling that we take into account events in the same week of the preceding year,
the earliest time t for which the requisite historic data are available to generate the
full model is week t = 55. Beer sales for the first 54 weeks are given in Table 10.5,
these being the observed values of the quantities in the collections V1, . . . , V54.
A simple way of handling the observed quantities, in linear equations such as
(10.27), is to treat them as variables with zero variance and expectation equal to
their observed value. The data are plotted in Figure 10.23: beer 1 has the lowest
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Table 10.5 Sales of four beers, V1, . . . , V4, at weeks t = 1, 2, . . . , 54. No infor-
mation was available for week t = 49.

t V1t V2t V3t V4t t V1t V2t V3t V4t

1 1212 2484 3956 1852 28 1434 3608 6027 2980
2 1216 2343 4039 2124 29 1386 3236 5686 2843
3 1270 2864 4752 2477 30 1739 4003 6491 3213
4 1328 2619 4300 2414 31 1354 3074 5299 2606
5 1314 2521 4475 2293 32 1297 3076 4962 2583
6 1420 2746 4959 2067 33 1400 3122 5168 2805
7 1508 2783 5152 2626 34 1290 2795 4809 2165
8 1841 3572 5632 2994 35 1248 2637 4658 2656
9 1598 3192 4787 2677 36 1239 2619 4866 2643

10 1433 2717 4749 2417 37 1204 2752 4444 2454
11 1401 2859 4839 2470 38 1289 2646 4317 2468
12 1443 2912 4914 2490 39 1253 2583 4179 2497
13 1366 2708 4654 2396 40 1189 2524 4303 2354
14 1624 3110 5148 2699 41 1289 2714 4783 2599
15 1633 2920 4825 2734 42 1282 2786 4554 2610
16 1627 3095 4982 2813 43 1193 2595 4336 2528
17 1637 3146 5215 2952 44 1223 2613 4390 2914
18 1579 3162 5511 2699 45 1641 3070 5203 2850
19 1314 2796 5119 2503 46 2677 4954 8512 4705
20 1317 2725 4697 2576 47 1960 3680 6459 3115
21 1466 2917 5198 2636 48 1087 2497 4791 3080
22 1450 2735 4901 2541 49
23 1805 3655 5900 3007 50 978 2064 3253 1873
24 1396 3290 5470 2860 51 823 1779 3080 1803
25 1439 3290 5578 2751 52 927 1844 3439 1975
26 1449 3232 5581 2696 53 916 1902 3623 1907
27 1506 3396 5594 2830 54 1056 2371 4280 2029

sales, and beer 3 the highest. Sales reach a peak in week 46. Sales figures are
absent for week 49. The observed values of εt , the difference between the 1-week-
ahead forecast and the actual sales figure, are given in Table 10.6 and plotted in
Figure 10.24. The relationship between the four beers can be clearly seen in the way
that movements in sales of one beer type are tracked quite closely by sales of other
beer types. With regard to seasonal or periodic components, as there is only just
over 1 years’ data, it is impossible to verify the assumption of a strong yearly com-
ponent. However, visually there is some evidence of a monthly or 4-weekly cycle
which is not modelled. Such cyclic behaviour is more strongly evident when the
sales forecasts errors are examined in Figure 10.24, which also shows the very large
positive error in week 46 (sales were much higher than the forecast) followed by
large negative errors (much smaller sales than forecast) in the following two weeks.
Such swings could be exacerbated by reporting lags and the granularity of the data.
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Table 10.6 Forecast errors for beer sales, ε1, . . . , ε4, at weeks t = 1, 2, . . . , 54.
No information was available for week t = 49.

t ε1t ε2t ε3t ε4t t ε1t ε2t ε3t ε4t

1 139 276 94 −97 28 −95 −657 −392 −103
2 72 −34 68 130 29 −194 −661 −445 −22
3 117 239 469 304 30 427 425 290 402
4 −84 −18 −426 −41 31 −256 −507 −412 −198
5 −50 −109 −129 −117 32 −200 −299 −860 −240
6 22 −59 72 −323 33 132 105 248 160
7 −43 −117 162 −131 34 75 182 520 −256
8 363 587 515 368 35 79 260 394 419
9 −31 −258 −612 −272 36 136 212 359 87

10 −41 −568 −512 −546 37 5 483 −133 −215
11 −387 −682 −725 −652 38 3 114 −296 −32
12 −99 −228 −116 −62 39 −18 163 −259 107
13 −57. −29 −345 −250 40 −142 66 −111 −196
14 217 490 −107 −128 41 76 220 404 238
15 −153 −350 −1094 −193 42 58 355 188 −32
16 −79 −467 −905 −222 43 15 50 −78 −120
17 134 −93 −274 157 44 −11 229 74 132
18 6 −146 −124 −278 45 361 500 1020 26
19 −177 −774 −624 −531 46 775 780 1757 986
20 −156 −634 −729 −282 47 −583 −35 62 −458
21 92 −133 129 −93 48 −840 −1638 −2114 −410
22 70 32 −9 136 49
23 417 591 877 333 50 55 −499 −1045 −382
24 −348 −297 −280 7 51 142 225 −30 −306
25 65 238 468 118 52 391 339 660 137
26 −91 −155 −417 −279 53 161 512 916 315
27 −63 −341 −840 −181 54 232 723 999 266

Construction of the model at time t = 55 also requires past observations on
depot forecasts, F ; depot orders, O; and depot stocks, H . Reported depot stocks are
given in relation to certain fixed targets, so that positive (negative) values indicate
a surplus (deficit) in stock from a fixed target. For example, for beer 3 we have:

• F3,54 = 3785, meaning that the forecast made in week 54 for the depot demand
in week 56 is 3785 kegs;

• O3,54 = 3639, meaning that the depot ordered 3639 kegs in week 54, to be
delivered in week 55;

• D3.54 = 4127, meaning that 4127 kegs were delivered to the brewery in week
54;

• H3,54 = −505, meaning that the total depot stock was 505 kegs short of target
in week 54.



BAYES LINEAR GRAPHICAL MODELS 411

−2
00

0
−1

00
0

0
10

00

E
rr

or
s

Beer 1
Beer 2
Beer 3
Beer 4

0 10 20 30 40 50

Week

Figure 10.24 Sales forecast errors for four kinds of beer over 54 weeks.

Table 10.7 Depot forecasts, orders and deliveries, weeks 53–54.

Beer style

1 2 3 4

Fb,53 1121 2274 3811 2075
Fb,54 1128 2236 3785 1858
Ob,54 788 1530 3639 1481
Db,54 897 2165 4127 1641
Hb,54 −181 840 −505 −473

The remaining inputs for these quantities are shown in Table 10.7. This completes
the inputs necessary to construct the model, so we now proceed to construct the
model from the relations (10.19), (10.20), (10.22), (10.23), and (10.25)–(10.28) for
weeks t = 55 onwards, for as far into the future as we wish.
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10.12.5 Examining the generated model

Suppose that we generate the model for several weeks, beginning at week t = 55.
The prior structure so generated is detailed and has very many specifications. For
example, Table 10.8 shows prior expectations and standard deviations as they are
constructed for beer sales and depot orders for the first three weeks, for each beer
style. Thus, the expected total sales of beer 3 for the first three weeks for the
constructed model are 879.5, 976.66, and 956.72, respectively, with a standard
deviation of about 220 in each case that varies little from week to week. Standard
deviations for the order quantities rise substantially from week 55 to week 56, but
less substantially thereafter: this is an artefact of the initialization of the model.

There are very many specifications generated from the model, even though we
are considering only the second-order structure. As examples of the features we
may want to explore we have the following. Table 10.9 shows the prior correlation
matrices for beer sales and beer orders at weeks t = 55, 56, 57. The correlations
at any given time point between sales for different beer styles are generally large
and positive, as one would expect. However, observe that the correlation structure

Table 10.8 Some expectations and standard deviations for beer sales and orders,
rounded to the nearest integer.

t = 55 E(·) SD(·) t = 56 E(·) SD(·) t = 57 E(·) SD(·)
V1 880 219 V1 977 220 V1 957 220
V2 2051 326 V2 1970 328 V2 1937 329
V3 3903 420 V3 4013 428 V3 4039 436
V4 2029 565 V4 2166 576 V4 2104 587

O1 1642 164 O1 640 394 O1 1186 425
O2 3340 345 O2 1380 770 O2 2376 828
O3 4462 645 O3 3656 1254 O3 4623 1334
O4 2925 345 O4 1424 931 O4 2422 971

Table 10.9 Vector correlations at fixed times for beer sales and orders.

Week t = 55 Week t = 56 Week t = 57

V1t V2t V3t V1t V2t V3t V1t V2t V3t

V2t 0.59 V2t 0.59 V2t 0.59
V3t 0.68 0.63 V3t 0.67 0.62 V3t 0.67 0.62
V4t 0.70 0.64 0.84 V4t 0.69 0.64 0.84 V4t 0.68 0.64 0.84

O1t O2t O3t O1t O2t O3t O1t O2t O3t

O2t 0.00 O2t 0.16 O2t 0.16
O3t 0.00 0.00 O3t 0.16 0.12 O3t 0.15 0.11
O4t 0.00 0.00 0.00 O4t 0.30 0.22 0.25 O4t 0.28 0.21 0.23
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Table 10.10 Correlation matrices between beer sales and orders at times t and
r = t + 1.

Week t = 55 with week 56 Week t = 56 with week 57

V1,r V2,r V3,r V4,r V1,r V2,r V3,r V4,r

V1t 0.05 0.06 0.13 0.14 V1t 0.05 0.06 0.14 0.14
V2t 0.03 0.10 0.12 0.13 V2t 0.03 0.11 0.13 0.14
V3t 0.03 0.06 0.20 0.17 V3t 0.04 0.07 0.23 0.19
V4t 0.04 0.06 0.17 0.20 V4t 0.04 0.08 0.19 0.23

O1,r O2,r O3,r O4,r O1,r O2,r O3,r O4,r

O1t −0.42 0.00 0.00 0.00 O1t −0.39 −0.05 −0.03 −0.05
O2t 0.00 −0.45 0.00 0.00 O2t −0.06 −0.40 −0.02 −0.04
O3t 0.00 0.00 −0.52 0.00 O3t −0.06 −0.04 −0.38 −0.04
O4t 0.00 0.00 0.00 −0.37 O4t −0.11 −0.06 −0.04 −0.29

across beer sales weakens quite slowly over time. For example, the correlation
between sales of beers 1 and 4 drops from 0.698 in week 55 to 0.690 in week 56,
and to 0.683 in week 57. Examining the prior correlation structure for the beer
orders, we see that these are uncorrelated in week 55 – an artefact of the model
initialization – and are fairly weakly correlated in later weeks. For orders too, there
is an apparent weakening of the correlation structure over time. The correlation
structure for later weeks turns out to be similar to that for week 57.

Table 10.10 shows some prior correlation matrices between vector collections
1 week apart. For example, the correlation between sales of beer 1 in weeks 55
and 56 is only 0.050, rising slightly for weeks 56 and 57. Correlations for the
other kinds of beer are somewhat stronger. These positive correlations summarize
the beliefs that sales increases one week are likely to be weakly associated with
sales increases the next week. The prior correlation matrices for beer orders show
negative correlations, in particular for beers of the same kind, showing that high
orders one week are associated with lower orders the next week. As time progresses,
weak negative correlations are induced between orders for different beers. The
correlation structure for later weeks is about the same for the sales quantities,
whilst for the order quantities the one-week correlations remain negative and are
slightly larger in magnitude.

Table 10.11 similarly shows some prior correlation matrices between vector
collections 2 weeks apart. For example, for the beer sales quantities, Vt has a
slightly weaker correlation with Vt+2 than it has with Vt+1. On the other hand, for
the beer orders, because there is a negative correlation between the quantities 1
week apart, Corr(Obt , Ob,t+1) < 0, there is necessarily a weaker but positive cor-
relation between quantities 2 weeks apart, Corr(Obt , Ob,t+2) > 0. The correlation
structure for later weeks turns out to be slightly larger in magnitude, but otherwise
similar.
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Table 10.11 Correlation matrices between beer sales and orders at times t and
r = t + 2.

Week t = 55 with week 57 Week t = 56 with week 58

V1,r V2,r V3,r V4,r V1,r V2,r V3,r V4,r

V1t 0.05 0.06 0.13 0.13 V1t 0.05 0.06 0.14 0.14
V2t 0.03 0.10 0.12 0.12 V2t 0.03 0.11 0.13 0.13
V3t 0.03 0.06 0.19 0.16 V3t 0.04 0.07 0.22 0.19
V4t 0.04 0.06 0.16 0.19 V4t 0.04 0.07 0.19 0.22

O1,r O2,r O3,r O4,r O1,r O2,r O3,r O4,r

O1t 0.19 0.00 0.00 0.00 O1t 0.20 0.04 0.05 0.09
O2t 0.00 0.21 0.00 0.00 O2t 0.04 0.20 0.04 0.07
O3t 0.00 0.00 0.24 0.00 O3t 0.04 0.03 0.20 0.08
O4t 0.00 0.00 0.00 0.18 O4t 0.07 0.06 0.08 0.25

There are clearly many such prior correlations that we could display and com-
ment upon: for vectors of one kind of quantity such as sales in a given week; across
vectors of one kind of quantity during different weeks and for different lags; and of
course across different kinds of quantities such as beer sales and orders at a given
time point, or at separated time points. However, even for this problem, which has
had many complicating features removed, there are so many specifications that it
is very time-consuming to go beyond a cursory examination. In the remainder of
this example, we see how labelled graphical models can help us to focus on the
key features, and on diagnostic exploration.

10.12.6 Basic adjustment

There are many adjustments of potential interest for this problem. For illustration
we will concentrate on one very limited aspect, namely the value of the information
available in one week for predicting beer orders in a given future week.

We may use local computation to simplify our calculations. In particular, we
propagate beliefs using the directed tree algorithm, where we aggregate all nodes
for a particular week as a single node Wt . The tree then becomes Wt to Wt+1 to
Wt+2 and so forth. In order to impose this structure, we must deal with the arc
from Ft−2 to Ot , which we can handle by adding a deterministic node to Wt of
the form Gt = Ft−1.

Suppose that our aim is to predict beer orders in week 62, so that the col-
lection of interest is O62. We will adjust beer orders in week 62 by the infor-
mation available in previous weeks. Note from Figure 10.22 that the collections
Ht−1, Ft−1, Gt−1 = Ft−2, Ot−1, are sufficient for all quantities up to week t − 1
inclusive for predicting beer orders for week t . Therefore, instead of adjusting by
the full collection Wt , we may restrict attention to the adjustment by this sufficient
collection.
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Figure 10.25 Adjusted expectations and variances for orders as we accumulate evidence.
Plotted are the adjusted expectations with two-standard-deviation bounds for Ob,62, given
all the information available up to that week. Week 54 information is prior. Successive
forecasts are connected with a line, emphasized when the change is surprising.

Figure 10.25 shows a simple graphical summary for the sequence of forecasts
made for orders. Under this model we have essentially prior information at week
54, and then information on depot stocks and so forth for each subsequent week. To
assess the value of the information available weeks earlier, we adjust beer orders
at week 62 by the information available at week 55, and then partially by the extra
information available at week 56, and so forth. In each case we may calculate an
updated adjusted expectation and an adjusted variance, and we may calculate the
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standardized change in adjustment. For each beer, we plot the adjusted expecta-
tion at that point, with two-standard-deviation bounds to convey the uncertainty
remaining. We connect successive forecasts. Where the standardized change in
adjustment is surprising, we emphasize the connection. The plots show that, for
all four beers, the orders were roughly in agreement with the prior expectation and
prior variance. Evidently, there is little information carried by information more
than 1 week away, as the adjusted variances reduce only marginally from week to
week, except for the final forecast made at week 61. All of the adjustments moving
from week 56 to week 57 are somewhat surprising: all are between two and three
standard deviations.

10.12.7 Exploration via graphical models

There is a vast number of adjustments, resolutions, expectations, variances, size
diagnostics, and so forth that we might look at for this example. We show in
this section how we can focus on the principal features by examining the labelled
graphical model. Our interest is in three main areas.

• We want to see the implications of the model for reducing uncertainty in observ-
ables such as future beer orders.

• We want to know whether the data are consistent with the prior specification,
and, if not, whether any discrepancies are important.

• We want to track information flow and diagnostics as they combine over time.

By way of illustration, we begin by looking at diagrams representing all the quanti-
ties over the 3-week period starting at week 55, the first time for which the model
is fully constructed. We show the quantities at each week as seven collections
of four-dimensional vectors. We may employ the separations shown below when
making adjustments:

�V57⊥⊥V56 ∪ V
(2)
56 ∪ F56 ∪H56 ∪D56 ∪O56� / V

(1)
56 ,

�V (1)
57 ⊥⊥V56 ∪ V

(2)
56 ∪ F56 ∪H56 ∪D56 ∪O56� / V

(1)
56 ,

�V (2)
57 ⊥⊥V56 ∪ V

(2)
56 ∪ F56 ∪H56 ∪D56 ∪O56� / V

(1)
56 ,

�F57⊥⊥V56 ∪ V
(1)
56 ∪H56 ∪D56 ∪O56� / V

(2)
56 ∪ F56,

�H57⊥⊥V56 ∪ V
(2)
56 ∪ F56 ∪D56� / H56 ∪ V

(1)
56 ∪O56,

�D57⊥⊥V56 ∪ V
(2)
56 ∪ F56 ∪D56� / H56 ∪ V

(1)
56 ∪O56,

�O57⊥⊥V56 ∪ V
(1)
56 ∪ V

(2)
56 ∪D56� / H56 ∪ F56 ∪O56 ∪ F55.

Our diagrams only show the arcs for adjustments of child nodes by the parents given
by these separations. In our diagrams, we show the observed quantities at week 55;
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Figure 10.26 Node influence. Node shadings show the variance resolutions and partial
resolutions as information arrives from a sequence of parents.

the quantities at week 56 adjusted by those at week 55; and the quantities at week 57
adjusted by those at week 56. For interactive use we use colour to track influence;
in monochrome we have to distinguish between information sources using shading,
where possible. Each node represents a collection of four quantities, so that each
column constitutes the 28 quantities of interest for one week.

Figure 10.26 shows node resolutions as we adjust quantities and track their
implications over time. To help aid interpretation, if a node is adjusted by more
than one parent node, the adjustments take place in left-to-right and vertically
descending order. For example, node O57 is adjusted by F55, F56, H56, and O56,
in that order. The resolutions and partial resolutions contributed by the parent
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Figure 10.27 Arc influence. Arc shadings show the amount of information leaving a parent
node, and the amount arriving at a child node.

node are shown sequentially and anticlockwise from 0◦. The interpretation for this
node is that F55 delivers little resolution, F56 partially resolves about a fifth of the
remaining variation, H56 slightly less than this, and finally the partial adjustment
by O56 resolves most of the remaining variation – and is obviously an important
source of information.

In Figure 10.27 we add arc labels to show the amount of information leaving
parent nodes and arriving at child nodes. For example, for adjusting node D57,
relatively a lot of information leaves O56 and about half of it arrives. Quite a lot
of information leaves H56 for D57, but little arrives. Relatively little information
leaves V

(1)
56 for D57, and – visually – none appears to arrive. The implication is

that O56 is very important for learning about D57; that H56 is less important, but
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Figure 10.28 Node diagnostics. Inner portions of sectors show diagnostic ratios: dark shad-
ing for surprisingly large changes in expectation, light shading for surprisingly small changes
in expectation.

probably still useful; and that V
(1)
56 is unimportant. It is simple, if desired, to calcu-

late resolutions and partial resolutions for an alternative sequence of adjustments
such as this. Here we find that the variance resolution in D57 due to O56 alone
is 0.6156; the partial resolution given by adjusting also by H56 is 0.1556; and
the partial resolution given by adjusting next by V

(1)
56 is 0.0009, confirming the

interpretation we drew from the diagram.
In Figure 10.28, we add node diagnostics to the plot by shading inner parts of a

sector corresponding to an adjustment, and we take into account actual observation.
Observation of a node resolves any remaining variation in the node. Here, we
will also introduce the notion that we can track influence via colour or shading.
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We attach shadings to parent nodes via the final part of the outer annular sector
corresponding to the residual variation removed when the parent node is actually
observed. To return to the adjustment of O57, its four parent nodes were, in order,
allocated the shadings black (F55), light grey (F56), black (H56), and dark grey
(O56). Therefore, the resolutions shown in the outer annular sector for node O57
are, from 0◦ and moving anticlockwise, shaded black, light grey, black, and dark
grey to represent the resolutions and partial resolutions attributable to these parent
nodes. The fifth and final sector carries information and diagnostics for the observed
value of the collection O57. The interpretation for this node as follows. Recall
that the inner sector shading, described in §10.7.1, has heavy (light) shading for
surprisingly large (small) squared changes in expectation relative to prior variance.
In these diagrams, half shading of an area corresponds to a change of two standard
deviations, or equivalently a size ratio of 4 or 1

4 (10.15), and more shading to
larger changes.

• The adjustment by parent node F55 was only very weakly informative.

• Two of the adjustments (by F56 and H56) led to minor resolutions in variances
and also to quite surprisingly large changes in squared expectation.

• The partial adjustment by parent O56 resolved a lot more of the variance, but
led to surprisingly small changes in expectation.

• The final observation of O57 was relatively quite far from its adjusted expectation
given its forecast from its parent nodes.

The actual resolutions and partial resolutions for the adjustment of node O57,
and the corresponding size ratios, are shown in Table 10.12. It is notable that the
changes in expectation are all mildly surprising, even for the apparently uninfor-
mative parent F55.

In Figure 10.29 we add diagnostics to the arc labels. Recall that the arc labels
portray the resolutions and size ratios for the adjustments which correspond to
information leaving a parent node, and information arriving at a child node. We
saw in Figure 10.27 that the arc resolutions in this example are mostly quite small.
As such, in order to visualize arc diagnostics we expand the area allocated for

Table 10.12 Resolutions and partial resolutions for the adjustment of node O57,
together with the corresponding size ratios.

Parent node Resolution Size ratio Shading of inner sector (%)

F55 0.0199 0.14 62
F56 (partial) 0.1922 7.53 64
H56 (partial) 0.0813 3.68 48
O56 (partial) 0.5203 0.21 54
O57 (observed) 0.1863 2.78 40
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diagnostic shading to the full label. Thus, an unshaded half-label corresponds to
a size ratio of one and unsurprising changes in expectation. A fully shaded half-
label corresponds to a very large size ratio and a highly surprising change in
expectation: dark shading for aberrantly large changes, light shading for unusually
small changes. Note that we calculate arc labels and their diagnostics before we
adjust a node by its observed value: the information arriving from a parent node
after we have observed the child node is necessarily zero.

Figure 10.29 shows, for example, that the information leaving V
(2)
56 for F57

corresponded to an adjustment with a size ratio of slightly less than one: there
is a small amount of light shading for the half-label nearest the parent. However,
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Figure 10.29 Diagnostics for nodes and arcs. Arc diagnostics are expanded to cover the
label.
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the information arriving at F57 from V
(2)
56 corresponded to an adjustment with a

size ratio of about four, as there is roughly half dark shading for the half-label
nearest the child. The partial information arriving from the other parent, F56, is
also heavily and darkly shaded. The implication is that the prediction for F57 given
its parents is rather different than its prior expectation, relative to its prior variance.

Figure 10.30 provides a summary of overall influences over the three-week
period. Each node is adjusted by all the information available beforehand, and
then partially by its observation, as in §10.7.1.1. We also add path correlations
to the arcs as described in §10.7.2.1. Lightly shaded circles at the ends of arcs
show that the information arriving from a parent is strongly consistent with the
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Figure 10.30 Combined and observed adjustments, with path correlations indicating con-
sistency of parent contributions.
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information arriving from other parents combined. Darkly shaded circles show that
the information arriving from a parent is contradictory to the information arriving
from other parents combined. No shading shows that sources of information are
uncorrelated as far as the joint adjustment is concerned. Note that for this shading,
sources are contradictory if the changes in expectation implied by the two sources
of information are opposite in direction. In Figure 10.30, we see a balance of
compatibilities. Parent F56, for example, sends information which is contradictory
to other data sources, as both its arcs possess darkly shaded small circles. Given
that the observed value for F56 is rather unusual (there is heavy dark shading for
the diagnostic portion corresponding to its observation), we might wish to explore
such discrepancies further by examining individual adjustments and influences for
the elements in the collection.

Figure 10.31 summarizes the essential features of the brewery model for an
8-week period, and shows the arrival of evidence, together with summaries of the
combination of evidence with prior information to generate or revise predictions,
and diagnostic measures useful for comparing expected to actual behaviour. Start-
ing from week 56, each collection in Figure 10.31 is adjusted by all the relevant
information available up to the preceding week. This information gives rise to
adjusted expectations for the quantities in the collection, together with a diagnostic
summarizing the surprisingness of the observed prediction. Finally, each week the
quantities themselves become observed. It is now straightforward to identify the
important characteristics of the system.

• The previous week’s data are only weakly informative for sales volumes, V ,
and depot forecasts, F , though this does improve as we get later in the series.
The remaining collections are quite well predicted.

• We see a lot of light shading, indicating that the changes in expectation were
generally rather smaller than expected, suggesting that we exaggerated prior
variability in the model.

• We see some dark shading for the first few weeks, indicating surprisingly large
changes in expectation: these gradually die out, and may be the artefacts of
initialization conditions.

• The dark shading in the node V60, representing beer volumes at week 60, indi-
cates a potentially serious anomaly which deserves investigation.

• The value of accumulated information varies with the kind of collection.

As time progresses, we gradually learn more and more about beer volumes –
comparing nodes V56 and V62, we see that one week’s information is almost worth-
less, whereas several weeks’ information explains roughly 20% of the uncertainty.
However, comparing nodes D57 and D62, we see that two weeks’ information for
the delivery nodes is about as useful as seven weeks’ information. Notice that
these summaries of behaviour over the system can also be readily interpreted by
interested non-technical users.
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Figure 10.31 Variance resolutions and diagnostics over time for multiple collections.

10.13 Local computation for global adjustment
of the junction tree

The algorithm in §10.10 is appropriate when adjustments are carried out in a natural
sequence. Often, however, data is associated with many different clique tree nodes,
with no natural ordering to the data, and no interest in the sequential effect of the
introduction of evidence. We now describe an algorithm which is generally more
efficient for such cases, requiring only two passes through the junction tree for the
global incorporation of evidence at arbitrarily many nodes. However, each pass is
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computationally much more intensive than for the previous algorithm, and so the
sequential algorithm may be preferable if evidence is only to be introduced at a
handful of nodes.

10.13.1 Merging separate adjustments

The sequential algorithm is simple because propagation of a single piece of evi-
dence is a natural geometric process, as described in §10.8. The merging of
messages required by batch algorithms is less natural from a geometric view-
point. We require certain additional results in order to separate out the effects of
the various partial adjustments.

In particular, we require the ability to combine information from different
parts of the graph. The crucial step in the algorithm is as follows. Suppose that
�A⊥⊥ C� / B. Suppose that we have assessed the adjustment of B by A and C

separately. We will now show how these two separate adjustments may be merged
in order to assess the combined adjustment of B by A ∪ C. This is equivalent to
assessing the adjustment of B by[C/A], for then we can construct the combined
adjustment using properties such as (10.16). The additional results that we require
are given in the following theorem.

Theorem 10.17 For �A⊥⊥ C� / B we have, for each X ∈ [B],

TB:[C/A](X) = SB:A(SB:A + SB:C − SB:CSB:A)†
TB:CSB:A(X), (10.34)

E[C/A](X) = (EC − EATB:C)(SB:A + SB:C − SB:ASB:C)†
SB:A(X), (10.35)

TB:C(X) = (SB:AT
†
B:[C/A]SB:A + TB:A)†(X), (10.36)

EC(X) = (E[C/A](TB:C + S
†
B:ASB:C)+ EATB:C)(X). (10.37)

Proof. Each element of [C/A] is of the form Y − EA(Y ) = (I− EA)(Y ) for
some Y ∈ [C]. Now, for any X ∈ [B], let cA(X) be the element of [C] for which
E[C/A](X) = (I− EA)cA(X).

For all X ∈ [B], (X − E[C/A](X)) = (I− E[C/A])(X) ⊥ [C/A] and so (X −
E[C/A](X)) ⊥ E[C/A](Y ) = (I− EA)(Y ), for all Y ∈ [C]. Now since (I− EA) is a
projection, this gives

(I− EA)(X − E[C/A](X)) ⊥ Y

⇒ (I− EA)(X − E[C/A](X)) ⊥ [C]

⇒ (I− EA)(X − cA(X)) ⊥ [C]

⇒ EC((I− EA)(X − cA(X))) = 0

⇒ EC((I− EA)(X)) = EC((I− EA)cA(X))

⇒ EB(EC((I− EA)(X))) = EB(EC((I− EA)cA(X)))

⇒ EB(EC((I− EA)(X))) = EB(EC(E[C/A](X))). (10.38)
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As �A⊥⊥ C� / B), we also have

EB(EC((I− EA)(X))) = EB(EC((I− EBEA)(X))) (10.39)

= TB:C(I− TB:A)(X)

= TB:CSB:A(X),

and so from (10.38) we have

TB:CSB:A(X) = EB(EC(E[C/A](X))). (10.40)

Now

EB(EC(E[C/A](X))) = EB(EC((I− EA)cA(X)))

= EB((I− ECEA)cA(X))

= EB((I− ECEA)EBcA(X)) (10.41)

= (I− EBECEA)EB(cA(X)). (10.42)

Multiplying (10.42) through by (I− EBEA)(I − EBECEA)† gives

(I− EBEA)(I − EBECEA)†EB(EC(E[C/A](X)))

= (I− EBEA)(I − EBECEA)†(I− EBECEA)EB(cA(X))

= (I− EBEA)EB(cA(X)).

This last step is clear when the operator (I− EBECEA) is invertible. In fact, it is
also valid when singular as the null space of the operator is equal to the null space
of E[C/A]. And so

(I− EBEA)(I− EBECEA)†EB(EC(E[C/A](X)))

= EB(I− EBEA)cA(X)

= EB(I− EA)cA(X)

= EBE[C/A](X)

= TB:[C/A](X). (10.43)

Therefore (10.40) and (10.43) together imply that for all X ∈ [B], we have

TB:[C/A](X) = (I− EBEA)(I − EBECEA)†
TB:CSB:A(X)

= SB:A(I− TB:CTB:A)†
TB:CSB:A(X)

(as �A⊥⊥ C� / B), and this gives (10.34). Equation (10.35) may be derived simi-
larly. Equations (10.36) and (10.37) are obtained by inverting (10.34) and (10.35),
respectively. �
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10.13.2 The global adjustment algorithm

We want to adjust beliefs over the whole graph by the collection of observations
D(1), . . . , D(k), where each D(i) is contained in some node Dj on the moral graph.
At each node Jr of the junction tree, E(Jr ) and Var(Jr ) are stored. A current
value for the resolution transform T(Jr) = TJr :D∗ and the adjusted expectation
A(Jr) = ED∗(Jr ) are also stored, and these are initialized to zero (D∗ denotes
some subset of D(1), . . . , D(k)).

10.13.3 Absorption of evidence

The fundamental operation on the junction tree is that of absorption of a piece of
evidence. Suppose that the evidence {ED(i)

(Jr), TJr :D(i)
} is obtained by Jr , which

has current adjustment information A(Jr) and T(Jr). The current adjustment infor-
mation represents the effect of some evidence D, where �D(i) ⊥⊥D� / Jr . Using
(10.34) and (10.35), TJr :AD(D(i)) and EAD(D(i))(Jr ) may be computed. Then using
(5.15) and (5.4), TJr :(D(i)+D) and ED(i)+D(Jr) can be computed and these then
replace the old values of T(Jr) and A(Jr). The new evidence D(i) is said to have
been absorbed into the adjustment information. Our use of this term is some-
what different from that of many similar local computation algorithms, in that the
prior expectation and variance specifications at the node are not replaced by the
adjusted expectation and variance. Instead, the information is absorbed into the
current belief transform and not into the prior belief specifications.

10.13.3.1 Entering evidence

If the collection D(i) is to be observed, and this is contained in node Dj on the
moral graph, then the evidence {ED(i)

(Jr), TJr :D(i)
} is computed for each node Jr

containing Dj , and these pieces of evidence are absorbed by each Jr respectively.

10.13.3.2 Message-passing

When requested for a message, a node Jr will compute

R(Jr) = RVarD∗(Jr) = Var(Jr )T(Jr)

and then return the message {A(Jr), R(Jr)} to the caller (which, unless Jr is the
root node, is an adjacent node on the junction tree).

10.13.3.3 Processing a collect-phase message

When a node Js receives the message {ED(Jr), RVarD(Jr)} from Jr , Js first extracts
the marginals ED(Wrs) and RVarD(Wrs) where Wrs represents the quantities that
Jr and Js have in common and D is the evidence represented by the message. It
can then compute TWrs :D = Var(Wrs)

†RVarD(Wrs). Now on the collect phase we
have �D ⊥⊥ Js� / Wrs , so we can use Properties 5.23.1 and 5.24.2 to compute the
message {ED(Js), TJs :D} ready for absorption by Js .
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10.13.3.4 Processing a distribute-phase message

On the distribute phase, the node Jr receives from Js the message comprising
{ED+D′(Js), RVarD+D′(Js)}, where D represents the information already absorbed
by Jr , and D′ represents extra evidence to be absorbed by Jr . Jr first extracts
the marginals ED+D′(Wrs) and RVarD+D′(Wrs), and then computes the value of
TWrs :D+D′ = Var(Wrs)

†RVarD+D′(Wrs). Using (5.4) and(5.15), both E[D′/D](Wrs)

and T[D′/D](Wrs) may be formed. In the distribute phase, we have �D ⊥⊥D′� / Wrs

and so (10.37) and (10.36) can be used to compute ED′(Wrs) and TWrs :D′ . Finally,
since �D′ ⊥⊥ Jr� / Wrs we can use Properties 5.23.1 and 5.24.2 to form the mes-
sage {ED′(Jr), TJr :D′ } ready for absorption by Jr .

10.13.3.5 Collection and distribution of evidence

We enter the data collection into the graph by carrying out a collect operation,
followed by a distribute operation, as follows.

Collecting evidence Pick an arbitrary root node and send it the message Col-
lectEvidence. When a node, Jr , receives this message, it sends the message
to each of its other neighbours and processes and absorbs each message in turn. It
then returns the message {A(Jr), R(Jr)} to the caller.

When the collection phase is complete, the adjustment information at each node
represents the adjustment by all evidence lower than it in the junction tree (with
respect to the chosen root node). We now carry out the distribute operation, as
follows.

Distributing evidence Send the message DistributeEvidence to the root
node. On receipt of this message, the node, Jr , should process and absorb any
message, and then pass the message DistributeEvidence {A(Jr), R(Jr)} to
all other neighbours.

When the distribution phase is completed, the adjustment information at each
node represents the global adjustment of that node by all evidence in the junction
tree.

The distribute phase of this algorithm could be simplified if the prior expec-
tation and variance specification for each node were replaced by their adjusted
values during the collect phase. This would lead to an algorithm more directly
comparable with other commonly used local computation routines. However, for
a full diagnostic analysis of the belief revision process it is useful to preserve the
prior structure together with the full transforms for the global adjustment. In partic-
ular, the above algorithm allows direct construction of the diagnostic graphics that
we have described. Further, since each absorption corresponds to a partial belief
update, the associated diagnostics may be computed and displayed on a version
of the partial adjustment graph. These diagnostic graphics can act as a moni-
toring process for each of the various calculations, and should help to highlight
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possible problems, such as data contamination, problems with prior specifications
or computational problems.

10.14 Further reading

Basic properties of Bayes linear graphical models are covered in Goldstein (1990).
Further properties of such models, with emphasis on graphical diagnostics and
local computation, are developed in Wilkinson (1998) and Goldstein and Wilkinson
(2000), giving examples of the application of the algorithm described in §10.13,
using the software BAYES-LIN; see Appendix C. Graphics for the Bayes linear
graphical model in the context of the brewery example are developed in Goldstein et
al. (1993), and more details covering the development of the Bayes linear decision
support system for this problem are given in Farrow et al. (1997). The canonical and
residual wheels shown in this chapter were produced using [B/D]; see Appendix C
and Goldstein and Wooff (1995) for details.





11

Matrix algebra for implementing
the theory

In this chapter we present some algebra and definitions germane to the implemen-
tation of Bayes linear statistics, which requires some matrix theory as preamble. In
particular, we are careful to implement the methodology so that any degeneracies
in variance–covariance specifications are handled routinely rather than forbidden.
We regard the specification of a zero variance, whether intended or not, for a given
linear combination as an interesting feature of a problem, not one that will break
its analysis. Therefore, we need to work with generalized matrix inverses rather
than simple inverses, and we need to find generalized inverses of partitioned matri-
ces. Many of the results in this chapter, therefore, are to do with careful handling
of possibly singular matrices. We also concentrate on providing solutions to the
generalized eigenvalue problem, as this is the kernel of linear statistical analysis.

11.1 Basic definitions

Definition 11.1 The rank of a matrix A, rk{A}, is the dimension of its column
space, and so also the dimension of its row space.

Definition 11.2 The trace of a symmetric matrix A, tr{A}, is the sum of its diagonal
values.

11.2 Covariance matrices and quadratic forms

Many of the matrices involved in this book are variance–covariance matrices,
and as such they are required to possess certain properties. In particular, they
are required to be non-negative definite. Suppose that the n× n variance matrix
A = Var(B) is specified over a vector of quantities B = [B1 B2 . . . Bn]T .

Bayes Linear Statistics: Theory and Methods M. Goldstein and D.A. Wooff
 2007 John Wiley & Sons, Ltd



432 BAYES LINEAR STATISTICS: THEORY AND METHODS

Definition 11.3 We call a matrix A non-negative definite if it is real and symmetric,
and if yT Ay ≥ 0 for all vectors y. Such a matrix has non-negative eigenvalues and
rank rk{A} ≤ n.

Definition 11.4 We call a matrix A positive semi-definite if it is real and symmetric,
and if yT Ay ≥ 0 for all vectors y, and yT Ay = 0 for some non-null vectors y. Such a
matrix has at least one eigenvalue equal to zero, the remaining eigenvalues positive,
and rank rk{A} < n.

Definition 11.5 We call a matrix A positive definite if it is real and symmetric, and
if yT Ay > 0 for all vectors y. Such a matrix has positive eigenvalues and rank
rk{A} = n.

In common with Searle (1982), Wilkinson (1965), and many others, we dis-
tinguish between positive definite and positive semi-definite matrices. Let us see
why this is useful, with reference to the variance matrix A. In the former case, the
matrix A being positive definite expresses the fact that every linear combination
of the Bis has a positive variance; whereas in the latter case, the matrix A being
positive semi-definite expresses that fact that at least one linear combination has
a variance equal to zero.

11.3 Generalized inverses

11.3.1 Basic properties

Definition 11.6 The Moore–Penrose generalized inverse for any real matrix A is
the unique matrix A† satisfying all four properties below. A reflexive generalized
inverse A−r need satisfy only Properties 11.6.1 and 11.6.2; and a simple generalized
inverse A− need satisfy only Property 11.6.1.

11.6.1: AA−A = A.

11.6.2: A−AA− = A−.

11.6.3: (AA−)T = AA−.

11.6.4: (A−A)T = A−A.

For most problems we encounter, we will employ the Moore–Penrose generalized
inverse. This is the most highly demanding in terms of properties, but possesses
some nice features. There are occasions where we need to resort to some of the
weaker generalized inverses.

11.3.2 Computing the Moore–Penrose inverse

Lemma 11.7 The Moore–Penrose generalized inverse may be calculated as
A† = AT (AAT )−A(AT A)−AT , where A− is any generalized inverse of A.
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Lemma 11.8 If N is non-negative definite, then N† = A(AT A)−2AT for any A

such that N = AAT subject to A having full column rank. Further, such a matrix
A exists.

Lemma 11.9 Let A be a non-negative definite matrix of dimension n and
rank r at least unity. Suppose that A has r , 1 ≤ r ≤ n, positive eigenval-
ues λ1 ≥ λ2 ≥ . . . ≥ λr > 0 and n− r eigenvalues equal to zero. Suppose that
the n× 1 orthonormal eigenvectors corresponding to positive eigenvalues are
x1, x2, . . . , xr , arranged as the columns of the matrix X. Represent by � the r × r

diagonal matrix whose ith entry is λi . Then

A = X�XT , (11.1)

A† = X�−1XT . (11.2)

Lemma 11.10 Lemma 11.9 can be stated slightly differently to include redundant
structure, if any. Let A be a non-negative definite matrix of dimension n and rank
at least unity. Suppose that A has eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. Suppose
that the n× 1 orthonormal eigenvectors corresponding to positive eigenvalues are
x1, x2, . . . , xn, arranged as the columns of the matrix X. Represent by � the n× n

diagonal matrix whose ith entry is λi . Then

A = X�XT , (11.3)

A† = X�†XT . (11.4)

�† is diagonal and has values equal to λ−1
i if λi > 0 and zero otherwise.

11.3.3 Other properties of generalized inverses

Lemma 11.11 AT A(AT A)−AT = AT for any generalized inverse A−.

Lemma 11.12 A(AT A)−AT = AA† for any generalized inverse A−. This follows
from Lemmas 11.7 and 11.11.

Lemma 11.13 Suppose that A is an m× n matrix. If A has rank m, then
A† = AT (AAT )−1. Similarly, if A has rank n then A† = (AT A)−1AT . See, for
example, §20.2 of Harville (1997).

Lemma 11.14 rk{A−r } = rk{A} for any reflexive generalized inverse A−r of A.

Lemma 11.15 (Invariance property) Let k be any suitably dimensioned vector. If
kT A∗A = kT for the particular choice of generalized inverse A∗ of A, then

kT A−A = kT

for every other generalized inverse of A. (See, for example, Searle 1982, p. 285.)
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Lemma 11.16 If A− is a generalized inverse of A, then all possible generalized
inverses A∗ of A can be constructed from

A∗ = A− + U − A−AUAA−,

where U is arbitrary. This restates Theorem 2.4.1a of Rao and Mitra (1971).

Lemma 11.17 If A− is a generalized inverse of A, then all possible generalized
inverses A∗ of A can be constructed from

A∗ = A− + V (I − AA−)+ (I − A−A)W

where V, W are arbitrary. This restates Theorem 2.4.1b of Rao and Mitra (1971)
and equation 23 of Searle (1982).

Lemma 11.18 If A− is any generalized inverse of A, then

rk{A} = rk{A−A} = rk{AA−} = tr{A−A} = tr{AA−}.

See, for example, Lemma 10.2.5 of Harville (1997).

Lemma 11.19 For any matrix A,

rk{A†} = rk{A}.

Definition 11.20 We define for convenience

A⊥ = I − AA−,

where A⊥A = 0 for any matrix A.

11.4 Multiplication laws

Lemma 11.21 Suppose that A, B, C are any conformable matrices. Then we have
AT AB = AT AC if and only if AB = AC. This is known elsewhere as the star
cancellation law; see Proposition 0.2.2 of Campbell and Meyer (1991).

Lemma 11.22 Suppose that a matrix equation involves a matrix A preceded (fol-
lowed) throughout by AT . Then if AT premultiplies (postmultiplies) both sides of
the equation, it may be cancelled out. For example,

AT ABAT A = AT AC

⇒ ABAT A = AC.

See Rayner and Livingstone (1965), Basilevsky (1983), and Appendix A4.2 of
Guttman (1982).
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11.5 Range and null space of a matrix

Definition 11.23 The range of any matrix A, range{A}, is the linear span of the
columns of A, also known as the column space of A. Denote the null space of the
matrix A by null{A}.
Definition 11.24 A vector b is in the range of a matrix A, b ∈ range{A}, if b can
be expressed as a linear combination of a basis for the columns of A.

Definition 11.25 If every column c of a matrix C is such that c ∈ range{A} then
we shall write C ∈ range{A}. Similarly, if every column c of a matrix C is such
that c ∈ null{A} then we shall write C ∈ null{A}.
Lemma 11.26 For any matrix A, range{A†} = range{AT }. See, for example,
Theorem 20.5.1 of Harville (1997).

Lemma 11.27 If b ∈ range{A} then AA−b = b for any generalized inverse A− of
A. Conversely, if AA−b = b then b ∈ range{A}. See, for example, Lemma 2.2.4 of
Rao and Mitra (1971).

Lemma 11.28 If C is any matrix all of whose columns are in range{A}, then
AA−C = C for any generalized inverse A− of A. Conversely, if we have
AA−C = C, then C ∈ range{A}.
Lemma 11.29 Suppose that A is any n× r matrix whose columns ai are orthonor-
mal and provide a basis for the n× 1 vector b. Then AAT b = b. This follows as
b ∈ range{A} and because A† = AT , and by Lemma 11.27.

Lemma 11.30 Suppose that A is any n× r matrix and that b is any r × 1 vector.
If b ∈ null{A} then AT b = 0. Conversely, if AT b = 0 then we have b ∈ null{AT }.
(See, for example, Searle 1982, p. 246.)

Theorem 11.31 Let A be any matrix and suppose that b is any vector such that
b ∈ range{A}. Then bT A−b = bT A†b is the same for any choice of generalized
inverse of A.

Proof. For some V, W ,

bT A−b = bT [A† + V (I − AA†)+ (I − A†A)W ]b, by Lemma 11.17,

= bT A†b + bT V (I − AA†)b + bT (I − A†A)Wb

= bT A†b

as AA†b = b and bT A†A = bT by Lemma 11.27. �

Lemma 11.32 Let A be any m× n matrix and let B be any m× p matrix. If
range{A} ∈ range{B} and rk{A} = rk{B} then range{A} = range{B}. See, for
example, Theorem 4.4.6 of Harville (1997).
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11.6 Rank conditions

Lemma 11.33 Let A be any m× n matrix and B be any n× p matrix. Then
rk{AB} = rk{B} if and only if range{B} ⊥ null{A}, or equivalently if range{B} ∈
range{A}. See, for example, Theorem 17.5.4 of Harville (1997).

Lemma 11.34 Let A be any m× n matrix and B be any m×m non-negative def-
inite matrix. Then rk{AT BA} = rk{BA} = rk{AT B}. See, for example, Theorem
14.11.2 of Harville (1997).

11.7 Partitioned matrices

11.7.1 Definiteness for a partitioned real symmetric matrix

Consider the real symmetric matrix

M =
[

E F

F T H

]
.

where E and H are square real symmetric matrices. The following crucial result
was shown in Marsaglia and Styan (1974).

Theorem 11.35 M is non-negative definite if and only if the following three prop-
erties hold:

11.35.1: E is non-negative definite;

11.35.2: F ∈ range{E};
11.35.3: H − F T E−F is non-negative definite for any choice of generalized
inverse for E.

Proof. First assume that all three conditions hold. Then it is simple to show that
M is non-negative definite as follows. By Property 11.35.1, E is non-negative
definite, and so affords the representation E = Q�QT , where the columns of Q

are the orthonormal eigenvectors {qi} corresponding to the positive eigenvalues
{ψi} of E, and � is the diagonal matrix of these ordered positive eigenvalues. By
Property 11.35.2, the columns of Q form a basis for each column in F , so that
we must be able to write F = QG for some G. Suppose we write K = �

1
2 QT ,

so that we may write E = KT K and F = KT T for some T . Then, for any choice
of generalized inverse E− for E, we have

F T E−F = T T K(KT K)−KT T = KK†

by Lemma 11.12. Hence H − F T E−F is independent of the choice of generalized
inverse E−.

Now suppose that cT = [aT bT ] is any vector partitioned so as to be con-
formable with the partition of M . We have
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cT Mc = aT KT Ka + 2aT KT T b + bT Hb

= aT KT Ka + 2aT KT T b + bT (H − F T E−F)b + bT T T T b

= hT h+ bT (H − F T E−F)b

≥ 0,

by Property 11.35.3, where hT = [aT KT bT T T ]. �
Notice that by symmetry an alternative set of conditions, each implying the

other, could be stated. Property 11.35.1 is essential as all principal submatrices of
a non-negative definite matrix must be non-negative definite. Property 11.35.2 is
essential as the following demonstrates. Suppose that F is any conformable matrix,
and form the matrix quadratic[

I 0
−F T E− I

] [
E F

F T H

] [
I −E−F

0 I

]
=

[
E (I − EE−)F

F T (I − E−E) H − F T E−F

]
.

(11.5)
Note that in calculating the bottom right submatrix on the right-hand side of (11.5),
we have en passant

F T (E− − E−EE−)F = 0,

as we can write any F = F1 + F2, where F1 and F2 are constructed from range{E}
and null{E}, respectively. F2 is orthogonal to E− − E−EE−, and
F T

1 (E− − E−EE−)F1 = 0 by invariance. The resulting matrix on the right-hand
side of (11.5) cannot be non-negative definite unless we have (I − EE−)F = 0,
which is the case only if F ∈ range{E}. Property 11.35.3 is clearly essential as
the submatrix H − F T E−F must here be non-negative definite. For details, see
Marsaglia and Styan (1974).

11.7.2 Generalized inverses for partitioned non-negative definite matrices

Consider the (n+m)× (n+m) non-negative definite matrix

M =
[

E F

F T H

]

where E is n× n non-negative definite, H is m×m non-negative definite, and
F is n×m. We must have that H − F T E†F is non-negative definite and that
F ∈ range{E} to satisfy the conditions of Theorem 11.35.

Definition 11.36 The Schur complement of E in M is uniquely

S = H − F T E−F

for any choice of generalized inverse E−. The Schur complement of H in M is
uniquely T = E − FH−F T for any choice of generalized inverse H−.
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Lemma 11.37

rk{M} = rk{E} + rk{H − F T E−F } = rk{E} + rk{S}.
This follows by equation 10 of Marsaglia and Styan (1974) and Lemma 11.28.

Lemma 11.38 For any choices of generalized inverses E− and S−,

G =
[
E− + E−FS−F T E− −E−FS−

−S−F T E− S−
]

is a generalized inverse for M .

This follows via equations (12) and (13) of Marsaglia and Styan (1974) and
Lemma 11.37.

Lemma 11.39 The generalized inverse M− = G given in Lemma 11.38 is the
Moore–Penrose generalized inverse M† if and only if the following three conditions
given by equation (26) of Marsaglia and Styan (1974) are satisfied:

11.39.1: we choose E− = E†;

11.39.2: we choose S− = S†;

11.39.3: rk{H } = rk{H − F T E†F } = rk{S}.
Note that as rk{M} = rk{E} + rk{S}, the third condition will be satisfied trivially
whenever we have rk{M} = rk{E} + rk{H }.
Lemma 11.40 The generalized inverse M− = G given in Lemma 11.38 is a reflex-
ive generalized inverse M−

r if and only if the following two conditions are satisfied:

11.40.1: we choose E− = E−r ;

11.40.2: we choose S− = S−r .

The choices E− = E† and S− = S† suffice.

11.8 Solving linear equations

Definition 11.41 A system of linear equations Ax = b is consistent, and so may
be solved, if b ∈ range{AT }.
Lemma 11.42 If A is non-negative definite, then the system of linear equations
Ax = b is consistent if b ∈ range{A}.

Consider a consistent system of linear equations Ax = b, where A �= 0 is a
non-negative definite matrix of dimension r and rank r ′; b is some r × 1 vector
such that b ∈ range{A}; and x is some r × 1 solution vector.
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Lemma 11.43 If A is full rank, we have uniquely

x = A−1b = A†b.

If A is not full rank, there are an infinite number of solutions:

x = A−b + (I − A−A)t

for an arbitrary r-dimensional vector t , and for any A− satisfying at least
Property 11.6.1 for generalized inverses. All possible solutions can be generated
by taking any one generalized inverse and varying the arbitrary vector t .

Lemma 11.44 (Invariance properties) Suppose that xi and xj are any two solu-
tions. Then kT xi = kT xj if kT A−A = kT .

Lemma 11.45 There is one unique solution x having minimum Euclidian norm,
and it is given by taking any A− possessing Properties 11.6.1 and 11.6.4 for
generalized inverses. Consequently, the solution A†b is the unique minimum norm
solution.

Lemma 11.46 Consider a consistent system of linear equations AX = B, where
A �= 0 is a non-negative definite matrix of dimension r and rank r ′; B is some
r ×m matrix whose columns are contained in range{A}; and X is some r ×m

solution matrix. Then,
X = A−B + (I − A−A)T

for an arbitrary r ×m matrix T , and for any A− satisfying at least Property 11.6.1
for generalized inverses. All possible solutions can be generated by taking any one
generalized inverse and varying the arbitrary matrix T .

11.9 Eigensolutions to related matrices

The following results are useful in solving for the eigenstructure of the resolution
transform. This is asymmetric by definition, but for computational purposes it is
better to work with a symmetrized version. Suppose that H is any n×m matrix,
and suppose that

T = HHT and S = HT H,

so that T is n× n non-negative definite and S is m×m non-negative definite.
Both T and S have rank at most min(m, n). Suppose that we need to find the non-
degenerate eigenstructure of T . Suppose that T has eigenvectors x1, x2, . . . , xn

corresponding to eigenvalues λ1 ≥ λ2 ≥ . . . λn ≥ 0. Suppose that n > m. Suppose
that S has r (where r ≤ m) positive eigenvalues λ1, . . . , λr represented as the
diagonal entries of the r × r matrix � corresponding to orthonormal eigenvectors
y1, . . . , yr represented as the columns of the n× r matrix Y .
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Lemma 11.47 The r positive eigenvalues λi of S are also eigenvalues of T , and the
corresponding eigenvectors of T are transforms xi ∝ Hyi of those of S.
Additionally, T has a further n− r eigenvalues equal to zero, with corresponding
constructible eigenvectors. For an orthonormal collection of eigenvectors corre-
sponding to positive eigenvalues for T we choose the r vectors

xi = λ
− 1

2
i Hyi,

and can represent these eigenvectors as columns of the n× r matrix X, where
X = HY�−

1
2 .

This follows straightforwardly as

Syi = λiyi ⇒ HSyi = λiHyi ⇒ HHT Hyi = λiHyi ⇒ T Hyi = λiHyi.

11.10 Maximizing a ratio of quadratic forms

Suppose that A and B are n× n non-negative definite matrices where, for r ≤ n,
rk{B} = r , and where null{B} ⊆ null{A}. Suppose that B has positive eigenvalues
ψ1, . . . , ψr collected into the diagonal matrix �, and corresponding orthonormal
eigenvectors q1, . . . , qr organized as the columns of the n× r matrix Q. Suppose
also that there are further orthonormal eigenvectors qr+1, . . . , qn to correspond to
zero eigenvalues. Suppose that we construct the r × r non-negative definite matrix

C = �−
1
2 QT AQ�−

1
2 ,

and suppose that C has eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0 corresponding to
orthonormal eigenvectors x1, . . . , xr organized as the columns of the r × r

matrix X.

Theorem 11.48

max
h

{
hT Ah

hT Bh

}
= λ1 ≥ 0,

and the maximum is attained for h ∝ Q�−
1
2 x1.

Proof. For h ∈ null{B}, h ∈ null{A} also, and we must have hT Ah
hT Bh

= 0. For

h ∈ range{B} we can write h = Q�−
1
2 a for some vector a ∈ range{B}. Now

our problem reduces to finding

max
a

{
aT Ca

aT a

}
. (11.6)

The solution to the reformulated problem is well known. Expression (11.6) is
maximized by choosing a ∝ x1, with

max
a

{
aT Ca

aT a

}
= λ1.

�
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Note that the requirement null{B} ⊆ null{A} for Theorem 11.48 is satisfied
when B − A is non-negative definite, but otherwise to require B − A non-negative
definite is unnecessarily stringent.

Theorem 11.49 For any vector g ∈ range{B}, where B is non-negative definite,

max
h

{
[hT g]2

hT Bh

}
= gT B−g ≥ 0,

and the maximum is attained for any h ∝ B−g.

Proof. First we establish the theorem when we use the Moore–Penrose generalized
inverse. From Theorem 11.48, we have in this case that

C = �−
1
2 QT ggT Q�−

1
2 ,

which has one positive eigenvalue λ = gT B†g corresponding to an eigenvector
proportional to �−

1
2 QT g. Hence we find that

max
h

{
[hT g]2

hT Bh

}
= gT B†g,

and the maximum is attained for h ∝ B†g. To extend the result to any generalized
inverse, we have by Theorem 11.31 that gT B−g = gT B†g for g ∈ range{B} and
any choice of generalized inverse for B. Finally, suppose we take h ∝ B−g. It
follows from Lemma 11.17 that, for some V, W , we can generate all B− from

B− = B† + V (I − BB†)+ (I − B†B)W

so that h = B−g = B†g + (I − B†B)Wg as g ∈ range{B}. It follows that
gT h = gT B†g and

hT Bh = [gT B† + gT WT (I − BB†)]B[B†g + (I − B†B)Wg] = gT B†g,

by Lemma 11.27 and Definition 11.6. Thus, for any h ∝ B−g, we have

[hT g]2

hT Bh
= gT B†g.

�

11.11 The generalized eigenvalue problem

11.11.1 Introduction

Suppose that A and B are n× n non-negative definite matrices. The generalized
eigenvalue problem is to find generalized eigenvalues λ and generalized eigenvec-
tors z to solve

Az = λBz. (11.7)
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In the context of Bayes linear methods, this problem arises in two areas. First,
computation of the resolution transform involves solving (11.7) where it is known
that B − A is non-negative definite. Secondly, the comparison of belief hypotheses
requires solving (11.7) more generally. We do, however, require solutions which
allow degeneracy within either A or B or both. Whenever A, B are non-negative
definite, various deficiencies can arise in (11.7).

Definition 11.50 (Generalized eigenvalue problem deficiencies)

11.50.1: The pencil A− λB may be singular. If so, a subspace of the null
spaces of A and B will be common to both, and there will exist vectors v such
that vT Av = vT Bv = 0. Such an eventuality corresponds to specifications of
VarA(vT X) = 0 = VarB(vT X).

11.50.2: There may exist vectors v such that vT Av > 0 and vT Bv = 0, corre-
sponding to specifications of VarA(vT X) > 0 and VarB(vT X) = 0. If so, part
of the null space of B is in range{A}.

11.50.3: There may exist vectors v such that vT Av = 0 and vT Bv > 0, corre-
sponding to specifications of VarA(vT X) = 0 and VarB(vT X) > 0. If so, part
of the null space of A is in range{B}.

The remaining case of interest concerns, of course, the existence of vectors v such
that both vT Av > 0 and vT Bv > 0, corresponding to specifications of
VarA(vT X) > 0 and VarB(vT X) > 0.

11.11.2 The QZ algorithm

The QZ algorithm, presented in Moler and Stewart (1973) and extended in Ward
(1975), represents an efficient way of determining the eigenstructure of the gen-
eralized eigenvalue problem (11.7). The algorithm simultaneously diagonalizes A,
B, whence scalar pairs ai, bi are determined from each, where the generalized
eigenvalues are computed as the ratios λi = ai/bi . It is simple to handle cases
where either ai or bi is zero. However, in Wilkinson (1979) it is demonstrated
that when both ai = bi = 0 (for example, this will be the case when A, B share
eigenvectors with common eigenvalue zero) this leads to an arbitrariness in the
non-zero values of λj = aj/bj . It is suggested therein that if this is a possibility,
then the singular part of the pencil should be extracted before application of the
QZ algorithm.

11.11.3 An alternative algorithm

First, we form the compound matrix A+ B and determine its eigenstructure. Sup-
pose that there are m eigenvalues (θ1, . . . , θm) corresponding to eigenvectors
(r1, . . . , rm), and that the remaining eigenvectors (rm+1, . . . , rn) correspond
to zero eigenvalues. We will assume that rk{A+ B} ≥ 1, so that n ≥ m ≥ 1.
Arrange the eigenvectors (r1, . . . , rm) as the columns of the n×m matrix W ,
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the eigenvectors (rm+1, . . . , rn) as the columns of the n× (n−m) matrix R, and
the positive eigenvalues as the entries of the diagonal m×m matrix �. Suppose
that the n eigenvectors (r1, . . . , rn) are constructed so as to be orthonormal.

Property 11.51 The following are elementary properties of this decomposition.

11.51.1: The columns of W are orthonormal and span [A] and [B], so that
we must have WWT A = A and WWT B = B, by Lemma 11.27.

11.51.2: RT A = RT B = 0 as RT (A+ B)R = 0, and because A and B are
non-negative definite.

Now we form K = �−
1
2 WT AW�−

1
2 and G = �−

1
2 WT BW�−

1
2 . Then, excepting

the null space which is common to both A and B, which we now consider extracted,
we can rewrite (11.7) as

Ky = λGy, (11.8)

where y is such that z = WT �−
1
2 y. This follows as

Ky = λGy

⇒ �−
1
2 WT AW�−

1
2 y = λ�−

1
2 WT BW�−

1
2 y

⇒ WT AW�−
1
2 y = λWT BW�−

1
2 y

⇒ WWT AW�−
1
2 y = λWWT BW�−

1
2 y

⇒ AW�−
1
2 y = λBW�−

1
2 y

⇒ Az = λBz.

Hence, having excluded the null space common to both A and B, we can solve
the generalized eigenvalue problem (11.8), and thus solve (11.7). The new gener-
alized eigenvalue problem (11.8) does not have deficiency 11.50.1, but may well
have deficiency 11.50.2 or 11.50.3. As such, it would now normally be appro-
priate to apply the QZ algorithm as the pencil K − λG is regular. However, for
implementing Bayes linear theory, it remains key to deal with deficiencies 11.50.2
and 11.50.3, which are the cases where the columns of G do not necessarily
span those of K , or vice versa. As an alternative to the QZ algorithm, notice
that

K +G = �−
1
2 WT AW�−

1
2 +�−

1
2 WT BW�−

1
2

= �−
1
2 WT (A+ B)W�−

1
2

= �−
1
2 WT W�WT W�−

1
2

= Im.
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Hence, (11.8) can itself be transformed into two alternative simple eigenvalue
problems:

G = δy, with λ = 1

δ
− 1, (11.9)

or
K = µy, with λ = µ

1− µ
.

We will solve (11.9). Both G and K are non-negative definite, and we have
K +G = Im. Thus the eigenvalues δ of G must satisfy 1 ≥ δ ≥ 0. Suppose that we
obtain t positive ordered eigenvalues (δ1, . . . , δt ) and m− t eigenvalues equal to
zero. Arrange the positive eigenvalues as the entries of the t × t diagonal matrix �.
Suppose that we construct corresponding orthonormal eigenvectors (y1, . . . , ym),
where we gather those corresponding to the positive eigenvalues as the columns of
the n× t matrix Y , and the remainder as the columns of the n× (m− t) matrix V .
We will normalize the first t eigenvectors further by postmultiplying Y by �−

1
2 ,

for reasons which will become clear.
Now, [Y�−

1
2 : V ] is a matrix of generalized eigenvectors for problem (11.8).

Consequently, a matrix of eigenvectors for the original problem (11.7) (excluding
the shared null space) is W�−

1
2 [Y�−

1
2 : V ]. Now, explicitly including the shared

null space eigenvectors yields a full generalized eigenvector matrix

Z = [W�−
1
2 Y�−

1
2 : W�−

1
2 V : R] (11.10)

for the original problem (11.7). The eigenvalues we deal with as follows. We have
already extracted the common null space corresponding to which are eigenvalues of
zero in both A and B. We have remaining the eigenvalues δi for the simple problem
(11.9). These we interpret as follows. Suppose that there are s values of δi = 1,
each of which yields λi = 0. These correspond to cases of deficiency 11.50.3. There
are m− t values of δi = 0, each of which yields indeterminate λi , corresponding
to a case of deficiency 11.50.2. Values of 0 < δi < 1 yield 0 < λi = δ−1

i − 1 <∞.
We can show easily that the generalized eigenvectors are orthogonal under both

belief specifications. They have been normalized so that they have variances unity
in B and λi in A, or zero in B and either unity or zero in A. The eigenstructure is
best reported in terms of paired quadratic forms, as in Table 11.1. The interpretation
of the eigenvectors given in the first two rows of the table is given in Goldstein
(1991). A full example comparing two variance specifications is given in §9.2.

11.11.4 An algorithm for B − A non-negative definite

Now we consider the case where B − A is known to be non-negative definite, so
that deficiency 11.50.2 cannot occur. In this case, there is an alternative approach.

Suppose that the matrix B has eigenstructure as follows. B has r (where r ≤ n)
positive eigenvalues ψ1 ≥ . . . ≥ ψr > 0 which we collect into the diagonal matrix
�. Suppose that corresponding to these eigenvalues are orthonormal eigenvectors
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Table 11.1 Generalized eigenstructure under potential rank deficiencies.

Cases Eigenvector zi VarA(zT

i
X) VarB(zT

i
X)

i = 1, . . . , s W�−
1
2 yi 0 1

i = s + 1, . . . , t 1√
δi

W�−
1
2 yi λi = 1

δi
− 1 1

i = t + 1, . . . , m W�−
1
2 yi 1 0

i = m+ 1, . . . , n ri 0 0

q1, . . . , qr collected as the columns of the n× r matrix Q, where QT Q = Ir . Sup-
pose that we construct n− r orthonormal eigenvectors qr+1, . . . , qn corresponding
to the zero eigenvalues of B. Suppose that A has rank m ≤ r .

Theorem 11.52 Construct the non-negative definite r × r matrix

K = �−
1
2 QT AQ�−

1
2 ,

and suppose that K has eigenvalues λ1, . . . , λr corresponding to orthonormal
eigenvectors y1, . . . , yr . Then these eigenvalues are also generalized eigenvalues
of problem (11.7), corresponding to generalized eigenvectors

x = Q�−
1
2 y.

Proof. B has rank r ≤ n. Any of its eigenvectors qi such that Bqi = 0 must
also be a generalized eigenvector corresponding to a zero generalized eigenvalue
for the problem Ax = λBx. This follows as B − A is non-negative definite, so
that qT

i Bqi ≥ qT

i Aqi , so that Bqi = 0 ⇒ Aqi = 0 as A is non-negative definite.
(Notice that B − A non-negative definite is more stringent a requirement than
necessary in that the result can be obtained under the weaker requirement that
for every x for which xT Bx = 0 it is also the case that xT Ax = 0.) It follows
that the eigenvectors qr+1, . . . , qn of B corresponding to zero eigenvalues of B

are also eigenvectors within the generalized formulation corresponding to zero
eigenvectors. For the generalized eigenvectors x corresponding to the remaining
generalized eigenvalues, these must be such that x ∈ range{Q} for every such x.
As such, by Lemma 11.29, we must have QQT x = x. The proof now follows as

Ax = λBx

= λQ�QT x

⇒ �−
1
2 QT AQ�−

1
2 �

1
2 QT x = λ�

1
2 QT x

⇒ Ky = λy.

�
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Note that m < r implies that some of the generalized eigenvalues λ1, . . . , λr will
be zero.

Lemma 11.53 If we arrange the generalized eigenvectors x1, . . . , xr as the
columns of the n× r matrix X, then the generalized eigenvector matrix X simulta-
neously diagonalizes both A and B.

This follows as

XT AX = Y T �−
1
2 QT AQ�−

1
2 Y = Y T KY = �,

and XT BX = Y T �−
1
2 QT BQ�−

1
2 Y = Y T Y = Ir .

Lemma 11.54 Suppose that A, B, and B − A are non-negative definite. Then the
generalized eigenvalues satisfy

1 ≥ λ1 ≥ . . . λr ≥ λr+1 ≥ . . . λn ≥ 0.

This follows because

A = Q�
1
2 Y�Y T �

1
2 QT

and B − A = Q�
1
2 Y(Ir −�)Y T �

1
2 QT ,

where QQT A = A by Lemma 11.29. Thus � must be non-negative as A is non-
negative definite, and Ir −� must be non-negative as B − A is non-negative
definite. When B is not full rank, the generalized eigenvalues

λr+1 = ψr+1 = 0, . . . , λn = ψn = 0.

Theorem 11.55 X† = Y T �
1
2 QT is the unique Moore–Penrose generalized inverse

of X.

Proof.

XX† = Q�−
1
2 YY T �

1
2 QT = QQT is symmetric,

X†X = Y T �
1
2 QT Q�−

1
2 Y = Ir is symmetric,

XX†X = IrX = X, and

X†XX† = X†Ir = X†,

so that X† satisfies all the conditions required under Definition 11.6 for it to be
the unique Moore–Penrose generalized inverse of X. �
Lemma 11.56 We have the following representations:

A = (X†)T �X†, (11.11)

B = (X†)T X†, (11.12)

B† = XXT , (11.13)

X†B†(X†)T = Ir . (11.14)
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Thus, X† diagonalizes B†. There is not an equivalent result for A† unless
rk{A} = rk{B}.
Theorem 11.57 Let

G = αA+ βB, α ≥ 0, β > 0.

Then
G† = X(βIr + α�)−1XT .

Proof. We need to satisfy the conditions of Definition 11.6. We have

G = αA+ βB

= (X†)T (α�)X† + (X†)T (βIr)X
†, by Lemma 11.56,

= (X†)T (βIr + α�)X†.

Hence,

GG† = (X†)T (βIr + α�)X†X(βIr + α�)−1XT

= (X†)T XT = QQT is symmetric;
G†G = X(βIr + α�)−1XT (X†)T (βIr + α�)X†

= XX† = QQT is symmetric;
GG†G = QQT G = G;

G†GG† = G†QQT = G†,

so that G† satisfies all the conditions required for it to be the unique Moore–Penrose
generalized inverse of G. �
Note that when β = 0 the rank of G reduces from rk{B} = r to rk{A}, and the
above representations may not be used.

11.12 Direct products of matrices

Let 1m be the m× 1 vector of ones. Let Im be the m×m identity matrix. Let
Jm = 1m1T

m be the m×m matrix of ones. Let Pm be the m×m matrix with
(1, 1)th entry unity and all other entries equal to zero.

11.12.1 The Helmert matrix

Definition 11.58 We will write Hm to represent the m×m transpose of the Helmert
matrix of order m. The first column of Hm is 1√

m
1m. The ith, i > 1, column is

1√
i(i − 1)

[−1T

i−1 (i − 1) 0 . . . 0
]T

.
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The Helmert matrix is helpful when writing replicated eigensolutions in higher
dimensions. The orthonormal columns of the Hm matrix are useful in representing
m linear combinations, the first being an average and the remainder being m− 1
orthogonal contrasts. Note that JmHm = mHmPm.

11.12.2 Direct products

The notation A⊗ B is used for the direct product of A and B. That is, if A is any
p × q matrix with (i, j)th element aij , and B is any s × t matrix, then A⊗ B is
the ps × qt matrix

A⊗ B =




a11B a12B . . . a1qB

a21B a22B . . . a2qB
...

...
. . .

...

ap1B ap2B . . . apqB


 .

The notation A⊕ B is used for the direct sum of A and B. For matrices A and
B of any dimensions, this is defined as the block matrix

A⊕ B =
[
A 0
0 B

]
.

A discussion of the properties of direct sums and products can be found in Searle
(1982) or Harville (1997). Some properties are as follows.

Lemma 11.59 For any matrices A, B, (A⊗ B)T = AT ⊗ BT .

Lemma 11.60 For conformable matrices A, C and B, D we have

(A⊗ B)(C ⊗D) = AC ⊗ BD.

Lemma 11.61 Let A− B be a positive definite r × r matrix and let B be a non-
negative definite r × r matrix. Then

[In ⊗ (A− B)+ Jn ⊗ B]−1 = In ⊗ [A− B]−1 − Jn

⊗ [A+ (n− 1)B]−1B[A− B]−1. (11.15)

The proof follows trivially by verifying that the product of the original with the
inverse equals In ⊗ Ir .

Lemma 11.62 Let A and B be r × r matrices. Suppose the matrix A+ (n− 1)B

has eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λr corresponding to eigenvectors v1, . . . , vr .
Arrange the eigenvalues as the diagonal elements of the matrix � and the eigenvec-
tors as vectors of the matrix V , so that [A+ (n− 1)B]V = V �. Suppose also that
the matrix A− B has eigenvalues δ1 ≥ δ2 ≥ . . . ≥ δr corresponding to eigenvec-
tors w1, . . . , wr . Arrange the eigenvalues as the diagonal elements of the matrix �
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and the eigenvectors as vectors of the matrix W , so that (A− B)W = W�. Then
the matrix

In ⊗ (A− B)+ Jn ⊗ B

has eigenvalue matrix
λ̃ = �⊕�⊕ . . .⊕�,

where there are r − 1 terms �, so that each eigenvalue δi is of multiplicity r − 1.
The corresponding eigenvector matrix is

Ṽ = [
h1 ⊗ V h2 ⊗W h3 ⊗W . . . hn ⊗W

]
,

where hi is the ith column of the Helmert matrix Hn.

The result can be shown trivially by multiplying out the terms, and noting that
Jnh1 = nh1 and that Jnhi = 0, i > 1. If A, B, A− B are non-negative definite
then the eigenvector matrices V, W can be chosen to be orthonormal, and if so Ṽ

is orthonormal.





12

Implementing Bayes linear
statistics

12.1 Introduction

In this chapter we deal with the technical aspects of implementing Bayes linear
methodology. This includes checking the coherence of belief specifications, check-
ing whether data are consistent with belief specifications, finding matrix repre-
sentations of the resolution transform, and so forth. We assume the results and
definitions given in Chapter 11. We begin by establishing some general notation.
Suppose that there are three collections of unknown quantities which we organize
into vectors as

B = [B1 B2 . . . BnB
]T , D = [D1 D2 . . . DnD

]T , F = [F1 F2 . . . FnF
]T .

We work with three collections as we wish to consider adjusting a collection B by
a data collection D, and then a further partial adjustment by a data collection F .
We distinguish between the collections and vectors only as necessary. We write
the variance matrices as

�B = Var(B), �D = Var(D), �F = Var(F ),

and the covariance matrices as

�BD = Cov(B, D) = �T

DB, �BF = Cov(B, F ) = �T

FB,

�DF = Cov(D, F ) = �T

FD.

Observed values are represented by lower case, so that dj is the observed value of
Dj , and d is the observed value of the vector D.

Bayes Linear Statistics: Theory and Methods M. Goldstein and D.A. Wooff
 2007 John Wiley & Sons, Ltd
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12.2 Coherence of belief specifications

12.2.1 Coherence for a single collection

Definition 12.1 Second-order belief specifications over any collection B are finite
and coherent if and only if

12.1.1: E(Bi) is finite for each Bi ,

12.1.2: Var(Bi) is finite for each Bi ,

12.1.3: the joint variance–covariance matrix Var(B) is non-negative definite.

For the remainder of this chapter we assume that all expectations and variances
are finite, so that coherence is essentially identified with non-negative definiteness
of the joint variance–covariance matrix, i.e. the condition that we do not assign
negative variance to any linear combination of the elements of B.

Our Bayes linear approach is quite general in not insisting that all the variance
matrices at every point be positive definite. Indeed, it is extremely useful to be
able to work with structures which may contain some degree of linear degeneracy
(and to detect such degeneracy via canonical analysis). By requiring that Var(B)

be non-negative definite rather than positive definite, we allow, for convenience,
some linear combinations to have variance zero, and we make this allowance at all
stages of the analysis. However, we restrict attention to Var(B) �= 0, Var(D) �= 0,
and Var(F ) �= 0.

12.2.2 Coherence for two collections

Definition 12.2 Second-order belief specifications over two collections B, D are
finite and coherent if and only if

12.2.1: E(Bi) is finite for each Bi , and E(Dj ) is finite for each Dj ,

12.2.2: Var(Bi) is finite for each Bi , and Var(Dj ) is finite for each Dj

12.2.3: the joint variance–covariance matrix

Var

([
B

D

])
=

[
�B �BD

�T

BD �D

]

is non-negative definite.

Lemma 12.3 The matrix [
�B �BD

�T

BD �D

]
is non-negative definite if and only if the following three conditions are met:

12.3.1: �D is non-negative definite;
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12.3.2: �DB ∈ range{�D} (or, equivalently, �⊥D�DB = 0);

12.3.3: �B −�BD�
†
D�DB is non-negative definite.

These conditions straightforwardly follow from Theorem 11.35. The matrix which
appears in Property 12.3.3 is uniquely defined irrespective of the choice of gener-
alized inverse indicated in Theorem 11.35, so the if-and-only-if part of this lemma
holds if we adopt the Moore–Penrose generalized inverse at this point.
Remark. Coherence over a pair of collections may also be deduced via proper-
ties of the resolution transform; see Theorem 12.37. Note also that the matrix in
Property 12.3.3 is the adjusted variance matrix for B given D, VarD(B), as defined
in (3.30); see §12.5.

We may state an alternative set of coherence requirements to Lemma 12.3 as
follows.

Lemma 12.4 The matrix [
�B �BD

�T

BD �D

]
is non-negative definite if and only if the following three conditions are met:

12.4.1: �B is non-negative definite;

12.4.2: �BD ∈ range{�B} (or, equivalently, �⊥B �BD = 0);

12.4.3: �D −�DB�
†
B�DB is non-negative definite.

12.2.3 Coherence for three collections

In this section we deal with coherence for three collections. This is necessary when
we want to implement partial adjustment.

Definition 12.5 Second-order belief specifications over three collections B, D, F

are finite and coherent if and only if

12.5.1: E(Bi) is finite for each Bi , E(Dj ) is finite for each Dj , and E(Fk) is
finite for each Fk ,

12.5.2: Var(Bi) is finite for each Bi , Var(Dj ) is finite for each Dj , and Var(Fk)

is finite for each Fk

12.5.3: the joint variance–covariance matrix

Var




B

D

F




 =


 �B �BD �BF

�T

BD �D �DF

�T

BF �T

DF �F


 (12.1)

is non-negative definite.
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For purposes of computation, it is often not appropriate to check the definiteness
of the entire matrix (12.1), and instead we require alternative conditions on various
of its submatrices. Such is the purpose of the following theorem. First, define for
convenience the matrices

S = �F −�FD�
†
D�DF , (12.2)

KT = �FB −�FD�
†
D�DB. (12.3)

Theorem 12.6 The matrix (12.1) is non-negative definite if and only if Properties
12.3.1–12.3.3 are met, together with the following conditions.

12.6.1: �DF ∈ range{�D} (or, equivalently, �⊥D�DF = 0);

12.6.2: S is non-negative definite;

12.6.3: KT =∈ range{S} (or, equivalently, S⊥KT = 0);

12.6.4: �B −�BD�
†
D�DB −KS†KT is non-negative definite.

Proof. By Theorem 11.35, (12.1) is non-negative definite if and only if the
following conditions are met:

1. the matrix [
�D �DF

�T

DF �F

]
is non-negative definite;

2. the matrix [
�DB

�T

FB

]
∈ range

{[
�D �DF

�T

FD �F

]}
;

3. the matrix

�B −
[
�BD �BF

] [ �D �DF

�T

DF �F

]− [
�T

BD

�T

BF

]
is non-negative definite.

The first of these conditions requires, by Lemma 12.3, that �D be non-negative
definite, that �DF ∈ range{�D}, and that S be non-negative definite. The first of
these is guaranteed by Property 12.3.1; the latter two must be satisfied and appear
as conditions (Property 12.6.1 and Property 12.6.2) in the theorem. Property 12.6.3
is necessary to guarantee the second of the conditions because(

I −
[

�D �DF

�T

FD �F

] [
�D �DF

�T

FD �F

]†
)[

�DB

�FB

]
=

[
�DB

�FB − S⊥KT

]
=

[
�DB

�FB

]

if and only if S⊥KT = 0, i.e. KT ∈ range{S}. Property 12.6.4 follows by simpli-
fying the matrix expression in the third condition, noticing that this expression is
(12.25), addressed in Theorem 12.52. �
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Remark. The matrices K and S can be interpreted as adjusted covariance and
adjusted variance matrices respectively:

S = Var(AD(F)) = VarD(F),

KT = Cov(AD(F), AD(B)).

See §12.11.

12.3 Consistency of data with beliefs

12.3.1 Consistency for a single collection

Definition 12.7 For any collection D such that belief specifications over D are
finite and coherent according to Definition 12.1, the observed value d of D is consis-
tent with the belief specifications if and only if we have [d − E(D)] ∈ range{�D}.
Equivalently, �⊥D[d − E(D)] = 0.

If �D is full rank, then finite observations d are automatically consistent with the
belief specifications. Otherwise, if �D is not full rank, suppose that a ∈ null{�D};
then Var(aT D) = 0 and this implies that aT D is known so that aT [d − E(D)] = 0
for any possible observation d and every vector a ∈ null{�D}.
Theorem 12.8 If data d are consistent with their belief specifications then all linear
transformations of the data are consistent.

Proof. Suppose that V = GD is a collection of m linear transformations
(V1, . . . , Vm) of the quantities (D1, . . . , Dn), where G is some m× n real
matrix, and suppose that v = Gd are the corresponding observations. Now the
data v are consistent if aT [v − E(V )] = 0 for all a ∈ null{Var(V )}. For such a,
aT Var(V )a = aT G�DGT a = 0. Hence GT a ∈ null{�D}, and

aT [v − E(V )] = aT G[d − E(D)] = 0

as the data d are consistent. �

Theorem 12.9 If data d are consistent with their belief specifications then the
value of

[d − E(D)]T �−D[d − E(D)]

is the same for every choice of generalized inverse �−D of �D .

Proof. If the data are consistent then [d − E(D)] ∈ range{�D}, so that

�⊥D[d − E(D)] = 0

and
[d − E(D)]T �⊥D = 0.
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Now, by Lemma 11.17, all generalized inverses �−D of �D can be constructed
from

�−D = �
†
D + V �⊥D + (I −�

†
D�D)W

for arbitrary V, W . Hence all possible values of

[d − E(D)]T �−D[d − E(D)]

can be constructed, for arbitrary V, W , as

[d − E(D)]T �−D[d − E(D)] =[d − E(D)]T (�
†
D + V �⊥D

+ (I −�
†
D�D)W)[d − E(D)] (12.4)

=[d − E(D)]T �
†
D[d − E(D))]. (12.5)

�

12.3.2 Consistency for a partitioned collection

By Definition 12.7, observed data D = d and F = f are consistent with their
belief specifications if and only if, for any generalized inverse,(

I −
[

�D �DF

�T

DF �F

] [
�D �DF

�T

DF �F

]−)[
d − E(D)

f − E(F )

]
= 0. (12.6)

This necessary consistency condition can be re-expressed as in the following
theorem. Suppose that S is as defined in (12.2).

Theorem 12.10 If the beliefs specified over the collections D and F are jointly
coherent, and if the data d are consistent with the beliefs specified over the collection
D, then the data f are consistent if and only if

S⊥[�FD�
†
D(d − E(D))− (f − E(F ))] = 0, (12.7)

or, equivalently,

�FD�
†
D[d − E(D)]− [f − E(F )] ∈ range{S}.

Proof.[
�D �DF

�T

DF �F

] [
�D �DF

�T

DF �F

]† [
d − E(D)

f − E(F )

]

=
[
�D�

†
D[d − E(D)]−�⊥D�DF S†[�FD�

†
D(d − E(D))− (f − E(F ))]

(I − SS†)[�FD�
†
D(d − E(D))]+ SS†(f − E(F ))

]

=
[

(d − E(D))

(I − SS†)[�FD�
†
D(d − E(D))]+ SS†(f − E(F ))

]



IMPLEMENTING BAYES LINEAR STATISTICS 457

as �D�
†
D(d − E(D)) = d − E(D), because the data d are consistent, and because

�D�
†
D�DF = �DF by coherence of the joint variance matrix over D and F . The

proof now follows after some rearrangement. �
In some circumstances, the eigenstructure of S may be available, in which case

the following alternative checks may be made, with obvious proof.

Theorem 12.11 If the joint variance–covariance matrix specified over D and F is
coherent, and if the data d are consistent with the variance–covariance matrix �D ,
then the data f are consistent (1) if S is full rank, (2) when S is not full rank, but

gT (Ed(F )− f ) = gT [�FD�
†
D(d − E(D))− (f − E(F ))] = 0 (12.8)

for every eigenvector g of S corresponding to a zero eigenvalue: Sg = 0.

12.4 Adjusted expectation

Suppose that c �= 0 is any nB × 1 vector, and let a be some nD × 1 vector. Let
cT B be any linear combination of the elements of B.

Theorem 12.12 Var(cT B − aT D) is minimized for some a ∈ range{�D} which
satisfies �DBc = �Da.

Proof. To show that any solution a must be in range{�D}, decompose a into
a = g + f , where g ∈ range{�D} and f ∈ null{�D}. Then

Var(cT B − aT D) = Var(cT B − gT D)+ f T �Df − 2cT �BDf + 2gT �Df

= Var(cT B − gT D),

where, by Lemma 11.30,

f T �Df = 0, gT �Df = 0, cT �BDf = 0,

as f ∈ null{�D} and �T

BD ∈ range{�D}.
To show that we must have �DBc = �Da, suppose that �DBc = g + f , for

some g ∈ range{�D} and f ∈ null{�D}. We have f T �DBc = f T g + f T f , where
f T �DBc = 0, as �DB ∈ range{�D}; and f T g = 0; so that f T f = 0, implying
that we must have f = 0. As such, we must have �DBc = g for some g ∈
range{�D}. Finally, all a ∈ range{�D} can be constructed from a = �

†
Dg, as

�D�
†
Da = a by Lemma 11.27. �

Theorem 12.13 The adjusted expectation for cT B is unique, and can be calcu-
lated as

ED(cT B) = cT E(B)+ cT �BD�
†
D(D − E(D)).
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Proof. From §3.1, the adjusted expectation for cT B is the linear combination
ED(cT B) = a0 + aT D which minimizes

E([cT B − a0 − aT D]2) = Var(cT B − aT D)+ [E(cT B)− a0 − aT E(D)]2 (12.9)

over all collections a = (a0, a1, . . . , anD
). The second term in (12.9) is minimized

by taking a0 = E(cT B)− aT E(D). By Theorem 12.12, the first term is minimized
by taking any a such that �DBc = �Da. This system of linear equations is con-
sistent by Lemma 11.42 as �DBc ∈ range{�D}, and has general solution

a = �−D�DBc + (I −�−D�D)t (12.10)

for an arbitrary conformable vector t , by Lemma 11.43. The first term in (12.10) is
in range{�D} as required. However, the second is in null{�D}, by Lemma 11.30,
as �D(I −�−D�D)t = 0 for any generalized inverse. Therefore, as we require
our solution to be in range{�D}, we may drop the second term in (12.10). The
adjusted expectation is unique whatever generalized inverse we take: we use the
Moore–Penrose inverse. �

By Lemma 11.45, the Moore–Penrose inverse, together with reflexive gener-
alized inverses, gives a solution for a that has minimum norm compared to the
solutions for a given by other choices of generalized inverse. For vector calcula-
tions we have directly from Theorem 12.13:

Corollary 12.14 The adjusted expectation for the vector B is unique, and can be
calculated as

ED(B) = E(B)+�BD�
†
D(D − E(D)).

Corollary 12.15 The observed adjusted expectation for the vector B, given obser-
vation of consistent data D = d, is unique, and can be calculated as

Ed(B) = E(B)+�BD�
†
D(d − E(D)).

12.5 Adjusted and resolved variance

The adjusted expectation ED(B) has variance

Var(ED(B)) = Var(E(B)+�BD�
†
D(D − E(D)))

= �BD�
†
D�D�

†
D�DB

= �BD�
†
D�DB, by Definition 11.6,

= RVarD(B),

which is termed the resolved variance matrix as in (3.31). The residual vector, i.e.
the adjusted version (3.22), has variance

Var(AD(B)) = Var(B − ED(B)) = Var(B)− RVarD(B) = VarD(B),

which is termed the adjusted variance matrix.
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Theorem 12.16 The adjusted and resolved variance matrices are unique and can
be calculated using any generalized inverse of �D . That is, for any generalized
inverse,

VarD(B) = �B −�BD�−D�BD = �B −�BD�
†
D�BD,

RVarD(B) = �BD�−D�BD = �BD�
†
D�BD.

Proof. This follows directly by Theorem 11.31. �

12.6 The resolved variance matrix

Following §3.7, the resolved variance matrix is defined to be

RVarD(B) = Var(ED(B)) = RVarD(B) = �BD�
†
D�DB.

This matrix has a number of properties as follows.

Theorem 12.17 The matrix [
RVarD(B) �BD

�T

DB �D

]
(12.11)

is non-negative definite.

Proof. Var([BT DT ]T ) is non-negative definite, so that by Theorem 11.35, �D is
non-negative definite and �DB ∈ range{�D}. Equivalently,

�D�−D�DB = �DB

for any generalized inverse of �D . Now consider the matrix

Var

([
�BD�

†
DD

D

])
=

[
�BD�

†
D

I

]
�D

[
�BD�

†
D

I

]T

.

This matrix is non-negative definite because �D is non-negative definite, Therefore,[
�BD�

†
D�D�

†
D�DB �BD�

†
D�D

�D�
†
D�DB �D

]
=

[
RVarD(B) �BD

�DB �D

]

is non-negative definite, as �D�
†
D�DB = �DB , and �

†
D�D�

†
D = �

†
D for Moore–

Penrose generalized inverses. �

Theorem 12.18 The matrix �D −�DBRVarD(B)†�BD is non-negative definite.

Proof. This follows by applying Theorem 11.35 to the non-negative definite matrix
of Theorem 12.17. �
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Theorem 12.19 rk{RVarD(B)} = rT = rk{�DB}.
Proof.

rk{RVarD(B)} = rk{�BD�
†
D�DB}

= rk{�†
D�DB}, by Lemma 11.34,

as �D is non-negative definite,

= rk{�DB}

by Lemma 11.33, as range{�DB} ∈ range{�†
D} = range{�D}. �

Theorem 12.20 range{RVarD(B)} = range{�BD}.
Proof. We have �BD ∈ range{RVarD(B)} by applying Theorem 11.35 directly to
the non-negative definite matrix (12.11). Alternatively, we have Theorem 12.19,
so that we may apply Lemma 11.32 and the proof follows. �

12.7 Matrix representations of the resolution transform

In §3.9.1 we gave a definition (3.65) for the resolution transform matrix. We now
generalize the definition and establish properties. We use the following notation
for convenience:

rB = rk{Var(B)}, (12.12)

Var(B)QB = QB�B, (12.13)

where �B is the rB × rB diagonal matrix with values �B1, . . . , �BrB
> 0 being the

positive eigenvalues of the variance matrix Var(B), with corresponding orthonor-
mal eigenvectors collected as the columns of the nB × rB matrix QB .

Lemma 12.21 A matrix representation of the resolution transform for the adjust-
ment of B by D is any matrix TB:D in the class of matrices satisfying

�BTB:D = �BDP,

where P is any matrix in the class of matrices satisfying

�DP = �DB.

Theorem 12.22 All matrix representations of the resolution transform for the adjus-
tment of B by D are of the form

TB:D = �
†
B�BD�

†
D�DB + (I −�

†
B�B)H2,

where H2 is any conformable arbitrary matrix. If rB = nB then the arbitrary part
vanishes.
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Proof. By Lemma 11.46, the linear equations �DP = �DB have solutions of the
form

P = �
†
D�DB + (I −�

†
D�D)H1,

where H1 is arbitrary. These linear equations are consistent if the belief specifica-
tions over B, D are coherent by Lemma 11.42 as �DB ∈ range{�D}. Similarly,
the linear equations �BTB:D = �BDP have solutions of the form

TB:D = �
†
B�BDP + (I −�

†
B�B)H2,

where H2 is arbitrary. These linear equations are consistent by Lemma 11.42
as �BD ∈ range{�B}. Consequently, all matrix representations of the resolution
transform can be generated from

TB:D = �
†
B�BD�

†
D�DB +�

†
B�BD(I −�

†
D�D)H1 + (I −�

†
B�B)H2,

= �
†
B�BD�

†
D�DB + (I −�

†
B�B)H2,

as �BD�
†
D�D = �BD by Lemma 11.28. �

12.7.1 The symmetrized resolution transform matrix

The resolution transform matrix, TB:D , is often asymmetric. For the purposes of
calculation of its eigenstructure, it can be helpful to work with the symmetrized
resolution transform matrix, defined as follows.

Definition 12.23 The symmetrized resolution transform matrix is the non-negative
definite rB × rB matrix

T̃B:D =�
1
2
B QT

BTB:DQB�
− 1

2
B

=�
1
2
B QT

B(�
†
B�BD�

†
D�DB + (I −�

†
B�B)H2)QB�

− 1
2

B , for arbitrary H2,

=�
1
2
B QT

B�
†
B�BD�

†
D�DBQB�

− 1
2

B , as QT

B(I −�
†
B�B) = 0,

=�
− 1

2
B QT

B�BD�
†
D�DBQB�

− 1
2

B .

Theorem 12.24 rk{T̃B:D} = rT = rk{�DB} = rk{�BD}.
Proof.

rk{T̃B:D} =rk{�−
1
2

B QT

B�BD�
†
D�DBQB�

− 1
2

B }

=rk{�−
1
2

B QT

B�BD�
†
D�DB}, by Lemma 11.34,

=rk{�BD�
†
D�DB}, by Lemma 11.33,

as range{�BD} ∈ range{�−
1
2

B QT

B} = range{B},
=rk{�DB}, by Theorem 12.19.

�
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Corollary 12.25 The resolution transform matrix has rank

rk{TB:D} = rT = rk{Cov(B, D)}.
Proof. This follows similarly to Theorem 12.24. �

Definition 12.26 Suppose that the symmetrized resolution transform has eigen-
values λ1 ≥ λ2 ≥ . . . ≥ λrB ≥ 0 corresponding to eigenvectors g1, . . . , grB . We
gather the eigenvalues into the rB × rB diagonal matrix �, and we gather the
eigenvectors as the columns of the matrix Z̃. We may write T̃B:D = Z̃�Z̃T and
T̃

†
B:D = Z̃�†Z̃T . The eigenvector matrix Z̃ has the property that Z̃Z̃T = Z̃T Z̃ = IrB .

By Theorem 12.24, the number of positive eigenvalues λi is equal to rT = rk{�BD},
where

0 ≤ rk{�BD} = rT ≤ min(rB, rD).

Remark. The resolution transform TB:D and its symmetrized version T̃B:D are
equivalent in the sense of §11.9, in that they have the same positive eigenvalues
and have related eigenvectors. It is computationally advantageous, for numerical
stability, to compute first the eigensolution to the symmetrized version. Where
there are subsets of non-distinct eigenvalues, the corresponding eigenvectors are
not uniquely defined. Eigenvalues may only be computed to machine accuracy,
and so computer implementations for Bayes linear methods may have to make
automated judgements as to the rank of the resolution transform, depending on the
magnitude of the smallest computed eigenvalue which is deemed to be positive.

Theorem 12.27 If rB = nB , the matrix of right eigenvectors of the resolution trans-

form matrix is Z = QB�
− 1

2
B Z̃ corresponding to diagonal eigenvalue matrix �.

Proof. By Theorem 12.22, if rB = nB , there is no arbitrary element in TB:D .
Hence

TB:DZ = �
†
B�BD�

†
D�DBQB�

− 1
2

B Z̃

= QB�
− 1

2
B T̃B:DZ̃

= QB�
− 1

2
B Z̃�

= Z�.

�

Theorem 12.28 If rB < nB then the matrix representation of TB:D is not uniquely
defined. However, if we take the arbitrary part H2 in Theorem 12.22 to be
zero, the matrix representation given by TB:D = �

†
B�BD�

†
D�DB has right eigen-

vector matrix [Z Q0
B ], where Q0

B is a matrix whose columns are eigenvectors
qBrB+1, . . . , qBnB

of �B corresponding to zero eigenvalues of �B . The correspond-
ing eigenvalues are λ1, . . . , λrB corresponding to right eigenvectors Z1, . . . ZrB and
λrB+1 = 0, . . . , λnB

= 0, corresponding to right eigenvectors qBrB+1, . . . , qBnB
.
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Proof. As above, TB:DZ = Z�, establishing the columns of Z as eigenvectors
corresponding to eigenvalues λi . Finally, for rB < i ≤ nB ,

TB:DqBi = �
†
B�BD�

†
D�DBqBi = 0

as qBi ∈ null{�B} and �T

BD ∈ range{�B}. �

Theorem 12.29 The matrix of eigenvectors Z simultaneously diagonalizes the
prior, resolved, and adjusted variance matrices, i.e. Var(B), RVarD(B), and
VarD(B), to

ZT Var(B)Z = IrB ,

ZT RVarD(B)Z = �

ZT VarD(B)Z = IrB −�.

Proof. We have

ZT Var(B)Z = Z̃T �
− 1

2
B QT

B�BQB�
− 1

2
B Z̃ = IrB

and

ZT RVarD(B)Z = Z̃T �
− 1

2
B QT

B�BD�
†
D�DBQB�

− 1
2

B Z̃ = Z̃T
T̃B:DZ̃ = �.

The final part follows trivially. �

12.7.2 The transform for the reverse adjustment

The following results concern the implementation of the resolution transform for
the reverse adjustment, corresponding to (3.76) and (3.77).

Theorem 12.30 If rD = nD , the resolution transform matrix TD:B for the adjust-
ment of D by B has the representation

TD:B = �
†
D�DB�

†
B�BD (12.14)

with right eigenvector matrix �
†
D�DBZ(�†)

1
2 corresponding to eigenvalues �.

Proof. The basic representation follows directly from Theorem 12.22. The canon-
ical structure follows as

TD:B(�
†
D�DBZ(�†)

1
2 ) = �

†
D�DB�

†
B�BD(�

†
D�DBZ(�†)

1
2 )

= �
†
D�DBTB:DZ(�†)

1
2

= (�
†
D�DBZ(�†)

1
2 )�.

�
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Theorem 12.31 If rD < nD , the resolution transform matrix TD:B for the adjust-
ment of D by B has the representation

TD:B = �
†
D�DB�

†
B�BD + (I −�

†
D�D)H3 (12.15)

where H3 is arbitrary. If we take the arbitrary part H3 = 0 then a subset of the
right eigenvector matrix for the representation is given by the columns of the matrix
�

†
D�BDZ(�†)

1
2 , with corresponding eigenvalues �.

Proof. This follows similarly to Theorems 12.30 and 12.28. �
Further right eigenvectors, all of which correspond to eigenvalue zero, can be con-
structed from null{�D} if rD ≤ rB , and from null{�D} and null{�B} if rD > rB .

12.7.3 Inverses for the resolved variance matrix

Theorem 12.32

RVarD(B)−r = QB�
− 1

2
B Z̃�†Z̃T �

− 1
2

B QT

B

is a reflexive generalized inverse for RVarD(B), but not necessarily the Moore–
Penrose generalized inverse.

Proof.

RVarD(B) = �BD�
†
D�DB

= QB�
1
2
B T̃B:D�

1
2
B QT

B

by Definition 12.23 and because QBQT

B�BD = �BD , as

�BD ∈ range{QB} = range{�B}.

Hence we have

RVarD(B)RVarD(B)−r = QB�
1
2
B Z̃�Z̃T �

1
2
B QT

BQB�
− 1

2
B Z̃�†Z̃T �

− 1
2

B QT

B

= QB�
1
2
B Z̃��†Z̃T �

− 1
2

B QT

B,

whence
RVarD(B)RVarD(B)−r RVarD(B) = RVarD(B)

and
RVarD(B)−r RVarD(B)RVarD(B)−r = RVarD(B)−r ,

so that RVarD(B)−r is a reflexive generalized inverse of RVarD(B) by
Definition 11.6. However, RVarD(B)RVarD(B)−r and RVarD(B)−r RVarD(B) are
not necessarily symmetric, and therefore RVarD(B)−r is not necessarily the Moore–
Penrose inverse. �
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Theorem 12.33 When T̃B:D is full rank,

RVarD(B)† = RVarD(B)−r = QB�
− 1

2
B Z̃�†Z̃T �

− 1
2

B QT

B.

Proof. If T̃B:D is full rank, then �† = �−1 and Z̃Z̃T = I . We then obtain that

RVarD(B)RVarD(B)−r = QB�
1
2
B Z̃��†Z̃T �

− 1
2

B QT

B

= QB�
1
2
B Z̃Z̃T �

− 1
2

B QT

B

= QBQT

B

is symmetric. Similarly, RVarD(B)−r RVarD(B) is symmetric, and so by
Definition 11.6, RVarD(B)−r = RVarD(B)† is the Moore–Penrose generalized
inverse. �

12.7.4 Canonical quantities

Following §3.9.1, the canonical quantities and canonical resolutions can be calcu-
lated as follows.

Definition 12.34 The canonical quantities for the adjustment of B by D are the
linear combinations implied by the columns Z1, . . . , ZrB of the nB × rB matrix Z
with corresponding canonical resolutions λ1, . . . , λrB . That is, the ith canonical
quantity is Yi = ZT

i (B − E(B)).

Of these rB canonical quantities, some may correspond to canonical resolutions
equal to zero. There are, by Theorem 12.24, exactly rT = rk{�DB} canonical quan-
tities with positive resolution. Thus, the structure of the canonical quantities is as
follows.

• If rT > 0, then there are rT canonical quantities

Yi = ZT

i (B − E(B)), i = 1, . . . , rT,

corresponding to positive canonical resolutions λi . These are quantities in [B]
about which the data quantities in [D] are informative.

• If rB > rT, then there are rB − rT further canonical quantities

Yi = ZT

i (B − E(B)), i = rT + 1, . . . , rB,

corresponding to zero canonical resolutions λi . These are quantities in [B] about
which the data quantities in [D] are not informative, but for which a different
set of data quantities might be informative.
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• If rB < nB , then there are nB − rB further canonical quantities

Yj = qT

Bj (B − E(B)), j = rB + 1, . . . , nB,

corresponding to zero canonical resolutions. These degenerate canonical quan-
tities are uncorrelated with all other canonical quantities, and have expectation
and variance zero.

We gather the first rB canonical quantities into the vector Y = [Y1 . . . YrB ].

Definition 12.35 The vector Y of canonical quantities has prior expectation,
adjusted expectation, prior variance matrix, resolved variance matrix, and adjusted
variance matrix as follows:

E(Y) = E(ZT (B − E(B))) = 0,

ED(Y) = ED(ZT (B − E(B))) = 0,

Var(Y) = Var(ZT (B − E(B))Z) = ZT �BZ = IrB ,

RVarD(Y) = RVarD(ZT (B − E(B)) = ZT RVarD(B)Z = �,

VarD(Y) = VarD(ZT (B − E(B)) = ZT VarD(B)Z = IrB −�.

These follow from basic definitions for adjusted expectations and variances and by
Theorem 12.29.

Definition 12.36 The canonical quantities for the adjustment of D by B are the
quantities Y∗1, . . . , Y∗rB gathered into the vector Y∗, where Y∗ is constructed from
the right eigenvectors of the resolution transform matrix TD:B :

Y∗ = (�
†
D�DBZ(�†)

1
2 )T (D − E(D))

= (�†)
1
2 ZT (ED(B)− E(B))

= (�†)
1
2 ED(Y),

establishing (3.78), where Y are the canonical quantities for the adjustment of
B by D.

There may be further degenerate canonical quantities corresponding to canonical
resolutions equal to zero.

12.7.5 Coherence via the resolution transform matrix

The following theorem shows how the eigenstructure for T̃B:D can be used to
check a necessary coherence requirement.
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Theorem 12.37 Property 12.3.3 is satisfied if the following three conditions are
satisfied:

12.37.1: �B is non-negative definite;

12.37.2: �BD ∈ range{�B};
12.37.3: all the eigenvalues λ of T̃B:D are contained in the interval 1 ≥ λ ≥ 0.

Proof. By Property 12.37.1 we have the representation �B = QB�BQT

B . By
Property 12.37.2, QBQT

B�BD = �BD . Consequently, we can write the matrix in
Property 12.3.3 as

�B −�BD�
†
D�DB = QB�

1
2
B (I − T̃B:D)�

1
2
B QT

B.

By Property 12.37.3 the matrix I − T̃B:D is non-negative definite as all its eigen-

values lie in [0, 1], and thus it follows that QB�
1
2
B (I − T̃B:D)�

1
2
B QT

B must also be
non-negative definite. �

12.8 Assessing discrepant data

Let h be any nD × 1 vector. Following §4.1, the standardized observation and
discrepancy of hT d are, for Var(hT D) > 0,

S(hT d) = hT (d − E(D))√
Var(hT (D − E(D)))

,

Dis(hT d) = [hT (d − E(D))]2

Var(hT (D − E(D)))
= [hT (d − E(D))]2

hT �Dh
.

Theorem 12.38 If data d are consistent with their corresponding belief specifica-
tions, the linear combination hT d having maximal discrepancy is given by taking
h ∝ �†(d − E(D)). The maximal discrepancy is

max
h
{Dis(hT d)} = max

h

{
[hT (d − E(D))]2

hT �Dh

}

= (d − E(D))T �−D(d − E(D))

= (d − E(D))T �
†
D(d − E(D)). (12.16)

Proof. This follows by Corollary 11.49. �

Theorem 12.39 The maximal discrepancy (12.16) has its prior expectation equal
to rk{�D}.
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Proof.

E((D − E(D))T �
†
D(D − E(D))) = E(tr{[D − E(D)]T �

†
D[D − E(D)]})

= E(tr{�†
D[D − E(D)][D − E(D)]T })

= tr{�†
DE([D − E(D)][D − E(D)]T )}

= tr{�†
D�D}

= rk{�D}, by Lemma 11.18.

�
In §4.2, the linear combination having maximal discrepancy is termed the discrep-
ancy vector,

ẇd = [d − E(D)]T �†[D − E(D)].

Its properties summarized there are easily established.

12.9 Consistency of observed adjustments

Theorem 12.40 For a Bayes linear adjustment for a finite coherent specification,
if data d are consistent in the sense of Definition 12.7 then the observed adjusted
expectations are consistent.

Proof. This follows directly from Theorem 12.8. �

Lemma 12.41 The adjustment discrepancy vector (4.26) is calculated using any
generalized inverse of RVarD(B) as

äd = RVarD(B)−(Ed(B)− E(B)). (12.17)

Lemma 12.42 As a linear combination of the Bis, the induced discrepancy vector
can be expressed using the reflexive generalized inverse given in Theorem 12.32 as

Ÿd(B) = äd
T (B − E(B))

= [Ed (B)− E(B)]T QB�
− 1

2
B Z̃�†Z̃T �

− 1
2

B QT

B(B − E(B))

= [Ed (B)− E(B)]T Z�†ZT (B − E(B))

= (Ed (Y ))T �†Y, (12.18)

where Z is the matrix whose columns are the eigenvectors of the resolution
matrix, and Y = ZT (B − E(B)) are the canonical quantities for the adjustment,
with E(Y ) = 0. Ÿd(B) is the discrepancy vector for the adjustment (4.29), (4.36).
Similarly, Ẅd (4.24), (4.35), may be constructed as

Ẅd = äd
T (ED(B)− E(B)) (12.19)

= Ed(Y )�†ED(Y ). (12.20)
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Lemma 12.43 We may calculate the adjustment discrepancy (4.23) as

Disd(B) = Dis(Ed(B)) (12.21)

= (Ed(B)− E(B))T RVarD(B)−(Ed (B)− E(B)) (12.22)

for any generalized inverse of RVarD(B). It is convenient to use a reflexive or
Moore–Penrose generalized inverse.

Theorem 12.44 For any finite coherent specification with consistent data d, the
value of

Disd(B) = Dis(Ed(B))

is the same for any choice of generalized inverse of RVarD(B) = Var(Ed (B)).

Proof. The observed adjustments are consistent with the beliefs specified about
them, by Theorem 12.40. Applying Theorem 12.9 proves the result. �

Theorem 12.45 The prior expectation of

DisD(B) = (ED(B)− E(B))T RVarD(B)−(ED(B)− E(B))

is E(DisD(B)) = rT = rk{�DB}.
Proof.

E(DisD(B)) = E((ED(B)− E(B))T RVarD(B)−(ED(B)− E(B)))

= E((ED(B)− E(B))T RVarD(B)†(ED(B)− E(B)))

= tr{E(RVarD(B)†(ED(B)− E(B))(ED(B)− E(B))T )}
= tr{RVarD(B)†E((ED(B)− E(B))(ED(B)− E(B))T )}
= tr{RVarD(B)†RVarD(B)}
= rk{RVarD(B)} = rT.

�

12.9.1 Partitioning the discrepancy

The overall data discrepancy can be partitioned as described in §4.4.5 into parts
relevant to the adjustment of B by D, and a residual part.

Theorem 12.46 Let G = D − EED(B)(D) = AED(B)(D) with observed value g.
Then, for any consistent observations d,

Dis(d) = Disd(B)+ Dis(g).
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Proof. We have by Definition 12.43 that

Disd(B) = Dis(Ed(B))

= (Ed(B)− E(B))T RVarD(B)†(Ed(B)− E(B))

= (d − E(D))T �
†
D�DBRVarD(B)†�BD�

†
D(d − E(D)).

Now, E(G) = 0 and Var(G) = �D −�DBRVarD(B)†�BD, so that

Dis(g) = gT (�D −�DBRVarD(B)†�BD)†g.

g is the observed value of

G = D − EED(B)(D)

= D − {E(D)+ Cov(D, ED(B))Var(ED(B))†[ED(B)− E(ED(B))]}
= D − E(D)−�DBRVarD(B)†�BD�

†
D(D − E(D))

= �D�
†
D(D − E(D))−�DBRVarD(B)†�BD�

†
D(D − E(D))

= (�D −�DBRVarD(B)†�BD)�
†
D(D − E(D))

= Var(G)�
†
D(D − E(D))

so that g = Var(G)�
†
D(d − E(D)).

Note that we can write

�D�
†
D(D − E(D)) = D − E(D)

above because [D − E(D)] ∈ range{�D}). It follows that

Dis(g) =gT Var(G)†g

=(d − E(D))T �
†
DVar(G)Var(G)†Var(G)�

†
D(d − E(D))

=(d − E(D))T �
†
D(�D −�DBRVarD(B)†�BD)�

†
D(d − E(D))

=(d − E(D))T �
†
D(d − E(D))

− (d − E(D))T �
†
D�DBRVarD(B)†�BD�

†
D(d − E(D))

=Dis(d)− Disd(B).

�

Theorem 12.47 For any consistent observations d, Dis(d) ≥ Disd(B), with equal-
ity if and only if rk{�DB} = rk{�D}.
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Proof. The inequality follows directly from Theorem 12.46 as

Dis(d) = Disd(B)+ gT Var(G)†g ≥ Disd(B).

Equality is attained only for Dis(g) = 0. We may write

Dis(g) = (d − E(D))T �
†
D(�D −�DBRVarD(B)†�BD)�

†
D(d − E(D)),

so that Dis(g) = 0 for any consistent g if and only if

�
†
D(�D −�DBRVarD(B)†�BD)�

†
D = 0.

Now,

�
†
D(�D −�DBRVarD(B)†�BD)�

†
D

= QD�
− 1

2
D (IrD − A(AT A)†AT )�

− 1
2

D QT

D,

where

A = �
− 1

2
D QT

D�DB,

which is equal to zero if and only if IrD = A(AT A)†AT , i.e. if and only if IrD =
AA† by Lemma 11.12. For IrD = AA† we must have

rD = rk{AA†}
= rk{A}, by Lemma 11.18,

= rk{�−
1
2

D QT

D�DB}
= rk{�DB}, by Lemma 11.34, as �DB ∈ range{�D}.

Hence it is a necessary condition for equality that rk{�BD} = rk{�D}. Alterna-
tively, if rk{�BD} < rk{�D}, then AA† is an idempotent non-negative definite
matrix with rank less than rD , and the condition IrD = AA† clearly cannot be
met. Suppose we meet the condition that rk{�BD} = rk{�D} = rD . Then, as
rk{A} = rD and as A is an rD × nB matrix, we have that A† = AT (AAT )−1 by
Lemma 11.13, so that

AA† = AAT (AAT )−1 = IrD .

Hence, this rank condition is both necessary and sufficient. �

Theorem 12.48 The discrepancy for the observed value of AED(B)(D) has prior
expectation

E(Dis(AED(B)(D))) = rk{�D} − rk{�BD}.
Proof. Follows from Theorems 12.46, 12.39, and 12.45. �



472 BAYES LINEAR STATISTICS: THEORY AND METHODS

12.10 The bearing and size of adjustment

Let h be any nB × 1 vector. Following §4.6, the size of the adjustment for the
quantity hT B is

Sized(hT B) = [hT (Ed(B)− E(B))]2

hT Var(B)h
.

Theorem 12.49 For finite and coherent belief specifications and data consistent
with them, the linear combination hT B having maximal size of adjustment is given
by taking

h ∝ �
†
B(Ed(B)− E(B)) = �

†
B�BD�

†
D(d − E(D)).

The maximal discrepancy is, for any choice of generalized inverse,

Sized(B) = max
h
{Sized(hT B)} = Ed(Y )T Ed(Y ),

where Y = ZT (B − E(B)) are the canonical quantities.

Proof. �B is non-negative definite and

Ed (B)− E(B) = �BD�
†
D(d − E(D)) ∈ range{�B}

so that Theorem 11.49 applies directly. For the size,

Sized(B) = max
h

{
[hT (Ed(B)− E(B))]2

hT �Bh

}

= (Ed(B)− E(B))T �
†
B(Ed (B)− E(B))

= (Ed(B)− E(B))T �−B (Ed(B)− E(B))

= (Ed(B)− E(B))T ZZT (Ed(B)− E(B)), as ZZT = �
†
B

= Ed (Y )T Ed(Y ).

�

Definition 12.50 The quantity corresponding to the maximum (4.49) is denoted the
bearing, Zd(B). That is, let

ḣd = �
†
B(Ed (B)− E(B)) = �

†
B�BD�

†
D(d − E(D)).

Then

Zd(B) = ḣd
T
(B − E(B))

= (B − E(B))T �
†
B(Ed(B)− E(B))

= (B − E(B))T �
†
B�BD�

†
D(d − E(D)). (12.23)
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Theorem 12.51
Zd(B) = Y T Ed(Y ).

Proof.

Zd(B) = (B − E(B))T �
†
B(Ed(B)− E(B))

= (B − E(B))T ZZT (Ed (B)− E(B)) as �
†
B = ZZT

= [ZT (B − E(B))]T [Ed(ZT (B − E(B)))] = Y T Ed(Y ).

�
This restates (4.55). It is easily shown that

Var(Zd(B)) = Sized(B) = Ed(Y )T Ed(Y ).

12.11 Partial adjustments

Suppose that we have collections of uncertain quantities B, D, F with coherent
beliefs and consistent data as described in §12.2.3 and §12.3.2, respectively. We
assume that the initial adjustment of B by D has already taken place, so that
we know already the adjusted expectations ED(B), possibly with observed values
Ed(B); the adjusted variance matrix VarD(B); and the resolution matrix TB:D . We
are now concerned with obtaining ED∪F (B), VarD∪F (B), and TB:D∪F in terms of
ED(B), VarD(B), and TB:D and further quantities reflecting the change in adjust-
ment. Recall that the adjusted versions of B and F , having fitted each on D, are

AD(B) = B − ED(B),

AD(F) = F − ED(F).

It is helpful to employ S as defined in (12.2) and K as defined in (12.3), and to
note that these can be identified as

K = CovD(B, F ) = Cov(AD(B), AD(F)), S = Var(AD(F)) = VarD(F).

Theorem 12.52 The partial resolved variance, i.e. the reduction in variance in B

due to fitting on F as well as D (5.9), is

VarD(B)− VarD∪F (B) = KS†KT (12.24)

= RVarAD(F )(AD(B))

Proof. By Theorem 12.16 we have uniquely, and independently of choice of
generalized inverse,

VarD∪F (B) = �B −
[
�BD �BF

] [ �D �DF

�T

DF �F

]− [
�T

BD

�T

BF

]
. (12.25)
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We use the following generalized inverse given in (11.38):

[
�D �DF

�T

DF �F

]−
=

[
�

†
D +�

†
D�DF S†�T

DF �
†
D −�

†
D�DF S†

−S†�T

DF �
†
D S†

]
(12.26)

Inserting this choice of generalized inverse into (12.25) yields the result (12.24)
after some rearrangement. �
Notice that S is uniquely the Schur complement of �D in

M =
[

�D �DF

�T

DF �F

]
,

and is independent of the choice of generalized inverse of �F ; see (11.36).
We may write K = CovD(B, F ) as in (12.3), and S = VarD(F) in (12.2) as

we have

VarD

([
B

F

])
=

[
�B −�BD�

†
D�T

BD �BF −�BD�
†
D�T

FD

�T

BF −�FD�
†
D�T

BD �F −�BF �
†
D�T

BF

]
(12.27)

=
[

VarD(B) CovD(B, F )

CovD(F, B) VarD(F)

]
(12.28)

=
[

VarD(B) K

KT S

]
. (12.29)

Remark. Note that 12.6.2–12.6.4 are necessary and sufficient conditions for the
matrix (12.28) to be non-negative definite.

Corollary 12.53 The partial adjusted expectation, i.e. the change in adjusted expec-
tations (5.4), may be obtained as follows, using the generalized inverse (12.26):

E[F/D](B) = ED∪F (B)− ED(B)

= KS†[(F − E(F ))−�T

DF �
†
D(D − E(D))] (12.30)

= KS†
AD(F).

We can obtain the observed partial adjusted expectations by replacing F by f

throughout (12.30).

Remark. As

�FD�
†
D(d − E(D))− (f − E(F )) = Ed (F )− f,

condition (12.7) of Theorem 12.10 is equivalent to requiring that Ed(F )− f be in
the null space of VarD(F).
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12.11.1 Partial and relative adjustment transforms

Corollary 12.54 The partial resolution transform matrix (5.15) can be calculated
as follows.

TB:[F/D] = TB:D∪F − TB:D = �
†
BKS†KT . (12.31)

It is important to note that this partial resolution transform matrix is not in general
equal to the relative adjusted belief transform (5.26),

TB:F(D) = TAD(B):AD(F ), (12.32)

the resolution matrix for the adjustment of B given F having already accounted for
D in the sense that this resolution matrix relates to the space spanned by AD(B)

rather than the space spanned by B. The two matrices are related multiplicatively
via

TB:[F/D] = (I − TB:D)TAD(B):AD(F ),

corresponding to (5.27) after some arrangement.

Theorem 12.55 The partial resolution transform matrix (5.15), (12.31) and the
relative adjusted belief transform matrix (5.26), (12.32) have the same rank, rP,
defined as

rk{TB:F(D)} = rk{TB:[F/D]} = rk{K} = rP.

Proof. We have by Corollary 12.25 that

rk{TB:[F/D]} = rk{Cov(B, AD(F))} = rk{CovD(B, F )} = rk{K},

and similarly that

rk{TB:F(D)} = rk{TAD(B):AD(F )} = rk{Cov(AD(B), AD(F))}
= rk{CovD(B, F )} = rk{K}.

�

12.11.2 Calculating the partial bearing

Theorem 12.56 The partial bearing is given by the change in bearing (5.39),
given by

Z[f/d](B) = Zd∪f (B)− Zd(B) (12.33)

= (B − E(B))T �
†
BKS†[(f − E(F ))−�T

DF �
†
D(d − E(D))] (12.34)

= (B − E(B))T �
†
BKS†

Ad(f ). (12.35)
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Proof. By (12.23),

Zd∪f (B)− Zd(B) = (B − E(B))T �
†
B [Ed∪f (B)− Ed (B)],

and Ed∪f (B)− Ed(B) is given by (12.30) with observations d, f inserted. �
Corollary 12.57 The partial bearing change is the quantity X ∈ 〈B〉 maximizing
the size of the partial adjustment (5.36):

[Ed∪f (X)− Ed(X)]2

Var(X)
, (12.36)

with maximum given by

(Ed∪f (B)− Ed (B))T �
†
B(Ed∪f (B)− Ed(B)) = Var(Z[f/d](B)). (12.37)

Corollary 12.58 The expected value of (12.37), evaluated prior to observing
D = d, F = f , is given by

tr{TB:D∪F − TB:D}. (12.38)

Corollary 12.59 The covariance between the initial bearing and the partial
bearing is

Cov(Zd(B), Zd∪f (B)− Zd(B)) = (Ed(B)− E(B))T �
†
B(Ed∪f (B)− Ed (B)),

with prior expected value

E(Cov(ZD(B), ZD∪F (B)− ZD(B))) = 0.

12.12 Exchangeable adjustments

12.12.1 Notation

Suppose that we intend to adjust B by Sn(D), where Sn(D) is the mean of n

exchangeable vectors D1, . . . , Dn. Suppose that B respects exchangeability with
this sequence of vectors (see Definition 7.1). We will use the notation of §6.4
for the mean-component and residual-component variance matrices. Thus, suppose
that each Di has the representation

Di =M(D)+Ri (D),

with variance specifications

Var(M(D)) = �, Var(Ri (D)) = [� − �], i = 1, 2, . . . , n,

so that Sn(D) has prior variance

Var(Sn(D)) = �D = � + 1

n
[� − �].
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Suppose also that �B = Var(B), �BD = Cov(B, Di) = Cov(B,Sn(D)). The joint
variance matrix over B,Sn(D) is thus[

�B �BD

�DB � + 1
n

[� − �]

]
. (12.39)

Suppose that each vector Di has observation di .

12.12.2 Coherence requirements for exchangeable adjustments

Coherence requirements for general exchangeable adjustments are as follows. We
require the matrix (12.39) to be non-negative definite. However, a rather stronger
condition is required: (12.39) must continue to remain non-negative definite as
n→∞, and so we require the following property.

Definition 12.60 Beliefs for an exchangeable adjustment are coherent if and only
if [� − �] is non-negative definite and[

�B �BD

�DB �

]
is non-negative definite. (12.40)

Equivalently, we require Var([B M(D)]T ) to be non-negative definite. Coherence
for (12.40) can be assessed via Lemma 12.3.

12.12.3 Data consistency

Definition 12.61 By Definition 12.7, data for an exchangeable adjustment are con-
sistent if and only if

di ∈ range{�}, i = 1, 2, . . . , n.

Note that the condition must be met for every observation di , in that the fact of
the mean data vector Sn(d) being consistent, Sn(d) ∈ range{�}, does not imply
that the individual observations are consistent.

12.12.4 Pure exchangeable adjustments

Pure exchangeable adjustments arise when B =M(D), so that interest is in learn-
ing about the underlying mean of a sequence of exchangeable vectors. Pure predic-
tive exchangeable adjustments arise when B = Df , f > n, for a future observation
in the exchangeable sequence. We consider these two cases jointly as they share
many features. We will suppose that � and [� − �] are k × k non-negative definite
matrices, so that Di is a collection of k quantities. We will suppose that rk{�} = m

and rk{�} = r , where m ≤ r ≤ k.
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12.12.4.1 Mean components

For adjusting mean components, we let B =M(D). Belief specifications are as
follows:

�B = �, (12.41)

�BD = �DB = �, (12.42)

�D = � + 1

n
[� − �]. (12.43)

By Definition 12.60, these specifications are coherent if �, [� − �] are non-
negative definite. For convenience, define

Tn = TM(D):Sn(D) (12.44)

as a matrix representation of the belief transform for this adjustment.

12.12.4.2 Predictive components

For adjusting the predictive components, let B = Df , f > n. Belief specifications
are as follows:

�B = �, (12.45)

�BD = �DB = �, (12.46)

�D = � + 1

n
[� − �]. (12.47)

By Definition 12.60, these specifications are coherent if �, [� − �] are non-
negative definite. For convenience, define

T
∗
n = TDf :Sn(D) (12.48)

as a matrix representation of the belief transform for this adjustment.

12.12.4.3 Computing the resolution transforms

The resolution transform matrices Tn and T
∗
n can be computed as follows. Solve

the generalized eigenvalue problem

�x = λ�x

as in §11.11.4, where we use the same notation with A = � and B = �, and
where we meet the requirement that B − A = [� − �] is non-negative definite.
In summary, suppose that � has r ≤ k positive eigenvalues ψ1 ≥ . . . ≥ ψr > 0
which we collect into the diagonal matrix �. Suppose that corresponding to these
eigenvalues are orthonormal eigenvectors q1, . . . , qr collected as the columns of
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the k × r matrix Q. Suppose that we construct k − r orthonormal eigenvectors
qr+1, . . . , qk corresponding to the zero eigenvalues of �. Let C be the r × r

non-negative definite matrix

C = �−
1
2 QT �Q�−

1
2 .

Suppose that C has r orthonormal eigenvectors y1, y2, . . . , yr , arranged as columns
of the k × r matrix Y , corresponding to eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λm > 0 and λm+1 = . . . = λr = 0,

and write
xi = Q�−

1
2 yi, X = Q�−

1
2 Y. (12.49)

Arrange x1, x2, . . . , xr as the columns of the k × r matrix X. Note that the
eigenvectors y1, . . . , ym form a basis for �. Arrange the ordered eigenvalues
λ1, λ2, . . . , λr as the values of the diagonal matrix �, and the m positive eigen-
values as the values of the diagonal matrix �∗.

Lemma 12.62 For n > 0,(
� + 1

n
[� − �]

)†

= X�nX
T , (12.50)

where

�n =
[
n(Im + (n− 1)�∗)−1 0

0 nIr−m

]
. (12.51)

This follows by Theorem 11.57.

Theorem 12.63 A matrix representation for the resolution transform T ∗n is given
by

T ∗n = X��nX
T �, (12.52)

and T ∗n has eigenvector matrix X corresponding to eigenvalues as the elements of
the diagonal matrix �2�n.

Proof. By Theorem 12.22, a matrix representation for the belief transform T ∗n for
this pure exchangeable case is given by

T ∗n = �†�

(
� + 1

n
[� − �]

)†

� + [I −�†�]H2, (12.53)

where H2 is an arbitrary k × k matrix. We will use the representation offered by
taking H2 = 0, and take

T ∗n = �†�

(
� + 1

n
[� − �]

)†

� (12.54)

= XXT �X�nX
T � (12.55)

= X��nX
T �, (12.56)



480 BAYES LINEAR STATISTICS: THEORY AND METHODS

as XT �X = �. This provides the representation. For the eigenstructure we have

T ∗n X = X��nX
T �X (12.57)

= X��n�. (12.58)

Consequently, x1, . . . , xm are eigenvectors of T ∗n corresponding to eigenvalues

nλ2
i

1+ (n− 1)λi

;

and xm+1, . . . , xr are eigenvectors of T ∗n corresponding to zero eigenvalues. �

Theorem 12.64 Two alternative matrix representations of the resolution transform
Tn are

T
a
n = �†�X�nX

T �, (12.59)

T
b
n = X�nX

T �. (12.60)

These two representations are identical if rk{�} = rk{�}. Both representations
have eigenvalues as the elements of the diagonal matrix �n�. T

a
n has eigenvector

matrix �†�X, whilst T
b
n has eigenvector matrix X.

Proof. By Theorem 12.22, a matrix representation for the belief transform Tn for
this pure exchangeable case is given by

Tn = �†�

(
� + 1

n
[� − �]

)†

� + (I − �†�)H3,

where H3 is an arbitrary k × k matrix. We obtain T a
n by taking H3 = 0 and we

obtain T b
n by taking H3 = X�nX

T �, employing Lemma 12.62 in each case. That
these representations are the same if rk{�} = rk{�} follows by Lemma 11.28 and
because range{X} = range{�} in this case. For the eigenstructure, we have

T
b
nX = X�nX

T �X (12.61)

= X�n�, (12.62)

and T
a
nX = �†�X�nX

T �X (12.63)

= �†�X�n�, (12.64)

so that T
a
n�

†�X = �†�X�n�, (12.65)

as T
a
n�

†� = T
a
n because ��†� = �. Thus, x1, x2, . . . , xm are eigenvectors of T

b
n,

and they correspond to eigenvalues

nλi

1+ (n− 1)λi

.
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Additionally, xm+1, . . . , xr are eigenvectors of T
b
n corresponding to zero eigen-

values. T
a
n has the same eigenvalues, but transformed eigenvectors. �

For the mean-component adjustment, to obtain eigenvectors with prior variance
unity, we scale X appropriately by using instead the eigenvectors X�−

1
2 . For the

predictive component adjustment, the eigenvectors already have prior variance
unity. For exchangeable adjustments it may be more natural to choose the repre-
sentation T

b
n as it has the same algebraic eigenvectors as T

∗
n when rk{�} < rk{�}.

12.12.5 General exchangeable adjustments

Theorem 12.65 For a general second-order exchangeable adjustment the adjusted
expectation, adjusted variance, and resolution transform matrix can be calcul-
ated as

En(B) = E(B)+�BDX�nX
T [Sn(D)− E(D)], (12.66)

Varn(B) = �B −�BDX�nX
T �DB, (12.67)

TB:Sn(D) = �
†
B�BDX�nX

T �DB, (12.68)

where X, �n are as given in (12.49) and Lemma 12.62.

Thus, all the quantities of interest depend on the sample size n only through the
values of the averages Sn(D) and the eigenvalue-type quantities �n defined in
(12.51) in Lemma 12.62.

Lemma 12.66

tr{Tn} =
m∑

i=1

δint
∗
i , (12.69)

where t∗1 , . . . , t∗m are the diagonal elements of XT �DB�
†
B�BDX.

Lemma 12.67 The maximum value of (12.69), given by taking an infinite sample
size, is

tr{T∞} = lim
n→∞Tn =

m∑
i=1

t∗i
λi

= φ. (12.70)

Theorem 12.68 For a general second-order exchangeable adjustment with resolu-
tion transform Tn,

tr{Tnmin} ≤ β ≤ tr{Tnmax},
where β is any value such that

0 < β < φ =
m∑

i=1

t∗i
λi

,

nmin = ceiling
{

1− λ1

λ1

β

φ − β

}
,

nmax = floor
{

1− λm

λm

β

φ − β

}
.
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Proof.

tr{Tn} =
m∑

i=1

λi(n)

t∗i
λi

,

where we have the ordering

1 ≥ λ1(n) ≥ . . . ≥ λm(n) > 0.

Thus
m∑

i=1

λm(n)

t∗i
λi

≤ tr{Tn} ≤
m∑

i=1

λ1(n)

t∗i
λi

⇒ φλm(n) ≤ tr{Tn} ≤ φλ1(n),

as the values t∗i are non-negative because they are the diagonal values of a non-
negative definite matrix. We thus require nmin such that β ≥ φλ1(nmin) and nmax
such that β ≤ φλm(nmax). Applying (6.57) in each case now gives the result. �
Corollary 12.69 The smallest sample size n guaranteeing tr{Tn} ≥ β is bounded
by nmin ≤ n ≤ nmax.

Proof. This follows directly from Theorem 12.68, and because tr{Tn} is monotone
non-decreasing in n. �
Corollary 6.6 provides sample sizes required for a specified resolution of variance
for a single canonical quantity.

Lemma 12.70 Let L = �BDX. For each element Bj ∈ B, the resolved variance is

RVarn(Bj ) =
m∑

i=1

δinL
2
ij . (12.71)

The resolved variance thus depends on sample size n only through the quantities
�n (12.51).

Lemma 12.71 The maximum value of (12.71), given by taking an infinite sample
size, is

RVar∞(Bj ) = lim
n→∞RVarn(Bj ) =

m∑
i=1

L2
ij

λi

= φj . (12.72)

Theorem 12.72 For a general second-order exchangeable adjustment,

RVarnjmin(Bj ) ≤ βj ≤ RVarnjmax(Bj ),

where βj is any value such that

0 < βj < φj =
m∑

i=1

L2
ij

λi

,

njmin = ceiling
{

1− λ1

λ1

βj

φj − βj

}
,

njmax = floor
{

1− λm

λm

βj

φj − βj

}
.
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Proof. This follows as in the proof of Theorem 12.69. �

Corollary 12.73 The sample size guaranteeing RVarn(Bj ) ≥ βj is bounded by

njmin ≤ n ≤ njmax.

12.13 Implementing comparisons of belief

12.13.1 Expectation comparisons

Here we address briefly the algebraic and geometric constructions for the belief
comparison bearings discussed in §9.6. Using the notation therein, we wish to
maximize (9.31) and (9.32), under the constraint that VarH1(X) and VarH2(X)

are positive definite. Suppose we let B = VarH1(X) and A = VarH2(X). Then, via
§11.11.4, we can form generalized eigenvectors W corresponding to eigenvalues �

to solve the generalized eigenvalue problem AW = BW�, where the eigenvalues
are all positive and where the eigenvectors are all invertible and normalized such
that WT AW = � and WT BW = I . Further, writing G = W−1 for convenience,
we have B = GT G and A = GT �G. Thus, writing c = Gh (i.e. h = Wc), we have

DE12(X) = max
h

[hT [EH2(X)− EH1(X)]]2

hT VarH1(X)h
(12.73)

= max
c

[cT [EH2(W
T X)− EH1(W

T X)]]2

cT c
(12.74)

= [EH2(W
T X)− EH1(W

T X)]T [EH2(W
T X)− EH1(W

T X)] (12.75)

by Theorem 11.49, so that WT X corresponds to Z of §9.6 in (9.38). Similarly,

DE21(X) = max
h

[hT [EH2(X)− EH1(X)]]2

hT VarH2(X)h
(12.76)

= max
c

[cT [EH2(W
T X)− EH1(W

T X)]]2

cT �c
(12.77)

= [EH2(W
T X)− EH1(W

T X)]T �−1[EH2(W
T X)− EH1(W

T X)]
(12.78)

by Theorem 11.49, giving the result which corresponds to (9.39). Clearly we have
that VarH1(W

T X) = I and VarH2(W
T X) = �, showing that WT X satisfies the

normalizations of §9.6.

12.13.2 Comparison of exchangeable beliefs

Consider two sets of belief specifications for a sample of n exchangeable vectors
X = X1, . . . , Xn, where we have the representation

Xi =M(X)+Ri (X), i = 1, 2, . . . ,
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and where each Xi contains r quantities Xi1, . . . , Xir . Suppose that we specify

VarH1(M(X)) = �1, VarH1(Ri (Xi)) = �1 − �1, ∀i, (12.79)

VarH2(M(X)) = �2, VarH2(Ri (Xi)) = �2 − �2, ∀i, (12.80)

where �1, �2, �1, �2, �1 − �1, �2 − �2, are all non-negative definite r × r matri-
ces. To simplify the construction, we will require �2 − �2 to be positive definite; if
this is not the case, the construction is more difficult but can be circumvented, for
example, by transforming the quantities into range{�2 − �2}. Gather the quanti-
ties into the vector X = [XT

1 XT

2 . . . XT
n ]T . The two specifications lead to variance

matrices

VarH1(X) = In ⊗ (�1 − �1)+ Jn ⊗ �1, (12.81)

VarH2(X) = In ⊗ (�2 − �2)+ Jn ⊗ �2, (12.82)

using the direct product notation of §11.12.2. To compare the belief specifications,
we must solve the generalized eigenvalue problem

VarH1(X)U = VarH2(X)U�,

where U are the generalized eigenvectors and � the corresponding eigenvalues.
We can obtain the eigenstructure as follows, provided that �2 − �2 is positive
definite:

VarH1(X)U = VarH2(X)U�, (12.83)

⇒ VarH2(X)−1VarH1(X)U = U�, (12.84)

⇒ [In ⊗G− Jn ⊗ L][In ⊗ (�1 − �1)+ Jn ⊗ �1]U = U�, (12.85)

by Lemma 11.61, where

G = (�2 − �2)
−1, (12.86)

L = (�2 + (n− 1)�2)
−1�2(�2 − �2)

−1, (12.87)

⇒ [In ⊗G(�1 − �1)+ Jn ⊗ [G�1 − L(�1 + (n− 1)�1)]]U = U�, (12.88)

⇒ [In ⊗ (A− B)+ Jn ⊗ B]U = U�, (12.89)

where

A− B = G(�1 − �1), (12.90)

A = G�1 − L(�1 + (n− 1)�1), (12.91)

B = G�1 − L(�1 + (n− 1)�1). (12.92)



IMPLEMENTING BAYES LINEAR STATISTICS 485

Now it follows from Lemma 11.62 that the eigenstructure of (12.89) can be
obtained from the eigenstructure of A− B and A+ (n− 1)B, where

A− B = G(�1 − �1) (12.93)

= (�2 − �2)
−1(�1 − �1), (12.94)

A+ (n− 1)B = (�2 + (n− 1)�2)
−1(�1 + (n− 1)�1). (12.95)

This leads us to the following result.

Theorem 12.74 Suppose that we obtain the generalized eigenstructure

(�1 − �1)W = (�2 − �2)W� (12.96)

i.e. VarH1(Ri (X))W = VarH2(Ri (X))W� (12.97)

and (�1 + (n− 1)�1)U = (�2 + (n− 1)�2)U� (12.98)

i.e. VarH1(M(X))U = VarH2(M(X))U�, (12.99)

where we can choose U, W to be orthonormal. Then the generalized eigenstructure
(12.83) is given by

� = �⊕�⊕ . . .⊕�,

where there are r − 1 terms �, so that each eigenvalue δi is of multiplicity r − 1.
The corresponding eigenvector matrix is

U = [
h1 ⊗ V h2 ⊗W h3 ⊗W . . . hn ⊗W

]
,

where hi is the ith column of the Helmert matrix Hn (see Definition 11.58).

Notice that (12.96) provides the canonical structure for the comparison of vari-
ance specifications for the sample averages, whilst (12.98) provides the canonical
structure for the comparison of variance specifications for the residual structures.
Therefore, to obtain the canonical structure for the comparison of exchangeable
beliefs, it is necessary only to make the comparison for the sample averages (which
does depend on the sample size) and the comparison for one residual structure
(which does not depend on the sample size). Further, the two comparisons can be
made separately.





A

Notation

Notation used in the book is briefly as follows, with page numbers showing the
first, or main, definition.

A⊥ The orthogonal part of a matrix A. 434
A† The Moore–Penrose generalized inverse of matrix A. 432
A− A generalized inverse of the matrix A. 432
ȧd Coefficients for the discrepancy vector for data d. 99
äd Coefficients for the adjustment discrepancy vector for

data d.
106

�A⊥⊥ B� / C Collection A is separated from collection B by
collection C.

167

AD(B) Adjusted version of B given D. 57
〈C〉 The collection of linear combinations of elements of

the collection C.
75

{C} The base of a collection. 82
[C] The belief structure over the collection C. 82
ci (X) Resolution in X contributed by the ith canonical

direction.
79

CF(A) The correlation matrix derived from the variance
matrix A.

285

Corr(X, Y ) The correlation matrix for vectors X, Y . 8
CorrD(X, Y ) The correlation between X, Y in the adjusted

variance matrix given by adjusting by D.
130

Cov(X, Y ) The covariance matrix for vectors X, Y . 8
CovD(X, Y ) The adjusted covariance between X, Y given by

adjusting by D.
58

CR(M(V )) The prior correlation matrix for a vector M(V ) of
population residual variances.

285
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CRn(M(V )) The updated correlation matrix for a vector M(V ) of
population residual variances.

285

DE 2
1
(B) Maximum squared difference in expectation over

collection B between two specifications H1 and H2,
relative to variances under H1.

312

diag{·} The diagonal matrix with diagonal values as given. 234
Dis(d) Discrepancy in a collection D = d. 96
Disd(B) Adjustment discrepancy for B given adjustment by

D = d.
105

Dr(d) Discrepancy ratio for a collection D = d. 97
Drd(B) Adjustment discrepancy ratio for B given

adjustment by D = d.
106

DV 2
1
(B) Maximal variance ratio H2:H1 for comparing

variance specifications over collection B.
294

E(X) The expectation vector for the vector X. 8
ED(B) Adjusted expectation for the vector B adjusted by the

vector D.
64

Ed(B) Observed adjusted expectation for the vector B

adjusted by the vector D = d.
104

E[F/D](B) The partial adjustment of B by F given D. 126
E(n)(M(V )) The semi-adjusted residual variance matrix. 286
G 2

1
The bearings for the belief comparison of H1 and H2,
norming according to variances under H1.

312

ḣd Coefficients for the bearing for data d. 113
H(D/B) The heart of the transform for the adjustment of B

by D.
81

I The identity operator or identity matrix. 83
Kur(X) The kurtosis for the random quantity X. 268
M(X) The mean component for the exchangeable sequence

X1, X2, . . ..
185

null{A} Null space of a matrix or transform. 435
P(X) Prevision (probability or expectation) for the

random quantity X.
34

Pa(B) The parents of node B. 356
PC(d, f ) The path correlation between two data sources d,f , for

adjusting a third collection.
138

RAF (B/D) The relative adjustment ratio for B by F given
prior adjustment by D.

129

range{A} The range of a matrix. 435
rB The rank of the variance matrix for the collection B. 76
RCorrD(X, Y ) The correlation between X, Y in the resolved

variance matrix given by adjusting by D.
107
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RCovD(X, Y ) The resolved covariance between X, Y given by
adjusting by D.

58

Rd(X) Resolution in the quantity X given adjustment by
D = d.

58

Ri (X) The residual component for the ith individual of the
exchangeable sequence X1, X2, . . ..

185

rk{A} Column rank of a matrix or transform A. 431
R[F/D](X) The partial resolution in X given by adjusting

by F in addition to D.
128

rP The rank of the partial resolution transform matrix. 135
rT The rank of the resolution transform matrix. 76
RUD(B) Residual uncertainty in the collection B given

adjustment by D.
79

RVarD(X) The resolved variance matrix for B given by
adjusting by D.

57

Sn(·) An average of n terms in an exchangeable sequence. 206
S2

n The sample variance matrix. 282
S(X) Standardized version of X. 8
S(x) Standardized version of the observed value x. 95
Sd(X) Standardized value of the adjustment of X by D = d. 105
Sized(B) Size of the adjustment of the collection B by D = d. 114
Srd(B) Size ratio for the adjustment of the collection B by

D = d.
116

SB:D The adjusted belief transform matrix for the
adjustment of B by D.

81

SB:F(D) The relative adjusted belief transform for [B/D] given
F .

130

TB:D The resolution transform matrix for the adjustment of
B by D.

77

TB:[F/D] The partial resolution transform matrix for the
adjustment of B by F in addition to D.

128

TB:F(D) The relative resolution transform of B by F given D. 130
tr{A} The trace of a matrix or transform A. 431
Var(X) The variance–covariance matrix for the vector X. 8
VarD(B) The adjusted variance matrix for B given by

adjusting by D.
57

Ẇd Discrepancy vector for data d. 99
Ẅd Adjustment discrepancy vector for data d. 106
ẇd Observed discrepancy vector for data d. 99
Ÿd(B) The discrepancy vector in B induced by the

adjustment by D = d.
106

Zd(B) The bearing for collection B given data d. 114
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Z[f/d](B) The partial bearing for B given initial adjustment by
data d and then partial adjustment by data f .

135

Z(B, D) The joint bearing for collections B and D. 114
ζi Partial canonical resolution. 128
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C

Software for Bayes linear
computation

C.1 [B/D]

[B/D] is the computer implementation of the Bayes linear methodology developed
by us, initially at the University of Hull and thereafter at the University of Durham.
The package is freely available as Wooff and Goldstein (2000b). Manuals and soft-
ware guides are available as Wooff (2000b), Goldstein (2000), Wooff (2000a), and
Wooff and Goldstein (2000a). A brief description of the language, with examples,
may also be found in Goldstein and Wooff (1995). Note that this package provides
a programming language and does not have a graphical user interface.

Most of the calculations in this book were carried out using [B/D]. Some of the
graphics shown in Chapter 10 are produced directly from [B/D]. The remaining
graphics in the book were produced by the statistical package R (R Development
Core Team 2006) using computations imported from [B/D].

C.2 BAYES-LIN

BAYES-LIN, written by Darren Wilkinson, is an object-oriented environment for
Bayes linear local computation. It is intended for people who already know about
Bayes linear methods, graphical modelling and local computation, and want a
collection of object-oriented programming tools for carrying out computations.

BAYES-LIN is a set of modules for the XLISP-STAT statistical programming
environment, and hence assumes some familiarity with that system and with the
basic concepts of object-oriented programming. Local computation in BAYES-LIN
is achieved via message-passing between objects representing clique-tree nodes. It
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uses directed acyclic graph nodes as the basis for model specification, and auto-
matically constructs an appropriate junction tree for computation. The underlying
theory is given in Goldstein and Wilkinson (2000), and Wilkinson (1998) describes
the object-oriented approach to Bayes linear local computation. The package is
available as Wilkinson (2000).
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